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INTRODUCTION

La premiere partie de cette these (articles I et II) est consacrée a 1'étude du
comportement asymptotique des solutions de dynamiques du second ordre avec
dissipation évanescente.

Dans I'article I, nous nous intéressons a une équation hyperbolique semi-
linéaire amortie. Soit V' et H deux espaces de Hilbert réels. Soit a : V x V — R
une forme bilinéaire, continue, symétrique, positive et semi-coercive (c’est-a-dire
IAN>0,u > 0telque Vu € V,  alu,u)+Nul3; > pllul|?). Nous associons a af(., .)
I'opérateur linéaire continu A : V' — V’ défini par (Au, v)yr v = a(u,v) pour tout
u,v € V. Etant donnée une fonction f : V — H, nous considérons I’équation
d’évolution semi-linéaire du second ordre

2

() Ca(0) 40 (0) + Ault) + F(u(t) =0, >0,

ou vy : Ry — Ry avec limy, o y(f) = 0. Cette équation modélise par exemple
des phénomenes de propagation d’ondes ou de vibrations soumis a une force
extérieure — f(u) et a une force de frottement ou d’amortissement évanescente
—7‘2—1;. Dans un cadre fonctionnel différent, Cabot, Engler et Gadat [10, 11] ont
étudié le comportement asymptotique des solutions de ’équation différentielle du
second ordre plus générale suivante

(S) B(t) + () i (t) + VO(x(t) =0, >0,

ol H est un espace de Hilbert et ® : H — R est une fonction de classe C* et
convexe. [’analyse repose sur 'utilisation de la fonction énergie définie par

£() = Sl#(1) + B(a(1))

qui est I’énergie mécanique du point matériel. Lorsque ~(t) = v > 0, ’équation
(81) est dénommée probleme de la boule pesante avec frottement et a été etudiée
par Alvarez [2]. Les premiers résultats obtenus par Cabot, Engler et Gadat [10, 11]
sur la sommabilité et la convergence de la fonction énergie £ du systéme (S;) sont
les suivants:
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Proposition 0.1 Supposons v : R, — R, dérivable et décroissante, ® : H — R
C! et convexe, alors toute solution x de (S;) vérifie

(i) E(t) = —y(b)]i(t)]*
St de plus Argmin® # &, alors toute solution x bornée dans H vérifie

(i) J,7 v () (E(t) — min )dt < oo,
(iii) si de plusy ¢ L'(0,+00), alorslim;_, o, £(t) = min @ et donc lim;_, o |2(¢)]
0 et limy, o P(t) = min d.

Nous obtenons des résultats similaires dans le cas de I'équation (E) en utilisant
une fonction énergie appropriée. Dans le cas d’'un amortissement constant (t) =
v > 0, la convergence des solutions de (EF) a été obtenue par Alvarez et Attouch
[3]. La fonction f:V — H est supposée conservatrice

JF € CHV,R)/ Yu,v eV, (F'(u),v)vv = (f(u),v)n,

et monotone

Vu,v €V, (f(u) — f(v),u—v)y > 0.
Les auteurs ont obtenu le théoreme suivant:

Théoréme 0.1 Supposons~y(t) =~ > 0. Soita : VXV — R une forme bilinéaire
continue, symétrique, positive et semi-coercive et soit f : V. — H conservatrice
et monotone. Supposons que S = {v € V; Av+ f(v) = 0} # @. Alors toute
solution u de (E) converge faiblement dans V quand t — +o00 vers un point de

S.

Nous généralisons ces résultats de convergence a ’équation (F) dans le cas d'un
amortissement évanescent. Sous les mémes hypotheses sur la forme bilinéaire
a(.,.) et sur la fonction f, nous obtenons la convergence faible dans V' vers un
point de S de toute solution bornée dans H si l'application v tend lentement
vers 0 quand t — +oo (par exemple, s’il existe a €]0; 1] tel que 7(¥) t% quand
t — +00).

Dans 'article II, nous nous intéressons a ’algorithme proximal inertiel suivant

(A) Try1 = Tp — Qn(Ty — Tp1) + Br0P(2541) 30,

ou H est un espace de Hilbert, ® : H — R U {+o00} est une fonction convexe
propre s.c.i., () et (5,) sont des suites strictement positives. Nous pouvons
réécrire 1'algorithme (A) de la fagon suivante:

Tni1 — an + Tp—1 1- Qp
Bn Bn

L’algorithme (A) apparait donc comme une discrétisation implicite du systeme
l—oan

continu (S7) avec un pas de temps égal a /[, tandis que T correspond a la

valeur de v au temps ¢, = Y ,_, /B L'algorithme (A) a été étudié par Alvarez
[2] qui a obtenu le résultat suivant:

(@ — p_1) + 0P(zn11) 2 0.
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Théoréme 0.2 Supposons que  : H — RU {+o0} est s.c.i., convexe et propre.
Soit (av,) et (By) des suites de réels strictement positifs telles que o, < @ < 1, (5,)
majorée et (3*) décroissante. Si Argmin® # @, alors toute suite (x,) générée
par (A) converge faiblement dans H vers un minimiseur de ®.

L’étude repose sur l'utilisation d’une fonction énergie et du lemme d’Opial ou
I'hypothese «,, < @ < 1 joue un role crucial. Nous étudions la convergence de (\A)
sous ’hypothése plus générale 0 < «,, < 1 et examinons le cas lim, . o, = 1.
Dans un premier temps, nous étudions la convergence de la fonction énergie

1
2671—1
ou (x,) est générée par (A). Nous obtenons des résultats de sommabilité et de

convergence de la suite (&,) similaires aux résultats obtenus a la Proposition 0.1
dans le cas du systeme continu (S;). Dans larticle [10], Cabot, Engler et Ga-

gn ‘xn - xnfl‘Z + q)(l'n),

dat ont prouvé que, si f0+°° e~ Jor)dsgy = 00, toute solution = de (S;) telle que
((0),2(0)) ¢ Argmin ® x {0} ne converge pas. Nous trouvons des résultats ana-
logues dans le cas discret pour l'algorithme (A).

La deuxieme partie de cette these (articles III a VI) est consacrée a I’étude de
plusieurs algorithmes de type proximal. Nous montrons que ces algorithmes con-
vergent vers des solutions de certains problemes de minimisation. Dans chaque
cas, une application est donnée dans le cadre de la décomposition de domaine
pour les EDP.

X, Y, Z sont des espaces de Hilbert, f : X - RU{+o0} et g:Y — RU{+o0}
sont des fonctions s.c.i., convexes et propres, A: X — Z et B:)Y — Z sont des
opérateurs linéaires continus. Nous considérons la fonction convexe @, : X x Y —
R U {400} définie par

B, (z,y) = f(z) + 9ly) + %HA:U Byl

ol v est un parametre strictement positif. Dans le but de minimiser la fonction
®., Attouch, Bolte, Redont et Soubeyran [5] ont introduit 'algorithme alterné
avec termes de couts-aux-changements

. 1 o
uss = Arguin { 7(0)+ - lAe = Bl + o — i e )
(Al) 1 v
Ynt1 = Argmin {g(y) + %HAmn-I—l — By|lz + Slly = unll3; € y} :

ou «, v sont des parametres strictement positifs. Les auteurs ont montré que toute
suite générée par I’algorithme (.A;) converge faiblement vers un point solution du
probleme



(P1) min {®,(z,y); (z,y) € X x YV}

_ mm{f<a:> Fol)+ AT = Byl (5.9) € X % y}.

L’algorithme (\A;) utilise la structure de la fonction objectif @, pour résoudre
le probleme initial sur X x ) en résolvant respectivement des problemes sur X
et Y. Dans un article antérieur, Acker et Prestel [1] avaient étudié le probleme
fortement couplé (X =Y, A = B =7 et « = v = 0 dans l'algorithme). Dans
I'article III, nous généralisons les méthodes et les résultats de convergence de [1]
au probleme faiblement couplé (P;). Nous retrouvons la convergence faible dans
X x Y de la suite (z,,y,) générée par l'algorithme (A;) vers un point solution
de (Py) et montrons la convergence forte dans Z de la suite de variables duales
(—%(Axn — By,)) vers I'unique solution du probleme dual®

inf { (A2 + 9" (~B"=) + 21N 2 e 2]

Le cadre d’application a la décomposition de domaine pour les EDP est le suiv-
ant: nous considérons un domaine borné Q2 = Q; U Qs UT de RY suffisamment
régulier qui peut se décomposer en deux sous-domaines €2 et {25 avec une interface
commune ['.

Nous choisissons X = H(Qy), Y = H(Qy) et Z = L*(T'). Les opérateurs A :
X — Zet B:Y — Z sont les opérateurs traces sur I'. Le terme [w] = Au — Bv
u sur €

a travers 'interface I'. Les
v osur ()

correspond au saut de 'application w = {

fonctions f et g sont définies par

1 1
flu)== [ |Vul? —/ hu et gv)== [ |Vu? —/ hv.
2 (951 91 2 Qo Q2

La fonction h € L?() est fixée. Dans ce cas 1'algorithme (.A;) permet de résoudre
par décomposition le probleme de minimisation suivant

Lr:Z 5 RU{+oo} et g* 1 Z — RU {+oo} sont les conjuguées de Fenchel des fonctions f et g,
A*: Z — X et B*: Z — Y sont les opérateurs adjoints de A et B.
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1 1 1
min{— IVl + = |VU|2+—/[w]2—/hw; we HY(), v eHl(Qg)},
2 Jo, 2 Ja, 2y Jr Q
qui est la formulation variationnelle du probleme avec conditions au bord mixtes
de Dirichlet-Neumann suivant sur €2y

—Au=h dans
g—:‘l =0 sur 0§ NN
ﬁz—%(u—u) sur T,

et QQ
—Av=nh dans €y
% =0 sur 08y N 0N
U=Llu—v) sur T.
n "y

Ce type de probleme peut apparaitre dans la description de phénomemes au-
torisant des discontinuités a travers I'interface I'.
Le probleme de minimisation avec contraintes

(P2) min {f(z) + g(y); Az = By}

correspond formellement a minimiser la fonction ®, avec v = 0. Dans 'article IV,
nous remplagons dans 'algorithme (A;) le parametre constant v par une suite
strictement positive (,,) qui tend vers 0. L’algorithme s’écrit

. 1 Q@
uss = Argnin {311 £(@) + gllAe = Bl + o~ nalfi o€ )
(A2) 1 v
s = Argiin {1,31900) + gl A — Byl + 5y~ mli eV}

La fonction ¥(z,y) = 1||Az — By||% agit comme une fonction de pénalisation de
la contrainte Ax = By et %n apparait comme un parametre de pénalisation. Sous
des hypotheses adéquates, la suite générée par le nouvel algorithme (Ay) con-
verge faiblement vers un point solution de (Ps), c’est-a-dire minimise la fonction
O(z,y) = f(x)+g(y) sur Argmin ¥ = {(z,y) € X x)Y; Az = By}. Ce type de
minimisation hierarchisée a été étudié par Cabot [9]. Soit ¢ : R™ — R U {+o0}
une fonction s.c.i., convexe et ¢ : R™ — R une fonction finie et convexe. Avec ces
notations, 'algorithme de [9] s’écrit

Tny1 = Argmin {W) + Yor16(@) + 7 = alin; T ER } .

La vitesse de convergence de la suite (7,) vers zéro joue un réle primordial dans
le processus de minimisation. Soit (w,,) la suite définie par

w, = inf {Y(x) + Yn1(e(r) —ming)},

zeR™

Cabot [9] a obtenu, dans le cadre de la dimension finie, le résultat suivant:
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Théoréme 0.3 Supposons que la suite (o) vérifie, pour tout n € N, 0 < a <
a, < a. Supposons que ’ensemble C' = Argmini) soit non vide, que la fonction
© soit minorée et que l'ensemble Argming @ soit non vide et borné. Si (v,) ¢ I*
alors

(i) lim, o ¥(z,) = miney et lim, . @(x,) = ming @,
(i) si de plus

(h1) (w,) €1,

alors (x,) converge vers un élément de Argming ¢.

L’hypothese (v,) ¢ ' exprime que la suite (7,) converge lentement vers zéro
alors que I'hypothese (hy) exprime que la suite (7,) ne converge pas trop lente-
ment vers zéro (sous des hypotheses adéquates sur les fonctions ¢ et p, (hy) est
réalisée si (y,) € [?). Nous utilisons des hypotheses similaires sur la suite (7,)
dans larticle IV et montrons que la suite générée par I'algorithme (Ay) converge
faiblement vers un point solution du probleme (P,). L’analyse est aussi étendue
au cadre des opérateurs maximaux monotones. Avec le cadre d’application aux
EDP précédent, la contrainte force le saut a travers 'interface a étre nul et inter-
dit les discontinuités a travers l'interface. L’algorithme permet de résoudre par
décomposition le probleme de minimisation suivant

1
min{—/|Vw|2—/hw; wGHl(Q)},
2 Ja Q

qui correspond a la formulation faible variationnelle du probleme de Neumann
sur le domaine €

9w —( sur ON.

{—Aw = h dans €
on

Dans I'article V, la suite (7,) est supposée tendre vers +oo. L’algorithme s’écrit

1
xm1=»ngmn{fw>+2

n+1
1

2 n+1

«
42 = Bulls + Sllo - malli =€ ¥
(A)

Yn+1 = Argmin {g(y) + | Azpy1 — Byl|% + gHy —ualys v € y} :
Nous pouvons supposer sans perte de généralité que min f = ming = 0. Dans
ce cas, c’est la fonction ®(z,y) = f(z) + g(y) qui agit comme une fonction de
pénalisation de la contrainte Argmin f X Argming et 7, comme un parametre
de pénalisation. De maniere symétrique a l’article précédent, nous retrouvons un
processus de minimisation hierarchisée et la suite générée par le nouvel algorithme
(A3) converge faiblement vers un point solution de

(P3) min {HAQZ — By||%;  (z,y) € Argmin f x Argming} )
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Nous utilisons une hypothese introduite par Attouch et Czarnecki [6]. Les auteurs
ont étudié le systeme dynamique continu suivant

1
v(t)

olt H est un espace de Hilbert, ¢ : H — R, U{+o00} et ¢ : H — RU{+00} sont
des fonctions s.c.i., convexes et propres et v : Ry — R;\{0} est une fonction
de classe C! telle que lim,_, v(t) = +oo. Les auteurs ont obtenu le résultat
suivant:

(S2) #(t) + p(x(t) + —=0v(t) 3 0,

Théoreme 0.4 Supposons de plus que C = Argming = ¢ 1(0) # @ et que
Argmingp # @. Soit v : Ry — R \{0} une fonction de classe C' croissante
telle que + soit majorée et?

(hs) Vp € R(N¢), <g0* (%) — o0 <%)) e LY(0, +00).

Soit x une solution forte’ du systeme (Sy). Alors

(i) limy ., o p(t) =0 et limy, o ¥ (t) = ming ¥,
(ii) x converge faiblement dans H wvers un point de Argming ).

La vitesse de croissance de la fonction v vers 'infini joue la encore un role pri-
mordial pour assurer la convergence des trajectoires vers ’ensemble d’équilibre.
L’hypothese 4 majorée exprime que la fonction v tend lentement vers 'infini
alors que I'hypothese (hy) exprime que la fonction v ne tend pas trop lentement
vers l'infini (sous des hypotheses adéquates sur la fonction ¢, (hy) est réalisée
si % € L?(0,400)). Avec des hypotheses analogues traduites dans le cas discret,
nous obtenons la convergence faible de la suite générée par I'algorithme (A3) vers
un point solution du probleme (P3). Dans le cadre des EDP, I'algorithme permet
de résoudre le probleme de minimisation suivant

win {5 [T}

. R e sur €
ou |[w] est le saut de w a travers l'interface I', w = st A

v sur €
v € H'(€y) sont solutions faibles des problemes avec conditions aux bords de
Neumann suivants

et u € H'(Q),

2 Nc(z) est le cone normal &4 C en «,
Ne(z)={pe X:(p,(—z)x <0 V(€ X}.

R(Nc¢) est 'image de N¢, c’est-d-dire p € R(N¢) si et seulement s’il existe un x € C tel que
p € Nc(x). oc est la fonction support de C: pour tout z € X, oc () = supec x (z, () x.

3 Dans le sens de Brezis ([8], définition 3.1). En particulier, 2 est absolument continue sur tout intervalle
[0;T] avec T' < +o0.



—Au =h dans —Av =nh dans €
%:O sur 0y, g—Z:O sur 0y,

et h € L*(Q2) est une fonction donnée.
Enfin, dans le dernier article, nous utilisons des méthodes proximales et la-
grangiennes inspirées des articles [12, 7] dans le but de résoudre le probleme

(Py) min {f(z); Axe€C},

oun f: X — RU{+oo} est une fonction s.c.i, convexe et propre, A : X — Y
est un opérateur linéaire continu et C est un ensemble convexe fermé de ). Dans
I'article [12], Chen et Teboulle ont considéré le probleme de minimisation avec
contraintes linéaires suivant

(Qu) min {f(z) +g(y); Az =y},

ou f:R™ - RU{+o0} et g : R” - RU {400} sont des fonctions s.c.i, convexes
et propres et A : R™ — RP est un opérateur linéaire. La fonction de Lagrange
associée au probleme (Q,) est la fonction £ : R x RP x R? — RU {400} définie
par
L(z,y,p) = f(x)+g(y) + (1, Az — y)ws.

Elle est s.c.i, convexe pour les variables primales x et y et concave pour la vari-
able duale p. Les auteurs ont introduit un algorihme basé sur une minimisation
proximale pour les variables x et y et sur une maximisation proximale pour la
variable p. Par linéarité, ’algorithme s’écrit

/]nJrl = Hn + )\n+1(Axn - yn)>
Tpi1 = Argmin § L(2, Yn, fint1) + ﬁ”x — Zpllgm; T € Rm} )

Yn+1 = Argmin § L(Tn, Y, fin1) + g5 1Y — vnllies v € RP} :
fint1 = fn + A1 (AZni1 — Ynir)-

Le résultat principal obtenu dans [12] est:

Théoréme 0.5 Supposons que l’ensemble des points selles* de L soit non vide
et que la suite (\,) vérifie, pour tout n € N,

<\ < mi (1—6 1—6)
e<\, <min | ——, —— |,
2 "2|A]

pour 0 < € < min( > Alors (T, Yn, tin) converge vers un point selle de

11
30 TN
L et donc (y,,y,) converge vers un point solution du probléme primal (Qy).

4 (z*,y*, 1u*) € R™ x RP x RP est un point selle de £ si, pour tout (z,y, u) € R™ x RP x R?,

Lz, y",pw) < L%, y", p1") < Lz, y, p1").
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Dans l'article VI, nous étendons ces résultats de convergence a la dimension
infinie pour le probleme de minimisation (P,). Pour cela, nous introduisons une
variable de contrainte v € R? et une fonction de pénalisation P : Y — (RT)?
telle que y € C si et seulement si P(y) = 0. La fonction de Lagrange considérée
est la fonction L : X X Y x Y x RY — R U {+oo} définie par L(z,y,u,v) =
f(x) + (1, Ax — y)y + (v, P(y))re. Nous introduisons un algorithme inspiré de
[12]. Nous montrons que, si la fonction P est lipschitzienne et sous des hypotheses
adéquates sur la suite (\,), la suite (2., Yn, fin, Vn) générée par cet algorithme
converge faiblement dans X x ) x ) x R vers un point selle de L et donc (z,,, y,)
converge faiblement dans X' x ) vers un point solution de (Py). L’étude est aussi
étendue au cadre des opérateurs maximaux monotones. L’algorithme permet de
résoudre le probleme de minimisation suivant

min {% Jo, IVul? = [o hu+ 35 [o IVU]* = [, hv; (u,v) € H'(Q1) x H' Q) et up > v‘p}.

Ce type de probleme peut intervenir dans la description de phénomenes faisant
intervenir un matériau semi-conducteur ou un systeme de valve.
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Summary. Let V and H be Hilbert spaces such that V ¢ H C V' with dense and continuous
injections. Consider a linear continuous operator A : V — V' which is assumed to be symmetric,
monotone and semi-coercive. Given a function f : V — H and a map v € Wltcl (R4, R4) such that
lim;— 100 y(t) = 0, our purpose is to study the asymptotic behavior of the following semilinear hyper-

bolic equation

d*u du
(B) S0 + 1) T (@) + Au(t) + f(u(t) =0, ¢ >0,
The nonlinearity f is assumed to be monotone and conservative. Condition f0+°° y{#)dt = + o0

guarantees that some suitable energy function tends toward its minimum. The main contribution of
this paper is to provide a general result of convergence for the trajectories of (E): if the quantity
~(t) behaves as k/t*, for some a €]0,1[, K > 0 and ¢ large enough, then u(t) weakly converges in V'
toward an equilibrium as ¢ — 4-0c0. Strong convergence in V' holds true under compactness or symmetry
conditions. We also give estimates for the speed of convergence of the energy under some ellipticity-like
conditions. The abstract results are applied to particular semilinear evolution problems at the end of
the paper.

Key words: Semilinear evolution problem, dissipative hyperbolic equation, non-autonomous damping,
asymptotic behavior, rate of convergence.
Subject classification:34G10, 34G20, 35B40, 35L70.

1 Introduction

Throughout this paper, V' stands for a real Hilbert space, whose scalar product
and norm are respectively denoted by ((-,-)) and || - ||. Let H be another real
Hilbert space with scalar product (-,-) and norm | - |. Suppose that V' is dense
in H with continuous injection. By duality, the topological dual space H' of H is
identified with a dense subspace of the topological dual V’ of V. Identifying H
with H', we obtain V' C H C V', where each space is dense in the next one, each
injection being continuous. We denote by (-, )y~ the duality pairing between V'
and V. Let a: V x V — R be a continuous bilinear form satisfying
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(h1) a(.,.) is symmetric, positive,

(ha) IA>0,u>0 suchthat VueV, a(u,u)+ Mul> > pllul®.

This last property is known as the semi-coercivity of the form a. We associate
with a(.,.) the continuous operator A : V' — V' defined by (Au,v)y v = a(u,v)
for all u,v € V. We denote by D(A) the domain of the operator A, i.e. D(A) =
{v € V; Av € H}. Given a function f : V — H and a map v € W2 (R, R,),
we consider the following semilinear evolution equation of second-order in time
2
() o)+ () S + Au(t) + F(u(t) =0, +>0,
The nonlinearity f is assumed to be conservative, i.e. derives from some potential
F € CY(V,R). The main purpose of the paper is to investigate the asymptotic
behavior of the trajectories of (F) for a vanishing damping term, i.e. y(t) — 0 as
t — +o00. It is clear that the decay properties of the map ~ play a central role in
the analysis. In particular, if the quantity (¢) tends to 0 too rapidly as t — 400,
convergence of the trajectories may fail. To motivate our study, let us show how
it is connected to other questions of interest.

Case of a constant damping. If v(t) = -, existence and uniqueness are well-
known in the framework of damped wave equations. More precisely, if the map
f 'V — H is Lipschitz continuous on the bounded sets of V' and if the map F
satisfies suitable growth conditions, then for any (ug,vg) € D(A) x V, there
exists a unique solution u € W,o(R, V) N W2X(Ry, H) of (E) such that
u(0) = up and %(0) = vy, see [12, Theorem I1.3.2.1] or [20, Ch. IV, Theorem
4.1]. The trajectories of (E) are known to converge toward an equilibrium point
U € {v €V, Av+ f(v) = 0} under assumptions like monotonicity or analyticity.
In the case of a monotone map f, convergence is obtained for the weak topology
of V' and the main ingredient of the proof is the Opial lemma, cf. [3]. When the
nonlinearity is analytic, convergence of the trajectories relies on the Lojasiewicz
inequality, see [15, 16] and the pioneering work [19] for parabolic problems.

Averaged heat equation. With the same assumptions as above, consider the

abstract heat equation
dv

—(s) + Av(s) =0, s>0. (1)
ds
It may be of interest to examine the case where the velocity %(s) is proportional,
not to the instantaneous vector Av(s), but to some average taken over the interval
[0, s]. The simplest such equation is

dv 1 /[°
%(5)4_;/0 Av(o)do =0, s> 0. (2)
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After multiplying this equality by s and differentiating, we obtain the following
second-order in time equation

d*v dv
it A — .
S (s)+ 7 (s)+ Av(s) =0, s>0

The change of variable s = % allows to rewrite the above equation as

d*u 1 du
—(t - —(t Au(t) =0 t>0
Py 28 1w =0, 150,

where the map w is defined by u(t) = v (%) for every t > 0. This is exactly

equation (E) with y(t) = 1 and f = 0. Assuming that the injection V < H is
compact, there exists a nondecreasing sequence (\;);>1 of eigenvalues of A, along
with a complete orthonormal basis of H, (e;);>; consisting of the corresponding
eigenvectors. Let u(t) = > u;(t) e; be the decomposition of the solution u(t) on

the basis of eigenfunctions. Every component u; satisfies the following equation

1

It ensues that each kernel component u;, i e {1,...,dim(Kerd)} verifies u;(t) =
a; Int 4 b;, for some a;,b; € R. In particular, it cannot converge as t — 400,
unless it is stationary. When the eigenvalue \; is positive, we let the reader check

that
ui(t) = a; Jy <\/)\7t) + 1Yy <\/)\7t) ,  for some a, b € R,

where Jy and Y denote respectively the zeroth Bessel functions of the first and
second kind®. Recalling that

2 T 2 T
Jo(t) ~ ”E cos <t_1) and  Yy(t) ~ ”E sin <t_1) as t — o0,

we deduce that u;(t) ~ NG cos(v/Ait—p;) ast — +o0, for some ¢;, ¢; € R. Coming
back to the averaged heat equation (2), we then obtain for each component v;

s%cos<2 )\is—goi> as s — +00.

VilS) ~
(5)~ o
It converges toward zero much more slowly than the corresponding component of
the “pure” heat equation, equal to v;(0) e=**. The above discussion shows that
the global behavior of (2) -or more generally (E)- differs considerably from the
one of equation (1).

% See [1, 5] for standard references on Bessel equations.
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Heavy ball with asymptotically small friction. Given a continuous map 7 :
R, — R, and a potential ® : H — R of class C! with a locally Lipschitz
gradient, let us consider the following ordinary differential equation in the Hilbert
space H

Z(t) +y(t) 2(t) + VP(z(t)) =0, ¢>0. (3)

When v(t) = v > 0, the above equation is known under the terminology of “Heavy
Ball with Friction” system, (HBF') for short. From a mechanical point of view,
(HBF) corresponds to the equation describing the motion of a material point
subjected to the conservative force —V®(z) and the viscous friction force —v i.
The (HBF') system can be studied in the classical framework of the theory of
dissipative dynamical systems, cf. [11, 13]. The trajectories of (H BF') are known
to converge toward a critical point of ® under various assumptions (see [2, 4] for
convex potentials and [14] for analytic ones). In the recent papers [8, 9], it is con-
sidered the case of a vanishing damping v(t) — 0 as t — +o00. The corresponding
equation is typically obtained from a first-order gradient system involving some
memory aspects, see [7]. If the function ® is convex and has a unique minimum
Z, condition f0+°° v(t) dt = 400 is sufficient to ensure (weak) convergence of the
trajectories of (3) toward . When the function ® has a continuum of equilib-

+
ria, the more stringent condition / e~ o1 ds g < oo is necessary to obtain
0
convergence of the trajectories. In the one-dimensional case, the slightly stronger
+oo
condition e 0l ds gy o +00, for some 6 €]0, 1] is shown to be sufficient.

In the highgr—dimensional case, the general question of convergence is left open
in [8, 9]. The new techniques developed in the present paper allow to address this
question and to fill partially the gap between necessary and sufficient conditions
for convergence, see comments below.

Let us come back to equation (£) and precise now the framework of the paper.
The nonlinearity f is assumed to be monotone and conservative, i.e. derives from
some convex potential ' € C'(V,R). The set of equilibria S = {v € V, Av+f(v) =
0} is supposed to be nonempty. It is not our purpose to develop the well-posedness
of equation (F) for given initial conditions. Throughout the paper, we assume the
existence of a solution to equation (F) in the class

ue WoH R, V)NWENR,, H). (4)

loc loc

We define the energy function £ along each trajectory by

£(t) = % fl—?:(t) + % a(u(t), u(t)) + F(u(t)).

The major contribution of this paper is to provide a result of (weak) conver-
gence in V' for the trajectories of (E): if the quantity v(¢) behaves as k/t®, for
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some « €]0,1[, & > 0 and t large enough, there exists an equilibrium u., € S
such that u(t) — ue weakly in V as ¢ — +oo. The exact statement is in fact
slightly more general, see Theorem 3.3. The main ingredients of the proof are the
Opial lemma along with accurate estimates of the energy decay, cf. Proposition
3.2. Strong convergence in V' holds true under compactness or symmetry condi-
tions. The technique of the proof is new and is also applicable to the differential
equation (3).

The second contribution of the paper is to give sharp estimates for the speed
of convergence of the energy £(t) as t — +o0. In the linear case (f = 0) and
under some ellipticity-like condition, we obtain the following estimate

Et)~Ke™ Jrds ag ¢ 5 400, for some K > 0. (5)

Notice that this estimate fails to be true if the trajectory is contained in KerA,
see Theorem 2.1 for a precise statement. In the nonlinear case, the same kind of
estimate is obtained at a slightly lower degree of precision?, cf. Theorem 3.4.

Outline of the paper. Section 2 is concerned with the linear hyperbolic equation
(Ep) obtained by taking f = 0in (E). We analyze the behavior of the trajectories
by studying respectively their components with respect to the spaces KerA and
(KerA)L. A sharp estimate of the energy decay is given under some ellipticity-like
condition. In section 3, we deal with the general equation (F) by assuming that
the nonlinearity f is monotone. It is shown in paragraph 3.1 that the energy £(¢)
vanishes as ¢ — 400, which allows to prove (weak) convergence of the trajectories
in the case of a unique minimum. The general problem of convergence for a
continuum of minima is treated in paragraph 3.2, which is the core of the paper.
Additional results of strong convergence in V' are given under some compactness
or symmetry assumptions. Finally, the abstract results are applied to particular
semilinear evolution problems in section 4.

2 Linear hyperbolic equation

Let a : V x V — R be a continuous bilinear form satisfying (h)-(h2) and let
A 'V — V'’ be the associate operator. Given a map v € T/Vli’cl(RJr,RJr), we
consider the following linear hyperbolic equation

d*u

(Eo) ) 1) (1) + Aut) =0, 120,

We assume the existence of a solution to equation (Ejp) in the class (4). We define
the energy function £ along each trajectory by

4 In this case, a factor 2 has to be introduced in the exponent of formula (5).
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1
E(t) ==~
=1
We have € € W2 (R,) and

0= (G0 G0) + (a0 %(t)>v“‘”

du, |?
E(t) <0 a.e onRy,

= (1)

hence the function £ is a Lyapunov function for the system (Ep). The purpose
of this section is to establish results of convergence for the trajectory u, along
with estimates of the energy decay. For every t > 0, we set u(t) = Pu(t), where
P denotes the orthogonal projection onto the subspace® KerA in the sense of H.
Since u(t) € KerA for every ¢ > 0, we have

d2ﬂ d@
vt > —(t) + —(t) = 0.
E20, () +(t) (1) =0

By integrating this equality twice, we find

t ~
vt >0, u(t)=1u(0)+ </ e~ Jo 'y(r)drds) Ccll_:“(o) (6)
0

t
= Pugy + (/ e~ Jo 7(T)dTals) Puy.
0

If Pug # 0, the above equality shows that the asymptotic behavior of the compo-
nent U is strongly related with the convergence of the integral fOJrOO e~ Jo (M7 g,
The next proposition summarizes the different possible cases.

Proposition 2.1 Let us set w = [ el 7097 ds € R, U {+00}.
If vy € (KerA)t, then u(t) = Pug for every t > 0.
If vy ¢ (KerA)t, then the solution U converges if and only if W < +o00. More
precisely, we have lim |u(t)| = +o0 if W = +o00 while lim u(t) = P(up+wuvy)
t—+o00 t—+o00
if W < 400.
Our purpose is now to evaluate the energy decay along each trajectory u(.).
We start with a preliminary result corresponding to the case KerA = {0}.

Lemma 2.1 Assume that the bilinear form a(.,.) satisfies (hy)-(hs) and that
In>0,VueV, a(u,u)>nlul’ (7)
Let v € WERL,RL) be a function such that limy,,ooy(t) = 0 and 4 €

loc

LY0,400). Let u be a solution in the class (4) to equation (Ey). Then, either
the solution u is stationary, or there exists K > 0 such that

E(t) ~ Ke™ [A®ds s ¢ too.

® By using assumptions (h1)-(he), it is easy to check that KerA is closed in H. See also Remark 3.2.



SEMILINEAR HYPERBOLIC EQUATIONS WITH NON-AUTONOMOUS DAMPING 19

Proof. The main idea of the proof consists in using the function F defined by®

du, > 1 ~(t) (du

%(t) + §a(u(t), u(t)) + o <E(t)’ u(t))

—E(t) + %’5) (2—?(15), u(t)) .

Ft) =3

We have F € W5 (R,) and by differentiating the function F, we find for almost
every t > 0

2

du

F = €0+ 1P (GF0a0) + 12 (Trw.un) + 5o
7@ |du, [P () At ()P (du
=205 0] - Blawo.ue + (1P - 15 (Go.u).
Therefore we have
F(t)+ () F(t) = @ (%(t),u(t)) a.e.on R,. (8)

Since |(L(t),u(t))| < %‘d—;‘(t)f + S u(t))? and a(u(t),u(t)) > nlu(®)® by as-
sumption (7), we have

’ <‘Cll_1;(t),u(t)) ’ < CE(t),  for some C > 0. 9)

Recalling that lim;_, ;. 7(t) = 0, the expression of F shows that
F(t)~E() ast— 4oo. (10)

We deduce from (8), (9) and (10) the existence of D > 0 and ¢, > 0 such that

Ft)+~)F @) < DIX(t)|F(t) a.e on [ty,+o0l.

Let us multiply each member of this inequality by elo s and set Gg(t) =
elo 7(#)ds F (). We obtain

IG(t)] < D |4(t)|G(t) a.e. on [to, +o0l. (11)

Observe that if G(t1) = 0 for some t; > ¢y, then we have F(t;) = 0 and £(t1) = 0.
Since the map & is nonincreasing, we conclude that £(t) = 0 for every t > 1, i.e.
the solution u is stationary. Now assume that G(t) > 0 for every ¢t > ¢, and divide

% The use of such an auxiliary function is classical, see for example [13, Lemma 3.2.6] in the case of
an autonomous damping.
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each member of equality (11) by G(t). Since 4 € L'(0,+o00) by assumption, we
deduce that )
d G(2)]
9 4 = F\I
9]0 =56

It ensues that th+m InG(t) exists in R. We deduce that lim elo 1(9)ds (t) =
— 400

t—+00
K > 0. The conclusion immediately follows from estimate (10).

€ L'(0, +00).

Remark 2.1 A result similar to Lemma 2.1 can be obtained by ielimmatmg the
first order term in (Ey) via the change of variable v(t) = e2Jo 7y (t). The
details are left to the reader.

Remark 2.2 (Case 7 constant) Assuming that~y(t) =~ > 0 and that a(u,u) >
n|ul|® for every uw € V, the estimate E(t) = O (e~ ") remains true as t — +oo if
v < 202, see [18, Lemma 3.2.6]. However, it fails to be valid if v > 2n'/?, see
[13, Proposition 3.2.5].

We now assume the following ellipticity-like condition

Yu eV, a(u,u)>nlu— Pul|?, for somen > 0. (12)

Remark 2.3 Under (hy), this condition is equivalent to the following one’

YueV, a(u,u)>n"|u— Pul®, for somen > 0. (13)

Indeed, assume that condition (12) is satisfied. Recalling that Pu € KerA, we
deduce from (hg) that

Vu eV, a(u,u)+ \u— Pul*> p|u— Pul?

It ensues that <1 + %) a(u,u) > p|lu— Pul|* for every u € V and finally (13) is
fulfilled with ' = L&

N+’

Remark 2.4 Suppose that the injection V. — H is compact and that (hy)-(hs)
hold true. The eigenvalues of A then define a nondecreasing sequence of nonneg-
ative scalars tending to +00 and there exists an orthonormal basis of H consist-
ing of the corresponding eigenvectors, see for example [17, 20]. If n denotes the
smallest eigenvalue of A greater than 0, it is clear that a(u,u) > n|ul?® for every
u € (KerA)* NV and therefore condition (12) holds true.

The next result allows to estimate the energy decay under condition (12).

" Condition (13) is used in [21, Section 4], where estimates of the energy decay are provided in the
case of an autonomous damping.
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Theorem 2.1 Assume that the bilinear form a(.,.) satisfies conditions (hy)-(h2)
and (12). Let v € WL (R, R,) be a function such that lim, . y(t) = 0 and

4 € LY(0,+00). Let u be a solution in the class (4) to equation (Ey). Then, either
the trajectory is contained in KerA, or there exists K > 0 such that

E(t) ~ Ke Jor@ids g ¢ 4oo. (14)

Proof. For every t > 0, we set u(t) = Pu(t) and u(t) = u(t) — Pu(t). Since

u(t) € KerA, %(t) € KerA and %(t) € (KerA)*, we have for every t >0

et) = %0+ o[+ Laaee + a0, a0 + a0
=5 |5 0] +5|50] +50@0.70) (15

From equality (6), we deduce that for every ¢t > 0

du

du
—(t
o ()

E(O)

2
— 2 f(f ~(s)ds

(16)

Let us now set Vi = (KerA) NV, a1 = qpy,x1, and A; = Ap,. It is clear that @
is a solution of jrse e

w(t) + (t)dt( ) + Aqu(t) = 0.
On the other hand, condition (12) implies that a;(u,u) > n|u|* for every u € V;.
By applying Lemma 2.1 to the solution u, we obtain that either the map u is
stationary or there exists K; > 0 such that

Llda, | 1 . - .
S|S0+ 5@, 70) ~ Ky e O a5 o boo (1)
We now combine equalities (15), (16) with estlmate (17). If f s)ds = +o0,
we immediately obtain (14) with K = K. If fo s)ds < 400, then
lim £(t) = 5 e 20 d—%) Ry e B
t—+o00 2 dt ’

hence (14) is satisfied with K = = Jor > A (s)ds }d_ﬁ (0 ‘2 + K.

l
2 €
Remark 2.5 If the trajectory u(.)
valid. In this case, we infer from equality (16) that E(t) = é =2 Jg v(s)ds }fl;;

for every t > 0.

is contained in KerA, estimate (14) is no more
’2

Corollary 2.1 Under the hypotheses of Theorem 2.1, assume moreover that v &
LY(0,+400). Then we have lim;_, 1, E(t) = 0. If KerA = {0}, then u(t) — 0
strongly in V as t — 4o00.
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Proof. The first assertion is an immediate consequence of estimate (14), while the
second one follows from

V20, E) > () u() > T ()

NN

see inequality (13).

When KerA # {0}, convergence of the trajectories is obtained under the following
stronger assumption

1

+o0
/ e~ 2do I gg < 0. (18)
0

Corollary 2.2 Under the hypotheses of Theorem 2.1, assume moreover that con-
dition (18) is satisfied. Then, there ezists u,, € KerA such that u(t) — ue
strongly in' 'V as t — 400.

Proof. First assume that the trajectory is contained in KerA. Observing that
w= fOJrOO e~ Jo1(Md7ds < 400, we deduce from Proposition 2.1 that u(t) converges
strongly in H as t — +4o00. If the trajectory is not contained in KerA, we derive
from estimate (14) that

d ¢
d—?:(t)’ =0 (e’%fo WS)dS) as t— +oo,

hence % € L'(Ry, H) in view of condition (18). The trajectory u has a finite
length, hence strongly converges in H toward some u,, € KerA. Using now the

semi-coercivity condition (hs), we have

pllu(t) — uoo|l® < Au(t) — o |* + au(t) — tioo, u(t) — too)
= AMu(t) — uoo|* + a(u(t), u(t)).

Since limy 4 oo |u(t) — | = 0 and limy, o0 a(u(t), u(t)) = 0 in view of Corollary
2.1, we conclude that lim;, o [|u(t) — usl|| = 0.

Example 2.1 Suppose that there exist a, k > 0 such that y(t) = & for ¢ large
enough. If the bilinear form a(.,.) satisfies conditions (hi)-(h2) and (12), we de-

duce from Theorem 2.1 and Corollary 2.2 that
o if w>1, then lim &(t) > 0;
t—-+o0

e if « =1, then £(t) ~ th as t — 400 and the trajectory u(.) strongly converges
in V as soon as k > 2;

o if € (0,1), then E(t) ~ Ke """ as t — +o0o and the trajectory u(.)
strongly converges in V' for every k& > 0.

Other results of convergence will be provided in the more general framework of
semilinear equations.
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3 Monotone conservative nonlinearity

The assumptions concerning the spaces V', H, the linear operator A : V. — V’
and the map v : R, — R, are the same as in section 2. We consider the following
semilinear hyperbolic equation

d*u du

(E) )+ ()50 + Ault) + F(u(t) =0, 20,

We suppose that the nonlinearity f : V — H is conservative, i.e.

(k1) 3F € C'(V,R) such that Vu,v € V, (F'(u),v)y v = (f(u),v).

Moreover, we assume that the map f is monotone

(k2) Vu,0 €V, (f(u) = f(v),u—v) =0,

which is equivalent to the convexity of the potential F'. Defining ® : V— R by
®(v) = sa(v,v) + F(v),

we obtain a function of class C!' whose first derivative is given by (®'(u), v)y/y =
a(u,v) + (f(u),v), or equivalently ®'(u) = Au + f(u). Moreover, ® is convex,
which amounts to

Vu,v €V, alu,v —u) + (f(u),v —u) < &(v) — O(u). (19)
Consequently, minimum and stationary points of ® coincide, 1i.e.
Argmin® = {v € V | Av + f(v) = 0}, (20)
where Argmin® = {v € V' | &(v) = inf ®}. We suppose that
(k3) S = Argmin® # .

It is clear in view of equation (F) that nothing is changed if some constant is
added to the potential ®. Without loss of generality, we will systematically assume
that inf & = 0.

Remark 3.1 Assume that a is coercive, i.e. (hy) holds with A = 0. Then the
map u — a(u,u) is strongly convex and since the function I is convex, the map
® is also strongly convexr. This implies immediately that the set Argmin® is a
singleton, hence the non-vacuity condition (k3) holds true. Now assume that (hs)
holds with X\ > 0. To overcome the lack of coercivity, suppose that there exist
e >0 and C > 0 such that F(u) > € |u|?* — C for every u € V. Without loss of
generality, we can assume that ¢ < % For every u € V', we have
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1
D(u) = §a(u,u) + F(u) > ; a(u,u) + F(u)
£
2 Jul[? = & [u? + & |u|* —
S
= g~

which shows that limj,|— 4o O(u) = 4o00. Since the function ® is conver and
continuous, this classically implies condition (k3).

It is immediate to check that the set S is convex, closed in V' and that S C
D(A).

Remark 3.2 Under assumption (hs), let us show that S is closed in H. Let (uy,)
be a sequence in S such that lim, . u, = u strongly in H, for someu € H.
Since the function F is convex, there exist b,c € R such that, for all u € V,
F(u) > —blu| — c¢. Therefore we have for allu € V,

%a(u, u) < @(u) + blu| + c. (21)

Recalling that ®(u,) =0 for every n € N, we deduce that 2a(u,, u,) < blu,| + ¢,
hence the sequence (a(tn,uy)) is bounded. From hypothesis (hs), we infer that the
sequence (uy,) is bounded in V. It ensues that there existu € V and a subsequence
(tn,) such that limg_, ;oo Uy, = U weakly in V. We immediately have u = u and
the weak lower semicontinuity of ® implies that ®(u) < liminfg_, 4 P(u,, ) =0,
henceu € S.

Remark 3.3 (Case f(0) =0) If f(0) = 0 then we have
S=KerAn{veV|f(v)=0}#0.

)
Indeed, if w € S then in particular (Aw,w)+ (f(w), w) = 0, and by monotonicity
of f we have (f(w) — f(0),w) > 0, hence (Aw,w) = (f(w), w) = 0 and therefore
Aw = 0.

In the sequel, we assume the existence of a solution to equation (F) in the
class (4). We define the energy function £ along each trajectory by

1 |du

E(t) = 5|7 () + ().

We have £ € W2 (R, ) and

loc

£(t) = (%(t), Ccll—q;(t)) + <Au(t) + f(u(t)), Ccll—q;(t)>wv
<
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hence the function £ is a Lyapunov function for the equation (F). We deduce
that for every t > 0

1 2

2

du

Eﬂw <E()<E(0) and  P(u(t)) < E(t) < E(0). (22)

In particular, we have % € L*(R,, H). In the sequel, we will consider solutions
which are bounded in H, i.e. satisfying u € L>*(R,, H).

Remark 3.4 Under assumption (hy), it is easy to see that u € L>®°(R,, H) im-
plies u € L>®°(R,, V). Indeed, let us assume that {u(t);t > 0} is bounded in H.
From inequality (21), we have sa(u(t), u(t)) < ®(u(t))+blu(t)|+c for allt € R,.
Recalling that ®(u(t)) < £(0) in view of (22), we infer that {a(u(t),u(t));t > 0}
is bounded. From hypothesis (hy), we conclude that {u(t);t > 0} is bounded in V.

3.1 Summability of the energy. Case of a unique equilibrium
We now prove that the map v £ is summable over R, and that lim; , ., E(t) = 0.

Proposition 3.1 Assume that the bilinear form a(.,.) and the function f satisfy
respectively hypotheses (hy)-(hy) and (ki)-(ks). Let v € WS (R, R,) be a map

such that i € L*(0,+00). Let u be a solution in the class (4) to equation (E) and
assume that u € L*°(R,, H). Then

(i) 75 (1) E() dt < +c0.
(ii)If moreover v & L*(0,+00), then tliin E(t) =0, hence

t—4o00

—(t)' =0 and lim ®(u(t)) =0. (23)

Proof. (i) The proof follows the same arguments as those of [8, Prop. 3.1]. Let
us take v € S and define the function p : Ry — Ry by p(t) = 3 |u(t) — v|*. By
differentiating, we find for every ¢t > 0

i) = (G000 —0).

Since % € WL (R,, H) by assumption, it is immediate to check that p €

I/Vlic1 (R.). Hence the map p is differentiable almost everywhere on R, and we

have
2

i) = (G a0 o) + | G0

By combining the expressions of p, p and by using the convexity of the function
®, we obtain

a.e.on R.
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B(t) +7(0)p(t) = alu(t), v —u(t)) + (f(u(t)),v — ult)) + %(t)
du |?
< —D(u(t)) E(t) a.e. on Ry. (24)
It follows that
() + AP0 +E() < 5| S| e on R, (25)

Let us multiply this inequality by 7(¢) and integrate on [0, ¢]. By using the fact
that £(t) = —v(¢) Ccll—;‘(t)}2 almost everywhere on R, we derive that

[ e s < G —e0) - [ @i = [P e

For the last two integrals, let us use a technique of integration by parts.

—év@mwwzwwmww@mw+év@mww (27)

Recall that the map v is bounded in H by assumption. On the other hand, the
map % is bounded in H, see (22). Hence we infer the existence of M > 0 such

that p(t) < M and [p(t)] < M for every ¢ > 0. Therefore

- [ 2@t < 2300+ 230 + M [ i) as.

Since ¥ € L'(0,+00) by assumption, the right-hand side is majorized by some
M’ > 0. On the other hand, we have

—Av@%@MFfMWMm—%WMﬂ+2Av@%@ﬂﬁﬁ (25)

ngW+wwéwwww%

Using again the assumption 4 € L'(0, +00), we obtain that the right-hand side
is majorized by some M"” > 0. Coming back to inequality (26), we conclude that
fot Y(s)E(s)ds < 2E(0) + M’ + M" for every ¢ > 0 and the expected estimate
follows.

(ii) Let us argue by contradiction and assume that lim; , . E(t) = { > 0. The
map & is nonincreasing, hence £(t) > [ for every ¢ > 0. Since v ¢ L*(0, +00), we
deduce that

/M V(B E@) dt > 1 /M Y (#) dt = +oo,

a contradiction with the result of (i). The last assertion is immediate.
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In view of the previous result, we can prove weak convergence of the trajectories
in the case of a unique equilibrium. The general case of multiple equilibria is more
delicate and will be discussed in section 3.2.

Corollary 3.1 (Case of a unique equilibrium) Under the hypotheses of Propo-
sition 3.1, assume moreover that Argmin® = {u} for some w € V. Then the
solution u(t) weakly converges in V' toward uw as t — +o00. Furthermore, if u(t)
strongly converges® in H then it strongly converges in V.

Proof. By assumption, the solution u is bounded in H. In view of hypothesis (hs)
and Remark 3.4, it is also bounded in V. Hence there exist u,, € V and a subse-
quence (t,) tending to +oo such that lim,, ,, . u(t,) = us weakly in V. Since ®
is convex and continuous for the strong topology of V, it is lower semicontinuous
for the weak topology of V. Hence, we have ®(uy,) < liminf, ;. ®(u(t,)). From
the second part of (23) we deduce that ®(uy) < 0, i.e. Uy € Argmin® = {u}.
Hence @ is the unique limit point of the map ¢ — u(t) as t — +oo for the weak
topology of V. It ensues that lim; ,, ., u(t) = u weakly in V. Let us now prove
the second point. The argument is given in [3, p. 548-549] but we recall it for the
sake of completeness. From (hs), we have

pollut) —al* < Mu(t) —a* + a(u(t) — @, u(t) — @) (29)

= Au(t) —a)* +2®(u(t)) — 2 F(u(t)) — 2a(u(t),n) + a(T,u).
Since u(t) — u strongly in H and weakly in V', we have lim; ,, o, |u(t) —u* = 0
and limy, o a(u(t),w) = a(u,u). On the other hand, by weak lower semi-
continuity of the continuous convex function F' : V — R, we infer that

liminf, o F(u(t)) > F(u). Recalling finally property (23), we deduce from in-
equality (29) that

p limsup |lu(t) —a|* < -2 F(u) — a(u,w) = 0.

t—4o00

We conclude that u(t) — @ strongly in V.

3.2 Convergence of the trajectories
Case of a non vanishing damping

When the damping coefficient «(t) is constant, i.e. ¥(t) = > 0, the solutions of
(E) weakly converge in V' toward an equilibrium point, see [3]. We are going to
show that this property still holds true if

limy oo Y(t) = 700 > 0

(L)

v € LY(0,+00).

8 This assumption is satisfied if the injection V < H is compact.
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Theorem 3.1 Assume that the bilinear form a(.,.) and the function f satisfy
respectively (hi)-(hy) and (ki)-(ks). Let v € WEI(R,,Ry) be a map satisfying
(I1). Let u be a solution in the class (4) to equation (E). Then, there exists
Uy € S such that u(t) = ue weakly in 'V as t — +oo. Furthermore, if u(t)

strongly converges in H then it strongly converges in V.

Proof. Let v € S and define the map p : Ry — Ry by p(t) = 5 |u(t) — vf* as in
the proof of Proposition 3.1. Inequality (24) implies that

du |?
—(t
- (@)

pt) +y@)p(t) < a.e.on R,.

Let us multiply each member of this inequality by e/o ¥ 47 and integrate on [0, ¢].
Recalling that p € W'llocl (R, ), we obtain

2

du o\ s, (30)

t
pt) < e~ oD (0) 4 = o) ar / el | 2
S

0

(s)

We now show that the right member of the above inequality is a summable
function. Since lim; o Y(t) = Yoo > 0, there exists ty > 0 such that vy(t) > v../2
for every ¢ > ty. From Lemma 3.1 (i) below, we have

+00 .
/ e~ Jo 1A gt < 400 (31)
0

Lemma 3.1 Let us assume that there exist k > 0 and ty > 0 such that v(t) > k
for every t > ty. Then we have

+o0 ‘
(Z)/ e~ Do g < J o0
O+OO t d 1 s d
(1) e~ o dr gy < e e o 1A for s large enough.

Lemma 3.1 is a particular case of a more general result that will be proved next,
see Lemma 3.3. Coming back to inequality (30), we find by applying Fubini

theorem
du 2 Foo
E(S)' dsdt = /0

—+o0 t
/ o I w(‘r)d‘r/ oJs vy ar
0 0

From Lemma 3.1 (ii), we obtain

du

2 N +oco
elo W(T)dT/ e~ Jo 1 AT gt gs. (32)
S S

(s)

. +o00 2 4
o W(T)dT/ e Jor g < 2 < 5(s).

IYOO (e’

Recalling that £(t) = —(t) ()
oo. Hence we deduce from equality (32) that

? we have the estimate 0+O° v(s) ’i—?(s)f ds < +




SEMILINEAR HYPERBOLIC EQUATIONS WITH NON-AUTONOMOUS DAMPING 29

d

+oo ; to 2
/ e~ Jitr)dr / eJs @ | N g dt < oo, (33)
0 0 ds

By combining inequality (30) with estimates (31) and (33), we infer that [p], €
L*(0,+00) and hence t1i+m p(t) exists. In particular the map u is bounded in H.
—00

The end of the proof is the same as in [3, Theorem 3.1] but the arguments are given
for the sake of completeness. Since u € L*(R, H), we deduce from hypothesis
(he) and Remark 3.4 that u € L>°(R,, V). Let w € V be a weak cluster point of
{u(t);t — 400} for the weak topology of V. There exists a sequence t, — +00
such that u(t,) — u weakly in V as n — +4o00. Since the function ® is lower
semicontinuous for the weak topology of V, we have® in view of Proposition 3.1

O (u) < liminf ®(u(t,)) = lim P(u(t)) =0,
n—+o00 t—+o00
which implies that @ € S. Let us prove that {u(t);t¢ — +oc} has a unique
cluster point for the weak topology in V. We apply the following argument due
to Opial [18]. Let @y, us € S be two cluster points of {u(t);¢ — 400} for the
weak topology of V. According to the first part of the proof, we can assert that
limy_, 4 oo |u(t) —7;|* = I; exists for each i = 1, 2. Moreover there exists a sequence
t, — 400 such that u(t,) — w, weakly in V' as n — +4o00. Since the injection
V < H is continuous, u(t,) — u; weakly in H as n — +o0. From the equality

IU(t) — ﬂl‘Z — IU(t) — HQ‘Z = ‘El —E2’2 + Q(El - Eg,ﬂg — U(t)),

we infer that I} — Iy = —[u; — Uy|*. On the other hand, if we take ¢, — +o0 such
that u(t,,) — Uy weakly in V as m — +o0, we find [} — Iy = |[u; — u|*. As a
consequence, [t; — Us|?> = 0. This establishes the uniqueness of the cluster points
of {u(t);t — +oo} for the weak topology of V. Hence u(t) — uq, weakly in V' as
t — +oo for some uy, € V.

For the second point, the reader is referred to the corresponding argument in
the proof of Corollary 3.1.

An interesting situation ensuring strong convergence in V is the case where
the non-linearity satisfies the symmetry property F'(—u) = F(u) for all u € V.

Theorem 3.2 Under the hypotheses of Theorem 3.1, assume moreover that the
function F is even, i.e. F(—u) = F(u) for allu € V. Then there exists us € S
such that u(t) — us strongly in V.

Proof. The argument was originated by Bruck, see [6, Theorem 5|. It has been
adapted to the framework of second-order in time equations, see for example |2,
Theorem 2.4 (i)] or [3, Remark 3.2] in the case of a constant damping parameter
7. Let us fix tg > 0 and define the map ¢ : [0, 5] — R by

9 Observe that Proposition 3.1 applies rightfully since we have proved that u € L (R, H).
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1
q(t) = u(t)® = [ulto)|* - 5 lult) = u(to) .

A first differentiation gives for all ¢ € [0, to]

i(t) = (G000 + ult)).

Since ‘2—1; € VV;C1 (R, H) by assumption, it is immediate to check that the map ¢

is absolutely continuous, hence differentiable almost everywhere on [0, to] and we

have
2

a.e. on [0, to].

i) = (G 000+ uw)) + |50

By combining the expressions of ¢, ¢, we obtain for almost every t € [0, ¢,]

2

) + (1)) = ~a(u(t), u(t) + ulto)) — (F(u(t)),u(t) + ulto)) + |G (1)
- _<q)/(u(t))7 u(t) + u(tO)>V’,V + %(t) (34)

Since the function ® is convex and even, we have for all u,v € V
P(v) — D(u) = P(—v) — P(u) > —(P'(u), v+ u)yy.

Hence inequality (34) gives

2

du

Gt) +v(t)q(t) < (ulty)) — P(u(t)) + E(t) a.e. on [0, to]. (35)

Recalling that the energy function £(t) is nonincreasing, we have 1 ’%(t)f +

2
O (u(t)) > }%(to)‘z + P (u(ty)) for every t € [0, t]. Therefore

2

1 |du
vt € [0,t0], P(ulty)) — P(u(t)) < 2 E(t)

Using inequality (35), we deduce that

2

du

E(t) a.e. on [0, o).

i) +(0ilt) < 5

Let us multiply each member of this inequality by eJo (M) dm and integrate on [0, ¢].
Since the map ¢ is absolutely continuous, we find

2

d
Y ds.

t 3 t t s
q(t) < e o140y + 56* Jov(7) dT/ eJo V(m)dr %(3)

0
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Let us integrate this inequality on [t, t], we obtain

~a0) < d00) [ EO ds 4 Sht) — hio),

where we have set

t s
ht) = / o Ji () dr / oJT A dr
0 0

We deduce from the previous inequality that

2

d
d—?(a) do ds.

SO =) < (O ~[ulta) F+i(0) [ B s Sntto) —(0). (36)

In the proof of Theorem 3.1, we showed that tliin lu(t) — v|* exists for all v €
—+00

Argmin®. Since ® is convex and even, we have 0 € Argmin®, hence th+m lu(t)|?
—+00

exists. On the other hand, the integral ["* e~ /o 7" ds is finite from (31), while
lim h(t) exists in view of estimate (33). We then deduce from inequality (36)

t—+400

that {u(t);t — +oo} is a Cauchy net in H hence strongly converges in H. It
suffices to use the second part of Theorem 3.1 to obtain the strong convergence
in V.

Case of a vanishing damping

It is assumed in this paragraph that the damping parameter (¢) vanishes as
t — 400. The trajectories of (E) are clearly more volatile in this framework. Our
purpose is to obtain results of convergence for the trajectories, assuming that
v(t) tends slowly enough toward 0. We are going to show that the convergence
properties stated in the previous paragraph still hold true if the quantity 7(t)
behaves as k/t*, for some a €]0,1[, £ > 0 and ¢ large enough. The main step
consists in establishing a refinement of Proposition 3.1 via sharp estimates for
the energy decay. Let us start with a technical lemma that will be crucial in the
sequel.

Lemma 3.2 Assume that the bilinear form a(.,.) and the function [ satisfy res-
pectively hypotheses (hi)-(hy) and (k1)-(ks). Let v € W' (R4, Ry) be a function

loc
such that limy_, o ¥(t) = 0. Let u be a solution in the class (4) to equation (E)
and assume that u € L=(Ry, H). We are given some ty > 0 along with a non
constant map X € C3([to, +0o[, R) such that \(t) > 0, A(t) > 0, A\(¢) > 0 and

A (t) <0 for every t > to. Assume that the map t — )\(t) %(t)’ is bounded, that
FONE) ()| dt < +oo and that M(t)y(t) > 2\(t) for every t > to. Then the

t
foollowmg estimates hold true

(i) [,/ Mt) E(t) dt < +o0.
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(Z.Z.}imt*FFOO () (t) =
(Z@ZL+ NORIGREAC )} dt < +00.

Proof. Let us consider the map p defined by p(t) = 3 |u(t) — v|* for some v € S,
see the proof of Proposition 3.1. Recall that we have from inequality (25)

Et) < § du

<3 E(t) —p(t) —y(t)p(t) a.e. on Ry. (37)

Now define the map &, : [to, +oo[— Ry by Ex(t) = A(t) E(t). It is clear that
Ex € Wh([to, +00]). Since E(t) = —v(2) Z—?(t)f for almost every t > 0, we have

loc

du

EN(t) = ME E(E) = A1) 1 (D) | (1)

a.e. on [tg, +00. (38)

From the assumption () y(t) > 2 A(t) for every t > to, we deduce that

2

o) | 5

< %)\(t) E(t) — %SA(t) a.e. on [ty, +00l. (39)

By combining inequalities (37) and (39), we infer that
M) E(t) < =3Ex\(t) — 4 M) [p(t) + (1) p(t)]  a.e. on [, +ool.

Let us integrate this inequality on [t, t]; we find

t

/ A(s) £(s)ds < 3 Ex(to) — 4 / A(s) (s) ds — 4 / A(s) () p(s)ds.  (40)

to to to
For the last two integrals, let us use a technique of integration by parts.

—/Awmwwzﬁme+Mmmm+/x@mww

to to

— () p(t) + Alto) B(to) + ME) p(t) — Alto) plto)
—/t A (s) p(s) ds.

The map wu is bounded in H by assumption hence there exist M, M’ > 0 such
that p(t) < M and [p(t)| < M’ |%(t)| for every ¢ > 0. Therefore we deduce from
the above equality that

du
dt

- [ s ds < i it

to

o)

MR+ M /t ()| ds.

Recalling that )\ (t) < 0 and that the map ¢ — A(t) |94 (¢)| is bounded by some
M" > 0, we obtain
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- /t A(s) p(s)ds <2M' M" + M A(t) + M (A(to) — A(t)) = 2 M' M”" + M A(ty).

t
° (41)
On the other hand, we have

- / A() 7() B(5) ds = —A(E) () p(8) + A(to) ¥ (Fo) plto) + / A(5)7(5) p(s) ds

to to

+ [ i)ps) ds

to

< M Mto) y(to) +M/ v(s) ds (42)

+M/ s)| ds.

[ 3(6)as)ds = Monte) = Mtan o) = [ A)ics)ds

to

Observe that

<A+ [ M) ()l ds (3

to

Since lim;_, 1, y(t) = 0, we have for every ¢t > tg

At (1) = At / T (s ds < A(D) / T is) ds < / M) A(s) ds,

the last equality being a consequence of the fact that the map A is non decreasing.
The finiteness of the integral f s) |¥(s)| ds is ensured by assumption. In view
of (43), we deduce that

/ A(s)y(s)ds < / h A(s) [5(s)] ds < 4oo0.

to to

Coming back to (42), we infer that

—/ A(s)y(s) p(s) ds < M A(to) y(to) +2 M /t h A(s) |[y(s)| ds < +00.  (44)

to

By combining inequalities (40), (41) and (44), we conclude that the quantity
fti A(s) E(s)ds is uniformly majorized with respect to ¢, whence (i).

Let us now come back to equation (38). By taking the positive part of each
member, we find (£,)4+(t) < A(#)E(t). This implies that (£,)y € L'(0,+00)
and therefore | = lim;, o A(t) E(f) exists in Ry. We have to prove that
[ = 0. Let us argue by contradiction and assume that [ > 0. Then &(t) ~
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[/A(t) for t large enough. From (i), we deduce that ft (s)/A(s)ds < +oo,
i.e. limy oo I A(f) <+ oco. Hence the nondecreasing convex map A has a fi-
nite limit as ¢ — +oo, which implies that it is constant. But it contradicts the
assumption and we conclude that | = 0, which shows (ii).

By integrating equality (38) on [y, t], we obtain

JRGEE

to

%(S) ds:/ A(s) E(s) ds + Enlto) — E(t)

to

< /+OO A(s) E(s) ds + Ex(to) < +o0.

=/,
Letting t — +00, we immediately obtain (iii).

A repeated application of Lemma 3.2 allows to derive sharp estimates for the
energy decay under some suitable conditions. These estimates will be the keystone
for proving convergence of the trajectories.

Proposition 3.2 Assume that the bilinear form a(.,.) and the function f satisfy
respectively hypotheses (hy)-(hy) and (k1)-(ks). Let v € W2 (R, Ry) be a func-

+o0
tion such that limy_, ;o y(t) = 0. Assume that / #-(2)" |¥(t)| dt < 400 for

0
some n € N and that there exists tg > 0 such that (t) > % for everyt > ty. Let
u be a solution in the class (4) to equation (E) and assume that u € L>®(R,, H).
Then we have

(z')/+°° #1-(2)" g(t) dt < +o0.
(ii) lim_¢* -() gy =o0.
du

i O 0 |G

Proof. First we use Lemma 3.2 with the map Ay defined by Ao(t) = ¢ for ev-
ery t > 0. Let us verify that the assumptions of Lemma 3.2 are satisfied.
Recall that the map t — ‘ } is bounded, see (22). On the other hand,

the finiteness of the integral f F(t)| dt is a consequence of the assumption
f+oo -(2)" |9(t)| dt < +oo. Flnally, the assumption \o(t)y(t) > 2 \o(t) is triv-
ially verified since y(t) > 4 for every ¢ > ;. Lemma 3.2 (i) then shows that
lim;_, 1o t E(t) = 0. Since E(t ) > 1| (t)}2 we deduce that limy_, o t1/% [%(¢)| =

2
dt < 4o0.

I

dt
0. This suggests to apply Lemma 3.2 with the map \; defined by \(t) = t3/ 2 The

boundedness of the map M } ‘ is guaranteed by the previous step. The other
assumptions of Lemma 3.2 are tr1v1ally satisfied. Lemma 3.2 (11) then shows that
limy_, 4o t32 E(t) = 0, thus implying that lim,_, . t3/* " ‘ = 0. By using re-

cursively Lemma 3.2, we let the reader check that limHJroo tl_(%) E ’ = 0.



SEMILINEAR HYPERBOLIC EQUATIONS WITH NON-AUTONOMOUS DAMPING 35

Define the map A, by A\, (t) = 2=(3)" The boundedness of the map A, }dt} is
implied by the previous step, while the integral f A(t) |7(t)|dt is finite by
assumption. Lemma 3.2 applied with the map A\, y1elds conclusmns (i), (ii) and
(iii) of Proposition 3.2.

Given n € N, £ > 0 and ¢ty > 0, the following condition plays a central role in the
sequel

(limy 400 y(t) =0
400 . 1)" )
(Iy) < /0 1= |y ()| dt < +o0
Vit > to, V(t)ZW~
\ t \2

Hypothesis (I3) automatically implies 4 € L'(0, +00) together with v ¢ L'(0, 4+00).

Remark 3.5 Assume that the map v : Ry — R, is nonincreasing and that there
exist a €]0,1[, k, k' > 0 and to > 0 such that

k
V>t <) < (45)

Let us show that condition (ly) is satisfied if the integer n € N is chosen such
that'® o € ]1 — (—) — (%)n } Since a < 1 — (§)n+ , we have
k k

and the third condition of (l3) is proved. Recalling that 4(t) < 0, an immediate
integration by parts gives

/ s y(s) ds = - / ()" 5 (s) ds
e (1 B (%)")

Since 0 < ~v(t) < i% for every t > ty, we infer that

/t:81( )" |4(s)| ds < téf(%)n v(to) + K (1 - (%)n) /t: Saf(sé)"’

10 Tts explicit expression is given by n = — [1“(11:20‘)

[N

] — 1, where [z] denotes the integer part of x € R.
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n T ds
From the choice of n, we have o + ( ) > 1, hence the integral / 18

1
? oo so+(3)

) J(s) ds < +

(S

+00
convergent. In view of the above inequality, we conclude that / sl_(
to

+o0
oo. Notice that if n = 0, this condition reduces to / |¥(t)| dt < + oo, which
0

1

1s automatically satisfied since v < 0. It follows that if o € ]O, 5], one may take

k' = +o0 in condition (45) (no required upper bound).

Let us now state the main result of this section.

Theorem 3.3 Assume that the bilinear form a(.,.) and the function f satisfy
respectively (h1)-(hy) and (ki)-(k3). Let v € WEI(R,,Ry) be a map satisfying
(I3). Let u be a solution in the class (4) to equation (E) and assume that u €
L>*(Ry, H). Then, there ezists usx, € S such that u(t) — uo weakly in V as
t — +oo. Furthermore, if u(t) strongly converges'* in H then it strongly converges

i V. Finally, iof the potential function F' is even, the convergence is strong in V.

Proof. The proof follows the same lines as the ones of Theorem 3.1. Given v € S,

we define the map p : Ry — Ry by p(t) = 5 |u(t) — v|*. Recall that

2

du [ as (46)

t
plt) < e B07p(0) o0 [ oo
0 S

(see formula 30). We have to show that the right member of the above inequality
is a summable function. From Lemma 3.3 (i) below applied with § =1 — (l)nJrl

2
we have

)

o0 .
/ e Jo 1M gt < Jo0. (47)
0

Lemma 3.3 Let us assume that there exist 8 € [0,1[, k > 0 and to > 0 such that
y(t) > t% for every t > ty. Then

+o0 .
(Z)/ e~ Jo I gt < 4 00;
0
(i1 )For every ¢ > 1, we have for s large enough

+oo
/ e lormdr g < % s e~ Jo ()T (48)

If 0 =0, one can take c = 1 in the above inequalily.

The proof of Lemma 3.3 is postponed to the appendix. On the other hand, by
applying Fubini theorem, we find

“+oo t 2 +oo
/ e*f&“/(f)df/ IS Ay ar dsdt:/
0 0 0

11 This assumption is satisfied if the injection V < H is compact.

du

d_u
ds ds

2 +oco
elo v dr / e Jg () dr dtds. (49)

(s)

(s)
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From Lemma 3.3 (ii) applied with § =1 — (%)nﬂ, we obtain

)n+1

e [ ‘() d 2 11
o 7) 7/ e gp < 2 5103
S

Since y(s) > ————r, we derive that

S-(3)

Nl | o

s +oo 2 n
elo (0 dT/ e Jormdr gy < % §2(3) 7(s).

From Proposition 3.2 (iii) we have f0+°° $2(2)" ~(s) }2—;‘(3)‘2 ds < 400, hence we
deduce from equality (49) that

“+o00 t
/ e~ f(f ~(7) dr / 6[; ~(7) dr du
0 0 ds

—(s) 2 ds dt < 4o0. (50)

By combining inequality (46) with estimates (47) and (50), we infer that [p|, €
L*(0,400) and hence . liin p(t) exists. The end of the proof is the same as the one
—+o0

of Theorem 3.1. For the second point, the reader is referred to the corresponding
argument in the proof of Corollary 3.1. Finally, if the potential function F'is even,
the arguments of the proof of Theorem 3.2 apply directly. Details are left to the
reader.

Remark 3.6 The assumption u € L>®(R,, H) arises in the statement of The-
orem 8.3, while it is useless in the framework of Theorem 3.1. In the proof of
this last one, the existence of limy_, o [u(t) — v|* relies on the general estimate
v ‘%‘ ‘e LY(0,+00), and gives the boundedness of u as a by-product. By contrast,
in Theorem 3.3 the existence of lim;_, 4o [u(t) —v|* needs a sharper estimate (see
Proposition 3.2 (iii)), which uses some boundedness assumption for the map u.
The question to know if the assumption uw € L*®(R,, H) is really necessary in

Theorem 3.3 remains open.

In view of Remark 3.5, we obtain directly the following corollary of Theo-
rem 3.3.

Corollary 3.2 Assume that the bilinear form a(.,.) and the function f satisfy
the same hypotheses as in Theorem 3.3. Let vy € Wl’l(R+, R, ) be a nonincreasing

loc

map and suppose that there exist o €]0,1[, k, ¥ > 0 and ty > 0 such that'?

k K
Vi, o <A(l) <

S e
Then we have the same conclusions as in Theorem 3.3.
kll

'? This condition is satisfied if there exists k” > 0 such that y(t) ~ %+ as t — +o0. On the other hand,
one can take k' = +o0 if a € ]0, %}, see Remark 3.5.
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3.3 Decay estimates for a strong set of minima

Recall that the set S = Argmin® is convex and closed in H, see Remark 3.2. Let
us denote by Ps the projection operator onto the set .S in the sense of H. In this
paragraph, we assume that the function ® : V — R satisfies’®

dn >0 suchthat YueV, &(u)> g]u — Ps(u) . (51)

If v ¢ L*(0,+00), we know from Proposition 3.1 (ii) that lim;, . E(t) = 0.
Under assumption (51), we are able to evaluate the speed of convergence of £(¢)
as t — 4o00.

Theorem 3.4 Assume that the bilinear form a(.,.) and the function f satisfy
respectively (hy)-(hy) and (k1)-(ks). Let v € W,oH(Ry, R, be a function satisfying
lim; 100 y(t) = 0 and §(t) = o (y(t)) as t — +o0. We suppose that the function
®: V — R defined by ®(u) = ja(u,u) + F(u) satisfies condition (51). Let u be
a solution in the class (4) to equation (E). Then, for all m €]0, %[, there exist
C >0 and ty > 0 such that:

Vt>ty, E(t) < Ce ™),

Proof. Define the map ¢ : R, — R by ¢(t) = 2d%(u(t), S), where dg(., S) stands

2
for the distance function from the set S in the sense of H. By differentiating, we
find for every t > 0

) = (% 000~ Pou(0) ). (52

Since 2 € WL (R,, H) by assumption, it is immediate to check that ¢ €

WL R,), hence the map ¢ is differentiable almost everywhere on R . Consider

now some t > 0 where the maps ¢ and ‘f# are both differentiable, and let us
majorize the quantity ¢(¢). For that purpose, we use a technique of differential

quotient. For all h # 0, we have

1

HEGUEEORE €

<. ult+h) = Ps(u(t + h)) = u(t) + Ps(U(t)))

+% (Z—z(t +h) — %(t)’ u(t + h) — Ps(u(t + h))) -

The monotonicity of Ps implies that

_% (Z_?(t% Ps(u(t+ h)) — Ps(u(t)))

13 1f f = 0, the set S coincides with KerA and we recover condition (12) of section 2.
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< s (0 ) = ) = 1 0, Pt 1) = Pe(ut) ).

Hence we obtain

() - $(0) < 7 (%@% ult+h) = u@))
+% (u(t +h) —u(t) — h%(t), Ps(u(t+h)) — Ps(U(t)))
+% (%(t +h) — é—?:(t),u(t +h) — Ps(u(t + h))) -

Taking the limit as h — 0, we derive that

d*u

%(@'2 + <W(t), u(t) — Ps(u(t))) . (53)

pt) <

By combining formulae (52) and (53), and using the convexity of the function &,
we deduce that for almost every ¢t € R,

60420900 < | 0] + (G50 + 20 G0 ) - Patute))
= %40~ a(u(t) u(t) ~ Ps(u(t) ~ (F(u(t), u(t) ~ Ps(u(r))
< (B~ wuin)) + e(Psun) = | 20| — aun).
It follows that
" . 3ldu, |?
S(t) +v(t)o(t) + E(t) < 3 E(t) a.e. on R,.

Multiplying this formula by 24(¢) and recalling that Et) = —(t) ‘i—?(t)f for
almost every ¢ € R, we obtain

2

gv(t) (B +vOeE) +EB + 37 EB <0 ae onRy  (54)

This suggests to define the function F : R, — R by

1 2

T3

= £(1) + 27(1) £(0)

du
7 (t)

+ 200 (SO0 - Pt 69)

In view of inequality (54), we immediately find
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F+or(F () < - (ws) - %W) (i—?(t»u(t) _ Ps<u<t>>) a.e. on R;.
(56)

Since |(2(t), u(t) — Ps(u())]| < 5 |2(0)]* + L u(t) — Ps(u(t))]* and ®(u(t)) >
u(t) — Ps(u(t))]* by assumptlon we have
' (%(t),u(t) _ Pg(u(t))) ' < CE®),  for some C > 0. (57)

Recalling that lim; ,, ., v(t) = 0, the expression of F shows that
F(t)~E() ast— +oo. (58)

Let us fix some m €]0, 2[. Using the fact that §(t) = o(y(t)) and v(t)* = o(v(t))
as t — 400, we deduce from (56), (57) and (58) the existence of ¢y > 0 such that,

.F(t) + %'y(t)]:(t) < (% — m) v(t)F(t) a.e. on [ty, +00,

hence F(t)+m~(t)F(t) < 0 for almost every ¢ > t,. Let us multiply by e™ Jo (s
and integrate on [tg,t]. Since the function F is absolutely continuous, we find
F(t) < DemJov®)ds with D = em Jo® (s)ds F(ty). Conclusion follows from esti-
mate (58).

Remark 3.7 Under the hypotheses of Theorem 3.4, assume that there exists k >
3 such that y(t) >k ¢ fort large enough. Fizx m € } From Theorem 3.4, there
exist C' > 0 and t 2 0 such that

Posl

1 |du

vt > to, - E(t)

Hence we have }%(t)’ < (fg—,zi; and since mk > 2, we deduce that }dt} €

LY(0,+00). The trajectory u has a finite length, therefore it strongly converges
i H toward some us € S.

4 Application to particular semilinear evolution problems

We suppose that €2 is a bounded open subset of R™ with boundary 02 sufficiently
regular.

4.1 Hyperbolic problems of order two in space

Example 4.1 Given a map v : R, — R, and a function f € C!(R), let us
consider the following damped wave equation
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d*u du
W+7(t)ﬁ —Au+ f(u) =0 on Qx]0,+o0], (59)

with Dirichlet boundary condition:
u=0 on 002x]0,+o0l. (60)

The functional setting of the evolution problem (59)-(60) is given by
H=1*Q), V=H(Q) and a(u,v)= / Vu(z)Vo(z)dz.
Q

Hypothesis (hy) is trivially verified while hypothesis (hs) is satisfied with A = 0,
since the bilinear form a is coercive. On the other hand, we assume that the
function f satisfies the following properties:

(i) There exist C, a > 0 such that (n—2)a < 2and |f'(r)| < C (1 +|r|*) Vre R
(ii) f is nondecreasing.

Define the function F' € C*(R) by F(r) = [; f(s)ds for every r € R. For simplic-
ity of notation, we write F'(u) for [, F'(u(z)) dz. Hypothesis (ki) is a consequence
of assumption (i) above, see for example [10, pp. 73-75]. The monotonicity hy-
pothesis (k3) is ensured by point (ii). Finally the coercivity of the bilinear form a
implies that the equilibrium set is a singleton {u}, see Remark 3.1. In particu-
lar, the non-vacuity condition (ks) is satisfied. If the map v € W' (R, R,) is
such that 4 € L*(0,400) and v ¢ L*(0,+00), we derive from Corollary 3.1 that
u(t) — u weakly in H}(Q) as t — +o0o. Since the injection H}(Q) < L*(Q) is
compact, the second part of Corollary 3.1 shows that the convergence is strong
in Hyj(2). On the other hand, the coercivity of a implies that condition (51) is
fulfilled. If the map  satisfies lim; ;o y(t) = 0 and ¥(t) = o(y(t)) as t — 400,
Theorem 3.4 then shows that for every m &€ ]O 2

) (I

Example 4.2 Let us consider the damped wave equation (59) with Neumann

boundary condition % =0 on 092x]0,+oo[. The functional setting of the evolu-

tion problem is given by:

2 t
+|Vu(t, x)]Q} d:ic—l—/ F(u(t,z))dx = O (e’mfo V() ds) as t — 4o00.
0

H=1IL*Q), V=H(Q) and a(u,v)= /QVu(x).Vv(x)dx.

The bilinear form a is semi-coercive, hypothesis (hy) is satisfied with A = p = 1.
To overcome the lack of coercivity, assumptions (i)-(ii) above are supplemented
with the following one
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(iii) There exist € > 0 and D > 0 such that F(r) >er?— D for every r € R.

Assumption (iii) implies that condition (k3) is verified, see Remark 3.1. Hypothe-
ses (k1 )-(ky) are fulfilled as in the previous example. If the map v € W2 (R, R,)
satisfies ({1) (resp. (I2)), we derive from Theorem 3.1 (resp. 3.3) that there exists
a solution wu, of

{—Au+f(u) =0in Q

g—Z:OonﬁQ

such that u(t) — us weakly in H'(Q) as ¢ — +o0. Since the injection H'(Q) <
L*(Q) is compact, the second part of Theorem 3.1 (resp. 3.3) shows that the
convergence is strong in H'(Q).

Example 4.3 Let us consider the following equation

d? d

) S —Au—Mu+ fw)=0 on Qx]0,+ool, (61)
dt? dt

with Dirichlet boundary condition. Here \; stands for the smallest eigenvalue of
the Laplacian-Dirichlet operator. The functional setting of the evolution problem

is given by:
H=1*Q), V=H;(Q) and a(u,v)= /Q Vu(z).Vo(z) — Mu(z)v(x)] d.

It is immediate to check that (h1)-(hs) are satisfied. Under the above assumptions
(i), (ii) and (iii), we obtain as previously that conditions (k;)-(k3) hold true. If
the map v € W' (R, R,) satisfies (I;) (resp. (I2)), we derive from Theorem 3.1
(resp. 3.3) that there exists a solution s, of

—Au— X u+ f(u)=0in
u = 0 on 0f)

such that u(t) — s strongly in H}(Q) as t — +oo.

Example 4.4 The equation arising in the previous example can be generalized
as follows

fu A —f Pu+ fu)=0 on 9x]0,+oo
dt2 ry dt Uu 2:1772 ’Lu u)= n ) OO,

see [21, Example 4.5]. We still assume Dirichlet boundary conditions. Let us
explicit the notations: (\;);>1 (respectively (e;);>1) is the sequence of eigenvalues
(respectively eigenfunctions normalized in L?(Q)) of (—A) in H}(Q). For each
i > 1, P, denotes the orthogonal projection on span{e;} in the sense of L*(().
We assume that the nonnegative sequence (7;);>1 is bounded and that n; < \; for
every ¢ > 1. The functional setting of the evolution problem is given by
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400
H=1*Q), V=H;(Q) and a(u,v)= / Vu(x).Vv(x)dx—Z 772-/ Pu(z).Pu(x)d.

It is easy to check that hypotheses (hy)-(ha) hold true. Under the additional as-
sumptions (i), (ii) and (iii), we then obtain (k;)-(k3). If the map v € W2 (R, Ry)
satisfies (I1) or (l3), we obtain as in the previous example the existence of an equi-
librium us, such that u(t) — us strongly in H}(Q) as t — +o0.

4.2 A higher-order example
Example 4.5 Let us consider the following equation

dz—u+ ()d——i—AQ + f(u) =0 Qx]0, +oo| (62)
dt2 dt u = on s 1,

with the boundary condition:

u= g—z =0 on 00x]0,+o0]. (63)

The functional setting of the evolution problem (62)-(63) is given by:

H=1IL*Q), V= {u € H*(Q), u= % =0 on GQ} and a(u,v) = /QAu(:U).Av(x)dx.

Hypothesis (hy) is trivially verified. Moreover, from the regularity results rela-
tive to the Laplacian-Dirichlet problem, there exists £ > 0 such that |u|p2@) <
K |Aulp2(q). Hence condition (hsy) is satisfied with A = 0, i.e. the bilinear form a
is coercive. We assume that the function f satisfies assumption (ii) along with
the following variant of (i)

(i) There exist C, o > 0 such that (n—4)a < 4 and |f'(r)| < C (1 +|r|*) Vre R.

By using Sobolev’s imbedding theorem, we let the reader check that hypothesis
(k1) is a consequence of assumption (i’) above. The monotonicity hypothesis (ko)
is ensured by (ii). Finally in view of Remark 3.1, the coercivity of the bilinear
form a implies that the equilibrium set is a singleton {@} and in particular (k3)
holds true. If the map v € W,i! (R, R,) is such that 4 € L'(0,+00) and v ¢
L'(0,+00), we derive from Corollary 3.1 that u(t) — u strongly in H?(2) as
t — +o00. On the other hand, the coercivity of a implies that condition (51)
is fulfilled. If the map ~ is such that lim;, . 7(t) = 0 and 4(¢) = o(y(t)) as
t — 400, Theorem 3.4 then shows that for every m &€ }O

Sl af

» 31

()P} dac+/ Fluft. ) de = O (e 710%)  as i oo,
Q
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Appendix

Proof of Lemma 3.3. (i) From the assumption () > %, we deduce the exis-

tence of & € R such that fo ) dr > {5170 + o for every t > to. Therefore, we

have
+oo t +o0 k_11—-0
/ e~ Jor(mdr gy < eo‘/ e T80 dt < 400.
0 0

ii) By using the assumption v(t) > %, we find
(i) y(t) >

“+o00 . 1 —+00
/ 6*f0 y(r)dr dt S E/ t ,-)/( )6 fo T)dr dt. (64)

An integration by parts in the right-hand side then yields
+oo t t +o0 oo t
/ 0~ (t) e Jor D gt — [—t9 e o WW] +6 / 0= emJo ™ gt (65)
s s s

Remark that ¢¥ e Jo () dr < el e T- Tt 9, hence limy_, o t% e~ Jor(mdr —
Therefore, we deduce from (64) and (65) that

+00 . 1 s 4 +o0 .
/ e~ Jor(mdr gy < T s? e Jormdr 4 T / 0= e Jor(Mdr gy

If # = 0, formula (48) is proved with ¢ = 1. Now assume that 6 €]0, 1] and take
c¢ > 1. The right term in the above inequality is clearly negligible with respect to

g [t ¢ 1 oo
the left one, hence E/ 0=t e= o (Mdr gy < (1 — —) / e o A g for
S (& S

s large enough. Formula (48) follows immediately. O
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Summary. Given a Hilbert space H and a closed convex function ® : H — R U {+o0}, we consider
the inertial proximal algorithm

(A) Tn4+1 — Tn — Oln(xn - xnfl) + Bnaé(l"nnkl) > 07

where (an) and (Sn) are nonnegative sequences. The notation 0® stands for the subdifferential of
® in the sense of convex analysis. This algorithm can be viewed as the implicit discretization of a
continuous gradient system involving a memory term. We give conditions that ensure that a suitable
discrete energy decreases to inf ® as n — +o0o. When ® has a unique minimum, the question of the
convergence of () is solved. In the case of multiple minima, it is proved that if ([]}_, cax) ¢ I' and
if a suitable geometric condition on the set Argmin® is fulfilled, then non stationary sequences of (\A)
cannot converge.

Key words: Proximal point algorithm, averaged gradient method, dissipative dynamical system, mem-
ory effect.
Subject classification:65K10, 49M25.

1 Introduction

Let H be a Hilbert space endowed with the scalar product (.,.) and the corre-
sponding norm |.|. We consider a smooth convex potential function ® : H — R
to be minimized. A classical approach consists in following the orbits of the steep-
est descent method. In a series of recent papers [6, 7, 8|, a special attention was
devoted to gradient systems involving memory terms. The model considered in
[6] corresponds to the following continuous dynamical system

(S) x(t) + %/0 h(s) V®(z(s))ds =0, t>0,

where h, k : [0, +00) = R¥ are continuous maps. If k(t) ~ fg’ h(s)ds as t — 400,
this equation can be interpreted as an averaged gradient system. When ¢ is
convex and has multiple minima, it is proved in [6] that the trajectories of ()
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converge if and only if the weighted memory privileges the recent past enough.

For numerical purposes, it is natural to deal with a discretized version of (.S).
In this paper, we are interested in the following implicit discretization of (.S)

n

ntliso

Tyl — Tn +

where (h,,) and (k,) are suitable sequences. A special attention will be devoted
to the particular case corresponding to h, = n%, k, = n® for every n € N. A
major goal of this paper is to give a satisfying description of the behavior of the
corresponding algorithm, for every a, b > 0. Iteration (1) can be rewritten as

knJrl (-TnJrl - xn) - kn (xn - xnfl) + hn VCD(-TnJrl) = 0,
which is in turn equivalent to

Tp41 — Tp — Qn(xn - xnfl) + ancb(xrﬂrl) == 07

by setting a,, = kk—il and 3, = kh—"l The extrapolation term «, (x,, — ,_1) takes

+
into account a kind of inertia associated with the sequence. If the convex function
® is not assumed to be smooth and takes its values in RU{+oc} , one can easily
adapt the previous algorithm as follows

(-’4) Tpy1 — Tp — an(xn - zn—l) + Bnaq)(zn-kl) = 07

where 0 denotes the subdifferential in the sense of convex analysis. When «,, = 0,
we recover the standard proximal point algorithm, for which we refer the reader
to the abundant literature on this subject [15, 17, 18, 20]. The inertial proximal
algorithm (A) was studied in [1, 2] and various extensions were considered in
3, 13, 16, 19]. It is proved in [1] that the sequence (z,) generated by (A) weakly
converges toward a minimum of ®, provided that the sequence () is bounded
from above by some @ € [0, 1[. One of the purposes of this paper is to get rid of
this assumption and to examine what happens when lim,, , ., o, = 1.

The paper is organized as follows. In section 2, we exhibit a discrete energy
(E,) for algorithm (,A) and we compute the corresponding decay. It is shown
in section 3 that the energy (F,) converges toward min ® as n — +oo, under
suitable conditions on (a;,) and (/3,). This enables us to solve the question of the
convergence of (z,,) in the case of a unique minimum. The case of multiple minima
is more delicate and is discussed in section 4. We prove that if ([]}_, ox) & I*
and if a suitable geometric condition on the set Argmin® is fulfilled, then non
stationary sequences of (LA) cannot converge. The question of the convergence
under condition ([];_; os) € I! is difficult and still open in its full generality.
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2 General facts. Energy decay

In the entire paper, we assume that & : H — R U {+o0} is a closed convex
function and that the sequences (), (5,) are positive. Iteration (A) can be
equivalently rewritten as

Tpy1 = Jg, (Tn + an(Ty — Tpo1))

where Js, = (I + (3,0®)~! is the resolvent of index 3, of the maximal monotone
operator 9®. This shows that for any couple (xg,x;) € H? of initial data, there
exists a unique sequence () satisfying algorithm (A).

Remark 2.1 [t is worthwhile noticing that algorithm (A) can be reformulated as

Tny1 — an + Tp1 + 1- Op

Bn Bn

Hence algorithm (A) appears as a discretization of the following second-order in
time differential inclusion

(Xn — Tp_1) + 0P(2y41) 2 0. (2)

Z(t) + y(t)x(t) + 0P(x(t)) 2 0, t>0, (3)

where 7y is a time-dependent damping. In the finite difference scheme (2), the
step length equals \/[,, while 1&%1 corresponds to the value of ~(.) at time t, =

Y reoVBr. This interpretation of (A) will be used to enlighten some aspects of
the paper.

The result below states the decay property of the energy (E,,) defined, for every
n € N, by?

E, = |2n — 21 |* + ®(2).

1
257171
Proposition 2.1 Let & : H — R U {+00} be a closed convex function and let
(), (Bn) be two positive sequences such that o, < 1 and o, < Bn for every

5n—1
n > 1. Then any sequence (x,) defined by (A) satisfies’

1—a,
En+1 — Lk, < —anﬂ - $n|2' (4)

If moreover the function ® is bounded from below then

(i) The nonincreasing sequence (E,) converges toward some E., € R.
(ii)There exists C > 0 such that |x,11 — x,| < C\/ By for every n > 0. In partic-
ular, if (\/Bn) € 1! then (|wpy1 — x,|) € 1Y, hence T = lim,,_, o T, exists.

(iiiThe following estimate holds true: > 2 1;;‘" |Tp11 — Ta]? < +00.

3 Notice that there is a slight difference with the corresponding energy given in [1].

4 The expression of the energy decay is clearly related to the damping coefficient 1&%‘ , see Remark 2.1.
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Proof. Let &,11 € 0P(x,41) be such that x,+1 — 2, —an (T —2p—1) + B Ens1 = 0.
From the definition of the subdifferential of ®, we have

P(znt1) — ©(wn) < (Enr1, Trgr — Tn)

1 5

= _E‘anrl — T |” + E@n — Tp_1, Tnt1 — Tn)

< —ma P — P S g —
Bn 25n 206,

We infer that
Bt = B = 5 [t0s1 = al? = s [ = 201+ D(anin) — O(r,)
206, 261
< _12571 |Tng1 — Zo> + = L <g: i) [
Bn

Inequality (4) is then a consequence of «a;, < for every n > 1.

anl
(i) From the assumption «,, < 1 for every n > 1, the sequence (E,) is nonincreas-
ing. Since (FE,) is minorized by inf ®, it is convergent.

(i) For every n > 1, we have E,, < Ej, hence

1
261171
and the conclusion immediately follows.
(iii) By summing inequality (4) from n = 1 to N, we obtain Z
7, < Ey — Exy < By — inf @, which allows to conclude.

2y, — 11| < B — inf @,

leﬂ

Example 2.1 Assume that «,, = @ +bl > and [, = (nﬁ)b for every n € N. It is
immediate to check that the assumptlon a, < 1is equivalent to b > 0 while the
assumption «, < 56: is equivalent to a > 0. If b — a > 2, we have (\/Bn) el
and we deduce from Proposition 2.1(ii) that the corresponding sequence (z,)

converges (not in Argmin® in general, see Remark 2.2 below).

Remark 2.2 If (\/B,) € I', the sequence of discrete times t, = >_,_, /5, tends
toward t,, < +oo. This implies that the asymptotic behavior of (A) as n —
+00 is not related to the one of the continuous system (3) as t — +o00. As a
consequence, the minimization process of ® does not hold and in general, the
limit point = lim,,_, y *, is not a minimum point of ®.

Remark 2.3 In order to deal with numerical applications, it is convenient to
authorize at each iteration n an error ¢, in the evaluation of the subdifferential.
More precisely, denoting by 0. the e-approximate subdifferential, we are led to
the following algorithm:

(-’45) Tp+1 — Tp — O‘n(zn - zn—l) + Bn aenq)(zn-kl) > 0
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The sequence (g,,) of errors is assumed to be summable so as to remain close to
the exact subdifferential. If one uses algorithm (.A.) instead of (A), one has to
add the quantity ¢, in the right-hand side of inequality (4). The sequence (E,)
is not necessarily nonincreasing, but it is still convergent. The other conclusions
of Proposition 2.1 are unchanged.

3 Summability of the energy. Case of a unique minimum

We now show that the sequence <(1 — ) (Epy1 — min <I>)> is summable. This

property implies the convergence of the sequence (E,) toward min ® provided
that the sequence (1 — «,) itself is not summable.

Theorem 3.1 Let ® : H — R U {+o0} be a closed convex function such that
Argmin® # (. Let (av,) be a positive nondecreasing sequence such that o, < 1

for every n € N. Let (5,) be a positive sequence such that o, < Bfil for every
n > 1. Assume that the sequence ({;%Z) is bounded®. Defining the sequence (0,,)
by 0,, = 1,2?} suppose that (aps10p+1—(1+0ay,)0,+0,_1) € I*. Then any bounded®
sequence (x,) generated by algorithm (A) satisfies

<(1 — ay)(Epy1 — min @)) el
If additionaly (1 — «,) & Y, then lim,_, o E, = min®. As a consequence,

lim,, 4 o0 ﬁ]ajn — 2 1|* =0 and lim,,_, y o, ®(z,,) = min .
Proof. Without loss of generality, we can assume that min ® = 0. Given z € Argmin®,
let us set ¢, = 1|z, — z|>. We have for every n € N

1
Pnt+1 — Pn = <xn+1 — Tny, Tpt+1 — Z> - §’$n+1 - xn‘Q‘ (5)

Set ¥, = ©ni1 — ©n — Wu(Pn — @n_1) and let &,.1 € OP(x,41) be such that
Tpt1 — Tp — Oy (T — Tp_1) + Bn&as1 = 0. We then have

77Z)n - <xn+1 — Tn — O‘n(zn - zn—l)axn—kl - Z> + Oén<$n — Tp—-1,Tpt1 — $n>
1 o

_é‘zn-kl - $n|2 + 7n|xn - xn—1|2

oy, — 1

2

S _5n<€n+la Tn41 — Z> + Oén‘xn - xnfl‘Z + ’anrl — Ty 2

Since &,41 € 0P(z,41) and ®(z) = 0, we have

5 Recall that from Remark 2.1 the term 1&%" can be interpreted as a damping coefficient.

% Notice that the sequence (z,) is automatically bounded if the function ® is coercive, i.e. ®(£) — 400
as [&| = +oo.
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1

<€n+17 Tp4+1 — Z> > CD(-TnJrl) = FEpp — ﬁ’xrﬁl

Hence we deduce that

(67
77Z)n + BnEn-I—l S O‘n‘zn - zn—1|2 + 7n|xn+1 - xn|2'

Let us multiply this inequality by 1= 5 . Since a1 < o, <1 and o, < ﬁﬁn for
every n > 1, we derive that

1— 1—a, 1—
g, Vn (=) By < =g B il g s —al”. 0
Let us set 6, = 1 BO‘" and sum these inequalities from n = 1 to N. In view of

Proposition 2.1 (111) we have for every N € N

+oo
Z‘gnqu)n"i_z an n+1 < Zgn 1|£L‘n Lp— 1|2 2‘9 ‘zn-I—l < +00.
n=1

It suffices now to prove that the sequence (ZnN:1 0,1, is bounded with respect
to N. Setting w, = ap16p1 — (1 + ay,)0, + 0,1 and using a technique of Abel
transformation, we find

N N
D 0nthn = wapn + (pnnfn — onanabnin) — ey + ponby.  (7)
= n=1

Since the sequence (z,) is bounded, the sequence (g,) is also bounded, say by
» > 0. Since (w,) € I! by assumption, we deduce that

—+o0
g&Z]wn\ < +00. (8)
n=1
Now observe that
on+10n — onvant1O0ns1 = (One1 — on)On + on(On — anOng).  (9)

The summability of (w,) shows that lim, . o161 — 0, exists. We deduce
that
on(On — ayi10n41) is bounded with respect to N. (10)

Coming back to equality (5) and using the boundedness of the sequence (z,,), we
derive the existence of A > 0 such that |oni1 — on| < Alzy — x| for every
N > 0. Recalling from Proposition 2.1 (ii) that |zy,1 — x| < Cv/By, we obtain
for every N > 0 that
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1‘_(1N

VBN

) is majorized, hence we infer that

lont1 — en|n < ACN/ By = AC

1—ap

VBn

By assumption, the sequence (

(pns1 — ¢n)On is bounded with respect to V. (11)

By combining (7), (8), (9), (10) and (11), we conclude that the quantity Zf:[:l Onhn,
is bounded with respect to N, which ends the proof of the summability of the
sequence ((1 — ay) En+1)-

Let us now assume that (1 — «a,) ¢ . If E, = lim, ;o F, > 0, then
(1 = an)Eny1) ¢ 1. Hence the limit E., equals zero. The other assertions are
immediate.

nb

Example 3.1 Let a, b > 0 and assume that «, = (S and 3, =
every n € N. It is immediate to check that

b 1
n =1-— O(— 5 n - Qp =
o ~t (n2) Qpi1 — Q

ﬁ for

b 1
ot O(E) asn — +oo. (12)

We have 1522 ~ hbn" 5=  asn — +oo. Hence the sequence 222 is bounded if
VBn VBn

and only if b—a < 2. On the other hand, by setting w, = 110,01 — (1+a,)0,+
0,,—1 as in the previous proof, we have

Wp = (9n+1 — 20, + enfl) - (1 - 04n+1)(9n+1 - en) + (OénJrl - @n)en- (13)

An easy computation allows to find the following asymptotic expansions as
n— —+00

0, =bn" "1 +O(n""7?), (14)
Ons1 — Op =b(b—a—1)n"""2 4 O(nP~*73), (15)
Oni1 — 20, + 0,1 =b(b—a—1)(b—a—2)n" "4 O(n"**). (16)

By combining the asymptotic expansions (12) and (14)-(16), we find in view of
equality (13)

wp=—b(b—a—2)(a+1)n"3 4+ O(n"%) as n — +00.

This sequence is clearly summable if b—a < 2. We conclude that the assumptions
of Theorem 3.1 are satisfied if a, b > 0 and b — a < 2. If moreover b > 0, we have
(1 — ) ¢ 1!, hence we deduce from Theorem 3.1 that lim,, ,, « F, = min ®.

Remark 3.1 Consider the approximate algorithm (A.) defined in Remark 2.3.
The arguments developed in the proof of Theorem 3.1 are still valid for (\A.), we
simply have to add the term (1 — «,) &, in the right member of inequality (6).
Since (1 — a,) e, < &, and since (g,,) € I* by assumption, the rest of the proof is
the same and the conclusions of the theorem are identical for algorithm (.A.).
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We are now able to investigate the question of the convergence of the sequence
(x,) in the case of a unique minimum.

Corollary 3.1 Under the hypotheses of Theorem 3.1 together with condition (1—
a,) & 1Y, assume that Argmin® = {T} for some T € H. Then any bounded
sequence (z,,) generated by (A) weakly converges to @ in H.

Proof. Since the sequence (z,,) is bounded, there exist z., € H and a subsequence
(xn,) of (z,,) such that limy_, o T, = Too weakly in H. Since ® is convex and
closed for the strong topology, it is closed for the weak topology. Hence, we
have ®(2) < liminf,_, . ®(x,, ). On the other hand, by applying Theorem 3.1,
we obtain lim, ;. ®(z,) = min ®. Therefore we deduce that ®(z) < min P,
i.€. Too € Argmin® = {T}. Hence T is the unique limit point of the sequence (z,,)
for the weak topology. It ensues that lim,,_, . x, =T weakly in H.

We say that T € H is a strong minimum for & if for every x € H, ®(z) >
®(7) + 0(|]z — 7|), where the map ¢ : Ry — Ry is such that 6(¢,) — 0 implies
t, — 0 for every sequence (t,) C R,.

Corollary 3.2 Under the hypotheses of Theorem 3.1 together with condition (1—
an) & 1Y, assume that T is a strong minimum for ®. Then any bounded sequence
(x,) generated by (A) strongly converges to T in H.

Proof. By applying Theorem 3.1, we obtain lim, , . ®(z,) = min® = &(7).
Since T is a strong minimum for ®, we deduce that lim,,_, ;. 0(|z,, —Z|) = 0 and
we conclude that lim,, ., |z, —Z| = 0.

Remark 3.2 Condition (1 — o) ¢ I* is equivalent to lim, o0 [[,_, i, = 0. In
the case of functions having a unique minimum T, this condition is sufficient to
obtain the (weak) convergence of the iterates x,, toward T. It will be shown in the
next section that the more stringent condition ([[_, c) € I* is required to ensure
the convergence of the sequence (x,,) for potentials ® with multiple minima.

4 The problem of convergence of algorithm (.A) for
potentials with multiple minima

We are going to investigate the question of convergence of the sequences asso-
ciated to (A) when the convex potential ® has multiple minima. Let us first
consider the particular case ® = 0. Algorithm (A) then becomes z,,1 — z, —
oy, (T, — x,-1) = 0 and an immediate computation shows that

Tyl =T+ (ZHO%) (x1 — x0).

n=1 k=1
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It ensues that, when ® = 0, the sequence (z,,) converges if and only if the quantity

;’3 [T, @ is finite. Therefore it is natural to ask whether for a general poten-
tial @, the sequence (z,,) is convergent under the condition ([],_, o) € I'. This
question in its full generality is difficult and still open. The purpose of this section
is to show that, conversely if (T];_, cu) & I' then non stationary sequences cannot
converge. Let us give a preliminary result that emphasizes the role of condition

(ITi—y o) # 1.
Lemma 4.1 Let (o) be a nonnegative sequence such that ([],_, cx) &€ I
(i) Suppose that a sequence (p,) C R satisfies

vn Z no, Pn+1 — Pn — an(pn _pnfl) S 0.

Then, we have either lim,, o P, = —00 0T P, > Pn_1 for every n > ng.
(11) Suppose now that a sequence (x,) C H satisfies

Vn > ng, Tpyr — T — Ty — xp_q) = 0.
Then, either lim,_, o |T,| = 400 or x, = x,, for every n > ny.

Proof. (i) Assume that there exists ny > ng such that p,, < pn,—1. Then we have

n
Vn>mni,  ppt1 — P < (H ak> (Pny = Pry—1)-

k=n1

By summing from n = n; to N, we find

N n
pN+1 _pn1 S Z (H Oék) (pn1 _pn1—1)'

n=n1 \k=ni
Since pp, < pn,—1 and since ([[,_, ax) & I*, we conclude that limy_, o py = —00.

(ii) Assume now that there exists ny > ng such that x,, # z, 1. The same
computation as above shows that

N n
Vno>ni, Ty — T, = ) (H ak> (Tny — Tny—1)-

n=n1 \k=n;

Since @y, # Tn,—1 and since ([]i_; ax) & I}, we conclude that limy_, o [2n] =
+00.

Given a closed convex set S C H and T € S, recall that the normal cone Ng(7)
and the tangent cone Ts(T) are respectively defined by
NS(f):{feH’ VxES, <€,.CL"—E>§O}
Ts(T) = cl[UrsoA (S — T)].
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The polar cone K* of a cone K C H is defined by
K*={ye Hl VrxekK, (r,y) <0}

The convex cones Ng(T) and Ts(T) are polar to each other, i.e. Ng(T) = [Ts(T)]*
and Ts(T) = [Ng(T)]*. A cone K is said to be pointed if KN—K = {0}. For further
details relative to convex analysis, the reader is referred to classical textbooks
[21, 22]. In the sequel, the notation B (resp. S) stands for the closed unit ball
(resp. sphere) of H. Before stating the result of non-convergence for algorithm
(A), we need the following lemma.

Lemma 4.2 Assume that dim H < +oo. Let ® : H — R U {400} be a closed
convez function and let T € S = Argmin®. Assume that

—Ng(z) C int (Ts(T)) U {0}. (17)

Then there exist a scalar X > 0, a convex cone K C H which is closed and
pointed, along with a neighborhood V' of T such that

KNBcC A(int(S)—7)U{0} and —0®(x) CK foreveryx e V. (18)

Proof. If T € int (.5), there exists a neighborhood V' of  such that condition (18)
is satisfied with K = {0} and any A > 0. Now assume that T € bd (S). Let us
define the set K by

K={xe€eH, d(z,—Ns@))<d(z,H\Ts(T))}.
It is immediate to check that the set K is a closed cone satisfying
K Cint(Tg(z)) U {0} (19)

and
—Ng(7) \ {0} C int (K). (20)
Since T € bd (5), there exists u € H \ {0} such that R u C Ng(Z). By polarity,
we have Ts(7) C {z € H, (z,u) <0}, hence
Kc{xeH, (x,u)<0}uU{0}.
It ensues that the cone K is pointed. To prove the convexity of the set K, we

resort to the following claim.

Claim 4.1 Let C' C H be a nonempty convex set. Then we have:

(i) The function d(.,C') is convex on H.
(i)lf C # H, the function d(., H \ C) is concave on C.
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The first point is elementary. The second one is given as an exercise by N. Bour-
baki [5, Exercise 18, p. 150], see” also [12]. We deduce from this claim that the
function A = d(., —Ng(Z)) —d(., H\Ts(T)) is convex on Ts(T). In view of formula
(19), we have K C Ts(T) and we infer that the set K = {z € Ts(T), A(z) <0}
is convex as a sublevel set of the convex function A. Using again inclusion (19)
and recalling that int (T5(Z)) = UxsoA (int (S) — T), we obtain

KNS C Upso (int (S) — 7).

From the compactness property of K NS, we can extract a finite cover of K N'S:
there exist Ay, ..., A, > 0 such that

KNS c U\ (int(S) — 7). (21)

Setting A = max{Ai,..., A}, observe that \; (S — %) C A(S — Z) for every
i € {1,...,n}. Taking the interior of each member, we infer that U, \; (int (S) —
7) C A(int(S) — ), hence K N'S C A(int(S) — T) in view of (21). It ensues
immediately that K N B C X (int (S) — 7) U {0}, which proves the first part of
assertion (18).

Let us finally prove that there exists a neighborhood V of Z such that
—0®(x) C K for every x € V. Let us argue by contradiction and assume that
there exist a sequence (z,) tending to T as n — 400, along with a sequence (&,)
such that &, € —0®(x,,) and §,, € H \ K. Since the sequence (§,/|¢,|) is bounded,
it has a subsequence, still denoted by (&,/|&,|) such that lim,_, o & /|| = &,
for some ¢ € H. Recalling that K is a cone, we have &,/|&,| € H \ K for every
n € N, hence

E€c(H\K)=H)\int(K). (22)

Let us now fix x € S. From the fact that —¢, € 0®(x,,), we infer that
(=&, — ) < B(x) — D(2,) <0

Dividing by |¢,| and taking the limit as n — +o00, we derive that (—¢,z —Z) < 0.
Since this is true for every x € S, we deduce that —¢ € Ng(7). Recalling that
¢ # 0, we obtain from inclusion (20) that £ € int (K'), which clearly contradicts
(22).

A closed convex cone K C H is said to be acute (resp. obtuse) if K C —K*
(resp. K D —K™*). These notions are widely used in the field of optimization, see
for example [4, 9, 10, 11, 14]. Condition (17) amounts to saying that the cone
N () is strictly acute or equivalently that the cone Ts(T) is strictly obtuse. This
condition is satisfied in particular if the set S is smooth® at T € bd(S). When
H = R, condition (17) is satisfied if and only if the interval Argmin® is not a
singleton.

" The first author is indebted to L. Thibault (U. Montpellier IT) for suggesting references [5, 12].
8 Recall that the set S is smooth at Z € bd () if there exists d # 0 such that Ns(%) = R..d.
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Let us now state the general result of non-convergence for the sequences asso-
ciated to (A) under the condition (J],_, ax) & I*.

Theorem 4.1 Assume that dim H < 4o00. Let ® : H — R U {+o0} be a closed
conver function such that for every T € S = Argmin®,

—Ng(7) Cint (Ts(7)) U {0}.

Let (o), (Bn) be nonnegative sequences and assume that ([];_, o) & I*. If the
sequence (z,,) defined by algorithm (A) is non stationary’ then it cannot converge
toward T € S.

Proof. Let us prove the contraposition of the previous statement and assume that
there exists * € S such that lim,,_, . x, = T. We must prove that the sequence
(x,,) is stationary. In view of Lemma 4.2, there exist a convex cone K C H which
is closed and pointed, along with A > 0 and ny > 0 such that

KN % B C (int(S)—7)u{0} and —0P(x,) C K forevery n > ngy. (23)
Let v € K*. Observing that for every n > ng
Tpt1 — Ty — Qp (T — Tp_q) € —L,0P(2p41) C K,
we deduce that
Vn >ng, (Tpi1 — xp — apn (T, — 24-1),v) < 0.

Let us apply Lemma 4.1(i) to the sequence (p,) defined by p, = (z,,v). From
the boundedness of the sequence (z,,), we infer that (x,,1,v) > (x,,v) for every
n > ng. Since this is true for every v € K*, we derive that z, — x,,; € K**
for every n > ng. Recalling that K** = K for every closed convex cone K, we
conclude that

Vn > ny, Ty — Tpy € K. (24)

The cone K is stable under addition and closure operation, hence we deduce by
summation from n to oo that

Vn > no, x, —T € K. (25)

Since lim,,_, 1 x, = T, there exists ny > ng such that z, — = € %]B% for every
n > ny. In view of (23), we infer that x,, € int (S) U {Z} for every n > n;. Let us
now distinguish the following two cases:

(a)For every n > ny, we have z,, € int (5).

9 If the function ® is differentiable, inclusion (A) holds as an equation and the principle of backward
uniqueness applies. Stationary sequences are then characterized by the initial conditions x¢ € S and
X1 = Xo.
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(b)There exists ny > ny such that x,, = 7.

Case (a) We then have 0®(z,) = {0} for every n > ny, so that algorithm (.A)
becomes
Y >ny, Tpy — T — o (T, — 1) = 0.

From Lemma 4.1(ii) and the fact that the sequence (x,,) is bounded, we deduce
that x,, = z,, for every n > n;.

Case (b) Since x,, = T by assumption, we derive from (24) and (25) that
Tpgtl — Tpy = Tpyy1 — T € (—K)N K.

Recalling that the cone K is pointed, we have (—K)NK = {0}, hence x,,,41 =T
An immediate recurrence then shows that z, = T for every n > ns.

As a conclusion, we have proved in both cases (a) and (b) that the sequence
(x,,) is stationary, which ends the proof.

TLb
(1P
for every n € N. Since [[;_, ay = m, condition ([];_, o) & I' is satisfied if
b < 1. Hence, we deduce from the previous theorem that if b < 1, then the non
stationary sequences of (\A) cannot converge in S.

Example 4.1 Let ® be as in the previous theorem. Assume that «,, =

In view of the previous theorem the iterates of (LA) cannot converge in S, but
they may tend toward some T € H \ S. To prevent this eventuality, we now give
sufficient conditions on (), (f,), ensuring that any converging sequence (z,)
generated by (A) tends toward a minimum point of ®.

Proposition 4.1 Let & : H — R be a continuous convex function. Let (o), (5n)
be nonnegative sequences satisfying the following assumptions

i) |an—an_1|=0(5,) asn— +o0

i) (Ba) @18 or [(Ba) €18 (02 Br) €11, limy oo vy = 1]

Let (z,,) be a sequence defined by algorithm (A) and assume that lim,,_, o T, = T.
Then we have T € Argmin®.

Since the proof is a little bit technical, we postpone it to the appendix.
b

G and B, = (n+1
of all, observe that a,, = 1 — % + 0 (n ), hence ay, 41 —ay, = O (ng) as n — +00.
It ensues that condition |a,, — ap,—1| = O(fB,) is realized if b — a < 2. On the
other hand, condition (8,) ¢ I* holds if b—a < 1, while condition (3, ;) ¢ I*
holds if b — a €]1, 2]. Therefore we deduce from the previous proposition that, if
b —a < 2 then any converging sequence (z,) generated by (A) tends toward a
minimum point of ®.

Example 4.2 Assume that o, = for every n € N. First
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Conclusion and perspectives. To end this paper, let us come back to the
proximal-like iteration

1 &K,
Tp+1 — Tn + m Z 1 Vq)(xﬂ_l) = 0, (26)
=0

where a, b > 0 and ® : H — R is a differentiable convex function. As explained
in the introduction, an elementary transformation of the above iteration leads

to algorithm (A) associated with the coefficients oy, = —2—. B, = —22 for

(n+1)b? (n+1)b
every n € N. Let us now list our results of convergence for algorithm (26). First
of all, the energy sequence (FE,,) defined by E,, = ﬁ\xn — T |* + @(z,) is

nonincreasing. Let us distinguish the cases b —a > 2 and b —a < 2.

o Ifb—a> 2 we derive from Example 2.1 that T = lim,,_,, , z,, exists but T is
not a minimum of ® in general.

e If b—a < 2 and b > 0, Example 3.1 shows that lim, ., F, = min®. If
Argmin® = {7}, this implies that lim,, . x, =T weakly in H.
Assume now that ® has multiple minima.
— If b < 1, we deduce from Examples 4.1 and 4.2 that (x,,) does not converge

in general.

— If b > 1, the problem of the convergence of (z,) is open.

It would be interesting to replace the subgradient in algorithm (A) by a max-
imal monotone operator. The main difficulty lies in the fact that no energy se-
quence is available in this framework. In view of numerical computations, another
interesting problem would consist in studying an explicit version of (A), namely
with 0®(z,,) in place of 0®(z,,41). These remarks certainly indicate directions for
future investigation.

Appendix: Proof of Proposition 4.1

Let us argue by contradiction and assume that 0 ¢ 0®(7). It is then possible to
strictly separate the convex compact set {0} from the nonempty closed convex
set 0®(7). Therefore, there exist p € H and m € R such that

VE € 00(T), (£,p) > m. (27)
Let us first prove that there exists ng € N such that
Vn > ng, V€ € 0®(x,), (&,p) > m. (28)

If this was not true, there would exist a subsequence (z,,) of (z,) along with a
sequence (&) such that & € 0®(x,,) and (&, p) < m for every k € N. Since
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the convex function ® is continuous on H, the operator 0® : H = H is lo-
cally bounded, hence the sequence (£;) is bounded. Therefore, there exist £ € H
and a weakly converging subsequence of (§), still denoted by (&) such that w-
limy_s 400 & = &. On the other hand, by using the graph-closedness property of
the operator 0® in H x w-H, we find £ € d®(Z). By combining this property
with the fact that (€, p) < m, we clearly obtain a contradiction with (27). Hence
property (28) is proved. Without loss of generality, we will assume that ng = 0
in the sequel.

Case (3,) € I*. From the definition of algorithm (A), for every k > 1, there exists
&y € 0P(wg41) such that

Tp1 — T — (@) — Tp—1) + Berrr = 0.

By summing from £ = 1 to n and by using a technique of Abel transformation,
we obtain

n n

Z(Oék+1 — ) T + [Tp1 — Q1 Ty — T1 + Q1 To) + Zﬁk Eky1 =10
k=1 k=1

or equivalently

n

Z(ak-i-l — Oék) (I‘k — I‘n) -+ [zn-i-l — 01Xy — I + aq I‘o] + Zﬁk §k+1 = 0 (29)
k=1 k=1

Recalling that |a, — a,_1| = O(B,) as n — +o0, that (3,) € I' and that
lim,,, o x, = T, we have

n

Z(akﬂ —ag) (2 — ) =0 (Z Bk> , asn — +oo. (30)

k=1

On the other hand, from assertion (28) applied with § = & for k = 1,...,n,

we derive that
<Z B §k+1,p> >m > B (31)
k=1 k=1

Since the sequence (z,,) is bounded, the term between brackets in equality (29)
is negligible with respect to >";_, B as n — +oo and we obtain a contradiction
in view of (30) and (31). As a conclusion, we have proved that 0 € 0®(7) in the
case (3,) & I'.

Case (B,) € I', ( +oo B)) € I* and lim,,_, o v, = 1. By using the same technique

k=n
of Abel transformation as above, we obtain

—+00 “+o00

Z(ak;-l—l — ag) T + [ Ty — X + Zﬁk §kt1 = 0.

k=n k=n
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Observing that 1 — «,, = Zzz(akﬂ — ay), this can be equivalently rewritten as

+00 +oo
Z(akJrl — o) (Tk — Tn—1) + [Tt — Ta] + Z Bk k1 = 0.
k=n k=n
By summation from n =1 to N we obtain
N +oo N 4o
DY (ki — o) (zh = 2n1) + [10 —an] + DY Bebe = 0. (32)
n=1 k=n n=1 k=n

Recalling that |oy, — a1 = O(B,) as n — +oo0, that (3,2 B) ¢ I' and that
lim, .o x, =T, we have

Z Z(O‘kﬂ —ap) (th —Tp1) =0 (Z Zﬁk> ., as N — +oo. (33)

n=1 k=n

On the other hand, from assertion (28) applied with £ = &,y for k =n, n+1,...

we derive that
N +oo N +o
<225k5k+1,]ﬂ> >m > > B (34)

n=1 k=n n=1 k=n
Since the sequence (z,,) is bounded, the term between brackets in equality (32)
is negligible with respect to Zf:[:l ,:r:; Br as N — 400 and we obtain a con-

tradiction in view of (33) and (34). This achieves the proof of 0 € 0®(Z) in the
second case. O
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Summary. Given real Hilbert spaces X,Y, Z, closed convex functions f : X — R U {400}, g :
Y — R U {+o0o} and linear continuous operators A : X — Z, B: Y — Z, we study the following
alternating proximal algorithm

. 1 a
o = Argmin { (0) + - 1AC ~ Bunls + S~ malfs Ce X
(A) ] )
Ynt1 = Argmin {9(77) + g5 MAznes = Bullz + Sl - yally m e y} :

where v, o and v are positive parameters. Under suitable conditions, we prove that any sequence
(zn,yn) generated by (A) weakly converges toward a minimum point of the function (z,y) — f(x) +

9(y) + 3= | Az — By||% and that the sequence of dual variables (—%(Axn — Byn)) strongly converges

in Z toward the unique minimizer of the function z — f*(A*z) + ¢*(—B*z) + Z||z||%. An application
is given in variational problems and PDE’s.

Key words: Convex minimization, alternating minimization, proximal algorithm, domain decompo-
sition for PDE’s.
Subject classification: 65K05, 65K10, 49J40, 90C25.

1 Introduction

Let X, Y, Z be real Hilbert spaces. We note respectively (., )x, (.,.)y and (., .)z
the scalar product of the spaces X', Y or Z, and ||.||x, |||}y, ||-|| z the corresponding
norms. Given closed convex proper functions f : X — RU{+o0}, g: Y —
R U {+0o0} and linear continuous operators A : X — Z, B : Y — Z, we
consider the convex function ® : X x Y — R U {+o0} defined by

() = f(x) + 9y) + %HA:U Byl

where 7 is a positive real parameter. We denote by (P) the following minimization
problem
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(P) inf{®(z,y); xze€X,yeV}.

The weak coupling term Q(x,y) = ||Az — By||% allows asymmetric and partial
relations between the variables z and y, contrary to the strong coupled problem

{ﬂm+mw+%m~yﬁ;xeﬂweﬂ}

where x and y lie in the same Hilbert space ‘H and are involved in a symmetric way.
We study the alternating algorithm with costs-to-move introduced by Attouch,
Redont and Soubeyran [5]:

: 1 !
uss = Argmin { £(0)+ 514G = Bl + 51— malli ¢ )
(4) 1 .
Yn+1 = Argmin {9(77) + %HAanrl = Bz +35lln—wally; me y} :

where a and v are positive real numbers. This algorithm generates a sequence
(2, yn) whose convergence is studied in [2]. In references [1, 6], a particular case
of algorithm (A) with @« = v = 0 is studied for the strong coupled problem
(¥ =Y and A = B = 7). In this paper, we generalize some convergence results
of [6] to the weak coupled problem (P). More particularly, we prove that, if ® is
bounded from below, the sequence (x,,¥,) is a minimizing sequence for ® which
slightly improves the corresponding convergence result of [2]. By a different way,
we show that, if Argmin® # @, the sequence (x,,,y,) weakly converges toward a
minimum point of ¢. Moreover, a special attention is devoted to some dual prob-
lem (P*) associated to problem (P). We prove that the sequence of dual variables

<—%(Axn — Byn)) strongly converges to the unique minimizer of problem (P*).

Attouch, Bolte, Redont and Soubeyran have given in [2] an application of algo-
rithm (A) to domain decomposition for PDE’s. They have studied a minimization
problem with Dirichlet boundary condition associated to problem (P). Here we
consider the corresponding problem with Neuman boundary condition.

The paper is organized as follows. We establish the convergence of algorithm
(A) in section 2. The sequence of dual variables <—%(Aa:n - Byn)) is studied in
section 3. An application to PDE’s is given in section 4.

2 Convergence of the algorithm

Let f: X — RU{+o0}, g: Y — RU{+0o0} be closed convex proper functions
and let A: X — Z, B:)Y — Z be linear continuous operators. We consider
the convex function ® : X x Y — R U {400} defined by
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1
P (z,y) =f(ﬂf)+g(y)+gHAw—ByH%> (1)

where v is a positive real parameter. Given positive coefficients «, v > 0 and
initial data (zg,yo) € X x Y, let us consider the following alternating proximal
algorithm

1
s = Argmin { Q) + 140~ Bl + Sc —malfs ce )
A

. 1 v
o = Argmin {0 + 5L Aawes = Bulls + 5ln -l ne ¥},

By writing down the optimality conditions, it is immediate to check that points

ZTpt+1 and y,41 are characterized by
1
——A"(Azp1 — Byn) — a(@ny1 — 2,) € Of (Tp41)
! (2)
aB*(Aan = BYni1) = V(Unt1 — Yn) € 99(Ynt1),

where A* € L(Z,X) and B* € L(Z,)) denote the respective adjoint operators
of A and B. It ensues that we have, for all z € X and y € ),

1
f(x) = f(wng1) + §<Byn — Azpy1, ATpy1 — A7)z — (Tpg1 — Ty Tpgr — ) > 0

1
9W) = 9(Ynt1) + ;<A$n+1 — BYyn+1, Byn+1 — BY)z — V{Ynt1 — Yn, Ynt1 — y)y = 0.
(3)
These inequalities will be used intensively in the sequel. The next theorem states
the main convergence properties of algorithm (.A).

Theorem 2.1 Let o, v and 7y be positive coefficients and let A € L(X,Z), B €
L(Y, Z) be linear continuous operators. Let f : X — RU {400} and g:Y —
RU{+o0} be closed convex proper functions. Assume that the function ® defined

by equality (1) is bounded from below. If (z,,yn) is a sequence generated by (A),
then

(1)Vn € N, ®(Tni1, Ynt1) < @(Tnp1, Yn) < P(Tn, Yn);
(T imy, s 4 oo P(Tni1, Yn) = limy 400 P(24, Yn) = inf O;
(iithe sequences (||2n11 — 2n %) and (||[yns1 — ynll3) are summable;
(wif Argmin® # @, then for all (z,y) € Argmin®,
(a)the sequences (| Az — Az, ||%Z + ya|z, — |5 +vl|yn-1 — yll3) and (|| By —
By,|1z +val|lz, — z||3 +v|lyn — yl|3) are nonincreasing and convergent;
(b)the sequences (||(Ax — By) — (Az, — By)|%), (II(Az — By) — (Azni —
By)l1%), (®(zn,yn) — ®(z,y)) and (®(T,11,Yn) — P(x,y)) are summable;
(c)the sequence (x,,y,) weakly converges in X x Y toward a minimum point
(Z,y) of . Moreover f(z,) — f(T) and g(y,) — g(¥) as n — +oo;
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(v)if Argmin® = &, then ||2,||x + [|yally — +00 as n — +oo.
Proof. The arguments follow the same lines as those of Bauschke, Combettes and

Reich [6].
(i) From the definition of algorithm (.A), we have

1 a 1
f(@ng1) + QHA%H — Bya|% + 5 lnsr = Tall% < flan) + ZHA% — By,||%,

1 v 1
9(Yns1) + %HA%H-I — Byn1llZ + §Hyn+1 —ynlly < 9(yn) + %HA%H-I — By, |

We deduce that, for all n € N

1
Q(Tni1, Unt1) = [(Tng1) + 9(Uny1) + %HALH-I — Byni1l1%
1 v
< f(Zni1) + 9(Ynta) + EHALH-I — Byn1llZ + §Hyn+1 - yn||§)
1
< f(anrl) + g(yn) + ﬂ”AwnJrl - BynHQZ = CD(-TnJrla yn)
1 g o 9
< f(@ny1) + 9(yn) + %HA%H — Bya|lz + §H37n+1 — |3
1
< f(xn) + g(yn) + %HA%z - Byn||22 = CID(xn, yn)v

which ends the proof of (i).

(ii) The sequence (®(xy,y,)) is nonincreasing and minorized hence convergent
toward ¢ > inf ®. By item (i), (®(x,41,yn)) converges toward ¢ too.

Let us use the following lemma borrowed from [6].

Lemma 2.1 Let (s,t,u,v,w) € Z°, then
[s—ullZ = [[s—wlZ+w—0v[[Z—|s=tlZ+[(s—t)— (u—v)[|Z+2(s—w, w—v) s+2{u—v,v~1) z.
Taking s = Az, t = By, u = Ax,, v = By,, w = Ax,,,, we obtain

| Az — Az, ||% — |Az — Aznia]Z
= | Azpi1 — BynllZ — Az — Byl|% + [|(Az — By) — (Az, — Byn)IZ (4)
+ 2(Ax — Axyyq, Axyyy — Byn) z + 2(Ax,, — By,, By, — By)z.

In view of inequalities (3), we have
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|Az — Az, ||% — [|[Az — Azpiq||%
> | Az — Bynllz — || Az — Byl|Z + ||(Az — By) — (Az, — By,)||%
+2 {V(f(xnﬂ) - f(f)) + Va<xn+1 — Tpy Tp41 — x)x}
+2{7(9(yn) — 9(¥) + (Y0 — Yn—1,Yn — Y3}

1 1
oy {f(xm) +9(0n) + 5 WA — Bunlls — f0) — g(0) - -1 Az - ByH%}

+ [[(Az — By) — (Az, — By,)|1%

+ 290 Tng1 = Ty Tng1 — T)a + 29{Yn — Yn—1,Yn — Y)y
= 27 {®(n+1,yn) — (2,9)} + [[(Ax — By) — (Aw, — By,)|%

+ 290 Trg1 = Ty Tng1 — ) + 29Yn — Yn—1,Yn — Y)y
= 29 {®(wn+1,9n) — (2,9)} + [[(Ax — By) — (Az, — By,)||Z

+ya(|zn = 2alld + [lone — 2ll% = 20 — 2[1%)

+ (Y0 = Y1l + lyn = yll5 = a1 — ylI3).

Finally, we find

1Az — Az |12 +yallzn — 2l + 9vllyn-1 = yll5
— |4z — Az |2 = vallznss — 2llz — ywllyn — yll5
> 29 {®(ns1,Yn) — (2, 9)} + [(Az — By) — (Az, — Byn)|Z
el zner = 2ol + 9y — Yol (5)
Let us prove that inf ® > ¢, thus implying inf ® = . Let us argue by con-

tradiction and assume that inf ® < ¢. There exist x € X and y € ) so that
inf & < &(x,y) < p. By summing inequality (5), we get

293 (o — B(a,y)) < [[Ax — Az|% +yalles — 2ll% +llyo — gl < +oo.

n>1

and we obtain a contradiction hence inf ® > ¢.
(iii) Taking z = z,, and y = y,—; in inequality (5), we obtain

aHxn—I—l - xn”?\/ + VHyn - yn—l“%} S @(In,yn—ﬁ - q)(xn—I—la yn)

By summing this inequality, we infer

QZ Hanrl - anQX + VZ Hyn - ynlegj S CD(JH,Z/O) —inf ® < +OO7

n>1 n>1

this achieves the proof of item (iii).

(iv)(a) In view of inequality (5), the sequence (||Az — Az,||% + val|z, — z|% +
Y| Yn—1 — y||3) is nonincreasing and nonnegative hence convergent. Let us prove
the same result for the sequence (|| By — By,||%Z +vallz, — z||3 +vv|yn — yll3)-
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Using Lemma 2.1 with s = By, t = Ax, v = By,, v = Ax,11, w = By,1, we
obtain

1By — Byulz — 1By — Bynt1llz = [ Byni1 — Azpia ||z — | By — Az||%
+||(By — Az) — (Byn — Aznya)l%
+2(BYy — BYnt1, BYnt1 — Avpia) 2
+2(By, — Azpi1, Az — Az, (6)

Using inequalities (3), we have

||By - Byn||22,' - ||By - Byn+1H2Z

> || Byns1 — Aznia || — | By — Az||% + [|(By — Az) — (Byn — Aznpi|%
+ 27 {9Wn+1) — 9(¥) + V{Yn+1 = Yns Ynt1 — Y)»}
+ 2y {f(xn-i-l) - f(x) + O‘<xn+1 — Tny Tnt+1 — x);(} )

and by using the same arguments as above, we obtain

1By = Bynllz + yallen — 2l + wlyn = yll5
=By = Bynallz — vallzan — 2% = wlynr — vl5
> 29{®(n41, Y1) — (2, 9)} + | (Ar — By) — (Azns1 — By |1z
+ FYO‘Hanrl - -TnH%( + PYVHynJrl - yﬂ”%ﬂ (7)
this achieves the proof of (iv)(a).
(iv)(b) This claim follows by summing inequalities (5) and (7).
(iv)(c) Here we adapt an argument borrowed from [2]. Let us use Opial’s lemma

8], that we recall below for the sake of completeness.

Lemma 2.2 (Opial) Let H be a Hilbert space endowed with the norm N. Let
(&n) be a sequence of H such that there exists a monempty set S C H which
verifies

(1)For all § € S, lim,, oo N(§ — &) emists. B
(2)If (&) — & weakly in H as k — 400, we have £ € S.

Then the sequence (&,) weakly converges in H as n — +oo toward a point of S.

Let us define the norm N(z,y) = (||By|% + yallz|% + ”yl/HyH%,)l/Q on the space
X x Y. Since the linear operator B is continuous, the norm N is equivalent to
the canonical norm on X x ). Thus, in view of (iv)(a),

V(z,y) € Argmin®, N((x,,y,) — (z,y)) has a limit when n — o0,

which shows point (1). Let (z,,,¥ys,) be a subsequence of (x,,y,) which weakly
converges toward (7, 7). Using the closedness of ® and item (ii), we can write

Y
O(7,y) < liminf ®(z,,,y,, ) = lim P(z,,y,) = inf ®,

k—+o0 n—+o00
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hence (7,7) € Argmin®, which shows point (2). Opial’s lemma then shows that
(n, yn) weakly converges toward a point (Z,7) in Argmin®.

Let us prove that f(z,) — f(T) as n — +o0o. Using the closedness of f, we have
f(Z) < liminf, ;. f(x,). By using inequality (3) with z = Z, we obtain

1
f(f) > f(anrl) - §<A-Tn+1 — By, AT — Aanrl)Z - O‘<-77n+1 — Tp, T — xn+1>X-

Since the linear operator A is continuous and since the sequence (z,) weakly
converges towards T, we derive that the sequence (Az,) weakly converges to-
wards AZ. Moreover, from item (iv)(b), the sequence (Ax,.; — By,) strongly
converges in Z toward (AT — BY) and, from item (iii), the sequence (x,41 — )
strongly converges in X toward 0. Hence we deduce from the above inequality
that limsup,,_,, . f(z,) < f(Z) and finally lim,_,; f(z,) = f(Z). In a similar
way, we easily infer that lim,, . g(y,) = 9(7).

(v) Let us argue by contradiction and assume that the conclusion is false. We
can extract a subsequence (z,,Yn,) which weakly converges toward a point of
X x Y. The closedness of ® implies that this point is a minimizer of ®, which is
a contradiction.

3 Dual problem

Let us define the map p : 