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P.-L. Combettes Université Pierre et Marie Curie - Paris 6 Rapporteur
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INTRODUCTION

La première partie de cette thèse (articles I et II) est consacrée à l’étude du
comportement asymptotique des solutions de dynamiques du second ordre avec
dissipation évanescente.

Dans l’article I, nous nous intéressons à une équation hyperbolique semi-
linéaire amortie. Soit V et H deux espaces de Hilbert réels. Soit a : V × V → R

une forme bilinéaire, continue, symétrique, positive et semi-coercive (c’est-à-dire
∃λ ≥ 0, µ > 0 tel que ∀u ∈ V, a(u, u)+λ|u|2H ≥ µ‖u‖2V ). Nous associons à a(., .)
l’opérateur linéaire continu A : V → V ′ défini par 〈Au, v〉V ′,V = a(u, v) pour tout
u, v ∈ V . Etant donnée une fonction f : V → H , nous considérons l’équation
d’évolution semi-linéaire du second ordre

(E)
d2u

dt2
(t) + γ(t)

du

dt
(t) + Au(t) + f(u(t)) = 0, t ≥ 0,

où γ : R+ → R+ avec limt→+∞ γ(t) = 0. Cette équation modélise par exemple
des phénomènes de propagation d’ondes ou de vibrations soumis à une force
extérieure −f(u) et à une force de frottement ou d’amortissement évanescente
−γ du

dt
. Dans un cadre fonctionnel différent, Cabot, Engler et Gadat [10, 11] ont

étudié le comportement asymptotique des solutions de l’équation différentielle du
second ordre plus générale suivante

(S1) ẍ(t) + γ(t) ẋ(t) +∇Φ(x(t)) = 0, t ≥ 0,

où H est un espace de Hilbert et Φ : H → R est une fonction de classe C1 et
convexe. L’analyse repose sur l’utilisation de la fonction énergie définie par

E(t) = 1

2
|ẋ(t)|2 + Φ(x(t)),

qui est l’énergie mécanique du point matériel. Lorsque γ(t) ≡ γ > 0, l’équation
(S1) est dénommée problème de la boule pesante avec frottement et a été etudiée
par Alvarez [2]. Les premiers résultats obtenus par Cabot, Engler et Gadat [10, 11]
sur la sommabilité et la convergence de la fonction énergie E du système (S1) sont
les suivants:
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Proposition 0.1 Supposons γ : R+ → R+ dérivable et décroissante, Φ : H → R

C1 et convexe, alors toute solution x de (S1) vérifie

(i) Ė(t) = −γ(t)|ẋ(t)|2.
Si de plus ArgminΦ 6= ∅, alors toute solution x bornée dans H vérifie

(ii)
∫ +∞
0

γ(t)(E(t)−minΦ)dt <∞,
(iii) si de plus γ /∈ L1(0,+∞), alors limt→+∞ E(t) = minΦ et donc limt→+∞ |ẋ(t)| =

0 et limt→+∞Φ(t) = minΦ.

Nous obtenons des résultats similaires dans le cas de l’équation (E) en utilisant
une fonction énergie appropriée. Dans le cas d’un amortissement constant γ(t) ≡
γ > 0, la convergence des solutions de (E) a été obtenue par Alvarez et Attouch
[3]. La fonction f : V → H est supposée conservatrice

∃F ∈ C1(V,R)/ ∀u, v ∈ V, 〈F ′(u), v〉V ′,V = (f(u), v)H,

et monotone
∀u, v ∈ V, 〈f(u)− f(v), u− v〉V ≥ 0.

Les auteurs ont obtenu le théorème suivant:

Théorème 0.1 Supposons γ(t) ≡ γ > 0. Soit a : V ×V → R une forme bilinéaire
continue, symétrique, positive et semi-coercive et soit f : V → H conservatrice
et monotone. Supposons que S = {v ∈ V ; Av + f(v) = 0} 6= ∅. Alors toute
solution u de (E) converge faiblement dans V quand t → +∞ vers un point de
S.

Nous généralisons ces résultats de convergence à l’équation (E) dans le cas d’un
amortissement évanescent. Sous les mêmes hypothèses sur la forme bilinéaire
a(., .) et sur la fonction f , nous obtenons la convergence faible dans V vers un
point de S de toute solution bornée dans H si l’application γ tend lentement
vers 0 quand t → +∞ (par exemple, s’il existe α ∈]0; 1[ tel que γ(t) ∼ 1

tα
quand

t→ +∞).
Dans l’article II, nous nous intéressons à l’algorithme proximal inertiel suivant

(A) xn+1 − xn − αn(xn − xn−1) + βn∂Φ(xn+1) 3 0,

où H est un espace de Hilbert, Φ : H → R ∪ {+∞} est une fonction convexe
propre s.c.i., (αn) et (βn) sont des suites strictement positives. Nous pouvons
réécrire l’algorithme (A) de la façon suivante:

xn+1 − 2xn + xn−1

βn
+

1− αn

βn
(xn − xn−1) + ∂Φ(xn+1) 3 0.

L’algorithme (A) apparâıt donc comme une discrétisation implicite du système
continu (S1) avec un pas de temps égal à

√
βn, tandis que

1−αn√
βn

correspond à la

valeur de γ au temps tn =
∑n

k=0

√
βk. L’algorithme (A) a été étudié par Alvarez

[2] qui a obtenu le résultat suivant:
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Théorème 0.2 Supposons que Φ : H → R ∪ {+∞} est s.c.i., convexe et propre.
Soit (αn) et (βn) des suites de réels strictement positifs telles que αn ≤ α < 1, (βn)
majorée et (αn

βn
) décroissante. Si ArgminΦ 6= ∅, alors toute suite (xn) générée

par (A) converge faiblement dans H vers un minimiseur de Φ.

L’étude repose sur l’utilisation d’une fonction énergie et du lemme d’Opial où
l’hypothèse αn ≤ α < 1 joue un rôle crucial. Nous étudions la convergence de (A)
sous l’hypothése plus générale 0 < αn ≤ 1 et examinons le cas limn→+∞ αn = 1.
Dans un premier temps, nous étudions la convergence de la fonction énergie

En =
1

2βn−1

|xn − xn−1|2 + Φ(xn),

où (xn) est générée par (A). Nous obtenons des résultats de sommabilité et de
convergence de la suite (En) similaires aux résultats obtenus à la Proposition 0.1
dans le cas du système continu (S1). Dans l’article [10], Cabot, Engler et Ga-

dat ont prouvé que, si
∫ +∞
0

e−
∫ t
0
γ(s)dsdt = ∞, toute solution x de (S1) telle que

(x(0), ẋ(0)) /∈ ArgminΦ× {0} ne converge pas. Nous trouvons des résultats ana-
logues dans le cas discret pour l’algorithme (A).

La deuxième partie de cette thèse (articles III à VI) est consacrée à l’étude de
plusieurs algorithmes de type proximal. Nous montrons que ces algorithmes con-
vergent vers des solutions de certains problèmes de minimisation. Dans chaque
cas, une application est donnée dans le cadre de la décomposition de domaine
pour les EDP.

X , Y , Z sont des espaces de Hilbert, f : X → R∪{+∞} et g : Y → R∪{+∞}
sont des fonctions s.c.i., convexes et propres, A : X → Z et B : Y → Z sont des
opérateurs linéaires continus. Nous considérons la fonction convexe Φγ : X ×Y →
R ∪ {+∞} définie par

Φγ(x, y) = f(x) + g(y) +
1

2γ
‖Ax−By‖2Z ,

où γ est un paramètre strictement positif. Dans le but de minimiser la fonction
Φγ , Attouch, Bolte, Redont et Soubeyran [5] ont introduit l’algorithme alterné
avec termes de coûts-aux-changements

(A1)





xn+1 = Argmin

{
f(x) +

1

2γ
‖Ax− Byn‖2Z +

α

2
‖x− xn‖2X ; x ∈ X

}

yn+1 = Argmin

{
g(y) +

1

2γ
‖Axn+1 − By‖2Z +

ν

2
‖y − yn‖2Y ; y ∈ Y

}
,

où α, ν sont des paramètres strictement positifs. Les auteurs ont montré que toute
suite générée par l’algorithme (A1) converge faiblement vers un point solution du
problème
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(P1) min {Φγ(x, y); (x, y) ∈ X × Y}

= min

{
f(x) + g(y) +

1

2γ
‖Ax− By‖2Z ; (x, y) ∈ X × Y

}
.

L’algorithme (A1) utilise la structure de la fonction objectif Φγ pour résoudre
le problème initial sur X × Y en résolvant respectivement des problèmes sur X
et Y . Dans un article antérieur, Acker et Prestel [1] avaient étudié le problème
fortement couplé (X = Y , A = B = I et α = ν = 0 dans l’algorithme). Dans
l’article III, nous généralisons les méthodes et les résultats de convergence de [1]
au problème faiblement couplé (P1). Nous retrouvons la convergence faible dans
X × Y de la suite (xn, yn) générée par l’algorithme (A1) vers un point solution
de (P1) et montrons la convergence forte dans Z de la suite de variables duales
(− 1

γ
(Axn − Byn)) vers l’unique solution du problème dual1

inf
{
f ∗(A∗z∗) + g∗(−B∗z∗) +

γ

2
‖z∗‖2Z ; z∗ ∈ Z

}
.

Le cadre d’application à la décomposition de domaine pour les EDP est le suiv-
ant: nous considérons un domaine borné Ω = Ω1 ∪ Ω2 ∪ Γ de RN suffisamment
régulier qui peut se décomposer en deux sous-domaines Ω1 et Ω2 avec une interface
commune Γ.

Ω1 Ω2Γ

Nous choisissons X = H1(Ω1), Y = H1(Ω2) et Z = L2(Γ). Les opérateurs A :
X → Z et B : Y → Z sont les opérateurs traces sur Γ. Le terme [w] = Au− Bv

correspond au saut de l’application w =

{
u sur Ω1

v sur Ω2
à travers l’interface Γ. Les

fonctions f et g sont définies par

f(u) =
1

2

∫

Ω1

|∇u|2 −
∫

Ω1

hu et g(v) =
1

2

∫

Ω2

|∇v|2 −
∫

Ω2

hv.

La fonction h ∈ L2(Ω) est fixée. Dans ce cas l’algorithme (A1) permet de résoudre
par décomposition le problème de minimisation suivant

1 f∗ : Z → R ∪ {+∞} et g∗ : Z → R ∪ {+∞} sont les conjuguées de Fenchel des fonctions f et g,
A∗ : Z → X et B∗ : Z → Y sont les opérateurs adjoints de A et B.
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min

{
1

2

∫

Ω1

|∇u|2 + 1

2

∫

Ω2

|∇v|2 + 1

2γ

∫

Γ

[w]2 −
∫

Ω

hw; u ∈ H1(Ω1), v ∈ H1(Ω2)

}
,

qui est la formulation variationnelle du problème avec conditions au bord mixtes
de Dirichlet-Neumann suivant sur Ω1





−∆u = h dans Ω1
∂u
∂n

= 0 sur ∂Ω1 ∩ ∂Ω
∂u
∂n

= − 1
γ
(u− v) sur Γ,

et Ω2 



−∆v = h dans Ω2
∂v
∂n

= 0 sur ∂Ω2 ∩ ∂Ω
∂v
∂n

= 1
γ
(u− v) sur Γ.

Ce type de problème peut apparâıtre dans la description de phénomèmes au-
torisant des discontinuités à travers l’interface Γ.

Le problème de minimisation avec contraintes

(P2) min {f(x) + g(y); Ax = By}

correspond formellement à minimiser la fonction Φγ avec γ = 0. Dans l’article IV,
nous remplaçons dans l’algorithme (A1) le paramètre constant γ par une suite
strictement positive (γn) qui tend vers 0. L’algorithme s’écrit

(A2)





xn+1 = Argmin

{
γn+1 f(x) +

1

2
‖Ax−Byn‖2Z +

α

2
‖x− xn‖2X ; x ∈ X

}

yn+1 = Argmin

{
γn+1 g(y) +

1

2
‖Axn+1 − By‖2Z +

ν

2
‖y − yn‖2Y ; y ∈ Y

}
.

La fonction Ψ(x, y) = 1
2
‖Ax−By‖2Z agit comme une fonction de pénalisation de

la contrainte Ax = By et 1
γn

apparâıt comme un paramètre de pénalisation. Sous

des hypothèses adéquates, la suite générée par le nouvel algorithme (A2) con-
verge faiblement vers un point solution de (P2), c’est-à-dire minimise la fonction
Φ(x, y) = f(x) + g(y) sur ArgminΨ = {(x, y) ∈ X ×Y ; Ax = By}. Ce type de
minimisation hierarchisée a été étudié par Cabot [9]. Soit ψ : Rm → R ∪ {+∞}
une fonction s.c.i., convexe et ϕ : Rm → R une fonction finie et convexe. Avec ces
notations, l’algorithme de [9] s’écrit

xn+1 = Argmin
{
ψ(x) + γn+1ϕ(x) +

αn

2
‖x− xn‖2Rm; x ∈ R

m
}
.

La vitesse de convergence de la suite (γn) vers zéro joue un rôle primordial dans
le processus de minimisation. Soit (wn) la suite définie par

wn = inf
x∈Rm

{ψ(x) + γn+1(ϕ(x)−minϕ)} ,

Cabot [9] a obtenu, dans le cadre de la dimension finie, le résultat suivant:
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Théorème 0.3 Supposons que la suite (αn) vérifie, pour tout n ∈ N, 0 < α ≤
αn ≤ α. Supposons que l’ensemble C = Argminψ soit non vide, que la fonction
ϕ soit minorée et que l’ensemble ArgminC ϕ soit non vide et borné. Si (γn) /∈ l1

alors

(i) limn→+∞ ψ(xn) = minψ et limn→+∞ ϕ(xn) = minC ϕ,
(ii) si de plus

(h1) (w−
n ) ∈ l1,

alors (xn) converge vers un élément de ArgminC ϕ.

L’hypothèse (γn) /∈ l1 exprime que la suite (γn) converge lentement vers zéro
alors que l’hypothèse (h1) exprime que la suite (γn) ne converge pas trop lente-
ment vers zéro (sous des hypothèses adéquates sur les fonctions ψ et ϕ, (h1) est
réalisée si (γn) ∈ l2). Nous utilisons des hypothèses similaires sur la suite (γn)
dans l’article IV et montrons que la suite générée par l’algorithme (A2) converge
faiblement vers un point solution du problème (P2). L’analyse est aussi étendue
au cadre des opérateurs maximaux monotones. Avec le cadre d’application aux
EDP précédent, la contrainte force le saut à travers l’interface à être nul et inter-
dit les discontinuités à travers l’interface. L’algorithme permet de résoudre par
décomposition le problème de minimisation suivant

min

{
1

2

∫

Ω

|∇w|2 −
∫

Ω

hw; w ∈ H1(Ω)

}
,

qui correspond à la formulation faible variationnelle du problème de Neumann
sur le domaine Ω {

−∆w = h dans Ω
∂w
∂n

= 0 sur ∂Ω.

Dans l’article V, la suite (γn) est supposée tendre vers +∞. L’algorithme s’écrit

(A3)





xn+1 = Argmin

{
f(x) +

1

2γn+1
‖Ax−Byn‖2Z +

α

2
‖x− xn‖2X ; x ∈ X

}

yn+1 = Argmin

{
g(y) +

1

2γn+1
‖Axn+1 − By‖2Z +

ν

2
‖y − yn‖2Y ; y ∈ Y

}
.

Nous pouvons supposer sans perte de généralité que min f = min g = 0. Dans
ce cas, c’est la fonction Φ(x, y) = f(x) + g(y) qui agit comme une fonction de
pénalisation de la contrainte Argmin f × Argmin g et γn comme un paramètre
de pénalisation. De manière symétrique à l’article précédent, nous retrouvons un
processus de minimisation hierarchisée et la suite générée par le nouvel algorithme
(A3) converge faiblement vers un point solution de

(P3) min
{
‖Ax−By‖2Z ; (x, y) ∈ Argmin f ×Argmin g

}
.
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Nous utilisons une hypothèse introduite par Attouch et Czarnecki [6]. Les auteurs
ont étudié le système dynamique continu suivant

(S2) ẋ(t) + ∂ϕ(x(t)) +
1

γ(t)
∂ψ(t) 3 0,

où H est un espace de Hilbert, ϕ : H → R+ ∪ {+∞} et ψ : H → R∪ {+∞} sont
des fonctions s.c.i., convexes et propres et γ : R+ → R+\{0} est une fonction
de classe C1 telle que limt→+∞ γ(t) = +∞. Les auteurs ont obtenu le résultat
suivant:

Théorème 0.4 Supposons de plus que C = Argminϕ = ϕ−1(0) 6= ∅ et que
ArgminC ψ 6= ∅. Soit γ : R+ → R+\{0} une fonction de classe C1 croissante
telle que γ̇ soit majorée et2

(h2) ∀p ∈ R(NC),

(
ϕ∗
(

p

γ(t)

)
− σC

(
p

γ(t)

))
∈ L1(0,+∞).

Soit x une solution forte3 du système (S2). Alors

(i) limt→+∞ ϕ(t) = 0 et limt→+∞ ψ(t) = minC ψ,
(ii) x converge faiblement dans H vers un point de ArgminC ψ.

La vitesse de croissance de la fonction γ vers l’infini joue là encore un rôle pri-
mordial pour assurer la convergence des trajectoires vers l’ensemble d’équilibre.
L’hypothèse γ̇ majorée exprime que la fonction γ tend lentement vers l’infini
alors que l’hypothèse (h2) exprime que la fonction γ ne tend pas trop lentement
vers l’infini (sous des hypothèses adéquates sur la fonction ϕ, (h2) est réalisée
si 1

γ
∈ L2(0,+∞)). Avec des hypothèses analogues traduites dans le cas discret,

nous obtenons la convergence faible de la suite générée par l’algorithme (A3) vers
un point solution du problème (P3). Dans le cadre des EDP, l’algorithme permet
de résoudre le problème de minimisation suivant

min

{
1

2

∫

Γ

[w]2
}
,

où [w] est le saut de w à travers l’interface Γ, w =

{
u sur Ω1

v sur Ω2
et u ∈ H1(Ω1),

v ∈ H1(Ω2) sont solutions faibles des problèmes avec conditions aux bords de
Neumann suivants
2 NC(x) est le cône normal à C en x,

NC(x) = {p ∈ X : 〈p, ζ − x〉X ≤ 0 ∀ζ ∈ X} .

R(NC) est l’image de NC , c’est-à-dire p ∈ R(NC) si et seulement s’il existe un x ∈ C tel que
p ∈ NC(x). σC est la fonction support de C: pour tout x ∈ X , σC(x) = supζ∈X 〈x, ζ〉X .

3 Dans le sens de Brezis ([8], définition 3.1). En particulier, x est absolument continue sur tout intervalle
[0; T ] avec T < +∞.
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{
−∆u = h dans Ω1

∂u
∂n

= 0 sur ∂Ω1,

{
−∆v = h dans Ω2

∂v
∂n

= 0 sur ∂Ω2,

et h ∈ L2(Ω) est une fonction donnée.
Enfin, dans le dernier article, nous utilisons des méthodes proximales et la-

grangiennes inspirées des articles [12, 7] dans le but de résoudre le problème

(P4) min {f(x); Ax ∈ C} ,

où f : X → R ∪ {+∞} est une fonction s.c.i, convexe et propre, A : X → Y
est un opérateur linéaire continu et C est un ensemble convexe fermé de Y . Dans
l’article [12], Chen et Teboulle ont considéré le problème de minimisation avec
contraintes linéaires suivant

(Q4) min {f(x) + g(y); Ax = y} ,

où f : Rm → R∪ {+∞} et g : Rp → R∪ {+∞} sont des fonctions s.c.i, convexes
et propres et A : Rm → R

p est un opérateur linéaire. La fonction de Lagrange
associée au problème (Q4) est la fonction L : Rm ×Rp ×Rp → R∪ {+∞} définie
par

L(x, y, µ) = f(x) + g(y) + 〈µ,Ax− y〉Rp.

Elle est s.c.i, convexe pour les variables primales x et y et concave pour la vari-
able duale µ. Les auteurs ont introduit un algorihme basé sur une minimisation
proximale pour les variables x et y et sur une maximisation proximale pour la
variable µ. Par linéarité, l’algorithme s’écrit





µ̃n+1 = µn + λn+1(Axn − yn),

xn+1 = Argmin
{
L(x, yn, µ̃n+1) +

1
2λn+1

‖x− xn‖2Rm ; x ∈ Rm
}
,

yn+1 = Argmin
{
L(xn, y, µ̃n+1) +

1
2λn+1

‖y − yn‖2Rp; y ∈ Rp
}
,

µn+1 = µn + λn+1(Axn+1 − yn+1).

Le résultat principal obtenu dans [12] est:

Théorème 0.5 Supposons que l’ensemble des points selles4 de L soit non vide
et que la suite (λn) vérifie, pour tout n ∈ N,

ε ≤ λn ≤ min

(
1− ε

2
,
1− ε

2‖A‖

)
,

pour 0 < ε ≤ min
(

1
3
, 1
2‖A‖+1

)
. Alors (xn, yn, µn) converge vers un point selle de

L et donc (xn, yn) converge vers un point solution du problème primal (Q4).

4 (x∗, y∗, µ∗) ∈ R
m × R

p × R
p est un point selle de L si, pour tout (x, y, µ) ∈ R

m × R
p × R

p,

L(x∗, y∗, µ) ≤ L(x∗, y∗, µ∗) ≤ L(x, y, µ∗).



9

Dans l’article VI, nous étendons ces résultats de convergence à la dimension
infinie pour le problème de minimisation (P4). Pour cela, nous introduisons une
variable de contrainte ν ∈ R

q et une fonction de pénalisation P : Y → (R+)q

telle que y ∈ C si et seulement si P (y) = 0. La fonction de Lagrange considérée
est la fonction L : X × Y × Y × Rq → R ∪ {+∞} définie par L(x, y, µ, ν) =
f(x) + 〈µ,Ax − y〉Y + 〈ν, P (y)〉Rq. Nous introduisons un algorithme inspiré de
[12]. Nous montrons que, si la fonction P est lipschitzienne et sous des hypothèses
adéquates sur la suite (λn), la suite (xn, yn, µn, νn) générée par cet algorithme
converge faiblement dans X ×Y×Y×Rq vers un point selle de L et donc (xn, yn)
converge faiblement dans X ×Y vers un point solution de (P4). L’étude est aussi
étendue au cadre des opérateurs maximaux monotones. L’algorithme permet de
résoudre le problème de minimisation suivant

min
{

1
2

∫
Ω1

|∇u|2 −
∫
Ω1
hu+ 1

2

∫
Ω2

|∇v|2 −
∫
Ω2
hv; (u, v) ∈ H1(Ω1)×H1(Ω2) et u|Γ ≥ v|Γ

}
.

Ce type de problème peut intervenir dans la description de phénomènes faisant
intervenir un matériau semi-conducteur ou un système de valve.
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Summary. Let V and H be Hilbert spaces such that V ⊂ H ⊂ V ′ with dense and continuous
injections. Consider a linear continuous operator A : V → V ′ which is assumed to be symmetric,
monotone and semi-coercive. Given a function f : V → H and a map γ ∈ W 1,1

loc (R+,R+) such that
limt→+∞ γ(t) = 0, our purpose is to study the asymptotic behavior of the following semilinear hyper-
bolic equation

(E)
d2u

dt2
(t) + γ(t)

du

dt
(t) +Au(t) + f(u(t)) = 0, t ≥ 0.

The nonlinearity f is assumed to be monotone and conservative. Condition
∫ +∞
0

γ(t) dt = + ∞
guarantees that some suitable energy function tends toward its minimum. The main contribution of
this paper is to provide a general result of convergence for the trajectories of (E): if the quantity
γ(t) behaves as k/tα, for some α ∈]0, 1[, k > 0 and t large enough, then u(t) weakly converges in V
toward an equilibrium as t → +∞. Strong convergence in V holds true under compactness or symmetry
conditions. We also give estimates for the speed of convergence of the energy under some ellipticity-like
conditions. The abstract results are applied to particular semilinear evolution problems at the end of
the paper.

Key words: Semilinear evolution problem, dissipative hyperbolic equation, non-autonomous damping,
asymptotic behavior, rate of convergence.
Subject classification:34G10, 34G20, 35B40, 35L70.

1 Introduction

Throughout this paper, V stands for a real Hilbert space, whose scalar product
and norm are respectively denoted by ((·, ·)) and ‖ · ‖. Let H be another real
Hilbert space with scalar product (·, ·) and norm | · |. Suppose that V is dense
in H with continuous injection. By duality, the topological dual space H ′ of H is
identified with a dense subspace of the topological dual V ′ of V . Identifying H
with H ′, we obtain V ⊂ H ⊂ V ′, where each space is dense in the next one, each
injection being continuous. We denote by 〈·, ·〉V ′,V the duality pairing between V ′

and V . Let a : V × V → R be a continuous bilinear form satisfying
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(h1) a(., .) is symmetric, positive,

(h2) ∃λ ≥ 0, µ > 0 such that ∀u ∈ V, a(u, u) + λ|u|2 ≥ µ‖u‖2.

This last property is known as the semi-coercivity of the form a. We associate
with a(., .) the continuous operator A : V → V ′ defined by 〈Au, v〉V ′,V = a(u, v)
for all u, v ∈ V . We denote by D(A) the domain of the operator A, i.e. D(A) =
{v ∈ V ; Av ∈ H}. Given a function f : V → H and a map γ ∈ W 1,1

loc (R+,R+),
we consider the following semilinear evolution equation of second-order in time

(E)
d2u

dt2
(t) + γ(t)

du

dt
(t) + Au(t) + f(u(t)) = 0, t ≥ 0.

The nonlinearity f is assumed to be conservative, i.e. derives from some potential
F ∈ C1(V,R). The main purpose of the paper is to investigate the asymptotic
behavior of the trajectories of (E) for a vanishing damping term, i.e. γ(t) → 0 as
t→ +∞. It is clear that the decay properties of the map γ play a central role in
the analysis. In particular, if the quantity γ(t) tends to 0 too rapidly as t→ +∞,
convergence of the trajectories may fail. To motivate our study, let us show how
it is connected to other questions of interest.

Case of a constant damping. If γ(t) ≡ γ, existence and uniqueness are well-
known in the framework of damped wave equations. More precisely, if the map
f : V → H is Lipschitz continuous on the bounded sets of V and if the map F
satisfies suitable growth conditions, then for any (u0, v0) ∈ D(A) × V , there
exists a unique solution u ∈ W 1,∞

loc (R+, V ) ∩ W 2,∞
loc (R+, H) of (E) such that

u(0) = u0 and du
dt
(0) = v0, see [12, Theorem II.3.2.1] or [20, Ch. IV, Theorem

4.1]. The trajectories of (E) are known to converge toward an equilibrium point
u∞ ∈ {v ∈ V, Av+f(v) = 0} under assumptions like monotonicity or analyticity.
In the case of a monotone map f , convergence is obtained for the weak topology
of V and the main ingredient of the proof is the Opial lemma, cf. [3]. When the
nonlinearity is analytic, convergence of the trajectories relies on the Lojasiewicz
inequality, see [15, 16] and the pioneering work [19] for parabolic problems.

Averaged heat equation. With the same assumptions as above, consider the
abstract heat equation

dv

ds
(s) + Av(s) = 0, s ≥ 0. (1)

It may be of interest to examine the case where the velocity dv
ds
(s) is proportional,

not to the instantaneous vector Av(s), but to some average taken over the interval
[0, s]. The simplest such equation is

dv

ds
(s) +

1

s

∫ s

0

Av(σ) dσ = 0, s > 0. (2)
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After multiplying this equality by s and differentiating, we obtain the following
second-order in time equation

s
d2v

ds2
(s) +

dv

ds
(s) + Av(s) = 0, s > 0.

The change of variable s = t2

4
allows to rewrite the above equation as

d2u

dt2
(t) +

1

t

du

dt
(t) + Au(t) = 0, t > 0,

where the map u is defined by u(t) = v
(

t2

4

)
for every t ≥ 0. This is exactly

equation (E) with γ(t) = 1
t
and f ≡ 0. Assuming that the injection V ↪→ H is

compact, there exists a nondecreasing sequence (λi)i≥1 of eigenvalues of A, along
with a complete orthonormal basis of H , (ei)i≥1 consisting of the corresponding
eigenvectors. Let u(t) =

∑+∞
i=1 ui(t) ei be the decomposition of the solution u(t) on

the basis of eigenfunctions. Every component ui satisfies the following equation

üi(t) +
1

t
u̇i(t) + λi ui(t) = 0, t > 0.

It ensues that each kernel component ui, i ∈ {1, . . . ,dim(KerA)} verifies ui(t) =
ai ln t + bi, for some ai, bi ∈ R. In particular, it cannot converge as t → +∞,
unless it is stationary. When the eigenvalue λi is positive, we let the reader check
that

ui(t) = a′i J0

(√
λi t
)
+ b′i Y0

(√
λi t
)
, for some a′i, b

′
i ∈ R,

where J0 and Y0 denote respectively the zeroth Bessel functions of the first and
second kind3. Recalling that

J0(t) ∼
√

2

π t
cos
(
t− π

4

)
and Y0(t) ∼

√
2

π t
sin
(
t− π

4

)
as t→ +∞,

we deduce that ui(t) ∼ ci√
t
cos(

√
λi t−ϕi) as t→ +∞, for some ci, ϕi ∈ R. Coming

back to the averaged heat equation (2), we then obtain for each component vi

vi(s) ∼
ci√
2
s−

1
4 cos

(
2
√
λi s− ϕi

)
as s→ +∞.

It converges toward zero much more slowly than the corresponding component of
the “pure” heat equation, equal to vi(0) e

−λi s. The above discussion shows that
the global behavior of (2) -or more generally (E)- differs considerably from the
one of equation (1).

3 See [1, 5] for standard references on Bessel equations.



16 A. Cabot and P. Frankel

Heavy ball with asymptotically small friction. Given a continuous map γ :
R+ → R+ and a potential Φ : H → R of class C1 with a locally Lipschitz
gradient, let us consider the following ordinary differential equation in the Hilbert
space H

ẍ(t) + γ(t) ẋ(t) +∇Φ(x(t)) = 0, t ≥ 0. (3)

When γ(t) ≡ γ > 0, the above equation is known under the terminology of “Heavy
Ball with Friction” system, (HBF ) for short. From a mechanical point of view,
(HBF ) corresponds to the equation describing the motion of a material point
subjected to the conservative force −∇Φ(x) and the viscous friction force −γ ẋ.
The (HBF ) system can be studied in the classical framework of the theory of
dissipative dynamical systems, cf. [11, 13]. The trajectories of (HBF ) are known
to converge toward a critical point of Φ under various assumptions (see [2, 4] for
convex potentials and [14] for analytic ones). In the recent papers [8, 9], it is con-
sidered the case of a vanishing damping γ(t) → 0 as t→ +∞. The corresponding
equation is typically obtained from a first-order gradient system involving some
memory aspects, see [7]. If the function Φ is convex and has a unique minimum
x, condition

∫ +∞
0

γ(t) dt = +∞ is sufficient to ensure (weak) convergence of the
trajectories of (3) toward x. When the function Φ has a continuum of equilib-

ria, the more stringent condition

∫ +∞

0

e−
∫ t
0
γ(s) dsdt < +∞ is necessary to obtain

convergence of the trajectories. In the one-dimensional case, the slightly stronger

condition

∫ +∞

0

e−θ
∫ t
0 γ(s) dsdt < +∞, for some θ ∈]0, 1[ is shown to be sufficient.

In the higher-dimensional case, the general question of convergence is left open
in [8, 9]. The new techniques developed in the present paper allow to address this
question and to fill partially the gap between necessary and sufficient conditions
for convergence, see comments below.

Let us come back to equation (E) and precise now the framework of the paper.
The nonlinearity f is assumed to be monotone and conservative, i.e. derives from
some convex potential F ∈ C1(V,R). The set of equilibria S = {v ∈ V, Av+f(v) =
0} is supposed to be nonempty. It is not our purpose to develop the well-posedness
of equation (E) for given initial conditions. Throughout the paper, we assume the
existence of a solution to equation (E) in the class

u ∈ W 1,1
loc (R+, V ) ∩W 2,1

loc (R+, H). (4)

We define the energy function E along each trajectory by

E(t) = 1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

+
1

2
a(u(t), u(t)) + F (u(t)).

The major contribution of this paper is to provide a result of (weak) conver-
gence in V for the trajectories of (E): if the quantity γ(t) behaves as k/tα, for
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some α ∈]0, 1[, k > 0 and t large enough, there exists an equilibrium u∞ ∈ S
such that u(t) ⇀ u∞ weakly in V as t → +∞. The exact statement is in fact
slightly more general, see Theorem 3.3. The main ingredients of the proof are the
Opial lemma along with accurate estimates of the energy decay, cf. Proposition
3.2. Strong convergence in V holds true under compactness or symmetry condi-
tions. The technique of the proof is new and is also applicable to the differential
equation (3).

The second contribution of the paper is to give sharp estimates for the speed
of convergence of the energy E(t) as t → +∞. In the linear case (f = 0) and
under some ellipticity-like condition, we obtain the following estimate

E(t) ∼ K e−
∫ t
0
γ(s)ds as t→ +∞, for some K > 0. (5)

Notice that this estimate fails to be true if the trajectory is contained in KerA,
see Theorem 2.1 for a precise statement. In the nonlinear case, the same kind of
estimate is obtained at a slightly lower degree of precision4, cf. Theorem 3.4.

Outline of the paper. Section 2 is concerned with the linear hyperbolic equation
(E0) obtained by taking f = 0 in (E). We analyze the behavior of the trajectories
by studying respectively their components with respect to the spaces KerA and
(KerA)⊥. A sharp estimate of the energy decay is given under some ellipticity-like
condition. In section 3, we deal with the general equation (E) by assuming that
the nonlinearity f is monotone. It is shown in paragraph 3.1 that the energy E(t)
vanishes as t→ +∞, which allows to prove (weak) convergence of the trajectories
in the case of a unique minimum. The general problem of convergence for a
continuum of minima is treated in paragraph 3.2, which is the core of the paper.
Additional results of strong convergence in V are given under some compactness
or symmetry assumptions. Finally, the abstract results are applied to particular
semilinear evolution problems in section 4.

2 Linear hyperbolic equation

Let a : V × V → R be a continuous bilinear form satisfying (h1)-(h2) and let
A : V → V ′ be the associate operator. Given a map γ ∈ W 1,1

loc (R+,R+), we
consider the following linear hyperbolic equation

(E0)
d2u

dt2
(t) + γ(t)

du

dt
(t) + Au(t) = 0, t ≥ 0.

We assume the existence of a solution to equation (E0) in the class (4). We define
the energy function E along each trajectory by

4 In this case, a factor 2
3
has to be introduced in the exponent of formula (5).
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E(t) = 1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

+
1

2
a(u(t), u(t)).

We have E ∈ W 1,1
loc (R+) and

Ė(t) =
(
d2u

dt2
(t),

du

dt
(t)

)
+

〈
Au(t),

du

dt
(t)

〉

V ′,V

= −γ(t)
∣∣∣∣
du

dt
(t)

∣∣∣∣
2

≤ 0 a.e. on R+,

hence the function E is a Lyapunov function for the system (E0). The purpose
of this section is to establish results of convergence for the trajectory u, along
with estimates of the energy decay. For every t ≥ 0, we set û(t) = Pu(t), where
P denotes the orthogonal projection onto the subspace5 KerA in the sense of H .
Since û(t) ∈ KerA for every t ≥ 0, we have

∀t ≥ 0,
d2û

dt2
(t) + γ(t)

dû

dt
(t) = 0.

By integrating this equality twice, we find

∀t ≥ 0, û(t) = û(0) +

(∫ t

0

e−
∫ s
0 γ(τ)dτds

)
dû

dt
(0) (6)

= Pu0 +

(∫ t

0

e−
∫ s
0 γ(τ)dτds

)
Pv0.

If Pv0 6= 0, the above equality shows that the asymptotic behavior of the compo-
nent û is strongly related with the convergence of the integral

∫ +∞
0

e−
∫ s
0 γ(τ)dτds.

The next proposition summarizes the different possible cases.

Proposition 2.1 Let us set ω =
∫ +∞
0

e−
∫ s
0 γ(τ)dτds ∈ R+ ∪ {+∞}.

• If v0 ∈ (KerA)⊥, then û(t) = Pu0 for every t ≥ 0.
• If v0 /∈ (KerA)⊥, then the solution û converges if and only if ω < +∞. More

precisely, we have lim
t→+∞

|û(t)| = +∞ if ω = +∞ while lim
t→+∞

û(t) = P (u0+ωv0)

if ω < +∞.

Our purpose is now to evaluate the energy decay along each trajectory u(.).
We start with a preliminary result corresponding to the case KerA = {0}.
Lemma 2.1 Assume that the bilinear form a(., .) satisfies (h1)-(h2) and that

∃η > 0, ∀u ∈ V, a(u, u) ≥ η|u|2. (7)

Let γ ∈ W 1,1
loc (R+,R+) be a function such that limt→+∞ γ(t) = 0 and γ̇ ∈

L1(0,+∞). Let u be a solution in the class (4) to equation (E0). Then, either
the solution u is stationary, or there exists K > 0 such that

E(t) ∼ Ke−
∫ t
0 γ(s)ds as t→ +∞.

5 By using assumptions (h1)-(h2), it is easy to check that KerA is closed in H . See also Remark 3.2.
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Proof. The main idea of the proof consists in using the function F defined by6

F(t) =
1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

+
1

2
a(u(t), u(t)) +

γ(t)

2

(
du

dt
(t), u(t)

)

= E(t) + γ(t)

2

(
du

dt
(t), u(t)

)
.

We have F ∈ W 1,1
loc (R+) and by differentiating the function F , we find for almost

every t ≥ 0

Ḟ(t) = Ė(t) + γ̇(t)

2

(
du

dt
(t), u(t)

)
+
γ(t)

2

(
d2u

dt2
(t), u(t)

)
+
γ(t)

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

= −γ(t)
2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

− γ(t)

2
a(u(t), u(t)) +

(
γ̇(t)

2
− γ(t)2

2

)(
du

dt
(t), u(t)

)
.

Therefore we have

Ḟ(t) + γ(t)F(t) =
γ̇(t)

2

(
du

dt
(t), u(t)

)
a.e. on R+. (8)

Since
∣∣(du

dt
(t), u(t)

)∣∣ ≤ 1
2

∣∣du
dt
(t)
∣∣2 + 1

2
|u(t)|2 and a(u(t), u(t)) ≥ η |u(t)|2 by as-

sumption (7), we have

∣∣∣∣
(
du

dt
(t), u(t)

)∣∣∣∣ ≤ C E(t), for some C > 0. (9)

Recalling that limt→+∞ γ(t) = 0, the expression of F shows that

F(t) ∼ E(t) as t→ +∞. (10)

We deduce from (8), (9) and (10) the existence of D > 0 and t0 ≥ 0 such that

∣∣∣Ḟ(t) + γ(t)F(t)
∣∣∣ ≤ D |γ̇(t)|F(t) a.e. on [t0,+∞[.

Let us multiply each member of this inequality by e
∫ t
0
γ(s)ds and set G(t) =

e
∫ t
0
γ(s)dsF(t). We obtain

|Ġ(t)| ≤ D |γ̇(t)|G(t) a.e. on [t0,+∞[. (11)

Observe that if G(t1) = 0 for some t1 ≥ t0, then we have F(t1) = 0 and E(t1) = 0.
Since the map E is nonincreasing, we conclude that E(t) = 0 for every t ≥ t1, i .e.
the solution u is stationary. Now assume that G(t) > 0 for every t ≥ t0 and divide

6 The use of such an auxiliary function is classical, see for example [13, Lemma 3.2.6] in the case of
an autonomous damping.
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each member of equality (11) by G(t). Since γ̇ ∈ L1(0,+∞) by assumption, we
deduce that ∣∣∣∣

d

dt
lnG

∣∣∣∣ (t) =
|Ġ(t)|
G(t) ∈ L1(0,+∞).

It ensues that lim
t→+∞

lnG(t) exists in R. We deduce that lim
t→+∞

e
∫ t
0 γ(s)dsF(t) =

K > 0. The conclusion immediately follows from estimate (10).

Remark 2.1 A result similar to Lemma 2.1 can be obtained by eliminating the
first order term in (E0) via the change of variable v(t) = e

1
2

∫ t
0 γ(s)dsu(t). The

details are left to the reader.

Remark 2.2 (Case γ constant) Assuming that γ(t) ≡ γ > 0 and that a(u, u) ≥
η |u|2 for every u ∈ V , the estimate E(t) = O (e−γ t) remains true as t → +∞ if
γ < 2 η1/2, see [13, Lemma 3.2.6]. However, it fails to be valid if γ ≥ 2 η1/2, see
[13, Proposition 3.2.5].

We now assume the following ellipticity-like condition

∀u ∈ V, a(u, u) ≥ η |u− Pu|2, for some η > 0. (12)

Remark 2.3 Under (h2), this condition is equivalent to the following one7

∀u ∈ V, a(u, u) ≥ η′ ‖u− Pu‖2, for some η′ > 0. (13)

Indeed, assume that condition (12) is satisfied. Recalling that Pu ∈ KerA, we
deduce from (h2) that

∀u ∈ V, a(u, u) + λ |u− Pu|2 ≥ µ ‖u− Pu‖2.

It ensues that
(
1 + λ

η

)
a(u, u) ≥ µ ‖u− Pu‖2 for every u ∈ V and finally (13) is

fulfilled with η′ = η µ
η+λ

.

Remark 2.4 Suppose that the injection V ↪→ H is compact and that (h1)-(h2)
hold true. The eigenvalues of A then define a nondecreasing sequence of nonneg-
ative scalars tending to +∞ and there exists an orthonormal basis of H consist-
ing of the corresponding eigenvectors, see for example [17, 20]. If η denotes the
smallest eigenvalue of A greater than 0, it is clear that a(u, u) ≥ η|u|2 for every
u ∈ (KerA)⊥ ∩ V and therefore condition (12) holds true.

The next result allows to estimate the energy decay under condition (12).

7 Condition (13) is used in [21, Section 4], where estimates of the energy decay are provided in the
case of an autonomous damping.
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Theorem 2.1 Assume that the bilinear form a(., .) satisfies conditions (h1)-(h2)
and (12). Let γ ∈ W 1,1

loc (R+,R+) be a function such that limt→+∞ γ(t) = 0 and
γ̇ ∈ L1(0,+∞). Let u be a solution in the class (4) to equation (E0). Then, either
the trajectory is contained in KerA, or there exists K > 0 such that

E(t) ∼ K e−
∫ t
0 γ(s)ds as t→ +∞. (14)

Proof. For every t ≥ 0, we set û(t) = Pu(t) and ũ(t) = u(t) − Pu(t). Since
û(t) ∈ KerA, dû

dt
(t) ∈ KerA and dũ

dt
(t) ∈ (KerA)⊥, we have for every t ≥ 0

E(t) = 1

2

∣∣∣∣
dû

dt
(t) +

dũ

dt
(t)

∣∣∣∣
2

+
1

2
a(û(t) + ũ(t), û(t) + ũ(t))

=
1

2

∣∣∣∣
dû

dt
(t)

∣∣∣∣
2

+
1

2

∣∣∣∣
dũ

dt
(t)

∣∣∣∣
2

+
1

2
a(ũ(t), ũ(t)). (15)

From equality (6), we deduce that for every t ≥ 0

∣∣∣∣
dû

dt
(t)

∣∣∣∣
2

= e−2
∫ t
0
γ(s)ds

∣∣∣∣
dû

dt
(0)

∣∣∣∣
2

. (16)

Let us now set V1 = (KerA)⊥ ∩ V , a1 = a|V1×V1
and A1 = A|V1

. It is clear that ũ
is a solution of

d2ũ

dt2
(t) + γ(t)

dũ

dt
(t) + A1ũ(t) = 0.

On the other hand, condition (12) implies that a1(u, u) ≥ η |u|2 for every u ∈ V1.
By applying Lemma 2.1 to the solution ũ, we obtain that either the map ũ is
stationary or there exists K1 > 0 such that

1

2

∣∣∣∣
dũ

dt
(t)

∣∣∣∣
2

+
1

2
a(ũ(t), ũ(t)) ∼ K1 e

−
∫ t
0 γ(s)ds as t→ +∞. (17)

We now combine equalities (15), (16) with estimate (17). If
∫ +∞
0

γ(s)ds = +∞,

we immediately obtain (14) with K = K1. If
∫ +∞
0

γ(s)ds < +∞, then

lim
t→+∞

E(t) = 1

2
e−2

∫+∞
0 γ(s)ds

∣∣∣∣
dû

dt
(0)

∣∣∣∣
2

+K1 e
−

∫+∞
0 γ(s)ds,

hence (14) is satisfied with K = 1
2
e−

∫ +∞
0

γ(s)ds
∣∣dû
dt
(0)
∣∣2 +K1.

Remark 2.5 If the trajectory u(.) is contained in KerA, estimate (14) is no more

valid. In this case, we infer from equality (16) that E(t) = 1
2
e−2

∫ t
0
γ(s)ds

∣∣dû
dt
(0)
∣∣2

for every t ≥ 0.

Corollary 2.1 Under the hypotheses of Theorem 2.1, assume moreover that γ 6∈
L1(0,+∞). Then we have limt→+∞ E(t) = 0. If KerA = {0}, then u(t) → 0
strongly in V as t→ +∞.
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Proof. The first assertion is an immediate consequence of estimate (14), while the
second one follows from

∀t ≥ 0, E(t) ≥ 1

2
a(u(t), u(t)) ≥ η′

2
‖u(t)‖2,

see inequality (13).

When KerA 6= {0}, convergence of the trajectories is obtained under the following
stronger assumption ∫ +∞

0

e−
1
2

∫ s
0
γ(τ)dτds < +∞. (18)

Corollary 2.2 Under the hypotheses of Theorem 2.1, assume moreover that con-
dition (18) is satisfied. Then, there exists u∞ ∈ KerA such that u(t) → u∞
strongly in V as t→ +∞.

Proof. First assume that the trajectory is contained in KerA. Observing that
ω =

∫ +∞
0

e−
∫ s
0
γ(τ)dτds < +∞, we deduce from Proposition 2.1 that u(t) converges

strongly in H as t → +∞. If the trajectory is not contained in KerA, we derive
from estimate (14) that

∣∣∣∣
du

dt
(t)

∣∣∣∣ = O
(
e−

1
2

∫ t
0 γ(s)ds

)
as t→ +∞,

hence du
dt

∈ L1(R+, H) in view of condition (18). The trajectory u has a finite
length, hence strongly converges in H toward some u∞ ∈ KerA. Using now the
semi-coercivity condition (h2), we have

µ‖u(t)− u∞‖2 ≤ λ|u(t)− u∞|2 + a(u(t)− u∞, u(t)− u∞)

= λ|u(t)− u∞|2 + a(u(t), u(t)).

Since limt→+∞ |u(t)−u∞| = 0 and limt→+∞ a(u(t), u(t)) = 0 in view of Corollary
2.1, we conclude that limt→+∞ ‖u(t)− u∞‖ = 0.

Example 2.1 Suppose that there exist α, k > 0 such that γ(t) = k
tα

for t large
enough. If the bilinear form a(., .) satisfies conditions (h1)-(h2) and (12), we de-
duce from Theorem 2.1 and Corollary 2.2 that

• if α > 1, then lim
t→+∞

E(t) > 0;

• if α = 1, then E(t) ∼ K
tk

as t→ +∞ and the trajectory u(.) strongly converges
in V as soon as k > 2;

• if α ∈ (0, 1), then E(t) ∼ Ke−
k

1−α
t1−α

as t → +∞ and the trajectory u(.)
strongly converges in V for every k > 0.

Other results of convergence will be provided in the more general framework of
semilinear equations.
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3 Monotone conservative nonlinearity

The assumptions concerning the spaces V , H , the linear operator A : V → V ′

and the map γ : R+ → R+ are the same as in section 2. We consider the following
semilinear hyperbolic equation

(E)
d2u

dt2
(t) + γ(t)

du

dt
(t) + Au(t) + f(u(t)) = 0, t ≥ 0.

We suppose that the nonlinearity f : V → H is conservative, i.e.

(k1) ∃F ∈ C1(V,R) such that ∀u, v ∈ V, 〈F ′(u), v〉V ′,V = (f(u), v).

Moreover, we assume that the map f is monotone

(k2) ∀u, v ∈ V, (f(u)− f(v), u− v) ≥ 0,

which is equivalent to the convexity of the potential F . Defining Φ : V → R by

Φ(v) = 1
2
a(v, v) + F (v),

we obtain a function of class C1 whose first derivative is given by 〈Φ′(u), v〉V ′,V =
a(u, v) + (f(u), v), or equivalently Φ′(u) = Au + f(u). Moreover, Φ is convex,
which amounts to

∀u, v ∈ V, a(u, v − u) + (f(u), v − u) ≤ Φ(v)− Φ(u). (19)

Consequently, minimum and stationary points of Φ coincide, i.e.

ArgminΦ = {v ∈ V | Av + f(v) = 0}, (20)

where ArgminΦ = {v ∈ V | Φ(v) = inf Φ}. We suppose that

(k3) S = ArgminΦ 6= ∅.

It is clear in view of equation (E) that nothing is changed if some constant is
added to the potential Φ. Without loss of generality, we will systematically assume
that inf Φ = 0.

Remark 3.1 Assume that a is coercive, i.e. (h2) holds with λ = 0. Then the
map u 7→ a(u, u) is strongly convex and since the function F is convex, the map
Φ is also strongly convex. This implies immediately that the set ArgminΦ is a
singleton, hence the non-vacuity condition (k3) holds true. Now assume that (h2)
holds with λ > 0. To overcome the lack of coercivity, suppose that there exist
ε > 0 and C ≥ 0 such that F (u) ≥ ε |u|2 − C for every u ∈ V . Without loss of
generality, we can assume that ε ≤ λ

2
. For every u ∈ V , we have
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Φ(u) =
1

2
a(u, u) + F (u) ≥ ε

λ
a(u, u) + F (u)

≥ ε µ

λ
‖u‖2 − ε |u|2 + ε |u|2 − C

=
ε µ

λ
‖u‖2 − C,

which shows that lim‖u‖→+∞ Φ(u) = +∞. Since the function Φ is convex and
continuous, this classically implies condition (k3).

It is immediate to check that the set S is convex, closed in V and that S ⊂
D(A).

Remark 3.2 Under assumption (h2), let us show that S is closed in H. Let (un)
be a sequence in S such that limn→+∞ un = u strongly in H, for some u ∈ H.
Since the function F is convex, there exist b, c ∈ R such that, for all u ∈ V ,
F (u) ≥ −b|u| − c. Therefore we have for all u ∈ V ,

1

2
a(u, u) ≤ Φ(u) + b|u|+ c. (21)

Recalling that Φ(un) = 0 for every n ∈ N, we deduce that 1
2
a(un, un) ≤ b|un|+ c,

hence the sequence (a(un, un)) is bounded. From hypothesis (h2), we infer that the
sequence (un) is bounded in V . It ensues that there exist û ∈ V and a subsequence
(unk

) such that limk→+∞ unk
= û weakly in V . We immediately have û = u and

the weak lower semicontinuity of Φ implies that Φ(u) ≤ lim infk→+∞Φ(unk
) = 0,

hence u ∈ S.

Remark 3.3 (Case f(0) = 0) If f(0) = 0 then we have

S = KerA ∩ {v ∈ V | f(v) = 0} 6= ∅.

Indeed, if w ∈ S then in particular (Aw,w)+(f(w), w) = 0, and by monotonicity
of f we have (f(w)− f(0), w) ≥ 0, hence (Aw,w) = (f(w), w) = 0 and therefore
Aw = 0.

In the sequel, we assume the existence of a solution to equation (E) in the
class (4). We define the energy function E along each trajectory by

E(t) = 1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

+ Φ(u(t)).

We have E ∈ W 1,1
loc (R+) and

Ė(t) =
(
d2u

dt2
(t),

du

dt
(t)

)
+

〈
Au(t) + f(u(t)),

du

dt
(t)

〉

V ′,V

= −γ(t)
∣∣∣∣
du

dt
(t)

∣∣∣∣
2

≤ 0 a.e. on R+,
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hence the function E is a Lyapunov function for the equation (E). We deduce
that for every t ≥ 0

1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

≤ E(t) ≤ E(0) and Φ(u(t)) ≤ E(t) ≤ E(0). (22)

In particular, we have du
dt

∈ L∞(R+, H). In the sequel, we will consider solutions
which are bounded in H , i.e. satisfying u ∈ L∞(R+, H).

Remark 3.4 Under assumption (h2), it is easy to see that u ∈ L∞(R+, H) im-
plies u ∈ L∞(R+, V ). Indeed, let us assume that {u(t); t ≥ 0} is bounded in H.
From inequality (21), we have 1

2
a(u(t), u(t)) ≤ Φ(u(t))+b|u(t)|+c for all t ∈ R+.

Recalling that Φ(u(t)) ≤ E(0) in view of (22), we infer that {a(u(t), u(t)); t ≥ 0}
is bounded. From hypothesis (h2), we conclude that {u(t); t ≥ 0} is bounded in V .

3.1 Summability of the energy. Case of a unique equilibrium

We now prove that the map γ E is summable over R+ and that limt→+∞ E(t) = 0.

Proposition 3.1 Assume that the bilinear form a(., .) and the function f satisfy
respectively hypotheses (h1)-(h2) and (k1)-(k3). Let γ ∈ W 1,1

loc (R+,R+) be a map
such that γ̇ ∈ L1(0,+∞). Let u be a solution in the class (4) to equation (E) and
assume that u ∈ L∞(R+, H). Then

(i)
∫ +∞
0

γ(t) E(t) dt < +∞.
(ii)If moreover γ 6∈ L1(0,+∞), then lim

t→+∞
E(t) = 0, hence

lim
t→+∞

∣∣∣∣
du

dt
(t)

∣∣∣∣ = 0 and lim
t→+∞

Φ(u(t)) = 0. (23)

Proof. (i) The proof follows the same arguments as those of [8, Prop. 3.1]. Let
us take v ∈ S and define the function p : R+ → R+ by p(t) = 1

2
|u(t)− v|2 . By

differentiating, we find for every t ≥ 0

ṗ(t) =

(
du

dt
(t), u(t)− v

)
.

Since du
dt

∈ W 1,1
loc (R+, H) by assumption, it is immediate to check that ṗ ∈

W 1,1
loc (R+). Hence the map ṗ is differentiable almost everywhere on R+ and we

have

p̈(t) =

(
d2u

dt2
(t), u(t)− v

)
+

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on R+.

By combining the expressions of ṗ, p̈ and by using the convexity of the function
Φ, we obtain
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p̈(t) + γ(t)ṗ(t) = a(u(t), v − u(t)) + (f(u(t)), v − u(t)) +

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

≤ −Φ(u(t)) +

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on R+. (24)

It follows that

p̈(t) + γ(t)ṗ(t) + E(t) ≤ 3

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on R+. (25)

Let us multiply this inequality by γ(t) and integrate on [0, t]. By using the fact

that Ė(t) = −γ(t)
∣∣du
dt
(t)
∣∣2 almost everywhere on R+, we derive that

∫ t

0

γ(s) E(s) ds ≤ 3

2
(E(0)− E(t))−

∫ t

0

γ(s)p̈(s)ds−
∫ t

0

γ(s)2ṗ(s)ds. (26)

For the last two integrals, let us use a technique of integration by parts.

−
∫ t

0

γ(s)p̈(s)ds = γ(0)ṗ(0)− γ(t)ṗ(t) +

∫ t

0

γ̇(s)ṗ(s)ds. (27)

Recall that the map u is bounded in H by assumption. On the other hand, the
map du

dt
is bounded in H , see (22). Hence we infer the existence of M > 0 such

that p(t) ≤M and |ṗ(t)| ≤M for every t ≥ 0. Therefore

−
∫ t

0

γ(s)p̈(s)ds ≤ Mγ(0) +Mγ(t) +M

∫ t

0

|γ̇(s)| ds.

Since γ̇ ∈ L1(0,+∞) by assumption, the right-hand side is majorized by some
M ′ ≥ 0. On the other hand, we have

−
∫ t

0

γ(s)2ṗ(s) ds = γ(0)2 p(0)− γ(t)2 p(t) + 2

∫ t

0

γ(s)γ̇(s) p(s) ds (28)

≤M γ(0)2 + 2M

∫ t

0

γ(s)|γ̇(s)| ds.

Using again the assumption γ̇ ∈ L1(0,+∞), we obtain that the right-hand side
is majorized by some M ′′ ≥ 0. Coming back to inequality (26), we conclude that∫ t

0
γ(s) E(s) ds ≤ 3

2
E(0) +M ′ +M ′′ for every t ≥ 0 and the expected estimate

follows.
(ii) Let us argue by contradiction and assume that limt→+∞ E(t) = l > 0. The
map E is nonincreasing, hence E(t) ≥ l for every t ≥ 0. Since γ 6∈ L1(0,+∞), we
deduce that ∫ +∞

0

γ(t) E(t) dt ≥ l

∫ +∞

0

γ(t) dt = +∞,

a contradiction with the result of (i). The last assertion is immediate.
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In view of the previous result, we can prove weak convergence of the trajectories
in the case of a unique equilibrium. The general case of multiple equilibria is more
delicate and will be discussed in section 3.2.

Corollary 3.1 (Case of a unique equilibrium) Under the hypotheses of Propo-
sition 3.1, assume moreover that ArgminΦ = {u} for some u ∈ V . Then the
solution u(t) weakly converges in V toward u as t → +∞. Furthermore, if u(t)
strongly converges8 in H then it strongly converges in V .

Proof. By assumption, the solution u is bounded in H . In view of hypothesis (h2)
and Remark 3.4, it is also bounded in V . Hence there exist u∞ ∈ V and a subse-
quence (tn) tending to +∞ such that limn→+∞ u(tn) = u∞ weakly in V . Since Φ
is convex and continuous for the strong topology of V , it is lower semicontinuous
for the weak topology of V . Hence, we have Φ(u∞) ≤ lim infn→+∞Φ(u(tn)). From
the second part of (23) we deduce that Φ(u∞) ≤ 0, i.e. u∞ ∈ ArgminΦ = {u}.
Hence u is the unique limit point of the map t 7→ u(t) as t → +∞ for the weak
topology of V . It ensues that limt→+∞ u(t) = u weakly in V . Let us now prove
the second point. The argument is given in [3, p. 548-549] but we recall it for the
sake of completeness. From (h2), we have

µ ‖u(t)− u‖2 ≤ λ |u(t)− u|2 + a(u(t)− u, u(t)− u) (29)

= λ |u(t)− u|2 + 2Φ(u(t))− 2F (u(t))− 2 a(u(t), u) + a(u, u).

Since u(t) → u strongly in H and weakly in V , we have limt→+∞ |u(t)− u|2 = 0
and limt→+∞ a(u(t), u) = a(u, u). On the other hand, by weak lower semi-
continuity of the continuous convex function F : V → R, we infer that
lim inft→+∞ F (u(t)) ≥ F (u). Recalling finally property (23), we deduce from in-
equality (29) that

µ lim sup
t→+∞

‖u(t)− u‖2 ≤ −2F (u)− a(u, u) = 0.

We conclude that u(t) → u strongly in V .

3.2 Convergence of the trajectories

Case of a non vanishing damping

When the damping coefficient γ(t) is constant, i.e. γ(t) ≡ γ > 0, the solutions of
(E) weakly converge in V toward an equilibrium point, see [3]. We are going to
show that this property still holds true if

(l1)





limt→+∞ γ(t) = γ∞ > 0

γ̇ ∈ L1(0,+∞).

8 This assumption is satisfied if the injection V ↪→ H is compact.
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Theorem 3.1 Assume that the bilinear form a(., .) and the function f satisfy
respectively (h1)-(h2) and (k1)-(k3). Let γ ∈ W 1,1

loc (R+,R+) be a map satisfying
(l1). Let u be a solution in the class (4) to equation (E). Then, there exists
u∞ ∈ S such that u(t) ⇀ u∞ weakly in V as t → +∞. Furthermore, if u(t)
strongly converges in H then it strongly converges in V .

Proof. Let v ∈ S and define the map p : R+ → R+ by p(t) = 1
2
|u(t)− v|2 as in

the proof of Proposition 3.1. Inequality (24) implies that

p̈(t) + γ(t)ṗ(t) ≤
∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on R+.

Let us multiply each member of this inequality by e
∫ t
0
γ(τ) dτ and integrate on [0, t].

Recalling that ṗ ∈ W 1,1
loc (R+), we obtain

ṗ(t) ≤ e−
∫ t
0
γ(τ) dτ ṗ(0) + e−

∫ t
0
γ(τ) dτ

∫ t

0

e
∫ s
0
γ(τ) dτ

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

ds. (30)

We now show that the right member of the above inequality is a summable
function. Since limt→+∞ γ(t) = γ∞ > 0, there exists t0 > 0 such that γ(t) ≥ γ∞/2
for every t ≥ t0. From Lemma 3.1 (i) below, we have

∫ +∞

0

e−
∫ t
0 γ(τ) dτ dt < +∞. (31)

Lemma 3.1 Let us assume that there exist k > 0 and t0 > 0 such that γ(t) ≥ k
for every t ≥ t0. Then we have

(i)

∫ +∞

0

e−
∫ t
0 γ(τ) dτ dt < +∞;

(ii)

∫ +∞

s

e−
∫ t
0 γ(τ) dτ dt ≤ 1

k
e−

∫ s
0 γ(τ) dτ for s large enough.

Lemma 3.1 is a particular case of a more general result that will be proved next,
see Lemma 3.3. Coming back to inequality (30), we find by applying Fubini
theorem
∫ +∞

0

e−
∫
t

0
γ(τ) dτ

∫ t

0

e
∫
s

0
γ(τ) dτ

∣

∣

∣

∣

du

ds
(s)

∣

∣

∣

∣

2

ds dt =

∫ +∞

0

∣

∣

∣

∣

du

ds
(s)

∣

∣

∣

∣

2

e
∫
s

0
γ(τ) dτ

∫ +∞

s

e−
∫
t

0
γ(τ) dτ dt ds. (32)

From Lemma 3.1 (ii), we obtain

e
∫ s
0 γ(τ) dτ

∫ +∞

s

e−
∫ t
0 γ(τ) dτ dt ≤ 2

γ∞
≤ 4

γ2∞
γ(s).

Recalling that Ė(t) = −γ(t)
∣∣du
dt
(t)
∣∣2, we have the estimate

∫ +∞
0

γ(s)
∣∣du
ds
(s)
∣∣2 ds < +

∞. Hence we deduce from equality (32) that
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∫ +∞

0

e−
∫ t
0
γ(τ) dτ

∫ t

0

e
∫ s
0
γ(τ) dτ

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

ds dt < +∞. (33)

By combining inequality (30) with estimates (31) and (33), we infer that [ṗ]+ ∈
L1(0,+∞) and hence lim

t→+∞
p(t) exists. In particular the map u is bounded in H .

The end of the proof is the same as in [3, Theorem 3.1] but the arguments are given
for the sake of completeness. Since u ∈ L∞(R+, H), we deduce from hypothesis
(h2) and Remark 3.4 that u ∈ L∞(R+, V ). Let u ∈ V be a weak cluster point of
{u(t); t → +∞} for the weak topology of V . There exists a sequence tn → +∞
such that u(tn) ⇀ u weakly in V as n → +∞. Since the function Φ is lower
semicontinuous for the weak topology of V , we have9 in view of Proposition 3.1

Φ(u) ≤ lim inf
n→+∞

Φ(u(tn)) = lim
t→+∞

Φ(u(t)) = 0,

which implies that u ∈ S. Let us prove that {u(t); t → +∞} has a unique
cluster point for the weak topology in V . We apply the following argument due
to Opial [18]. Let u1, u2 ∈ S be two cluster points of {u(t); t → +∞} for the
weak topology of V . According to the first part of the proof, we can assert that
limt→+∞ |u(t)−ui|2 = li exists for each i = 1, 2. Moreover there exists a sequence
tn → +∞ such that u(tn) ⇀ u1 weakly in V as n → +∞. Since the injection
V ↪→ H is continuous, u(tn)⇀ u1 weakly in H as n→ +∞. From the equality

|u(t)− u1|2 − |u(t)− u2|2 = |u1 − u2|2 + 2(u1 − u2, u2 − u(t)),

we infer that l1 − l2 = −|u1 − u2|2. On the other hand, if we take tm → +∞ such
that u(tm) ⇀ u2 weakly in V as m → +∞, we find l1 − l2 = |u1 − u2|2. As a
consequence, |u1 − u2|2 = 0. This establishes the uniqueness of the cluster points
of {u(t); t→ +∞} for the weak topology of V . Hence u(t)⇀ u∞ weakly in V as
t→ +∞ for some u∞ ∈ V .

For the second point, the reader is referred to the corresponding argument in
the proof of Corollary 3.1.

An interesting situation ensuring strong convergence in V is the case where
the non-linearity satisfies the symmetry property F (−u) = F (u) for all u ∈ V .

Theorem 3.2 Under the hypotheses of Theorem 3.1, assume moreover that the
function F is even, i.e. F (−u) = F (u) for all u ∈ V . Then there exists u∞ ∈ S
such that u(t) → u∞ strongly in V .

Proof. The argument was originated by Bruck, see [6, Theorem 5]. It has been
adapted to the framework of second-order in time equations, see for example [2,
Theorem 2.4 (i)] or [3, Remark 3.2] in the case of a constant damping parameter
γ. Let us fix t0 > 0 and define the map q : [0, t0] → R by

9 Observe that Proposition 3.1 applies rightfully since we have proved that u ∈ L∞(R+,H).
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q(t) = |u(t)|2 − |u(t0)|2 −
1

2
|u(t)− u(t0)|2.

A first differentiation gives for all t ∈ [0, t0]

q̇(t) =

(
du

dt
(t), u(t) + u(t0)

)
.

Since du
dt

∈ W 1,1
loc (R+, H) by assumption, it is immediate to check that the map q̇

is absolutely continuous, hence differentiable almost everywhere on [0, t0] and we
have

q̈(t) =

(
d2u

dt2
(t), u(t) + u(t0)

)
+

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on [0, t0].

By combining the expressions of q̇, q̈, we obtain for almost every t ∈ [0, t0]

q̈(t) + γ(t)q̇(t) = −a(u(t), u(t) + u(t0))− (f(u(t)), u(t) + u(t0)) +

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

= −〈Φ′(u(t)), u(t) + u(t0)〉V ′,V +

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

. (34)

Since the function Φ is convex and even, we have for all u, v ∈ V

Φ(v)− Φ(u) = Φ(−v)− Φ(u) ≥ −〈Φ′(u), v + u〉V ′,V .

Hence inequality (34) gives

q̈(t) + γ(t)q̇(t) ≤ Φ(u(t0))− Φ(u(t)) +

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on [0, t0]. (35)

Recalling that the energy function E(t) is nonincreasing, we have 1
2

∣∣du
dt
(t)
∣∣2 +

Φ(u(t)) ≥
∣∣du
dt
(t0)
∣∣2 + Φ(u(t0)) for every t ∈ [0, t0]. Therefore

∀t ∈ [0, t0], Φ(u(t0))− Φ(u(t)) ≤ 1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

.

Using inequality (35), we deduce that

q̈(t) + γ(t)q̇(t) ≤ 3

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on [0, t0].

Let us multiply each member of this inequality by e
∫ t
0 γ(τ) dτ and integrate on [0, t].

Since the map q̇ is absolutely continuous, we find

q̇(t) ≤ e−
∫ t
0
γ(τ) dτ q̇(0) +

3

2
e−

∫ t
0
γ(τ) dτ

∫ t

0

e
∫ s
0
γ(τ) dτ

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

ds.
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Let us integrate this inequality on [t, t0], we obtain

−q(t) ≤ q̇(0)

∫ t0

t

e−
∫ s
0 γ(τ) dτ ds+

3

2
(h(t0)− h(t)),

where we have set

h(t) =

∫ t

0

e−
∫ s
0 γ(τ) dτ

∫ s

0

e
∫ σ
0 γ(τ) dτ

∣∣∣∣
du

dt
(σ)

∣∣∣∣
2

dσ ds.

We deduce from the previous inequality that

1

2
|u(t)−u(t0)|2 ≤ |u(t)|2−|u(t0)|2+ q̇(0)

∫ t0

t

e−
∫ s
0 γ(τ) dτ ds+

3

2
(h(t0)−h(t)). (36)

In the proof of Theorem 3.1, we showed that lim
t→+∞

|u(t) − v|2 exists for all v ∈
ArgminΦ. Since Φ is convex and even, we have 0 ∈ ArgminΦ, hence lim

t→+∞
|u(t)|2

exists. On the other hand, the integral
∫ +∞
0

e−
∫ s
0
γ(τ) dτ ds is finite from (31), while

lim
t→+∞

h(t) exists in view of estimate (33). We then deduce from inequality (36)

that {u(t); t → +∞} is a Cauchy net in H hence strongly converges in H . It
suffices to use the second part of Theorem 3.1 to obtain the strong convergence
in V .

Case of a vanishing damping

It is assumed in this paragraph that the damping parameter γ(t) vanishes as
t→ +∞. The trajectories of (E) are clearly more volatile in this framework. Our
purpose is to obtain results of convergence for the trajectories, assuming that
γ(t) tends slowly enough toward 0. We are going to show that the convergence
properties stated in the previous paragraph still hold true if the quantity γ(t)
behaves as k/tα, for some α ∈]0, 1[, k > 0 and t large enough. The main step
consists in establishing a refinement of Proposition 3.1 via sharp estimates for
the energy decay. Let us start with a technical lemma that will be crucial in the
sequel.

Lemma 3.2 Assume that the bilinear form a(., .) and the function f satisfy res-
pectively hypotheses (h1)-(h2) and (k1)-(k3). Let γ ∈ W 1,1

loc (R+,R+) be a function
such that limt→+∞ γ(t) = 0. Let u be a solution in the class (4) to equation (E)
and assume that u ∈ L∞(R+, H). We are given some t0 ≥ 0 along with a non
constant map λ ∈ C3([t0,+∞[,R) such that λ(t) ≥ 0, λ̇(t) ≥ 0, λ̈(t) ≥ 0 and...
λ (t) ≤ 0 for every t ≥ t0. Assume that the map t 7→ λ̇(t)

∣∣du
dt
(t)
∣∣ is bounded, that∫ +∞

t0
λ̇(t) |γ̇(t)| dt < +∞ and that λ(t) γ(t) ≥ 2 λ̇(t) for every t ≥ t0. Then the

following estimates hold true

(i)
∫ +∞
t0

λ̇(t) E(t) dt < +∞.
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(ii)limt→+∞ λ(t) E(t) = 0.

(iii)
∫ +∞
t0

λ(t) γ(t)
∣∣du
dt
(t)
∣∣2 dt < +∞.

Proof. Let us consider the map p defined by p(t) = 1
2
|u(t)− v|2 for some v ∈ S,

see the proof of Proposition 3.1. Recall that we have from inequality (25)

E(t) ≤ 3

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

− p̈(t)− γ(t) ṗ(t) a.e. on R+. (37)

Now define the map Eλ : [t0,+∞[→ R+ by Eλ(t) = λ(t) E(t). It is clear that

Eλ ∈ W 1,1
loc ([t0,+∞[). Since Ė(t) = −γ(t)

∣∣du
dt
(t)
∣∣2 for almost every t ≥ 0, we have

Ėλ(t) = λ̇(t) E(t)− λ(t) γ(t)

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on [t0,+∞[. (38)

From the assumption λ(t) γ(t) ≥ 2 λ̇(t) for every t ≥ t0, we deduce that

λ̇(t)

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

≤ 1

2
λ̇(t) E(t)− 1

2
Ėλ(t) a.e. on [t0,+∞[. (39)

By combining inequalities (37) and (39), we infer that

λ̇(t) E(t) ≤ −3 Ėλ(t)− 4 λ̇(t) [p̈(t) + γ(t) ṗ(t)] a.e. on [t0,+∞[.

Let us integrate this inequality on [t0, t]; we find

∫ t

t0

λ̇(s) E(s)ds ≤ 3 Eλ(t0)− 4

∫ t

t0

λ̇(s) p̈(s) ds− 4

∫ t

t0

λ̇(s) γ(s) ṗ(s) ds. (40)

For the last two integrals, let us use a technique of integration by parts.

−
∫ t

t0

λ̇(s) p̈(s) ds = −λ̇(t) ṗ(t) + λ̇(t0) ṗ(t0) +

∫ t

t0

λ̈(s) ṗ(s) ds

= −λ̇(t) ṗ(t) + λ̇(t0) ṗ(t0) + λ̈(t) p(t)− λ̈(t0) p(t0)

−
∫ t

t0

...
λ (s) p(s) ds.

The map u is bounded in H by assumption, hence there exist M , M ′ > 0 such
that p(t) ≤M and |ṗ(t)| ≤ M ′ ∣∣du

dt
(t)
∣∣ for every t ≥ 0. Therefore we deduce from

the above equality that

−
∫ t

t0

λ̇(s) p̈(s) ds ≤M ′ λ̇(t)

∣∣∣∣
du

dt
(t)

∣∣∣∣+M
′ λ̇(t0)

∣∣∣∣
du

dt
(t0)

∣∣∣∣+M λ̈(t)+M

∫ t

t0

|...λ (s)| ds.

Recalling that
...
λ (t) ≤ 0 and that the map t 7→ λ̇(t)

∣∣du
dt
(t)
∣∣ is bounded by some

M ′′ > 0, we obtain
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−
∫ t

t0

λ̇(s) p̈(s) ds ≤ 2M ′M ′′ +M λ̈(t) +M (λ̈(t0)− λ̈(t)) = 2M ′M ′′ +M λ̈(t0).

(41)
On the other hand, we have

−
∫ t

t0

λ̇(s) γ(s) ṗ(s) ds = −λ̇(t) γ(t) p(t) + λ̇(t0) γ(t0) p(t0) +

∫ t

t0

λ̈(s) γ(s) p(s) ds

+

∫ t

t0

λ̇(s) γ̇(s) p(s) ds

≤M λ̇(t0) γ(t0) +M

∫ t

t0

λ̈(s) γ(s) ds (42)

+M

∫ t

t0

λ̇(s) |γ̇(s)| ds.

Observe that
∫ t

t0

λ̈(s) γ(s) ds = λ̇(t)γ(t)− λ̇(t0)γ(t0)−
∫ t

t0

λ̇(s) γ̇(s) ds

≤ λ̇(t)γ(t) +

∫ t

t0

λ̇(s) |γ̇(s)| ds. (43)

Since limt→+∞ γ(t) = 0, we have for every t ≥ t0

λ̇(t)γ(t) = λ̇(t)

∫ +∞

t

−γ̇(s) ds ≤ λ̇(t)

∫ +∞

t

|γ̇(s)| ds ≤
∫ +∞

t

λ̇(s) |γ̇(s)| ds,

the last equality being a consequence of the fact that the map λ̇ is non decreasing.
The finiteness of the integral

∫ +∞
t

λ̇(s) |γ̇(s)| ds is ensured by assumption. In view
of (43), we deduce that

∫ t

t0

λ̈(s) γ(s) ds ≤
∫ +∞

t0

λ̇(s) |γ̇(s)| ds < +∞.

Coming back to (42), we infer that

−
∫ t

t0

λ̇(s) γ(s) ṗ(s) ds ≤M λ̇(t0) γ(t0) + 2M

∫ +∞

t0

λ̇(s) |γ̇(s)| ds < +∞. (44)

By combining inequalities (40), (41) and (44), we conclude that the quantity∫ t

t0
λ̇(s) E(s)ds is uniformly majorized with respect to t, whence (i).
Let us now come back to equation (38). By taking the positive part of each

member, we find (Ėλ)+(t) ≤ λ̇(t)E(t). This implies that (Ėλ)+ ∈ L1(0,+∞)
and therefore l = limt→+∞ λ(t) E(t) exists in R+. We have to prove that
l = 0. Let us argue by contradiction and assume that l > 0. Then E(t) ∼
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l/λ(t) for t large enough. From (i), we deduce that
∫ +∞
t0

λ̇(s)/λ(s) ds < +∞,
i.e. limt→+∞ lnλ(t) < + ∞. Hence the nondecreasing convex map λ has a fi-
nite limit as t → +∞, which implies that it is constant. But it contradicts the
assumption and we conclude that l = 0, which shows (ii).

By integrating equality (38) on [t0, t], we obtain

∫ t

t0

λ(s) γ(s)

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

ds =

∫ t

t0

λ̇(s) E(s) ds+ Eλ(t0)− Eλ(t)

≤
∫ +∞

t0

λ̇(s) E(s) ds+ Eλ(t0) < +∞.

Letting t→ +∞, we immediately obtain (iii).

A repeated application of Lemma 3.2 allows to derive sharp estimates for the
energy decay under some suitable conditions. These estimates will be the keystone
for proving convergence of the trajectories.

Proposition 3.2 Assume that the bilinear form a(., .) and the function f satisfy
respectively hypotheses (h1)-(h2) and (k1)-(k3). Let γ ∈ W 1,1

loc (R+,R+) be a func-

tion such that limt→+∞ γ(t) = 0. Assume that

∫ +∞

0

t1−(
1
2)

n

|γ̇(t)| dt < +∞ for

some n ∈ N and that there exists t0 > 0 such that γ(t) ≥ 4
t

for every t ≥ t0. Let
u be a solution in the class (4) to equation (E) and assume that u ∈ L∞(R+, H).
Then we have

(i)

∫ +∞

0

t1−(
1
2)

n

E(t) dt < +∞.

(ii) lim
t→+∞

t2−(
1
2)

n

E(t) = 0.

(iii)

∫ +∞

0

t2−(
1
2)

n

γ(t)

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

dt < +∞.

Proof. First we use Lemma 3.2 with the map λ0 defined by λ0(t) = t for ev-
ery t ≥ 0. Let us verify that the assumptions of Lemma 3.2 are satisfied.
Recall that the map t 7→

∣∣du
dt
(t)
∣∣ is bounded, see (22). On the other hand,

the finiteness of the integral
∫ +∞
0

|γ̇(t)| dt is a consequence of the assumption∫ +∞
0

t1−(
1
2)

n

|γ̇(t)| dt < +∞. Finally, the assumption λ0(t) γ(t) ≥ 2 λ̇0(t) is triv-
ially verified since γ(t) ≥ 4

t
for every t ≥ t0. Lemma 3.2 (ii) then shows that

limt→+∞ t E(t) = 0. Since E(t) ≥ 1
2

∣∣du
dt
(t)
∣∣2, we deduce that limt→+∞ t1/2

∣∣du
dt
(t)
∣∣ =

0. This suggests to apply Lemma 3.2 with the map λ1 defined by λ1(t) = t3/2. The
boundedness of the map λ̇1

∣∣du
dt

∣∣ is guaranteed by the previous step. The other
assumptions of Lemma 3.2 are trivially satisfied. Lemma 3.2 (ii) then shows that
limt→+∞ t3/2 E(t) = 0, thus implying that limt→+∞ t3/4

∣∣du
dt
(t)
∣∣ = 0. By using re-

cursively Lemma 3.2, we let the reader check that limt→+∞ t1−(
1
2)

n ∣∣du
dt
(t)
∣∣ = 0.
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Define the map λn by λn(t) = t2−(
1
2)

n

. The boundedness of the map λ̇n
∣∣du
dt

∣∣ is
implied by the previous step, while the integral

∫ +∞
0

λ̇n(t) |γ̇(t)| dt is finite by
assumption. Lemma 3.2 applied with the map λn yields conclusions (i), (ii) and
(iii) of Proposition 3.2.

Given n ∈ N, k > 0 and t0 > 0, the following condition plays a central role in the
sequel

(l2)





limt→+∞ γ(t) = 0

∫ +∞

0

t1−(
1
2)

n

|γ̇(t)| dt < +∞

∀t ≥ t0, γ(t) ≥ k

t
1−( 1

2)
n+1 .

Hypothesis (l2) automatically implies γ̇ ∈ L1(0,+∞) together with γ /∈ L1(0,+∞).

Remark 3.5 Assume that the map γ : R+ → R+ is nonincreasing and that there
exist α ∈]0, 1[, k, k′ > 0 and t0 > 0 such that

∀t ≥ t0,
k

tα
≤ γ(t) ≤ k′

tα
. (45)

Let us show that condition (l2) is satisfied if the integer n ∈ N is chosen such

that10 α ∈
]
1−

(
1
2

)n
, 1−

(
1
2

)n+1
]
. Since α ≤ 1−

(
1
2

)n+1
, we have

k

t1− ( 1
2)

n+1 ≤ k

tα
≤ γ(t),

and the third condition of (l2) is proved. Recalling that γ̇(t) ≤ 0, an immediate
integration by parts gives

∫ t

t0

s1−(
1
2)

n

|γ̇(s)| ds = −
∫ t

t0

s1−(
1
2)

n

γ̇(s) ds

= t
1−( 1

2)
n

0 γ(t0)− t1−(
1
2)

n

γ(t) +

(
1−

(
1

2

)n) ∫ t

t0

γ(s)

s(
1
2)

n ds.

Since 0 ≤ γ(t) ≤ k′

tα
for every t ≥ t0, we infer that

∫ t

t0

s1−(
1
2)

n

|γ̇(s)| ds ≤ t
1−( 1

2)
n

0 γ(t0) + k′
(
1−

(
1

2

)n) ∫ t

t0

ds

sα+(
1
2)

n .

10 Its explicit expression is given by n = −
[

ln(1−α)
ln 2

]

− 1, where [x] denotes the integer part of x ∈ R.
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From the choice of n, we have α +
(
1
2

)n
> 1, hence the integral

∫ +∞

t0

ds

sα+(
1
2)

n is

convergent. In view of the above inequality, we conclude that

∫ +∞

t0

s1−(
1
2)

n

|γ̇(s)| ds < +

∞. Notice that if n = 0, this condition reduces to

∫ +∞

0

|γ̇(t)| dt < +∞, which

is automatically satisfied since γ̇ ≤ 0. It follows that if α ∈
]
0, 1

2

]
, one may take

k′ = +∞ in condition (45) (no required upper bound).

Let us now state the main result of this section.

Theorem 3.3 Assume that the bilinear form a(., .) and the function f satisfy
respectively (h1)-(h2) and (k1)-(k3). Let γ ∈ W 1,1

loc (R+,R+) be a map satisfying
(l2). Let u be a solution in the class (4) to equation (E) and assume that u ∈
L∞(R+, H). Then, there exists u∞ ∈ S such that u(t) ⇀ u∞ weakly in V as
t→ +∞. Furthermore, if u(t) strongly converges11 in H then it strongly converges
in V . Finally, if the potential function F is even, the convergence is strong in V .

Proof. The proof follows the same lines as the ones of Theorem 3.1. Given v ∈ S,
we define the map p : R+ → R+ by p(t) = 1

2
|u(t)− v|2. Recall that

ṗ(t) ≤ e−
∫ t
0 γ(τ) dτ ṗ(0) + e−

∫ t
0 γ(τ) dτ

∫ t

0

e
∫ s
0 γ(τ) dτ

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

ds (46)

(see formula 30). We have to show that the right member of the above inequality

is a summable function. From Lemma 3.3 (i) below applied with θ = 1−
(
1
2

)n+1
,

we have ∫ +∞

0

e−
∫ t
0 γ(τ) dτ dt < +∞. (47)

Lemma 3.3 Let us assume that there exist θ ∈ [0, 1[, k > 0 and t0 > 0 such that
γ(t) ≥ k

tθ
for every t ≥ t0. Then

(i)

∫ +∞

0

e−
∫ t
0
γ(τ) dτ dt < +∞;

(ii)For every c > 1, we have for s large enough

∫ +∞

s

e−
∫ t
0 γ(τ) dτ dt ≤ c

k
sθ e−

∫ s
0 γ(τ) dτ . (48)

If θ = 0, one can take c = 1 in the above inequality.

The proof of Lemma 3.3 is postponed to the appendix. On the other hand, by
applying Fubini theorem, we find
∫ +∞

0

e−
∫
t

0
γ(τ) dτ

∫ t

0

e
∫
s

0
γ(τ) dτ

∣

∣

∣

∣

du

ds
(s)

∣

∣

∣

∣

2

ds dt =

∫ +∞

0

∣

∣

∣

∣

du

ds
(s)

∣

∣

∣

∣

2

e
∫
s

0
γ(τ) dτ

∫ +∞

s

e−
∫
t

0
γ(τ) dτ dt ds. (49)

11 This assumption is satisfied if the injection V ↪→ H is compact.
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From Lemma 3.3 (ii) applied with θ = 1−
(
1
2

)n+1
, we obtain

e
∫ s
0
γ(τ) dτ

∫ +∞

s

e−
∫ t
0
γ(τ) dτ dt ≤ 2

k
s1−(

1
2)

n+1

.

Since γ(s) ≥ k

s
1−( 1

2)
n+1 , we derive that

e
∫ s
0
γ(τ) dτ

∫ +∞

s

e−
∫ t
0
γ(τ) dτ dt ≤ 2

k2
s2−(

1
2)

n

γ(s).

From Proposition 3.2 (iii) we have
∫ +∞
0

s2−(
1
2)

n

γ(s)
∣∣du
ds
(s)
∣∣2 ds < +∞, hence we

deduce from equality (49) that

∫ +∞

0

e−
∫ t
0 γ(τ) dτ

∫ t

0

e
∫ s
0 γ(τ) dτ

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

ds dt < +∞. (50)

By combining inequality (46) with estimates (47) and (50), we infer that [ṗ]+ ∈
L1(0,+∞) and hence lim

t→+∞
p(t) exists. The end of the proof is the same as the one

of Theorem 3.1. For the second point, the reader is referred to the corresponding
argument in the proof of Corollary 3.1. Finally, if the potential function F is even,
the arguments of the proof of Theorem 3.2 apply directly. Details are left to the
reader.

Remark 3.6 The assumption u ∈ L∞(R+, H) arises in the statement of The-
orem 3.3, while it is useless in the framework of Theorem 3.1. In the proof of
this last one, the existence of limt→+∞ |u(t) − v|2 relies on the general estimate

γ
∣∣du
dt

∣∣2 ∈ L1(0,+∞), and gives the boundedness of u as a by-product. By contrast,
in Theorem 3.3 the existence of limt→+∞ |u(t)− v|2 needs a sharper estimate (see
Proposition 3.2 (iii)), which uses some boundedness assumption for the map u.
The question to know if the assumption u ∈ L∞(R+, H) is really necessary in
Theorem 3.3 remains open.

In view of Remark 3.5, we obtain directly the following corollary of Theo-
rem 3.3.

Corollary 3.2 Assume that the bilinear form a(., .) and the function f satisfy
the same hypotheses as in Theorem 3.3. Let γ ∈ W 1,1

loc (R+,R+) be a nonincreasing
map and suppose that there exist α ∈]0, 1[, k, k′ > 0 and t0 > 0 such that12

∀t ≥ t0,
k

tα
≤ γ(t) ≤ k′

tα
.

Then we have the same conclusions as in Theorem 3.3.

12 This condition is satisfied if there exists k′′ > 0 such that γ(t) ∼ k′′

tα
as t → +∞. On the other hand,

one can take k′ = +∞ if α ∈
]

0, 1
2

]

, see Remark 3.5.
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3.3 Decay estimates for a strong set of minima

Recall that the set S = ArgminΦ is convex and closed in H , see Remark 3.2. Let
us denote by PS the projection operator onto the set S in the sense of H . In this
paragraph, we assume that the function Φ : V → R satisfies13

∃η > 0 such that ∀u ∈ V, Φ(u) ≥ η

2
|u− PS(u)|2. (51)

If γ 6∈ L1(0,+∞), we know from Proposition 3.1 (ii) that limt→+∞ E(t) = 0.
Under assumption (51), we are able to evaluate the speed of convergence of E(t)
as t→ +∞.

Theorem 3.4 Assume that the bilinear form a(., .) and the function f satisfy
respectively (h1)-(h2) and (k1)-(k3). Let γ ∈ W 1,1

loc (R+,R+) be a function satisfying
limt→+∞ γ(t) = 0 and γ̇(t) = o (γ(t)) as t → +∞. We suppose that the function
Φ : V → R defined by Φ(u) = 1

2
a(u, u) + F (u) satisfies condition (51). Let u be

a solution in the class (4) to equation (E). Then, for all m ∈]0, 2
3
[, there exist

C > 0 and t0 ≥ 0 such that:

∀t ≥ t0, E(t) ≤ Ce−m
∫ t
0
γ(s)ds.

Proof. Define the map ϕ : R+ → R by ϕ(t) = 1
2
d2H(u(t), S), where dH(., S) stands

for the distance function from the set S in the sense of H . By differentiating, we
find for every t ≥ 0

ϕ̇(t) =

(
du

dt
(t), u(t)− PS(u(t))

)
. (52)

Since du
dt

∈ W 1,1
loc (R+, H) by assumption, it is immediate to check that ϕ̇ ∈

W 1,1
loc (R+), hence the map ϕ̇ is differentiable almost everywhere on R+. Consider

now some t > 0 where the maps ϕ̇ and du
dt

are both differentiable, and let us
majorize the quantity ϕ̈(t). For that purpose, we use a technique of differential
quotient. For all h 6= 0, we have

1

h
(ϕ̇(t+ h)− ϕ̇(t)) =

1

h

(
du

dt
(t), u(t+ h)− PS(u(t+ h))− u(t) + PS(u(t))

)

+
1

h

(
du

dt
(t+ h)− du

dt
(t), u(t+ h)− PS(u(t+ h))

)
.

The monotonicity of PS implies that

−1

h

(
du

dt
(t), PS(u(t+ h))− PS(u(t))

)

13 If f = 0, the set S coincides with KerA and we recover condition (12) of section 2.
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≤ 1

h2

(
u(t+ h)− u(t)− h

du

dt
(t), PS(u(t+ h))− PS(u(t))

)
.

Hence we obtain

1

h
(ϕ̇(t + h)− ϕ̇(t)) ≤ 1

h

(
du

dt
(t), u(t+ h)− u(t)

)

+
1

h2

(
u(t+ h)− u(t)− h

du

dt
(t), PS(u(t+ h))− PS(u(t))

)

+
1

h

(
du

dt
(t + h)− du

dt
(t), u(t+ h)− PS(u(t+ h))

)
.

Taking the limit as h→ 0, we derive that

ϕ̈(t) ≤
∣∣∣∣
du

dt
(t)

∣∣∣∣
2

+

(
d2u

dt2
(t), u(t)− PS(u(t))

)
. (53)

By combining formulae (52) and (53), and using the convexity of the function Φ,
we deduce that for almost every t ∈ R+

ϕ̈(t) + γ(t)ϕ̇(t) ≤
∣∣∣∣
du

dt
(t)

∣∣∣∣
2

+

(
d2u

dt2
(t) + γ(t)

du

dt
(t), u(t)− PS(u(t))

)

=

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

− a (u(t), u(t)− PS(u(t)))− (f(u(t)), u(t)− PS(u(t)))

≤
∣∣∣∣
du

dt
(t)

∣∣∣∣
2

− Φ(u(t)) + Φ(PS(u(t))) =

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

− Φ(u(t)).

It follows that

ϕ̈(t) + γ(t)ϕ̇(t) + E(t) ≤ 3

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on R+.

Multiplying this formula by 2
3
γ(t) and recalling that Ė(t) = −γ(t)

∣∣du
dt
(t)
∣∣2 for

almost every t ∈ R+, we obtain

2

3
γ(t) (ϕ̈(t) + γ(t)ϕ̇(t)) + Ė(t) + 2

3
γ(t) E(t) ≤ 0 a.e. on R+. (54)

This suggests to define the function F : R+ → R by

F(t) = Φ(u(t)) +
1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

+
2

3
γ(t)

(
du

dt
(t), u(t)− PS(u(t))

)
(55)

= E(t) + 2

3
γ(t) ϕ̇(t).

In view of inequality (54), we immediately find
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Ḟ(t)+
2

3
γ(t)F(t) ≤ 2

3

(
γ̇(t)− 1

3
γ(t)2

)(
du

dt
(t), u(t)− PS(u(t))

)
a.e. on R+.

(56)

Since
∣∣(du

dt
(t), u(t)− PS(u(t))

)∣∣ ≤ 1
2

∣∣du
dt
(t)
∣∣2 + 1

2
|u(t)− PS(u(t))|2 and Φ(u(t)) ≥

η
2
|u(t)− PS(u(t))|2 by assumption, we have

∣∣∣∣
(
du

dt
(t), u(t)− PS(u(t))

)∣∣∣∣ ≤ C E(t), for some C > 0. (57)

Recalling that limt→+∞ γ(t) = 0, the expression of F shows that

F(t) ∼ E(t) as t→ +∞. (58)

Let us fix some m ∈]0, 2
3
[. Using the fact that γ̇(t) = o(γ(t)) and γ(t)2 = o(γ(t))

as t→ +∞, we deduce from (56), (57) and (58) the existence of t0 ≥ 0 such that,

Ḟ(t) +
2

3
γ(t)F(t) ≤

(
2

3
−m

)
γ(t)F(t) a.e. on [t0,+∞[,

hence Ḟ(t)+mγ(t)F(t) ≤ 0 for almost every t ≥ t0. Let us multiply by em
∫ t
0
γ(s)ds

and integrate on [t0, t]. Since the function F is absolutely continuous, we find

F(t) ≤ D e−m
∫ t
0 γ(s)ds, with D = em

∫ t0
0 γ(s)ds F (t0). Conclusion follows from esti-

mate (58).

Remark 3.7 Under the hypotheses of Theorem 3.4, assume that there exists k >
3 such that γ(t) ≥ k

t
for t large enough. Fix m ∈

]
2
k
, 2
3

[
. From Theorem 3.4, there

exist C > 0 and t0 ≥ 0 such that

∀t ≥ t0,
1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

≤ E(t) ≤ C

tmk
.

Hence we have
∣∣du
dt
(t)
∣∣ ≤ (2C)1/2

tmk/2 and since mk > 2, we deduce that
∣∣du
dt

∣∣ ∈
L1(0,+∞). The trajectory u has a finite length, therefore it strongly converges
in H toward some u∞ ∈ S.

4 Application to particular semilinear evolution problems

We suppose that Ω is a bounded open subset of Rn with boundary ∂Ω sufficiently
regular.

4.1 Hyperbolic problems of order two in space

Example 4.1 Given a map γ : R+ → R+ and a function f ∈ C1(R), let us
consider the following damped wave equation
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d2u

dt2
+ γ(t)

du

dt
−∆u+ f(u) = 0 on Ω×]0,+∞[, (59)

with Dirichlet boundary condition:

u = 0 on ∂Ω×]0,+∞[. (60)

The functional setting of the evolution problem (59)-(60) is given by

H = L2(Ω), V = H1
0 (Ω) and a(u, v) =

∫

Ω

∇u(x)∇v(x)dx.

Hypothesis (h1) is trivially verified while hypothesis (h2) is satisfied with λ = 0,
since the bilinear form a is coercive. On the other hand, we assume that the
function f satisfies the following properties:

(i) There exist C, α ≥ 0 such that (n−2)α ≤ 2 and |f ′(r)| ≤ C (1 + |r|α) ∀r ∈ R.

(ii) f is nondecreasing.

Define the function F ∈ C2(R) by F (r) =
∫ r

0
f(s) ds for every r ∈ R. For simplic-

ity of notation, we write F (u) for
∫
Ω
F (u(x)) dx. Hypothesis (k1) is a consequence

of assumption (i) above, see for example [10, pp. 73-75]. The monotonicity hy-
pothesis (k2) is ensured by point (ii). Finally the coercivity of the bilinear form a
implies that the equilibrium set is a singleton {u}, see Remark 3.1. In particu-
lar, the non-vacuity condition (k3) is satisfied. If the map γ ∈ W 1,1

loc (R+,R+) is
such that γ̇ ∈ L1(0,+∞) and γ /∈ L1(0,+∞), we derive from Corollary 3.1 that
u(t) ⇀ u weakly in H1

0 (Ω) as t → +∞. Since the injection H1
0 (Ω) ↪→ L2(Ω) is

compact, the second part of Corollary 3.1 shows that the convergence is strong
in H1

0 (Ω). On the other hand, the coercivity of a implies that condition (51) is
fulfilled. If the map γ satisfies limt→+∞ γ(t) = 0 and γ̇(t) = o(γ(t)) as t → +∞,
Theorem 3.4 then shows that for every m ∈

]
0, 2

3

[
,

1

2

∫

Ω

{∣∣∣∂u
∂t

(t, x)
∣∣∣
2

+|∇u(t, x)|2
}
dx+

∫

Ω

F (u(t, x)) dx = O
(
e−m

∫ t
0 γ(s) ds

)
as t→ +∞.

Example 4.2 Let us consider the damped wave equation (59) with Neumann
boundary condition ∂u

∂n
= 0 on ∂Ω×]0,+∞[. The functional setting of the evolu-

tion problem is given by:

H = L2(Ω), V = H1(Ω) and a(u, v) =

∫

Ω

∇u(x).∇v(x)dx.

The bilinear form a is semi-coercive, hypothesis (h2) is satisfied with λ = µ = 1.
To overcome the lack of coercivity, assumptions (i)-(ii) above are supplemented
with the following one
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(iii) There exist ε > 0 and D ≥ 0 such that F (r) ≥ ε r2 −D for every r ∈ R.

Assumption (iii) implies that condition (k3) is verified, see Remark 3.1. Hypothe-
ses (k1)-(k2) are fulfilled as in the previous example. If the map γ ∈ W 1,1

loc (R+,R+)
satisfies (l1) (resp. (l2)), we derive from Theorem 3.1 (resp. 3.3) that there exists
a solution u∞ of {

−∆u+ f(u) = 0 in Ω
∂u
∂n

= 0 on ∂Ω

such that u(t)⇀ u∞ weakly in H1(Ω) as t→ +∞. Since the injection H1(Ω) ↪→
L2(Ω) is compact, the second part of Theorem 3.1 (resp. 3.3) shows that the
convergence is strong in H1(Ω).

Example 4.3 Let us consider the following equation

d2u

dt2
+ γ(t)

du

dt
−∆u− λ1u+ f(u) = 0 on Ω×]0,+∞[, (61)

with Dirichlet boundary condition. Here λ1 stands for the smallest eigenvalue of
the Laplacian-Dirichlet operator. The functional setting of the evolution problem
is given by:

H = L2(Ω), V = H1
0 (Ω) and a(u, v) =

∫

Ω

[∇u(x).∇v(x)− λ1u(x)v(x)] dx.

It is immediate to check that (h1)-(h2) are satisfied. Under the above assumptions
(i), (ii) and (iii), we obtain as previously that conditions (k1)-(k3) hold true. If
the map γ ∈ W 1,1

loc (R+,R+) satisfies (l1) (resp. (l2)), we derive from Theorem 3.1
(resp. 3.3) that there exists a solution u∞ of

{
−∆u− λ1 u+ f(u) = 0 in Ω

u = 0 on ∂Ω

such that u(t) → u∞ strongly in H1
0 (Ω) as t→ +∞.

Example 4.4 The equation arising in the previous example can be generalized
as follows

d2u

dt2
+ γ(t)

du

dt
−∆u−

+∞∑

i=1

ηiPiu+ f(u) = 0 on Ω×]0,+∞[,

see [21, Example 4.5]. We still assume Dirichlet boundary conditions. Let us
explicit the notations: (λi)i≥1 (respectively (ei)i≥1) is the sequence of eigenvalues
(respectively eigenfunctions normalized in L2(Ω)) of (−∆) in H1

0 (Ω). For each
i ≥ 1, Pi denotes the orthogonal projection on span{ei} in the sense of L2(Ω).
We assume that the nonnegative sequence (ηi)i≥1 is bounded and that ηi ≤ λi for
every i ≥ 1. The functional setting of the evolution problem is given by
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H = L2(Ω), V = H1
0 (Ω) and a(u, v) =

∫

Ω

∇u(x).∇v(x)dx−
+∞∑

i=1

ηi

∫

Ω

Piu(x).Piv(x)dx.

It is easy to check that hypotheses (h1)-(h2) hold true. Under the additional as-
sumptions (i), (ii) and (iii), we then obtain (k1)-(k3). If the map γ ∈ W 1,1

loc (R+,R+)
satisfies (l1) or (l2), we obtain as in the previous example the existence of an equi-
librium u∞ such that u(t) → u∞ strongly in H1

0 (Ω) as t→ +∞.

4.2 A higher-order example

Example 4.5 Let us consider the following equation

d2u

dt2
+ γ(t)

du

dt
+∆2u+ f(u) = 0 on Ω×]0,+∞[, (62)

with the boundary condition:

u =
∂u

∂n
= 0 on ∂Ω×]0,+∞[. (63)

The functional setting of the evolution problem (62)-(63) is given by:

H = L2(Ω), V =

{
u ∈ H2(Ω), u =

∂u

∂n
= 0 on ∂Ω

}
and a(u, v) =

∫

Ω

∆u(x).∆v(x)dx.

Hypothesis (h1) is trivially verified. Moreover, from the regularity results rela-
tive to the Laplacian-Dirichlet problem, there exists κ > 0 such that ‖u‖H2(Ω) ≤
κ |∆u|L2(Ω). Hence condition (h2) is satisfied with λ = 0, i.e. the bilinear form a
is coercive. We assume that the function f satisfies assumption (ii) along with
the following variant of (i)

(i’) There exist C, α ≥ 0 such that (n−4)α ≤ 4 and |f ′(r)| ≤ C (1 + |r|α) ∀r ∈ R.

By using Sobolev’s imbedding theorem, we let the reader check that hypothesis
(k1) is a consequence of assumption (i’) above. The monotonicity hypothesis (k2)
is ensured by (ii). Finally in view of Remark 3.1, the coercivity of the bilinear
form a implies that the equilibrium set is a singleton {u} and in particular (k3)
holds true. If the map γ ∈ W 1,1

loc (R+,R+) is such that γ̇ ∈ L1(0,+∞) and γ /∈
L1(0,+∞), we derive from Corollary 3.1 that u(t) → u strongly in H2(Ω) as
t → +∞. On the other hand, the coercivity of a implies that condition (51)
is fulfilled. If the map γ is such that limt→+∞ γ(t) = 0 and γ̇(t) = o(γ(t)) as
t→ +∞, Theorem 3.4 then shows that for every m ∈

]
0, 2

3

[
,

1

2

∫

Ω

{∣∣∣∂u
∂t

(t, x)
∣∣∣
2

+|∆u(t, x)|2
}
dx+

∫

Ω

F (u(t, x)) dx = O
(
e−m

∫ t
0 γ(s) ds

)
as t→ +∞.
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Appendix

Proof of Lemma 3.3. (i) From the assumption γ(t) ≥ k
tθ
, we deduce the exis-

tence of α ∈ R such that
∫ t

0
γ(τ) dτ ≥ k

1−θ
t1−θ +α for every t ≥ t0. Therefore, we

have ∫ +∞

0

e−
∫ t
0 γ(τ) dτ dt ≤ e−α

∫ +∞

0

e−
k

1−θ
t1−θ

dt < +∞.

(ii) By using the assumption γ(t) ≥ k
tθ
, we find

∫ +∞

s

e−
∫ t
0 γ(τ) dτ dt ≤ 1

k

∫ +∞

s

tθ γ(t) e−
∫ t
0 γ(τ) dτ dt. (64)

An integration by parts in the right-hand side then yields

∫ +∞

s

tθ γ(t) e−
∫ t
0
γ(τ) dτ dt =

[
−tθ e−

∫ t
0
γ(τ) dτ

]+∞

s
+ θ

∫ +∞

s

tθ−1 e−
∫ t
0
γ(τ) dτ dt. (65)

Remark that tθ e−
∫ t
0 γ(τ) dτ ≤ e−αtθ e−

k
1−θ

t1−θ

, hence limt→+∞ tθ e−
∫ t
0 γ(τ) dτ = 0.

Therefore, we deduce from (64) and (65) that

∫ +∞

s

e−
∫ t
0 γ(τ) dτ dt ≤ 1

k
sθ e−

∫ s
0 γ(τ) dτ +

θ

k

∫ +∞

s

tθ−1 e−
∫ t
0 γ(τ) dτ dt.

If θ = 0, formula (48) is proved with c = 1. Now assume that θ ∈]0, 1[ and take
c > 1. The right term in the above inequality is clearly negligible with respect to

the left one, hence
θ

k

∫ +∞

s

tθ−1 e−
∫ t
0
γ(τ) dτ dt ≤

(
1− 1

c

)∫ +∞

s

e−
∫ t
0
γ(τ) dτ dt for

s large enough. Formula (48) follows immediately. ut
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Summary. Given a Hilbert space H and a closed convex function Φ : H → R ∪ {+∞}, we consider
the inertial proximal algorithm

(A) xn+1 − xn − αn(xn − xn−1) + βn∂Φ(xn+1) 3 0,

where (αn) and (βn) are nonnegative sequences. The notation ∂Φ stands for the subdifferential of
Φ in the sense of convex analysis. This algorithm can be viewed as the implicit discretization of a
continuous gradient system involving a memory term. We give conditions that ensure that a suitable
discrete energy decreases to inf Φ as n → +∞. When Φ has a unique minimum, the question of the
convergence of (xn) is solved. In the case of multiple minima, it is proved that if (

∏n
k=1 αk) 6∈ l1 and

if a suitable geometric condition on the set ArgminΦ is fulfilled, then non stationary sequences of (A)
cannot converge.

Key words: Proximal point algorithm, averaged gradient method, dissipative dynamical system, mem-
ory effect.
Subject classification:65K10, 49M25.

1 Introduction

Let H be a Hilbert space endowed with the scalar product 〈., .〉 and the corre-
sponding norm | . |. We consider a smooth convex potential function Φ : H → R

to be minimized. A classical approach consists in following the orbits of the steep-
est descent method. In a series of recent papers [6, 7, 8], a special attention was
devoted to gradient systems involving memory terms. The model considered in
[6] corresponds to the following continuous dynamical system

(S) ẋ(t) +
1

k(t)

∫ t

0

h(s)∇Φ(x(s)) ds = 0, t ≥ 0,

where h, k : [0,+∞) → R∗
+ are continuous maps. If k(t) ∼

∫ t

0
h(s) ds as t→ +∞,

this equation can be interpreted as an averaged gradient system. When Φ is
convex and has multiple minima, it is proved in [6] that the trajectories of (S)
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converge if and only if the weighted memory privileges the recent past enough.

For numerical purposes, it is natural to deal with a discretized version of (S).
In this paper, we are interested in the following implicit discretization of (S)

xn+1 − xn +
1

kn+1

n∑

i=0

hi ∇Φ(xi+1) = 0, (1)

where (hn) and (kn) are suitable sequences. A special attention will be devoted
to the particular case corresponding to hn = na, kn = nb for every n ∈ N. A
major goal of this paper is to give a satisfying description of the behavior of the
corresponding algorithm, for every a, b ≥ 0. Iteration (1) can be rewritten as

kn+1 (xn+1 − xn)− kn (xn − xn−1) + hn ∇Φ(xn+1) = 0,

which is in turn equivalent to

xn+1 − xn − αn(xn − xn−1) + βn∇Φ(xn+1) = 0,

by setting αn = kn
kn+1

and βn = hn

kn+1
. The extrapolation term αn (xn−xn−1) takes

into account a kind of inertia associated with the sequence. If the convex function
Φ is not assumed to be smooth and takes its values in R∪{+∞} , one can easily
adapt the previous algorithm as follows

(A) xn+1 − xn − αn(xn − xn−1) + βn∂Φ(xn+1) 3 0,

where ∂ denotes the subdifferential in the sense of convex analysis. When αn ≡ 0,
we recover the standard proximal point algorithm, for which we refer the reader
to the abundant literature on this subject [15, 17, 18, 20]. The inertial proximal
algorithm (A) was studied in [1, 2] and various extensions were considered in
[3, 13, 16, 19]. It is proved in [1] that the sequence (xn) generated by (A) weakly
converges toward a minimum of Φ, provided that the sequence (αn) is bounded
from above by some α ∈ [0, 1[. One of the purposes of this paper is to get rid of
this assumption and to examine what happens when limn→+∞ αn = 1.

The paper is organized as follows. In section 2, we exhibit a discrete energy
(En) for algorithm (A) and we compute the corresponding decay. It is shown
in section 3 that the energy (En) converges toward minΦ as n → +∞, under
suitable conditions on (αn) and (βn). This enables us to solve the question of the
convergence of (xn) in the case of a unique minimum. The case of multiple minima
is more delicate and is discussed in section 4. We prove that if (

∏n
k=1 αk) 6∈ l1

and if a suitable geometric condition on the set ArgminΦ is fulfilled, then non
stationary sequences of (A) cannot converge. The question of the convergence
under condition (

∏n
k=1 αk) ∈ l1 is difficult and still open in its full generality.
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2 General facts. Energy decay

In the entire paper, we assume that Φ : H → R ∪ {+∞} is a closed convex
function and that the sequences (αn), (βn) are positive. Iteration (A) can be
equivalently rewritten as

xn+1 = Jβn(xn + αn(xn − xn−1))

where Jβn = (I + βn∂Φ)
−1 is the resolvent of index βn of the maximal monotone

operator ∂Φ. This shows that for any couple (x0, x1) ∈ H2 of initial data, there
exists a unique sequence (xn) satisfying algorithm (A).

Remark 2.1 It is worthwhile noticing that algorithm (A) can be reformulated as

xn+1 − 2xn + xn−1

βn
+

1− αn

βn
(xn − xn−1) + ∂Φ(xn+1) 3 0. (2)

Hence algorithm (A) appears as a discretization of the following second-order in
time differential inclusion

ẍ(t) + γ(t)ẋ(t) + ∂Φ(x(t)) 3 0, t ≥ 0, (3)

where γ is a time-dependent damping. In the finite difference scheme (2), the
step length equals

√
βn, while

1−αn√
βn

corresponds to the value of γ(.) at time tn =∑n
k=0

√
βk. This interpretation of (A) will be used to enlighten some aspects of

the paper.

The result below states the decay property of the energy (En) defined, for every
n ∈ N, by3

En =
1

2βn−1

|xn − xn−1|2 + Φ(xn).

Proposition 2.1 Let Φ : H → R ∪ {+∞} be a closed convex function and let
(αn), (βn) be two positive sequences such that αn ≤ 1 and αn ≤ βn

βn−1
for every

n ≥ 1. Then any sequence (xn) defined by (A) satisfies4

En+1 − En ≤ −1− αn

2 βn
|xn+1 − xn|2. (4)

If moreover the function Φ is bounded from below then

(i)The nonincreasing sequence (En) converges toward some E∞ ∈ R.
(ii)There exists C > 0 such that |xn+1 − xn| ≤ C

√
βn for every n ≥ 0. In partic-

ular, if
(√

βn
)
∈ l1 then (|xn+1 − xn|) ∈ l1, hence x = limn→+∞ xn exists.

(iii)The following estimate holds true:
∑+∞

n=0
1−αn

2βn
|xn+1 − xn|2 < +∞.

3 Notice that there is a slight difference with the corresponding energy given in [1].
4 The expression of the energy decay is clearly related to the damping coefficient 1−αn√

βn

, see Remark 2.1.



52 A. Cabot and P. Frankel

Proof. Let ξn+1 ∈ ∂Φ(xn+1) be such that xn+1−xn−αn (xn−xn−1)+βn ξn+1 = 0.
From the definition of the subdifferential of Φ, we have

Φ(xn+1)− Φ(xn) ≤ 〈ξn+1, xn+1 − xn〉
= − 1

βn
|xn+1 − xn|2 +

αn

βn
〈xn − xn−1, xn+1 − xn〉

≤ − 1

βn
|xn+1 − xn|2 +

αn

2βn
|xn − xn−1|2 +

αn

2βn
|xn+1 − xn|2.

We infer that

En+1 −En =
1

2βn
|xn+1 − xn|2 −

1

2βn−1
|xn − xn−1|2 + Φ(xn+1)− Φ(xn)

≤ −1− αn

2 βn
|xn+1 − xn|2 +

1

2

(
αn

βn
− 1

βn−1

)
|xn − xn−1|2.

Inequality (4) is then a consequence of αn ≤ βn

βn−1
for every n ≥ 1.

(i) From the assumption αn ≤ 1 for every n ≥ 1, the sequence (En) is nonincreas-
ing. Since (En) is minorized by inf Φ, it is convergent.
(ii) For every n ≥ 1, we have En ≤ E1, hence

1

2βn−1
|xn − xn−1|2 ≤ E1 − inf Φ,

and the conclusion immediately follows.
(iii) By summing inequality (4) from n = 1 to N , we obtain

∑N
n=1

1−αn

2βn
|xn+1 −

xn|2 ≤ E1 − EN+1 ≤ E1 − inf Φ, which allows to conclude.

Example 2.1 Assume that αn = nb

(n+1)b
and βn = na

(n+1)b
for every n ∈ N. It is

immediate to check that the assumption αn ≤ 1 is equivalent to b ≥ 0 while the
assumption αn ≤ βn

βn−1
is equivalent to a ≥ 0. If b − a > 2, we have

(√
βn
)
∈ l1

and we deduce from Proposition 2.1(ii) that the corresponding sequence (xn)
converges (not in ArgminΦ in general, see Remark 2.2 below).

Remark 2.2 If
(√

βn
)
∈ l1, the sequence of discrete times tn =

∑n
k=0

√
βk tends

toward t∞ < +∞. This implies that the asymptotic behavior of (A) as n →
+∞ is not related to the one of the continuous system (3) as t → +∞. As a
consequence, the minimization process of Φ does not hold and in general, the
limit point x = limn→+∞ xn is not a minimum point of Φ.

Remark 2.3 In order to deal with numerical applications, it is convenient to
authorize at each iteration n an error εn in the evaluation of the subdifferential.
More precisely, denoting by ∂ε the ε-approximate subdifferential, we are led to
the following algorithm:

(Aε) xn+1 − xn − αn(xn − xn−1) + βn ∂εnΦ(xn+1) 3 0.
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The sequence (εn) of errors is assumed to be summable so as to remain close to
the exact subdifferential. If one uses algorithm (Aε) instead of (A), one has to
add the quantity εn in the right-hand side of inequality (4). The sequence (En)
is not necessarily nonincreasing, but it is still convergent. The other conclusions
of Proposition 2.1 are unchanged.

3 Summability of the energy. Case of a unique minimum

We now show that the sequence
(
(1 − αn)(En+1 − minΦ)

)
is summable. This

property implies the convergence of the sequence (En) toward minΦ provided
that the sequence (1− αn) itself is not summable.

Theorem 3.1 Let Φ : H → R ∪ {+∞} be a closed convex function such that
ArgminΦ 6= ∅. Let (αn) be a positive nondecreasing sequence such that αn ≤ 1
for every n ∈ N. Let (βn) be a positive sequence such that αn ≤ βn

βn−1
for every

n ≥ 1. Assume that the sequence
(

1−αn√
βn

)
is bounded5. Defining the sequence (θn)

by θn = 1−αn

βn
, suppose that (αn+1θn+1−(1+αn)θn+θn−1) ∈ l1. Then any bounded6

sequence (xn) generated by algorithm (A) satisfies

(
(1− αn)(En+1 −minΦ)

)
∈ l1.

If additionaly (1 − αn) /∈ l1, then limn→+∞En = minΦ. As a consequence,
limn→+∞

1
βn−1

|xn − xn−1|2 = 0 and limn→+∞Φ(xn) = minΦ.

Proof. Without loss of generality, we can assume that minΦ = 0. Given z ∈ ArgminΦ,
let us set ϕn = 1

2
|xn − z|2. We have for every n ∈ N

ϕn+1 − ϕn = 〈xn+1 − xn, xn+1 − z〉 − 1

2
|xn+1 − xn|2. (5)

Set ψn = ϕn+1 − ϕn − αn(ϕn − ϕn−1) and let ξn+1 ∈ ∂Φ(xn+1) be such that
xn+1 − xn − αn (xn − xn−1) + βn ξn+1 = 0. We then have

ψn = 〈xn+1 − xn − αn(xn − xn−1), xn+1 − z〉 + αn〈xn − xn−1, xn+1 − xn〉
−1

2
|xn+1 − xn|2 +

αn

2
|xn − xn−1|2

≤ −βn〈ξn+1, xn+1 − z〉 + αn|xn − xn−1|2 +
αn − 1

2
|xn+1 − xn|2.

Since ξn+1 ∈ ∂Φ(xn+1) and Φ(z) = 0, we have

5 Recall that from Remark 2.1 the term 1−αn√
βn

can be interpreted as a damping coefficient.
6 Notice that the sequence (xn) is automatically bounded if the function Φ is coercive, i.e. Φ(ξ) → +∞
as |ξ| → +∞.
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〈ξn+1, xn+1 − z〉 ≥ Φ(xn+1) = En+1 −
1

2βn
|xn+1 − xn|2.

Hence we deduce that

ψn + βnEn+1 ≤ αn|xn − xn−1|2 +
αn

2
|xn+1 − xn|2.

Let us multiply this inequality by 1−αn

βn
. Since αn−1 ≤ αn ≤ 1 and αn ≤ βn

βn−1
for

every n ≥ 1, we derive that

1− αn

βn
ψn + (1− αn)En+1 ≤

1− αn−1

βn−1
|xn − xn−1|2 +

1− αn

2 βn
|xn+1 − xn|2. (6)

Let us set θn = 1−αn

βn
and sum these inequalities from n = 1 to N . In view of

Proposition 2.1 (iii), we have for every N ∈ N

N∑

n=1

θnψn+
N∑

n=1

(1−αn)En+1 ≤
+∞∑

n=1

θn−1|xn−xn−1|2+
1

2

+∞∑

n=1

θn|xn+1−xn|2 < +∞.

It suffices now to prove that the sequence (
∑N

n=1 θnψn) is bounded with respect
to N . Setting ωn = αn+1θn+1 − (1 + αn)θn + θn−1 and using a technique of Abel
transformation, we find

N∑

n=1

θnψn =

N∑

n=1

ωnϕn + (ϕN+1θN − ϕNαN+1θN+1)− ϕ1θ0 + ϕ0α1θ1. (7)

Since the sequence (xn) is bounded, the sequence (ϕn) is also bounded, say by
ϕ > 0. Since (ωn) ∈ l1 by assumption, we deduce that

∣∣∣∣∣

N∑

n=1

ωnϕn

∣∣∣∣∣ ≤ ϕ

+∞∑

n=1

|ωn| < +∞. (8)

Now observe that

ϕN+1θN − ϕNαN+1θN+1 = (ϕN+1 − ϕN)θN + ϕN(θN − αN+1θN+1). (9)

The summability of (ωn) shows that limn→+∞ αn+1θn+1 − θn exists. We deduce
that

ϕN(θN − αN+1θN+1) is bounded with respect to N. (10)

Coming back to equality (5) and using the boundedness of the sequence (xn), we
derive the existence of A > 0 such that |ϕN+1 − ϕN | ≤ A|xN+1 − xN | for every
N ≥ 0. Recalling from Proposition 2.1 (ii) that |xN+1 − xN | ≤ C

√
βN , we obtain

for every N ≥ 0 that
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|ϕN+1 − ϕN |θN ≤ AC
√
βNθN = AC

1− αN√
βN

.

By assumption, the sequence
(

1−αn√
βn

)
is majorized, hence we infer that

(ϕN+1 − ϕN)θN is bounded with respect to N. (11)

By combining (7), (8), (9), (10) and (11), we conclude that the quantity
∑N

n=1 θnψn

is bounded with respect to N , which ends the proof of the summability of the
sequence

(
(1− αn)En+1

)
.

Let us now assume that (1 − αn) /∈ l1. If E∞ = limn→+∞En > 0, then
((1− αn)En+1) /∈ l1. Hence the limit E∞ equals zero. The other assertions are
immediate.

Example 3.1 Let a, b ≥ 0 and assume that αn = nb

(n+1)b
and βn = na

(n+1)b
for

every n ∈ N. It is immediate to check that

αn = 1− b

n
+O(

1

n2
), αn+1 − αn =

b

n2
+O(

1

n3
) as n→ +∞. (12)

We have 1−αn√
βn

∼ b n
b−a−2

2 as n → +∞. Hence the sequence 1−αn√
βn

is bounded if

and only if b−a ≤ 2. On the other hand, by setting ωn = αn+1θn+1−(1+αn)θn+
θn−1 as in the previous proof, we have

ωn = (θn+1 − 2θn + θn−1)− (1− αn+1)(θn+1 − θn) + (αn+1 − αn)θn. (13)

An easy computation allows to find the following asymptotic expansions as
n→ +∞

θn = b nb−a−1 +O(nb−a−2), (14)

θn+1 − θn = b (b− a− 1)nb−a−2 +O(nb−a−3), (15)

θn+1 − 2θn + θn−1 = b (b− a− 1)(b− a− 2)nb−a−3 +O(nb−a−4). (16)

By combining the asymptotic expansions (12) and (14)-(16), we find in view of
equality (13)

ωn = −b (b− a− 2)(a+ 1)nb−a−3 +O(nb−a−4) as n→ +∞.

This sequence is clearly summable if b−a ≤ 2. We conclude that the assumptions
of Theorem 3.1 are satisfied if a, b ≥ 0 and b− a ≤ 2. If moreover b > 0, we have
(1− αn) /∈ l1, hence we deduce from Theorem 3.1 that limn→+∞En = minΦ.

Remark 3.1 Consider the approximate algorithm (Aε) defined in Remark 2.3.
The arguments developed in the proof of Theorem 3.1 are still valid for (Aε), we
simply have to add the term (1 − αn) εn in the right member of inequality (6).
Since (1− αn) εn ≤ εn and since (εn) ∈ l1 by assumption, the rest of the proof is
the same and the conclusions of the theorem are identical for algorithm (Aε).
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We are now able to investigate the question of the convergence of the sequence
(xn) in the case of a unique minimum.

Corollary 3.1 Under the hypotheses of Theorem 3.1 together with condition (1−
αn) /∈ l1, assume that ArgminΦ = {x} for some x ∈ H. Then any bounded
sequence (xn) generated by (A) weakly converges to x in H.

Proof. Since the sequence (xn) is bounded, there exist x∞ ∈ H and a subsequence
(xnk

) of (xn) such that limk→+∞ xnk
= x∞ weakly in H . Since Φ is convex and

closed for the strong topology, it is closed for the weak topology. Hence, we
have Φ(x∞) ≤ lim infk→+∞Φ(xnk

). On the other hand, by applying Theorem 3.1,
we obtain limn→+∞Φ(xn) = minΦ. Therefore we deduce that Φ(x∞) ≤ minΦ,
i.e. x∞ ∈ ArgminΦ = {x}. Hence x is the unique limit point of the sequence (xn)
for the weak topology. It ensues that limn→+∞ xn = x weakly in H .

We say that x ∈ H is a strong minimum for Φ if for every x ∈ H, Φ(x) ≥
Φ(x) + δ(|x − x|), where the map δ : R+ → R+ is such that δ(tn) → 0 implies
tn → 0 for every sequence (tn) ⊂ R+.

Corollary 3.2 Under the hypotheses of Theorem 3.1 together with condition (1−
αn) /∈ l1, assume that x is a strong minimum for Φ. Then any bounded sequence
(xn) generated by (A) strongly converges to x in H.

Proof. By applying Theorem 3.1, we obtain limn→+∞Φ(xn) = minΦ = Φ(x).
Since x is a strong minimum for Φ, we deduce that limn→+∞ δ(|xn − x|) = 0 and
we conclude that limn→+∞ |xn − x| = 0.

Remark 3.2 Condition (1 − αn) /∈ l1 is equivalent to limn→+∞
∏n

k=1 αk = 0. In
the case of functions having a unique minimum x, this condition is sufficient to
obtain the (weak) convergence of the iterates xn toward x. It will be shown in the
next section that the more stringent condition (

∏n
k=1 αk) ∈ l1 is required to ensure

the convergence of the sequence (xn) for potentials Φ with multiple minima.

4 The problem of convergence of algorithm (A) for
potentials with multiple minima

We are going to investigate the question of convergence of the sequences asso-
ciated to (A) when the convex potential Φ has multiple minima. Let us first
consider the particular case Φ ≡ 0. Algorithm (A) then becomes xn+1 − xn −
αn (xn − xn−1) = 0 and an immediate computation shows that

xN+1 = x1 +

(
N∑

n=1

n∏

k=1

αk

)
(x1 − x0).
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It ensues that, when Φ ≡ 0, the sequence (xn) converges if and only if the quantity∑+∞
n=1

∏n
k=1 αk is finite. Therefore it is natural to ask whether for a general poten-

tial Φ, the sequence (xn) is convergent under the condition (
∏n

k=1 αk) ∈ l1. This
question in its full generality is difficult and still open. The purpose of this section
is to show that, conversely if (

∏n
k=1 αk) 6∈ l1 then non stationary sequences cannot

converge. Let us give a preliminary result that emphasizes the role of condition
(
∏n

k=1 αk) 6∈ l1.

Lemma 4.1 Let (αn) be a nonnegative sequence such that (
∏n

k=1 αk) 6∈ l1.
(i) Suppose that a sequence (pn) ⊂ R satisfies

∀n ≥ n0, pn+1 − pn − αn(pn − pn−1) ≤ 0.

Then, we have either limn→+∞ pn = −∞ or pn ≥ pn−1 for every n ≥ n0.
(ii) Suppose now that a sequence (xn) ⊂ H satisfies

∀n ≥ n0, xn+1 − xn − αn(xn − xn−1) = 0.

Then, either limn→+∞ |xn| = +∞ or xn = xn0 for every n ≥ n0.

Proof. (i) Assume that there exists n1 ≥ n0 such that pn1 < pn1−1. Then we have

∀n ≥ n1, pn+1 − pn ≤
(

n∏

k=n1

αk

)
(pn1 − pn1−1).

By summing from n = n1 to N , we find

pN+1 − pn1 ≤
N∑

n=n1

(
n∏

k=n1

αk

)
(pn1 − pn1−1).

Since pn1 < pn1−1 and since (
∏n

k=1 αk) 6∈ l1, we conclude that limN→+∞ pN = −∞.

(ii) Assume now that there exists n1 ≥ n0 such that xn1 6= xn1−1. The same
computation as above shows that

∀n ≥ n1, xN+1 − xn1 =

N∑

n=n1

(
n∏

k=n1

αk

)
(xn1 − xn1−1).

Since xn1 6= xn1−1 and since (
∏n

k=1 αk) 6∈ l1, we conclude that limN→+∞ |xN | =
+∞.

Given a closed convex set S ⊂ H and x ∈ S, recall that the normal cone NS(x)
and the tangent cone TS(x) are respectively defined by

NS(x) = {ξ ∈ H| ∀x ∈ S, 〈ξ, x− x〉 ≤ 0}
TS(x) = cl [∪λ>0λ (S − x)] .
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The polar cone K∗ of a cone K ⊂ H is defined by

K∗ = {y ∈ H| ∀x ∈ K, 〈x, y〉 ≤ 0}.

The convex cones NS(x) and TS(x) are polar to each other, i.e. NS(x) = [TS(x)]
∗

and TS(x) = [NS(x)]
∗. A coneK is said to be pointed ifK∩−K = {0}. For further

details relative to convex analysis, the reader is referred to classical textbooks
[21, 22]. In the sequel, the notation B (resp. S) stands for the closed unit ball
(resp. sphere) of H . Before stating the result of non-convergence for algorithm
(A), we need the following lemma.

Lemma 4.2 Assume that dimH < +∞. Let Φ : H → R ∪ {+∞} be a closed
convex function and let x ∈ S = ArgminΦ. Assume that

−NS(x) ⊂ int (TS(x)) ∪ {0}. (17)

Then there exist a scalar λ > 0, a convex cone K ⊂ H which is closed and
pointed, along with a neighborhood V of x such that

K ∩ B ⊂ λ (int(S)− x) ∪ {0} and − ∂Φ(x) ⊂ K for every x ∈ V. (18)

Proof. If x ∈ int (S), there exists a neighborhood V of x such that condition (18)
is satisfied with K = {0} and any λ > 0. Now assume that x ∈ bd(S). Let us
define the set K by

K = {x ∈ H, d(x,−NS(x)) ≤ d(x,H \ TS(x))}.

It is immediate to check that the set K is a closed cone satisfying

K ⊂ int (TS(x)) ∪ {0} (19)

and
−NS(x) \ {0} ⊂ int (K). (20)

Since x ∈ bd(S), there exists u ∈ H \ {0} such that R+u ⊂ NS(x). By polarity,
we have TS(x) ⊂ {x ∈ H, 〈x, u〉 ≤ 0}, hence

K ⊂ {x ∈ H, 〈x, u〉 < 0} ∪ {0}.

It ensues that the cone K is pointed. To prove the convexity of the set K, we
resort to the following claim.

Claim 4.1 Let C ⊂ H be a nonempty convex set. Then we have:

(i)The function d(., C) is convex on H.
(ii)If C 6= H, the function d(., H \ C) is concave on C.
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The first point is elementary. The second one is given as an exercise by N. Bour-
baki [5, Exercise 18, p. 150], see7 also [12]. We deduce from this claim that the
function ∆ = d(.,−NS(x))−d(., H \TS(x)) is convex on TS(x). In view of formula
(19), we have K ⊂ TS(x) and we infer that the set K = {x ∈ TS(x), ∆(x) ≤ 0}
is convex as a sublevel set of the convex function ∆. Using again inclusion (19)
and recalling that int (TS(x)) = ∪λ>0λ (int (S)− x), we obtain

K ∩ S ⊂ ∪λ>0λ (int(S)− x).

From the compactness property of K ∩ S, we can extract a finite cover of K ∩ S:
there exist λ1, . . . , λn > 0 such that

K ∩ S ⊂ ∪n
i=1λi (int (S)− x). (21)

Setting λ = max{λ1, . . . , λn}, observe that λi (S − x) ⊂ λ (S − x) for every
i ∈ {1, . . . , n}. Taking the interior of each member, we infer that ∪n

i=1λi (int (S)−
x) ⊂ λ (int (S) − x), hence K ∩ S ⊂ λ (int (S) − x) in view of (21). It ensues
immediately that K ∩ B ⊂ λ (int (S) − x) ∪ {0}, which proves the first part of
assertion (18).

Let us finally prove that there exists a neighborhood V of x such that
−∂Φ(x) ⊂ K for every x ∈ V . Let us argue by contradiction and assume that
there exist a sequence (xn) tending to x as n→ +∞, along with a sequence (ξn)
such that ξn ∈ −∂Φ(xn) and ξn ∈ H \K. Since the sequence (ξn/|ξn|) is bounded,
it has a subsequence, still denoted by (ξn/|ξn|) such that limn→+∞ ξn/|ξn| = ξ,
for some ξ ∈ H . Recalling that K is a cone, we have ξn/|ξn| ∈ H \ K for every
n ∈ N, hence

ξ ∈ cl(H \K) = H \ int (K). (22)

Let us now fix x ∈ S. From the fact that −ξn ∈ ∂Φ(xn), we infer that

〈−ξn, x− xn〉 ≤ Φ(x)− Φ(xn) ≤ 0.

Dividing by |ξn| and taking the limit as n→ +∞, we derive that
〈
−ξ, x− x

〉
≤ 0.

Since this is true for every x ∈ S, we deduce that −ξ ∈ NS(x). Recalling that
ξ 6= 0, we obtain from inclusion (20) that ξ ∈ int (K), which clearly contradicts
(22).

A closed convex cone K ⊂ H is said to be acute (resp. obtuse) if K ⊂ −K∗

(resp. K ⊃ −K∗). These notions are widely used in the field of optimization, see
for example [4, 9, 10, 11, 14]. Condition (17) amounts to saying that the cone
NS(x) is strictly acute or equivalently that the cone TS(x) is strictly obtuse. This
condition is satisfied in particular if the set S is smooth8 at x ∈ bd(S). When
H = R, condition (17) is satisfied if and only if the interval ArgminΦ is not a
singleton.

7 The first author is indebted to L. Thibault (U. Montpellier II) for suggesting references [5, 12].
8 Recall that the set S is smooth at x ∈ bd(S) if there exists d 6= 0 such that NS(x) = R+d.
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Let us now state the general result of non-convergence for the sequences asso-
ciated to (A) under the condition (

∏n
k=1 αk) 6∈ l1.

Theorem 4.1 Assume that dimH < +∞. Let Φ : H → R ∪ {+∞} be a closed
convex function such that for every x ∈ S = ArgminΦ,

−NS(x) ⊂ int (TS(x)) ∪ {0}.

Let (αn), (βn) be nonnegative sequences and assume that (
∏n

k=1 αk) 6∈ l1. If the
sequence (xn) defined by algorithm (A) is non stationary9 then it cannot converge
toward x ∈ S.

Proof. Let us prove the contraposition of the previous statement and assume that
there exists x ∈ S such that limn→+∞ xn = x. We must prove that the sequence
(xn) is stationary. In view of Lemma 4.2, there exist a convex cone K ⊂ H which
is closed and pointed, along with λ > 0 and n0 ≥ 0 such that

K ∩ 1

λ
B ⊂ (int (S)−x)∪ {0} and − ∂Φ(xn) ⊂ K for every n ≥ n0. (23)

Let v ∈ K∗. Observing that for every n ≥ n0

xn+1 − xn − αn (xn − xn−1) ∈ −βn∂Φ(xn+1) ⊂ K,

we deduce that

∀n ≥ n0, 〈xn+1 − xn − αn (xn − xn−1), v〉 ≤ 0.

Let us apply Lemma 4.1(i) to the sequence (pn) defined by pn = 〈xn, v〉. From
the boundedness of the sequence (xn), we infer that 〈xn+1, v〉 ≥ 〈xn, v〉 for every
n ≥ n0. Since this is true for every v ∈ K∗, we derive that xn − xn+1 ∈ K∗∗

for every n ≥ n0. Recalling that K∗∗ = K for every closed convex cone K, we
conclude that

∀n ≥ n0, xn − xn+1 ∈ K. (24)

The cone K is stable under addition and closure operation, hence we deduce by
summation from n to +∞ that

∀n ≥ n0, xn − x ∈ K. (25)

Since limn→+∞ xn = x, there exists n1 ≥ n0 such that xn − x ∈ 1
λ
B for every

n ≥ n1. In view of (23), we infer that xn ∈ int (S) ∪ {x} for every n ≥ n1. Let us
now distinguish the following two cases:

(a)For every n ≥ n1, we have xn ∈ int (S).

9 If the function Φ is differentiable, inclusion (A) holds as an equation and the principle of backward
uniqueness applies. Stationary sequences are then characterized by the initial conditions x0 ∈ S and
x1 = x0.
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(b)There exists n2 ≥ n1 such that xn2 = x.

Case (a) We then have ∂Φ(xn) = {0} for every n ≥ n1, so that algorithm (A)
becomes

∀n ≥ n1, xn+1 − xn − αn (xn − xn−1) = 0.

From Lemma 4.1(ii) and the fact that the sequence (xn) is bounded, we deduce
that xn = xn1 for every n ≥ n1.

Case (b) Since xn2 = x by assumption, we derive from (24) and (25) that

xn2+1 − xn2 = xn2+1 − x ∈ (−K) ∩K.

Recalling that the cone K is pointed, we have (−K)∩K = {0}, hence xn2+1 = x.
An immediate recurrence then shows that xn = x for every n ≥ n2.

As a conclusion, we have proved in both cases (a) and (b) that the sequence
(xn) is stationary, which ends the proof.

Example 4.1 Let Φ be as in the previous theorem. Assume that αn = nb

(n+1)b

for every n ∈ N. Since
∏n

k=1 αk = 1
(n+1)b

, condition (
∏n

k=1 αk) 6∈ l1 is satisfied if
b ≤ 1. Hence, we deduce from the previous theorem that if b ≤ 1, then the non
stationary sequences of (A) cannot converge in S.

In view of the previous theorem the iterates of (A) cannot converge in S, but
they may tend toward some x ∈ H \ S. To prevent this eventuality, we now give
sufficient conditions on (αn), (βn), ensuring that any converging sequence (xn)
generated by (A) tends toward a minimum point of Φ.

Proposition 4.1 Let Φ : H → R be a continuous convex function. Let (αn), (βn)
be nonnegative sequences satisfying the following assumptions





(i) |αn − αn−1| = O(βn) as n→ +∞

(ii) (βn) 6∈ l1 or
[
(βn) ∈ l1,

(∑+∞
k=n βk

)
6∈ l1, limn→+∞ αn = 1

]
.

Let (xn) be a sequence defined by algorithm (A) and assume that limn→+∞ xn = x.
Then we have x ∈ ArgminΦ.

Since the proof is a little bit technical, we postpone it to the appendix.

Example 4.2 Assume that αn = nb

(n+1)b
and βn = na

(n+1)b
for every n ∈ N. First

of all, observe that αn = 1− b
n
+O

(
1
n2

)
, hence αn+1 − αn = O

(
1
n2

)
as n→ +∞.

It ensues that condition |αn − αn−1| = O(βn) is realized if b − a ≤ 2. On the
other hand, condition (βn) 6∈ l1 holds if b−a ≤ 1, while condition

(∑+∞
k=n βk

)
6∈ l1

holds if b− a ∈]1, 2]. Therefore we deduce from the previous proposition that, if
b − a ≤ 2 then any converging sequence (xn) generated by (A) tends toward a
minimum point of Φ.
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Conclusion and perspectives. To end this paper, let us come back to the
proximal-like iteration

xn+1 − xn +
1

(n+ 1)b

n∑

i=0

ia∇Φ(xi+1) = 0, (26)

where a, b ≥ 0 and Φ : H → R is a differentiable convex function. As explained
in the introduction, an elementary transformation of the above iteration leads
to algorithm (A) associated with the coefficients αn = nb

(n+1)b
, βn = na

(n+1)b
for

every n ∈ N. Let us now list our results of convergence for algorithm (26). First

of all, the energy sequence (En) defined by En = nb

2 (n−1)a
|xn − xn−1|2 + Φ(xn) is

nonincreasing. Let us distinguish the cases b− a > 2 and b− a ≤ 2.

• If b− a > 2, we derive from Example 2.1 that x = limn→+∞ xn exists but x is
not a minimum of Φ in general.

• If b − a ≤ 2 and b > 0, Example 3.1 shows that limn→+∞En = minΦ. If
ArgminΦ = {x}, this implies that limn→+∞ xn = x weakly in H .
Assume now that Φ has multiple minima.
– If b ≤ 1, we deduce from Examples 4.1 and 4.2 that (xn) does not converge

in general.
– If b > 1, the problem of the convergence of (xn) is open.

It would be interesting to replace the subgradient in algorithm (A) by a max-
imal monotone operator. The main difficulty lies in the fact that no energy se-
quence is available in this framework. In view of numerical computations, another
interesting problem would consist in studying an explicit version of (A), namely
with ∂Φ(xn) in place of ∂Φ(xn+1). These remarks certainly indicate directions for
future investigation.

Appendix: Proof of Proposition 4.1

Let us argue by contradiction and assume that 0 /∈ ∂Φ(x). It is then possible to
strictly separate the convex compact set {0} from the nonempty closed convex
set ∂Φ(x). Therefore, there exist p ∈ H and m ∈ R∗

+ such that

∀ξ ∈ ∂Φ(x), 〈ξ, p〉 > m. (27)

Let us first prove that there exists n0 ∈ N such that

∀n ≥ n0, ∀ξ ∈ ∂Φ(xn), 〈ξ, p〉 > m. (28)

If this was not true, there would exist a subsequence (xnk
) of (xn) along with a

sequence (ξk) such that ξk ∈ ∂Φ(xnk
) and 〈ξk, p〉 ≤ m for every k ∈ N. Since
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the convex function Φ is continuous on H , the operator ∂Φ : H ⇒ H is lo-
cally bounded, hence the sequence (ξk) is bounded. Therefore, there exist ξ ∈ H
and a weakly converging subsequence of (ξk), still denoted by (ξk) such that w-
limk→+∞ ξk = ξ. On the other hand, by using the graph-closedness property of
the operator ∂Φ in H × w-H , we find ξ ∈ ∂Φ(x). By combining this property
with the fact that 〈ξ, p〉 ≤ m, we clearly obtain a contradiction with (27). Hence
property (28) is proved. Without loss of generality, we will assume that n0 = 0
in the sequel.

Case (βn) 6∈ l1. From the definition of algorithm (A), for every k ≥ 1, there exists
ξk+1 ∈ ∂Φ(xk+1) such that

xk+1 − xk − αk(xk − xk−1) + βkξk+1 = 0.

By summing from k = 1 to n and by using a technique of Abel transformation,
we obtain

n∑

k=1

(αk+1 − αk) xk + [xn+1 − αn+1 xn − x1 + α1 x0] +
n∑

k=1

βk ξk+1 = 0

or equivalently

n∑

k=1

(αk+1 − αk) (xk − xn) + [xn+1 − α1 xn − x1 + α1 x0] +

n∑

k=1

βk ξk+1 = 0. (29)

Recalling that |αn − αn−1| = O(βn) as n → +∞, that (βn) 6∈ l1 and that
limn→+∞ xn = x, we have

n∑

k=1

(αk+1 − αk) (xk − xn) = o

(
n∑

k=1

βk

)
, as n→ +∞. (30)

On the other hand, from assertion (28) applied with ξ = ξk+1 for k = 1, . . . , n,
we derive that 〈

n∑

k=1

βk ξk+1, p

〉
≥ m

n∑

k=1

βk. (31)

Since the sequence (xn) is bounded, the term between brackets in equality (29)
is negligible with respect to

∑n
k=1 βk as n → +∞ and we obtain a contradiction

in view of (30) and (31). As a conclusion, we have proved that 0 ∈ ∂Φ(x) in the
case (βn) 6∈ l1.

Case (βn) ∈ l1,
(∑+∞

k=n βk
)
6∈ l1 and limn→+∞ αn = 1. By using the same technique

of Abel transformation as above, we obtain

+∞∑

k=n

(αk+1 − αk) xk + [αn xn−1 − xn] +
+∞∑

k=n

βk ξk+1 = 0.
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Observing that 1− αn =
∑+∞

k=n(αk+1 − αk), this can be equivalently rewritten as

+∞∑

k=n

(αk+1 − αk) (xk − xn−1) + [xn−1 − xn] +
+∞∑

k=n

βk ξk+1 = 0.

By summation from n = 1 to N we obtain

N∑

n=1

+∞∑

k=n

(αk+1 − αk) (xk − xn−1) + [x0 − xN ] +
N∑

n=1

+∞∑

k=n

βk ξk+1 = 0. (32)

Recalling that |αn − αn−1| = O(βn) as n → +∞, that
(∑+∞

k=n βk
)
6∈ l1 and that

limn→+∞ xn = x, we have

N∑

n=1

+∞∑

k=n

(αk+1 − αk) (xk − xn−1) = o

(
N∑

n=1

+∞∑

k=n

βk

)
, as N → +∞. (33)

On the other hand, from assertion (28) applied with ξ = ξk+1 for k = n, n+1, . . .
we derive that 〈

N∑

n=1

+∞∑

k=n

βk ξk+1, p

〉
≥ m

N∑

n=1

+∞∑

k=n

βk. (34)

Since the sequence (xn) is bounded, the term between brackets in equality (32)
is negligible with respect to

∑N
n=1

∑+∞
k=n βk as N → +∞ and we obtain a con-

tradiction in view of (33) and (34). This achieves the proof of 0 ∈ ∂Φ(x) in the
second case. ut
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COÛTS-AUX-CHANGEMENTS,

DESCRIPTION DUALE ET APPLICATION

AUX EDP





Alternating proximal algorithms with

costs-to-move, dual description and application

to PDE’s

P. Frankel1
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Summary. Given real Hilbert spaces X ,Y,Z, closed convex functions f : X −→ R ∪ {+∞}, g :
Y −→ R ∪ {+∞} and linear continuous operators A : X −→ Z, B : Y −→ Z, we study the following
alternating proximal algorithm

(A)















xn+1 = Argmin

{

f(ζ) +
1

2γ
‖Aζ −Byn‖

2
Z +

α

2
‖ζ − xn‖

2
X ; ζ ∈ X

}

yn+1 = Argmin

{

g(η) +
1

2γ
‖Axn+1 −Bη‖2Z +

ν

2
‖η − yn‖

2
Y ; η ∈ Y

}

,

where γ, α and ν are positive parameters. Under suitable conditions, we prove that any sequence
(xn, yn) generated by (A) weakly converges toward a minimum point of the function (x, y) 7→ f(x) +

g(y) + 1
2γ

‖Ax − By‖2Z and that the sequence of dual variables
(

− 1
γ
(Axn −Byn)

)

strongly converges

in Z toward the unique minimizer of the function z 7→ f∗(A∗z) + g∗(−B∗z) + γ
2
‖z‖2Z . An application

is given in variational problems and PDE’s.

Key words: Convex minimization, alternating minimization, proximal algorithm, domain decompo-
sition for PDE’s.
Subject classification: 65K05, 65K10, 49J40, 90C25.

1 Introduction

Let X ,Y ,Z be real Hilbert spaces. We note respectively 〈., .〉X , 〈., .〉Y and 〈., .〉Z
the scalar product of the spaces X , Y or Z, and ‖.‖X , ‖.‖Y , ‖.‖Z the corresponding
norms. Given closed convex proper functions f : X −→ R ∪ {+∞}, g : Y −→
R ∪ {+∞} and linear continuous operators A : X −→ Z, B : Y −→ Z, we
consider the convex function Φ : X × Y −→ R ∪ {+∞} defined by

Φ(x, y) = f(x) + g(y) +
1

2γ
‖Ax−By‖2Z ,

where γ is a positive real parameter. We denote by (P) the following minimization
problem
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(P) inf {Φ(x, y); x ∈ X , y ∈ Y} .

The weak coupling term Q(x, y) = ‖Ax − By‖2Z allows asymmetric and partial
relations between the variables x and y, contrary to the strong coupled problem

{
f(x) + g(y) +

1

2γ
‖x− y‖2H; x ∈ H, y ∈ H

}

where x and y lie in the same Hilbert spaceH and are involved in a symmetric way.
We study the alternating algorithm with costs-to-move introduced by Attouch,
Redont and Soubeyran [5]:

(A)





xn+1 = Argmin

{
f(ζ) +

1

2γ
‖Aζ − Byn‖2Z +

α

2
‖ζ − xn‖2X ; ζ ∈ X

}

yn+1 = Argmin

{
g(η) +

1

2γ
‖Axn+1 −Bη‖2Z +

ν

2
‖η − yn‖2Y ; η ∈ Y

}
,

where α and ν are positive real numbers. This algorithm generates a sequence
(xn, yn) whose convergence is studied in [2]. In references [1, 6], a particular case
of algorithm (A) with α = ν = 0 is studied for the strong coupled problem
(X = Y and A = B = I). In this paper, we generalize some convergence results
of [6] to the weak coupled problem (P). More particularly, we prove that, if Φ is
bounded from below, the sequence (xn, yn) is a minimizing sequence for Φ which
slightly improves the corresponding convergence result of [2]. By a different way,
we show that, if ArgminΦ 6= ∅, the sequence (xn, yn) weakly converges toward a
minimum point of Φ. Moreover, a special attention is devoted to some dual prob-
lem (P∗) associated to problem (P). We prove that the sequence of dual variables(
− 1

γ
(Axn − Byn)

)
strongly converges to the unique minimizer of problem (P∗).

Attouch, Bolte, Redont and Soubeyran have given in [2] an application of algo-
rithm (A) to domain decomposition for PDE’s. They have studied a minimization
problem with Dirichlet boundary condition associated to problem (P). Here we
consider the corresponding problem with Neuman boundary condition.

The paper is organized as follows. We establish the convergence of algorithm

(A) in section 2. The sequence of dual variables
(
− 1

γ
(Axn − Byn)

)
is studied in

section 3. An application to PDE’s is given in section 4.

2 Convergence of the algorithm

Let f : X −→ R∪{+∞}, g : Y −→ R∪{+∞} be closed convex proper functions
and let A : X −→ Z, B : Y −→ Z be linear continuous operators. We consider
the convex function Φ : X × Y −→ R ∪ {+∞} defined by
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Φ(x, y) = f(x) + g(y) +
1

2γ
‖Ax−By‖2Z , (1)

where γ is a positive real parameter. Given positive coefficients α, ν > 0 and
initial data (x0, y0) ∈ X × Y , let us consider the following alternating proximal
algorithm

(A)





xn+1 = Argmin

{
f(ζ) +

1

2γ
‖Aζ − Byn‖2Z +

α

2
‖ζ − xn‖2X ; ζ ∈ X

}

yn+1 = Argmin

{
g(η) +

1

2γ
‖Axn+1 −Bη‖2Z +

ν

2
‖η − yn‖2Y ; η ∈ Y

}
.

By writing down the optimality conditions, it is immediate to check that points
xn+1 and yn+1 are characterized by





−1

γ
A∗(Axn+1 −Byn)− α(xn+1 − xn) ∈ ∂f(xn+1)

1

γ
B∗(Axn+1 −Byn+1)− ν(yn+1 − yn) ∈ ∂g(yn+1),

(2)

where A∗ ∈ L(Z,X ) and B∗ ∈ L(Z,Y) denote the respective adjoint operators
of A and B. It ensues that we have, for all x ∈ X and y ∈ Y ,




f(x)− f(xn+1) +
1

γ
〈Byn − Axn+1, Axn+1 − Ax〉Z − α〈xn+1 − xn, xn+1 − x〉X ≥ 0

g(y)− g(yn+1) +
1

γ
〈Axn+1 − Byn+1, Byn+1 − By〉Z − ν〈yn+1 − yn, yn+1 − y〉Y ≥ 0.

(3)
These inequalities will be used intensively in the sequel. The next theorem states
the main convergence properties of algorithm (A).

Theorem 2.1 Let α, ν and γ be positive coefficients and let A ∈ L(X ,Z), B ∈
L(Y ,Z) be linear continuous operators. Let f : X −→ R ∪ {+∞} and g : Y −→
R∪{+∞} be closed convex proper functions. Assume that the function Φ defined
by equality (1) is bounded from below. If (xn, yn) is a sequence generated by (A),
then

(i)∀n ∈ N, Φ(xn+1, yn+1) ≤ Φ(xn+1, yn) ≤ Φ(xn, yn);
(ii)limn→+∞Φ(xn+1, yn) = limn→+∞Φ(xn, yn) = inf Φ;
(iii)the sequences (‖xn+1 − xn‖2X ) and (‖yn+1 − yn‖2Y) are summable;
(iv)if ArgminΦ 6= ∅, then for all (x, y) ∈ ArgminΦ,

(a)the sequences (‖Ax−Axn‖2Z + γα‖xn − x‖2X + γν‖yn−1 − y‖2Y) and (‖By−
Byn‖2Z + γα‖xn − x‖2X + γν‖yn − y‖2Y) are nonincreasing and convergent;

(b)the sequences (‖(Ax − By) − (Axn − Byn)‖2Z), (‖(Ax − By) − (Axn+1 −
Byn)‖2Z), (Φ(xn, yn)− Φ(x, y)) and (Φ(xn+1, yn)− Φ(x, y)) are summable;

(c)the sequence (xn, yn) weakly converges in X × Y toward a minimum point
(x, y) of Φ. Moreover f(xn) → f(x) and g(yn) → g(y) as n→ +∞;
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(v)if ArgminΦ = ∅, then ‖xn‖X + ‖yn‖Y → +∞ as n→ +∞.

Proof. The arguments follow the same lines as those of Bauschke, Combettes and
Reich [6].
(i) From the definition of algorithm (A), we have

f(xn+1) +
1

2γ
‖Axn+1 − Byn‖2Z +

α

2
‖xn+1 − xn‖2X ≤ f(xn) +

1

2γ
‖Axn − Byn‖2Z ,

g(yn+1) +
1

2γ
‖Axn+1 −Byn+1‖2Z +

ν

2
‖yn+1 − yn‖2Y ≤ g(yn) +

1

2γ
‖Axn+1 − Byn‖2Z .

We deduce that, for all n ∈ N

Φ(xn+1, yn+1) = f(xn+1) + g(yn+1) +
1

2γ
‖Axn+1 −Byn+1‖2Z

≤ f(xn+1) + g(yn+1) +
1

2γ
‖Axn+1 −Byn+1‖2Z +

ν

2
‖yn+1 − yn‖2Y

≤ f(xn+1) + g(yn) +
1

2γ
‖Axn+1 −Byn‖2Z = Φ(xn+1, yn)

≤ f(xn+1) + g(yn) +
1

2γ
‖Axn+1 −Byn‖2Z +

α

2
‖xn+1 − xn‖2X

≤ f(xn) + g(yn) +
1

2γ
‖Axn − Byn‖2Z = Φ(xn, yn),

which ends the proof of (i).
(ii) The sequence (Φ(xn, yn)) is nonincreasing and minorized hence convergent
toward ϕ ≥ inf Φ. By item (i), (Φ(xn+1, yn)) converges toward ϕ too.
Let us use the following lemma borrowed from [6].

Lemma 2.1 Let (s, t, u, v, w) ∈ Z5, then

‖s−u‖2Z = ‖s−w‖2Z+‖w−v‖2Z−‖s−t‖2Z+‖(s−t)−(u−v)‖2Z+2〈s−w,w−v〉Z+2〈u−v, v−t〉Z .

Taking s = Ax, t = By, u = Axn, v = Byn, w = Axn+1, we obtain

‖Ax−Axn‖2Z − ‖Ax− Axn+1‖2Z
= ‖Axn+1 −Byn‖2Z − ‖Ax− By‖2Z + ‖(Ax−By)− (Axn − Byn)‖2Z
+ 2〈Ax−Axn+1, Axn+1 −Byn〉Z + 2〈Axn − Byn, Byn − By〉Z .

(4)

In view of inequalities (3), we have
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‖Ax− Axn‖2Z − ‖Ax−Axn+1‖2Z
≥ ‖Axn+1 − Byn‖2Z − ‖Ax− By‖2Z + ‖(Ax− By)− (Axn −Byn)‖2Z

+ 2 {γ(f(xn+1)− f(x)) + γα〈xn+1 − xn, xn+1 − x〉X}
+ 2 {γ(g(yn)− g(y)) + γν〈yn − yn−1, yn − y〉Y}

= 2γ

{
f(xn+1) + g(yn) +

1

2γ
‖Axn+1 −Byn‖2Z − f(x)− g(y)− 1

2γ
‖Ax−By‖2Z

}

+ ‖(Ax−By)− (Axn −Byn)‖2Z
+ 2γα〈xn+1 − xn, xn+1 − x〉X + 2γν〈yn − yn−1, yn − y〉Y

= 2γ {Φ(xn+1, yn)− Φ(x, y)}+ ‖(Ax− By)− (Axn − Byn)‖2Z
+ 2γα〈xn+1 − xn, xn+1 − x〉X + 2γν〈yn − yn−1, yn − y〉Y

= 2γ {Φ(xn+1, yn)− Φ(x, y)}+ ‖(Ax− By)− (Axn − Byn)‖2Z
+ γα(‖xn+1 − xn‖2X + ‖xn+1 − x‖2X − ‖xn − x‖2X )
+ γν(‖yn − yn−1‖2Y + ‖yn − y‖2Y − ‖yn−1 − y‖2Y).

Finally, we find

‖Ax−Axn‖2Z + γα‖xn − x‖2X + γν‖yn−1 − y‖2Y
− ‖Ax− Axn+1‖2Z − γα‖xn+1 − x‖2X − γν‖yn − y‖2Y

≥ 2γ {Φ(xn+1, yn)− Φ(x, y)}+ ‖(Ax−By)− (Axn −Byn)‖2Z
+ γα‖xn+1 − xn‖2X + γν‖yn − yn−1‖2Y . (5)

Let us prove that inf Φ ≥ ϕ, thus implying inf Φ = ϕ. Let us argue by con-
tradiction and assume that inf Φ < ϕ. There exist x ∈ X and y ∈ Y so that
inf Φ ≤ Φ(x, y) < ϕ. By summing inequality (5), we get

2γ
∑

n≥1

(ϕ− Φ(x, y)) ≤ ‖Ax−Ax1‖2Z + γα‖x1 − x‖2X + γν‖y0 − y‖2Y < +∞,

and we obtain a contradiction hence inf Φ ≥ ϕ.
(iii) Taking x = xn and y = yn−1 in inequality (5), we obtain

α‖xn+1 − xn‖2X + ν‖yn − yn−1‖2Y ≤ Φ(xn, yn−1)− Φ(xn+1, yn).

By summing this inequality, we infer

α
∑

n≥1

‖xn+1 − xn‖2X + ν
∑

n≥1

‖yn − yn−1‖2Y ≤ Φ(x1, y0)− inf Φ < +∞,

this achieves the proof of item (iii).
(iv)(a) In view of inequality (5), the sequence (‖Ax − Axn‖2Z + γα‖xn − x‖2X +
γν‖yn−1 − y‖2Y) is nonincreasing and nonnegative hence convergent. Let us prove
the same result for the sequence (‖By −Byn‖2Z + γα‖xn − x‖2X + γν‖yn − y‖2Y).
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Using Lemma 2.1 with s = By, t = Ax, u = Byn, v = Axn+1, w = Byn+1, we
obtain

‖By − Byn‖2Z − ‖By − Byn+1‖2Z = ‖Byn+1 − Axn+1‖2Z − ‖By −Ax‖2Z
+‖(By −Ax)− (Byn − Axn+1)‖2Z
+2〈By − Byn+1, Byn+1 − Axn+1〉Z
+2〈Byn −Axn+1, Axn+1 −Ax〉Z . (6)

Using inequalities (3), we have

‖By −Byn‖2Z − ‖By − Byn+1‖2Z
≥ ‖Byn+1 − Axn+1‖2Z − ‖By − Ax‖2Z + ‖(By −Ax)− (Byn − Axn+1‖2Z
+ 2γ {g(yn+1)− g(y) + ν〈yn+1 − yn, yn+1 − y〉Y}
+ 2γ {f(xn+1)− f(x) + α〈xn+1 − xn, xn+1 − x〉X} ,

and by using the same arguments as above, we obtain

‖By − Byn‖2Z + γα‖xn − x‖2X + γν‖yn − y‖2Y
− ‖By − Byn+1‖2Z − γα‖xn+1 − x‖2X − γν‖yn+1 − y‖2Y

≥ 2γ {Φ(xn+1, yn+1)− Φ(x, y)}+ ‖(Ax−By)− (Axn+1 − Byn)‖2Z
+ γα‖xn+1 − xn‖2X + γν‖yn+1 − yn‖2Y , (7)

this achieves the proof of (iv)(a).
(iv)(b) This claim follows by summing inequalities (5) and (7).
(iv)(c) Here we adapt an argument borrowed from [2]. Let us use Opial’s lemma
[8], that we recall below for the sake of completeness.

Lemma 2.2 (Opial) Let H be a Hilbert space endowed with the norm N . Let
(ξn) be a sequence of H such that there exists a nonempty set S ⊂ H which
verifies

(1)For all ξ ∈ S, limn→+∞N(ξn − ξ) exists.
(2)If (ξnk

)⇀ ξ weakly in H as k → +∞, we have ξ ∈ S.

Then the sequence (ξn) weakly converges in H as n→ +∞ toward a point of S.

Let us define the norm N(x, y) =
(
‖By‖2Z + γα‖x‖2X + γν‖y‖2Y

)1/2
on the space

X × Y . Since the linear operator B is continuous, the norm N is equivalent to
the canonical norm on X × Y . Thus, in view of (iv)(a),

∀(x, y) ∈ ArgminΦ, N((xn, yn)− (x, y)) has a limit when n→ +∞,

which shows point (1). Let (xnk
, ynk

) be a subsequence of (xn, yn) which weakly
converges toward (x, y). Using the closedness of Φ and item (ii), we can write

Φ(x, y) ≤ lim inf
k→+∞

Φ(xnk
, ynk

) = lim
n→+∞

Φ(xn, yn) = inf Φ,
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hence (x, y) ∈ ArgminΦ, which shows point (2). Opial’s lemma then shows that
(xn, yn) weakly converges toward a point (x, y) in ArgminΦ.
Let us prove that f(xn) → f(x) as n→ +∞. Using the closedness of f , we have
f(x) ≤ lim infn→+∞ f(xn). By using inequality (3) with x = x, we obtain

f(x) ≥ f(xn+1)−
1

γ
〈Axn+1 − Byn, Ax− Axn+1〉Z − α〈xn+1 − xn, x− xn+1〉X .

Since the linear operator A is continuous and since the sequence (xn) weakly
converges towards x, we derive that the sequence (Axn) weakly converges to-
wards Ax. Moreover, from item (iv)(b), the sequence (Axn+1 − Byn) strongly
converges in Z toward (Ax− By) and, from item (iii), the sequence (xn+1 − xn)
strongly converges in X toward 0. Hence we deduce from the above inequality
that lim supn→+∞ f(xn) ≤ f(x) and finally limn→+∞ f(xn) = f(x). In a similar
way, we easily infer that limn→+∞ g(yn) = g(y).
(v) Let us argue by contradiction and assume that the conclusion is false. We
can extract a subsequence (xnk

, ynk
) which weakly converges toward a point of

X × Y . The closedness of Φ implies that this point is a minimizer of Φ, which is
a contradiction.

3 Dual problem

Let us define the map p : Z → R by p(z) = inf{f(x) + g(y) + 1
2γ
‖Ax − By −

z‖2Z ; x ∈ X , y ∈ Y}. We recover the primal problem (P) for z = 0. Since the
map (x, y, z) ∈ X ×Y ×Z −→ f(x) + g(y) + 1

2γ
‖Ax−By − z‖2Z ∈ R ∪ {+∞} is

convex, the map p is convex. Moreover p is locally majorized, hence continuous.
By the Fenchel Moreau Rockafellar’s theorem, we can assert that

p(z) = sup{〈z∗, z〉Z − p∗(z∗); z∗ ∈ Z},
where p∗ : Z → R∪{+∞} is the conjugate function of p. In particular we obtain
p(0) = − inf{p∗(z∗); z∗ ∈ Z}. The map p∗ is precised in the following lemma.

Lemma 3.1 ∀z∗ ∈ Z, p∗(z∗) = f ∗(A∗z∗) + g∗(−B∗z∗) + γ
2
‖z∗‖2Z .

Proof.

p∗(z∗) = sup {〈z∗, z〉Z − p(z); z ∈ Z}

= sup

{
〈z∗, z〉Z − inf

{
f(x) + g(y) +

1

2γ
‖Ax− By − z‖2Z ; x ∈ X , y ∈ Y

}
; z ∈ Z

}

= sup

{
sup

{
〈z∗, z〉Z − (f(x) + g(y) +

1

2γ
‖Ax−By − z‖2Z); x ∈ X , y ∈ Y

}
; z ∈ Z

}

= sup

{
sup

{
〈z∗, z〉Z − (f(x) + g(y) +

1

2γ
‖Ax−By − z‖2Z); z ∈ Z

}
; x ∈ X , y ∈ Y

}

= sup

{
−f(x)− g(y) + sup

{
〈z∗, z〉Z − 1

2γ
‖Ax− By − z‖2Z ; z ∈ Z

}
; x ∈ X , y ∈ Y

}
.
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By a differential computation, we let the reader check that

sup
{
〈z∗, z〉Z − 1

2γ
‖Ax− By − z‖2Z ; z ∈ Z

}
= 〈z∗, γz∗ + Ax − By〉Z − γ

2
‖z∗‖2Z .

Hence, we deduce that

p∗(z∗) = sup
{
−f(x)− g(y) + 〈z∗, γz∗ + Ax−By〉Z − γ

2
‖z∗‖2Z ; x ∈ X , y ∈ Y

}

= sup
{γ
2
‖z∗‖2Z + 〈A∗z∗, x〉X − f(x) + 〈−B∗z∗, y〉Y − g(y); x ∈ X , y ∈ Y

}

=
γ

2
‖z∗‖2Z + sup {〈A∗z∗, x〉X − f(x); x ∈ X}+ sup {〈−B∗z∗, y〉Y − g(y); y ∈ Y}

=
γ

2
‖z∗‖2Z + f ∗(A∗z∗) + g∗(−B∗z∗).

We denote by (P∗) the following minimization problem

(P∗) inf
{
f ∗(A∗z∗) + g∗(−B∗z∗) +

γ

2
‖z∗‖2Z ; z∗ ∈ Z

}
.

Hence problems (P) and (P∗) are linked by the relation inf P = − inf P∗. Since
the function z∗ 7→ f ∗(A∗z∗) + g∗(−B∗z∗) + γ

2
‖z∗‖2Z is closed, proper and strongly

convex, (P∗) has a unique solution z∗.

Proposition 3.1 Let γ be a positive coefficient and let A ∈ L(X ,Z), B ∈
L(Y ,Z) be linear continuous operators. Let f : X −→ R ∪ {+∞} and g : Y −→
R∪{+∞} be closed convex proper functions. Assume that the function Φ defined
by equality (1) is bounded from below. Let z∗ be the unique minimizer of (P∗).
If (un, vn) is a sequence in X × Y such that limn→+∞Φ(un, vn) = inf Φ, then
limn→+∞− 1

γ
(Aun −Bvn) = z∗ strongly in Z.

Proof. Recalling that inf Φ = − inf P∗ = −{f ∗(A∗z∗)+ g∗(−B∗z∗)+ γ
2
‖z∗‖2Z}, we

have

Φ(un, vn)−inf Φ = f(un)+f
∗(A∗z∗)+g(vn)+g

∗(−B∗z∗)+
1

2γ
‖Aun−Bvn‖2Z+

γ

2
‖z∗‖2Z .

Using the Fenchel’s inequality, we find

Φ(un, vn)− inf Φ ≥ 〈A∗z∗, un〉X + 〈−B∗z∗, vn〉Y +
1

2γ
‖Aun −Bvn‖2Z +

γ

2
‖z∗‖2Z

=
1

2γ
‖γz∗ + Aun − Bvn‖2Z .

Since limn→+∞Φ(un, vn) = inf Φ, the conclusion is immediate.

Remark 3.1 Assume moreover that ArgminΦ 6= ∅. Then for every (x, y) ∈
ArgminΦ, the vector (Ax − By) is constant1 and we have z∗ = − 1

γ
(Ax − By).

This is obvious from the previous proposition by taking (un, vn) = (x, y) for every
n ∈ N.
1 We can recover this result by observing that, for every (x, y) ∈ ArgminΦ, limn→+∞ ‖Ax − By −
(Axn −Byn)‖

2
Z = 0 from Theorem 2.1 (iv)(b).



ALTERNATING PROXIMAL ALGORITHMS WITH COSTS-TO-MOVE 77

We are now able to deduce the following corollary of Theorem 2.1.

Corollary 3.1 Under the assumptions of Proposition 3.1, consider a sequence

(xn, yn) generated by (A). Then the sequences
(
− 1

γ
(Axn −Byn)

)
and

(
− 1

γ
(Axn+1 −Byn)

)

strongly converge in Z to the unique minimizer z∗ of (P∗).

Proof. This follows immediately from Proposition 3.1 and Theorem 2.1 (ii).

4 Application to domain decomposition for PDE’s

Let us consider a bounded domain Ω = Ω1∪Ω2∪Γ of RN which can be decomposed
in two nonoverlapping subdomains Ω1 and Ω2 with a common interface Γ. We
assume that the open sets Ω1 and Ω2 are of class C1 and that HN−1(Γ) > 0, where
HN−1 is the Hausdorff measure of dimension N − 1.

Ω1 Ω2Γ

Given some h ∈ L2(Ω) such that
∫
Ω
h = 0, we are interested in the following

variational problem
(P)

min

{
1

2

∫

Ω1

|∇u|2 + 1

2

∫

Ω2

|∇v|2 + 1

2γ

∫

Γ

[w]2 −
∫

Ω

hw; u ∈ H1(Ω1), v ∈ H1(Ω2)

}

where w =

{
u on Ω1

v on Ω2

and [w] =jump of w through the interface Γ.

This kind of minimization problems often arises in the description of phe-
nomena where the boundary is free, i.e. no external action is exerted on ∂Ω,
and involving discontinuities through the interface. Attouch, Bolte, Redont and
Soubeyran consider in [2] the corresponding Dirichlet version of problem (P).
On the other hand, the companion paper [4] analyses the Neumann problem (P)
formally associated with the value γ = 0. This forces the jump to be equal to
zero and the corresponding solutions satisfy a Neumann problem on the whole
set Ω. The recent paper [7] studies the opposite situation corresponding formally
to γ = ∞, see the concluding comments for more details.
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Let us now show how algorithm (A) can be applied so as to solve problem
(P). The space X = H1(Ω1) is equipped with the scalar product 〈u1, u2〉X =∫
Ω1
(∇u1.∇u2 + u1u2) and the corresponding norm. The same holds for Y =

H1(Ω2) by replacing Ω1 with Ω2. The space Z = L2(Γ) is equipped with the
scalar product 〈z1, z2〉Z =

∫
Γ
z1z2 and the associate norm. Problem (P) can be

reformulated as

min {Φ(u, v); u ∈ X , v ∈ Y}

=min

{
f(u) + g(v) +

1

2γ
‖Au− Bv‖2Z ; u ∈ X , v ∈ Y

}
,

where

f(u) =
1

2

∫

Ω1

|∇u|2 −
∫

Ω1

hu and g(v) =
1

2

∫

Ω2

|∇v|2 −
∫

Ω2

hv,

and the operators A : X −→ Z and B : Y −→ Z are respectively the trace
operators on Γ. Algorithm (A) runs as follows





un+1 = Argmin

{
f(u) +

1

2γ
‖Au− Bvn‖2Z +

α

2
‖u− un‖2X ; u ∈ X

}

vn+1 = Argmin

{
g(v) +

1

2γ
‖Aun+1 − Bv‖2Z +

ν

2
‖v − vn‖2Y ; v ∈ Y

}
,

where α and ν are fixed positive parameters. An elementary directional derivative
computation shows that the weak variational formulation of algorithm (A) is
given by

∀u ∈ X ,
∫

Ω1

∇un+1.∇u+
1

γ

∫

Γ

(Aun+1 − Bvn)Au

+α

∫

Ω1

(∇un+1 −∇un).∇u+ α

∫

Ω1

(un+1 − un)u =

∫

Ω1

hu, (8)

∀v ∈ Y ,
∫

Ω2

∇vn+1.∇v +
1

γ

∫

Γ

(Bvn+1 −Aun+1)Bv

+ν

∫

Ω2

(∇vn+1 −∇vn).∇v + ν

∫

Ω2

(vn+1 − vn)v =

∫

Ω2

hv. (9)

Equality (8) is the variational weak formulation of the following mixed Dirichlet-
Neumann boundary value problem on Ω1





−(1 + α)∆un+1 + αun+1 = h− α∆un + αun on Ω1

(1 + α)∂un+1

∂n
= α∂un

∂n
on ∂Ω1 ∩ ∂Ω

(1 + α)∂un+1

∂n
+ 1

γ
un+1 = α∂un

∂n
+ 1

γ
vn on Γ,

where, for u ∈ X , ∂u
∂n

= ∇u.∇−→n and −→n is the unit outward normal to ∂Ω1. In
the same way, equality (9) gives
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−(1 + ν)∆vn+1 + νvn+1 = h− ν∆vn + νvn on Ω2

(1 + ν)∂vn+1

∂n
= ν ∂vn

∂n
on ∂Ω2 ∩ ∂Ω

(1 + ν)∂vn+1

∂n
+ 1

γ
vn+1 = ν ∂vn

∂n
+ 1

γ
un+1 on Γ.

In order to apply Theorem 2.1, let us describe the set ArgminΦ.

Claim 4.1 If (u, v) ∈ ArgminΦ, then ArgminΦ = {(u+ C, v + C); C ∈ R}.
Proof. In view of hypothesis

∫
Ω
h = 0, it is immediate to check that, for all C ∈ R,

Φ(u + C, v + C) = Φ(u, v) hence (u + C, v + C) ∈ ArgminΦ. Let us prove the
reverse inclusion. By a differential computation, (u, v) ∈ ArgminΦ if and only if

∀k ∈ X ,
∫

Ω1

∇u.∇k =

∫

Ω1

hk − 1

γ

∫

Γ

(Au− Bv)Ak, (10)

∀l ∈ Y ,
∫

Ω2

∇v.∇l =
∫

Ω2

hl +
1

γ

∫

Γ

(Au−Bv)Bl. (11)

Let (u1, v1),(u2, v2) be in ArgminΦ. Using equality (10) respectively with (u1, v1)
and (u2, v2), then subtracting, we find

∀k ∈ X ,
∫

Ω1

∇(u1 − u2).∇k = −1

γ

∫

Γ

(A(u1 − u2)− B(v1 − v2))Ak.

Taking k = u1 − u2, we infer that
∫

Ω1

|∇(u1 − u2)|2 +
1

γ

∫

Γ

(A(u1 − u2)−B(v1 − v2))A(u1 − u2) = 0.

In the same way, using equality (11), we have
∫

Ω2

|∇(v1 − v2)|2 −
1

γ

∫

Γ

(A(u1 − u2)− B(v1 − v2))B(v1 − v2) = 0.

Finally we find
∫

Ω1

|∇(u1 − u2)|2 +
∫

Ω2

|∇(v1 − v2)|2 +
1

γ

∫

Γ

(A(u1 − u2)− B(v1 − v2))
2 = 0.

We deduce that ∇(u1−u2) = ∇(v1−v2) = 0, hence u1−u2 = C1 and v1−v2 = C2

for some C1, C2 ∈ R. Using HN−1(Γ) > 0 and
∫
Γ
(A(u1 − u2)− B(v1 − v2))

2 = 0,
we conclude that C1 = C2.

Remark 4.1 Equalities (10) and (11) are the variational weak formulations of
the following mixed Dirichlet-Neumann boundary value problems respectively on
Ω1 




−∆u = h on Ω1
∂u
∂n

= 0 on ∂Ω1 ∩ ∂Ω
∂u
∂n

= − 1
γ
(u− v) on Γ,
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and Ω2 



−∆v = h on Ω2
∂v
∂n

= 0 on ∂Ω2 ∩ ∂Ω
∂v
∂n

= 1
γ
(u− v) on Γ.

We must prove that the set ArgminΦ is nonempty. Let us note the symmetric
continuous bilinear form Q : (X × Y)× (X × Y) → R and the linear continuous
form L : X × Y → R respectively defined, for all (u, v), (k, l) ∈ X × Y , by

Q((u, v), (k, l)) =

∫

Ω1

∇u.∇k +
∫

Ω2

∇v.∇l + 1

γ

∫

Γ

(Au−Bv)(Ak −Bl),

L(u, v) =

∫

Ω1

hu+

∫

Ω2

hv.

First observe that the bilinear form Q is not coercive on the space (X ×Y)×(X ×
Y). To remedy this lack of coercivity, we have to consider the following suitable
closed hyperplane2 F of X × Y defined by3

F =

{
(u, v) ∈ X × Y ;

∫

Ω1

u+

∫

Ω2

v = 0

}
.

Claim 4.2 There exists ε > 0 such that, for every (u, v) ∈ F ,

Q((u, v), (u, v)) ≥ ε‖(u, v)‖2L2(Ω1)×L2(Ω2)
.

Proof. The proof uses the same arguments as those of [3, Theorem 5.4.3]. Let
us argue by contradiction and assume that there exists a sequence (un, vn) in F ,
(un, vn) 6= 0, such that

∫

Ω1

|∇un|2 +
∫

Ω2

|∇vn|2 +
1

γ

∫

Γ

(Aun − Bvn)
2 <

1

n

(∫

Ω1

u2n +

∫

Ω2

v2n

)
.

Let us take (ũn, ṽn) = (un, vn)/‖(un, vn)‖L2(Ω1)×L2(Ω2). We have (ũn, ṽn) ∈ F ,
‖(ũn, ṽn)‖L2(Ω1)×L2(Ω2) = 1 and

∫
Ω1

|∇ũn|2 +
∫
Ω2

|∇ṽn|2 + 1
γ

∫
Γ
(Aũn − Bṽn)

2 < 1
n
,

hence limn→+∞
∫
Ω1

|∇ũn|2+
∫
Ω2

|∇ṽn|2 = 0. We deduce that the sequence (ũn, ṽn)
is bounded in X × Y and, by the Rellich-Kondrakov theorem, we can extract a
subsequence (ũnk

, ṽnk
) which strongly converges in L2(Ω1)×L2(Ω2) toward (ũ, ṽ).

Since limk→+∞
∫
Ω1

|∇ũnk
|2+

∫
Ω2

|∇ṽnk
|2 = 0, we infer that the sequence (ũnk

, ṽnk
)

strongly converges in X × Y and
∫
Ω1

|∇ũ|2 +
∫
Ω2

|∇ṽ|2 + 1
γ

∫
Γ
(Aũ − Bṽ)2 = 0.

Hence, as in the proof of Claim 4.1, we deduce that (ũ, ṽ) = (C,C) for some
C ∈ R. Since the hyperplane F is closed, we have (C,C) ∈ F thus implying that
C = 0 which is a contradiction with ‖(C,C)‖L2(Ω1)×L2(Ω2) = 1.

2 The author is indebted to A. Cabot for this pertinent remark.
3 Notice that the hyperplane F is the orthogonal space of the one-dimensional closed subspace
{(C,C); C ∈ R} of X × Y which naturally appears in Claim 4.1.
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We deduce from Claim 4.2 that the bilinear form Q is coercive on the space F×F .
We can now state the following result.

Claim 4.3 There exists (u, v) ∈ X ×Y which verifies
∫
Ω1
u+
∫
Ω2
v = 0, such that

ArgminΦ = {(u+ C, v + C); C ∈ R}.
Proof. The bilinear form Q is symmetric, continuous and coercive on F ×F and
the linear form L is continuous on F . By applying the Lax-Milgram theorem, there
exists a unique (u, v) ∈ F such that, for all (k, l) ∈ F , Q((u, v), (k, l)) = L(k, l),
i.e. ,
∫

Ω1

∇u.∇k+
∫

Ω2

∇v.∇l =
∫

Ω1

hk+

∫

Ω2

hl− 1

γ

∫

Γ

(Au−Bv)(Ak−Bl). (12)

Let (k, l) ∈ X ×Y and let us note C = 1
|Ω1|+|Ω2|

(∫
Ω1
k +

∫
Ω2
l
)
, we can verify that

(k−C, l−C) ∈ F . Thus, using equality (12) with (k−C, l−C), we obtain that
(u, v) verifies equalities (10) and (11) hence (u, v) is a minimizer of Φ on X ×Y .
It suffices to apply Claim 4.1 to achieve the proof.

We conclude from Theorem 2.1 (iv)(c) and the above analysis that any sequence
(un, vn) generated by (A) weakly converges in H1(Ω1) ×H1(Ω2) toward a mini-
mum point (u+C, v+C), (C ∈ R) of problem (P). Without loss of generality, we
can assume that C = 0. Since the injections H1(Ω1) ↪→ L2(Ω1) and H1(Ω2) ↪→
L2(Ω2) are compact, the convergence is strong in L2(Ω1)×L2(Ω2). Moreover, from
Theorem 2.1 (iv)(c), we have limn→+∞ f(un) = f(u) and limn→+∞ g(vn) = g(v),
hence limn→+∞

∫
Ω1

|∇un|2 =
∫
Ω1

|∇u|2 and limn→+∞
∫
Ω2

|∇vn|2 =
∫
Ω2

|∇v|2. As
a consequence, we have limn→+∞ ‖(un, vn)‖H1(Ω1)×H1(Ω2) = ‖(u, v)‖H1(Ω1)×H1(Ω2).
Since (un, vn) weakly converges inH1(Ω1)×H1(Ω2) toward (u, v), the convergence
is strong in H1(Ω1)×H1(Ω2). We can state the following theorem.

Theorem 4.1 Let Ω = Ω1 ∪ Ω2 ∪ Γ be a bounded domain of RN which can be
decomposed in two nonoverlapping subdomains Ω1 and Ω2 of class C1 with a
commun interface Γ. Assume that HN−1(Γ) > 0. Let h ∈ L2(Ω) be such that∫
Ω
h = 0. Then any sequence (un, vn) generated by (A) strongly converges in

H1(Ω1)×H1(Ω2) toward a minimum point of problem (P).

Notice that the algorithm (A) allows to solve the initial problem (P) on Ω by
solving separately Dirichlet-Neumann problems on Ω1 and Ω2. Let us describe
the dual problem (P∗) associated to (P) studied in section 3,

(P∗) inf
{
f ∗(A∗z∗) + g∗(−B∗z∗) +

γ

2
‖z∗‖2Z ; z∗ ∈ Z

}
.

In view of the symmetry on f and g, let us focus on f ∗.

f ∗(A∗z∗) = sup

{
〈A∗z∗, u〉X − 1

2

∫

Ω1

|∇u|2 +
∫

Ω1

hu; u ∈ X
}

= − inf

{
1

2

∫

Ω1

|∇u|2 −
∫

Ω1

hu−
∫

Γ

z∗Au; u ∈ X
}
.

(13)
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If
∫
Ω1
h+
∫
Γ
z∗ 6= 0, we easily deduce by using constant functions that f ∗(A∗z∗) =

+∞. Let us suppose that
∫
Ω1
h+
∫
Γ
z∗ = 0. Let us introduce the bilinear symmetric

and continuous form a : X ×X → R defined by a(u1, u2) =
∫
Ω1

∇u1.∇u2 and the

linear continuous form l : X → R defined by l(u) =
∫
Ω1
hu+

∫
Γ
z∗Au. Let us note

U the closed hyperplane of X defined by U =
{
u ∈ X ;

∫
Ω1
u = 0

}
. From the

Poincaré-Wirtinger inequality, we deduce that a is coercive on U × U and from
the Lax-Milgram theorem that the following minimization problem

inf

{
1

2

∫

Ω1

|∇u|2 −
∫

Ω1

hu−
∫

Γ

z∗Au; u ∈ U
}

has a unique solution uz∗ ∈ U . Moreover uz∗ is characterized by

∀k ∈ U ,
∫

Ω1

∇uz∗ .∇k =

∫

Ω1

hk +

∫

Γ

z∗Ak.

Notice that, for all k ∈ X ,
(
k − 1

|Ω1|
∫
Ω1
k
)

∈ U . Hence, using the hypothesis∫
Ω1
h +

∫
Γ
z∗ = 0, the map uz∗ is a solution of the minimization problem (13).

Moreover uz∗ satisfies

∀k ∈ X ,
∫

Ω1

∇uz∗.∇k =

∫

Ω1

hk +

∫

Γ

z∗Ak. (14)

This is a variational weak formulation of the following mixed Dirichlet-Neumann
boundary value problem on Ω1





−∆uz∗ = h on Ω1
∂uz∗
∂n

= 0 on ∂Ω1 ∩ ∂Ω
∂uz∗
∂n

= z∗ on Γ.

From equalities (13)-(14), we infer that

f ∗(A∗z∗) = −1

2

∫

Ω1

|∇uz∗|2 +
∫

Ω1

huz∗ +

∫

Γ

z∗Auz∗ =
1

2

∫

Ω1

huz∗ +
1

2

∫

Ω1

z∗Auz∗

=
1

2

∫

Ω1

|∇uz∗|2.

In the same way, if
∫
Ω2
h−

∫
Γ
z∗ = 0, we have

g∗(−B∗z∗) =
1

2

∫

Ω2

hvz∗ −
1

2

∫

Γ

z∗Bvz∗ =
1

2

∫

Ω2

|∇vz∗|2,

where vz∗ is solution of the following mixed Dirichlet-Neumann boundary value
problem on Ω2
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−∆vz∗ = h on Ω2
∂vz∗
∂n

= 0 on ∂Ω2 ∩ ∂Ω
∂vz∗
∂n

= −z∗ on Γ.

Notice that, since
∫
Ω
h = 0, we have

∫
Ω1
h = −

∫
Ω2
h. Finally problem (P∗) has

the following expression

inf

{
1

2

∫

Ω

hwz∗ +
1

2

∫

Γ

z∗[wz∗] +
γ

2

∫

Γ

z∗2; z∗ ∈ Z such that

∫

Γ

z∗ +

∫

Ω1

h = 0

}

where wz∗ =

{
uz∗ on Ω1

vz∗ on Ω2

. From Corollary 3.1, the sequence
(
− 1

γ
(Aun − Bvn)

)

strongly converges in Z toward the unique minimizer z∗ of (P∗).

Concluding comments and related papers. In this paper, the parameter γ
is supposed to be constant in algorithm (A). In the companion paper [4], the
authors consider the case of a sequence (γn) which decreases toward zero. Under
suitable conditions on the decay rate of (γn), the associated algorithm minimizes
the function (x, y) 7→ f(x)+g(y) over the space V = {(x, y) ∈ X×Y , Ax = By}.
Another situation of interest corresponds to an increasing sequence (γn) which
tends toward infinity. It is shown in [7] that the associated algorithm minimizes
the function (x, y) 7→ 1

2
‖Ax − By‖2Z over the set Argminf × Argming. We refer

the reader to [4, 7] for the corresponding applications in domain decomposition
for PDE’s.
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Summary. Let X ,Y,Z be real Hilbert spaces, let f : X → R ∪ {+∞}, g : Y → R ∪ {+∞} be closed
convex functions and let A : X → Z, B : Y → Z be linear continuous operators. Let us consider the
constrained minimization problem

(P) min{f(x) + g(y) : Ax = By}.

Given a sequence (γn) which tends toward 0 as n → +∞, we study the following alternating proximal
algorithm

(A)











xn+1 = Argmin
{

γn+1 f(ζ) +
1

2
‖Aζ −Byn‖

2
Z +

α

2
‖ζ − xn‖

2
X ; ζ ∈ X

}

yn+1 = Argmin
{

γn+1 g(η) +
1

2
‖Axn+1 −Bη‖2Z +

ν

2
‖η − yn‖

2
Y ; η ∈ Y

}

,

where α and ν are positive parameters. It is shown that if the sequence (γn) tends moderately slowly

toward 0, then the iterates of (A) weakly converge toward a solution of (P). The study is extended to
the setting of maximal monotone operators, for which a general ergodic convergence result is obtained.
Applications are given in the area of domain decomposition for PDE’s.

Key words: Convex minimization, alternating minimization, proximal algorithm, variational inequal-
ities, monotone inclusions, domain decomposition for PDE’s.

Subject classification: 65K05, 65K10, 49J40, 90C25.

1 Introduction

Let X ,Y ,Z be real Hilbert spaces respectively endowed with the scalar products
〈., .〉X , 〈., .〉Y and 〈., .〉Z and the corresponding norms. Let f : X → R ∪ {+∞},
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g : Y → R ∪ {+∞} be closed convex proper functions and let A : X → Z,
B : Y → Z be linear continuous operators. In this study, our aim is to solve
convex structured minimization problems of the form

(P) min{f(x) + g(y) : Ax = By}.

In order to find a point that minimizes the map (x, y) 7→ Φ(x, y) = f(x)+g(y) on
the subspace {(x, y) ∈ X × Y , Ax = By} we propose the following alternating
algorithm:

(A)





xn+1 = Argmin
{
γn+1 f(ζ) +

1

2
‖Aζ − Byn‖2Z +

α

2
‖ζ − xn‖2X ; ζ ∈ X

}

yn+1 = Argmin
{
γn+1 g(η) +

1

2
‖Axn+1 −Bη‖2Z +

ν

2
‖η − yn‖2Y ; η ∈ Y

}
,

where α, ν are positive real numbers and (γn) is a positive sequence that tends5

toward 0 as n → +∞. Due to the structured character of the objective function
Φ(x, y) = f(x)+ g(y), alternating algorithms imply a reduction on the size of the
subproblems to be solved at each iteration. Our particular choice of (A) is based
on the following ideas:

a) Alternating algorithms with costs-to-move. Consider the convex function Φγ :
X × Y → R ∪ {+∞} defined by

Φγ(x, y) = f(x) + g(y) +
1

2γ
‖Ax−By‖2Z ,

where γ is a positive real parameter. The minimization of the function Φγ is
studied in [13], where the authors introduce the alternating algorithm with costs-
to-move





xn+1 = Argmin{f(ζ) + 1

2γ
‖Aζ − Byn‖2Z +

α

2
‖ζ − xn‖2X ; ζ ∈ X}

yn+1 = Argmin{g(η) + 1

2γ
‖Axn+1 −Bη‖2Z +

ν

2
‖η − yn‖2Y ; η ∈ Y},

α and ν being positive coefficients. If ArgminΦγ 6= ∅, it is shown in [7] that the
sequence (xn, yn) converges weakly toward a minimum of Φγ . The framework of
[7, 13] extends the one of [1, 19] from the strong coupled problem to the weak
coupled problem with costs-to-change. More precisely, Q(x, y) = ‖x − y‖2Z is a
strong coupling function with X = Y = Z and A = B = I while Q(x, y) =
‖Ax − By‖2Z is now a weak coupling function which allows for asymmetric and
partial relations between the variables x and y. The interest of the weak coupling
term is to cover many situations, ranging from decomposition methods for PDE’s

5 In another direction, algorithm (A) has been recently studied in [23] in the case of a sequence (γn)
increasing toward +∞ as n → +∞.
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to applications in game theory. In decision sciences, the term Q(x, y) = ‖Ax −
By‖2Z allows to consider agents who interplay, only via some components of their
decision variables. For further details, the interested reader is referred to [7].

Observing that problem (P) corresponds formally to the minimization of the
function Φγ with γ → 0, it is natural to consider a vanishing sequence (γn) in
algorithm (A).

b) Prox-penalization methods. Setting Ψ(x, y) = 1
2
‖Ax − By‖2Z and x = (x, y) ∈

X × Y = X , we can rewrite problem (P) as

min{ Φ(x) : x ∈ ArgminΨ }.

This situation is studied in [12, 22], where the authors use a diagonal proximal
point algorithm combined with a penalization scheme. This kind of technique can
be traced back to the pioneering work [16]. The algorithm of [12, 22] applied to
our setting reads as

(A′) xn+1 ∈ Argmin

{
γnΦ(x) + Ψ(x) +

1

2
‖x− xn‖2X

}
.

Under suitable conditions on the sequence (γn), it is shown in [12, 22] that the
iterates of algorithm (A′) converge weakly to a solution of (P).

These ideas lead us to the formulation of algorithm (A), which has the fol-
lowing distinctive marks. First, it uses the structured character of the objective
function to reduce the size of the subproblem solved at each iteration. Second, it
combines proximal iterations with a penalization scheme in a simple way, meaning
that no new nonlinearities are introduced by the latter, unlike most penalization
procedures available in the literature. Consider, for instance, the functions θ de-
scribed in [24] (see also the references therein).

The main result of the paper asserts that if the solution set is nonempty and if
(γn) tends moderately slowly toward 0, then the iterates of (A) weakly converge
toward a solution of (P). When the space R(A) +R(B) is closed in Z, the above

condition on (γn) is satisfied if the sequence
(

1
γn+1

− 1
γn

)
is bounded from above

and if (γn) ∈ l2.
We apply our abstract results to the framework of splitting methods for PDE’s.

For that purpose, we consider a domain Ω ⊂ RN that can be decomposed into two
non overlapping subdomains Ω1, Ω2 with a common interface Γ. The functional
spaces are X = H1(Ω1), Y = H1(Ω2) and Z = L2(Γ), the operators A : X → Z
and B : Y → Z being respectively the trace operators on Γ. The term Au − Bv

corresponds to the jump of the map w =

{
u on Ω1

v on Ω2
through the interface Γ.
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It is shown that algorithm (A) allows to solve some given boundary value prob-
lem on Ω by solving separately mixed Dirichlet-Neumann problems on Ω1 and Ω2.

Finally observe that by writing down the optimality conditions satisfied by the
iterates of algorithm (A), we obtain

{
0 ∈ γn+1 ∂f(xn+1) + A∗(Axn+1 − Byn) + α(xn+1 − xn)
0 ∈ γn+1 ∂g(yn+1) − B∗(Axn+1 − Byn+1) + ν(yn+1 − yn).

This suggests to extend the previous study to the framework of maximal mono-
tone operators, by replacing respectively the subdifferential operators ∂f and ∂g
with two maximal monotone operators M and N . Indeed, in this more general
setting we are able to prove the convergence of the sequence of weighted averages.

The paper is organized as follows. Section 2 is devoted to fix the general setting
and notations that are used throughout the paper. In section 3, we prove a general
result of weak ergodic convergence for the iterates of (A) in a maximal monotone
setting. The key conditions are the closedness of the space R(A) + R(B) and
the assumption (γn) ∈ l2 \ l1. The subdifferential case is analyzed in section 4,
where we establish a result of weak convergence toward a solution of (P). We
also discuss on the robustness of the algorithm with respect to computational
errors. Section 5 presents further convergence results for the strongly coupled
problem without cost-to-move. Finally, the applications to domain decomposition
for PDE’s are illustrated in section 6.

2 General setting and notations

We recall that X ,Y ,Z are real Hilbert spaces respectively endowed with the scalar
products 〈., .〉X , 〈., .〉Y , 〈., .〉Z and the corresponding norms. Let M : X ⇒ X ,
N : Y ⇒ Y be maximal monotone operators such that domM 6= ∅, domN 6= ∅.
Let A : X → Z, B : Y → Z be linear continuous operators with adjoints
A∗ : Z → X and B∗ : Z → Y . Let (γn) be a positive sequence such that
lim

n→+∞
γn = 0. Given positive coefficients α, ν > 0 and initial data (x0, y0) ∈ X×Y ,

let us consider the alternating proximal algorithm defined implicitly by

(A)

{
0 ∈ γn+1Mxn+1 + A∗(Axn+1 −Byn) + α(xn+1 − xn)
0 ∈ γn+1Nyn+1 − B∗(Axn+1 −Byn+1) + ν(yn+1 − yn).

Observe that the linear continuous operator A∗A is maximal monotone, hence
the operator γn+1M + A∗A is also maximal monotone, see for example [20].
Therefore the iterate xn+1 is uniquely defined by Minty’s theorem. The same
holds true for the iterate yn+1.
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Remark 2.1 (Strong coupling without cost-to-move) Assume that X =
Y = Z and that A = B = I, which corresponds to a situation of strong cou-
pling. In this case, algorithm (A) is well-defined even if α = ν = 0. We denote
by (A0) the corresponding algorithm

(A0)

{
0 ∈ γn+1Mxn+1 + xn+1 − yn
0 ∈ γn+1Nyn+1 + yn+1 − xn+1,

that can be equivalently rewritten as

{
xn+1 = (I + γn+1M)−1 yn
yn+1 = (I + γn+1N)−1 xn+1.

It ensues that the sequences (xn) and (yn) satisfy the following recurrence formulae

xn+1 = (I+γn+1M)−1(I+γnN)−1 xn, yn+1 = (I+γn+1N)−1(I+γn+1M)−1 yn.

This scheme consisting of a double backward step has been previously studied by
Passty [31]. Algorithm (A) can be viewed as an extension of iteration (A0), so
that our present paper appears as a continuation of the seminal work [31].

Let X = X ×Y and denote by V the closed subspace {(x, y) ∈ X , Ax = By}.
The normal cone operatorNV takes the constant valueNV ≡ V

⊥ on its domainV .
Setting x = (x, y), define the monotone operators M : X ⇒ X and T : X ⇒ X

respectively by
Mx = (Mx,Ny)

and

Tx = Mx +NV(x) =

{
Mx + V

⊥ if x ∈ V

∅ if x 6∈ V .

We denote by S = T−10 the null set of T. It is also convenient to define the
bounded linear operator

A : X → Z
(x, y) 7→ Ax− By,

and the map
Ψ : X → R

(x, y) 7→ 1
2
‖Ax− By‖2Z .

Recall that the Fenchel conjugate Ψ∗ : X → R∪{+∞} of the map Ψ is defined by
Ψ∗(p) = sup

x∈X {〈p,x〉X −Ψ(x)} for every p ∈ X . The next proposition shows
that domΨ∗ = R(A∗) and gives the expression of the function Ψ∗ on its domain.

Proposition 2.1 With the same notations as above, we have domΨ∗ = R(A∗)
and Ψ∗(A∗z) = 1

2
d2Z (z, Ker(A∗)) for every z ∈ Z.
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Proof. Let us fix p ∈ X . From the definition of Ψ and Ψ∗, we have Ψ∗(p) =
sup

x∈X
{
〈p,x〉X − 1

2
‖Ax‖2Z

}
. This maximization problem can be reformulated as

− inf
x∈X

{F (x) +G(Ax)}, (1)

where F : X → R and G : Z → R are respectively defined by F (x) = −〈p,x〉X
and G(z) = 1

2
‖z‖2Z for every x ∈ X , z ∈ Z. Let us introduce the following

minimization problem

inf
z∗∈Z

{F ∗(−A∗z∗) +G∗(z∗)} = inf
z∗∈Z

{
δ{−p}(−A∗z∗) +

1

2
‖z∗‖2Z

}
(2)

= inf
z∗ ∈ Z

A∗z∗ = p

1

2
‖z∗‖2Z . (3)

Since the functions F and G are convex and continuous, problems (1)-(2) are
dual each to other, see for example [25, Chap. III]. Observing that the Moreau-
Rockafellar qualification condition is satisfied, we derive from [25, Theorem 4.1,
p. 59] that the infimum values of problems (1)-(2) are simultaneously finite and
in this case they coincide. Expression (3) shows that the infimum in (2) is finite if
and only if p ∈ R(A∗). Coming back to problem (1), we deduce that p ∈ domΨ∗

if and only if p ∈ R(A∗). Now assume that p = A∗z for some z ∈ Z. Then we
have

inf
z∗ ∈ Z

A∗z∗ = p

1

2
‖z∗‖2Z = inf

z∗ ∈ Z
z∗ − z ∈ Ker(A∗)

1

2
‖z∗‖2Z =

1

2
d2Z (z, Ker(A∗)) ,

which ends the proof.

3 Maximal monotone framework: ergodic convergence

results

The notations and hypotheses are the same as in the previous section. Given any
initial point (x0, y0) ∈ X , the iterates generated by algorithm (A) are denoted
by (xn, yn), n ∈ N.

3.1 Preliminary results

Let us start with an estimation that is at the core of the convergence analysis.
For (x, y) ∈ X set

hn(x, y) = α‖xn − x‖2X + ν‖yn − y‖2Y + ‖Byn −By‖2Z . (4)

Then we have the following:
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Lemma 3.1 For every (x, y) ∈ V and (ζ, η) ∈ T(x, y), there exists p ∈ V
⊥ such

that

hn+1(x, y)− hn(x, y) + 2γn+1

[
〈ζ, xn+1 − x〉X + 〈η, yn+1 − y〉Y

]

+α‖xn+1 − xn‖2X + ν‖yn+1 − yn‖2Y + ‖Axn+1 −Byn‖2Z ≤ 2 γ2n+1Ψ
∗(p). (5)

Proof. To simplify the notation we set hn = hn(x, y). The definition of (xn+1)
gives

α

γn+1
(xn+1 − xn) +

1

γn+1
A∗(Axn+1 −Byn) ∈ −Mxn+1.

On the other hand since (ζ, η) ∈ T(x, y), there exists p = (p, q) ∈ V
⊥ such that

ζ ∈Mx+ p and η ∈ Ny + q.

In particular, we have p− ζ ∈ −Mx, which by the monotonicity of M implies

α

γn+1
〈xn+1−xn, xn+1−x〉X+

1

γn+1
〈A∗(Axn+1−Byn), xn+1−x〉X ≤ 〈p−ζ, xn+1−x〉X .

This is equivalent to

α‖xn+1 − x‖2X + α‖xn+1 − xn‖2X ≤ α‖xn − x‖2X − 2〈Axn+1 −Byn, Axn+1 −Ax〉Z
+2γn+1〈p, xn+1 − x〉X − 2γn+1〈ζ, xn+1 − x〉X .

In a similar way we obtain

ν‖yn+1 − y‖2Y + ν‖yn+1 − yn‖2Y ≤ ν‖yn − y‖2Y − 2〈Byn+1 − Axn+1, Byn+1 − By〉Z
+2γn+1〈q, yn+1 − y〉Y − 2γn+1〈η, yn+1 − y〉Y .

Using the properties of the inner product and the fact that Ax = By, we let the
reader check that

−2〈Axn+1 − Byn, Axn+1 −Ax〉Z − 2〈Byn+1 − Axn+1, Byn+1 − By〉Z =

‖Byn −By‖2Z − ‖Byn+1 − By‖2Z − ‖Axn+1 − Byn‖2Z − ‖Axn+1 − Byn+1‖2Z .
Since (x, y) ∈ V and p = (p, q) ∈ V

⊥, we have

〈p, xn+1 − x〉X + 〈q, yn+1 − y〉Y = 〈p, xn+1〉X + 〈q, yn+1〉Y = 〈p, (xn+1, yn+1)〉X .
Gathering all this information and writing

cn = hn+1 − hn + 2γn+1 [〈ζ, xn+1 − x〉X + 〈η, yn+1 − y〉Y ]
+ α‖xn+1 − xn‖2X + ν‖yn+1 − yn‖2Y + ‖Axn+1 − Byn‖2Z

we deduce that

cn ≤ 2γn+1〈p, (xn+1, yn+1)〉X − ‖Axn+1 − Byn+1‖2Z
= 2 [〈γn+1p, (xn+1, yn+1)〉X −Ψ(xn+1, yn+1)] .

By definition of Ψ∗, the term between brackets is majorized by Ψ∗(γn+1p). Since
Ψ∗(γn+1p) = γ2n+1Ψ

∗(p), inequality (5) immediately follows.
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In order to exploit inequality (5), we may assume that Ψ∗(p) < +∞ for every
p ∈ V

⊥. In view of Proposition 2.1, this amounts to saying that V⊥ ⊂ domΨ∗ =
R(A∗). Since V⊥ = Ker(A)⊥ = R(A∗), this condition is equivalent to the closed-
ness of the space R(A∗), which is in turn equivalent to the closedness of R(A) in
Z. From now on, we assume in this section that

R(A) = R(A) +R(B) is closed in Z.

By using Lemma 3.1, we now prove the boundedness of the sequence (xn, yn)
along with the summability of the sequences (‖xn+1−xn‖2X ), (‖yn+1− yn‖2Y) and
(‖Axn −Byn‖2Z).
Proposition 3.1 Assume that the space R(A) is closed in Z and that (γn) ∈ l2.
Suppose that the set S is nonempty and let (x, y) ∈ S. We have the following

(i) lim
n→+∞

hn(x, y) exists, hence the sequence (xn, yn) is bounded.

(ii)The sequences (‖xn+1 − xn‖2X ), (‖yn+1 − yn‖2Y) and (‖Axn − Byn‖2Z) are
summable. In particular,

lim
n→+∞

‖xn+1 − xn‖X = lim
n→+∞

‖yn+1 − yn‖Y = lim
n→+∞

‖Axn − Byn‖Z = 0 (6)

and every weak cluster point of the sequence (xn, yn) lies in V.

Proof. (i) Taking (ζ, η) = (0, 0) in inequality (5) and setting hn = hn(x, y), we
obtain

hn+1−hn+α‖xn+1−xn‖2X +ν‖yn+1−yn‖2Y+‖Axn+1−Byn‖2Z ≤ 2γ2n+1Ψ
∗(p). (7)

In particular, hn+1 − hn ≤ 2γ2n+1Ψ
∗(p). Since (γn) ∈ l2 and Ψ∗(p) < +∞,

the following lemma shows that (hn) converges, which in turn implies that the
sequence (xn, yn) is bounded.

Lemma 3.2 Let (an) and (εn) be two real sequences. Assume that (an) is mi-
norized, that (εn) ∈ l1 and that an+1 ≤ an + εn for every n ∈ N. Then (an)
converges.

(ii) Let us sum up inequality (7) from n = 0 to +∞. Recalling that (γn) ∈ l2,
that Ψ∗(p) < +∞ and that hn ≥ 0, we immediately deduce the summability of
the sequences (‖xn+1−xn‖2X ), (‖yn+1−yn‖2Y) and (‖Axn+1−Byn‖2Z). Since ‖Axn−
Byn‖2Z ≤ 2‖Axn+1 − Byn‖2Z + 2‖Axn+1 − Axn‖2Z , the sequence (‖Axn − Byn‖2Z)
is also summable. For the last part use the fact that lim

n→+∞
‖Axn − Byn‖2Z = 0

and the weak lower-semicontinuity of the function (x, y) 7→ ‖Ax− By‖2Z .

Remark 3.1 Proposition 3.1 still holds if one assumes only that R(A∗)∩R(M) ⊂
R(A∗), a condition that is weaker than the closedness of R(A). The reason is that
one uses Lemma 3.1 for (x, y) = (x, y) ∈ S.
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3.2 Ergodic convergence

From now on we assume that (γn) ∈ l2 \ l1. Condition (γn) /∈ l1 is standard
and common to most proximal-type algorithms6. For practical purposes it states
that the sequence (γn) does not tend to 0 too fast as n → +∞. The condition
(γn) ∈ l2 \ l1 expresses that the sequence (γn) tends moderately slowly toward 0.
This kind of assumption appears in several works related to proximal algorithms
involving maximal monotone operators with alternating features. See for example
the seminal work [31] (or also [12] and [22]). In some particular cases it is possible
to obtain convergence of our algorithm under the sole assumption that (γn) /∈
l1 (see Remark 5.1) but this relies strongly on the geometry of the problem.
Finding the general conditions for convergence when (γn) /∈ l2 is an interesting
and challenging open question.

Let us define the averages

x̃n =
1

σn

n∑

k=1

γkxk and ỹn =
1

σn

n∑

k=1

γkyk, (8)

and prove that the sequence (x̃n, ỹn) converges weakly to a point in S.

Theorem 3.1 Assume that the space R(A) is closed in Z and that (γn) ∈ l2 \ l1.
Assume moreover that the operator T is maximal monotone with S = T−10 6= ∅.
Then the sequence (x̃n, ỹn) of averages converges weakly as n → +∞ to a point
in S.

Proof. Let us first prove that every weak cluster point of the sequence (x̃n, ỹn)
is in S. Fix (ζ, η) ∈ T(x, y). By summing up inequality (5) of Lemma 3.1 for
k = 0, . . . , n− 1, we obtain

〈ζ, x̃n − x〉X + 〈η, ỹn − y〉Y ≤ 1

2σn

[
h0(x, y) + 2Ψ∗(p)

n∑

k=1

γ2k

]
.

Let (x̃∞, ỹ∞) be a weak cluster point of (x̃n, ỹn) as n → +∞ and let n tend
to +∞ in the above inequality. By using the fact that Ψ∗(p) < +∞ and that
(γn) ∈ l2 \ l1, we deduce that

〈ζ, x̃∞ − x〉X + 〈η, ỹ∞ − y〉Y ≤ 0. (9)

Since this holds whenever (ζ, η) ∈ T(x, y) we conclude (x̃∞, ỹ∞) ∈ S by maxi-
mality of the monotone operator T.

Now observe that the sequence (x̃n, ỹn) is bounded by Proposition 3.1. In
order to establish the weak convergence of the sequence (x̃n, ỹn) it suffices to

6 When the proximal point algorithm is seen as a discretization of the differential inclusion −ẋ(t) ∈
Ax(t), the partial sums σn =

∑n
k=1 γk have a natural interpretation as discrete times. In this setting,

the condition (γn) /∈ l1 is an analogue for t → +∞.
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prove that it has at most one weak cluster point7. Indeed, let (x, y) and (x′, y′)
be two such points, which must belong to S. Define the quantity Q(u, v) =
α‖u‖2X + ν‖v‖2Y + ‖Bv‖2Z for every (u, v) ∈ X . From Proposition 3.1 (i), the
limits

`(x, y) = lim
n→+∞

Q(xn − x, yn − y) and `(x′, y′) = lim
n→+∞

Q(xn − x′, yn − y′)

exist. Observe that

Q(xn − x, yn − y) = Q(xn − x′, yn − y′) +Q(x− x′, y − y′)

+ 2α〈xn − x′, x′ − x〉X + 2 ν〈yn − y′, y′ − y〉Y
+ 2 〈B(yn − y′), B(y′ − y)〉Z . (10)

Taking the average and letting (x̃nk
, ỹnk

)⇀ (x′, y′) as k → +∞ we obtain

`(x, y) = `(x′, y′) +Q(x− x′, y − y′).

In a similar fashion we deduce that

`(x′, y′) = `(x, y) +Q(x− x′, y − y′)

and hence Q(x− x′, y − y′) = 0 which implies (x, y) = (x′, y′).

3.3 Links with Passty theorem.

Assume that X = Y = Z and that A = B = I, along with α = ν = 0. This
induces a situation of strong coupling without cost-to-move. The corresponding
algorithm is denoted by (A0), see Remark 2.1. Since R(A) = X , the closedness
of R(A) is automatically satisfied. It is immediate that 0 ∈ T(x, y) if and only if
x = y and Mx +Nx 3 0. Therefore we have

S = T−10 =
{
(x, x) ∈ X 2, x ∈ (M +N)−10

}
.

Assume that the operator M + N is maximal monotone with (M + N)−10 6= ∅.
Let (γn) be a positive sequence such that (γn) ∈ l2 \ l1. By arguing as in the proof
of Proposition 3.1, we obtain that

(a) lim
n→+∞

‖yn − y‖2X exists for every y ∈ (M +N)−10.

(b)The sequence (‖xn+1 − yn‖2X ) is summable, hence lim
n→+∞

‖xn+1 − yn‖X = 0.

Take ζ = 0 and x = y in the proof of Theorem 3.1. Observe that (0, η) ∈ T (y, y)
holds if and only if η ∈ (M+N)y. Hence formula (9) implies that 〈η, ỹ∞−y〉Y ≤ 0
for every η ∈ (M +N)y. We deduce that ỹ∞ ∈ (M +N)−10 by maximality of the

7 This idea, inspired by the Opial lemma [30] (see Lemma 4.2 below), can also be found in [31].
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monotone operator M +N . This proves that every weak cluster point of the se-
quence (ỹn) lies in (M+N)−10. Then we prove that the sequence (ỹn) has at most
one weak cluster point. It suffices to adapt the proof of Theorem 3.1 by invoking
point (a) above and by using the quantity Q(v) = ‖v‖2X (instead of Q(u, v)). We
obtain that the sequence (ỹn) weakly converges toward some ỹ∞ ∈ (M +N)−10.
By using point (b) above, we infer that the sequence (x̃n) weakly converges to-
ward x̃∞ = ỹ∞. As a conclusion, we recover the following result

Theorem (Passty [31]) Assume that the operator M +N is maximal monotone
with (M + N)−10 6= ∅. Let (γn) be a positive sequence such that (γn) ∈ l2 \ l1
and let (xn, yn) be any sequence generated by algorithm (A0). Then there exists
x̃∞ ∈ (M + N)−10 such that both sequences of averages (x̃n) and (ỹn) converge
weakly toward x̃∞.

3.4 Strong monotonicity.

Under strong monotonicity assumptions, we are able to prove the strong conver-
gence of the sequence (xn, yn) itself (not only in average). Let us recall that the
operator M is said to be strongly monotone with parameter a if, for every x1,
x2 ∈ domM and every ξ1 ∈Mx1, ξ2 ∈Mx2, we have

〈ξ2 − ξ1, x2 − x1〉X ≥ a ‖x2 − x1‖2X .

Assuming in the same way that the operator N is strongly monotone, we obtain
that the operators M and T = M+NV are strongly monotone. Hence if the set
S = T−10 is nonempty it must be reduced to a single point, say S = {(x, y)}.

Proposition 3.2 Assume that the space R(A) is closed in Z and that (γn) ∈
l2 \ l1. If the operators M and N are strongly monotone and if S 6= ∅ then the
sequence (xn, yn) converges strongly to the unique (x, y) ∈ S.

Proof. Let us suppose that the operators M and N are strongly monotone, res-
pectively with parameters a, b > 0. We let the reader check that this assumption
leads to a stronger form of inequality (5), which in turn implies

hn+1(x, y)− hn(x, y) + 2aγn+1‖xn+1 − x‖2X + 2bγn+1‖yn+1 − y‖2Y ≤ 2γ2n+1Ψ
∗(p).

Since (γn) ∈ l2 and Ψ∗(p) < +∞, and recalling that hn(x, y) ≥ 0, the summation
of the above inequality implies

+∞∑

n=1

γn
[
‖xn − x‖2X + ‖yn − y‖2Y

]
< +∞

and hence
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+∞∑

n=1

γnhn(x, y) ≤ α

+∞∑

n=1

γn‖xn − x‖2X + (ν + ‖B‖2)
+∞∑

n=1

γn‖yn − y‖2Y < +∞.

Since (γn) 6∈ l1 and since lim
n→+∞

hn(x, y) exists, this limit must be equal to 0 and

we deduce that lim
n→+∞

(xn, yn) = (x, y).

Remark 3.2 Observe that the maximality of the operator T does not come into
play in the previous proof. Notice also that if the operator T is both maximal
and strongly monotone, then condition S 6= ∅ is automatically satisfied, see for
example [20, Cor. 2.4] or [36, Prop. 12. 54].

4 The subdifferential case: weak convergence results

4.1 Preliminaries

Let f : X → R ∪ {+∞}, g : Y → R ∪ {+∞} be closed convex proper functions.
Define the maximal monotone operators M and N respectively by M = ∂f
and N = ∂g. The operator M coincides with the subdifferential of the function Φ
defined by Φ(x, y) = f(x)+g(y) for every (x, y) ∈ X . Observe that the monotone
operator T = ∂Φ +NV = ∂Φ + ∂δV is maximal if, and only if,

∂Φ + ∂δV = ∂ (Φ + δV) .

Maximality is guaranteed if one assumes some qualification condition such as
the Moreau-Rockafellar one [29, 34] or the Attouch-Brézis one [8]. In order to
cover various applications to PDE’s (see paragraph 6.2), we assume the following
Attouch-Brézis qualification condition

(QC)
⋃

λ>0

λ(domf × domg −V) is a closed subspace of X × Y .

Under (QC) the following claim shows that the set S = T−10 can be interpreted
as the set of minima of a suitable function.

Claim 4.1 We have

S ⊂ ArgminVΦ = Argmin{f(x) + g(y) : Ax = By}.
If condition (QC) is satisfied, the above inclusion holds true as an equality.

Proof. First recall that the inclusion ∂Φ + ∂δV ⊂ ∂ (Φ + δV) is always satisfied.
It ensues immediately that

S = T−10 = [∂Φ + ∂δV ]
−1 0 ⊂ [∂ (Φ + δV)]

−1 0 = ArgminVΦ.

If condition (QC) is satisfied, the set
⋃

λ>0 λ(domΦ−domδV) is a closed subspace
of X . This classically implies that ∂Φ + ∂δV = ∂(Φ + δV) and the conclusion
follows.
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Recall that the iterate (xn+1, yn+1) of algorithm (A) is implicitly defined by

{
0 ∈ γn+1 ∂f(xn+1) + A∗(Axn+1 −Byn) +α(xn+1 − xn)
0 ∈ γn+1 ∂g(yn+1)− B∗(Axn+1 − Byn+1)+ν(yn+1 − yn).

(11)

These are the optimality conditions associated to the following minimization prob-
lems

(A)





xn+1 = Argmin{γn+1f(ζ) +
1

2
‖Aζ − Byn‖2Z +

α

2
‖ζ − xn‖2X ; ζ ∈ X}

yn+1 = Argmin{γn+1g(η) +
1

2
‖Axn+1 − Bη‖2Z +

ν

2
‖η − yn‖2Y ; η ∈ Y}.

For each (x, y) ∈ X , define

hn(x, y) = α‖xn − x‖2X + ν‖yn − y‖2Y + ‖Byn − By‖2Z (12)

as in section 3. Define also the sequence (ϕn) by

ϕn = f(xn) + g(yn) +
1

2γn
‖Axn −Byn‖2Z . (13)

Lemma 4.1 With the above notations and hypotheses, we have the following8

(i) For every (x, y) ∈ ArgminVΦ and for every n ≥ 0,

hn+1(x, y)− hn(x, y) + 2γn+1

(
f(xn+1) + g(yn+1)−min

V
Φ
)
+ ‖Axn+1 − Byn+1‖2Z

+‖Axn+1 −Byn‖2Z + α‖xn+1 − xn‖2X + ν‖yn+1 − yn‖2Y ≤ 0.(14)

(ii)For every n ≥ 0,

ϕn+1 − ϕn ≤ 1

2

(
1

γn+1
− 1

γn

)
‖Axn −Byn‖2Z . (15)

Proof. In view of the optimality conditions (11), for all (x, y) ∈ X × Y we can
write the subdifferential inequalities

γn+1 (f(x)−f(xn+1)) ≥ −〈Axn+1−Byn, Ax−Axn+1〉Z −α〈xn+1−xn, x−xn+1〉X
(16)

and

γn+1 (g(y)− g(yn+1)) ≥ 〈Axn+1−Byn+1, By−Byn+1〉Z − ν〈yn+1− yn, y− yn+1〉Y .
(17)

Using the properties of the inner product the reader can check that

8 Inequalities (5) and (14) are closely related, even if they rely on different techniques (monotonicity
in the first case and subdifferential inequalities in the second one).
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‖By − Byn‖2Z − ‖By − Byn+1‖2Z = ‖Byn+1 − Axn+1‖2Z − ‖By −Ax‖2Z
+‖By −Ax− (Byn − Axn+1)‖2Z
+2〈By − Byn+1, Byn+1 − Axn+1〉Z
+2〈Byn −Axn+1, Axn+1 −Ax〉Z .

Combining (16) and (17) we deduce that

‖By − Byn‖2Z − ‖By −Byn+1‖2Z
≥ ‖Byn+1 − Axn+1‖2Z − ‖By −Ax‖2Z + ‖By − Ax− (Byn − Axn+1)‖2Z

+2γn+1 [f(xn+1)− f(x) + g(yn+1)− g(y)]

+ 2α〈xn+1 − xn, xn+1 − x〉X + 2ν〈yn+1 − yn, yn+1 − y〉Y
= ‖Axn+1 − Byn+1‖2Z − ‖Ax− By‖2Z + ‖By − Ax− (Byn − Axn+1)‖2Z

+2γn+1(f(xn+1) + g(yn+1)− f(x)− g(y))

+α(‖xn+1 − xn‖2X + ‖xn+1 − x‖2X − ‖xn − x‖2X )
+ ν(‖yn+1 − yn‖2Y + ‖yn+1 − y‖2Y − ‖yn − y‖2Y).

We infer that for all (x, y) ∈ X × Y ,

hn(x, y)− hn+1(x, y) ≥ 2γn+1(f(xn+1) + g(yn+1)− f(x)− g(y))− ‖Ax−By‖2Z
+ ‖Axn+1 − Byn+1‖2Z + ‖By − Ax− (Byn −Axn+1)‖2Z
+α‖xn+1 − xn‖2X + ν‖yn+1 − yn‖2Y . (18)

Now let (x, y) ∈ ArgminVΦ. Then Ax = By and f(x) + g(y) = minV Φ so that
inequality (18) becomes (14). On the other hand, by using inequality (18) with
x = xn and y = yn, we infer that

2γn+1(f(xn+1)+ g(yn+1)− f(xn)− g(yn))+ ‖Axn+1−Byn+1‖2Z ≤ ‖Axn −Byn‖2Z .
(19)

We finally divide by 2γn+1 and rearrange the terms to obtain (15).

4.2 Weak convergence

Assuming that ArgminVΦ 6= ∅, let us set

ωn = inf
(x,y)∈X×Y

{
1

2
‖Ax− By‖2Z + γn

(
f(x) + g(y)−min

V
Φ
)}

= inf
x∈X

{
Ψ(x) + γn

(
Φ(x)−min

V
Φ
)}

. (20)

Denote by (ω−
n ) the negative part of (ωn). In the sequel, we will assume the key

condition
(ω−

n ) ∈ l1.

This kind of hypothesis was introduced by the second author in [22].
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Proposition 4.1 Assuming that ArgminVΦ 6= ∅, consider the following asser-
tions:

(i) (γn) ∈ l2, the space R(A) is closed in Z and condition (QC) is satisfied.
(ii)(γn) ∈ l2 and there exists x ∈ V and p ∈ R(A∗) such that −p ∈ ∂Φ(x)9.
(iii)(ω−

n ) ∈ l1.

Then we have the implications (i) =⇒ (ii) =⇒ (iii).

Proof. (i) =⇒ (ii) Let x ∈ ArgminVΦ. Since condition (QC) is satisfied, we

deduce from Claim 4.1 that x ∈ S =
[
∂Φ + V

⊥]−1
0. Hence there exists p ∈ V

⊥

such that −p ∈ ∂Φ(x). The closedness of R(A) implies the closedness of R(A∗),
hence we have V

⊥ = Ker(A)⊥ = R(A∗) and finally p ∈ R(A∗).
(ii) =⇒ (iii) The subdifferential inequality gives for every x ∈ X ,

Φ(x)− Φ(x) ≥ 〈−p,x− x〉X = 〈−p,x〉X ,

where the last equality is a consequence of p ∈ R(A∗) ⊂ V
⊥ and x ∈ V . Since

Φ(x) = minV Φ, we deduce that

Ψ(x) + γn

(
Φ(x)−min

V
Φ
)
≥ Ψ(x)− γn〈p,x〉X .

Taking the infimum over x ∈ X , we find

ωn ≥ − sup
x∈X

{γn〈p,x〉X −Ψ(x)} = −Ψ∗(γnp) = −γ2nΨ∗(p).

It ensues that ω−
n ≤ γ2nΨ

∗(p). Since p ∈ R(A∗) = domΨ∗ (see Proposition 2.1),
the conclusion follows from the summability of (γ2n).

Notice that in infinite dimensional spaces, conditions (ii) or (iii) can be satisfied
even if the space R(A) is not closed. An example will be provided in the last
section.

Let us now state the main result of the paper.

Theorem 4.1 Let f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} be closed
convex proper functions. Let A : X → Z and B : Y → Z be linear contin-
uous operators. Assume that the qualification condition (QC) holds and that
Argmin{f(x) + g(y) : Ax = By} 6= ∅. Let (γn) be a positive sequence such

that
(

1
γn+1

− 1
γn

)
is majorized by some M > 0. Finally suppose that condition

(ω−
n ) ∈ l1 holds, where the sequence (ωn) is defined by (20). Then we have

(i) (xn, yn) converges weakly to a point (x∞, y∞) ∈ Argmin{f(x)+g(y) : Ax = By}.
(ii) lim

n→+∞
f(xn) = f(x∞) and lim

n→+∞
g(yn) = g(y∞).

9 The corresponding z ∈ Z such that p = A∗z plays the role of a Lagrange multiplier.
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Proof. Let us start with several preliminary claims.

Claim 4.2 For every (x, y) ∈ ArgminVΦ,

lim
n→+∞

α‖xn − x‖2X + ν‖yn − y‖2Y + ‖Byn −By‖2Z exists in R.

Proof of Claim 4.2. Fix (x, y) ∈ ArgminVΦ and set hn = α‖xn − x‖2X + ν‖yn −
y‖2Y + ‖Byn − By‖2Z as in (12). From inequality (14) we deduce that

hn+1 − hn + 2ωn+1 + ‖Axn+1 −Byn‖2Z + α‖xn+1 − xn‖2X + ν‖yn+1 − yn‖2Y ≤ 0.

This implies

hn+1 − hn + ‖Axn+1 − Byn‖2Z + α‖xn+1 − xn‖2X + ν‖yn+1 − yn‖2Y ≤ 2ω−
n+1.(21)

It ensues that hn+1 − hn ≤ 2ω−
n+1. Since (ω−

n ) ∈ l1, owing to Lemma 3.2, we
conclude that lim

n→+∞
hn exists. ut

Claim 4.3 The sequence (‖Axn−Byn‖2Z) is summable, and therefore limn→+∞ ‖Axn−
Byn‖Z = 0.

Proof of Claim 4.3. Let us sum up inequalities (21) which are obtained for n = 0
to +∞. Recalling that (ω−

n ) ∈ l1 and that hn ≥ 0, we immediately deduce the
summability of the sequences (‖xn+1 − xn‖2X ), (‖yn+1 − yn‖2Y) and (‖Axn+1 −
Byn‖2Z). Since ‖Axn − Byn‖2Z ≤ 2‖Axn+1 − Byn‖2Z + 2‖Axn+1 − Axn‖2Z , the
sequence (‖Axn − Byn‖2Z) is also summable. ut

Claim 4.4 Setting ϕn = f(xn) + g(yn) +
1

2γn
‖Axn − Byn‖2Z as in (13), we have

lim
n→+∞

ϕn = minV Φ.

Proof of Claim 4.4. Since
(

1
γn+1

− 1
γn

)
≤M , we derive from inequality (15) that

ϕn+1 − ϕn ≤ M

2
‖Axn − Byn‖2Z . (22)

From the previous claim the sequence (‖Axn−Byn‖2Z) is summable. By applying
Lemma 3.2 we deduce that the sequence (ϕn) converges. Let us now set

aN = 2
N∑

n=0

{
γn

(
f(xn) + g(yn)−min

V
Φ
)
+

1

2
‖Axn − Byn‖2Z

}
.

From inequality (14), the sequence (hN + aN ) is nonincreasing. Moreover the
assumption (ω−

n ) ∈ l1 allows us to assert that, for all n ∈ N,

aN ≥ −2
+∞∑

n=0

ω−
n > −∞.
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Thus the sequence (hN + aN) is bounded from below, hence convergent. As a
consequence,

lim
N→+∞

aN = lim
N→+∞

2
N∑

n=0

γn

(
ϕn −min

V
Φ
)

exists in R. (23)

Since 1
γn+1

− 1
γn

≤M for every n ≥ 0, we deduce that γn ≥ 1
Mn+ 1

γ0

, hence (γn) /∈ l1.

Recalling that lim
n→+∞

ϕn exists in R, we infer from (23) that lim
n→+∞

ϕn = minV Φ.

ut

Claim 4.5 lim
n→+∞

Φ(xn, yn) = minV Φ.

Proof of Claim 4.5. Let (x, y) ∈ ArgminVΦ. Since condition (QC) holds, we
deduce from Claim 4.1 that (x, y) ∈ S = T−10. Hence there exists (p, q) ∈ V

⊥

such that −(p, q) ∈ ∂Φ(x, y). The convex subdifferential inequality then gives

Φ(xn, yn) ≥ Φ(x, y) + 〈−(p, q), (xn, yn)− (x, y)〉X×Y

= min
V

Φ− 〈(p, q), (xn, yn)〉X×Y . (24)

Let us prove that lim
n→+∞

〈(p, q), (xn, yn)〉X×Y = 0. From Claim 4.2 the sequence

(xn, yn) is bounded, hence it suffices to prove that 0 is the unique limit point of(
〈(p, q), (xn, yn)〉X×Y

)
. Let

(
〈(p, q), (xnk

, ynk
)〉X×Y

)
be a convergent subsequence.

We can extract a subsequence of (xnk
, ynk

), still denoted by (xnk
, ynk

), which
weakly converges toward (x, y). The weak lower semicontinuity of the function
(x, y) 7→ ‖Ax−By‖2Z combined with Claim 4.3 implies that

‖Ax−By‖2Z ≤ lim inf
k→+∞

‖Axnk
−Bynk

‖2Z = lim
n→+∞

‖Axn − Byn‖2Z = 0,

hence (x, y) ∈ V . Recalling that (p, q) ∈ V
⊥, we infer that

lim
k→+∞

〈(p, q), (xnk
, ynk

)〉X×Y = 〈(p, q), (x, y)〉X×Y = 0.

We immediately deduce that the whole sequence
(
〈(p, q), (xn, yn)〉X×Y

)
converges

toward 0. Hence from (24) we obtain that lim inf
n→+∞

Φ(xn, yn) ≥ minV Φ. On the

other hand, since Φ(xn, yn) ≤ ϕn, we have in view of Claim 4.4

lim sup
n→+∞

Φ(xn, yn) ≤ lim
n→+∞

ϕn = min
V

Φ.

We conclude that lim
n→+∞

Φ(xn, yn) = minV Φ.

The proof of (i) relies on the Opial’s lemma [30], that we recall for the sake of
completeness.
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Lemma 4.2 (Opial) Let H be a Hilbert space endowed with the norm N . Let
(ξn) be a sequence of H such that there exists a nonempty set Ξ ⊂ H which verifies

(a)for all ξ ∈ Ξ, lim
n→+∞

N(ξn − ξ) exists,

(b)if (ξnk
)⇀ ξ weakly in H as k → +∞, we have ξ ∈ Ξ.

Then the sequence (ξn) weakly converges in H as n→ +∞ toward a point of Ξ.

Let us define the norm N(u, v) =
[
α‖u‖2X + ν‖v‖2Y + ‖Bv‖2Z

]1/2
on the space

X ×Y . Since the linear operator B is continuous, the norm N is equivalent to the
canonical norm on X×Y . In view of Claim 4.2, the quantity N(xn−x, yn−y) does
have a limit as n → +∞ for every (x, y) ∈ ArgminVΦ, which shows point (a).
Let (xnk

, ynk
) be a subsequence of (xn, yn) which weakly converges towards (x, y).

The weak lower semicontinuity of the function (x, y) 7→ ‖Ax − By‖2Z combined
with Claim 4.3 implies that

‖Ax−By‖2Z ≤ lim inf
k→+∞

‖Axnk
−Bynk

‖2Z = lim
n→+∞

‖Axn − Byn‖2Z = 0,

hence (x, y) ∈ V . In the same way, using Claim 4.5 and the weak lower semicon-
tinuity of Φ, we infer that (x, y) ∈ ArgminVΦ. This shows point (b) of Opial’s
lemma and ends the proof of (i).

Let us now prove that lim
n→+∞

f(xn) = f(x∞). Using the weak lower semiconti-

nuity of f , we have f(x∞) ≤ lim inf
n→+∞

f(xn). On the other hand, we deduce from

Claim 4.5 that

lim sup
n→+∞

f(xn) = lim sup
n→+∞

(f(xn) + g(yn)− g(yn))

= f(x∞) + g(y∞)− lim inf
n→+∞

g(yn).

By the weak lower semicontinuity of g, we have g(y∞) ≤ lim inf
n→+∞

g(yn). We infer

that lim sup
n→+∞

f(xn) ≤ f(x∞), and finally lim
n→+∞

f(xn) = f(x∞). In the same way,

we have lim
n→+∞

g(yn) = g(y∞), which ends the proof of (ii).

4.3 Inexact computation of the iterates

Due to the implicit character of the iterations it is important to account for pos-
sible computation errors in their implementation. The optimality conditions (11)
defining xn+1 and yn+1 can be relaxed without losing the convergence properties
of the algorithm. Suppose the sequences (x̃n) and (ỹn) satisfy

{
0 ∈ γn+1 ∂εn+1f(x̃n+1) + A∗(Ax̃n+1 − Bỹn) +α(x̃n+1 − x̃n)
0 ∈ γn+1 ∂εn+1g(ỹn+1)−B∗(Ax̃n+1 −Bỹn+1)+ν(ỹn+1 − ỹn),

(25)
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where ∂ε denotes the approximate ε-subdifferential10.
The arguments in the proof of Lemma 4.1 give an additional term 4γn+1εn+1 on

the right-hand side of inequality (14) and an additional 2εn+1 on the right-hand
side of (15). As a consequence, Claims 4.2 and 4.3 remain true if

∑∞
n=1 γnεn <

+∞. Claims 4.4 and 4.5 also hold if
∑∞

n=1 εn < +∞.

Corollary 4.1 Theorem 4.1 holds under the same hypotheses if the iterates sat-
isfy (25) instead of (11) provided (εn) ∈ l1.

There is a rich literature regarding the treatment of errors in proximal-type
algorithms. The interested reader may consult [35], [15] or [37]. See also [6] for
an alternative approach to computational errors.

5 Further convergence results for strongly coupled
problems

In this section, we assume that X = Y = Z and that A = B = I, along with
α = ν = 0. Given closed convex functions f , g : X → R ∪ {+∞}, consider the
following particular case11 of algorithm (A)

(A0)





xn+1 = Argmin
{
γn+1 f(ζ) +

1

2
‖ζ − yn‖2X ; ζ ∈ X

}

yn+1 = Argmin
{
γn+1 g(η) +

1

2
‖xn+1 − η‖2X ; η ∈ X

}
.

Using the same notations as in the previous sections, we have

V = {(x, x); x ∈ X} and ArgminVΦ = {(x, x); x ∈ Argmin(f + g)}.

Let us first start with an example.

Example 5.1 Take X = R and define the functions f , g : R → R respectively
by f(x) = 1

2
(x − 1)2 and g(y) = 1

2
(y + 1)2. We then have Argmin(f + g) = {0}.

By writing down the optimality conditions for algorithm (A0), we immediately
obtain the following recurrence formulae (see also Remark 2.1)

{
γn+1(xn+1 − 1) + xn+1 − yn = 0

γn+1(yn+1 + 1) + yn+1 − xn+1 = 0.

We infer that

yn+1 =
1

(1 + γn+1)2
yn −

γ2n+1

(1 + γn+1)2
.

10 In Hilbert space H, given ε > 0 and F : H → R ∪ {+∞}, the approximate ε-subdifferential of F at
ξ is defined by ∂εF (ξ) = {ξ∗ ∈ H : F (ζ) ≥ F (ξ) + 〈ξ∗, ζ − ξ〉 − ε ∀ζ ∈ H}.

11 See Remark 2.1, where algorithm (A0) has been introduced in the framework of maximal monotone
operators.
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Let us set an = 1
(1+γn+1)2

and bn =
γ2
n+1

(1+γn+1)2
. We deduce from the above equality

that |yn+1| ≤ an|yn|+ bn. To prove the convergence of the sequence (yn), we use
the following lemma borrowed from [32, Lemma 3, p. 45].

Lemma 5.1 Let (an) and (bn) be real sequences such that 0 ≤ an < 1 and bn ≥ 0
for every n ∈ N. Assume moreover that (1−an) /∈ l1 and that limn→+∞

bn
1−an

= 0.
Let (un) be a real sequence such that un+1 ≤ anun + bn for every n ∈ N. Then we
have lim supn→+∞ un ≤ 0.

It is easy to check that, if the sequence (γn) is not summable, then the sequence
(1−an) is not summable. Moreover we have limn→+∞

bn
1−an

= limn→+∞
γn+1

2+γn+1
= 0.

Thus the previous lemma implies that lim supn→+∞ |yn| ≤ 0, hence limn→+∞ yn = 0.
Finally we have proved that if (γn) /∈ l1 then limn→+∞(xn, yn) = (0, 0).

It is worthwhile noticing that the assumption (γn) ∈ l2 does not come into play
in the above example. This is in fact a consequence of a general result that will be
brought to light by Theorem 5.1 (i), see also Remark 5.1. Before stating Theorem
5.1, we need the following preliminary result.

Proposition 5.1 Let f , g : X → R ∪ {+∞} be closed convex functions which
are bounded from below and such that domf ∩ domg 6= ∅. Let (γn) be a positive
nonincreasing sequence such that limn→∞ γn = 0. Then any sequence (xn, yn)
generated by (A0) satisfies limn→+∞ ‖xn − yn‖X = 0.

Proof. Let us define the sequence (ψn) by

ψn = γn
(
f(xn) + g(yn)

)
+

1

2
‖xn − yn‖2X . (26)

We have

ψn ≥ γn inf Φ +
1

2
‖xn − yn‖2X , (27)

hence the sequence (ψn − γn inf Φ) is nonnegative. By using inequality (19) with
A = B = I, we deduce that, for every n ∈ N,

ψn+1 − ψn ≤ (γn+1 − γn) inf Φ.

This shows that the sequence (ψn − γn inf Φ) is nonincreasing, hence convergent.
Since limn→+∞ γn = 0, the sequence (ψn) also converges. Let us apply inequality
(18) with A = B = I, α = ν = 0 and x = y; we find for all x ∈ domf ∩domg 6= ∅,

2ψn+1 − 2γn+1(f(x) + g(x)) ≤ ‖yn − x‖2X − ‖yn+1 − x‖2X .

By summing the above inequalities for n = 0, ..., N , we obtain

2
N∑

n=0

[ψn+1 − γn+1(f(x) + g(x))] ≤ ‖y0 − x‖2X .
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Since this is true for every N ∈ N, we derive that

lim inf
n→+∞

[
ψn+1 − γn+1(f(x) + g(x))

]
≤ 0.

But both terms are convergent, so we have limn→+∞ ψn ≤ 0. From (27) we im-
mediately deduce that lim

n→+∞
‖xn − yn‖2X = 0.

The approach that we now develop relies on topological ingredients that can
already be found in [5, 10, 18, 22]. The result below shows that if (γn) /∈ l1 and
lim

n→+∞
γn = 0, the iterates xn, yn of algorithm (A0) approach the set Argmin(f+g)

as n→ +∞. Weak convergence is obtained under the extra assumption (γn) ∈ l2.
In the next statement, we denote by d

(
·,Argmin(f + g)

)
the distance function to

the set Argmin(f + g).

Theorem 5.1 Let f, g : X → R ∪ {+∞} be closed convex functions which are
bounded from below. Assume that either f or g is inf-compact12. Let (γn) be a
positive nonincreasing sequence such that (γn) /∈ l1 and lim

n→+∞
γn = 0. Finally, let

(xn, yn) be a sequence generated by (A0). Then

(i) lim
n→+∞

dX
(
xn,Argmin(f + g)

)
= lim

n→+∞
dX
(
yn,Argmin(f + g)

)
= 0.

(ii)If (γn) ∈ l2, and if condition (QC) is satisfied13, then the sequence (xn, yn)
converges weakly to a point (x, x) with x ∈ Argmin(f + g).

(iii)If moreover the sequence
(

1
γn+1

− 1
γn

)
is majorized by some M > 0, then the

sequence (xn, yn) converges strongly in X .

Proof. First, if domf∩domg = ∅ then Argmin(f+g) = X , condition (QC) cannot
hold and the result is trivial. Hence we assume domf ∩ domg 6= ∅. We can also
assume that the function f is inf-compact. Since the function g is bounded from
below, we derive that the function f+g is inf-compact, hence Argmin(f+g) 6= ∅.
(i) In view of Proposition 5.1, it suffices to prove that lim

n→+∞
dX
(
yn,Argmin(f +

g)
)
= 0. Set A = B = I and α = ν = 0 in inequality (14) to deduce that for

every y ∈ Argmin(f + g) and every n ∈ N we have

‖yn+1− y‖2X −‖yn− y‖2X +2γn+1

(
Φ(xn+1, yn+1)−min

V
Φ
)
+ ‖xn+1− yn+1‖2X ≤ 0.

(28)

12 Recall that a function is said to be inf-compact if its sublevel sets are relatively compact.
13 In our present setting, it is easy to check that condition (QC) is satisfied if and only if

⋃

λ>0

λ(domf − domg) is a closed subspace of X .

This is precisely the Attouch-Brézis condition, which ensures that ∂f + ∂g = ∂(f + g) and hence
(∂f + ∂g)−10 = Argmin(f + g).
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Let P denote the projection operator onto the closed convex set Argmin(f + g)
and take y = P (yn). Setting un = d2X

(
yn,Argmin(f + g)

)
, we derive from (28)

that
un+1 − un + 2γn+1

(
Φ(xn+1, yn+1)−min

V
Φ
)
≤ 0. (29)

We now follow the same arguments as those used by the second author in [22,
Theorem 3.1]. We distinguish two cases:

(a)There exists n0 ∈ N such that for all n ≥ n0, Φ(xn, yn) > minV Φ.
(b)For all n0 ∈ N, there exists n ≥ n0 such that Φ(xn, yn) ≤ minV Φ.

Case (a). Assume there exists n0 ∈ N such that for all n ≥ n0, Φ(xn, yn) >
minV Φ. From inequality (29), we deduce that the sequence (un)n≥n0 is nonincreas-
ing and convergent. We must prove that limn→+∞ un = 0. Using again inequality
(29), we can assert that the sequence (γn(Φ(xn, yn)−minV Φ)) is summable. More-
over, since (γn) /∈ l1, we have lim infn→+∞Φ(xn, yn) = minV Φ. Consider a subse-
quence of (xn, yn), still denoted by (xn, yn), such that lim

n→+∞
Φ(xn, yn) = minV Φ.

Since the function g is bounded from below, the sequence (f(xn)) is majorized.
Using the inf-compactness of the map f , we obtain that the sequence (xn) is
relatively compact in X . Thus there exist a subsequence (xnk

) along with x ∈ X
such that lim

k→+∞
xnk

= x strongly in X . In view of Proposition 5.1 we also have

lim
k→+∞

ynk
= x strongly in X . The closedness of the function Φ allows to assert

that Φ(x, x) ≤ lim infk→+∞Φ(xnk
, ynk

) = minV Φ. Hence (x, x) ∈ ArgminVΦ,
i.e. x ∈ Argmin(f + g). Thus

lim
k→+∞

unk
= lim

n→+∞
d2X (ynk

,Argmin(f + g)) = d2X (x,Argmin(f + g)) = 0.

Recalling that the sequence (un) is convergent, we conclude that lim
n→+∞

un = 0.

Case (b). We assume that for all n0 ∈ N there exists n ≥ n0 such that Φ(xn, yn) ≤
minV Φ. Let us define

τN = max{n ∈ N, n ≤ N and Φ(xn, yn) ≤ min
V

Φ}.

The integer τN is well-defined for N large enough and limN→+∞ τN = ∞. If
τN < N inequality (29) implies un+1 ≤ un whenever τN ≤ n ≤ N − 1. In
particular,

uN ≤ uτN . (30)

Notice that if τN = N this inequality is still true. Therefore it suffices to prove
that lim

n→+∞
uτn = 0. First observe that Φ(xτn , yτn) ≤ minV Φ for all sufficiently

large n by definition. We deduce, as before, that the sequence (xτn) is relatively
compact, hence bounded in X . In view of Proposition 5.1, the sequence (yτn)
is also bounded in X , whence the boundedness of the real sequence (uτn). The
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proof will be complete if we verify that every convergent subsequence of (uτn) must
vanish. Indeed, assume that lim

k→+∞
uτnk

exists. We may assume, upon passing to a

subsequence if necessary, that limk→+∞ xτnk
= limk→+∞ yτnk

= x for some x ∈ X .
The closedness of Φ then gives

Φ(x, x) ≤ lim inf
k→∞

Φ(xτnk
, yτnk

) ≤ min
V

Φ,

which implies (x, x) ∈ ArgminVΦ. As before, this implies lim
k→+∞

uτnk
= 0 and we

deduce that the whole sequence (uτn) converges toward 0. Then inequality (30)
shows that limn→+∞ un = 0.

(ii) Let us assume that (γn) ∈ l2 and that condition (QC) is satisfied. Observe
that R(A) + R(B) = R(I) = X , so the closedness of the space R(A) + R(B) is
fulfilled. By Proposition 4.1, the sequence (ωn) defined by

ωn = inf
(x,y)∈X 2

{
1

2
‖x− y‖2X + γn

(
f(x) + g(y)−min

V
Φ
)}

satisfies (ω−
n ) ∈ l1. Let y ∈ Argmin(f + g). From inequality (28), we obtain

‖yn+1 − y‖2X − ‖yn − y‖2X ≤ 2ω−
n+1.

Since (ω−
n ) ∈ l1 this implies in view of Lemma 3.2 that

∀y ∈ Argmin(f + g), lim
n→+∞

‖yn − y‖2X exists. (31)

On the other hand, recalling that lim
n→+∞

dX (yn,Argmin(f + g)) = 0, every weak

cluster point of the sequence (yn) lies in Argmin(f + g). We infer from Lemma
4.2 that the sequence (yn) weakly converges toward some point in Argmin(f +g).
Finally Proposition 5.1 shows that the sequences (xn) and (yn) tend weakly to-
ward the same limit.

(iii) Let us first prove that the sequence (ϕn) defined by formula (13) is
bounded. By applying inequality (18) with A = B = I, α = ν = 0 and
(x, y) = (xn, yn), we easily find

ϕn+1−ϕn+
1

2 γn+1

(
‖xn+1 − xn‖2X + ‖yn+1 − yn‖2X

)
≤ 1

2

(
1

γn+1
− 1

γn

)
‖xn−yn‖2X .

(32)
Observe that this inequality is slightly more precise than (15), where two terms
were omitted. Since 1

γn+1
− 1

γn
≤ M by assumption and since ‖xn − yn‖2X ≤

2 ‖xn+1 − yn‖2X + 2 ‖xn+1 − xn‖2X , inequality (32) implies

ϕn+1 − ϕn +
1

2 γn+1
‖xn+1 − xn‖2X ≤M

(
‖xn+1 − yn‖2X + ‖xn+1 − xn‖2X

)
.
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From the fact that limn→+∞ γn = 0, we immediately derive that for n large enough

ϕn+1 − ϕn ≤ M ‖xn+1 − yn‖2X . (33)

Recall that the sequence (ω−
n ) is summable, see the proof of (ii). The summability

of (‖xn+1 − yn‖2X ) is then an immediate consequence of inequality (21), with
A = B = I and α = ν = 0. In view of (33), we infer from Lemma 3.2 that
the sequence (ϕn) is convergent, hence bounded. Since the function g is bounded
from below, the sequence (f(xn)) is majorized. The inf-compactness of f allows
to deduce that the sequence (xn) is relatively compact in X . Hence there exists
x ∈ X along with a subsequence (xnk

) such that limk→+∞ xnk
= x strongly in

X . From Proposition 5.1, we also have limk→+∞ ynk
= x strongly in X . In view

of (i), it is clear that x ∈ Argmin(f + g). Taking y = x in assertion (31), we
deduce that limn→+∞ ‖yn−x‖X = 0. Owing to Proposition 5.1, we conclude that
limn→+∞ xn = limn→+∞ yn = x strongly in X .

Remark 5.1 Observe that if Argmin(f + g) = {ξ}, Theorem 5.1 (i) shows that
any sequence generated by (A0) converges strongly to (ξ, ξ), even if (γn) /∈ l2.

Remark 5.2 No qualification condition is required in the proof of Theorem 5.1
(i), which is a distinctive mark with respect to the proof of Theorem 4.1 (see
specially Claim 4.5).

Remark 5.3 Recall from Remark 2.1 that the iterates of algorithm (A0) satisfy
the following equalities

xn+1 = (I + γn+1 ∂f)
−1(I + γn ∂g)

−1 xn,

yn+1 = (I + γn+1 ∂g)
−1(I + γn+1 ∂f)

−1 yn.

This corresponds to a double resolvent scheme studied by Passty in [31]. In this
reference, weak ergodic convergence of such sequences is established for general
maximal monotone operators such that the sum is itself maximal, provided that
(γn) ∈ l2 \ l1. Under some inf-compactness assumption, Theorem 5.1 (ii) (resp.
(iii)) shows that weak ergodic convergence is replaced by weak (resp. strong) con-
vergence in the subdifferential framework. Hence our result is an improvement of
Passty theorem when applied to subdifferential operators.

6 Application to domain decomposition for PDE’s

Let us consider a bounded domain Ω ⊂ RN with C2 boundary. Assume that the
set Ω is decomposed in two nonoverlapping Lipschitz subdomains Ω1 and Ω2 with
a common interface Γ. This situation is illustrated in the next figure.
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Ω1 Ω2Γ

6.1 Neumann problem

Given a function h ∈ L2(Ω), let us consider the following Neumann boundary
value problem on Ω {

−∆w = h on Ω
∂w
∂n

= 0 on ∂Ω,

where ∂w
∂n

= ∇w.n and n is the unit outward normal to ∂Ω. We assume that∫
Ω
h = 0, which is a necessary and sufficient condition for the existence of a

solution. The weak solutions of the above Neumann problem satisfy the following
minimization problem

min

{
1

2

∫

Ω

|∇w|2 −
∫

Ω

hw; w ∈ H1(Ω)

}
, (34)

see for example [9, 21, 27, 33]. Moreover, denoting by ŵ a particular solution, the
solution set of (34) is of the form {ŵ + C, C ∈ R}. Assuming that Ω is of class
C2, we know from the regularity theory of weak solutions that ŵ ∈ H2(Ω), see
for instance [3, 4, 26]. Notice that, if w ∈ H1(Ω) then the restrictions u = w|Ω1

and v = w|Ω2 belong respectively to H1(Ω1) and H
1(Ω2) and moreover u|Γ = v|Γ.

Conversely, if u ∈ H1(Ω1), v ∈ H1(Ω2) and if u|Γ = v|Γ, then the function w

defined by w =

{
u on Ω1

v on Ω2

belongs to H1(Ω). As a consequence, problem (34)

can be reformulated as

(P) min
{
f(u) + g(v); (u, v) ∈ H1(Ω1)×H1(Ω2) and u|Γ = v|Γ

}
,

where

f(u) =
1

2

∫

Ω1

|∇u|2 −
∫

Ω1

hu and g(v) =
1

2

∫

Ω2

|∇v|2 −
∫

Ω2

hv. (35)

Let us show how the algorithm (A) can be applied so as to solve problem (P). The
set X = H1(Ω1) is equipped with the scalar product 〈u1, u2〉X =

∫
Ω1
(∇u1.∇u2 +



112 H. Attouch, A. Cabot, P. Frankel, and J. Peypouquet

u1u2) and the corresponding norm. The same holds for Y = H1(Ω2) by replacing
Ω1 with Ω2. The set Z = L2(Γ) is equipped with the scalar product 〈z1, z2〉Z =∫
Γ
z1z2 and the corresponding norm. The operators A : X → Z and B : Y → Z

are respectively the trace operators on Γ, which are well-defined by the Lipschitz
character of the boundaries of Ω1 and Ω2 (see [17, Theorem II.46] or [28, Theorem
2]). Algorithm (A) runs as follows





un+1 = Argmin{γn+1f(u) +
1

2
‖Au− Bvn‖2Z +

α

2
‖u− un‖2X ; u ∈ X}

vn+1 = Argmin{γn+1g(v) +
1

2
‖Aun+1 − Bv‖2Z +

ν

2
‖v − vn‖2Y ; v ∈ Y},

where α and ν are fixed positive parameters. An elementary directional derivative
computation shows that the weak variational formulation of algorithm (A) is
given by

γn+1

∫

Ω1

∇un+1.∇u+ α

∫

Ω1

(∇un+1 −∇un).∇u

+ α

∫

Ω1

(un+1 − un)u+

∫

Γ

(Aun+1 −Bvn)Au = γn+1

∫

Ω1

hu

and

γn+1

∫

Ω2

∇vn+1.∇v + ν

∫

Ω2

(∇vn+1 −∇vn).∇v

+ ν

∫

Ω2

(vn+1 − vn)v +

∫

Γ

(Bvn+1 − Aun+1)Bv = γn+1

∫

Ω2

hv

for all u ∈ X and v ∈ Y . These are the variational weak formulations of the
following mixed Dirichlet-Neumann boundary value problems respectively on Ω1





−(γn+1 + α)∆un+1 + αun+1 = γn+1h− α∆un + αun on Ω1

(γn+1 + α)∂un+1

∂n
= α∂un

∂n
on ∂Ω1 ∩ ∂Ω

(γn+1 + α)∂un+1

∂n
+ un+1 = α∂un

∂n
+ vn on Γ,

and Ω2





−(γn+1 + ν)∆vn+1 + νvn+1 = γn+1h− ν∆vn + νvn on Ω2

(γn+1 + ν)∂vn+1

∂n
= ν ∂vn

∂n
on ∂Ω2 ∩ ∂Ω

(γn+1 + ν)∂vn+1

∂n
+ vn+1 = ν ∂vn

∂n
+ un+1 on Γ.

Let us now check the validity of the assumptions of Theorem 4.1. The qualifi-
cation condition (QC) is automatically satisfied since domf = X and domg = Y .
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In view of Proposition 4.1, assumption (ω−
n ) ∈ l1 is verified14 if (γn) ∈ l2 and if

there exist (û, v̂) ∈ X × Y such that û|Γ = v̂|Γ along with z ∈ Z satisfying

−A∗z ∈ ∂f(û) and B∗z ∈ ∂g(v̂). (36)

Take û = ŵ|Ω1
and v̂ = ŵ|Ω2

the restrictions of ŵ respectively to Ω1 and Ω2. Let
us multiply the equality −∆û = h by u ∈ H1(Ω1) and integrate on Ω1. Using
Green’s formula and the fact that ∂û

∂n
= 0 on ∂Ω ∩ ∂Ω1, we obtain

∀u ∈ H1(Ω1),

∫

Ω1

∇û.∇u−
∫

Γ

∂û

∂n
u =

∫

Ω1

hu.

Hence we deduce that for every u ∈ H1(Ω1),

f(u) =
1

2

∫

Ω1

|∇u|2 −
∫

Ω1

∇û.∇u+
∫

Γ

∂û

∂n
u

and therefore

f(u)− f(û) =
1

2

∫

Ω1

|∇u−∇û|2 +
∫

Γ

∂û

∂n
(u− û)

≥
∫

Γ

∂û

∂n
(u− û) =

〈
A∗ ∂û

∂n
, u− û

〉

X
.

This shows that A∗ ∂û
∂n

∈ ∂f(û) and we find in the same way B∗ ∂v̂
∂n

∈ ∂g(v̂). Since
∂û
∂n |Γ = − ∂v̂

∂n |Γ, condition (36) is proved with z = ∂v̂
∂n
, which belongs to L2(Γ) since

v̂ ∈ H2(Ω2).

We conclude from Theorem 4.1 (i) and the preceding argument that if(
1

γn+1
− 1

γn

)
is bounded from above and if (γn) ∈ l2, then any sequence (un, vn)

generated by (A) weakly converges in H1(Ω1) × H1(Ω2) to a minimum point
(û + C, v̂ + C), (C ∈ R) of problem (P). Without loss of generality, we can
assume that C = 0. Since Ω1 and Ω2 are Lipschitz domains, the injections
H1(Ω1) ↪→ L2(Ω1) andH

1(Ω2) ↪→ L2(Ω2) are compact by the Rellich-Kondrachov
Theorem (see [2, Theorem 6.2] or [17, Theorem II.55]). It ensues that the se-
quence (un, vn) converges to (û, v̂) strongly in L2(Ω1) × L2(Ω2). Moreover, from
Theorem 4.1 (ii), we have lim

n→+∞
f(un) = f(û) and lim

n→+∞
g(vn) = g(v̂), hence

lim
n→+∞

∫
Ω1

|∇un|2 =
∫
Ω1

|∇û|2 and lim
n→+∞

∫
Ω2

|∇vn|2 =
∫
Ω2

|∇v̂|2. As a consequence,

we have
14 Observe that we have R(A) = R(B) = H1/2(Γ). Hence the set R(A) +R(B) = H1/2(Γ) is dense in

Z = L2(Γ) and condition (ω−
n ) ∈ l1 cannot be verified by using assertion (i) of proposition 4.1. This

remark may suggest to take Z = H1/2(Γ) endowed with the corresponding norm. In this case, the
closedness of the set R(A) +R(B) is automatically ensured. However the practical implementation
of algorithm (A) will be more complicated due to the use of the H1/2(Γ) norm. The details are out
of the scope of the paper.
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lim
n→+∞

‖(un, vn)‖H1(Ω1)×H1(Ω2) = ‖(û, v̂)‖H1(Ω1)×H1(Ω2).

Since (un, vn) weakly converges inH1(Ω1)×H1(Ω2) toward (û, v̂), the convergence
is strong in H1(Ω1)×H1(Ω2). We have proved the following:

Theorem 6.1 Let Ω ⊂ RN be a bounded domain which can be decomposed in two
nonoverlapping Lipschitz subdomains Ω1 and Ω2 with a common interface Γ. We
assume that the set Ω is of class C2. Let h ∈ L2(Ω) be such that

∫
Ω
h = 0 and define

the functions f : H1(Ω1) → R and g : H1(Ω2) → R by formulas (35). Assume

that (γn) is a positive sequence such that (γn) ∈ l2 and the sequence
(

1
γn+1

− 1
γn

)

is bounded from above. Then any sequence (un, vn) generated by algorithm (A)
strongly converges in H1(Ω1)×H1(Ω2) and the limit (û, v̂) is such that the map

ŵ =

{
û on Ω1

v̂ on Ω2

is a solution of the Neumann problem (34).

Algorithm (A) allows to solve the initial Neumann problem on Ω by solving
separately mixed Dirichlet-Neumann problems on Ω1 and Ω2. A similar method is
developed in [14], where the authors consider alternating minimization algorithms
based on augmented Lagrangian approach.

6.2 Problem with an obstacle

As a model situation, let us consider the variational problem with an obstacle
constraint

min

{
1

2

∫

Ω

|∇w|2 −
∫

Ω

hw; w ∈ H1(Ω), w ≥ 0 on Ω

}
. (37)

It can be cast into our framework by taking

f(u) =
1

2

∫

Ω1

|∇u|2−
∫

Ω1

hu+δC1(u) and g(v) =
1

2

∫

Ω2

|∇v|2−
∫

Ω2

hv+δC2(v),

where δC1 is the indicator function of the convex set C1 = {u ≥ 0; u ∈ H1(Ω1)}
and δC2 is the indicator function of the convex set C2 = {v ≥ 0; v ∈ H1(Ω2)}.
Problem (37) can be reformulated as

(P) min
{
f(u) + g(v); (u, v) ∈ H1(Ω1)×H1(Ω2) and u|Γ = v|Γ

}
.

Let us show that Attouch-Brézis qualification condition (QC) is satisfied in this
situation (by contrast with Moreau-Rockafellar condition which fails to be satis-
fied for N ≥ 2). Indeed, we are going to verify that

domf × domg − V = H1(Ω1)×H1(Ω2).

To that end we introduce two trace lifting operators



ALTERNATING PROXIMAL ALGORITHMS 115

r1 : H
1/2(Γ) → H1(Ω1)

r2 : H
1/2(Γ) → H1(Ω2)

such that for every z ∈ H1/2(Γ), z ≥ 0 ⇒ ri(z) ≥ 0, i = 1, 2. Such operators
can be easily obtained by taking any lifting operator and then taking its positive
part. Precisely, we use that for any u ∈ H1(Ω1), u

+ = max{u, 0} ∈ H1(Ω1),
u− = max{0,−u} ∈ H1(Ω1) and u = u+ − u−. Similarly, for any v ∈ H1(Ω2),
v+ ∈ H1(Ω2), v

− ∈ H1(Ω2) and v = v+−v−. For any u ∈ H1(Ω1) and v ∈ H1(Ω2),
we denote respectively by u|Γ and v|Γ their Sobolev traces on Γ. Let us now
perform the following decomposition: for any (u, v) ∈ H1(Ω1)×H1(Ω2)

(u, v) = (u+ − u−, v)

=
(
u+, v + r2

(
(u−)|Γ

))
−
(
u−, r2

(
(u−)|Γ

))
. (38)

Let us notice that
(
u−, r2

(
(u−)|Γ

))
belongs to V because u− and r2

(
(u−)|Γ

)
have

the same trace on Γ. Let us perform once more this operation: set v = v +
r2
(
(u−)|Γ

)
which belongs to H1(Ω2).

(u+, v) = (u+, v+ − v−)

=
(
u+ + r1

(
(v−)|Γ

)
, v+
)
−
(
r1
(
(v−)|Γ

)
, v−
)
. (39)

Combining (38) and (39) we finally obtain

(u, v) =
(
u+ + r1

(
(v−)|Γ), v

+
)
−
[(
r1
(
(v−)|Γ

)
, v−
)
+
(
u−, r2

(
(u−)|Γ

))]
.

By construction of the trace lifting operator, and by v− ≥ 0 we have r1
(
(v−)|Γ

)
≥

0. Thus, we have obtained a decomposition of (u, v) as a difference of an element
of H1(Ω1)

+ ×H1(Ω2)
+ and an element of H1(Ω). The decomposition algorithm

can now be developed in a very similar way as in the unconstrained case.
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Summary. Let X ,Y,Z be real Hilbert spaces, let f : X −→ R ∪ {+∞}, g : Y −→ R ∪ {+∞} be
closed convex functions and let A : X −→ Z, B : Y −→ Z be linear continuous operators. Given a
sequence (γn) which increases toward infinity as n → +∞, we study the following alternating proximal
algorithm

(A)















xn+1 = Argmin{f(ζ) +
1

2γn+1
‖Aζ −Byn‖

2
Z +

α

2
‖ζ − xn‖

2
X ; ζ ∈ X}

yn+1 = Argmin{g(η) +
1

2γn+1
‖Axn+1 −Bη‖2Z +

ν

2
‖η − yn‖

2
Y ; η ∈ Y},

where α and ν are positive parameters. If the sequence (γn) increases moderately slowly toward infinity,
the algorithm (A) tends to minimize the function (x, y) 7→ ‖Ax − By‖2Z over the set C = Argminf ×
Argming (assumed to be nonempty). An illustration of this result is given in the area of domain
decomposition for PDE’s.

Key words: Convex minimization, alternating minimization, proximal algorithm, hierarchical mini-
mization, domain decomposition for PDE’s.
Subject classification: 65K05, 65K10, 49J40, 90C25.

1 Introduction

Let X ,Y ,Z be real Hilbert spaces respectively endowed with the scalar products
〈., .〉X , 〈., .〉Y and 〈., .〉Z and the corresponding norms. Let f : X −→ R ∪ {+∞},
g : Y −→ R ∪ {+∞} be closed convex proper functions and let A : X −→ Z,
B : Y −→ Z be linear continuous operators. We consider the convex function
Φγ : X × Y −→ R ∪ {+∞} defined by

Φγ(x, y) = f(x) + g(y) +
1

2γ
‖Ax−By‖2Z ,
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where γ is a positive real parameter. In order to minimize the function Φγ , At-
touch, Redont and Soubeyran [7] introduced the alternating algorithm with costs-
to-move





xn+1 = Argmin{f(ζ) + 1

2γ
‖Aζ − Byn‖2Z +

α

2
‖ζ − xn‖2X ; ζ ∈ X}

yn+1 = Argmin{g(η) + 1

2γ
‖Axn+1 −Bη‖2Z +

ν

2
‖η − yn‖2Y ; η ∈ Y},

where α and ν are positive real numbers. This algorithm generates a sequence
(xn, yn) whose convergence is studied in [4]. It is proved that, if ArgminΦγ 6= ∅,
the sequence (xn, yn) weakly converges toward a minimum of Φγ.

The framework of [4, 7] extends the one of [1, 10] from the strong cou-
pled problem to the weak coupled problem with costs-to-change. More precisely,
Q(x, y) = ‖x−y‖2Z is a strong coupling function with X = Y = Z and A = B = I
while Q(x, y) = ‖Ax − By‖2Z is now a weak coupling function which allows
for asymmetric and partial relations between the variables x and y. Further-
more authors of [1, 10] do not use costs-to-changes (α/2)‖ζ − xn‖2X , ζ ∈ X and
(ν/2)‖η− yn‖2Y , η ∈ Y , taking α = ν = 0. The interest of the weak coupling term
is to cover many situations, ranging from decomposition methods for PDE’s to
applications in game theory. In decision sciences, the term Q(x, y) = ‖Ax−By‖2Z
allows to consider agents who interplay, only via some components of their deci-
sion variables. For further details, the interested reader is referred to [4].

In this study, the constant parameter γ of the above mentioned algorithm is
replaced by a sequence (γn) which increases toward infinity as n → +∞. The
corresponding algorithm is denoted by (A)

(A)





xn+1 = Argmin{f(ζ) + 1

2γn+1
‖Aζ −Byn‖2Z +

α

2
‖ζ − xn‖2X ; ζ ∈ X}

yn+1 = Argmin{g(η) + 1

2γn+1
‖Axn+1 − Bη‖2Z +

ν

2
‖η − yn‖2Y ; η ∈ Y}.

The coupling term asymptotically vanishes as n → +∞. Assuming that the

sequence
(

1
γn

)
is summable, we show that any sequence (xn, yn) generated by

(A) weakly converges toward a point of C = Argminf × Argming (assumed
to be nonempty). The limit does not depend explicitly on the operators A and
B because the sequence (γn) tends too fast toward infinity. Now consider the

case corresponding to
(

1
γn

)
6∈ l1. We prove that, if the sequence (γn) increases

moderately slowly3, algorithm (A) tends to minimize the function (x, y) 7→ ‖Ax−
By‖2Z over the set C.

3 For example, if the functions f and g behave as the square of the distance to their respective argmin

sets, the condition on (γn) becomes
(

1
γn

)

∈ l2 \ l1.
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We apply our abstract results to the framework of splitting methods for PDE’s.
For that purpose, we consider a domain Ω ⊂ RN that can be decomposed into two
non overlapping subdomains Ω1, Ω2 with a common interface Γ. The functional
spaces are X = H1(Ω1), Y = H1(Ω2) and Z = L2(Γ), the operators A : X → Z
and B : Y → Z being respectively the trace operators on Γ. The term Au − Bv

corresponds to the jump of the map w =

{
u on Ω1

v on Ω2
through the interface Γ.

Let us consider the set of couples (u, v) ∈ H1(Ω1) × H1(Ω2) of solutions that
satisfy some boundary value problems, respectively on Ω1 and Ω2. Under suitable
assumptions, the iterates (un, vn) of algorithm (A) tend toward a couple solution
that minimizes the L2(Γ)-norm of the jump through the interface Γ.

The paper is organized as follows. General results for algorithm (A) are given
in section 2, including the case ( 1

γn
) ∈ l1. The case ( 1

γn
) 6∈ l1 is analyzed in

section 3 and an application to decomposition domain for PDE’s is illustrated in
section 4. Further convergence results in the finite dimensional setting are given
in section 5.

2 General results

Let f : X −→ R∪{+∞}, g : Y −→ R∪{+∞} be closed convex proper functions
and let A : X −→ Z, B : Y −→ Z be linear continuous operators. Let (γn) be
a nondecreasing sequence of positive reals such that limn→+∞ γn = +∞. Given
positive coefficients α, ν > 0 and initial data (x0, y0) ∈ X ×Y , let us consider the
following alternating proximal algorithm

(A)





xn+1 = Argmin{f(ζ) + 1

2γn+1
‖Aζ −Byn‖2Z +

α

2
‖ζ − xn‖2X ; ζ ∈ X}

yn+1 = Argmin{g(η) + 1

2γn+1
‖Axn+1 − Bη‖2Z +

ν

2
‖η − yn‖2Y ; η ∈ Y}.

The coupling term asymptotically vanishes as n → +∞. It is clear from the
definition of the sequence (xn, yn) that nothing is changed if some constant is
added to the function f (resp. g). We will assume in the sequel that inf f =
inf g = 0.
By writing down the optimality conditions, it is immediate to check that points
xn+1 and yn+1 are characterized by





− 1

γn+1
A∗(Axn+1 −Byn)− α(xn+1 − xn) ∈ ∂f(xn+1)

1

γn+1
B∗(Axn+1 − Byn+1)− ν(yn+1 − yn) ∈ ∂g(yn+1),

where A∗ ∈ L(Z,X ) and B∗ ∈ L(Z,Y) denote the respective adjoint operators
of A and B. It ensues that we have, for all x ∈ X and y ∈ Y ,
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f(x)− f(xn+1)−
1

γn+1
〈Axn+1 − Byn, Axn+1 − Ax〉Z − α〈xn+1 − xn, xn+1 − x〉X ≥ 0

g(y)− g(yn+1) +
1

γn+1
〈Axn+1 −Byn+1, Byn+1 −By〉Z − ν〈yn+1 − yn, yn+1 − y〉Y ≥ 0.

(1)
These inequalities will be useful in the sequel. We first give general results which
do not depend on the growth speed of the sequence (γn) as n→ +∞.

Proposition 2.1 Let α, ν > 0 and let A ∈ L(X ,Z), B ∈ L(Y ,Z) be linear
continuous operators. Let f : X −→ R∪{+∞} and g : Y −→ R∪{+∞} be closed
convex functions such that inf f = inf g = 0. Let (γn) be a positive nondecreasing
sequence such that limn→+∞ γn = +∞. Then, for any sequence (xn, yn) generated
by algorithm (A) we have

(i) the sequence
(
f(xn) + g(yn) +

1
2γn

‖Axn −Byn‖2Z
)
is nonincreasing and tends

toward 0 as n→ +∞. As a consequence, limn→+∞ f(xn) = limn→+∞ g(yn) = 0
and every weak limit point of the sequence (xn, yn) belongs to Argminf ×
Argming;

(ii)the sequences (‖xn+1 − xn‖2X ) and (‖yn+1 − yn‖2Y) are summable.

Proof. The arguments are similar to those of [10, Theorem 4.6].
(i) Let us set θn = f(xn) + g(yn) +

1
2γn

‖Axn − Byn‖2Z . From the definition of

algorithm (A), we have

f(xn+1) +
1

2γn+1
‖Axn+1 − Byn‖2Z +

α

2
‖xn+1 − xn‖2X ≤ f(xn) +

1

2γn+1
‖Axn − Byn‖2Z ,

g(yn+1) +
1

2γn+1
‖Axn+1 − Byn+1‖2Z +

ν

2
‖yn+1 − yn‖2Y ≤ g(yn) +

1

2γn+1
‖Axn+1 −Byn‖2Z .

By using these inequalities, we deduce successively that, for all n ∈ N,

θn+1 ≤ f(xn+1) + g(yn) +
1

2γn+1

‖Axn+1 − Byn‖2Z

≤ f(xn) + g(yn) +
1

2γn+1

‖Axn − Byn‖2Z .

Since the sequence (γn) is nondecreasing, we finally find θn+1 ≤ θn. Let us now
use the following lemma borrowed from [10].

Lemma 2.1 Let (s, t, u, v, w) ∈ Z5, then

‖s− u‖2Z = ‖s− w‖2Z + ‖w − v‖2Z − ‖s− t‖2Z + ‖(s− t)− (u− v)‖2Z
+2〈s− w,w − v〉Z + 2〈u− v, v − t〉Z .

For x ∈ X , y ∈ Y , we take s = By, t = Ax, u = Byn, v = Axn+1, w = Byn+1.
We obtain
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‖By − Byn‖2Z − ‖By − Byn+1‖2Z = ‖Byn+1 − Axn+1‖2Z − ‖By −Ax‖2Z
+‖By −Ax− (Byn − Axn+1)‖2Z
+2〈By − Byn+1, Byn+1 − Axn+1〉Z
+2〈Byn −Axn+1, Axn+1 −Ax〉Z .

Using inequalities (1), we deduce that

‖By −Byn‖2Z − ‖By − Byn+1‖2Z
≥ ‖Axn+1 − Byn+1‖2Z − ‖Ax−By‖2Z
+ 2γn+1[f(xn+1)− f(x) + α〈xn+1 − xn, xn+1 − x〉X ]
+ 2γn+1[g(yn+1)− g(y) + ν〈yn+1 − yn, yn+1 − y〉Y ]

= 2γn+1 [f(xn+1) + g(yn+1)− f(x)− g(y)] + ‖Axn+1 − Byn+1‖2Z − ‖Ax−By‖2Z
+ γn+1α(‖xn+1 − xn‖2X + ‖xn+1 − x‖2X − ‖xn − x‖2X )
+ γn+1ν(‖yn+1 − yn‖2Y + ‖yn+1 − y‖2Y − ‖yn − y‖2Y).

Finally, we obtain

‖By −Byn‖2Z + γn+1α‖xn − x‖2X + γn+1ν‖yn − y‖2Y
− ‖By − Byn+1‖2Z − γn+1α‖xn+1 − x‖2X − γn+1ν‖yn+1 − y‖2Y
≥ 2γn+1 [f(xn+1) + g(yn+1)− f(x)− g(y)] (2)

+‖Axn+1 −Byn+1‖2Z − ‖Ax−By‖2Z + γn+1α‖xn+1 − xn‖2X + γn+1ν‖yn+1 − yn‖2Y .
Dividing by γn+1 and using 1

γn+1
≤ 1

γn
, we deduce that

1

γn
‖By − Byn‖2Z + α‖xn − x‖2X + ν‖yn − y‖2Y

− 1

γn+1
‖By − Byn+1‖2Z − α‖xn+1 − x‖2X − ν‖yn+1 − y‖2Y

≥ 2 [f(xn+1) + g(yn+1)− f(x)− g(y)] (3)

+
1

γn+1
‖Axn+1 −Byn+1‖2Z − 1

γn+1
‖Ax−By‖2Z +α‖xn+1 − xn‖2X + ν‖yn+1 − yn‖2Y .

Let us set hn = 1
γn
‖By−Byn‖2Z+α‖xn−x‖2X+ν‖yn−y‖2Y . The previous inequality

implies that
hn+1 − hn + 2 [f(xn+1) + g(yn+1)− f(x)− g(y)]

+
1

γn+1
‖Axn+1 − Byn+1‖2Z − 1

γn+1
‖Ax−By‖2Z ≤ 0, (4)

or equivalently

2θn+1 ≤ 2(f(x) + g(y)) +
1

γn+1
‖Ax− By‖2Z + hn − hn+1.
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Let us sum from n = 1 to N . Since hN+1 ≥ 0, we infer that

2

N∑

n=1

θn+1 ≤ 2N (f(x) + g(y)) +

(
N∑

n=1

1

γn+1

)
‖Ax−By‖2Z + h1.

Using that the sequence (θn) is nonincreasing, we deduce that

θN+1 ≤ f(x) + g(y) +
1

2N

(
N∑

n=1

1

γn+1

)
‖Ax−By‖2Z +

h1
2N

.

Take now the upper limit as N → +∞ in the above inequality. By using the
fact that limN→+∞

1
γN

= 0, we derive that lim supN→+∞ θN+1 ≤ f(x) + g(y).
Since this is true for every x ∈ X and y ∈ Y and since inf f = inf g = 0,
we infer that lim supN→+∞ θN+1 ≤ 0. Recalling that the sequence (θN) is
nonnegative, we conclude that limN→+∞ θN = 0, which in turn implies that
limN→+∞ f(xN) = limN→+∞ g(yN) = 0. Finally, let (xnk

, ynk
) be a subsequence

which weakly converges toward (x, y). Using the closedness of f and g, we find

f(x) + g(y) ≤ lim inf
k→+∞

f(xnk
) + lim inf

k→+∞
g(ynk

) = lim
n→+∞

f(xn) + lim
n→+∞

g(yn) = 0,

hence (x, y) ∈ Argminf × Argming.
(ii) By applying inequality (3) with x = xn, y = yn and recalling that γn ≤ γn+1,
we deduce that

θn+1 − θn ≤ −α‖xn+1 − xn‖2X − ν‖yn+1 − yn‖2Y .

Let us sum from n = 1 to N to derive that

α
N∑

n=1

‖xn+1 − xn‖2X + ν
N∑

n=1

‖yn+1 − yn‖2Y ≤ θ1 − θN+1 ≤ θ1.

It suffices then to let N tend to infinity.

When the sequence ( 1
γn
) is summable, we can easily establish the weak conver-

gence of the algorithm toward a point of C = Argminf × Argming. Notice that
the assumption ( 1

γn
) ∈ l1 means that (γn) increases fast toward infinity.

Proposition 2.2 Under the hypotheses of Proposition 2.1, assume moreover that
C = Argminf × Argming 6= ∅ and that ( 1

γn
) ∈ l1. If (xn, yn) is a sequence

generated by (A), then

(i) for every (x, y) ∈ C, the sequence (α ‖xn − x‖2X + ν ‖yn − y‖2Y) is convergent;
(ii)(xn, yn) weakly converges toward a point of C.
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Proof. (i) Fix (x, y) ∈ C and set hn = 1
γn
‖By−Byn‖2Z +α‖xn−x‖2X +ν‖yn−y‖2Y

as in the proof of Proposition 2.1. From inequality (4) we deduce that

hn+1 ≤ hn +
1

γn+1
‖Ax− By‖2Z .

Since the sequence ( 1
γn+1

) is summable, we can apply Lemma 2.2 hereafter to

prove the convergence of the sequence (hn). We deduce that the sequence (yn) is
bounded, which in turn implies that 1

γn
‖By − Byn‖2Z → 0 when n → +∞. This

achieves the proof of (i).

Lemma 2.2 Let (an) and (εn) be two real sequences. Assume that (an) is mi-
norized, that (εn) is summable and that an+1 ≤ an + εn for every n ∈ N. Then
limn→+∞ an exists.

Proof of Lemma 2.2. Define the sequence (wn) by wn = an − ∑n−1
k=0 εk. The

sequence (wn) is bounded from below and nonincreasing, hence convergent. It
follows that limn→+∞ an =

∑+∞
k=0 εk + limn→+∞wn.

(ii) The proof of the weak convergence relies on the Opial’s lemma [16], that we
recall below for the sake of completeness.

Lemma 2.3 (Opial) Let H be a Hilbert space endowed with the norm N . Let
(ξn) be a sequence of H such that there exists a nonempty set S ⊂ H which
verifies

(a)For all ξ ∈ S, limn→+∞N(ξn − ξ) exists.
(b)If (ξnk

)⇀ ξ weakly in H as k → +∞, we have ξ ∈ S.
Then the sequence (ξn) weakly converges in H as n→ +∞ toward a point of S.
Let us define the norm N(u, v) = (α‖u‖2X + ν‖v‖2Y)1/2 on the space H = X × Y .
Norm N is clearly equivalent to the canonical norm on X × Y . In view of (i),
N((xn, yn) − (x, y)) does have a limit for every (x, y) ∈ C, which shows point
(a). On the other hand, point (b) is a consequence of Proposition 2.1 (i). Hence
we conclude from Opial’s lemma that the sequence (xn, yn) weakly converges in
X × Y toward a point of C.

3 Case of a slowly increasing parameter

The purpose of this section is to study the case ( 1
γn
) 6∈ l1 and to bring to

light a phenomenon of selection with respect to the viscosity function (x, y) 7→
‖Ax − By‖2Z . Assuming that the sets Argminf and Argming are nonempty and
that min f = min g = 0, let us consider the following hypotheses introduced by
Attouch-Czarnecki [6]

(Hf) ∀p ∈ R(NArgminf
),

(
f ∗
(
p

γn

)
− σArgminf

(
p

γn

))
∈ l1
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(Hg) ∀q ∈ R(NArgming),

(
g∗
(
q

γn

)
− σArgming

(
q

γn

))
∈ l1.

Let us explicit notations: f ∗ is the Fenchel conjugate of f defined by f ∗(x) =
supζ∈X{〈x, ζ〉X −f(ζ)} for every x ∈ X . Given a subset D ⊂ X , σD is the support
function of D: σD(x) = supζ∈D〈x, ζ〉X for every x ∈ X . Notice that σD coincides
with the Fenchel conjugate (δD)

∗ of the indicator function δD. On the other hand,
ND(x) is the normal cone to D at x,

ND(x) = {p ∈ X : 〈p, ζ − x〉X ≤ 0 ∀ζ ∈ D}.

R(ND) is the range ofND, i.e. p ∈ R(ND) if and only if p ∈ ND(x) for some x ∈ D.
Remark that, from the inequality f ≤ δArgminf

, we get f ∗ ≥ (δArgminf
)∗ =

σArgminf . In a similar way, we have g∗ ≥ σArgming, hence the sequences arising

in (Hf)-(Hg) are nonnegative.

Example 3.1 Let us illustrate assumptions (Hf) and (Hg). Since they are sym-
metric, we focus on (Hf) and we suppose that there exist a > 0 and r ≥ 1 such
that

f ≥ a drX (.,Argminf). (5)

The notation dX (.,Argminf) stands for the distance function to the set Argminf .
We have

drX (.,Argminf) = ‖.‖rX +e δArgminf
,

where +e denotes the epigraphical sum. It ensues that

f ∗ ≤ (a ‖.‖rX )∗ + σArgminf
. (6)

First assume that r = 1. Since ‖.‖∗X = δBX , where BX denotes the closed unit ball
of X centered at 0, we deduce from (6) that

f ∗ − σArgminf
≤ δaBX .

Since limn→+∞ 1/γn = 0, it is clear that for every p ∈ X , we have δaBX (p/γn) = 0
for n large enough. Hence condition (Hf) is automatically satisfied.
Now assume that r > 1. Since (‖.‖rX/r)∗ = (‖.‖r∗X /r∗), where r∗ is the conjugate
exponent of r, i.e. r∗ = 1/(1− 1/r), we deduce from (6) that

f ∗ − σArgminf
≤ (ar)1−r∗

r∗
‖.‖r∗X .

Hence condition (Hf ) is satisfied if
(

1
γn

)
∈ lr

∗
. Notice finally that the combination

of the conditions
(

1
γn

)
/∈ l1 and

(
1
γn

)
∈ lr

∗
expresses that (γn) tends moderately

slowly toward infinity.
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Let us now state the main result of the paper. Some techniques of the proof
are similar to the ones of [6, Theorem 3.1] in a continuous framework.

Theorem 3.1 Under the hypotheses of Proposition 2.1, let us define the set

S = Argmin{‖Ax− By‖2Z : (x, y) ∈ Argminf ×Argming},

assumed to be nonempty. Suppose additionally that the sequence (γn+1 − γn) is
bounded and that assumptions (Hf )-(Hg) are satisfied. Then any sequence (xn, yn)
generated by (A) weakly converges toward a point of S.

Proof. For the sake of readibility, we introduce the maps Φ : X×Y −→ R∪{+∞}
and Ψ : X×Y −→ R+ respectively defined by Φ(x, y) = f(x)+g(y) and Ψ(x, y) =
1
2
‖Ax − By‖2Z , for every (x, y) ∈ X × Y . Setting C = Argminf × Argming, it is

easy to check that

Φ∗
(
(p, q)

γn

)
− σC

(
(p, q)

γn

)
= f ∗

(
p

γn

)
− σArgminf

(
p

γn

)

+g∗
(
q

γn

)
− σArgming

(
q

γn

)
,

and R(NC) = R(NArgminf)×R(NArgming). Hence assumptions (Hf)-(Hg) can

be equivalently rewritten as

∀(p, q) ∈ R(NC),

(
Φ∗
(
(p, q)

γn

)
− σC

(
(p, q)

γn

))
∈ l1. (7)

The proof of Theorem 3.1 is divided into several claims.

Claim 3.1 For every (x, y) ∈ S, limn→+∞ α ‖xn − x‖2X + ν ‖yn − y‖2Y exists in
R.

Proof of Claim 3.1. Fix (x, y) ∈ S and set hn = 1
γn
‖Byn −By‖2Z + α‖xn − x‖2X +

ν‖yn − y‖2Y as in the proof of Proposition 2.1. We can rewrite inequality (4) as
follows

hn+1 − hn + 2

{
Φ(xn+1, yn+1) +

1

γn+1
(Ψ(xn+1, yn+1)−Ψ(x, y))

}
≤ 0. (8)

Since (x, y) ∈ S = ArgminCΨ, we have −∇Ψ(x, y) ∈ NC(x, y). Setting (p, q) =
−∇Ψ(x, y), we deduce that

Ψ(xn+1, yn+1)−Ψ(x, y) ≥ 〈−(p, q), (xn+1, yn+1)− (x, y)〉X×Y . (9)

Moreover the definition of the conjugate Φ∗ implies that

Φ(xn+1, yn+1) ≥
〈
(p, q)

γn+1

, (xn+1, yn+1)

〉

X×Y
− Φ∗

(
(p, q)

γn+1

)
, (10)
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and, as (x, y) ∈ C and (p, q) ∈ NC(x, y),

σC

(
(p, q)

γn+1

)
=

〈
(p, q)

γn+1

, (x, y)

〉

X×Y
. (11)

By combining (9), (10) and (11), inequality (8) gives

hn+1 − hn ≤ 2

{
Φ∗
(
(p, q)

γn+1

)
− σC

(
(p, q)

γn+1

)}
.

Using formulation (7) of assumptions (Hf)-(Hg), we deduce from Lemma 2.2
that limn→+∞ hn exists. As a consequence, the sequence (xn, yn) is bounded and
limn→+∞ α‖xn − x‖2X + ν‖yn − y‖2Y exists and is equal to limn→+∞ hn. ut

Claim 3.2 The sequence (Φ(xn, yn)) is summable.

Proof of Claim 3.2. Let us set aN = 2
N∑

n=0

{
Φ(xn, yn) +

1

γn
(Ψ(xn, yn)−Ψ(x, y))

}
.

From inequality (8), we can assert that the sequence (hn + an) is nonincreasing.
Moreover, the above calculations and condition (7) allow us to assert that, for all
N ∈ N,

aN ≥ −2

+∞∑

n=0

{
Φ∗
(
(p, q)

γn

)
− σC

(
(p, q)

γn

)}
> −∞,

thus the sequence (hn + an) is bounded from below, hence convergent. As a
consequence, limn→+∞ an exists, i.e.

lim
N→+∞

N∑

n=0

{
Φ(xn, yn) +

1

γn
(Ψ(xn, yn)−Ψ(x, y))

}
exists in R. (12)

Recalling that Φ(xn+1, yn+1) ≥ 0 and using the fact that 2 (p, q) ∈ NC(x, y), we
infer from inequality (8) that

hn+1 − hn +

{
−Φ∗

(
2(p, q)

γn+1

)
+ σC

(
2(p, q)

γn+1

)}
≤

hn+1 − hn + 2

{
1

2
Φ(xn+1, yn+1) +

1

γn+1

(Ψ(xn+1, yn+1)−Ψ(x, y))

}
≤ 0.

By arguing as above, we deduce from condition (7) that

lim
N→+∞

N∑

n=0

{
1

2
Φ(xn, yn) +

1

γn
(Ψ(xn, yn))−Ψ(x, y))

}
exists in R,

which, in view of (12), implies that the sequence (Φ(xn, yn)) is summable. ut
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Claim 3.3 limn→+∞Ψ(xn, yn) = minC Ψ;

Proof of Claim 3.3. Let us define the sequence (En) by

En = γnΦ(xn, yn) + Ψ(xn, yn).

By applying inequality (2) with x = xn and y = yn, we deduce that

En+1 −En ≤ (γn+1 − γn)Φ(xn, yn)− αγn+1‖xn+1 − xn‖2X − νγn+1‖yn+1 − yn‖2Y
≤ (γn+1 − γn)Φ(xn, yn).

As the sequence (γn+1 − γn) is bounded by assumption and the sequence
(Φ(xn, yn)) is summable from Claim 3.2, Lemma 2.2 shows that limn→+∞En

exists in R. On the other hand, we derive from (12) that

lim
N→+∞

N∑

n=0

1

γn
(En −Ψ(x, y)) exists in R. (13)

By assumption, there exists M ≥ 0 such that γn+1−γn ≤M for all n ∈ N. Hence
we have γn ≤Mn+ γ0, thus implying that ( 1

γn
) 6∈ l1. We immediately infer from

(13) that limn→+∞En = Ψ(x, y). Since Ψ(xn, yn) ≤ En, we obtain

lim sup
n→+∞

Ψ(xn, yn) ≤ Ψ(x, y). (14)

Recall now that the sequence (xn, yn) is bounded from Claim 3.1. If a subsequence
(xnk

, ynk
) weakly converges toward (x, y), we can assert by Proposition 2.1 (i) that

(x, y) ∈ C. We deduce that 〈−(p, q), (x, y) − (x, y)〉X×Y ≥ 0, hence every limit
point of (〈−(p, q), (xn, yn)− (x, y)〉X×Y) is nonnegative, that is

lim inf
n→+∞

〈−(p, q), (xn, yn)− (x, y)〉X×Y ≥ 0.

In view of inequality (9), we obtain lim infn→+∞Ψ(xn, yn) ≥ Ψ(x, y) and we
conclude in view of inequality (14). ut

To end the proof of Theorem 3.1, we define the norm N(u, v) = (α‖u‖2X +
ν‖v‖2Y)1/2, which is equivalent to the canonical norm on X × Y . In view of
Claim 3.1, N((xn, yn)− (x, y)) does have a limit for every (x, y) ∈ S, which shows
point (a) of Lemma 2.3. Let now (xnk

, ynk
) be a subsequence of (xn, yn) which

weakly converges toward (x, y). From Proposition 2.1 (i), we have (x, y) ∈ C.
Using Claim 3.3 and the closedness of Ψ, we easily infer that (x, y) ∈ S, which
shows point (b) of Lemma 2.3. Hence we conclude from Opial’s lemma that the
sequence (xn, yn) weakly converges in X × Y toward a point of S.
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4 Application to domain decomposition for partial
differential equations

Let us consider a bounded domain Ω = Ω1 ∪ Ω2 ∪ Γ of RN which can be decom-
posed in two non overlapping Lipschitz subdomains Ω1 and Ω2 with a common
interface Γ. We assume that HN−1(Γ) > 0, where HN−1 is the Hausdorff measure
of dimension N − 1. This situation is illustrated in the next figure.

Ω1 Ω2Γ

We consider the following problem

(P) min

{
1

2

∫

Γ

[w]2
}
,

where [w] is the jump of w through the interface, w =

{
u on Ω1

v on Ω2
and u ∈ H1(Ω1),

v ∈ H1(Ω2) are solutions of some boundary value problems, respectively on Ω1

and Ω2. This kind of minimization problems often arises in the description of
phenomena involving discontinuities on the interfaces between subdomains. To
illustrate the results of section 3, we will assume that u, v are respectively weak
solutions to the following Neumann boundary value problems

{
−∆u = h on Ω1

∂u
∂n

= 0 on ∂Ω1,

{
−∆v = h on Ω2

∂v
∂n

= 0 on ∂Ω2,

where h ∈ L2(Ω) is a given function. Notice that the corresponding Dirichlet
version of these problems was considered in [4] in a slightly different framework,
see also [13]. We assume that

∫
Ω1
h =

∫
Ω2
h = 0, which is a necessary and sufficient

condition for the existence of a solution. Defining the functions f : H1(Ω1) → R

and g : H1(Ω2) → R by

f(u) =
1

2

∫

Ω1

|∇u|2 −
∫

Ω1

hu and g(v) =
1

2

∫

Ω2

|∇v|2 −
∫

Ω2

hv, (15)

it is classical that the solutions u and v of the above Neumann boundary value
problems satisfy respectively the following minimization problems
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(P1) min
{
f(u); u ∈ H1(Ω1)

}
,

(P2) min
{
g(v); v ∈ H1(Ω2)

}
,

see for example [11, 14, 17]. Moreover, denoting by û (resp. v̂) a particular solution
of (P1) (resp. (P2)), we have

Argminf = {û+ c1; c1 ∈ R}, Argming = {v̂ + c2; c2 ∈ R}.

Hence in our framework, problem (P) amounts to minimizing over R2 the map

(c1, c2) 7→
1

2

∫

Γ

(
û|Γ − v̂|Γ + c1 − c2

)2
.

It is immediate to verify that the minimum is reached when

c2 − c1 =
1

HN−1(Γ)

∫

Γ

(
û|Γ − v̂|Γ

)
.

Without loss of generality, we can assume that
∫
Γ
û|Γ =

∫
Γ
v̂|Γ = 0. Then the

above relation gives c1 = c2, hence the set of solutions of (P) is of the form
{(û+ c, v̂ + c); c ∈ R}.

Let us now show how algorithm (A) can be applied so as to solve problem
(P). The set X = H1(Ω1) is equipped with the scalar product 〈u1, u2〉X =∫
Ω1
(∇u1.∇u2 + u1u2) and the corresponding norm. The same holds for Y =

H1(Ω2) by replacing Ω1 with Ω2. The set Z = L2(Γ) is equipped with the scalar
product 〈z1, z2〉Z =

∫
Γ
z1z2 and the associate norm. The operators A : X −→ Z

and B : Y −→ Z are respectively the trace operators on Γ, which are well-defined
by the Lipschitz character of the boundaries of Ω1 and Ω2 (see [8, Theorem II.46]
or [15, Theorem 2]). Algorithm (A) runs as follows





un+1 = Argmin

{
f(u) +

1

2γn+1
‖Au− Bvn‖2Z +

α

2
‖u− un‖2X ; u ∈ X

}

vn+1 = Argmin

{
g(v) +

1

2γn+1
‖Aun+1 − Bv‖2Z +

ν

2
‖v − vn‖2Y ; v ∈ Y

}
,

where α and ν are fixed positive parameters. An elementary directional derivative
computation shows that the weak variational formulation of algorithm (A) is
given by

∀u ∈ X ,
∫

Ω1

∇un+1.∇u+
1

γn+1

∫

Γ

(Aun+1 −Bvn)Au

+α

∫

Ω1

(∇un+1 −∇un).∇u+ α

∫

Ω1

(un+1 − un)u =

∫

Ω1

hu,
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∀v ∈ Y ,
∫

Ω2

∇vn+1.∇v +
1

γn+1

∫

Γ

(Bvn+1 − Aun+1)Bv

+ν

∫

Ω2

(∇vn+1 −∇vn).∇v + ν

∫

Ω2

(vn+1 − vn)v =

∫

Ω2

hv.

These are the variational weak formulations of the following mixed Dirichlet-
Neumann boundary value problems respectively on Ω1





−(1 + α)∆un+1 + αun+1 = h− α∆un + αun on Ω1

(1 + α)∂un+1

∂n
= α∂un

∂n
on ∂Ω1 ∩ ∂Ω

(1 + α)∂un+1

∂n
+ 1

γn+1
un+1 = α∂un

∂n
+ 1

γn+1
vn on Γ,

and Ω2





−(1 + ν)∆vn+1 + νvn+1 = h− ν∆vn + νvn on Ω2

(1 + ν)∂vn+1

∂n
= ν ∂vn

∂n
on ∂Ω2 ∩ ∂Ω

(1 + ν)∂vn+1

∂n
+ 1

γn+1
vn+1 = ν ∂vn

∂n
+ 1

γn+1
un+1 on Γ.

To apply Theorem 3.1, we have to check that assumptions (Hf) and (Hg) are
satisfied. In view of the symmetry of f and g, let us focus on (Hf). Since
Argminf = {û + c1; c1 ∈ R} is an affine space directed by the vector space
of constant functions, it is clear that for every u ∈ Argminf

NArgminf
(u) = {p ∈ X , 〈p, 1〉X = 0} =

{
p ∈ X ,

∫

Ω1

p = 0

}
.

In the sequel, we denote by V this hyperplane of X . For every p ∈ V , we have

σArgminf
(p) = sup

c1∈R
〈û+ c1, p〉X = 〈û, p〉X . (16)

From the definition of f and since û ∈ Argminf , we have for every u ∈ X

f(u)−min f =
1

2

∫

Ω1

|∇u|2 −
∫

Ω1

hu− 1

2

∫

Ω1

|∇û|2 +
∫

Ω1

hû. (17)

Recalling that the weak variational formulation of (P1) gives

∀u ∈ X ,
∫

Ω1

∇u.∇û =

∫

Ω1

hu,

we derive from (17) that

f(u)−min f =
1

2

∫

Ω1

|∇u−∇û|2. (18)

In view of (16) and (18), we find for every p ∈ V
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(f −min f)∗(p)− σArgminf(p) = sup
u∈X

{
〈p, u− û〉X − 1

2

∫

Ω1

|∇u−∇û|2
}

= sup
u∈X

{
〈p, u〉X − 1

2

∫

Ω1

|∇u|2
}
. (19)

Consider the following minimization problem in V

(P∗) inf

{
1

2

∫

Ω1

|∇u|2 − 〈p, u〉X ; u ∈ V

}
.

Let us introduce the bilinear form a : V ×V → R defined by a(u, v) =
∫
Ω1

∇u.∇v.
From the Poincaré-Wirtinger inequality, there exists some constant m > 0 such
that

∀u ∈ V,

∫

Ω1

u2 ≤ m2

∫

Ω1

|∇u|2.

We immediately deduce that

∀u ∈ V,

∫

Ω1

|∇u|2 ≥ 1

1 +m2
‖u‖2X . (20)

Hence the bilinear form a is coercive on V × V and we infer that problem (P∗)
has a unique solution, that we denote by u∗. Equivalently u∗ is the solution of
the variational problem

∀u ∈ V,

∫

Ω1

∇u∗.∇u = 〈p, u〉X =

∫

Ω1

∇p.∇u+
∫

Ω1

pu. (21)

It is immediate to check that u∗ is a solution of the corresponding problem in X .
Hence the supremum in expression (19) is attained at u∗ and we derive in view
of (21) that

(f −min f)∗(p)− σArgminf
(p) =

1

2

∫

Ω1

|∇u∗|2 = 1

2
〈p, u∗〉X . (22)

From inequality (20) applied with u = u∗, we infer that

1

1 +m2
‖u∗‖2X ≤

∫

Ω1

|∇u∗|2 = 〈p, u∗〉X ≤ ‖p‖X‖u∗‖X .

This implies that ‖u∗‖X ≤ (1 + m2)‖p‖X . Hence we derive from (22) that for
every p ∈ V

(f −min f)∗(p)− σArgminf(p) ≤
1 +m2

2
‖p‖2X .

Since the right hand-side of the above inequality is quadratic, assumption (Hf) is

satisfied as soon as
(

1
γn

)
∈ l2 and the same holds for (Hg). We conclude from The-

orem 3.1 and the above analysis that if (γn+1 − γn) is bounded and if
(

1
γn

)
∈ l2,
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then any sequence (un, vn) generated by (A) weakly converges inH1(Ω1)×H1(Ω2)
to a minimum point (û+ c, v̂ + c), (c ∈ R) of problem (P). Without loss of gen-
erality, we can assume that c = 0. Since Ω1 and Ω2 are Lipschitz domains, the
injections H1(Ω1) ↪→ L2(Ω1) and H

1(Ω2) ↪→ L2(Ω2) are compact by the Rellich-
Kondrachov Theorem (see [2, Theorem 6.2] or [8, Theorem II.55]). It ensues that
the sequence (un, vn) converges to (û, v̂) strongly in L2(Ω1)× L2(Ω2). Moreover,
from Proposition 2.1 (i), we have limn→+∞ f(un) = f(û) and limn→+∞ g(vn) =
g(v̂), hence limn→+∞

∫
Ω1

|∇un|2 =
∫
Ω1

|∇û|2 and limn→+∞
∫
Ω2

|∇vn|2 =
∫
Ω2

|∇v̂|2.
As a consequence, we have limn→+∞ ‖(un, vn)‖H1(Ω1)×H1(Ω2) = ‖(û, v̂)‖H1(Ω1)×H1(Ω2).
Since (un, vn) weakly converges inH1(Ω1)×H1(Ω2) toward (û, v̂), the convergence
is strong in H1(Ω1)×H1(Ω2). We can state the following theorem.

Theorem 4.1 Let Ω be a bounded domain of RN which can be decomposed in
two nonoverlapping Lipschitz subdomains Ω1 and Ω2 with a common interface Γ.
We assume that HN−1(Γ) > 0. Let h ∈ L2(Ω) be such that

∫
Ω1
h =

∫
Ω2
h = 0

and define the functions f : H1(Ω1) → R and g : H1(Ω2) → R by formulas (15).

Let (γn) be a positive nondecreasing sequence such that
(

1
γn

)
∈ l2 and assume

that the sequence (γn+1−γn) is bounded. Then any sequence (un, vn) generated by
algorithm (A) strongly converges in H1(Ω1)×H1(Ω2) to a minimum point (û, v̂)
of problem (P).

Remark 4.1 The above analysis gives an exact expression of the conjugate f ∗.
However, it is possible to verify directly assumption (Hf) without resorting to an
exact computation of f ∗. The method consists in checking that inequality (5) of
Example 3.1 is satisfied with r = 2. From the Poincaré-Wirtinger inequality, we
have ∫

Ω1

∣∣∣∣u− û− 1

|Ω1|

∫

Ω1

(u− û)

∣∣∣∣
2

≤ m2

∫

Ω1

|∇u−∇û|2.

Since û+ 1
|Ω1|
∫
Ω1
(u− û) ∈ Argminf , we deduce that

∫

Ω1

|∇u−∇û|2 ≥ 1

1 +m2

∥∥∥∥u− û− 1

|Ω1|

∫

Ω1

(u− û)

∥∥∥∥
2

X

≥ 1

1 +m2
d2X (u,Argminf).

(23)

In view of (18) and (23), we find, for every u ∈ X ,

f(u)−min f ≥ 1

2(1 +m2)
d2X (u,Argminf).

From Example 3.1, we conclude that the assumption (Hf) is satisfied if ( 1
γn
) ∈ l2.
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5 Further convergence results in the finite dimensional
setting

From now to the end of this section, X and Y are finite-dimensional Hilbert
spaces. The approach that we now develop relies on topological ingredients that
can already be found in [3, 9, 12]. The first result shows that the iterates (xn, yn)
of algorithm (A) approach the optimal set S as n→ +∞.

Theorem 5.1 Under the hypotheses of Proposition 2.1, assume that the spaces
X and Y are finite-dimensional. Let us define the set

S = Argmin{‖Ax− By‖2Z : (x, y) ∈ Argminf ×Argming},

assumed to be nonempty and bounded. Suppose that the sequence (γn) satisfies(
1
γn

)
∈ l2\l1. Let us consider algorithm (A) with α = ν. Then any sequence

(xn, yn) generated by (A) satisfies limn→+∞ dX×Y((xn, yn), S) = 0.

Proof. Let us define the maps Φ : X × Y −→ R ∪ {+∞} and Ψ : X × Y −→
R+ respectively by Φ(x, y) = f(x) + g(y) and Ψ(x, y) = 1

2
‖Ax − By‖2Z , along

with the set C = Argminf × Argming. Consider the sequence (hn) defined by
hn = 1

2
d2X×Y((xn, yn), S) for every n ∈ N. Denoting by PS(xn, yn) = (P x

n , P
y
n) the

projection of (xn, yn) ∈ X × Y onto the convex set S, we have

hn =
1

2
‖(xn, yn)− PS(xn, yn)‖2X×Y

=
1

2
‖(xn, yn)− PS(xn, yn)− ((xn+1, yn+1)− PS(xn+1, yn+1))‖2X×Y + hn+1

+ 〈(xn, yn)− PS(xn, yn)− ((xn+1, yn+1)− PS(xn+1, yn+1)), (xn+1, yn+1)− PS(xn+1, yn+1)〉X×Y .

Since PS(xn, yn) ∈ S, we have

〈PS(xn, yn)− PS(xn+1, yn+1), (xn+1, yn+1)− PS(xn+1, yn+1)〉X×Y ≤ 0,

hence

hn+1 − hn ≤ 〈xn+1 − xn, xn+1 − P x
n+1〉X + 〈yn+1 − yn, yn+1 − P y

n+1〉Y . (24)

Using subdifferential inequalities (1) with α = ν, we have





〈xn+1 − xn, xn+1 − P x
n+1〉X ≤ − 1

α
f(xn+1)−

1

αγn+1
〈Axn+1 −Byn, Axn+1 − AP x

n+1〉Z

〈yn+1 − yn, yn+1 − P y
n+1〉Y ≤ − 1

α
g(yn+1) +

1

αγn+1
〈Axn+1 −Byn+1, Byn+1 −BP y

n+1〉Z .
(25)

On the other hand, since ∇Ψ(x, y) = (A∗(Ax− By),−B∗(Ax− By)) we have
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Ψ(P x
n+1, P

y
n+1)−Ψ(xn+1, yn+1) ≥ 〈Axn+1 − Byn+1, AP

x
n+1 − Axn+1〉Z

−〈Axn+1 − Byn+1, BP
y
n+1 −Byn+1〉Z . (26)

Then inequalities (24), (25) and (26) give

hn+1 − hn +
1

α
Φ(xn+1, yn+1) +

1

αγn+1
(Ψ(xn+1, yn+1)−min

C
Ψ)

+
1

αγn+1
〈Byn+1 − Byn, Axn+1 − AP x

n+1〉Z ≤ 0,

hence

hn+1−hn+
1

αγn+1

(Ψ(xn+1, yn+1)−min
C

Ψ) ≤ 1

2α
‖Byn+1−Byn‖2Z+

1

2αγ2n+1

‖Axn+1−AP x
n+1‖2Z .

Let us set µn = 1
2α
‖Byn+1 − Byn‖2Z . As the linear operator B is continuous and

since (‖yn+1 − yn‖2Y) is summable, (µn) is also summable. In the same way, there
exists a constant M ≥ 0 such that 1

2
‖Axn+1 − AP x

n+1‖2Z ≤ M
2
‖xn+1 − P x

n+1‖2X ≤
Mhn+1. Setting ρn = 1− M

αγ2
n
, there exists n0 ∈ N such that ρn > 0 for all n ≥ n0.

Finally we find

ρn+1hn+1 − hn +
1

αγn+1

(Ψ(xn+1, yn+1)−min
C

Ψ) ≤ µn.

Let us note ρ′n =
∏n

i=n0
ρi and h

′
n = ρ′n(hn +

∑+∞
i=n µi), then, proceeding as in the

proof of [3, Theorem 3], we find, for all n ≥ n0,

h′n+1 + ρ′n
1

αγn+1
(Ψ(xn+1, yn+1)−min

C
Ψ) ≤ h′n. (27)

We now follow the same arguments as those used by the first author in [12,
Theorem 3.1]. We distinguish two cases:

(a)There exists n1 ≥ n0 such that for all n ≥ n1, Ψ(xn+1, yn+1) > minC Ψ.
(b)For all n1 ≥ n0, there exists n ≥ n1 such that Ψ(xn+1, yn+1) ≤ minC Ψ.

Case (a). We assume that there exists n1 ≥ n0 such that for all n ≥ n1,
Ψ(xn+1, yn+1) > minC Ψ. Then (h′n)n≥n1 is nonincreasing, hence convergent. Re-
mark that, since ( 1

γ2
n
) is summable, limn→+∞ ρ′n = ρ ∈]0, 1[, therefore (hn) is also

convergent. We must prove that limn→+∞ hn = 0. Using inequality (27), we can
assert that ( 1

γn
(Ψ(xn, yn) − minC Ψ)) is summable. Moreover, since ( 1

γn
) is not

summable, we have lim infn→+∞Ψ(xn, yn) = minC Ψ. Consider a subsequence of
(xn, yn), still denoted by (xn, yn), such that limn→+∞Ψ(xn, yn) = minC Ψ. As the
sequence (hn) converges and since the set S is bounded, we infer that the sequence
(xn, yn) is bounded. Since (xn, yn) lies in the finite-dimensional space X × Y , we
can extract a subsequence (xnk

, ynk
) of (xn, yn) which converges toward (x, y) ∈
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X ×Y . In view of Proposition 2.1 (i), we have (x, y) ∈ C. Moreover the map Ψ is
continuous, hence limk→+∞Ψ(xnk

, ynk
) = Ψ(x, y) = minC Ψ. Finally (x, y) ∈ S,

and limk→+∞ hnk
= limk→+∞

1
2
d2X×Y((xnk

, ynk
), S) = 1

2
d2X×Y((x, y), S) = 0. Re-

calling that the sequence (hn) is convergent, we conclude that limn→+∞ hn = 0.
Case (b). We assume that, for all n1 ≥ n0, there exists n ≥ n1 such that
Ψ(xn+1, yn+1) ≤ minC Ψ. Let us define

τN = max{n ∈ N, n ≤ N and Ψ(xn, yn) ≤ min
C

Ψ}.

The integer τN is well-defined for N large enough and limN→+∞ τN = +∞. If
τN ≤ N − 1, we have h′n+1 ≤ h′n for all n ∈ {τN , N − 1}, therefore

h′N ≤ h′τN . (28)

If τN = N , inequality (28) is still true. Because of Proposition 2.1 (i), we have
limn→+∞Φ(xn, yn) = 0, hence there exists M0 > 0 such that, for every n ∈ N,
Φ(xn, yn) ≤M0. From the definition of τN , we have Ψ(xτN , yτN ) ≤ minC Ψ. Hence
we have

(xτN , yτN ) ∈ [Φ ≤M0] ∩ [Ψ ≤ min
C

Ψ],

as soon as (xτN , yτN ) is defined. It is proved in [12, Lemma 3.3] that the bounded-
ness of S = ArgminCΨ implies the boundedness of the set [Φ ≤ M0] ∩ [Ψ ≤
minC Ψ]. It ensues that the sequence (hτN ) is bounded and the same holds
true for the sequence (h′τN ). Let us show that limN→+∞ h′τN = 0. For that pur-
pose, we prove that 0 is the unique limit point of the bounded sequence (h′τN ).
Considering a converging subsequence (h′τNk

) of (h′τN ), we can extract a sub-

sequence of (xτNk
, yτNk

), still denoted by (xτNk
, yτNk

), which converges toward
(x, y) ∈ X × Y . Using Proposition 2.1 (i) and since [Ψ ≤ minC Ψ] is closed as
a sublevel set of the continuous function Ψ, we infer that (x, y) ∈ S. There-
fore limk→+∞ hτNk

= limk→+∞
1
2
d2X×Y((xτNk

, yτNk
), S) = 1

2
d2X×Y((x, y), S) = 0 and

hence limk→+∞ h′τNk
= 0. We immediately deduce that the whole sequence (h′τN )

converges toward 0. Then inequality (28) implies that limN→+∞ h′N = 0, which
allows to conclude that limN→+∞ hN = 0.

Under the additional assumptions (Hf )-(Hg) introduced in section 3, one can
obtain the convergence of the whole sequence (xn, yn) toward a point (x, y) ∈ S.

Proposition 5.1 Under the hypotheses of Theorem 5.1, assume moreover that
conditions (Hf)-(Hg) hold. Then, any sequence (xn, yn) generated by algorithm
(A) converges to a point (x, y) ∈ S.

Proof. Let (x, y) ∈ S and define the sequence (gn) by gn = 1
2
‖(xn, yn)−(x, y)‖2X×Y

for every n ∈ N. By arguing as in the proof of Theorem 5.1, we obtain
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gn+1 − gn +
1

α

[
Φ(xn+1, yn+1) +

1

γn+1
(Ψ(xn+1, yn+1)−min

C
Ψ)

]

+
1

αγn+1

〈Byn+1 −Byn, Axn+1 − Ax〉Z ≤ 0.

Setting (p, q) = −∇Ψ(x, y), we obtain as in the proof of Theorem 3.1 that

Φ(xn+1, yn+1) +
1

γn+1
(Ψ(xn+1, yn+1)−min

C
Ψ) ≥ −Φ∗

(
(p, q)

γn+1

)
+ σC

(
(p, q)

γn+1

)
.

We infer from the above inequality that

gn+1−gn ≤ 1

α

[
Φ∗
(
(p, q)

γn+1

)
− σC

(
(p, q)

γn+1

)]
+

1

2α
‖Byn+1−Byn‖2Z+

1

2αγ2n+1

‖Axn+1−Ax‖2Z .

Let us set λn = 1
α

[
Φ∗
(

(p,q)
γn+1

)
− σC

(
(p,q)
γn+1

)]
and µn = 1

2α
‖Byn+1 − Byn‖2Z . The

sequence (λn) is summable from assumptions (Hf)-(Hg), see formula (7). Since
the linear operator B is continuous and since (‖yn+1 − yn‖2Y) is summable, the
sequence (µn) is also summable. On the other hand, there exists M ≥ 0 such that
1
2
‖Axn+1 − Ax‖2Z ≤ M

2
‖xn+1 − x‖2X ≤ Mgn+1. Let us note ρn = 1 − M

αγ2
n
. There

exists n0 ∈ N such that ρn > 0 for all n ≥ n0 and we find

ρn+1gn+1 − gn ≤ λn + µn.

By setting ρ′n =
∏n

i=n0
ρi and g

′
n = ρ′n gn, we infer that for all n ≥ n0,

g′n+1 − g′n ≤ ρ′n(λn + µn).

Recall that, because ( 1
γ2
n
) is summable, limn→+∞ ρ′n = ρ ∈]0, 1[. Since (λn + µn)

is summable, we deduce that the right member of the previous inequality is also
summable. Then we can apply Lemma 2.2 to assert that limn→+∞ g′n exists, hence
limn→+∞ gn also exists. We have proved that

lim
n→+∞

‖(xn, yn)− (x, y)‖X×Y exists for any (x, y) ∈ S. (29)

Hence the sequence (xn, yn) is bounded, therefore we can extract a subsequence
(xnk

, ynk
) which converges toward (x, y). From Theorem 5.1, we have (x, y) ∈ S.

Taking (x, y) = (x, y) in (29), we deduce that limn→+∞ ‖(xn, yn) − (x, y)‖X×Y
exists and finally limn→+∞ ‖(xn, yn)− (x, y)‖X×Y = 0.

Remark 5.1 Theorem 5.1 and Proposition 5.1 rely on techniques which differ
from the ones of section 3. Notice that they do not assume that the sequence
(γn+1 − γn) is bounded, as it is the case in Theorem 3.1. The main drawback
is that the involved spaces X and Y are finite-dimensional, which precludes the
potential applications to PDE’s.
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Concluding comments. In this paper, we focused our attention on the case
γn → +∞ as n→ +∞. Another situation of interest corresponds to a decreasing
sequence (γn) tending to 0 as n → +∞. Under suitable conditions on the decay
rate of (γn), the associated algorithm minimizes the function (x, y) 7→ f(x)+g(y)
over the space V = {(x, y) ∈ X ×Y , Ax = By}. This situation is analyzed in the
companion paper [5].
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Summary. Let X,Y be real Hilbert spaces. Consider a bounded linear operator A : X → Y and a
nonempty closed convex set C ⊂ Y . In this paper we propose an inexact proximal-type algorithm to
solve constrained optimization problems

(P) inf{f(x) : Ax ∈ C},

where f is a proper lower-semicontinuous convex function on X; and variational inequalities

(VI) 0 ∈ Mx+ A∗NC(Ax),

where M : X ⇒ X is a maximal monotone operator and NC denotes the normal cone to the set C. Our
method combines an exact penalization procedure involving a bounded sequence of parameters, with
the predictor corrector proximal multiplier method of [12]. Under suitable assumptions the sequences
generated by our algorithm are proved to converge weakly to solutions of (P) and (VI). As applications,
we describe how the algorithm can be used to find sparse solutions of linear inequality systems and
solve partial differential equations by domain decomposition.

Key words: Convex optimization, proximal methods, Lagrangian, domain decomposition for PDE’s.
Subject classification: 65K05, 65K10, 46N10, 49J40, 49M27, 90C25

3

Introduction

Let X, Y be real Hilbert spaces. Given a proper lower-semicontinuous function
f : X → R ∪ {+∞}, a nonempty closed convex subset C of Y and a bounded
linear operator A : X → Y , consider the following problem

(P) min{f(x) : Ax ∈ C}.

Here f is the objective function and C is a set of constraints for the observations
of x given by Ax. Denote by S the solution set of (P). Let us mention two simple
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instances of this problem:

1. Inequality constraints in mathematical programming. Let A = (An
m) be aM×N

matrix and let b ∈ RM . For the problem of minimizing f : RN → R subject to
Ax ≤ b the set C is given by C = {y ∈ RM : ym ≤ bm, m = 1, . . . ,M}. More
generally, one can require the observations Ax of the vector x to take values
under given thresholds c1, . . . , cJ for valuation functions g1, . . . , gJ . In that case,
C = {y ∈ R

M : gj(y) ≤ cj, j = 1, . . . , J}. �

2. Domain decomposition for partial differential equations. Let us consider a
bounded domain Ω ⊂ RN which is decomposed in two non-overlapping subdo-
mains Ω1 and Ω2 with a common interface Γ. Consider the problem of finding a
function on Ω satisfying some elliptic differential equations on Ω1 and Ω2 and such
that the jump when passing from Ω1 to Ω2 is nonnegative. For the Poisson equa-
tion with right-hand side h and Neumann boundary conditions, the variational
formulation is

inf

{
1

2

∫

Ω1

|∇u|2 −
∫

Ω1

hu+
1

2

∫

Ω2

|∇v|2 −
∫

Ω2

hv; (u, v) ∈ H1(Ω1)×H1(Ω2) and u|Γ ≥ v|Γ

}
.

Here X = H1(Ω1)×H1(Ω2), Y = L2(Γ), A(u, v) = u|Γ−v|Γ, C = {y ∈ Y : y ≥ 0}
and f(u, v) = 1

2

∫
Ω1

|∇u|2 −
∫
Ω1
hu+ 1

2

∫
Ω2

|∇v|2 −
∫
Ω2
hv. �

This paper is concerned with a new algorithm of proximal type that provides
a solution for problem (P). It can also be applied to solve constrained variational
inequalities of the form

(VI) 0 ∈ Mx+ A∗NC(Ax),

where M : X ⇒ X is a maximal monotone operator and NC denotes the normal
cone to the set C.

Notice that x is a solution of problem (P) if and only if 0 ∈ ∂(f + δC ◦A)(x),
where δC is the indicator function of the set C. Recalling that ∂δC = NC, we ob-
serve that if M = ∂f then any solution of (VI) is a solution of (P). Equivalence
holds under qualification conditions. It occurs, for instance, if C − A(domf) is a
neighborhood of the origin (see [9, Theorem 2.168]).

Our method has been inspired by two classical approaches:

1. Penalization. Let us introduce an exact penalization function P : Y → [0,+∞)
such that P (y) = 0 if, and only if, y ∈ C. Following [7], [14] or [4], one way to
approximate points in S is to apply either a diagonal or an alternating proximal
point algorithm to the family (fk) of functions given by
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fk(x) = f(x) + βkP (Ax), (1)

while letting βk → +∞. The idea behind is that, since the proximal point al-
gorithm tends to minimize the function fk, once βk is large, the cost given by
βkP (Ax) will force Ax to be close to C in some sense. This approach is especially
useful when the set C is expressed as a sublevel set of a convex function or as inter-
sections of such sets. Several theoretical or practical choices for the function P are
available. For instance, one can take P (·) = d(·, C), the distance function to C. For
the case of linear inequality constraints one can use P (y) =

∑M
m=1

[
ym − bm

]
+
,

where [r]+ denotes the positive part of r ∈ R.

The penalization procedure described above using (1) provides a solution of
(P). However, it often involves parameters that tend either to 0 or +∞, which
might lead to numerical instabilities or ill-conditioning. �

2. Lagrangian duality. Let σC denote the support function of the set C and define
the Lagrangian function L(x, µ) = f(x) + 〈µ,Ax〉 − σC(µ), where 〈·, ·〉 denotes
the inner product in Y . Observe that problem (P) is

(P) inf
x∈X

sup
µ∈Y

L(x, µ) = inf
x∈X

{f(x) : Ax ∈ C}

(see [8, Chapter V]). If (x∗, µ∗) is a saddle point of L then Ax∗ ∈ C and x∗ is
a solution of (P)4. The operator T : X × Y ⇒ X × Y defined by T (x, µ) =
(∂f(x) + A∗µ, ∂σC(µ) − Ax) is maximal monotone and its zeroes coincide with
the saddle points of L (see [20]). Therefore, one can obtain solutions of (P) by
applying the proximal point algorithm to T (see [10], [21] or [19]). One drawback
is the implementation complexity due to the presence of the support function σC.
�

In order to solve problems (P) and (VI) we propose a Lagrangian-based ap-
proach that incorporates a sort of penalization function for the set C. It is worth
mentioning that neither divergent penalization parameters nor vanishing step
sizes come into play. The method uses the prediction-correction ideas introduced
in [12] for minimization problems, but keeping a multiplier for the constraint
involving P . This multiplier can also be interpreted as a vector of penalization
parameters with an updating rule that prevents them from growing indefinitely.
The prediction-correction steps also allow to circumvent the problem of comput-
ing resolvents of sums. All the analysis is carried out in a Hilbert space setting.

4 Also µ∗ is a solution of the dual problem

(P∗) sup
µ∈Y

inf
x∈X

L(x,µ) = sup
µ∈Y

{f∗(−A∗µ)− σC(µ)}.
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This paper is organized as follows: In Section 1 we discuss on the problems
(P) and (VI), alternative formulations and their sets of solutions. We present our
Lagrangian-based algorithm with explicitly evaluated prediction/correction steps
for the Lagrange multipliers and describe our main results. The convergence anal-
ysis in the context of problem (VI) is presented in Section 2. Section 3 contains
additional results for problem (P). The remainder is devoted to applications. In
Section 4 we explain how the algorithm can be used to obtain sparse solutions
for a system of linear inequalities. Section 5 contains a domain decomposition
method for partial differential equations with a unilateral transfer through the
boundary.

1 Preliminaries

Since no confusion should arise, all inner products (in X , Y and RM) will be
denoted by 〈·, ·〉 and the corresponding norms by | · |.

Let P = (pm)
M
m=1 be a l-Lipschitz vector-valued function on Y such that each

component pm is nonnegative and convex. Assume that the set C is defined by

C = { y ∈ Y : P (y) = 0 }.

Set H = X×Y ×Y ×RM . In order to simplify the notation, let us write ∂P =
(∂pm)

M
m=1. Following [20, 6], given a maximal monotone operator M : X ⇒ X

we define the monotone5 operator NM : H ⇒ H by

NM(x, y, µ, ν) = (Mx+ A∗µ,−µ+ 〈ν, ∂P (y)〉,−Ax+ y,−P (y)).

Since each component pm is continuous, for each fixed ν ∈ RM we have
∂(〈ν, P (·)〉)(y) = 〈ν, ∂P (y)〉 for all y ∈ Y . Therefore, the operator 〈ν, ∂P 〉 :
Y ⇒ Y is maximal monotone. Write SM = N−1

M 0 and observe that a point
(x∗, y∗, µ∗, ν∗) ∈ H belongs to SM if, and only if,

−A∗µ∗ ∈ Mx∗, µ∗ ∈ 〈ν∗, ∂P (y∗)〉, Ax∗ = y∗, and P (y∗) = 0.

If (x∗, y∗, µ∗, ν∗) ∈ SM then x∗ satisfies (VI) because 〈ν∗, ∂P (y∗)〉 ⊂ NC(y
∗). The

converse depends on the function P . For example, if P (·) = d(·, C) and x∗ satisfies
(VI), then there exist y∗, µ∗ and ν∗ such that (x∗, y∗, µ∗, ν∗) ∈ SM.

On the other hand, by introducing an auxiliary variable y ∈ Y we can rewrite
(P) as

inf{f(x) : Ax = y and P (y) = 0} = inf{f(x) : (x, y) ∈ C},
where
5 Maximality is irrelevant for our convergence analysis.
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C = { (x, y) ∈ X × Y : Ax = y, y ∈ C }
is the set of primal feasible points.

Define the Lagrangian function L : H → R ∪ {+∞} by

L(x, y, µ, ν) = f(x) + 〈µ,Ax− y〉+ 〈ν, P (y)〉. (2)

A point w∗ = (x∗, y∗, µ∗, ν∗) ∈ H is a saddle point of L if

L(x∗, y∗, µ, ν) ≤ L(x∗, y∗, µ∗, ν∗) ≤ L(x, y, µ∗, ν∗) (3)

for all (x, y, µ, ν) ∈ H. The set of saddle points of L coincides with S∂f (see [20]).
Observe that if (x∗, y∗, µ∗, ν∗) is a saddle point of the Lagrangian then (x∗, y∗) ∈ C
and x∗ is a solution of (P).

In order to find points in SM, we propose the following method. Let us take
w0 ∈ H and define the sequence (wk) inductively as follows: given wk−1 =
(xk−1, yk−1, µk−1, νk−1) we introduce a prediction (µ̃k, ν̃k) for the multipliers using
the proximal point algorithm. This idea is motivated by [12]. By linearity, this
accounts to

(A1)

{
µ̃k = µk−1 + λk(Ax

k−1 − yk−1)
ν̃k = νk−1 + λkP (y

k−1).

Proximal steps with respect to the state variables (x, y) read

−x
k − xk−1

λk
−A∗µ̃k ∈ Mxk and − yk − yk−1

λk
+ µ̃k ∈

M∑

m=1

ν̃km∂pm(y
k), (4)

respectively. If M = ∂f these correspond to



xk = Argminx∈X

{
L(x, yk−1, µ̃k, ν̃k) + 1

2λk
|x− xk−1|2

}

yk = Argminy∈Y

{
L(xk−1, y, µ̃k, ν̃k) + 1

2λk
|y − yk−1|2

}
.

Due to the maximal monotonicity of M and 〈ν, ∂P 〉, each of the inclusions
given by (4) has a unique solution by virtue of Minty’s Theorem. However, since
they might be difficult to solve it is important to use approximate or relaxed
versions. For ε ≥ 0 set

Mεx = {x∗ ∈ X : 〈x∗ − u∗, x− u〉 ≥ −ε for all u∗ ∈ Mu }.

We always have M ⊂ Mε. Moreover, if M = ∂f then ∂f ⊂ ∂εf ⊂ (∂f)ε,
where ∂ε denotes the standard ε-approximate subdifferential. We consider the
inclusions
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(A2)

−x
k − xk−1

λk
− A∗µ̃k ∈ Mεkx

k and − yk − yk−1

λk
+ µ̃k ∈

M∑

m=1

ν̃km∂εkpm(y
k),

for εk ≥ 0. Finally, the multipliers are updated using:

(A3)

{
µk = µk−1 + λk(Ax

k − yk)
νk = νk−1 + λkP (y

k).

In the following sections we shall prove the weak convergence of the sequence
(wk) generated by (A1)− (A3) to a point in SM under a summability assump-
tion on the error sequence (εk) and a boundedness assumption on the step sizes
(λk). For a general maximal monotone operator M we require Y to be finite-
dimensional, an assumption that is already present in [12]. When M is the subd-
ifferential of some proper lower-semicontinuous function f : X → R∪{+∞}, this
hypothesis on the dimension of Y can be eliminated. Moreover, we also establish
the existence of limk→+∞ L(xk, yk, µk, νk) and limk→+∞ f(xk), which provide a key
tool for upgrading convergence from weak to strong in the application described
in Section 5.

2 Convergence toward SM

The purpose of this section is to prove the following:

Theorem 2.1 Let X be a real Hilbert space and Y = Rp. Let SM 6= ∅ and assume
(εk) ∈ `1 and 0 < λ ≤ λk ≤ λ < max{ 1√

2‖A‖ ,
1√
2+l2

}. Any sequence (xk, yk, µk, νk)

generated by Algorithm (A1) − (A3) converges weakly as k → +∞ to some
(x∞, y∞, µ∞, ν∞) ∈ SM.

We start by deriving the fundamental estimations that will support the con-
vergence analysis. For w ∈ H, let us write

|||w|||2 = |x|2 + |y|2 + |µ|2 + |ν|2.

Lemma 2.1 Let (x∗, y∗, µ∗, ν∗) ∈ SM. Then for all k ∈ N we have

|||wk − w∗|||2 − |||wk−1 − w∗|||2 + |µ̃k − µk−1|2 + |ν̃k − νk−1|2
+
(
1− 2λ2k‖A‖2

)
|xk − xk−1|2 +

(
1− λ2k(2 + l2)

)
|yk − yk−1|2 ≤ 2λk(M + 1)εk.(5)

Proof. Let (x∗, y∗, µ∗, ν∗) ∈ SM. From the definition of Mε and (A2) we have

〈
A∗µ∗ − xk − xk−1

λk
− A∗µ̃k, x∗ − xk

〉
≤ εk,



LAGRANGIAN-PENALIZATION ALGORITHM 151

and we infer that

|xk − x∗|2 − |xk−1 − x∗|2 + |xk − xk−1|2 + 2λk〈µ̃k − µ∗, A(xk − x∗)〉 ≤ 2λkεk. (6)

On the other hand, the εk-approximate subdifferential inequality for each ν̃kpm
gives

2λk〈ν̃k, P (y∗)− P (yk)〉 ≥ −2λk

〈
yk − yk−1

λk
− µ̃k, y∗ − yk

〉
− 2λkMεk

by summation. Hence

|yk−y∗|2−|yk−1−y∗|2+|yk−yk−1|2+2λk〈ν̃k, P (yk)−P (y∗)〉+2λk〈µ̃k, y∗−yk〉 ≤ 2λkMεk.
(7)

Moreover we have µ∗ ∈ 〈ν∗, ∂P (y∗)〉, and so

2λk〈−µ∗, y∗ − yk〉 − 2λk〈ν∗, P (yk)− P (y∗)〉 ≤ 0. (8)

Summing up inequalities (6), (7) and (8), and using that Ax∗ = y∗, one obtains

|xk − x|2 − |xk−1 − x|2 + |xk − xk−1|2
+ |yk − y|2 − |yk−1 − y|2 + |yk − yk−1|2

+2λk
[
〈µ̃k − µ∗, Axk − yk〉+ 〈ν̃k − ν∗, P (yk)〉

]
≤ 2λk(M + 1)εk. (9)

We rewrite the term in the bracket as follows

〈µ̃k − µ∗, Axk − yk〉+ 〈ν̃k − ν∗, P (yk)〉
= 〈µ̃k − µk, Axk − yk〉+ 〈ν̃k − νk, P (yk)〉+ 〈µk − µ∗, Axk − yk〉+ 〈νk − ν∗, P (yk)〉

=
1

λk
〈µ̃k − µk, µk − µk−1〉+ 1

λk
〈ν̃k − νk, νk − νk−1〉

+
1

λk
〈µk − µ∗, µk − µk−1〉+ 1

λk
〈νk − ν∗, νk − νk−1〉

=
1

2λk
[|µ̃k − µk−1|2 − |µ̃k − µk|2 − |µk − µk−1|2] + 1

2λk
[|ν̃k − νk−1|2 − |ν̃k − νk|2 − |νk − νk−1|2]

+
1

2λk
[|µk − µ∗|2 + |µk − µk−1|2 − |µk−1 − µ∗|2] + 1

2λk
[|νk − ν∗|2 + |νk − νk−1|2 − |νk−1 − ν∗|2].

(10)
To simplify the notation, define

ρk = |xk − xk−1|2 + |yk − yk−1|2 + |µ̃k − µk−1|2 + |ν̃k − νk−1|2.

Recall that |||w|||2 = |x|2 + |y|2 + |µ|2 + |ν|2 for w ∈ H. Replacing equality (10) in
(9), we deduce that

|||wk − w∗|||2 − |||wk−1 − w∗|||2 + ρk − |µ̃k − µk|2 − |ν̃k − νk|2 ≤ 2λk(M + 1)εk.
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To conclude, observe that

|µ̃k − µk|2 = λ2k|A(xk−1 − xk)− (yk−1 − yk)|2 ≤ 2λ2k‖A‖2|xk − xk−1|2 + 2λ2k|yk − yk−1|2,

while

|ν̃k − νk|2 = λ2k|P (yk−1)− P (yk)|2 ≤ λ2kl
2|yk − yk−1|2.

Adding the last three inequalities we obtain (5). �

In order to prove the convergence of the algorithm first recall the following
elementary result for real sequences. A proof can be found, for instance, in [5,
Lemma 2].

Lemma 2.2 Let (ak), (bk) and (ηk) be real sequences. Assume that (ak) is
bounded from below, (bk) is nonnegative and (ηk) ∈ l1. Assume also that ak+1 −
ak + bk ≤ ηk for every k ∈ N. Then (ak) converges and (bk) ∈ l1.

An immediate consequence of Lemmas 2.1 and 2.2 is the following:

Proposition 2.1 Let SM 6= ∅ and assume (εk) ∈ `1 and 0 < λ ≤ λk ≤ λ <
max{ 1√

2‖A‖ ,
1√
2+l2

}. We have the following:

(i) the sequences (|xk − xk−1|2), (|yk − yk−1|2), (|Axk − yk|2), (|P (yk)|2) are
summable;

(ii)for every (x∗, y∗, ν∗, µ∗) ∈ SM, limk→+∞ |||(xk, yk, µk, νk)− (x∗, y∗, µ∗, ν∗)||| ex-
ists in R.

In order to prove the main result of this section we shall use Opial’s Lemma
[18], which we recall for the sake of completeness:

Lemma 2.3 (Opial) Let H be a Hilbert space endowed with the norm ‖ . ‖. Let
(ξn) be a sequence of H such that there exists a nonempty set Ξ ⊂ H which
verifies

(a)for all ξ ∈ Ξ, lim
n→+∞

‖ξn − ξ‖ exists,

(b)if (ξnk
)⇀ ξ weakly in H as k → +∞, we have ξ ∈ Ξ.

Then the sequence (ξn) converges weakly in H as n→ +∞ to a point in Ξ.

We are now in position to prove the main result of this section.

Proof of Theorem 2.1. Let (xk, yk, µk, νk) be a sequence generated by Algo-
rithm (A1)− (A3). In view of item (ii) of Proposition 2.1, the quantity |||wk−w|||
has a limit as n → +∞ for every w ∈ SM. This shows point (a) in Opial’s
Lemma. To prove point (b), suppose a subsequence of (xk, yk, µk, νk), still de-
noted (xk, yk, µk, νk), that converges weakly to (x∞, y∞, µ∞, ν∞), i.e. (xk) weakly
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converges toward x∞ inX and (yk, µk, νk) strongly converges toward (y∞, µ∞, ν∞)
in Y ×Y ×RM . We must show that (x∞, y∞, µ∞, ν∞) ∈ SM. Using the closedness
of the function (x, y) ∈ X × Y → |Ax − y|2 ∈ R+ and the continuity of the
function P and item (i) of Proposition 2.1, we have

|Ax∞ − y∞|2 ≤ lim inf
k→+∞

|Axk − yk|2 = 0,

P (y∞) = lim
k→+∞

P (yk) = 0,

hence Ax∞ − y∞ = 0 and P (y∞) = 0, which implies (x∞, y∞) ∈ C. Let (x, x∗)
be in the graph of M. In view of (A2), we have

〈−x
k − xk−1

λk
− A∗µ̃k − x∗, xk − x〉 ≥ −εk.

Notice that, in view of Proposition 2.1(i), limk→+∞−xk−xk−1

λk
= 0. Moreover

limk→+∞ |Axk − yk| = 0, hence the sequence (µ̃k) strongly converges in Y to-
ward µ∞. Using also the continuity of the operator A∗, we can pass to the limit
in the above inequality to obtain

〈−A∗µ∞ − x∗, x∞ − x〉 ≥ 0.

Using the maximality of the operator M, this implies −A∗µ∞ ∈ Mx∞. Let now
(y, y∗) in the graph of 〈ν∞, ∂P 〉, we have

〈ν∞, P (yk)− P (y)〉 ≥ 〈y∗, yk − y〉.

Moreover in view of (A2), we have

〈ν̃k, P (y)− P (yk)〉 ≥
〈
−y

k − yk−1

λk
+ µ̃k, y − yk

〉
−Mεk.

Adding these two last inequalities, we obtain

〈ν∞ − ν̃k, P (yk)− P (y)〉 ≥
〈
y∗ +

yk − yk−1

λk
− µ̃k, yk − y

〉
−Mεk.

In view of Proposition 2.1(i), limk→+∞
yk−yk−1

λk
= 0. Moreover limk→+∞ P (yk) = 0,

hence the sequence (ν̃k) strongly converges in Y toward ν∞. We can pass to the
limit in the above inequality to obtain

〈µ∞ − y∗, y∞ − y〉 ≥ 0.

By maximality of the operator 〈ν∞, ∂P 〉, this implies that µ∞ ∈ 〈ν∞, ∂P (y∞)〉.
This achieves to prove that (x∞, y∞, µ∞, ν∞) ∈ SM. �
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Remark 2.1 If M is strongly monotone with parameter α > 0, the algorithm
can be slightly modified in order to obtain strong convergence in Theorem 2.1. It
suffices to redefine the operator Mε for ε ≥ 0 as

M̃εx = {x∗ ∈ X : 〈x∗ − u∗, x− u〉 ≥ α‖x− u‖2 − ε for all u∗ ∈ Mu }.

The strong monotonicity of M implies that one still has M ⊂ M̃ε. Following the
argument in Lemma 2.1 we deduce that

|||wk − w∗|||2 − |||wk−1 − w∗|||2 + 2αλk‖xk − x∗‖2 ≤ 2λk(M + 1)εk

for all k ∈ N, where x∗ is the unique solution of (VI) and w∗ is any element in
SM. The details are left to the reader. This immediately implies that xk converges
strongly to x∗ as k → +∞.

3 Further results for M = ∂f

If M = ∂f a more detailed analysis can be carried out and some results can
be improved. In particular, the assumption on the dimension of Y can be omit-
ted. Moreover, part (ii) in Proposition 3.1 below is used in Section 5 to upgrade
convergence from weak to strong in a domain decomposition method for par-
tial differential equations. In this section, we assume that the primal steps are
computed using the approximate subdifferentials. Namely,
(A2′)

−x
k − xk−1

λk
−A∗µ̃k ∈ ∂εkf(x

k) and − yk − yk−1

λk
+ µ̃k ∈

M∑

m=1

ν̃km∂εkpm(y
k),

for εk ≥ 0. We shall prove the following:

Theorem 3.1 Let X and Y be real Hilbert spaces. Let S∂f 6= ∅ and assume
(εk) ∈ `1 and 0 < λ ≤ λk ≤ λ < max{ 1√

2‖A‖ ,
1√
2+l2

}. Any sequence (xk, yk, µk, νk)

generated by Algorithm (A1) − (A2′) − (A3) converges weakly as k → +∞ to
some (x∞, y∞, µ∞, ν∞) ∈ S∂f .

We begin with a reinforced version of Lemma 2.1:

Lemma 3.1 Let (x∗, y∗, µ∗, ν∗) have the saddle-point property. Then for all k ∈ N

we have

|||wk − w∗|||2 − |||wk−1 − w∗|||2 + |µ̃k − µk−1|2 + |ν̃k − νk−1|2
+
(
1− 2λ2k‖A‖2

)
|xk − xk−1|2 +

(
1− λ2k(2 + l2)

)
|yk − yk−1|2

+2λk
[
L(xk, yk, µ∗, ν∗)− L(x∗, y∗, µ∗, ν∗)

]
≤ 2λk(M + 1)εk.(11)
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Proof. The subdifferential inequality for f gives

2λk(f(x)− f(xk)) ≥ −2λk

〈
xk − xk−1

λk
+ A∗µ̃k, x− xk

〉
− 2λkεk

= |xk − x|2 − |xk−1 − x|2 + |xk − xk−1|2 + 2λk〈µ̃k, A(xk − x)〉 − 2λkεk

for all x ∈ X . On the other hand, the subdifferential inequality for each ν̃kpm
gives

2λk〈ν̃k, P (y)− P (yk)〉 ≥ −2λk

〈
yk − yk−1

λk
− µ̃k, y − yk

〉
− 2λkMεk

= |yk − y|2 − |yk−1 − y|2 + |yk − yk−1|2 + 2λk〈µ̃k, y − yk〉 − 2λkMεk

for all y ∈ Y . Summing up, one obtains

|xk − x|2 − |xk−1 − x|2 + |xk − xk−1|2
+ |yk − y|2 − |yk−1 − y|2 + |yk − yk−1|2

+ 2λk

[
L(xk, yk, µ̃k, ν̃k)− L(x, y, µ̃k, ν̃k)

]
≤ 2λk(M + 1)εk. (12)

Let (x∗, y∗, µ∗, ν∗) have the saddle-point property and take x = x∗ and y = y∗ in
(12). Since L(x∗, y∗, µ̃k, ν̃k) ≤ L(x∗, y∗, µ∗, ν∗), we obtain

|xk − x∗|2 − |xk−1 − x∗|2 + |xk − xk−1|2
+ |yk − y∗|2 − |yk−1 − y∗|2 + |yk − yk−1|2

+ 2λk

[
L(xk, yk, µ̃k, ν̃k)− L(x∗, y∗, µ∗, ν∗)

]
≤ 2λk(M + 1)εk. (13)

We can write

L(xk, yk, µ̃k, ν̃k)− L(x∗, y∗, µ∗, ν∗) = L(xk, yk, µ̃k, ν̃k)− L(xk, yk, µ∗, ν∗)

+L(xk, yk, µ∗, ν∗)− L(x∗, y∗, µ∗, ν∗)

= 〈µ̃k − µ∗, Axk − yk〉+ 〈ν̃k − ν∗, P (yk)〉
+L(xk, yk, µ∗, ν∗)− L(x∗, y∗, µ∗, ν∗).

Using equality (10), complete the proof of (11) as in Lemma 2.1. �

The following complements Proposition 2.1.

Proposition 3.1 Let S∂f 6= ∅ and assume (εk) ∈ `1 and 0 < λ ≤ λk ≤ λ <
max{ 1√

2‖A‖ ,
1√
2+l2

}. We have the following:

(i) for each (x∗, y∗, ν∗, µ∗) ∈ S∂f , the sequence (L(x
k, yk, µ∗, ν∗)−L(x∗, y∗, µ∗, ν∗))

is in `1;
(ii)limk→+∞ L(xk, yk, µk, νk) = L(x∗, y∗, µ∗, ν∗) and limk→+∞ f(xk) = f(x∗).
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Proof. Item (i) is an immediate consequence of Lemmas 3.1 and 2.2 because each
of the terms L(xk, yk, µ∗, ν∗)−L(x∗, y∗, µ∗, ν∗) is nonnegative in view of the saddle-
point property. We deduce that limk→+∞(L(xk, yk, µ∗, ν∗) − L(x∗, y∗, µ∗, ν∗)) =
0. By Proposition 2.1(i), limk→+∞Axk − yk = 0, limk→+∞ P (yk) = 0 and the
sequences (µk) and (νk) are bounded. This easily implies (ii). �

We can now prove the main result of this section.

Proof of Theorem 3.1. Let (xk, yk, µk, νk) be any sequence generated by Algo-
rithm (A1)− (A2′)− (A3). In view of item (ii) of Proposition 2.1, the quantity
|||wk − w||| has a limit as n → +∞ for every w ∈ S∂f . This shows point (a)
in Opial’s Lemma. To prove point (b), suppose a subsequence of (xk, yk, µk, νk),
still denoted (xk, yk, µk, νk), converges weakly to (x∞, y∞, µ∞, ν∞). We must show
that (x∞, y∞, µ∞, ν∞) is a saddle-point for the Lagrangian function L. Using the
closedness of the functions (x, y) ∈ X × Y → |Ax − y|2 ∈ R+ and |P | and item
(i) of Proposition 2.1, we have

|Ax∞ − y∞|2 ≤ lim inf
k→+∞

|Axk − yk|2 = 0,

|P (y∞)| ≤ lim inf
k→+∞

|P (yk)| = 0,

hence Ax∞ − y∞ = 0 and P (y∞) = 0, which implies (x∞, y∞) ∈ C. Let us fix
(x, y) ∈ X × Y . For all N ∈ N we have

2

N∑

k=1

λk(L(x
k, yk, µ̃k, ν̃k)−L(x, y, µ̃k, ν̃k)) ≤ |x0−x|2+ |y0−y|2+2λ(M+1)

∞∑

k=1

εk

in view of inequality (12). Therefore, lim infk→+∞(L(xk, yk, µ̃k, ν̃k)−L(x, y, µ̃k, ν̃k)) ≤
0. Notice that, since lim

k→+∞
|Axk − yk| = lim

k→+∞
|P (yk)| = 0, the sequence (µ̃k, ν̃k)

converges weakly to (µ∞, ν∞) ∈ Y × R. We deduce that

lim
k→+∞

L(x, y, µ̃k, ν̃k) = lim
k→+∞

(
f(x) + 〈µ̃k, Ax− y〉+ 〈ν̃k, P (y)〉

)

= f(x) + 〈µ∞, Ax− y〉+ 〈ν∞, P (y)〉
= L(x, y, µ∞, ν∞).

Moreover

L(xk, yk, µ̃k, ν̃k) = f(xk) + 〈µ̃k, Axk − yk〉+ 〈ν̃k, P (yk)〉 (14)

and the last two terms tend to 0 as k → +∞. Whence

lim inf
k→+∞

f(xk) = lim inf
k→+∞

L(xk, yk, µ̃k, ν̃k) ≤ lim inf
k→+∞

L(x, y, µ̃k, ν̃k) = lim
k→+∞

L(x, y, µ̃k, ν̃k)

= L(x, y, µ∞, ν∞).
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Finally, using the fact that every limit point of (xk, yk) is feasible along with
closedness of the function f , we infer that

L(x∞, y∞, µ∞, ν∞) = f(x∞) ≤ lim inf
k→+∞

f(xk) ≤ L(x, y, µ∞, ν∞).

We now must prove that, for every (µ, ν) ∈ Y × R, we have

L(x∞, y∞, µ, ν) ≤ L(x∞, y∞, µ∞, ν∞).

This is clear since Ax∞−y∞ = 0 and P (y∞) = 0. We have proved that every weak
cluster point of the sequence (xk, yk, µk, νk) is a saddle-point for the Lagrangian
function L and the result follows from Opial’s Lemma. �

Remark 3.1 Our penalization scheme is exact in the following sense: Let (x∗, y∗, µ∗, ν∗) ∈
S∂f and let

x̂ ∈ Argmin{f(x) + 〈ν, P (Ax)〉,
with νm > ν∗m for m = 1, . . . ,M . Then x̂ is a solution of (P). Indeed, from the
definition of x̂ and the saddle-point property (3), we have

f(x̂) + 〈ν, P (Ax̂)〉 ≤ f(x∗) ≤ f(x̂) + 〈ν∗, P (Ax̂)〉.

Since νm > ν∗m for each m = 1, . . . ,M one must have P (Ax̂) = 0 and f(x̂) ≤
f(x∗), which implies x̂ is a solution of (P).

4 Sparse solutions for linear inequality systems

Let A = (An
m) be a M ×N matrix and let b ∈ RM and consider the problem

min{ ‖x‖1 : Ax ≤ b }. (15)

This is the convex relaxation of the nonconvex problem (see [17]) of finding
the sparsest solutions to the system of inequalities Ax ≤ b, which is stated as

min{ ‖x‖0 : Ax ≤ b },

where ‖ · ‖0 denotes the counting norm (number of nonzero entries). The inter-
ested reader may consult [11], [13], [16].

The problem defined in (15) can be restated as

min{ ‖x‖1 : Ax = y, y ≤ b }.

For m = 1, . . . ,M take
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pm(y) =
[
ym − bm

]
+
.

Begin with (xk−1, yk−1, µk−1, νk−1) and apply the multiplier prediction steps
following (A1):

µ̃k = µk−1 + λk(Ax
k−1 − yk−1)

and for m = 1, . . . ,M

ν̃km =

{
νk−1
m if yk−1

m ≤ bm
νk−1
m + λk(y

k−1
m − bm) otherwise.

Next, the exact primal step with respect to the x-variable

−x
k − xk−1

λk
− A∗µ̃k ∈ ∂f(xk)

reduces to

xkn =




xk−1
n − λk(A

∗µ̃k)n − λk if x
k−1
n − λk(A

∗µ̃k)n > λk
xk−1
n − λk(A

∗µ̃k)n + λk if x
k−1
n − λk(A

∗µ̃k)n < −λk
0 if xk−1

n − λk(A
∗µ̃k)n ∈ [−λk, λk]

for n = 1, . . . , N . On the other hand, for the y-variable we have

−y
k − yk−1

λk
+ µ̃k ∈

M∑

m=1

ν̃km∂pm(y
k),

which we rewrite as

ykm =




yk−1
m + λkµ̃

k
m − λkν̃

k
m if yk−1

m + λkµ̃
k
m − bm > λkν̃

k
m

yk−1
m + λkµ̃

k
m if yk−1

m + λkµ̃
k
m − bm < 0

bm if yk−1
m + λkµ̃

k
m − bm ∈ [0, λkν̃

k
m]

for m = 1, . . . ,M .

Finally we update the multipliers

µk = µk−1 + λk(Ax
k − yk)

and for m = 1, . . . ,M

νkm =

{
νk−1
m if ykm ≤ bm
νk−1
m + λk(y

k
m − bm) otherwise.

A simple illustration. With no intention to test the numerical performance of
the method we present the following academic example to illustrate the imple-
mentation. Let
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A =




−1 0 −1 1 0 1
0 −1 0 −1 0 1
0 1 −1 0 1 0

−1 1 0 1 −1 0
1 0 −1 −1 −1 1

−1 −1 0 0 0 1
0 −1 1 −1 −1 1




and b =




−2
−1
−1
0

−2
−1
0




.

The sparsest solution of the system of inequalitites given by Ax ≤ b is

x̂ = (0 0 1 0 0 − 1)′.

We implement our algorithm in SCILAB with λk ≡ 0.4, starting from 10 ran-
domly generated initial points in [−2, 2]6. The average outcome after 20 iterations
was

x̃ = (0 0 1.0052 0 0 − 0.9913)′

and the average processing time was 0.1 seconds in a laptop computer with a
U9300 Intel(R) Core(TM)2 CPU and 3 GB of RAM.

5 Domain decomposition for partial differential equations

Let us consider a bounded domain Ω = Ω1 ∪ Ω2 ∪ Γ of RN which can be decom-
posed in two non overlapping Lipschitz subdomains Ω1 and Ω2 with a common
interface Γ. We assume that HN−1(Γ) > 0, where HN−1 is the Hausdorff measure
of dimension N − 1. This situation is illustrated in the next figure.

Ω1 Ω2Γ

Let h ∈ L2(Ω). We consider the following problem

Minimize
{

1
2

∫
Ω1

|∇u|2 −
∫
Ω1
hu+ 1

2

∫
Ω2

|∇v|2 −
∫
Ω2
hv
}
;

subject to (u, v) ∈ H1(Ω1)×H1(Ω2) and u|Γ ≥ v|Γ.
(16)

This kind of minimization problems often arises in the description of phe-
nomena where the boundary is free, i.e. no external action is exerted on ∂Ω,
and involving discontinuities through the interface Γ. Here we consider the prob-
lem where the jump when passing from Ω1 to Ω2 is nonnegative. The case with
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no condition on the jump through the interface is treated in [1] with Dirichlet
conditions on the boundary of Ω and in [15] with Neumann conditions. In [6] (res-
pectively [3]) the authors consider the problem with a no-jump condition through
the interface and Dirichlet conditions on the boundary of Ω (respectively Neu-
mann conditions), which amounts to solving a Dirichlet problem (respectively
Neumann problem) on the whole set Ω by decomposition.
Notice that Problem (16) is not coercive. Under the assumptions

∫
Ω
h = 0 and∫

Ω1
h < 0, we can use [2, Theorem 15.1.2] to prove the existence of solutions.

Let us now show how the algorithm described by (A1)− (A2′)− (A3) can be ap-
plied to solve problem (16). The space X = H1(Ω1)×H1(Ω2) is equipped with the
scalar product 〈(u1, v1), (u2, v2)〉X =

∫
Ω1
(∇u1.∇u2+ u1u2)+

∫
Ω2
(∇v1.∇v2 + v1v2)

and the corresponding norm. The space Y = L2(Γ) is equipped with the scalar
product 〈y1, y2〉Y =

∫
Γ
y1y2 and the associated norm. We denote respectively

A1 : H
1(Ω1) → Y and A2 : H

1(Ω2) → Y the trace operators on Γ. Problem (16)
can be reformulated as problem (P) with the following notations

(P) min {f(u) + g(v); (u, v) ∈ X, A(u, v)− y = 0, y ∈ C} ,

where

f(u) =
1

2

∫

Ω1

|∇u|2 −
∫

Ω1

hu and g(v) =
1

2

∫

Ω2

|∇v|2 −
∫

Ω2

hv, (17)

the operator A : X −→ Y is defined by A(u, v) = A1u − A2v and the set C is
the closed convex cone of the space Y defined by C = {y ∈ Y ; y ≥ 0}. We now
describe the computation of the primal steps. The auxiliary varibles y and ν are
used in the computation of the Lagrange multiplier approximations µ̃k and µk.
Their definition depends on the particular choice of the function P . One can take
P (y) = d(y, C), which in this case is the L2-norm of the negative part of y.

Description of the primal steps. A derivative computation allows to express
the exact primal steps





uk = Argmin
{
f(u) + 〈µ̃k, A1u〉+ 1

2λk
|u− uk−1|2; u ∈ H1(Ω1)

}

vk = Argmin
{
g(v)− 〈µ̃k, A2v〉+ 1

2λk
|v − vk−1|2; v ∈ H1(Ω2)

}
,

(18)

as




∫
Ω1

∇uk · ∇u+ 1
λk

∫
Ω1

∇(uk − uk−1) · ∇u+ 1
λk

∫
Ω1
(uk − uk−1)u =

∫
Ω1
hu−

∫
Γ
µ̃kA1u

∫
Ω2

∇vk · ∇v + 1
λk

∫
Ω2

∇(vk − vk−1) · ∇v + 1
λk

∫
Ω2
(vk − vk−1)v =

∫
Ω2
hv +

∫
Γ
µ̃kA2v,

for all u ∈ H1(Ω1) and v ∈ H1(Ω2). These are the variational weak formulations
of the following mixed Dirichlet-Neumann boundary value problems respectively
on Ω1
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−(1 + 1
λk
)∆uk + 1

λk
uk = h− 1

λk
∆uk−1 + 1

λk
uk−1 on Ω1

(1 + 1
λk
)∂uk

∂ν
= 1

λk

∂uk−1

∂ν
on ∂Ω1 ∩ ∂Ω

(1 + 1
λk
)∂uk

∂ν
= 1

λk

∂uk−1

∂ν
− µ̃k on Γ,

and Ω2





−(1 + 1
λk
)∆vk + 1

λk
vk = h− 1

λk
∆vk−1 + 1

λk
vk−1 on Ω2

(1 + 1
λk
)∂vk
∂ν

= 1
λk

∂vk−1

∂ν
on ∂Ω2 ∩ ∂Ω

(1 + 1
λk
)∂vk
∂ν

= 1
λk

∂vk−1

∂ν
+ µ̃k on Γ.

Convergence. Since this matter is out of the scope of this paper, we shall not
enter into the details concerning the existence of saddle points here. Instead we
shall assume that there are such points. Under these conditions, any sequence
(uk, vk) generated by (18) converges strongly in H1(Ω1) × H1(Ω2) to a solution
(u, v) of problem (16). Indeed, let ((uk, vk), yk, µk, νk) be a sequence generated by
(A1)−(A2′)−(A3) so that (uk, vk) satisfies (18). In view of Theorem 3.1, (uk, vk)
converges weakly in H1(Ω1)×H1(Ω2) to a minimum point (u, v) of problem (P).
For the strong convergence, observe that, by the Rellich-Kondrachov Theorem,
the sequence (uk, vk) converges to (u, v) strongly in L2(Ω1)× L2(Ω2). Moreover,
from Proposition 3.1 (ii), we have limk→+∞ f(uk)+ g(vk) = f(u)+ g(v), which in
turn implies that

lim
k→+∞

∫

Ω1

|∇uk|2 +
∫

Ω2

|∇vk|2 =
∫

Ω1

|∇u|2 +
∫

Ω2

|∇v|2.

As a consequence, we have limk→+∞ |(uk, vk)|H1(Ω1)×H1(Ω2) = |(u, v)|H1(Ω1)×H1(Ω2)

and we conclude that the convergence is strong.

Observe that the algorithm allows to solve the initial problem on Ω by solving
separately problems on Ω1 and Ω2.
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[10] H. Brézis, P.-L. Lions, Produits infinis de résolvantes, Israel J. Math., 29

(1978), 329-345.
[11] Candès E.-J., Romberg J.-K., Tao T., Stable signal recovery from incomplete

and inaccurate measurements, Comm. Pure Appl. Math., 59 (2006), no. 8,
1207-1223.

[12] G. Chen, M. Teboulle, A proximal-based decomposition method for convex
minimization problems, Math. Programming 64 (1994), no. 1, Ser. A, 81-101.

[13] S.-S. Chen, D.-L. Donoho, M.-A. Saunders, Atomic decomposition by basis
pursuit, SIAM J. Sci. Comput., 20 (1998), no. 1, 33-61.

[14] R. Cominetti, M. Courdurier, Coupling general penalty schemes for convex
programming with the steepest descent method and the proximal point al-
gorithm, SIAM J. Optim, 13 (2002), 745-765.

[15] P. Frankel, Alternating proximal algorithm with costs-to-move, dual descrip-
tion and application to PDE’s, to appear in Discrete Contin. Dynam. Systems
- Series S.

[16] M.-P. Friedlander, P. Tseng, Exact regularization of convex programs, SIAM
J. Optim., 18 (2007), no. 4, 1326-1350.

[17] J.-B. Hiriart-Urruty, H.-Y. Le, Convexifying the set of matrices of bounded
rank. Applications to the quasiconvexification and convexification of the rank
function, preprint.

[18] Z. Opial, Weak convergence of the sequence of successive approximations for
nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), pp. 591-597.



LAGRANGIAN-PENALIZATION ALGORITHM 163

[19] J. Peypouquet, S. Sorin, Evolution equations for maximal monotone opera-
tors: asymptotic analysis in continuous and discrete time. J. Convex Anal.
17 (2010), no. 3-4, 1113–1163.

[20] R.T. Rockafellar, Monotone operators associated with saddle-functions and
minimax problems. 1970 Nonlinear Functional Analysis (Proc. Sympos. Pure
Math., Vol. XVIII, Part 1, Chicago, Ill., 1968) pp. 241–250

[21] R.T. Rockafellar, Monotone Operators and the Proximal Point Algorithm,
SIAM J. Control Optim. 14 (1976), 877-898.



164 P. Frankel and J. Peypouquet


