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Synopsis 
Redox sensitive contaminants in complex, three phase biologically mediated systems are 

susceptible to a myriad of biogeochemical interactions including protonation/de-protonation, 

sorption/desorption, complexation with organic matter, precipitation/dissolution and 

methylation/de-methylation as well as direct changes to oxidation state.  This plethora of often 

simultaneous processes makes predicting mobility of contaminants in soils and aquifers, and 

hence effective resource management, very challenging.  This thesis aims to elucidate the key 

biogeochemical processes and physical factors which control the mobility and distribution of 

redox sensitive contaminants including arsenic, chromium, uranium and mercury in frequently 

flooded soils.  The work presented spans the colloidal to field scale and uses a combination of 

spectroscopic, analytical, geo-statistical and computational tools.  Particular attention is paid to 

arsenic and the role of cyclic redox conditions which are prevalent in a number of contaminated 

environments. 

Arsenic is an infamously toxic and carcinogenic metalloid which has received substantial 

attention from the international scientific community over the last two decades.  This is 

principally due to the humanitarian disaster in southern Asia where tens of millions of people 

are affected by arsenic contaminated drinking water sourced from shallow alluvial aquifers.  

However, the threat posed by arsenic to human health is not limited to the sedimentary basins 

fed by the Himalaya.  Sources of arsenic release to the environment are numerous and varied, 

with both anthropogenic and geogenic inputs a cause for concern.  In Western Europe and North 

America the legacy of industrial activity and agricultural use of arsenic, compounded by natural 

geological input, has resulted in the contamination of many floodplain soils and wetlands.  

Contaminants are often concentrated in such sediments as their fine physical texture, and hence 

large surface area can retard the advective transport of arsenic in fluvial and groundwater 

systems.  At the same time geothermal waters are often also loaded with As and may represent 

a threat to populations exposed through contaminated drinking water e.g. in the Atacama 

desert.  Understanding the factors affecting arsenic mobility and toxicity in such systems is a 

challenge, demanding collaboration between traditionally separated academic fields.  In addition 

to its current practical relevance, arsenic biogeochemistry is also of special academic interest 

due to the sensitivity of arsenic to solid and aqueous speciation changes within a range of Eh and 

pH conditions found in many near surface environments.  The calcareous soils of the Saône 

floodplain in eastern France, close to the 

city of Macon, are known to host elevated 

concentrations of redox sensitive 

contaminants including arsenic and 

chromium.  They are also subjected to 

regular redox oscillations due to seasonal 

flooding and form the focus of the 

experimental and field investigations 

presented in this thesis. 

Summary Figure 1:  The flooded alluvial plain of 

the Saône close to Macon during the winter. 
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During periods of flooding, pores in surface soils become saturated with water and diffusion of 

oxygen from the atmosphere to the soil is restricted.  This forces soil bacterial communities to 

consume successively less efficient terminal electron acceptors and causes a progressive 

decrease in oxidation/reduction potential in the soil solution.   

Summary Figure 2:  How soil 

saturation causes changes to 

redox conditions in soils via 

limiting diffusion of oxygen 

from the surface to aerobic 

soil bacteria resulting in rapid 

oxygen depletion. 

 

 

 

 

 

Summary Figure 3:  
The succession of 
terminal electron 
acceptors used by 
soil bacteria during 
oxidation of organic 
matter governed by 
energetic efficiency. 

 

 

 

 

This microbially mediated redox shift causes changes in chemical equilibria and hence 

mineralogy, sorption processes and aqueous speciation, all of which impact arsenic mobility.  A 

great deal of work has already been conducted over the last years to establish release 

mechanisms and sorbents of arsenic under reducing conditions.  However, relatively limited 

attention has been paid to the cumulative effects of periodic redox cycling on soil mineralogy, 

the bacterial community, organic matter lability and ultimately, arsenic distribution and mobility.  

Neglecting cycling conditions represents an important gap in our understanding of a variety of 

both natural and anthropogenically influenced environments, including floodplains, rice paddies 

and shallow aquifers. 
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At the field scale, a critical evaluation of the analytical capability of field-portable X-ray 

fluorescence (FP-XRF) spectrometry for the standard-less, quantitative analysis of arsenic in soils 

was performed.  It was found that due to recent improvements to hand held technology, 

instrumentation limitations were a secondary concern to sample preparation.  Existing literature 

pertaining to the use of FP-XRF on soils has comprehensively investigated factors such as sample 

heterogeneity and particle size.  However, results presented in this thesis suggest that the most 

important practical factor affecting precision and accuracy of FP-XRF analysis of trace arsenic 

concentrations in soils is the presence of soil pore water, even in comparatively dry soils.  In 

order to maximise the accuracy of in situ analysis, a field-based sample preparation method was 

developed.  This method allows the quantitative, multi-elemental analysis of soils and was 

validated by both lab based X-ray fluorescence and inductively coupled plasma mass 

spectrometry (ICP-MS) analysis. 

Applying this sample preparation method, data obtained during field investigations were used to 

determine inter-elemental relationships in top soils, in addition to spatial and physical controls 

on arsenic distribution on the local field scale.  It was found that one of the best predictors of 

arsenic concentrations was the particle size distribution within the finest soil fraction (less than 

500 µm).  Arsenic was associated most strongly with the finest clay / colloid fractions and 

strongly anti-correlated with very fine sands.  Particle size distribution in the larger fractions 

(above 500 µm) appeared to have little effect on arsenic concentration. 

 

Summary Figure 4:  Comparison of particle size distributions between average low arsenic and 
high arsenic soils illustrating the importance of the clay fraction to arsenic distribution. 
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Strong correlations were also found between total arsenic, iron and manganese concentrations.  

Weak correlations were found between arsenic concentrations and other indicators of soil 

hydrological conditions suggesting that hydraulic spatial redistribution of arsenic may be of 

limited importance within this area.  The active carbonate and solid organic matter fractions 

were found to be poorly linked to arsenic concentration.  This suggests that despite recent 

spectroscopic and modelling evidence demonstrating arsenic immobilization within the calcite 

structure, arsenic association with calcite may be of limited importance when metal oxides are 

also present in calcareous soils. 

Summary Figure 5:  Correlation 
matrix demonstrating inter-
elemental relationships in soils 
on the Saône floodplain.  Square 
size and colour corresponds to 
the correlation coefficient 
between elemental pairs (blue 
positively correlated, red 
negatively correlated). 

At the batch scale, laboratory 

experiments were conducted 

using osmotic diffusion pore-

water sampling devices to 

determine the extent of redox 

change experienced by 

temporally flooded soils on the 

Saône floodplain.  Using this 

information a custom system of 

redox-stat, bio-reactors were designed to enable soil suspension experiments simulating cycles 

of oxidation and reduction experienced by the soils during seasonal flooding and draining.  

These experiments allowed the mobility of arsenic to be monitored throughout consecutive 

reducing and oxidising events in addition to changes in aqueous chemistry, mineralogy, solid 

speciation and the composition and function of the natural bacterial community.  These 

experiments revealed that even moderate total arsenic concentrations in soils can lead to high 

pore-water arsenic concentrations during periodic reducing events, and that contaminated 

floodplain soils can act as a significant secondary source of arsenic to surface water and 

increasingly exploited alluvial aquifers.  An a priori unexpected result was that consecutive cycles 

of soil reduction and oxidation lead to the attenuation of arsenic release during subsequent 

reducing events.  
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Summary Figure 6:  The custom redox oscillation reactor setup used during experiments detailed 
in Chapters 5 and 6 whereby Eh in soil suspensions is controlled by sparging of air and nitrogen. 

In complement to the information obtained from aqueous chemistry, spectroscopy and 

microbial ecology during these experiments, a thermodynamic and kinetic model simulating 

cycles of microbially driven oxidation and reduction in soils was implemented in PHREEQC.  The 

model was used as both a prognostic and diagnostic tool to determine the processes controlling 

arsenic mobility during individual oxidising/reducing events and cumulatively across multiple 

cycles. 

In this case, even under neutral to alkaline conditions close to the point of zero charge (pzc) of 

many metal oxides, it appears that poorly crystalline nano-iron-(hydr)oxide and ferric-arsenate 

minerals constitute the main immobilising phases for arsenic, despite accounting for less than 

8% of the soil matrix.  The data obtained, supported by the predictions of the model indicate 

that reductive dissolution of iron-(hydr)oxide and ferric-arsenate minerals by dissimilatory iron 

reducing bacteria (IRB) and their subsequent re-precipitation, were the primary controls on 

short and long term changes in arsenic mobility during redox cycling.  The fundamental 

importance of the interplay between hydrolysis of particulate organic matter (POM) and 

heterotrophic metabolism in controlling dissolved organic carbon (DOC) concentrations within 

soil pore-water is demonstrated, which in turn acts as a primary factor controlling rates of iron 

reduction.  The observed attenuation of arsenic during repetitive redox cycling is attributed to 

the combination of decreased microbially mediated iron reduction, due to depletion of 

biologically degradable organic carbon (BDOC) and an increasing ratio of co-

precipitated/adsorbed arsenic with each consecutive redox cycle. 
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Summary Figure 7:  Evolution of dissolved organic carbon concentrations in soil suspensions 
subjected to redox oscillating conditions. 

 

Summary Figure 8:  Evolution of aqueous Fe and As concentrations with time in soil suspensions 
subjected to redox oscillations. 

Redox oscillating conditions are also a concern to nuclear waste disposal organisations which are 

tasked with subsurface disposal of long lived low activity waste.  Such waste is often association 

with secondary redox sensitive contaminants such as arsenic, chrome, selenium and mercury.  
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Current strategies involve near surface disposal of long-lived low-activity waste in clay-rich 

substrates which may be susceptible to redox changes due to groundwater rise and fall.  Batch 

simulations of such cyclic redox changes were conducted on a suspension of Callovo-Oxfordian 

(COx) clay induced by gas sparging and addition of model humic substances, shown to be redox 

active components in such substrates.  The effect of cycling on the mobility of added chromium, 

arsenic, mercury and uranium was investigated in the absence of microbial activity to isolate 

purely geochemical mechanisms.  It was once again found that the transition between ferric and 

ferrous iron acted as the main buffer to redox change and had a primary influence on 

contaminant mobility.  However cumulative trends in contaminant mobility were also present 

and indicate that repetitive cycling may attenuate aqueous chromium release during oxidising 

conditions. 

 

Summary Figure 9:  The effect of experimental redox cycling on aqueous chromium 
concentration in a suspension of Callovo-oxfordian clay material.  Note the changes to 
Chromium mobility both between oxidizing (white) and reducing (blue and grey) periods in 
addition to the cumulative reduction of aqueous concentrations due to mineralogical changes. 

The results presented within this thesis highlight that although biogeochemical cycling of redox 

sensitive contaminants in dynamic natural systems is challengingly complex, by using a 

combination of techniques from traditionally separate academic disciplines, it is possible to 

strengthen our collective understanding of such systems. 
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Chapter 1: Review of redox processes affecting contaminant mobility 

Abstract 

Prevailing redox conditions have a profound effect on the mobility, toxicity and hence, the risk 

posed by many trace metals and metalloids in the environment (Borch et al., 2010).  In soils and 

aquifers redox conditions are regulated by a complex combination of physical, chemical and 

biological processes which are ultimately driven by spatial partitioning of products from photo-

chemical reactions driven by sunlight.  The most obvious example of this is photosynthesis which 

produces highly reduced organic products and molecular oxygen.  The molecular oxygen 

resulting from photosynthesis is released as a gas into the atmosphere whilst the reduced 

organic products form solids which ultimately are subject to sedimentation processes.  This 

photosynthetic partitioning between oxidised gases and reduced solids in addition to long-term 

geological redox processes leads to a strong disequilibrium between the subsurface environment 

and the atmosphere thus creating a heterogeneous interface known as the critical zone.  As solar 

irradiance on the earth surface varies cyclically due to the earth’s spin (diurnal), solar orbit 

(annual), and other magnetic and orbital effects (e.g. Schwabe, Hale and Milankovitch cycles) so 

many redox processes affecting contaminant mobility are also subject to cyclic changes, linked 

to biological activity and cyclic climatic events.  The effects of these cyclic redox conditions at 

different timescales in soils and sediments on contaminant mobility are numerous and complex. 

The first chapter of this thesis summarizes the most critical factors which regulate redox 

conditions in the subsurface.  An overview of some of the environments susceptible to temporal 

redox oscillations is given followed by a brief discussion of the main processes triggered by redox 

state change which may affect contaminant mobility and toxicity.  The current state of 

knowledge of these processes in the natural environment in relation to four key redox sensitive 

inorganic contaminants; chromium, arsenic, mercury and uranium is then reviewed. 

Processes affecting redox conditions in near surface soils and sediments 

Oxygen transport from to the subsurface 

The atmosphere has a mean oxygen concentration of approximately 20.95%.  Processes 

controlling the transport and consumption of this oxygen in soils, sediments and aquifers act as 

primary controls on redox conditions.  Oxygen can move through porous media via two key 

physical processes; advection and chemical diffusion (Fick’s law). 

Chemical Diffusion (Fick’s Law) 

Diffusion of oxygen from the surface into soils and sediments occurs via interconnected pore 

spaces.  Partial pressure of oxygen in pore space decreases as a function of depth; this is often 

referred to as the soil redox gradient.  This is due to the consumption of oxygen by aerobic 

bacteria, fungi and soil micro-fauna (e.g. protozoa, mites, springtails, nematodes, rotifers, and 

tardigrades) in addition to oxygen consumption by oxidation of chemically reduced species such 

as Fe2+.  The quality of the soil structure, particularly the presence of macro-pores and particle 

size distribution, directly affects the redox gradient by controlling the rate of oxygen diffusion 

with depth (Young and Crawford, 2004). In addition, soil structure creates local differences in 
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oxygen concentrations dependent on the interplay between diffusion rate within the soil 

microstructure and consumption rates by bacterial communities as illustrated in Figure 1.   

 

Figure 1: The predicted distribution of oxygen in structured soil modelled as a fractal and its 
dependence on microbial respiration rate. Each box represents a 2D layer of soil open to the 
atmosphere at the upper and lower boundary. The structure in each box is the same, whereas 
the potential respiration rate per unit volume decreases from a maximum (top) to a minimum 
(bottom). Red denotes low oxygen concentration, yellow denotes atmospheric concentration, 
and light blue is the soil matrix. The pore-scale spatial complexity and diversity of oxygen 
environments is obvious in all boxes, as is the spatial proximity of high and low oxygen 
concentration regimes. Even where potential microbial respiration is low, regions of low oxygen 
concentration prevail. From Young and Crawford (2004). 

Soils with limited connectivity between pores or very low porosity are more likely to become 

sub-oxic and anoxic at a shallow depth than soils with high porosity and good pore connectivity.  

Rate of oxygen diffusion is also controlled by the composition of the fluid occupying the pore 

space.  In air, oxygen diffusion occurs 104 times faster than in water (Ponnamperuma, 1972) 

therefore pore water greatly reduces the rate of oxygen diffusion.  Thus seasonal changes in soil 

moisture can cause dramatic oscillations in oxygen concentration in soils and hence redox 

profiles.  The depth extent of the vadose (or unsaturated) zone and redox gradient controlled by 

oxygen diffusion from the surface varies greatly between soils and sediments from between mm 

in saturated clay rich soils with high biological activity to hundreds of meters in highly porous 

loamy soils or in fractured rocks.  Redox conditions within a soil profile however rarely conform 

to a simple gradient of oxic to reduced.  Local soil and sediment structure has been shown to 

play an important role in regulating redox conditions (Pallud et al., 2010) with numerous studies 

showing dramatic micro-scale differences in redox conditions within the soil environment 



3 
 

caused by soil colloids, aggregates and otherwise poorly connected pore spaces where oxygen 

diffusion is limited.  The recent synchrotron based µXRF and µXAS studies by Prietzel et al (2010) 

and Pallud et al (2010) focusing on sulphur and iron speciation within colloids and aggregates 

illustrate the prevalence of strong redox heterogeneity within soils even at the micro scale 

(Figure 2).  Such micro-scale heterogeneity makes the task of predicting contaminant speciation 

challenging as average measured values used to feed thermodynamic and kinetic simulations 

rarely consider the wide range of local redox conditions possible. 

 

Figure 2:  X-ray fluorescence maps of a dissected soil aggregate showing significant 
heterogeneity in structure, composition and speciation from Prietzel et al. (2010).  (a) Map of 
total Si acquired with an X-ray energy of 2483 eV. (b) Map of total S acquired with an X-ray 
energy of 2483 eV. (c) Map of reduced S acquired with an X-ray energy of 2474 eV. (d) Map of 
total Si acquired at with an X-ray energy of 7200 eV. (e) Map of total Fe acquired with an X-ray 
energy of 7200 eV. ( f ) Map of elemental and divalent Fe acquired with an X-ray energy of 7121 
eV. In maps (b)–( f ), increasing concentrations of the elements or element species of interest 
are represented by a color change in the sequence blue–green–yellow–red. 

Advection 

Oxygen may also be transported from the surface to significant depth within pore water moving 

inside an aquifer (Figure 3).  Rates of complex fluid movement through porous media can be 

orders of magnitude faster than diffusion dependent on the hydraulic conductivity of soils (a 

measure of the ease at which a fluid may travel through porous media based on porosity and 

interconnectivity of the soil pores usually expressed in cm/s) and the hydraulic gradient (a vector 

gradient dependent on the difference in hydraulic head at two measured locations).  Aquifers 

with a high hydraulic conductivity and a high hydraulic gradient may transport fluids very rapidly 

both vertically and horizontally.  This can lead to the presence of oxygen rich water at depth.  In 
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addition, hydraulic gradient can vary dramatically between seasons depending on aquifer 

recharge; therefore some deep aquifers, which are not supplied with oxygen via diffusion from 

the surface, are also subject to oscillating redox conditions (Greskowiak et al., 2006). 

 

Figure 3: Schematic illustrating the effect of oxidative recharge by advection and the complex 
behaviour and transport of arsenic and uranium contaminants in changing sediment and redox 
environments from Davis et al. (2004). 

Anaerobic metabolism of organic matter 

Following oxygen concentration, the 2nd major control on redox conditions within the near 

subsurface is the microbial metabolism of organic matter linked to the reduction of various 

terminal electron acceptors (TEA).  The extent of microbial and fungal activity in soil is not 

confined to the oxic region of the vadose zone.  Many facultative and obligate anaerobic 

microorganisms are also able to use oxygen containing compounds such as nitrate, sulphate or 

iron oxides to metabolize organic matter, in some cases completely to CO2 (Lovley and Phillips, 
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1986).  The energetic efficiency of these TEAs, determines the order in which they are used by 

bacterial communities (Stumm and Morgan, 1996).  As oxygen is the most efficient TEA available 

in the near subsurface Table 1) organisms cable of using it, (aerobes) are at a significant 

advantage compared to other bacteria when oxygen concentrations in the soil matrix are high 

and rapidly out compete others for space and nutrients.  However, upon complete exhaustion of 

available oxygen, organisms must switch to alternative metabolic pathways or give way to other 

parts of the normally diverse bacterial community which are better adapted to prevailing 

conditions.  Following oxygen consumption, as there is significantly more energy to be gained 

from the reduction of nitrate than sulphate, for example, (shown in Figure 4) bacterial 

communities will normally exhaust nitrate supply prior to the onset of sulphate reduction.   

Many of these reductive processes consume protons (shown in Table 2 )and hence result in a net 

pH increase and Eh decrease as microbial communities descend this chain of TEAs.   

 

Figure 4: The reduction sequence in soils driven by microbial metabolism of organic matter using 
successively less efficient terminal electron acceptors.  Energy (kJ per mol) values are the Gibbs 
free energy for the reduction of TEAs coupled to the oxidation of glucose at pH 7 and 25oC 
normalised on a per electron basis. 
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One electron half-reaction for reduction 
of TEAs 

ΣΔ
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° re
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cts 
(kJ/m

o
l) 

ΔGR
0 

kJ/mol 
Log KR 

EhH0, 
V 

ΔGR
7 

kJ/mol 
(pH = 7) 

¼ O2 + H+ + e- → ½ H2O 0.00 -118.55 -118.55 20.77 1.23 -78.59 

1/5 NO3
− + 6/5 H

+ + e- → 1/10 N2 + 3/5 H2O -22.26 -142.26 -120.00 21.02 1.24 -72.05 

½ MnO2 + 2H+ + e- → ½ Mn2++ H2O -232.55 -351.15 -118.60 20.78 1.23 -38.69 

3Fe(OH)3 + H+ + e- → Fe3O4 + 5H2O -2115.6 -2201 -85.30 14.94 0.88 -45.34 

1/8 NO3
- + 5/4 H

+ + e- → 1/8 NH4
+ + 3/8 H2O -13.91 -98.83 -84.91 14.88 0.88 -34.97 

1/8 SO4
2- + 9/8 H

+ + e-→ 1/8 HS- + ½ H2O -93.06 -117.04 -23.98 4.20 0.25 20.98 

1/8 CO2 + H+ + e- →  1/8 CH4 + ¼ H2O -49.30 -65.59 -16.29 2.85 0.17 23.67 

¼ CO2 + H+ + e- → 1/24 C6H12O6 + ¼ H2O -98.60 -97.19 1.41 -0.25 -0.01 41.36 

 

Table 1:  Reduction half reactions for common TEAs in soils and sediments at 25oC, calculated 
from ΔGf

o
 values given in Lide (2009).  

 

One electron reduction of common environmental TEAs 
coupled to glucose oxidation 

ΣΔ
G

° re
actan

ts 
(kJ/m
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ΣΔ
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(kJ/m
o

l) 

ΔGR
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kJ/mol 
EhH

0, 
V 

ΔGR
7 

kJ/mol 
(pH = 7) 

1/24 C6H12O6 + ¼ O2 → ¼ CO2 + ¼ H2O -37.917 -157.9 -119.96 1.24 -119.96 
1/24 C6H12O6 + 1/5 NO3

- + 1/5 H
+ → ¼ CO2 + 7/20 H2O + 1/10 N2 -60.177 -181.6 -121.41 1.26 -113.42 

1/24 C6H12O6 + 3Fe(OH)3 → ¼ CO2 + 19/4 H2O +  Fe3O4 -2153.52 -2240 -86.71 0.90 -86.71 
1/24 C6H12O6 + ½ MnO2 +  H+ → ¼ CO2 + ¾ H2O + ½ Mn2+ -270.47 -390.5 -120.01 1.24 -80.05 
1/24 C6H12O6 + 1/8 NO3- + ¼ H+ → ¼ CO2 + 1/8 H2O + 1/8 NH4

+ -51.829 -138.2 -86.32 0.89 -76.33 
1/24 C6H12O6 + 1/8 SO4

2- + 1/8 H
+ → ¼ CO2 + ¼ H2O + 1/8 HS- -130.98 -156.4 -25.38 0.26 -20.39 

 

Table 2:  Reduction of common environmental TEAs coupled to the oxidation of glucose at 25oC, 
calculated from Δ f G

o values given in Lide (2009). 
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Figure 5 shows the Eh conditions, at pH 6.5 to 7, whereby reduction of each of these TEAs 

becomes thermodynamically favourable, and is therefore predicted to occur.  Also shown are 

some examples from the literature of the actual Eh conditions measured when microbial 

reduction of these TEAs is shown to occur. 

Substance/Species 
Chemical 
Formula 

ΔfG
o  at 

25oC, kJ/mol Reference 

Oxygen O2 0  (Lide, 2009) 

Water H2O -237.1  (Lide, 2009) 

Ammonia NH4
+ -79.3  (Lide, 2009) 

Nitrate NO3- -111.3  (Lide, 2009) 

Nitrogen N2 0  (Lide, 2009) 

Manganese dioxide MnO2 -465.1  (Lide, 2009) 

Divalent Manganese Mn2+ -228.1  (Lide, 2009) 

Divalent iron Fe2+ -78.9  (Lide, 2009) 

Sulphate SO4
2- -744.5  (Lide, 2009) 

Hydrogen sulphide HS- 12.1  (Lide, 2009) 

Carbon dioxide CO2 -394.4  (Lide, 2009) 

Methane CH4 -50.5  (Lide, 2009) 

Glucose C6H12O6 -910 (Schroeder, 1999) 

Ferrihydrite Fe(OH)3 -705.2 (Majzlan et al., 2004) 

Magnetite Fe3O4 -1015.4  (Lide, 2009) 

Table 3: Gibbs free energy of formation values used for calculations in Tables 1 and 2 
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Figure 5: The reduction sequence in soils at pH 6.5 – 7 constructed using data from Patrick and 
Jugsujinda (1992); McBride (1994); and Sposito (2008).  The Eh values where reduction of TEAs 
becomes thermodynamically favourable and is therefore predicted to occur are shown by black 
horizontal lines.  Literature values for measured Eh during reduction of each of these TEAs are 
shown by shaded regions (from Essington (2004)). 

Upon oxygen exhaustion in a soil or sediment matrix, further changes in redox conditions are 

usually determined by the availability of oxidisable organic carbon (or another suitable electron 

donor), the presence of an active anaerobic microbial community (and the nutrients they need 

to function) and the presence of a suitable TEA.  In sediments rapid Eh drops have been 

measured due to the activity of facultative anaerobes (Nikolausz et al., 2008).  Temporal 

variation in availability of labile organics, limiting nutrients or terminal electron acceptors can 

also lead to oscillating redox conditions. 

Contaminant leachate plumes 

The nature of contaminant leachate plumes from point sources such as landfills and industrial 

spills also directly influence redox conditions in sediments and pore water around the 
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contamination source.  It is unlikely that the bulk potential of the leachate and the surrounding 

environment will be equal; therefore redox reactions between the leachate and the surrounding 

matrix are expected to occur often leading to a redox gradient as the plume moves through the 

host matrix.  Frequently the fringes of leachate plumes are home to intense microbial activity as 

bacteria catalyse redox reactions profiting from the sharp disequilibrium as illustrated in Figure 

3.  In traditional municipal waste landfills the high proportion of organic waste often leads to 

highly reduced leachate plumes (Christensen et al., 1994) as bacteria oxidize organics coupled to 

reduction of terminal electron acceptors (see section . 

Anaerobic metabolism of organic matter and Figure 3).  These plumes become decreasingly 

reduced as they travel further from the leachate source and react with sediment and pore-water 

with typically higher redox potentials (Christensen et al., 1994).  In contrast, leachate from 

industrial wastes containing for example, chromate, uranyl or chlorate ions conditions may be 

highly oxidizing and will become decreasingly oxidized as they move further into a comparatively 

reduced matrix.  Determination therefore of leachate plume redox state and that of the 

surrounding sediment matrix is essential to determine possible redox interactions with the 

selected host sediment and to predict mobility of any given contaminant following releases to 

the environment. 

Oxidation-Reduction Capacity of Sediment Matrix 

As discussed in the previous section, depending on the stability of dominant Eh conditions within 

a sediment matrix, these conditions often result in the precipitation of minerals stable under 

these conditions and the equilibrium of redox sensitive aqueous species to these conditions.  

Intrusion of fluids which are in disequilibrium with matrix conditions will result in oxidation and 

reduction reactions between the intruding fluid and the matrix.  Each matrix can be described as 

having an oxidation and reduction capacity dependent on redox active components in its 

structure. 

Identification of redox active components within a soil or sediment matrix and evaluation of 

their capacity to buffer redox conditions through abiotic or microbially mediated reactions is 

crucial to determine the stability of redox conditions within the matrix.  Common redox active 

matrix components include sulphide and oxide minerals and organic matter. 
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Environments commonly subject to temporal cycles of oxidation and reduction 
Redox oscillating environments are diverse in nature and account for a significant proportion of 

the critical zone.  Redox oscillations observed in nature vary both in amplitude (Eh conditions) 

and in length (time spent at Eh extremes).  Short periodicity redox oscillating environments 

include those subject to diurnal Eh fluctuations, e.g. due to transport of oxygen into the 

rhizosphere by green-plants alternating between photosynthesis and respiration during the day 

and night respectively.  Long periodicity redox oscillating environments include seasonally 

submerged soils on floodplains in temperate climates which experience redox oscillations which 

may last for several months.  At the extreme end of the scale, coastline environments subject to 

flooding and draining due to changes in global sea level over thousands of years could be 

considered redox oscillating environments.  However, for the purposes of this thesis the 

definition is constrained to environments subject to at least one full cycle of oxidation and 

reduction per year with a change of Eh substantial enough to cross stability boundaries of one or 

more major redox sensitive species (e.g. MnO2/Mn2+ (log Kr = 20.8), NO3
-/NH4

+ (log Kr = 14.9), 

HAsO4
2-/H3AsO3 (log Kr = 14.22), FeOOH/Fe2+ (log Kr = 13.0) and SO4

2-/HS- (log Kr = 4.3)(James and 

Bartlett, 1999)).  This definition encompasses a variety of environments which are characterised 

by constant adjustments of solid and aqueous phase 

speciation and microbial activity to new 

thermodynamic conditions.  A short characterization 

of some of these environments is given below to 

highlight their prevalence in the critical zone. 

Riparian floodplains 

On floodplains seasonal climatic differences such as 

increased precipitation or snow melt high in the 

watershed often result in overbank or fluvial flooding.  

Depending upon the climate and topography within 

the watershed, this may result in the presence of a 

floodwater column over top soils for periods of days 

to months.  This natural style of flooding is 

accompanied by input of fresh mineral sediment and 

solid organic matter.  Such nutrient input stimulates 

microbial activity and higher soil fauna leading to 

rapid oxygen exhaustion during flooding and hence 

reducing conditions.  Subsequently as floodwater 

drains back to the river the vadose zone is re-

established and oxidising conditions prevail in top 

soils.  However, the hydrological function of many 

rivers, particularly in the developed world are highly 

controlled in order to store water for recreation, 

domestic, industrial and agricultural use as well as to 

prevent damage to property and infrastructure 

caused by flooding.  This anthropogenic flood 

prevention has a substantial impact on many natural 

processes and reduces sediment and hence nutrient deposition on floodplains. 

Figure 6:  The progression of overbank/fluvial 
flooding.  Reproduced from de Choudens, (2008).  
The terms Lit mineur, moyen and majeur correspond 
to river channel, lower and upper flood terraces. 
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Soils subjected to water table fluctuations 

In some environments seasonal changes to aquifer recharge affect the level of the water table 

close to the surface even when physically separated from the nearest surface fluvial system.  

This can result in soils where the 

vadose zone extends to a depth of 

several meters at drier times of the 

year and where top soils are 

saturated and hence subject to 

reductive processes at wetter times 

of the year.  This type of soil 

flooding caused by groundwater 

rise is known as phreatic flooding 

and soils at risk are often identified 

and mapped by government 

agencies due to the impact that 

such flooding may have on 

infrastructure and agriculture.   

 

Figure 8:  The BRGM InfoTERRE GIS (Geographic information system) tool (BRGM, 2010) can be 
used to visualize the risk of phreatic flooding in different areas of France.  The risk of phreatic 
flooding to the area around the town of Moulins is shown (BRGM, 2006) with the fluvial system 
overlaid (Institut Geographique National de France, 2010) to illustrate the decoupling of the 
fluvial and phreatic hydrologic systems. 

Figure 7:  Illustration of the development of phreatic flooding.  
Reproduced from de Choudens, (2008). 
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Rice fields 

Although rice may be cultivated in the absence of flood water (Maclean et al., 2002) the most 
common practice is to flood fields periodically or continuously during the growing season which 
usually lasts for several months.  Flooding helps protect the crop from vermin and reduces 
competition from less flood tolerant wild plants.  Water depth must be carefully managed to 
avoid complete submersion of the rice plants for extended periods of time and may vary 
between a few cm to more than 1 m depending on the regional practices (Kirk, 2004).  Flooding 
of rice fields may be accomplished via either limiting rain water runoff (the technique commonly 
employed in terraces e.g. Figure 9), by directing river water through artificial irrigation channels 
(e.g. the Ebro delta, Figure 10,  or by pumping of groundwater (e.g. dry season rice in 
Bangladesh (Roberts et al., 2010) or Cambodia, Figure 11). 

 

 

 

Figure 9: The Banaue Rice Terraces in the Philippines irrigated by rainwater runoff from the 
rainforests above.  Photograph by Jon Rawlinson (2006) used under the creative commons 
license. 



13 
 

Figure 10:  River fed rice field irrigation channel on the 
Ebro delta, Catalonia, Spain.  Photograph by Alan Bell 
(2006) used under the creative commons license. 

 

 

 

 

 

 

 

 

 

 

Figure 11:  Flooding of rice fields by pumping shallow groundwater from tube wells in the Prey 
Krabah district of Takeo, Cambodia.  Photograph by Dr. Donald Puckridge (2001) used under the 
creative commons license. 
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Top soil saturation and hence redox cycles in rice fields are often controlled by the irrigation 

practices of the farmer.  A full reducing and oxidising cycle can vary between a few days and a 

full year depending upon whether fields are flooded periodically or continuously during the 

growing season. 

Benthic sediments subject to bio-turbation by macro-fauna 

Constant sediment turnover by benthic macro-fauna during burrow creation, grazing and 

burrow irrigation can result in 

temporal redox oscillations 

within the sediment.  Deeper 

anoxic sediment is pushed 

upward into the sub-oxic 

surface and sub-oxic surface 

sediment is pushed down into 

the anoxic zone.  Redox 

gradients are also experienced 

at tunnel edges as oxic water is 

flushed by organisms into 

burrows.  As organisms move, 

burrows are created and filled 

resulting in complex three 

dimensional temporally varying 

redox conditions.  As oxidised 

surface sediment is subject to 

greater biological activity and 

hence turnover than deeper 

sediment (Aller, 1994) estimate 

that this type of redox cycling 

results in sediment experiencing 

long anoxic periods (10-100x) 

and short oxic periods (x). 

Soil subject to intense rainfall 

Intense precipitation which provides water to a soil at a rate greater than percolation to deeper 

unsaturated sediments can result in complete soil saturation known as pluvial flooding (Kirk, 

2004).  This effect is often observed in tropical forest soils (Thompson et al., 2006) which are 

subject to annual rainfall as high as 1100 cm yr-1 (Giambelluca et al., 1986).  Pluvial flooding is 

usually seasonal and therefore leads to cyclic oxidation and reduction in top-soils.  In Hawaii for 

example soils are subjected to sustained saturation during the wet season between October and 

April and subsequently drain during the dry season from May until October.  Pluvial flooding in 

this environment has been shown to be linked to Fe2+ concentrations in pore water indicative of 

iron oxide reduction.  The cumulative redox cycling in this environment has been shown to have 

an important pedogenic effect resulting in transformation of short range ordered iron oxides to 

micro-crystalline goethite with successive cycling (Thompson et al., 2006). 

Figure 12:  Schematic of temporally variable redox zonation caused by 
activity of benthic macro-fauna.  Planar, radial, cylindrical and spherical 
redox geometries are all commonly observed in such environments.  
Reproduced from Aller (1994). 
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Soil influenced by oxygenation within the rhizosphere 

In some plants a type of highly porous tissue called aerenchyma forms in roots.  Aerenchyma is 

particularly prevalent in plants which grow in saturated or periodically saturated soil (Armstrong, 

1980).  These large continuous cavities facilitate fast diffusion of gases between the root and the 

shoot.  The presence of this tissue and hence fast gas exchange benefits the plant in a number of 

ways.  The root tissues are supplied more rapidly with oxygen produced by green parts of the 

plant during photosynthesis and equally carbon dioxide produced by the root system during 

respiration diffuses upwards more quickly.  Some of the oxygen within the root system diffuses 

out of root pores creating a thin oxygenated layer of soil around the roots (Armstrong, 1964).  

This oxic layer forms a redox barrier protecting the plant from high concentrations of reduced 

phytotoxins such as Fe2+, Mn2+ and S2- (Wheeler et al., 1985) as well as oxidising NH4+to NO3
- 

which is essential for plant nutrition (Bloom, 1996).  The oxic zone also provides a habitat for 

aerobic bacteria around roots of aerenchymatous plants and leads to a highly diverse microbial 

community within the rhizosphere (Nikolausz et al., 2004).   

Redox oscillations in the rhizosphere occur as green plants only photosynthesize and hence 

produce oxygen in the presence of sunlight.  During darkness they continue to respire and 

consume oxygen and hence aerenchyma becomes depleted of oxygen during the night.  As the 

diffusive input of oxygen to the rhizosphere decreases substantially during the night aerobic 

bacteria colonizing the rhizosphere rapidly exhaust residual oxygen.  This combination of 

temporally variable photosynthesis, diffusion and respiration has been shown to result in strong 

diurnal redox cycling (Vorenhout et al., 2004; Nikolausz et al., 2008).  In experiments conducted 

by Nikolausz et al (2008) Eh in the rhizosphere of the common rush plant (Jumcus effuses) 

oscillated between +300 and -320 mV within a 24 hour period dependent on light intensity.  

Oxidation in the rhizosphere has been shown to be limited to the zone immediately surrounding 

roots (approximately 0.4mm from the root surface (Revsbech et al., 1999)) and therefore 

generally leads to spatial heterogeneity of redox conditions.  However, with sufficient root 

density such oscillations can significantly alter the bulk redox state of the soil. 

Redox controls on contaminant mobility and toxicity 

Distribution of redox sensitive inorganic contaminants within environmental media is governed 

by competition between organic complexation/decomposition, dissolution/precipitation, redox 

reactions, methylation/de-methylation and adsorption/desorption processes which are 

dependent on pH and Eh conditions (Borch et al., 2010).  Determining pH and redox conditions 

in pore water and assessing the stability of the organic and mineralogical components of the soil 

matrix are critical to determining contaminant mobility and also toxicity. 

Direct controls on oxidation state 

The most direct redox control on contaminant toxicity and mobility is oxidation state change.  

Many different inorganic contaminants such as Mn, Cu, Co, Sb, Se, Tc, Pu and Np in addition to 

Cr, As, Hg and U discussed here may exist in different valence states, which affect their toxicity, 

bioavailability and mobility. 

Whilst the dominant contaminant species and the proportion of secondary species stable in a 

natural matrix under given conditions may be determined thermodynamically from chemical 

composition, Eh, pH, temperature and pressure (expressed graphically in Pourbaix diagrams e.g. 
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Figure 31) and hence interactions between contaminant and matrix inferred, soils and sediments 

are rarely in thermodynamic equilibrium.  This can be due to slow kinetic reaction rates or 

additionally due to rapid changes in redox potential due to complex biological catalysis of many 

processes responding to subtle environmental changes.  In addition the thermodynamic 

calculations possible using programs such as PHREEQC (Parkhurst et al., 1999) or Geochemists 

workbench (Bethke and Yeakel, 2009) are reliant on the accuracy of constants contained within 

their thermodynamic databases which in some cases are well defined and in others are 

incomplete or poorly defined.  The comparison conducted by Takeno in the Atlas of Eh-pH 

diagrams (Takeno, 2005) clearly demonstrates that even in a simple X-O-H system at room 

temperature there are often major inconsistencies between databases with respect to possible 

species and transitions.  When extrapolated to natural systems with many different chemical 

components and changing conditions, thermodynamic calculations must be used with caution 

and an appreciation of their reliability in any particular system.  Often to achieve the best 

possible understanding of speciation within a natural system, a combination of spectroscopic 

techniques such as XANES and EXAFS in addition to thermodynamic modelling is desirable 

(Voegelin et al., 2005; Kirpichtchikova et al., 2006). 

One common trend with all redox reactions is the necessity for an electron transfer mechanism.  

These electron transfer mechanisms have been investigated experimentally and debated in the 

literature for decades and continue to be the subject of considerable research (Borch et al., 

2010).  In the simple case of aqueous reactions three electron transfer mechanisms have been 

described: inner sphere (Traube theory) which is not the rate limiting process, outer sphere 

(Marcus theory) and diffusion controlled which are both usually the rate limiting step in redox 

reactions.  Outer sphere electron transfer is the most common mechanism in nature and 

therefore kinetics of redox reactions are determined by the rate of electron transfer and hence 

Markus theory. 

The kinetics and thermodynamics of redox reactions are however far more complicated as many 

such reactions do not occur in aqueous solution.  Surfaces such as bacterial membranes, 

minerals or organic matter can have a dramatic effect on redox reactions and often act as 

catalysts even if the surface itself does not participate directly in the redox reaction (Sposito, 

2004).  Redox reactions occurring at surfaces are often multi step reactions involving the surface 

complexation of the reductant or oxidant, formation of ternary complex involving the sorbed 

oxidant and the reductant, electron transfer and finally destabilization of the complex due to the 

formation of the reaction products (Sposito, 2004).  It has been shown that during this process 

the surface simply acts as a physical facilitator of the reaction (Chakraborty et al., 2010) or in 

many cases structural components of the surface are involved in the reaction either as electron 

donors or acceptors (Wersin et al., 1994; Ilton et al., 2004). 

Controls by surface sorption/desorption 

Sorption and desorption of contaminants from mineral surfaces and solid organic matter are 

important controls on mobility in natural systems.  While Eh variations may not directly 

influence the sorption capacity of a particular species to a particular surface these changes in Eh 

are accompanied by changes in pH which will affect the charge of the sorbent surface 

influencing sorption behaviour.  Additionally Eh variations may influence the stability of different 
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aqueous species with different sorption behaviours.  Various sorption processes e.g. 

chemisorption and physisorption, are shown in Figure 13. 

 

Figure 13: Summary of basic processes occurring at the mineral-water interface including: 
Physisorption, chemisorption, desorption, inclusion, occlusion, attachment, hetero nucleation, 
organo-mineral complexation and complexation to a bacterial film (From Manceau et al. (2002) 
modified from Charlet and Manceau (1992a). 

Controls by solid precipitation/dissolution 

Precipitation and dissolution of solid mineral phases also control contaminant mobility in the 

environment.  Contaminant mobility may be reduced due to precipitation of major mineral 

phases by either inclusion (where a contaminant ion directly replaces an ion of similar charge 

and size within a mineral structure) or occlusion (whereby pockets of contaminant species are 

enclosed within a precipitating mineral) shown above in Figure 13.  Additionally precipitation of 

discrete contaminant mineral phases (e.g. Cr(OH)3  and Cr2O3) may also limit contaminant 

mobility in situations where high contaminant concentrations cause a super-saturation with 

respect to a particular mineral.  As the saturation index for most minerals is highly dependent on 

Eh and pH conditions, overriding redox conditions in sediments also control contaminant 

mobility via precipitation and dissolution processes.  In many case oxidation/reduction and 

dissolution/precipitation processes are linked when different oxidation states of an element 

have dramatically different solubilities.  This is the case for both iron and uranium hence the 

oxidative dissolution of pyrite causing acid mine drainage or the biogenic precipitation of 

U(IV)O2(s) as a product of U(VI) reduction. 

Minerals which often play an important role in contaminant mobility and are susceptible to 

dissolution/precipitation under environmental conditions include iron oxides, manganese 

oxides, iron oxy-hydroxides, metal carbonates and metal sulphides. 
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Iron and manganese oxides and oxyhydroxides have a strong affinity for many contaminants 

including As, Cr and U and as such can immobilize them either via surface sorption or 

incorporation.  However iron and manganese oxides and oxyhydroxides are susceptible to 

reductive dissolution under anoxic conditions, a process which is often driven my facultative 

anaerobes such as Shewanella and Geobacter (Lovley et al., 1993) genera which can lead to the 

liberation of previously immobilized contaminants into pore water. 

Under reducing conditions carbonates such as siderite (FeCO3) and rhodocrosite (MnCO3) or 

sulphides such as pyrite (FeS2) may form which also act as sorbents for contaminants however 

rarely to the same extent as their oxidized equivalents.  Upon a change to oxidizing conditions 

these minerals are also susceptible to oxidative dissolution which is again often catalysed by 

bacteria such as the Leptothrix genus bacteria. 
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Mercury 

Mercury may exist in the environment in three different oxidation states 0 (Hg0), +1 (Hg2
2+) and 

+2 (Hg2+) dependent on prevailing redox conditions (Andersson, 1979) either as a free ion, 

sorbed to mineral (Reimers and Krenkel, 1974) or organic surfaces (Drexel et al., 2002) or else as 

a mineral precipitate such as cinnabar (HgS).  The simple Hg – H2O system shown in Figure 14 

where Hg0 and Hg(OH)2 dominate in almost all conditions, is however a poor reflection of the 

real speciation of Hg in the environment due to the tendency of Hg2
2+ and Hg2+ states to complex 

with many different organic and inorganic ligands in solution (including Cl-, OH-, S2-, F-, Br-, I-, 

SO4
2-, NO3

-).  The thermodynamic dominance of Hg2+ over Hg2
2+ in the environment (Figure 14), 

in addition to its high solubility and reactivity have made the behaviour of Hg2+ in the 

environment the subject of significant and on-going research (Gabriel and Williamson, 2004). It 

has been shown that Hg2
2+ formed in the environment rapidly dissociates to Hg2+ and Hg0. 

 

Figure 14: Pourbaix diagram of the Hg - H2O – CO2 system at 298.15K and 105 Pa from LLNL data. 



20 
 

The high toxicity of Hg, its propensity for accumulation in biological media in its methylated 
forms and its highly mobile nature across all three oxidation states make understanding its 
behaviour in the environment an important concern. 

Sorption behaviour of Mercury in Soils and Sediments 

It is considered that surface sorption is the dominant process controlling Hg mobility in soils and 

sediments, especially in oxic to sub-oxic conditions or in the absence of sulphide in anoxic 

conditions.  While some mercury species may sorb to surfaces based on weak electrostatic 

attraction, it has been demonstrated that surface complexation is the stronger and most 

dominant mechanism under most environmental conditions as many aqueous mercury species, 

such as Hg(OH)2 are neutrally charged.  Surface complexation occurs primarily with OH-, Cl- and 

numerous organic anions with reduced sulphur functional groups (Schuster, 1991). 

In addition to immobilization of free Hg species in solution and hence limiting transport of 

mercury within the subsurface, sorption to mineral surfaces or solid organic matter may 

promote or increase the potential for methylation and de-methylation of mercury species and 

hence limit or increase its toxicity dependent on the sorbent (Jackson, 1998).  For this reason 

understanding sorption behaviour of Hg in soils and sediments is of dual importance. 

Solution pH exerts a major control on Hg sorption in soils and sediments and as with most 

metals, Hg sorption generally increases with increasing pH due to de-protonation of surface sites 

allowing for increased metal sorption on negatively charged sites (Essington, 2004).  This 

phenomenon is illustrated in Figure 15 using the example of sorption of Na+ ions to the surface 

of Gibbsite.  

 

Figure 15: (a) The concentrations of positively and negatively charged surface sites on gibbsite 
and (b) the corresponding adsorption behaviour of Na

and NO3
- as a function of solution pH 

(from Essington (2004)). 

Acidification has been shown to cause rapid release of both inorganic and organic Hg species 

into solution even at pH values of as high as 5 (Driscoll et al., 1995; Amirbahman et al., 2002).  
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Measured sorption envelopes for Hg show however, that at neutral to high pH sorption of Hg to 

various mineral surfaces decreases (Sarkar et al., 1999) Figure 16.  This is due to the 

hydroxylation of aqueous Hg species at high pH and hence the increasing dominance of the 

stable Hg(OH)2(aq) species leading to desorption from mineral surfaces (Schuster, 1991). 

 

Figure 16: Adsorption of Hg(II), expressed as a fractional amount of the total Hg(II) concentration 
( f sorb), by gibbsite as a function of pH and ionic strength (from Sarkar et al. (1999)). 

Various minerals have been evaluated as sorbents of organic and inorganic Hg including metal 

oxides, hydroxides, oxy-hydroxides, metal sulphides and clays.  Hg sorption on all minerals 

shows a strong pH dependence however certain minerals such as illite, gibbsite and iron oxides 

have been identified as more efficient sorbents than, for example, bentonite and kaolinite based 

upon the pH at which desorption occurs during acidification (Andersson, 1979).  Kaolinite in 

particular has been identified as having a low sorption capacity for Hg whereas metal oxides 

have been shown to have high sorption capacities for Hg species. 

Many authors report that organic matter in sediments acts as an important sorbent for Hg 

species and that especially in acidic conditions sorption to organic matter may be more 

important in controlling Hg mobility than sorption to mineral surfaces (Andersson, 1979; 

Schuster, 1991; Jackson, 1998).  Some authors also indicate that sorption of Hg species to 

organic matter may become more important with increasing Cl- concentrations (Reimers and 

Krenkel, 1974; Reddy and Aiken, 2001). 

The influence of Cl- concentrations in solution upon Hg sorption is not clear and studies have 

reported varying effects.  Generally, increasing chloride concentration is thought to cause the 

formation of stable Hg Cl complexes (Figure 17) and a decrease in surface sorption of both 

methyl and inorganic mercury species is often recorded e.g.  (Leckie, 1986; Jackson, 1998). 
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Figure 17: The effect of varying pH and chloride concentration on aqueous Hg speciation.  From 
Morel et al. (1998). 

 

Figure 18:  The adsorption of Hg(II) on silica as a function of solution pH and chloride 
concentration.  For a given pH, increasing Cl concentration reduces Hg(II) uptake.  From Leckie 
(1986). 

This trend is supported by studies by Reimers & Krenkel (1974) who show the effects of different 

Cl concentrations on methyl-mercury and inorganic mercury species on various minerals over a 

range of pH conditions.  They show that increasing chloride concentration decreases sorption of 

both organic and inorganic mercury on clays but that the severity of this effect is dependent on 

the clay mineralogy.  Mercury species sorbed to illite were shown to be less affected than those 

sorbed to kaolinite (30% reduction in the sorption capacity of illite at 1000ppm chloride 

concentrations compared to 50% reduction in sorption capacity of kaolinite at just 100ppm 

chloride concentrations). 
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Conversely, Xu and Allard (1991) report that the presence of chloride may increase mercury 

sorption when pH is less than the point of zero charge (pzc) of the sorbent, possibly due to the 

formation of HgCl3
- species in solution.  This result has implications for clay surfaces covered in 

iron oxide coatings which typically have high pzc e.g. hematite at pH 8.5 -8.8 (Eggleston and 

Jordan, 1998). 

The role of dissolved organic carbon (DOC) on Hg adsorption and methylation is a subject of 

intense current research however in the majority of cases increasing DOC inhibits surface 

sorption due to the formation of stable, soluble Hg-organic complexes (Ravichandran, 2004).  It 

has long been suggested that such strong Hg-organic complexes are the result of Hg binding to 

thiol like functional groups and recently this suggestion has been confirmed via spectroscopic 

techniques (Xia et al., 1999; Drexel et al., 2002).  Other authors suggest that DOC may limit 

sorption of aqueous Hg species by competing for surface sorption sites (Drexel et al., 2002). 

Under some circumstances however, the presence of DOC has been shown to increase surface 

sorption of aqueous Hg species due to strong affinity between the organic anion and the sorbent 

(Xu and Allard, 1991). 

Oxidation and Reduction of Mercury in Soils and Sediments 

Reduction of Hg2+ to Hg0 and re-oxidation of Hg0 to Hg2+ are important and well documented 

processes regulating mercury mobility and toxicity in soils and sediments.  Reduction and 

oxidation have been shown to occur both abiotically and biotically (Schluter, 2000).  Hg0 is 

considerably more volatile than ionic mercury species and hence reduction to Hg0 can lead to 

significant increases in mobility via transport in the gas phase.  Abiotically, in addition to 

photochemical reduction of Hg(OH)2 by sunlight (Munthe and McElroy, 1992), Fe2+, fulvic and 

humic acids (Allard and Arsenie, 1991) have also all been shown to reduce Hg2+ to Hg0 in the 

environment.  Mechanisms of abiotic reduction of Hg2+ vary considerably, however Hg2+ is a 

readily available electron acceptor in reducing conditions, (Allard and Arsenie, 1991) have shown 

that abiotic reduction by fulvic acid proceeds only after complexation with Hg2+ and is followed 

by dissociation after reduction. 

Microbial reduction of Hg2+ to Hg0 is a detoxification mechanism by soil micro-organisms is a 

well-known process and one which is often exhibited by soil communities usually by the 

presence of the mercury reductase enzyme encoded by the merA gene (Barkay et al., 2003).  The 

addition of mercury in the subsurface has been shown to modify the composition of microbial 

communities favouring those parts of the community with mercury resistance and the ability to 

reduce Hg2+ to Hg0 (Harris-Hellal et al., 2009).  Some organisms have also been shown to be able 

to oxidize reduced methyl mercury species as an energy gaining process (Billen et al., 1974).  

Comparing the relative importance of abiotic and biotic reduction processes in the laboratory is 

challenging as the common process used to sterilize soils and sediments, autoclaving, may 

potentially degrade humic and fulvic acids, which as previously discussed are key abiotic 

reductants of Hg2+ (Schluter, 2000).  It has however been shown that a relatively high threshold 

concentration of Hg2+ is necessary within soils and sediments in order to induce microbial 

reduction to Hg0 (Faassen, 1973).  This threshold value is poorly defined as availability of Hg2+ for 

microbial reduction varies considerably between sediments due to factors such as mineralogy 

and complexation, however (Faassen, 1973) indicates that at least several hundred ppm of total 
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Hg are required in an unreactive matrix, for instance large grained quartz sand in the absence of 

significant complexing ligands, to induce biotic reduction.  In addition to this threshold value a 

lag period is observed during microbial reduction upon addition of Hg2+ to sediment linked to the 

growth period required for Hg2+ reducing organisms.  For this reason it is thought that in highly 

contaminated soils and sediments with all the necessary nutrients to support an active microbial 

community biotic reduction is likely to be the dominant process but where concentrations are 

lower, there is lack of a suitable microbial community or in the presence of large amounts of 

reactive organic matter, abiotic processes are likely to dominate (Schluter, 2000). 

To some extent however microbial activity supports abiotic mercury reduction as reactive 

organic reductants of Hg2+ are often products of other microbial metabolic processes.  Equally 

iron reducing bacteria such as Geobacter species are ubiquitous in the subsurface and may 

provide Fe2+ for abiotic reduction of Hg2+ as product of other energy gaining processes. 

Due to the high binding strength of Hg2+ to organic matter re-oxidation of Hg0 often occurs at 

redox potentials significantly lower than those predicted purely thermodynamically by the 

relevant half reactions (Jernelov, A, 1969). 

Precipitation and dissolution processes affecting Mercury mobility in Soils and 

Sediments 

Despite the fact that mercury has a strong affinity for hydroxide and chloride ions, and that 

these anions are very commonly present in high concentrations in pore water, the solubility 

products of mercury di-chloride and mercury di-hydroxide are very high and therefore Hg 

activity in solution is too low in low temperature natural systems to cause precipitation of such 

minerals (Schuster, 1991).  HgS or cinnabar does however have a very low solubility (0.002 ng g-

1) (Schuster, 1991)and is stable under reducing conditions making it the only Hg mineral found to 

occur, or thermodynamically predicted to occur, in contaminated soils and sediments, despite 

the existence of a large variety of high temperature mercury containing minerals within ore 

bodies. 

Whilst HgS in simple systems is extremely stable under reducing conditions, numerous factors 

have been shown to increase its solubility.  The simplest factor which has been shown to cause 

the dissolution of both α-HgS and β-HgS is addition of O2 (Holley et al., 2007).  Factors affecting 

the rates of oxidative dissolution of both forms of HgS are poorly understood with disparate 

dissolution rates reported in the literature (Barnett et al., 2001; Holley et al., 2007).   The 

presence of natural dissolved organic carbon has also been shown to increase solubility of HgS 

and to inhibit its precipitation (Ravichandran et al., 1998, 1999) the same effects have been 

observed upon addition of humic and fulvic acids due to competition between their negatively 

charged functional groups and the sulphide ion for complexation with the Hg2+ ion under 

reducing conditions (Reddy and Aiken, 2001).  Until recently HgS oxidative dissolution was 

considered to be a purely abiotic process however studies by (Jew, A. D. et al., 2007)convincingly 

demonstrate that microbial oxidation of both α-HgS and β-HgS may, increase dissolution rates 

by up to 25 orders of magnitude compared to abiotic dissolution.  Their work suggests that this 

process is enzymatic but is still poorly understood.  Until now such microbial driven dissolution 

of HgS has only been recorded under oxidizing conditions and so far only by natural biofilm 
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consortiums of bacteria however this finding drastically changes understanding of HgS stability 

in oxic systems. 

Redox controls on Mercury toxicity 

Mercury is highly toxic in all oxidation states however when evaluating risk, speciation and 

exposure pathway is of greater importance than oxidation state (Borch et al., 2010).  With 

regards to toxicity, three mercury forms are often discussed inorganic mercury salts, organic 

mercury compounds and metallic mercury.   

Organic mercury compounds are generally the most toxic and due to their solubility in lipids 

accumulate within the food chain to often dangerous levels, for instance in carnivorous fish such 

as tuna or swordfish.  These compounds easily cross the blood brain barrier and result in 

neurological damage (Clarkson, 1993). 

Metallic mercury (Hg0), is significantly less toxic than many methyl-mercury species if ingested 

due to very low sorption (<0.01%) (Langford and Ferner, 1999), however, it is highly volatile and 

is very bio-accessible via inhalation in its vaporized form.  Upon sorption within either the lungs 

or gastro-intestinal tract metallic mercury accumulates within the body and causes damage to 

the central nervous system. 

Inorganic mercury salts, for instance sulphides or oxides, are less toxic than methyl mercury 

species and less accessible bio-accessible than metallic mercury.  However the toxicity of 

inorganic salts exceeds that of elemental mercury when ingested and depends greatly on their 

oxidation state, as monovalent mercury salts are typically less soluble and so less easily 

adsorbed in the gastro-intestinal tract than divalent mercury salts (Friberg and Nordberg, 1973). 

Uranium 

Uranium may exist in oxidation states of +3, +4, +5 and +6 (e.g.  U3+
(aq), UOH3+

(aq), UO2
+

(aq), 

UO2
2+

(aq)).  However the +4 and +6 valence states are the most stable under environmental 

conditions.   The hexavalent form exists under oxic and sub-oxic conditions and is typically more 

mobile and toxic than its normally insoluble quadrivalent form.  Aqueous uranium chemistry is 

complex, as subtle changes in pH, ionic strength or solution composition can cause profound 

changes in uranium speciation due to the large variety of possible complexing ligands and 

oligomeric species. 

In its hexavalent form uranium exists as a uranyl ion (UO2
2+) whereby two axial oxygen atoms are 

strongly bound to the central uranium atom, these oxygen atoms are largely unreactive and 

sorption behaviour is usually controlled by complexing ligands.  At low pH the monomeric uranyl 

ion is surrounded by 4 equatorial water molecules (Burgess, 1978) however as pH increases the 

ion undergoes hydrolysis as the equatorial waters are replaced with hydroxide groups.  At higher 

pH uranyl ions tend to form large oligomeric species such as (UO2)3(OH)7
- .  The uranyl ion is 

known to form complexes with a variety of anions including carbonate, nitrate, sulphate and 

many organic molecules such as acetate which may result in both negatively and positively 

charged ions (e.g. (UO2)3(OH)5
+  and UO2(CO3)2

2- ) over a wide pH range. 

In its quadrivalent form uranium exists most commonly in nature in the mixed valence 

triuranium octoxide (U3O8) with an average U valence state of +5.33 and to a lesser extent in the 
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uranium dioxide mineral uraninite (UO2).  Both of these phases are stable and highly insoluble in 

water making them therefore far less mobile than uranyl ions in the environment.  The reduced 

solubility when compared to uranyl compounds also makes these phases significantly less toxic. 

Toxicity of Aqueous Uranium Species 

In addition to health impacts related to its radioactivity uranium is well known as a nephrotoxin, 

neurotoxin, carcinogen and a developmental toxicant.  However the toxic and radioactive effects 

of uranium are only prevalent if it is internalized.  Although internalization is most common via 

inhalation of dust particles and dermal penetration due to weaponization, ingestion via 

contaminated drinking water, food products or soil (amongst children) is also a relevant human 

exposure pathway when considering uranium inputs to the environment via waste contaminant 

leachate plumes or accumulation due to fertilizer usage. 

Toxicity of ingested uranium is largely dependent on its solubility as this determines uptake in 

the gastro-intestinal tract.  Although only a small percentage of ingested uranium is absorbed 

(Harduin et al., 1994), mostly in the small intestine(Smith, 2001) highly soluble species such as 

uranyl-carbonates are estimated to be absorbed 10 times more effectively (5% gut uptake 

factor) than insoluble  minerals such as UO2 or U3O8 (0.2% gut uptake factor) and hence are 

considered far more hazardous to human health (International Atomic Energy Agency., 1989). 

Sorption behaviour of Uranium in Soils and Sediments 

Predicting sorption behaviour of uranium species in soils theoretically is challenging due to the 

plethora of monomeric and oligomeric species possible due to the tendency of the uranyl ion to 

complex with a variety of organic and inorganic ligands.  U(VI) complexes may exist with a 

positive, negative or neutral surface charge over a wide range of pH and therefore precise 

knowledge of solution chemistry, including Eh, pH, ionic strength, uranium concentration and 

the presence of complexing ligands is essential to predict aqueous uranium speciation and 

mineral surface interactions. 

Numerous minerals present in soils and sediments have been shown to be good sorbents of 

aqueous U(VI) species including iron oxides (Waite et al., 1994), manganese oxides (Brennecka 

et al., 2011) , aluminium oxides (Froideval et al., 2006) and phyllosilicate minerals (Chisholm-

Brause et al., 2001).  More recently various researchers are reporting the importance of organic 

soil components as sorbents of aqueous U(VI) species in the natural environment (Zhou and Gu, 

2005; Dong et al., 2006). 

However despite many studies evaluating the affinity of sorbents in soils for U(VI) species and 

the identification of many soil components with high sorption capacity (Qafoku and Icenhower, 

2008), there are conflicting opinions in the current literature regarding the relative importance 

of various soil components as U(VI) sorbents in natural aquifer sediments and soils.  Whilst some 

authors argue that sorption capacity of U(VI) species in soils and sediments is dominated by 

certain complexes on particular minerals, for instance (FeO)2UO2CO3
2- (see Figure 23) on 

ferrihydrite (Barnett et al., 2002) other studies indicate that affinity of U(VI) to any particular 

sorbent is dominated to a lesser extent by solution composition and mineralogy and to a greater 

extent by the reactive surface area of a sorbent (Pabalan et al., 1998).  Proponents of the first 

view cite statistically significant results of surface complexation modelling applied to several 
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different heterogeneous natural systems which assume the only reactive component to be 

ferrihydrate.  However advocates of the second view indicate that while distribution coefficients 

(Kd values) for U(VI) species are very different for different minerals, that when these 

coefficients are normalized to specific surface area (referred to Ka by Payne et al., (n.d.) values 

for all minerals appear to be very similar (Figure 19 Payne et al. (n.d.). 

 

Figure 19: The sorption edge for uranium(VI) uptake by different minerals across the pH range 
from 3 to 7 expressed as: (a) distribution coefficients (Kd), and, (b) surface area-normalized 
distribution coefficients (Ka). Note the much smaller spread of experimental data in the 
computed Ka compared to the range of Kd for these minerals. From Payne et al. (n.d.). 

The success of surface complexation models implementing ferrihydrite as the only active 

component may therefore simply be due to the dominance of ferrihydrite due to its high specific 

surface area (600m2/g (Waite et al., 1994) and references therein) compared to other soil 

components e.g. Quartz (0.03 m2/g) and Kaolinite (8.4 – 11.8 m2/g) (Payne et al., n.d.). 

As sorption of U(VI) species to clay surfaces is often of relevance with regard to nuclear waste 

disposal, a short summary of U(VI)/clay surface interactions is given below to demonstrate the 

differences between clays and sorption characteristics in differing solutions.  In the natural 

environment, however, a heterogeneous mineralogy is highly probable and therefore data 

describing uranium sorption behaviour in mixed natural samples may provide more accurate 

predictions of mobility under given conditions.  

Sorption behaviour of aqueous U(VI) species on clays has been shown to be controlled by two 

processes; exchange of the uranyl ion with cations in the clay interlayer at low ionic strength and 

low pH and surface complexation with hydroxylated edge sites at high ionic strength and high 

pH. (Hyun et al., 2001) 

Spectroscopic investigations conducted by (Chisholm-Brause et al., 2001) indicate that even 

quite dramatic changes to solution composition cause only subtle changes to the nature of 

sorption complexes formed by U(VI) on Montmorillonite between pH 3 and 7.  They suggest that 

solution composition has minimal influence on U(VI) mobility in comparison to primary factors 

controlling the abundance and nature of U(VI) sorption complexes in clays such as surface 
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coverage, sorption site abundance and reactivity.  In this study the authors identify uranyl inner 

sphere, outer sphere and exchange complexes Montmorillonite.  Of the complexes identified the 

inner sphere variety appeared to be the most prevalent and persistent over a range of surface 

coverages and solution conditions. 

Experiments investigating the role of pH, surface coverage and complexing ligands were also 

conducted by (Bachmaf et al., 2008)over a pH range of 3 to 8.  Whilst in this study only the 

abundance of the surface complexes and not their nature was investigated the authors concur 

with (Chisholm-Brause et al., 2001) that surface coverage is a primary factor controlling 

adsorption with greater sorption occurring at low surface coverages.  However, in contrast to 

Chrisholm-Brause et al, Bachmaf et al show that competition between SO4
2- ions and UO2

2+ for 

surface sites and formation of uranyl-sulphate-complexes at low pH (Figure 20) can lead to a 

reduction of U(VI) sorption to bentonite at low pH.  They also show that the presence of 

carbonate decreased U(VI) adsorption above pH 7 due to the formation of negatively charged 

uranyl-carbonate-complexes (Figure 21) and that the presence of phosphate greatly increased 

U(VI) adsorption. 

 

 

Figure 20: U(VI) speciation in 0.01 M NaCl + 0.005M Na2SO4, [U] = 5 × 10−5 M generated using 
PHREEQC and the WATEQ4F thermodynamic database (from Bachmaf et al. (2008)).  The 
presence of uranyl-sulphate-complexes at low pH and their absence at neutral to high pH is 
shown. 
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Figure 21: U(VI) speciation in 0.01M NaCl + 0.003M NaHCO3 , [U] = 5 × 10−5 M  generated using 
PHREEQC and the WATEQ4F thermodynamic database (from Bachmaf et al. (2008)).  .  The 
formation of strongly anionic uranyl-carbonate-complexes at high pH is shown. 

In a later study Bachmaf and Merkel (2010) continued their investigations of U(VI) adsorption on 

clays to include the influence of higher pH, sodium concentration and clay type (smectite type 

clays compared to kaolinite type clays).  They found significant differences between the sorption 

envelopes for smectite type clays and kaolinite type clays as is shown in Figure 22 illustrating the 

reduced adsorption of U(VI) complexes by smectite type clays at pH values greater than 7 

indicating that surface complexation is the dominant sorption process at this pH.  The difference 

in sorption capacity for U(VI) between the two clay types is attributed to the greater number of 

aluminol surface sites on kaolinite type clays than smectite type clays, the latter of which exhibit 

more silanol sites which have a lesser activity towards U(VI) complexes.  The authors also 

demonstrate that sodium concentration in solution can affect sorption of U(VI) complexes and 

that the influence of sodium concentration on U(VI) adsorption to clays is dependent on clay 

type. The authors found that sorption of U(VI) species to smectite type clays (shown in Figure 

22) were more affected by sodium concentration than kaolinite type clays.  This difference is 

attributed by the authors to competition between uranyl and sodium ions. 
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Figure 22: Comparison of uranium sorption data on kaolinite (KGa-1b), kaolinite (KGa-2), 
montmorillonite (STx-1b), montmorillonite (SWy-2), and natural bentonite (IBECO) at different 
sodium concentrations and pH (from Bachmaf and Merkel (2010)). 

The sorption envelopes shown in Figure 22 relating to kaolinite type clays vary quite significantly 

at high pH from typical sorption envelopes demonstrated with natural substrates such as those 

shown in Figure 23 (Barnett et al., 2002) 



31 
 

 

Figure 23:  Adsorption of 1 mg/L U(VI) to subsurface materials from the Oak Ridge (circles), 
Hanford (diamond), and Savannah River (triangle) department of energy locations at I = 0.1 M in 
equilibrium with atmospheric CO2(g). (b) Modelled U(VI) speciation:  dissolved species (short 
dashes), adsorbed species (long dashes), and total adsorbed concentration (solid line). From 
Barnett et al. (2002).  

Whilst sorption envelopes such as those shown in Figure 23 are typical of those encountered in 

the literature from laboratory studies involving heterogeneous natural media caution should be 

used when applying these sorption envelopes to alkali natural subsurface systems.  This is due to 

the impact of carbonate on U(VI) sorption.  Many sorption envelopes for U(VI) species such as 

the ones shown in Figure 23 were measured in solutions at constant CO2(g) partial pressure (i.e. in 

equilibrium with atmospheric CO2 concentrations) and not at constant carbonate 

concentrations.  As total carbonate concentrations in solutions in equilibrium with atmospheric 

CO2(g) are significantly higher than typical carbonate concentrations measured in groundwater, it 

is possible that the rapid desorption edge seen at between pH 8 and 9 is merely an effect of the 

predominance of highly mobile UO2(CO3)4
2- and that in closed systems with lower carbonate 
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concentrations the desorption edge would occur at a far higher pH.  The results of surface 

complexation modelling performed by Barnett et al appear to indicate that this is the case. 

Oxidation and Reduction of Uranium in Soils and Sediments 

Uranium is a highly redox active element and redox transformations within the subsurface 

environment impose a primary control over uranium mobility as quadrivalent U is significantly 

less mobile than hexavalent uranium.  The energetic stability boundary between U(IV) and U(VI) 

occurs at sub-oxic to anoxic conditions dependent on pH, within the range of Eh values 

commonly encountered in the near subsurface (shown in Figure 24).  A variety of redox 

reactions causing either the reduction of U(VI) or the oxidation of U(IV) have been identified 

within the subsurface, both abiotic (Wersin et al., 1994)and microbially mediated (Lovley et al., 

1993).  Many of these reactions are multi step/coupled reactions and pass via an unstable U(V) 

valence state or via mixed valence solids (Wersin et al., 1994; Renshaw et al., 2005). 

  

Figure 24: Pourbaix diagram of the U, H2O CO2 system at 298.15K and 105 Pa from LLNL data. 

Potentially important reductants of U(VI) in the subsurface include aqueous and structural Fe(II), 

sulphides and organic matter (Liger et al., 1999).  Rates of abiotic reduction of U(VI) by most 
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forms of natural organic matter had been thought to be extremely slow at temperatures 

commonly found in the environment (<45oC) (Disnar and Sureau, 1990) and therefore organic 

matter was only considered to be a relevant reductant for U(VI) in the presence of a microbial 

community capable of coupling the reduction of U(VI) to the oxidation of organic matter as part 

of a metabolic process (Lovley et al., 1993; Liger et al., 1999).  Recent research suggests however 

that highly redox active forms of organic matter such as soil humic substances with quinone 

moieties are capable of fast reduction of U(VI) in aqueous solution (Wang et al., 2011) although 

reaction rate is strongly dependent on pH and complexing ligands (shown in Figure 25)  

 

Figure 25: Observed pseudo-1st-order rate constants of U(VI) reduction by AH2DS2- as a function 
of pH in four systems (open circle – OH−, filled circle – carbonate, filled triangle – 
desferriferrioxamine B, filled square – EDTA). The solid lines are fitted trend lines with arbitrary 
functions. From Wang et al. (2011) 

 

Reduction of aqueous U(VI) by Fe(II) has been shown to be thermodynamically feasible at low to 

neutral pH although this homogeneous reduction has only been demonstrated to occur freely at 

low pH (Liger et al., 1999).  The presence of a wide variety of minerals has been shown to 

catalyse the reaction between Fe(II) and U(VI) by surface sorption of Fe(II) including; 

montmorillonite (Chakraborty et al., 2010) and haematite (Liger et al., 1999).  These studies 

consistently indicate that Fe(II) has a stronger reduction potential when adsorbed to mineral 

surfaces than in solution resulting in abiotic reduction of U(VI) by Fe(II) under conditions where 

reduction would not occur in solution including at neutral pH.  Other studies also show that 

surface sorbed Fe(II) is often persistent in reduced systems even at neutral to high pH due to the 

comparatively fast sorption of Fe(II) to stable mineral surfaces compared to the precipitation of 

ferrous carbonates, sulphides or phosphates which may be expected to form (Charlet et al., 

1998).  This indicates that Fe(II) is therefore an available reductant for oxidized U species over a 

wide range of conditions. 
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Other studies show that Fe(II) contained within a mineral’s structure is also able to act as an 

electron donor to surface sorbed U(VI) species (Wersin et al., 1994).  Minerals shown to be 

directly capable of U(VI) reduction at their surfaces include biotite (Ilton et al., 2004), galena, 

pyrite (Wersin et al., 1994) magnetite (Behrends and Vancappellen, 2005; Scott et al., 2005), 

corundum (Regenspurg et al., 2009) and vivianite (Veeramani et al., 2011).  In some cases the 

presence of bicarbonate was shown to facilitate surface reduction of U(VI) on Fe(II) bearing 

minerals due to the formation of surface Fe(II)-carbonate phases (Regenspurg et al., 2009). 

A number of different groups of organisms have also been shown to be cable of coupling 

extracellular reduction of U(VI) to oxidation of organic matter including Fe(III) reducing and 

sulphate reducing organisms such as Geobacter and Desulfovibrio species (Payne et al., 2002; 

Lloyd et al., 2003) .  Both of the aforementioned groups of organisms use c-type cytochromes for 

electron transfer which results in the precipitation of U(VI) in the periplasm and outside the cell.  

The exact mechanisms for microbial U(VI) reduction are a subject of on-going research however 

recent XAS investigations by (Renshaw et al., 2005) indicate that reduction of U(VI) coupled to 

oxidation of acetate and fumarate mediated by Geobacter species is a multi-step process of one 

electron reduction by the microbe resulting in an unstable U(V) phase which rapidly 

disproportionates to give a mix of U(IV) and U(VI) species. 

Although U(IV) minerals such as uraninite are stable under low temperature reducing conditions 

(Janeczek and Ewing, 1992) in the absence of suitable oxidants and are thought to be a desirable 

form of uranium in the subsurface due to their limited mobility, oxidation of U(IV) may occur 

upon availability of oxidants such as oxygen or nitrate (Moon et al., 2007).  It has been shown 

that there is a strong kinetic control on the oxidative dissolution of U(IV) minerals dependent on 

the specific surface area amongst other factors (Grandstaff, 1976).  This would indicate that bio-

reduced uranium precipitates are far more susceptible to re-oxidation than other forms of 

uraninite due to their comparatively large surface area.  Whilst some U(VI) reduction processes 

result in the formation of surface sorbed U(IV) species (Chakraborty et al., 2010) others result in 

formation of U(IV) precipitates with varying degrees of stability (Renshaw et al., 2005).  This 

variety of U(IV) precipitates results in varying re-oxidation kinetics, some studies record the slow 

oxidation and hence slow mobilization of U(IV) (Szecsody et al., 1998) whilst other studies 

demonstrate extremely fast re-oxidation (Zhou and Gu, 2005). 

Zhou and Gu (2005) have shown that rapid re-oxidation of biogenic UO2(s) does not occur when 

exposed to oxygen unless bi-carbonate is also present however, oxidation of biogenic U(IV) by 

bi-carbonate in the absence of oxygen does not occur (Figure 26). 
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Figure 26: Re-oxidation and mobilization of bio-reduced U(IV) using 1 M NaHCO3 under 
anaerobic and oxic conditions. From Zhou and Gu (2005). 

It has also been shown that even under strict anaerobic conditions U(IV) products of bio-

reduction maybe remobilized through addition of organic ligands and complexing agents such as 

EDTA or citrate (Luo and Gu, 2011).  Although the total percentage of uranium leached in this 

way appears to be low (~0.1%) the fear is that immobilized U(IV) previously considered to be 

stable under anaerobic conditions may be slowly leached from sediment along with Al and Fe by 

organic ligands which form strong complexes with uranium (Luo and Gu, 2011). 

Precipitation and dissolution processes affecting Uranium mobility in Soils and 

Sediments 

Due to the striking differences in solubility and hence the tendency to form mineral phases of 

U(VI) and U(IV), precipitation and dissolution processes affecting uranium are often linked to 

changes in redox conditions or as the result of physically or biologically catalysed redox 

reactions.   

As discussed in the previous section oxidative dissolution of biogenic U(IV) minerals may occur in 

the subsurface upon addition of a suitable oxidant, such as oxygen or nitrate, however rates of 

re-oxidation vary considerably dependent on the stability of the U(IV) phase. 

Extracellular precipitation of uraninite by bio-reduction of U(VI) has been shown to occur 

coupled to oxidation of organic matter (Burgos et al., 2008) in addition to abiotic precipitation of 

U(IV) minerals following surface catalysed U(VI) reduction (Behrends and Vancappellen, 2005). 

Despite the predominance of U(IV) and mixed valence minerals in nature, where high 

concentrations of U(VI) species occur under oxic conditions the super-saturation with respect to 

pure U(VI) phases such as schoepite (UO2)4O(OH)6.6H2O or rutherfordine, UO2CO3(s)  (Carroll et 

al., 1992) is also possible.  Laboratory studies have shown however that precipitation of such 

phases may be kinetically limited at low levels of super-saturation (Giammar and Hering, 2001).  

(Giammar and Hering, 2001) also show that low levels of super saturation may be maintained 

due to metastable surface sorption.   
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A potentially more important immobilization process for uranyl ions than precipitation of pure 

U(VI) minerals is the immobilization of U(VI) species with iron oxide minerals or calcite during 

their precipitation (Reeder et al., 2001; Duff et al., 2002; Kerisit et al., 2011). 

Chromium 

Chromium may exist in oxidation states ranging from +6 (e.g. CrO4
2-) to -2 (e.g. Na2[Cr(CO)5] ).  In 

the environment the most stable and commonly occurring oxidation states are Cr(III) (e.g. 

Chromium hydroxide, Cr(OH)3) and Cr(VI) (e.g. CrO4
2-).  

 

Figure 27: Chromium hydroxide (left) and chromate (right). 

Dependent on prevailing pH and Eh conditions inorganic aqueous Cr may be stable as 

monoatomic cations (Cr2+, Cr3+), hydroxides (e.g. Cr(III): CrOH2+, Cr(OH)2
+, Cr(OH)3 Cr(OH)4

-) or 

oxyanions (e.g. Cr(VI): H2CrO4, HCrO4
-, CrO4

2- or Cr(V): CrO4
3-)(Rai et al., 1989; Richard and Bourg, 

1991)(Richard and Bourg, 1991)(Richard and Bourg, 1991)(Richard and Bourg, 1991)(Richard and 

Bourg, 1991)(Richard and Bourg, 1991)(Richard and Bourg, 1991).  In addition to this variety of 

inorganic aqueous Cr species, many different aqueous organic Cr complexes exist in nature (Luo 

et al., 2010) and in some cases can account for a large proportion of total Cr (Ahern et al., 1985; 

Icopini and Long, 2002).  Whilst overriding Eh and pH conditions directly affect aqueous Cr 

speciation (including oxidation state, protonation state and chemical coordination), sorption 

behaviour of individual species to mineral surfaces, hence mobility is also directly affected by 

these conditions.  The interplay between sorption/desorption, complexation/decomposition and 

oxidation/reduction of aqueous Cr in natural systems is summarized in Figure 28 and the 

stability fields of dominant species are shown in Figure 29. 
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Figure 28: Processes affecting aqueous Chromium species (modified from Luo et al. (2010)). 

 

Figure 29: Pourbaix diagram of the Cr-H2O-CO2 system at 298.15K and 105 Pa from LLNL data. 
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Sorption behaviour of Chromium in soils and sediments 

Sorption behaviour of Chromium is highly dependent on oxidation state.  Cr3+
(aq) exhibits typical 

cationic sorption behaviour with greater sorption to mineral surfaces occurring at higher pH 

when mineral surfaces are more negatively charged (see Figure 15) (Griffin et al., 1977).  Greater 

sorption of Cr3+ is therefore expected to mineral surfaces which have a low point of zero charge 

(PZC) and high surface area such as clay minerals.  Specific sorption of Cr3+
(aq) to soil minerals 

including Fe and Mn oxides (Zachara et al., 1987), clay minerals (Griffin et al., 1977) and quartz is 

rapid although competition for surface sorption occurs between Cr3+
(aq) and other inorganic 

cations (Richard and Bourg, 1991). 

Chromate ions (HCrO4
-, CrO4

2-) exhibit typical anionic sorption behaviour with greater sorption to 

mineral surfaces occurring at lower pH when mineral surfaces are more positively charged 

(Griffin et al., 1977; Mustafa et al., 2001).  Greater sorption of chromate is therefore expected to 

mineral surfaces which have a high point of zero charge such as iron oxides.  In contrast to 

Cr3+
(aq) adsorption, chromate adsorption consists of surface complexation with hydroxyl surface 

sites (Mustafa et al., 2001).  Spectroscopic investigation via extended X-ray absorption fine 

structure spectroscopy (EXAFS) has revealed that chromate can form inner sphere mononuclear 

mono-dentate, mononuclear bi-dentate or binuclear bi-dentate surface complexes at iron oxide 

surfaces (Fendorf et al., 1997).  Adsorption is decreased by the presence of competing anions 

such as Cl-, NO3
-, SO4

2-, HPO4
2-, HCO3 (Richard and Bourg, 1991). 

Oxidation and Reduction of Chromium in soils and sediments 

Oxidation of Cr(III) has been found to occur in the presence of dissolved oxygen (Schroeder and 

Lee, 1975) however, this oxidation is unlikely to occur in soils and sediments as it is a slow 

process when compared to concurrent sorption or precipitation reactions under environmental 

conditions.  Oxidation of Cr(III) occurs far more rapidly coupled to the reduction of Mn(IV) as 

MnO2 (S) to Mn(II) as Mn2+
(aq) following adsorption of Cr(III) to the MnO2 surface (Bartlett and 

James, 1979; Eary and Rai, 1987).  It is this process which is thought to be responsible for the 

majority of Cr(III) oxidation in the environment as no other inorganic oxidants have been found 

commonly in the environment capable of rapid Cr(III) oxidation (Rai et al., 1989). 

Reduction of Cr(VI) has been shown to occur in the presence of numerous reduced species 

including aqueous ferrous iron, dissolved sulphides (Schroeder and Lee, 1975) and redox 

reactive organic species such as humic and fulvic acids (Wittbrodt and Palmer, 1997).  

Additionally numerous species of Cr(VI) resistant bacteria have shown to be capable of the 

reduction of chromate in solution (Chen and Hao, 1998) as a detoxification mechanism.  Whilst 

biological reduction of Cr(VI) was initially assumed to lead to the precipitation of amorphous 

Cr(OH)3 recent investigations suggest that a variety of stable soluble and insoluble organo-Cr(III) 

complexes are also produced (Puzon et al., 2005) which may account for the prevalence in the 

environment of Cr(III) in solution even under conditions where Cr(VI) should dominate (Icopini 

and Long, 2002; Puzon et al., 2008)(Puzon et al., 2008)(Puzon et al., 2008)(Puzon et al., 

2008)(Puzon et al., 2008)(Puzon et al., 2008)(Puzon et al., 2008). 
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Precipitation and dissolution processes affecting Chromium mobility in soils and 

sediments 

In addition to previously mentioned iron and manganese oxides, discrete Chromium mineral 

phases play an important role in controlling Cr mobility in the environment.  Natural Cr(VI) 

minerals are rarely found in nature due to their high solubility and their high Eh stability range 

(Richard and Bourg, 1991).  Far more prevalent are Cr(III) precipitates which are stable in 

moderately oxidizing and reducing environments often found in soils and sediments.  Although 

the most thermodynamically stable phase over a large Eh-pH field in the Cr-H2O-CO2 system is 

eskolaite (Figure 29) or in natural systems chromite, these phases are rarely found in significant 

quantities in natural environments due to the rapid precipitation of Cr(OH)3  or Fe(III) Cr(III) 

hydroxide ((Fe1-x,Crx)OH3 in solid solution) under similar conditions (Charlet & Manceau 1992).  

The direct precipitation of chromite (FeCr2O4) is equally not expected at the low temperatures 

found in most environmental settings (Hem, 1977). 

Redox controls on Chromium toxicity 

Inorganic Cr(VI) has received a disproportionate amount of research attention compared to 

inorganic Cr(III) due to its greater toxicity to bacteria, animals and plants and greater mobility in 

soils and aquifers.  Aqueous Cr(VI) species are well known carcinogens and allergens whereas 

trace concentrations of Cr(III) of 50-200µg day -1, are considered to be an essential nutrient for 

metabolism in animals and plants due to its role in glucose metabolism and nucleic acid 

synthesis (Richard and Bourg, 1991; Dayan and Paine, 2001).   

Uptake of Cr(III) compounds by the body is generally very low by dermal, oral and inhalation 

routes which contrasts with the high adsorption of Cr(VI) by the same pathways.    

Although Cr(V) is not readily stable under environmental conditions numerous articles suggest 

that it does exist as an intermediate during reduction of Cr(VI) in the environment (Chen and 

Hao, 1998) and in the body (Klein, 1996).  Due to the reported similarity in response of Cr(V) and 

Cr(VI) to popular colorimetric analyses (Eckert et al., 1991), previously reported Cr(VI) 

concentrations from natural waters may in fact be a mixture of Cr(VI) and Cr(V).  It is thought 

that the reduction of Cr(VI) via Cr(V) to Cr(III) within the body is the cause of much of 

chromium’s genotoxicity potentially due to the formation of OH’ radicals by Fenton like 

reactions (Shi and Dalal, 1989). 

 

Arsenic 

Arsenic is a metalloid which can exist in oxidation states ranging from -3 (e.g. AsH3) to +5 (e.g. 

HAsO4
2-) (-III, -1, 1, 2, 3 and 5) however in the environment it is most stable and commonly found 

in either it's trivalent (As(III) e.g. H3AsO3) or pentavalent (As(V) e.g. HAsO4
2-) form (shown in 

Figure 30) (Smedley and Kinniburgh, 2002).  However, under highly reduced conditions in soils 

and sediments low concentrations of inorganic or methylated arsines (AsH3 , MeAsH2, Me2AsH 

and TMA) may be formed (Cheng and Focht, 1979; Mestrot et al., 2011).  
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Under most conditions inorganic arsenic forms neutrally or negatively charged oxyanions; as 

As(V) under oxic conditions and high pH (H3AsO4°, H2AsO4
-, HAsO4

2- and  AsO4
3-) and as As(III) 

under reducing conditions and low pH (H3AsO3°, H2AsO3
-, HAsO3

2-  and AsO3
3-) (Figure 31).  

Arsenic, unlike chromium and uranium, never exists as monoatomic cations in solution therefore 

its sorption behaviour and mobility is very different to the majority of metal contaminants (e.g. 

Pb2+ Cu2+).  The stability fields of each of these species are shown in Figure 31.  In addition to 

oxidation and protonation state variation between inorganic arsenic oxyanions, many 

methylated arsenic species and arseno-organic complexes are commonly found in the 

environment (e.g. monomethlyarsonic acid (MMAV), dimethylarsinic acid (DMAV ) and 

trimethylarsine oxide TMAOV).(Smith et al., 1998)  

Figure 30: Arsenate (left) arsenite (right). 
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Figure 31: Pourbaix diagram of the As, H2O CO2 system at 298.15K and 105 Pa from LLNL data. 

Whilst overriding Eh and pH conditions directly affect aqueous As speciation (including oxidation 

state, protonation state and chemical coordination), sorption behaviour of individual species to 

mineral surfaces, hence mobility is also directly affected by these conditions.  The interplay 

between sorption / desorption, complexation / decomposition, methylation / de-methylation, 

precipitation/dissolution and oxidation/reduction of As in natural systems is summarized in 

Figure 32. 
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Figure 32: Schematic summary of Arsenic Biogeochemistry. (Modified from Zhang and Selim 
(2008)). 

Sorption behaviour of Arsenic in soils and sediments 

Sorption behaviour of arsenic in soils and sediments is complex and strongly dependent on Eh 

and pH conditions.  Changes in pH influence both protonation state of arsenic oxyanions and the 

surface charge of potential sorbents.  A key difference between arsenite and arsenate oxyanions 

is their charge under environmental conditions.  Whilst arsenite remains neutrally charged 

across a pH range encompassing most natural environments (pKa1 = 9.2) arsenate is negatively 

charged from pH 2.3 upwards, loosing additional protons at pH 6.8 and 11.6 (Goldberg and 

Johnston, 2001).  It is largely the interaction between the pKa of arsenic ions and the PZC of 

matrix minerals which determines the adsorption envelope (Figure 33 Figure 34).  Generally at 

low pH arsenate adsorption is greater than that of arsenite but at higher pH where most 

common minerals obtain a negative surface charge arsenite adsorption is greater.(Raven et al., 

1998; Jain and Loeppert, 2000; Zhu et al., 2011).  Often a sorption maximum for arsenite is 

observed close to the pKa1 at pH 9.2 (see Figure 33, Goldberg (2002)).  Aerobic high pH 

conditions (i.e. pH greater than the PZC for iron oxide minerals, at approximately 8.5) have been 

shown to increase arsenic mobility and often lead to significant arsenic release as arsenate is 

desorbed from the surface of iron oxides (Robertson, 1989; Smedley et al., 2002). 
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Figure 33:  Adsorption of arsenate and 
arsenite on illite as a function of pH.  
Modified from Goldberg (2002). 

 
Figure 34:  Adsorption of arsenate and arsenite on 
amorphous iron oxide as a function of pH.  
Modified from Goldberg (2002). 

 

Numerous studies show the strong positive correlation between total iron concentration in soils 

and sediments total arsenic concentrations e.g. (Hossain et al., 2008). Potentially the most 

important sorbents of both arsenite and arsenate in soils and aquifers are metal oxides and 

oxyhydroxides due to their large sorption capacity for a range of negatively and neutrally 

charged oxyanions and high surface area (Vitre et al., 1991; Sullivan and Aller, 1996; Smedley 

and Kinniburgh, 2002).  Many other minerals and soil materials have also been implicated as 

sorbents of arsenic in natural environments including metal carbonates (Alexandratos et al., 

2007; Guo et al., 2011), sulphides (Farquhar et al., 2002; Wolthers et al., 2005), clays (Goldberg, 

2002) and organo-clay complexes (Saada et al., 2003).  Sorption capacities for some of these iron 

containing minerals compiled by (Charlet et al., 2011) are shown in Table 4. 

Table 4: Kd of As(V) and As(III) onto Fe(II)-Fe(III)-bearing phases derived from sorption edge 
experiments (pH 7 and 7.5) a derived from constant capacity modelling of adsorption edge 
experiments.  From Charlet et al. (2011) 

Mineral Solid g/L Kd (L/g) pH 
7 As(V) 

Kd (L/g) pH 7 
As(III) 

Reference 

Hydrous Ferric 
Oxide 

0.03 49.3 85.72 (Dixit and Hering, 2003) 

Goethite 0.05 8.05 14.46 (Dixit and Hering, 2003) 

Mackinawite 0.044 9 2 (Wolthers et al. 2005c) 

Siderite 2.5 3.36 0.28 (Jonsson and Sherman, 2008) 

Magnetite 3.1/0.5 8.89 0.08/1.85 (Jonsson and Sherman, 2008) 

Fougerite 4.5 - 0.12 (Jonsson and Sherman, 2008) 

Vivianite 2.5 0.18 - (Thinnappan et al., 2008) 

Biotite a 4.25 3.4 0.97 (Chakraborty et al., 2007) 

Muscovite a 4.1 0.36 0.36 (Chakraborty et al., 2007) 

 

PZC PZC 
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Sorption of arsenate and arsenite to iron and aluminium oxides and oxyhydroxides has been 

extensively studied (Fendorf et al., 1997; Goldberg, 2002; Dixit and Hering, 2003).  It has been 

shown that both arsenate and arsenite can form inner sphere complexes via exchange for 

hydroxyl groups in the coordination spheres of structural metal atoms (Fendorf et al., 1997; 

Manning et al., 1998) but that arsenite may also form outer sphere complexes (Goldberg and 

Johnston, 2001).  It has also been shown via spectroscopic investigation (extended X ray 

absorption fine structure spectroscopy (EXAFS)) that arsenate may form mononuclear mono-

dentate, mononuclear bi-dentate or binuclear bi-dentate surface complexes (Fendorf et al., 

1997).  

Figure 35:  Schematic illustration of the surface 

structure of As(V) on goethite based on the local 

coordination environment determined with EXAFS 

spectroscopy.  From Fendorf et al. (1997) 

Clay minerals generally have a low adsorption 

capacity for anionic arsenic species in comparison 

to other minerals with comparable surface area 

due to their negatively charged surfaces (Goldberg, 

2002).  However, the edge AlOH2
+ functional 

groups of layered silicates have been proposed as 

sites for arsenic anion adsorption and it is this 

mechanism which is thought to explain the 

generally strong arsenic sorption exhibited by clay 

minerals with high surface areas.(Manning and 

Goldberg, 1996). 

Whilst it is iron oxides which are considered to be 

the most important sorbents of aqueous arsenic 

within oxic environments, in anoxic environments 

iron oxides are subject to reductive dissolution 

mediated by facultative anaerobes including 

geobacter and shewanella species (Lovley et al., 1993).  Arsenic is often released under such 

reducing conditions (McGeehan and Naylor, 1994; Islam et al., 2004; Ackermann et al., 2008) as 

Fe(II) and As(III) species predominate.  However, it is thought that the adsorption of released 

arsenic species to Fe(II) and mixed Fe(II) Fe(III) (green rust) minerals, which are often the product 

of microbial reductive dissolution of ferric oxides (Ona-Nguema et al., 2010), may impose 

important controls on mobility of aqueous arsenic species, particularly in environments which 

enter reducing conditions for limited periods of time (Tufano and Fendorf, 2008; Charlet et al., 

2011).   

In addition to strong pH and Eh controls on the sorption of arsenic to mineral surfaces the 

presence of competing ligands, especially phosphate, within the solution also has a strong 

influence on arsenic sorption (Jain and Loeppert, 2000; Zhu et al., 2011).  The effects of 

numerous other potential competitive ligands have been investigated including sulphate, 

carbonate and selenate.  Carbonate was found to have a very mild competitive effect with 
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arsenate and arsenite compared to phosphate (Radu et al., 2005).  Zhu et also found that most 

competing anions resulted in greater arsenate and particularly arsenite release at low pH 

whereas the competitive effect of phosphate was enhanced at high pH. 

Recent investigations on the effects of dissolved organic matter on arsenic mobility indicate the 

presence of dissolved organic matter can cause release of adsorbed arsenic (Bauer and Blodau, 

2006; Wang and Mulligan, 2006a; Zhu et al., 2011).  This effect is thought to be due to a 

combination of competition for sorption sites, the formation of highly soluble arseno-organic 

complexes and redox reactions between reactive organic species and arsenic. 

Oxidation and Reduction of Arsenic in soils and sediments 

As(III) as arsenite may be readily oxidized to As(V) as arsenate via a number of mechanisms.  

Although arsenite is not thermodynamically stable in the presence of dissolved oxygen it is 

frequently found in natural oxidized environments due to the slow kinetics of arsenite oxidation 

(Scott and Morgan, 1995).  Mn(IV) as δ-MnO2 and γ-MnOOH have been shown to oxidize free 

aqueous and surface sorbed arsenite extremely rapidly following a surface sorption complex in a 

similar way to oxidation of Cr(III) (Scott and Morgan, 1995; Chiu and Hering, 2000; Parikh et al., 

2010).  This process is illustrated in Figure 36.  Spectroscopic investigations of this mechanism 

have also shown the 

surface precipitation 

of a Mn(II) arsenate 

phase (Tournassat et 

al., 2002). 

Figure 36:  Oxidative 
sorption of arsenite to 
manganese oxide 
resulting in the 
release of arsenate 
and Mn(II). From Scott 
and Morgan (1995). 

Despite the 

thermodynamic 

prediction of arsenite 

oxidation following 

adsorption to iron 

oxide surfaces this has 

been found to be 

limited, slow and 

highly dependent on 

pH conditions (Sun 

and Doner, 1998). 

In addition to 

chemical oxidation 

mechanisms many micro-organisms have been shown to oxidize As(III), both as an energy 
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generating process and as a detoxification mechanism and are considered to be ubiquitous in 

the subsurface (Santini et al., 2000; Macur et al., 2004). 

Reduction of arsenate to arsenite also readily occurs in nature both as a chemically and 

biologically mediated process (Fendorf et al., 2010).  Biologically, bacteria, fungi and algae have 

been shown to reduce arsenate either as a detoxification mechanism whereby arsenate is 

reduced to arsenite and then expelled from the cell, or as an energy gaining process where 

arsenate is used as a terminal electron acceptor coupled to the oxidation of organic matter or 

sulphide (Oremland and Stolz, 2003; Hoeft et al., 2004).  Few reduced inorganic and organic 

species have been implicated in arsenic reduction however there is evidence for reduction of 

arsenate by sulphides and humic acids (Rochette et al., 2000; Palmer and von Wandruszka, 

2010). 

Precipitation and dissolution processes affecting Arsenic mobility in soils and 

sediments 

As arsenic is usually present in trace concentrations in the environment the activity of arsenic in 

solution is usually not sufficient to cause precipitation of discrete arsenic minerals except in 

highly contaminated environments (Zhang and Selim, 2008).  Arsenic mobility is more often 

controlled by co-precipitation, inclusion and occlusion in other major phases such as iron oxides 

and hence by the dissolution and precipitation of such phases (Violante et al., 2006). 

Arsenate minerals known shown to precipitate in highly contaminated soils and sediments 

include scorodite (Foster et al., 1998; Kocourková et al., 2011), amorphous ferric arsenate (Jia et 

al., 2006; Paktunc and Bruggeman, 2010) and angelellite (Gómez-Parrales et al., 2011).  Under 

conditions where arsenite is dominant the precipitation of CaHAsO3 is thought to act as a 

possible control on arsenic mobility (Roman-Ross et al., 2006).  These As(III) and As(V) minerals 

often precipitate as surface coatings on other major minerals. 

Anionic substitution during precipitation of minerals such as jarosite, schwertmannite, gypsum 

and calcite has also been demonstrated as a mechanism for arsenic immobilization (Foster et al., 

1998; Regenspurg and Peiffer, 2005; Fernandez-Martinez et al., 2006; Roman-Ross et al., 2006)  

Redox controls on Arsenic toxicity 

All species of arsenic exhibit toxicity to some degree and no human dietary requirement for 

arsenic has been established.  Therefore arsenic is considered to be a non-threshold element by 

most regulatory agencies including the World Health Organisation, The European Commission 

and the United States Environmental Protection Agency. arsenic toxicity is highly dependent on 

speciation and particularly on oxidation state (Hughes, 2002).  Inorganic arsenic species are 

highly toxic and are generally considered to be considerably more toxic than organic species 

(Zhang and Selim, 2008).  However toxicity between methylated species varies considerably 

dependent on degree of methylation (MMA, DMA) and arsenic oxidation state (MMAV, MMAIII) 

and some methylated species may be more toxic than inorganic species (see Table 5). 
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Table 5: Acute arsenic toxicity in laboratory animals (from data in Hughes, 2002) 

Chemical Species Animal Species Route LD50 (mg As/kg) Reference 

Arsenite Mouse (m) im 8 (Bencko et al., 1978) 

Arsenite Hamster (m) ip 8 (Petrick et al., 2000) 

Arsenate Mouse (m) im 22 (Bencko et al., 1978) 

MMAIII Hamster (m) ip 2 (Petrick et al., 2000) 

MMAV Mouse (m) Oral 916 (Kaise et al., 1989) 

DMAV Mouse (m) Oral 648 (Kaise et al., 1989) 

TMAOV Mouse (m) Oral 5500 (Kaise et al., 1989) 

 

From LD50 values given in Table 5 we see that arsenate is approximately 3 times more toxic than 

arsenite and that MMAV and DMAV are 30-40 times less toxic than arsenate.  However it should 

also be noted that MMAIII has been shown to be approximately 4 times more toxic than arsenite 

(Petrick et al., 2000). 

Arsenic is widely known as a carcinogen and has been classified as a group 1 carcinogen to 

humans by the World Health Organisation International Agency for Research on Cancer (WHO 

IARC, 2004).  Mechanisms of arsenic toxicity vary between oxidation states and species although 

it is thought that arsenate may replace phosphate in many biochemical reactions due to its 

similar structure and properties (Dixon, 1996).  Arsenate has been shown to uncouple ATP 

formation vital for energy transfer (Hughes, 2002).  Arsenite is known to interfere with the 

function of many enzymes by reacting with thiols or sulhydryls within their structure (Hughes, 

2002).
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Chapter 2: Arsenic inputs to the exogenic biogeochemical cycle and 

distribution in the pedosphere 

Abstract 
Arsenic is ubiquitous in soils, sediments and natural waters.  However, its distribution across 

different types of environmental media and spatially on continental, regional and even micro-

scales is highly heterogeneous (Reimann et al., 2009; Smedley and Kinniburgh, 2002; Ackermann 

et al., 2010; Salminen et al., 2005).  Examples of this spatial heterogeneity at different scales are 

shown in Figures 37 and 38.  Table 6 clearly shows that variation of arsenic concentrations in 

different types of environmental media can span several orders of magnitude.  Strong spatial 

heterogeneity within contaminated soils and shallow aquifer materials can make procurement 

of safe drinking water and appropriate land use challenging (Winkel et al., 2008).  The current 

observed variation of arsenic concentrations in natural media is due to the combined effect of 

both natural and anthropogenic processes and controls, which constitute the global 

biogeochemical cycle of arsenic. 

This chapter aims firstly to review the most important sources of arsenic to the exogenic cycle 

and to evaluate the relative significance of anthropogenic and geogenic arsenic inputs to soils.  

Subsequently the current understanding of processes known to fractionate arsenic in soils and 

 

Figure 37:  Heterogeneous arsenic distribution in top-soils 

on the European scale.  Modified from Salminen et al., 

(2005). 

 

Figure 38:  Heterogeneous arsenic 

distribution in floodplain soils on the local 

scale in eastern Germany.  Modified from 

Ackermann et al., (2010) 
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hence influence its distribution in and liberation from the pedosphere are reviewed.  The effects 

of current anthropogenic activities which may affect arsenic distribution and concentrations in 

soils in the future are briefly discussed including soil acidification, flooding, climate change and 

the use of agricultural amendments. 

Table 6: Variation of arsenic concentrations within different environmental media.  Compiled 

from data in Smedley and Kinniburgh (2002). 

Media Units Highest concentration 

occurrence 

Lowest concentration occurrence  

Igneous rocks mg kg-1 113 in basic rocks 0.03 in ultrabasic rocks 

Metamorphic rocks mg kg-1 143 in phyllite/slate <0.1 in schist/gneiss 

Sedimentary rocks mg kg-1 35,000 in coals 0.3 in coals 

Unconsolidated 

sediments mg kg-1 170 in glacial till 0.5 in lake sediments 

Soils mg kg-1 

8000 close to sulphide 

deposits 0.1 in various soils 

    

Rain water ug L-1 

16 in USA (impacted by 

copper smelter) <0.005 USA costal (mid atlantic) 

River water ug L-1 21,800 in Northern Chile <0.02 in Norway 

Lake water ug L-1 

1000 in USA (geothemally 

influenced) 0.06 in Sweden 

Sediment pore water ug L-1 

100,000 in Canada (tailings 

impound) 1.3 baseline in Swedish estuary 

Groundwater ug L-1 50,000 in geothermal water <0.5 UK baseline 

Sea water ug L-1 3.7 in Spanish coastal water 0.5 in Spanish coastal water 

    The Atmosphere ug m-3 1 close to industrial plants 10-5 Unpolluted baseline 

 



51 
 

Arsenic input to the exogenic cycle:  
Arsenic input to the environment from the lithosphere may occur via either natural geological or 

anthropogenic processes (Figure 39).  Determining the relative environmental significance of 

these two types of input globally is challenging as quantitative natural and anthropogenic 

arsenic fluxes to the atmosphere, hydrosphere and pedosphere are unknown for some pathways 

(i.e. chemical weathering of arsenic bearing rocks).  Additionally for some pathways (e.g. 

volcanic emissions) estimates vary substantially between published sources (Lantzy and 

Mackenzie, 1979; Matschullat, 2000; Chilvers and Peterson, 1987).  These large variations can 

usually be attributed to differing methodology but do indicate a high degree of uncertainty 

within the literature.  A number of well constrained national and local studies do exist e.g. 

(Wang and Mulligan, 2006b; Drahota et al., 2006; Couture et al., 2008) and these studies are 

often able to determine a dominant arsenic source such as smelter emission (Couture et al., 

2010) or weathering of arseno-pyrite bearing rocks (Drahota et al., 2006).  However, local 

particularities mean that these studies do not adequately represent arsenic inputs at global 

scales and negate the possibility of extrapolation.  The most highly referenced quantitative 

review of global anthropogenic trace element emissions to soil, aquatic systems and the 

atmosphere was conducted by Nriagu and Pacyna (1988),(cited 1448 times as of July 2011).  

Nriagu and Pacyna (1988) and others indicate that approximately 60% of arsenic in the 

environment is anthropogenic in origin and that anthropogenic arsenic input to soils is between 

2.84 and 9.4 ×107 kg a-1 (Chilvers and Peterson, 1987; Nriagu and Pacyna, 1988).  Furthermore, 

Senesil et al. (1999) show that the biogeochemical cycles of many trace metals and metalloids 

including arsenic have been drastically altered by anthropogenic technological development.  

Considering estimates provided by several global cycling studies (Table 7) it appears that 

anthropogenic inputs of arsenic to the environment (soil, water and air) are considerably higher 

than geogenic inputs.  This conclusion has been drawn by numerous authors e.g. (Bhattacharya 

et al., 2002)  Nevertheless, quantitative estimates of arsenic input to soils and river systems due 

to weathering of primary and secondary lithology have been neglected in previous attempts to 

quantify the arsenic biogeochemical cycle and therefore such conclusions can only be 

considered speculative.  Evidence from large scale arsenic distribution studies in soil and water 

(Salminen et al., 2005; Amini et al., 2008) indicate that bedrock geology affects a major control 

over arsenic distribution.  If weathering and erosion did not cause large inputs of arsenic to the 

exogenic environment it is reasonable to assume that arsenic distribution would be dominated 

by known anthropogenic arsenic sources and areas of volcanic activity.  This is not the case 

(Salminen et al., 2005), therefore, flux of arsenic from lithosphere to pedosphere and 

hydrosphere by weathering is almost certainly very high, and the lack of quantitative data 

severely limits our understanding of the global cycle of arsenic and our ability to compare 

anthropogenic and geogenic inputs.  Despite this limitation, from the estimates of arsenic fluxes 

that are currently available it is clear that anthropogenic arsenic input does also play a significant 

role in the biogeochemical cycle of arsenic. Equally, large scale geochemical mapping 

demonstrates that the distribution of arsenic in the hydrosphere and pedosphere is strongly 

affected, at least locally by anthropogenic emissions. 
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Figure 39:  Conceptual model for the terrestrial biogeochemical cycling of arsenic. Reproduced 

from Jacks and Bhattacharya (1998). 

Table 7:  Summary of major As sources inputs to the environment (air, water and soils) 

estimated by previous studies. 

As Input type Study 1 (Nriagu and 

Pacyna, 1988) 

(103 kg yr-1) 

Study 2 (Chilvers 

and Peterson, 

1987) 

(103 kg yr-1) 

Study 3 (Lantzy and 

Mackenzie, 1979) 

(103 kg yr-1) atmospheric 

input only 

Volcanic emissions Not estimated 17,150 280 

Low temperature 

volatilization 

Not estimated 26,200 16,000 

Natural weathering 

and erosion 

processes 

Not estimated Not estimated Not estimated 

Non-ferrous metal 

production 

22,500 - 49,580 110,195 Not estimated 

Coal combustion 7130 - 40,530 41,340 Not estimated 
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Geogenic Input 
The natural flux of arsenic from the geosphere to the environment is thought to be dominated 

by two key processes, volcanism and the weathering and erosion of arsenic bearing rocks. 

Volcanic emission (280 – 17,150 x 103 kg yr-1) 

Volcanism is considered by some authors to be the primary geological process exporting arsenic 

to the environment (Matschullat, 2000).  However, published quantitative estimates of arsenic 

emissions during eruptions and degassing vary considerably from 0.3 × 106 kg a-1 (Lantzy and 

Mackenzie, 1979) to 1.715 × 107 kg a-1 (Chilvers and Peterson, 1987) and arsenic input due to 

weathering, necessary for comparison, is very poorly defined.  The differences between reported 

volcanic emission estimates are attributable partly to methodology and partly to the author’s 

choice of critical constants.  Some studies use arsenic concentrations from volcanic ash from a 

single well studied volcano to determine total particulate arsenic emission (Chilvers and 

Peterson, 1987) whereas others use average arsenic concentrations in only one type of volcanic 

rock deemed to represent an average value for all volcanoes (Lantzy and Mackenzie, 1979).  

Both of these approaches are clearly limited in their accuracy as even between well monitored 

volcanoes considerable differences in arsenic emission are present, for instance arsenic 

emissions from Mount Saint Helens total approximately 8.9 ×106 kg a-1 compared to 0.04 ×106 

kg a-1 from Poas (Pacyna, 1986).  Therefore whilst such extrapolations currently offer some 

degree of quantitative estimation and indicate the importance of volcanism as an arsenic source, 

reported global estimations of arsenic emission by volcanism are poorly constrained and should 

be treated with caution.  A more comprehensive study of volcanic emissions incorporating a 

more widespread sampling campaign, involving collaboration between many volcanic 

observatories is required to account for the variation between different types of volcanoes.   

Erosional and weathering processes (?) 

Arsenic is the 20th most abundant element in the crust with an average concentration of 1.8 mg 

kg-1 (Lide, 2009) however significant variation in arsenic concentration exists even in primary 

rocks dependent on mineralogy.  Arsenic is a strongly chalcophile metalloid, as such it rarely 

forms a structural component in silicates and is more commonly associated with sulphides and 

oxides.   

Although arsenic minerals themselves (e.g. Orpiment (As2S3), Realgar (AsS)) are relatively rare in 

the environment, occurring mostly in highly mineralised areas, many common minerals also host 

significant quantities of arsenic and occur in a much more varied range of environments, these 

include reduced sulphides (Pyrite, Marcasite, Galena etc.) (Wolthers et al., 2005) and ferric iron 

minerals including Fe oxides, Fe hydroxides and Fe oxyhydroxides (Ona-Nguema et al., 2005) 

The variation seen in primary rocks can be further enhanced by erosion and weathering 

processes, leading to the broadest range of arsenic concentrations in sedimentary rocks and 

soils (Smedley and Kinniburgh, 2002).  Concentrations of As in sands and sandstones tend to be 

the lowest due primarily to the lack of arsenic in their constituent minerals (typically quartz and 

feldspars) whereas more argillaceous rocks tend to contain much higher As concentrations 

owing to a higher proportion of sulphides, oxides and organic matter. 
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Both sulphides and oxides (the two main groups of minerals which tend to host arsenic) can be 

rapidly dissolved within the range of conditions experienced in the near surface environment 

which may result in liberation of arsenic into pore and surface water. 

Liberation mechanism 1: Oxidative dissolution of metal sulphides 

Sulphides are rapidly oxidised when exposed to the earth's surface where they come into 

contact with oxygenated water.  This oxidative dissolution can release arsenic either 

incorporated as an impurity within another sulphide mineral (e.g. Pyrite, the most common 

mineral in metal sulphide ores despite iron rarely being the target metal for extraction by the 

mining industry) or when arsenic itself forms part of the mineral structure (e.g. Arsenopyrite).  

The geochemical reactions for the oxidative dissolution of Pyrite and Arsenopyrite are well 

understood and are shown in equations 1 to 5.  Such reactions also generate acidity and it is this 

breakdown of sulphides which is responsible for acid mine drainage, when the exposure is due 

to mining, or acid rock drainage, when sulphide exposure is natural i.e. due to a land slip such as 

Mam Tor (Vear and Curtis, 1981).  Arsenic liberated in this way is then transported to other 

environmental reservoirs such as the waters listed in Table 1 where mass redistribution of 

arsenic can occur carried within the terrestrial water cycle.   

Equation 1 2FeS2 + 7O2 + 2H2O → 2Fe2+ + 4SO4
2‐ + 4H+  (Gray, 1997) 

Equation 2 4Fe2+ + O2 + 4H+ → 4Fe3+ + 2H2O    (Konhauser, 2007) 

Equation 3 Fe3+ + 3H2O → Fe(OH)3 + 3H+    (Konhauser, 2007) 

Equation 4 FeS2 + 14Fe3+ + 8H2O → 15Fe2+ + 2SO4
2‐ + 16H+  (Edwards et al., 2000) 

Equations 1 to 4: Sulphide oxidation e.g. pyrite which can contain up to 10 w% arsenic. (Blowes 

et al., 2003; Plant et al., 2003). 

Equation 5 4FeAsS + 13O2 +6 H2O → 4 Fe2+ + 4AsO4
3− + 4SO4

2−+12H+
 

Equation 5: Oxidation of Arsenopyrite, a Fe and As sulphide mineral (Plant et al., 2003). 

Similar oxidation reactions apply to a variety of other metal sulphide minerals including Bornite 

(Cu5FeS4), Chalcocite (Cu2S), Chalcopyrite (CuFeS2), Covellite (CuS), Galena (PbS), Millerite (NiS), 

Molybdenite (MoS2), Trollite (FeS) and Sphalerite ((Zn,Fe)S) (Gray, 1997).  It is import to note 

that the redox changes shown in the above reactions do not occur synchronously but are the net 

result of a series of electron transfer reactions which are well understood (Konhauser, 2007). 

The slowest reaction and thus the rate limiting step in the abiotic chemical oxidation of pyrite 

has been shown to be the oxidation of Fe(II) to Fe(III) (Equation 2) (Singer and Stumm, 1970). 

Certain species of bacteria and archaea increase the rate of this reaction using it as an energy 

generating process.  This catalysis has been shown (in the case of Thiobacillus Ferrooxidans) to 

increase the rate of Fe(II) oxidation to Fe(III) by 5 or 6 orders of magnitude (Lacey and Lawson, 

1970).  
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Liberation mechanism 2: Reductive dissolution of metal oxides 

Arsenic bearing metal oxides and hydroxides, most importantly of iron and manganese are also 

easily broken down under environmental conditions leading to the release of arsenic either from 

within the structure of the mineral or sorbed to its surface.  This dissolution is most commonly 

bacterially mediated under reducing conditions coupled to the oxidation of organic matter 

(Islam et al., 2004).  A wide variety of facultative and obligate anaerobes are able to gain energy 

for growth and reproduction from this process which is summarised in equation 6.  Although 

many different bacteria have been shown to be capable of the dissimilatory reductive 

dissolution of ferric oxides and hydroxides, Geobacter (Cutting et al., 2009) and Shewanella 

(Arnold et al., 1990) are amongst the most well studied.  These organisms have been shown to 

be extremely versatile using a variety of oxidised metals as electron acceptors and employing a 

range of electron transfer mechanisms (Lloyd et al., 2003; Reguera et al., 2005).  Iron oxides also 

dissolve and release arsenic contained within them under oxic and acidic conditions where 

Fe2+
(aq) is more thermodynamically favourable (Majzlan et al., 2004). 

Reductive dissolution of goethite mediated by bacteria oxidising organic matter (Arnold et al., 

1988). 

Equation 6 24 FeOOH(S) +  C6H12O6(S) + 42H+
(aq) ---> 24Fe2+

(aq) + 6 HCO3
-
(aq) + 24 

H2O(aq) 

Whether arsenic is liberated from the solid phase by reductive or oxidative dissolution, following 

transport via the terrestrial water cycle, a significant proportion of mobilised arsenic is 

subsequently trapped in the pedosphere via sorption and co-precipitation processes.  The 

average residence time of arsenic within the pedosphere is considered to be on the order of 

1000-3000 years in moderate climates (Bowen, 1979).  Based on this timeframe arsenic 

additions made to soil systems now and during previous decades may pose a risk to health for a 

considerable time into the future. 

Quantifying the processes of erosion, weathering, transport, immobilisation, and remobilisation 

with respect to arsenic is extremely challenging and most studies which quantify the 

biogeochemical cycle of arsenic do not attempt it.  The rates therefore of arsenic input to, and 

output from, the pedosphere, are currently unknown.  This represents a severe short coming in 

our understanding of the biogeochemical cycle of arsenic as demonstrated by Reimann et al., 

(2009) and more quantitative work to determine rates of immobilisation and liberation of 

arsenic in soils under varying conditions is required.    

Although it is true that erosional zones in many watersheds may not contain, and hence export, 

significant quantities of arsenic, lithological variations in arsenic concentration form a major 

control on geogenic arsenic input to terrestrial basins and hence arsenic's distribution in natural 

waters, sediments and soils.  This conclusion is supported by most predictive models for arsenic 

concentrations in groundwater, which rely heavily on geological information (Amini et al., 2008; 

Lado et al., 2008; Winkel et al., 2008).  Equally considerable differences between arsenic 

concentrations exist in river water and groundwater dependant on the lithology of the 

watershed even before considering the impact on anthropogenic inputs.  Whilst 

uncontaminated oceanic rain water contains approximately 19 ng/L of arsenic (Andreae, 1980) 
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river water may vary from 127 ng/L in unpolluted watersheds with karst lithology (Seyler and 

Martin, 1991) to 21,800 µg/L from arid unpolluted watersheds hosting volcanic sediment 

(Cáceres et al., 1992) 

Groundwater is similarly influenced by environmental context including aquifer lithology and 

redox conditions this is demonstrated by the range of groundwater environments that exhibit 

high concentrations of arsenic.  Firstly, the well-known high-arsenic groundwater areas in South 

and South-east Asia (West Bengal (India), Bangladesh, Cambodia and Vietnam) are typically low-

lying, floodplains with little topographic variation, of rivers which originate in the Himalayas. The 

arsenic contaminated groundwaters in this region are almost exclusively found in young 

(Holocene) aquifers.  The second type of large-scale ‘natural’ arsenic groundwater tends to be 

found in inland or closed basins in arid or semi-arid areas, also containing geologically young 

sediments and where groundwater flow is sluggish. The third group of arsenic-rich groundwaters 

are geothermal.  Here high arsenic concentrations are the result of water-rock interactions at 

depth. 

In type one areas where arsenic-rich groundwater occurs, weathering of Himalayan-derived 

sediment during erosion and transport leads to downstream deposition of arsenic. The primary 

sources of arsenic within the Himalayas are thought to be eroding coal seams and rocks 

containing sulphide minerals (Fendorf et al., 2010).  During erosion of these minerals, As(III) 

occurring in sulphide minerals is oxidised to As(V) and subsequently adsorbed to precipitated 

iron(hydr)oxides.  On the floodplains sedimentation is rapid and organic material is buried more 

rapidly than it can be oxidised by aerobic bacteria at the surface.  Therefore at depth organic 

material is available in abundance which acts as an electron donor for bacterial metabolism.  

Due to the abundance of organic carbon, the high activity of micro-organisms and limited extent 

of oxygen diffusion from the surface, reducing conditions are established in the shallow aquifers 

(Islam et al., 2004).  These conditions lead to microbial dissolution of Fe oxides resulting in the 

co-liberation of arsenic into the aqueous phase, i.e. in groundwater.  Furthermore, as expected 

from the redox sequence (Stumm and Morgan, 1996) the more labile As(III) typically dominates 

over As(V) in reducing environments and therefore the reduction to As(III) probably also 

contributes to the release of arsenic to the groundwater (Smedley and Kinniburgh, 2002).  Some 

bacteria have also been shown to be capable of direct reduction of arsenate under reducing 

conditions (e.g. Sulfurospirillum barnesii (Zobrist et al., 2000)). Some sorption studies suggest 

however that arsenite and arsenate are both strongly adsorbed by iron oxyhydroxides and that 

the oxidation state change from As(V) to As(III) may be of minor importance with regards to 

mobility compared to the reductive dissolution of iron oxyhydroxides (Dixit and Hering, 2003).   

Due to the uplift of the Himalayas, sediment accumulation in the deltas of South and Southeast 

Asia has occurred rapidly, resulting in the deposition of thick sequences of Holocene sediment.  

The aquifers are therefore composed of young, fresh sediments that contain fine grained 

minerals with larger surface to volume ratios than older, well-crystallised sediments which have 

undergone significant Ostwald ripening. The high surface to volume ratio observed in young 

Holocene sediments results in a higher capacity for arsenic adsorption when compared to older 

more crystalline sediments with similar composition. Furthermore, in Southeast Asia, delta 

initiation and progradation occurred simultaneously with the Holocene Climate Optimum, 

resulting in the burial of organic matter at a high rate.  Key characteristics of arsenic-affected 
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areas in this region are thus the presence of natural (bio)degradable organic carbon, rapidly 

buried, young (Holocene) sediments and low hydraulic gradients in flat and low-lying areas.  

In the second groundwater environment, arsenic release is controlled by pH changes.  High pH 

(>8.5) conditions can develop usually as a result of the combined effects of silicate and 

carbonate weathering and high evaporation rates. This pH change leads either to the desorption 

of adsorbed arsenic (especially As(V) species) from mineral oxides, especially Fe oxides, or it 

prevents them from being adsorbed. Probably the largest region of high-arsenic groundwaters 

formed in arid oxidising environments is the Chaco-Pampean Plain of central Argentina covering 

around 1x106 km2 (Smedley and Kinniburgh, 2002). Groundwater arsenic concentrations up to 

11500 mg L-1 were recorded by Nicolli et al. (1989). The high-arsenic groundwaters are derived 

from Quaternary deposits of loess (mainly silt) with intermixed volcanic ash (Nicolli et al., 1989); 

(Smedley et al., 2002)). In this environment arsenic is dominantly present as As(V).  Metal oxides 

in the sediments (especially Fe and Mn oxides and hydroxides) are thought to be the main 

source of dissolved arsenic, caused by desorption under high-pH conditions (Smedley and 

Kinniburgh, 2002). although the direct dissolution of volcanic glass has also been cited as a 

potential source (Nicolli et al., 1989).  

In the third (geothermal) group, the amount and nature of dissolved species in these fluids is 

determined by local geology and the thermal gradient but most often involves volcanic rocks 

and/or sulphide-bearing minerals.  For example, in the volcanic areas of southern Italy, high 

arsenic concentrations have been related to the deep-rising fluids of the active geothermal 

systems (Aiuppa et al., 2003).  Nevertheless, the relationship between high arsenic 

concentrations and geothermal waters is not a simple one.  Arsenic concentrations are high in 

the thermal waters of Kamchatka, New Zealand, Japan, Alaska, California, and Wyoming, where 

black shales are common, but they are low in thermal waters from Hawaii and Iceland where 

most of the rocks are geologically young basalts (Nordstrom, 2002).  The highest arsenic 

concentrations (20-200 mg/kg) in rocks are typically found in organic-rich and sulphide-rich 

shales, sedimentary ironstones, phosphatic rocks, and some coals (Smedley and Kinniburgh, 

2002). Aquifers with carbonaceous shales and without obvious thermal gradients, such as in 

Taiwan, also can lead to high dissolved arsenic concentrations (Nordstrom, 2002). 

While some mass balance studies consider the release due to the weathering and erosion of 

rocks and soils to be negligible compared to volcanic and anthropogenic inputs (Paces and 

Pacesova, 2001) it has  been shown that in areas containing large sulphide deposits, that this 

natural export of arsenic can be significant (Navas and Machin, 2002; Smedley et al., 2002), 

accounting for up to 99.7% of total arsenic input to soils in some cases, even in areas where 

arsenic is applied to the soil directly in agrochemicals (Drahota et al., 2006).  Although it is true 

that erosional zones in many watersheds may not contain, and hence export, significant 

quantities of arsenic to the environment (Seyler and Martin, 1991), lithological variations in 

arsenic concentration, form a major control on geogenic arsenic input to terrestrial basins and 

hence arsenic's distribution in natural waters, sediments and soils.  

In summary the role and relative importance of geogenic processes on arsenic content in soils 

and surface waters is highly variable.  Each environmental system must be considered 
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individually due to lithological heterogeneity in erosional zones, variations in hydrologic regime, 

the presence or absence of volcanic influence and differences between soil and sediment types. 

Anthropogenic input 

Anthropogenic inputs of arsenic to the environment are diverse, however, they can generally be 

divided into two groups:  Input where arsenic release is an undesirable bi-product of human 

activity, as is the case for mining effluents, smelters and coal combustion, and input where 

arsenic release is due to its intentional use i.e. pesticides, soil sterilisation and addition to metal 

alloys.  Intentional inputs of arsenic to the pedosphere have been slowly decreasing for the last 

60 years due to increased awareness of the risks posed by arsenic and its long residence time in 

soils.  However, as coal combustion, copper smelting and other industrial activities increase 

globally, unintentional arsenic emissions have risen considerably in the last 3 decades. 

Arsenic inputs to the environment as bi-products of industrial processes (group 

one inputs) 

Group one (bi-product) inputs of arsenic to the environment account for the majority of 

anthropogenic arsenic export.  This is principally due to coal combustion for power production 

and non-ferrous metal production (Chilvers and Peterson, 1987; Matschullat, 2000; Han et al., 

2003). 

Coal combustion (~63,317 x 103 kg yr-1) 

Arsenic concentration in coal varies considerably, from less than 0.3mg/kg to 35,000 mg/kg 

(Table 1).  Most commonly, arsenic concentrations in coal are close to 10 mg/kg (Bragg et al., 

1997; Finkelman et al., 1999) however in coal affected by epigenetic mineralization such as in 

the Guizhou province in China can host considerably higher concentrations (Bragg et al., 1997; 

Zhao et al., 2008).  During combustion this arsenic is either volatilised (Germani and Zoller, 1988) 

or released in fly ash which is eventually deposited contaminating soils and waterways.  Chilvers 

and Peterson (1987) estimated global coal combustion to be 3696 x 106 tonnes per year, 

emitting 6240 tonnes of arsenic to the atmosphere and 35,100 tonnes to the pedosphere.  These 

figures are often cited in more recent literature (Matschullat, 2000; Henke, 2009) despite the 

substantial global increase in coal use since 1987 due predominantly to increased use by the 

People’s Republic of China.  The world coal institute estimate that 5845 x 106 tonnes of hard coal 

was produced in 2008 (World Coal Institute, 2010), an increase of 58% over 1987 usage.  Even 

excluding the additional 951 x 106 tonnes of lignite production in 2008, if emission estimates are 

scaled up from 1987 to 2008 usage, 9859 tonnes of arsenic were released to the atmosphere 

and 55,458 tonnes of arsenic were added to the pedosphere via coal combustion. 

Non-ferrous smelting (~155,103 x 103 kg yr-1) 

Many economically viable ores of non-ferrous metals such as copper, zinc, lead and nickel exist 

as sulphide deposits.  The target minerals in such deposits include Bornite (Cu5FeS4), Chalcocite 

(Cu2S), Chalcopyrite (CuFeS2), Covellite (CuS), Galena (PbS), Millerite (NiS), Molybdenite (MoS2), 

Trollite (FeS) and Sphalerite ((Zn,Fe)S) (Gray, 1997).  As discussed previously when considering 

geogenic inputs by chemical weathering and erosion, arsenic is often present in sulphide 

deposits in high concentrations as an accessory mineral or as structural mineral components 

(e.g. orpiment As2S3).  The smelting process used to obtain many non-ferrous metals from ore 

minerals results in volatilization of some of arsenic present in the ore in addition to substantial 
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particulate emission as flue dust.   Flue dust varies in composition considerably depending on 

the type of smelter, the quality of the ore and the target metal.  Analysis of flue dust from 

copper smelters shows that the dust is highly concentrated with respect to arsenic containing 

0.3 and 29.4% As (Twidwell and Mehta, 1985).  Copper smelters result in the highest 

anthropogenic arsenic emission globally.  Gaseous and particulate emission factors are 

estimated to be 1.5kg of arsenic per tonne of Cu produced (Chilvers and Peterson, 1987).  When 

particulate and gaseous emissions are combined with arsenic released in contaminated waste 

water and sludge the resulting global flux of arsenic to the environment from copper smelters 

was estimated to be 87,545 tonnes per year in 1982 which represented approximately 80% of 

arsenic released from all non-ferrous metal smelting and refining processes at that time (Chilvers 

and Peterson, 1987).  Since 1982 global copper production has, like coal combustion, increased 

substantially.  Current data indicates that 14.5 x 106 tonnes of copper was produced globally in 

2009 (Edelstein, 2011) of this 12.46 x 106 tonnes was produced via smelting of primary materials, 

an increase of 55% over 1982 estimates.  Assuming that emission factors have not decreased 

since 1987, emissions to the atmosphere, pedosphere and hydrosphere totalled 135,497 tonnes 

in 2009 from copper smelting accounting for 85% of all arsenic emitted from non-ferrous 

smelting.  Estimates of non-ferrous smelting arsenic emission are detailed in Table 8.  Increases 

in arsenic emission are demonstrated for copper and lead whereas decreases are shown for zinc.  

This is due to the diminishing use of energy intensive pyrometallurgical refining processes (the 

imperial smelting process) which emits more arsenic than electrolytic processing.  In 198 18% of 

all zinc was produced by the imperial smelting process.  In 2002 this figure had reduced to 8% 

(Australasian Institute of Mining and Metallurgy.;Queensland., 2002). 
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Table 8:  Estimated arsenic emissions to the environment from non-ferrous smelting in 1982 and 2009.  Red numbers indicate an increase in arsenic 

emission since 1982, green numbers indicate a decrease in arsenic emission since 1982. 

 

Process 

Global 

production 

(1982), tonnes 

per year 

Global 

production 

(2009), tonnes 

per year 

Atmospheric As 

emission factor, 

kgAs tonne-1 

Estimated arsenic input directly to 

the hydrosphere and pedosphere, 

tonnes per year  1982/2009 

Total arsenic emission to 

the environment, tonnes 

per year 1982/2009 

Copper smelting of 

primary materials 
8.05 x 106 

12.46 x 106 

(Edelstein, 2011) 
1.5 

75,465/ 

116,807 

87,545/ 

135,497 

Copper refining of 

primary materials 
9.55 x 106 

12.30 x 106 

(Edelstein, 2011) 
0 

10,810/ 

13,996 

10,810/ 

13,996 

Lead smelting of 

primary materials 
3.58 x 106 

3.96 x 106 

(Guberman, 

2011) 

0.4 
3580/ 

3960 

5010/ 

5544 

Zinc smelting of 

primary materials 

using the imperial 

smelting process 

1.20 x 106 
0.89 x 106 

(Tolcin, 2011) 
0.65 

6050/ 

4487 

6830/ 

5066 
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Wood combustion (~463 x 103 kg yr-1) 

In many parts of the world wood is the primary fuel for domestic heating and cooking.  During the 

combustion process arsenic is released via both volatilization and in particulate matter.  Arsenic emission 

factors due to combustion of plant material are low due to the low total arsenic concentrations found in 

most plant tissue.  Despite this, due to the large scale of global wood fuel combustion, which was estimated 

1.85 x 109 m3yr-1 (approximately 925 x 106 tonnes of wood) in 2009 (FAO, 2011) total arsenic emissions 

constitute approximately 463 tonnes per year, a considerable arsenic input to the atmosphere and 

pedosphere.  This emission represents a 9% increase over 1981 estimates (Chilvers and Peterson, 1987). 

Destruction of woodland and pasture (~3632 x 103 kg yr-1) 

The widespread “slash and burn” approach used to clear forest and pasture land, primarily for subsistence 

agriculture, releases significant quantities of arsenic to the atmosphere and pedosphere via the same 

chemical pathways as combustion of wood as a domestic fuel.  Land clearance via burning is estimated to 

account for combustion of approximately 7249 x 106 tonnes of dry plant material annually (Levine, 1991).  

Despite the relatively small arsenic emission factor attributed to combustion of plant material, the large 

scale of biomass burning results in a total arsenic annual arsenic emission of approximately 3632 tonnes 

per year. 

Irrigation with contaminated groundwater (?)  

An additional type of group one input is the case of arsenic added to soils via irrigation with arsenic-rich 

containing groundwater.  Irrigating soils with arsenic rich water causes arsenic to accumulate in topsoil 

primarily adsorbed to iron (hydr)oxide minerals (Neumann et al., 2011), although in some cases this may be 

partially mitigated by removal during natural flooding (Roberts et al., 2010).  This mechanism of top soil 

contamination has only recently been critically investigated and therefore global estimates of fluxes from 

ground water to top soils via irrigation are still currently unavailable. 

Direct use of arsenic in industry and agriculture (group two inputs) 
Group 2 inputs of arsenic to the environment are considerably less than group 1 inputs and are primarily 

due to the use of various arsenic compounds in pesticides, herbicides, fungicides and wood preservatives.  

The toxicity of high concentrations of arsenic to most forms of life ensures its effectiveness in such 

applications but has resulted in accumulation of arsenic in many agricultural soils (Merry et al., 1983; 

Embrick et al., 2005; Jorgensen et al., 2005).  Arsenic is also released into the environment due to its use in 

production of alloys, glass and electronics (GaAs semiconductors) which are eventually disposed of in 

landfills (Loebenstein, 1994). 

The sum of group two (direct use) inputs can be estimated quite accurately based on the annual quantity of 

arsenic extracted by mining companies for industrial use as there is very little recycling of arsenic during its 

anthropogenic flow and residence time in anthropogenic flow is short (<1 to 30 years) (Loebenstein, 1994). 

In 2009 global production of pure arsenic (As2O3 weight or equivalent) was estimated to be 54,400 × 103 kg 

a-1 (Brooks, 2010).  Matschullat (2000) reports that approximately 50% of extracted arsenic is used in 

pesticides and insecticides and 30% in CCA (chromated copper arsenate) wood preservatives, the remaining 

20% is split between various industries including electronics, glass production, animal feed addition and 

alloy production.  However, this is in disagreement with Loebenstein (1994) who indicates that wood 

preservation accounts for the largest input of arsenic to the environment (in the United States) arguing that 

the use of both inorganic and organic arsenic in pesticides has drastically reduced since its peak in the 

1950's.  This discrepancy may be due to differences between the use of arsenic in the United States and the 
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rest of the world (i.e. the continued use of arsenic containing fertilizers in other countries) or due to the 

lack of current high quality global arsenic use data.  Despite disparities between published sources on 

recent arsenic usage, it is clear that agricultural pesticides and wood treatment processes have dominated 

recent arsenic usage (Table 9).  It is expected that arsenic usage in both of these applications will decrease 

considerably within the next decade following various legislative restrictions imposed by various countries 

including the U.S.A., Canada the European Union and Australia (Liikanen, 2003; APVMA, 2005; Edwards, 

2006; Brooks, 2010).  Indeed the decreasing trend in arsenic production is already evident in 2009 arsenic 

production data (Brooks, 2010). 

Table 9: Comparison of direct arsenic usage estimates between published studies. 

Arsenic use 

Study 1 U.S. 

(Greenwood, 

1989), tonnes per 

year 

Study 2 U.S. 

(Loebenstein, 

1994), tonnes 

per year 

Study 3, Global, 

(Chilvers and 

Peterson, 1987), 

tonnes per year 

Study 4, Global, 

(Matschullat, 

2000), tonnes per 

year 

Pesticides and 

desiccants 
26,000 (65%) 4200 (20.49%) 20,000 (42%) 15,226.5 (50%) 

Wood preservatives 7200 (18%) 14,400 (70.23%) 16,000 (33%) 9135.9 (30%) 

Feed additives - - 4762 (10%) - 

Glass production 3800 (10%) 800 (3.9%) 2381 (5%) - 

Alloys and 

electronics 
1100 (3%) 800 (3.9%) 2381 (5%) - 

Other 1500 (4%) 300 (1.46%) 2381 (5%) - 

Total 39,600 20,500 48,000 30,453 

 

Agriculture (15,227 – 20,000 x 103 kg yr-1) 

Arsenic compounds have been used in agriculture for hundreds of years as pesticides, including 

rodenticides, herbicides, insecticides and fungicides.  Compounds used include arsenic trioxide, metal 

arsenates (Pb, Ca, Cu and Na), metal arsenites (Na, K and Cu) and more recently methylated arsenic acids 

(Murphy and Aucott, 1998; Cai et al., 2002).  Lead arsenate was the most extensively used arsenic based 

insecticide which was applied heavily to protect fruit crops in the west from various moths and beetles 

between 1892 and the late 1950s (Murphy and Aucott, 1998).  With use the target pests developed 

increasing resistance to the pesticide and hence increasing quantities of lead arsenate were applied in 

response.  Health concerns and the availability of more effective synthetic organic pesticides such as DDT 

led farmers to reduce use of lead arsenates during the 1950s (Murphy and Aucott, 1998).  Less toxic organic 

arsenicals including mono and disodium methyl arsenates (MSMA and DSMA) calcium acid methyl arsenate 

(CAMA) and sodium cacodylate (sodium dimethylarsenate) were also used starting in the 1950s (DSMA) 

and 1960s (MSMA, CAMA, cacodylic acid).  Although less toxic than inorganic variants the use of organic 

(AsV) arsenicals has been questioned due to the potential for transformation of these compounds to more 

toxic inorganic forms in soils (Datta et al., 2006).  The US-EPA has now withdrawn the registration status of 

organic arsenicals for use as pesticides (Edwards, 2006) and their use will be phased out completely by 
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2013 (Keigwin, 2009).  Therefore current and future agricultural input of arsenic to the pedosphere in 

pesticides is substantially lower than the values estimated by Chilvers and Peterson (1987) and Nriagu and 

Pacyna (1988).  Despite the current limited use of arsenic pesticides in the west their large scale historical 

usage has led to soils highly contaminated with arsenic and associated metals, particularly on land 

previously used for fruit production (Merry et al., 1983; Embrick et al., 2005).  Additionally despite strong 

regulatory responses in the west it is likely that arsenic based pesticides will continue to be used in 

developing countries for some years to come. 

Wood Preservation (9136 – 14,400 x 103 kg yr-1) 

Due to its effectiveness as a pesticide, arsenic has also been used since 1933 in the wood preservation 

industry.  The combined application of dichromic acid, copper and arsenic acid (CCA) results in timber 

which is highly resistant to fungal, bacterial and insect degradation.  Although the pressure impregnation 

process used during CCA treatment of wood is designed to minimize leaching by chemically binding arsenic 

and copper to cellulose and lignin within the wood, high concentrations of arsenic have been recorded in 

soils in close proximity to CCA treated wood (Chirenje et al., 2003) and in rainwater runoff from pressure 

treated structures (Khan, Solo-Gabriele, et al., 2006).  Due to the effectiveness of the CCA process its use 

has become widespread since its development in 1933.  As can be seen in  

Table 9 global estimates of total arsenic use in the CCA process vary considerably between studies, 

countries and year.  However over the last 2 decades CCA treatment has accounted for between 18% and 

70% of total arsenic consumption (the wide range is due to diminishing agricultural use affecting total 

arsenic consumption and increasing adoption of the CCA process).  Recently several government regulatory 

bodies including the European Commission and the US-EPA have acted upon concerns over the safety of 

CCA treated wood and have restricted the residential use of CCA treated wood.  Other authorities however, 

including the New Zealand Environmental Risk Management Authority (ERMA), have concluded that such 

restrictions are unnecessary citing over estimations of the exposure risk posed by CCA wood by other 

studies (Read, 2003).  Based on this ERMA continue to recommend the use of CCA treated wood in all 

settings (Read, 2003). 

Although arsenic is the most mobile of the three components used in the CCA pressure treatment process 

and leaching appears to be a cause for concern (Khan, Jambeck, et al., 2006), potentially the greatest 

emission of arsenic to the environment resulting from the CCA treatment process is the industrial and 

domestic burning of treated timber (Aggett and Aspell, 1980; Chilvers and Peterson, 1987; Wasson et al., 

2005).  During burning arsenic is released both as volatile species and concentrated in fine particulates 

(Wasson et al., 2005).  At present many people are unaware of the risks of burning CCA treated wood and 

due to its large scale residential usage in fencing, decks, porches etc. wood is often disposed of in 

uncontrolled garden fires or in wood burning stoves which can lead to severe health impacts (Peters et al., 

1984). 

Natural distribution and transport of Arsenic in soil 

Once arsenic is introduced to the pedosphere, whether by atmospheric deposition, direct addition of 

agrochemicals (pesticides) or by hydrological transport (e.g. in river or groundwater), its distribution, 

transport and eventual removal is subsequently controlled by its speciation, the soil hydrological regime, 

the microbial community and the mineralogical and organic nature of the soils matrix.  It is considered that 

soils, despite removal due to hydrological transport and methylation/volatilization, are currently 

accumulating arsenic (Nriagu and Pacyna, 1988; Senesil et al., 1999) 
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Arsenic may move through the soil matrix and hence be redistributed geographically either by diffusion, 

which is a comparatively slow process or by hydrological transport (advection) which depending on the 

hydraulic conductivity of the soil and the hydraulic gradient may be much faster. For hydrological transport 

to take place arsenic must either be in aqueous form or in particles small enough to be transported with 

flow through the soils pore network (i.e. nano-particles or colloids).  An understanding of controls on 

partitioning between solid phase and aqueous phase (pore-water) arsenic is therefore crucial to 

understanding its mobility. 

Speciation 

Arsenic can exist in oxidation states ranging from -3 to +5 (-III, -1, 1, 2, 3 and 5) however it most commonly 

exists in either its trivalent (As(III)) or pentavalent (As(V)) form in soils, dependent primarily on soil redox 

potential.  In addition to oxidation state variation, arsenic in soil forms both inorganic and organic 

molecules with varying protonation states across a range of pH and Eh conditions.  This wide variety of 

arsenic compounds with varying stability, size and charge can interact in very different ways with the rest of 

the soil matrix.  When considering arsenic distribution and mobility, speciation is important as the charge 

and size of arsenic species are important factors in determining the probability of arsenic sorption onto 

mineral surfaces and complexation with organic matter and hence the partitioning between solid and 

aqueous phases. 

Whilst the dominant arsenic species and the proportion of secondary species stable in soil pore water 

under given conditions may be determined thermodynamically from chemical composition, Eh, pH, 

temperature and pressure (expressed graphically in a Pourbaix diagram Figure 40) and hence the known 

interactions between arsenic and the soil matrix inferred (i.e. hydrogen arsenate Figure 41 with a charge of 

-2 can be expected to adsorb to positively charged mineral surfaces) soils are rarely in thermodynamic 

equilibrium.  This can be due to slow kinetic rates of speciation changes or additionally due to rapid 

changes soil redox potential due to complex biological catalysis of many processes responding to subtle 

environmental changes.  In addition the thermodynamic calculations possible using programs such as 

PHREEQC (Parkhurst et al., 1999) or Geochemical workbench(Bethke and Yeakel, 2009) are reliant on the 

accuracy of constants contained within their thermodynamic databases which are sometimes incomplete 

or poorly defined for some systems.  The comparison conducted by Takeno (2005) clearly demonstrates 

that even in a simple X-O-H system at room temperature there are often major inconsistencies between 

databases with respect to possible species and transitions. 
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Figure 40: Eh-pH diagram of the system As-O-H. As = 10−10, 298.15K, 105 Pa.  Constructed using the minteq 

v4 thermodynamic database (Parkhurst et al., 1999). 

 

Figure 41: Hydrogen arsenate (HAsO4
2-) with partial charge indicated by colour (white = neutral, red = 

negative).  Constructed using Avogadro software. 
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Kinetic and thermodynamic modelling of soil systems can help to understand arsenic speciation and 

behaviour in some systems, however, as reaction rates vary between soil systems and are very often 

microbially mediated the creation of accurate kinetic and thermodynamic models is also very challenging 

especially in redox oscillating environments such as floodplains.   

Direct measurement of some arsenic species is possible by using advanced spectroscopic (synchrotron 

based e.g. X-ray adsorption spectroscopy (XAS)) or analytical (e.g. high performance liquid chromatography 

inductively coupled plasma mass spectroscopy (HPLC-ICP-MS)) techniques, although only a limited number 

of species are routinely measurable and such techniques are costly and complicated, they can offer the 

best insight into the real state of arsenic in a soil system at any given point in time.   

Despite the numerous complications in determining accurate arsenic speciation in soils, the combination of 

spectroscopic and analytical techniques and simplified thermodynamic and kinetic modelling does allow 

estimation of arsenic speciation and understanding on a practically useful level of many soil/arsenic 

interactions, particularly when other redox couples such as sulphate/sulphide and ferric/ferrous iron are 

also monitored. 

Hydrological controls 

A soils hydrological regime may effect both the partitioning of arsenic between the solid and aqueous 

phases and the rate of physical arsenic transport within the aqueous phase.   

Pore-water saturation directly affects O2 concentration within soils as diffusion of oxygen occurs 104 times 

faster in air than in water (Ponnamperuma, 1972). If labile organics are present within the soil matrix the 

bacterial community will use oxygen during their metabolism – in some cases completely to CO2 to liberate 

energy for growth and reproduction.  When the bacterial consumption of oxygen exceeds oxygen diffusion 

into the soil (which is usually the case when pores are saturated with water) the soil will become oxygen 

depleted causing a drop in Eh.   The bacterial community will then be forced to use successively less 

efficient electron acceptors (Nitrate, Mn(IV), Fe(III), Sulphate) to oxidise organic matter which in turn will 

cause further Eh drops.  This microbial activity and associated changes in Eh can also directly (and 

indirectly) influence pH, dNOM, CO2 concentration, mineral stability and hence contaminant mobility, 

including arsenic. 

In saturated soils, water moving through interconnected pores can also carry aqueous arsenic species with 

the direction of flow.  The speed of this water movement is dependent on the hydraulic gradient within the 

soil and also the soils specific hydraulic conductivity.  In this way arsenic may be transported laterally or 

vertically within soils until such a time that it encounters a suitable mineral surface to which it may bind or 

until chemical conditions within the soil cause co-precipitation of arsenic within other minerals or 

precipitation of pure arsenic mineral phases.   

In flooded soils, strong reducing conditions dominate, and soluble arsenic increases (Selim et al. 2001). 

Therefore, flooding of arsenic-rich soils causes flushing; the flood-water flushes out the accumulated 

arsenic, washing it into surface or groundwaters, or into other soils (Roberts et al., 2010). This process can 

lead to redistribution of arsenic within soils due to leaching of arsenic from some areas and concentration 

of arsenic in other areas with a different chemical and mineralogical composition. 

Soil Matrix controls 

Soil usually consists of a mix of minerals, solid organics, pore-water, gas micro-organisms and plant roots.  

In addition to the chemical speciation of arsenic, the physical structure and chemical composition of soil 

can strongly influence arsenic retention and hence distribution. 
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Physically, particle size and morphology play an important role in arsenic distribution.  Soils containing a 

high proportion of fine particles (e.g. clay rich soils) have a significantly higher surface area and hence 

reactivity, than soils with a larger particle size; even ignoring the effect of mineralogy changes between 

particle size classes.  Particle morphology is also an important factor controlling arsenic mobility, as grains 

with pores and pits in their surfaces have been shown to host micro-environments which take longer to 

equilibrate with pore water conditions than smooth un-pitted grains (Millward and Liu, 2003). 

Therefore arsenic is more likely to be immobilised from pore water by fine grained soils and immobilisation 

and remobilisation of arsenic from soils is likely to occur more slowly in soils containing grains (or 

aggregates) with surface pores and pits.  Particle size distribution also effects hydraulic conductivity as 

coarse soils are more likely to have larger pores with a higher degree of interconnectivity. 

Chemical and mineralogical composition also play important roles in arsenic distribution.  Many different 

minerals can adsorb arsenic to their surfaces either as arsenate, arsenite or organo-arsenic complexes.  The 

most effective natural sorbents of arsenic found in soils include metal oxides and hydroxides (e.g. Goethite 

- FeOOH,  Birnesite - MnO2), metal carbonates (e.g. Siderite -  FeCO3  or Rhodocrosite - MnCO3) and iron 

sulphides.  Therefore iron and manganese concentrations in soils can be good indicators of arsenic 

concentration.  Mechanistically this is due to “trapping” of aqueous arsenic from pore-water, transported 

from other areas.  Other arsenic sorbents in soils include clay minerals (where arsenic typically binds to 

AlOH2+ “edge” sites rather than plate surfaces) and, under strongly alkaline soil conditions calcite. 

Soils which contain large proportions of quartz or feldspar (typically sand size particles) tend to contain less 

arsenic due to their low surface reactivity and also the typical size and hence surface area of these 

minerals.  

 

Figure 42: Global cycle of arsenic including key speciation changes.  Reproduced from Zhang and Selim 

(2008) 
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Other chemical composition controls include ionic strength of the pore water and concentration of 

compounds which compete with arsenic for positively charged mineral surface sites.  The most common 

ligands competing with arsenic for sorption sites in soils are dissolved organics (Wang and Mulligan, 2006a), 

phosphates (Livesey and Huang, 1981; Violante and Pigna, 2002)  and carbonates (Appelo et al., 2002).  In 

soils with higher concentrations of these competing ligands, positively charged sorption sites on mineral 

surfaces and more likely to be limiting and arsenic is more likely to be forced into pore-water by 

competitive sorption. 

Anthropogenic influence on release of arsenic from soils 

Release of arsenic from the soil solid phase to pore-water, increasing its mobility and its probability of 

entering the human food chain (in drinking water or crops) can occur for a number of reasons, however, 

these are dominated by desorption and dissolution processes. 

Desorption from mineral surfaces can occur due to oxidation state change of the surface bound arsenic (Eh 

dominated), protonation state change of the surface bound arsenic (pH dominated), a change of ionic 

strength in the pore-water or changes in concentrations of other compounds competing for sorption sites. 

Dissolution of arsenic immobilizing minerals can occur due to pH changes (FeOOH to Fe(OH)2+)(pH 

dominated) or Eh changes (e.g. oxidative dissolution of iron sulphides or reductive dissolution of reductive 

dissolution of iron oxides).   

Practically these changes in soil chemistry can be caused or influenced by a variety of human activities. 

Soil acidification 

Some human activities directly affect soil pH.  Soil acidification (in the form of excessive nitrogen addition 

or via acid mine drainage) or soil liming (application of CaCO3 to counter soil acidification and raise pH) can 

affect arsenic mobility as pH is a major controlling factor in many arsenic release processes.  A rise or fall in 

pH could increase or decrease the mobility of arsenic dependent on mineralogy and original pH.   Solution 

pH controls two fundamental factors: mineral surface potential and arsenic speciation, which in turn 

impacts arsenic adsorption on mineral surfaces (Zhang and Selim, 2008).  For example, the soil clay fraction 

is negatively charged at neutral-alkaline pH and hence does not act as a sorbent for arsenic, however at 

lower pH and in the presence of AlOH2+ edges, clays become suitable sites for adsorption.  Desorption of 

arsenic from clay minerals is also significantly influenced by the aging process (Sadiq, 1997; Lin and Puls, 

2000; Goldberg, 2002).  In this example an increase in pH from acidic to circumneutral could result in the 

release of arsenate sorbed to AlOH2+ edge sites.  Alternatively if arsenic is bound within FeOOH minerals or 

sorbed strongly to their surfaces a drop in pH could cause the dissolution of FeOOH to Fe(OH)2+ and the 

release of arsenic into solution. 

Soil redox-conditions and flooding 

Soil Eh may also be substantially altered due to human activities.  For example, ploughing of soil leads to an 

immediate increase in soil porosity (Nicou, 1986).  Conversely intensive agriculture with heavy machinery 

can lead to destruction of soil porosity through soil compaction (Hamza and Anderson, 2005).  Changes to 

soil porosity restricts or enhances diffusive pathways for CO2 output and O2 input in soils and results in 

more reducing or more oxidising top-soil conditions (Lipiec and Hatano, 2003).   

Climate change also has potentially drastic implications for soil chemistry and hence contaminant mobility.  

Whilst current climate predictions indicate increased evapotranspiration and greater precipitation globally, 

equatorial regions are predicted to become drier while temperate regions (including most of Europe) will 

become wetter and subject to more frequent and more intense precipitation (EEA-EC-JRC and UN-WHO, 
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2008).  Predicted changes in precipitation volume, frequency and intensity are also likely to cause major 

changes to a soils hydraulic regime and hence to soil chemistry.  In addition to changing soil hydraulic 

conditions due to increasing pluvial input, natural fluvial flooding of top-soils is also expected to increase, 

particularly in winter and spring (EEA-EC-JRC and UN-WHO, 2008).  Controlled flooding of previously un-

flooded soils in attempts to divert excess fluvial input away from highly populated or economically 

important areas is likely.  If soils which have remained historically oxic and have been gradually 

accumulating arsenic due to atmospheric deposition of industrial contamination become flooded, the onset 

of reducing conditions could cause major release events similar to those observed by Burton et al., (2008) 

in Australia due to the adoption of wetland reclamation initiatives. 

Increasing temperature 

Since pre-industrial times Europe has experienced temperature increases averaging 1.2oC, 0.2oC higher than 

global averages (EEA-EC-JRC and UN-WHO, 2008).  This trend is of increasing temperatures is predicted to 

continue in the near future.  Temperature has also been shown to affect the rate of arsenic releases as 

microbial metabolism and chemical kinetics are accelerated at higher temperatures.  Several studies have 

observed seasonal trends in dissolved arsenic concentrations in rivers (McLaren and Kim, 1995; La Force et 

al., 2000; Masson et al., 2007).  High levels of dissolved arsenic are typically seen in the spring and summer 

months, where temperatures are high and dissolved oxygen levels are low. Dilution of the arsenic inputs 

during the higher flows of the winter months cannot entirely explain the patterns observed (Aggett and 

O’Brien, 1985; Masson et al., 2007).  Two recent studies have investigated the possible effects of 

temperature on arsenic release (Joubert et al., 2007; Weber et al., 2010).  They both found that increased 

temperatures (from 4 to 37oC and 5 to 23 oC) were linked to increased microbial activity and the release of 

arsenic.  

Agricultural amendments 

Agricultural amendments of various types can also cause an increase in arsenic mobility.  In addition to 

liming which directly affects pH, treatment of soils with phosphate containing fertilizers or the addition of 

organic matter can increase competing ligands in pore water and result in arsenic release due to 

competitive sorption.  Organic amendments such as manure may also stimulate microbial activity inducing 

Eh decrease and potential reductive dissolution of metal hydroxides. 
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Chapter 3: Quantitative use of FP-XRF for trace analysis of As in Soils: 

Considerations for sample preparation and analytical validation 
 

Abstract 
Recent technological improvements to batteries, excitation sources, detectors and microprocessors have 

led to the adoption of field portable energy dispersive X-ray fluorescence (FP-ED-XRF or pXRF) by numerous 

governmental agencies, environmental consultancies and research institutions as a fast, cost effective 

analytical technique for in-situ multi-elemental analysis in soils.  Many FP-XRF units, such as the Niton XLt 

series, include analysis modes specifically designed for analysis of trace elements in soils and sediments.  

These devices allow almost point and shoot ease of use, and can offer results comparable to those of 

laboratory based instruments.  Nevertheless, FP-XRF analysis is sensitive to spectral interferences as well as 

sometimes important physical and chemical matrix effects.  In this study we demonstrate, through the 

analysis of As in a floodplain soil in eastern France with a X-ray tube based FP-XRF analyser, the extent to 

which sample treatment and instrumental conditions can affect the precision and accuracy of quantitative 

results at trace concentrations and propose practical strategies which can be implemented to minimise 

sources of error and maximise data precision and accuracy.  The results show that the effect of soil pore 

water has been underestimated in previous studies and that even, in relatively dry soils, can dramatically 

affect analytical performance.  We also highlight the importance of adapting validation methods to the 

composition of the measured soil in order to ensure accurate correction of field values. 

Introduction 

XRF spectrometry is based upon the principal that inner orbital electrons maybe excited and ejected from 

their orbital by an incident photon with energy greater than their binding energy.  Upon ejection an 

electron from an outer orbital will drop to the vacant position in the inner orbital and in doing so release a 

photon of characteristic energy, determined by the orbital transition (e.g. L to K / Kα) and atomic number 

(Figures 43 & 44).  The number of photons generated at a given energy may be used to determine the 

concentration of a particular element in the sample (Jenkins, 1995).  

 

 

 

Figure 43:  Illustration of the mechanism of 

X-ray fluorescence.  Reproduced from 

Thermo Scientific (2011) 

Figure 44: Illustration of the functional 

parts of a FP-XRF spectrometer.  

Reproduced from Thermo Scientific 

(2011) 
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Laboratory based energy dispersive (ED) and wavelength dispersive (WD) XRF spectrometry has for several 

decades been an accepted and widely used method for multi-elemental analysis in fields such as 

geochemistry, forensic science and archaeology (Gill, 1997; Langford, 2005; Shackley, 2011). 

XRF spectrometry has several key advantages when compared to other commonly used laboratory 

techniques such as inductively coupled plasma mass spectrometry (ICP-MS) or atomic absorption 

spectroscopy (AAS) including: the limited preparation of solid samples, possibility of simultaneous multi-

elemental analysis, sample preservation (XRF analysis is non-destructive), decreased total analysis time and 

a decrease in the production of hazardous wastes.  FP-XRF retains many of these advantages while 

additionally reducing analysis time and laboratory costs by completing analysis in-situ as well as 

representing significantly reduced initial and running costs compared to ICP systems.  Rapid in-situ analysis 

also allows for elemental mapping in order to determine samples of interest for further laboratory based 

analysis. 

Although the first generation of commercial FP-XRF devices appeared as early as the 1940s (Abbott, 1948) 

improvements in technology including the miniaturisation and increased efficiency of detectors and 

microprocessors  coupled with the availability of efficient radio isotope excitation sources (e.g. Cd109, Am241, 

Co57 and Fe55) facilitated the widespread adoption of these devices as viable field analytical tools in  the 

1990s.  Since that time FP-XRF usage has been steadily growing.  This growth can be attributed to a number 

of factors including: reducing equipment cost, increasing detector sensitivity, broadening elemental range, 

increasing ease of use and most significantly, the advent of commercially available miniature X-ray tube 

excitation sources in 2002 (Mercuro, 2010) which negated the need to carry radioactive sources.  Whilst FP-

XRF devices are often seen as qualitative screening tools, numerous studies have demonstrated their semi-

quantitative and quantitative ex-situ use in soils and sediments for a range of different elements(Bernick et 

al., 1995; Kilbride et al., 2006; Jang, 2010). 

In this study we demonstrate the quantitative in-situ analysis of trace As concentrations in soils on the 

floodplain of the Saône in eastern France and highlight factors which affect, and ways to maximise, the 

quality (precision and accuracy) of final results compared to quality criteria outlined by the US-EPA (US-EPA, 

1998).  We attempt to quantify the main sources of error during sample preparation, measurement and 

validation of results which should be considered prior to FP-XRF analysis, and propose practical methods to 

ensure high quality, quantitative in-situ data.  

We investigate and discuss the effect of (1) sample parameters including water content, particle size, 

chemical composition and bulk sample size, (2) instrumental parameters including internal and external 

filter use, calibration methods and analysis time (3) validation using ICP-MS, interferences and matrix 

effects on the quality of final results. 

Methods 

FP-XRF instrumentation: 

A NITON® XLt™, 700 Series™ FP-XRF environmental analyser (Thermo-scientific Europe, Munich, Germany) 

equipped with a miniature 1.0 W X-ray tube 40 kV / 50 μA excitation source, an Ag anode target and a high 

performance peltier cooled solid state Si-PiN X-ray detector with a resolution of approximately 220 eV at 

the Mn Kα (Thermo Scientific, 2011) was used for data acquisition during this study.  Photon counts from 

the detector are amplified, digitised and processed internally by a multi-channel analyser and 

concentrations are displayed in ppm on the integrated touch screen.  This instrument is capable of 

analysing elements in the z range of 19 (K) to 92 (U) by using K and L shell emission lines and is equipped 
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with 2 modes which use primary/source filters named only filter 1 and filter 2 to increase sensitivity to 

particular analytes.  These filters can be enabled via the on-screen menu.  Selection of either of these filters 

also automatically adjusts the voltage of the X-ray tube.  Filter mode 1 corresponds to a molybdenum 

source filter and an X-ray tube voltage of 40 kV which is used for quantification of elements with z ≥ 25.  

Filter mode 2 corresponds to a copper source filter and an X-ray tube voltage of 25 kV which is used for 

quantification of lighter elements (19 ≤ z < 25).  The unit features a variety of modes designed for lead 

based paint, alloys, thin samples e.g. dust wipes, bulk samples e.g. soils as well as user definable modes.  

The “bulk standard soil” mode was used throughout this study.  This mode assumes that the sample is 

sufficiently thick and dense that the critical saturation mass is exceeded and therefore that any increase in 

sample thickness would not lead to an increase in measured photons at the detector.  Quantification of 

analyte concentration is achieved based on the ratio of characteristic fluorescence to the intensity of the 

Compton (inelastic) scattering peak.  This quantification method is preferred when a heavy analyte is 

present at sub % concentrations in a light matrix but is sensitive to differences in the mass attenuation 

coefficient between the measured and calibration samples (Jenkins, 1995).   Using this mode no user 

calibration is required as Niton pre-calibrates all units using a selection of standard soil samples, however 

for the highest data quality site specific standards may be used to perform an empirical calibration prior to 

a survey. 

Field site and soil sampling: 

A total of 10 soils were analysed in-situ and then sampled from within a 60 km2 area between the towns of 

Pont-de-Vaux and Saint-Didier-Sur-Chalaronne on the east side of the floodplain of the Saône in eastern 

France.  Sediments on the alluvial plain of the Saône are known to host elevated concentrations of arsenic 

(up to 37 mg kg-1 measured during this study) although the origin of this contamination is undetermined 

(Comite Syndical de l’EPTB, 2007).  Following in-situ XRF analysis, soils were sampled using acid washed (5% 

HNO3) plastic tools and transferred to double sealed low density polyethylene (LDPE) bags for transport.  

Samples were stored in cool dark conditions prior to laboratory analysis.  

Soil properties:   

Prior to laboratory based XRF and ICP-MS analysis, soils were characterised by a combination of 

granulometric, X-ray diffraction (XRD), total organic carbon (TOC) and total carbonate (TCO3) analyses. 

Soil granulometry was determined by a combination of dry sieving (> 1< 2mm fraction) and laser diffraction 

(< 1mm fraction).  Laser diffraction analyses were performed with a Malvern Mastersizer 2000 particle size 

analyser (Malvern Instruments, France) across a measurement range of 0.01 to 1500 μm.  Lyophilised soils 

were suspended in water, and subjected to an ultra-sonification step prior to analysis to ensure correct 

sample dispersion and analysis of elemental particles only rather than aggregates.  Distributions were 

calculated as sample percentage by volume falling into 100 equivalent spherical diameter class sizes.  

Granulometric analysis revealed that the sampled soils were dominated by clay to medium sand sized 

particles (< 500 μm fraction), although significant variation in particle size distribution (PSD) within this 

fraction was present between samples. 

Mineralogy of the < 2mm fraction of a representative soil sample was determined by powder XRD analysis  

using a Bruker D5000 (Bruker Corporation, AXS, France) with a CuKα1 source  over a range of 2°2θ – 80°2θ 

with a step size of 0.05°2θ and a counting time of 1 second.   The instrument is equipped with a Göbel 

mirror and the spectra were acquired using Soller slits on both the X-ray tube and the detector.  Diffraction 

patterns reveal the presence of Quartz (SiO2), Calcite (CaCO3), Illite K(Al,Fe)2(Si,Al)4O10OH2 and Chlorite 

(Fe,Mg,Al)6(Si, Al)4O10(OH)8  suggesting a typical light soil matrix. 
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Measurement methods by FP-XRF: 

Three Niton recommended soil measurement methods, in and ex-situ, were compared to ICP-MS analysis 

for precision and accuracy; (1) in-situ measurement with minimal preparation, (2) ex-situ measurement 

with minimal preparation in LDPE bags and (3) ex-situ analysis with thorough sample preparation in 

polyethylene terephthalate (Mylar®) covered XRF analysis cups.  A summary of these methods is provided 

in Table 10.  The FP-XRF detector was re-calibrated after every 5 samples or 2 hours using internal 

standards for all preparation methods, detector resolution remained between 200 and 220 eV at the Mn Kα 

line throughout analysis. 

Table 10: Summary of investigated preparation and analysis methods. 

Method Count time 
(Filter 1/Filter 
2) 

Preparation Supplementary 
Equipment used 
during analysis 

In-situ – field 
preparation 

100/1-20 Homogenization of 2250cm3 
soil volume, sieving (< 2mm), 
and compaction. 

Niton soil testing 
guard accessory 

Ex-situ – LDPE bags 100/20 Homogenization of 2250cm3 
soil volume, sieving (< 2mm) 
and analysis ex-situ in 50 μm 
thick LDPE bags. 

Niton soil testing 
guard accessory and 
LDPE bags. 

Ex-situ - in XRF cups 100/20 Homogenization of 2250cm3 
soil volume, sieving (< 2mm), 
lyophilisation, grinding to < 63 
μm, compaction and surface 
preparation in Mylar® covered 
XRF cup. 

Niton Environmental 
Test Platform, open 
cell cups, 6 μm Mylar® 
film. 

 

In-situ soil preparation and measurement: 

For in-situ analysis, soils were prepared in the field with a method modified from US-EPA 6200 (Sackett and 

Bedford, 1998).  At each sample location a 15 by 15 cm square of soil was homogenized to a depth of 10cm 

using acid washed plastic tools in accordance with established soil sampling guidelines (U.S. EPA 

Environmental Response Team, 2000).  This soil was dry sieved to remove all particles with a size greater 

than 2mm and hardened aggregates were broken using an agate pestle and mortar.   The soil dried 

substantially during the sieving process (air temperature of > 35oC with low humidity) and aggregate 

crushing process.  The < 2mm soil fraction was then replaced in the 15 by 15 cm sampling square, 

compacted and analysed twice for a period of 100 seconds using filter mode 1 and 20 seconds for filter 

mode 2.  The 'soil testing guard'(STG) accessory provided by Niton was used for all analysis to protect the 

XRF window and ensure that the obligatory proximity button remained depressed for the duration of 

analysis.   The position and orientation of the FP-XRF was changed between the 2 measurements in an 

attempt to lessen the effect of inaccuracies due to large particle size combined with a small analysis area 

~2cm2 which are inherent to in-situ analysis with a field portable device.  All samples were analysed within a 

period of 5 days during August 2009 during which there were no significant changes in soil conditions. 

Ex-situ measurement in LDPE sampling bags: 

Ex-situ in-bag analysis was conducted on field sampled soils in the laboratory through 50 μm LDPE sampling 

bags (Fischer scientific, France).  A soil thickness of at least 3cm was maintained during analysis and use of 
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the STG was necessary to ensure pressure on the proximity button.  Bagged soils were analysed three times 

for a period of 100 seconds using filter mode 1 and 20 seconds using filter mode 2. 

Ex situ thorough preparation and analysis using powder sample cups: 

Ex-situ analysis was also conducted on prepared field sampled soils.  Soils were first homogenized and sub-

sampled (100g) by quartering (Raab et al., 1991).  Sub-sampled soils were lyophilised and ground in an 

agate ball mill to a particle size of < 63μm.  At least 5 grams of ground and lyophilised soil was used to fill 

plastic XRF cups (Figure 45) which were then sealed with 6 μm Mylar® film and analysed using the NETP (a 

shielded holder used to support the instrument and sample during laboratory based analysis).  Samples 

were analysed three times for a period of 100 seconds using filter mode 1 and 20 seconds using filter mode 

2. 

 

Figure 45: Diagram and photos of open cell XRF cups used for Ex-situ analysis.  Re-produced from Solazzi, 

(1984). 

Effect of soil moisture: 

Two types of water may be present in soils; interstitial water which occurs in the pore spaces between soil 

structural components and water trapped during formation of constituent minerals (fluid inclusions).  

Constitutive water of nominally hydrous minerals is considered to be constant for the purposes of this 

study and its effects ignored.  Interstitial water is however highly variable in soils, both spatially and 

temporally and has been identified as a cause of error during FP-XRF analysis (Kalnicky et al., 1992; Kalnicky 

and Singhvi, 2001).  The replacement of air with water in pore-spaces increases photoelectric absorption in 

addition to Rayleigh and Compton scattering.  These effects are summarised by mass attenuation 

coefficients which are slightly higher for water than air.  In addition to this, an increase in pore saturation 

will increase the density of the sample significantly (pure water is approximately 840 times denser than air 

at 25oC (Lide, 2009)) and so increase these 3 effects.  The ultimate effect of these processes is a raise in 

baseline values and a lowering in emission peaks leading to an overall loss of accuracy, higher limits of 

detection and reduction in apparent concentration. 
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To quantify the total effect of soil moisture on concentrations recorded by FP-XRF cups 18.2 mΩ water was 

added to one representative soil (lyophilised and ground) at 0, 1, 5, 10, 20, 30 and 50 wt%.  Each cup was 

measured 5 times for 300 seconds with each filter mode. 

Effect of analysis time 

To establish the effect of analysis time on precision and accuracy one XRF cup sample was measured 5 

times for 50, 75, 100, 150, 175, 200, 250, 300 and 500 seconds using only filter mode 1. 

Effect of sample size/Critical penetration depth in soils 

Although previous studies suggest that X-ray penetration from FP-XRF units is limited to approximately 

2mm (Kalnicky and Singhvi, 2001) Niton recommends that at least 5 grams of sample be used to fill cups 

during ex-situ analysis to ensure that critical sample mass is exceeded, an assumption required for 

quantification.  This equates to a depth of between 4 and 6 mm in 32mm diameter sample cups assuming a 

soil bulk density of between 1.1 and 1.6 g/cm3 (Hillel, 1980).  Therefore, either the Niton recommendation 

of 5 grams is highly conservative or X-ray penetration maybe greater than 2mm in soils for some elements.  

To determine the critical penetration depth in soils empirically, a range of cups were prepared with varying 

dry soil mass.  Four cups filled with different quantities of the same lyophilised and ground soil (0.61, 1.01, 

2.8 and 5 grams, equivalent to depths of 0.7, 1.1, 3.2 and 5.7 mm assuming a bulk soil density of 1.1 g/cm3) 

were analysed 8 times each for a period of 300 seconds over the full analysis range of the unit. 

Cross-validation procedure 

Total microwave digestion (1: HNO3 + HF + H2O2, 2: H3BO3 + HF) was performed on all lyophilised and 

ground soils following a modification of US-EPA method 3052 (U.S. EPA, 1996).  This method was used to 

ensure that all mineral soil components were digested including silicate phases which are included in XRF 

analysis but commonly ignored during acid digestion of soil samples for ICP analysis (Kilbride et al., 2006).  

A quadrupole-based ICP-MS system (Agilent 7500c, Agilent Technologies, Tokyo, Japan) equipped with an 

octapole collision-reaction cell was used as the reference technique for As determination in the soils. The 

measurements were performed using a mixed helium (0.5 ml/min) and hydrogen (3.0 ml/min) pressurized 

collision cell with an octopole potential of -14 V and a quadrupole potential of -13 V. The ICP-MS was 

optimized daily using a tuning solution for highest sensitivity and lowest CeO/Ce ratios (~1%).  The plasma 

was operated at 1500 W with 15 mL min-1 plasma gas and 1.0 mL min-1 aerosol carrier gas.  Matrix-matched 

standards were used for quantification purposes.  Ethanol (3%, Sigma-Aldrich) was added to standards and 

sample aliquots to increase the As sensitivity, decrease interferences and buffer the effect of carbon 

present in the samples.  Rhodium (~15 μg/L in nitric acid, Sigma-Aldrich) was added as internal standard.  

Data acquisition was performed in peak-hopping mode with 3 points per peak, 1s dwell time and 4 

replicates. 

Results & Discussion 

Effect of Instrumental parameters: 

Comparison of measurement modes: 

Quantification of elements z ≥ 25 (Mn and above) is achieved in filter mode 1 using a Mo source filter and 

an X-ray tube voltage of 40 kV.  This mode is most effective within the Kα emission energy ranges of Mn to 

Sr (25 < z < 38) and Ag to Sb (47 < z < 51) as analytes with emission lines between 15 and 20 KeV may be 

obscured by the presence of strong scattering peaks from the filter (Figure 46).  Above this range 
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Bremsstrahlung/continuum scatter may obscure fluorescence peaks (Figure 46).  This effective analysis 

range is ideal for quantification of arsenic. 

 

 

Figure 46:  Example soil XRF spectra obtained using filter mode 1 highlighting quantification range, 

Rayleigh, Compton and Continuum scatter peaks. 

Quantification of lighter elements (19 ≤ z < 25) is achieved in filter mode 2 using a Cu source filter and an X-

ray tube voltage of 20 kV (Figure 47).  Elements lighter than potassium cannot be quantified due to the 

absorption of characteristic X-rays by air between the sample and detector and elements heavier than 

Chromium are better quantified in filter mode 1. 
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Figure 47: Example soil XRF spectra obtained using filter mode 2 highlighting quantification range and 

Rayleigh scatter peaks. 

 

Figure 48:  Region of the X-ray fluorescence spectrum recorded with filter mode 2 which is used for 

quantification. 
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Effect of external filters: 

Several different external filters may be present during FP-XRF analysis.  Between the source and the 

sample there is always a Polyimide (Kapton®) window which protects the source and detector.  This 

window is in place during factory calibration of the Niton XLt series and therefore any attenuating 

properties are already considered during quantification of sample concentrations.  However, the use of 

additional filters such as the Kapton® window on the STG, the Mylar® film used on XRF cups and the 

measurement of soils through LDPE bags may act to attenuate and scatter incident and emitted radiation. 

Fortunately as the X-ray properties of Kapton®, Mylar® and LDPE are well known (Henke et al., 1993) and 

the filters are of known thickness, corrections for absorbance can be easily applied to measured data 

assuming that the analyte is above the limit of quantification despite attenuation (e.g. Equations 1 and 2 for 

Mylar® (Dick et al., 1977)). 

Equation 7                         , where Icorr is the corrected intensity, Im is the 

measured intensity x is the film thickness and kmylar is the absorption coefficient of Mylar® film at a 

particular wavelength, given by: 

Equation 8                   , where λ is the wavelength of the analyte emission 

line. 

Alternatively automated web-based and traditional software tools are available to perform calculations of 

X-ray transmission through various filter materials over a wide range of photon energies (Henke et al., 

2011; Webb, 2011). 
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Figure 49:  X-ray transmission through external filter materials (LDPE, Mylar and Kapton®).  Calculated using 

web-based software by (Henke et al., 2011).  Vertical guides correspond to K alpha emission lines for the 

labelled elements. 

As can be seen in Figure 49 and Table 11, absorbance of X-rays with lower energies is greater than for 

higher energy X-rays.  Therefore, lighter elements such as K and Ca are more susceptible to attenuation by 

analysis in Mylar® covered XRF cups or LDPE bags.  It is clear however that the thin Kapton® and Mylar® 

windows used in XRF cups and the Niton Soil Testing Guard allow significantly more transmission of low 

energy X-rays than 50 micron LDPE bags.  For arsenic, attenuation of K alpha emitted radiation is less that 

1% for all filters and therefore analysis in bags, cups or with the soil guard may be appropriate without 

further correction.  However, for potassium up to 27% of K alpha emitted radiation maybe attenuated by 

the use of LDPE bags and therefore either external filters should be avoided or measured values should be 

corrected. 
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Table 11:  Percentage X-ray transmission through external filter materials at K alpha emission energies for 

various elements. 

Element K alpha emission (eV) LDPE: 50 micron Mylar®: 6 micron Kapton®: 6 micron 

K 3314 73.07% 90.63% 91.20% 

Ca 3691 83.14% 94.32% 94.69% 

Cr 5414 94.47% 98.20% 98.32% 

Fe 6404 96.65% 98.91% 98.99% 

As 10544 99.26% 99.77% 99.78% 

 

Analysis time 

Increasing analysis time should lead to lower limits of detection (LOD) and an exponential decrease in 

relative standard deviation (RSD) between replicates as: 

Equation 9:      (
 

√                
)      (Beckhoff, 2006) 

During a field sampling and analysis campaign precision and analysis time are often equally important.  As 

%RSD diminishes exponentially with analysis time (Equation 9) extended periods of analysis may not result 

in significant improvements in precision as other factors such as sample homogeneity may become limiting.  

Our experimental data (Figure 50) shows that optimal analysis time was strongly dependant on the element 

investigated and the concentration present, this is logical as the number of measured counts depends both 

of concentration and the fluorescent yield of the target analyte.  For zinc at approximately 100 mg/kg no 

significant improvement in precision was observed even after 50 seconds of analysis, for arsenic at low 

concentrations (< 30 mg/kg) no significant improvements in precision were observed when analysing for 

periods of longer than 100 seconds while for manganese at 500 mg/kg no improvements in precision were 

observed after 300 seconds.  Previous research suggests that a suitable analysis time to optimise precision 

is 120 seconds (Kilbride et al., 2006).  However, our experimental results show that different analytes 

achieved quality thresholds at different count times, consistent with varying fluorescent yield and 

concentration.  Therefore we conclude that it is essential to conduct preliminary tests on a range of site 

specific samples to determine appropriate analysis time especially if the objective of the survey is to meet 

quality criteria (for example US-EPA Q1, Q2 or Q3 levels).  In this example Q3 level or “definitive” precision 

(<10% RSD) was achieved consistently for Fe and Zn after just 50 seconds and for Mn after 150 seconds.  

Arsenic quantification did not achieve Q3 level precision even after analysis for 500 seconds, however Q2 

“quantitative screening” precision (< 20% RSD) was achieved for periods of analysis of 100 seconds or 

greater (Figure 50). 
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Figure 50: Count time compared to %RSD for Fe, As, Zn and Mn (5 replicates at each count time), 

illustrating US-EPA quality criteria (Q2 < 20% RSD, Q3 < 10% RSD). 

Sample parameters: 

Water content: 

Previous work suggests that soil moisture does not have a significant impact on the accuracy of FP-XRF 

analysis until a threshold value of 20% moisture content is reached and that errors resulting from soil 

moisture below this threshold are minor (Kalnicky et al., 1992).  This 20% threshold has been approved and 

reproduced in many official protocols since its original publication e.g. Sackett and Bedford (1998).  

However, during this study 20% soil moisture resulted in a decrease in recorded concentration of up to 

42.7% (Mn) compared to the same dry sample (Figure 51) which is evidently not a minor error. 
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Increasing water content resulted in an exponential decrease in recorded concentrations for all elements 

investigated up to a maximum of 50wt% water.  Whilst the water content of most soils is significantly less 

than 50wt% this serves as a useful theoretical maximum for high porosity aggregated clay rich soils in 

saturated conditions (Appelo, 2005).  The exponential decrease of recorded concentrations follows closely 

the Beer-Lambert law (Equation 3) which governs the transmission of electromagnetic radiation (e.g. X-

rays) through a material: 

 

 

where I is the intensity of the transmitted radiation, I0 is the incident intensity, alpha is the linear 

attenuation coefficient of the material and x is the path length. 

I0 (source intensity) remained equal during soil moisture experiments but I (peak height and recorded 

concentration) changed as a result of pores filling with a denser material with a higher attenuation 

coefficient.  Path length, x, can be substituted with soil moisture wt % as increasing water content will 

cause a greater proportion of the path length in the soil matrix to be saturated.  An excellent fit with an 

equation of the form of equation 4 was found between recorded concentrations for all elements and water 

content.  Values for factors a and b are tabulated in Table 12.  

 

Figure 51: Normalised attenuation of measured concentrations of various elements due to the presence of soil 

moisture. 

Equation 11: 2 parameter exponential decay function 

used to fit concentration/soil moisture data. 

Equation 10: Beer-Lambert 

law. 
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Figure 52:  Elemental concentrations recorded by FP-XRF analysis with increasing soils moisture.  Black lines 

are the fitted exponential decay functions, blue lines are the 95% confidence bands on the regression and 

red lines are the 95% prediction bands of the regression. 
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Table 12:  Values used to fit 2 parameter exponential decay functions to concentration/soil moisture data 

for As, Zn, Fe, Mn, Ti, Ca and K. 

Element 

(z) 

Recorded concentration, 

ppm 0% soil moisture 

‘a’ value from 

exponential decay 

fitting 

‘b’ value from exponential decay 

fitting 
r2 

As (33) 30.13 28.61 0.0184 0.975 

Zn (30) 109.71 104 0.0183 0.992 

Fe (26) 46932.32 46480 0.0194 0.992 

Mn (25) 2618.93 2659 0.0306 0.968 

Ti (22) 4728.74 4595 0.0032 0.875 

Ca (20) 10637.75 10418 0.0057 0.957 

K (19) 14814.92 14377 0.0049 0.958 

It is reasonable to assume that low z elements with correspondingly low electron binding energies will be 

more severely affected by the presence of soil moisture than high z elements with higher electron binding 

energies.  This is as the differences between mass attenuation coefficients for water and air are higher for 

low energy X-rays (Hubbell and Seltzer, 2009) (Figure 53).  These differences are accentuated by the 

difference in density between water and air as demonstrated by their linear attenuation coefficients (Figure 

54).  The difference between linear attenuation coefficients for water and air, accounting for density 

differences at temperature and pressure expected in top soils, is shown in Figure 55.  This represents the 

practical difference at different energy levels by replacing air pore space with water. 

 

 

Figure 53: Mass 

attenuation coefficients 

for water and air across 

the energy range used in 

FP-XRF analysis.  Data 

from Hubbell and Seltzer 

(2009)  
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Therefore fluorescence from light elements will be absorbed and scattered to a greater extent in water 

than fluorescence from heavy elements.  Whilst this trend is observed relatively well experimentally for 

elements of z ≥ 25 (e.g. increasing soil moisture affects measured Mn concentrations to a greater extent 

than As concentrations) the same effect is not observed for elements with z < 25 (e.g. increasing soil 

moisture does not affect K concentrations to a greater extent than Mn or As concentrations) (Figure 51). 

Figure 55: Difference 

between linear attenuation 

coefficients (adjusting for 

density differences) for 

water and air across the 

energy range used in FP-

XRF analysis. 

Figure 54:  Linear 

attenuation coefficients 

for pure water and air 

across the energy range 

used in FP-XRF analysis 
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In addition, contrary to theoretical expectations, experimental results indicate that elements with z < 25 

are significantly less affected by soil moisture than higher z elements. 

 

Figure 56: Normalised attenuation of measured concentrations of As, Zn, Fe, Mn, Ti and Ca due to the 
presence of soil moisture demonstrating the effect of atomic number on the effect of soil moisture and the 
disparity between elements with z ≥ 25 (As, Zn, Fe and Mn) and z < 25 (Ti and Ca). 

This effect can be explained due to the mode of quantification of the Niton XLt 700 for light elements.  

Quantification of light element concentration is performed based on spectra obtained using filter mode 2, 

use of this filter causes a 2nd Compton normalization calculation to be performed.  As the matrix correction 

applied to elements of z < 25 is based upon the Compton scattering peak from a source with a different 

output spectrum to filter mode 1 the influence of the sample matrix may be corrected more or less 
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effectively.  In the case of this soil matrix it appears that matrix correction calculations based on the 

Compton scattering peak reduce the influence of water in the sample matrix more effectively using filter 

mode 2 than filter mode 1 and therefore lighter elements appear to be less affected by soil moisture 

(Figure 56).  However, in both analysis modes, water content constitutes an important source of error 

during in-situ measurement with between 0.3 and 1.7% of measured analyte concentration lost per 1% 

increase in soil moisture. 

Correction of for soil moisture effects is possible, either on a sample to sample or an entire survey basis.  

Where soil moisture varies significantly between samples correction must be applied on a sample to 

sample basis, which requires the laboratory analysis of samples with a similar matrix to determine 

appropriate correction factors for each element and measurement of exact soil moisture in each sample in 

the field.  Correction for soil moisture based purely on statistical comparisons with a validation method 

may be appropriate in some cases where soil moisture is uniform across the sampling area, however 

careful attention should be paid to ensure that this is the case (i.e. statistical comparison between field 

measured soil moisture values and residuals of elemental concentrations from the FP-XRF/ICP-MS 

regression as discussed further below). 

Particle size: 

Although the effect of particle size was not directly investigated in this study it remains an important factor 

when considering data quality during XRF analysis.  There are two main reasons for this, the first is due to 

sample heterogeneity, the second; surface effects.  As the FP-XRF analysis window is relatively small 

(approximately 2cm2) it is important that the average composition of the sample is well represented within 

this area.  In the case of sample with large grain size (for instance gravel) it is possible that all of the analysis 

area is dominated by a single grain which may not be representative of the overall composition of the 

sample.  A well homogenized sample with small particle size better represents average sample composition 

within this small visible area.   

As grain size distribution was dominated by the very fine (< 500 μm) fraction for all investigated samples it 

is expected that the influence of particle size on data quality was limited compared to other factors.  

Kilbride et al. (2006) show that particle size distribution within the < 2mm soil fraction had no effect on the 

quantification of Cu, Fe, Pb and Zn in soils during analysis using dual source and X-ray tube source pXRF.  

However other studies indicate that particle sizes > 60 µm can have an appreciable influence on the quality 

of XRF data (Beckhoff, 2006).  This inconsistency between literature sources indicates that the importance 

of particle size may differ substantially between different soils dependent on the micro scale distribution of 

analytes and the critical penetration depth compared to particle size for a particular matrix and analyte 

(Beckhoff, 2006).  Therefore particle size should be considered an important factor when planning field 

preparation protocols for soils with a large particle size distribution.  For soils with large grain size, in field 

grinding may be the most effective way to improve data quality by reducing surface and heterogeneity 

effects. 

Chemical composition: 

Chemical composition of the soil also has a significant effect on the accuracy of FP-XRF analysis; this can be 

due to interferences between emission lines of different elements and due to the density of the soil matrix.  

As the resolution of the detector in field portable instruments is lower than laboratory based instruments, 

field portable instruments are susceptible to a wider range of interferences.  Common interferences in soils 

include Pb (L alpha emission at 10.55KeV) and As (K alpha emission at 10.54KeV) and V (K beta emission at 

5.43KeV) and Cr (K alpha emission at 5.41KeV).  It is important that possible interferences such as these be 
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investigated for analytes of interest and in some cases errors may be so large that even qualitative analysis 

by FP-XRF is inappropriate. 

The density of the soil matrix is also an important factor to consider as measurement of high Z elements 

(i.e. contaminants such as Pb, As or U) in a low Z matrix may be effected by scattering and attenuation.  

Light element matrices result in high degree of inelastic (Compton) scattering which may obscure emission 

peaks.  Correction of the Compton scattering peak is possible and in the case of the Niton Xlt 700 this is 

performed on board without user input.  However accurate Compton normalisation requires knowledge of 

the full composition of the sample matrix.  When the matrix is composed of low z elements such as clays 

and silicate minerals (high in Al and Si) accurate internal estimation of the sample matrix is not possible as 

light elements are not typically measurable without vacuum or helium purging techniques due to the strong 

absorption of low energy emission lines in air between the sample and detector (see Table 13).  Although in 

newer FP-XRF designs with larger, more sensitive silicon drift detectors and geometry optimized to 

minimize the distance between sample and detector do allow for analysis of lighter elements (z ≥ 12).  In 

the case of the Niton XLt 700 a correction for a standard soil matrix is applied based on the height of the 

Compton scattering peak.  In some cases this correction may function well, allowing for good quantitative 

use of field data, however if the soil matrix used during factory calibration by Niton does not match the soil 

matrix measured well (as is the case with the addition of water to soils in this study) then significant errors 

in displayed concentrations may be present. 

Table 13:  Transmission of K alpha fluorescence emitted from Mg, Al and Si through air at 1 atm. 

Element (z) Energy (eV) Transmission 1 cm air path % Transmission 5 cm air path % 

Mg (12) 1,254 9.57 0.0008 

Al (13) 1,487 23.19 0.0671 

Si (14) 1,740 39.10 0.9137 

 

Bulk sample size: 

Constant critical penetration depth values or sample mass values previously reported in literature 

pertaining to portable XRF (pXRF) analysis (e.g. 2mm, Kalnicky and Singhvi, 2001) are theoretically invalid as 

critical penetration depth is a variable dependant on analysis geometry, sample density and total mass 

attenuation coefficients of primary and characteristic radiation in the sample (Potts et al., 1997).  Total 

mass attenuation coefficients have been shown to vary by up to 1 order of magnitude between soils 

dependent on composition within the energy ranges used during pXRF analysis (~3.5 – 40 KeV)(Mudahar et 

al., 1991).  Sandy soils tend to exhibit lower total mass attenuation coefficients than clay rich soils.  

Additionally the total mass attenuation coefficient within any particular soil has been shown to vary by up 

to 1 order of magnitude dependent on photon energy and hence the analyte (Mudahar et al., 1991).  These 

differences combined with density differences between soil matrices (1.1 – 1.6 g/cm3 range for most soils 

(Hillel, 1980)) can result in large variations in critical penetration depth.  Investigations on similar media 

such as silicate rocks indicate that critical penetration depth may vary between 30µm and 12mm 

dependent on the analyte (K and Ce in Rhyolite) and also show considerable differences in critical 

penetration depth as a function of mineralogy (Potts et al., 1997). 

To test whether the current recommended minimum dry sample mass to be used in Niton XRF cups is 

sufficient for clay rich soils, a series of cups were prepared using different quantities of the same sample.  

Samples were measured 8 times each using the Molybdenum internal filter with the source tube at 40 kV 

for a period of 300 seconds.  The results of these measurements are plotted for As, Zn, Fe and Mn in Figure 

57.  The error bars show the standard deviation between the 8 repeated measurements. 
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Figure 57: Mass of sample used in Mylar® covered XRF cups compared to mean recorded concentration. 

Analysis of low mass samples resulted in a significant decrease in recorded analyte concentration for all 

elements (except for As where low precision potentially masked this effect) indicating that the critical 

penetration depth for all analytes was greater than the depth of the smallest sample.  As expected the 

extent of the effect of low mass samples on recorded concentration varied considerably by analyte with As 

and Fe in this case less effected than Zn and Mn.  As low Z elements emit lower energy emission lines upon 

excitation critical penetration depths applicable to their analysis are generally less than for high Z elements.  

For all analytes investigated within this soil (Mn, Fe, Zn and As) an increase in sample mass from 2.8 to 5 

grams in XRF cups (Figure 45) did not result in significant increases to measured concentrations.  Therefore, 

in this soil matrix, quantitative analysis of elements with z < 33 maybe acceptable with as little as 2.8 grams 

of sample.  However, for analysis of heavier elements, in a soil matrix with a lower total mass attenuation 

coefficient considerably more sample would be required.  To avoid the risk of critical penetration depth 

exceeding sample depth, particularly when analysing for heavy elements in sandy soils sample masses of up 

to 15 grams (equivalent to depths of 12 to 17mm) may be necessary.  Despite this, when analysing for low Z 

elements in a heavier soil matrix such as clay, minimum sample masses of less than 5 grams may be 

acceptable after careful consideration of analyte, sample density and attenuation properties of the soil 

matrix. 

Cross-validation procedure: 

Many approved methods for FP-XRF analysis, for example US-EPA 6200 (Sackett and Bedford, 1998), 

require the validation of FP-XRF accuracy by analysis of 5-10% of samples using an alternative laboratory 

technique such as ICP-MS or OES analysis.  In previous studies of the accuracy and precision of XRF analysis, 
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XRF results have been directly compared to aqua-regia hot-plate extractions (Kilbride et al., 2006).  XRF 

analysis targets all atoms within the critical penetration depth, regardless of mineral structure, therefore, in 

order to ensure comparability between laboratory ICP-OES/MS analyses and FP-XRF data only complete 

digestion protocols should be used.  Aqua-regia hot-plate dissolution prior to ICP-OES/MS analyses has 

been shown in some cases to result in significantly less recovery of arsenic and other elements than 

microwave extraction protocols incorporating hydrofluoric acid to break down silicate phases (Chen and 

Ma, 2001).  While digestion by aqua-regia may be useful to determine the environmentally available 

fraction of a particular element in soil, it is not directly comparable to the total analyte concentration 

measured during XRF analysis.  Therefore total microwave acid digestion or alkaline fusion digestion 

methods suitable for organic rich and silicate containing media with proven recoveries approaching 100% 

(e.g. Vandecasteele et al., 1993; U.S. EPA, 1996) should be used in preference to ensure maximum 

comparability between FP-XRF and ICP validation data.  Additionally ICP-MS analysis is also susceptible to 

various matrix effects and interferences which should be considered prior and quantified prior to the use of 

ICP-MS results to validate FP-XRF accuracy. 

Procedural blanks 

The procedural blanks correspond to 0.4 ppm of arsenic which was subtracted from all other analyses. 

ICP-MS matrix effects 

ICP-MS analysis often uses internal standardization to correct for non-spectral interferences (signal 

suppression or signal enhancement caused by the sample matrix), instrument instability and signal drift 

(Vanhaecke et al., 1992).  It is important to choose an internal standard with a mass close to the analyte of 

interest (Vanhaecke et al., 1992).  In soils, the selection of an internal standard is not always 

straightforward because a lot of elements are present in the soil matrix.  In this study 103Rh (rhodium) was 

used as internal standard.  The importance of using an internal standard can be illustrated comparing the 

results with and without internal standardization.  Although matrix-matched standards were used, the 

difference in the two approaches is in between 25 and 40%.  The use of three reference materials shows 

that using 103Rh adequate concentrations are obtained; while without internal standard the As content is 

underestimated.  Nevertheless, as 103Rh and 75As respond slightly different to matrix effects ensuring 

maximum matrix matching between samples and calibration solutions is essential. 

ICP-MS Interferences 

Several polyatomic interferences can occur on 75As+, including Ar-based and H-based polyatomic ions, 

double charged ions and oxide ions. The most reported interference is 35Cl40Ar+. Several mathematical 

equations exist to correct for this interference (Kershisnik et al., 1992; de Boer, 1999; Polya et al., 2003; 

Colon et al., 2009).  Despite relatively high Cl concentrations in the soil due to evapo-concentration (~ 5 

mM in interstitial water determined by IC analysis), Cl-containing reagents have been avoided in the sample 

preparation and a pressurized collision-reaction cell has been used in the measurements, therefore we 

expect to have a low abundance of ArCl+.  Nevertheless, the effect of this potential interference has been 

investigated using the excess counts on 77 (counts on m/z 77 corrected for Se using m/z 78) and isotopic 

abundances (Colon et al., 2009). The difference is < 2% in all cases, which is within the error margin of the 

ICP-MS measurements.  When investigating soils or sediments from estuarine environments or marine 

environments, Cl concentrations maybe significantly higher and ArCl+ interferences may become important.  

The interference of GeH is increased due to the use of hydrogen in the collision-reaction cell.  However, Ge 

is rarely present above trace level concentrations in soils (median soil concentration values of < 2 mg/kg 

Scribner et al., 2006).  The effect using excess counts on 77 and the isotopic abundance is < 3%.  In addition 

the double charged ions Sm++ and Nd++ overlap with 75As+.  The formation of double charged ions within the 
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plasma is ~1.5 % (monitored as 140Ce/70Ce++ during tuning).  The contribution of Sm++ has been investigated 

using the excess counts on 77 and the isotopic abundance and is <0.2 %.  While this error is acceptable pour 

the purposes of validating FP-XRF results, in soils containing high total concentrations of Nd the effects of 

Nd++ ions maybe significant.  The presence of NiO+ and CoO+ cannot be investigated using excess counts on 

77.  However, Co concentrations in the soils are low (below the limit of detection via XRF analysis) and NiO+ 

at m/z 75 is only present in very small amounts (only 0.026% of NiO occurs at m/z 75).  

Correlation and linear regression analysis 

Comparison of results from FP-XRF and ICP-MS analysis requires at least basic statistical investigation, most 

commonly in the form of correlation and linear regression analysis.  In the case of US-EPA quality criteria 

for FP-XRF data (US-EPA, 1998 -Table 14) to be considered quantitative (Q2 quality criteria) linear 

regression analysis between FP-XRF and the validation method must result in a coefficient of determination 

(r2) greater than 0.7.  To achieve definitive (Q3 quality criteria) r2 must be greater than 0.85.  

Table 14: Definitions of U.S. EPA validation quality criteria: definitive, quantitative screening and qualitative 

screening. 

Data quality level  Statistical requirement 

Definitive Q3 

r2 = 0.85–1. Relative standard deviation (RSD) ≤ 10%. Inferential 
statistics (test for gradient of line = 1 and y-intercept = 0) must 
indicate the two data sets are statistically similar (at the 5% level), i.e. 
relationship y = x accepted. 

Quantitative screening Q2 
r2 = 0.70–1. Relative standard deviation (RSD) < 20%. Inferential 
statistics indicate the two data sets are statistically different, i.e. 
relationship y = mx or y = mx + c accepted. 

Qualitative screening Q1 
r2 = less than 0.70 Relative standard deviation (RSD) > 20% Inferential 
statistics indicate two data sets are statistically different. 

 

 

Linear regression analysis was performed to compare ICP-MS analysis for arsenic to FP-XRF results using the 

3 investigated in and ex-situ methods.  It was found that excellent linearity (r2 values of greater than 0.85) 

was achievable for arsenic by all three methods (Figures 58, 59 and 60) although important statistical 

differences were present between the 4 sets of measurements (see Table 15). 
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Figure 58: As concentrations measured by 

FP-XRF in-situ following field preparation 

against As concentrations measured by ICP-

MS following total acid digestion. Black line = 

fitted linear regression, blue lines = 95% 

confidence limits. 

 

 

 

 

 

Figure 59: As concentrations measured by FP-XRF ex-

situ in LDPE sampling bags against As concentrations 

measured by ICP-MS following total acid digestion. 

Black line = fitted linear regression, blue lines = 95% 

confidence limits. 

 

 

 

 

 

 

Figure 60: As concentrations measured 

by FP-X RF ex-situ following thorough 

sample preparation against As 

concentrations measured by ICP-MS 

following total acid digestion. Black line = 

fitted linear regression, blue lines = 95% 

confidence limits. 

1:1 

1:1 

1:1 



94 
 

Table 15:  Comparison of the precision and accuracy of FP-XRF measurement methods against total 

digestion/ICP-MS analysis. 

Measurement r2 between 
ICP-MS and 
FP-XRF 
analysis 

RSD% mean of 
all FP-XRF 
measurements 
(range) 

Intercept Slope U.S. EPA quality level 

In-situ – field 
preparation 

0.929 14.4 -4.33 0.82 Q2 – Quantitative 
screening 

Ex-situ – in 
LDPE sampling 
bags 

0.854 21.6 -1.37 0.68 Q1 - Qualitative screening 

Ex-situ – in XRF 
cups on NETP 

0.9483 13.8 0.50 0.72 Q2 – Quantitative 
screening. 

 

Table 16: Statistical comparisons of FP-XRF data with ICP-MS data. 

Measurement Slope significantly 
different to 1  (P = 0.05) 

Intercept significantly 
different to 0  (P = 0.05) 

Means significantly 
different (P = 0.05) 

In-situ – field 
preparation 

NO NO YES 

Ex-situ – in LDPE 
sampling bags 

YES NO YES 

Ex-situ – in XRF cups 
on NETP 

YES NO YES 

 

Whilst all preparation methods provided Q3 level linearity compared to ICP-MS analysis (r2 >0.85) it was 

found that measurement through LDPE bags did not meet precision requirements required for Q3 or Q2 

level data (<20% RSD).  Precision was also the limiting quality factor for both field preparations and cup 

measurements with both sets of measurements failing to achieve definitive (Q3) precision (<10% RSD).  As 

concentrations in the measured soils were consistently underestimated by the internal Niton quantification 

compared to values obtained using classical ICP-MS determinations.  Despite good linearity between ICP-

MS and FP-XRF results there were statistically significant differences between ICP-MS results and FP-XRF 

results obtained via all methods as can be seen from the slope and intercept values given in Table 15 and 

the statistical comparisons of the groups of data given in Table 16.  These differences highlights the need 

for validation of results by an alternative verified technique which itself should be confirmed with certified 

reference materials closely matching the samples. 

Table 17:  Estimations of the detection limit for As by each preparation/analysis method. 

Measurement LOD 

In-situ – field preparation 6.84 - 8.53 

Ex-situ – in LDPE sampling bags 10.24 - 12.76 

Ex-situ – in XRF cups on NETP 5.79 - 7.21 
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Limits of detection estimated from the standard deviation of the y intercept and standard deviation of 

residuals from the regression line with ICP-MS analysis are presented in Table 17.  Both estimates were 

calculated via methods presented in Apostol et al. (2009). 

Conclusions 

Quantitative screening of As with tube source FP-XRF using standard-less calibration modes is possible even 

at low trace concentrations (< 10 ppm) under field conditions with minimal sample preparation.  The 

combination of the Mo source filter used on the Niton XLt 700 series, resulting in low background radiation 

at the energy of the arsenic K alpha emission line, the high fluorescent yield of arsenic and the minimal 

attenuating effect of external filters result in low detection limits even in complex light soil matrices which 

are prone to extensive scattering.  This study shows that one of the most important sources of error in 

quantitative FP-XRF analysis of soils is the presence of interstitial water which has been underestimated in 

previous studies.  The standard bulk soil calibration mode based on Compton normalisation, used 

throughout this work, is not effective at correcting for the presence of soil moisture and it is therefore 

suggested that rapid field drying of samples or soil moisture correction procedures are applied when using 

standard-less calibrations for quantitative in-situ analysis of arsenic in soils.  Despite this limitation it was 

found that with minimal in-situ preparation of dry soils that limits of detection, precision and accuracy 

achievable during arsenic analysis were comparable to those obtainable by XRF analysis following thorough 

preparation under laboratory conditions.  The strong bias/underestimation shown by all FP-XRF results for 

arsenic regardless of preparation method confirms the need for validation of results via an alternative 

technique such as ICP-MS.  Additionally the low precision shown by the field portable instrument at low 

arsenic concentrations (>13% RSD average for all preparation methods) indicate that repetition of short 

(100-200 second duration) field analysis is preferable to a fewer analyses with longer count times.  For the 

highest quality quantitative XRF results empirical calibrations based on site specific standards should be 

used in preference to standard-less soil specific calibration methods.  However, in situations where costs 

associated with logistically challenging field studies in remote areas preclude the prior analysis of site 

specific standards, standardless FP-XRF analysis modes can represent a viable quantitative technique as 

long as careful attention is paid to sample preparation. 
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Chapter 4: A Statistical Investigation of Physicochemical Controls on Arsenic 

Distribution on the Saône Floodplain 

Abstract 

This chapter aims to determine the relative importance of physicochemical factors controlling the spatial 

distribution and variation of arsenic concentrations in moderately contaminated calcareous surface soils (0-

10cm) on a section of the riparian floodplain of the Saône.  A variety of complimentary techniques including 

laser granulometry, wet chemistry, geostatistics and field portable X-ray spectrometry were used to 

generate data which were investigated for correlation with total arsenic concentrations.   

Total solid concentrations for 11 elements (obtained by FP-XRF and validated with ICP-MS) in 75 soils at 

unique geographic locations as well oxidisable organic matter and active carbonate fractions, particle size 

distribution (PSD) and flooding risk estimates were compared for statistical inter-dependence.  Variables 

found to be strongly positively correlated with measured As concentrations were Fe concentrations (R = 

0.805, p <0.001), Mn concentrations (R = 0.74, p <0.001) and the proportion of the soil clay fraction (R = 

0.613, p <0.001).  In contrast to previous studies, no statistically significant correlation with spatial 

variables, solid organic matter or carbonate concentration was found to be present.  Fine to medium sand 

sized particles were shown to be strongly anti-correlated with arsenic concentrations whereas the particle 

size distribution of fractions coarser than 0.5mm showed no statistically significant correlation. 

Extensive multi-collinearity between investigated auxiliary variables prevented the determination of their 

relative importance to a multiple regression model (R2 = 0.76, p < 0.001) and indicates that correlations are 

due to the same real world parameter – the presence of Fe and Mn rich, fine clay particles.   

Introduction 

Arsenic is the 12th most abundant element in the biosphere and is ubiquitous in the environment.  

However, arsenic is also a known carcinogen, mutagen and teratogen (National Research Council (U.S.)., 

1999).  Arsenic distribution in soils and sediments is controlled both by its natural biogeochemical cycle and 

anthropogenic factors as discussed in Chapter 2. 

The mean concentrations of arsenic in top-soils and floodplain sediments in Europe are 11.6 and 12.2 mg 

kg-1 respectively (Salminen, 2005).  Geogenic baseline values can however be hard to determine in any 

given location as they are dependent on factors such as local geology, geology of soil parental material and 

hydrological regime which vary considerably on a European scale.  It is also impossible to differentiate 

between disperse anthropogenic contamination and geogenic arsenic by classical isotope studies due to 

the mono-isotopic nature of As (75As). 

Arsenic present in European floodplain soils can be traced to a variety of sources including the erosion and 

weathering of sulphide deposits and highly mineralised primary geology, deposition from industrial 

atmospheric emissions, the historic and current use of arsenic containing pesticides, wood preservation 

treatments and additives in poultry feed.  These sources are discussed in detail in Chapter 2. 

The difficulty in determining baseline arsenic values, compounded by disagreement over the importance of 

low levels of arsenic exposure on human health (Meharg and Raab, 2010) leads to inconsistency in 

guideline and action threshold values for arsenic in soils within the European Union (EU).  Current national 

guideline values range from 10 to 500 mg kg-1 within the EU and the nomenclature and meaning of these 

values is also often inconsistent (Carlon, 2007).  Whilst exposure levels from arsenic in drinking water can 

be calculated reasonably well by assuming average water consumption, the risk posed by total soil 
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concentrations is somewhat more challenging.  Exposure from soils can be, for example, due to hand to 

mouth behaviour in children, consumption of crops grown in arsenic contaminated soil, inhalation of wind-

blown particulates or due to infiltration of water supplies.  

Total arsenic concentration limits or guideline values in soils therefore must take into account factors 

including land use, soil influence on water resources, climate, soil chemical conditions and the feasibility of 

remediation or land use change.  Most national legislative limits currently take into account land use, often 

imposing lower limits for residential soils compared to industrial or agricultural soils.  However, many 

regulatory guidelines do not at present consider soil chemical conditions and factors such as flooding when 

determining threshold arsenic concentrations. 

Soils subjected to periodic flooding (fluvisols) account for 5% of European land (European Commission., 

2005)(Figure 61) and moderate contamination of these soils is widespread (Du Laing et al., 2009; 

Ackermann et al., 2010). 

The changes to pH and Eh conditions, CO2, carbonate and dissolved organic carbon concentrations 

occurring in flooded soils, which in turn impact arsenic mobility and toxicity are additionally compounded 

by factors including mineral dissolution and precipitation and the increased solubility of species competing 

for solid sorption sites (e.g. anionic organics). 

The combined effect of these various mechanisms can lead to elevated pore-water arsenic concentrations 

during flooding events, even in soils containing moderate or low total solid concentrations. 

 

Figure 61:  Fluvisols in 
France (light green) 
compared to other soil 
classifications (black) and 
soil sealed areas 

(grey)(European 
Commission., 2005)  The 
area investigated in this 
study is marked with a red 
ellipse. 

Floodplains also serve 

roles as areas of high 

natural biodiversity, 

controlled overflow areas 

to reduce the risk of urban 

flooding and increasingly 

as highly fertile 

agricultural land (there is a 

net increase in agricultural 

use of alluvial floodplains 

between CORINE land-

cover data from 1996 and 

2006 (EEA, 2010).  To 
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function in each of these roles is a delicate balance which is further confounded by contamination with 

metals and metalloids. 

Accurate risk assessment of arsenic contamination in fluvisols is important to ensure safe agricultural 

practice and avoid contamination of crops and of increasingly used shallow alluvial aquifers.  Although 

many crops traditionally grown on alluvial planes such as wheat and corn have been shown not to 

accumulate significant concentrations of arsenic in their edible parts (e.g. wheat) (Williams et al., 2007) 

other crops including rice, vegetables and salads which are also grown on floodplains have been shown to 

accumulate arsenic to potentially dangerous levels (Meharg and Rahman, 2003; Cao and Ma, 2004; Das et 

al., 2004). 

In the presented study area alone there are 6 active municipal shallow groundwater wells providing local 

communities with domestic water.   In one periodically monitored well, arsenic concentrations of up to 

60ug/L of arsenic have been measured, above even the pre-1993 World Health Organisation (WHO) 

guideline value for drinking water of 50ug/L.  Elevated arsenic concentrations in water produced by these 6 

municipal wells are reduced to below current WHO and European water standards by ozone treatment 

prior to distribution via the potable network.  Although a limited number of untreated privately owned 

tube wells in this area are still in use, the water they produce appears not to be used for drinking or 

cooking. 

Although soils on the Saône floodplain are known to be moderately contaminated with arsenic (Comite 

Syndical de l’EPTB, 2007) the distribution of arsenic in top-soils is poorly defined.  The aim of this study is to 

determine the degree of spatial variation of arsenic contamination in top-soils on part of the floodplain and 

to infer the underlying chemical and mineralogical associations based on statistical relationships between 

soil elemental concentrations and physical characteristics.  This study could be used as a precursor to risk 

assessment of agricultural practice and shallow groundwater resource usage. 

Methods 

Study area 

The study area constitutes the east side of the Saône river floodplain between the towns of Pont-de-Vaux 

and Saint-Didier-Sur-Chalaronne close to the city of Macon in eastern France.   This area is approximately 

400 km from the source of the Saône river and 80 km from its confluence with the Rhone.  All soils were 

sampled from a 60 km2 area and within 2 km of the river channel within the extent of the 100 year flood.  

The extent of the sampling area and the sampling locations are shown in Figure 62. 
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Figure 62: Location of study area showing topography (METI/ERSDAC et al., 2009) the main hydrological 
network (Institut Geographique National de France, 2010 - blue lines), key towns (yellow diamonds sized by 
population) and sampling points (circles coloured by arsenic concentration – red = 35 ppm to white = 0 
ppm). 

Fluvisols are the dominant soil type within this area however variations in soil texture from gleyic to sandy 

are evident due to changes in the historical fluvial depositional/erosional regime, land use and terrain 

morphology.  Sampling locations were recorded using a European Geostationary Navigation Overlay Service 

(EGNOS) enabled GPS and sampling was timed using Trimble's planning software to ensure minimal 

horizontal dilution of precision (HDOP) values (estimated to be <1.5 for all sampling locations). 

Determination of multi-elemental concentrations in situ 

In situ analysis was performed using NITON® XLt™, 700 Series™ FP-XRF environmental analyser equipped 

with a miniature 1.0W X-ray tube 40kV/50μA excitation source, an Ag anode target and a high performance 

peltier cooled Si-PiN X ray detector.  Top-soils at each sampling location were prepared with the in-situ 

method described in detail in Chapter 3, modified from US-EPA 6200 (Sackett and Bedford, 1998) prior to 

analysis to minimize the limit of detection and maximize the accuracy and precision of the instrument.  All 

samples were analysed within a period of 5 days during August 2009 and the FP-XRF was re-calibrated 
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between samples using internal standards.  Detector temperature was monitored prior to all analyses to 

ensure stable response.   

On board standard-less quantification of elements was performed based on Compton normalization.  

Elements which occurred consistently below the limit of detection for this device were discarded from the 

data before statistical analysis, resulting in the final inclusion of 11 elements (K, Ca, Ti, V, Mn, Fe, Ni, Zn, As, 

Rb and Sr).   

Following FP-XRF analysis the field prepared <2mm samples were transferred directly to double sealed 

polyethylene bags and were transported and stored in cool dark conditions prior to analysis.   

The quantitative use of As concentrations was validated by a precision analysis and comparison of 10 

representative samples across a range of measured arsenic concentrations (6.9 ppm to 29.3 ppm) using 

total microwave digestion (1: HNO3 + HF + H2O2, 2: H3BO3 + HF) (U.S. EPA, 1996) and inductively coupled 

plasma mass spectrometry (ICP-MS).  All data were acquired using an Agilent 7500c quadrupole ICP-MS 

(Agilent Technologies, Spain) equipped with an octapole reaction system, 103Rh and 193Ir were used as 

internal standards.  The collision/reaction cell was operated with 3.0mL/min of H2 and 0.5mL/min of He. 

Laboratory Pre-treatment of soils: 

Prior to analysis of TOC, active carbonates and PSD all soils were further homogenized, lyophilised for a 

period of 48 hours, to avoid the formation of aggregates and dry sieved again to retain the fine soil fraction 

(<2mm).    

TOC for all soil samples was determined by a modification of the Walkley and Black colorimetric wet 

oxidation method (Walkley, 1947).  In this method carbon is oxidised by dichromate (Cr2O7
2-) and excess 

dichromate is back titrated with ferrous iron.  A correction factor of 1.30 was applied to resulting oxidisable 

organic carbon concentrations for calcareous soils as suggested by Santi et al., (2006).  A range of between 

2.5 and 6.6% oxidizable carbon was measured in the sampled soils. 

TCO3 was determined for all soils by the Scheibler volumetric method following ISO standard 10693 (ISO, 

1995) whereby CO2 is released after addition of hydrochloric acid to the sample.  A range of 1 to 211 g/kg 

TCO3 was measured. 

Granulometric Analysis:  

PSD was determined by a combination of dry sieving (>1<2mm fraction) and laser diffraction (<1mm 

fraction).  Laser diffraction was conducted using a Malvern Mastersizer 2000 particle size analyser (Malvern 

Instruments, France) across a measurement range of 0.01 to 1500μm.  Lyophilised soils were suspended in 

water, and subjected to an ultra-sonification step prior to analysis to ensure correct sample dispersion and 

analysis of elemental particles only.  Distributions were calculated as percentage of sample by volume 

falling into 100 equivalent spherical diameter class sizes. 

Phreetic flooding risk estimation:  

The investigated area is, like many floodplain soils, at risk from fluvial and phreetic flooding.  Whilst over-

bank flooding in some areas can be controlled by the construction of defensive barriers and river flow 

management groundwater rise is significantly more difficult to mitigate.  In this study only groundwater rise 

flood risk is considered as a possible control on arsenic distribution. 
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Figure 63:  30m grid digital elevation model of study area (METI/ERSDAC et al., 2009) with the risk of 
groundwater rise overlay obtained from the BRGM (BRGM, 2006 red = high risk to dark blue = low risk). 

Spatial vector data provided by the BRGM which appears to have been converted from a 250m scale raster 

grid on the susceptibility of an area to groundwater rise and flooding (ranked from 0 – remote risk, to 6 - 

extremely high risk) was used to quantify risk of groundwater flooding at each sampling point (Figure 63).. 

Results and Discussion 

Validation of FP-XRF results 

FP-XRF results for As were assessed for accuracy via linear regression analysis with ICP-MS results.  This 

analysis demonstrated excellent linearity between field analysed and laboratory validated values (R2 of 0.93 

with a p value of <0.001).  The comparison of ICP-MS to FP-XRF results is shown in Figure 64 with the fitted 
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regression line.  Relative standard deviation (RSD) values, were between 6 and 20% (N=2) for all samples 

demonstrating an acceptable level of precision for quantitative screening (US-EPA, 1998).  The slope and 

intercept were shown to be significantly different to 1 and 0 at the 95% confidence level indicating a bias in 

the linear regression.  The strong linearity between ICP-MS and FP-XRF concentrations for arsenic shows 

that data is acceptable for correlation type analyses.  However, the significant bias demonstrates that 

results cannot be considered definitively quantitative without correction. 

 

Figure 64: Linear regression of As concentrations obtained by FP-XRF and ICP-MS analyses showing 95% 

confidence bands on the regression (blue) and 95% prediction bands 

(red). 

Descriptive statistics 

Arsenic concentrations in analysed soils, once corrected for FP-XRF 

measurement bias, varied between 13.6 and 40.8 ppm with a mean 

concentration of 21.5 ppm and a standard deviation of 4.56 ppm.  

Approximately 79% of analysed soils were found to contain between 15 

and 25 ppm of arsenic with an interquartile range of 17.9 to 24.3 ppm 

(Figure 65). 

Figure 65:  Boxplot of corrected arsenic concentrations.  Whiskers 
correspond to 10th and 90th percentiles, points represent outliers. 
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The acquired arsenic data failed the Shapiro-wilk test for normality with a W-Statistic of 0.932 and a p value 

of 0.001 indicating that the data does not follow a normal distribution.  This can be clearly seen by the 

slightly convex plot of concentration and cumulative frequency shown in Figure 66.  

 

Figure 66: Arsenic 
concentration 

cumulative frequency 
plot.  Normally 
distributed data would 
be expected to plot on 
a straight line whereas 
arsenic concentrations 
deviate significantly 
from this. 

 

 

 

 

 

 

Figure 67:  Histogram of 
arsenic concentrations with 
a normal distribution curve 
superimposed in blue 
demonstrating the slight 
positive skew to the data. 

Figure 67 demonstrates the 

slight positive skew of the 

As data which is probably 

due to the bounding of data 

at the lower limit due to the 

centre of the distribution 

falling just above the 

analytical limit of detection.  

In this way the lower tail of 

the data is truncated as low 

end values fall below the 

limit of detection. 
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Spatial variability 

Spatial auto-correlation of arsenic concentrations between sampling locations was evaluated by production 

of a semi-variogram.  As can be seen in Figure 68 arsenic concentrations were found to be spatially auto-

correlated within a maximum effective range of approximately 2.5km. 

 

Figure 68:  Semi-variogram demonstration spatial autocorrelation of arsenic values with a maximum range 
of approximately 2.5km.  The fitted function of the form y = a + b/x fits the data with R2= 0.64. 

Due to the limited number of sample points and lack of high resolution auxiliary surface data more 

comprehensive geo-statistical analysis such as ordinary or regression kriging was not attempted.  However, 

the spatial autocorrelation demonstrated in Figure 68 indicates that such techniques would be beneficial if 

a greater number of data points or high quality surface data (e.g. high resolution digital elevation models) 

of the investigated area were to become available.  As overbank flooding risk is directly related to the 

distance of a location from the river, distance between each sampling location and the main river channel 

were calculated using proximity analysis protocols in SAGA GIS (Bock et al., 2010). 

Relationships between phreatic flooding risk and elemental concentrations 

Flooding risk index was found to be poorly correlated with elemental concentrations.  No elements 

expressed a linear relationship at the 95% confidence level.  However subtle trends were apparent.  

Amongst these potassium, arsenic and manganese were shown to be slightly negatively correlated with 

flood risk index (R of -0.22, -0.11 and -0.13 respectively) suggesting potential hydraulic redistribution 

mechanisms on the floodplain.  However, as these effects are potentially subtle it is possible that larger 

sample numbers would be required to prove or disprove their significance. 
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Inter elemental relationships 

A matrix of Pearson correlation coefficients for elemental concentrations was calculated based on FP-XRF 

data (Gentleman et al., 2009; Dalgaard, 2010).  This correlation matrix is plotted in Figure 69 sized and 

coloured by correlation coefficients.  Arsenic is shown to be most strongly correlated with Fe (R=0.75), Mn 

(R=0.69) and Zn (R=0.59).  None of the elements analysed were found to be anti-correlated with As. 

 

Figure 69: Inter-elemental correlation matrix plot, sized and coloured by correlation coefficient (R) values 

(red = negatively correlated variables, blue = positively correlated variables). Generated using corrplot and 

ISwR packages in R (Gentleman et al., 2009; Dalgaard, 2010; Wei, 2010). 

Chemically there are numerous potential mechanisms by which arsenic may become immobilized in 

calcareous fluvisols.  The most common mechanisms for arsenic immobilization in soils are sorption (either 

adsorption or absorption to the surface of mineral surfaces), co-precipitation (inclusion in the structure of a 

mineral during growth) or complexation with organic matter.  While correlation does not necessarily imply 

causality the correlations between As and other analysed elements allow us to hypothesise the probable 

mineralogical associations of arsenic.  The strongest inter elemental correlations with As are with Mn and 

Fe.  Arsenic mobility has already been shown to be controlled in a variety of environments by surface 

sorption and coprecipitation with iron and manganese (hydr)oxides (Fuller and Davis, 1989; Bowell, 1994).  
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Equally iron is often a significant structural component in clay minerals e.g. chlorite and illite.  Clay minerals 

have been shown to act as sorbents for both arsenite and de-protonated arsenate species in soils, 

particularly due to the presence of AlOH2+edge sites.   However, their sorption capacities are up to an order 

of magnitude lower than those of metal oxides, especially within the pH range experience in calcareous 

soils (Goldberg, 2002).  Therefore in calcareous soils at high pH it is very likely that these strong correlations 

between As, Mn and Fe are due to the sorption or co-precipitation of arsenic with metal (hydr)oxide 

minerals.   

Organic carbon and Arsenic 

Although a weak positive correlation was found between oxidisable organic matter and arsenic in the 

analysed soils (R = 0.32) it was found that this relationship was not significant at the 95% confidence level 

(p = 0.15).  This indicates arsenic complexation directly with solid organic matter is not significant compared 

to other arsenic immobilisation mechanisms within these soils and that it is not a factor controlling arsenic 

distribution on the floodplain.  This is in contrast to the findings of Chen et al., (2002) who demonstrate a 

strong positive correlation (R = 0.80 at the 95% confidence level) between total arsenic concentrations and 

solid organic carbon concentrations in Florida soils.  However, numerous studies have shown that organic 

matter concentration in pore-water is a major controlling factor on arsenic liberation due to both 

competitive adsorption (negatively charged organic molecules competing for surface sorption sites with 

anionic arsenic species) and facilitating the development of reducing conditions (Bauer and Blodau, 2006).  

Therefore whilst solid organic matter concentrations cannot be used as an indicator of arsenic presence 

they could be used to help determine the risk of arsenic liberation upon the development of reducing 

conditions. 

Particle size distribution (PSD) and spatial soil textural trends 

The use of laser diffraction in this study allowed a much more detailed understanding of arsenic 

distribution between particle size fractions in soil samples with limited textural heterogeneity.  Differences 

between particle size distributions of soils with high and low arsenic concentrations were evident as can be 

seen in Figure 70).  Both soils with high and low arsenic concentrations had a bimodal PSD however the size 

and position of the peaks were significantly different between the two groups.  PSD of soils with high 

arsenic concentrations (Top 10% of soils by arsenic concentration) peaked at 45μm (4% by volume) and at 

375μm (1.5% by volume).  PSD of soils with low arsenic concentrations (lowest 10%) peaked at 75μm (3.7% 

by volume) and at 200μm (4.2% by volume). 



108 
 

 

Figure 70: Comparison of the mean particle size distribution of soils containing high arsenic (top 10%) and 
low arsenic (bottom 10%) 

The increased resolution (number of particle size classes) of laser diffraction analysis (compared to 

traditional sieving and sedimentation techniques) allows statistical analysis of relationships between 

distinct particle size populations and chemical properties.  It can be seen that As, Fe, Mn and organic 

matter concentrations are all correlated with the finest clay fractions with correlation maxima at between 

1μm and 10μm.  For As, Fe and to a lesser extent Mn concentrations two more less prominent positive 

correlation peaks are also present at approximately 40μm (forming a shoulder from the main peak) and 

850μm.  Organic matter peaks at 65μm and again between 700μm and 1000μm.  These relationships are 

shown in Figure 71.     
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Figure 71: Correlation between sample proportion by particle size and As, Fe, Mn and oxidisable organic 
matter.  Correlation coefficients with a magnitude greater than 0.243 represent a significant correlation at 
the 95% confidence level (N= 66). 

The strong correlations found between arsenic, iron and manganese and particles with a size of 1-10 μm. 

can be attributed primarily to the increased surface area and hence reactivity of the fine particle size 

fraction compared to larger sand fractions.  The large fractions in soils tend to be dominated by quartz due 

to its recalcitrant and resistant nature which is broken down less easily during the erosional process than 

softer and more friable minerals.  Quartz also has a near neutral surface charge over a wide range of pH 

(Schindler and Kamber, 1968) and is therefore less chemically reactive than other minerals such as illite (a 

mineral found to be present in abundance in the clay fraction (<2µm) of these soils (see Chapter 3)  

Typically natural floodplains demonstrate a finer particle size distribution with increasing distance away 

from the river channel within the extent of the flood (Guccione, 2009).  During this study no statistically 

significant correlation between particle size and distance from the main river channel.  This indicates that 

this either trend is lost due to reworking of the soil at a rate significantly greater than accretion, or that 

sediment input is controlled to a greater extent by minor channel systems penetrating distally from the 

main river into the floodplain.  Significant reworking of the soil is indeed present on the floodplain due to 

agricultural activity and due to attempts to control flooding by the construction of damns and flood barriers 

have probably reduced accretion rates on this part of the floodplain.  Due to the presence of extensive 

artificial flood barriers (digues) along the main river channel numerous gated drainage channels have been 
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constructed both to allow for flow into channel systems during dry periods and to facilitate the draining of 

flood-water upon a drop in river height. 

Multivariate statistical analysis 

Backward stepwise regression analysis was conducted incorporating measured elemental concentrations, 

active carbonate analysis, PSD and TOC.  The most efficient combination of independent variables was 

found to be Fe, Mn and Clay % (22 observations per independent variable used) from which Equation 1 was 

derived. 

As = 10.421 + (0.000522 * Fe) + (0.0112 * Mn) - (0.352 * Clay %)  

This model fits the data with an R2 value of 0.65 and a p-value of less than 0.001 indicating that the model 

can explain 67% of arsenic concentration variation in analysed soils and that the fit is significant to the 

99.9% confidence limit.  The standard error of the estimate provided by this model is 2.7 and the residuals 

expressed a normal distribution.  P values for individual parameters all below 0.05 and so all contributed 

significantly to the model.  Relatively high Variance inflation factors (VIF) found amongst the independent 

variables (Fe= 4.2,  Mn = 1.8 and Clay %= 3.0) indicating multicollinearity.  Removal of any of these variables 

from the model led to significant deterioration of its accuracy indicating that each of these variables are 

important, however multi-collinearity masks the relative importance of each of these values to the model. 

Conclusions 

The distribution of arsenic in top-soils of the Saône floodplain has been shown to be diffuse and linked to 

several physicochemical factors.  The most important of the factors analysed was found to be the 

proportion of Fe and Mn rich fine clay sized particles in the soil matrix.  This is thought to be due to the 

increased chemical reactivity of finer fractions and the important role of micro crystalline iron oxides in the 

immobilization of pore water arsenic.  The inter elemental statistical relationships demonstrate that Fe 

concentration is the stronger predictor of As concentration suggesting that Fe minerals are the most 

important sorbents of As in this system even in alkaline soils where alternative minerals such as calcite are 

expected to play a more important role. .  Distance from the main river channel was not found to be a good 

predictor of arsenic concentrations although data was found to be spatially auto-correlated with a range of 

2.5km. 
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Chapter 5: The Impact of Redox Cycling: Arsenic Attenuation in Contaminated 

Floodplain Soils 

Abstract 
Contamination of floodplain soils with arsenic is extensive, particularly in areas with a legacy of industrial 

activity or prone to geogenic arsenic input. 

It is well established that arsenic associated with metal-oxides in soils can be released under the reducing 

conditions experienced during flooding due to desorption, mineral dissolution and competitive sorption.  

However, the cumulative effects of seasonal flooding and draining cycles on arsenic mobility are currently 

poorly understood. 

We show through a combination of batch experiments, spectroscopy and thermodynamic and kinetic 

modelling that the cumulative effects of cyclic flooding can act to attenuate arsenic mobilised during 

reducing conditions, in part due to depletion of biologically degradable organic carbon (BDOC).  We 

demonstrate that arsenic mobility during cyclic redox conditions can be described by fast (intra-cycle) and 

slow (inter-cycle) immobilising processes and suggest that effective hydrological management in many 

redox-oscillating environments may be fundamental to limiting arsenic release. 

Introduction 
Arsenic is an infamous carcinogen (WHO IARC, 2004), ubiquitous in the environment and subject to a 

variety of mobility altering processes induced by redox changes experienced in temporally flooded soils 

(fluvisols).  As both the toxicity and mobility of arsenic are highly dependent on oxidation state and 

chemical speciation (Bissen and Frimmel, 2003), understanding the long term effects of temporal flooding 

is essential, particularly as recent work has shown that hydrological management may impact arsenic 

mobility in shallow alluvial aquifers(Benner, 2010; Neumann et al., 2010). 

Fluvisols are used extensively for agriculture (Verhoeven and Setter, 2010) despite frequently hosting 

elevated concentrations of arsenic (Overesch et al., 2007).  Common sources of arsenic on floodplains 

include mine-effluent, pesticides and poultry waste (Smedley and Kinniburgh, 2002), although disperse 

contamination may also be geogenic (Winkel et al., 2008) or due to atmospheric deposition (Couture et al., 

2008).  Tracing the origin of arsenic on floodplains is often problematic due to its mono-isotopic nature, 

lack of durable chemical source signatures and diverse watershed land-use.  Fluvisols frequently act as sinks 

for river-borne contaminants but can also act as contaminant sources due to remobilisation (Roberts et al., 

2010).  Re-mobilized contaminants threaten human health through accumulation in crops (Meharg and 

Rahman, 2003) and contamination of increasingly exploited shallow alluvial aquifers (Ahmed et al., 2004). 

Much attention has been paid to biogeochemical mechanisms responsible for arsenic mobility in soils upon 

the development of reducing conditions (McGeehan and Naylor, 1994; Islam et al., 2004) and to 

hydrological transport processes determining arsenic fluxes from sediments (Mukherjee et al., 2008; Nath 

et al., 2009).  Recently comprehensive field studies have greatly advanced our understanding of the 

processes affecting arsenic mobility in nature (Neumann et al., 2010) but there is still a scarcity of 

controlled experimental studies accurately simulating cyclic redox conditions experienced in floodplains, 

paddy fields and shallow aquifers (Stucki, 2011). 

The objectives of this study are to determine both the short and long term geochemical controls on arsenic 

mobility in one floodplain soil, and to improve our understanding of redox-oscillating environments.  To 
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simulate the natural redox cycles experienced by soils on a heavily managed floodplain, batch redox-

oscillation bioreactor experiments were conducted on the top-horizon (0-15cm) of an arsenic-doped calcic 

fluvisol prone to phreatic and fluvial inundation.  Changes within the bioreactors were monitored 

throughout the experiment using an array of biogeochemical tools.  The sampling location, flooding modes 

and extent are illustrated in Figure 72.   

 

Figure 72: :  TOP: Map of the extent of the Saône floodplain showing the sampling location (yellow star), 

towns (red circles), topography (METI/ERSDAC et al., 2009) and the hydrological network (Institut 

Geographique National de France, 2010)(in blue).  Coordinates are in decimal degrees based on the WGS84 

geoid.  BOTTOM: An idealised cross-section of the floodplain at the sampling location illustrating the 



113 
 

flooding modes and extent predicted to occur yearly (long dashed line) and every 100 years (short dashed 

line). INSET: Bar chart comparison of pore water chemistry before and after 30 days of laboratory flooding 

of soils from the sampling location. 

Aqueous chemistry (cations, anions, dissolved organic and inorganic carbon (DOC and DIC)), mineralogy 

(powder X-ray diffraction (XRD)) and solid arsenic speciation (X-ray absorption spectroscopy (XAS)) were 

monitored in addition to changes in the bacterial community (16S rRNA).  Results were interpreted using 

thermodynamic and kinetic geochemical modelling implemented in PHREEQC (Parkhurst et al., 1999).  The 

model is used as a diagnostic tool to interpret the measured temporal changes and as a prognostic tool to 

determine the most probable chemical mechanisms responsible for observed changes in As mobility. 

Methods 

Soil selection:  

The soil used in this study was sampled from the east floodplain of the Saône River close to the town of 

Macon in eastern France.  The soil was taken from the top horizon (0-15cm) of a natural undisturbed 

mollic-fluvisol occurring on the lower terrace of a minor irrigation channel (46.373107oN, 4.879856oE).  

Established soil sampling protocols were observed (U.S. EPA Environmental Response Team, 2000) 

including using only acid washed (5% HNO3) plastic tools.  The sample was transferred directly to a double 

sealed polyethylene bag and transported on ice.  It was subsequently stored at 4oC until the start of 

experiments.   

Soil characterisation:  

Elemental composition of the soil was determined by total acidic dissolution (HNO3 + HF + H2O2, H3BO3 + 

HF) (U.S. EPA, 1996) followed by inductively coupled plasma mass spectroscopy (ICP-MS) analysis.  The soil 

was found to contain a moderately elevated arsenic background value of 29.9 ppm which is often observed 

in mollic fluvisols (Du Laing et al., 2009).  Laser granulometric analysis (Malvern Mastersizer 2000) after de-

carbonation revealed that the soil was dominated by silt and clay (1% coarse sand, 16% fine sand, 24% 

coarse silt, 25% fine silt and 34% clay).  Bulk mineralogy was analysed by XRD for <2mm, <2m and <0.2m 

fractions; Quartz, Calcite, Illite and Chlorite were identified.  Total organic carbon content was determined 

to be 33.4 g/kg by loss of ignition.  These characteristics are indicative of flooding regime with a long 

periodicity and low flow rates.  Total water content was 32.57%.  Measured soil pH was 7.8 and was 

strongly buffered by large quantities of calcite (total CaCO3 was 148 g/kg). 

Preliminary experiments: Determination of natural redox fluctuations 

To aid experimental design, preliminary laboratory experiments were conducted to determine the extent of 

redox fluctuation occurring naturally in the investigated soil.   

A passive diffusion pore-water sampling device was used to determine the effects of flooding on redox 

conditions and aqueous chemistry in interstitial pore water.  Millipore hydrophilic HAWP membranes with 

a pore size of 0.45 M were first washed with 5% HNO3 and rinsed thoroughly with 18.2M cm water 

before being fixed over acrylic cells filled with 18.2M cm water.  The sampling device was then placed in a 

flooded soil (15cm of N2 degassed overlying water) for 30 days to allow for soil reduction and osmotic 

equilibration before analysis.  Eh and pH measurements were taken by gently pushing the electrode into 

the soil approximately 5cm from the sampler, immediately prior to removal.  As saturation of pores in the 

un-flooded sample was insufficient to allow the use of diffusion membrane samplers, interstitial water was 

extracted by centrifugation at 8000 rpm for 30 minutes. 
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An Eh change from +500 to -310mV was recorded, crossing the MnO2/Mn2+, NO3
-/NH4

+, HAsO4
2-/H3AsO3, 

FeOOH/Fe2+ and SO4
2-/HS- thermodynamic equilibria (James and Bartlett, 1999), predicting major changes 

to aqueous chemistry (Figure 72).  A concurrent drop in pH from 7.8 to 6.9 occurred despite the presumed 

production of hydroxide by reductive processes e.g. FeOOH + H2O + e- → Fe2+ + 3OH-.  This is attributed to 

accumulation of CO2 in pore-water.  An increase in Fe2+
(aq), Mn2+

(aq) and DOC concentrations was also 

recorded, in addition to elimination of aqueous sulphate, indicative of heterotrophic iron, manganese and 

sulphate reduction. 

Soil preparation:   

The field moist soil was removed from polyethylene sampling bags and suspended in a 0.02 mM 

background sodium chloride electrolyte solution (prepared with 18.2M cm water) at a concentration of 

approximately 100 g/L (dry-weight equivalent).  The suspension was shaken for 5 minutes in a polyethylene 

bottle and then passed through a 1mm sieve to remove larger rock fragments and large solid organic 

material.  This procedure was repeated until a homogeneous suspension was achieved.   

The suspension was doped with 900 ppm / 12 mM of arsenate (Na2HAsO4·7H2O – Sigma-aldrich) and left to 

equilibrate on an agitator for 1 month before the start of reactor experiments. 

Experimental design and redox oscillation procedure 

A novel redox-cycling bioreactor system, based on a design by Thompson et al (Thompson et al., 2006) was 

filled with the arsenic doped soil suspension.   

The bioreactor consisted of a 2 part Pyrex® glass pressure reaction vessel (Ace- Glass Inc, NJ, USA).  The 

lower part of the reactor contained a working volume of 1 L and used a water jacket to allow for precise 

temperature control.  Ethylene glycol was added to the temperature regulating circuit to avoid fungal and 

bacterial growth over the duration of the experiment.  The upper part of the reactor contained a headspace 

volume of approximately 300 mL and used ace-glass threaded connections for sampling, electrodes and 

mechanical agitation (seals secure up to 2.4 bar of internal/external pressure difference).  The agitation 

shaft and blades were Teflon coated and prior to the introduction of soil suspensions the reactor and all 

glass and plastic parts were washed with 5% HNO3 then rinsed thoroughly in 18.2M cm water. 

Solid polymer open junction Xerolyt electrodes (Mettler-Toledo, France) were selected for their long term 

stability and low electrolyte leak rates.  The Eh and pH electrode signals were connected to FET 

instrumentation amplifiers with high input impedance.  The signal was then passed to an Agilent 

acquisition/switching unit (34970a) connected to a PC running Agilent BenchLink Data Logger 3 software.  

Eh and pH data was recorded every 30 seconds.  

The suspension was subjected to multiple cycles of reduction and oxidation to replicate flooding and 

draining experienced in nature and to determine the cumulative effects of such cycling on arsenic mobility.  

Eh control, based on imposed Eh limits (-310/+500 mV) was implemented by modulating the sparging gas 

between N2 and compressed air automatically via the Agilent switching unit, a relay board and a system of 

solenoid valves.  Reducing conditions were stimulated by N2 sparging (7 days) and oxidising conditions were 

stimulated by compressed air sparging (7 days).  A total of 5.5, 14 day cycles were conducted over a period 

of 77 days at a constant temperature of 31oC (+/- 1oC).  The suspension was sampled on days 1, 4 and 7 of 

each half cycle, pH and Eh were monitored constantly.  Gas flow rate was set to a constant 30 ml/min for 

both compressed air and nitrogen inputs. 
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Figure 73:  Schematic of the redox-cycling bioreactor system. 

Sampling procedure:  

9 ml of suspension was sampled through a connection on the top of the reactor by pulling on a syringe 

connected to a sampling tube.  Prior to sampling the syringe and the tube were purged with either air or 

nitrogen (dependant on the half cycle).  The syringe was then sealed and transferred to a 100% N2 

atmosphere glove-box (Jacomex < 0.1ppm oxygen).  The suspension was centrifuged at 4300 rpm for 30 

minutes to separate solid particles from the aqueous phase (particle size left in suspension < 0.2m 

assuming spherical particle geometry and density of 2.65 gcm3 and a fluid density of 1gcm3 calculated from 

Stoke's law).  The resulting supernatant was then filtered to 0.22 m to ensure no large particles were 

disturbed during supernatant removal.  The resulting solution was separated for analysis and the solid 

pellet frozen immediately in liquid nitrogen where it was stored until it was defrosted (in the glove box) to 

allow preparation of pellets for XANES and Mössbauer analysis.  Aqueous samples for cation analysis were 

acidified with HNO3 and stored at 4oC with other samples (TOC and anions) until analysis.  

Analytical methods 

All chemicals were analytical grade from Fluka, Sigma-Aldrich or Merck and were used as received.  

Standards and reagents were prepared with high purity 18 M cm water (Millipore).  

Pore-water analysis:  

Analysis of total Ca, Mn, Fe and As concentrations in the aqueous phase was performed with inductively 

coupled plasma optical emission spectroscopy (ICP-OES) after appropriate dilution and acidification, using a 
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Perkin Elmer OPTIMA 300 DV (Perkin Elmer, France).  Matrix matched standards were used for all 

calibrations. 

DOC and DIC concentrations were determined using a Shimadzu TOC-5000 (Shimadzu, France) using a 

sample dilution of 1:100, all glassware was burned at 400oC for 4 hours before use to avoid contamination. 

Major anions (Chloride, Nitrate and Sulphate) were analysed by ion chromatography using a Metrohm 761 

Compact IC equipped with a conductivity detector, a high capacity analytical separating column (Metrosep 

A Supp 5 -250) and a low capacity guard column (Metrohm A Supp 5).  Samples were injected through a 20 

µL loop into a carbonate-bicarbonate mobile phase (H2CO3/HCO3
- 1 mM / 3.2 mM) with a flow rate of 0.7 

mL/min and an operating backpressure of 10-12 MPa.  This resulted in a total sample run time of 

approximately 30 minutes per sample.   

Eh and pH were recorded constantly within the reactors (every 10 seconds) using Xerolyt Solid polymer 

open junction electrodes.  A 5 point calibration (2, 4, 7, 10, 12) was performed for the pH electrodes at the 

start and end of the experiment showing that the electrode response had not shifted more than 0.02 pH 

units (within the pH range used in the experiments) during the 77 day experimental duration.   

Measured Eh readings were converted to a redox potential with respect to the Standard Hydrogen 

Electrode (SHE) by adding the difference of the measurement of the redox potential in a ZoBells solution 

(3.3 mM K3Fe(CN)6 and 3.3 mM K4Fe(CN)6 with its theoretical value of +428 mV.  The calculated difference 

was equal to the electrode manufacturer specification of 207mV.  The Eh electrode was found to drift by 

4mV upon measuring a ZoBells solution at the end of the 77 day experiment. 

Microbial community analysis:  

In order to monitor changes in the composition of the bacterial community occurring during the course of 

the experiment additional 1 ml suspension samples were taken on days 7 (reduced), 67 (oxic) and 77 

(reduced).  Two gram sub-sections sediment were used for DNA and RNA extractions. Total genomic DNA 

and RNA were extracted using the PowerSoil RNA kit, with the DNA elution accessory (MOBIO, Carlsbad, 

USA). The extractions were performed according to the manufacturer’s recommendations. RNA extractions 

were treated with DNASE and then purified using the RNeasy kit (Qiagen, Hilden, Germany). Prior to 

polymerase chain reaction, the bacterial 16S rRNA gene was reverse transcribed using BioScript reverse-

transcriptase with the GM4 primer(Kane et al., 1993). An initial melting step with only the primers was 

incorporated into the reaction. The 16S rRNA gene for bacteria was amplified from total genomic DNA and 

cDNA using the GM3F(Muyzer et al., 1995) and GM4R primers. PCRs were performed with TaKaRa Ex Taq 

(TaKaRa, Otsu Japan) in 50 μl reactions. PCR reactions were performed with the following cycling 

conditions: 95°C for two minutes, then 30 cycles of 95°C for 30 seconds, 42°C for 30 seconds and 72°C for 3 

minutes, followed by a final incubation step at 72°C for 10 minutes. PCR products were visualized on an 

agarose gel, and the 16S band excised. PCR products were purified using the QIAquick Gel Extraction Kit 

(Qiagen, Hilden, Germany). Two microliters of purified DNA were ligated in the pGEM T-Easy vector 

(Promega, Madison, USA) and transformed into competent E. coli TOP10 cells (Invitrogen, Carlsbad, USA) 

according to the manufacturer’s recommendations. Transformation reactions were plated on LB-agarose 

plates. Overnight cultures were prepared from individual colonies picked from these plates. The 16S inserts 

were amplified using the T7 and SP6 primers. The amplification products were then purified using 

Exonuclease I (NEB, Ipswich, USA) and Shrimp Alkaline Phosphatase. The inserts were then sequenced in 

one direction, with the GM4 primer using the BigDye Terminator v3.1 Cycle Sequencing kit (Applied 

Biosystems, Foster City, USA). Samples were run on an Applied Biosystems 3100 Genetic Analyser (Foster 
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City, USA). Phylogenetic analysis were carried out using the ARB (Ludwig et al., 2004) software package 

with the Silva 98 release database(Pruesse et al., 2007).  

Powder X-ray Diffraction Analysis:  

Powder XRD analysis of soil mineralogy was conducted on the suspension at day 1 and on the resulting 

suspension on day 77.  Less than 2mm, 2m and 0.2m fractions (separated using standard techniques 

(REF) were analysed using a Bruker D5000 equipped with a Kevex Si(Li) solid detector and a Cu +2 

radiation source.  Larger fractions were wet ground (18.2M cm water) in a centrifugal mill.  Intensities 

were recorded at 25oC over a range of 2 – 80° 2 with a step interval of 0.02o 2 and a counting time of 3 

seconds per step.  Full-widths at half-maximum intensity (fwhm) were determined for diffraction maxima 

using the standard EVA program available from Bruker. 

X-ray absorption spectroscopy 

XAS measurements were performed at the As K-edge (11,867 eV) at the GILDA (BM-08) beamline (Pascarelli 

et al., 1996) at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France).  

Beam-line optics includes a fixed exit monochromator with a pair of Si [311] crystals, and a pair of Pd 

coated mirrors for efficient harmonic rejection and vertical focusing of the X-ray beam. A dynamic sagittal 

(horizontal) focusing of the X-ray beam is realized by bending the second monochromator crystal. The 

bending magnet source and beamline optics provide an intense (typical photon flux at 12 KeV ~109 ph·s-1) 

and submillimetric (spot size ~ 500 (h) x 250(v) m) beam on the sample. Considering the vertical aperture 

of the main slits (1mm) and the monochromator crystals, the energy resolution at the As K-edge was about 

0.5 eV.  In order to reduce the thermal contribution to the Debye-Waller factors and to prevent possible 

beam-induced redox reactions, all samples were measured in high vacuum (~10-5 mbars) and at liquid 

nitrogen temperature (77 K). Local structure around As was obtained by quantitative refinements of the 

EXAFS signal. Fits were performed in the back-transformed reciprocal space (k) in the range 4−12 Å-1, using 

a dedicated software package(Monesi et al., 2005) based on MINUIT routines from CERN libraries(James, 

1975). The ATOMS(Ravel, 2001) package was used to generate the atomic clusters centered on the 

absorber atom, which were used as reference structures for calculating theoretical amplitude and phase 

back-scattering functions with the FEFF8 package (Ankudinov et al., 1998). 

Preparation of XAS samples and standards 

As(III) and As(V) adsorbed on pure calcite were used as references for LCF.  Powder X-ray diffraction 

analysis was used to verify the crystallography of CaCO3 (≥99% pure, Fluka Chemie AG, CH) as calcite prior 

to the preparation of standards.  As(III) and As(V) solutions were prepared from As2O3 (≥99.0% pure, Fluka 

anal. Sigma Aldrich, CH) and AsHNa2O4.7H2O (≥98.5% pure, Fluka anal. Sigma Aldrich, CH) respectively.   

As(III) and As(V) standards were prepared in jacketed glass reactors by adding 20mM As2O3 / 30mM 

AsHNa2O4.7H2O to homogeneous suspensions of calcite (50.045g/L, 0.5M) in ultra-pure water (18.2M 

cm).  Anaerobic conditions were maintained during preparation of As(III) standards by sparging of pure N2 

gas.  A constant temperature of 40oC was achieved by use of water jackets and the pH of the suspensions 

was adjusted by addition of HNO3 (65%) and NaOH (3M) as required.  As(III) standards were prepared at pH 

7 and As(V) standards were prepared at pH 6.3.  The suspensions were left to equilibrate under these 

conditions for a period of 6 days. 

Solids were collected from reactor suspension samples and arsenic standards by vacuum filtration through 

0.22m cellulose nitrate membranes inside a 100% N2 atmosphere glove-box (Jacomex < 0.1ppm oxygen).  

The membranes were dried for 24 hours in the glove box before being sealed with kapton tape and fixed to 
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XAS sample holders.  Loaded sample holders were transferred from the glove box to the sample chamber 

using double sealed anaerobic jars. 

57Fe Mössbauer spectroscopy 

Mössbauer spectrometry was performed on solid fractions (obtained by centrifugation) from suspensions 

sampled on days 4, 14, 70 and 77.  The frozen pellets were defrosted in the glove box and deposited on 

polycarbonate sample holders (diameter 1.5 cm). The sample holders were capped and then sealed with an 

epoxy resin.  They were then transferred in the glove box to a protective container (100% N2 atmosphere) 

before being transported for analysis. 

The Mössbauer spectra were recorded at 77 K using a constant acceleration spectrometer and a 57Co 

source diffusing into a rhodium matrix.  Velocity calibrations were carried out using α-Fe foil at room 

temperature (RT, 295 K).  All isomer shifts are reported relative to the α-Fe spectrum obtained at RT. 

Mössbauer spectra were described using the Mosfit fitting model (MOSFIT: Teillet and Varret unpublished 

program).  This fitting model uses a discrete number of independent quadrupolar doublets of Lorentzian 

lines where the line width at half-height Γ (mm s−1), the centre shift δ (mm s−1) and the quadrupole 

splitting ΔEQ (mm s−1) were refined using a least-squared fitting procedure.  

Thermodynamic and kinetic modelling: 

The model, implemented in PHREEQC, simulates multiple cycles of biologically mediated oxidation and 

reduction in a closed system containing organic matter, an active microbial community and typical soil 

mineralogy.  To our knowledge this is the first model to incorporate redox oscillating conditions rather than 

one-time reduction/oxidation events.  Following evidence from 16S rRNA and aqueous chemistry analyses, 

ferric iron and O2 are implemented as TEAs in the model.  Thermodynamic predictions based upon the 

initial soil suspension following sodium-arsenate addition suggest strong super-saturation with respect to 

ferric-arsenate phases which are also often reported in highly contaminated soils (Langmuir et al., 2006).  

The precipitation of such phases is therefore allowed in the model during the equilibration period prior to 

cycling. 

The reactor suspension is modelled as a homogeneous solution in equilibrium with calcite, illite, scorodite 

and the reactor head-space atmosphere.  Redox equilibrium is controlled primarily by the 

hematite/magnetite couple (Pang et al., 2007).  Selected reactions controlling pore-water chemistry are 

rate-controlled and are managed in kinetic blocks each corresponding to 7 day half-cycles.  These reactions 

and kinetic formulations are detailed in Table 1. 

DOC concentration (CH2O) is controlled by a combination of production (bacterial hydrolysis of solid organic 

matter) and consumption/mineralisation processes (aerobic metabolism and heterotrophic iron reduction).  

Degradation of solid organic matter by hydrolysis is described by the first order kinetic (one-G) model (Van 

Cappellen and Wang, 1995).  An exponential decay function, based upon the decreasing lability of solid 

organics, was applied to the rate of bacterial hydrolysis, derived from experimental DOC concentrations. 

Monod kinetic formulation is used to couple DOC mineralisation to reduction of TEAs (O2, Fe(OH)3 and 

FeOOH).  DOC consumption processes are therefore dependent on the concentration of DOC and the 

relevant TEA, a reduction rate constant for each TEA, and an inhibition factor to reflect inhibitory and 

competitive effects in the presence of more efficient TEAs (R3 and R4) (Canavan et al., 2006). O2 

consumption is also subject to an acceleration constant representative of the lag and growth phase of the 
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microbial community adapting to the use of a new TEA.  All constants, reactions and kinetic formulations 

are detailed in Tables 19 and 20. 

Ferric iron reduction is modelled by a combination of nano-lepidocrocite (-FeOOH) and ferrihydrite 

(Fe(OH)3) (Equations R3 and R4).  Both minerals have been previously shown to be subject to microbially 

mediated reductive dissolution during reducing conditions (Bonneville et al., 2004) and oscillate between 

super-saturation and under-saturation during cycling (Figure 77). 

The rate of slow retention is therefore determined by total reducible ferric iron in the system, the 

concentration of aqueous arsenic and a rate constant (R6) resulting in highest retention rates during 

initiation of O2 sparging and hence ferric (hydr)oxide precipitation in the presence of residual aqueous 

arsenic, primarily arsenite, mobilised during the reducing half-cycle. 

Inner sphere sorption of Fe2+ in exchange for H+ on illite edge sites as reported by Géhin et al. (2007) is 

implemented with a log k value of -4.7 and 20 g/L illite. 

Results and Discussion 

Active microbial community during redox-cycling 

Bacterial 16S rRNA sequence libraries were generated from RNA extracted from bioreactor samples taken 

on days, 7, 67 and 77 to identify the active microbial populations during the reducing and oxidising phases, 

which contributed to the observed geochemical changes.  A broad genetic diversity was present in all 

samples, likely due to the variety of energy generating processes possible in such temporally dynamic 

chemical environments.  

Overall similarity between the samples based on phylotype composition was low (<28%), regardless of the 

phase. In general, distinct patterns in 16S rRNA phylotypes based on presence or absence; as result of 

alternating redox conditions were not observed in the libraries. This is unsurprising given that many 

bacteria are capable of operating under both aerobic and anaerobic conditions. Furthermore, the 

metabolisms of many phylotypes detected in this study could not be inferred, due to their low identity to 

properly described bacterial isolates. However, consistent with our experimental results, phylotypes closely 

related to known heterotrophic bacteria (93/127 sequences) were the largest group of bacteria detected 

within the bioreactors. Presumably these bacteria were responsible for aerobic and anaerobic oxidation of 

organic matter within the bioreactors.  Phylotypes related to Fe-cycling bacteria, such as Geobacter and 

Leptothrix were detected, consistent with our experimental results, which show the importance of iron 

redox processes in this soil.  Geobacter sp. are known Fe-reducing bacteria (IRB) (Lovley et al., 1993) and 

likely contributed to Fe(III)-reduction during the reducing half-cycles.  However, these phylotypes were also 

detected during the oxidising half-cycles.  Some Geobacter species when exposed to oxygen are able to use 

it as terminal electron acceptor (Lin et al., 2004).  Therefore, it is possible that these organisms contributed 

to organic matter oxidation during the oxidising half-cycles.  Phylotypes related to Fe-oxidizing bacterium 

Leptothrix sp. (van Veen et al., 1978) were only detected during the oxidising half-cycles, indicating that 

microbial oxidation of Fe(II) was on going during this period.  Pseudomonas related phylotypes were 

detected under both oxidizing and reducing conditions.  This group of bacteria contains metabolically 

diverse groups of heterotrophic bacteria (Moore et al., 2006) including bacteria capable of the oxidation of 

iron(Straub et al., 1996), sulphide (Mahmood et al., 2009) and arsenate reduction (Freikowski et al., 2010).  

However, given the presence of many heterotrophic bacterial species in both oxidizing and reducing 

phases, it is likely that these organisms were responsible for the oxidation of organic matter during both 

phases.
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Table 18:  Breakdown of bacterial 16S rRNA sequences obtained from the reducing and oxidizing half-cycles. 

Phylogenectic affiliation Closest isolate Potential role 
% Identity closest 
isolate RNA 

Beta-, Gammaproteobacteria Hydrogenophaga taeniospiralis, AF078768 Hydrogen oxidizing 98-95 T=0 T=67 T=77 

Beta-, Gammaproteobacteria Leptothrix cholodnii, X97070 Heterothropic, Fe-oxidizing 98-95 0 1 0 

Beta-, Gammaproteobacteria Methyloversatilis universalis, AY436796 Heterotrophic 98-95 0 4 0 

Beta-, Gammaproteobacteria Methylibium aquaticum, DQ664245 Heterotrophic 98 2 0 2 

Beta-, Gammaproteobacteria Nitrosomonas oligotropha, AJ298736 Ammmonia oxidizing 90-95 0 0 0 

Beta-, Gammaproteobacteria Propionivibrio pelophilus, AF06690 Heterotrophic 90-95 6 0 1 

Beta-, Gammaproteobacteria 
Pseudomonas alcaligenes, DQ115541 
Pseudomonas sp. QZ1 

Heterotrophic 
Heterotrophic, sulphide oxidizing 

97-92 
96-92 2 0 0 

Beta-, Gammaproteobacteria Uncultured sulfur-oxidizing symbiont bacterium, AM936001 Sulphide oxidation 95 0 7 7 

Beta-, Gammaproteobacteria Other Beta-, Gammaproteobacteria Unknown   9 1 0 

Alphaproteobacteria Devosia limi, AJ786801 Uknown 98-92 0 2 9 

Alphaproteobacteria Magnetospirillum gryphiswaldense, Y10109 Mixatrophic 92 0 2 0 

Alphaproteobacteria Mesorhizobium metallidurans, AM930381 Heterotrophic 98-92 0 0 5 

Alphaproteobacteria Rhodobium orientis, D30792 Heterotophic 92 1 0 1 

Alphaproteobacteria Roseomonas terrae, EF363716 Heterotophic 98 0 0 0 

Alphaproteobacteria Other Alphaprotoebacteria -   1 1 0 

Deltaproteobacteria Byssovorax cruenta, AJ833647 Heterotophic 92 0 4 0 

Deltaproteobacteria Geobacter ehrlichii, AY155599 Hetertrophic, Iron reducing 92 0 1 1 

Deltaproteobacteria Nannocystis sp. 91213, AY996823 -   0 3 4 

Deltaproteobacteria Geobacter uraniireducens Rf4, EF527427 Heterotrophic, Iron reducing 95 4 1 0 

Deltaproteobacteria Other Deltaproteobacteria -   0 0 7 

CFB Flavobacterium suncheonense, DQ222428 Heterotophic 95 0 4 1 

CFB Terrimonas lutea, AB192292 Heterotophic 95 1 1 0 

CFB Other CFB Heterotophic   8 0 0 

Firmicutes Gracilibacter thermotolerans, DQ117465 Heterotophic 92 1 4 4 

Firmicutes Lysobacter sp. CL4.11,  FM173818 Heterotophic 98 1 0 0 

Firmicutes Filibacter limicola, AJ292316 Heterotophic 95 0 0 0 

Firmicutes Oxobacter pfennigii, X77838 Heterotophic 88 1 0 0 

Firmicutes Sporobacter termitidis, Z4983 Heterotophic 95 1 0 0 

Firmicutes Other Firmicutes Heterotophic   1 0 0 

  Other Bacteria Unknown   2 0 0 

  Sum     41 6 2 
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Figure 74: Maximum likelihood phylogenetic tree showing selected sequences obtained from the reactor (bold), and sequences 

retrieved from the GenBank database. Numbers in brackets are the number of sequences from the reactor at various time points (days 

7, 67 and 77) that shared 97 % or greater identify to the displayed sequence. The bootstrap values at the left are percentages out of 

1000 replicates. Only values over 70 % are shown. Sequences generated in this study were excluded from bootstrap analysis, and 

added to the phylogenetic tree using the parsimony tool in ARB. 
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Figure 75: LEFT: Table showing putative roles for bacteria identified by 16S rRNA sequence analysis at different 

times during this study based on closest cultivated isolate.  RIGHT: Stack plot comparing the relative dominance 

of identified clones in reducing and oxidising half-cycles. 

Aqueous chemistry cycling and cumulative effects 

As supported by the composition of the microbial community, extensive intra-cycle changes to aqueous 

chemistry occurred within the suspension during the experiment.  Degassing of oxygen in the reactor 

headspace was analogous to a natural flooding event.  The reductive processes, and hence Eh decrease, were 

driven by the consumption of successive terminal electron acceptors (TEAs) and DOC by the bacterial 

community present in these samples.  This resulted in simultaneous hydroxide production and hence pH rise.  

The reintroduction of air simulated the initiation of oxidising conditions after a flooding event, whereby 

reduced species are oxidized by biotic and abiotic processes.  Although evidence for reduction of Mn-

(hydr)oxides, nitrate and sulphate was apparent (see Table 23) the oxidative capacity of soils is frequently 

dominated by microbially reducible ferric oxides following exhaustion of residual O2 (Kirk, 2004) and we 

propose that reduction of iron is the dominant reductive process in this soil during flooding.  Measured 

geochemical parameters with time are shown in Figure 76 in addition to the results of thermodynamic and 

kinetic modelling. 

Intra-cycle Eh changes are similar to those exhibited in field based Eh monitoring studies in flooded soils 

(Vorenhout et al., 2004) and cross various redox boundaries (Figure 77).  DOC increases during each reducing 

half-cycle indicate that rates of microbially mediated solubilisation of particulate organic matter (POM) 

exceeded rates of DOC consumption by heterotrophic metabolism.  This DOC increase is also consistent with 
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data from Grybos et al. (2009) who propose that DOC concentrations increase in soil pore-water during 

flooding due to bacterial hydrolysis and pH increase (desorption).  During subsequent oxidising half-cycles, DOC 

is removed from solution presumably due to consumption during respiration as pH change is strongly buffered 

by the presence of calcite.  The amplitude of DOC modulation decreases during successive cycles as BDOC is 

exhausted by bacterial hydrolysis and the labile DOC pool is oxidised to CO2.  This cumulative decrease is 

representative of organic matter consumption in many managed floodplain soils which are subjected to 

successive cycles of phreatic but not fluvial flooding, which limits input of fresh organic rich sediment.  On 

floodplains the alluvial aquifer and the river are strongly inter-dependent and often act as one hydrological 

resource.  In these circumstances, as is the case over much of the Saône floodplain, flood barriers are unable to 

prevent a raise in water levels on the floodplain and hence anoxia during sustained high river levels.  Barriers 

do however prevent overbank or fluvial flooding and the deposition of fresh sediment including labile organic 

matter.  The same cumulative decrease in BDOC is applicable to many other redox-oscillating environments, 

which receive limited sediment input, including paddy fields which are commonly irrigated by pumping of 

shallow groundwater. 

In such situations, as the most labile organic matter is depleted through successive redox cycles, its availability 

may limit the rate of heterotrophic metabolism (Neumann et al., 2010), leading to a decrease in reductive 

processes shown to be responsible for arsenic mobilisation (Islam et al., 2004). 

Pore-water Fe2+concentrations remained low (< 70 M) throughout the experiment despite evidence indicative 

of iron reduction.  Thermodynamic predictions suggest that this is due to the strong stability of magnetite 

which remains supersaturated with respect to the reactor suspension at all times (Figure 77).  This prediction is 

supported by a wealth of studies on IRB where nano-magnetite is often the final product of reduction (Coker et 

al., 2008).  Additionally fast sorption of Fe2+ to a variety of mineral surfaces has been shown to be kinetically 

favourable compared to precipitation of ferrous minerals at circumneutral to high pH (Charlet et al., 1998).  

Metal-hydr(oxides) and phyllosilicate minerals (Jaisi et al., 2008) have been shown to offer substantial sorbent 

surfaces for Fe2+
(aq) with phyllosilicates becoming increasingly important at high pH.  Illite and chlorite were 

identified by XRD and analysis and constitute a high proportion of the soil mineral content in this and many 

other flood-plain soils. 

As precipitation of ferrous minerals such as FeS(s) and FeCO3(s) has been shown to limit arsenic mobility in 

reducing environments (Charlet et al., 2011) fast sorption of Fe2+ to redox stable minerals such as recalcitrant 

metal oxides and phyllosilicates may increase arsenic mobility during reducing conditions.  

Intra-cycle mobilisation of arsenic was measured during each reducing half-cycle (up to 335 M), however, 

upon re-establishment of oxidising conditions As(aq) was re-immobilised, returning to a base-level of 

approximately 36 M close to the analytical limit of quantification (Apostol et al., 2009) (28 M).  During 

reducing half-cycles the most thermodynamically dominant arsenic species are arsenite anions (H3AsO3 and H-

2AsO3
-) whereas the conditions established during oxidising half cycles favour the formation of arsenate 

(HAsO4
2-).  Arsenite is often considered to be more mobile than arsenate (Borch et al., 2010) due its neutral 

charge (pKa1 9.2) and hence relatively limited affinity with positively charged surfaces present at acidic pH 

compared to arsenate which benefits from electrostatic effects.  However, at circumneutral to high pH, soil 

sorption capacities for arsenite are often greater than for arsenate (Dixit and Hering, 2003) as mineral surfaces 

become more negatively charged.  Transition from arsenate to arsenite during reducing half-cycles does not 
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therefore satisfactorily resolve observed arsenic mobilisation in calcareous soils at moderate to high pH.  

Alternative mechanisms shown to release arsenic during reducing conditions include reductive dissolution of 

As-bearing iron (hydr)oxide (Erbs et al., 2010) and competitive sorption with DOC (Bauer and Blodau, 2006), 

and it is these mechanisms which we consider most influence measured changes in intra-cycle arsenic mobility. 
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Figure 76:  Measured (black) and modelled (red) DOC, Eh, pH, Fe(s) (grams of reducible lepidocrocite and ferrihydrite), Fe(aq) and As(aq) data with time 

during reactor experiments.  Sampling points for XANES and microbial community analysis are shown on the Eh curve (XANES = open blue squares, 16S 

rRNA = open green circles). 
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In addition to intra-cycle changes, cumulative effects of redox cycling on arsenic mobility are present, and have 

not to our knowledge been previously described.  Whilst As concentrations during oxidising half-cycles 

remained relatively constant, successive redox-cycles resulted in a 45% decrease in mobility between the first 

and fifth reducing half-cycles.  Potential causes for the measured decrease in arsenic mobility include: i) a 

decrease in competition for sorption sites from low molecular weight DOC(Bauer and Blodau, 2006), ii) an 

increase in the proportion of As that is co-precipitated, or kinetically sorbed, with iron (hydr)oxide phases, or, 

alternatively, iii) precipitation of As mineral phases. 

In order to assess the validity of the hypotheses that co-precipitation with iron oxide minerals or precipitation 

of discrete arsenic phases may be important processes responsible for measured arsenic attenuation, a model 

of redox cycling in the bioreactor was developed.  Competitive sorption with DOC is not considered in this 

model due to the complexity of natural organic matter, which may also contribute to the measured decrease in 

arsenic mobility. 

Thermodynamic and kinetic modelling 

Intra-cycle oscillation of aqueous arsenic concentration is effectively reproduced by the precipitation and 

dissolution of ferric-arsenate phases following thermodynamic predictions (Figure 77) although it is probable 

that this process is also microbially mediated (Cummings et al., 1999).  With successive cycles, and hence a 

decrease in DOC availability, iron reduction rate decreases and hence a lower quantity of ferric arsenate 

dissolves with each cycle.  The measured slow inter-cycle attenuation of As (R5) is successfully captured 

implementing a arsenic co-precipitation factor, based on work by Erbs et al. (2010) who demonstrate that As 

co-precipitated with ferrihydrite is significantly less mobile than adsorbed arsenic upon development of 

reducing conditions. 

The model was able to reproduce with good accuracy the measured chemical parameters, except pH which is 

over predicted.  We attribute this failing of the model to problems in estimating fluctuating CO2(aq) 

concentrations due to a combination of microbial metabolism, slow diffusion of gas to the headspace and 

subsequent impacts on the carbonate buffering system. 

The model demonstrates that the arsenic attenuation measured during redox cycling in batch experiments may 

be successfully described by a combination of co-precipitation with ferric-(hydr)oxides and a decrease in ferric 

arsenate dissolution due to depletion of BDOC.  This result emphasises the importance of BDOC in arsenic 

contaminated soils supporting the recent findings of Neumann et al (Neumann et al., 2010) and Benner 

(Benner, 2010) and indicates the importance of hydrological management on floodplains as a control on 

arsenic mobility.  
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Table 19: Key reactions and kinetic formulations used in the model. 

Description Reaction Kinetic formulation ID 

Hydrolysis of 

particulate 

organic 

matter 

          

      
→                                 

R1 

Respiration 
                                    (

    

            
) 

R2 

Reduction of 

Ferrihydrite 

             

                        
                 (

         

                    
) (

   

         
) 

R3 

Reduction of 

Lepidocrocit

e 

           

                       
                (

       

                  
) (

   

         
) 

 

R4 

Slow 

adsorption 

of Arsenic 

                             
 

                                    

R5 

Oxidation of 

Fe2+ 
                                                  

R6 
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Table 20:  Reaction parameters used in the model corresponding to reactions in Table 19.  a: Parameter values were obtained as follow: L, from 

literature; C, constrained by experimental data; M, derived by model fitting. 

 

Parameter Value Unit Source Ref Description 

R0 5×10-3 mol s-1 C  Initial  POM hydrolysis rate 

 1.5×10-7 - C  Attenuation constant for POM hydrolysis  

R  25 - M  Acceleration factor for R1  

kom 6×10-8 s-1 M  DOC degradation rate constant 

Kin 24 M L 
(Van Cappellen 
and Wang, 1995) 

Inhibition of Fe(III) reduction, (R3 and 4) 

Km (O2) 1 M L 
(Van Cappellen 
and Wang, 1995) 

Half-saturation for oxic respiration (R2) 

Km(Ferr) 2.6×10-2 mol L-1 L 
(Van Cappellen 
and Wang, 1995) 

Half-saturation for Fe(OH)3 reduction (R3) 

Km(Lepi) 2.2×10-2 mol L-1  M  Half-saturation for FeOOH reduction (R4) 

 
  Range   

kimob 1.3×10-6 M-1 s-1 L  (1.3×10-4)  
(Couture et al., 
2010) 

Rate constant for As co-precipitation with Fe(III)oxyhydoxides 
(R5) 

kFeOx 5×10-4 M-1 s-1 L  5×10-4 −1×10-8  
(Canavan et al., 
2006) 

Rate constant for Fe(II) oxidation by O2 (R6) 
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Figure 77: A: Pourbaix diagram of the Fe, As, CO2 and H2O system in the reactor suspension with Fe as the 

principal species.  Point data are measured Eh and pH couples from one full cycle.  Dominant stability fields are 

shown with black solid lines and subdominant fields with red dashed lines. B: Saturation indexes of ferrihydrite 

(solid red line), scorodite (short dashed mustard line), magnetite (long dashed black line), lepidocrocite 

(dot/dashed line) and calcium arsenate (dotted line) with time during reactor experiments. 

Spectroscopic investigation: XAS 

To investigate the effect of cyclic redox conditions on solid arsenic oxidation state, X-ray absorption spectra 

were recorded at the As K-edge on samples taken at the end of the first and last oxidising and reducing cycles 

(Figure 78).  Linear Combination Fitting (LCF) of the samples’ XANES spectra using As(III) and As(V) reference 

spectra, shows that all spectra contain a mix of tri-valent and penta-valent arsenic species, with an increasing 

ratio of As(III)/As(V) during each reducing cycle.  This is consistent with the dissolution of As(V)-bearing 

minerals predicted by the model.   

EXAFS refinements revealed the average local structure around As.  In all samples two As-O bonds of differing 

length (~1.7 and ~1.8 Å) were observed.  This structure is compatible with a mixture of As(V) and As(III) 

oxyanions.  Features beyond the first coordination shell were negligibly weak, indicative of an amorphous or 

highly disordered structure.  This is probably due to a combination of outer-sphere sorption and incorporation 

into poorly crystalline phases such as amorphous ferric arsenate.  The lack of further coordination shells also 

confirms that arsenite uptake into the calcite lattice, observed in more pure carbonate systems (Bardelli et al., 
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2011), does not occur to a significant extent in more heterogeneous soil environments.  The full results of 

linear combination fitting, coordination numbers and bond lengths are provided in the Table 21 information. 

 

Figure 78: Arsenic K-edge (11,867 eV) XANES spectra recorded at 77K. Spectra from suspension solids are 

coloured according to time of sampling: green = end of reducing cycle, red = end of oxidising cycle.   As(III) and 

As(V) adsorbed on pure calcite were used as references (black and blue curves, respectively).  An estimation of 

the As(III) and As(V) contributions to natural samples derived from linear combination fitting is shown above 

each spectrum (the error is about 5%).  Dashed lines are the linear combination fits. 
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Following successive cycles, the ratio of As(III)/As(V) remained constant during oxidising half-cycles, however, 

decreased considerably during reducing half-cycles.  This result is consistent with the model’s prediction of 

arsenate accumulation in a poorly ordered ferric arsenate phase but inconsistent with the immobilisation of 

arsenite via co-precipitation.  The model’s over-prediction of As(III)/As(V) may be due to the rapid oxidation of 

arsenite during co-precipitation by radical species produced by fenton like reactions occurring during oxidation 

of Fe2+ by O2 (Ona-Nguema et al., 2010).  These radical species dramatically accelerate arsenite oxidation at 

ferrihydrite surfaces (Ona-Nguema et al., 2010) but are not included in the model. 

Table 21: Structural parameters (CN, co-ordination numbers; R, atomic distances; 2 Debye-Waller factors) and 

As(III), As(V) proportion derived from LCF using As(III) and As(V) adsorbed on pure calcite as references.  The 

numbers within parenthesis are the errors on the last digit. The error on the determination on the As(III) and 

As(V) contributions is estimated to be 5-10%. The last two columns report the sum () of the As(V) and As(III) 

contributions and the values of the reduced square (
2) of the LCF, both indicating good matches with the 

experimental spectra. 

Samples path CN R 
2
 As(III)  

2
 

(Å) (Å
2
 · 10

3
) As(V) 

End of first reducing cycle As-O1 1.8(5) 1.670(6) 1.1(5) 64 102 0.0031 

As-O2 2.2(5) 1.801(6)  38 

End of first oxidising cycle As-O1 3.2(5) 1.681(8) 1.2(6) 26 102 0.0029 

As-O2 0.8(5) 1.795(9)  76 

End of last oxidising cycle As-O1 2.7(5) 1.663(8) 1.8(6) 24 100 0.0041 

As-O2 1.2(5) 1.776(9)  76 

End of last reducing cycle As-O1 0.1(5) 1.675(2) 1.0(5) 49 102 0.004 

As-O2 3.9(5) 1.788(5)  53 

Standards    
 

   

As(V) adsorbed on calcite As-O 4 1.676(3) 2.2(2) As(V)   

As(III) adsorbed on calcite As-O 3 1.775(3) 3.5(3) As(III)   

Ferrihydrite - Fe(OH)3 As-O 4 1.69(2) 1.4(2) As(V)   

 

Spectroscopic investigation: 57Fe Mössbauer 

The paramagnetic Mössbauer spectrum obtained on day 77 is shown in Figure 79 with corresponding hyperfine 

parameters for all spectra provided in Table 22.  The spectra can all be successfully modelled with 5 

components (2 sextuplets and 3 doublets).  Hyperfine parameters for both sextuplets correspond well to those 

previously recorded for nano-crystalline FeOOH (Fabris et al., 1986; Vandenberghe et al., 1986; Murad, 1987), 

whereas doublets appear to represent Fe(II) and Fe(III) components of iron rich clay minerals identified during 

powder XRD analysis (illite and chlorite)(Coey, 1975; Blaauw et al., 1980; Taneja and Jones, 1984; Das et al., 

1986).  This data strongly supports the presence of nano-crystalline ferric hydroxide minerals within the soil 

and hence their inclusion in the model despite their absence from XRD spectra.  
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Figure 79:  Mössbauer spectra obtained on day 77 at T = 77 K shown together with modelled hyperfine 

contributions.  Green = averaged sextuplet contribution corresponding to Fe(III) present in ferric hydroxides, 

Red = structural Fe(III) present in clays, Blue = averaged doublet contribution corresponding to structural Fe(II) 

present in clays. 

However, limited variation is observed between Mössbauer spectra obtained during oxidising and reducing 

cycles or between the first and last samples analysed.  This is in contrast to previous wet redox cycling 

(Thompson et al., 2006) and classic flooding draining cycling experiments (McGeehan, 1998) where clear 

differences were apparent in the short range order of Fe in FeOOH.  The effect of redox cycling on structure 

and crystallinity of iron (hydr)oxides is still poorly understood with seemingly conflicting results in the limited 

literature available.  Whilst some studies indicate that the effect of flooding and draining result in decreases to 

crystallinity and hence an increasing surface area and sorption of trace contaminants (McGeehan, 1998), other 

studies suggest the opposite to be true with repetitive cycling leading to increases in FeOOH crystallinity which 

may result in increased contaminant mobility during oxic phases due to lower total reactive surface area 

(Thompson et al., 2006).  It is thought that the lack of prominent intercycle changes to Fe(II/III) ratios is to the 

short periodicity of reducing and oxidising cycles within this study (14 days for 1 full cycle) and that therefore 

the magnitude of iron reduction and subsequent oxidation was limited compared to the total FeOOH fraction. 



133 
 

Indeed this corresponds well to the prediction of the model that only a small fraction of the ferric iron present 

is reduced with each cycle but that even this small amount of iron reduction can lead to dramatic changes in 

arsenic mobility.  Unfortunately the lack of sufficient iron cycling to affect bulk properties of the FeOOH iron 

bearing fraction precludes confirmation or rejection of crystallinity increases or decreases observed in previous 

studies. 

 

Figure 80:  Hyperfine parameters of modeled contributions to soil 57Fe Mössbauer spectra compared to 
literature values for various iron mineral components.  Green squares correspond to modeled sextuplet 
components, Red circles and blue triangles correspond to modeled doublet components.  Grey diamonds 
correspond to literature values of FeOOH, grey triangles correspond to structural Fe(III) in clays and grey circles 
correspond to structural Fe(II) in clays. 
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Table 22: Mössbauer hyperfine parameters of the spectrum presented in Figure 79 in addition to spectra 

obtained on days 4, 14 and 70. 

Sample 
day 

Component Isomer shift 
(mm/s) 

G 
(mm/s) 

Quadrupole 
Splitting (mm/s) 

Hyperfine 
field (kOe) 

Relative 
Area (%) 

4 Structural Fe(III) in 
clays 

0.43 0.65 0.62 
 

49 

Structural Fe(II) in clays 1.26 0.38 2.82  17 

Fe(III) in FeOOH 0.44 0.60 -0.28 490 22 

Fe(III) in FeOOH 0.27 0.60 -0.20 434 12 

14 Structural Fe(III) in 
clays 

0.44 0.63 0.65 
 

51 

Structural Fe(II) in clays 1.21 0.43 2.40  7 

Structural Fe(II) in clays 1.27 0.33 2.90  15 

Fe(III) in FeOOH 0.50 0.55 -0.11 484 18 

Fe(III) in FeOOH 0.38 0.60 -0.43 446 9 

70 Structural Fe(III) in 
clays 

0.43 0.62 0.60 
 

46 

Structural Fe(II) in clays 1.23 0.40 2.75  16 

Structural Fe(II) in clays 1.26 0.40 3.08  7 

Fe(III) in FeOOH 0.47 0.60 -0.20 485 24 

Fe(III) in FeOOH 0.60 0.60 -0.15 441 7 

77 Structural Fe(III) in 
clays 

0.45 0.83 0.61 

 

49 

Structural Fe(II) in clays 1.18 0.44 2.59 

 

11 

Structural Fe(II) in clays 1.27 0.46 3.14 

 

10 

Fe(III) in FeOOH 0.5 0.60 -0.32 489 19 

Fe(III) in FeOOH 0.48 0.60 -0.27 436 11 

Additional reductive processes 

The variation in Eh, and to a lesser extent pH, during cycling experiments causes transitions between 

thermodynamically dominant species for many elements and hence predicts the microbial use of numerous 

TEAs in addition to ferric iron.  Pourbaix diagrams (Figure 81) show the stability fields for the manganese, 

nitrogen and sulphate systems in the reactor suspension during cycling experiments illustrating the implicated 

redox couples; MnO2.Mn2+, NO3
-.NH4

+ and SO4
2-.HS-. 
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Figure 81: Eh-pH diagrams of LEFT: the Mn, H2O, CO2 system, CENTER: the N, H2O, CO2 system and RIGHT: the S, H2O, CO2 system. 
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Table 23:  Summary of other possible reductive processes within the reactor suspension and the 

experimental evidence to support or reject reduction during the experiment. 

Redox couple Evidence for reduction Strength of evidence Figure 

MnO2.Mn
2+

 Increasing Mn
2+

 in 

solution during each 

reducing cycle. 

Moderate. A clear pattern 

of Mn release and 

removal corresponds well 

to reducing and oxidising 

cycles. The release of 

Mn
2+

 is likely due to the 

dissolution of Mn(IV)-

oxides but may also be 

partially a result of cation 

exchange with Ca
2+

 which 

also increases due to 

dissolving CaCO3 during 

reducing cycles due to the 

absence of CO2 in the 

headspace. 

Figure 82 

NO3
-
.NH4

+
 Decrease of nitrate 

concentrations during 

reducing cycles. 

Weak.  Changes in nitrate 

concentration are small 

and do not correspond 

well to reducing and 

oxidising cycles.  Total 

nitrate levels are low 

throughout the 

experiment. 

Figure 83 

SO4
2-

.HS
-
 Slight decreases to 

aqueous sulphate 

concentrations during 

some reducing cycles and 

the activity of close 

relatives of microbial 

species known to reduce 

sulphate. 

Moderate/Weak.  The 

composition of the 

microbial community 

would suggest that 

sulphate reduction is an 

important process within 

this soil.  However, during 

the reactor experiments 

sulphate reduction 

appears to have been 

limited probably due to 

the length of the reducing 

cycles/persistence of 

more energetically 

favourable terminal 

electron acceptors.   

Figure 83 
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These reductive processes were considered to be of secondary significance compared to reduction 

of ferric iron during cycling but experimental evidence for these processes is summarized in Table 5.  

 

Figure 82: Manganese and calcium pore-water concentration with time in the reactor suspension. 

 

Figure 83: Sulphate and nitrate pore-water concentration with time in the reactor suspension.  

Nitrate concentration does not systematically decrease with reducing half cycles whereas a limited 

sulphate decrease is recorded. 
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Calcite and the carbonate system: 

A cumulative increase of Ca2+ in solution implies the net dissolution of calcite due to H+ production in 

oxidising half-cycles, consistent with decalcification experienced naturally in many soils (Van Den 

Berg and Loch, 2000).  Net decalcification processes diminish the probability that co-precipitation 

with calcite is responsible for arsenic attenuation. Furthermore, arsenic is rarely found in association 

with calcite in contaminated soils (Smedley and Kinniburgh, 2002).  In natural systems decreased 

degassing of CO2 occurs during flooding due to limited diffusion through the soil and overlying water 

column leading to higher pCO2 and lower pH in soil solution.  As aqueous calcium from dissolving 

calcite is often then leached from the soil with draining flood water, the soil solution remains under-

saturated with respect to calcite upon subsequent CO2 degassing and pH rise.  Whilst pCO2 was not 

controlled in this experiment and leaching of Ca2+ could not occur due to the nature of the closed 

solid/aqueous system, the constant degassing of CO2 and dissolution of calcite is consistent with 

natural decalcification processes. 

Conclusions 
In addition to confirming frequently observed changes to arsenic mobility under reduced and 

oxidised conditions (Frohne et al., 2011) we have shown through batch experiments that successive 

cycling of redox conditions in arsenic contaminated soils, analogous to flooding and draining, may 

result in long term changes to arsenic mobility.  Previous studies indicate that decreasing As 

concentrations in pore water during successive cycles of flooding and draining may be due to 

physical transport of arsenic away from soil in receding floodwater (Roberts et al., 2010).  In this 

instance, evidence from thermodynamic and kinetic modelling, complemented by spectroscopy 

indicate that decreased mobility of arsenic by 45% during reducing conditions in a closed system can 

be attributed to co-precipitation processes and depletion of BDOC due to lack of solid organic matter 

recharge, resulting in decreased rates of heterotrophic iron reduction and ferric arsenate 

dissolution.  We have demonstrated that by using a combination of genetic analyses, geochemical 

modelling and spectroscopic tools to complement batch and field studies it is possible to increase 

our understanding of dynamic natural systems over longer time-periods.  Further research into the 

influence of factors such as periodicity, hydrologic regime and mineralogical changes on 

contaminant mobility under oscillating redox conditions is clearly required, as redox oscillating 

conditions are prevalent in a variety of arsenic contaminated environments. 
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Chapter 6: Experimental Redox cycling of Callovo-Oxfordian suspensions 

contaminated with Cr, As, Hg and U 

Abstract 

Batch experiments in redox stat reactors were conducted to investigate the periodic and cumulative 

effects of temporal redox oscillations on the mobility of redox sensitive contaminants in argillaceous 

marl substrates such as those proposed as final geological barriers in nuclear waste repositories. 

Experiments were designed to simulate redox oscillations in the substrate surrounding a near 

surface low level long lived nuclear waste repository due to seasonal changes in groundwater level.  

Investigations consisted of the temporal oscillation of redox conditions within powdered Callovo-

Oxfordian suspensions in three reactors doped with oxidised Cr, As, Hg and U (R1), As (R2) and Cr 

(R3).  Suspensions were subjected to a total of three full redox cycles entailing phases of compressed 

air sparing, nitrogen sparing and AH2DS2- addition.  AH2DS2- was added as a bulk reductant to 

simulate microbial reduction in lieu of active chemolithotrophic bacteria which are ubiquitous in 

natural sediments. 

Redox changes between -215 and +340 mV resulted in strong intra-cycle changes in the mobility of 

As, Cr and U with additional cumulative effects apparent for As and Cr.  Redox oscillations within this 

range did not result in changes to aqueous Hg concentration subsequent to the initial period of 

sorption. 

Introduction 

Low level long lived nuclear waste (LL-LLW) in France accounts for 7.2% of all nuclear waste by 

volume but less than 0.009% of total radioactivity (ANDRA, 2010).  Currently such waste is stored in 

surface facilities pending a decision on long term disposal options.  Due to the large volumes of 

waste concerned (estimated at 200,000 m3 following processing (ANDRA, 2010)) the high costs 

associated with the deep geological storage and the lower risk posed by low level waste, alternative 

near surface storage strategies are being investigated.  Solutions proposed by the French national 

nuclear waste management agency (ANDRA) for definitive disposal of LL-LLW include backfilled or 

excavated near surface repositories in low permeability clay rich layers with a depth of at least 50m.  

ANDRA’s projections indicate that a working definitive solution for the storage of LL-LLW should be 

available by 2019. 

The risks posed by LL-LLW are two-fold.  LL-LLW is defined by ANDRA (ANDRA, 2009) as radioactive 

waste with an activity between 1 and 100,000 Bq per gram which contains isotopes with a half live 

greater than 30.07 years (137Cs) although such waste commonly contains radioisotopes with far 

longer half-lives i.e. 1601 years for 226Ra.  Such waste will therefore remain a limited radioactive 

hazard emitting alpha and beta radiation for thousands of years following disposal.  Secondly, LL-

LLW is often associated with highly toxic non-radioactive inorganic contaminants which will retain 

their toxicity indefinitely (ANDRA, 2010). 

The majority of LL-LLW in France is composed of radium bearing and graphite waste, resulting from 

processing of minerals for rare earth elements used in electronics and fine metallurgy and 

decommissioning of first generation nuclear reactors which are moderated with the use of solid 
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graphite rods.  However, radioactive bituminous waste has also been proposed to fall within this 

category (ANDRA, 2010). 

Associated toxic elements of concern to ANDRA include Cd, Sb, B, Cr, As, Hg and U (ANDRA, 2010).  

Many of these inorganic contaminants including Sb, Cr, As, Hg and U are highly sensitive to changes 

in redox conditions as discussed in Chapter 1.  Whilst deep geological storage results in conditions 

which are expected to remain anoxic for extended periods of time (ANDRA, 2005), surface storage 

will likely result in far more dynamic redox conditions due to potential changes in water table level 

around the repository during its lifespan.  Therefore, in a similar way to floodplain top-soils 

investigated in Chapter 5, contaminants in near surface storage repositories may be subject to cyclic 

redox conditions in the future following the eventual failure of engineered concrete and metal 

containers.  This chapter aims to elucidate the possible intra cycle and cumulative changes to 

inorganic contaminant speciation and mobility associated with cyclic redox conditions in a clay rich 

matrix. 

Materials and Methods 

Redox control in experimental systems 

Redox conditions were controlled in the three clay/contaminant suspensions using a combination of 

headspace gas control (N2 or compressed air), as implemented in previous experiments e.g. Patrick 

et al., (1973); Thompson et al., (2006) and Chapter 5, and injection of an aqueous hydroquinone 

AH2DS2- as a bulk reductant substituting for microbial reduction processes. 

Dissolved O2 control 

The simplest and most dramatic control on redox conditions within the reactor suspensions was 

achieved by modulating the concentration of dissolved oxygen in the aqueous phase.  During 

oxidizing cycles the reactor suspension was sparged with compressed air at a rate of 30ml min-1 

resulting in the diffusion of oxygen from bubbles and the headspace (approximately 20.95% oxygen) 

to the suspension where it acted as an electron acceptor for redox reactions with reduced solid and 

aqueous species e.g. Fe(II), S-2, As(III) etc.  This lead to a rise in Eh measured at the electrode.  During 

reducing cycles pure N2 was passed through the headspace at a rate of 30ml min-1 causing the 

diffusion of dissolved oxygen from the suspension to the N2 headspace and hence the rapid 

depletion of dissolved oxygen in the aqueous phase leading to a drop in measured Eh.  The reactor 

and gas flow Eh control system used during these experiments is illustrated in Figure 73. 

AQDS2- and AH2DS2- addition as an organic matter substitute and bulk reductant 

Whilst depletion of dissolved oxygen in the aqueous phase significantly reduced the oxidizing 

capacity of the solution, the drop in potential of the solution was not sufficient to cause the 

reduction of some important oxidized species such as Fe(III) in the absence of an additional electron 

donor.   In natural surface soils and sediments further reduction is driven either directly by natural 

organic matter (NOM) or by the microbial community which upon oxygen depletion use 

progressively less efficient electron acceptors such as nitrate, ferric iron and sulphate to oxidize 

reduced carbon in organic matter (e.g. glucose, where the oxidation state of carbon is 0 is oxidized 

to CO2 where the oxidation state of carbon is +4).  NOM is also known to function as a catalyst  

during redox reactions, shuttling electrons between bulk reductants (or microorganisms) and 

oxidized solid or surface sorbed aqueous species (e.g. As(V), Cr(VI), Fe(III)) (Wolfe and Macalady, 
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1992; Lovley et al., 1996; Newman and Kolter, 2000; Struyk and Sposito, 2001).  Numerous studies 

suggest that this redox shuttling behaviour is due to quinone like functional groups in which appear 

to be ubiquitous in natural organic matter (Scott et al., 1999; Struyk and Sposito, 2001; Cory and 

McKnight, 2005).  As these experiments were conducted in the absence of an active anaerobic 

microbial community which is normally found in natural surface sediments (Hansel et al., 2008), 

reduction potential was controlled by the direct injection of the hydroquinone, 9,10-anthraquinol 2-

6-disulfonate (AH2DS2-) which is the reduced form of 9,10-anthraquinone-2,6-disulfonate (AQDS2-).  

AQDS2- is often used as a substitute for electron shuttling NOM in model mineral/microbial systems 

(Lovley et al., 1996). 

The reduction of AQDS2- to AH2DS2- (via a semi-quinone radical species AHDS3- at high pH) is 

reversible and involves the transfer of 2 electrons and 2 protons (shown in Figure 84). 

The experimentally derived 2 electron reduction 

potential for AQDS2-/AH2DS2- (Eh0) is 0.228 V versus 

the standard hydrogen electrode (SHE) (Rosso et 

al., 2004), therefore -0.160 V at pH 7.  This 

maximum reduction potential is similar to those 

documented for humic substances in the literature 

(Straub and Schink, 2003; Bauer et al., 2007).  This 

Eh is well within the limits of measured potentials 

in reduced flooded natural soils and sediments 

(Mansfeldt, 2003; Vorenhout et al., 2004) or in 

landfill leachate plumes (Lyngkilde and 

Christensen, 1992).  The direct addition of small 

quantities of AH2DS2- therefore allows  a 

conservative simulation of natural reducing 

conditions whilst avoiding the use of other strong 

chemical reductants such as sodium dithionite 

which have been shown to not accurately 

simulate reduction processes in natural systems 

(Ribeiro et al., 2009; Stucki, 2011).  Whilst the reduction potential for AH2DS2- does allow reduction 

of ferric iron it is not low enough to favour sulphate reduction of methane production. 

A total of five AH2DS2- additions were applied to each reactor during the experimental period on 

days 6, 13, 20, 27 and 34.  Each addition consisted of 10 mL of 30mM L-1 AH2DS2- solution (with the 

exception of day 27 in reactor 1 when 30 mL of 30 mM L-1 solution was added to test the influence of 

AH2DS2- quantity or reductive potential was limiting reductive processes) prepared from disodium 

AQDS salt and reduced following the method detailed below. 

Reduction of AQDS2- to AH2DS2- by Hydrogen 

Reduction of AQDS2- may be achieved chemically, electrochemically, or biologically (Coates et al., 

1998; Lovley et al., 1999; Aeschbacher, 2007).  Electrochemical and chemical reduction procedures 

were trialled prior to the start of experiments and for reasons of practicality, chemical reduction was 

selected.  It was found that while both trialled methods worked well chemical reduction was 

Figure 84: Two electron reduction of AQDS2- to 

AH2DS2- modified from Aeschbacher 2007. 
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achieved more rapidly using simpler apparatus and without the need for supporting electrolytes 

which reduced the solubility of AH2DS2-. 

As AH2DS2- was used as a bulk reductant in these experiments as opposed to its most common use as 

an electron shuttle (Lovley et al., 1996) highly concentrated 30mM L-1 solutions were prepared.  As 

solubility of AQDS2- is less than that of AH2DS2- and is limited further by the presence of additional 

cations in solution, AQDS2- solutions were prepared by dissolving 98% pure disodium AQDS salt 

purchased from TCI Europe (Belgium) in 18.2mΩ water at 70oC in an ultrasonic bath.  Once fully 

dissolved the warm solution was transferred immediately to a reaction vessel containing palladium 

coated pellets in order to avoid re-precipitation of disodium AQDS due to cooling.  The reaction 

vessel was sealed with two unidirectional valves, the first to allow the entry of hydrogen gas into the 

bottom of the reactor and the second to allow for the exhaust of hydrogen from the reactor 

headspace.  The solution was sparged with hydrogen gas and the solution changed from colourless 

to bright red indicative of the formation of AH2DS2-.  The reduced solution was then extracted from 

the reaction vessel via syringe through a rubber septum, sealed and transferred to a 100% N2 

atmosphere glove box where it was filtered to 0.22µm. 

Suspension composition 

Solid phase preparation 

A core sample of the Jurassic COx clay from the Parisian basin in northern France was used as the 

solid phase in the reactor suspensions.  The core (EST 40952) was extracted in ANDRA’s laboratory of 

Meuse/Haute-Marne.  Prior to addition to the reactors this core was broken up and ground in an 

agate ball mill until all material passed a 0.63µm sieve.  As each reactor had a total suspension 

capacity of 1 L, ~2 g of clay was used to give a clay loading of 2 g L-1.  Precise clay loadings are 

detailed in Table 24. 

Table 24:  Precise clay loadings in each reactor. 

Reactor Clay loading g L-1 

1 Cr, As, Hg, U 2.0030 

2 As 2.0032 

3 Cr 2.0028 

Solid phase chemical and mineralogical properties 

Although the mineralogy of core EST 40952 has not been characterized directly, extensive 

mineralogical investigation of the COx layer has been conducted previously (ANDRA, 2005). 

The COx is composed of three main mineralogical phases: 

Clays (25-60% of the total rock mass) comprising of illite, smectite, micas, kaolinite and chlorite. 

Carbonates – (20-40% of the total rock mass) consisting primarily of calcite with a few per cent of 

dolomite. 

Quartz – (20-30% of the total rock mass) with a fine particle size distribution consisting mostly of silt. 

In addition to the bulk mineralogical components, accessory phases such as pyrite (2-3wt% total rock 

mass maximum) are also present (Elion, 2005). 
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X-ray diffraction and total elemental concentration analyses from cores close to EST 40952 indicate 

that the proportion of phyllosilicates in this layer is comparatively high, that background 

contaminant concentrations are low to moderate and that little lateral variation occurs within the 

layer (Made, 2010).    The range in mineralogy of samples and their background contaminant 

concentrations analysed from borehole PGZ 1001 are shown in Table 25 and Table 26. 

Table 25: Mineralogical composition of solid phase. From Made (2010). 

Mineral Percent of rock mass (wt. %) 

Phyllosilicates 50-55 

Mica/illite 21-24 

Illite/Smectite (R=1 + R=0) 24-27 

Kaolinite 2-4 

Chlorite 2-4 

Tectosilicates 23-25 

Quartz 20-22 

Carbonates 18-20 

Calcite 15-18 

Pyrite <1.5 

 

Table 26:  Background contaminant concentrations in solid phase prior to additions. From Made 
(2010). 

Contaminant Concentration,  mg kg-1 

Arsenic 20 

Chromium 90-100 

Uranium 2 

 

Reductive capacity 

Redox conditions in the COx are mildly reducing (pore water Eh of between -180 and -150mV) and 

are thought to be buffered in this range by pyrite/Fe(III) and pyrite/sulphate redox couples 

(EURATOM, 2010).  In addition the COx contains up to 2% reduced organic matter and reactive 

surface adsorbed Fe(II).  These characteristics give the solid phase used in these experiments a 

moderate initial reductive capacity. 

Contaminant solution preparation 

A 1L solution containing all contaminants to be investigated was prepared for each reactor under 

oxic conditions and adjusted to pH 7 using dilute HCl and NaOH.  These solutions were added to the 

reactors before the ground clay material to avoid super saturation and precipitation of contaminant 

mineral phases prior to the start of Eh controlled experiments.   

Chromium, arsenic and uranium were each added to the solutions as oxidized salts to concentrations 

of 50µM L-1 (8.098 mg L-1 of sodium chromate (Na2CrO4), 15.601 mg L-1 of sodium arsenate hepta-

hydrate (Na2HAsO4.7H2O) and 25.1065 mg L-1 of uranyl-nitrate hexa-hydrate (UO2(NO3)2.6H20)).  

Mercury was added to the solution in reactor 1 using 1000ppm standard solutions in a 0.5 M L-1 
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HNO3 matrix from SPEX plasma to a concentration of 0.175 µM L-1.  The precise additions for each 

reactor are provided in Table 27. 

 

Table 27: Precise elemental additions to contaminant solutions. 

Contaminant added (Day 0) Reactor 1, 
mg (uM L-1) 

Reactor 2, 
mg  (uM L-1) 

Reactor 3, 
mg (uM L-1) 

Sodium chromate 8.5 (52.479) - 8.7 (53.714) 

Sodium arsenate hepta-hydrate 16.3 
(52.240) 

15.9 
(50.958) 

- 

Mercury 1000ppm standard -(0.175) - - 

Uranyl nitrate hexa-hydrate 25.3 
(50.385) 

- - 

 

As the availability of background contaminant concentrations in the COx is not known Table 28 

shows the maximum contaminant concentrations possible in solution assuming 100% mobility of 

background contaminants within the added solid phase and 100% mobility of added contaminants. 

 

Table 28: Maximum possible contaminant concentrations in solution assuming 100% mobility of 

added contaminants and background contaminants. 

Contaminant Reactor 1,  
uM L-1 

Reactor 2, 
uM L-1 

Reactor 3, 
uM L-1 

Chromium 56.331 - 57.566 

Arsenic 52.775 51.493 - 

Mercury 0.175 - - 

Uranium 50.402 - - 

 

Second contaminant addition to Reactor 1 

On day 30 of the experiment additional contaminants were added to reactor 1 followed by a period 

of intensive sampling in order to ascertain the rates of contaminant immobilization and to test the 

immobilization capacity of the COx for each contaminant.  Exact additions are detailed in Table 29. 

Table 29: Precise elemental additions to reactor 1 on day 30 of the experiment and concentrations 

assuming 0.844L volume (i.e. assuming no evaporative losses prior to additions). 

Element added (Day 30) Reactor 1 (mg / uM L-1) 

Sodium chromate 13.3 (97.292) 

Sodium arsenate hepta-hydrate 22.3 (84.680) 

Mercury 1000ppm standard (0.207) 

Uranyl nitrate hexa-hydrate 35.0 (82.587) 

Sampling procedure and suspension separation 

Each sample consisted of 7ml of suspension which was extracted through a connection on the top of 

the reactor by pulling on a syringe connected to a sampling tube.  Prior to sampling the syringe and 

the tube were purged with either air or nitrogen (Dependent on the half cycle).  The syringe was 

then sealed and transferred to a 100% N2 atmosphere glove-box (JACOMEX) (O2, CO2 <1 ppmv).  The 
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suspension was subsequently centrifuged at 4300rpm for 30 minutes to separate solid particles from 

the aqueous phase (particle size left in suspension < 0.2μm assuming spherical particle geometry 

and density of 2.65 gcm3 and a fluid density of 1 gcm3 calculated from Stoke's law).  The resulting 

supernatant was then filtered to 0.22µm to ensure only truly aqueous or colloidal material remained 

and that any larger particles disturbed during supernatant removal after centrifugation were 

removed.  The remaining filtrate was stored at 4oC prior to further analysis. 

Analytical methods 

ORP and pH Measurement 

Oxidation/Reduction potential (ORP) and pH were measured continuously in each reactor using 

Mettler-Toledo DXT series, solid-polymer Xerolyt® electrolyte, open-junction electrodes (Mettler-

Toledo France, Analyse Industrielle).  A five point pH calibration (2, 4, 7, 10, 12) was performed for 

all pH electrodes at the start and end of the experiment showing that the electrode response had 

not shifted more than 0.02 pH units (within the pH range used in the experiments) during the 36 day 

experiments. 

Measured ORP readings were converted to a redox potential with respect to the Standard Hydrogen 

Electrode (SHE) by adding the difference of the measurement of the redox potential in a ZoBell’s 

solution (0.0033M K3Fe(CN)6 and 0.0033M K4Fe(CN)6 with its theoretical value of +428mV.  The 

calculated difference was equal to the electrode manufacturer specification of 207 mV.  The Eh 

electrodes were found to drift by 3 mV upon measuring a ZoBell’s solution at the end of the 36 day 

experiments. 

Solid and Aqueous Mercury concentrations 

Total Hg concentrations in the aqueous phase were analysed using a Leco 254 Advanced Mercury 

Analyser following a method described by (Costley et al., 2000).  Using this technique samples are 

placed in a nickel holder which is inserted into a quartz combustion tube with a catalyst consisting of 

cobalt oxalate, manganese oxide, cobalt and calcium acetate.  Samples are then dried before 

combustion in a pure oxygen atmosphere at 750oC.   At this temperature all mercury is vaporized 

and then trapped on a gold amalgamator whilst other interfering elements are removed.  Once 

interfering elements have been exhausted the amalgamator trap is heated to 900oC in order to re-

release the trapped Hg into the gas phase where it is transported to a heated cuvette.  The total 

mercury in the gas phase may then be determined by atomic absorption spectroscopy using a silicon 

diode detector due to the absorption peak for mercury at 253.6 nm.  All samples were analysed in 

triplicate (500mg per measurement).  After insertion of samples a drying cycle was conducted for a 

period of 200 seconds, followed by combustion for 200 seconds and finally analysis.  Blanks were 

measured before analysis and after every 10 samples.  Mercury measured in the blanks was 

consistently lower than 30pg for dry blanks (0.15ppb for 18.2mΩ blanks).  The standard deviation 

between triplicates was calculated to determine the total quantifiable error for this technique which 

in 92% of cases was less than 2 ppb. 

Aqueous total elemental concentrations:  Na, Al, Ca, Cr, Mn, Fe, As and U 

To measure the concentration of major and trace elements (Na, Ca, Cr, Mn, Fe, As and U) in solution, 

an Agilent 720ES inductively coupled plasma atomic emission spectrometer (ICP-OES) was used 

(Agilent Technologies Europe). 
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Following filtration, samples were diluted to ensure that concentrations of all elements were within 

the linear response range of the ICP-OES and acidified to 2% HNO3 so that losses were not 

experienced due to precipitation of oxides from solution prior to analysis.  Matrix-matched 

standards prepared from 1000ppm stock solutions were used for quantification purposes.  All 

samples were analysed in triplicate (3 separate injections) and the margins of error reported 

represent the relative standard deviation between injections for each sample. 

Concentrations of major anions: Chloride, Nitrite, Nitrate, and Sulphate 

To measure the concentration of major anions in sample filtrate a Waters 4000 Capillary Ion analyzer 

was used.  Ions quantified were chloride (Cl-), nitrite (NO2
-), nitrate (NO3

-), and sulphate (SO4
2-).  

Phosphate (PO4
3-) was below the limit of detection in all samples and carbonate was not quantified 

due to equilibration of solutions with atmospheric CO2 concentrations prior to analysis.  Limits of 

detection for each anion were determined to be: 0.13, 0.097, 0.415 and 0.452 ppm for Cl-, SO4
2-, 

NO3
-, and NO2

- respectively.  Measurements of triplicates demonstrated a typical relative standard 

deviation of <3% for each element. 

Verification of AQDS2- reduction 

The complete reduction of AQDS2- was verified by UV/Vis spectrometry using a Perkin Elmer Lamba 

35 spectrometer using a method documented by (Aeschbacher, 2007) and (Wang et al., 2011) 

(Figure 85).  Absorption spectra from initial AQDS2- solutions showed a peak at 328nm, characteristic 

of oxidized AQDS2-.  Reduction resulted in the disappearance of the absorbance peak at 328nm and 

the appearance of peaks at 386nm, characteristic of reduced AH2DS2- which is the dominant species 

at pH 7 and 406nm characteristic of AHDS3- which is also expected as a less dominant species. 

 

 

Figure 85: Absorption spectra of AQDS and reduction products at pH 6.5 (from Wang et al. (2011)). 

 

Results & Discussion 

Performance of experimental setup 

Oscillation of redox conditions between approximately -215 mV and +340 mV was achieved 

consistently within all reactors over the course of the experimental period (Figures 87, 88, 89 and 

90).  These values are consistent with Eh values found in a range of near surface soil and sediment 

environments prone to redox oscillating conditions (Mansfeldt, 2003). 
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Temperature within the reactors was maintained at 22oC +/-2oC for the entire experimental period 

(see Figure 86).  Peaks in temperature observed on days 16, 17, 23, 24, 30 and 31 are thought to be 

due to increases in environmental temperature within the room where the reactors were installed 

rather than the result of exothermic reactions within the reactors themselves. 

 

Figure 86:  Temperature variation within the reactors during the experimental period (22 +/- 2oC). 
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Figure 87: The variation of Eh and pH conditions in reactor 1 with time illustrating the consistency of 

the imposed redox oscillations. 

 
Figure 88: Eh (SHE) with time measured within the reactor 1 suspension, reference shading 
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indicates; light yellow = initiation of air sparging, light blue = initiation of N2 sparging, grey = addition 
of AH2DS2- reductant solution. 
 

 
Figure 89: Eh (SHE) with time measured within the reactor 2 suspension, reference shading 
indicates; light yellow = initiation of air sparging, light blue = initiation of N2 sparging, grey = addition 
of AH2DS2- reductant solution 
 

.  
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Figure 90: Eh (SHE) with time measured within the reactor 3 suspension, reference shading 
indicates; light yellow = initiation of air sparging, light blue = initiation of N2 sparging, grey = addition 
of AH2DS2- reductant solution. 
 
The experimental installation performed well throughout the experiment with a minimum data 

resolution of 30s achieved for Eh, pH and temperature measurements, with a few regrettable 

exceptions.  The most notable of these occurred on day 14 of the experiment when a power supply 

failure in the computer controlling the experiment and recording data caused the complete loss of 

two internal hard drives. 

The computer system had been designed so that two independent disks were arranged in a RAID 1 

(Redundant Array of Independent Disks) configuration so that data was recorded simultaneously to 

two independent disks.  This configuration allows for a degree of redundancy in that data is 

protected from failure of a single hard drive.  Unfortunately in this case two hard drives failed 

simultaneously and catastrophically leading to the loss of all Eh, pH and temperature data between 

days 0 and 14.  For this reason all data presented and interpreted in this chapter considers only days 

14 to 36 (three full redox oscillations) although experimental procedures remained constant for the 

duration of the experiments (five full redox oscillations). 

The 2nd equipment failure affecting data quality during the experimental period occurred on day 27 

of the experiments when the mechanical stirrer for reactor 3 malfunctioned.  The fault was 

identified as a burned out electronic component on the speed controller circuit board, however 

immediate repair was not possible.  Therefore, agitation in the reactor 3 suspension stopped on day 

27 resulting in partitioning of the reactor via sedimentation of suspended particles.  The electrode 

tips were both covered by sediment resulting in noisy Eh/pH data between days 27 and 36.  Whilst it 

is not believed that sedimentation would have resulted in intense redox stratification due to the lack 

of an active microbial community, diffusion between the sampled supernatant and interstitial pore 

water measured via the pH and Eh electrodes may have been limiting for some species. 

For future long running experiments, to reduce the chance of deterioration or loss of data, it is 

recommended that mechanical, electrical and data redundancy be increased. 

Whilst active mechanical redundancy is difficult to implement on such a small scale, provisioning of 

spare parts for crucial mechanical (i.e. suitable mechanical stirrers and stirring shafts) is 

recommended. 

Electrical redundancy should be implemented via uninterruptable power supplies, of sufficient 

power to provide electricity to data processors, data loggers, computer equipment, water bath 

pumps and heating elements. 

Data redundancy should be increased via the implementation of automatic network backup of 

acquired data rather than relying on RAID style backups within one physical computer. 

In addition to equipment failures limitations of the experimental setup were noted.  Most 

importantly high rates of evaporation were observed from the reactor suspensions due to the 

constant sparging of the suspension with dry compressed air or nitrogen.  While direct measurement 

of evaporation rate was not possible, chloride is often used as an environmental tracer to determine 

evaporation or recharge rates (Grunberger et al., 2008).   The recorded increases in chloride 
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concentration within the reactors act as a good indicator of increasing ionic strength caused by 

evaporation (Figure 91). 

 

Figure 91: Chloride concentration in the reactor 1 suspension over time.  The increase is considered 

to be due to evaporation and to a lesser extent addition of HCl during pH balancing of AH2DS2- 

solutions on days 20 and 27. 

In order to avoid these evaporative losses and hence increasing ionic strength in future experiments 

online humidifiers should be added to incoming air and nitrogen lines and condenser coils added to 

exhaust ports. 

Electron balance upon addition of AH2DS2- 

Following degassing of oxygen from the suspensions by 2-3 days of nitrogen sparging AH2DS2- was 

added as a reductant.  Each addition of AH2DS2- to the reactor suspensions lowered the measured Eh 

to approximately -215 mV and reduced oxidized species due to the addition of two electrons by the 

oxidation of each reduced quinone molecule.  Considering the half reaction for the oxidation of each 

10 mL, 30 mM L-1 AH2DS2- addition (Equation 12), a total of 0.6 mM of electrons should be available 

for reduction of oxidized species (with the exception of day 27 in reactor 1 where 1.8 mM of 

electrons were made available).  This assumes that all AH2DS2- was oxidized following addition and 

that no oxidation of AH2DS2- to AQDS2- occurred prior to injection. 

Equation 12 AH2DS2- → AQDS2- + 2H+ + 2e- 

Oxidized species thermodynamically predicted to dominate in the reactors prior to AH2DS2- addition 

include Fe(III), U(VI), As(V), Cr(VI), Hg(II) and SO4
2- (see corresponding Pourbaix diagrams for reactor 
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1 in Figures 92, 93, 94, 95, and 97).  However, the availability of each of these oxidized species as 

electron acceptors and the kinetics of their reduction is radically different. 

  

 
Figure 92: The Fe-As–H2O–CO2 system at 298.15K and 
105 Pa. ∑Fe = 10-10.  Measured Eh pH conditions are 
overlaid in black. 

 
Figure 93: The U–CO2–H2O system at 298.15K and 
105 Pa. ∑U = 10-10.  Measured Eh pH conditions are 
overlaid in black. 
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Figure 94: The As–CO2–H2O system at 298.15K and 105 
Pa. ∑As = 10-10.  Measured Eh pH conditions are 
overlaid in black. 

 
Figure 95: The Cr–CO2–H2O system at 298.15K and 
105 Pa. ∑Cr = 10-10.  Measured Eh pH conditions 
are overlaid in black. 

 
Figure 96: The Hg–Cl-CO2–H2O system at 298.15K and 
105 Pa. ∑Hg = 10-10.  Measured Eh pH conditions are 
overlaid in black. 

 
Figure 97: The S–CO2–H2O system at 298.15K and 
105 Pa. ∑S = 10-10.  Measured Eh pH conditions are 
overlaid in black. 



154 
 

 

The precipitation of Manganite is thermodynamically predicted in each of the reactors during the 

oxic phase as illustrated by Figure 98.  However, oxidation of Mn2+
(aq) is a relatively slow kinetic 

process in the absence of manganese oxidizing bacteria such as Leptothrix species even in strongly 

favourable conditions (Zhang et al., 2002).  Therefore, despite the thermodynamic prediction we 

expect limited Manganite precipitation and subsequent dissolution during cycling. 

   

Figure 98: Pourbaix diagrams of the Mn – CO2 – H2O system at 298.15K and 105 Pa. ∑ Mn = 10-5 from 

LLNL data.  Measured Eh pH conditions in reactor suspensions are overlaid in black (reactor 1 left, 

reactor 2 middle and reactor 3 right). 

Initial concentrations of oxidized contaminants (Cr, As, Hg and U) are known, as Cr, As and U were 

added as oxidized salts and, in the case of mercury, as a free cation which will have rapidly 

hydrolyzed to Hg(OH)2 under prevailing conditions in the suspension.  In contrast the total 

concentration of oxidized iron is more difficult to estimate. 

A large proportion of the total iron content within the COx sample is present in the structure of 

phyllosilicate minerals and as such is significantly less available for redox processes than the iron 

contained within pyrite.  As pyrite concentrations within the powdered COx sample are known to be 

< 1.5 % a theoretical maximum Fe(III) concentration within the oxidized suspension can be 

calculated as 0.2501 mM, based on total oxidative dissolution of pyrite during the first oxidizing cycle 

and suspension equilibration period, if initial concentrations of possible surface adsorbed Fe(II) and 

structural clay Fe(II) are neglected. 

Although complete and rapid oxidative dissolution of pyrite may seem improbable, it has been 

shown that oxidation of pyrite by molecular oxygen increases with pH and that the presence of 

carbonate and bicarbonate ions accelerates pyrite oxidation under moderately alkali conditions 

(Caldeira et al., 2010) .  Bicarbonate and to a lesser extent carbonate ions (due to pH) are predicted 

to occur in this system due to dissolution of CO2(g) in the headspace during oxidizing cycles (Equation 

14). 
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Equation 13 CO2(g) ⇌ CO2(aq) 

Equation 14 CO2(aq) + H2O ⇌  H2CO3(aq) ⇌ HCO3
-
(aq) + H+

(aq) ⇌ CO3
2-

(aq) + 2H+
(aq) 

It has long been considered that the rate limiting step in pyrite oxidation is the oxidation of Fe(II), in 

acidic (Singer and Stumm, 1970) solutions.  Recent work on the mechanism of accelerated pyrite 

dissolution in carbonate solutions by Caldeira et al (Caldeira et al., 2010) suggests that this is also the 

case in alkali conditions but that soluble iron carbonate complexes near to the pyrite surface help 

accelerate electron transfer (Figure 99). 

 

Figure 99:  Schematic illustration of the mechanism of accelerated pyrite dissolution in carbonate 

containing media proposed by (Caldeira et al., 2010). 

The oxidation of pyrite in carbonate containing solutions has been shown to result in the 

preferential precipitation of ferrihydrite over other oxides (such as hematite) which have been 

shown to form in hydroxide media (Caldeira et al., 2003).  It is therefore probable that the ferric 

oxide resulting from pyrite oxidation by molecular oxygen in the COx is ferrihydrite.  Freshly 

precipitated ferrihydrite has been shown to have an average size of between 2 and 6nm (Michel et 

al., 2007) and hence a high surface area (> 200 m2 g-1)(Weidler, 1997) which would make it a highly 

suitable electron acceptor for reduction by AH2DS2-. 

Subsequent to the full oxidation of pyrite to Fe(III) and SO4
2-, summarized in the sequence of 

equations (15, 16, 17 and 18) shown below, the re-reduction of Fe(III) to Fe(II) by added AH2DS2- is 

thermodynamically predicted and kinetically favourable.  However the reduction of sulphate to 

sulphide is not (Figure 97). 

 

Equation 15 FeS2 + 3O2 + 2H2O → Fe2+ + 2SO4
2‐ + 4H+   (Gray, 1997) 

Equation 16 Fe2+ + 0.25O2 + H+ → Fe3+ + 0.5H2O   (Konhauser, 2007) 

Equation 17 Fe3+ + 3H2O → Fe(OH)3 + 3H+    (Konhauser, 2007) 

Equation 18 FeS2 + 14Fe3+ + 8H2O → 15Fe2+ + 2SO4
2‐ + 16H+  (Edwards et al., 2000) 

 

The half reactions for the thermodynamically predicted reduction of key oxidized species within the 

reactor suspensions are given in Table 30.  Evaluating the quantity of reducible oxidized species 
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within the reactors and the number of electrons required for their reduction to thermodynamically 

predicted oxidation states, it is possible to show that there is a slight deficit of reductant with the 

initial AH2DS2- addition (see Table 30).  This deficit would of course diminish during the experiment 

due to sampling of the suspension. 

Table 30: Evaluation of electron requirements for complete reduction of key oxidized species in 

reactor 1 during the first AH2DS2- addition. 

Half reaction for 
reduction of 
oxidized reactor 
species 

Electrons 
transferred 
per atom of 
contaminant 

Protons 
transferred 
per atom 
of 
contamina
nt 

Maximum 
quantity of 
oxidized 
species 
estimated in 
suspension, 
mM 

Electrons 
required for 
complete 
reduction of 
oxidized 
species, mM 

Quantity of 
protons 
consumed during 
complete 
reduction of 
oxidized species 
mM 

FeOOH + 3H+ + e-→ 
Fe2+ + 2H2O  

1 3 0.2501 0.2501 0.7503 

HAsO4
2- + 4H+ + 2e- 

→ H3AsO3 + H2O 
2 4 0.0528 0.1056 0.2112 

UO2(CO3)3
4-+ 3H+ + 

2e- → UO2 + 3HCO3
- 

 

2 3 0.0504 0.1008 0.1512 

CrO4
2-+ 8H+ + 3e-→ 

Cr3+ + 4H2O 
3 8 0.0563 0.1689 0.4504 

   Total: 0.6254 1.5631 

 

As the capacity of the reductant to supply electrons for reduction is approximately equal to the 

capacity for oxidized species to accept electrons it is reasonable to postulate that, following AH2DS2- 

additions all available Fe(III), present as disordered ferric oxides, was reduced to Fe2+ and liberated 

into solution accounting for the peaks in measured aqueous/colloidal iron concentration following 

AH2DS2- additions (Figures 100, 101 and 102).  However, measured aqueous iron concentrations do 

not correspond well to the concentrations calculated stoichiometrically assuming almost total Fe(III) 

reduction.  Assuming almost total Fe(III) reduction by AH2DS2- additions it is possible to disparity this 

by subtracting iron adsorbed to surfaces or forming secondary ferrous phases: 

Equation 19 Fe(III)tot = Δ[Fe2+]measured + Fe2+ adsorbed + Fe2+ precipitated. 

Potential ferrous precipitates could include FeS, FeCO3 and Fe3O4 however the reduction potential of 

AH2DS2- is insufficient to reduce sulphate to sulphide, therefore it is reasonable to assume that the 

suspension is never supersaturated with respect to iron sulphide minerals.  As the suspension had 

been sparged with pure N2(g) for nearly 3 days prior to AH2DS2- addition, free carbonates present 

during oxidizing cycles would likely have degassed as CO2(g) before Fe2+
(aq) formation and hence the 

suspension would have remained under-saturated with respect to siderite.  Equally even under 

supersaturated conditions, precipitation kinetics of siderite and magnetite are extremely slow 

(Jensen et al., 2002) especially when compared to the rapid adsorption of Fe(II) at neutral to high pH 

(Charlet et al., 1998) therefore it can be assumed that neither siderite or magnetite formation 

occured immediately following AH2DS2- additions.  
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Assuming therefore that there was no precipitation of ferrous minerals: 

Equation 20 Fe(III)tot = Δ[Fe2+]measured + Fe2+ adsorbed 

This would indicate therefore that between 0.250 and 0.237 mM of Fe2+ is adsorbed by the 2g COx 

solid phase following AH2DS2- additions, or 0.125 mM g-1.   This figure corresponds to between 10 

and 20% of the recorded sorption capacities of phyllosilicate minerals for Fe(II) in the literature (Jaisi 

et al., 2007) demonstrating the feasibility of this interpretation. 

Previous work conducted by Charlet et al (Charlet et al., 1998) shows that adsorption of Fe2+ at high 

pH is an extremely fast process and it is reasonable to assume that a large proportion of reduced 

iron was immediately adsorbed following reductive dissolution, prior to separation of aqueous and 

particulate phases.  Dependent on the extent of saturation of cation sorption sites on mineral 

surfaces it is possible that this could generate competition for sites and desorption of other sorbed 

ions.  

As can be seen in Figures 100, 101 and 102, there are substantial differences in the measured 

aqueous/colloidal iron concentrations between the three reactors following AH2DS2- additions.  

While in reactor 3 (chromium contaminated: Figure 102) well defined peaks in aqueous Fe 

concentrations on days 20, 27 and 34 mirror AH2DS2- injections and Fe(II) release due to reductive 

dissolution of ferrihydrite, these features are far less clear in reactor 2 (arsenic: Figure 101) where 

surface protonation changes caused by pH shift between O2, N2 and AH2DS2- controlled cycles 

appears to play a far greater role.  The difference between the iron peaks measured in reactor 1 on 

days 20, 34 and day 27 is due to the different quantity of AH2DS added on day 27 of the experiment.  

On day 27, 30 mL of 30 mM L-1 AH2DS2- was added to test practically whether the quantity of 

reductant was limiting reduction in the suspension. 



158 
 

 

Figure 100: Aqueous/colloidal iron concentration in the reactor 1 suspension over time.  The 

increases occurring on days 20, 27 and 34 are thought to be due to the release of Fe2+
(aq) following 

reduction by added AH2DS2-. 

 

Figure 101: Aqueous/colloidal iron concentration in the reactor 2 suspension over time.  The 

changes in concentration are more complicated than in reactor 1 and appear to be due to a 



159 
 

combination of Fe2+
(aq) release following reduction by AH2DS2- and Fe2+

(aq) adsorption/desorption due 

to pH changes. 

 

Figure 102: Aqueous/colloidal iron concentration in the reactor 3 suspension over time.  The 

increase in measured concentration on days 20, 27 and 34 appear to be due to Fe2+
(aq) release due to 

reduction by AH2DS2-.  Increases of approximately 0.2µmol L-1 can also be seen on days 24 and 31 

corresponding to pH changes due to O2 to N2 gas change. 

Proton balance upon addition of AH2DS2- 

In addition to an increase in electron availability with each AH2DS2- injection, proton balance and 

hence pH was also heavily affected, as can be seen in Figures 103, 104 and 105.  Following AH2DS2- 

additions, pH dropped dramatically in each reactor, by between 0.7 and 0.9 pH units. 
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Figure 103: pH with time measured within the reactor 1 suspension, reference shading indicates; 

light yellow = initiation of air sparging, light blue = initiation of N2 sparging, grey = addition of 

AH2DS2- reductant solution. 

 

Figure 104: pH with time measured within the reactor 2 suspension, reference shading indicates; 

light yellow = initiation of air sparging, light blue = initiation of N2 sparging, grey = addition of 

AH2DS2- reductant solution. 
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Figure 105: pH with time measured within the reactor 3 suspension, reference shading indicates; 

light yellow = initiation of air sparging, light blue = initiation of N2 sparging, grey = addition of 

AH2DS2- reductant solution. 

As shown in the previous section, the oxidation of one molecule of AH2DS2- to AQDS2- necessitates 

the loss of 2 electrons and 2 protons and hence the release of 0.6 mM of H+ ions (Equation 12).  

However, as the pKa1 of AH2DS2- is 7.5 it is expected that the added AH2DS2- should rapidly de-

protonate to AHDS3- causing the release of 0.3 mM of H+ into solution via de-protonation and 0.3 

mM via subsequent oxidation of AHDS3- to AQDS2-.  However, the half reactions for the reduction of 

Fe(III), As(V), Cr(VI) and U(VI) (shown in Table 30) all consume protons resulting in the net 

consumption of 0.9631 mM (1.5631 mM -0.6 mM) of protons assuming complete AH2DS2- de-

protonation, AHDS3- oxidation and the reduction of Fe(III) and contaminants.  AH2DS2- addition would 

therefore be expected to cause a pH rise in the suspension rather than a pH drop. 

The measured drop in pH following AH2DS2- addition is therefore thought to be due to the mixing of 

a low pH AH2DS solution, with the higher pH reactor suspension (~ pH 9).  The supply of protons in 

AH2DS2- addition counters the proton consumption via redox reactions and results in the dramatic 

pH drops measured.  This pH drop is buffered by the dissolution of calcite (Equation 21) resulting in 

the observed peaks in aqueous calcium concentration immediately after AH2DS2- additions.   

Equation 21 CaCO3(s) + H+ ⇌ Ca2+ + HCO3
- 

This aqueous calcium increase is shown in Figures 106, 107 and 108 where peaks corresponding to 

10 mL, 30 mM L-1
 additions induce approximately 0.05 mM L-1 increases in aqueous calcium 

concentrations in reactors 1 and 2 (e.g. 0.0549 in R1 on day 20 and 0.0432 in R2 on day 27) and 

increases of approximately 0.12 mM L-1
 in reactor 3 (0.1233 on day 20).   
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Figure 106: Aqueous/colloidal calcium concentration in the reactor 1 suspension over time. 

 

Figure 107: Aqueous/colloidal calcium concentration in the reactor 2 suspension over time. 



163 
 

 

Figure 108: Aqueous/colloidal calcium concentration in the reactor 3 suspension over time. 

Whilst it is possible to conclude, from Equation 21, assuming total reduction of oxidized species, 

that: 

Equation 22 Δ[H+]measured = [H+]added  – [H+]consumed – Δ[Ca2+]measured – Δ[Ca2+]adsorbed 

Where: 

[H+]added includes all H+ added via AH2DS injection (solution mixing, de-protonation and oxidation 

processes. 

[H+]consumed concerns H+ consumed via reduction of contaminants and iron (equations shown in Table 

30). 

Unfortunately it is not possible to test the assumption of total reduction of oxidized species (Cr(VI), 

U(VI), As(V) etc) or to quantify reduction by using this equation as the Δ[Ca2+]adsorbed term is 

unknown. 

The differences in Δ[Ca2+]measured between reactors 1, 2 and 3, despite identical solid phase 

composition and AH2DS additions are therefore directly attributable to differences in proton 

consumption due to reduction reactions involving contaminants, resulting in a greater of lesser 

degree of calcite dissolution.  For example, the rapid oxidation of Cr3+
 is not expected by molecular 

oxygen following reduction of the added CrO4
2- in reactor 3, whereas oxidation of As(III) and Fe(II) 

species in reactors 1 and 2 is predicted with molecular oxygen, resulting in a greater quantity of 

reducible oxidized species in reactors 1 and 2 prior to AH2DS2- additions than in reactor 3.  What is 

surprising is the similarity between Δ[Ca2+]measured in reactors 1 and 2 as reactor 1 should contain 
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significantly more reducible species (due to the additional presence of U(VI)) than reactor 2, 

therefore less calcite dissolution and a lower Δ[Ca2+]measured should be observed in reactor 1 assuming 

redox reactions involving uranium and mercury.  The similarity of Δ[Ca2+]measured between reactors 1 

and 2 and the strong difference compared to Δ[Ca2+]measured in reactor 3 indicates that cyclic 

reduction occurs for iron and arsenic in the reactors but not for chromium or uranium.  

Calcite present in the COx also acts as a pH buffer, via dissolution, during oxidizing cycles where 

oxidation of reduced species results in the generation of acidity (e.g. via the oxidative dissolution of 

pyrite shown in Equations 15, 16, 17 and 18, and via the reverse of the half reactions shown in Table 

30).  This dissolution is, in part, responsible for the increase in aqueous calcium concentrations 

measured during cycles of oxidation (Figures 106, 107 and 108).  Other mechanisms which are of 

importance when considering calcium release include cation exchange due to a reduction in pH 

during oxidizing cycles and the dissolution of calcite due to the addition of CO2 and hence acidity, via 

air sparing (shown in Equations 23 and 24) 

Equation 23 CO2(aq) + H2O ⇌ H+ + HCO3
− 

Equation 24 CaCO3(s) + CO2(aq) + H2O ⇌ Ca2+ + 2HCO3
- 

Upon switching to N2 sparging the increase in pH (e.g. from 8.2 to 9.1 measured in reactor 1) can be 

attributed to the re-precipitation of calcite due to equilibration with the decreased CO2 partial 

pressure associated with the pure N2 headspace (Equation 25), this interpretation is supported by 

the decreases in measured aqueous calcium concentrations recorded following N2 sparging.  While 

there are exceptions to this (e.g. between days 31 and 34 in reactor 3 where calcium concentration 

increases) these exceptions are attributed to the effect of evaporation and hence constantly 

increasing ionic strength. 

Equation 25: [Ca2+] = ( 10-6.6 [PCO2] )
 (1/3) 

CEC Balance upon contaminant and AH2DS2- addition 

Whilst the cation exchange capacity of the solid component of the reactor suspensions will change 

during the course of the experiments due to dissolution and re-precipitation of redox sensitive 

mineral phases expected in natural redox oscillating environments (e.g. pyrite and ferrihydrite), 

experimental procedure and design also result in changes to cation balance within the reactors. 

As mentioned previously, increases in chloride concentration within the aqueous phase indicate that 

evaporation had a strong influence on the reactor suspension due to constant sparging with dry 

gases.  This increase in ionic strength is evident from measured concentrations of major cations (Na+ 

& Ca2+, Figures 106 to 111).  In addition to concentration of the reactor suspensions by evaporation, 

ionic strength increased due to additions of sodium with each AH2DS2- addition (prepared from 

disodium salt) and the contaminant additions (Cr and As additions prepared from sodium salts).   
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Figure 109: Aqueous sodium concentration measured in the suspension from reactor 1.  Δ[Na] on 

days 20, 27 and 34 correspond well to Na concentrations added via AH2DS2- additions (1.2, 3.6 and 

1.2 mM respectively). 

 

Figure 110: Aqueous sodium concentration measured in the suspension from reactor 2.  Δ[Na] on 

days 20, 27 and 34 correspond well to Na concentrations added via AH2DS2- additions of 1.2 mM. 
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Figure 111: Aqueous sodium concentration measured in the suspension from reactor 2. Δ[Na] on 

days 20, 27 and 34 correspond well to Na concentrations added via AH2DS2- additions of 1.2 mM. 

It is interesting to observe the differences in sorption behaviour of Na+ after AH2DS2- addition to each 

reactor.  Whilst rapid adsorption of sodium occurs after each AH2DS2- addition in all reactors, a clear 

decrease in adsorption is observed between injections on day 34 compared to day 20 in reactor 1 

(the injection on day 27 must be excluded from this interpretation due to the 3x addition of AH2DS2- 

on this day).  The same trend is evident in reactor 2 following AH2DS2- additions on days 27 and 34, 

whereas such differences in adsorption are not measured in reactor 3.  Although sampling resolution 

is not sufficient to draw strong conclusions from this effect it appears that a greater number of 

surface sorption sites for Na+ are free in reactor 3 towards the end of the experiments than in 

reactors 1 and 2 indicating an increasing saturation of cation exchange capacity.  A decrease in 

sorption or sorption rate of Ca2+ after AH2DS2- additions (leading to calcite dissolution) between days 

20, 27 and 34 is not apparent in any of the reactors.  This demonstrates the preferential sorption of 

divalent Ca2+ compared to monovalent Na+. 

Effects of redox cycling on investigated contaminants 

Arsenic 

Arsenic was added to both reactor 1 and reactor 2 in its oxidized i.e. As(V) form as sodium arsenate.  

As can be seen from the Pourbaix diagrams (Figures 112 and 113) Eh conditions following AH2DS2- 

additions thermodynamically favour reduction to As(III) as the fully protonated arsenite species via 

Equation 26. 

Equation 26 HAsO4
2- + 4H+ + 2e- → H3AsO3 + H2O 
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Upon the switching to air sparging once again Eh conditions thermodynamically favour oxidation to 

As(V) as the double de-protonated arsenate species, via the reversal of Equation 26.  However, due 

to the relatively slow kinetics of arsenic oxidation and reduction arsenic speciation is often found to 

be in disequilibrium in natural environments.  In some natural flooded soils it has been shown that 

appreciable reduction of As(V) species to As(III) species does not occur for the first 15 days after 

flooding (Ackermann et al., 2008). 

 

Measured arsenic concentrations varied considerably within the aqueous phase during cycling 

(Figures 114 and 115).  A common trend of increased arsenic mobility during reducing cycles and 

decreased mobility during oxidising cycles is present in both reactor suspensions.   

 
Figure 112: Pourbaix diagram of the As-H2O-CO2 
system at 298.15K and 105 Pa from LLNL data 
with Eh pH conditions in reactor 1 drawn in 
black. 

 
Figure 113: Pourbaix diagram of the As-H2O-CO2 
system at 298.15K and 105 Pa from LLNL data 
with Eh pH conditions in reactor 2 drawn in black. 
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Figure 114: Aqueous/colloidal arsenic concentration in the reactor 1 suspension over time. 

 

Figure 115: Aqueous/colloidal arsenic concentration in the reactor 2 suspension over time. 
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Despite similar intra cycle trends in arsenic mobility between reactors distribution coefficients (Kd 

values) and cumulative trends vary substantially (Figures 116 and 117).  Kd values in reactor 1 range 

from between 328 and 616 L/kg compared to between 97 and 181 L/kg in reactor 2.  These values 

are significantly lower than those obtained for other contaminants investigated demonstrating the 

high mobility of arsenic under all Eh and pH conditions imposed experimentally.  Kd values in both 

reactors were found to be negatively correlated with pH conditions as shown in Figures 116 and 117 

(R2 of 0.42 to 0.50).   

 

Figure 116:  Distribution 
coefficient against pH for 
As in reactor 2.  Blue 
banding lines represent a 
95% confidence on the 
regression. 

 

 

 

 

 

 

Figure 117:  Distribution 
coefficient against pH for 
As in reactor 1.  Blue 
banding lines represent a 
95% confidence on the 
regression. 

 

 

 

 

 

 

This negative trend is indicative of the arsenic speciation within the reactors.  Surface sorption of 

negatively charged arsenate species is expected to decrease with increasing pH due to repulsion 

from increasingly negatively charged clay and oxide surfaces.  Experimentally derived sorption 

envelopes for the expected principal sorbents in this system; phyllosilicate minerals and ferric 
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hydroxides (Goldberg, 2002) clearly demonstrate desorption at high pH.  As deprotonated arsenite 

does not become a dominant species until pH 9.2 negative mineral surface charge does not act as a 

significant barrier to arsenite adsorption resulting in relatively flat sorption envelopes (Goldberg, 

2002).  Therefore the negative correlation present between As Kd values and pH indicates that a 

significant proportion of As is present as As(V) even under reducing conditions and that therefore 

the assumption of complete arsenate reduction due to sufficient addition of reductant is false. 

The redox reaction between reduced humic substances and As(V) is often conceptualized as scenario 

A in Figure 120.  As redox reactions between AH2DS2- as a model humic substance and As(V) proceed 

via an intermediate semi-quinone step scenario B in Figure 120 offers a more realistic 

representation. 

Figure 118:  Scheme illustrating reduction of As(V) 

and oxidation of As(III) (A) by reduced and oxidized 

humic substances (HS) or (B) by the fully reduced 

(hydroquinone), partially reduced (semiquinone) and 

oxidized form (quinone) of anthraquinone-2,6-

disulfonate (AQDS2). From Jiang et al. (2009). 

Whilst this may be a good approximation of reactions 

between reduced humic substances and inorganic 

arsenic in the natural environment the reality has 

been shown to be more complicated.  Jiang et al. 

(2009) demonstrate that during chemical or microbial 

reduction of AQDS strongly oxidising radical species 

are formed.  These species are capable of the 

oxidation of arsenite species and therefore counter 

the effect of AH2DS2- as a reductant.  This effect is 

enhanced with increasing pH and increasing AQDS/As 

ratio as can be seen in Figure 119.  As experiments 

were conducted at approximately pH 8-9 with a high 

proportion of AQDS/As it is highly likely that this type 

of oxidation did occur in the reactor suspensions.  

This potential for arsenite oxidation by radical species 

does help to explain the consistent presence of arsenate and hence the observed correlation 

between Kd and pH.  However, such effects detract from the representativeness of AH2DS2- as an 

analogue of reductive microbial activity. 

Figure 119: Oxidation of As(III) by chemically reduced 

AQDS2−. The initial concentrations were 90 μM As(III) 

and 450 μM reduced AQDS2− (molar ratio 1:5) or 330 

μM As(III) and 67 μM reduced AQDS2− (molar ratio 

5:1). From Jiang et al. (2009). 
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Despite correlation between pH and Kd values, pH alone is not enough to explain As mobility trends 

as can be seen in Figures 120 and 121 where arsenic concentrations normalized with respect to pH 

are expressed as a function of time.  Cyclic trends are also present indicating that other factors such 

as co-precipitation and aqueous speciation change are also controlling As mobility during 

experiments. 

 

Figure 120:  As concentration normalized with respect to pH during redox cycling in reactor 2. 

 

Figure 121:  As concentration normalized with respect to pH during redox cycling in reactor 1. 
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Cumulative changes 

Cumulative changes in arsenic mobility are observed in both reactors after multiple cycles of redox 

oscillation (Figures 114 and 115) even when the effects of pH change on sorption are eliminated by 

normalisation (Figures 120 and 121).  In reactor 1, a decrease in arsenic mobility is measured with an 

increasing number of redox cycles (Figures 114 and 121).  Several possible mechanisms may be 

responsible for this successive immobilisation, firstly increased co-precipitation/kinetic sorption with 

ferric hydroxides as observed in Chapter 5 may be responsible.  An alternative mechanism which 

may be applicable to the Cox suspensions is an increasing proportion of ferric hydroxides with each 

cycle.  If the most redox active component in the COx is the pyrite fraction it could be considered 

that with each oxidising cycle grains of pyrite shrink due to oxidative dissolution, the subsequent 

precipitation of ferric hydroxides act as a substantial sorbent for both As(III) and As(V) species.  With 

each successive oxidising cycle a greater proportion of the pyrite grain may be dissolved leading to a 

greater proportion of ferric hydroxide in the system until the complete dissolution of pyrite grains.  

As sulphate reduction is not favoured thermodynamically by AH2DS2- addition replenishment of 

ferrous sulphide or pyrite mineralogy would not be expected during each reducing cycle. 

In contrast, in reactor 2 no cumulative trend in arsenic mobility is observed during reducing cycles 

(following AH2DS2-additions) with consistent concentrations of 42 to 43 µmol L-1.  However, a 

cumulative effect of redox cycling is apparent during oxidising cycles and when normalised to 

remove the effect of pH on sorption (Figure 120).  This cumulative increase of arsenic mobility in 

reactor 2 in contrast to the cumulative decrease in reactor 1 may be attributable to evaporative 

concentration which was greater in reactor 2 than reactor 1 however definitive conclusions cannot 

be drawn in the absence of further spectroscopic data or investigative modelling. 

 

Chromium 

Chromium was added to both reactor 1 and reactor 3 in its oxidized i.e. Cr(VI) form as sodium 

chromate.  As can be seen from the Pourbaix diagrams (in Figures 124 and 125) Eh conditions in the 

reactors thermodynamically favour reduction to Cr(III) and precipitation of Cr2O3 via Equation 27.  

This is true even during air sparging cycles and therefore following AH2DS2- additions reduction to 

Cr(III) is strongly favoured.  In addition even in thermodynamically favourable solutions, oxidation 

rates of Cr(III) by molecular oxygen are very slow (Schroeder and Lee, 1975; Rai et al., 1989), which 

leads to the predominance of Cr(III) in the subsurface, especially in the absence of a MnO2, which, 

due to slow precipitation kinetics usually requires the presence of a manganese oxidizing microbial 

or fungal community in redox oscillating conditions (Thompson et al., 2005; Tebo et al., 2011). 

Equation 27 2CrO4
2-+ 16H+ + 14e-→ Cr2O3 + 8H2O 

Chromium mobility within the suspensions was low both during oxidising and reducing conditions 

with Kd values of between 21,642 and 715,059 L/kg in reactor 1 and 41,207 and 2,333,530 in reactor 

3.  No significant correlation between pH and Kd was found in either suspension indicating that 

unlike for arsenic, pH changes within the experimental range were not an important mobility 

controlling factor for Chromium.  Kd values did vary significantly with redox cycling in both 

suspensions (e.g. Figure 126).  It was found that in both reactors Chromium was mobile during 

reducing cycles and less mobile in oxidising cycles (Figures 122 and 123).  If all chromium is present 
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as Cr3+ it is expected that lower pH associated with oxidising cycles and immediately following 

AH2DS2- additions should result in a decrease in surface sorption and therefore release of chromium 

into the aqueous phase.  The opposite trend is shown to be true and is more indicative of anionic 

contaminant behaviour.  This suggests that the increased mobility of chromium during N2 sparging 

cycles may be due to the presence of small quantities of Cr(VI) species.  This Cr(VI) may be residual 

i.e. added Cr(VI) which was not reduced or may be the result of oxidation of Cr(III) by radical species 

shown to be produced during AQDS reduction and capable of arsenite oxidation at high pH and high 

AQDS/As ratios (Jiang et al., 2009). 

 

Figure 122: Aqueous/colloidal chromium concentration in the reactor 1 suspension over time. 
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Figure 123: Aqueous/colloidal chromium concentration in the reactor 3 suspension over time 

As surface reduction of chromate by several minerals, including pyrite and siderite has been 

conclusively demonstrated (Zouboulis et al., 1995; Erdem et al., 2004; Mullet et al., 2007), it is 

possible to postulate that reduction occurred even prior to AH2DS2- additions during the oxic 

equilibration period, unfortunately due to the loss of data from the start of the experiments it is 

impossible to confirm with certainty if this did or did not occur in the un-cycled COx suspension.  

From data obtained following the 2nd contaminant addition in reactor 1 on day 30 (under oxidizing 

conditions) it appears that reduction did not occur until the addition of AH2DS2- on day 34 due to the 

high mobility of chromium during the oxidising cycle (Figure 122).  However, at this point in the 

experiment the suspension had been exposed to four full redox cycles.  Due to the lack of sulphate 

reduction in suspensions during reducing conditions it is probable that depletion of pyrite occurred 

during the experiment via oxidative dissolution and therefore that the capacity of the suspension for 

surface reduction of Cr(VI) was diminished. 

It can however be assumed that following the first reducing cycle (addition of AH2DS2-), almost all 

chromate was reduced to Cr(III) resulting in a radically reduced mobility within the suspension 

(approaching the sensitivity limit of the ICP-OES). 

One question resulting from this interpretation is the form under which immobile Cr(III) is present 

subsequent to reduction.  As explained within the 1st chapter of this thesis, while the most 

thermodynamically favourable species is Cr2O3 kinetic controls exist which rarely allow the 

precipitation of such a solid in natural systems.  The two most probable interpretations are the 

precipitation of (Fe1-x,Crx)OH3 in solid solution or the sorption of Cr3+
(aq) to negatively charged clay 

surfaces (Arnfalk et al., 1996).   
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The increased release of Fe2+
(aq) and Ca2+

(aq) following the addition of AH2DS2- in reactor 1 on day 34, 

compared to releases following AH2DS2- addition on day 20 (Figures 100 and 106), favours the 

hypothesis that a significant proportion of the freshly reduced Cr3+
(aq)  was adsorbed to clay surfaces 

rather than precipitated as a discrete mineral. 

Assuming a greater degree of proton consumption due to increased availability of reducible species 

following the addition of oxidized contaminants on day 30, it would be expected that fewer protons 

would be available to cause calcite dissolution.  However, as Δ[Ca2+]measured increases corresponding 

to an assumed proton decrease, a logical conclusion is that Ca2+ and Fe2+ were exchanged on clay 

surfaces due to the preferential adsorption of the freshly available trivalent Cr3+ ions. 

 

 
Figure 124: Pourbaix diagram of the Cr-H20-CO2 
system at 298.15K and 105 Pa from LLNL data 
with Eh pH conditions in reactor 1 drawn in 
black. 
 

 
Figure 125: Pourbaix diagram of the Cr-H2O-CO2 
system at 298.15K and 105 Pa from LLNL data) 
with Eh pH conditions in reactor 3 drawn in 
black. 
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Figure 126:  Distribution coefficient for Chromium against time in reactor 3. 

 

Cumulative trends 

In reactor 3 a clear decreasing trend in chromium concentrations is recorded with successive redox 

cycles.  As discussed previously the pattern of immobilization/mobilization with redox cycling and pH 

change is more representative of an anionic aqueous species than a cationic species indicating that 

the measured trend may be the result of diminishing chromate in the reactor suspensions following 

initial chromium addition as sodium chromate.  Peaks of aqueous Cr present immediately following 

AH2DS2- additions may therefore be due to the release of residual chromate previously immobilised 

due to co-precipitation with ferric hydroxide minerals.  Reductive dissolution of ferric hydroxides 

initiated by reductant addition would result in the liberation of this residual chromate and 

subsequent reduction to Cr(III).  This interpretation corresponds well to the observed decrease in 

chromium mobility during reducing conditions after the initial chromium release.  Aqueous 

chromium liberated in this way is therefore considered to be re-immobilized during the remainder of 

the AH2DS2- cycle, either by re-adsorption to alternative sorbents such as clay minerals or due to 

precipitation as discrete Cr(III) phases.  This interpretation adequately describes the cumulative 

decrease in chromium concentration following successive AH2DS2-additions as a greater proportion 

of Cr3+ is adsorbed to phyllosilicate minerals unaffected by reductive dissolution.  However, whilst 

this interpretation appears to describe the experimental data well, spectroscopic investigation or 

sequential extractions could elucidate the mechanisms responsible for increasing chromium 

immobilisation. 
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Uranium 

Uranium was added to reactor 1 in its oxidized i.e. U(VI) form as uranyl-nitrate.  As can be seen from 

the Pourbaix diagram (Figure 127) Eh conditions following AH2DS2- additions thermodynamically 

favour reduction to U(IV) and precipitation of uraninite.  Upon the switching to air sparging once 

again Eh conditions thermodynamically favour U(VI) as uranyl di and tri carbonate species.  

However, due to the relatively slow kinetics of uranium oxidation and reduction uranium speciation 

is often found to be in disequilibrium in natural environments (Wan et al., 2005; Zheng and Wan, 

2005). 

 

Figure 127: Pourbaix diagram of the U-H2O-CO2 system at 298.15K and 105 Pa from LLNL data with Eh 

pH conditions in reactor 1 drawn in black. 
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Figure 128: Aqueous/colloidal uranium concentration in the reactor 1 suspension over time. 

Uranium mobility varied considerably during the experiment with decreased mobility during 

oxidising conditions.  During reducing cycles uranium was found to be highly mobile with a Kd value 

in the suspension of approximately 129 L/kg, however upon air sparging this value dropped to 

approximately 53,570 L/kg demonstrating a high degree of immobilisation.  This trend is counter 

intuitive as often microbial reduction of uranyl ions under anoxic conditions results in immobilisation 

of uranium as uraninite in natural soils and sediments (Dong et al., 2006).  It is often assumed 

therefore that low Eh conditions are synonymous with uranium retention.  Conversely the uranyl 

ion, thermodynamically predicted under oxidising conditions, which may complex with many 

inorganic and organic ligands in solution is considered highly mobile.  Despite the thermodynamic 

predictions illustrated in Figure 127, recent studies reveal that reduction of U(VI) may be seriously 

limited by slow electron transfer processes, particularly at high pH where large oligomeric molecules 

such as UO2(CO3)3
4- are favoured (Wang et al., 2011).  Consequently uranyl reduction to uraninite is 

considered to be very limited during these experiments.  Therefore despite strongly varying Eh 

conditions UO2(CO3)3
4 is expected to be the dominant species at all times during the reactor 

experiment with subdominant concentrations of (UO2)2CO3OH3
-  and UO2(CO3)2

2-.  In the absence of 

uraninite surface complexation is expected as the dominant immobilisation mechanism for U(VI) 

species. 

As all predicted aqueous uranyl species are negatively charged ferric hydroxides are thought to act 

as strong sorbents below their point of zero charge in addition to incorporating U(VI) species into 

their structure (Duff et al., 2002; Kerisit et al., 2011).  Additionally silanol and aluminol edge sites of 

phyllosilicate minerals offer a substantial capacity for complexation of uranyl-carbonate complexes 
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(Bachmaf and Merkel, 2010).  It is the combination therefore of sorption processes between ferric 

hydroxides and clay edge sites which are thought to control uranium mobility in reactor suspensions. 

There is significant variation to uranyl sorption envelopes between clays of different mineralogy as 

demonstrated by Bachmaf and Merkel (2010).  Smectites which represent 12-13.5% of the COx 

mineralogical composition exhibit fewer aluminol edge sites and a greater number of silanol sites 

than Kaolinite type clays (2-4% of COx).  Smectites demonstrate a parabolic sorption envelope for 

U(VI) species with significant desorption between pH 5 and 9 whereas Kaolinites act as significantly 

stronger sorbents of U(VI) at neutral and high pH.   

During cycles of air sparging pH was consistently lower (~pH 8.2) than for cycles of nitrogen sparging 

(~ pH 9), partially due to the equilibrium of calcite at atmospheric pCO2 and partially due to 

oxidation of reduced species resulting in proton production.  This pH change is thought to have 

resulted in the dramatic changes in U(VI) mobility observed by a combination of two mechanisms.  

Firstly increasing pH will have resulted in desorption of uranyl-carbonate complexes from silanol 

edge sites.  Secondly increasing pH from 8-9 crosses the point of zero charge of many metal oxides 

resulting in additional desorption of negatively charged uranyl-carbonate complexes from these 

surfaces. 

The importance of pH changes on mobility of U(VI) species has been reported by several authors 

including Barnett et al. (2002) who predict large increases of aqueous U(VI) species upon pH 

increases such as those experienced in reactor suspensions. 

Mercury 

Mercury was added to reactor 1 in its oxidized i.e. Hg(II) form as a free cation at low pH.  As can be 

seen from the Pourbaix diagrams (Figure 129) Eh conditions following AH2DS2- additions 

thermodynamically favour reduction to Hg(0), a liquid metal at room temperature, via Equation 28. 

Equation 28 Hg(OH)2 + 2H+ + 2e- → Hg0
 + 2H2O 
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Upon the switching to air sparging once again Eh conditions approach the dominant field of Hg(II) as 

a dual hydroxylated species via the reversal of Equation 28.  It is therefore expected that under 

oxidising conditions Hg(OH)2 should be present in the suspension as a subdominant species to Hg(0). 

Aqueous mercury concentrations were found to be very low under reactor conditions with Kd values 

ranging between 25,560 and 330,094 L/kg, this suggests that either transformation to Hg(0) did not 

occur or that Hg(0) was volatilised and lost into the gas phase. 

.  

Figure 129: Pourbaix diagram of the Hg-H2O-CO2-Cl system at 298.15K and 105 Pa with Eh pH 

conditions in reactor 1 drawn in black. 
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Figure 130: Aqueous/colloidal mercury concentration in the reactor 1 suspension over time. 

Abiotically controlled mercury mobility within the COx can therefore be considered to be low over 

the range of Eh and pH conditions expected even with extensive redox cycling.  As mercury 

immobilisation is not thought to be dependent on a particular redox sensitive mineral phase but the 

result of speciation cumulative trends are also unlikely and were not observed during this 

experiment.  Even under conditions of sulphate reduction, not experienced during the experimental 

period, Hg is unlikely to be mobilised due to the formation of HgS (cinnabar). 

Despite these findings Hg mobility in soils is strongly influenced by organic matter and microbial 

activity which have not been thoroughly evaluated within this experiment.  Further experiments in 

the presence of an active microbial community are required to establish if low mercury mobility is 

also applicable to natural conditions in such clay rich media. 

Conclusions 

In carbonate rich clay layers such as the Callovo-oxfordian (COx), pH is well buffered by calcite and 

dolomite and is unlikely to drop significantly below pH 7 with cycles of oxidation and reduction 

unless significant decalcification occurs.  Within the pH and Eh conditions expected Cr, As, Hg and U 

may undergo significant changes to their speciation.  Additionally cumulative changes to the 

substrate are expected due the varying mineral stability which will have a secondary effect on the 

mobility of contaminants. 

These initial experiments show changes to the intra-cycle mobility of As, Cr and U in addition to 

cumulative changes in As and Cr mobility following successive redox cycling.  A summary of the 

range of distribution coefficients calculated from this study is provided in Table 31 in addition to the 

key trends observed.  Mercury and Chromium were found to be highly immobile over the whole 
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range of experimental conditions due presumably to formation of stable Hg(0) and a combination of 

Cr3+ sorption and precipitation processes following reduction of Cr(VI) by reduced ferrous minerals 

and AH2DS2-.  Conversely arsenic was found to be highly mobile throughout redox cycling under both 

oxidising and reducing conditions.  Incomplete reduction of As(V) to As(III) is presumed due to pH 

dependence of Kd values and literature evidence of radical oxidising species in chemically reduced 

AH2DS2- (Jiang et al., 2009).  Subsequent re-oxidation of arsenite to arsenate by molecular oxygen, 

catalysed by mineral surfaces is thought presumed to occur upon each oxidising cycle. 

Mobility of uranium under redox oscillating conditions was found to vary significantly due to changes 

in aqueous speciation and changing mineral surface charge due to oscillating pH.  In contrast to 

often reported uranium immobilisation under reducing conditions (Anderson et al., 2003), uranium 

mobility was high under reducing conditions in the reactor environment due presumably to 

inefficient electron transfer between AH2DS2- and large uranyl-carbonate complexes impeding 

reduction to uraninite.  The observed high mobility under reducing conditions is therefore attributed 

to loss of positive charge on metal oxide surfaces due to pH change and subsequent uranyl-

carbonate desorption. 

Table 31:  Summary of the range of Kd values obtained experimentally during redox cycling and the 
intra-cycle and cumulative trends observed. 

Contaminant Kd max observed 
L/kg 

Kd min observed 
L/kg 

Key intra-cycle 
trends 

Cumulative 
trends 

Arsenic 616 97 Increased 
mobility during 
reducing cycles 

Decreasing 
mobility with 
successive 
redox cycles 

Chromium 2,333,530 21,642 Increased 
mobility during 
reducing cycles 

Decreasing 
mobility with 
successive 
redox cycles 

Mercury 330,094 25,560 No clear trends No clear trends 

Uranium 53,569 129 Increased 
mobility during 
reducing cycles 

No clear 
cumulative 
trends 

 

Mercury was shown to be rapidly immobilised upon addition to the Cox suspensions and its 

subsequent mobility was not shown to vary significantly intra cycle or cumulatively due to redox 

oscillations.  However, Hg mobility has been shown to be strongly affected by microbial processes 

such as methylation and therefore further similar experiments using a substrate from the near 

surface with an active microbial community should be conducted to better evaluate Hg mobility 

around any future near surface repository. 

Cumulative effects of redox cycling were shown for both arsenic and chromium which appear to be 

attenuated due to cumulative mineralogical changes induced by successive redox cycles.  Two 

hypotheses are presented including increased co-precipitation of these contaminants with ferric 

hydroxide minerals and an increasing proportion of ferric hydroxides with cycling due to the 

successive dissolution of pyrite during cycling. 



183 
 

All calculations presented in this chapter assume that the reactor environment acts as a closed 

system with respect to contaminants and that all added contaminants remain within either the 

aqueous or solid phase.  While this assumption is valid for contaminants with low volatility such as 

uranium and chromium, arsenic and mercury have been shown to be subject to methylation and 

subsequent volatilisation in the environment(Compeau and Bartha, 1985; Mestrot et al., 2011).  

Although this volatilisation is highly unlikely in the abiotic experimental environment, such processes 

could lead to greater contaminant mobility in the near surface environment and therefore should be 

considered in further experiments, especially in the presence of a more natural near surface 

substrate and an active microbial community. 

Whilst this experiment offers a preliminary view of contaminant mobility in a clay rich substrate 

under cyclic redox conditions, many of the mechanisms responsible for contaminant mobility may 

only be hypothesised in the absence of further spectroscopic data.  Additionally, although AH2DS2- 

was carefully selected as a bulk reductant to mimic reduction by microbial activity, re-oxidation of 

reduced species by radical species produced during AQDS reduction hinder its effective use at high 

pH and high AQDS/contaminant ratios.  The potential of AH2DS2- is also not sufficiently low to cause 

sulphate reduction, a process which is crucial to understanding contaminant mobility in the 

subsurface, particularly in sulphide bearing clay layers subjected to redox oscillation.  Sulphides 

often act as sorbents for contaminants under reducing conditions and the lack of sulphate reduction 

during these experiments may have led to artificially low Kd values for contaminants under reducing 

conditions in the absence precipitating sulphides. 

To further understand such a complex dynamic system further experiments in the presence of an 

active microbial community, supported by spectroscopic analyses and kinetic modelling are 

required.  These experiments would also benefit from the control of pCO2 concentrations in the 

sparging gas to avoid strong changes to pH which have been shown to affect contaminant mobility in 

the reactor environment but which are not necessarily present to the same extent under natural 

redox oscillating conditions. 
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Chapter 7: Conclusions, Perspectives and Future Research 

The pedosphere as a sink and a source for contaminants 

Traditionally clay rich floodplain and wetland soils are regarded as sinks for inorganic contaminants 

in the hydro/pedosphere.  The evidence presented in this thesis challenges this view, demonstrating 

that in addition to immobilizing a variety contaminants supplied by hydrological or atmospheric 

transport, floodplain soils can act as sources of contaminants, re-releasing significant contaminant 

concentrations to the aqueous phase due to highly dynamic chemical conditions driven by cyclic 

flooding. 

Indeed Chapter 2 of this thesis highlights the current poor understanding of arsenic fluxes to and 

from the pedosphere in addition to the large margins of error present in flux estimates between 

other arsenic pools in the environment.  This is particularly true when frequently used estimates for 

anthropogenic atmospheric arsenic fluxes are considered in light of increasing coal combustion and 

metal production. 

Implications for soil risk assessment 

Release of arsenic previously considered to be immobilized in soils in Europe could pose a risk to 

human health by increasing contaminant transfer factors to crops and by contaminating increasingly 

important shallow alluvial aquifers and surface water.  Results presented in this thesis clearly show 

that partitioning coefficients (Kd values) for arsenic and other trace contaminants in calcareous soils 

can vary considerably dependent on prevailing soil redox and pH conditions and that therefore, even 

moderate total solid soil arsenic concentrations can result in periodically high aqueous 

concentrations.  This draws attention to the fact that total contaminant concentrations in the soil 

solid phase cannot be used in isolation as adequate indicators of risk and that risk assessments for 

any given land use also require an understanding of soil mineralogy, hydrologic regime and 

contaminant speciation.  The wide range of soil arsenic concentrations specified as national 

guideline and action values, demonstrates the lack of consensus and legislative consistency between 

countries, even within the European Union.  If harmonization of environmental legislation between 

European member states is to be achieved, consideration must be paid both to variations in 

background concentrations of geogenic contaminants in soils between states/regions and to factors 

affecting solid, aqueous and gaseous partitioning for contaminants with varying chemical properties 

in different soils. 

In the case of the Saône floodplain top-soils, results included within Chapter 5 demonstrate that 

during periods of pore-saturation, caused either by overbank flooding or by groundwater rise, soils 

moderately contaminated with arsenic may release significant quantities of arsenic to interstitial 

water, mediated by a variety of processes. 

Implications for near surface storage of low-level long-lived nuclear waste 

The results presented in Chapter 6 show that redox changes within clay barrier materials 

surrounding near surface geological storage repositories, even in the absence of an active microbial 

community, can have a dramatic impact on contaminant mobility.  Mobility is shown to vary 

considerably between contaminants and between oxidising and reducing conditions.  Despite 

carefully controlled redox conditions via dosing of reduced AQDS and oxygen sparging, trends in 

contaminant mobility show that contaminant speciation differs significantly from thermodynamic 
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predictions and demonstrates that kinetic controls on speciation change and redox transformations 

play an important role in determining contaminant mobility.  This is particularly true in the case of 

uranium where wet chemistry data support the formation of highly mobile uranyl-carbonate 

complexes which are thought to remain stable due to electrostatic repulsion between the electron 

donor (AH2DS2-) and the negatively charged uranyl-carbonate complex in addition to very slow 

electron transfer from reduced aqueous species (e.g. Fe2+) to the uranyl core.  Mobility of Cr, As, Hg 

and U may be described by a combination of surface complexation, precipitation, cation exchange 

and co-precipitation which differs substantially dependent on contaminant speciation and substrate 

specific mineralogy.  Arsenate, arsenite and uranyl-carbonate complexes are shown to be the most 

mobile contaminant species investigated at high pH (8-9) and variable Eh conditions.  Although these 

experiments offer an insight into the important processes controlling contaminant mobility in a 

calcareous clay rich media, abiotic reduction by AH2DS2- is shown to differ significantly from 

microbial reductive processes reported in natural soils and sediments.  Therefore to ensure 

adequate understanding of contaminant mobility during water level changes in a substrate around a 

nuclear waste repository wet chemistry experiments must be conducted using site specific substrate 

supported by solid characterisation techniques and investigative modelling such as used in Chapter 

5. 

The importance of cumulative redox cycling effects 

Beyond demonstrating the importance of varying solid/aqueous phase distribution dependent on 

flooding and hence Eh conditions, the results presented in Chapters 5 and 6 of this thesis clearly 

show that the repetitive oscillation of redox conditions can result in additional cumulative effects to 

partition coefficients due to kinetic controls on mineralogy and mineralization of labile organic 

matter fractions.  Whilst this may seem logical, very few investigations into the cumulative effects of 

redox oscillating conditions exist and fewer still have formally considered the effects of bulk 

mineralogical/structural changes on contaminant distribution coefficients. 

Under experimental conditions multiple cycles of reduction and oxidation are clearly shown to result 

in the attenuation of aqueous As and Cr concentrations suggesting that redox cycling may be an 

effective form of natural attenuation of toxic contaminants in the environment.  In the Callovo-

oxfordian clay and calcareous fluvisol from the Saône floodplain various mineralogical and microbial 

processes are considered to be responsible for the observed cumulative effects on mobility.  These 

mechanisms include increased co-precipitation processes, gradual oxidative dissolution of pyrite 

grains resulting in an increased ferric hydroxide fraction and decreased microbial activity/reductive 

dissolution resulting from depletion of labile organic matter.  

The remainder of chapter 7 summarizes the physical and chemical distribution of arsenic on the 

investigated riparian floodplain, the key processes observed experimentally during this thesis which 

control mobility of arsenic and other contaminants, the relevance of these findings to other 

environments and finally the limitations of experimental and modelling approaches used during this 

thesis. 

Distribution of arsenic on the Saône floodplain 

An investigation of the distribution of arsenic on part of the Saône floodplain in Chapter 4 leads to 

several key conclusions.  The first regards the source of the arsenic contamination.  As no clear 

spatial trends were observed with respect to arsenic concentrations in top soils, either perpendicular 
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or parallel to the river flow it is possible to conclude that the contamination does not originate from 

a point source on this part of the floodplain.  The diffuse nature of the contamination indicates that 

contamination originates from outside of the sampled area, imported with floodwater as aqueous 

species or suspended particles or alternatively by atmospheric deposition.  Whilst diffuse 

contamination could be a result of historic arsenic application directly to soils by farmers, the variety 

of land-use (pasture land, salad production, corn production, natural wet land) which all display 

comparable arsenic contamination, makes this interpretation improbable.  Comparison between 

elemental concentrations in soils and the risk of groundwater rise hints that a hydraulic re-

distribution of contaminants on the floodplain does occur.  However due to the low total number of 

sampling points, the correlation could not be proven to be statistically significant at the 95% 

confidence level.  What was clear from this study is that the distribution of arsenic was dependent 

on one key physico-chemical variable, the presence of iron and manganese containing particles 

between 2 and 10 µm in diameter.  Whilst it is possible that this could be indicative of phyllosilicate 

minerals it seems more probable that poorly crystalline metal oxyhydroxides phases, subsequently 

identified by Mössbauer spectroscopy, control mobility of arsenic on the floodplain. 

Key biogeochemical processes observed 

Depletion of labile organic matter 

Dissolved organic matter in pore water has been linked by several recent studies to the liberation of 

arsenic in shallow alluvial aquifers and paddy field soil.  In Chapter 5 the cycling of dissolved organic 

matter in a floodplain soil under redox cycling conditions is shown to be gradually attenuated due to 

depletion via rapid aerobic metabolism under oxidising conditions and comparatively slow 

replenishment by particulate organic matter hydrolysis.  This depletion of labile organic matter is 

shown to result in decreased microbial reduction of metal hydroxide minerals which act to 

immobilise arsenic via sorption and co-precipitation processes and hence a decrease in arsenic 

mobility.  This scenario is analogous to groundwater rise and fall where pore saturation is achieved 

without the influx of fresh sediment to replenish labile organic matter pools in soil. 

Dissimilatory reductive dissolution and subsequent oxidative precipitation of iron and 

manganese oxyhydroxides 

Iron and manganese (hydr)oxide minerals have been shown by many previous studies to be key 

mineralogical controls on arsenic mobility in soils and sediments due to their large surface area and 

hence extensive sorption capacity for anionic aqueous species in addition to immobilisation of such 

species by co-precipitation processes.  As both Fe(III) and Mn(IV) may serve as a terminal electron 

acceptor for anaerobic microbial metabolism following oxygen depletion in flooded soils, both iron 

and manganese hydroxide minerals are subject to reductive dissolution during flooding.  

Contaminants such as arsenic associated with Fe or Mn hydroxides have been shown to be released 

into the aqueous phase upon reductive dissolution of these minerals.  Evidence for all of these 

processes including aqueous chemistry, spectroscopic and microbial ecology data is presented in 

Chapter 5.  In addition to confirming these processes in soils of the Saône floodplain results 

presented in Chapter 5 demonstrate that successive cycles of oxidation and reduction result in the 

decreased mobility of arsenic under reducing conditions.  The presented thermodynamic and kinetic 

model of the experimental system suggests that the previously undocumented attenuation of 
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aqueous arsenic is in part due to an increased proportion of co-precipitated arsenic compared to 

surface sorbed arsenic with each cycle. 

De-carbonation 

One of the key cumulative effects of redox cycling on bulk chemistry, identified experimentally in 

both calcareous floodplain soils and the Callovo-Oxfordian clay material used within this thesis, is 

that of de-carbonation.  Oxidation processes which occur following draining of floodplain soils 

produce acidity which is neutralized by dissolution of carbonates and hence the release of metal ions 

(in this case of calcite Ca2+). 

Experimentally an increase in aqueous Ca2+ concentrations was observed during each redox 

oscillation experiment.  Whilst in a more perfectly closed system (e.g. without degassing of CO2 

produced during microbial metabolism) carbonate dissolution may be countered by re-precipitation, 

upon development of reducing conditions and proton consumption, hydraulic transport of liberated 

Ca with receding floodwater may prevent such re-precipitation.   De-carbonated was not considered 

to influence arsenic mobility substantially during the short experimental periods of this thesis, 

particularly as arsenic is shown not to be strongly associated with carbonate fractions by statistical 

methods (Chapter 4).  However, this gradual change in the mineralogical matrix is likely to have 

dramatic long term effects.  Upon the complete depletion of the carbonate fraction, the main pH 

buffering phase in calcareous soils, subsequent pH drop is highly probable.  The effects of the 

potentially dramatic pH drop are likely to important for contaminant mobility, I.e.  Contaminants 

which occur as monoatomic cations will become more mobile whereas oxyanions will become less 

mobile. 

Processes not observed 

Immobilisation of arsenic by FeS2 or FeCO3 

Neither 57Fe Mössbauer spectrometry or X-ray diffraction analysis revealed the presence of ferrous 

sulphide or carbonate minerals which have been shown by numerous authors to be sorbents of 

arsenic under reducing conditions (Charlet et al., 2011).  It could therefore be concluded that 

immobilisation of arsenic by such phases in this soil are of limited importance.  Further evidence to 

support this conclusion comes from Charlet et al. (1998) who demonstrate that at high pH conditions 

rapid sorption of Fe2+ to clay minerals may limit precipitation of thermodynamically favourable 

ferrous phases.  However, disparities between experimental conditions and the natural environment 

may also contribute to the lack of FeCO3 and FeS2 in reactor suspensions.  Although Eh conditions 

achieved during reactor experiments oscillated within the range of those experienced by soils during 

natural flooding, homogenisation of soils by mechanical agitation resulted in the destruction of 

natural soil structure.  Soil structure would normally result in many chemical micro-environments 

where sulphide reduction could more readily occur.  Additionally periods of flooding on the Saône 

floodplain can last for periods greater than a month, comparatively periods of reduction in reactor 

suspensions of up to 7 days were very short and may not have been sufficient to allow for the onset 

of sulphate reduction.   
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Redox behaviour of structural clay components 

Recently Ribeiro et al. (2009) and Stucki (2011) have reported that structural ferric iron in clays can 

be redox active and accessible to iron reducing bacteria as a terminal electron acceptor.  The results 

of Mössbauer spectroscopy presented in Chapter 5 show that no strong changes to the Fe(II/III) ratio 

in clays were recorded between the end of reducing and oxidizing cycles indicating that significant 

reduction of structural Fe(III) did not occur under experimental conditions.  However, this does not 

contradict the results of Stucki (2011) and Ribeiro et al. (2009) due to the limited periods of reducing 

conditions in the reactor suspensions.  It is reasonable to assume that reduction of structural Fe(III) 

is significantly less energetically efficient than reduction of poorly crystalline ferric (hydr)oxide 

minerals.  Therefore structural Fe(III) may only become a viable terminal electron acceptor upon 

exhaustion of the more labile ferric iron fraction.  Indeed, despite the strong evidence for microbial 

iron reduction during reducing half cycles there was limited decrease to the total proportion of ferric 

iron present as poorly crystalline FeOOH and the PHREEQC model of the system does not predict 

exhausted of labile ferric iron within the 7 day reducing periods.  This result suggests that even 

relatively small changes to poorly crystalline ferric oxide fractions, imperceptible via bulk 

spectroscopy may cause large changes to arsenic mobility. 

Further research needs 

Applicability of findings to other redox oscillating environments: The experimental redox cycling 

aspects of this thesis were conducted on one type of calcareous fluvisol and one well classified clay 

rich sedimentary rock sample from the Callovo-oxfordian formation.  Whilst a variety of different 

techniques have been used to determine the processes key to controlling arsenic mobility under in 

the investigated substrates during experimental conditions, the question remains as to what extent 

these processes are applicable to other soils and sediments subjected to temporal redox oscillations.  

The complexity of flooded soil systems under redox oscillating conditions, even when experimentally 

simplified as homogeneous zero suspensions warrants greater attention than was possible within 

the framework of this thesis.  One logical continuation of this research theme would be to apply the 

same experimental methodology to soils with differing mineralogical composition, varying 

proportions and types of organic matter and over a range of pH and temperature conditions to 

assess the importance of the different arsenic liberating and attenuating processes observed during 

this thesis.  Particularly whether the observed attenuation of arsenic released following successive 

redox cycles is applicable in a range of redox oscillating environments.  As the PHREEQC model 

indicates that both organic matter depletion and increased precipitation contribute to this trend, 

further experiments isolating these factors are required.  This could be achieved by simply adding 

additional dissolved organic carbon to replace the exhausted labile pool at the onset of each 

oxidizing half cycle.  Further experiments could also be conducted to determine whether this 

observed trend is applicable to aged contaminated soils, i.e. soils which have been contaminated for 

several years and may have reached an equilibrium state with respect to fast and slow sorption 

processes, or whether the observed attenuation is applicable uniquely to recently contaminated 

soils (equivalent to the doping of experimental soils with arsenic one month prior to the onset of 

cycling). 

Dynamic climate/hydraulic variation: The results presented in this thesis clearly demonstrate that 

many processes controlling contaminant mobility in floodplain soils are kinetically controlled.  

Oscillating redox conditions induced by flooding and draining also include time controlled 
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parameters.  Further questions raised based on this observation include the effects of temporal 

flooding parameters such as the speed of oscillation between reducing and oxidizing conditions and 

the length of each oxidizing or reducing half cycle.  As the periodicity, intensity and timing of 

flooding are expected to change due to changing global and regional climatic conditions an 

understanding of how these changes may alter contaminant mobility in contaminated soils would be 

extremely valuable. 

Improvements to experimental design and alternative experimental methodologies:  Whilst 

laboratory based representations of complex natural systems always entail a degree of compromise 

it is my opinion that significant improvements could be made to the experimental design used 

during this thesis in order to more accurately represent natural flooded conditions. 

One of the key simplifications of the suspended sediment systems used within this work is the 

destruction of soil spatial heterogeneity.  As discussed in Chapter 1, the micro-structure present in 

soils results in the creation of many micro environments with strong variations in Eh and pH 

conditions.  The lack of significant sulphate reduction during reactor cycling experiments when 

evidence from static flooding experiments under similar Eh pH conditions indicate substantial 

sulphate reduction may be partially explained by the removal of this range of Eh – pH environments 

in soils which contribute to bulk measured values.  This disparity may also be due destruction of 

microbial habitat effectively limiting the creation of biofilms necessary for full soil microbial function. 

A further key experimental simplification of this system is the constant level of soil moisture in the 

reactors.  Whilst wet oxidation is induced in this experimental system by the rapid diffusion of 

oxygen from the headspace to the aqueous phase, it is feasible that the changes to mineralogy 

observed under wet oxidation and reduction conditions may differ to those observed to wet 

reduction and dry oxidation cycling. 

Additional experimental possibilities include the coupling of oscillating redox conditions with 

diffusive and advective transport models.  Zero dimensional geochemical modelling conducted in 

PHREEQC serves as a strong diagnostic and prognostic tool to aid understanding of important 

processes determining mobility of contaminants in dynamic soil and sediment systems.  However 

mobility in this context refers to the partitioning between immobile solid phases and mobile 

aqueous or colloidal phases.  While this is useful in itself, a key question posed by modellers of waste 

repositories is the spatial mobility of contaminants in the environment.  The results of coupling of 

the developed PHREEQC code to 1D transport models, fed by and validated by experimental column 

studies would be of great interest to waste repository modellers who tend to traditionally view the 

matrix in porous media as a relatively static entity with little variation with time. 
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Figure 1: The predicted distribution of oxygen in structured soil modelled as a fractal and its 

dependence on microbial respiration rate. Each box represents a 2D layer of soil open to the 

atmosphere at the upper and lower boundary. The structure in each box is the same, whereas the 

potential respiration rate per unit volume decreases from a maximum (top) to a minimum (bottom). 

Red denotes low oxygen concentration, yellow denotes atmospheric concentration, and light blue is 

the soil matrix. The pore-scale spatial complexity and diversity of oxygen environments is obvious in 

all boxes, as is the spatial proximity of high and low oxygen concentration regimes. Even where 

potential microbial respiration is low, regions of low oxygen concentration prevail. From Young and 

Crawford (2004). ..................................................................................................................................... 2 

Figure 2:  X-ray fluorescence maps of a dissected soil aggregate showing significant heterogeneity in 

structure, composition and speciation from Prietzel et al. (2010).  (a) Map of total Si acquired with an 

X-ray energy of 2483 eV. (b) Map of total S acquired with an X-ray energy of 2483 eV. (c) Map of 

reduced S acquired with an X-ray energy of 2474 eV. (d) Map of total Si acquired at with an X-ray 

energy of 7200 eV. (e) Map of total Fe acquired with an X-ray energy of 7200 eV. ( f ) Map of 

elemental and divalent Fe acquired with an X-ray energy of 7121 eV. In maps (b)–( f ), increasing 

concentrations of the elements or element species of interest are represented by a color change in 

the sequence blue–green–yellow–red. .................................................................................................. 3 

Figure 3: Schematic illustrating the effect of oxidative recharge by advection and the complex 

behaviour and transport of arsenic and uranium contaminants in changing sediment and redox 

environments from Davis et al. (2004). .................................................................................................. 4 

Figure 4: The reduction sequence in soils driven by microbial metabolism of organic matter using 

successively less efficient terminal electron acceptors.  Energy (kJ per mol) values are the Gibbs free 

energy for the reduction of TEAs coupled to the oxidation of glucose at pH 7 and 25oC normalised on 

a per electron basis. ................................................................................................................................ 5 

Figure 5: The reduction sequence in soils at pH 6.5 – 7 constructed using data from Patrick and 

Jugsujinda (1992); McBride (1994); and Sposito (2008).  The Eh values where reduction of TEAs 

becomes thermodynamically favourable and is therefore predicted to occur are shown by black 

horizontal lines.  Literature values for measured Eh during reduction of each of these TEAs are 

shown by shaded regions (from Essington (2004))................................................................................. 8 

Figure 6:  The progression of overbank/fluvial flooding.  Reproduced from de Choudens, (2008).  The 

terms Lit mineur, moyen and majeur correspond to river channel, lower and upper flood terraces. 10 

Figure 7:  Illustration of the development of phreatic flooding.  Reproduced from de Choudens, 
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Figure 8:  The BRGM InfoTERRE GIS (Geographic information system) tool (BRGM, 2010) can be used 

to visualize the risk of phreatic flooding in different areas of France.  The risk of phreatic flooding to 

the area around the town of Moulins is shown (BRGM, 2006) with the fluvial system overlaid 
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(Institut Geographique National de France, 2010) to illustrate the decoupling of the fluvial and 

phreatic hydrologic systems. ................................................................................................................ 11 

Figure 9: The Banaue Rice Terraces in the Philippines irrigated by rainwater runoff from the 

rainforests above.  Photograph by Jon Rawlinson (2006) used under the creative commons license.12 

Figure 10:  River fed rice field irrigation channel on the Ebro delta, Catalonia, Spain.  Photograph by 

Alan Bell (2006) used under the creative commons license. ................................................................ 13 

Figure 11:  Flooding of rice fields by pumping shallow groundwater from tube wells in the Prey 

Krabah district of Takeo, Cambodia.  Photograph by Dr. Donald Puckridge (2001) used under the 
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Figure 12:  Schematic of temporally variable redox zonation caused by activity of benthic macro-

fauna.  Planar, radial, cylindrical and spherical redox geometries are all commonly observed in such 

environments.  Reproduced from Aller (1994). .................................................................................... 14 

Figure 13: Summary of basic processes occurring at the mineral-water interface including: 

Physisorption, chemisorption, desorption, inclusion, occlusion, attachment, hetero nucleation, 

organo-mineral complexation and complexation to a bacterial film (From Manceau et al. (2002) 

modified from Charlet and Manceau (1992a). ..................................................................................... 17 

Figure 14: Pourbaix diagram of the Hg - H2O – CO2 system at 298.15K and 105 Pa from LLNL data. ... 19 

Figure 15: (a) The concentrations of positively and negatively charged surface sites on gibbsite and 

(b) the corresponding adsorption behaviour of Naand NO3
- as a function of solution pH (from 
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Figure 16: Adsorption of Hg(II), expressed as a fractional amount of the total Hg(II) concentration 

(fsorb), by gibbsite as a function of pH and ionic strength (from Sarkar et al. (1999)). ....................... 21 

Figure 17: The effect of varying pH and chloride concentration on aqueous Hg speciation.  From 
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Figure 18:  The adsorption of Hg(II) on silica as a function of solution pH and chloride concentration.  

For a given pH, increasing Cl concentration reduces Hg(II) uptake.  From Leckie (1986). ................... 22 

Figure 19: The sorption edge for uranium(VI) uptake by different minerals across the pH range from 

3 to 7 expressed as: (a) distribution coefficients (Kd), and, (b) surface area-normalized distribution 

coefficients (Ka). Note the much smaller spread of experimental data in the computed Ka compared 

to the range of Kd for these minerals. From Payne et al. (n.d.). ........................................................... 27 

Figure 20: U(VI) speciation in 0.01 M NaCl + 0.005M Na2SO4, [U] = 5 × 10−5 M generated using 

PHREEQC and the WATEQ4F thermodynamic database (from Bachmaf et al. (2008)).  The presence 

of uranyl-sulphate-complexes at low pH and their absence at neutral to high pH is shown. .............. 28 

Figure 21: U(VI) speciation in 0.01M NaCl + 0.003M NaHCO3 , [U] = 5 × 10−5 M  generated using 

PHREEQC and the WATEQ4F thermodynamic database (from Bachmaf et al. (2008)).  .  The 
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Figure 22: Comparison of uranium sorption data on kaolinite (KGa-1b), kaolinite (KGa-2), 

montmorillonite (STx-1b), montmorillonite (SWy-2), and natural bentonite (IBECO) at different 
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Annex 1: Modelling of Groundwater Arsenic Contamination in Nepal: 

Geostatistical Predictions of Concentration Using Remote Sensing & Relief 

Data and the limitations of the Regression-Kriging Approach 
 

This annex represents a short summary of work conducted while on secondment to the soil action 

group of the Institute of Environment and Sustainability at the European Commission Joint Research 

Centre under the supervision of Luis Lado Rodriguez in 2008.  The work was conducted in 

collaboration with the Nepalese National Arsenic Steering Committee and the Nepalese 

Environment and Public Health Organization.  The study attempted to use remote sensing data in 

conjunction with available aqueous arsenic concentration data from shallow tube wells to produce a 

predictive model capable of estimating the risk of high arsenic in areas of the Terai region of Nepal 

which have not yet been directly sampled.   

Introduction 

Since the initial detection of high groundwater arsenic concentrations in shallow aquifers of West 

Bengal in the early 1980’s (2) a significant amount of academic of work has been conducted across 

South East Asia to understand, predict and remediate affected areas (12).  It was only as recently as 

1999 that this contamination was found to extend into shallow groundwater higher in the Ganges 

basin in Nepal when investigations were started by the Nepalese Department of Water Supply and 

Sewage (DWSS)(9). 

The use of shallow groundwater (predominantly from tube wells) in the Terai region is extensive; 

Neku and Tandukar estimate domestic groundwater use (including potable water) by 90% of the 

Terai population (8) (approximately 12.9 million people). Despite the detection of high As 

concentrations and extensive use of untreated groundwater, vast highly populated areas remain un-

sampled and no good predictive tool exists to determine which areas are likely to be at risk for high 

arsenic concentrations. 

Regression kriging methodology 

Due to scarce availability of data from depth this study attempts to produce a quantitative 2 

dimensional model derived from freely available surface data following the generic framework for 

regression kriging proposed by Tom Hengl (3). 
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i. Generic conceptual framework for regression kriging proposed by Hengl (3) 

Matheron first proposed in 1969 (6) that a variable at a certain location can be modelled as a sum of 

its deterministic and stochastic components (Equation i). In this study the deterministic component 

is modelled by multiple linear regression with auxiliary predictors, the residuals (or stochastic 

components) are modelled by kriging (see Figures ii and ii). 

Equation i:                         
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ii  The concept of the regression kriging technique whereby a variable is modeled by a combination 
of linear regression (deterministic component) and kriging (stochastic component). 

 

 

iii. Left: Multiple regression to model deterministic component.  Right: Kriging to model 

deterministic component (relies on spatial autocorrelation of a variable shown by semi-variogram) 

 

Sampling points: Data preparation 

The groundwater database used to create and validate the presented model was provided by the 

Nepalese National Arsenic Steering Committee and the Nepalese Environment and Public Health 

Organization (11). The database is a compilation of measurements taken by 5 different 

organizations: the Department of Water Supply and Sewerage (DWSS), the Nepal Red Cross Society 

(NRCS), the Rural Water Supply and Sanitation Support Program (RWSSSP), Nepal Water for Health 

(NEWAH), the Rural Water Supply and Sanitation Fund Development Board (RWSSFDB) 

From the 18,635 original data points a subset of 6,119 points was taken to exclude data which had 

not been geo-referenced, to remove uncertain As concentrations with values under the detection 

limit, duplicates and data from wells not within a depth range of 10-80m.  The samples were 
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collected between 2000 and 2002 from wells installed between 1951 and 2002. Groundwater 

arsenic concentration ranges from 0-2,620ppb.   

Auxiliary variables 

Two classes of surficial auxiliary variables were used to produce this model. 

1. Topographic variables including: Elevation, Slope, Flow length index, Topographic 

Convergence Index (TCI), Topographic Wetness Index (TWI), Sediment Transport Capacity 

(STC), Contour Curvature (CC), Slope Profile Curvature (SPC) and Total Curvature (TC) which 

were derived from a processed version of NASA SRTM 90m data (4) using AML scripts (10) 

and tools built into ArcGIS 9.2  

2. Remote sensing Images: MODIS 16 day averaged Normalised Difference Vegetation Index 

(NDVI) images (250m). 

These auxiliary variables (>30 raster data sets) were transformed into principal components to 

eliminate significant multicollinearity in the data.  The regression model was built on the first 19 

principal components.  This choice increases computational efficiency in production of the linear and 

regression kriging models.  Examples of auxiliary variables are given in Figures iv, v and vi) 

 

iv.  Example of auxiliary variables 1: Terrain slope derived from the digital elevation model (blue = 
flat/0o to red = steep/90o). 
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v.  Example of auxiliary variables 2: Topographic wetness index derived from the digital elevation 
model (red = wet, blue = dry). 

 

vi.  Example of auxiliary variables 3: Composite (RGB) of principal components of normalized 
difference vegetation index data. 

 

Results 

Principal components of predictor raster data used to produce the linear model could only explain 

12.69% of the variation found in the data (best correlated with flow length index, NDVI images and 

elevation).  Therefore the kriging element of the final regression kriging model was given greater 

weight (trending towards situation C shown in viii).  Arsenic concentration data was found to be 

spatially auto-correlated up to distance of approximately 10km with a strong directional weighting at  

105/285o which corresponds approximately to the orientation of the mountain front of the Himalaya 

e.g. perpendicular to erosional flux.  Directional auto correlation is demonstrated in figure vii. 
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vii.  Computed semivariogram showing directional spatial autocorrelation of As concentrations 
(105/285o weighting).   

 

viii. A – Pure regression optimal – residuals ≈ 0. B – Combination of regression and kriging.  C – 
Ordinary Kriging optimal. 

The final model trends towards a classical ordinary kriging approach.  This can be seen on the 

normalized error map of the final regression kriging model (Figure 
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xii) - confidence is only high in the areas which were extensively sampled and deteriorates rapidly 

away from known points.  Independent statistical validation of the final model was not performed. 

 

ix. Results of prediction using the ordinary kriging approach. 
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x. Results of the linear regression model (deterministic component).  R2 = 0.1267.  Red = 310 ppb 

dark blue = 0 ppb. 
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xi. Results of the combined regression-kriging model (deterministic and stochastic components).  

Red = 327 ppb dark blue = 0 ppb. 

xii. Normalized error of regression kriging predictions (white = 1/high error, black = 0/low error). 

 

Groundwater As 
concentration (ppb)

High : 327.493

Low : 0.00301416
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Conclusions 
Although the regression-kriging approach has been used with far greater success to predict 

groundwater arsenic concentrations in Cambodia and West Bengal (5,7) the proposed model does 

not provide a practically useful prediction of arsenic concentration in groundwater and does not 

significantly improve predictive power compared to classical techniques such as ordinary kriging.  

Validation of the methods was not performed due to the inability of the linear regression model to 

account for variability in the training data.  The failing of the linear model indicates that arsenic 

variability is controlled by factors not captured in the selected auxiliary variables.   It is thought that 

the lack of useful categorical predictors to form the linear model (soil and geological data) and the 

uneven distribution (clustering) of data are primarily responsible for the differences between this 

and previous studies. 

Common between this and previous studies (5, 7) is the correlation between arsenic concentration 

in groundwater and flow length index, elevation and NDVI images, consistent with models of 

microbially mediated arsenic mobilisation from low lying, Holocene sediments (derived from the 

Himalaya) in reducing conditions (1). 
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Resumen: El arsénico es un metaloide tóxico y cancerígeno, ubicuo en la pedosfera y altamente sensible a las 
fluctuaciones de las condiciones redox del suelo, las cuales controlan tanto su toxicidad como su movilidad. 
La presente tesis doctoral tiene como objeto de estudio el ciclo biogeoquímico global del arsénico y examina 
la importancia de los aportes del arsénico antropogénicos y geogénicos al ciclo exógeno tomando en cuenta 
el uso creciente de recursos.  

La contaminación con arsénico es generalmente difusa en las cuencas sedimentarias europeas. No obstante, 
las concentraciones en las aguas intersticiales del suelo pueden ser elevadas durante los periodos de 
saturación causados por el aumento de aguas subterráneas o inundaciones, cuyo incremento se prevé 
debido a los cambios climáticos. La espectrometría de fluorescencia de Rayos-X cuantitativa y sin estándar es 
utilizada para analizar el arsénico en suelos relativamente contaminados en la llanura aluvial del río Saône, 
mediante protocolos de preparación de muestras diseñados para mejorar la precisión analítica y la exactitud 
in-situ a bajas concentraciones de arsénico. La presencia de arsénico en estos suelos demuestra estar 
asociada a los (hidr)óxidos de hierro y de manganeso de tamaño de arcilla coloidal, los cuales experimentan 
una disolución reductora por acción microbiana durante las inundaciones, liberando así una importante 
concentración de arsénico en la fase acuosa. Si, posteriormente, el arsénico despedido no se elimina con el 
agua saliente, éste se vuelve a inmovilizar durante la oxidación del suelo y la re-precipitación de óxidos 
metálicos. Gracias a una combinación innovadora de análisis químicos por vía húmeda, ecología microbiana, 
espectroscopia, así como modelado termodinámico y cinético, demostramos que los ciclos de oxido-
reducción secuenciales provocan una atenuación de arsénico acuoso durante condiciones de reducción 
debido al aumento de coprecipitacion y disminución de la actividad microbiana causada por el agotamiento 
de materia orgánica lábil. Se observan procesos de atenuación similares en caso de ausencia de actividad 
microbiana para Cr y As en arcillas piritas cuando son sometidos a oscilaciones de redox inducidas mediante 
la adición de sustancias húmicas reducidas. Es así como demostramos que los efectos acumulativos de ciclos 
sucesivos de redox son muy importantes para la movilidad contaminante en una variedad de ambientes. 

Palabras clave: ciclos redox, arsénico, FP-XRF, pXRF, inundaciones, FeOOH, PHREEQC 



Abstract:  Arsenic is a toxic and carcinogenic metalloid, ubiquitous in the pedosphere and highly sensitive to 
fluctuations in soil redox conditions which dramatically influence both its toxicity and mobility.  We review 
the global biogeochemical cycle of arsenic in light of increasing resource usage and re-evaluate the 
importance of anthropogenic and geogenic arsenic inputs to the exogenic cycle.  Arsenic contamination is 
often diffuse in European sedimentary basins.  Despite this, concentrations in soil pore-water may be high 
during periods of soil saturation caused by rising groundwater or surface flooding which is predicted to 
increase due to climatic change.  Standardless quantitative X-ray fluorescence spectrometry is used to 
analyse for arsenic in moderately contaminated soils on the alluvial plain of the Saône River with sample 
preparation protocols designed to optimize analytical precision and accuracy in-situ at trace arsenic 
concentrations.  Arsenic in these soils is shown to be associated with colloidal and clay sized iron and 
manganese (hydr)oxides which undergo microbially mediated reductive dissolution during flooding, releasing 
substantial arsenic to the aqueous phase.  If released arsenic is not subsequently removed with receding 
flood water it is re-immobilized during soil oxidation and re-precipitation of metal oxides.  We demonstrate 
through a novel combination of wet chemistry, microbial ecology, spectroscopy and thermodynamic and 
kinetic modelling that sequential reduction-oxidation cycles result in aqueous arsenic attenuation during 
reducing conditions due to increased co-precipitation and decreases in microbial activity due to depletion of 
labile organic matter.  Similar attenuation processes are observed in the absence of microbial activity for Cr 
and As in pyrite-bearing clays when subjected to redox oscillations induced by addition of reduced humic 
substances.  We demonstrate that the cumulative effects of successive redox cycling are therefore of great 
importance to contaminant mobility in a variety of environments. 

Key words: Redox cycling, arsenic, FP-XRF, pXRF, flooding, FeOOH, PHREEQC 

Résumé: L'arsenic est un metalloïde toxique et cancérigène. Ubiquiste dans la pedosphere, il est très sensible 
aux fluctuations des conditions redox du sol, ce qui influe significativement sa toxicité et mobilité.  Nous 
étudions le cycle biogéochimique global de l'arsenic, en tenant compte de l'usage croissant des ressources, et 
passons en revue l'importance respective de l’arsenic geogénique et anthropogénique dans l’environnement.  
La contamination à l’arsenic est souvent diffuse dans les bassins sédimentaires de l'Europe.  Cependant, des 
concentrations dans l'eau interstitielle du sol peuvent être élevées lors de périodes de saturation du sol 
causées par la monté des eaux souterraines ou les inondations, prévues d'augmenter dû aux changements 
climatiques.  La spectrométrie de fluorescence X quantitative et sans standard a été utilisée pour analyser 
l'arsenic dans des sols relativement contaminés de la plaine alluviale de la Saône au moyen de protocoles de 
préparation d'échantillons conçus pour optimiser la précision d'analyse et l'exactitude in situ aux basses 
concentrations d'arsenic. L'arsenic dans ces sols est associe aux (hydr)oxydes du fer et de manganèse de la 
taille d'argile colloïdale. Ceux-ci subissent une dissolution réductrice par les microorganismes lors des 
inondations, libérant une importante concentration d'arsenic dans la phase aqueuse. Si, par la suite, l'arsenic 
dégagé n'est pas éliminé avec l'eau de crue évacuée, il est ré-immobilisé pendant l'oxydation du sol et la 
reprécipitation des oxydes métalliques. Grâce à une combinaison novatrice d'analyses chimiques par voie 
humide, d’écologie microbienne, de spectroscopie ainsi que de modélisation thermodynamique et cinétique, 
nous démontrons que les cycles d'oxydo-réduction séquentiels entraînent une atténuation d'arsenic aqueux 
dans des conditions réductrices dû à la coprécipitation croissante, et a une diminution de l'activité 
microbienne causée par l’appauvrissement en matière organique labile. Des processus d'atténuation 
similaires sont observés en l'absence d'activité microbienne pour Cr et As dans des argiles pyriteuses lorsque 
celles-ci sont exposés aux oscillations redox provoquées par l'ajout de substances humiques réduites. Ainsi, 
nous montrons que les effets cumulatifs de cycles redox successifs sont extrêmement importants pour la 
mobilité de divers contaminants dans l'environnement. 

Mots clés: Cyclage redox, arsenic, FP-XRF, pXRF, inondations, FeOOH, PHREEQC. 
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