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Abstract

Human brain white matter (WM) structure and organisation are not yet completely known.
Diffusion-Weighted Magnetic Resonance Imaging (dMRI) offers a unique approach to study
i vivo the structure of brain tissues, allowing the non invasive reconstruction of brain fiber
bundle trajectories using tractography. Nowadays, the recent dMRI techniques with high
angular resolution (HARDI) have largely improve the quality of tractography relative to
standard diffusion tensor imaging. However, the resulting tractography datasets are highly
complex and include millions of fibers which requires a new generation of analysis methods.
Beyond the mapping of the main white matter pathways, this new technology opens the
road to the study of short association bundles, which have been rarely studied before and
is in the focus of this thesis. The goal is to infer an atlas of the fiber bundles of the human
brain and a method mapping this atlas to any new brain.

In order to overcome the limitation induced by the size and complexity of the trac-
tography datasets, we propose a two-level strategy, chaining intra- and inter-subject fiber
clustering. The first level, an intra-subject clustering, is composed by several steps per-
forming a robust hierarchical clustering of a fiber tractography dataset that can deal with
millions of diffusion-based tracts. The end result is a set of a few thousand homogeneous
bundles representing the whole structure of the tractography dataset. This simplified rep-
resentation of white matter can be used further for several studies of individual bundle
structure or group analyses. The robustness and the cost of the scalability of the method
are checked using simulated tract datasets. The second level, an inter-subject clustering,
gathers the bundles obtained in the first level for a population of subjects and performs a
clustering after spatial normalization. It produces as output a model composed by a list
of generic fiber bundles that can be detected in most of the population. A validation with
simulated datasets is applied in order to study the behavior of the inter-subject cluster-
ing over a population of subjects aligned with affine registration. The whole method was
applied to the tracts computed from HARDI data obtained for twelve adult brains. A
novel HARDI multi-subject bundle atlas, representing the variability of the bundle shape
and position across subjects was thus inferred. The atlas includes 36 deep WM bundles,
some of these representing a few subdivisions of known WM tracts, and 94 short associ-
ation bundles of superficial WM. Finally, we propose an automatic segmentation method

mapping this atlas to any new subject.
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Résumé (Frangais)

Chapitre 1: Introduction

La structure et I'organisation de la substance blanche n’est pas encore connue dans
sa totalité. Les fibres nerveuses connectent entre-elles les neurones des différentes régions
du cerveau pour former des réseaux plus ou moins complexes, a 'origine de toutes les
fonctions cérébrales. Connaitre la carte de la connectivité anatomique cérébrale est alors
un grand défi, du plus grand intérét pour comprendre le fonctionnement du cerveau et
étudier nombreuses pathologies.

L’imagerie par résonance magnétique de diffusion (IRMd) offre une approche unique
pour étudier in vivo la structure du tissu cérébral. Elle permet de reconstruire a travers
la tractographie les trajectoires des faisceaux de fibres du cerveau de fagon non-invasive.

Le modele de diffusion le plus utilisé jusqu’a présent est le tenseur de diffusion (DTI),
qui a permis le développement d’études a la fois dans le domaine clinique et dans la re-
cherche plus fondamentale. C’est ainsi que les long faisceaux d’association de la substance
blanche ont été étudiés chez le sujet sain et dans plusieurs maladies. Cependant la D'TT pré-
sente quelques limitations au niveau de la représentation de la configuration des faisceaux
de fibres. Avec I’émergence des IRMs plus puissantes, permettant des résolutions spatiales
plus élevées, et des nouvelles techniques d’TRMd & haute résolution angulaire (HARDI),
les données de tractographie sont aujourd’hui d’une meilleure qualité, mais, malgré ces
progres, ne sont pas dépourvues d’artefacts. Ces données sont plus complexes et sont tres
volumineuses, avec plus d’un million de fibres pour le cerveau entier.

La quantification des structures définies par la tractographie et, en particulier, 'ex-
traction des faisceaux de fibres reste un probléme non résolu. Depuis le développement
de la tractographie, plusieurs méthodes ont été proposées pour segmenter les faisceaux de
fagon automatique. Pour l'instant, la méthode la plus fréquemment utilisée nécessite de
multiples régions d’intérét (ROI). Cette méthode est une méthode guidée, dans laquelle
on effectue la tractographie des fibres en partant de graines situées dans une ROI prédé-
finie, ou dans tout le cerveau, et on préserve seulement les fibres qui touchent d’autres
ROI prédéfinies. D’autres approches utilisent des atlas des différentes régions du cerveau
pour extraire les faisceaux connus, reposant sur la qualité du recalage entre les données

de diffusion et ’atlas anatomique. D’autres méthodes cherchent a regrouper et classifier
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automatiquement 1’ensemble de fibres généré par la tractographie en utilisant une mesure
de distance entre les fibres. Une des grandes difficultés de ces approches c’est la taille des
données, laquelle rend actuellement impossible un traitement suffisamment performant qui
considere la totalité des données. Les approches proposées utilisent alors des échantillons
des fibres ou des a priori qui permettent de réduire les données ou de subdiviser le pro-
bleme. Ces méthodes, en général cherchent a retrouver les faisceaux les plus connus, mais
il existe une grande quantité de faisceaux qui n’ont pas encore été étudiés en profondeur,
et qui présentent une énorme variabilité entre les sujets, d’ou la difficulté de leur étude.
Quant a 'analyse inter-sujet, plusieurs méthodes d’alignement ont été proposées, ainsi
que plusieurs descripteurs de forme des faisceaux, mais le probleme de comparaison des
faisceaux entre sujets reste encore ouvert.

Cette these vise a regrouper les trajectoires putatives des fibres en faisceaux cohérents.
Le regroupement est réalisé dans un premier temps sujet par sujet, en utilisant une
méthode robuste, capable d’analyser des jeux de données tres grands, contenant plus d’un
million de fibres. Elle permet d’obtenir pour chaque sujet quelques milliers de faisceaux
des fibres représentant I’ensemble des données. Puis dans un second temps, les faisceaux
obtenus sont comparés a travers une population de sujets afin d’inférer un modele, qui
représente une hiérarchie de la structure de la substance blanche, composée par des
centaines de faisceaux des fibres, présents dans la plupart des sujets. Un atlas HARDI
multi-sujet est ainsi créé, contenant la plupart des faisceaux connus de la substance
blanche, ainsi qu’une centaine de faisceaux courts d’association, trés peu étudiés jusqu’a

maintenant.

Dans cette these, nous présentons d’abord le contexte général dans lequel s’inscrit
notre travail. Le chapitre 1 présente les principaux concepts concernant ’anatomie du
cerveau, le tissu nerveux et ’organisation de la substance blanche. Le chapitre 2 développe
brievement les principes de 'TRMd et de la tractographie. Le chapitre 3 décrit I’état de
I’art des méthodes de regroupement et classification des fibres de la substance blanche.
Ensuite, les méthodes développées au cours de cette these sont détaillées. Le chapitre
4 présente la méthode de regroupement de fibres intra-sujet, ainsi que les validations
effectuées, les résultats obtenus et des exemples d’application. Le chapitre 5 décrit ensuite
la méthode développée pour créer un modele des faisceaux de fibres du cerveau humain,
ainsi que l’atlas multi-sujet obtenu. Le chapitre 6 présente une méthode automatique de
segmentation des faisceaux connus et des faisceaux d’association courts a partir de I'atlas
multi-sujet développé. Nous finalisons par la conclusion, en discutant les contributions et

les perspectives de ce travail réalisé.
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Chapitre 2: Tissu Nerveux et Matiere Blanche

Le cerveau humain

Le cerveau humain est un des organes les plus importants et complexes du corps hu-
main. Depuis plus d’une centaine d’années, la compréhension de son organisation et de sa
fonction a présenté un intérét fondamental pour la neurologie et les neurosciences.

Le cerveau controle le systéeme nerveux central (SNC) et le systéme nerveux périphé-
rique et régule toutes les activités humaines. A grande échelle, le cerveau humain est
composé par différents éléments comme du sang, du liquide céphalo-rachidien, de la sub-
stance blanche et de la substance grise. A cause de 'apparence du tissu cérébral, les aires
riches en corps neuronaux et en cellules gliales sont appelées substance grise, alors que les
aires contenant principalement des axones myélinisés et des cellules gliales sont appelées
substance blanche. Ces éléments présentent aussi des contrastes différents dans une image

de résonance magnétique (IRM) anatomique de contraste T1 (voir Figure 1 A).

C capsule interne  thalamus

capsule externe

noyau caudé
capsule extréme }striatum
putamen
noyau
sous-thalamique
: ' globus
substance &N pallidus
noire ! {
Hibpasane \@ - claustrum
Y—____ matiere
cortex —~ b blanche

1l ventricule ventricule latérale

Figure 1: Coupes coronales du cerveau humain. A présente une coupe coronale d'une IRM anatomique
T1, alors que B présente une coupe histologique. La substance blanche apparait en couleur blanche a
I'intérieur du cerveau. Le cortex de substance grise est la couche grise qui entoure le cerveau. C illustre
les principales structures du cerveau dans une coupe coronale. [Figure adaptée de Hasboun (2007)].

xix



Le cerveau peut étre divisé en trois parties: le télencéphale, composé par les deux hé-
mispheres cérébraux, le diencéphale, composé par des structures localisées dans le cerveau
profond et le tronc cérébral, composé par la meelle allongée, le pont et le mésencéphale.

Les hémispheres cérébraux contiennent le cortexr cérébral, une couche de substance
grise localisée dans la surface du cerveau. Le cortex cérébral est la structure la plus im-
portante de la substance grise et joue un role majeur dans les fonctions cognitives. Les
hémispheres cérébraux sont concernés premierement par les processus sensoriels et mo-
teurs du coté controlatéral du corps. Chaque hémisphere du cortex cérébral est divisé en
cing lobes: frontal, pariétal, occipital, temporal et insulaire. Chaque lobe a été associé avec
différentes fonctions qui vont du raisonnement jusqu’a la perception auditive. Les lobes des
deux hémispheres, bien que tres similaires dans leur structure, ne sont pas completement
symétriques, et ne sont pas équivalents dans leur fonction. Les lobes présentent plusieurs
sillons et convolutions, dont les plus proéminents sont tres similaires entre les individus et
ont des noms spécifiques.

A Tlintérieur, le cerveau contient un systéme ventriculaire, constitué de quatre cavités
ou ventricules contenant du liquide céphalo-rachidien, qui se continue avec le canal central
et la moelle épiniere.

Les noyauz gris centrauxr (NGC) sont des noyaux de substance grise localisés dans
la profondeur du cerveau, de facon symétrique, entre les deux hémispheres. Les princi-
paux NGC sont le noyau caudé, le putamen, le globus pallidus, la substance noire et le
noyau sous-thalamique. Toutes ces structures forment un systeme présentant des multiples
connexions entre eux, et avec le cortex, le thalamus et le cervelet. Un traitement paral-
lele est ainsi exécuté pour permettre la planification, 'exécution et la coordination des
mouvements des yeux et des membres.

Les thalami, localisés de fagon symétrique sur le tronc cérébral, traitent et servent de
point de relais de 'information sensorielle et motrice. Ils sont la porte d’entrée au cortex
pour la majorité des influx provenant de ’ensemble du systeme nerveux. Les thalami
sont fortement connectés aux différentes régions du cortex, et se connectent aussi avec

I’hypothalamus, les NGC, le cervelet et la meelle épiniére.
Le tissu cérébral

Les cellules du systeme nerveux sont principalement de deux types: les cellules nerveuses
ou neurones et les cellules gliales ou neuroglia.

Les cellules gliales soutiennent, nourrissent et proteégent les neurones, maintiennent leur
homéostasie et les rendent plus efficaces.

Les neurones sont des éléments fondamentaux dans le systéme nerveux central. Ils as-
surent la transmission d’un signal bioélectrique appelé influx nerveuz. Ils ont la capacité de
répondre aux stimulations en les convertissant en impulsions nerveuses pour transporter
I'information depuis une région a une autre du corps, en formant un réseau tres complexe.
Un neurone est constitué d’un corps cellulaire ou soma, et de deux types de prolongements,

les dendrites et ’azone. Les dendrites sont des prolongements courts et trés ramifiés qui
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recoivent et integrent linformation entrante. Les axones (normalement un par neurone)
présentent un diametre relativement uniforme et peuvent avoir une longueur de entre 1 mm
a plus d’un metre. Ils distribuent les impulsions vers les autres cellules sans atténuation.
Les neurones communiquent entre eux a travers des contacts spécialisés appelés synapses.
Dans le SNC, 'axone est entouré par une gaine de myéline, formée par une prolongation
d’un oligodendrocyte, un type particulier de cellule gliale. La myéline présente des interrup-
tions le long de I’axone, appelées neuds de Ranvier, qui aident a augmenter la vitesse de
transmission de I'impulsion nerveuse (conduction saltatoire). Les axones de la substance
blanche, appelés fibre nerveuses, sont souvent regroupés en paquets tres compacts et orga-
nisés en faisceaux de fibres. Le principal enjeux de cette these est 'inférence d’un modele
des faisceaux de fibres de la substance blanche du cerveau humain a partir de 'imagerie

de résonance magnétique de diffusion a haute résolution angulaire.
Organisation de la substance blanche

La substance blanche est composée par les axones myélinisés qui connectent entre elles
les différentes régions de substance grise du cerveau pour transmettre les impulsions ner-
veuses entre neurones. Dans les hémispheres, la substance blanche se retrouve entre le
cortex cérébral et la substance grise sous-corticale. Elle est composée de fibres courtes
superficielles, qui suivent les contours du cortex et de fibres longues, regroupées en fais-
ceaux, localisées dans les régions plus profondes. Comme regle générale, le nombre de fibres
d’un certain rang de longueurs est inversement proportionnel a leur longueur [Schiiz and
Braitenberg (2002)].

Les principaux faisceaux sont regroupés selon les structures qu’ils connectent: des fais-
ceauxr commissuraur, qui connectent entre-elles des régions des deux hémispheres, des fais-
ceaux d’association, qui connectent entre-elles des régions du cortex d’'un méme hémisphere,
et des faisceaur de projection, qui connectent le cortex avec les centres sous-corticaux et
la moelle épiniere. Une description des faisceaux de fibres les plus connus est présentée ci-
dessous, fondée principalement sur les articles de Catani and Thiebaut de Schotten (2008);
Aralasmak et al. (2006); Jellison et al. (2004).

Faisceaux d’association

Faisceau arqué: c’est un faisceau composé de fibres associatives courtes et longues,
connectant le cortex perisylvien des lobes frontal, pariétal et temporal. Pour la plu-
part des personnes, le faisceau arqué de I’hémisphere gauche est impliqué dans le
langage, tandis que le faisceau arqué droit est souvent impliqué dans le traitement
visuo-spatial et autres aspects du langage, comme la prosodie et la sémantique.

Cingulum: c’est un faisceau associatif médial, qui se localise le long du gyrus cingulaire,
tout autour du corps calleux. Il est constitué de fibres de différentes longueurs, qui
se distribuent entre le gyrus temporal antérieur et le cortex orbito-frontal. Les fibres

courtes, de forme en U, connectent les lobes frontal, pariétal, occipital et temporal, et
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différentes portions du cortex cingulaire. Le cingulum fait partie du systeme limbique
et est impliqué dans ’attention, la mémoire et les émotions.

Faisceau longitudinal inférieur: c’est un faisceau associatif ventral composé de fibres
courtes et longues, connectant les lobes occipital et temporal. Les fibres longues
sont plus médiales que les courtes. Il connecte les aires visuelles avec ’amygdale
et 'hippocampe et est impliqué dans la reconnaissance des visages, la perception
visuelle, la lecture, la mémoire visuelle et autres fonctions reliées avec le langage.

Faisceau unciné: c’est un faisceau associatif ventral qui connecte le lobe temporal avec
le cortex orbito-frontal médial et latéral. Ce faisceau est considéré comme une partie
du systeme limbique, et semble étre impliqué dans le traitement des émotions, de la
mémoire et du langage.

Faisceau fronto-occipital inférieur: c’est un faisceau associatif ventral qui connecte le
lobe occipital ventral avec le cortex orbito-frontal. Il est possible qu’il soit impliqué
dans la lecture, ’attention et le traitement visuel. Chez les humains, il représente les
seules connexions directes entre les lobes occipital et frontal.

Fibres d’association courtes: ce sont des fibres souvent appelées fibres en U, situées
en dessous de la substance grise du cortex, et qui connectent des gyri adjacents.
Ces fibres se localisent dans la substance blanche superficielle, entre la substance
blanche profonde et le cortex. Jusqu’a présent, ces fibres n’ont pas été bien caracté-
risées dans la littérature. Leur localisation, nombre, trajectoires et fonctions ne sont
pas suffisamment définis. Seulement deux travaux ont étudiés ces faisceaux a partir
d’une analyse de groupe en utilisant une approche volumétrique, s’appuyant sur une
normalisation linéaire [Oishi et al. (2008)] ou non-linéaire [Zhang et al. (2010)] du

cerveau.

Faisceaux commissuraux

Corps calleux: c’est le plus grand faisceau du cerveau humain, qui connecte les hémi-
spheres cérébraux droit et gauche. Il est conventionnellement divisé en quatre sec-
tions: le gemou, connectant les régions frontales médiales et latérales, le rostrum,
connectant les régions orbito-frontales, le corps, qui passe a travers de la couronne
rayonnante et qui connecte les régions frontales précentrales et les lobes pariétaux, et
le splenium, qui connecte les lobes occipitaux. Il est impliqué dans plusieurs fonctions
motrices, sensorielles et cognitives.

Commissure antérieure: c’est un petit faisceau qui connecte les lobes temporaux des
deux hémispheres au niveau de 'amygdale. Ses fonctions sont peu connues.

Commissure postérieure: c’est un petit faisceau qui connecte les noyaux des nerfs cra-
niens, et les deux moitiés du mésencéphale et du diencéphale. Il est trées rarement

reconstruit a partie de 'IRMd.

xxii



Front view Liaft iy Left view

commissure antérieure corps calleux faisceau Corticospinal / Capsule
interne / couronne rayonnante

Left view Left view Left view

cingulum fornix faisceau unciné

Left vi

Left view

Left view

faisceau fronto-
occipital inférieur inférieur

fasiceau longitudinal faisceau arqué

Figure 2: Les principaux faisceaux de la substance blanche décrits dans la littérature, obtenus en
utilisant de la tractographie déterministe sur un champ de tenseur de diffusion. Faisceaux commissu-
raux: commissure antérieure et corps calleux. Faisceaux de projection: Faisceau corticospinal, capsule
interne/couronne rayonnante et fornix. Faisceaux d’association longs: faisceau arqué, faisceau lon-
gitudinal inférieur, faisceau fronto-occipital inférieur, faisceau unciné et cingulum. [Figure adaptée de
Catani and Thiebaut de Schotten (2008)].

Faisceaux de projection

Ces faisceaux connectent les aires corticales avec les structures sous-corticales et la meelle
épiniere. Ils contiennent des fibres afférentes, qui recoivent des informations sensorielles
et des fibres efférentes, qui envoient des commandes motrices. Dans la profondeur des
deux hémispheres, les fibres de projection constituent, avec les fibres thalamo-corticales,

la couronne rayonnante et la capsule interne.

Faisceau corticospinal: ce faisceau, appelé aussi faisceau pyramidal, est une collection
massive d’axones qui vont du cortex a la meelle épiniere. Il contient principalement
des axones moteurs provenant du cortex sensorimoteur primaire et du cortex pré-
moteur. Il passe a travers la couronne rayonnante, la capsule interne, le pédoncule

cérébelleux et les régions pyramidales (moelle allongée).
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Radiations thalamiques: elles sont composées des fibres cortico-thalamiques et
thalamo-corticales qui forment un éventail plus ou moins continu. Ces fibres pro-
viennent des noyaux thalamiques, lesquels se projettent vers une ou quelques régions
corticales bien définies. Les radiations thalamiques sont souvent regroupées en quatre
sous-groupes: antérieur (frontal), supérieur (pariétal), inférieur (temporal) et posté-
rieur (occipital). Les radiations optiques se projettent vers le cortex visuel primaire
tandis que les radiations acoustiques se projettent vers le lobe temporal.

Fornix: c’est une commissure intra- et inter-hémisphérique placée sous le corps calleux.
Il relie 'hippocampe et le corps mamillaire dans chaque hémisphere. En avant, il est
formé de deux colonnes (piliers antérieurs) qui arrivent jusqu’aux corps mamillaires.
Ces piliers sont accolés vers I'arriere dans la partie moyenne, appelée le corps du
fornix. En arriere il se divise en deux piliers postérieurs qui finalement longent ’hip-
pocampe en formant un fin faisceau appelé fimbria. Le fornix appartient au systeme
limbique et est impliqué dans la mémoire.

Faisceaux cérébelleux: connectent le cervelet aux autres régions du cerveau. Il existe
trois types: pédoncules cérébelleux inférieurs, pédoncules cérébelleux moyens et pé-

doncules cérébelleux supérieurs.

La Figure 2 présente des reconstructions des faisceaux de fibres les plus connus a partir
de 'IRMd.

Chapitre 3: Principes de ’IRM de Diffusion

Le phénomeéne de diffusion est produit par le mouvement brownien des molécules
d’eau [Brown (1828)]. Dans un milieu isotrope, i. e. ou la diffusion est la méme dans toutes
les directions, chaque molécule décrit une marche aléatoire dans ’espace 3D. Pour une
diffusion libre, le libre parcours moyen des molécules dépend du temps de diffusion et du
coefficient de diffusion D [Einstein (1956)]. Pour une diffusion isotrope, le parcours moyen
dépend du milieu (protéines, membranes), mais pas de la direction.

L’IRM de diffusion (IRMd) ne mesure pas directement le coefficient de diffusion, mais le
déplacement moyen des molécules d’eau dans chaque voxel. La présence de membranes, in-
clusions et macromolécules dans les tissus entrave la marche aléatoire des molécules d’eau.
Le parcours moyen mesuré est alors inférieur a celui d’un milieu libre, ce qui donne un co-
efficient de diffusion inférieur, appelé coefficient de diffusion apparent ou ADC [Le Bihan
et al. (1986)].

Dans le tissu cérébral, la diffusion des molécules est restreinte dans l’espace intracel-
lulaire et entravée dans ’espace extracellulaire. La diffusion est anisotrope si les obstacles
environnants sont différents selon la direction de diffusion. Cela est le cas pour la sub-
stance blanche, ol les axones se regroupent de facon parallele en faisceaux, en privilégiant

la diffusion dans le sens des fibres nerveuses.
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L’TRM de diffusion permet de mesurer indirectement la diffusion des molécules d’eau
dans les tissus pour différentes directions. Elle permet ainsi d’inférer des propriétés sur la
structure microscopique des tissus, comme I’ADC et ’anisotropie.

I’TRM conventionnelle repose sur les propriétés magnétiques du noyau des atomes d’hy-
drogene, présents dans les molécules d’eau. Chaque atome d’hydrogene ou proton, possede
un moment magnétique nucléaire, appelé spin. Les machines d’IRM présentent un champ
magnétique statique tres puissant (By), avec lequel les spins s’alignent, en présentant un
mouvement de précession. La fréquence de précession, appelée fréquence de Larmor, est
directement proportionnelle a By. Un signal court de radiofréquence a la fréquence de Lar-
mor est alors appliqué pour exciter les spins et changer leur aimantation. Le retour a I’état
d’équilibre des spins produit un signal de radiofréquence, mesuré par 'IRM. C’est cette
mesure qui renseigne sur les propriétés des différents tissus, notamment les constantes de
temps de relaxation des aimantations des spins. Une fois le signal acquis, la transformée
de Fourier inverse permet de récupérer I'image.

Pour encoder I'espace, 'TRM utilise trois champs magnétiques appelés gradients. L’ad-
dition des gradients au champ magnétique statique By fait varier linéairement le champ
magnétique sur tout le volume d’intérét, dans les trois directions orthogonales de I'espace.
La fréquence de Larmor devient alors dépendante de la position, ce qui permet ’encodage
spatial dans I'TRM. Dans la séquence d’acquisition, les gradients sont appliqués de facon
a échantillonner ’espace de fréquences (espace k), ce qui permet d’échantillonner I’espace
3D: un gradient de sélection de coupe est appliqué en méme temps que I'impulsion RF;
un autre gradient, de sélection de ligne, est appliqué apres I'impulsion RF et le troisieme
gradient est appliqué pendant la lecture du signal.

Les séquences d’acquisition echo de spin appliquent juste a mi-temps, entre la premiere
impulsion RF et la lecture du signal, une deuxiéme impulsion RF. Cette impulsion de
refocalisation a pour objectif de réaligner les spins déphasés a cause des inhomogénéités
du champs magnétique, pour obtenir le signal le plus intense possible au moment de la
lecture.

Les séquences d’'TRM pondérées en diffusion utilisent deux gradients additionnels, ap-
pelés gradients de diffusion. Ces deux gradients successifs, courts et intenses donnent aux
protons un déphasage de la précession dépendant de la position. Le premier gradient donne
a la précession des protons une phase proportionnelle a leur position dans la direction du
gradient. Le second gradient, exactement opposé au premier, donne aux protons un retard
de phase équivalent. Les protons qui sont restés immobiles ne subissent pas de déphasage
et donc pas de perte du signal. Par contre, les protons qui se sont déplacés entre ’applica-
tion des deux gradients subissent un déphasage non nul proportionnel a leur déplacement
le long de I'axe des gradients. Ce déphasage produit une perte de la cohérence du signal,
ce qui ce traduit en une réduction de I'amplitude du signal. Dans un voxel donné, plus la
diffusion est importante dans une direction, plus I'image sera obscure.

La séquence Pulse Gradient Spin Echo (PGSE) [Stejskal and Tanner (1965)] a permis
le développement de 'TRMd. Elle utilise deux gradients de diffusion de courte durée (),
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Figure 3: Séquence d’acquisition Pulse Gradient Spin Echo (PGSE). Deux gradients courts d'aire
similaire, dans ce cas d'amplitude et durée similaire, sont utilisés. [From Descoteaux (2008)].

séparés par un intervalle de temps A (voir Figure 3). Si on assume que les gradients sont

infiniment courts, le signal mesuré peut s’exprimer selon 1’équation:

J(e.y) = Mo (1= e ) e T2 eP, (1)

ou My est la densité protonique du voxel, T'1 et T2 sont les constantes de temps des
relaxations dans le tissu, TR est le temps de répétition de la séquence, D est le coefficient

de diffusion et le facteur b représente la sensibilité a la diffusion [Le Bihan et al. (1986)].

Les variantes de la séquence échoplanaire (EPI), proposée par Mansfield (1977), sont
les plus utilisées actuellement car elles sont beaucoup plus rapides que la séquence PGSE.
Elles produisent cependant des distorsions géométriques dans I'image a cause du train
d’acquisition tres long, pendant lequel toutes les erreurs d’encodage en phase s’accumulent.
Ces distorsions doivent étre corrigées, en fonction du type, soit par 'acquisition elle-méme,
soit par un post-traitement. En plus, un autre post-traitement peut étre appliqué pour

réduire le bruit Ricien, présent dans les données de diffusion.
Modeles locaux de diffusion

Dans des milieux isotropes, le coefficient de diffusion est le méme dans toutes les direc-
tions. Par contre, si le tissu est anisotrope, le signal change selon la direction des gradients

de diffusion.
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Le Tenseur de diffusion (DTI) permet de caractériser la diffusion en 3D [Basser et al.
(1994)]. C’est un modele simple, qui assume une distribution gaussienne des déplacements
en 3D, tres utilisé en clinique. Il modélise la diffusion par une matrice 3x3 symétrique et
définie-positive, qui peut se représenter dans I’espace par un ellipsoide.

Le tenseur est caractérisé par trois vecteurs propres, qui représentent les trois directions
orthogonales de diffusion, qui sont aussi les trois axes principaux de I'ellipsoide. La direction
principale de diffusion sera la direction du vecteur propre associé a la valeur propre la plus
élevée. Une diffusion isotrope sera représentée par une sphere, par contre, plus la diffusion

est anisotrope et plus lellipsoide sera allongé (voir Figure 4).
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Figure 4: Imagerie du Tenseur de Diffusion (DTI). A: Le tenseur de diffusion peut &tre représenté
par un ellipsoide. Dans des tissus structurés comme les fibres nerveuses, la diffusion est anisotrope, en
présentant une orientation privilégiée de diffusion, dans la direction des fibres. L'ellipsoide représente la
diffusivité parallele ou axiale (A,/, A1) et la diffusivité perpendiculaire ou radiale des fibres (A1, A2 3).
[Figure adaptée de Johansen-Berg and Behrens (2009)]. B: Exemples d'ellipsoides avec une diffusivité
moyenne (MD) similaire (0.7 x 1073 mm?/s) et une anisotropie fractionnelle (FA) différente. C: Exemple
d'images de diffusivité moyenne et d'anisotropie fractionnelle. D: A gauche, une image de MD avec la
superposition des ellipsoides, pour une ROI. A droite, un zoom de la ROI. [Figures adaptées de Arsigny
(2006)].

Des cartes de mesures scalaires peuvent étre calculées a partir des tenseurs. Les valeurs
les plus connues sont la diffusivité moyenne (MD), 'anisotropie fractionnelle (FA), la diffu-
sivité parallele \/, et la diffusivité perpendiculaire (A1 ). Ces mesures, notamment la MD
et la FA, sont trés utilisées dans les analyses de groupes pour caractériser les propriétés
de diffusion des différentes populations.

Un minimum de 6 images pondérées en diffusion (avec différentes directions de diffu-
sion) est nécessaire pour estimer les tenseurs, plus une image sans pondération en diffusion,
appelée By, qui sert de référence. En pratique entre 12 et 30 images sont acquises pour
augmenter la robustesse de I'estimation.

Le modele du tenseur de diffusion est robuste et simple, mais il est fondé sur une
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hypothese tres forte de diffusion libre, ne pouvant représenter quune population de fibres.
Des configurations plus complexes, comme des croisements de plusieurs populations de
fibres seront mal représentées, comme l'illustre la Figure 5. C’est ainsi que d’autres modeles
plus complexes ont été proposés, nécessitant des acquisitions plus longues, avec un nombre

plus élevé de directions de diffusion.

L’Imagerie de Diffusion & Haute Résolution Angulaire (HARDI) a été déve-
loppée fortement ces dernieres années, griace a sa meilleure modélisation de la diffusion.
Elle permet de distinguer les croisements de fibres a l'intérieur d’un voxel. Différentes
techniques ont été proposées, avec ou sans modele de diffusion. Elles varient aussi dans le

nombre d’acquisitions requises et la puissance du gradient (facteur b).

croisement tenseur de diffusion fODF
de fibres

Figure 5: lllustration de I'effet de volume partiel dans un voxel, pour deux populations de fibres repré-
sentant une configuration de croisement de fibres a 90°. Le tenseur de diffusion aura une forme plate,
avec une direction principale de diffusion indéterminée. La fonction de distribution des orientations des
fibres (fODF) est composé de deux "spikes”, alignés avec les orientations des deux populations des fibres.
[Adaptée de Poupon (1999b)].

Les techniques avec modele utilisent des hypotheses sur les types de populations pré-
sentes dans chaque voxel. Les modeéles les plus connus sont: le modele multi-tensoriel [Tuch
(2002)], le modele “Ball and stick” [Behrens et al. (2003)] et le modele Composite hindered
and restricted model of diffusion (CHARMED).

Les techniques sans modele cherchent a estimer la fonction de distribution des orien-
tations des fibres (fODF), représentant la distribution de probabilité des orientations des
fibres pour chaque voxel. Quelques techniques reconstruisent la fonction de distribution
des orientations de diffusion (dODF), représentant la distribution de probabilité de dif-
fusion. C’est le cas de [l'imagerie du spectre de diffusion (DSI) [Wedeen et al. (2000)].
Cette technique fait un échantillonnage cartésien de ’espace g, pour différentes directions
de diffusion et différentes valeurs de b. Elle permet alors une bonne reconstruction des
croisements de fibres mais nécessite des temps d’acquisitions trés longs et des gradients
trés puissants. D’autres techniques ont besoin d’un nombre plus raisonnable d’acquisitions.
C’est le cas du g-ball numérique (QBI) [Tuch (2004)] et du ¢-ball analytique [Descoteaux
et al. (2007)], lesquels font aussi une estimation de la dODF mais & partir d’acquisitions

pour seulement une valeur de b (single-shell). D’autres méthodes, comme la déconvolution
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sphérique [Tournier et al. (2004)] ou la Déconvolution sphérique de I’ODF [Descoteaux
et al. (2009b)], recupérent directement la fODF en déconvoluant le signal par la fonction
réponse d’une fibre. La fODF présente une meilleure résolution angulaire que ’ODF de

diffusion.
Tractographie par ’'IRM de diffusion

La tractographie utilise I'information donnée par les modeles locaux de diffusion pour
inférer la connectivité anatomique du cerveau. C’est jusqu’a présent la seule technique non-
invasive capable d’étudier chez 'homme les faisceaux de fibre de la substance blanche.

La tractographie de type “streamline” [Basser et al. (2000)] reconstruit les trajectoires
des fibres a partir d’un point (ou graine), en suivant pas a pas, la ou les directions les plus
probables, données par le modele de diffusion. Chaque fibre est normalement suivie dans
les deux sens, a partir de chaque graine. L’algorithme utilise différents critéeres d’arrét,
comme un seuil sur la courbature maximale entre deux points et un masque de tracto-
graphie, dans lequel les fibres peuvent étre calculées. Deux types d’approches peuvent
étre utilisées: déterministe ou probabiliste. Des exemples de tractographie déterministe
et probabiliste de type “streamline” sont illustrés dans la Figure 6. La tractographie
déterministe suit la direction de diffusion la plus probable tandis que la tractographie
probabiliste tire aléatoirement la direction dans un cone d’axe de la direction incidente
[Perrin et al. (2005a)]. L’approche appelée “tractographie du cerveau entier” met des
graines partout dans le cerveau en permettant la reconstruction de I’ensemble des fibres
du cerveau. Ces fibres représentent les trajectoires des faisceaux de fibres de la substance
blanche mais ne représentent pas de vraies fibres nerveuses. Elles sont aussi susceptibles
de présenter des artefacts dus aux incertitudes des données de diffusion et aux défauts du
masque de tractographie. Malgré ces inconvénients, en général, la tractographie permet
de reconstruire les long faisceaux de fibres connus. En plus, en prenant un soin particulier
dans toutes les les étapes nécessaires a la reconstruction des fibres (correction des
distorsions, débruitage, modele HARDI, masque de tractographie a partir de 'image T1,
bon recalage entre les images T1 et T2), plusieurs faisceaux d’association courts (fibres
en U) peuvent aussi étre reconstruits. Etant peu étudiés jusqu’a présent, ces faisceaux

présentent un intérét particulier.

Chapitre 4: Méthodes de Classification de la Matiere Blanche

Recalage des cerveaux a travers les sujets

L’étude des structures anatomiques ou des propriétés de la diffusion dans un groupe
de sujets nécessite une correspondance entre les individus. La correspondance se définit

entre images ou entre régions d’intérét, comme des sillons ou des faisceaux de la substance
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Tractographie « streamline » déterministe  Tractographie « streamline » probabiliste

fibres qui
passent par
laROl
rouge

maillages
de densité
de fibres

Figure 6: Exemples de tractographie déterministe et probabiliste de type “streamline”, en utilisant des
fODF estimées en utilisant la déconvolution sphérique des dODF a partir du QBI [Descoteaux et al.
(2009b)]. La premiere ligne montre les fibres (en bleu), passant a travers la ROI en rouge, localisée dans
le gyrus post-central. La deuxieme ligne illustre les résultats avec des maillages de densités des fibres
semi-transparents, pour les densités suivantes: 0.04%, 0.4% et 1.9%.

blanche. Le recalage linéaire est limité a des transformations globales (translations,
rotations, mise a ’échelle et cisaillements). Ces transfomations, avec peu de degrés de
liberté, sont robustes et permettent un bon recalage entre des images d’'un méme sujet.
Elles arrivent aussi a ajuster la position et la forme générale entre les sujets, mais des
différences subsistent a petite échelle. Le recalage non-linéaire applique des déformations
locales, avec peu de degrés de liberté, pour un recalage grossier et beaucoup de degrés
de liberté pour des déformations locales plus complexes et détaillées. Le recalage avec
beaucoup de degrés de liberté doit étre appliqué avec précaution car les images peuvent étre
tres déformées, jusqu’a paraitre tres similaires entre elles, mais sans atteindre 1’homologie

structurelle globale.
L’état de ’art des méthodes de classification des faisceaux des fibres

Plusieurs stratégies ont été proposées pour segmenter un jeu de fibres issu de la trac-
tographie. Elles sont fondées sur différentes méthodes de classification ainsi que sur des a
priori anatomiques. Elles different aussi dans les stratégies pour trouver la correspondance
entre fibres appartenant & différent sujets. La stratégie la plus simple pour segmenter les
données issues de la tractographie est fondée sur des régions d’intérét. Ces régions sont uti-
lisées pour sélectionner ou exclure les fibres de fagon plus ou moins interactive pour chaque
sujet, afin de reconstruire les faisceaux connus [Wakana et al. (2007); Catani and Thie-
baut de Schotten (2008)]. Cette approche a été utilisée pour créer des atlas des faisceaux
de fibres & partir d’un seul sujet [Mori et al. (2005); Lawes et al. (2008)]. Une extension
intéressante de cette approche consiste, en utilisant un groupe de sujets, a générer des
cartes probabilistes des faisceaux de fibres dans un espace normalisé [Hua et al. (2008)].
Un groupe de ROIs peut alors étre défini pour récupérer les mémes faisceaux chez d’autres
sujets. Plus récemment, des méthodes fondées sur des atlas de ROIs dans un espace nor-

malisé ont été proposées pour extraire des faisceaux connus et plusieurs fibres d’association
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courtes en utilisant des données provenant d’un groupe de sujets [Oishi et al. (2008); Zhang
et al. (2010)]. Ces méthodes se sont averées tres puissantes mais elles reposent fortement
sur la performance de la méthode de recalage. En plus, elles ne font pas d’analyses sur la
forme des faisceaux.

D’autres méthodes définissent les faisceaux de fibres a partir d’une classification des
voxels, reposant sur des mesures de similarité entre les données de diffusion locales [Bazin
et al. (2009); Wassermann et al. (2008)]. Des stratégies intermédiaires regroupent les voxels
de la substance blanche en fonction d’une mesure de similarité entre voxels calculée entre
les fibres qui les connectent [El Kouby et al. (2005); Wang et al. (2011)]. Ces approches
fondées sur les voxels, utilisent leur segmentation de la substance blanche pour extraire des
groupes de fibres d’'une facon qui passe a 1’échelle sans diffculté. Cependant, en fonction
de la complexité des données et des résultats recherchés, d’autres pré- et post- traitements
peuvent étre nécessaires.

Finalement, d’autres méthodes regroupent les fibres directement dans leur espace, en
utilisant une mesure de similarité entre les fibres [Ding et al. (2003); Corouge et al. (2004);
Gerig et al. (2004); Brun et al. (2004); O’Donnell et al. (2006); Visser et al. (2011)]. Cette
stratégie peut intégrer des connaissances a priori sous la forme de modeles des faisceaux
[Maddah et al. (2005); O’Donnell and Westin (2007)]. D’autres méthodes hybrides propo-
sées récemment extraient les faisceaux de fibres a travers la combinaison des informations
a priori, données par un atlas de la substance grise et blanche, et un regroupement des
fibres fondé sur une mesure de similarité entre les fibres [Wassermann et al. (2010a); Li
et al. (2010)].

Les méthodes de classification des fibres qui utilisent une distance (ou une similarité)
entre les fibres se sont avérées étre un outil puissant pour ’étude de la structure des fibres
issues de la tractographie. Ces méthodes permettent de segmenter les fibres en groupes
de fibres constitués de fibres présentant des formes et des positions a peu pres similaires.
Ces méthodes peuvent étre analysées selon différents points de vues. Nous présentons ci-
dessous les principaux aspects analysés: algorithme de classification, mesure de distance,
données de sortie et taille des données. Les Tableaux 1 et 2 contiennent un résumé de tous

les aspects analysés.

Algorithme de classification: différentes méthodes de classification (clustering en
anglais) ont été utilisées. En général, les méthodes de classification non-supervisées re-
groupent des éléments en fonction d’'une mesure de similarité sans utiliser des données
étiquetés [Jain and Dubes (1988); Jain (2010)]. Elles ont besoin du calcul de la distance
entre toutes les paires d’éléments, ce qui peut étre tres couteux pour des grands jeux de
données. Ces méthodes peuvent étre de type partitionnel ou hiérarchique.

Les méthodes de type partitionnel cherchent a trouver directement une partition des
éléments, en optimisant un certain critere. Le nombre de groupes est souvent un parametre
a spécifier, ce qui peut étre une limitation. Les méthodes reposent sur différents principes,

comme un critére des moindres carrés (e. g. les k-moyennes [MacQueen (1967)]), la théo-
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ries des graphes (e. g. le regroupement spectral avec coupes normalisées [Shi and Malik
(2000)]), la décomposition de mélange de distributions (e. g. le regroupement fondés sur
des processus de Dirichlet [Blei et al. (2003)]), entre autres.

Les méthodes hiérarchiques [Johnson (1967)] sont souvent aglomératives, ou chaque
élément est considéré au début comme un groupe séparé, et apres dans chaque pas, les
groupes les plus similaires sont fusionnés, pour former finalement un arbre hiérarchique.
L’arbre peut étre représenté par un graphe appelé dendrogramme, qui représente toutes
les fusions. Une fois I’arbre calculé, une partition plate ou adaptative peut étre définie
en fonction de différents criteres, comme la distance entre les éléments d’un groupe ou la
distance entre les groupes. Le nombre de groupes n’est pas alors une valeur a définir a
PTioTI.

Les groupes résultant de I’application d’'une méthode de classification sont tres dépen-
dants de la méthode de classification choisie, de la mesure de similarité et de la nature
des données. C’est une tache tres complexe car les groupes peuvent présenter différentes
formes, tailles et densités, en plus de la présence du bruit, qui rend la détection des groupes
plus difficile. Pour avoir les résultats espérés, des connaissances sur les caractéristiques et

la structure des données sont nécessaires [Jain (2010)].

Mesures de distance (ou similarité) entre les fibres: Les mesures de distance entre
fibres utilisent en général une série de points qui paramétrisent chaque fibre. Les distances
les plus connues, proposées par [Corouge et al. (2004)], sont la distance de Hausdorff (dgr)
et la moyenne des plus proches distances (dpr). Ces distances permettent d’intégrer dans
une seule mesure des informations sur la forme et la position de la fibre. Une autre mesure
de distance, fondée sur djs, applique un seuil pour les distances a considérer [Zhang et al.
(2008a)], ce qui permet d’éliminer des fibres tres similaires. Récemment, Visser et al. (2011)
utilisent la somme des distances Euclidiennes entre les points correspondants, calculée plus

rapidement que les distances fondées sur les points les plus proches (dg, das).

Données de sortie: La plupart des méthodes proposées se focalisent sur la segmenta-
tion directe des fibres ayant une signification anatomique (7. e. les long faisceaux connus
de la substance blanche), en utilisant des a priori anatomiques donnés par des atlas de la
substance grise et blanche [Wassermann et al. (2010a); Li et al. (2010)] ou des modeles des
faisceaux [Maddah et al. (2005, 2007b, 2008a)]. D’autres travaux appliquent une premiere
étape de regroupement des fibres [Zhang et al. (2008a); O’Donnell et al. (2006); Visser
et al. (2011)] et puis inteégrent un étiquetage manuel des groupes pour l'identification des
faisceaux connus. L’avantage de la deuxieme approche c’est I'indépendance des étapes de
regroupement et d’identification, ce qui permet lors de la premiere étape, d’obtenir une
information sur toute la structure des faisceaux des fibres, qui inclus des faisceaux peu
connus. Nous utilisons alors cette stratégie pour étudier la substance blanche dans son

ensemble et créer un modele des faisceaux.
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Taille des données:  Avec les nouvelles techniques de diffusion & haute résolution
angulaire et des machines IRM plus puissantes, les données issues de la tractographie
présentent une meilleure qualité mais aussi une plus grande taille. C’est ainsi que le nombre
de fibres est passé de autour de 10.000 fibres pour le cerveau entier a plus d’un million de
fibres. La classification directe des fibres en utilisant une distance entre toutes les paires
de fibres devient alors impossible. Différentes stratégies ont été proposées pour réduire
cette surcharge, comme la prise d’'un échantillon des fibres [O’Donnell et al. (2006)] ou
une grande quantité d’échantillons classifiés séparément [Visser et al. (2011)]. Bien que
performantes, ces méthodes présentent des inconvénients comme la définition a priori du
nombre de groupes. Le nombre maximum de fibres analysées remonte aux alentours de
500.000 [Visser et al. (2011)]. D’autres méthodes regroupent les fibres dans ’espace des
voxels, ce qui les rend beaucoup plus efficaces [El Kouby et al. (2005); Wang et al. (2011)].
Cependant, les groupes de fibres obtenus directement par une classification de ce type
présentent de nombreux chevauchements qui dégradent la qualité de la classification. Des
pré- et post- traitements doivent étres inclus dans le cas des données complexes en fonction

des résultats recherchés.
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METHODES DE CLASSIFICATION DES FIBRES (UN SUJET)

L

METHODE IN MESURE METHODE DE A PRIORI ANAT. / ANALYSE PRINCIP. SORTIES FAISCEAUX
DE DIS- CLASSIF. EMPIRIQUES PRINCIP. IDENT.
TANCE
) RG | Euclidienne k-NN ROIs de graines définit des segments filtrage des
Ding 2003 (fibres) correspondants / classif. fibres /
des fibres analyse de forme
FS de, dpr, dig algorithme de segmentation manuelle des classif. des fibres filtrage des FCS,
Corouge 2004 (fibres) propagation faisceaux / seuil sur la fibres / parties du
Gerig04 2004 ‘
distance analyse de forme CcC
CE D, CH “single-link” culling des fibres / classif. “streamtubes” et
Zhang 2002 (fibres) des fibres “streamsurfaces”
Zhang 2003
CE utilise les immersion spectrale, parametres empiriques de “soft coloring”
Brun 2003 points CS Ncuts classification des fibres
Brun 2004 A
extremes
des fibres

Liste des abréviations (aussi valide pour le Tableau 2).

IN (ENTREE): Tractographie du cerveau entier (CE), faisceau segmenté (FS) ou ROI de graines (RG).

METHODE DE CLASSIF. (METHODE DE CLASSIFICATION): Classification Hiérarchique (CH), Plus Proches Voisins (NN), Classification Spectrale (CS), Coupes normalisées

(Ncuts).

MESURE DE DISTANCE: Distance des points les plus proches (d.), Moyenne des plus proches distances (djs), Distance de Hausdorff (dgr), Moyenne des plus proches distances
seuillées (D;), Plus petite moyenne des plus proches distances seuillées (dg;), Plus grande moyenne des plus proches distances seuillées (dp:), Fonction de I'indicateur flux
(BIF), Somme des distances Euclidiennes entre des points correspondants (dscp).

A PRIORI ANAT. / EMPIRIQUES (A PRIORI ANATOMIQUES / EMPIRIQUES).
FAISCEAUX IDENT. (FAISCEAUX IDENTIFIES): Faisceau corticospinal (FCS), Couronne rayonnante/Capsule interne (CR/CI), Faisceau longitudinal supérieur (LS), Faisceau
longitudinal inférieur (LI), Faisceau fronto-occipital inférieur (FOI), Faisceau arqué (FA), Cingulum (CG), Faisceau unciné (UN), Forceps mineur (Fm), Forceps majeur (FM),
Corps calleux (CC), genou du CC (GCC), splénium du CC (SCC), Radiation thalamique antérieure (RTA), Fornix (FX), Pédoncule cérébelleux moyen (PCM), Pédoncule
cérébelleux supérieur (PCS), Troc cérébral (TC), Faisceau de projection dans le lobe frontal, pariétal ou occipital (FPf, FPp, FPo), CC connectant les c6tés gauche et droit des
lobes frontal, pariétal ou occipital (CCf, CCp, CCo).

Table 1: Catégorisation des méthodes de classification des fibres (un sujet).
Les méthodes ont été analysées en fonction de I'entrée principale, la méthode de classification et la
mesure de distance principales, les principaux a priori anatomiques et empiriques utilisés pour récupérer
les faisceaux, les principaux pas de |I'analyse, les principales sorties et les faisceaux identifiés avec succes.
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METHODES DE CLASSIFICATION DES FIBRES (PLUSIEURS SUJETS)

METHODE REC MESURE DE METHODE A PRIORI ANALYSE SORTIES IDENT.
DISTANCE DE CLASSIF. ANATOMIQUES / PRINCIPALE PRINCIP. BUNDLES
EMPIRIQUES
Zhang 2005 AFF Euclidienne NN correspondance entre correspondance entre
(regroupe des centroides des groupes groupes
centroides) (entre 2 sujets)
Zhang 2008 AFF US: dSt, dLt US: CH US: seuil de proximité US: culling des fibres/ modele des US: FCS, CG,
(fibres) “single-link” empirique (PTh) regroupement des fibres / faisceaux/ UN, Fm, FM,
MS: Euclidienne MS: NN MS: modele des faisceaux MS: correspondance entre identification des PCM, LS, LI
(centroides des (étiquetage manuel des centroides faisceaux MS: CG, UN,
groupes) groupes) trouve le PTh optimale (2 subjects) Fm, FM
ElKouby 2005 AFF US: connectivité US: k-moyennes US/MS: nombre de US: classification des voxels atlas des faisceaux US: RTA, LI,
(voxels) MS: k-moyennes groupes empirique MS: correspondance des (11 sujets) GCC, SCC,
MS: masque de masques des groupes de FCS, FX
corrélation des fibres pour tous les sujets MS: FCS,
groupes de fibres parties du CC
O’Donnell 2005 AFF US: djs (fibres) CS Ncuts parametres de classif. US: classification des fibres atlas des faisceaux US/MS: CC,
O’Donnell& Westin MS: dj (fibres (méthode de empiriques / MS: classification des fibres embarqués FCS, FA,
2006 de tous les sujets) Nistrom) étiquetage manuel des (fibres de tous les sujets) (10 sujets) FOI, UN, LI,
O’Donnell-PhD 2006 groupes PCM, PCS
O’Donnell-PhD 2006 AFF dpr (fibres) immersion atlas des faisceaux immersion des fibres / identification des US/MS: CC,
O’Donnell 2007 spectrale embarqué (fibres) trouve NN centroide de faisceaux FCS, FA,
(fibres) / groupe pour chaque fibre (5 subjects) FOI, UN, LI,
NN (centroides) PCM, PCS
Maddah 2005 AFF représentation a NN modele des faisceaux correspondance entre fibres identification des CC, CR/CI,
partir de B-spline (fibres étiquetées) et fibres du modele faisceaux FX, PCM
(fibres)
Maddah 2007 AFF utilise carte de modele de une fibre par faisceau et estime les parametres de affectation prob. de CC, CR/CI,
Maddah 2008b distance mélange de par sujet sélectionnée classification chaque fibre & un CG

Euclidienne pour
chaque centroide

de groupe (fibres)

distrib. Gamma

manuellement

groupe / corresp.
entre points pour

chaque faisceau

.. continue dans la page suivante ...
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.. continué de la page précédente ...

METHODE REC MESURE DE METHODE A PRIORI ANAT. / ANALYSE SORTIES FAISCEAUX
DISTANCE DE CLASSIF. EMPIRIQUES PRINCIPALE PRINCIP. IDENT.
Maddah 2008a AC utilise carte de modele de atlas des faisceaux (ROIs) génere faisceau a partir de affectation prob. de CG, UN
distance mélange de / définit manuellement ROI / utilise un atlas chaque fibre a un
Euclidienne pour distrib. Gamma les centres des faisceaux comme a priori / estime groupe / corresp.
chaque centroide (Bayesien) initiaux / seuil parametres de classification entre points pour
de groupe (fibres) d’appartenance chaque faisceau
Wassermann 2010 NL dist. entre Classif. atlas de substance grise construction de I’arbre du identification des FA, CG, UN,
faisceaux et fibres Hiérarchique et blanche (ROIs) CH et sélection d’un groupe faisceaux FCS, FOI,
(BIF) en utilisant information (21 sujets) Fm, FM
anatomique comme a priori
Li 2010 NL pasa: di + pasz: PCA pasi: atlas de substance pasy: utilise un atlas pour identification des CG, FOI, LI,
facteur fondée sur suivie de “fuzzy grise et blanche (ROIs) segmenter 9 faisceaux faisceaux UN, FA, CCf,
la longueur c-means” pass: étiquetage manuel pasa: classifie les fibres qui (10 subjects) CCp, CCo,
de 2 faisceaux pour recon. restent et identifie 2 autres FPf, FPp,
des faisceaux faisceaux FPo
Visser 2011 NL dist. entre fibres Classif. US/MS: param. de divise les données et identification des US: FA, CG,
(dsep) Hiérarchique classif. empiriques / classifie chaque sous-groupe faisceaux UN, FOI, LI
étiquetage manuel des séparément (plusieurs MS: FA
groupes répétitions) / garde les
groupes reproductibles
Wang 2011 NL AC coordonnées et Modeéle hiérarchique de parfois a besoin d’une classif. des voxels, US/MS: CC,
orientations des mélange de processus de fusion manuelle des clusters groupes de base FCS, FA,
points des fibres Dirichlet / étiquetage manuel des d’apprentissage sont FOI, UN, LI,
(voxels) groupes de la base information a priori PCM, TC
d’apprentissage

Liste des abréviations (Les autres abréviations ont été présentées dans le Tableau 1).
REC. (METHODE DE RECALAGE): affine (AFF), algorithme “congealing” (AC), non-linéaire (NL). / UN SUJET (US), PLUSIEURS SUJETS (MS)

Table 2: Catégorisation des méthodes de classification des fibres (plusieurs sujets). Les méthodes ont été analysées en fonction de leur
méthode de recalage, la méthode de classification et la mesure de distance principales, les principaux a priori anatomiques et empiriques
utilisés pour récupérer les faisceaux, les principaux pas de I'analyse, les principales sorties et les faisceaux identifiés avec succés. L'entrée est
une tractographie du cerveau entier pour toutes les méthodes.



Chapitre 5: Classification des Fibres Intra-sujet

Méthode

Comme mentionné précédemment, I’analyse des jeux de données avec plus d’un million
de fibres représente un grand défi pour tout algorithme de classification. Pour surmonter
la limitation sur la taille du jeu de données, nous proposons dans ce chapitre une séquence
d’algorithmes effectuant une classification hiérarchique robuste des fibres d’un cerveau
(intra-sujet). Cette méthode peut étre considérée comme un traitement de compression
des données issues de la tractographie car elle permet d’analyser plus d’un million de fibres
et de les regrouper en quelques milliers de faisceaux homogenes, sans perdre d’information
importante.

La méthode consiste en une décomposition hiérarchique du jeu de fibres, sous forme de
plusieurs étapes appliquées de facon consécutives. Pour traiter les fibres de fagon efficace,
la méthode est fondée sur une étape de classification appliquée aux voxels de la substance
blanche, au lieu des fibres. L’approche est fondée sur une mesure de connectivité entre les
voxels de la substance blanche proposée par El Kouby et al. (2005). D’autres étapes ont
été ajoutées, avant ou apres cette étape principale, avec 'objectif d’améliorer la qualité
finale des faisceaux de fibres obtenus. Toutes les étapes ont été concues et enchailnées de
fagon a robustifier I’analyse entiere. Le résultat final est un ensemble de quelques milliers
de faisceaux de fibres, représentant la structure compléte du jeu de fibres issues de la
tractographie, qui peut étre utilisé comme entrée d’autres analyses postérieures, comme
des analyses de groupe. Un diagramme représentant une vue globale de la méthode de
classification hiérarchique intra-sujet, composée de cinq pas principaux, est présenté dans
la Figure 7.

Dans ce qui suit nous décrivons brievement la méthode:

Pas 1: Décomposition Hiérarchique. Le jeu de fibres issu de la tractographie est
divisé en quatre sous-ensembles: fibres de I’hémisphere droit, fibres de ’hémisphere gauche,
fibres inter-hémisphériques et fibres du cervelet. Cette segmentation est réalisée en utilisant
des masques des deux hémispheres et du cervelet. Elle vise a diminuer la complexité des
données, en séparant des faisceaux qui se chevauchent partiellement. Les pas suivants sont

appliqués séparément a chaque sous-ensemble de fibres.

Pas 2: Segmentation fondée sur la longueur. Les fibres sont séparées en plusieurs
groupes de fibres de longueur similaire. De cette fagon, des faisceaux de fibres qui se

chevauchent partiellement sont séparés en groupes différents.

Pas 3: Classification des voxels de substance blanche. Une parcellisation de la
substance blanche est effectuée en utilisant une classification hiérarchique des voxels en

fonction d’une mesure de connectivité donnée par les fibres. Les groupes de fibres obtenus,
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Figure 7. Diagramme général de la méthode de classification des fibres intra-sujet: Pas 1:
Décomposition hiérarchique: Le jeu de données est segmenté en quatre principaux sous-ensembles
de fibres. Pas 2: Segmentation fondée sur la longueur: Les fibres de chaque sous-ensemble sont
séparées en differents groupes, constitués de fibres de longueurs similaires. Pas 3: Classification des
voxels de substance blanche: Les fibres de chaque groupe sont classifiées a travers une segmentation
des voxels de la substance blanche fondée sur la connectivité. Les clusters de fibres sont extraits a partir
des clusters de voxels de la substance blanche. Pas 4: Classification fondée sur les extrémités: les
clusters de fibres sont divisés en fascicules homogeénes en se basant sur les extrémités des fibres. Pas
5: Fusion des fascicules: Les fascicules de fibres du sous-ensemble sont fusionnés en utilisant une
distance entre paires de centroides des fascicules.
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appelés clusters de fibres sont extraits a partir des groupes de voxels de la substance
blanche.

La substance blanche est d’abord parcellisée aléatoirement en parcelles homogenes
constituées de 3 voxels en moyenne, en utilisant un algorithme de classification k-moyennes
fondé sur une distance géodésique [Flandin et al. (2002)]. Ensuite, une matrice de connec-
tivité est calculée, contenant la connectivité entre toutes les paires de parcelles, donnée
par le nombre de fibres qui les connectent, normalisée par le volume des parcelles. Une
classification hiérarchique de type “average-link” est alors appliquée pour segmenter la sub-
stance blanche en groupes contenant différents faisceaux de fibres (voir la Figure 8). Pour
obtenir les clusters de substance blanche, une partition adaptative de I’arbre résultant
de la classification hiérarchique est effectuée, en fonction de la taille désirée des clusters.
Les clusters de voxels ainsi obtenus représentent des groupes de voxels par lesquels passe
un grand nombre de fibres, regroupées en plusieurs faisceaux. Les clusters de fibres sont

finalement extraits a partir des clusters de voxels de substance blanche.

plL p2 p3 p4

p6 p7 [p8| pa pio
I pl‘ | q]

Figure 8: lllustration de la classification de voxels de la substance blanche en fonction de la
connectivité (Pas 3): D'abord, une parcellisation aléatoire de la substance blanche est effectuée (les
parcelles sont représentées en gris). Seulement les voxels traversés par les fibres sont considérés dans ce
processus. Une matrice de connectivité des parcelles est alors calculée, a partir du nombre de fibres qui
connectent chaque paire de parcelles. Cette valeur est normalisée par la taille des parcelles. La matrice
de connectivité est alors utilisée pour regrouper les parcelles fortement connectées entre-elles. Aprés
la classification, les parcelles en rouge (p2-p4), bleu (ps-p7) et vert (pg-p10) vont former trois clusters
différents, qui donneront lieu a trois clusters de fibres. Les parcelles présentant une connectivité plus
complexe, comme les parcelles en jaune (p;), violet (p2) et cyan (ps), sont regroupées avec le groupe
de parcelles auquel elles sont le plus connectées.

Pas 4: Classification fondée sur les extrémités. Chaque cluster de fibres est divisé
encore en plusieurs fascicules de fibres qui se chevauchent partiellement, a partir d’une
classification fondée sur les extrémités des fibres. Un algorithme de “ligne de partage des
caux” [Vincent and Soille (1991)] est utilisé pour détecter les régions 3D présentant une
haute densité d’extrémités de fibres. Chaque paire de ces régions définit alors un fascicule

homogene et régulier de fibres.

Pas 5: Fusion des fascicules. Une derniére étape regroupe les fascicules obtenus pour

tous les groupes de fibres d’un sous-ensemble. Cette classification est réalisée pour fusionner
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les fascicules de fibres présentant des géométries tres similaires, qui ont été sur-segmentés
dans les étapes précédentes. Une fibre moyenne ou centroide est calculée pour représenter
chaque fascicule du sous-ensemble. Elle est calculée comme la fibre minimisant la distance
moyenne vers toutes les autres fibres du fascicule. Les centroides sont ensuite regroupés
en utilisant une classification hiérarchique de type “average-link” fondée sur une mesure
de distance entre paires de centroides. La mesure de distance utilisée est la distance de
Hausdorff (dg) [Corouge et al. (2004)]. Une distance maximale est utilisée pour définir la

taille des faisceaux.
Validation de la méthode

Données simulées. Pour valider notre classification hiérarchique nous avons testé
d’abord la méthode avec des données simulées. Dix jeux de données simulées ont été géné-
rés, chacun fondé sur un modele constitué de 200 faisceaux présentant différents diametres,
longueurs, formes et densités de fibres (voir la Figure 9 B). Les faisceaux ont été générés a
partir de 200 fibres sélectionnées a partir d’un jeu de fibres d’un hémisphere gauche (voir
la Figure 9 A). En plus, trois jeux de données de “bruit” ont été générés, constitués de
fibres sélectionnées aléatoirement du méme hémisphere gauche, et contenant 10%, 50% et
100% du nombre total de fibres d’un jeu de données. Ces données ont été additionnées a
chaque jeu de données simulées, pour obtenir au total 30 jeux simulés de fibres (bruités).
Les données ont été classifiées avec notre méthode pour valider son comportement, notam-
ment la détection de faisceaux de fibres homogenes représentant la structure des données,
constituées dans ce cas de 200 faisceaux de fibres connus. La validation a impliqué le cal-
cul du pourcentage de récupération de tous les faisceaux des 30 jeux de données simulées.
Pour cela, un centroide a été déterminé pour chaque faisceau résultant de la classifica-
tion et comparé avec les centres des faisceaux des jeux de données originaux. L’analyse
des résultats confirme qu’une grande partie des faisceaux sont récupérés dans un grand
pourcentage. La récupération dépend, comme la plupart des algorithmes de classification,
de la densité des fibres: les faisceaux de fibres moins denses que la densité minimale de
fibres inférée a partir des parameétres de la tractographie, ne sont pas détectés car ils sont
considérés comme du bruit. En plus, en général, un petit pourcentage de fibres se trouvant
a la périphérie des faisceaux ne sont pas récupérées car elles présentent aussi une densité
tres basse. Ce comportement est consistent pour tous les jeux de données.

Evaluation du coiit de I’extensibilité de la méthode. Alors que les résultats de
la validation permettent d’inférer que le cout de ’extensibilité introduit par la classifi-
cation des voxels de la substance blanche (Pas 3) est trés bas, nous avons effectué des
expérimentations additionnelles pour quantifier ce cotit. Premiérement, une classification
de “force brute”, i. e. qui utilise une mesure de distance entre toutes les fibres du jeu de
données, a été appliquée & un jeu de données simulées avec 10% de bruit (~ 24.000 fibres).
La méthode utilisée est la classification hiérarchique, fondée sur la distance de Haussdorf
(dpr). Les résultats montrent que cette méthode ne récupere pas tous les faisceaux. En plus,

les faisceaux récupérés sont plus bruités que ceux retrouvés par notre méthode. L’analyse
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Figure 9: Exemple d’un jeu de données simulé constitué de 200 faisceaux de fibres. A: Les 200
fibres sélectionnées comme centres des faisceaux. B: Faisceaux générés a partir des centres en A.

des faisceaux non détectés nous conduit & deux explications: 1) dans certains cas, deux
faisceaux simulés sont fusionnés a cause de fibres qui présentent des distances relativement
courtes aux deux faisceaux, produites souvent par le bruit, et 2) dans d’autres cas, des
fibres dues au bruit font aussi que des faisceaux de basse densité sont divisées en multiples
faisceaux isolés. Ces résultats montrent que le comportement de notre méthode est accep-
table et que d’autres méthodes comme la classification hiérarchique ont besoin de pre- et
post- traitements pour assurer la qualité des résultats.

Un autre test a été effectué pour évaluer linfluence de la taille des parcelles sur la
qualité des résultats: notre méthode a été appliquée a un jeu de données simulées pour
une grande plage de tailles de parcelles. Les résultats n’ont pas montré une dégradation
significative dans la détection des faisceaux, soutenant I’idée que notre méthode est robuste:
1) la segmentation fondée sur la longueur (Pas 2) permet de simplifier les données en
éliminant des chevauchements des fibres, et 2) la classification fondée sur les extrémités

(Pas 4) permet de séparer les faisceaux des qu'’ils présentent une extrémité différente.
Résultats

La méthode de classification hiérarchique des fibres proposée a été appliquée a 12
sujets d’une base de données de cerveaux adultes [Poupon et al. (2006)]. La diffusion a été
modélisée en utilisant une déconvolution sphérique de ’ODF [Descoteaux et al. (2009b)].
Les fibres du cerveau entier ont été reconstruites en utilisant un algorithme de tractographie
déterministe régularisée. Les résultats sont illustrés pour I’hémisphere droit d’un sujet dans
la Figure 10. Ces données contiennent un million et demi de fibres, dont 600 mille pour
I’hémisphere droit, lesquelles sont réduites a un peu plus de 3000 faisceaux homogenes.
La méthode a aussi été appliquée a des données de tractographie DTI de deux cerveaux

d’enfants.
Applications

Un fantdéme physique [Poupon et al. (2010)] fait de fibres acryliques de petit diameétre,

contenant plusieurs configurations réalistes de fibres, comme des croisements et bifurcations
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Figure 10: Faisceaux de fibres résultants pour un cerveau adulte (hémisphére droit). Les couleurs
des faisceaux ont été sélectionnés de facon aléatoire et peuvent se répéter dans chaque groupe. A: Vue
extérieure des faisceaux. Pour une meilleure visualisation, les faisceaux ont été séparés en 10 groupes
de différentes longueurs. B: Vues extérieure et intérieure d’une sélection de faisceaux de fibres
courtes (35-50 mm). La plupart de ces faisceaux appartiennent a des faisceaux d’association courts.
C: Vues extérieure et intérieure d’une sélection de faisceaux de fibres longues (130-150 mm).
Ces faisceaux constituent des long faisceaux de fibres connus de la substance blanche.

de fibres, a été utilisé pour montrer une application de la méthode. Six jeux de fibres ont
été calculés pour ce fantdome, en utilisant trois modeles locaux de diffusion (DTI, g-ball
analytique (SH g-ball) [Descoteaux et al. (2007)] et une déconvolution sphérique de I’'ODF
(SDT) [Descoteaux et al. (2009b)]) et deux algorithmes de tractographie (déterministe et
probabiliste). Nous avons appliqué notre méthode aux six jeux de fibres, a partir du Pas
2. Un atlas a été créé pour retrouver les faisceaux validement reconstruits dans chaque jeu

de données, c’est a dire, les faisceaux de fibres qui ont des trajectoires égales a la vérité
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terrain. L’atlas, illustré dans la Figure 11 B, contient un centroide pour chaque faisceau
original du fantéme (7 au total). L’analyse des résultats a permis de comparer les différents
modeles locaux de diffusion et les différentes méthodes de tractographie en retrouvant
automatiquement les faisceaux validement reconstruits, montrés dans la Figure 11 C. Pour
cela, nous avons calculé la proportion de leur volume par rapport au volume original, ainsi

que le nombre total de fibres validement reconstruites pour chaque approche (Figure 11
D).
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Figure 11: Résultats pour les six jeux de données du fantome physique. Application dans
I’évaluation des modeéles locaux de diffusion et les algorithmes de tractographie. A: Les sept
faisceaux vérité terrain (masques 3D). B: L'atlas des centroides des faisceaux vérité terrain, utilisé pour
identifier automatiquement les faisceaux validement reconstruits. C: Faisceaux vérité terrain validement
reconstruits pour chaque jeu de données: pour trois modeles locaux de diffusion (DTI, SH g-ball and
SDT) et deux algorithmes de tractographie (déterministe et probabiliste). D: Analyse des résultats pour
les six jeux de données: D1: Pourcentage du volume des faisceaux vérité terrain couvert par
les fibres validement reconstruites. En général, la tractographie probabiliste présente une meilleure
reconstruction des faisceaux. D2: Pourcentage total de fibres validement reconstruites. En général,
comme prévu, la tractographie déterministe présente un pourcentage plus élevé de fibres validement
reconstruites.

Une autre application de notre méthode a été illustrée: la décomposition “top-down”
des long faisceaux de fibres connus. La tractographie permet d’envisager une analyse plus
en profondeur des faisceaux connus, en les sous-divisant en plusieurs composantes [Ca-
tani et al. (2005)]. L’approche usuelle utilise des ROIs pour décomposer les faisceaux.
Nous illustrons avec le faisceaux arqué de quatre sujets, que les faisceaux résultants de

notre méthode de classification peuvent étre utilisés pour retrouver des décompositions
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des faisceaux a travers une interface graphique (cela peut étre effectué aussi de fagon au-
tomatique). Dans cet exemple, le faisceau arqué a pu étre divisé en six faisceaux pour les

quatre sujets, dont trois faisceaux ont déja été décrits par Catani et al. (2005).

Masque de propagation de la tractographie calculé a partir de I’image pondérée
en T1

Les algorithmes de tractographie ont besoin d’un masque de la substance blanche pour
délimiter I'espace 3D dans lequel les fibres sont calculées. Normalement ce masque est
calculé & partir d’un seuillage sur I'image de FA (seuil entre 0.1 et 0.25), mais ce masque est
trop restrictif car la FA peut étre trés basse dans des croisements de fibres (2/3 des voxels)
ou dans les régions sous-corticales a cause de l'effet de volume partiel. Nous proposons la
construction d’un masque de propagation de la tractographie a partir de I'image pondérée
en T1, fondée sur trois masques: un masque des deux hémispheres et du cervelet, un
masque des sillons et un masque des noyaux gris centraux et des ventricules. Ce masque,
contenant la substance blanche et une partie de la substance grise permet une meilleure
délimitation pour la tractographie des régions sous-corticales, des structures profondes,
du corps calleux, du fornix et des commissures (voir Figure 12 A). Une comparaison des
faisceaux segmentés a partir des fibres reconstruites avec notre masque calculé a partir
de I'image T1 et un masque fondé sur la FA est présentée dans la Figure 12 B. On peut
observer une meilleure reconstruction des faisceaux surtout sur les régions sous-corticales,

ce qui a un impact tres important dans les fibres d’association courtes.

A B masque FA masque T1 masque FA

A

faisceau longitudinal inférieur faisceau fronto-occipital inférieur

masque T1

masque FA masque T1

faisceau unciné

masque FA masque T1 masque FA masque T1 masque FA masque T1

sl

faisceau corticospibal cingulum

faisceau arqué et fornix

masque FA ) S masque T1

quelques fibres d'association courtes (hemisphére gauche)

Figure 12: Masque de propagation de la tractographie calculé a partir de I'image pondérée en
T1. A: Comparaison entre notre masque de propagation et un masque calculé a partir de la FA (seuil
égal a 0.1). B: Comparaison entre des faisceaux segmentés reconstruits & partir de notre masque de
propagation (masque T1) et un masque calculé a partir de la FA (masque FA), avec un seuil égal a
0.15.
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Chapitre 6: Classification des Fibres Inter-sujet: Inférence
d’un atlas des faisceaux multi-sujet

Les modeles des faisceaux existants sont composés seulement par les faisceaux connus
de la substance blanche profonde (DWM). Dans ces modeles, les faisceaux de la DWM
sont représentés par des fibres qui ont a peu pres la méme forme, et ne représentent
pas la variabilité de la forme et de la position des fibres & travers les sujets. Grace aux
améliorations des acquisitions, corrections et modélisation des données de diffusion, les
données de tractographie actuelles présentent une grande complexité et un tres grand
nombre de fibres. Les faisceaux reconstruits sont alors plus complexes; quelques exemples
de décomposition des faisceaux connus en fascicules ont été proposés dans la littérature
[Lawes et al. (2008)]. Par exemple, le faisceau arqué a été décomposé en un segment long
direct et deux segments indirects (antérieur et postérieur) [Catani et al. (2005)]. En plus,
jusqu’a présent, les fibres courtes de la substance blanche superficielle ont été tres rarement
étudiées. La segmentation de la substance blanche reste encore un probléme complexe et

pas completement résolu.

Les stratégies couramment proposées pour la reconstruction des faisceaux des fibres
reposent sur deux idées complémentaires. La premiere approche utilise des régions d’intérét
(ROI) pour sélectionner ou exclure des fibres. Ces ROIs peuvent étre définies manuellement
[Catani et al. (2002); Mori et al. (2005); Wakana et al. (2007); Catani and Thiebaut de
Schotten (2008)], ou en utilisant un atlas de ROIs apres ’application d’une normalisation
affine [Oishi et al. (2008)] ou non-linéaire [Zhang et al. (2010)]. La seconde stratégie est
fondée sur un regroupement des fibres en utilisant une mesure de similarité entre paires
de fibres [Corouge et al. (2004); Zhang et al. (2008a); O’Donnell et al. (2006); Visser
et al. (2011)]. Cette derniere approche nécessite moins d’interaction que les approches
manuelles et permet d’intégrer dans I’analyse des informations sur la forme et la position
des fibres, ce qui n’est pas le cas pour la plupart des approches fondées sur les ROIs.
En plus, elle permet d’intégrer de 'information a priori dans des modeles des faisceaux
[Maddah et al. (2005); O’Donnell and Westin (2007)], ceux qui peuvent étre apres utilisés
pour segmenter d’autres sujets. En outre, 'application d’une méthode de regroupement
des fibres provenant de plusieurs sujets apres une normalisation spatiale, peut aider a
découvrir des nouveaux faisceaux reproductibles. Cependant, les méthodes fondées sur
des regroupements présentent une limitation dans le nombre de fibres qui peuvent étre
analysées. Malgré deux travaux récents qui décrivent des analyses des jeux de données de
tractographie treés grands (jusqu'a 120.000 [Wang et al. (2011)] et 480.000 fibres [Visser
et al. (2011)]), la segmentation des jeux de données massifs de fibres, présentant plus d’un

million de fibres, est encore un grand défi.

L’objectif de cette these est 'inférence d’un modele des faisceaux des fibres de la sub-
stance blanche du cerveau humain a partir des données de diffusion a haute résolution
angulaire (HARDI). En conséquence, dans ce chapitre nous présentons une méthode qui

prend comme entrée des jeux de données massifs de tractographie provenant d’une popu-
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lation de sujets, et qui produit comme sortie un modele composé d’une liste des faisceaux

génériques présents dans la plupart des sujets.
Stratégie de regroupement de deux niveaux

La méthode consiste en une stratégie de deux niveaux, enchainant un regroupement
intra-sujet, suivi d’un regroupement inter-sujet, pour traiter de tres grands jeux de données

issues de la tractographie.

Premier niveau: regroupement intra-sujet. Pour pouvoir analyser ensemble les don-
nées issues de la tractographie d’'une population de sujets, nous utilisons d’abord le regrou-
pement intra-sujet présenté dans le chapitre précédant. Ce regroupement permet d’obtenir
une représentation comprimée des jeux de données individuels de fibres. Pour chaque su-
jet, on passe de plus d’un million de fibres a quelques milliers de faisceaux réguliers, qui
peuvent étre représentés par des centroides. Un traitement additionnel a été ajouté au Pas
1 pour obtenir des sous-ensembles contenant les fibres qui sont connectées aux thalami:

thalamus-droit et thalamus-gauche.

Deuxiéme niveau: regroupement inter-sujet. Le deuxiéme niveau a pour objec-
tif de trouver une correspondance entre les faisceaux produits dans le premier niveau a
travers une population de sujets. Cette analyse est effectuée séparément pour chaque sous-
ensemble de fibres. La Figure 13 (A) illustre la méthode.

Premierement, un centroide est calculé pour chaque faisceau en utilisant la moyenne
des distances les plus proches [Corouge et al. (2004); O’Donnell et al. (2006); O’Donnell
and Westin (2007)]. Un centroide représente la géométrie principale du faisceau et est
localisé dans le centre du faisceau. Il est défini comme la fibre qui minimise la distance
vers les autres fibres du faisceau. Une fois que tous les centroides provenant de tous les
sujets pour le sous-ensemble analysé ont été calculés, ils sont transformés vers ’espace de
Talairach en utilisant une transformation affine estimée a partir de I'image T'1.

Ensuite, un graphe d’affinités des centroides est calculé en utilisant une distance
entre paires de centroides. La distance utilisée est la distance Euclidienne maximale entre
points correspondants, normalisée par la longueur de centroide minimale (dysgy). Cette
distance est plus restrictive que les distances fondées sur les points les plus proches. Pour ce
calcul, les centroides sont échantillonés en utilisant 21 points équidistants. La normalisation
permet de rendre la distance plus restrictive pour les fibres courtes, en donnant des groupes
plus compacts pour ces faisceaux. Pour construire le graphe d’affinités des centroides, ont
utilise un seuil sur la distance maximale entre centroides (Mygy,), qui varie normalement
entre 10 et 15 mm.

Ce graphe d’affinités est utilisé pour effectuer un regroupement hiérarchique des cen-
troides. L’arbre résultant est analysé pour extraire seulement les groupes compacts, ou la
distance entre tous les centroides est inférieure a la distance maximale My,. Les groupes

qui contiennent des centroides provenant d’au moins la moitié des sujets sont enfin sé-
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Figure 13: Regroupement des faisceaux inter-sujet. A: Un schéma général de la méthode.
L'analyse comprend tous les faisceaux obtenus pour un sous-ensemble de fibres, provenant d'une popu-
lation de sujets. Un centroide est d’abord calculé pour chaque faisceau. Les centroides de la population
de sujets sont alors transformés vers I'espace de Talairach. Une distance restrictive est calculée entre
toutes les paires de centroides et convertie en affinité. Un graphe d'affinités entre centroides est ensuite
calculé, en utilisant un seuil maximal sur la distance. Les centroides sont finalement regroupés en uti-
lisant un regroupement hiérarchique. Seulement les groupes compacts, contenant des centroides d'au
moins la moitié des sujets, sont sélectionnés comme des faisceaux génériques. Un pas additionnel permet
d'ajouter quelques centroides rejetés au groupe le plus similaire. B: Exemple de faisceaux génériques
(sélection de I’'hémisphére gauche). Les faisceaux ont été calculés en utilisant une distance maximale
entre fibres intra-sujet max_cdist égale a 10 mm et une distance maximale entre centroides inter-sujet
My, égale a 15 mm. Les faisceaux génériques sont composés des centroides intra-sujet obtenus dans le
premier niveau de regroupement. lls contiennent des centroides d'au moins six sujets différents.

lectionnés et appelés faisceaur génériques. Un dernier pas optionnel, relache un peu les
contraintes pour ajouter quelques centroides aux faisceaux génériques, qui ont été rejetés
dans le regroupement. Un centroide non attribué est inclus au faisceau générique le plus
proche si sa distance au centroide le plus proche du faisceau est inférieure & un seuil.
La Figure 13 (B) montre quelques faisceaux génériques obtenus en utilisant une distance
maximale entre fibres intra-sujet maz_cdist égale a 10 mm et une distance maximale entre
centroides inter-sujet My, égale & 15 mm.

Des données simulées ont été utilisées pour évaluer le comportement de la méthode
sur une population de sujets en utilisant une normalisation affine. Pour cela, 200 fibres

de différentes longueur, forme et position ont été sélectionnées a partir d’un sujet pour
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représenter des centroides intra-sujet. Ces centroides ont été alors transformés vers le
référentiel des autres sujets en utilisant un recalage non-linéaire a partir des images T1.
La méthode inter-sujet a été alors appliquée sur I’ensemble des centroides, transformés
dans l'espace de Talairach avec une transformation affine, pour un rang de valeurs de
distance My,. Les faisceaux génériques obtenus ont été comparés avec la vérité terrain, pour
déterminer le nombre de faisceaux récupérés et le nombre de sujets qui les composaient.
Les résultats ont montré que la normalisation affine vers un espace standard est suffisante

pour retrouver les faisceaux les plus reproductibles a travers les sujets.

Atlas HARDI multi-sujet des faisceaux connus de la substance blanche pro-

fonde

La stratégie de regroupement des fibres de deux niveaux a été appliquée a la base de
données de 12 sujets de cerveaux adultes [Poupon et al. (2006)]. Cette analyse a été effectué
séparément pour cing sous-ensembles de fibres: hémisphére droit, hémispheére gauche, inter-
hémisphérique, thalamus-droit et thalamus-gauche.

Des faisceaux génériques ont été obtenus en utilisant une distance maximale entre fibres
intra-sujet maz_cdist égale a 10 mm et une distance maximale entre centroides inter-sujet
My, égale a 15 mm. Ces faisceaux ont été étiquetés manuellement pour identifier les fais-
ceaux connus de la substance blanche profonde. Pour I'étiquetage nous avons utilisé des
informations anatomiques relatives a la trajectoire et la position des faisceaux, et particu-
lierement & leurs extrémités, en nous appuyant sur des descriptions anatomiques [Catani
and Thiebaut de Schotten (2008)]. Des segmentations des sillons et des parcellisations cor-
ticales ont été utilisées pour guider visuellement cette tache. Un faisceau est composé alors
de plusieurs groupes inter-sujet, qui tiennent compte de plusieurs sous-divisions du fais-
ceau connu dans 'espace standard. Chaque faisceau de I'atlas est représenté par une liste
de centroides inter-sujet calculés dans le premier niveau de la méthode. Par conséquent,
I’atlas des faisceaux multi-sujet créé permet de représenter la variabilité inter-individuelle
de la forme et la position des faisceaux. Cette inférence a été effectué pour 'hémisphere
gauche. Les faisceaux de ’hémisphere droit ont été calculés comme les symétriques de ceux
de ’hémisphere gauche par rapport au plan inter-hémisphérique de ’espace de Talairach.

L’atlas proposé, illustré dans la Figure 14, contient un total de 36 faisceaux, composés
de 11 faisceaux dans chaque hémisphere et le corps calleux. Plusieurs faisceaux connus

sont divisés dans quelques fascicules.

Atlas HARDI multi-sujet des faisceaux d’association courts de la substance

blanche superficielle

Les faisceaux d’association courts ont été rarement étudiés; pour cette raison il n’existe
pas trop d’information sur eux dans la littérature. Les études proposées jusqu’a présent uti-
lisent des atlas de ROIs apres I’application d’une normalisation affine [Oishi et al. (2008)]
ou non-linéaire [Zhang et al. (2010)]. Par exemple Zhang et al. (2010) a identifié 29 fais-

ceaux courts qui connectent des gyri adjacents. Le critere utilisé pour I'identification d’un
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Figure 14: Atlas HARDI multi-sujet des faisceaux connus. A: Tous les faisceaux (4189 centroides):
vues depuis la droite (A1), le haut (A3) et le front (As). B: Vues détaillées des faisceaux. B;: Vue
intérieure du fornix (noir), faisceau unciné (cyan), faisceau fronto-occipital inférieur (violet), faisceau
longitudinal inférieur (rose foncé) et faisceau corticospinal (orange) gauche. Bs: Vue extérieure des
segments du faisceau arqué gauche: direct (rouge), antérieur (vert) et postérieur (jaune). Bs: Vue
intérieure des fascicules du cingulum gauche: cingulaires longs (marron), cingulaires courts (vert clair) et
temporaux (bleu). By: Vue extérieure du corps calleux: rostrum (fushia), genou (bleu foncé), corps (vert
foncé) et splenium (marron foncé). Bs: Vue extérieure des radiations thalamiques gauches: antérieure
(gris), supérieure motrice (sarcelle), supérieure pariétale (rose), postérieure (bleu ciel) et inférieure
(ocre).

faisceau a été 'existence de fibres connectant les deux régions dans les 20 sujets étudiés.
Cette méthode a démontré étre puissante pour retrouver des faisceaux existant dans une
population de sujets, mais elle n’inclut pas des informations fondées sur la forme et la
position des fibres.

Pour inférer un modele des faisceaux courts, nous avons appliqué alors notre méthode

de regroupement des fibres de deux niveaux a la base de données de 12 sujets de cerveaux
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adultes [Poupon et al. (2006)], aux sous-ensembles hémisphére droit et hémisphére gauche.
Des faisceaux génériques ont été obtenus en utilisant une distance maximale entre fibres
intra-sujet maz_cdist égale a 7mm et une distance maximale entre centroides inter-sujet
My, égale a 12mm. Pour obtenir des faisceaux génériques compacts, le dernier pas qui

ajoute des centroides rejetés n’a pas été appliqué.

Région Abréviation
Gyrus frontal supérieur SFG
Gyrus frontal moyen MFG
Gyrus frontal inférieur IFG
Gyrus orbitaire médial MFOG
Gyrus orbitaire latéral LFOG
Gyrus précentral PrCG
Gyrus postcentral PoCG
Gyrus supramarginal SMG
Gyrus angulaire AG
Gyrus pariétal supérieur SPG
Gyrus occipital moyen MOG
Gyrus temporal supérieur STG
Gyrus temporal moyen MTG
Gyrus temporal inférieur ITG
Cuneus Cu
Précuneus PrCu
Gyrus cingulaire CG
Gyrus paracentral PaCG
Gyrus fusiforme FuG
Gyrus lingual LG
Insulaire Ins

Figure 15: Régions anatomiques de la surface corticale utilisées pour étiqueter les faisceaux
d’association courts de I'atlas HARDI multi-sujet. [Figures adaptée de http://www.bartleby.com/
107/ et http://www.netterimages.com/]

Ces faisceaux génériques, appartenant a la substance blanche superficielle (SWM), ont
été étiquetés manuellement en utilisant des parcellisations en gyri des surfaces corticales
[Cachia et al. (2003)]. L’objectif a été de donner un nom anatomique & chaque faisceau
reproductible. Seulement les faisceaux présentant une forme réguliere et une position non
ambigiie ont été étiquetés. La Figure 15 présente les gyri qui ont été finalement utilisés
dans I’étiquetage.

Cette inférence a été effectuée pour I’hémisphere gauche, en considérant les fibres entre
35 et 110 mm. Un nom a été donné a chaque faisceau de 'atlas, en suivant le critere utilisé
par Zhang et al. (2010), qui proposent des noms composés par la ou les deux régions qui
connectent chaque faisceau. Les faisceaux de I’hémisphere droit ont été calculés comme
les symétriques de ceux de ’hémisphere gauche par rapport au plan inter-hémisphérique
de 'espace de Talairach. La plupart des faisceaux étiquetés sont composés seulement par
un faisceau générique. Comme dans le cas des faisceaux connus, chaque faisceau court de
I’atlas est représenté par une liste de centroides inter-sujet calculés dans le premier niveau
de la méthode, ce qui permet de représenter la variabilité inter-individuelle de la forme
et la position des faisceaux. Quarante-sept faisceaux de la SWM ont été identifiés pour

I’hémisphere gauche. Ils sont illustrés tous ensembles et individuellement dans la Figure 16.
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Figure 16: Atlas HARDI multi-sujet des faisceaux d’association courts (47 faisceaux par hé-
mispheére). La premiére ligne montre de gauche a droite: vues extérieure et intérieure des faisceaux de
I'hémisphere gauche (HG), vues depuis le front et le haut de tous les faisceaux. Les lignes suivantes
montrent les 47 faisceaux de I'HG. Les noms ont été attribués en fonction des régions qu'ils connectent,
en suivant les noms des régions illustrés dans la Figure 15. Dans certains cas, une spécification spatiale
a été ajoutée: fr (antérieur), mid (moyen), bck (postérieur), sup (supérieur) et inf (inférieur).

li



Chapitre 7: Segmentation Automatique des Jeux de Données
Massifs de Tractographie

Méthode de segmentation automatique des faisceaux de fibres

Nous proposons une méthode simple mais puissante pour la segmentation automatique
des jeux de données massifs de tractographie fondée sur I’atlas multi-sujet des faisceaux
créé dans le chapitre précédant. Un schéma de la méthode est présenté dans la Figure 17.

La segmentation d’un nouveau jeu de données de fibres commence par une compression
en quelques milliers de faisceaux, en utilisant le regroupement intra-sujet décrit dans le
chapitre 5. Les faisceaux résultants sont alors étiquetés en employant une classification
supervisée fondée sur notre atlas des faisceaux multi-sujet. Les centroides des faisceaux
sont d’abord normalisés vers ’espace de Talairach en utilisant une transformation affine.
Ensuite, des distances entre chaque centroide du nouveau sujet et tous les centroides de
I’atlas sont calculées.

La distance utilisée est la distance Euclidienne maximale entre points correspondants
(dymE). Cette distance est restrictive et permet une bonne représentation de la similarité
entre deux fibres, en prenant en compte la position et la forme des fibres. Pour ce calcul,
les centroides de I'atlas et du nouveau sujet sont échantillonnés en 21 points équidistants.
L’ensemble des distances entre centroides est calculé en quelques minutes.

Chaque centroide du sujet est étiqueté par le faisceau le plus proche, & condition que
la distance vers ce faisceau, c’est-a-dire la plus petite distance vers les centroides qui
représentent le faisceau, soit inférieure a un seuil.

Pour les faisceaux de la substance blanche profonde, ce seuil est adapté a chaque
faisceau en utilisant une stratégie leave-one-out: pour chaque faisceau, le seuil est la valeur
minimale permettant 1’étiquetage de tous les centroides de tous les sujets, en considérant
un atlas fait a partir des onze sujets restants. Cette approche leave-one-out permet de
définir un seuil spécifique pour chaque faisceau de ’atlas, comme la distance maximale des
distances minimales entre un centroide de ce faisceau chez un sujet et tous les centroides du
méme faisceau chez les autres sujets. On peut s’attendre a ce que 'augmentation de la taille
de la base de données utilisée pour inférer ’atlas permettra d’améliorer 1’échantillonnage
de la variabilité du faisceau, ce qui diminuera les seuils utilisés pour capturer le méme
faisceau chez des sujets inconnus.

Pour les faisceaux d’association courts, ces seuils ont été déterminés empiriquement
pour chaque faisceau de l'atlas (entre 8 et 14 mm), en considérant la longueur moyenne du
faisceau et sa proximité aux autres faisceaux de I’atlas. Ce critere conduit a des seuils plus
élevés pour les faisceaux longs et isolés. Une stratégie leave-one-out pour la détermination

de ces seuils pourrait étre développée dans I’avenir.
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Figure 17: Méthode de segmentation automatique des faisceaux de fibres fondée sur un atlas des faisceaux multi-sujet. La segmentation d'un nouveau
jeu de données de tractographie commence par une compression en quelques milliers de faisceaux, en utilisant le regroupement intra-sujet décrit dans le chapitre 5.
Les faisceaux résultant sont alors étiquetés en employant une classification supervisée fondée sur notre atlas des faisceaux multi-sujet. Les centroides des faisceaux
sont d'abord normalisés vers I'espace de Talairach en utilisant une transformation affine. Ensuite, des distances entre chaque centroide du nouveau sujet et tous les

centroides de I'atlas sont calculées. Chaque centroide du sujet est étiqueté par le faisceau le plus proche, a condition que la distance vers ce faisceau, c’'est-a-dire
la plus petite distance vers les centroides qui représentent ce faisceau, soit inférieure a un seuil.



Résultats

Un probléme connu sur I’évaluation de la segmentation des faisceaux de la substance
blanche est ’absence de vérité terrain. Cela est d’autant plus complexe pour la substance
blanche superficielle, dont la cartographie est encore largement inconnue et au mieux de nos
connaissances, seulement la forme de quatre faisceaux de la substance blanche superficielle
a été décrite dans la littérature [Oishi et al. (2008)]. Nous évaluons notre approche a
I’aide d’autres bases de données: huit adultes et quatre enfants pour la segmentation des
faisceaux de substance blanche profonde, et dix adultes pour la segmentation des faisceaux

d’association courts.

Résultats pour la segmentation des faisceaux connus de la substance blanche
profonde. Huit sujets d’une base de données HARDI de sujets adultes (DB2), ont été
utilisés pour tester la méthode de segmentation des faisceaux de la substance blanche
profonde. Cette base de données fournit des images de haute qualité pondérées en T1
et des données DW contenant 41 directions, & partir d'une valeur b de 1000s/mm?. La
fonction des distribution des orientations de diffusion (ODF) a été reconstruite dans chaque
voxel en utilisant une solution analytique du modele g-ball [Descoteaux et al. (2007)]. La
tractographie du cerveau entier a été calculée en utilisant un masque de tractographie
a partir de I'image de FA, avec un seuil égal a 0.15, et un algorithme de tractographie
déterministe régularisée, donnant a peu pres 1.5 millions de fibres par sujet. Nous n’avons
pas utilisé notre masque de propagation de la tractographie fondé sur I'image T1 afin
d’éviter tout biais lors des comparaisons entre nos résultats et ceux d’autres méthodes,
adaptées & un masque & partir de la FA.

Les résultats de la segmentation sont présentés dans la Figure 18 (A-E). Les faisceaux
ont été coloriés en suivant les couleurs des faisceaux de l'atlas (Figure 14). Tous les fais-
ceaux de 'atlas ont été trouvés dans tous les sujets & ’exception du fornix et du segment
long (ou direct) du faisceau arqué droit. Les segmentations ont été validées par un expert.
Le probleme avec le fornix est généralement lié a une erreur dans le masque de tracto-
graphie normalement produite a cause du faible diametre de ce faisceau. Le probleme du
faisceau arqué pourrait étre lié a la symétrisation de notre atlas, qui pourrait ne pas tenir
compte correctement de l'asymétrie de ce faisceau lié au langage. Cependant, en explo-
rant I’ensemble des données de tractographie avec une méthode fondée sur des ROIs, nous
n’avons pas réussi a segmenter ce tract dans les cerveaux ou notre stratégie fondée sur un
atlas n’as pas réussi.

Ce qui pourrait arriver, c’est que lorsque le faisceau arqué n’est pas assez large, la
résolution spatiale actuelle des données de diffusion n’est pas suffisante avec une stratégie
de tractographie déterministe. En effet, plusieurs études ont montré une forte asymétrie
de la taille du faisceau arqué, liée a l’asymétrie du systéme de langage [Catani et al.
(2007)]. Pour obtenir un apergu de la qualité des résultats, les faisceaux ont été visuellement
comparés a ceux obtenus avec un seuil de distance plus grand. Nous avons constaté que

les seuils estimés sont proche de 'optimale pour tous les faisceaux.
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Le méme comportement a été observé apres ’application de la méthode de segmenta-

tion & quatre enfants d’une base de données DTI.

CGR CGL UNR UNL ILR ILL ARR AR L IFO R IFO L CSTR CST L

Figure 18: A-E: Résultats pour la méthode de segmentation automatique des faisceaux de
la substance blanche profonde chez I'adulte. Les couleurs utilisées sont les mémes que celles des
faisceaux de l'atlas (Figure 14). A: tous les faisceaux chez les huit sujets (vue depuis le front). Les
résultats qui suivent sont seulement montrés pour quatre sujets. B: radiations thalamiques gauches (vue
depuis I'extérieur). C: cingulum et fornix gauches (vue depuis I'extérieur). D: faisceaux fronto-occipital
inférieur, longitudinal inférieur et unciné droits et gauches (vue oblique depuis I'angle antérieur gauche).
E: faisceau arqué gauche (vue depuis I'extérieur). F-J: Une comparaison entre les résultats obtenus
par notre méthode et une approche fondée sur des ROls. Les abréviations utilisées pour les faisceaux
sont les suivantes: cingulum (CG), faisceau unciné (UN), faisceau longitudinal inférieur (IL), segment
long du faisceau arqué (AR), faisceau fronto-occipital inférieur (IFO), faisceau corticospinal (CST), avec
une "R" ou une "L" ajoutée, qui indique s'il s’agit du faisceau droit ou gauche, respectivement. F: un
graphique des moyennes des distances (en mm) entre les fibres segmentées seulement par une méthode
et la fibre la plus proche des fibres segmentées par les deux méthodes, pour tous les sujets. Les résultats
apparaissent en bleu pour notre méthode et en vert pour la méthode fondée sur des ROls. G-J: quelques
exemples pour quatre faisceaux différents. Les fibres segmentées par les deux méthodes apparaissent
en rouge, celles segmentées seulement par notre méthode apparaissent en bleu et celles segmentées
seulement par I'approche fondée sur des ROls apparaissent en vert.
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En outre, une comparaison a été faite pour la base de données d’adultes avec une
méthode trés connue fondée sur des ROIs, proposée par Zhang et al. (2010). Pour cela,
nous avons déterminé les fibres segmentées par les deux méthodes, et celles segmentées
seulement par 'une des méthodes. Les fibres communes semblent étre bien segmentées par
les deux méthodes, suivant la définition de chaque faisceau (voir par exemple [Catani and
Thiebaut de Schotten (2008)]). Mais, lors de ’analyse des fibres segmentées seulement par
I’'une des méthodes, nos résultats semblent étre meilleurs pour la base de données utilisée.
Pour la plupart des faisceaux, nous avons constaté que 'approche fondée sur des ROIs
perd certaines fibres parfaitement adaptées a la définition et & la forme du faisceau, mais
localisées dans la périphérie du faisceau. Cette faiblesse est probablement induite par un
recalage non parfait. Nous avons également observé que la stratégie fondée sur des ROIs
sélectionne quelques fibres présentant des trajectoire bizarres, parce que la forme des fibres
n’est pas considérée dans ’analyse. Quelques exemples sont donnés pour quatre faisceaux
différents dans la Figure 18 (G-J). Pour confirmer ce comportement, nous avons calculé la
moyenne des distances dj;g entre les fibres segmentées seulement par I'une des méthode
et la fibre la plus proche segmentée par les deux méthodes, pour tous les sujets (voir la
Figure 18 (F)). Cette analyse a été effectuée pour les faisceaux segmentés par les deux
méthodes, présentant des définitions similaires. Toutes les distances se sont révélées plus
importantes pour la méthode fondée sur des ROIs, confirmant que, en général, d’une part,
notre méthode permet de détecter une quantité non négligeable de fibres qui ont une forte
probabilité d’appartenir au faisceau et qui ne sont pas détectées par la méthode fondée
sur des ROIs, et, d’autre part, que les fibres qui ne sont pas détectées par notre méthode

sont tres différentes de la forme du faisceau.

Résultats pour la segmentation des faisceaux d’association courts Quant a la
segmentation des faisceaux d’association courts, nous avons utilisé dix sujets de la base de
données DB2, mais en utilisant dans ce cas notre masque de propagation fondé sur I'image

T1, qui améliore la détection de la connectivité sous-corticale.

Les résultats pour les dix sujets sont présentés dans la Figure 19. Tous les faisceaux ont
été trouvés dans au moins la moitié des sujets, ce qui est cohérent avec les conditions de
construction de notre atlas. Vingt-et-un faisceaux ont été trouvés dans tous les sujets, douze
faisceaux ont été trouvés chez neuf sujets pour chaque hémisphere et quatorze faisceaux
ont été trouvés chez entre cing et huit sujets pour chaque hémisphere. Les segmentations
ont été validées par un expert. Comme pour les faisceaux de la substance blanche profonde,
les faisceaux ont été visuellement comparés a ceux obtenus a 1’aide de seuils de distance
plus grands. Nous avons constaté que les seuils utilisés ont été pres de 'optimale pour
la plupart des faisceaux. Les faisceaux longs et isolés ont été en général bien segmentés,
quand ils existaient, mais certaines erreurs ont été trouvées pour les classifications des

faisceaux courts localisés tres pres d’autres faisceaux de D'atlas.

Ivi



Figure 19: Résultats pour la méthode de segmentation automatique des faisceaux courts d’as-
sociation chez I'adulte. Seulement les résultats pour I'hémisphére gauche sont montrés. Les couleurs
des faisceaux sont les mémes que celles des faisceaux de I'atlas (Figure 16). Les faisceaux ont été divisés
en trois groupes, en fonction de leur reproductibilité. Les faisceaux de I'atlas sont illustrés dans le coin
supérieur gauche de chaque image. A: Faisceaux de fibre trouvés dans tous les sujets (21 faisceaux). B:
Faisceaux de fibre trouvés dans 9 de 10 sujets pour chaque hémisphére (12 faisceaux). C: Faisceaux de
fibre trouvés dans 5 a 8 sujets pour chaque hémisphére (14 faisceaux).

vii



Conclusion

Dans cette these, nous avons proposé de nouvelles méthodes pour le regroupement
et I'analyse des jeux de données de tractographie massifs et complexes, contenant plus
d’un million de fibres. L’analyse principale se compose de deux parties: un regroupement
intra-sujet et un regroupement effectué chez une population de sujets. Cette stratégie a
permis l'inférence d’un modele des faisceaux de la substance blanche du cerveau humain
fondé sur 'imagerie de diffusion a haute résolution angulaire. Un atlas multi-sujet a ainsi
été construit, composé de 36 faisceaux de la substance blanche profonde, et 94 faisceaux
courts d’association de la substance blanche superficielle. Cet atlas est utilisé finalement
pour la segmentation automatique des faisceaux connus de de la substance blanche pro-
fonde et plusieurs faisceaux courts d’association chez des nouveaux sujets. Ces apports
méthodologiques ont été décrits et développés dans les chapitres 4, 5 et 6 de cette these.

Ces contributions nécessitent certaines connaissances sur I’anatomie de la substance
blanche cérébrale, les principes de 'IRM de diffusion et les méthodes de regroupement de

fibres. Tous ces sujets ont été examinés et traités dans les premiers chapitres de cette these.

Contributions

Tout au long de cette these, nous avons essayé de faire les bons choix mathématiques
et algorithmiques pour résoudre les problemes d’intérét. Tout d’abord, nous avons utilisé
une stratégie de regroupement intra-sujet hiérarchique utilisant une classification fondée
sur les voxels pour une analyse efficace des jeux de données de tractographie individuels.
Cette approche, composée de plusieurs étapes de traitement, garantit la robustesse et des
résultats de bonne qualité. Ensuite, nous avons développé une méthode de classification
inter-sujet nouvelle et efficace, capable d’analyser des jeux de données de tractographie
tres grands a partir d’'une population de sujets et d’en déduire un modele des faisceaux
génériques présents dans la plupart des sujets. Pour faire face a la limitation de la taille
des données, la méthode utilise en entrée les résultats du regroupement intra-sujet, qui
consiste en quelques milliers de faisceaux représentant la structure du jeu de données de
fibres dans sa totalité. Nous avons testé la robustesse et la qualité des résultats de nos
méthodes en utilisant des données simulées. Le regroupement intra-sujet a été également
comparé avec une autre stratégie de force-brute non-scalable. Enfin, nous avons proposé
une méthode rapide, robuste et automatique de segmentation des faisceaux de la substance
blanche, fondée sur ’atlas des faisceaux multi-sujet et la méthode de regroupement intra-
sujet. Nous avons fait un effort spécial pour étudier et discuter I’état de I’art des méthodes
de regroupement et segmentation des faisceaux pour mettre en évidence les forces et les

limites des méthodes que nous avons proposées.
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En résumé, les contributions importantes et originales de la these sont les suivantes:
Contributions majeures

1. Une méthode robuste de regroupement de fibres intra-sujet pour des jeux de données
massifs de tractographie.

2. Une stratégie de regroupement de fibres de deux niveaux, pour l'inférence d’un mo-
dele des faisceaux de fibres du cerveau humain a partir des jeux de tractographie
HARDI.

3. La construction d’un atlas HARDI multi-sujet des faisceaux en utilisant la stratégie
de regroupement de fibres de deux niveaux.

4. Une méthode de segmentation automatique des jeux de données massifs de tracto-

graphie a partir de I'atlas multi-sujet.
Contributions mineures

1. Une méthode pour la construction d’'un masque de propagation de la tractographie
robuste a partir des images T1.
2. Des données de tractographie simulées pour I'analyse des méthodes de regroupement

de fibres intra-sujet et inter-sujet.

Nous croyons que ces contributions ont atteint I’objectif initial de cette thése, qui
a été de déduire un modele des faisceaux de fibres de la substance blanche du cerveau

humain a 'aide de 'imagerie de diffusion & haute résolution angulaire.

Perspectives

Nous pensons que notre approche est une étape de 'analyse nécessaire et cruciale pour
des jeux de données massifs de fibres. Ainsi, notre approche sera étendue facilement a la
résolution spatiale de 1 mm qui peut maintenant étre utilisé avec I'imagerie parallele a tres
hauts champs. Cette résolution spatiale est censée mettre en évidence une multitude de
faisceaux de fibres en U et mieux délimiter d’autres gros croisements de fibres. Par consé-
quent, on peut s’attendre dans un proche avenir, a voir des études plus exploratoires en
vue d’améliorer notre connaissance sur la structure des faisceaux de la substance blanche,
en particulier, des faisceaux d’association courts. Notre atlas est censé étre raffiné dans
le futur pour tenir compte de plusieurs subdivisions des faisceaux connus de la substance
blanche profonde et des nouveaux faisceaux d’association courts.

En ce qui concerne les faisceaux d’association courts, chaque faisceau de fibre en U in-
féré dans ce travail n’a eu besoin que d’un alignement raisonnable des faisceaux provenant
de la moitié des sujets, ce qui se passe dans les régions du cerveau les plus stables. Cepen-
dant, une augmentation du nombre de faisceaux de fibres en U génériques, nécessitera une
amélioration de la normalisation spatiale utilisée pour comparer les faisceaux a travers les

sujets. Par conséquence, 1'utilisation d’'une normalisation non-linéaire en s’appuyant sur
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une segmentation des sillons [Auzias et al. (2011)] produira une amélioration importante
sur les résultats. En outre, la poursuite des travaux va nous conduire a améliorer itérati-
vement la normalisation spatiale a I'aide de contraintes sur les faisceaux inférés, afin de
mieux aligner d’autres faisceaux [Durrleman et al. (2009)].

Néanmoins, quelle que soit 'efficacité de la stratégie de normalisation, un meilleur
échantillonnage de ’ensemble de la variabilité exigera 'application de cette stratégie a
une plus grande base de données HARDI. Ce sera d’un intérét particulier pour ’étude et
la représentation de la variabilité anatomique des subdivisions des voies et des faisceaux
d’association courts.

En outre, une plus grande base de données est en train d’étre utilisée pour la validation

des résultats de la segmentation automatique des faisceaux.

Nous croyons que les principales contributions de la these peuvent maintenant étre
appliquées pour répondre & des questions plus neuroscientifiques. En fait, nos algorithmes
commencent a étre utilisés par les chercheurs en neurosciences, en partie parce qu’ils sont
disponibles sur demande & travers le logiciel BrainVISA /Connectomist2.0'. La méthode
de regroupement intra-sujet est en train d’étre utilisée pour ’analyse des jeux de données
de tractographie chez des enfants avec agénésie du corps calleux. De plus, des analyses des
index de diffusion seront effectuées sur une grande base de données de patients atteints
du syndrome bipolaire ainsi que des contréles, en utilisant notre méthode de segmentation
automatique DWM faisceaux.

Nous pensons que plusieurs applications des méthodes dévélopées surgiront dans le
futur. Les faisceaux qui résultent du regroupement intra-sujet peuvent étre combinés
avec des données fonctionnelles pour effectuer des études neuroscientifiques ou avec
d’autres segmentations anatomiques du cerveau, comme des tumeurs, pour analyser la
structure de la substance chez des cerveaux pathologiques. En outre, des méthodes pour
la parcellisation de la surface corticale pourraient étre dévélopées a partir des résultats
obtenus avec notre strategie de regroupement des fibres de deux niveaux. Enfin, nous
croyons que la méthode de segmentation automatique des faisceaux appartenants a la
substance blanche profonde et superficielle, est un outil puissant pour le déroulement des

études des données de diffusion chez des populations des sujets.

Finalement, d’un point de vue informatique, les algorithmes développés peuvent étre
encore optimisés par l'utilisation de la parallélisation informatique et de la codification
des parties critiques du code d’une facon plus efficace, en utilisant une plate-forme comme
le processeur graphique (GPU, de I’anglais Graphics Processing Unit). L’amélioration et
le développement d’algorithmes capables de traiter des jeux de données de tractographie
énormes sera un domaine de recherche ouvert tant que la taille des ensembles de données
de tractographie continue a augmenter. C’est déja le cas pour les jeux de données de

tractographie probabiliste, qui présentent des tailles tres importantes, aux alentours de 30

1 / . . -
http://brainvisa.info
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CHAPTER ]_

Introduction

Context

Human brain white matter (WM) structure and organisation are not yet completely known.
Nerve fibers connect neurons of different brain regions forming more or less complex net-
works, which are the source of all the brain tasks. The inference of the anatomical brain
connectivity mapping is therefore a great challenge, of great interest for understanding
brain function and study many diseases.

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI or dMRI) offers a unique
approach to study in vivo the structure of brain tissues. It allows the non invasive recon-
struction of brain fiber bundle trajectories using tractography. The diffusion local model
most used to date is the diffusion tensor (DTI) which has enabled the development of
studies in both, the clinical area and the more fundamental research. In this way, white
matter long association bundles have been studied in healthy subjects and for several
diseases. However the DTI model has some limitations in the representation of fiber bun-
dles complex configurations. In fact, only one population of bundles can be accurately
represented by this model. With the emergence of more powerful MRI scanners that al-
low higher spatial resolution and new techniques of dMRI with high angular resolution
(HARDI), tractography data present today a better quality, but, despite this progress, not
devoid of artifacts. These tractography data present a high complexity and are very huge,
containing over a million fibers for the whole brain.

How to analyse and quantify the structures defined by tractography, and in particular,
how to extract the fiber bundles is therefore an unsolved problem. Since the development of
tractography, several methods have been proposed to analyse WM tracts and segment them
automatically. Until now, the method most frequently used requires multiple regions of
interest (ROI). This approach is a guided method, in which fiber tractography is performed
from seeds located in predefined ROIs, or throughout the brain, and that preserves only the
fibers that pass through other predefined ROIs. Other approaches use atlases of different
brain regions to extract known bundles, relying on the quality of registration between the
diffusion data and the anatomical atlases.

Other approaches try to automatically cluster and classify all the fibers generated by



a whole brain tractography, using a pairwise fiber distance. These methods have shown
to be very powerful as the shape and position of the fibers are considered in the analysis.
One of the major limitations of these approaches is the dataset size, which currently makes
impossible an efficient processing which considers all the fibers of the dataset. Thus, the
proposed approaches use fiber samples, or a priori information for reducing the data or

subdividing the problem.

In general, the proposed methods aim to recover the known bundles of deep white
matter, which are commonly large and present a quite similar shape across subjects. But
there is a big amount of bundles, in special, short association bundles of superficial white
matter, that have been rarely studied, and that present a huge variability between sub-
jects. Furthermore, deeper analyses could be performed over known bundles in order to
obtain a better description, consisting in a decomposition into fascicles. Regarding inter-
subject analysis, several alignment methods have been proposed, based on the whole T2
or T1 images, ROIs or on several bundle shape descriptors, but the problem of bundles

comparison across subjects is still open.

In this thesis, we develop a two-level fiber clustering strategy able to analyse huge
tractography datasets from a population of subjects. From this analysis, the most re-
producible bundles of deep and superficial white matter can be identified. A HARDI
multi-subject bundle atlas is thus inferred and also used to automatically segment bundles

of new massive tractography datasets.

Organization and Contributions of this Thesis

This thesis is organized in three parts. The Background part describes the white matter
cerebral anatomy, the principles of DW-MRI and the existing approaches for white matter
bundles clustering and segmentation. Then, the Methods part describes the methodologi-
cal contributions of the thesis. Some examples of application are also described in this

part. The Applications part illustrate an example of application of the developed methods.

The thesis covers two main aspects of tractography datasets analysis. First, an intra-
subject clustering is proposed to deal with huge tractography datasets, without the use
of strong anatomical a priori information. Then, this intra-subject clustering is used as
input for an inter-subject clustering, allowing the study of white matter bundles across a
population of subjects. A HARDI muti-subject model of human brain WM bundles is thus
inferred. This atlas includes most of the known deep WM bundles and also a big amount
of short association WM bundles. This atlas is finally used for the automatic segmentation

of new massive tractography datasets.

We now give an overview of the organization and of the contributions of each chapter

in turn.



Part I: Background

Chapter 2 presents a background on the basic aspects of brain anatomy. It details the
main nervous tissues and the anatomical divisions of the brain. Since the principal interest
of this thesis is anatomical connectivity, it is focused on brain white matter composition
and structure, which determine how the brain is connected.

Our review starts with the macroscopic anatomical brain divisions in function of their
composing tissues and main functionalities. Subsequently, the different human brain tis-
sues and nervous tissue types are concisely described. The microscopic neuron, one of
the most important nerve cells, takes a fundamental place in the description of neural
tissues as gray and white matter. Finally, the organization of the human white matter is
studied. Known fiber bundles are covered as well as the main parts of the brain that are
connected by each fiber tract. Some fiber bundles, implicated in main high brain functions
are particularly highlighted, as the case of the arcuate fasciculus and its relation with

language.

Chapter 3 This chapter presents a background on the basic principles of diffusion MRI,
a technique allowing the study in vivo of white matter structure and its connections.
First, we introduce the concepts underlying diffusion-weigthed (DW) imaging, where
the diffusion of water molecules in living tissue takes a fundamental place. Next, we review
the basics of Nuclear Magnetic Resonance (NMR), followed by a brief description of DW-
MRI. The discussion continues with the approaches designed to locally model the diffusion
signal. We start with the diffusion tensor imaging (DTI), as the most intuitive and simple
mean to infer microstructure of biological tissues. This Gaussian model of diffusion allows
the measurement of quantitative parameters extensively used in clinical studies. Then,
more complex reconstruction algorithms, using high angular resolution diffusion data are
explored. These methods overcome some limitations of the DTI model, as the impossibility
to reconstruct multiple fiber distributions of water diffusion. The streamline tractography
is finally introduced, a technique aiming to reconstruct three-dimensional trajectories of

white matter fibers, which constitute the input dataset of this thesis.

Chapter 4 In order to situate our work, this chapter presents a review of the main
approaches used for tractographic pathways clustering and identification.

The review starts with a brief description of methods for WM segmentation based
on DW-MRI images. Next, techniques based on regions of interest (ROIs) for extracting
known fiber tracts are mentioned. Then, the main approaches proposed for white mat-
ter clustering and segmentation, are presented. White matter fiber clustering methods
are particularly addressed. The main clustering algorithms, as well as the different fiber
similarity measures described in the literature are detailed. The discussion continues with
a review of the main proposed fiber clustering methods, since its beginnings until today.
These methods are also summarized in a table describing, among others, the main input,

outputs, clustering method, distance measure, priors, and the successfully identified bun-



dles. Finally, a brief review of the approaches proposed for the quantitative analysis of
DW measures across bundles is included. The different methods for determining corre-

spondence across bundles and for comparing WM diffusion indexes are specially addressed.

Part II: Methods

The Methods part describes the original and most important contributions made in this

thesis.

Chapter 5 In order to overcome the tractography dataset size limitation of the standard
tract-clustering strategy, we propose an intra-subject clustering method based on a voxel-
based clustering approach.

First, an introduction describes the main technical aspects considered in the method
design and development. Next, an overview of the method, composed by a sequence of
algorithms performing a robust hierarchical clustering of a fiber tractography dataset, is
presented. Then, each step of the method is detailed. The robustness and the cost of the
scalability of the method are checked using simulated tract datasets. Also a comparison is
performed with a brute force clustering method. The complete method is then applied to
the tracts computed for twelve subjects of a HARDI adult database and for two children
of a database with lower angular resolution acquisitions and a tensor model. Finally, the
method is applied to the data issued from an actual phantom containing a plethora of
realistic crossing, kissing, splitting and bending fiber configurations. This last experiment
illustrates the interest of our compression method for comparing different diffusion local
models and tractography algorithms.

Additionally, we describe the creation of a robust propagation mask stemming from
T1 anatomy, which, in conjunction with tractography techniques, improves the accuracy
of the anatomical connectivity of the brain by reducing false positives and increasing the

detection of the subcortical connectivity.

Chapter 6 In this chapter we present a method for the clustering of a set of tracts
stemming from several subjects, after spatial normalization, with the aim to create a
model of the main human brain bundles. The objective is to construct a HARDI bundle
atlas, including the known bundles of deep WM, but, most interestingly, new discovered
short association bundles of superficial WM.

First, the method consisting in a two-level strategy chaining intra- and inter-subject
fiber clustering is described. To deal with very huge tractography datasets and reduce
the complexity of the data, the method uses the intra-subject clustering presented in the
previous chapter. The second level is specially detailed. It gathers the bundles obtained in
the first level for a population of subjects and performs a clustering after a spatial normal-
ization, producing as output a model composed by a list of generic fiber bundles that can
be detected in most of the population. In order to study the behavior of the inter-subject

clustering over a population of subjects aligned with affine registration, a validation with



simulated dataset is presented. A novel HARDI multi-subject bundle atlas, representing
the variability of the bundle shape and position across subjects is finally inferred. The at-
las includes 36 deep WM bundles, some of these representing a few subdivisions of known
WM tracts and 94 short association bundles of superficial WM.

Part III: Application

The Application part is short but illustrates the added value and the potential of the
developed methods.

Chapter 7 This chapter presents a method for the automatic segmentation of known
deep white matter and some short association fiber bundles from massive dMRI tractog-
raphy datasets. The method is based on the multi-subject bundle atlas derived from a
two-level intra-subject and inter-subject clustering strategy, described in chapter 6.

New tractography datasets are first compressed with the intra-subject clustering. The
resulting bundles are then labeled using pairwise distances to the centroids representing
the multi-subject atlas bundles. The segmentation of deep white matter bundles is applied
to height adults and four children while the segmentation of short association bundles is
applied to ten adults. In the case of known deep WM bundles, results are compared with

a ROI-based approach.

Appendix A

This appendix describes the main WM atlases proposed in the literature, in particular

those created or used by fiber clustering methods.

Appendix B

The appendix enumerates the publications from the author arising from this thesis. We

have published in a major international journal and in important conferences.

Software contributions

Finally, we would like to point out that all the algorithms described in the Methods part
are now available upon request as a toolbox of the BrainVISA /Connectomist2.0' software
platform for analysis and visualization of tractography brain data. Part of the integration
work, and all the optimization and graphical interface development has been done by
Delphine Duclap (Research Engineer, Neurospin, CEA), in close collaboration with Cyril
Poupon (Researcher, Neurospin, CEA) and all the BrainVISA software development team.

"http://brainvisa.info
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Overview

This chapter presents a background on the basic aspects of brain anatomy. It details the
main nervous tissues and the anatomical divisions of the brain. Since the principal interest
of this thesis is anatomical connectivity, it is focused on brain white matter composition
and structure, which determine how the brain is connected.

Our review starts with the macroscopic anatomical brain divisions in function of their
composing tissues and main functionalities. Subsequently, the different human brain tis-
sues and nervous tissue types are concisely described. The microscopic neuron, one of the
most important nerve cells, takes a fundamental place in the description of neural tissues
as gray and white matter. Finally, the organization of the human white matter is studied.
Known fiber bundles are covered as well as the main parts of the brain that are connected
by each fiber tract. Some fiber bundles, implicated in main high brain functions are par-
ticularly highlighted, as the case of the arcuate fasciculus and its relation with language.
This introductory chapter is inspired from atlases, review articles and thesis chapters from
[Gray (1918); Kandel and Schwartz (1985); Woolsey et al. (2008); Perrin (2006); O’Donnell
(2006); Descoteaux (2008); Catani and Thiebaut de Schotten (2008); Johansen-Berg and
Behrens (2009)] which are excellent sources for a general understanding of the nervous

tissue, brain anatomy and white matter bundles.

Keywords: nervous tissue, gray matter, white matter, deep nuclei, fiber tracts, fiber

bundles, projection fibers, association fibers, commissural fibers, U-fibers

Organization of this chapter:

The chapter is organized as follows. We first give a brief overview of the human brain
structure in Section 2.1. Then, the nervous tissue is described in Section 2.2. The white
matter organization, including a review of deep and superficial white matter fiber tracts

is finally presented in Section 2.3.

2 1 Human Brain General Anatomy
[ ]

The human brain is one of the most important and complex organs in the human
body. For more than one hundred years, investigating its organization and function has
been of fundamental interest in neurology and neurosciences. We know very little of the
complex functioning of the brain but we know quite a lot about its anatomy [Gray (1918)].

The brain controls the central nervous system (CNS), the peripheral nervous system
(PNS) and regulates all human activity. Figure 2.1 shows the main divisions of the CNS.
Broadly, the central nervous system is made up of the spinal cord and the brain.

At a larger scale, the human brain is made of different elements such as blood,
cerebrospinal fluid (CSF), white matter (WM) and gray matter (GM). Because of the
appearance of fresh brain tissue, areas rich in neurons bodies, synapses and glia are called
gray matter, and areas containing mainly myelinated axons and glia are called white

matter. These element classes produce also a different signal contrast under anatomical
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Figure 2.1: The six major divisions of the central nervous system. (1) the spinal cord; (2) medulla
oblongata, (3) pons, and (4) midbrain [collectively called the brain stem]; (5) diencephalon; and (6)
cerebral hemispheres. The brain is also commonly subdivided into three broader regions: the hind-
brain (medulla, pons, ans cerebellum), the midbrain, and the forebrain (diencephalon and cerebral
hemispheres). [Adapted from Kandel and Schwartz (1985)].

Magnetic Resonance Imaging (MRI). Examples of brain coronal slices, for an anatomical
MRI and an histological sample are illustrated in Figure 2.2. White matter appears in
white color inside the brain, while the cortex of gray matter is the gray covering layer of

2—4 mm.

The brain can be divided into three main parts (cf. Figure 2.1):

e telencephalon, composed by the two cerebral hemispheres (right and left) (6)
e diencephalon (5), composed by a group of structures located deep within the cere-

brum

e brain stem, composed by the medulla oblongata (2), the pons (3) and the midbrain

(4)
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Figure 2.2:  Coronal slices of human brain. A coronal slice of an anatomical MRI is presented in A,
while B contains an histological slice. White matter appears in white color inside the brain, while the
cortex of gray matter is the grey covering sheet. C illustrates the main structures present in a human
brain coronal slice. Gray matter, white matter and several basal ganglia are hightlighted. [Adapted
from Hasboun (2007)].

The hindbrain is the structure that connects the spinal cord to the brain. It includes
the cerebellum, the pons and the medulla oblongata. The structure called the cerebrum

is composed by the diencephalon and the telencephalon.

The Cerebral Hemispheres contain the cerebral cortez, a sheet of gray matter that
is outermost to the cerebrum. The cerebral cortex is the most important structure of the
GM and plays a major role in cognitive functions. Cerebral hemispheres are concerned
primarily with sensory and motor processes of the contralateral side of the body. Each
hemisphere of the cerebral cortex is divided into fives lobes: frontal lobe, parietal lobe,
occipital lobe, temporal lobe and insular lobe (cf. Figure 2.3). Each one has been associ-
ated with different functions ranging from reasoning to auditory perception (see Table 2.1).

Lobes from both hemispheres, although quite similar, are not completely symmetrical in
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structure, nor are they equivalent in function. The lobes present several sulci and gyri.
The sulci (or fissures) are the grooves and the gyri are the convolutions on the brain’s sur-
face. The more prominent gyri and sulci are very similar from one individual to another

and therefore have specific names.

Lobe Name | Localization Main Functions
in the brain

Frontal front associated with reasoning, motor skills (primary mo-
tor, premotor and supplementary motor areas), higher
lever cognition (prefrontal cortex), and expressive lan-
guage (Broca’s area)

Parietal middle section | associated with processing tactile sensory information
(primary somatosensory cortex), language comprehen-
sion, spatial orientation and perception

Temporal bottom primary auditory cortex, which is important for inter-
section preting sounds and language (Wernicke’s area), visual
processing, formation of memories (hippocampus) and

learning

Occipital back section primary visual cortex, visual association cortex

Insula beneath parts | associated with emotion, memory and the regulation
of the parietal | of the body’s homeostasis. Influences other functions
and temporal | like perception, motor control, self-awareness, cogni-
lobes tive functioning, and interpersonal experience.

Table 2.1:  Human brain lobes localization and function [Adapted from O'Donnell (2006)].

The Brain Stem

The medulla is located directly above the spinal cord and controls many vital autonomic

is comprised of the midbrain, the pons and the medulla oblongata.

functions such as heart rate, breathing and blood pressure. The pons connects the medulla
to the cerebellum and helps coordinating movement on each side of the body. Nerve
impulses coming from the eyes, ears, and touch receptors are sent to the cerebellum. The
pons also participates in the reflexes that regulate breathing. The brain stem contains
several collections of neuron bodies (gray matter), called the cranial nerve nuclei. Some
of these nuclei receive sensory information from the skin and muscles of the head. Other
nuclei control motor output to the muscles of the face, neck and eyes. The reticular
formation is a neural network located in the brain stem that helps controlling functions
such as sleep and attention. It collects inputs from higher brain centers and passes it to
motor neurons. The midbrain is the smallest region of the brain that acts as a sort of
relay station for auditory and visual information. The midbrain controls many important
functions such as the visual and auditory systems as well as eye movement. Portions of the
midbrain called the red nucleus and the substantia nigra are involved in the control of body
movement. The degeneration of neurons in the substantia nigra is typically associated with

Parkinson’s disease.
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Figure 2.3: The main divisions of the brain and lobes of the cerebral cortex are colored and labeled in
middle sagittal (A) and lateral (B) views of the brain. [Taken from Woolsey et al. (2008)].
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The Cerebellum lies on top of the pons, behind the brain stem. It consists of two
deeply-convoluted hemispheres. The cerebellum receives information from the balance
system of the inner ear, sensory nerves, and the auditory and visual systems. Its most
clearly-understood function is the coordination of motor movements, but it is also involved

in basic facets of memory and learning.

The Diencephalon is a group of structures located deep within the cerebrum, including
the thalamus, the subthalamus and the hypothalamus. Located above the brainstem,
the thalamus processes and relays movement and sensory information. It is essentially
a relay station, taking in sensory information and then passing it on to the cerebral
cortex. The cerebral cortex also sends information to the thalamus, which then sends
this information to other systems. The hypothalamus is a group of nuclei that lie
along the base of the brain. The hypothalamus connects with many other regions of
the brain and is responsible for controlling hunger, thirst, emotions, body temperature,
and circadian rhythms. The hypothalamus also controls the pituitary gland by secreting

hormones, which gives the hypothalamus a great deal of control over many body functions.

The Basal ganglia are gray matter nuclei lying deeply within each cerebral hemisphere.
The main components of the basal ganglia are the caudate nucleus, putamen, globus pal-
lidus, substantia nigra, and subthalamic nucleus. The caudate nucleus and the putamen
form the striatum while the putamen and the globus pallidus comprise the structure called
the lenticular nucleus. All these structures form a system consisting of multiple segregated
pathways, involving also the entire frontal cortex, the thalamus and the cerebellum. A
parallel processing is then performed to permit the planning, execution, and coordination
of eye and limb movements (see Figure 2.2 C).

The ventricular system is a set of structures containing cerebrospinal fluid in the
brain. It is continuous with the central canal of the spinal cord. The system comprises
four ventricles: right and left lateral ventricles, third ventricle and fourth ventricle.

The limbic system is a set of brain structures including the amygdala, the hippocam-
pus, regions of the limbic cortex and the anterior thalamic nuclei. These structures form
connections between the limbic system and the hypothalamus, thalamus, and cerebral cor-
tex. It supports a variety of functions including emotion, behavior, long term memory,
and olfaction. In particular, the hippocampus is important in memory and learning and

the amygdala has a primary role in the emotional reactions.

2 2 The Nervous Tissue
[ ]

The cells of the nervous system are of two principal types: nerve cells or neurons,
which are directly responsible for conveying and processing information; and glial cells or

neuroglia.
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Figure 2.4: Schematic representation of the major cellular elements of neural tissue. A neural cell body
in the gray matter extends several short dendritic processes and a single, long axonal process. The axon
is in the white matter, surrounded by an insulating myelin sheath formed by oligodendrocytes, a glial
cell. The WM also contains two other kinds of glial cells: astrocytes and microglia. [from Johansen-Berg
and Behrens (2009)].

Glial cells support and protect the neurons, maintain their homeostasis and make them
more efficient and effective. The three types of CNS glial cells are astrocytes, some star-
shaped cells that help maintaining the homeostasis, oligodendrocytes, that form the myelin
sheath surrounding the axons, and the microglia, that are macrophages constituting the

main active immune defense of the CNS (cf. Figure 2.4).

Nerve cells are the fundamental elements of the central nervous system. The central
nervous system is made up of about 100 billion neurons. Neurons are much like other cells
of the body in their general organization and their biochemical systems. However they also
possess unique features which are crucial to the functioning of the central nervous system.
In essence, a given neuron may both receive and send out signals to neighboring neurons
in the form of electrical pulses, conveying information or instructions from one region
of the body to another, as a highly intricate network. How is this information carried
through the white matter and how are the different parts of the brain connected remains
unknown. About 98% of neural tissue is concentrated in the brain and spinal cord, the
control centers for the nervous system. A neuron is built up of three parts: the cell

body or soma, and two kind of processes, the dendrites and the azon, as shown in Figure 2.4.

The soma contains the nucleus of the cell and carries the biochemical transformations
necessary to synthesize enzymes and other molecules necessary to the life of the neuron. It
is roughly spherical or pyramidal in shape - the precise shape depending on position and

function in the brain. It is typically several microns in diameter. Gray matter is composed
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of unmyelinated neurons. It’s gray brown color comes from the neuronal cell bodies and
the capillary blood vessels. Dendrites, shorter processes (1 mm or less) that are tapered
and branched much like limbs on a tree, receive and integrate incoming information. Most
neurons have several dendrites. Axons (usually only one per neuron) have a relatively
uniform diameter, can be highly branched, and extend for considerable distances, up to
almost 2m in tall people. Axons distribute signals to other cells (neurons, muscle cells,
secretory cells, etc.) without attenuation. The principal mode of communication between
neurons and from neurons to other tissues, such as muscle, is through specialized contacts
called synapses. Typically a given neuron is connected to about ten thousand of other

neurons.

The synapses are specific point of contact between the axon of one neuron and a den-
drite. At a microscopic scale, neurons transmit signals as electrical impulses which affect
their cell membrane potentials. The electrical impulse usually affects the cell membrane
potential of one of the neuron’s dendrites and then eventually travels along the length
of this axon to transmit to other neurons. Information is transmitted across the gap by
chemical secretions called neurotransmitters. It causes activation in the post-synaptic cell.
The axon is surrounded by the myelin sheath, which forms a whitish, non-cellular, fatty
layer around the axon. Myelin is a membranous, lipid and protein-rich structure generated
by the tight wrapping of oligodendrocyte processes around the axons. A single oligoden-
drocyte can myelinate many axons. Myelinization is a gradual developmental process that
can take up to 10 or 12 years to reach completion, but the bulk of myelinization occurs
during the fetal and infancy stages. The myelin sheath is not continuous along the length
of the axon. It is interrupted at regular distances by small amyelinated regions called nodes
of Ranvier. The myelinated segment between two nodes of Ranvier is termed internode.
Each internode is formed by a single oligodendrocyte process (cf. Figure 2.4). At nodes of
Ranvier, the axonal membrane is uninsulated and therefore capable of generating electrical
activity, allowing rapid and efficient saltatory propagation of action potentials, from the
soma to the axon terminus. Some axons do not attain a myelin sheath. Transverse slides

of axons in the white matter are shown in Figure 2.5.

The axonal cytoskeleton consists of actin filament, microtubules, microtubule associ-
ated proteins, and neurofilaments. Neurofilaments provide structure and are the main
determinants of axonal size (diameter). Microtubules, provide the tracks upon which pro-
teins transport organelles along the axon in both directions. Both, neurofilaments and
microtubules, lie parallel to the direction of the axon and appear as tube in cross-section
(cf. Figure 2.5). White matter axons, also called nerve fibers, are often tightly packed
together and highly organized in fiber bundles. White matter bundles are often called
WM fiber tracts. In this thesis, we will be most interested in recovering and analyzing
information about these fiber tracts from diffusion Magnetic Resonance Imaging (dMRI)
images. As we will see in chapter 3, dMRI allows the study of WM integrity and the

estimation of WM fiber tracts preferred orientation.
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Figure 2.5: White matter axons main structure. (a, b and c) Show three electromiographs of CNS
axons. (a) Cross-section through a single myelinated axon. Neurofilaments and microfilaments are
elongated structures that appear as small tubes. Neurofilaments (open arrows) provide structure and
are the main determinants of axonal size (diameter). Microtubules (filled arrows) provide the tracks upon
which materials are transported along the axons. (b) Cross-section through a second myelinated axon.
Mitochondria (open arrows) are the most frequently encountered axonal organelles. (c) Cross-section
through corpus callosal axons. In the CNS, axons over 0.2 um in diameter are myelinated. Myelin
appears as a dark band around the paler axon. Some axons (asterisks) do not attain a myelin sheath.
(d) Major structural longitudinal elements of the axons. The intraaxonal space contains neurofilaments
and microtubules parallel to the direction of the axon. (e) lllustration of the arrangement of the myelin
sheath and the axon in cross-section. (f) Schematic of an oligodendrocyte and an associated axon.
Myelin is the membranous structure generated by the tight wrapping of oligodendrocyte processes
around the axons. [Adapted from Johansen-Berg and Behrens (2009)].
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2 3 White Matter Organization
[ ]

As mentioned above, white matter is composed of myelinated axons, that con-
nect various gray matter areas of the brain to each other, and carry nerve impulses between
neurons. The white matter axons can be distributed diffusely or concentrated in bundles,
also called fiber tracts. In the cerebral hemispheres we can find two types of myelinated
axons: short-distance (10 - 30 mm) fibers below the gray matter that follow its contours,
and long distance (30 - 170 mm) fibers that are bundled into fasciculi in the deep white
matter. The WM of the cerebral hemispheres surrounds the subcortical gray matter and
intervenes between subcortical and cortical gray matter. There are also shorter intracorti-
cal (1 - 3 mm) unmyelinated fibers within the gray matter. The total number of long range
fibers within a cerebral hemisphere is 2% of the total number of cortico-cortical fibers and
is roughly the same number as those that communicate between the two hemispheres in
corpus callosum. As a rough rule, the number of fibers of a certain range of lengths is
inversely proportional to their length [Schiiz and Braitenberg (2002)].

Three main types of neural fiber tracts are found in the WM according to their con-
nections: commissural tracts, which interconnect GM areas of both cerebral hemispheres,
association tracts, that interconnect different cortical regions of the same cerebral hemi-
sphere, and projection tracts, that link the cortex with subcortical centers and with the
spinal cord. The most important fiber tracts of these three pathways will be described
in the following subsections based essentially on the following review articles: Catani and
Thiebaut de Schotten (2008); Aralasmak et al. (2006); Jellison et al. (2004). Refer to
Figure 2.6 for an illustration of the anatomic relationships of several WM fiber tracts.
See also Figure 2.7 for tractography-based reconstructions of the main white matter fiber

tracts described in the literature.

2.3.1 Association Pathways

Association pathways are tracts linking one area of the cerebral cortex to another within the
same hemisphere. These tracts are arbitrarily subdivided into short and long association
fibers. Short association fibers, linking one gyrus to its immediate neighbors, are known
as subcortical U-fibers. These are located in the superficial white matter (SWM). Long
association fibers are located in deeper parts of the WM and link cortex areas of different
regions and lobes. White matter structures at the deep white matter regions (DWM)
seem to share more common anatomical features across individuals, since there are many
prominent axonal bundles that can be identified in all normal subjects at well-defined
locations. The well known long association fibers are: the arcuate fasciculus (AF), inferior
longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFO), uncinate fasciculus

(UF), cingulum (CG) and superior fronto-occipital fasciculus (SFO).

Arcuate fasciculus: This tract, also called superior longitudinal fasciculus, is a lateral

associative bundle composed of long and short fibers connecting the perisylvian cortex

21



}Iongitudinai striae

U-fibers .
cingulum

corpus callosum

sup. fronto-occipital
fasciculus

U-fibers
arcuate fasciculus

anterior limp of
internal capsule

inf. fronto-occipital
fasciculus

uncinate fasciculus

caudate nucleus
lenticular nucleus

claustrum U-fibers

sup. fronto-occipital

fasciculus arcuate fasciculus

inf. fronto-occipital  inf. longitudinal
fasciculus fasciculus

uncinate fasciculus

Figure 2.6: lllustration of the anatomic relationships of several WM fiber tracts. [Adapted from Jellison
et al. (2004) and Poupon (1999a)]

(around the fissure of Sylvius or lateral sulcus) of the frontal, parietal, and temporal lobes.
The arcuate fasciculus of the left hemisphere is commonly involved in language. The
arcuate fasciculus of the right hemisphere is usually involved in visuospatial processing

and some aspects of language such as prosody and semantic.

The language function is localized in the left hemisphere in about 90% of right-
handed persons and 70% of left-handed persons. The arcuate fasciculus lies in Broca’s
area at the frontal end, which is usually associated with the production of language, or
language outputs. At the other end, in the superior posterior temporal lobe, lies Wernicke’s
area, which is associated with the processing of words that we hear being spoken, or
language inputs. Figure 2.8 A illustrates the arcuate fasciculus, composed by a long
direct segment connecting this two areas. The fronto-parietal portion of the arcuate
fasciculus encompasses a group of fibers with antero-posterior direction running lateral to
the projection fibers of the corona radiata. At the temporo-parietal junction, the arcuate

fibers arch around the lateral (Sylvian) fissure and continue downwards into the stem of the
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Figure 2.7: Main white matter fiber tracts described in the literature, obtained using deterministic trac-
tography over a diffusion tensor field. Commissural tracts: anterior commissure and corpus callosum.
Projection tracts: Corticospinal tract, internal capsule/corona radiata and fornix. Long association
tracts: arcuate fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate
fasciculus and cingulum. [Adapted from Catani and Thiebaut de Schotten (2008)]

temporal lobe. The most lateral component of the arcuate fasciculus is composed by latero-
lateral fibers approaching the perisylvian cortex. Recent tractography studies applied to
the language pathways showed that the anatomy of the arcuate fasciculus contains, in
addition, an indirect pathway, consisting of two segments [Catani et al. (2005)]. The
anterior indirect segment links the Broca’s territory with the inferior parietal lobule
(Geschwind’s territory) and the posterior indirect segment links the inferior parietal
lobule with Wernicke’s territory (cf. Figure 2.8 B). The Broca’s area is connected also with
the motor cortex, to activate the mouth and tongue for the articulation of the speech. The
angular gyrus coordinates the inputs from visual, acoustic, and somatosensory cortices

and relays them onward to Wernickes’s area.
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Figure 2.8:  A: Main areas involved in language (lateral view of the cerebral cortex). The arcuate
fasciculus (in red) connects Wernicke's area (in green) to Broca's area (in yellow). [Adapted from
Kandel and Schwartz (1985)]. B: The parallel pathway's model of the arcuate fasciculus derived from
tractography. Numbers indicate the cortical projections of the segments: 1, superior temporal lobe; 2,
middle temporal lobe; 3, inferior frontal and precentral gyrus; 4, middle frontal and precentral gyrus; 5,
supramarginal gyrus; 6, angular gyrus. [Adapted from Catani and Mesulam (2008)]

Cingulum: This tract is a medial associative bundle that runs within the cingulated
gyrus all around the corpus callosum. It contains fibers of different length, the longest
of which runs from the anterior temporal gyrus to the orbitofrontal cortex. The short
U-shaped fibers connect the medial frontal, parietal, occipital, and temporal lobes and
different portions of the cingulated cortex. The cingulum is part of the limbic system and

is involved in attention, memory and emotions.

Inferior longitudinal fasciculus: This tract is a ventral associative bundle with long
and short fibers connecting the occipital and temporal lobes. The long fibers are medial to
the short fibers and connect visual areas to the amygdala and hippocampus. The inferior
longitudinal fasciculus is involved in face recognition, visual perception, reading, visual
memory and other functions related to language [Catani and Mesulam (2008)].

The fibers of the inferior longitudinal fasciculus lie in the central portion of the occipital
and temporal lobes. Fibers present the same main orientation than the inferior fronto-

occipital fasciculus.

Uncinate fasciculus: This tract is a ventral associative bundle that connects the an-
terior temporal lobe with the medial and lateral orbitofrontal cortex. This fasciculus is
considered to belong to the limbic system but its functions are poorly understood. It
is possible that the uncinate fasciculus is involved in emotion processing, memory and
language functions [Catani and Mesulam (2008)].

The temporal fibers of the uncinate fasciculus are medial and anterior to the temporal
fibers of the inferior longitudinal fasciculus. As the uncinate fasciculus enters the external
capsule, its fibers arch forward and mix with the fibers of the inferior fronto-occipital

fasciculus.
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Inferior fronto-occipital fasciculus: This tract is a ventral associative bundle that
connects the ventral occipital lobe and the orbitofrontal cortex. In his occipital course the
inferior fronto-occipital fasciculus runs parallel to the inferior longitudinal fasciculus. On
approaching the anterior temporal lobe, the fibers of the inferior fronto-occipital fascicu-
lus gather together and enter the external capsule dorsally to the fibers of the uncinate
fasciculus. The functions of the inferior fronto-occipital fasciculus are poorly understood,
although it is possible that it participates to reading [Catani and Mesulam (2008)], atten-
tion and visual processing. In humans, it represents the only direct connections between
occipital and frontal lobes. The inferior fronto-occipital fasciculus may only exist in the
human brain [Catani et al. (2007)].

Short association fibers: These fibers, also called U-fibers, lie immediately beneath the
gray substance of the cortex, and connect together adjacent gyri (see Figure 2.6). These
fibers are located in the superficial white matter (SWM), which fills the space between the
DWM and the cortex. These fiber tracts have not been well characterized in the literature.
Their location, number, trajectories and fonctions are not sufficiently defined. Only four
U-fiber tracts have been identified through group analysis using a voxel-based approach

relying on linear brain normalization [Oishi et al. (2008)].

2.3.2 Commissural Pathways

Commissural pathways are connections between the two cerebral hemispheres. The corpus
callosum (CC) is the largest link between the cerebral hemispheres, but is assisted by the
anterior commissure (AC) and the posterior commissure (PC). There are also commissures

within the brainstem and spinal cord.

Corpus callosum: This tract is the
lateral

largest bundle of the human brain and - g——

corpus \ \ ; ventrlcule
connects left and right cerebral hemi- callosum I\ el
spheres. It is conventionally divided genu 1 gyrus

into four sections: the genu, connect- fornix

ing medial and lateral frontal regions, rostrum splenium
the rostrum, connecting orbito-frontal thalamus
regions, the body, passing through the anterior ~

commissure

corona radiata and connecting precen- posterior commissure

tral frontal regions and parietal lobes, Figure 2.9: Internal face of the right hemisphere. Com-
and the splenium, connecting the oc- missural tracts (Corpus callosum, anterior and posterior
commissures) and the fornix are identified. [Adapted

cipital lobes (see Figure 2.9). The
from Hasboun (2007)].

fibers of the genu and the rostrum arch
anteriorly to form the anterior forceps (or forceps minor), whereas those of the splenium
form the posterior forceps (or forceps major). Fibers of the body and splenium constitute

the tapetum which connects the temporal lobes. The corpus callosum allows transferring
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of inputs from one hemisphere to the other and is involved in several motor, perceptual
and cognitive functions. The fibers of the body of the corpus callosum are ventral to the

cingulum and medial to the lateral ventricles.

Anterior commissure: This commissural tract connects the anterior and ventral tem-
poral lobes (including the amygdala) of the two hemispheres. The functions of the anterior
commissure are poorly understood. The fibers of the anterior commissure have a latero-
lateral direction and are medial to the fibers of the external/extreme capsule, ventral to

the most anterior part of the body of fornix, and anterior to the cerebral peduncles.

pyramidal tract central sulcus caudate nucleus
corona T W external Ienn;:ular
radiata X capsule nucleus
internal
internal capsule
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optic commissure
optic tract
tract cerebral
cerebral ‘ peduncle
peduncle : iy -
R. ocular nerve pyramidal
L. ocular nerve tract
supetrior peduncle decussation
A B

Figure 2.10: lllustration of dissection showing the course of the cerebrospinal fibers. The corticospinal
tract (CST), also called pyramidal tract, connects the fronto-parietal cortex to the spinal cord. The
CST pass through the Corona Radiata (CR), Internal Capsule, Cerebral Peduncle, and Pyramid (medulla
oblongata) regions. The internal capsule and corona radiata contain also ascending fibers from the
thalamus to the cerebral cortex. [Adapted from Gray (1918)]

2.3.3 Projection Pathways

Projection fibers are fiber tracts linking an area of cerebral cortex to a subcortical structure,
such as a basal ganglion or the thalamus. The corticospinal tract (CST) and the thalamic
radiations are the most known projections fibers. Afferent tracts carry information from
different parts of the body to the cerebral cortex. The afferent projections carry optic,
acoustic and somatosensory information and run upwards principally from the projection
nuclei of the thalamus. Ejfferent tracts carry motor commands from the motor cortex
down to the muscles and glands through the lower brain structures and the spinal cord.
They reach structures like the basal ganglia, the cerebellum, the brainstem and the spinal
cord. In the depths of the hemisphere, pyramidal projections constitute together, with the

thalamo-cortical fibers, the corona radiata and the internal capsule.

Corticospinal Tract: This tract, called also pyramidal tract, is a massive collection of

axons that travel between the cerebral cortex of the brain and the spinal cord. The CST
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mostly contains the motor axons from primary sensorimotor cortex and premotor cortex.
The CST is illustrated in Figure 2.10 A. It passes through the Corona Radiata, Internal

Capsule, Cerebral Peduncle, and Pyramid (medulla oblongata) regions.

Thalamic radiations: These tracts are composed by thalamo-cortical and cortico-
thalamic fibers forming a more or less continuous fan. Thalamo-cortical fibers refer to
afferent fibers, projecting to almost all the regions of the cortex. These fibers come from
thalamic nuclei which project to one or a few well-defined cortical areas. Cortico-thalamic
projections are efferent fibers that reciprocate the thalamo-cortical ones in almost equal
number and in corresponding precise order. The thalamic radiations are usually grouped
into four subradiations or peduncles: anterior (frontal), superior (parietal), inferior (tem-
poral), and posterior (occipital), as illustrated in Figure 2.11. The optic radiation, runs

from the thalamus to the primary visual cortex while the acoustic tract projects to the

temporal lobe.

superior thalamic radiation  posterior thalamic
radiation

anterior thalamic

=L

inferior thalamic radiation

Figure 2.11: A: An illustration of dissection showing the course of the thalamic radiations. B: Thalamic
radiations are usually grouped into four radiations: anterior or frontal (ATR), superior or parietal (STR),
inferior or temporal (ITR), and posterior or occipital (PTR). [Adapted from Poupon (1999a)]

The Internal capsule and corona radiata contain ascending fibers from the tha-
lamus to the cerebral cortex and descending fibers from the fronto-parietal cortex to sub-
cortical nuclei and spinal cord. This complex projection system is the neuroanatomical
backbone of perceptual and motor functions and other higher cognitive functions. The
internal capsule separates the caudate nucleus and the thalamus from the lenticular nu-
cleus. As the fibers leave the internal capsule dorsally, they fan out into the corona radiata,
which is lateral to the lateral ventricles, corpus callosum, and cingulum, and medial to the
arcuate fasciculus. As the fibers leave the internal capsule ventrally they continue into the

cerebral peduncles, pons and pyramidal tract (cf. Figure 2.10).

Fornix: This tract is a projection bundle that connects the medial temporal lobe to the
mammillary bodies and hypothalamus. The fornix belongs to the limbic system and is

involved in memory functions.
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The fibers of the body of fornix have an anterior-posterior direction and run longitudi-
nally along the midsagittal line just below the fibers of the corpus callosum. The anterior
fibers of the fornix bend downwards and cross the anterior commissure after splitting into
an anterior and a posterior column for each side. The posterior fibers of the body of fornix
split into a left and right branch, also known as the fimbriae of fornix. The fimbriae arch
around the thalamus and continue along the medial occipito-temporal lobe to terminate

in the hippocampus.

Cerebellar tracts: The cerebellum receives inputs from the controlateral cerebral hemi-
sphere through the cortico-ponto-cerebellar tract via the middle cerebellar peduncle. It also
receives peripheral inputs from the spino-cerebellar tract through the inferior cerebellar
peduncle. The major cerebellar output is represented by the superior cerebellar peduncle,
a flame-shaped tract posterior to the mesencephalus. The cerebellum is involved in motor

learning, cognition, emotions and behavior.

2 4 Conclusion
[ ]

In this brief background chapter we introduced the human brain anatomy, with

special emphasis in white matter. For this, the nervous tissue was described as well as the
different brain macroscopic structures. The white matter organization was particularly
studied as it is of major importance for this thesis. We described the white matter global
structure and the most known fiber tracts. The nomenclature of small and larger fiber
bundles introduced in this chapter will be useful to identify some of our results, exposed in
this thesis. Nevertheless, it must be noted that only the main fiber tracts are well described
in the literature. Most of the short association fiber tracts are still unknown. Their
smaller size, large number, and important inter-subject variability make their analysis a
challenging and complicated task. These tracts will probably be the center of interest in
the field of techniques available to infer the subcortical connectivity.

In the next chapter, we introduce the foundations of diffusion MRI. We will show that
diffusion MRI constitutes a powerful non-invasive mean to investigate the architecture of

the human brain white matter.
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Principles of Diffusion MRI
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Overview

This chapter presents a background on the basic principles of diffusion MRI, a technique
allowing the study in vivo of white matter structure and its connections. Firstly, we in-
troduce the concepts underlying diffusion-weigthed (DW) imaging, in which the diffusion
of water molecules in living tissue takes a fundamental place. Next, we review the basics
of Nuclear Magnetic Resonance (NMR), followed by a brief description of DW-MRI. The
discussion continues with the approaches designed to locally model the diffusion signal.
We start with the diffusion tensor imaging (DTI), as the most intuitive and simple mean
to infer microstructure of biological tissues. This gaussian model of diffusion allows the
measurement of quantitative parameters extensively used in clinical studies. Then, more
complex reconstruction algorithms, using high angular resolution diffusion data are ex-
plored. These methods overcome some limitations of the DTI model, as the impossibility
to reconstruct multiple fiber distributions of water diffusion. The streamline tractography
is finally introduced, a technique aiming to reconstruct three-dimensional trajectories of
white matter fibers, which constitute the input dataset of this thesis. Overall, this in-
troductory chapter is inspired from review articles and chapters from [Tuch et al. (2002);
Le Bihan (2003); Campbell (2004); Jonasson et al. (2005a); Perrin (2006); Descoteaux
(2008); Jones (2008); Johansen-Berg and Behrens (2009)], which are great sources for a
general understanding of diffusion MRI and fiber tractography.

Keywords: magnetic resonance imaging (MRI), DW-MRI, diffusion tensor imaging
(DTI), high angular resolution diffusion imaging (HARDI), white matter tractography,

streamline tractography

Organization of this chapter:

The chapter is organized as follows. We first review the basic principles of molecular
diffusion and diffusion MRI in section 3.1. Then we focus on diffusion MRI models sec-
tion 3.2, starting with diffusion tensor imaging and following with multiple fiber HARDI

reconstruction algorithms. Finally, we describe white matter tractography in section 3.3.

3 1 From the diffusion phenomenon to diffusion MRI ___
[ ]

3.1.1 Diffusion Basics

Water molecules, as all the fluid molecules, present a constant thermal agitation known
as Brownian motion [Brown (1828)]. This phenomenon is produced by thermal chocs
between molecules, which strongly modify their trajectories in such a way that they mimic
a “random walk”. In an isotropic medium (i. e. the diffusion is the same in all directions),
each molecule performs this random walk, leading to a random path in three-dimensional

space (see Figure 3.1 A). At macroscopic scale this molecular motion yields to a diffusion
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Figure 3.1: A: Simulation of trajectories of five molecules undergoing a random walk in an isotropic
medium, after 10, 20, 40 and 80 steps. B: A histogram of displacement from the origin of 1 million
molecules, after 100, 400, 900 and 1600 steps. The full-width at half-maximum (FWHM) scales in the
ratio of 1:2:3:4, which mirrors the ratio of 1/100:1/400:1/900:1/1600, demonstrating the consistency of
Einstein's equation for Gaussian diffusion [From Jones (2008)].

phenomenon, a physical process essential for the normal functioning of living systems. For
example, the transport of metabolites into cells is facilitated by difussion [Jones (2008)].
Diffusion can be described by Fick’s first law [Fick (1855)], which relates a diffusive

flux to any concentration difference through the relationship:
J=-DVC. (3.1)

where J (mol/(m?s)) is the net particle flux, VC is the gradient of particle concentration,
and D (m?/s) is a constant called “diffusion coefficient”. It should be noted that diffusion
results solely from collisions between molecules in liquids (and also in gases). Therefore,
it occurs even in thermodynamic equilibrium, i. e. even if there is no net flux, there are
still diffusive fluxes nonetheless, which cancel each other.

Einstein used a probabilistic framework to describe the motion of an ensemble of par-
ticles undergoing diffusion. He introduced the concept of “displacement distribution”, rep-
resenting the likelihood that a single given particle will traverse a certain distance within a
particular timeframe [Einstein (1956)]. In free diffusion, the net displacement distribution
is a Gaussian function whose width is determined by the diffusion coefficient and time
(see Figure 3.1 B). Einstein derived an explicit relationship between the mean-squared
displacement of particles, (r2), during a diffusion time 7 and the diffusion coefficient D,

appearing in Fick’s law (three-dimensional case):
(r¥) = 6Dr, (3.2)
The quantity » = v6D7 is a characteristic length refered to the quadratic mean dis-
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placement or diffusion distance. In the isotropic case, (r?) depends on the molecule type
and the medium properties but not on the direction. In DW-MRI, we do not measure the
diffusion coefficient directly, but the mean displacement of water molecules within each
three-dimensional volume element, or voxel. The voxels form the image and typically, are
cube-shaped with about 2.5 x 2.5 x 2.5 mm in dimension. The presence of cell membranes,
inclusions, macromolecules and so forth, present in tissue serve to hinder the pathway of
the molecules undergoing their random walks. As a result, their overall displacement from
their starting point in a fixed period of time is reduced compared to their mean displace-
ment when they were in “free” condition. Thus, when we apply Einstein’s equation to
compute diffusion, it will appear to be lower. Then, we refer to the apparent diffu-
sion coefficient or ADC [Le Bihan et al. (1986)]. The average ADC in tissue is around

0.7 x 10 mm? /s at 37°C, about four times smaller than in free water.

The Diffusion Propagator The diffusion propagator formalism offers a robust descrip-
tive framework capable of characterizing all diffusion phenomena, such as restriction and
finite boundary permeability. The diffusion propagator P(r|rg,7) gives the probability
of a spin traveling from position rg to r in the diffusion time 7. In MRI, a signal is de-
tected from a very large number of molecules present in each voxel. Therefore, the voxel
averaged random displacements of water molecules can be described by a diffusion dis-
placement probability function (PDF), called the ensemble-average propagator of water

molecules. The diffusion average propagator is written as P(R,7):

PR, 7)= /%3 P(r|ro, 7)p(ro)dr (3.3)

where R = r —rg is the relative spin displacement and p(rg) is the initial spin density. To
image the diffusion we must link the average-diffusion propagator to the signal measured
in the MRI experiment. It is crucial to infer properties of the underlying microgeometry

without the need to invoke an analytical representation of the geometry.

3.1.2 Basics on Magnetic Resonance Imaging

Conventional MR images reflect water properties measuring signals from hydrogen nuclei.
Each hydrogen nucleus, or proton, possess a nuclear magnetic moment, called spin. Spins
align themselves and present a precessional movement with an externally applied static
magnetic field.

The Larmor equation is the most basic and fundamental equation in NMR; it states
that the precessional frequency of spins in a magnetic field is directly proportional to the
strength of the magnetic field B:

w=yB (3.4)

where w is the precessional frequency, and ~y is the gyromagnetic ratio, a constant specific

to the nucleus under examination. In water, the hydrogen nucleus (i. e. the proton) has
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a gyromagnetic ratio value of approximately 42.58 MHz/Tesla.

This phenomenon is used by MRI scanners, which generate a strong static magnetic
field, called By, to produce the alignment of proton spins along By, with a resulting net
magnetization in the direction of the field. MRI scanners apply a second magnetic field
of a brief duration, and oscillating at radio frequencies, called rf pulse. When rf pulse
frequency is applied at the Larmor frequency of spins, it rotates the net magnetization
away from its orientation at equilibrium, along the longitudinal axis, parallel to By, to
create a component into the transverse plane, called the transverse magnetization. The
longer the duration of the applied rf pulse, or the greater its field strength, the greater
the tip angle that can be achieved. In the absence of externally applied RF energy, the
transverse magnetization will decay exponentially to zero with a time constant T2. This
decay is known as the spin-spin relaxation. Additionally, the rf-induced excitation puts all
the spins in phase, i. e. on a coherent rotation (Larmor precession). After the application
of the rf pulse, the component of the net magnetization along By, called longitudinal
magnetization decreases exponentially with a time constant T1. This is the spin-lattice
relaxation. The difference in the physical properties of the different tissue types is reflected
in the relaxation times, depending on T1 and T2, which determine different MR image
constrasts. For example, T1 contrast yields the typical anatomical images. In some MR
acquisition shemes, the rf pulse is of 90 degree, to flip the magnetization in the transverse
plane.

The rotating magnetic field generated by precessing spins induces a current in the MRI
receiver coil, which is the signal used to generate MRI images. This signal, reflected in
voxels brightness, depends on the coherence of the phase of the spins as they precess. Small
inhomogeneities in the magnetic field create small variations in the frequencies of precessing
spins, producing with time a loss of phase coherence and resulting pixel brightness. This
loss of magnetization is added to the T2 decay, leading to a T2* contrast. Typically,
the phase accumulation of the spins is reversed by application of a 180 degree refocusing
pulse, some time (TE/2) after the excitation rf pulse (spin-echo sequence). A time TE
(echo time) after the excitation rf pulse, all spins are back in phase, and the magnetization

is reduced only by a T2 decay (see Figure 3.3).

A third set of magnetic fields generated by MR scanners are called magnetic field
gradients. The addition of the gradients to the static magnetic field By makes the magnetic
field varying in a linear manner over the volume of interest, along any of three ortogonal
directions. Gradient imposes a position-dependent precessional frequency, which is the
basis of the spatial encoding in MRI. A slice selection can be performed by the application
of a gradient (G,) simultaneously with the rf pulse, producing changes in the Larmor
frequency along the direction of the gradient. Then, a given frequency corresponds to a
plane perpendicular to the gradient direction, i. e. to a slice.

After spins are excited, two gradients are applied along the two in-plane directions
defining the excited slice (x-y plane), to produce linear changes in precessional frequency.

One gradient (Gy) is applied after the first rf pulse and used for a line selection. Gradient
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Figure 3.2: lllustration of MRI pulse sequences and their data collection trajectories. Conventional
Cartesian pulse sequences (a) measure k-space (b) one line per TR (shot). White line shows one
measurement trajectory, gray lines show subsequent measurement trajectories, each obtained with a
Different value of G,,. Echo planar sequences (c) oscillate the frequency encoding gradient and measure
multiple lines of k-space (d) per shot. [From Johansen-Berg and Behrens (2009)].

Gy introduces a phase-shift in the signal dependent on the position along the y-axis.
When the field gradient is removed the frequencies will return to their initial value but the
phase-shifts between nuclei remain at different positions on the y-axis. Then the gradient
on the x-direction, G, is applied and the frequencies will change again, dependent on their
position along the x-axis. It is normally during the application of G, that the signal is
detected (line readout).

The signal measured in a receiver coil, after successively applying G, Gy and G, can
be expressed as the Fourier transform (F'(k, ky)), of the transversal magnetization f(z,y).

Variables k, and k, are function of the area of the gradients (G, and G,) and define a

—~

reciprocal spacial frequency space, known as k-space.

F(k’x, ky) = /f(l', y)ei27r[kzz+kyy]dzdy

—~

3.5)

The MR image is then reconstructed by taking the inverse Fourier transform of
F(K,, K,), where a sampling of k-space is performed by the variation of space-encoding
gradients (G, and Gy). Applying gradients G, Gy and G in other combinations leads to
different samplings of 3D k-space.

Typically the desired data is collected over several excitations (or shots), separated by

a time TR (repetition time), which allows spin magnetization to recover. For spin echo
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Figure 3.3: lllustration of spin dephasing in spin echo sequence. An excitation pulse (in yellow) rotates
the spins into the plane perpendicular to By, after which they precess. Differences in precessional
frequency create differences in spin phases, which increase with time, reducing the net magnetization
and resulting pixel brightness. Some time (TE/2) after the excitation rf pulse, a refocusing rf pulse flips
spins about it axis, putting the more rapidly precessing spins “behind” the more slowly precessing spins.
Over time the rapidly precessing spins accrue more phase than slowly ones, so that at time (TE) after
the excitation rf pulse all spins are back in phase. This is called a spin echo, and the net magnetization
(and pixel brightness) reflects the total coherent magnetization of all spins, reduced only by their T2
decay after excitation. [From Johansen-Berg and Behrens (2009)].

sequence, the signal from each pixel in an image can be expressed as
f(z,y) = My (1 - e‘%> e~ T (3.6)

where My is the “spin density” in that pixel, and T1 and T2 reflect the time constants
of relaxation in the tissue at that location. Figure 3.2 illustrates two different MRI pulse

sequences with different data collection trajectories.

3.1.3 Diffusion-weigthed MR

DW-MRI sequences are made sensitive to diffusion by the addition of a diffusion-encoding
gradient. If spins remain stationary during precession, the net phase accumulation due to
magnetic field inhomogeneities will be constant, and not depending on their position in
the gradient (and consequently, on the precessional frequency). But, as water molecules
present a permanent random walk, spins will experience changes in the strength of the
magnetic field. Since the particle displacements are not coherent, a distribution of dis-
placements is obtained and thus a distribution of phases. This spread of phases leads

to a loss of signal coherence and therefore a reduction in signal amplitude, which in an
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Figure 3.4: Pulse Gradient Spin Echo sequence experiment. The two gradient pulses are of equal area
(in this case, they have equal magnitude and equal duration §). [From Descoteaux (2008)].

image, means that the image appears darker. Diffusion-encoding gradients sensitize the
MR signal to diffusion, by imposing a given phase to a molecule that is dependent on its
overall displacement [Stejskal and Tanner (1965)]. The diffusion gradient is applied in one
particular direction, so only the displacement of spins along the gradient direction will
induce a phase-shift, which will lead to a signal representing the diffusion in the gradient
direction.

The diffusion coefficient can be infered from observations of the displacements over a
given time period. The greater the spread of displacements (the higher the ADC), the
greater the spread of phases — and thus the greater the loss of signal — and the voxels
appears dark. Conversely, the lower the rate of diffusion, the lower the spread of phases —
and thus the lower the loss of signal and the voxels appears bright.

Stejskal and Tanner (1965) introduced the Pulsed Gradient Spin Echo (PGSE) se-
quence, with two short duration gradient pulses of duration time ¢, placed on either side
of the 180 degree rf pulse and separated by a time interval A (see Figure 3.4). The interval
between the end of the first pulse and the begining of the second pulse, A —§ is called the
“diffusion time”. By assuming the pulses to be infinitely narrow, i.e. § is short enough for
the diffusion of the water molecule to be negligible during that time, Stejskal and Tanner

(1965) provided a quantitative measurement of diffusion in a sample. If the spin displace-
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ment is a result of Brownian motion, the signal of equation 3.6 is attenuated exponentially
by the product of the diffusion coefficient D and a factor b which is a function of the

DW-gradients and is expressed in (s/mm?)
f(z,y) = My (1 - 67%> e~ T3 ¢~bP (3.7)

The factor b [Le Bihan et al. (1986)], called b-factor, represents the sensitivity to

diffusion; its generalized equation is

TE
- 2
- /0 k() 2dt. (3.9)

For rectangular gradients, equation 3.8 becomes

b = ~*G?? (A - g) (3.9)

where ~y is the gyromagnetic ratio, G is the amplitude of the magnetic field gradient pulses,
¢ is the pulse duration time and A is the interval between application of the first and second
pulse. The time constant 7 = A — g defines the “effective diffusion time” where the 6/3
correction is due to the diffusion which occurs during the time in which the gradients are
on.

A longer diffusion time increases the distinction between the signals in different direc-
tions. However, a longer diffusion time will lead to a lower signal-to-noise ratio (SNR) so
a compromise is necessary.

The equation 3.9 is derived from the spin total phase-shift (¢), which is defined as
6= / GTr(t)dt = v0GTR (3.10)

where v is the nuclear gyromagnetic ratio for water protons, G is the applied diffusion
gradient vector and R = r — rg is the spin displacement during time A. Therefore the
measured phase-shift is proportional to the spin displacement and maps the mean diffusion
within a voxel. If diffusion is not uniform in all orientations, the signal will not be the same
for different gradient directions. An example is illustrated in Figure 3.5, which shows the
DW signal intensity for three different diffusion-encoding directions, aligned with the three
principal image axes.

The signal observed S can be expressed as a function of the baseline Sy, the signal
intensity in the absence of any diffusion weighting, also called b = 0 image. It is a super-

position of the transverse magnetizations.
S = Spe bP (3.11)

Both, Sy and S are weigthed identically by My, T1 recovery and T2 decay.

To make the classical MRI experiment more intuitive, a reciprocal space, called g¢-space
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was defined for diffusion imaging, where the wavevector q is a vector representing a unit
phase encoding step:

1
— G, 3.12
q4=5-7 (3.12)

The value b can then be expressed in function of q by b = |q|?7.

The expression for diffusion signal presented in equation 3.11 is only valid for a Gaussian
diffusion. While biological diffusion imaging studies commonly assume that the diffusion
is Gaussian there is a body of experimental evidence which indicates that this assumption

is not valid, principally due to diffusion restriction.

Ensemble average diffusion propagator and g-space

Stejskal and Tanner showed that, if gradient pulses are Dirac pulses (narrow pulse as-
sumption), the signal attenuation S(q,7) can be expressed as the 3-dimensional Fourier
transform F of the ensemble average propagator P with respect to the spin relative dis-

placement vector R,

S@1) _ [ pR, r)e 2 RaR — FIP(R, 7)), (3.13)
So 3

where Sj is the baseline image and P(R, 7) is the average diffusion propagator of a pool of
water molecules. Therefore, it is possible to obtain an average propagator from the S(q)
data by inverting the Fourier transform in equation 3.13 with respect to the reciprocal
vector q. By measuring the signal for sampled points in g-space (“g-space imaging”), we
can reconstruct the ensemble average diffusion propagator P in every voxel. The ¢-space
is sampled by either varying the direction of q (by the direction of G), or the magnitude
of q (by the magnitude of G or the gradient duration §). This is the idea behind g-space
imaging [Callaghan (1991)]. The PDF provides a detailed description of the diffusion in
the high spatial frequency regime where the Gaussian model is no longer valid. It can
resolve highly complex organization of fibers such as crossings. The Gaussian function is
a particular case which can be viewed as arising from either free diffusion or a low spatial
frequency approximation to the restricted propagator [Tuch et al. (2002)]. More details

about diffusion models are reviewed in sections 3.2.1 and 3.2.2.

3.1.4 EPI sequence and correction of geometric distortions

EPI sequences use a method of collecting data much faster than PGSE experiment, called
Echo Planar Imaging (EPI) [Mansfield (1977)]. For PSGE, the data collection trajec-
tory is cartesian, where one line (all desired k; locations) is read per TR (shot), with a
different and increasing value of the “phase encoding” gradient (G,), per each line. In
EPI, the trajectory is also cartesian, but the sequence oscillates the frequency encoding
gradient (G,) and measures multiple lines of the k-space during a shot (see Figure 3.2).
This sequence is used in functional MRI to measure the brain activity (BOLD signal) or in

DW-MRI with added diffusion gradient pulses, to determine the brain connectivity. The
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Figure 3.5: Effect of changing the axis of the diffusion-encoding gradients on the DW signal intensity.
The arrows at the top of the figure show the orientation of the encoding axis. In (c), the orientation is
perpendicular to the viewing plane. Dark areas have high ADC, ligther areas represent lower ADC. In the
area highlighted by the lower (unfilled) arrows, which forms the midsagittal portion of the splenium of
the corpus callosum, the ADC is high along the left-right axis, but low in the two orthogonal directions.
[From Johansen-Berg and Behrens (2009)].

most common pulse sequence for DW-MRI is currently single-shot Echo Planar Imaging
(SS-EPI), which encodes all the k-space in a single echo. This sequence allows the acqui-
sition of a slice in less than 200 milliseconds. EPI is a very fast imaging technique but it
produces several distorsions in the image due to the long duration of the reading pulses.
Any phase error is integrated during the echo train record. Geometric distorsions, which
can reach several milimeters, are a critical problem when a registration with anatomical
MRI is required. In practice, these distorsions are due to three main different physical
phenomena: (1) spatial non-linearities of gradients, (2) gradient-induced Eddy currents,

and (3) magnetic field inhomogeneities.

Spatial non-linearities of gradients, producing geometric warping of the image, de-
pends only on the gradients conception and are commonly corrected by post-processings
implemented in MRI systems. These algorithms do not need special subject-dependent

calibrations and are executed after the acquisition.

Eddy currents correction: The second type of distorsions is produced only in diffusion
weigthed EPI sequences. When strong gradients are used for the encoding of the diffusion,
Eddy currents are induced in the gradients. These currents are equivalent to the addition
of gradients to the spatial-encoding gradients. The encoding errors in spatial positions,
resulting also in an image warping, can be modelized with an affine transformation. DW-
images can be corrected, then, by their registration with an undistorted reference volume
acquired without diffusion weighting. These effects can be directly compensated during
the acquisition by the use of a twice refocusing spin echo technique [Jezzard et al. (1998);

Reese et al. (2003)], included nowadays in most clinical MRI scanners.
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Static magnetic field inhomogeneities are induced
in regions close to the interface between two tissues with
different susceptibility parameters. Local variations of
magnetic field in these regions produce differences in the
frequency and the phase of precession of the spins, in-
ducing an image warping linearly dependent of the field
strength. This phenomenon is specially important in EPI
as TE time is long. In the human brain, these distor-
sions appear most commonly around tissue/air bound-

aries, such as the frontal lobe above the sinusses. Usu-

ally, a field map (or phase map) is acquired for measuring

the magnetic field inohomogeneities. The phase map is
Figure 3.6: Example of a field map

equivalent, by a multiplying factor, to a geometric dis- image

torsions map Ay. Once the 3D distorsion map has been

calculated, the image can be corrected by the interpolation of the corrupted image using
the deformation field Ay. Besides, recent parallel imaging techniques produce an im-
portant reduction of warping effect from magnetic field inhomogeneities by reducing the
number of lines to read along the phase axis and consequently diminishing the echo train

duration.

3 2 Diffusion MRI models
[ ]

Diffusion MRI can be used for extraction of microstructural information of neu-
ral tissue, specifically in white matter. As studied in previous section, DW-MRI can
measure the mean displacement of water molecules, which is affected by tissue microstruc-
ture. Cells membranes, the axon myelin sheath, organelles and macromolecules modify

the water molecules diffusion.

There are three major modes of diffusion: free diffusion, hindered and restricted [Le Bi-
han (1995)], those can be divided into isotropic and anisotropic. Free and hindered dif-
fusion have been modelled by a Gaussian displacement distribution, where diffusion is
represented by the b-factor. However a single exponential decay can not describe diffusion
as well as would have been expected. In most cases diffusion-sensitized MRI signal attenu-
ation in brain tissue have been very well fitted with a biexponential function corresponding
to two water diffusion pools or phases in slow exchange, with a fast and a slow diffusion
coefficient [Niendorf et al. (1996)]:

S = SOfsloweibDﬂow + SOffasteibDfMty (314)

where f and D are the volume fraction and the diffusion coefficient associated with the

slow and fast diffusion phases, with fsow + frest = 1.

The historical model distinguishes two compartements: the extracellular and the in-

tracellular compartments, whose are separated by the semipermeable cell membranes. In

40



P
intracellular
(axonal) diffusion

semipermeable
cellular membrane

extracellular _—
diffusion

intracellular extracellular
compartment compartment

fast
diffusion
p00| Cell
slow membrane
D diffusion pool

Figure 3.7: A: lllustration of the anisotropic nature of diffusion in WM, where water molecules present
a preferred orientation of diffusion along WM fibers. B: Two-compartments model composed by an
intracellular and an extracellular compartment. While the extracellular compartment presents a hindered
diffusion, the intracellular (axonal) compartment is characterized by a restricted diffusion. [Adapted
from Poupon (1999b)]. C: Schematic representation of the structuring effect of charged proteins (P)
and membranes on water molecules. Bulk water molecules are exchanging rapidly with the water
molecules in the protein hydration shells. Other water molecules are trapped in a membrane-bound
layer. D: Conceptual biphasic water diffusion model. The slow diffusion pool is made of a water layer
trapped by the electrostatic forces of the protein membranes and associated cytoskeleton. [Adapted
from Le Bihan (2007)].

this model, the extracellular compartment is characterized by a hindered diffusion, de-
termining the fast diffusion component, while the intracellular compartment presents a
restricted diffusion within axons, determining the slow diffusion component. This model
is controversial as the volume fractions of the two water phases obtained using the bi-
exponential model do not agree with those known for the intra- and extracellular water
fractions (Finrq > 0.80 and Fpyrq < 0.20, even by taking into account differences in T2
relaxation contributions between those compartments [Le Bihan (2007)]. Figure 3.7 B

illustrates these two components.

A more recent biphasic model defines two diffusion pools: a fast and a slow pool,
delimited in function of the distance of water molecules to cell membranes. The slow pool,
composed by molecules localized close to cell membranes, contain membrane-bound water.
Contrarily, the fast pool is composed by bulk water and proteins-bound water [Le Bihan
(2007)]. Figure 3.7 C-D illustrates this model.
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In isotropic tissues the diffusion-weighted intensity, and therefore the ADC, is the same
in all directions. However, if the signal changes when we apply different gradient encoding
directions, the diffusion is anisotropic. An example of this effect is shown in Figure 3.5
where three different DW images were obtained for three ortogonal gradients. From this
three images is possible to infer an ordered structure that has predominantly a left-right
orientation. The highly anisotropic region indicated by arrows corresponds to fibers from
the corpus callosum. The anisotropic nature of WM tissue is illustrated in Figure 3.7 A,
where water molecules will present a preferred orientation of diffusion in the direction of
the fibers.

For anisotropic tissue the behavior of water molecules can no longer be characterized
with a single ADC. Therefore more complex models are used to characterize diffusion.
The diffusion tensor model is the more simple and clinically used model; it is presented in
section 3.2.1. Higher order models, have been developed to overcome some limitations of

the diffusion tensor. These will be briefly reviewed in section 3.2.2.

3.2.1 Diffusion Tensor Model (DTI)

Stejskal employed the relation in equation 3.11 for the case of free or Gaussian diffusion.
In this case the signal in DWI decays exponentially with b. This expression contains two
unknowns, namely, the unattenuated echo signal Sy and the diffusion coeflicient D. If the

diffusion is isotropic, then D is a scalar equal to the ADC, and is easily calculated as

Log[So/S]

ADC =
b

(3.15)

where b is the b-factor described in equation 3.9. The values of b typically used in clinical
studies are inferior to 1,500 s mm™2.

When the displacements are not the same in all directions, the simplest representation
of the shape of diffusion in 3D is the diffusion tensor (DT) model. The diffusion tensor
is a 3x3 symmetric, positive-definite matrix, originally proposed for use in diffusion MRI
by Basser et al. (1994). The DW imaging modality that uses the diffusion tensor is
called diffusion tensor MRI, DTI or DT-MRI. The diffusion tensor characterizes Gaussian

displacements in 3D, i. e.,

Dmm ny sz 1
bD=|( b, D, D, ZE#RRH. (3.16)
D:cz Dyz Dzz

DTI approximates the diffusion PDF by a 3-variate normal distribution with zero
mean. Hence, D can be viewed as the covariance matrix of water molecules displacements
in a given time at each imaging voxel. This diffusion tensor can be used in Einstein’s
and Fick’s equations (eq. 3.2 and 3.1) for anisotropic diffusion. The diagonal elements of
the matrix correspond to diffusivities along three orthogonal axes, while the off-diagonal

elements correspond to the correlation between displacements along those ortogonal axes.
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The assumption of a single-Gaussian displacement distribution is a low spatial frequency
approximation of the diffusion PDF. In the diffusion tensor model, if we take the Taylor’s
expansion of P about R and 7 and ignore the higher order terms, equation 3.16 can be

used to obtain
OP(R,t)

ot
This relation is called the diffusion equation, or heat equation [Campbell (2004)]. The

=DV?P(R,7). (3.17)

solution for this equation is the Gaussian diffusion PDF. In this case, the probability P to
find a molecule, initially at position rg, at r after a delay 7 is then given by

PR,7) = 1RTD—1R>, (3.18)

1
@] ¥ < 4t

where |D| is the determinant of the DT, D, and R = r — r( is the molecule displacement.

For a PGSE experiment, the signal attenuation can be expressed in function of D
S(TE) = Spe 7" G*9(2-5)a"Da _ g, ~bd"Dq (3.19)

where |D| is the DT, q is the diffusion gradient orientation, ¢ is the pulse duration and A

is the time between gradient pulses, as in equation 3.9.

In DTI, the scalar b value is replaced by a 3x3 symmetrical b-matriz, b. The tensor

elements are then computed by solving

3

log (5;) = - 23: > ;D (3.20)

i=1 j=1

The DT can be reconstructed by the measurement of signal attenuation for six different
non-colinear and non-coplanar directions, with the addition of one non-diffusion-weighted
image (Sp). This approach uses a number of model parameters equal to the data, leading
to a high sensibility to noise. Therefore, it is usual to estimate the DT from more than the
minimum number of acquisitions. Several approaches have been developed for a robust
estimation of the DT. These methods search a vectorial space that ensure definite-positive
tensors, and define robust tensor metrics. In addition to the Fuclidean space, Riemannian
[Arsigny (2006); Pennec et al. (2006)] and Log-Euclidean [Arsigny et al. (2006); Fillard
et al. (2007); Arsigny et al. (2007)] spaces have been defined.

The tensor isosurfaces can be thought in terms of an ellipsoid, a surface representing,
the distance that a molecule will diffuse to with equal probability from the origin. To
represent the ellipsoid, the DT formalism provides an “internal reference frame” called
ergensystem. The tensor is diagonalized to calculate the eigenvalues and eigenvectors that
will characterize the diffusion. The principal axes of the ellipsoid — which are mutually
orthogonal — are given by the eigenvectors, scaled according to the square root of the

eigenvalues. The three eigenvalues (A1, A2 and A3), correspond to the three diffusivities
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Figure 3.8: Diffusion tensor can represent anisotropic diffusion in ordered tissue as an ellipsoid reflecting
parallel (i. e. axial diffusivity, A,,, A1) or perpendicular (i. e. radial diffusivity, A, A2 3) to the neural
fibers. [From Johansen-Berg and Behrens (2009)].

along the principal axes of the diffusion tensor. The orientation of the tensor is assumed to
be parallel to the principal eigenvector e;, associated with the largest eigenvalue A;. The
diffusivity of water along the length of the fibers is then represented by A; (or A, /), called
azial diffusivity. The two smaller eigenvalues (Ag, A3) are assumed to be the diffusivity
perpendicular to the fibers. These two eigenvalues are often averaged to yield a single
value, the radial diffusivity (A ). The degree of anisotropy is calculated from differences
between parallel and perpendicular diffusion. See Figure 3.8 for an example of anisotropic
diffusion modelized by a DT.

Scalar invariants for DT
An important parameter derived from DTI is the mean diffusivity or MD or ADC,

which is the average of the three eigenvalues,

ADC — A1 + );)2 + )\3 _ DT;race (321)

and gives a measure of the bulk diffusivity. For b-value range typically used in clinical
studies (b < 1,500 smm~2), the MD is fairly uniform throughout the gray and white
matter (0.7 x 1073 mm?/s), and higher in ventricules (3.2 x 1073 mm?/s). Diffusion
abnormalities, such as, acute ischemic lesions can be detected with ADC images, which

are extensively used for clinical diagnosis.

The most used index for anisotropy in DTI publications is the fractional anisotropy

or FA [Basser and Pierpaoli (1995)], expressed as

3\/(A1 AP+ Qe = AP+ (A —A)? (3.22)

FA = /=
2 A+ A3+ )2

This rotationally invariant parameter measures the fraction of the tensor that can be
assigned to anisotropic diffusion. The FA has a range [0-1], with 0 representing isotropic
diffusion. Figure 3.9 B presents an example of ADC and FA images. The FA is low in
cortical gray matter (0.2-0.4) and higher in the white matter, from ~0.45, in the subcor-
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tical WM in the gyri, to ~0.8 in the corpus callosum of healthy brain. In ventricules,
where diffusion is more free, the FA is very low (~0.1). Figure 3.9 A illustrates examples
of DT ellipsoids with same MD but different FA, ranging from nearly isotropic (lower FA)
to anitropic (higher FA). Figures 3.9 C-D show examples of DT ellipsoids for an axial slice.
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Figure 3.9: A: Examples of DT ellipsoids with same mean diffusivity (0.7 x 1073 mm?/s) and different
fractional anisotropy (FA), ranging from nearly isotropic (lower FA) to anitropic (higher FA) [Adated
from Johansen-Berg and Behrens (2009)] B: Examples of MD and FA images. C: DT ellipsoids for an
axial slice. Color coding according to FA. D: FA image with an overview of the position in brain for
DT ellipsoids selection in E. E: Ellipsoids zoomed, color coding according to FA, background is an ADC
image [Adated from Arsigny (2006)].

Anisotropy as a measure of WM integrity
DTI studies determine if there are any differences in the molecular displacement of
water in tissue, reflected by the DT eigenvalues, MD and FA, in specific brain regions

in neurological disorders. In WM, the spacing between axons, the axon diameter, the
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Longitudinal sections

Lower FA

Figure 3.10: Example of FA as a measure of WM integrity. Structural damage to axons and myelin that
results in a loss of directional barriers to water diffusion will reduce the degree of anisotropy. Electron
micrographs are adapted from normal and degenerated frog sciatic nerve. [From Johansen-Berg and
Behrens (2009)].

myelin thickness, etc., are variable even within the same tract, and thus, the barriers to
diffusion have neither a simple, nor a regular geometry. Therefore, the measured diffusion
parameters are some sort of weighted average of all the different types of water molecule
behaviors within a particular voxel. Most DTT studies rely on quantitative analysis, where
DT invariants of one tract in a control population are compared to the invariant values of
the same tract in a patient population. These measurements expect that there had to be
a consistent change througout the voxel in order to detect a difference in diffusion.
Although, even within a tissue class such as WM, the degree of anisotropy can not
be directly related with a specific structural component (number of axons, axon density,
axon size, myelin thickness, packing, etc.), the degree of anisotropy is often used as a
quantitive biomarker of WM “integrity”. Several experiments using non-pathological fibers
without myelin have shown that anisotropy should not be considered myelin specific, as
myelin is not essential in neural fibers to observe this biophysical property. Conversely,
axonal membranes themselves are shown to be sufficient barriers alone to water diffusion
perpendicular to the WM fibers, in comparison to diffusion along fibers. However, myelin
appears to modulate the degree of anisotropy in a given fiber. A detailed bibliography
about the relationship of water diffusion anisotropy and tissue microstructure is detailed
in Beaulieu (2002) and Johansen-Berg and Behrens (2009), chapter 6. For an example of

anisotropy as an indicator of structural damage is illustrated in Figure 3.10.

DTI indexes and brain maturity
During brain maturation, DTI indexes as mean diffusivity and diffusion anisotropy

present important changes. These changes reflect changes in brain tissue microstruc-
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prolate: A= A,=A, oblate: A, =A,>A,

Figure 3.11: Examples of prolate and oblate DT ellipsoids [Adapted from Wikipedia.

ture. In the case of gray matter, this may reflect changes in the dendritic architecture
of pyramidal cells and the presence or absence of radial glial fibers [Hiippi and Dubois
(2010)].

In white matter, most fascicles seem to be organized during late intrauterine life, as
fibers are to grow with the previously formed axons as guidance. Indeed, high anisotropy
is already observed in poorly myelinated fascicles of premature newborns, and the patterns
of fibers tracts were found already in place in infants with no differences between 5 and
17 weeks [Dubois et al. (2006)].

Two stages are assumed to be the main responsible for most diffusion changes related
to WM maturation over the postnatal developmental period: the first stage of myelina-
tion, called pre-myelination and myelination [Dubois et al. (2008)]. Pre-myelination is
characterized by the proliferation of oligodendrocytes lineage precursors, with a decrease
in water content. As this early process is rather isotropic, it should lead to a decrease in
the three diffusivity indexes (M D, ),/) and A} ), without significant change in anisotropy.
The fibers myelination, corresponding to the ensheathment of oligodendroglial processes
around the axons, is accompanied by a further decrease in both membranes permeability
and extracellular distance between membranes in the orthogonal direction to the fibers.
Because of unchanged longitudinal diffusivity contrasting with decreased transverse diffu-

sivity the anisotropy should increase while the mean diffusivity should decrease.

Tensor shape
From FA equation (eq. 3.22), a tensor with high anitropy can present two different
shapes: a prolate tensor, in which A1 > A9 = A3, or an oblate tensor, in which A\; = Ao >
A3 (see Figure 3.11). Since, neither the ADC nor the FA will indicate which form takes
the tensor ellipsoid, two metrics have been used to characterize the DT geometry.
Prolateness can be calculated by the expression d;2 = A1 — A2, while oblateness can
be determined by d23 = A2 — A3.

Colour encoded fiber orientation map
The fiber orientation can be represented using color maps, derived form DT information

[Pajevic and Pierpaoli (1999)]. Each voxel can be color-encoded, following the direction
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of the main tensor eigenvector, where the three cartesian directions are represented using
different primary colors (red for left-right, blue for superior-inferior, and green for anterior-
posterior). This yields to a cartography of the tracts positions and directions, where voxel
brightness is weighted by the FA (see Figure 3.12).
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Figure 3.12: Colour encoded fiber orientation maps. Image values can be calculated with the ex-
pression (r,g,b) = 255F A(eyx, e1y, e12), where e is the principal tensor eigenvector. Fibers that are
predominantly oriented left-right are then shown in red, anterior-posterior fibers are shown in green and
superior-inferior fibers are shown in blue (see colour wheel at lower right hand corner). [From Jones
(2008)].
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3.2.2 High Angular Resolution Diffusion Imaging (HARDI)

The signal in DWI decays exponentially with b when the diffusion is free and Gaussian.
In the case where the volume-averaged diffusion PDF is non-Gaussian (e.g. when there
are multiple diffusion compartments in slow exchange, or restrictive barriers), the NMR
signal will no longer be mono-exponential and DTI model will be insufficient. In WM,
a voxel, with size ~1-3 mm, contains hundreds of thousands of axon fibers, which axon
radii are in the range of 0.1-10 um. Therefore, within a voxel a wide range of often
complex configurations of fibers can exist. If more than one population of fibers are
present, e. g. crossing fibers, we found a partial volume effect and the corresponding
DT ellipsoid will be unable to represent the underlying diffusion process. About two
third of white matter voxels are affected by this problem [Behrens et al. (2007)]. An
example for a 90° fiber crossing configuration is shown in Figure 3.13. In this case, the
DT is oblate, and contains none of the fiber population orientations. The fiber orientation
distribution function (fODF) for this example has two spikes, corresponding to the two fiber
populations present in the voxel. Mathematically, the fODF is a probability distribution
on the sphere, where each point on the sphere corresponds to a unique orientation. In
general, an ODF is usually represented by a “stretched sphere”, in which the radius is
scaled by the value of the ODF. A colormap for the ODF values can also be applied to

the mesh vertices. See Figure 3.16 for an example of an orientation distribution function.

/'/é/ ¥ crossing fibers DT TODF
s

Figure 3.13: Illustration of partial volume effect whitin a voxel for two fiber populations representing a
90° fiber crossing configuration. The best fit DT will have an oblate shape, with an undefined principal
direction. The fiber orientation distribution function (fODF) is composed by the two spikes, aligned
with the two fiber population orientations [Adapted from Poupon (1999b)].

The limitation of DT when imaging voxels with multiple fiber populations can be
overcome with High Angular Resolution Diffusion Imaging (HARDI), where the
g-space is sampled along as many directions and magnitudes as possible for a better
reconstruction of the diffusion PDF. HARDI acquisitions and reconstruction algorithms
are in continuous development and improvement. We will present here a brief review of
major HARDI reconstruction techniques. Some approaches are model-based while other
are model-free. A schematic of the major multiple fiber HARDI reconstruction algorithms

is shown in Figure 3.14.
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Figure 3.14: Major diffusion MRI acquisition and reconstruction methods [From Descoteaux (2008)].

HARDI reconstructions depend on the number of acquisitions and the gradient strength
(b-value). Besides, the sampling of the g-space can be performed over a 3D cartesian grid

or over a single shell sphere.

Model-Based approaches
Model-based approaches resolve fiber-crossing by modeling distinct fiber population sep-
arately.
The Multi-tensor model or multi-Gaussian modeling is a generalization of DTI,
which uses a mixture of n zero-mean Gaussians to describe the diffusion PDF. It assumes
that the voxel contains m distinct populations of fibers and that there does not exist

exchange within populations:
n SO
E(q;) =Y aje "% D% (3.23)
j=1

where a; and D; are the volume fraction and the covariance of the jth population, and
q; is the diffusion direction encoding. The parameters of the model are estimated from
a sef of DW measurements. This model assumes that the number of fiber populations n
is known. Most works use a maximum n of 2 because of instabilities in the non-linear

optimization required for the parameter estimation. To make the numerical solution more
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stable, constraints in the model can be added. For example, we can enforce the positive
definiteness [Chen et al. (2004)] or fix the DT eigenvalues [Tuch (2002); Alexander et al.
(2001)]. Also, a multi-Gaussian extension based on diffusion basis function of Gaussians
has been used to recover multiple crossing fibers [Ramirez-Manzanares et al. (2007)].
The “Ball and stick” model [Behrens et al. (2003)] assumes that water molecules
belong to one of two populations: a restricted population within or around fibers and a
free population that does not interact with fibers. Restricted diffusion is modeled with
an anisotropic Gaussian distribution with only one non-zero eigenvalue, while an isotropic
Gaussian distribution is used for the free population. A mixture of restricted compartments
can be used for a better representation of multiple fiber populations [Behrens et al. (2007)].
A Composite hindered and restricted model of diffusion (CHARMED), [As-
saf et al. (2004)] models the restricted diffusion with an analytical model for diffusion
restricted to a cylinder [Neuman (1974)]. The extracellular space is modeled by a hin-

dered diffusion using an anisotropic Gaussian model.

Model-free approaches

Model-free approaches are mon-parametric techniques that do not need compartment-
specific information. These non-parametric techniques estimate the fODF from diffusion
MRI measurements, avoiding a model selection and the definition of the number of com-
partments.

Some approaches reconstruct the diffusion orientation distribution function (dODF),
which consists in an isosurface of the diffusion PDF for a certain radius r, representing the
diffusion probability distribution on the sphere.

The dODF contains then the full angular information of the diffusion PDF and is
defined as

T(u) = /0 ” Plau)da, (3.24)

where u is restricted to be a unit vector. Thus, the dODF is a function on the unit sphere
describing the average probability that a particle will diffuse into any given solid angle.

Diffusion Spectrum Imaging (DSI) and g¢-ball imaging (QBI) reconstruct the dODF.
Other methods recover a function slightly different, containing the same information than
the dODF. This is the case for DOT algorithm and the original PAS-MRI algorithm.
Spherical deconvolution algorithms recover a more direct estimate of the fODF.

Figure 3.15 presents an illustration of fODFs and dODFs for several simple WM
configurations. Both, the fODF and the dODF are probability distributions on the sphere,
with the peaks in similar directions. However, while the fODF presents spikes only along
the orientations of fiber populations, the dODF is a smoother function as water molecules

diffusion occurs in all directions, even perpendicular to the fibers.

Diffusion Spectrum Imaging (DSI)

Diffusion Spectrum Imaging (DSI), samples the signal on a Cartesian grid of points in
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Parallel

Crossing
(45°)
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Figure 3.15: lllustration of fODFs and dODFs for several simple WM configurations. The normalized

dODF is rescaled so that its minimum value become zero. This emphasizes the directional structure of
the dODF without affecting peak directions [From Johansen-Berg and Behrens (2009)].

g-space and then takes the 3D inverse Fourier transform to obtain an approximated PDF
[Wedeen et al. (2000); Tuch et al. (2002); Wedeen et al. (2005)]. It derives from g-space
imaging (QSI) [Callaghan (1991)]. The acquisition scheme for DSI typically samples the
whole interior of a sphere in a regular grid, but some acquisitions schemes acquire only an
hemisphere since the signal is supposed to be symmetric [Gigandet (2009)]. An example
of the diffusion spectrum obtained with DSI in the case of a fiber crossing, as well as the

corresponding dODF are shown in Figure 3.16.

radial
projection

Fiber crossing MR S|gnal modulus Diffusion spectrum dODF
S(q)l p(r)
Figure 3.16: . DSI reconstruction scheme. A: tissue in a voxel with two populations of fibers that

cross. B: Through the MR acquisition scheme the signal is sampled. C: In order to reconstruct the
diffusion spectrum, the 3D discrete Fourier transform is taken. D: To simplify the representation of an
imaging slice, the angular structure of diffusion is represented by the dODF (a polar plot of the radial
projection). The color coding corresponds to the orientation of diffusion (green: vertical diffusion; red:
transverse diffusion). [Adapted from Wedeen et al. (2005)].

The major limitations of DSI are the acquisition requirements. Firstly, the number of
measurements needed for the sampling of the g-space is very high (~500-1000), leading to
an imaging time impracticable for very high resolution images. Another limitation is the
maximum b-value needed for the acquisition (~10000-20000 s mm~2). Due to relatively
low maximum gradient amplitudes implemented in conventional MRI systems, high b-

values require, in practice, a pulse duration ¢ almost similar to the pulse spacing, A. This

52



violates the narrow pulse assumption for Fourier relationship between the MR signal and
the diffusion spectrum, which yields to slightly, but consistently underestimated diffusion
displacements. The result is a considerable blurring in the PDF and consequently in
the derived dODF, although, the overall distribution shape will be correct. For these
reasons, i. e. long acquisitions times and a maximal diffusion gradient too high, DSI is not
applicable in clinical studies. In research, DSI is only now starting to play a significant role
in brain imaging as more centers are equipped with high-end magnets and multichannel
head coils, and as commercially available pulse sequences are being distributed [Hagmann
et al. (2010)].

Single-shell HARDI techniques

Spherical acquisition schemes, also called single-shell HARDI techniques have been de-
veloped since through some assumptions they are able to overcome the “fiber-crossing
problem” without having to compromise to much scan time and without major hardware
requirements [Hagmann et al. (2010)]. These acquisitions have both, the diffusion time
7 and |q| fixed (and then a b fixed), and only gradient direction varies among measure-
ments. In the following sections we will review the ¢-ball imaging (QBI) and the spherical
deconvolution (SD) as these techniques have presented an increasing development in the

last years.

g-ball imaging (QBI)

g-ball imaging (QBI) approximates the dODF using measurements from a single-shell
acquisition based upon a transformation called Funk-Radon transform (FRT), G [Tuch
(2002, 2004)]. This relationship establishes that the dODF (defined in equation 3.24) for
a particular diffusion direction is equivalent to the circular integral about the equator

perpendicular to the direction.

interpolated S FRT(S) dODF interpolated ODF

Figure 3.17: Qball reconstruction scheme. We start (left) with samples of S at fixed |q| (panel 2). To
sample the dODF in one direction, we sum the interpolated .S around the perpendicular equator (panel
3). We repeat the procedure in various directions to obtain many samples of the dODF (panel 4).
Finally, we may interpolate to approximate the continuous dODF. [From Johansen-Berg and Behrens

(2009)].

The FRT can be expressed as

Gl wl(w) = [ 8w f(w)ivs (3.25)
where u and w are constrained to be unit vectors. Tuch deduced the relation between the
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dODF and the FRT, expressed in cylindric coordinates [(Tuch, 2004, Appendix A)]:
Gy [S(q)](u) = 27Tq//P(T,G,Z)Jo(qu'r)rdrdez (3.26)

where ¢’ is the radius of the acquisition shell in g-space and Jy is the zeroth-order Bessel
function. For high q values, Jy gets sharper and can be approximated by Dirac function
0. This gives the ¢-ball expression for the dODF

U(u) = /P(r,9,2)5(r)5(9)rdrd9dz. (3.27)

See Figure 3.17 for an illustration of g-ball reconstruction. For the calculation, the discrete
set of measurements must be interpolated to estimate the signal at each point of the
circle. This approximation is then valid for a high value of b (b > 3,000 smm~?) and
an important number of measurements (~200). Anyway, due to the approximation, the
calculated dODF will be smoothed, which will reduce the angular resolution and precision
of peaks directions.

The original implementation [Tuch (2004)] used radial basis functions to interpolate
S and has a numerical solution. Later works used analytical spherical harmonics (SH)
for reconstructing the solution, which gives a more compact representation of the dODF
[Anderson (2005); Hess et al. (2006); Descoteaux et al. (2007)]. These approaches avoid
numerical computations, as the FRT has analytic form if .S is a linear combination of SH

functions, allowing a faster and more robust to noise solution.

Spherical Harmonics Basis and numerical g-ball solution. SH form an orthonor-
mal set of functions with respect to the inner product. Spherical harmonics Y;™ of order

£ and degree m are defined as

20+1 (6 —m)! -
Yy (0, ) :\/ 4; Mpg”(cose)emqﬁ (3.28)

where 0 € [0, 7] and ¢ € [0, 27). Descoteaux et al. (2007) defined a modified basis consid-
ering only SH of even degree, in order to impose a real-valued constraint, using a single

index j in terms of ¢ and m:

V2 Re(Ye|m|), it m<0
V2 (=)™ m(Ym), if mo> 0.

where Re(Y;") and Im(Y;™) represent the real and imaginary parts of Y™ respectively,
0=0,2,4,..,.L,m=—{, ..,0,..,¢0 and j({,m) = (2 +£+2)/2+m. Figure 3.18 shows
some examples of modified spherical harmonics.

Thus, a truncated smooth estimation of the HARDI signal S;, for a particular encoding
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Figure 3.18: . Examples of modified spherical harmonics for orders £ = 0, 2 and 4 [Adapted from De-
scoteaux (2008)].

gradient direction ¢ can be formulated as

M;o

17¢z C]Yj 7 ¢z (330)

7j=1
where R is the number of terms in the modified real and symmetric SH basis Y of order
L, and ¢; are the SH coefficients.
In order to determine the c; coefficients for N encoding directions, we need to solve an

over-determined linear system using a (N x R) matrix B, constructed with the discrete
modified SH basis:

Yi(61,01)  Ya(01,¢1) -+ Yr(01,¢1)
B= : : : : (3.31)

Yi(On,on) Yo(On,0n) -+ Yr(ON,ON)

Then, the least-squares solution for the (R x 1) SH coefficient matrix C is
C=B"B+.L)"'BTs (3.32)

where S is the (IV x 1) vector of input signal S;, and L is a (R x R) Laplace-Beltrami

regularization matrix with entries £(5)2(¢(j) + 1)? along the diagonal.

Analytical g-ball solution. Descoteaux et al. (2007) demonstrated a new corollary of
the 3D Funk-Hecke theorem for the analytical evaluation of integrals of functions on the
sphere, to obtain a mathematical simplification of the Funk-Radon transform. The FRT

can then be expressed in function of the SH series, in a given unit vector direction u:

R .
gisiw =3 0 v (3.39)

j=1

where P(0) is the Legendre polynomial of degree ¢ evaluated at 0. The SHs are then
eigenfunctions of the FRT with eigenvalues depending only on the order ¢ of the SH series.
The ODF reconstruction in terms of SH coefficients, denoted by the (R x 1) vector C', is
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Figure 3.19: dODFs for the analytical and numerical QBI. The region of interest shows the cortical
spinal tract (CST) and corpus callosum (in the plane) and the CST and longitudinal superior fibers
(coming out of the plane) cross. From Descoteaux (2008)]

simply a diagonal linear transformation given by
C' =PC (3.34)

where P is the Funk-Hecke matrix, with diagonal elements 27 P;)(0)/Sp. The final esti-
mated ODF on the sphere can be obtained by ¥ = BC’. With the addition of Laplace-
Beltrami regularization it is therefore possible to compute a fast and robust analytical QBI

solution (see Figure 3.19).

Generalized FA (GFA)
Tuch (2004) defined a generalized fractional anisotropy as an analog for ¢-ball of the FA
in DTI. The GFA is a measure of variation of the dODF, ¥, mathematically defined by

=

., 1
\I}(;)(J)QZL du, (3.35)

ara= L

where ¥ = (47) " [ W(u)du. This definition extends to any other function of the sphere,
for example, to any fODF.

Spherical Deconvolution (SD)

Spherical Deconvolution (SD) methods recover the fODF directly from the measure-
ments. These approaches, originally proposed by [Tournier et al. (2004)], consider the
HARDI signal as the sum of measurements from a mixture of distributions of fiber orien-
tations. Each measurement is viewed as a convolution of the response function produced
by a single fiber (R) with the expected true fiber distribution (fODF). Then, spherical de-
convolution aims to recover an estimation of the fODF by deconvolving the measurements
with R. An illustration of spherical deconvolution is shown in Figure 3.20. SD requires a
model of diffusion for a fiber population in order to determine the fiber response function,
R. One strategy is to model R with a Gaussian function [Alexander (2005)]. Other works
derive R directly from real datasets calculating the average signal from most anisotropic
voxels [Tournier et al. (2004); Alexander and Barker (2005)].
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A major limitation of SD is its susceptibility to noise and severe instabilities for high
harmonic orders, which results in spurious peaks in the recovered fODF. To reduce this
effect, Tournier et al. (2004) used low-pass filtering, but this solution, called filtered spher-
ical deconvolution, also reduces angular resolution. An improved solution, called super-
resolved constrained spherical deconvolution was implemented in [Tournier et al. (2007)]

by the means of a modified Tikhonov regularisation method.

e ®-® - '

fODF

Figure 3.20: . Spherical deconvolution illustration. The response function R convolved with the fODF,
gives the observed S. In the example, the convolution becomes a sum for two directions as the true
fODF is zero for all others. [From Johansen-Berg and Behrens (2009)].

Sharp Spherical Deconvolution of the dODF

More recently, Descoteaux et al. (2009b) proposed a sharp spherical deconvolution trans-
form reconstructed from g-ball imaging with the constrained regularization described in
[Tournier et al. (2007)]. The starting point of this deconvolution method is not the mea-
sured signal but the estimated g¢-ball dODF (V). The estimated smooth dODF is decon-
volved by the dODF for a single fiber (R’) in order to obtain a sharpened fiber ODF, W
(see Figure 3.21).

+°8-9 §-

dODF (y,) signal S dODF (v,) sharp fODF (y,)

Figure 3.21: Sketch of the convolution/deconvolution of the dODF. In A, the convolution between the
true fODF and the dODF kernel R’ produces a smooth dODF. B shows the sketch of the deconvolution
sharpening. The Funk-Radon Transform (FRT) of the HARDI signal on the sphere produces a smooth
dODF. This dODF is transformed into a sharp fODF by the deconvolution with the dODF kernel of A
[From Descoteaux (2008)].

The convolution on the sphere between the single fiber diffusion kernel R' and ¥ can

be written as

Ui(u) = /| ‘71 R'(u-w)Us(w)dw. (3.36)

In order to solve this integral, ¥, and ¥ are expressed using their respective SH estimation
of order ¢, given by ¥ = 7. c/Vj(u) and ¥y = >°. f;Yj(u). Then, the Funck-Hecke
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theorem (equation 3.33) can be applied to solve the convolution integral between R’ and

the spherical harmonic Y; over the sphere, leading to the expression

c.
Wp(u) = -Y;(u) (3.37)
j=1"7
for any direction u, where
1
i =2m / 1Pe(j)(t)R’(t)dt. (3.38)

The model of diffusion for a single fiber can be assumed to be an axially symmetric
and prolate tensor (A1 > A2 = A3) as in [Anderson (2005)]. Thus, R’ can written as

1 1

R/(t) - 87Tb\/)\%)\1 \/(/\2/)\1 — 1)t2 +1 '

(3.39)

This method improves fiber detection of QBI by increasing angular resolution.
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Figure 3.22: Axial slice showing intersection between the genu of the corpus callosum, the capsule
fibers and the superior frontal gyrus fibers. We show the diffusion tensors, the constrained SD, the
g-ball dODF and the sharp fODF overlaid on the GFA map. [From Descoteaux (2008)].

In general, spherical deconvolutions require an inferior number of measurements than

QBI (~60-80), with similar requirements for b-value.

Multiple-shell HARDI techniques

Recently, several techniques have being developed for HARDI data from multiple g¢-
shells. These methods use acquisitions with several b-values in order to obtain a better
modeling of the diffusion propagator. Multiple-shells benefit from the high signal-to-
noise ratio (SNR) of the data acquired at low b-values and high angular contrast-to-
noise ratio (CNR) at high b-values. For example, Aganj et al. (2010), by considering the
solid angle factor, use a mathematically better definition of the ODF and resulting in a
dimensionless and normalized ODF expression that can be used to estimate ODFs from
single- or multiple-shell acquisitions. In another work, Descoteaux et al. (2009a) propose
a diffusion propagator imaging (DPI), an analytical and linear solution of the ensemble

average propagator based on a Laplace equation modeling of the diffusion signal.
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3 3 MR Diffusion Tractography
[ ]

MR diffusion tractography, also called WM tractography, uses the directional
information from diffusion measurements to estimate the trajectories of white matter path-
ways. While invasive techniques can actively trace individual axons in animals, WM trac-
tography is the only technique able to study human whole-brain WM tracts non-invasively
and in vivo. WM tractography has major limitations related with the indirect nature and
low resolution of DW data. Results contain a significant quantity of false negatives and
false positives due to the inhability to determine precisely the underlying fiber configura-
tion within a voxel. Furthermore, the impossibility to differenciate efferent and afferent
pathways is a fundamental limitation. However, the non-invasive nature of tractography
and all the developments and improvements in DW-MRI allow the study of human brain
connectivity and contribute to a better understanding of the human brain.

Tractography algorithms can be deterministic or probabilistic, local or global, model-
based or model-free, and basically with two kinds of results: 3D curves or voxel-maps. In
this section we will review in more detail the streamline tractography as its output, a set

of 3D curves, is the main input of our thesis work.

Figure 3.23: Visualization of the orientation of the principal eigenvector of one slice on a per voxel
basis (projection into the axial plane), with color coding according to FA. In the slice, the traced fiber
tracts reconstruct the trajectory of fibers from the splenium of the corpus callosum. From a seed point,
the tractography algorithm follows the vector field determined, in DTI, by the DT principal eigenvector

(e1).

Streamlines are trajectories that follow the direction of an underlying vector field.
The lines can be reconstructed by starting with a “seed” and following the local vector field
step-by-step. Streamline tractography defines, then, 3D space-curves that are tangent to
the local fiber orientation given by the diffusion local model. These tractographic 3D curves
are commonly referred to as “fibers” or “tracts”, though they do not represent individual
fibers or axons. Instead, the curves represent an estimate of the trajectory of some larger
white matter fiber tract. In this thesis, we will use the terms “fiber” “tract” or “fiber

tract” to refer to the trajectories obtained with tractography algorithms. Consequently, a
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“fiber bundle” will be a bundle of tractographic curves and not a real anatomical bundle of
neural fibers. When required, we will use the expression white matter tract, or WM tract,
to address a fiber bundle representing a white matter fiber tract described by anatomists.
Mathematicaly, a streamline can be expressed by an equation describing the trajectory

evolution [Basser et al. (2000)]:
r'(s) = v (r(s)) (3.40)

where r(s) is the point (z,y, 2), located at distance s along the streamline from the starting
point rg, and v(s) is the local diffusion model at point r(s). The calculation of the

streamline requires the resolution of this differential equation by the integration of v:

r(t) =ro+ /0 v (r(s))ds (3.41)

which implies the accumulation of errors along the streamline computation. These accu-
mulated errors are the result of integration errors, and local diffusion model estimation
errors due to the uncertainty of the local diffusion and noise.

Streamline tractography requires a Region of Interest (ROI) as input; from each voxel
of the ROI, a defined number of seeds are placed for trajectories generation. From each
seed point, a streamline is tracked in both, retrograde and anterograde directions. The
approach that uses a brain white matter mask as seed ROI is usually called a “whole-brain”
or “brute-force” tractography.

In the next section (3.3.1) we will review the main streamline deterministic tractogra-
phy algorithms and the concept of fiber trajectory regularization. Then, in section 3.3.2, we
continue with streamline probabilistic tractography approaches, developed to better deal
with fiber crossings. Finally, in section 3.3.3 we overview other important tractography

techniques.

3.3.1 Streamline Deterministic Tractography

Streamline deterministic algorithms follow the most probable direction given by the diffu-
sion local model [Mori et al. (1999); Conturo et al. (1999); Poupon (1999a); Basser et al.
(2000); Mori et al. (2002)]. Earlier algorithms, applied to DTI, use the principal eigen-
vector (e1) as the direction of local fiber orientation. Figure 3.23 shows an illustration of
streamline tractography in DTT.

The FACT algorithm (Fiber Assignment by Continuous Tracking) [Mori et al. (1999)]
assigns to each voxel the direction of the principal eigenvector. Thus, each trajectory
follows the direction indicated by the local DT, without interpolation, as illustrated in
Figure 3.24 (A1). Newer approaches require the interpolation of the diffusion local field
at each trajectory point from the calculated values on the measurement grid [Conturo
et al. (1999); Basser et al. (2000)] (see Figure 3.24 (A2)). These methods produce lower
propagation errors than those without interpolation and are more robust to noise [Lazar

and Alexander (2003)]. Tracking methods use either a constant integration step size [Con-
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turo et al. (1999)] or a step size adapted to the trajectory curvature [Basser et al. (2000)].
Besides, different approaches use different numerical integration approximations, from the
Fuler method, which assumes a constant value during each step, to higher order integra-
tion methods, like Runge-Kutta schemes of order 2 or 4. Integration errors diminish with

decreasing step size and more accurate approximations.
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Figure 3.24: A: Example algorithms for deterministic streamline tractography in DTI. In AL, the fiber
tracts are reconstructed using the FACT method [Mori et al. (1999)], where the trajectories follow the
DT principal eigenvector of each voxel. In A2, the trajectories are calculated using interpolation between
grid points [Conturo et al. (1999)], [From Perrin (2006)]. B: Propagation masks used as a tracking
stopping criterion. In B1, the typical thresholded FA mask (th = 0.1). In B2, a propagation mask
constructed from a T1 image [Perrin et al. (2008)].

Stopping criteria

One stopping criterion uses a propagation mask of white matter; if a point exits the
mask, the tracking is stopped for the corresponding line. Typically the WM mask is a
thresholded mask of FA with usual threshold values of ~0.1-0.2 (see Figure 3.24 (B1)).
The tracking is then stopped if the anisotropy is too low, assuming that when FA is too
small, the uncertainty of the principal diffusion direction is high. However, this criterion is
rough as the FA value is not specific of a particular structural configuration and therefore
constraints tracking results to region of WM with high anisotropy. In particular, FA (or
GFA) can be very low in fiber crossings representing more than 2/3 of WM voxels, thus
putatively discarding many valid tracts. Furthermore, because the dMRI resolution is
generally coarser than standard T1-weighted MRI (on the order of 2 mm isotropic), voxels
at the interface between the WM and the cortex may suffer from severe partial volume
effects, artificially diminishing the FA values. Therefore, many true-positive neuronal
pathways may not be revealed.

Another option is to use a propagation mask calculated from a T1 image [Perrin et al.
(2008); Guevara et al. (2011b)]. In this case, a better definition of the WM can be achieved,
as shown in Figure 3.24 (B2). This approach can be used with tracking algorithms with
regularization to resolve the trajectory direction in low anisotropy locations. Besides, a
good registration between T1 and T2 images is needed.

A second common stopping criterion, a maximum curvature threshold, aims at

avoiding fast changes in the streamline direction. This criterion is based on the assumption
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that real WM fibers do not present high curvatures. Therefore, if the angle between the
incident trajectory and the local vector field is greater that the threshold (~30°-45°), the
tracking is stopped.

Regularized algorithms

Alternative streamline algorithms can better resolve fibers in regions where there are
crossing or fanning fibers using trajectory reqularization. They involve the use of more
information like the entire tensor information for DTI case, and the incident streamline
direction.

The “Tensorlines” tracking method [Weinstein et al. (1999); Lazar et al. (2003)] esti-
mates the local pathway direction using the tensor deflection (TEND). During the pathway
calculation, the new direction (vo,), considers both, the local DT (D) and the incident
direction (vy,)

Vour = fer + (1 — f)[(1 — g)Vin, + dDv;y,] (3.42)

where e is the DT principal eigenvector. Figure 3.25 illustrates the behavior of this
tracking algorithm that includes trajectory regularization. This method is less sentitive
to noise and low anisotropy values than the classic approaches. However, the choice of

parameter values (f and g¢) is a major problem.

N L AN A N

Figure 3.25: Example of TEND algorithm behavior for different shapes of local DT ellipsoids. The
incident direction v;,, is in blue while the out direction v, is in red [From Weinstein et al. (1999)].

Another approach uses a markovian regularization of the directions field to define the
fibers as a trade-off between high diffusion along fibers and low curvature constraints
[Poupon et al. (2000)].

Streamline based on HARDI

Higher diffusion models can overcome problems associated with single-tensor based
methods, particularly when crossing fibers are involved. For example, an extension of
the streamline based on the classical diffusion ODF reconstructed from QBI and a regu-
larized version of the dODF was proposed [J. S. W. Campbell and Pike (2006)].

Another approach based on QBI, reconstructs regularized fiber trajectories using the
shape and peak orientation of the ¢g-ball dODFs to influence the paths of the streamlines at
each step [Perrin et al. (2005b)]. This method employs a measure of anisotropy « to weigh
the influence of the ¢-ball on the particle trajectories. Even though this regularization
method was proposed for QBI, it can be generalized to any HARDI diffusion local model.

Particles start from seeds with an initial direction equal to the local diffusion field.

Then, if we define r(s) as the location of the particle at arc-length position s, and v(s)
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the out direction of particle at r(s), the next particle step is defined as
r(s+ds) =r(s) + v(s)ds. (3.43)

At each trajectory step, the new out direction v(s + ds) results from a trade-off between
inertia, given by the incident direction v(s) and a force steeming from the diffusion local
field vg4(s):

v(s+ds) = avy(s)) + (1 — a)v(s) (3.44)

where « is a parameter ranging between 0 and 1. The diffusion local model is interpolated
at each location r(s) using trilinear interpolation.

For deterministic tractography, the direction v4(s) is the direction of maximum prob-
ability inside a half cone defined from the incident direction v(s). The parameter « is
a measure of anisotropy. For isotropic voxels, « is small, and the algorithm favours the
incident orientation; while for anisotropic voxels, « is large, and the algorithm favours
the diffusion local field direction. For QBI, o was estimated as the normalized standard
deviation of the interpolated g¢-ball. Figure 3.26 presents an illustration of this trajectory

regularization algorithm for anisotropic and isotropic cases.

Figure 3.26: Regularization of particle trajectories for HARDI. A measure of anisotropy « is used to
weight the influence of the HARDI diffusion local model on the particles trajectories. For QBI, Perrin
et al. (2005a) used the normalized standard deviation of the interpolated g-ball. [From Perrin et al.
(2005a)].

A two-tensor fiber tractography method that estimates two tensors from the acquired
MR values was also proposed [Bergmann et al. (2007)]. At each step of the path, the
two tensors are interpolated, and the trajectory follows the tensor most aligned with the
current direction. Another method using a two-tensor model was recently proposed and
used to resolve fiber crossing in the corticospinal tract [Qazi et al. (2009)]. Although results
are interesting, these methods present the difficulty of model selection in each voxel.

Streamline tracking algorithms were also proposed based on the principal direction of
the dODF computed from DSI [Tuch (2002); Wedeen et al. (2008)]. Also, Descoteaux
et al. (2009b) used an fODF estimated from a sharpening spherical deconvolution of

the dODF reconstructed from QBI, for streamline deterministic fiber tracking. At each
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point, the out direction vy, is selected as the fODF maximum that is the closest to the

incoming tangent direction of the curve (vy).

Deterministic algorithms are simple and fast, but are very susceptible to noise and
are limited when multiple fiber populations exist within a voxel. Streamline probabilistic
tractrography tryies to face this problem using more information about the probability

distribution of the fiber orientation.

3.3.2 Streamline Probabilistic Tractography

Streamline probabilistic tractography algorithms use an orientation probability distribu-
tion (dODF or fODF) and Markov Chain Monte Carlo sampling to generate the stream-
lines. For this, a big number of seeds is randomly distributed inside each ROI voxel
(~200-1,000).

An example of this kind of method was proposed by Perrin et al. (2005a), which regular-
ized deterministic streamline algorithm was described in section 3.3.1. For the probabilistic
approach, each trajectory step is determined using the same expression (equation 3.44),
where an anisotropy measure is used as a weighting parameter for diffusion local model di-
rection v4(s) and incident direction v(s). The difference consists in the approach employed
for determining v,4(s), which in this case is randomly chosen inside the half cone defined
from the incident direction (see Figure 3.26). Then, a big number of seeds from each voxel
will generate a fiber dataset representing the probability of the different connections that
can exist from each voxel to the remaining GM/WM interface voxels. See Figure 3.27
for a comparison between streamline probabilistic and deterministic tractography over a
field of fODF calculated with a sharpening SD of the dODF from QBI [Descoteaux et al.
(2009b)]. In this example, tractography was calculated for the whole brain, using a T1
propagation mask with voxel size of 0.9375 x 0.9375 x 1 mm, and 27 seeds per voxel (see
Figure 3.24 (B2)). The figure shows a selection of fibers passing through an ROI (in red)
localized in the left post-central gyrus. As expected, the probabilistic method presents a
higher range of probable connections.

Another streamline probabilistic tractography was proposed by Descoteaux et al.
(2009b) for an fODF estimated from the sharpening SD of the dODF from QBI. The
algorithm generates new seeds for streamline tracking in each fanning region, leading to a
dense sample of probable directions. This method produces a set of fibers which recovers
segments of WM fibers more accurately but does not reflect the continuity of the fibers or
the cortical and subcortical regions they connected since they need to be cut in order to
perform the splitting [Wassermann et al. (2010a)].

Finally, Chao et al. (2008) presented a streamline tractography algorithm for QBI
called a modified fiber assignment using the continuous tracking (MFACT). This algorithm
extends the FACT model to multi-fiber directions within each MR voxel. Fiber tracts
initiate from the center seed point of each voxel, and spread along the directions of the

local maximum diffusion, reaching the interception point on the boundary between two
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voxels. Then, tracts follow the new voxel directions of the local maximum diffusion, as
a region-growing method (see Figure 3.28). This tracking method seems interesting but

more validations and comparisons with other methods are required.
Deterministic streamline tractography Probabilistic streamline tractography

fibers
passing
through
red ROI

fiber
density
meshes

fiber
density
>0.04%

fiber
density
20.4%

fiber
density
>1.9%

Figure 3.27: Streamline tractography examples for deterministic and probabilistic approaches, using
the fODF estimated from a sharpening spherical deconvolution of the dODF from QBI [Descoteaux
et al. (2009b)]. Tractography was calculated for the whole brain, using a T1 propagation mask with
voxel size of 0.9375 x 0.9375 x 1mm, and 27 seeds per voxel. The tracking algorithm is the pro-
posed by Perrin et al. (2005a), which uses regularized particle trajectories and is implemented in
BrainVISA/Connectomist-2.0" software. The tracking algorithm used a calculation step size of 0.46875
and a maximum curvature angle of 30°. Minimum and maximum allowed trajectories length were 20
and 200 mm, respectively. The first row shows the resulting fibers (in blue), passing through the red
ROI, localized in the left post-central gyrus. For a better visualization and comparison of both methods,
tractography results are also illustrated using fiber density meshes. Three semitransparent fiber density
meshes are used, to indicate regions were fiber density is superior to 0.04% (in orange), 0.4% (in blue),
and 1.9% (in red).

Probabilistic streamline tractography is robust to noise and partial volume effect. Be-
sides, it naturally gives a probability of connection between two regions. However, the

obtained tracts present a bigger number of false negatives than deterministic approaches.
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Figure 3.28: MFACT tractography approach. Fiber tracts initiate from the center seed point of each
voxel, and spread along the directions of the local maximum diffusion (A). Then, tracts follow the new
voxel directions of the local maximum diffusion, as a region-growing method. Tracts are stopped when
the angle between two adjacent vectors is bigger than a threshold (plum dotted lines) or the length of
local maximum vector is shorter than a minimum value (red dotted lines) (B). The whole process is
similar to a region-growing method with hierarchical red, orange, yellow, and green points which serve
as seed points for further fiber tracking. [From Chao et al. (2008)].

A limitation of this kind of method is the calculation time, but it can be performed in
parallel. Another problem is the huge number of trajectories that is usually calculated for
a whole brain, which, until now, prevents the application of “fiber clustering” algorithms

to whole brain probabilistic tractography datasets.

3.3.3 Other Tractography Algorithms

Two other main types of tractography algorithms have been developed. The Bayesian
tractography, which is extensively applied in brain connectivity studies, and the global

tractography, which recent results are very promising.

Bayesian Tractography

A different type of probabilistic tractography approach, called Bayesian, estimates global
connectivity, which results in a connection map indicating the confidence that each voxel
is connected to the seed region [Parker and Alexander (2005); Hosey et al. (2005); Behrens
et al. (2007); Jbabdi et al. (2007); Kaden et al. (2007); Seunarine et al. (2007); Morris
et al. (2008); Melie-Garcij 3a et al. (2008)].

These methods use a model of the uncertainty of each fiber orientation represented
by posterior probability density functions and Markov Chain Monte Carlo sampling of the
streamline paths to estimate connectivity probabilities between different brain regions. The
procedure runs multiple streamline tracking processes (repetitions) from each seed point
so it is computationally expensive (~1,000-10,000 streamlines per seed). The number of
occasions at which each voxel p is crossed by a streamline is used to define the map of the

probability ¢ of connection to the start point (see Figure 3.29). These methods, in general,
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Figure 3.29: Bayesian tractography probability map (¢) example. Coronal projections of left motor
strip connectivity at different thresholds. Logarithmic colour scale: (A) 0.0 < ¢ < 1.0, (B) 0.027 < ¢ <
1.0, (C) 0.074 < ¢ < 1.0 and (D) 0.20 < ¢ < 1.0. Major apparent connections identified include: (i)
thalamus, (ii) subthalamic nucleus, (iii) globus pallidus, (iv) putamen and (v) Wernicke's area [From
Parker and Alexander (2005)].

do not produce a tractography fiber dataset, required as input for our thesis work.

Global Tractography Algorithms
Global tractography algorithms use global properties (i. e. along the whole curve) to
infer the fiber trajectories.

Front Evolution approaches try to find the path of least hindrance (and so, of maximum
diffusivity) that connects two particular points. This is a global optimization problem
that minimizes the path integral and thus, maximizes the global diffusivity [O’Donnell
et al. (2002); Pajevic et al. (2002); Jbabdi et al. (2004); Lenglet et al. (2004); Lenglet
(2006); Jbabdi et al. (2008)]. In practice, these methods use fast marching techniques to
infer geodesic paths. These approaches are fast and less sensitive to local perturbations
such as noise or partial volume effects. However, choosing a metric for which geodesics
represent fiber pathway trajectories is not straightforward. Besides, geodesics have the
limitation that for any pair of regions in the brain, there exists a geodesic between those

regions, and it is difficult to decide if a geodesic is a fiber trajectory [Jbabdi et al. (2008)].

Figure 3.30: Example of spin-glass tractography of a synthetic fiber crossing over using DTI. a) The
tensor field. b) The initial spin glass: spins (represented by green and red cylinders) were randomly
placed and aligned with the main tensor eigenvectors. The blue links represent the spin associations.
c) The minimal energetic configuration of the spin glass in b). d) After convergence: spin chains have
grown and merged to reconstruct the crossing area. [From Fillard et al. (2009)].
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Other interesting global tractography approaches use the spin-glass model [Poupon
(1999a); Cointepas et al. (2002); Fillard et al. (2009)]. This method parameterizes the
entire white matter fascicle map by pieces of fibers, represented by small line segments,
called spins. Spins are encouraged to move and rotate to align with the main fiber direc-
tions, and to assemble into longer chains of low curvature. Thus, the algorithm uses the
diffusion local model and the global information of spin neighbors in an iterative mini-
mization process. Figure 3.30 shows an example of spin-glass tractography of a synthetic
fiber crossing over using DTI. The algorithm only relies on the two generally admitted
priors that brain fibers have a low curvature and do not end inside white matter. They do
not require an estimation of the number nor directions of the fiber compartments in each

voxel and can be adapted to any type of diffusion model [Fillard et al. (2009)].

Figure 3.31: Reconstruction of callosal fibers with three methods. Left: Tensor-based streamline trac-
tography (TBT). Middle: g-ball based streamline tractography (QBT). Right: Spin-glass tractography
(SGT). All fibers of TBT are redirected vertically because of the surrounding corona radiata. QBT
performed slightly better but missed a large part of the callosal fibers. SGT, by using the neighborhood
to determine the most plausible pathways, was able to recover the myriad of fibers passing the corona
radiata [From Fillard et al. (2009)].

Another probability-based method was introduced by Kreher et al. (2008) to extract
and quantify neuronal pathways, connecting two a priori defined regions. In contrast to
other approaches, this method is based on combining two independent visiting maps of
different seed regions, which allows the identification of point to point connections without
a priori knowledge about its course.

These global approaches are more successful than deterministic streamline based meth-
ods to recover crossing fibers (see Figure3.31). A limitation is the requirements of compu-

tation time and memory, which are still very high.
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3 4 Conclusion
[ ]

In this chapter, we introduced the principles of diffusion MRI, a technique al-
lowing the non-invasive study of human brain white matter architecture. Diffusion MRI is
based on the diffusion phenomenon of water molecules within neural tissues. It measures
the average displacement of water molecules along several directions, during a period of
time within each voxel. Then, based on these measurements, diffusion models reconstruct
a more or less direct estimation of the underlying fiber tract orientations. From models, a
measure of diffusion anisotropy can also be deduced, which has been shown to be a mea-
sure of white matter integrity. Tractography methods use the estimated fiber orientation
of putative fiber tracts to trace 3D trajectories representing the pathways of white matter
tracts. The resulting fiber tracts strongly depend on the quality of the diffusion data as well
as on the diffusion model. Noise and inherent limitations of the DW-MRI technique can
not resolve the white matter configuration at microscopic scale, producing false negative
and false positive curves. These issues can be partially overcome by the use of high angu-
lar resolution acquisitions (HARDI) and diffusion models capable to resolve multiple-fiber
populations or fiber crossings. Anyway, WM tractography is a powerful technique able to
study human whole-brain WM tracts non-invasively and in vivo. Furthermore, DW-MRI
is an active research field, where techniques from MRI physics, passing through the ac-
quisition and distorsion corrections, to diffusion modelling and tractography algorithms,
are in continuous improvement in order to get more accurate results. Tractographic tracts
are used to study brain connectivity, and particularly, to identify white matter tracts for
research and clinical studies. In the next chapter, we will review the principal methods

employed to clusterize WM fiber datasets for the identification of white matter tracts.
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White Matter Clustering
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Overview

As we studied in previous chapter, diffusion MRI provides in-vivo measures that reflect
the underlying tissue abnormalities. A comparison of diffusion measurements between
populations can then be performed. Several methods have been proposed for diffusion
parameter analysis. Some approaches directly compare diffusion indexes of white matter
voxels. Other more sophisticated approaches classify white matter voxels for tract identi-
fication and posterior comparison. Instead of basing the analysis only on voxel diffusion
parameters, tractographic fiber bundles can be used for a better correspondence across sub-
jects. To achieve this, the large amount of fibers obtained from tractography algorithms
require adequate processing methods for the identification of white matter tracts. Earlier
techniques used regions of interest for extracting known fiber tracts. Other methods use
fiber clustering to regroup fibers presenting similar shape and trajectory into fiber clusters.
These methods can be used for a more automatical identification of white matter tracts.
Furthermore, fiber clustering results can allow a better understanding of the structure of
the fiber tracts. This thesis work is focused on this research area, by the development of a
novel method for white matter fiber clustering and the inference of an atlas of WM fiber
tracts.

In order to situate our work, this chapter presents a review of the main approaches
used for tractographic pathways clustering and identification. Fiber clustering methods
are particularly addressed, as well as the different fiber similarity measures described in the
literature. Overall, this introductory chapter is inspired from review articles and chapters
from [O’Donnell (2006); Moberts et al. (2005); Jain (2010); Johansen-Berg and Behrens
(2009); Wassermann (2010)], which are great sources for a general understanding of white

matter fiber clustering.

Keywords: white matter clustering, fiber tracts, WM atlas, fiber clustering, fiber dis-

tance, fiber similarity measure

Organization of this chapter:

The chapter is organized as follows. We first describe cross-subject registration methods
in section 4.1. Then, we briefly introduce methods of direct WM segmentation using
DW images in section 4.2. ROI-based approaches for WM tracts segmentation are then
mentioned in section 4.3. Next, we focus on WM fiber clustering methods in section 4.4,
starting with a review of main clustering methods and fiber distance measures. Finally,

we describe the most important approaches for WM quantitative analysis in section 4.5.
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4 1 Cross-subject registration
[ ]

The study of anatomical structures or diffusion (and also functional) properties across
a group of subjects requires to find a correspondence between subjects. It is, to determine
which location in each subject’s images corresponds to the equivalent anatomical location
in the other subjects. The correspondence can be found between images or between regions
of interests, like sulci or WM tracts.

Registration is the spatial adjustment of one image to match another. The input image
is normally of a single subject’s brain, and the reference image might be a different image
of the same subject, a different subject, or a "template” brain (process called normal-
ization). Template images are typically created by averaging several subjects’ images in
some common space. Registration can be linear or non-linear [Johansen-Berg and Behrens
(2009)]:

Linear registration limits the motions applied to the input image to global trans-
lations, rotations, scalings and shears. These low “degrees-of-freedom” (DoF) transforma-
tions tend to be robust and accurate for aligning images within subject. These transfor-
mations can also be used to align head shapes and positions between subjects, but there
will be remaining smaller-scale differences.

Non-linear registration (warping) can apply local warps, as opposed to the sim-
ple, global transformations applied by linear registration. Non-linear registration may be
constrained to only allow simple, coarse warps (low DoF), or may be allowed to apply
very finely detailed, complex warps (high DoF), in order to attempt to match the input
image to the reference image as perfectly as possible. Non-linear registration is normally
initialized by linear registration, to get the general orientation and size matched globally.

Very high-dimensional warping must be used carefully as images can be warped so
much that they look almost exactly like each other, but images may not have achieved
overall structural homology, i.e. preserved how the different features relate to each other
[Johansen-Berg and Behrens (2009)]. Furthermore, increasing flexibility with more DoFs
comes at some cost. The most obvious penalty is that more parameter determination

tends to require more computer time [Crum et al. (2004)].

Registration can be divided into geometric approaches and intensity approaches. Ge-
ometric approaches build explicit models of identifiable anatomical elements in each im-
age. These elements typically include functionally important surfaces, curves and point
landmarks that can be matched with their counterparts in the second image. These cor-
respondences define the transformation from one image to the other [Crum et al. (2004)].
The intensity approach is done by optimisation based on an image similarity measure that
quantifies the degree of similarity between intensity patterns in two images (intensity-
based registration). The criterion can be the minimization of the mean squared difference
[Friston et al. (1995)], the maximization of normalised cross-correlation [Studholme et al.

(1995); Collins et al. (1995)], the minimization of the variance of intensity ratios [Woods
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et al. (1993)] or the maximization of mutual information (MI) [Viola and Wells (1997)]
or normalized mutual information (NMI) [Maes et al. (1997); Studholme (1999)]. The
last three can be used for between-modality registration but MI (and NMI) is regarded as
the de-facto standard in multimodality image registration [Gholipour et al. (2007)]. The
different methods mainly differ by the regularization scheme and optimization strategy
which have a crucial influence on the registration process [Hellier et al. (2003)].

Hybrid algorithms have also been proposed, combining intensity-based and model-
based criteria to establish more accurate correspondences in difficult registration problems,
e.g. using sulcal information to constrain intensity-based brain registration or to combine

the cortical surface with a volumetric approach (see [Crum et al. (2004)]).

The transformation model defines how one image can be deformed to match another;

it characterizes the type and number of possible deformations.

Linear transformation types:

Rigid: global translations and rotations. Accounts for position and orientation (6 param-
eters).
Affine: Rigid plus overall scale and shear (12 parameters).

Piecewise linear: A set of linear maps.

The rigid and affine transformations can be fully modeled as 4x4 matrices of translation,

rotation, scale, and shear.

Non-linear deformation types:

Basis functions: Polynomial [Woods et al. (1998)] or harmonic basis functions [Ash-
burner et al. (1999)]. The last ones are used by the software SPM (statistical para-
metric mapping).

Physical continuous models: Viscous fluids [Christensen et al. (1996)], demons algo-
rithms [Thirion (1998)].

Large deformation models: Diffeomorphisms, which define inverse consistent deforma-

tions [Ashburner (2007); Vercauteren et al. (2008, 2009)].

4.1.1 Normalization to Talairach space

The Talairach atlas [Talairach and Tournoux (1988, 1993)] was generated from a single 60
year old female postmortem brain in which one half of the brain was sectioned sagitally
and the other coronally (see Figure 4.1 (a) and (b)). Talairach space is defined as the
standard brain space with the same dimensions as the published 1988 atlas (x=136 mm,
y=172mm, z=118 mm). The Talairach stereotaxic coordinate system is based on two
relatively invariant subcortical point landmarks, the anterior commissure (AC) and the

posterior commissure (PC). In this space, the principal axis corresponds to the AC-PC
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(b)

Figure 4.1: The Talairach atlas and normalized space [Talairach and Tournoux (1988)]. (a) The
Talairach atlas defines 12 lobes, 55 regions, GM/WM and CSF and 71 Broadmann areas. (b) The
Talairach referential can be defined by tree points: AC, PC and an interhemispheric point. (c) The
normalization to Talairach space defines 12 rectangular boxes using the AC, the PC and the interhemi-
spheric plane. Each box is linearly stretched/shrunken to fit with the reference brain dimensions. [From
http://mipav.cit.nih.gov/documentation/presentations/talairach.pdf].

line, and the origin lies at the AC. The Talairach reference frame is determined from unit
vectors directed along +x and +y brain axes. The +y unit vector is parallel to the AC-PC
line, arises from the AC, and is directed anteriorly. The 4z unit vector is perpendicular to
the interhemispheric plane and is directed to the right side of the brain. A third 4z unit
vector is formed as the vector cross product of the z- and y-unit vectors and is directed

superiorly [Lancaster et al. (2007)].
The normalization to Talairach space is done by the definition of 3 points: AC, PC

and an interhemisheric (IH) point, and the reference frame. The transformation consists
in a piecewise linear registration of the brain by respect to the Talairach atlas brain.
This scaling is done by centering the brain over the AC point, which will have the (0,0,0)
coordinates and cutting the brain into 12 rectangular boxes. The boxes are localized in
both sides of the sagital plane (X,Z) and axial plane (X,Y), and between the two coronal
planes (Y,Z) passing through AC and PC. Each box is linearly stretched/shrunken to fit

with the reference brain dimensions (see Figure 4.1 (c)).

The Talairach anatomical atlas references several cerebral structures in the Talairach
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referential. In this atlas, Talairach and Tournoux (1988) included a labelling of Brodmann
areas but this map is not accurate as only anatomical landmarks were used for the local-
ization of cytoarchitectonic areas rather than histological examination. Although a single
brain cannot be a good representative of the human brain, the Talairach atlas has become
the de facto standard in brain mapping [Gholipour et al. (2007)].

Other more recent and widely used templates are the Montreal Neurological Institute
(MNI) templates. A first atlas, called MNI305, was created based on averaging several
normal MRI brain images, registered to the Talairach coordinates [Mazziotta et al. (1995)].
Then, a second atlas called ICBM152, with higher spatial resolution was obtained as the
average of 152 individual anatomical images, registered to the MNI305 template using

affine transformations [Mazziotta et al. (2001)].

4.1.2 Non-linear registration methods

Several non-linear registration methods have been proposed for brain normalization.
These methods use different similarity measures, deformations, regularizations and
optimization approaches. Some examples are ANIMAL [Collins and Evans (1997),
SPM2-type normalization [Ashburner et al. (1999)], DARTEL [Ashburner (2007)], AIR
[Woods et al. (1998)], FNIRT, Diffeomorphic Demons [Vercauteren et al. (2009)].

An example of highly non-linear transformation is computed with the Large Deforma-
tion Diffeomorphic Metric Mapping (LDDMM) [Huang et al. (2008); Miller et al. (2005)].
The LDDMM algorithm computes a transformation, ¢ : © — €, where Q C R3 is the
3D cube on which the data are defined. The computed transformation is the end point,
¢ = @1, of a flow of vector fields, v; € V, t € [0,1], given by the ordinary differential
equation

bt = vi(¢r), o = id (4.1)

where ¢ is the identity transformation, ¢¢(z) = =z, Vo € . Enforcing a sufficient
amount of smoothness on the elements in the space of allowable vector fields, V', ensures
that the solution to the differential equation, ¢, = vi(¢), t € [0,1], is in the space of
diffeomorphisms. Smoothness is enforced throughout by defining the norm on the space,
V', of smooth velocity vector fields through a differential operator, L, which generally
represents Laplacian powers such that ||f||? = ||Lf||3, where || - ||2 is the standard L?

norm for square integrable functions defined on €.

For an evaluation of several non-linear inter-subject brain registration methods please
refer to [Klein et al. (2009)].
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4 2 White Matter segmentation of DW images
[ ]

WM tract segmentations can be performed using DW-MRI images without the
use of tractography datasets. These approaches use the information given by diffusion

images and diffusion models to segment white matter tracts.

Some works proposed segmentations for DTI using front propagation methods based
on some similarity measure of diffusion between voxels [Wang and Vemuri (2004, 2005);
Jonasson et al. (2005a); Lenglet et al. (2006)]. For example, Jonasson et al. (2005a) use
3D geometric flow, where the 3D surface evolves with a propagation speed proportional to
a measure indicating the similarity of diffusion between the tensors lying on the surface
and their neighbors in the direction of propagation. More complex DT-based similarity
measures such as the Kullback-Leibler divergence metric [Wang and Vemuri (2005)] and
Riemannian metric [Lenglet et al. (2006)] have also been used. These DTI-based methods
present the inherent limitations of the DT model and are most often blocked in regions of

fiber crossings.

New methods use HARDI acquisitions to segment bundles from fields of ODF's [Hag-
mann et al. (2006); Jonasson et al. (2007); McGraw et al. (2006); Wassermann et al. (2008);
Descoteaux and Deriche (2009)]. Hagmann et al. (2006) and Jonasson et al. (2007) use
DSI data to represent diffusion as a signal mapped on a 5-dimensional space of position
and orientation, defined by the location of the ODFs on the acquisition grid and their ori-
entational information. The authors use then respectively a hidden Markov Random Field
or a level set implementation in order to segment the image into homogeneous, contiguous
and high diffusivity regions and to label them as a tract. Two methods where proposed
using the spherical harmonics representation of the ODF described in [Descoteaux et al.
(2007)]. While Wassermann et al. (2008) used ODF diffusion maps as spectral embedding
method, Descoteaux and Deriche (2009) employed a region-based level set approach.

These methods can only detect gross masks or 3D surfaces of the main big WM tracts.
This is because the analysis of a voxel or a group of voxels can only integrate a relatively
local spatial and diffusivity information. DW-based tractography provides a more global
anatomical interpretation of the diffusivity on each voxel. By tracing ensembles of axonal
pathways at a sub-voxel resolution it also provides a solution to some of the problems

arising from partial voluming [Wassermann et al. (2010a)].

4 3 ROI-based WM fiber tract segmentation
[ ]

Earlier works used cortical masks to seed tractography and reconstruct known
white matter tracts. This approach, called “from ROI”, generally leads to an incomplete
delineation of the tracts [Mori et al. (2005)]. Other limitation is that it can not be applied

successfully to pathological brains.

To overcome some limitations of streamline tractography algorithms, specially in re-
gions with crossing fibers, a “whole-brain” or “brute-force” seeding strategy is more suitable
[Mori et al. (2005); O’Donnell and Westin (2007)]. Several ROI-based methods have then
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been proposed for the extraction of known WM fiber tracts from this kind of dataset,

containing fiber tracts of the whole brain.

One strategy is to define the ROIs manually, which has been used in several tractog-
raphy studies [Conturo et al. (1999); Basser et al. (2000); Catani et al. (2002); Mori et al.
(2000); Maddah et al. (2005); Mori et al. (2005); Wakana et al. (2004, 2007)]. For exam-
ple, Catani et al. (2002) presented a manual ROI approach to reconstruct white matter
pathways. The method produced virtual representations of white matter tracts faithful
to classical post-mortem descriptions, called virtual dissection of WM tracts. Using the
same approach, Catani and Thiebaut de Schotten (2008) provide a template to guide the
delineation of ROIs for the reconstruction of the association, projection and commissural
pathways of the living human brain. The tracts can be selected using a single ROI ap-
proach (arcuate fasciculus, cingulum, corpus callosum, anterior commissure and fornix) or
a two-ROIs approach (cerebellar tracts and the uncinate, inferior longitudinal and infe-
rior fronto-occipital fasciculi). Some examples of these bundles where shown in Figure 2.7
(Chapter 2, section 2.3). In other set of works, Wakana et al. also use multiple ROIs for 11
tracts of interests, employing different types of operations, as “AND”, “OR”, and “NOT”
[Wakana et al. (2004)], or “AND”, “CUT”, and “NOT” [Wakana et al. (2007)], the choice of
which depends on the characteristic trajectory of each tract. See Figure 4.2 for an illustra-
tion of manual ROI-based WM tract segmentation. The main limitation of these manual
approaches is that a specific protocol must be followed for the extraction of every WM
tract, where an expert a priori anatomical knowledge is required to identify the course of
white matter pathways and delineate ROIs. This is a very complicated task, which must

be applied separately for each brain.
In a more recent work, [Zhang et al. (2008b)] proposed an automated ROI-based tract

reconstruction approach. A set of reference regions of interest known to select a tract
of interest was marked in a DTI atlas in MNI coordinates (ICBM-DTI-81) [Mori et al.
(2008)], described in appendix A. The atlas was then linearly transformed to each subject,
and the ROI set was transferred to the subject for the reconstruction of 11 well-known
WM tracts.

An attractive extension of this approach consists in using a group of subjects to create
probabilistic maps of the resulting WM tracts in a standard space after spatial normaliza-
tion [Hua et al. (2008)]. The population-averaged statistical maps can define the standard
coordinates of the reproducible regions (cores) of the tracts. Then, a set of ROIs can be
defined from the probabilistic maps to catch the same WM tracts in any other subject.

Other approaches use whole brain WM/GM parcellations to extract WM tracts. For
example, Oishi et al. (2008) provided a parcellation of the superficially located WM
(SWM), defined as the area between the cortex and the DWM. The SWM was extracted
as the WM between a WM parcellation map [Mori et al. (2008)] and the cortex, using
thresholds applied to a generated probabilistic WM map. The SWM was manually par-
cellated into nine major structures called “blades”, which were further sub-parcellated into

23 regions based on the relationships with 24 cerebral cortical areas and the cerebellum
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Figure 4.2: lllustration of manual ROI-based WM tract segmentation. Locations of the ROls for the
cingulum in the cingulate gyrus part (CGC) on two coronal slices (a and c) and their locations in the
mid-sagittal slice (b and d). The SCC and GCC stand for the splenium of corpus callosum and the genu
of corpus callosum, respectively. [From Wakana et al. (2007).]

(see appendix A). The blades were used as ROIs for tractography selections. Intra-blade
fibers could not be located. Four short and one long inter-blade fibers were found. See
Figure A.3 (B-D) for a 3D view of the SWM parcellation and the identified inter-blade
fibers.

Oishi et al. (2009) combined single-participant white matter atlases based on DTT with
highly non-linear image registration methods for automated 3D white matter segmenta-
tion. The authors created three types of WM parcellation map (WMPM) in ICBM-152
(JHU-DTI-MNI atlas) and Talairach (JHU-DTI-Talairach atlas) spaces containing pre-
defined 3D anatomical regions (see appendix A). Highly non-linear dual-channel Large
Deformation Diffeomorphic Metric Mapping (LDDMM) [Huang et al. (2008); Miller et al.

(2005)] was used for normalization (see section 4.1).

Automated brain parcellation was achieved by warping the WMPM to normal con-
trols and to Alzheimer’s disease patients with severe anatomical atrophy. A standard
ROI set was identified by superimposing the Type III WMPM onto the LDDMM trans-
formed images. Also JHU-DTI-MNI was non-linearly transformed to the images using
SPM5 (http://www.fil.ion.ucl.ac.uk/spm/) to compare the registration quality with that
of LDDMM.

Zhang et al. (2010) propose an automated atlas-based approach for reconstruction
of WM tracts. The method uses a single-subject DTI atlas with 130 3D anatomical
segmentations, called Type I WMPM [Oishi et al. (2009)], described in appendix A.

A two-step image transformation was used to warp the atlas to individual data. First,

affine transformation was applied to globally adjust the brain position, rotation, and the
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size. Then, the DTI atlas was warped non-linearly to individual DTI data employing
dual-contrast LDDMM [Ceritoglu et al. (2009)], in which both the b0 image and the FA
map were used simultaneously. Once the transformation matrix defining the reciprocal
transformation was determined, the GM /WM parcellation map was transferred from the
atlas to the data, for the automated segmentation of the data into 130 brain regions.

Whole-brain tractography was calculated for each subject in the subject data space,
and the tract coordinates were normalized to the atlas, using the calculated (inverse) affine
and LDDMM transformation. Tracts were extracted using existing anatomical knowledge
about tract trajectories, called the Template ROI Set or TRS (the approach is so called
TRS-based method). Thirty TRSs were established to reconstruct 30 prominent and previ-
ously well-described fiber tracts (12 corpus callosum (CC) segments, 10 thalamic projection
tracts and 8 long association tracts).

The knowledge-based approach, could be applied to create TRSs for short cortico-
cortical association fibers, for which the locations and trajectories are not well-known.
Therefore an exhaustive search examining connections among all 24 SWM segments asso-
ciated with different areas of the cortex was performed. The 56 DWM segments were all
used as “NO” ROIs to remove long association fibers. From this analysis, 29 short associ-
ation bundles, connecting two adjacent cortical regions, were found in all normal subjects
examined (N=20), including the four U-fibers found in [Oishi et al. (2008)]. Probabilistic
maps of the 59 tract trajectories were also created from the normal subjects (see Fig-
ure A.5, appendix A). A large variability was found for short association fibers, which
was partly attributed to the complex axonal configuration in the SWM, but also to the

limitation in precisely matching the cortical anatomy among the subjects.

4 4 White Matter fiber clustering
[ ]

White matter fiber clustering regroups fibers from whole-brain tractography into
clusters of fibers with similar shape and position. The aim of fiber bundling is then to
partition a set of fiber pathways into different natural bundles [Ding et al. (2003)]. A
fiber cluster represents a bundle containing fibers parallel to each other, and constitute a
distinct structure from other fiber bundles. Therefore, the enormous amount of individual
fibers provided by tractography algorithms can be reduced to a limited number of logical
fiber clusters that are more manageable and understandable. Clustering can also be used
to identify white matter fiber tracts and perform quantitative comparisons between sub-
jects by unbiased measurements in anatomical structures [Moberts et al. (2005)]. In the
following subsections, we will review the main clustering methods (subsection 4.4.1) and

fiber similarity measures (subsection 4.4.2) proposed in the literature.

4.4.1 Clustering

Clustering is the process of organizing objects into groups whose members are similar in

some sense. This is an unsupervised learning problem so it deals with finding a structure in
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Figure 4.3: lllustration of clustering results for an example dataset. A clustering analysis could found

three different clusters (in green, orange and blue). Depending on the clustering method, outliers
(encircled in red) could be or not be filtered out.

a collection of unlabeled data [Jain and Dubes (1988); Jain (2010)]. The clusters must be
compact and well separated, presenting a higher degree of similarity between data points
belonging to the same cluster than between data points belonging to different clusters (see
Figure 4.3). A wide variety of clustering methods have been proposed in the literature, each
one tending to find different types of cluster structures [Jain (2010)]. Clustering methods
can be roughly divided into two main classes: hierarchical and partitional. Hierarchical
clustering algorithms are either agglomerative or divisive. An agglomerative hierarchical
clustering method starts by putting each data point into an individual cluster, next at
each stage of the algorithm the two most similar clusters are joined, forming a hierarchical
forest. On the other hand, partitional algorithms, decompose directly the dataset into a

set of disjoint clusters, obtaining a partition which should optimize a certain criterion.

The final clusters depend on the element similarity measure and the clustering algo-
rithm. The definition of a cluster is a complicated task since clusters can differ in terms of
their shape, size and density. Besides, the presence of noise in the data makes the detection
of the clusters even more difficult. A cluster is then a subjective entity whose significance

and interpretation requires domain knowledge [Jain (2010)].

An important issue in clustering is the problem of choosing the right number of clusters.
The majority of partitional algorithms require this as a parameter, even though it is not
possible to infer this value in advance. Several approaches have been taken to automatically
infer the number of clusters. However, no method works in the general case [Wassermann
(2010)]. Besides, if outliers may exist, the algorithm must be robust to them in order to

find valid clusters.

Conversion of distance to affinity. If a distance measure is used, it must be converted
to an affinity (or similarity) measure. The affinity a;; between two elements ¢ and j, can

be calculated via a Gaussian kernel:
ay = e %l (4.2)
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# vertices = 10
# edges =45
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vertex 1 |vertex 2 | affinity

1 2 0.125

1: 3 0.237

1 4 0.726

1 5 0.056

1 6 0.726

1 Fi 0.077

1 8 0.041

1 9 0.852

1 10 0.237

2 3 0.202

(C) Complete affinity graph
Figure 4.4: lllustration of an affinity matrix and its graph representation for an example dataset.

(A) shows a set of N = 10 elements to be clustered. To compute the affinity matrix, the Euclidean
distance was calculated between each pair of elements. Then, distances were converted to affinity values
using equation 4.2, with ¢ = 2.5. (B) shows the affinity matrix for the example data. (C) presents a
complete affinity graph where vertices represent the elements and edge weights represent affinity values.
The matrix and graph edges are colored using the colormap in (B). Graph information consist in a list of
edges. Each edge is defined by the two vertices connected by the edge and the affinity value (weight).
In the example the total number of edges is N(N-1)/2 = 45.

where d;; is the distance between elements i and j and o is a parameter defining the

similarity scale.

Input data. The input for a hierarchical algorithm is an N x N similarity (or affinity)
matrix, where N is the number of objects to be clustered. On the other hand, a partitional
algorithm can use either an NV x d pattern matrix, where N objects are embedded in a
d-dimensional feature space, or an N x N similarity matrix [Jain (2010)].

The similarity matrix can also be represented and stored as an undirected weighted
graph, which vertices represent the elements and edge weights represent affinity values.

A graph is a tuple G = (V, E), where V = vy, ...,uy is the set of N vertices and E are
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Figure 4.5: Hierarchical clustering (HC) example using average-link. (A): The dendogram resulting
from the hierarchical clustering of elements in Figure 4.4 (A), using as input the affinity graph illustrated
in Figure 4.4 (C). The dendogram contains a total number of 19 vertices (2N-1). Elements are the
leaves (1-10) and hierarchical cluster fusions are represented by non-leaf nodes (11-19). (B) Example
of an adaptive partition over the HC in (A), able to reject outliers and detect clusters using a similarity
threshold. Clusters are encircled in green, cyan and purple while the outlier is encircled in orange.

the edges, e; = vj,vi. The degree d; of a graph vertex v; € V is defined as the sum
of the weights of edges attached to v;, and the volume vol(A) of a set of vertices A is
defined as the sum of the vertex degrees from all the vertices in the set. If each pair of
vertices has an edge connecting them, the graph is complete and has N(N — 1)/2 edges.
If a minimum affinity threshold is imposed, the graph complexity is reduced as edges with
affinities under the threshold are not included in the graph, reducing the processing time
and the disk space required to store the data. See Figure 4.4 for an example of an affinity

matrix and its corresponding complete affinity graph.

Hierarchical clustering

Most hierarchical clustering (HC) [Johnson (1967)] implementations use the agglomerative
approach, where each data element is initially considered as a singleton cluster. Then,
the algorithm successively merges the most similar clusters until all elements have been
merged into a single remaining cluster. The result is a forest composed by one or more
trees, where each tree represents a connected component of the affinity graph. The
hierarchical clustering is often represented by a two dimensional diagram known as
dendogram which illustrates the fusions made at each successive stage of analysis. An
example of such a dendogram is illustrated in Figure 4.5 (A). A dendogram resulting
from the clustering of a complete affinity graph will contain 2/N — 1 nodes, where N is the

number of elements to be clustered.

Many variants are used to defining the closest pair of clusters in function of the dis-
similarity between elements d(-,-). Three main techniques can be distinguished for the

calculation of the dissimilarity between clusters D(-,-) (see Figure 4.6):
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Figure 4.6: The three linkage types of hierarchical clustering: single-link, complete link and average-link.

Single-link: distance between clusters is defined as the distance between the closest pair

of elements in the two clusters.

D(P,Q) = pergquéQd(p,) (4.3)

This technique is sensitive to noise and outliers and produces long, elongated clusters due

to chaining effect.

Complete-link: distance between clusters is defined as the distance between the most

distant pair of elements in the two clusters.

D(P,Q) = pelgf;)éQd(p,) (4.4)

This technique makes more compact and spherical clusters and tends to produce clusters

of same diameter, breaking large clusters.

Average-link: distance between clusters is defined as the average of pairwise distance

between elements in the two clusters.

D(P,Q HQI > dp.g (4.5)

peEP qeqQ

Is a compromise between the sensitivity of complete-link clustering to outliers and the

tendency of single-link clustering to form long chains.

Hierarchical clustering partition. A big advantage of hierarchical clustering is that
no assumptions must to be made on the number of clusters. Furthermore, the hierar-
chy provides much more information than a simple partition. The resulting tree can be
analysed in order to find the desired partition by the application of several criteria. The
simplest partition can be obtained by cutting the dendrogram at a desired level using
a (dis)similarity threshold, where each resulting connected component forms a cluster.

Other adaptive partitions can be performed using different criterion as cluster size, or
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inter-cluster similarity, allowing also the rejection of outliers. Figure 4.5 (B) shows an
adaptive partition for the toy example in Figure 4.4. In this illustration, clusters can be
selected as groups with a high inter-cluster similarity and the outlier (node 10) can be
detected so it is an isolated element, presenting a low similarity with the cluster which it
was regrouped to (node 15). To have a perception of the results quality, the affinity matrix
can be reordered so that the clustered elements are contiguous. Figure 4.7 shows the final

partition and the reordered matrix.
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(A) Adaptive partition into (B) Reordered matrix
three clusters and one outlier three clusters and one outlier

Figure 4.7: Example of hierarchical clustering adaptive partition using average-link. (A): Resulting
clusters when using the partition in Figure 4.5 (A) of the hierarchical clustering tree. Clusters elements
are in green, cyan and purple while the outlier is encircled in orange. (B): The reordered affinity matrix,
containing clustered elements in contiguous rows. Note that the affinity between all the elements of
each cluster is high while the affinity between elements of different clusters is low.

Hierarchical clustering presents the limitation to be time consuming, as its complexity
is at least quadratic in the number of data points and so, not applicable for very large

datasets.

Partitional clustering

As mentioned above, partitional algorithms find directly a partition of the data and in
general present the limitation to require in advance the number of clusters. These al-
gorithms use a criterion function to be minimized with emphasis in the local structure
of the data, as by assigning clusters to peaks in the probability density function, or the
global structure. An optimal solution could be found with an evaluation of the criterion
for all possible partitions containing K clusters, explosing the combinatorial number of
search. Then, partitional algorithms usually use the optimized approach to find the so-
lution, starting with an initial partition and moving elements so that the value of the
criterion function improves. The problem is that they might converge to local minima.
We briefly describe here the main families of partitional algorithms [Kaski (1997); Miranda
(1999); Jain (2010); Wassermann et al. (2010a)].
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Square-error clustering methods. The most commonly used clustering strategy is
based on the square-root error criterion, defined as the sum of the Euclidean distances

between each point and its cluster center.

The most known square-error clustering is the K-means algorithm [MacQueen
(1967)]. Its implementation uses an iterative refinement technique, given an initial
set of K cluster centroids, specified randomly or by some heuristic. The algorithm
proceeds by alternating an assignment step, where each element is assigned to the
cluster with the closest centroid and an update step, where new centroids are calcu-
lated for each new cluster. The algorithm is stopped when some convergence criterion

is met.

The main advantages of this algorithm are its simplicity and speed which allows it to
run on large datasets. One disadvantage is that it does not yield the same result with
each run, since the resulting clusters depend on the initial partition. Besides, it tends
to produce spherical, equal-sized clusters. Several extensions have been proposed to
improve this algorithm, for example to find a better approximation to the optimal

minima or generalize it to arbitrary shapes.

Clustering by mixture decomposition. These methods assume that the data can be
represented by a mixture of several distributions. For that, a density function is
modeled as a sum of parameterized functions. The clustering method estimates then
the appropriate parameters for the model functions. The expectation-maximization
(EM) algorithm [Dempster et al. (1977)] is commonly used for the estimation of the
parameters of a mixture model, based on a maximization of the likelihood (or log-
likelihood). EM is an iterative method which starts with initial parameters for the
model distribution and proceeds iteratively with an expectation (E) step followed by
a maximization (M) step. E step probabilistically assign points to clusters, by the
computation of the expectation of the likelihood evaluated using the current esti-
mate for the latent variables. M step computes parameters maximizing the expected
likelihood found on the E step. The output of this method are the distribution

parameters and a soft assignment of points to clusters.

Other approach, the Dirichlet Process clustering algorithm performs Bayesian mix-
ture modeling [Blei et al. (2003)], where data is assumed to be samples from an in-
finitely parameterized probability distribution. The Dirichlet Process mixture model
can be used both for flexible density estimation and for clustering when the number

of clusters is a priori unknown.

Clustering by density estimation and mode seeking. This approach views clusters
as regions of the feature space in which the elements are dense, separated by regions
of low density. Then, data is seen as a density function, where the maxima, called
modes, are associated to the cluster centers. Each element is assigned to the cluster

with the closest center. Several algorithms have been proposed for mode-seeking
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clustering. A known method, the mean-shifting algorithm [Cheng (1995)], performs
for each data point in the feature space, a gradient ascent procedure on the local

estimated density until convergence.

The main advantages of these methods are that there are no embedded assumptions
on the shape of the distribution nor the number of modes/clusters. However, the

number of patterns should be large enough to get a good estimate.

Graph-based clustering. Some clustering methods use graph theory to analyze the
connectivity of the nodes and determine the clusters. These are based on the bi-
partitioning problem, where a criterion is used to find a partition into two disjoint
sets of nodes, A and its complement A. For that, an inter-set similarity > s(4, A),
denoting the cost associated with (A4, A), can be defined as the total sum of weights of
edges between A and A. Thus, a minimum-cut (or mincut) criterion can be used to
minimize Y s(4, A) and found the partition. This problem can be solved efficiently,
but partitioning is unbalanced as only some isolated points are separated from the

main group of elements.

The spectral graph clustering methods solve the graph partitioning problem based on
a relationship between connected components and the Laplacian of graph [Fiedler
(1975)]. These algorithms map the original space to a eigen space using a matrix
called Graph Laplacian, which diagonal contains the degrees d; of the graph ver-
tices V;. Fiedler (1975) demonstrated that the eigenvector associated to the second
smallest eigenvalue (called Fiedler vector) can be used to split the graph using the
mincut criterion. Posteriorly, other criteria were defined using a particular Graph
Laplacian and a different postprocessing of the eigenvector. First, Hagen and Kahng
(1992) proposed the radio-cut that normalizes the cut with the cluster sizes (i. e.
number of vertices of partition A), leading to more balanced clusters. Then, Shi
and Malik (2000) proposed the normalized-cut, that normalizes by the weights of the

edges (vol(A)), a method extensively used due to its better results.

Even though spectral clustering methods must solve a large eigenproblem, they can
be implemented efficiently even for large datasets, but with the constraint to use a
sparse similarity graph [von Luxburg (2007)], which is not the case for all the appli-
cations. Another limitation is that solutions for the eigenproblem add parameters to
the algorithm which have no interpretation regarding the clustering technique but
an important effect in the results [Wassermann (2010)]. Furthermore, the analysis
requires data within each cluster to be uniformly sampled, which produces artifacts

when this hypothesis is not met [Wassermann et al. (2008)].

More detailed reviews of clustering methods can be found in [Jain (2010); Duda et al.
(2001); Wassermann (2010)].
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4.4.2 Fiber similarity measures

Fiber clustering methods require a similarity measure that can quantify the closeness
of two fibers. Different similarity measures have been proposed in the literature. Some
similarities are based on statistics over the shape of the tracts. For example, Batchelor et al.
(2006) made use of fundamental geometric invariants, such as curvatures and torsions, or
Fourier descriptors, to compare the shape of pairs of curves. In other work, Corouge et al.
(2006) estimated a mean fiber tract shape using Procrustes analysis and characterized
statistical shape deviations from this template shape along the tract. Besides, based
on local curvature and torsion, Leemans et al. (2006) defined a fiber similarity measure
used for fiber datasets coregistration. These measures does not take into account partial
overlapping of fibers as a similarity feature and are unsuited for automatic classification
of fibers in the brain [Wassermann (2010)].

One approach, presented by Jonasson et al. (2005b) uses voxels to perform a pairwise
comparison of distance and shape between fibers. The similarity measure was evaluated
as the number of intersections between fibers, represented by the number of times that
two fibers share the same voxel. This metric is a simple attempt for considering partial
overlapping of fibers.

Other set of works use different similarity measures based on the sequence of points
parameterizing each fiber tract [Ding et al. (2003); Corouge et al. (2004); Gerig et al.
(2004); O’Donnell and Westin (2007); Maddah et al. (2008b)]. In an early work, Ding et al.
(2003) determined corresponding curve segments and used Euclidean distance to define a
piece-wise similarity measure. This approach is not adapted for whole-brain tractography
datasets as it requires a particular 2D region for the seeding of fiber tracts.

In [Corouge et al. (2004)], the authors performed a clustering using similarity of adja-
cent curves and an iterative processing scheme for grouping sets of curves to bundles and
rejecting the outliers. They proposed three fiber pairwise distances, where a fiber Fj, is
represented by a set of 3D points, px, F = {F;, F; = {px}}:

Closest point distance, d., defined as the closest distance between pairs of curves Fj
and Fj:
de(F;, F;) = min - 4.6
o(F5, F)) preFimEE, | e —pu (4.6)
where || - || is the euclidean norm.

Mean of closest distances, dj;, defined as the mean of the closest distances for every

point of curve F; to curve F:
dy (Fy, Fj) = mean(dy, (F;, F;), dn (Fj, F)), (4.7)
with dp, (F;, Fj) = meanp e, ming, er; || Px — Pt |-
Hausdorff distance, dy, as the maximum of the closest distances for every point of
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Figure 4.8: lllustration of distances based on closest points. The directed closest points distances

(only from fiber i to j) are represented with arrows (dy,ds,...d1g). The closest point distance d. is
represented by the green arrow (see equation 4.6). The directed maximum closest distance (dp) is
represented by the red arrow. The Hausdorff distance (dg) will be the maximum of the two directed
distances dj, (see equation 4.8). The directed mean of closest distances (d,,) will be the mean of the
distances (dy,...d10). The mean of closest distances (dps) will be the mean of the two d,,, distances
(see equation 4.7) [Adapted from O’Donnell and Westin (2007)].

curve F; to curve Fj:
dp(Fi, F}) = max(dy(F, Fy), dn(F}, Fy)), (4.8)

with dp,(F;, Fj) = maxp, er, minger; | Pr — pr |-

See Figure 4.8 for an illustration of the closest distances between two fibers. The
distance d. can not discriminate different fiber shapes since it encodes only very coarse
information about fiber similarity and closeness. On the contrary, dj; provides a global
similarity measure integrated along the whole curve [Corouge et al. (2004)]. The Hausdorff

distance dgy is a worst-case distance.

Figure 4.9 shows an example of these three fiber similarity measures for four fibers.
The distances between the red fiber and the other fibers (cyan, green and blue) were
calculated. In this example, we can see that the blue and green fibers have a similar d.
distance, even though the green fiber is more similar to the red fiber. Even worst, the
cyan fiber, which presents a shape quite different, has a very small d. distance. Distance
dps is more suitable for a better representation of the average resemblance between fibers
but distance dy appears more accurate if a stringent similarity measure is required.
These distances can deal with a variable degree of partial overlapping and have been used

successfully for a whole-brain white matter fiber clustering [O’Donnell and Westin (2007)].

In [O’Donnell and Westin (2005); O’Donnell et al. (2006); O’Donnell (2006)] the au-
thors used the mean of closest point distance (equation 4.7). They also proposed another

symmetrized fiber similarity measure, defined as the minimum of the directed closest dis-
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Figure 4.9: Comparison of three pairwise fiber distances: Closest point distance (d.), mean of closest
distances (ds) and Hausdorff distance (dg). The distances between the red fiber and other three fibers
(cyan, green and blue) were calculated. Distance d. is the less discriminant distance, while distance
dps is more suitable for a good representation of the average resemblance between fibers. On the other
side, distance dy appears more accurate if a stringent similarity measure is required.

tances, dy, (equation 4.7).

In these works, fibers where subsampled using 15 equidistant points to reduce calculation

times, while keeping a good precision in cluster results.

Zhang et al. defined a distance between two fibers as the average distance from any
point on the shorter fiber to the closest point on the longer fiber. In order to emphasize
important differences between a pair of trajectories, the average only considered distances
above a threshold ¢ [Zhang and Laidlaw (2002); Zhang et al. (2003)]. The distance, called
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Figure 4.10: Illustration of thresholded closest distances. (A) Distance measure D; proposed to

emphasize important differences between a pair of fibers, defined in equation 4.10 [Zhang and Laidlaw
(2002); Zhang et al. (2003)]. Q and R are considered different if they branch for a portion of their
lengths. Without the threshold, the mean of closest distances between Q and R is low if they stay close
for a large part of their lengths. (B) and (C) are two symmetric distances based on the mean of closest
distances, where only distances above a threshold are considered in the calculation of the mean (see
equation 4.11). (B) illustrates the shorter mean of thresholded closest distance dg; while (C) illustrates
the longer mean of thresholded closest distance d; [From Zhang et al. (2008a)].

mean of thresholded closest distances, was then defined as

fssol max (dist(s) —t,0)ds

s dist(s)—t ’
fs(]l max <W, 0> ds

Dy =

(4.10)

where s parameterizes the arc length of the shorter trajectory, so and s; are the starting
and end points of s, and dist(s) is the shortest distance from location s on the shorter
trajectory to the longer trajectory (see Figure 4.10 (A)).

Two symmetric distances were later proposed in [Zhang et al. (2008a)]. First, the
distance d; was defined by using a threshold on the minimum contributing distance for the

mean of closest distances between curves, as

Bl T t) = et min || py, —py || 4.11
it PrE€Fi,(ming, ey [[Pr—pi ) >t PLEF] | I (4.11)

where t is the minimum threshold. Then, the shorter mean of thresholded closest

distances was defined as

dsy = min (d¢(F;, Fj,t), di(Fj, Fj, 1)), (4.12)
and the longer mean of thresholded closest distances was defined as

dry = max (d¢(F;, Fj, t), di(Fj, Fj, 1)) . (4.13)

The distance dg; is a discrete approximation of D;. Usually, distance dg; is smaller

than dr; as the unmatched part of the longer curve only counts in dr; (see Figure 4.10).
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Wassermann et al. (2010a) defined a similarity measure between bundles (or fibers)
using a mathematical framework for performing statistical analysis of fiber tracts and
bundles. The model includes diffusion information and relates each bundle (or fiber) with
a ROI in the volume, mapping every voxel to a degree of membership to the bundle,
the bundle’s blurred indicator function (BIF). Each fiber F is then modeled as a BIF,
Vr :p € R? = R, presenting a maximal level set that corresponds to F. The YVr is
blurred according to the DT field, along the direction of the fiber.

The BIF is then modeled by a Gaussian Process (GP)

Yr(p) ~ GP (Y(p),Cx(p,p")), (4.14)

where the mean function V3(p) and covariance function Cr(p, p’) are the parameters of
this stochastic process. A similarity measure between bundles was defined to quantify the
overlapping of bundles. For that, the inner product between two bundles, F and F’, is
defined as

F 7= [ VeI el (115)

with its induced norm ||F||? := (F, F).
The similarity measure is then normalized in order to get values between 0 and 1
(£, F)
(F,F") = (4.16)
o ENF
This metric serves then as a probabilistic measure of inclusion of two fibers (or

bundles). Figure 4.11 illustrates some examples of this similarity measure.

In a recent work, Visser et al. (2011) proposed a fiber similarity measure, that can
be called the sum of the Fuclidean distances between corresponding points. This measure

defines the distance between two tracts as:

Np NP
dsep(A, B) =min | > [lai = bi [, | ai = b1 || | (4.17)
=1 =1

where a; and b; are the position vectors of the points of the tracts A and B respectively.
A resampling of the tracts must be performed to use this distance measure as the same
number of points (INVp) is required in all the fibers (25 points were used by the authors).
This distance measure presents the advantage to be computationally more efficient than

other distances based on the minimum distance between points.

4.4.3 Fiber clustering methods

Several fiber clustering methods have been proposed in the literature. The different ap-
proaches use different similarity measures and clustering algorithms. A priori require-

ments also vary from one method to another as well as the characteristics of the input
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Figure 4.11: Examples of the product of blurred indicator functions (BIF) for different fiber pairs, the
value of the inner product operation (F, ), and the inner product normalized by its natural norm ||F||.
Inner product quantifies the overlapping of BlIFs. A larger inner product means that fibers are more
similar and relates to the volume of the overlapping. The normalized inner product quantifies similarity
ranging from 0 when overlapping is null to 1 when the two fibers are identical. The compared fibers
have been extracted from different anatomical tracts of a dMRI image, the frontal forceps (FF), the
uncinate fasciculus (UNC), and the cingulate cortex section of the cingulum (CgC) [From Wassermann
et al. (2010a)].

fiber datasets, which complexity increases as diffusion acquisitions and diffusion models
are improved. We reviewed the main works proposed in the literature and separated them
into two main groups: single subject and multiple subject fiber clustering methods.

Single subject methods are the first attempts to cluster fiber datasets. These works
propose important fiber similarity measures and test different clustering methods. We
present in table 4.1 a categorization of single subject fiber clustering methods. Methods
were analyzed in function of the main input, the main clustering method and the distance
measure, the main anatomical or empirical priors used to recover WM tracts, the main
analysis steps, the main outputs and the successfully identified bundles.

Multiple subject fiber clustering methods have been developed from several years with
the main objective of identifying well known WM tracts. Several methods propose both,
single subject (SS) and multiple subject (MS) approaches, sometimes with different outputs
for each case. These approaches require a registration between subjects or to a template,
where non-linear strategies become more and more popular. We present in table 4.2
a categorization of multiple subject fiber clustering methods. Methods were analyzed in
function of the registration method, the main clustering method and the distance measure,
the main anatomical or empirical priors used to recover WM tracts, the main analysis steps,
the main outputs and the successfully identified bundles. All the reviewed methods use as
input a whole-brain tractography datasets.

Above is presented a more detailed review of the most important works in the domain.
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FIBER CLUSTERING METHODS (SINGLE SUBJECT)

METHOD IN DISTANCE CLUSTERING MAIN ANATOMICAL / MAIN ANALYSIS MAIN IDENT.
MEA- METHOD EMPIRICAL PRIORS OoOuTPUTS BUNDLES
SURE
) RS Euclidean k-NN seed ROIs define corresponding filtered tract /
Ding 2003 (fibers) segments / fiber clustering shape analysis
ST de, dpry di propagation manual segmentation of fiber clustering filtered tract / CST, part
Corouge 2004 (fibers) algorithm tracts / distance threshold shape analysis of CC
Gerig04 2004
WB D, single-link HC fiber culling / fiber streamtubes &
Zhang 2002 (fibers) clustering streamsurfaces
Zhang 2003
WB use fiber spectral embedding, empirical clustering soft coloring of
Brun 2003 end points Ncuts SC parameters fiber tracts
Brun 2004

List of abbreviations (also valid for Table 4.2).
IN (INPUT): whole-brain tractography (WB), segmented tract (ST) or ROl-seeding (RS).
CLUSTERING METHOD: Hierarchical clustering (HC), Nearest Neighbor (NN), Spectral Clustering (SC).
DISTANCE MEASURE: Closest point distance (d.), Mean of closest distances (dys), Hausdorff distance (dg), Mean of thresholded closest distances (D), Shorter mean of
thresholded closest distances (ds¢), Longer mean of thresholded closest distances (dy;), Blurred indicator function (BIF), Sum of the Euclidean distances between corresponding

points (dscp).

IDENT. BUNDLES (IDENTIFIED BUNDLES): Corticospinal tract (CST), Corona radiata/Internal capsule (CR/IC), Superior longitudinal fasciculus (SL), Inferior longitudinal
fasciculus (IF), Inferior fronto-occipital (IFO), Arcuate fasciculus (AF), Cingulum (CG), Uncinate fasciculus (UN), Forceps minor (Fm), Forceps major (FM), Corpus callosum
(CC), genu of CC (GCC), splenium of CC (SCC), Anterior thalamic radiation (ATR), Fornix (FX), Middle cerebellar peduncle (MCP), Superior cerebellar peduncle (SCP),
Brainstem (BS) Projection tract penetrating frontal, parietal or occipital lobe (PTf, PTp, PTo), CC connecting left&right frontal, parietal or occipital lobes (CCf, CCp, CCo).

Table 4.1: Categorization of fiber clustering methods (single subject).

Methods were analyzed in function of the main input, the main clustering method and the distance measure, the main
anatomical or empirical priors used to recover WM tracts, the main analysis steps, the main outputs and the successfully

identified bundles.
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FIBER CLUSTERING METHODS (MULTIPLE SUBJECTS)

Maddah 2008b

distance map
from each cluster
center (fibers)

fiber per bundle and per

subject

fiber to cluster /
point correspondence
within each bundle

METHOD REG DISTANCE CLUSTERING ANATOMICAL / MAIN ANALYSIS MAIN OUTPUTS IDENT.
MEASURE METHOD EMPIRICAL BUNDLES
PRIORS
Zhang 2005 AFF Euclidean NN match cluster centroids cluster
(cluster centroids) correspondance
between 2 subjects
Zhang 2008 AFF SS: dgy, dLt SS: single-link SS: empirical proximity SS: fiber culling / bundle template / SS: CST, CG,
(fibers) HC threshold (PTh) fiber clustering / bundle UN, Fm, FM,
MS: Euclidean MS: NN MS: bundle template MS: match cluster indentification MCP, SL, IL
(cluster centroids) (manual cluster labeling) centroids / (2 subjects) MS: CG, UN,
search optimal PTh Fm, FM
ElKouby 2005 AFF SS: connectivity SS: k-means SS/MS: empirical SS: voxel-based clustering bundle atlas from 11 SS: ATR, IL,
(voxels) MS: k-means number of clusters MS: clustering for subjects GCC, SCC,
MS: fiber cluster matching fiber cluster CST, FX
mask correlation masks from all subjects MS: CST,
parts of CC
O’Donnell 2005 AFF SS: djs (fibers) Ncuts SC empirical clustering SS: fiber clustering embedded bundle SS/MS: CC,
O’Donnell& Westin MS: djs (fibers (Nistrom parameters / MS: fiber clustering atlas from 10 CST, AF,
2006 from all subjects) method) manual cluster labeling (fibers from all subjects) subjects IFO, UN, IL,
O’Donnell-PhD 2006 MCP, SCP
O’Donnell-PhD 2006 AFF dps (fibers) spectral embedded bundle atlas fiber embedding / bundle identification SS/MS: CC,
O’Donnell 2007 embedding (fibers) search nearest cluster (5 subjects) CST, AF,
(fibers) / centroid for each fiber IFO, UN, IL,
NN (centroids) MCP, SCP
Maddah 2005 AFF based on B-spline NN bundle template match fibers with template bundle identification CC, CR/IC,
representation (labeled fibers) fibers FX, MCP
(fibers)
Maddah 2007 AFF use Euclidean Gamma mixture one manually selected estimate clustering probabilistic CC, CR/IC,
model parameters assignment of each CG

. continued on next page ...
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. continued from previous page...

METHOD REG DISTANCE CLUSTERING ANATOMICAL / MAIN ANALYSIS MAIN OUTPUTS IDENT.
MEASURE METHOD EMPIRICAL BUNDLES
PRIORS
Maddah 2008a CA use Euclidean Gamma mixture bundle atlas (ROIs) / tract bundle from ROI / probabilistic CG, UN
distance map model manually define initial use atlas as prior / assignment of each
from each cluster (Bayesian) bundle centers / estimate cluster parameters fiber to cluster /
center (fibers) membership threshold point correspondence
within each bundle
Wassermann 2010 NL dist. between Hierarchical WM/GM atlas (ROIs) construction of HC tree and bundle AF, CG, UN,
bundles (and clustering cluster selection using indentification CST, TIFO,
fibers) using BIF anatomical info. (21 subjects) Fm, FM
Li 2010 NL stepa: dy + fiber stepa: PCA step1: WM/GM atlas step1: use atlas to segment bundle CG, IFO, IL,
length mismatch followed by (ROIs) 9 bundles indentification UN, AF, CCf,
factor fuzzy c-means step2: manually label 2 stepa: cluster remaining (10 subjects) CCp, CCo,
fiber tracts for fiber fibers and identify 2 other PTf, PTp,
cluster recognition bundles PTo
Visser 2011 NL dist. between Hierarchical SS/MS: empirical divide the data and cluster bundle identification SS: AF, CG,
fibers (dscp) clustering clustering parameters / each subset separately UN, IFO, IL
manual labelling of (several repetitions) / keep MS: AF
clusters reproducible clusters across
repetitions
Wang 2011 CA fiber point Hierarchical sometimes requires a voxel-based clustering, use tractography SS/MS: CC,
coordinates and Dirichlet manual merge of clusters clusters from training data segmentation and CST, AF,
orientations processes / manual labelling of as prior information classification IFO, UN, IL,
(voxels) mixture model clusters for training data MCP, BS

List of abbreviations (Remaining abbreviations presented in Table 4.1).
REG. (REGISTRATION METHOD): affine (AFF), congealing algorithm (CA), non-linear (NL).
SINGLE SUBJECT (SS), MULTIPLE SUBJECTS (MS)

Table 4.2: Categorization of fiber clustering methods (multiple subjects). Methods were analyzed in function of the registration method,
the main clustering method and the distance measure, the main anatomical or empirical priors used to recover WM tracts, the main analysis
steps, the main outputs and the successfully identified bundles. The input is whole-brain tractography for all the methods.



Fiber clustering for priorly segmented tracts. Corouge et al. (2004) in their early
work developed an iterative algorithm to reject outliers and to cluster curves to fiber
bundles based on pairwise distance metrics measuring position and shape similarity of
pairs of fibers, described in section 4.4.2. In this work, the inputs were fiber tracts already
extracted from another method and the clustering was used to reject outliers. The method
uses a distance threshold ¢, and a propagation algorithm so that, for each fiber F; within
a class C, at least one fiber F}, j # i in C is such that d(F;, Fj) < t. This is similar to
the algorithms employed by Gerig et al. (2004) and Ding et al. (2003). However, Ding
et al. (2003) use seeding ROIs to construct fiber tracts and determine corresponding curve

segments to cluster fibers.

Fiber clustering for whole-brain tractography datasets. These approaches aim to
reduce the complexity of the data and identify the main white matter fiber tracts.

Zhang et al. applied single-link hierarchical clustering based on the distance described
in equation 4.10 for fiber dataset visualization and analysis [Zhang and Laidlaw (2002);
Zhang et al. (2003)]. In order to remove redundant fibers, the shorter member of any two
pairs of curves that exceeded a prespecified threshold was culled, resulting in a sparse fiber
dataset. They used two kinds of 3D objects to represent the fibers: “streamtubes” and
“streamsurfaces”. Streamtubes, presenting a shape similar to streamlines, were displayed
in regions with high anisotropy. Streamsurfaces were surfaces representing regions with
planar anisotropy.

In [Zhang and Laidlaw (2005)], clusters were matched across two subjects. Datasets
were first roughly registered by matching a bounding box surrounding the whole brain
WM. For each path cluster, the centroids of the starting points, middle points, and end
points were calculated and concatenated to form a nine-valued feature vector. Fiber
clusters from the two subjects were then matched up according to the Euclidean distance

between their feature vectors (see Figure 4.12 (A)).

In Zhang et al. (2008a), the authors presented an improved version of their previous
works [Zhang et al. (2003); Zhang and Laidlaw (2005)]. First, the distance dg; (equa-
tion 4.12) was used for fiber culling, in order to remove "broken short fibers” along a
longer neighbor. Then, fibers were clustered using a single-linkage hierarchical clustering
based on the distance dr; (equation 4.13), which captures any difference between fibers.
The number of clusters was defined using a proximity threshold, which was varied between
0.1 and 10 mm.

An expert rater interactively selected a proximity threshold to achieve visually optimal
clusters, i.e. a solution that appeared to be the most accurate global representation of
known white-matter anatomy. The identified clusters from four subjects were aligned
using an affine registration to build a WM bundle template. This template was used to
automatically identify bundles from two new subjects. The subjects were first clustered

and then, the resulting clusters were registered to the template and matched with labelled
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(A) Fiber clusters across two subjects (B) Fiber bundles identified using a template

Figure 4.12: lllustration of fiber clustering using Hierarchical Clustering. (A) Fiber clusters across two
subjects. Clusters were obtained for each subject using single-link HC and the distance D;, described
in equation 4.10 [Zhang et al. (2003)]. Clusters were then matched up according to a distance between
their feature vectors [From Zhang and Laidlaw (2005)]. (B) Fiber clusters were identified for one
subject, using the method in [Zhang et al. (2008a)]. Clusters were first obtained for each subject using
single-link HC and the distance dy ¢ (equation 4.13), and then were identified using a bundle template
[From Zhang et al. (2008a)].

template clusters using a distance between cluster centroids. The algorithm searched for
a proximity threshold on each new subject that maximized the matching (see Figure 4.12
(B)).

The limitation of this work was the assumption that there exists a threshold that
can segregate a set of trajectories into discrete clusters that are anatomically significant.
Long thick coherent white-matter tracts or those whose geometry is distinct from their
neighbors were identified with high confidence in the fiber bundle models. In contrast,
shorter thinner white-matter tracts like the anterior commissure were almost completely
missing [Zhang et al. (2008a)]. More proximal fiber bundles were not included in the
model, for example, the inferior longitudinal fasciculus with the fronto-occipital fasciculus,
which present close trajectories in the brain. Furthermore, the accuracy of the labeling
results was also likely to be affected by the anatomical variation of a fiber bundle type

across the subjects and the registration errors.

In [El Kouby et al. (2005)], a two-stage inference strategy was proposed, composed
by a first intra-subject clustering and then a matching of bundles across subjects. The
intra-subject clustering was based on white matter voxel connectivity instead of a direct
similarity measure between fiber tracts. First, the subject WM mask was aligned to
Talairach space and parcellated into a grid of cubic ROIs of 5mm. Then, a connectivity
matrix was created, containing for each pair of ROIs the number of fiber tracts crossing
them, and posteriorly binarized. A k-means clustering was performed based on the
Euclidean distance between matrix rows. Final bundles were extracted from WM clusters,
as the fibers included at least a 60% in the cluster. The inter-subject clustering used
smoothed 3D masks to represent bundles. A similarity measure was computed as the
correlation coefficient between bundle representations. Then, a k-means was applied to

match bundles across subjects. The method was applied to eleven subjects, where some
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Figure 4.13: Voxel-based fiber clustering results across subjects, described in [El Kouby et al. (2005)].
The figure shows the results of the clustering for two of the eleven subjects. For each subject two views
are presented. Each color denotes a cluster that gathers bundle across most of the subjects.

known anatomical bundles were identified across most of the subjects (see Figure 4.13).
The analysis of fiber tracts in the voxel domain is an interesting idea but the proposed
implementation required several postprocessings in order to clean-up the results and get
the final bundles.

A recent work proposed by Wang et al. (2011) also clusters voxels instead of fibers.
This work uses fiber point coordinates and orientation to determine the similarity between
voxels. The clustering of the voxels is performed using a hierarchical Dirichlet processes
mixture (HDPM) model. The number of clusters is automatically learned driven by data
with a Dirichlet process prior. The bundle models are learned from training data without
supervision. These models can then be used as priors to cluster (or classify) fibers of
new subjects, with the possibility to create new clusters for structures not observed in
the training data. As in [El Kouby et al. (2005)], the dMRI WM voxels are uniformly
parcellated in order to create the wvozels (or parcels) to be clustered. The size of the
parcels is a parameter used to define the scale of the analysis, e. g. the size of the bundles
(see Figure 4.14 B). The approach used to extract the fiber bundles from the voxel clusters
is not explained. As the method proposed by El Kouby et al. (2005), this work is based
on similarity measures between voxels, instead of computing pairwise distances between
fibers, allowing the analysis of huge tractography datasets. The largest dataset used had
120,000 fibers. The method is compared with the method proposed by O’Donnell and
Westin (2007), over DTI data. Results obtained by Wang et al. (2011) method shown
better completeness and correctness, for the number of clusters determined automatically
by the HDPM approach, even though in some test datasets the authors performed a manual
merge of some clusters in order to segment the anatomical structures. See examples of

segmentations in Figure 4.14 A-B.

This approach is very interesting but some limitations may exist when only using a
voxel-based strategy, without any pre- or post-processing steps. As we will explain in
next chapter, we also use this kind of strategy to cluster fibers, but with the addition
of several pre- and post-processing steps that make the method more robust. We think

that the use of voxel-based clustering alone can decrease the quality of the results when
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Figure 4.14: A voxel-based tractography segmentation method using hierarchical Dirichlet processes
mixture (HDPM) model [Wang et al. (2011)]. A: Anatomical labels of some fiber bundles generated by
the method. B: An example of multiscale clustering. The spatial range of the whole brain is 240 mm x
240 mm x 240 mm. (B7): The clustering result when the space is quantized into voxels of size 12.5 mm
x12.5mm x 12.5mm. The bundles correspond to structures at a large scale. (Bz): One bundle from
(B2). (B3): The space is quantized into voxels of size 3.5 mm x 3.5 mm x 3.5 mm and the bundle in (B5)
is further clustered into smaller bundles corresponding to structures at a finer scale. C: Tractography
errors which generate short broken fibers in (C) and fibers crossing two bundles in (C2).

overlapping bundles exist, i. e. sharing an important amount of voxels (see section 5.3.2).
In general, methods that only use a voxel-based strategy assume that fiber bundles
are not overlapped (see Figure 4.14) which may lead in a loss of fibers and bundles.
For example, in Figure 4.14 C, the method consider errors a short bundle overlapped
with a longer bundle or a bundle overlapped with two other bundles. In these specific
examples, these configuration are probably errors, but other overlapping configurations
may be valid, as several bundle fascicles sharing the central part of a long bundle, or
short association fibers partially overlapped with long deep WM bundles. This issue may
be negligible in the case of DTI tractography datasets using a FA-based propagation
mask, for the study of long association bundles. But in the case of complex tractography
datasets, as those we use in this thesis, this issue is more important. We calculate
HARDI tractography datasets using a T1-based propagation mask (see section 5.4.1)
that allows a better reconstruction of fiber bundles, specially in the subcortical regions,
which is in particular relevant for short association bundles. Fibers of different shape and
length present then a higher overlapping and the study of short association bundles re-

quires a more robust approach. In next chapter we describe how we overcome this problem.
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Brun et al. (2003) presented the idea of pseudo-coloring (soft clustering) fiber tracts
to enhance the visualization of human white matter fiber datasets. A spectral embedding
was used to map each data point to a low-dimensional Euclidean space, using a distance
that only considered the endpoints for a pair of fiber tracts. In [Brun et al. (2004)], the

authors performed a clustering of fiber tracts using Normalized Cuts.

O’Donnell et al. also used spectral clustering to regroup fiber tracts, and find
correspondence between subjects [O’Donnell and Westin (2005); O’Donnell et al. (2006);
O’Donnell (2006)]. To determine the embedding space, the authors used the Normalized
Cut with the Nistrom method [Fowlkes et al. (2004)]. Then, instead of computing the
entire affinity matrix directly, a random sample of paths (~1500) was used to calculate
the affinity matrix and determine the eigenvectors. The affinity was calculated from a
symmetrized version of the mean closest point distance [Corouge et al. (2004)] between
fibers, described in section 4.4.2. Figure 4.15 (A) illustrates the spectral embedding of the
paths. To find matching clusters in all subjects, multiple subjects (spatially aligned) were
simultaneously embedded and used to give a segmentation of the input tractography. In
many cases, an anatomical structure was subdivided into many clusters. Clusters were
manually associated with anatomical labels in order to create a “high-dimensional” white
matter atlas containing a representation of the known anatomical deep WM tracts in the
embedded space [O’Donnell and Westin (2006, 2007)]. The atlas was constructed based
on ten different subjects and was then used to automatic segment the most known fiber
bundles from other five subjects. Figure 4.15 (B) shows an example of the results, where

several well known white matter tracts were identified.

Maddah et al. (2005) used hand-selected ROIs in white matter to construct a bundle
template to which curves from a new subject can be registered. B-spline representation
of the fiber tracts was used for pairwise comparison of the fiber tracts extracted from the
subject to those from the atlas. This supervised clustering compared first the projected

tracts with the major bundles in the atlas and then with the smaller ones.

Maddah et al. presented a statistical model of fiber bundles, calculated as the mean
and standard deviation of a parametric representation of the fibers [Maddah et al. (2007a,
2008a)]. Using this model representation, expectation-maximization (EM) was performed
to cluster the fibers in a Gamma mixture model framework. Point-by-point correspondence
of the fibers within a bundle was obtained by building distance maps from each cluster
center at every iteration of the EM algorithm. The similarity of each trajectory to the
center was done by computing the Mahalanobis distance. A penalty term was added to the
distance for each missing point in order to handle partial overlapping. The distance was
also normalized by the fiber length. Besides, a threshold on the membership likelihoods
was used to identify outliers. The method was only applied to some big fiber bundles.
The result of clustering was the probabilistic assignment of the fiber trajectories to each
cluster, an estimate of the cluster parameters, and point correspondences. This approach

required user initialization, by manually selecting a fiber which is known to be in each
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Figure 4.15: lllustration of fiber segmentation method using spectral clustering [O'Donnell and Westin
(2005); O'Donnell et al. (2006)]. (A) represents the embedding and clustering process. The input
is whole-brain tractography (left). Spectral embedding (center) is performed using the Normalized
Cuts method. This produces a representation of each path from tractography (of a single subject or
multiple subjects) as a point in the embedding space. Finally, a clustering solution is found in the
embedding space, and used to give a segmentation of the input tractography (right). Then embedding
vectors are an actual sample of 500 fibers from the whole population, with the first 3 dimensions
displayed. The colors of the clusters (right) are assigned according to the embedding coordinates. In
many cases, an anatomical structure will be subdivided into many clusters. (B) shows the results of
automatic segmentation for three subjects, using the WM atlas proposed in [O'Donnell and Westin
(2006, 2007)]. To construct the atlas, clusters forming the anatomical WM tracts where manually
labelled [From O’Donnell (2006).]

desired bundle.

Maddah et al. (2008b) proposed a Bayesian approach to incorporate anatomical
information in the clustering of fiber trajectories. An expectation-maximization (EM)
algorithm is used to cluster the trajectories, in which an atlas serves as the prior on
the labels. The authors employed the atlas described in [Wakana et al. (2004)], (see
appendix A), which contains labeled regions of the major anatomical fiber bundles.
Fibers were first projected to the MNI atlas space and the atlas ROIs were used for the
calculation of the initial membership probability of each trajectory. This anatomical prior
gave more robustness to the algorithm but it was still needed to define initial bundle

centers.

Wassermann et al. (2010a) used an anatomical atlas in conjunction with a fiber similar-
ity metric to cluster and classify WM fibers. They proposed a Gaussian process framework
that facilitates mathematical operations between tracts by the definition of an inner prod-

uct space (see section 4.4.2). The model includes diffusion information and relates each
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Figure 4.16: Illustration of WM segmentation using the mathematical framework described in [Wasser-
mann et al. (2010a)]. The procedure clusters WM fibers into anatomical bundles and produces a tract
probability map for each bundle. First, diffusion tensor MR images are registered using a deformable reg-
istration of DT and whole-brain tractography is then calculated to obtain around 10,000 fibers per brain.
The Gaussian process representation for each fiber is subsequently produced. Well-known anatomical
WM tracts were identified from the datasets of 21 healthy subjects, by applying a clustering and a
tract-querying algorithm to each subject individually. Finally a population-averaged tract probability
map can be generated for each bundle [From Wassermann et al. (2010a)].

bundle (or fiber) with an ROI in the volume, mapping every voxel to a degree of member-
ship to the bundle, the bundle’s blurred indicator function. The similarity measure was
defined for fiber bundles and fiber tracts, which are considered as single-fiber bundles.

The method first registers diffusion tensor MR images using a deformable registration
of diffusion tensor [Yang et al. (2008)]. Then, whole-brain tractography is calculated to
obtain around 10,000 fibers per brain. Subsequently, the Gaussian process representation
is produced for each fiber. A hierarchical agglomerative clustering is then applied to each
subject individually in order to obtain a dendrogram. Clusters are automatically selected
by the use of a publicly available atlas that has a parcellation of the brain gyri on the
gray and white matter [Wakana et al. (2004)] as anatomical volumetric information. For
the identification of each WM tract, this step employs a “tract query”, which defines a set
of gray and white matter regions that the tract must traverse. Well-known anatomical
WM tracts like the arcuate or the uncinate fasciculus were identified for datasets of 21
healthy subjects. Finally, the authors created population-averaged tract probability maps
for each identified bundle (see Figure 4.16).
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Li et al. (2010) proposed an hybrid top-down and bottom-up approach for automatic
clustering and labeling of WM fibers, which utilizes both brain parcellation results and
similarities between WM fibers. The top-down step is first applied to the fiber dataset.
This is an anatomy guided clustering, aiming to group WM fibers based on the brain
regions they penetrate or pass. The MNI atlas was used to parcel the subject’s DTT im-
ages and label WM /GM structures. This ROI-based step extracts 9 major WM bundles
from tractography data, following an specified order for the extraction of each bundle.
First, corpus callosum fibers connecting frontal, parietal and occipital lobes are extracted,
followed by fibers forming the projection tracts penetrating the frontal, parietal and occip-
ital lobes. Finally, the cingulum, the inferior fronto-occipital and the inferior longitudinal

fasciculus consecutively obtained.

The second step, based on a similarity-based clustering aims to separate and identify
two other bundles (superior longitudinal and uncinate fasciculus). First, a nonlinear
method of kernel principal component analysis (PCA) is used to project the remaining
fibers onto a principal component space. Then, a fuzzy c-mean clustering algorithm is
applied to automatically group the fibers in the feature space. The Hausdorff distance
[Corouge et al. (2004)] is used as the fiber similarity metric, with the addition of a fiber
length mismatch factor. Once the clusters were obtained, a feature-based recognition
algorithm is applied based on a manual fiber bundle extraction method [Wakana et al.

(2007)] and the construction of a histogram of fiber endpoint GM regions.

In a recent work, Visser et al. (2011) proposed a clustering method of WM fibers
that can be applied to large tractography datasets. The input tracts are first randomly
partitioned into subsets of Ny = 10,000 tracts. Each subset is then clustered separately,
based on the assumption that the clusters found in these subsets are, to some degree,
similar to those that could be found when clustering the entire original dataset at once.
A hierarchical clustering with complete linkage is performed to cluster the fiber tracts of
each subset using the sum of the Fuclidean distances between corresponding points fiber
similarity measure (see section 4.4.2). An arbitrary number of clusters (/V;) is then defined

and used to get the final partition, large enough to avoid merging major anatomical tracts.

The procedure of creating subsets and clustering is repeated a defined number of times
(N,), called repetitions; in practice N, was set to 100. Results from all repetitions are
then combined, using a cluster matching procedure across realisations, in order to find
coherent clusters in the original dataset with good reproducibility. A pruning procedure is
finally performed to remove fibers with low reproducibility scores. Results are presented
for a single subject, where 4 known long WM tracts and one U-fiber bundle were identified
using N, equal to 500. The method was also applied to a dataset containing data from
15 subjects in order to find corresponding bundles across subjects. For this analysis,
another number of clusters was used, equal to 350. Results are only shown for the arcuate

fasciculus (see Figure 4.17).
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Figure 4.17: lllustration of the partition-based WM fiber clustering described in [Visser et al. (2011)].
A: Some clusters (1/9 of the 500 clusters) obtained by clustering streamlines in a single subject. B:
Clusters corresponding to cingulum (yellow, three clusters), inferior fronto-occipital fasciculus (green),
inferior longitudinal fasciculus (red) and uncinate fasciculus (blue). A cluster of U-fibers is shown in
purple. C: Long segment of left arcuate fasciculus across 15 subjects. Spurious tracts were pruned by
applying a threshold of 50, i.e. half the number of repetitions, to the number of assignments to the
final cluster [From Visser et al. (2011)].

4 5 Quantitative DW measures across bundles
[

As we mentioned in previous chapter, diffusion MRI provides in-vivo measures
reflecting the underlying tissue properties. A comparison of diffusion measurements be-
tween populations can then be performed in order to study, for example, the brain develop-
ment or neurological disorders. Furthermore, this analysis can help on the identification of
potential brain targets for new therapeutic interventions and the evaluation of the efficac-
ity of new treatments [Johansen-Berg and Behrens (2009)]. Two main types of approaches

have been proposed: wvozel-based and tract-based quantification of diffusion indexes.

Voxel-based DW quantitative analyzes perform the calculation of diffusion invariant
statistics over the WM voxels. Early works measured mean FA or other scalars in ROIs
within tracts. For example Kubicki et al. (2003) studied mean FA, trace of DT, and mean
area of a segmented part of the cingulum for schizophrenia patients compared with normal
subjects.

Other approaches quantify average diffusion measures for each tract [Jones et al.
(2006); Hua et al. (2008)]. Hua et al. (2008), for example, used probabilistic maps of
some WM tracts to perform automated tract-specific quantification of FA and MD, by
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Figure 4.18: Example mean FA image (grayscale) underneath the unthresholded (left) and thresholded
(at FA = 0.2) (right) skeleton calculated by Tract-Based spatial statistics method (TBSS) [Smith et al.
(2006)]. In each subject, locally high FA values are then aligned (or projected) to the group FA skeleton
to then perform voxelwise statistics across subjects [From Johansen-Berg and Behrens (2009)].

the calculation of weighted average of these quantitative parameters. This probabilistic

approach was proposed for MRI datasets without tractography data.

Wassermann et al. (2010a) also used population-averaged tract probability maps
for a set of known WM bundles, identified using an atlas-based clustering method (see
section 4.4). For each bundle, extracted from each subject, the authors quantified
its similarity with respect to the corresponding population-averaged bundle using a
normalized similarity metric, that quantifies the overlapping of two bundles using an

inner product operation (see section 4.4.2).

Other voxel-based methods quantify diffusion along tracts that are approximately
perpendicular to some image plane. These approaches can use anatomical landmarks
for registration and image slices for quantification. For example, Wakana et al. (2007)
projected manually extracted 3D tracts to one anatomical axis, for calculating tracts size
(in voxels), FA and T2 values. For inter-subject analysis, tract-specific profiles of FA and
T2 were determined along the tracts. The tract length was normalized using anatomical
landmarks along its course for alignment purposes. For example, the CST was segmented
into the midbrain, internal capsule, and corona radiata regions. The length of these sep-

arate regions from each subject was then linearly adjusted before group profile comparison.

Using a more sophisticated approach, Smith et al. (2006), proposed a “skeletonization”
of white matter, called TBSS, Tract-based spatial statistics. This approach uses spatial
skeletons to define locations likely to correspond to central parts of fiber bundles in order
to perform statistical analysis of DTI. First, a mean FA image is calculated using non-
linear registration. Then, a skeletonized mean FA is calculated using thinning and then

applying an above threshold (see Figure 4.18).
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In each subject, locally high FA values are then aligned (or projected) to the group
FA skeleton. For that, at each point in the skeleton, the subject’s FA image is searched
in the perpendicular tract direction to find the maximum FA value and assign it to the
skeleton voxel. Finally, voxelwise statistics across subjects are performed (voxel-based
morphometry, VBM [Ashburner and Friston (2000)]). A disadvantage is that by working
in a voxel coordinate system the method could mix information from nearby but differ-
ently oriented tracts [O’Donnell et al. (2009)]. The advantage is that it is automatical,
solve alignment and smoothing problems and allows the investigation of the whole brain
[Johansen-Berg and Behrens (2009)].

An approach closer to TBSS was proposed by [Kindlmann et al. (2007)], using
“anisotropy creases”. The method extends to tensor fields the notion from classical
computer vision of ridges and valleys, calculated using differential geometry applied to
DT data. Anisotropy creases are used to extract a surface skeleton of the major WM
pathways, in that ridges of anisotropy coincide with interiors of fiber tracts, and valleys
of anisotropy coincide with the interfaces between adjacent but distinctly oriented tracts.
Compared to TBSS, this analysis leads to a potentially more accurate modeling of FA

structure [Johansen-Berg and Behrens (2009)].

Tract-based DW quantitative analyzes use 3D tracts extracted from tractography
datasets to perform the statistical analysis of diffusion properties along tracts.

These approaches commonly use generated coordinate systems based on fibers, in
order to handle different fiber tract shapes and find fiber paths correspondences along the
length of the fibers.

A statistical bundle model with point correspondences along fibers was constructed
using an unified method for fiber clustering and measurement [Maddah et al. (2008a)],
described in section 4.4. The method employs an EM algorithm to cluster the trajectories
in a Gamma mixture model. A distance map and a labeling map are used to obtain
the correspondence between fiber points and a cluster center. The mean and standard
deviation of cluster shape and FA values along the normalized arc length of the cluster
centers were calculated for five bundles (see Figure 4.19). This method is based on bundle
centerlines so it is well-suited for tubular structures, but larger sheet-like structures like

the corpus callosum have to be divided into several tubular bundles.

In other work, Corouge et al. (2006) proposed a method for within-subject parameter-
ization of fiber tracts by arc length. The method requires the manual specification of a
cutting plane defining common start points on all fibers used to determine corresponding
points. Coordinates are assigned to each fiber based on the (positive or negative) distance

along the fiber from the cutting plane. Distance along fibers were determined using spline
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(a) distance map (b) label map (c) bundles (d) bundle models

Figure 4.19: Quantitative analysis of WM tracts using distance maps for point correspondences along
fibers, proposed by Maddah et al. (2008a). (a) Distance map from sample points on a cluster center
and (b) the point correspondence label map with the center overlaid. Each region in the label map,
displayed by a different color, consists of all the points in the space that have the minimum distance to
a specific point on the cluster center. Therefore, projecting any curve onto this label map determines
the point correspondence of each of its samples to the center based on which region that sample
is located. (c) Trajectories of 5 different clusters used for quantitative analysis: splenium (yellow),
corticospinal (red), corticobulbar (green), middle cerebellar peduncle (blue), and genu (magenta). (d)
A model representation of the bundles as the mean trajectory and the isosurfaces corresponding to
spatial variation of the clusters [From Maddah et al. (2008a)].

representation of the fibers and Procrustes analysis. A mean fiber was obtained to model
the fiber tract shape and parameterize DT along the fibers. DT were averaged across
corresponding longitudinal positions to create mean tensor values along the mean fiber.

Profiles of FA, MD and eigenvalues were constructed for several single-subject fiber tracts.

Yushkevich et al. (2008) employed a method to project white matter information to a
medial representation of pre-defined sheet-like white matter tracts. First, average tensor
images from all subjects are created in standard space. Tractography is then performed
over the average DT images and the major WM tracts are manually segmented [Wakana
et al. (2004)]. Segmented tracts are subsequently fitted with deformable geometric medial
models. Then, tensor-derived quantities lying on the interior of a fasciculus are projected
onto its medial manifold along the direction orthogonal to the boundary of the fasciculus
(called spoke direction). Two strategies are used to perform this dimensionality reduction.
The first one, for each point on the surface, finds the location of the highest FA and
assigns its diffusion features to the point. The second strategy averages tensor-based
features along the spoke direction. The method establishes a canonical two-dimensional
coordinate space for the fasciculi where the results from different white matter studies
can be compared. This parametric representation allows then statistical mapping of
individual fasciculi and provides an easy and attractive way to visualize and interpret
statistical differences. This method seems to be more robust than TBSS, where the
skeletonization is applied to the set of all voxels with above-threshold FA, resulting in a
skeleton consisting of hundreds or thousands of branches, some of which may be spurious
and sensitive to noise [Yushkevich et al. (2008)]. However, this framework is inappropriate

for non sheet-like tracts, such as the cingulum and the fornix.
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Figure 4.20: Tractography-based medial (skeletonized) representation of tract structure [Yushkevich
et al. (2008)]. Top left: Fiber tracking results for the six selected fasciculi. Bottom left: Skeletons of the
models fitted to the six fasciculi. Right: The result of projecting tract-center MD values onto the medial
surfaces, and then testing statistically across subjects. T-statistic maps on the medial surfaces show
where MD is significantly different in patients with pediatric chromosome 22q11.2 deletion syndrome,
compared with controls [Adapted from Yushkevich et al. (2008) and Johansen-Berg and Behrens (2009)].

In Zhang et al. (2009), the authors proposed a tract-specific framework for WM
morphometry combining macroscopic and microscopic tract features. The method uses the
skeleton-based modeling of sheet-like WM fasciculi using continuous medial representa-
tion, described by Yushkevich et al. (2008). This medial representation allows the creation
of a thickness map for each tract of each subject, providing a macroscopic characterization
of WM tracts. Diffusion features are also projected onto the same skeleton surface of each
subject, using highest FA strategy [Yushkevich et al. (2008)], for the characterization of
microstructural WM features. The framework allows nonparametric statistical mappings
of group differences on thickness and diffusion properties. Also, a multivariate analysis can
be performed, to directly exploit the relationship between thickness and diffusion prop-

erties. The framework was used to quantify WM atrophy in Amyotrophic Lateral Sclerosis.

In Goodlett et al. (2009) the authors propose a framework for statistical comparison
of fiber bundle diffusion properties between populations of diffusion tensor images. First,
unbiased diffeomorphic atlas building for DTT is used to compute a normalized coordinate
system for populations of diffusion images. Diffeomorphic transformations between each
subject and the atlas provide spatial normalization which is used to parametrize tract
oriented measures across a population. Diffusion properties, such as fractional anisotropy
(FA) and tensor norm, along fiber tracts are modeled as multivariate functions of arc
length and are statistically compared in order to find significant differences between
populations. The method was tested on two clinical studies of neurodevelopment for some
tubular bundles as the splenium and the genu of the corpus callosum and the corticospinal

tract.
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Figure 4.21: Tract-based morphometry (TBM) method [O'Donnell et al. (2009)]. (a), (b) and (c)
figures show arc length parameterizations in color, for the entire bundle and in a zoomed region (dashed
square), for three different fiber coordinate systems: cutting plane (PL), distance map (DM) and
optimal point match method (OP). In gray, the leftmost DM image gives an example of regions that
were excluded during matching. Note that PL is less spatially consistent, and DM is adversely affected
by prototype curvature at lower size scales. As fibers leave the structure and before they are truncated,
OP is more likely to increment the arc length than DM, leading to subtle differences at 6 mm. (d)
Interhemispheric FA analysis for 4 mm scale in cingulum (top) and arcuate fasciculus (bottom). For each
arc length coordinate, each subject’'s mean FA was computed for the left and right bundles. The (group)
mean and standard error of these per-subject means is shown vs. arc length in mm (left column). The
multiple comparison corrected p-value for significant difference is overlaid on a sample of fibers from
the group (right column) [From O'Donnell et al. (2009)].

In a recent work, O’Donnell et al. (2009) proposed an approach called tract-based
morphometry (TBM), first presented in [O’Donnell et al. (2007)], for WM fiber tracts
group analysis using subject-specific tractography bundle segmentations. The method
generates an arc length parameterization of the bundle with point correspondences
across all fibers and all subjects. The authors present a quantitative comparison of
fiber coordinate systems from the literature: cutting plane (PL) [Corouge et al. (2006)],
distance map (DM) [Maddah et al. (2008a)] and a new optimal point match method
(OP). The OP method was found to reduce spatial distortion and to improve intra- and
inter-subject variability of FA measurements. The method also allows the generation of

arc length correspondences across hemispheres, enabling, for example, a TBM study of
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interhemispheric diffusion (FA, MD, eigenvalues) asymmetries in the arcuate fasciculus

and the cingulum bundle (see Figure 4.21).

In Wassermann et al. (2010b), the authors presented a skeleton-based tract-specific
statistical analysis on WM tracts. This method models each tract by the skeleton of its
tract probability map (TPM), obtained by the clustering method presented in Wassermann
et al. (2010a) (see section 4.4). The skeleton is obtained using an adapted version of the
thinning algorithm of [Smith et al. (2006)]. Once the skeleton has been created, all the
voxels within the thresholded TPM are projected to the closest point on the skeleton (see
Figure 4.22). For that, the scalar diffusivity measure is calculated at every selected voxel
and projected to the skeleton by following the direction perpendicular to the skeleton at
the voxel, until the skeleton is reached. These diffusivity values are averaged according to
their probability of being in the bundle (given by the TPM). Finally, for each voxel in the
skeleton, a voxel-based analysis is performed in order to find voxels presenting differences
among patients and controls. The method was applied to find the differences between 34
schizophrenia patients and 24 healthy controls. The advantage of this method is that it is

not bound to a sheet- or tube-representation.

Starting from the Itis skeletonized in order to _For each patient, the values of This produces two Finally, voxel-wise analysis
population-averaged have 2D (or 1D if it is the FA (or other quantity) around  populations of projected s carried on at each voxel.
tract probability map ~ tubular like the cingulum) the tract are projected to their — functions on the skeleton, In this case Mann-

(TMP) representation on it closest point on the skelgton and  one for patients and one Withney's U test. The red
averaged (with a weight for healthy subjects  areas have a p-value <.01

according to the TPM)

Figure 4.22: Skeleton-based tract-specific statistical analysis on a WM tract [Adapted from Wassermann
et al. (2010b)].

4 6 Conclusion
[ ]

In this chapter we presented a review of the more relevant WM fiber clustering
and fiber bundle identification approaches. These methods require the use of clustering
algorithms for fiber tracts regrouping, and fiber distance measures for the evaluation of
fiber closeness. For the identification of known anatomical WM tracts, the addition of
anatomical information is also needed, being it most of the time in the form of GM/WM
atlases or labeled cluster centroids.

The clustering and identification of WM tracts is a complicated task for several rea-
sons. First, anatomical WM tracts present different shapes and sizes and several bundles
overlap over a non-negligible portion of their trajectory. Second, even though the relative
localization of WM tracts remains the same across subjects, inter-subject variability is very
important. Shape and size of white matter tracts change across subjects, requiring the use

of sophisticated methods for WM tracts alignment and identification. Furthermore, the
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analysis is highly dependent on the quality of DW images (i. e. spatial and angular resolu-
tion), as well as on the diffusion local model and tractography algorithm. All these aspects
impose a challenging robustness to the analysis that is rarely satisfied. Besides, new high
resolution DW-images allow the computation of huge tractography datasets, wich can not
be analyzed with state-of-the art fiber clustering methods.

Most proposed approaches are focused on the clustering and identification of known
DWM tracts. Until now, short association SWM tracts, have been poorly studied, and
their identification is still an opened research area.

Therefore, we have focused our work in the development of a fiber clustering algorithm
able to deal with very big tractography datasets for the identification of DWM and SWM
tracts. Next chapter will describe the strategy we adopted to cluster intra-subject fiber

datasets, allowing an important dimensionality reduction for further analyses.

112



Part 111

Methods

113






CHAPTER 5

Intra-subject fiber clustering

Contents
5.1 Introduction . ... ... .. ...ttt 117
5.1.1 Previousworks . . . .. ... L L 117
5.1.2 Mainoutput . . .. ... Lo 118
5.1.3 Tractography dataset size . . . . . ... ... ... ... ... .. 119
5.1.4 Hierarchical fiber clustering overview . . . . . . . ... ... ... 120
5.2 Robust intra-subject fiber clustering . . . . ... ... ... ... 122
5.2.1 Step 1: Hierarchical decomposition . . . . . . ... .. ... ... 122
5.2.2  Step 2: Length-based segmentation . . . . . ... ... ... ... 122
5.2.3 Step 3: Voxel-based clustering . . .. ... ... .. ... .... 123
5.2.4  Step 4: Extremity-based clustering . . . . .. ... ... ..... 130
5.2.5 Step 5: Fasciclemerge . . . . .. ... oL 132
5.3 Method validation and parameters tuning .. .......... 135
5.3.1 Whole method evaluation using simulated datasets . . . . . . . . 136
5.3.2 Cost of scalability . . . . ... ... . 0L 140
5.3.3 Clustering parameters setting . . . . . .. ... ... ... .. .. 143
5.4 Intra-subject fiber clustering results . . ... ... ... ..... 144
5.4.1 A Tl-based tractography propagation mask . . . . ... ... .. 144
5.4.2 Adult HARDI datasets . . . . ... .. ... ... ........ 148
5.4.3 Child DTT datasets . . . . . .. . ... . . 150
5.5 Applications . . . . . . . i i i e e e e e e e e e e 153
5.5.1 Physical phantom . . ... ... ... 0oL 153
5.5.2  Top-down decomposition of large known WM tracts . . . .. .. 156
5.6 Discussion . . . . . v ittt i e e e e e e e e e e e e e 158
57 Conclusion . .. .. ... i e 159

115



Overview

Diffusion Magnetic Resonance Imaging allows noninvasive study of brain white matter
structure through the measurement of the diffusion of water molecules. The local fiber
orientation distribution can be inferred from this data and fiber trajectories can be recon-
structed using tractography algorithms. A wide variety of acquisition schemes, diffusion
models and tractography algorithms have been proposed in the literature. There is no con-
sensus yet on the best choices. An interesting way to compare the alternative approaches
lies in the further exploitation of the large sets of generated tracts for performing fiber
bundle segmentations.

As discussed in the previous chapter, various strategies have been proposed for the
segmentation of a set of diffusion-based tracts. Within the most recent approaches, meth-
ods based on tract clustering using a pairwise distance between fibers have shown to be
a powerful tool for the study of diffusion-based tract structure. The main problem of the
standard tract-clustering strategy is the computational load related to the manipulation
of the pairwise distances.

In order to overcome this limitation, in this chapter we develop a sequence of algorithms
performing a robust intra-subject hierarchical clustering that can deal with millions of
diffusion-based tracts. The end result is a set of a few thousand homogeneous bundles.
The method only relies on the tract geometry. This simplified representation of white
matter can be used further for group analyses. The bundles can also be labelled using
ROI-based strategies in order to perform bundle oriented morphometry. A large amount
of the final bundles are putative U-fiber tracts connecting cortical areas separated by a
few folds.

The robustness of the method is checked first using simulated tract datasets. The com-
plete method is then applied to the tracts computed from HARDI data obtained for twelve
adult brains. The method is also tested with the tracts obtained from two children using
lower angular resolution acquisitions and a tensor model. Finally, the method is applied to
the data issued from an actual phantom containing a plethora of realistic crossing, kissing,
splitting and bending fiber configurations. This last experiment illustrates the interest of
our compression method for comparing different tractography algorithms.

Additionnaly, we describe the creation of a robust propagation mask stemming from
T1 anatomy, which, in conjunction with tractography techniques, improves the accuracy
of the anatomical connectivity of the brain by reducing false positives and increasing the

detection of the subcortical connectivity.
Keywords: white matter clustering, fiber tracts, fiber clustering, fiber distance, fiber

similarity measure, voxel-based clustering, hierarchical clustering, extremity-based clus-

tering
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Organization of this chapter:

The chapter is organized as follows. We first give a brief overview of previous works
and the proposed method in Section 5.1. Then, we detail our hierarchical intra-subject
fiber clustering method in Section 5.2. Method validation and parameters tuning issue
are subsequently addressed in Section 5.3. Results are then presented in Section 5.4. Two

applications are described in Section 5.5.

5 1 Introduction
[ ]

The analysis of white matter organization from the results of tractography methods is

a delicate task. The “spaghetti plate” made up by the tracts resulting from the current
methods, indeed, is far from being a perfect representation of white matter structure. The
poor spatial resolution of diffusion acquisitions puts strong limitations on the diameter of
the bundles that can be mapped. Moreover, the difficulties raised by the numerous fiber
crossings and white matter bottlenecks result in many spurious bundles. Furthermore,
the arise of high angular resolution diffusion imaging (HARDI), in combination with more
complex diffusion local models and tractography algorithms generates each time more
complex and bigger tractography datasets. The analysis of diffusion-based tracts is then
far from being a simple and solved problem and new methods are continuously developed
in order to deal with the increasing complexity of the data.

Various strategies have been proposed for the segmentation of a set of diffusion-based
tracts. In this introductory section we resume the different approaches used until now,
which were described in more details in the previous chapter. The main motivations
that pushed us to develop our clustering strategy are subsequently described. Finally, we

present a brief overview of our hierarchical fiber clustering.

5.1.1 Previous works

The simplest approach proposed for the segmentation of a tractography dataset is based
on regions of interest (ROI) used to select or exclude tracts [Wakana et al. (2007); Catani
and Thiebaut de Schotten (2008)]. A specific set of ROIs can be defined more or less
interactively for each subject in order to highlight a well-known anatomical WM tract.
This approach has been employed to create single-subject white matter tract atlases [Mori
et al. (2005); Lawes et al. (2008)]. An attractive extension of this approach consists
in using a group of subjects to create probabilistic maps of the resulting WM tracts in
a standard space after spatial normalization [Hua et al. (2008)]. Then, a set of ROIs
can be defined from the probabilistic maps to catch the same WM tracts in any other
subject. Alternative methods define WM tracts from a voxel-based clustering relying on
similarity measures between the local diffusion data [Bazin et al. (2009); Wassermann
et al. (2008)]. Intermediate strategies consists in clustering white matter voxels according

to similarity measures based on the tracts that cross them [El Kouby et al. (2005); Wang
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et al. (2011)]. These voxel-based approaches can use their segmentation of white matter
to split the set of tracts into pieces. Finally, a number of methods propose to infer the
tract clustering from pairwise similarity measures defined in the tract space [Ding et al.
(2003); Corouge et al. (2004); Gerig et al. (2004); Brun et al. (2004); O’Donnell et al.
(2006); Visser et al. (2011)]. This last strategy can embed a priori knowledge represented
by WM tract templates [Maddah et al. (2005); O’Donnell and Westin (2007)]. Other
recent hybrid approaches extract the most known WM tracts by the combination of a
priori information given by a GM/WM atlas and a fiber clustering based on a similarity
measure [Wassermann et al. (2010a); Li et al. (2010)]. For more details on these fiber

segmentation methods, see chapter 4.

Within the proposed methods for white matter segmentation and analysis, approaches
based on tract clustering using a pairwise distance between fibers have shown to be a
powerful tool for the study of diffusion-based tract structure. These methods allow the
segmentation of tractography datasets into fiber clusters containing fibers of more or less

similar shape and position.

5.1.2 Main output

Most of the proposed methods are focused in finding directly clusters with anatomical
meaning, where a priori anatomical knowledge is given by a GM/WM atlas [Wassermann
et al. (2010a); Li et al. (2010)] or a bundle template [Maddah et al. (2005, 2007b, 2008a)]
and Wang et al. (2011)?? Other works apply a first step of fiber clustering [Zhang et al.
(2008a); O’Donnell et al. (2006); Visser et al. (2011)] and then a second step that embeds

a manual labelling of the clusters for the identification of known WM tracts.

In our thesis work we preferred the second approach, since a first intra-subject fiber
clustering can be considered as a first-level processing stage consisting in a compression
operation that enables the posterior analysis and segmentation of WM structure. We
propose then an intra-subject clustering method that only relies on the tract geometry and
does not use any strong anatomical a priori knowledge. The motivation for developing this
kind of method is the further exploitation of the resulting fiber clusters, in order to, not
only identify known WM tracts, but, more interestingly, allow a deeper study of known
WM tracts structure and the identification of new WM fiber tracts.

The hierarchical decomposition provided by our method aims, then, at providing the
possibility to develop a bottom-up strategy for the study and decomposition of large WM
pathways. An example is provided in section 5.5 for the arcuate fasciculus. Furthermore,
an interesting research topic is the analysis of the large amount of putative U-fiber tracts,

connecting cortical areas separated by a few folds, obtained for each subject.

In next chapter, we will show that the simplified representation of white matter given
by our intra-subject clustering can be used for group analysis and the inference of a brain
fiber bundle model [Guevara et al. (2010)].

118



5.1.3 Tractography dataset size

The main problem of the standard tract-clustering strategy is the computational load re-
lated to the manipulation of the pairwise distances. Some clustering methods need the
computation and storage of the full matrix of pairwise distances. For dataset size over a
few tens of thousands fibers, this requirement becomes prohibitive. Other clustering algo-
rithms reduce the disk space requirements by storing the matrix using a more compressed
representation, like a sparse matrix or a weigthed graph. However, the computation of all

the pairwise distances is still required.

To overcome in part this limitation, O'Donnell et al. (2006) proposed a method that
determines features from a single random subset of a multiple subject whole brain set
of streamlines. These features are then used to assign the remaining streamlines. The
limitation of this two-step approach is that the results are heavily influenced by any errors

or bias introduced by the particularities of the initial random subset [Visser et al. (2011)].

Visser et al. (2011) overcome the problem of needing to store a full matrix of pairwise
distances by randomly partitioning all the tracts in the dataset and clustering the smaller
resulting subsets. The method expects that the clusters found in these subsets are, to some
degree, similar to those that could theoretically be found when clustering the entire original
dataset at once. By repeating the procedure and combining the results from all repetitions,
the method can find coherent clusters in the original dataset with good reproducibility.
In this approach, the processor time scales linearly with the number of streamlines. A
limitation is that the method requires the pruning of the final clusters. This process in
some cases could filter out fibers that could be interesting for more detailed analyses like

a decomposition of known bundles.

Besides, a disadvantage of the two mentioned methods is the initial definition of the
number of clusters, from which final results are highly dependent. Our method, does not
require the number of clusters as a priori parameter. Other parameters are of course
needed, but most of these are set in function of tractography data itself. In section 5.3 we

will address in more detail the parameters tuning issue.

An efficient solution consists in basing the fiber clustering method on a clustering
performed in the space of white matter voxels, as proposed by El Kouby et al. (2005)
and Wang et al. (2011) (see section 4.4). During this clustering, white matter voxels are
merged when they are connected by several tracts, leading to reconstruct gross masks
of the underlying bundles. Each mask is then used to obtain a small set of related fibers
representing individual fiber clusters. This strategy scales up well when a detailed sampling
of the white matter structure is required by the application. However, the individual
clusters directly obtained by this method contain a big number of overlapping bundles, a
phenomenon that reduces the quality of the final individual clusters and group analysis

results.
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5.1.4 Hierarchical fiber clustering overview

As described earlier, dealing with millions of tracts presents a challenge to any clustering
algorithm. In order to overcome the limitation of tratography dataset size without the loss
of meaningful information, in this chapter we develop a sequence of algorithms performing
a robust intra-subject hierarchical clustering that can deal with millions of diffusion-based
tracts. The method uses a hierarchical decomposition of the fiber set, based on several
consecutive steps.

The strategy adopted to efficiently deal with tractography dataset size limitation is
the inclusion of a step using a voxelwise segmentation of white matter. This approach is
based on the measure of connectivity between white matter voxels, proposed by El Kouby
et al. (2005). Other steps are added before and after this main step in order to increase
the quality of the voxel-wise clustering. All the processing steps are conceived and chained
in a way that gives robustness to the whole analysis. The end result is a set of a few
thousand homogeneous bundles, representing the whole diffusion-based tracts structure,
that can be used in subsequent processing stages, in order to perform group analyses.

Here is a sketch of the complete hierarchical decomposition resulting from this tuning,

made up of five main steps (see Figure 5.1):

Step 1: Hierarchical decomposition. The complete tract set is segmented into right
hemisphere, left hemisphere, inter-hemispheric and cerebellum tracts. This segmen-
tation is achieved using hemisphere and cerebellum masks. The following steps are

applied separately to each subset.

Step 2: Length-based segmentation. Tracts are split into different groups of similar
length. Partially overlapping bundles of different length are then separated into
different groups.

Step 3: Voxel-based clustering. A connectivity-based parcellation of white matter
is performed using an average-link hierarchical clustering. Fiber clusters are then

extracted from white matter clusters.

Step 4: Extremity-based clustering. FEach fiber cluster is split further into partially
overlapping homogeneous fascicles, from a clustering applied to the extremities of the
tracts. A watershed approach is used to detect 3D regions with high tract extremity

density. Each pair of such regions is defining a homogeneous fascicle.

Step 5: Fascicle merge. A final clustering is performed to merge fascicles with very
similar geometries that could be over-segmented in the preceding steps. A centroid
tract is computed as a representative for each significant fascicle. These centroids
are clustered using an average-link hierarchical clustering and a pairwise distance

between centroids.

The whole method is detailed in the following section.

120



| sTEP1 - FIBER suBsETs |

INPUT DATA

nghthemlsphere left hemlsphere inter-hemispheric  cerebellum
fiber subset fiber subset fiber subset fiber subset

FOR EACH FIBER SUBSET
| STEP 2 - FIBER GROUPS @ OR EACH FIBER SUBS !
/ 7 Wy

whole brain
fiber dataset

R

short flber groups ---------------------- -------=>  long fiber groups

J STEP 3 - FIBER CLUSTERS ! u FOR EACH FIBER GROUP |

Hierarchical Clustering | | ?W TW

AR il

=5 f
group mask WM random parcels WM clusters eXtE;ang?grslber

FOR EACH EXTRACTED FIBER CLUSTER |
" STEP 4 - FIBER FASCICLES

J ) ) :
extracted fiber watershed over fi :
e iber fascicles group flber
cluster extremities teeticlos
FOR ALL SET FASCICLES
4 STEP 5 - FIBER BUNDLES J E

centroid
‘ dlstance

Hlerarch_lcal '
; ﬁ Clustering final subset fiber bundles

fascicle i ;
centroid Ssubset fascncle centroids g,

Figure 5.1: A general scheme of the fiber segmentation method: STEP 1: Hierarchical decom-
position: The complete tract set is segmented into four main fiber subsets. STEP 2: Length-based
segmentation: Fibers from each subset are separated into different groups, containing fibers of sim-
ilar length. STEP 3: Voxel-based clustering: Fibers from each length group are clustered through
a white matter connectivity-based parcellation. Fiber clusters are extracted from the resulting white
matter cluster masks. STEP 4: Extremity-based clustering: extracted fiber clusters are divided into
fascicles using fiber extremities. STEP 5: Fascicle merge: Fiber fascicles are clustered together across
subsets using a pairwise distance between fascicle centroids.
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5 2 Robust intra-subject fiber clustering
[ ]

As described in the introduction, the proposed method is an intra-subject hierarchical
fiber clustering made up of five main steps (cf. Figure 5.1). The processing steps are
conceived and chained in a way that give robustness to the whole analysis. A crucial
step (Step 3: Voxel-based clustering) performs a clustering in the space of white matter
voxels. This strategy enables the whole method to deal with huge fiber datasets. Other
preliminary steps of the decomposition (Step 1: Hierarchical decomposition) and (Step 2:
Length-based segmentation) are used to split the tracts before the voxel-wise clustering
in order to reduce the amount of overlapping bundles and improve the quality of the
results. A post-processing step (Step 4: Extremity-based clustering) was included in order
to improve the final clusters and add robustness to the whole method. Finally, a last
step (Step 5: Fascicle merge) was added in order to agglomerate fiber fascicles that were
over-segmented in preceding steps. In the following sections we detail each step of our

intra-subject clustering method.

5.2.1 Step 1: Hierarchical decomposition

The complete fiber set is first segmented into four parts, called subsets (see Figure 5.2).
The segmentation is performed using a mask of hemispheres and cerebellum provided by
BrainVISA! [Mangin et al. (1996)]:

1. Fibers included in left hemisphere;

2. Fibers included in right hemisphere;

3. Fibers partly included in each hemisphere;
4

. Fibers passing mostly through the cerebellum.

The split and merge strategy performed during the following steps is applied separately
to each of the four subsets.

This segmentation step was implemented based on the observation that most analysed
WM tracts are completely comprised in only one hemisphere, then a segmentation of
fibers into the two hemispheres is suitable. Furthermore, WM tracts partly included in
each hemisphere share an important part of their trajectories with WM tracts included
only in one hemisphere. Therefore, the separation of these subsets importantly reduces the
amount of overlap between the underlying bundles. The same observation can be applied
for WM tracts passing mostly through the cerebellum.

Figure 5.2 shows the used WM mask and an example of segmented fibers.

5.2.2 Step 2: Length-based segmentation

Each fiber subset is split into different fiber groups containing fibers of similar lengths.

This step is a key contributor to the robustness of the whole process, because overlapping

http:/ /brainvisa.info
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Figure 5.2: Hierarchical decomposition of WM fibers (Step 1). The complete tract set is segmented
into four main fiber subsets: left hemisphere, right hemisphere, inter-hemispheric and cerebellum. A:
The mask of hemispheres and cerebellum, provided by BrainVISA. B: An example of decomposition.

bundles are rarely attributed to the same group. Less overlap results in easier clustering
tasks for the following steps. Indeed, two bundles sharing a white matter bottleneck
are difficult to split during voxel-based white matter segmentation. Note that the last
processing step (Step 5) aims at overcoming oversplitting that may occur during Step 2
when a fiber bundle length is too close to one of the arbitrary thresholds defining the
groups. Note also that the length-based segmentation yields an ideal way to process the
data in parallel in order to get important speed-up. The default number of fiber length
groups was set to ten, with the following fiber lengths: 20-35 mm, 35-50 mm, 50-65 mm,
65-80 mm, 80-95 mm, 95-110 mm, 110-130 mm, 130-150 mm, 150-175 mm and 175-200 mm.
If a tractography dataset contains longer fibers, other groups with a maximum range of
25 mm are added. Short fiber groups were defined with smaller length ranges since a length
difference is more significant for short fibers. Additionally, short fibers are commonly

superior in number than long fibers.

-

short fibers medium fibers long fibers

Figure 5.3: Examples of fiber groups of different lengths (Step 2).

5.2.3 Step 3: Voxel-based clustering

Each fiber group obtained in the previous step is divided using a connectivity-based par-

cellation of white matter voxels. For the sake of computational efficiency, the clustering is
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not performed directly on the voxels but on parcels whose volume is about three times the
diffusion voxel size. A fiber group specific T2-based mask (called fiber group mask) is made
up from the voxels crossed by more than a minimum number of tracts (th_tracts). The
other voxels are not used during the clustering as these are voxels with low fiber density,
usually located in the periphery of the WM bundles (see Figure 5.4 A-B). This WM group
mask is first randomly parcellated using an algorithm based on the K-means clustering
using geodesic distances proposed by Flandin et al. (2002). The aim of the algorithm is
to regroup voxels into “homogeneous” and connected parcels in order to get an uniform
and random parcellation of WM volume. The inputs are the volume of interest (VOI),
which is in our case defined by the fiber group mask and parcellation resolution, given
by the average parcel size (parcel_size). For an average parcel size of 3 voxels, it creates
about 12,000 random parcels per fiber group (see Figure 5.4 C). Some details of the WM

parcellation are described below.

fiber group (130 -150 mm) fiber group mask fiber group mask parcé-llation

Figure 5.4: Random initial parcellation of white matter (Step 3). A: Example of a fiber group
of an adult subject (left hemisphere, 130 - 150 mm). B: The T2-based fiber group mask corresponding
to the fibers in A. The mask is made up from the voxels crossed by more than a minimum number of
tracts, th_tracts, in this case equal to 4. Voxels belonging to the mask are shown in black. Discarded
voxels, shown in red, are low fiber density voxels, usually located in the periphery of the WM bundles.
B: A random parcellation of the group mask in C, with an average parcel size of 3 voxels.

Random parcellation of WM

The WM parcellation uses a K-means algorithm based on geodesic distance between the
mask voxels. The volume of interest, defined by the fiber group mask, is described by
a set of N 3D coordinates x;, where N is the number of voxels in the VOI. Parcels
are defined as connected clusters of anatomical voxels, represented by their centers of
mass Tj. The problem is then to find simultaneously a partition of the voxels zi into
k = int(N/parcel_size) classes C; and the cell positions Z; minimizing the intra-class
variance:

k
Iintra = Z Z dQ(IL'Z‘,Tj) (5.1)

j=1ieC;
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This optimization problem is solved using the K-means algorithm in the classification
context of Flandin et al. (2002). After an initialization step that randomly selects k
distinct voxels in the volume of interest as the initial cell positions, the criterion is solved

using an alternate minimization of I;4., over:

1. The partition of the data (given cell positions): each voxel x; is assigned to the
class C; that minimizes the distance to Z;. Due to the non-convexity of the domain,
a geodesic 3D distance (the shortest path within the volume of interest) is used,

implemented by a 3D discrete Voronoi diagram with geodesic distances.

2. The cell positions (given a data partition): the position Z; is chosen to minimize
the variance of the x;’s assigned to this class. It consists in computing the “center
of mass” of each cell. In practice, as the used average parcel size is very small (3
voxels), most of the cells are still convex and the standard Euclidean center of mass

is a good approximation.

3. Elimination of small parcels: this step was added in order to remove very small
parcels. Once data is partitioned, centroids of very small parcels (less than 1/3 of
the desired average parcel size) are removed. Voxels are then reassigned to neighbor

parcels.

Finally, the K-means clustering algorithm consists in repeating these estimations until
convergence, reached when voxels assignments to the cells are the same at two consecutive
steps. As observed by Flandin et al. the algorithm always converges in a small number of
iterations (typically a few dozen).

The elimination of small parcels, representing 5% of the total number of parcels, is a
simple step that improves the parcellation statistics. For the default average parcel size
used, equal to 3 voxels, final parcellation leads to a mean parcel size of about 3.16 voxels,

with a standard deviation of about 1 voxel for all fiber groups.

Connectivity-based segmentation of WM

Once the initial random WM parcellation is calculated, white matter parcels are clustered
based on the connectivity between the parcels in order to perform a WM segmentation.
The segmentation is achieved using an average-link hierarchical clustering applied to the

parcels.

Connectivity measure. First, a parcel connectivity matrix is computed from the num-
ber of tracts passing through each pair of parcels. This number is normalized by the parcel
size. The connectivity C' between parcels ¢ and j is then defined as:

nf(i,J)

C(P;, Pj) = VitV (5.2)
i J
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where nf(i,j) is the number of fibers passing through parcels ¢ and j and V is the par-

cel size in voxels. See Figure 5.5 for a scheme explaining the white matter connectivity

calculation.

plL p2 p3 p4

p5 p7 [p8| p9 pio
=y 3

Figure 5.5: Scheme illustrating the white matter connectivity calculation: First, a random parcel-
lation of the white matter is performed (parcels are represented in gray). Only voxels crossed by fibers
are considered in this process. Then, a parcel connectivity matrix is computed, from the number of
tracts passing through each pair of parcels. This number is normalized by the parcels size (not done
in the example). The connectivity matrix is clustered in order to regroup parcels strongly connected.
After the clustering, in the last figure, parcels in red (p2-p4), blue (pg-p7) and green (pg-p10) will
form three different clusters, corresponding to three different fiber clusters. Parcels presenting a more
complex connectivity, like parcels in yellow (p1), purple, (p2) and cyan (p3), are clustered with the most
connected parcels.

The matrix is thresholded at one percent of the maximum connectivity. This threshold
(called min_pconn) is a very low threshold, but it allows the elimination of a big amount
of weak connectivity values, speeding-up the clustering process.

To illustrate this phenomenon, we took an example fiber group of the left hemisphere of
an adult subject (cf. section 5.4.2), with fiber lengths between 110 and 130 mm. The group
mask contains 11,040 parcels with an average parcel size of 3.2 voxels at T2 resolution and a
standard deviation of 1.0. The maximum connectivity value is 13.0 while the minimum not
null connectivity value is equal to 0.06. The matrix presents a total number of 5,591,700
not null connectivities, representing 4.6% of the total number of pairwise connectivity
values.

Figure 5.6 presents the histogram of the not null connectivities for this example dataset.
Frequencies are represented using 100 equidistant ranges of connectivity. Using the nor-
mal scale (Figure 5.6 (A)), it can be noted that most of the not null connectivity values
present a very low magnitude. In fact, using the threshold min_pconn at 1% (0.13), all the
connectivities represented by the first bar of the histogram are discarded. The number of
these weak connectivities is 4,847,316, equivalent to the 86.7% of the not null connectivity
values. For a better visualization, Figure 5.6 (B) shows the histogram on a logarithmic
scale. After thresholding the matrix, only contains 744,384 not null connectivities, which

represent 0.6% of the total number of pairwise connectivity values.
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10 Histogram of voxel-based connectivity matrix of a fiber group
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Figure 5.6: Example of a WM connectivity matrix histogram (fiber group: 110-130 mm). Only
not null connectivities are considered in the histogram. Frequencies are represented using 100 equidistant
ranges of connectivity (in percentage). Using the threshold min_pconn at 1%, all the connectivities
represented by the first bar (86.6%) of the histogram are discarded. A: Histogram without scaling. B:
Histogram using logarithmic scale.

Hierarchical clustering. For clustering the WM parcels, we used a hierarchical clus-
tering (HC) [Johnson (1967)] agglomerative approach, where each data element is initially
considered as a singleton cluster (see previous chapter, section 4.4.1). Typically, a N x N
similarity (or affinity) matrix is used as input, where N is the number of objects to be
clustered. We used the implementation of the nipy ? library, which receives as input an
undirected weighted graph, G = (V, E). The vertices V = vy, ...,un of this graph represent
the elements and edge weights, e; = v, vy, represent affinity values, obtained from the
affinity matrix. As mentioned in the previous chapter, the advantage of using an affinity
graph is that the disk space required to store the data is reasonable. Furthermore, if a
minimum affinity threshold is imposed, the graph complexity is reduced, decreasing even
more the required disk space and the processing time.

The HC algorithm successively merges the most similar clusters until all elements have
been merged into a single last cluster. The result is a forest composed by one or more
trees, where each tree represents a connected component of the input affinity graph.

We used the average-link variant (cf. equation 4.5) to define the closest pair of clusters

Zhttp:/ /nipy.sourceforge.net /nipy /stable /index.html
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in function of the dissimilarity between elements. The distance between clusters is then
defined as the average of the pairwise distance between elements in the two clusters. It
is a compromise between the sensitivity of complete-link clustering to outliers and the

tendency of single-link clustering to form long chains.

Hierarchical clustering adaptive partition. A big advantage of hierarchical cluster-
ing over partitional algorithms is that no assumption is required relative to the number
of clusters. In addition, the hierarchy provides much more information than a simple
partition, and can be analyzed further in order to find the desired partition according to
additional a priori knowledge. To perform the voxel-based clustering, we implemented an

algorithm performing an adaptive partition of the tree resulting from the HC.

Hierarchical Clustering Tree
Adaptive Partition
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Figure 5.7: An example of a voxel-based clustering (right hemisphere, group length: 95-
110 mm): The upper left figure shows all the group fibers (in blue). The graph represents the hi-
erarchical clustering (HC) adaptive partition resulting from the whole HC tree analysis. Nodes represent
original tree nodes that were preserved during the analysis. Leaves represent final WM clusters. Three
examples of voxel clusters and their respective extracted fiber clusters are presented: (1) the whole set
of clusters, encircled in blue, corresponding to the root node, (2) a single cluster, encircled in orange,
and (3) an intermediate node containing several clusters, encircled in green. The resulting tree does
not have a special interpretation, just the leaves (final clusters) are used in the posterior steps.
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The algorithm analyzes and recursively splits each HC tree (more than one tree can
be obtained if there are unconnected components in the data). This aims to find an
adaptive partition where each cluster contains ideally only one putative fiber bundle, but
more usually a white matter tract is made up of a set of different bundles sharing a
bottleneck. The tree analysis discards the small isolated clusters, using a maximum cluster
size threshold, called (small_size). At the same time, the algorithm splits the large clusters
until reaching sizes compatible with the largest actual white matter tracts. Omnce this
threshold on size (th_clustl) has been reached, the splitting process is pushed further
as long as the two resulting pieces are of similar sizes and bigger than a low threshold
(th_clust?2).

This heuristics stems from the observation that this part of the tree corresponds to the
splitting of a thick bundle into almost parallel fascicles, events that we want to accept.
The low threshold aims at preventing a fascicle to be cut in the middle. Note that the
goal of this step is not to reach the thinnest segmentation as possible, but to prepare small
fiber sets in order to get high sensitivity during Step 4. Hence these two thresholds can
be varied in a large range without important modifications of the end result of the whole
process. Increasing the thresholds is just pushing more segmentation work toward Step 4.
Since the Step 4, based on fiber extremities, is also scaling well with the number of fibers,
the main role of Step & is to reduce as much as possible overlaps between fiber extremities,
in order to optimize sensitivity. See Figure 5.7 for an example of a voxel-based fiber group

adaptive partition.

HC adaptive partition implementation. The algorithm uses a queue Q to stock
the nodes to be analyzed. It starts from the top nodes of the HC trees and recursively
analyzes the hierarchical structure to decide which nodes will determine the final clusters.

Table 5.1 presents the pseudocode of the algorithm.

Fiber cluster extraction. Once the partition into putative bundles has been computed,
each cluster mask is used to extract corresponding diffusion-based fiber clusters. Tracts
are selected when they are included at least a minimum percentage (extr_percent) inside
the cluster mask. Bundles containing less than a minimum number of tracts (th_tracts2)
are discarded before the following step. Figure 5.7 and Figure 5.9 (A) show some examples
of voxel clusters and their respective extracted fiber clusters.

The number of resulting extracted fiber clusters depends on the fiber group: short
fiber groups present a bigger number of fiber clusters, but in average an adult brain

contains about one hundred clusters per fiber group.
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add HC top nodes to Q
while Q is not empty:
n := next node in Q
if n.size < smallsize:
discard node
else if n.size > th_clustl:
split node (add children to queue)
else:
if n.chl.size > th_clust2
and n.ch2.size > th_clust2
and dabs,(n.chl.size, n.chill.size) < 0.2
split node (add children to queue)

Table 5.1: Pseudocode of HC adaptive partition algorithm.

The algorithm uses a queue Q to stock the nodes to be analyzed. It starts from the top nodes of the
HC trees and recursively analyzes the hierarchical structure to decide which nodes will determine the
final clusters. Variable n.size is the total size of the parcels within a node n (in voxels), composed by
all the node descendants, n.chl.size and n.ch2.size are the size of the parcels within the two direct
children nodes of n, and dabs,(-,-) is the absolute value of the normalized difference between parcel
sizes of two nodes.

In practice, threshold th_tracts is set automatically according to the voxel size of the
tracking propagation mask and the number of seeds per voxel. Thresholds th_clust! and
th_clust? are set automatically depending on the parcel size and fiber length.

A good range for the minimum percentage of fiber cluster extraction (extr_percent) was
empirically found to be 40-60%. Values within this range ensure that a big percentage of
fibers is extracted and that fiber clusters have a good quality. A value too big will discard
too much fibers and a very small value will lead to too noisy clusters, decreasing sometimes
the quality of the final results. Section 5.3.3 describes default parameters setting.

Anyway, all the fibers discarded during every step of the method are carefully stored.
These fibers can be analysed and, for example, be used as input of a second clustering

iteration.

5.2.4 Step 4: Extremity-based clustering

A fiber cluster is made up of smaller fiber bundles presenting an important overlap inside
deep white matter. An analysis performed over each fiber cluster is then crucial to divide
the fiber clusters into these different fiber bundles. Focusing on their extremities is the
only way to distinguish them (see Figure 5.9 (A-B)). Thus, this step aims at dividing the
extracted fiber clusters into more regular bundles, called fascicles, based on their extremity
configurations.

In order to get a set of 3D regions representing the different fascicle extremities, a
density image of fiber extremities is created for each extracted fiber cluster at the scale
of diffusion data (T2 image). In the ideal case, the fiber bundles that compose a fiber

cluster will present distinct regions in the density image. The cluster division could then
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be easily performed by selecting the fibers connecting each pair of extremity regions. In
practice, this rarely occurs as fiber extremities of different bundles are commonly fused
forming connected components in the 3D image.

A solution is to segment the density image in order to identify the different extremity
regions, presenting a distinguishable peak of density. An adequate image segmentation

algorithm for this problem is the 3D watershed transformation, described below.

Watershed algorithm. The watershed transformation, initially introduced by Beucher
and Lantuéjoul. (1979), is a region-growing method that segments an image following a
geophysical model of rain falling on a terrain. In 2D, a gray-scale image is seen as a
topographic relief, where the set of points on the surface that lead to the same mini-
mum is known as a catchment basin and borders between catchment basins are watershed
lines. The image is segmented into several regions, represented by the different basins (see
Figure 5.8 A).

In 3D, the objective is the same, to associate each voxel with the corresponding closest
local minimum. For segmenting our density image of fiber extremities we use an adapted
version for 3D images and graphs of the watershed method. This algorithm was proposed
by Vincent and Soille (1991) and is implemented in the nipy library. The method is based
on an immersion process analogy, where each gray-level minimum represents a catchment
basin. In 2D, the water starts filling all the catchment basins from the bottom. As the
water level increase, dams are built at the places where the water coming from two different
minima would merge. When everything has been filled, the dams represent the watershed

lines (see Figure 5.8 B).

A watershed B ___ catchment
lines dams _———  _~ basins
\ water
catchment level
basins

minima minima

Figure 5.8: Flooding of the water analogy for Watershed transformation. A: Each gray-level
minimum represents a catchment basin and borders between catchment basins are watershed lines.
[Adapted from http://www.esiee.fr/ info/tw/a2si04c.ppt] B: The water starts filling all the catchment
basins from the bottom. The algorithm builds dams at the places where the water coming from two
different minima would merge. When everything has been filled, the dams represent the watershed lines
[Adapted from Vincent and Soille (1991)].

The algorthm efficiently simulates the flooding of the water in the image. It is based
on sorting the pixels in increasing order of their gray-levels followed by a flooding step

using the sorted pixels. For each gray level h, pixels having value h are directly accessed
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and analysed in order to evaluate their potential membership to a catchment basin. A
FIFO (first in first out) queue is used to process the pixels.

The algorithm implements morphological region-growing on the graph and analyses
the geodesic influence zone of the catchments. It uses data structures allowing a direct
access to the neighbors of a given vertex (18-connectivity is used).

Image segmentation based on the use of watershed transformation has proved to be
an efficient method provided that the main drawback of this technique is supressed. This
drawback consists in the over-segmentation produced by the watershed transformation if
applied directly on the images to be segmented [Beucher (1994)]. Several approaches have
been proposed for eliminating the over-segmentation problem. The simplest solution is
apply some pre-processings, like smoothing to remove small local minima. Anyway, over-
segmentation of bundles is overcome during next step. Another solution is the use of an a
priori collection of markers, introduced in the watershed algorithm allowing the segmen-
tation of the selected regions exclusively [Beucher and Meyer (1992)]. Another approach
is the merging of the catchment basins of watershed belonging to almost homogeneous
regions [Beucher (1994)]. This merging can be based on edge strength or on valley depth,
resulting in an elimination of superfluous watershed lines (pruning).

After the analysis of the density and segmented images, obtained by the watershed
algorithm, we conclude that there is no need to apply any pre- or post- processing to the
images. We use directly the density image of fiber extremities as input for the watershed,
and the output image is used to divide clusters into several fascicles without any pruning.
This is due to the characteristics of the density images of fiber extremities, which present

a natural smooth shape, with a reduced number of local minima.

Fiber cluster division. The 3D regions obtained by the watershed segmentation are
used to divide the extracted fiber clusters into several fascicles. Each fascicle is composed
by the fibers whose extremities pass through two particular regions. An example of fiber
cluster subdivision into fascicles is shown in Figure 5.9 (B-C). Typically, a fiber cluster is

divided into 3-12 homogeneous fascicles.

Optional fascicle denoising. An optional post-processing step is applied to filter out
outliers, 7. e. fibers that present a path slightly different than most of the fascicle fibers.
This processing is applied separately to each fascicle. A bundle density image is created
and automatically thresholded with a value th_out! depending on the number of tracking
seeds per voxel. The resulting mask will contain a region with the fascicle 3D shape.
Fibers whose path is more than 20% out of this region will be considered outliers. This

step is not essential but brings a cleaner image of a group of fiber fascicles.

5.2.5 Step 5: Fascicle merge

This step considers all the fascicles from all the fiber length groups of a subset. It consists

in a second clustering, aiming at agglomerating fiber fascicles that were over-segmented
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Figure 5.9: An example of fiber cluster and fiber fascicles extraction (right hemisphere). A:
Fiber cluster extraction from a cluster mask (Step 3). Group length: 95-110 mm. The cluster
mask in shown in purple. Fibers included at least 60% in the mask were extracted (in blue) to form the
fiber cluster. B: Extremity-based clustering (Step 3). 3D regions representing the different fascicle
extremities (in red) were first determined. The regions were then segmented by a 3D watershed into
high density peaks. The obtained regions (in different random colors) were used to divide the extracted
fiber cluster into several fascicles. Fascicles were randomly colored. C: An example of some obtained
fascicles. Fascicles present different shapes and extremities. D: Two examples of fiber fascicles
fused after the centroid clustering (Step 5). In purple and orange, the fusion of two fascicles that
were subdivided after Step 4. In green and black, the fusion of two fascicles belonging to different
length groups, 95-110 mm and 80-95 mm, respectively.

in in the length-based segmentation step (Step 2) or in the fiber cluster extremity-based
subdivision step (Step 4), whenever catchment bassins are oversegmented. For this, a
centroid tract is computed as a representative for each fascicle. Then an average-link
hierarchical clustering is applied based on a pairwise distance between centroids from all

fascicles in the subset.

Fascicle centroid calculation. A fascicle centroid, representing the main fascicle
geometry, is localized in the center of the fascicle and is determined as the tract mini-
mizing a distance to the rest of the fascicle fibers. The distance measure employed is a
symmetrized version of the mean closest point distance [Corouge et al. (2004); O’Donnell
et al. (2006); O’Donnell and Westin (2007)]. This distance is described in section 4.4.2 of
previous chapter, where the different fiber distance measures proposed in the literature
are detailed. For completeness, we present bellow the distance measures used by our
method.

The direct mean closest point distance, d,,, is defined as the mean of the distances
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Figure 5.10: Fiber fascicle centroid clustering. A: An example of fascicle centroid. A fascicle
centroid is determined as the tract minimizing the mean closest point distance to the rest of the fascicle
fibers. B: Fascicle centroid cluster example. The fascicle centroids (in the left) are fused, as they
satisfy the clustering criteria, based on the Hausdorff distance. The fascicles (in the right) come from
two different fiber length groups: 50-65 mm (blue and green) and 65-80 mm (red).

between pairs of closest points on two fibers:

dm(Fi,Fj) = meandk(pk,Fj), (53)

prEF;

where dj, is the distance between point k£ on fiber 7 and the closest point on fiber j:

di(pr, Fy) = min || px, —py ||, (5.4)
plEFj

where || - || is the Euclidean norm.
The symmetrized mean closest point distance, d;s, is defined as the mean of the two

directed distances between fibers ¢ and j:

dM(FiﬂFj) :mean(dm(EaFj)adm<Fj7Fi))a (5'5)

See Figure 4.8 for an illustration of the closest point distances between two fibers.
This distance provides a global similarity measure integrated along the whole curve and
is, therefore, adequated for the centroid calculation. Before the distance calculation, the
fascicle centroids are sampled using 15 equidistant points, as proposed by O’Donnell et al.

(2006). An example of fascicle centroid is shown in Figure 5.10 (A).

Fascicle centroid clustering. Centroids are first determined for all the fascicles be-
longing to a fiber subset. Then, these are clustered based on another pairwise distance, the
Hausdorff distance [Corouge et al. (2004)], which is more stringent than the mean closest
point distance. This aims at regrouping only fascicles that have a very similar shape and
position.

The Haussdorf distance dy is defined as the maximum of the distances between pairs

of closest points on two fibers:

PkeF; PrerF;

dH(FZ, FJ) = max <max dk(pk: Fj), max dk(pk, FZ)) (56)
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Figure 5.11: An example of final fiber bundles (right hemisphere, arcuate fasciculus). A: A
selection of final bundles from the subset (all lengths). Fiber bundles were selected using the
cluster mask used in Figure 5.9 A. Bundles were randomly colored. B: Exterior and interior view of
a selection of fiber bundles in E. Fiber bundles selected had more than 100 tracts and presented
different lengths: 150-175mm (purple), 130-150 mm (pink), 110-130 mm (dark green), 95-110 mm
(ochre), 80-95 mm (blue), 65-80 mm (cyan), 50-65 mm (light green), 30-50 mm (orange).

A maximal distance between fibers (maz_cdist) is used to define the clusters, with
usual values between 5 and 12mm. To perform the clustering, the pairwise distance is
converted to a pairwise fiber affinity [O’Donnell and Westin (2007)] (cf. equation 4.2).
When constructing the affinity graph, only edges with affinities superior to the maximal
distance are stored in the graph. The graph is then used to perform an average-link
hierarchical clustering over the centroids for merging fascicles. An example of the fusion
of fascicles from different fiber length groups and their respective centroids can be seen
in Figure 5.10 (B). Figure 5.11 shows another example of the final fiber bundles obtained
after the fascicle centroid clustering. This step reduces the number of final fiber bundles

in between a 40% to a %70 of the fiber fascicles, depending on the maximal distance value.

5 3 Method validation and parameters tuning
[ J

We tested first our hierarchical clustering with simulated datasets. The goal
here is to validate that the behavior of the method corresponds to the objective, namely
detecting the homogeneous bundles of tracts embedded in the “spaghetti plate”.

For that, we generated ten simulated datasets, each one based on a model containing
200 bundles presenting different length, diameter, shape, and tract density. Then, three
noise fiber sets were added to each simulated dataset, to get a total of 30 simulated

fiber datasets. The simulated datasets were clustered with our intra-subject clustering
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algorithm. Results were analysed in order to evaluate and validate the proposed method.

Furthermore, one simulated dataset was employed to evaluate the cost of scalability of
our approach. First, the proposed method was compared with a non-scalable brute force
clustering of the fibers. Then, we evaluated the impact in the quality of the results of the
average parcel size used in the voxel-based clustering (Step 3). To accomplish that, we
analysed the results for different parcel size values, when applying the whole clustering

method and only the voxel-based clustering step.

5.3.1 Whole method evaluation using simulated datasets

Simulated datasets. We generated ten simulated datasets, each based on a model
containing 200 bundles with various length, diameter, shape, and tract density. These 200
bundles were defined from the right hemisphere tract set of one of the adult subjects (cf.
section 5.4.2). These tracts were randomly selected from a precalculated subset of tracts
where a minimum pairwise distance was imposed. The distance measure used was the
Hausdorff distance dg (cf. equation 5.6), and the minimum distance was set to 4 mm.
See Figure 5.12 (A) for an example of the selected tracts for a simulated fiber dataset.
Selected tracts were considered as the simulated bundle centroids. A variable number
of tracts were added around each centroid, each resulting from a different translation
of this centroid. The components of the translation vector were randomly determined
following a normal distribution with a mean g = 0 and a standard deviation, o, varying
between 1.0 and 2.0mm. The number of bundle tracts was randomly sampled from a
normal distribution with g = 100 and ¢ = 80, and a minimum threshold set to 10 tracts,
leading to an average of 22,000 tracts per dataset. Four simulated bundles with different
number of fibers and sigma are shown in Figure 5.12 (C-F). The resulting fiber bundles

for a simulated dataset can be seen in Figure 5.12 (B).

Noise addition. Once a bundle model was created, additional tracts were added in the
dataset, simulating spurious tracts produced by the tractography algorithm. These tracts
were selected from the same adult brain. A minimum distance dy was imposed between
each pair of such spurious tracts (cf. equation 5.6). We have performed experiments with
three different amounts of such noise, defined as a percentage of the total number of tracts
in the model dataset. The percentages used were 10% (minimum distance of 0.7 mm), 50%
(minimum distance of 0.25 mm) and 100% (minimum distance of 0.2 mm). See Figure 5.12
(G-I) for an example of the spurious tract datasets.

Each of the ten model datasets was combined independently with the three different
noise datasets, producing a final number of 30 noisy fiber datasets. Examples of noisy
datasets with 10%, 50% and 100% of noise are shown in Figure 5.12 (J-L). In these figures,
spurious tracts and bundle tracts are in different colors. It should be noted that since the
fiber bundle centroids for datasets generation and the noise fibers were selected from the
same brain, some fibers from noise datasets and from generated bundles presented a very

similar shape. In those cases, it was not possible to differentiate them.
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FC =23,FS = 1.06 FC =73, FS=1.95 FC =89, FS = 0.73 FC =195,FS =1.73

H

Figure 5.12: Example of simulated fiber bundle datasets. A: Lateral view of the two hundred fibers
selected as bundle centroids. Centroids were randomly colored. B: Bundles generated from the centroids
in A. C-F: Examples of four generated bundles with different number of fibers (FC), and sigma (FS)
in mm. For a better perception of bundle length and density, a reference voxel (in gray) was added
to each bundle. G-I: Noise fiber datasets with a percentage of 10%, 50% and 100% of the total fiber
number in B (corresponding to 2,200, 11,000 and 22,000 fibers respectively). J-L: Generated noisy
fiber datasets, for 10% , 50% and 100% of noise, resulting from the combination of a fiber dataset (in
B) and a noise dataset (in G-1). M,N: Resulting fiber bundles after the method application for 10%
and 100% of noise.
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Simulated fiber datasets clustering. The developed method was applied to each
generated noisy dataset. Since only one fiber subset was represented in the generated fiber
datasets (right hemisphere), the method was applied from Step 2 (section 5.2). We set
the T2 voxel size and seed density equal to the original brain, leading to a minimal fiber

density of 10 fibers per voxel (th_tracts).

Simulation results and method evaluation. Resulting fiber bundles for the example
fiber dataset with 10% and 100% of noise are shown in Figure 5.12 (M, N). Note that the
results for the 100% of added noise brought a more noisy image as some noise fibers were
added to fiber bundles. Also, some bundles containing only a small number of noise fibers
of similar shapes were additionally detected.

To evaluate the results, we searched a correspondence between detected fiber bundles
of each simulated dataset and the final bundles of the model. For accomplishing this task,
we calculated a bundle centroid for each final bundle and determined the closest bundle
centroid within the model. We used the Hausdorff distance dy (cf. equation 5.6) with
a very strict threshold. In some cases, some thick bundles were separated into two final
bundles; that is not an error since our analysis allows the splitting of big bundles.

Figure 5.13 (A-J) shows the clustering results for the example fiber dataset, with 10%
of noise (Figure 5.12 (J)). The central scatter plot (Figure 5.13 (E)) represents all the
bundles in function of their sigma and number of fibers. The color codes the percentage
of recovered fibers in each bundle. Recovered fibers, corresponding to the majority of the
cases, take colors between blue and red, in function of the recovery percentage. A small
number of bundles, not recovered, are shown in black, while some bundles, presenting more
fibers than the simulated bundles (more than 100% recovery) are in dark red. Surrounding
figures show different cases of bundle recovery.

Simulation results show that recovery percentage is bigger as the fiber number is bigger
and fiber sigma is lower. This denotes the normal dependency of our method and other
clustering methods on the fiber density. Bundles with a very low density, as the example
in figure H, were not detected because the number of fibers per voxel was even lower than
the number of seeds per voxel. Figures (C, F, G, I and J) represent the most usual fiber
bundle results, where more than 90% of the fibers were recovered (red color). Nevertheless
the most interesting result is the fact that the detection was all the time right in the center
of the bundle, where density is high, while missing fibers were located in the periphery
of the bundle, where density is low. Figures A, B and D show typical cases where the
percentage of recovery was low. Figure G shows a special case where 100% of the fibers
were recovered: this case corresponds to a very dense fiber bundle. It should be noted that
fiber bundles manually selected from a brain, for example those in Catani and Thiebaut de
Schotten (2008), present mostly an uniform fiber distribution, rather than a normal one,
which would lead to a very satisfying recovery percentage.

Figure 5.13 (K) presents three scatter plots containing the results for the ten gener-
ated datasets, with 10%, 50% and 100% of noise. From the results, we can verify that
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Figure 5.13: Clustering results for simulated fiber bundle datasets. A-J: Example of clustering
results for one fiber dataset with 10% of noise. The central scatter plot (E) represents all the bundles
in function of their sigma (FS) and number of fibers (FC). The color codes the percentage of recovered
fibers (%R). The percentage varies from blue, for poorly recovered bundles, to red for bundles totally
recovered. Bundles not found are in black, while bundles with a percentage higher than 100% of recovery
are in dark red. Surrounding figures show different cases of bundle recovery. Recovered fibers are in
orange while not recovered fibers are in blue. For a better perception of bundle length and density, a
reference voxel (in green) was added to each bundle. K: Three scatter plots containing the results for
the ten generated datasets, with 10%, 50% and 100% of noise.
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the behavior of the method was preserved throughout all the simulated datasets: a big
percentage of fibers was recovered, depending on the local fiber density. In other words,
fibers presenting more than the minimum expected local bundle density were successfully
recovered. Also, note that when the added noise was higher, the percentage of recovery
also increased, and more bundles presented a recovery percentage greater than 100% (in
dark red). That is not surprising if we consider that noise fibers were generated from the
same dataset than simulated datasets centroids. Therefore, due to the big number of noise
fibers, some were very similar to fibers from the generated bundles and were clustered

together. This caused also a decrease in the number of not recovered bundles (in black).

5.3.2 Cost of scalability

While the results of the validation tend to show that the cost of the scalability introduced
by the white matter parcel clustering (Step 3) is very low, we performed additional ex-
periments in order to quantify this cost. We first applied a brute force clustering of the
fibers to one of the simulated datasets. Results were analysed in order to compare this non
scalable approach with the proposed method. Secondly, we applied our clustering method
to one of the simulated datasets for a range of parcel sizes and evaluated the impact of

the parcel size in the quality of the final clusters.

Comparison with a brute force clustering method. We performed a brute force
clustering of the fibers of one of the simulated datasets with 10% of noise (24,623 fibers).
For this purpose, we applied average-link hierarchical clustering using the same fiber-
to-fiber distance as in the bundle centroid clustering of our method (Step 5), i. e. the
Haussdorf distance (cf. equation 5.6). We performed iterative agglomeration of the fibers
using a threshold on the fiber distance equal to 10 mm, a value slightly superior to the
maximum intra-bundle distance between fibers within the dataset. Computational time
was beyond 6 hours versus 15 minutes for our approach. Figure 5.14 presents the clustering
results.

Figure 5.14 (E) shows an scatter plot representing the recovery rate of the simulated
bundles in function of their geometry for the brute force HC. It can be observed that
with these settings, the brute force approach did not recover all the simulated bundles.
Figure 5.14 (A) shows the resulting fibers clusters for brute force HC. These are more noisy
than the clusters found by our method (compare with Figure 5.12 (M)). This phenomenom
can be observed in Figure 5.14 (B), which shows a comparison of brute force HC and our
method results for one cluster. Our method recovered a cluster (in red) similar to the
original (in blue), while brute force HC added noise to the cluster (in green).

A detailed analysis of the missed bundles led to two explanations:

1. In some few situations, two simulated bundles get merged because at least one short
distance exists between the fibers generated by the simulation process, or because a
short distance path made up of noise fibers can be found. An example of two fused

clusters is illustrated in Figure 5.14 (C).
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2. In some other situations occurring with low density bundles, noise fibers create a

drift of the hierarchical clustering leading to split a bundle in several clusters.

Both of these difficulties are classical weaknesses of the hierarchical clustering strategy.
A dedicated heuristic could probably improve the situation, but in our opinion, performing
the hierarchical clustering in the space of fibers would require the same kind of additional
steps as proposed in our method to reach robustness: for instance, an extremity-based
clustering (like in Step 4) could overcome the first kind of failures, while a merge step

would overcome the second kind of failures (like in Step 5).
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Figure 5.14: Comparison of the method with a brute force fiber clustering. A simulated fiber
dataset with 10% of noise (24,623 fibers) was used to compare the results with a brute force hierarchical
clustering (HC) of the fibers. A: Resulting fiber bundles after the application of a brute force HC using
the same fiber-to-fiber distance as in the bundle centroid clustering of our method (Step 5) and a
threshold on the fiber distance equal to 10 mm. B: Comparison of brute force HC and our method
results for one cluster: original bundle (in blue), our method (in red) and brute force HC (in green)
resulting clusters. C: Example of two fused clusters in brute force HC. D: Scatter plot representing
recovery rate of the simulated bundles in function of their geometry (duplicated from Figure 5.13). The
color codes the percentage of recovered fibers. E: Same scatter plot for the brute force HC, which
recovers a larger percentage of fibers but also adds more noise fibers to the clusters. In addition, some
clusters are not recovered.

Anyway, it should be noted that our method recovers most of the simulated bundles
with some failures occurring only with low density bundles, which is a reasonable behavior.

Hence, we do think that performing some of the clustering operations in the space of
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white matter voxels has no straightforward negative effect on the clustering performances.
Nevertheless, in order to understand the influence of the size of the white matter parcels

on the behavior of our method, we have applied the clustering for a range of parcel sizes.

Evaluation of the influence of the parcel size in the quality of the results. A
simulated fiber dataset with 10% of noise (24,623 fibers) was used to test the impact of the
parcel resolution on the clustering results. We first have applied our complete clustering
method for a range of parcel sizes, from 1 to 25 voxels per parcel.

Figure 5.15 (E) presents the number of recovered bundles in function of the average
parcel size (in T2 voxels) for our whole clustering method. No spurious merge of original
bundles was observed but some thick original bundles could be split into smaller parallel
bundles, behavior that we accept in this chart. Therefore we did not observe significant
modifications relative to the detection of the simulated bundles using the complete intra-

subject clustering method.

E Clustering quality VS Parcel size  F Clustering quality VS Parcel size
for whole clustering method for voxel-based clustering (step 3)
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Average parcel size (T2 voxels) Average parcel size (T2 voxels)

Number of
recovered clusters

Figure 5.15: Evaluation of the clustering method scalability cost. A simulated fiber dataset with
10% of noise (24,623 fibers) was used to test the influence of the parcel resolution on the clustering
results. A: WM parcellation for an average parcel size of 3 voxels. B: WM parcellation for an average
parcel size of 15 voxels. C: Discarded fibers (3,152 fibers) for the whole clustering method using an
average parcel size of 3 voxels. The method discards a big amount of noise fibers (91%) (note the
similarity with Figure 5.12 G), as well as low density bundles (5% of simulated fibers). D: An example
of fused bundles of different lengths (in blue) extracted from a WM cluster (in purple) of voxel-based
clustering. This figure illustrates the utility of the length-based parcellation, which separates overlapping
bundles before the voxel-based clustering. E: Number of recovered bundles in function of the average
parcel size (in T2 voxels) for our whole clustering method. No spurious merge of original bundles
was observed but some thick original bundles could be split into smaller parallel bundles, behavior
that we accept in this chart. F: Same chart as in C) using only the voxel-based clustering (Step
3). Without length-based and extremity-based clustering, clustering quality drops when parcel size
increases. Furthermore, a lot of bundles are not recovered even with the smallest parcel resolution.
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This supports the claim that our hierarchical approach provides robustness to the
method:

1. A lot of ambiguities are overcome by the initial length-based parcellation (Step 2):
several bundles overlapping in white matter are usually attributed to different length
sets. Hence, the clustering of white matter parcels yields relatively simple structures
embedding only a few bundles. Figure 5.15 (D) shows an example of fused bundles

of different lengths extracted from a WM cluster.

2. The watershed-based clustering of the fiber extremities (Step 4) usually manages to
separate these bundles because the split works as soon as one of the two extremity

sets are not overlapping.

Increasing the size of the white matter parcels increases the number of bundles to be
separated during Step 4, without leading to major difficulty except for very large parcels.

Figure 5.15 (C) shows the discarded fibers (3,152 fibers) for the whole clustering method
using an average parcel size of 3 voxels. The method discards a big amount of noise fibers.
After comparing the discarded fibers with the original dataset, it was found that a 91%
of discarded fibers correspond to noise fibers. Note the similarity of these discarded fibers
with Figure 5.12 (G), were the noise fibers are shown. Low density bundles, representing
a 5% of simulated fibers are also discarded.

In order to provide more insight into this behavior, we performed a second study
where we did not apply the initial length-based split (Step 2) and the final extremity-
based clustering (Step 4). Results are shown in Figure 5.15 (F). In this case, clustering
quality drops when parcel size increases. Furthermore, a lot of bundles are not recovered
even with the smallest parcel resolution. The resulting clustering method is then much

less robust and the results are impacted by the parcel size.

5.3.3 Clustering parameters setting

Most of the clustering parameters are set automatically according to a simple heuristic
taking the fiber tracking parameters as input. A few other parameters are set empirically.
Figure 5.16 contains an exhaustive list of all parameters with a description of recommended

ranges and default values.
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A. Tractography parameters

Name Description

seeds_pv number of seeds per T2 voxel of the tracking propagation mask
voxel_size |average T2 voxel size of the tracking propagation mask (in mm)
FLF fiber length factor (value ranging from 0, for the min. fiber length to 1, for the max. fiber length)

B. Clustering parameters

Name Description [step] Recommended values [min ... max, default]
length_num | number of fiber length groups [2] [8... 13;;91 vl:niwgbﬂ 'Igﬁgétﬁsmg lenggh
th_tracts min. number of tracts for T2 fiber mask construction [3] seeds_pv*[ 05 ... 2, 1]/ voxel_size
th_tracts2 | minimum number of fibers in extracted clusters [3] seeds_per_voxel*[0.5...2, 1]
parcel_size | average WM parcel size (in T2 voxels) [3] [3..5,3]
min_psize | minimum parcel size for WM parcellation [3] parcel_size/[3 ... 5, 3]
size_factor | calculated: WM parcels size factor parcel_size / voxel_size * 4
min_pconn | min. WM parcel connectivity percentage [3] [1..3,1]%
small_size | maximum size of outliers (in T2 voxels) [3] ' parcéf_size* [3..54]
tclust_1 maximum cluster size (in T2 voxels) [3] (1 + FLF * 0.5) * size_factor * [100 ... 250, 150]
telust 2 minimum cluster size (in T2 voxels) [3] (1+ FLF * 0.5) * size_factor * [ 15 ... 40, 25]
extr_p percentage of fibers extraction from WM clusters [3] [40...60,60] %
th_outl minimum number of tracts for extremity masks [4] seeds_pv*[0.5..2,0.5]
max_cdist | maximal distance between fiber centroids (in mm) [5] [3 ... 15, 5] mm
Figure 5.16: Clustering parameters setting. A: Tractography parameters used for clustering

parameters setting. B: Recommended ranges and default values for clustering parameters.

5 4 Intra-subject fiber clustering results
[ ]

The complete method was applied to the tracts computed from HARDI data
obtained for twelve adult brains. The method was also tested with the tracts obtained

from two children using lower angular resolution acquisitions and a tensor model.

5.4.1 A T1-based tractography propagation mask

Diffusion MRI tractography needs to be constrained by a white matter mask defining
the 3D space within which fibers are tracked. Most techniques usually threshold the
fractional anisotropy (FA) maps (typical threshold between 0.1-0.2) assuming that when
FA is too small, the uncertainty of the principal diffusion direction is high. However, this
criterion is rough as the FA value is not specific of a particular structural configuration and
therefore constrains tracking results to region of WM with high anisotropy. In particular,
FA (or GFA) can be very low in fiber crossings representing more than 2/3 of WM voxels,
thus putatively discarding many valid tracts. Furthermore, because the diffusion-weighted
MRI resolution is generally coarser than standard T1-weighted MRI (on the order of 2 mm
isotropic), voxels at the interface between the WM and the cortex may suffer from severe
partial volume effects, artificially diminishing the FA values. Therefore, many true-positive
neuronal pathways may not be revealed.

To overcome these problems, we propose the use of a propagation mask stemming

from T1 anatomy. Existing anatomical pipelines suffer from several limitations. First,
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the partial volume effect will fail at delineating some small structures like the fornix,
the posterior (PC) and anterior commissures (AC). In addition, deep brain structures,
commonly crossed by efferent and afferent fibers, would not be systematically well included
due to their low contrast in the conventional T1-weighted data. Finally, the conventional
millimeter resolution of T1-weighted data at 1.5T or 3.0T can cause partial volume effects
in cortical regions that lead to spurious connections between neighboring gyri.

We propose the creation of a robust propagation mask stemming from T1 anatomy
[Duclap (2010); Guevara et al. (2011a)], based on three T1l-based masks. This is an
improved version of a T1-based propagation mask originally proposed by [Perrin et al.
(2008)].

Two masks are obtained with the T1-MRI pipeline of BrainVISA software:

e A mask of both hemispheres and the cerebellum, called the brain mask
e A mask of the sulci skeleton, called the sulci mask, calculated through a homotopic

multiscale erosion of a brain mask (see Figure 5.17).

A first processing subtracts the dilated sulci mask to the brain mask in order to prevent
any connection between different gyri and to ensure that the fibers are stopped in the

GM/WM interface. An intermediate propagation mask is thus obtained.
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Figure 5.17: T1-based masks used for the propagation mask construction.

In order to ensure a good delineation of deep structures, of the corpus callosum (CC),
of the fornix, and of AC/PC, a mask of deep nuclei and ventricles, called the nuclei
mask is employed (see Figure 5.17). The deep nuclei segmentation is obtained using a
deformable model constrained with a probabilistic atlas [Marrakchi-Kacem et al. (2010c)].
The ventricles segmentation is calculated using a robust histogram analysis of the T1 data
guided by a probabilistic atlas of the ventricles, as described in [Marrakchi-Kacem et al.
(2010b)]. The nuclei mask is dilated and added to the intermediate propagation mask in
order to fill all the deep brain regions. The ventricles are subsequently subtracted from this
mask to obtain the final robust propagation mask. Last, the cerebellum can be optionally
included in the final mask.

This mask allows a better tracking of fibers until the GM/WM interface, which is of

particular interest for the study of short association U-fibers. Contrary to usual FA-based

145



masks failing at including low FA regions such as AC/PC, the fornix or crossings, this
technique provides an accurate mask of the brain WM+GM independent of the DW data
quality (see Figure 5.18). Note, that a good registration between T1 and T2 images is
needed, which implies a good correction of the susceptibility induced geometrical distor-

tions of T2 images.

Figure 5.18: Axial, coronal and sagittal views of the propagation masks. red: FA mask (th =
0.1). blue: our propagation mask. Note the good delineation in our mask of the AC (green arrows),
the PC (cyan arrows), the subcortical WM (black arrows), the deep nuclei (violet arrows) and the fornix
(yellow arrows).

In order to compare the tractography data obtained with both masks (our T1-based
and a FA-based mask), we segmented the bundles for two tractography datasets of the
same subject, using both, a FA-based mask (th= 0.15) and our T1l-based mask. Trac-
tography datasets where calculated using regularized deterministic tractography based on
orientation distribution functions, calculated from the analytical g-ball model [Descoteaux
et al. (2007)] (spherical harmonics order = 6 and regularization factor = 0.006), and the
same tracking parameters (7 seeds/voxel at T2 resolution, aperture angle = 30, tracking
step = 0.5).

First, known WM bundles were determined using an automatic bundle segmentation
method based on a multi-subject bundle atlas, described in chapter 7. The results are
shown in Figure 5.19 (A). We can see that our T1-based mask leads to thicker fiber
bundles, containing more fibers in the subcortical regions. Also, some short association
bundles were determined using the same bundle segmentation method based on a multi-
subject bundle atlas of short association bundles (see Figure 5.19 (B)). We can see that

our T1-based mask allows a better reconstruction of most short association bundles. In
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Figure 5.19: A comparison of known (A) and short (B) WM bundles segmented using an automatic
bundle segmentation method based on a multi-subject bundle atlas, for two tractography datasets of
the same subject, using both, a FA-based mask (th= 0.15) and our T1-based mask. DW data was
acquired using a Siemens 3.0 T Tim Trio system with a b-value=1000 and 41 DW orientations.
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average, the bundles reconstructed with the FA-based mask presented only 18% of the
number of fibers reconstructed with our T1-based method. In some cases, bundles that
were successfully reconstructed by our mask were not reconstructed at all by the FA-
based mask (20%). In other important number of cases, the FA-based mask led to bundle
reconstruction with less than 5% of the fibers obtained with our T1-based mask (25%).

We can note that the use of the proposed T1-based propagation mask in conjunction
with tractography techniques improves the accuracy of the anatomical connectivity of the
brain by reducing false positives and increasing the detection of the subcortical connectiv-
ity. This mask was used in recent connectivity studies, as those described in [Roca et al.
(2009, 2010); Marrakchi-Kacem et al. (2010a)].

Fiber datasets. All the fiber tract datasets were reconstructed using a streamline de-
terministic tractography algorithm and the described T1-based propagation mask, both
provided by Brain VISA /Connectomist-2.0 software. The tracts were calculated as the tra-
jectories of particles with inertia, leading to regularized curvature [Perrin et al. (2005a)].
This method has been validated using a crossing phantom made up of sheets of parallel
haemodialysis fibers and through the successful tracking of the primary auditory tract in

the human brain.

5.4.2 Adult HARDI datasets

Adult HARDI datasets. The analysis was performed for twelve subjects of the NMR
public database ® [Poupon et al. (2006)]. This database provides high quality T1-weighted
images and diffusion data acquired with a GE Healthcare Signa 1.5 Tesla Excite II scanner.
The diffusion data presents a high angular resolution (HARDI) based on 200 directions
and a b-value of 3,000s/mm? (voxel size of 1.875 x 1.875 x 2mm). DW-weighted data were
acquired using a twice refocusing spin echo technique [Reese et al. (2003)] compensating
Eddy currents to the first order. Geometrical distortions linked to susceptibility artifacts
were corrected using a phase map acquisition. T1 and DW-weighted data were optimally
aligned using a rigid 3D transform estimated by an automatic registration algorithm based
on mutual information. Registration was performed between the average of 5 diffusion-free

T2-weighted images and the high resolution T1-weighted image.

Adult HARDI datasets diffusion models. Raw high angular resolution diffusion
imaging (HARDI) data was first denoised with a Non-Local Means filter adapted to Rician
noise (NLMr), described in Descoteaux et al. (2008). The diffusion Orientation Distribu-
tion Function (ODF) was then reconstructed in each voxel using a spherical deconvolution
of fiber Orientation Distribution Function (fODF). It is a spherical deconvolution transform
(SDT) reconstructed from g-ball imaging [Descoteaux et al. (2009b)] with a constrained
regularization [Tournier et al. (2007)], using a maximum spherical harmonic (SH) order 8

and a Laplace-Beltrami regularization factor A = 0.006.

3Thanks to Dr. Cyril Poupon for providing this HARDI database
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Adult HARDI datasets tractography. Streamline deterministic tractography was
initiated from two seeds in each voxel of the T1-based propagation mask (voxel size of
0.9375x0.9375x 1.2mm), in both retrograde and anterograde directions, according to the
maximal direction of the underlying ODF. Retrograde and anterograde tracking were
merge into one single tract. Tracking was stopped either when the particle exited the
propagation mask, or when the angle between the two last moves exceeded 30°, or when
the tract length exceeded 200 mm. Finally, tracts shorter than 20 mm were filtered out,

leading to a set of about 1.5 millions tracts per subject.

Results for adult HARDI datasets. The twelve datasets were separated into the
ten default length groups, described in Step 2 (section 5.2). The remaining parameters
were also set automatically, in function of the number of seeds per voxel and fiber length.
Results are shown for the right hemisphere (RH) of one subject (cf. Figure 5.20). This
RH subset contained a total number of 598,953 fibers, from a total of 1,573,894 fibers for
the whole brain. A total of 3,159 final fiber bundles were obtained for the subset.

Due to the big number of fiber bundles it was not possible to perceive the clustering
results in one image. For a better visualization, the fiber bundles were displayed in sepa-
rated groups, with different fiber lengths (see Figure 5.20 (A)). Figure 5.20 (B) presents
the exterior and interior view of a group of short fiber bundles (35-50 mm). Most of these
bundles belong to short association fiber tracts, like U fibers. An exterior and interior view
of a group of long fiber bundles (130-150 mm) is shown in Figure 5.20 (C). These bundles
are part of known deep white matter tracts, like the cortico-spinal tract and the arcuate
fasciculus. Note that anatomical WM tracts are composed by several resulting bundles,
presenting different shapes and lengths. Different views of a selection of long final fiber
bundles for the same adult brain are also shown in Figure 5.21.

Another example of the fiber bundles generated by our method can be seen in Fig-
ure 5.11 (A), which shows all the bundles passing through a voxel ROI. A selection of
these bundles, with different lengths, is presented in Figure 5.11 (B). This example re-
veals the complexity achieved by the method results, where a very heterogeneous group of

bundles sharing the same white matter paths were successfully clustered.
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Figure 5.20: Final fiber bundles for an adult brain (right hemisphere).  Bundle colors were
randomly assigned and could be repeated within a group. A: Exterior view of the whole subset
results. For a better visualization, fiber bundles were separated into ten length groups. B: Exterior
and interior view of a group of short fiber bundles (35-50 mm). Most of these bundles belong
to association fiber tracts. C: Exterior and interior view of a group of long fiber bundles (130-
150 mm). These bundles are part of known deep white matter fiber tracts.

5.4.3 Child DTI datasets

Child DTI datasets. The method was applied to two normal children between 9 and
11 years old. This database® provides high quality T1-weighted images and diffusion
data acquired with a Siemens 3.0 T Tim Trio system equipped with a whole body coil
(40mT/m, 200 T/m/s) and a 12-channel head antenna. The diffusion sensitization used

4Thanks to Dr. Ghislaine Dehaene-Lambertz for providing the child brain datasets
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Figure 5.21: Different views of a selection of long final fiber bundles for an adult brain (right
hemisphere).

30 uniformly distributed gradient directions with a b-value of 1,000s/mm? (voxel size of
1.875x1.875x3mm). The T1-weighted image and the DW-weighted dataset were opti-

mally aligned with the same method as for the adult datasets.

Child DTI datasets diffusion models. Raw diffusion data was also denoised with
the NLMr filter [Descoteaux et al. (2008)]. Then, a Diffusion Tensor Field (DTI) was
calculated in each voxel using Brain VISA /Connectomist-2.0 software.

Child DTI datasets tractography. Fiber tracts were calculated using streamline de-
terministic tractography, from two seeds in each voxel of the T1-based propagation mask
(voxel size of 1x 1x 1 mm), in both retrograde and anterograde directions, according to the

first eigenvector of the tensor. Stopping criteria were the same as for the adult datasets.

Results for child DTI datasets. As for adult datasets, each fiber subset was separated
into the ten default length groups, and all the parameters were automatically determined.
Figure 5.22 presents the resulting final bundles (2,078 in total) for the right hemisphere
of one brain. This subset had 283,446 fibers, from a total of 723,460 fibers for the whole
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brain. For a better visualization, fiber bundles were also separated into ten length groups
(cf. Figure 5.22 (A)). Figure 5.22 (B) presents the exterior and interior view of a group
of short fiber bundles (35-50 mm). An exterior and interior view of a group of long fiber
bundles (130-150 mm) is shown in Figure 5.22 (C).

Figure 5.22: Final fiber bundles for a child brain (right hemisphere). Bundle colors were randomly
assigned and could be repeated within a group. A: Exterior view of the whole subset results. For
a better visualization, fiber bundles were separated into ten length groups. B: Exterior and interior
view of a group of short fiber bundles (35-50 mm). Most of these bundles belong to association
fiber tracts. C: Exterior and interior view of a group of long fiber bundles (110-130 mm). These
bundles are part of known deep white matter fiber tracts.
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5 ) 5 Applications

The method was applied to the data issued from an actual phantom containing
a plethora of realistic crossing, kissing, splitting and bending fiber configurations [Poupon
et al. (2010)]. This last experiment illustrates the interest of our compression method for
comparing different tractography algorithms.

The utility of our intra-subject clustering method is also illustrated with two examples.
Fisrt, the hierarchical decomposition provided by our method is used as a bottom-up
strategy for a preliminary study and decomposition of the arcuate fasciculus. Secondly, an
example for U-fiber tracts, connecting cortical areas separated by a few folds, illustrates
the use of our clustering results for population analysis and the inference of a brain fiber
bundle model [Guevara et al. (2010)]. This research topic is addressed in details in next

chapter.

5.5.1 Physical phantom

Phantom datasets. The MR phantom [Poupon et al. (2010)], created for the MICCAI
2009 Workshop on Diffusion Modelling and the Fibre Cup °, is made of small-diameter
acrylic fibers, chosen for their high hydrophobicity and flexibility that ensure good control
of the phantom geometry [Poupon et al. (2008)]. It contains a plethora of realistic crossing,
kissing, splitting and bending fibre configurations created as a ground truth dataset for
the validation of high angular resolution diffusion imaging (HARDI) and tractography
algorithms. Diffusion data was acquired on a Siemens 3.0 T Tim Trio system equipped
with a whole body coil (40mT/m, 200T/m/s) and a 12-channel head antenna. The
analyzed dataset has a resolution of 3x3x3 mm (image size: 64x64x3) and a b-value of
1,500 s/mm?. It is composed by two repetitions of 65 directions each, corresponding to

one baseline and 64 diffusion gradients.

Phantom datasets diffusion models. Three different diffusion models where calcu-

lated for the phantom dataset:
1. Diffusion Tensor Field (DTTI).

2. An analytical solution for g-ball imaging (QBI) using spherical harmonic (SH g-ball)
basis [Descoteaux et al. (2007)]. A maximum SH order of 8 and a Laplace-Beltrami

regularization factor A = 0.006 were used.

3. The spherical deconvolution of fiber Orientation Distribution Function (fODF) de-
scribed in Descoteaux et al. (2009b), using a maximum SH order of 8 and a Laplace-

Beltrami regularization factor A = 0.006.

Phantom datasets tractography. Two kinds of tractography for each diffusion model

were calculated: streamline deterministic and probabilistic. A phantom propagation mask

Shtt p://www.Ilnao.fr/spip.php?article106
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was created in a super-resolution of three times the T2 resolution (voxel size equal to
1x1x1mm). This resolution allowed a better definition of the phantom borders. The
voxels of this mask were also used to define fiber seeds, from which fibers were tracked in
both retrograde and orthograde directions. Deterministic tractography was initiated from
one seed per voxel, according to the maximal direction of the underlying ODF. Probabilistic
tractography was initiated from eight seeds per voxel according to a probability distribution
defined from the underlying ODF. Stopping criteria were the same as above, with the

exception of the maximum fiber length, set to 180 cm.

Results for phantom datasets. The six fiber datasets of the MR phantom were clus-
tered. No big change was needed for applying the method to these datasets (section 5.2).
Just the first rough fiber segmentation (Step 1) was skipped and each fiber dataset was
processed as one subset from Step 2. The obtained results are presented in Figures 5.23
and 5.24.

E 80 — 95 mm 95— 110 mm 110 — 130 mm 150 — 180 mm

Figure 5.23: Final fiber bundles for the DTI physical phantom dataset. A: 3D illustration of the
phantom design. The female container piece. B: The phantom container. C: DTI deterministic
fiber dataset. The dataset had 46,362 fibers between 20 and 180 mm. D: The whole set of final
bundles for DTI deterministic dataset (in C). Bundle colors were randomly assigned and could be
repeated within a group. E: A selection of final bundles for DTI deterministic dataset (in C).
Bundle colors are the same as in D. Bundles were separated into nine length groups. Eight groups are
shown.
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The whole resulting fiber bundles set is shown only for one dataset: DTI determin-
istic fiber dataset. The original dataset had 46,362 fibers between 20 and 180 mm (cf.
Figure 5.23 (C)). Clustering results were composed by 296 fiber bundles, shown in Fig-
ure 5.23 (D). In order to improve the visualization, the set of final bundles for this dataset
was separated into nine length groups (eight groups are shown in Figure 5.23 (E)). Clus-
tering results for all the tested datasets presented a very large number of fiber bundles,
of different lengths and shapes. Most of these did not correspond to the seven phantom
ground truth (GT) bundles, illustrated by the means of 3D masks in Figure 5.24 (A). The

complexity of the results was higher in the case of streamline probabilistic datasets.
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Figure 5.24: Final fiber bundles for the six physical phantom datasets. Application to diffusion
local models and tractography algorithms evaluation. A: The seven ground truth (GT) bundles
(3D masks). The bundle masks, in different colors, were manually constructed. B: Centroids
of ground truth bundles. Bundle centroids were manually generated and used to automatically
identify ground truth bundles in clustered datasets. To classify, a maximum pairwise distance was
used between ground truth bundle centroids and the clustered bundle centroids of each dataset. C:
Ground truth bundles automatically identified in the six clustered datasets. Results for three
diffusion local models (DTI, SH g-ball and SDT) and two tractography algorithms (deterministic and
probabilistic). Bundles were colored as in A. D: Analysis of the six datasets. D1: Percentage
of ground truth bundles volume covered by valid bundles. In general, probabilistic tractography
algorithms presented a better coverage of GT bundles. D2: Total percentage of valid tracked fibers.

In general, as expected, deterministic tractography algorithms presented a higher percentage of valid
fibers.
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Resulting fiber bundles of the six phantom fiber datasets were analyzed to evaluate the
used diffusion local models and tractography algorithms. For this, we developed a method
to automatically identify ground truth bundles in the clustered datasets. The analysis
was based on bundle centroid representations, and on a pairwise distance dy between
centroids (cf. equation 5.6). Ground truth bundle centroids were manually generated and
used as an atlas of known bundles (see Figure 5.24 (B)). The pairwise distance was used to
compare GT bundle centroids and clustered bundle centroids of each dataset. Clustered
bundles presenting a distance inferior to a threshold were selected. Ground truth bundles,
automatically identified for the six clustered datasets, are shown in Figure 5.24 (C). Results
are presented for the three diffusion local models (DTI, SH g-ball and SDT) and the two
tractography algorithms (deterministic and probabilistic). Bundles follow the colors used
for ground truth bundle 3D masks. Note that only identified bundles are shown, but a
significant part of the tracked bundles did not correspond to GT bundles and were filtered
out by the classification process. To analyze the results, we calculated the total percentage
of valid tracked fibers, i. e. forming the GT bundles, plotted in Figure 5.24 (D2). We can
note that in any case, the total number of valid fibers was inferior to 35%. In general, as
expected, deterministic tractography presented a higher percentage of valid fibers.

Besides, we compared the volume of the tracked bundles with the volume of the corre-
sponding ground truth bundles. Ground truth bundle volumes were calculated in voxels,
using the 3D masks shown in Figure 5.24 (A). Figure 5.24 (D1) contains a bar plot illustrat-
ing the percentage of ground truth bundle volumes covered by the tracked bundles. From
the results, we can note that, in general, streamline probabilistic tractography algorithms
presented a better coverage of GT bundles. The performance of local diffusion models
depended on the complexity of the fiber bundles configuration. For example, from Fig-
ure 5.24 (D1), we can see that the green U fiber, which is isolated from the other bundles,
was successfully tracked by all the models. In the opposite side, more complex bundles
(ochre, yellow), presenting crossing or splitting configurations, were differently tracked by
each method. In these cases, DTI model, as expected, presented a lower performance than
higher order models (SH ¢-ball, SDT). From the whole phantom datasets analysis, it is
possible to infer that SDT approach presented most of the time the best tracking results.

5.5.2 Top-down decomposition of large known WM tracts

Our intra-subject method can deal with the complexity of white matter structures, where
several fiber bundles can share the same paths. We do think that the fiber clustering
provided by our method is a prerequisite to address one of the emerging applications of
tractography: the inference of the subdivisions of the main white matter pathways [Catani
et al. (2005)].

The usual approach for the decomposition of large pathways consists in designing sets
of ROI selecting the embedded bundles. This top-down strategy can rely on a priori
knowledge about the underlying architecture. The hierarchical decomposition provided

by our method aims at providing the possibility to develop a complementary bottom-up
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strategy. Once all the fibers belonging to a large pathway have been selected, using for
instance a probabilistic map in a reference space, our decomposition allows 3D visualization
of each of the embedded fascicles with a different color. A dedicated interface allows the
selection of specific fascicles according to their trajectory and the localization of their

extremities in order to build a model of the pathway reproducible across individuals.

subject 1 subject 2 subject 3

Al

Figure 5.25: An example of application of the fiber clustering: bottom-up inference of a model
of the subdivisions of the arcuate fasciculus. A: lllustration of cluster selection for one subject.
(top:) About 35,000 fibers forming the arcuate fasciculus were extracted for analysis using a ROI.
Without the clustering information, fibers can only be visualized using for instance a color coding for
orientation. Hence, the inner structure of the pathway is difficult to catch. (middle:) The clustering of
this fiber set provided about 100 consistent fascicles. Each fascicle can be coded by a color. Then the
user can select specific fascicles using a dedicated interface in order to build a model of the subdivisions
of the pathway. (bottom:) Here most of the fascicles were merged into six subdivisions that look
reproducible across 3 subjects. B: The subdivision model inferred from the three individuals.
First row: The six subdivisions identified in the three different subjects. For visualization purposes,
these subdivisions are split into two long (second row) and four short (third row) fascicle sets. Three
of these subdivisions seem to match the three bundles described by Catani et al. (2005) (last row).

We have performed such an inference from three individuals for the arcuate fasciculus.
We could reproduce the decomposition of Catani into three subdivisions (see Figure 5.25).
We have also pushed the model inference further in order to illustrate the potential of

the method. We could highlight six reproducible subdivisions of the pathway. This result
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however should be confirmed with a larger dataset. In the future, automatic inference
of this kind of model could be performed by a clustering applied to the centroids of the
bundles at the population level. Note that comparing the models inferred from two differ-
ent populations could be performed at several levels. One may discover the absence of a
specific subdivision in one of the populations, or morphometric differences of one subdi-
vision matched across the two populations relative to diameter, length or diffusion-based

parameters like FA.

5 6 Discussion
[ ]

As for any fiber clustering method, our results depend strongly on the quality

of the tractography results. First, of course, our method can not detect bundles that are
not tracked. Fibers are filtered out when they do not belong to a bundle with high fiber
density. This is an efficient way to clean up a fiber dataset. Some fibers belonging to actual
bundles may be discarded but such fibers can not be distinguished from noise without
accurate a priori knowledge about the actual white matter structure. Some of the bundles
surviving the filtering process may also be spurious. Considering that the current a priori
knowledge about white matter structure is very sparse, we do think that the main road to
address this problem is statistical analysis across a large group of subjects [Guevara et al.
(2010)]. However, this is a complex issue because similar configurations of bundle crossing
across subjects could lead to similar spurious bundles. Besides, spurious final bundles can
be found due to errors in the propagation mask. Since this mask defines where fibers
are tracked, bundles can be erroneously cut or fused. Nevertheless, independently of the
tracking results, our method is a powerful tool to extract the main bundles that constitute
the dataset.

Our method is able to cluster huge fiber datasets that are summarized into a reasonable
number of fiber bundles. Hence, our approach will scale up easily to the 1 mm spatial
resolution that can now be achieved with highly parallel imaging or very high fields. This
spatial resolution is bound to highlight a myriad of U-fiber bundles and to better delineate
bundle crossing and inner structure of large pathways.

The method is made up of several processing steps, conceived and chained in a way
that give robustness to the whole analysis. A consequence of this is a good behavior
using the default settings for the four different fiber datasets: adult brain with SDT
diffusion model and deterministic tractography, child brain with DTI and deterministic
tractography, simulated fiber bundles with added noise, and finally, the phantom datasets,
composed by three diffusion local models (DTI, SH g-ball and SDT) and two tractography
algorithms (streamline deterministic and probabilistic).

The multiplication of the number of processing steps leads to a multiplication of the
number of parameters that had to be tuned to reach robustness. While this may appear at
first glance as a difficult problem, most of these parameters were set without real tuning.
Indeed, the hierarchical decomposition has mainly been designed to achieve robustness

to parameter tuning. The experiments described above relative to dependence on white
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matter parcel size illustrate this point. Tuning this parameter within reasonable ranges
changes the hierarchical levels at which bundle separations occur, but the final result is
stable. We do think that the parameters driving the length-based decomposition, the parcel
generation or the heuristics driving the hierarchical clustering of white matter parcels
have the same behavior. Changing these parameters will change the path of hierarchical
decompositions without large qualitative consequences on the end result.

In our opinion, the parameter driving the centroid merge is the only parameter with
qualitative influence on the final results. It has to be set by the user according to the
needs. This key parameter is the threshold on centroid distance used to merge the fine-
scale fascicles. In the examples shown above, this threshold was set in order to overcome
spurious splits induced by the length-based segmentation (Step 2), but this threshold can
be increased whenever the user is interested in bundles with larger diameters.

It should be noted that our method has been designed to be biased towards agglomer-
ating fascicles into tubes. This is directly resulting from the chosen clustering algorithm.
Indeed, we do think that the frequent sheet-like geometry of fiber pathways [Jones et al.
(2006); Smith et al. (2006)] corresponds to the organization of the deep white matter,
while each sheet splits into tubular pieces when reaching the cortical targets. For instance,
at the level of corpus callosum, white matter has a sheet like organization, but following
fibers until the cortical gyri allows the split of this sheet into tubular pieces. When the
sheet is corresponding to a gyrus geometry we hope that variations of the fiber density
along the gyrus allows the clustering to split the sheet into meaningful tubular pieces.
For instance, we hope that the motor gyrus corticospinal tracts can be split into tubular
bundles following some kind of homunculus-based organization. This hypothesis will have

to be tested relative to functional data.

5 7 Conclusion
[ J

In this chapter we proposed a novel robust clustering of WM fibers calculated

from tractography. The analysis is mainly based on geometrical fiber properties and no
strong anatomical a priori are used. The output consists in some thousands of homogeneous
fiber bundles. The compressed representation obtained can be used as input to more
sophisticated analysis algorithms that can not deal with millions of fibers. We do think
that our approach is a necessary and crucial processing step for the analysis of huge
fiber datasets. Additional anatomical information can be used to extract and analyze
particular white matter tracts. An example was detailed with the phantom analysis. It
was shown that our clustering method, applied to a hardware phantom gives a robust and
powerful way to evaluate HARDI local models and tractography algorithms. But the most
important application is the inference of a brain fiber bundle model from an inter-subject
analysis.

In the next chapter, we present a clustering algorithm that can be applied to the
bundles obtained from the intra-subject clustering analysis of a population of subjects in

order to infer a fiber bundle atlas of the human brain.
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CHAPTER 6

Inter-subject clustering: Inference

of a multi-subject bundle atlas
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Overview

The continuous improvement of DW-MRI acquisition schemes, diffusion models and trac-
tography algorithms leads to increasingly complex and large tractography datasets. Cur-
rent tractography datasets reconstruct known WM tracts represented by thousands of
fibers, composed by various fiber fascicles of different shapes and lengths. Also, a big
amount of short association bundles can be reconstructed in each subject.

Current bundle models contain only well-known fiber bundles of deep white matter
(DWM). In these models, known DWM tracts are represented by fibers with the same
shape, and do not represent the variability of shape and position of fiber bundles across
subjects. Furthermore, until now, short fibers of superficial white matter (SWM) have
been rarely studied.

The usual strategies proposed for the reconstruction of fiber bundles follow two com-
plementary ideas. The first approach is based on regions of interest (ROI) used to select
or exclude tracts. The second strategy is based on tract clustering using pairwise simi-
larity measures. This last approach requires less interaction than manual approaches and
integrates fiber shape and position information in the analysis, which is not the case of
most ROI-based segmentation approaches. Furthermore, the clustering of a set of tracts
stemming from several subjects, after spatial normalization, can help to discover new re-
producible bundles. However, the clustering-based methods commonly present a limitation
on the number of fibers that can be analyzed.

Hence, this chapter presents a method taking as input the sets of massive tractography
datasets of a population of subjects and producing as output a model composed by a list
of generic fiber bundles that can be detected in most of the population. The method
consists in a two-level strategy chaining intra- and inter-subject fiber clustering. To deal
with very huge tractography datasets and reduce the complexity of the data, the method
uses the intra-subject clustering presented in the previous chapter. A novel HARDI multi-
subject bundle atlas consisting in 36 DWM bundles and 94 short association bundles, 47

per hemisphere, is thus inferred.

Keywords: WM clustering, WM atlas, fiber clustering, fiber similarity measure, fiber

bundle model, U-fibers, short association bundles

Organization of this chapter:

The chapter is organized as follows. We first describe the two-level clustering strategy
in Section 6.1. Then, we present a validation of the method using simulated data in
Section 6.2. The resulting atlas for long known bundles is presented in section 6.4. Finally,

the inferred atlas for short association bundles is presented in section 6.5.
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6 1 Two-level fiber clustering stractegy
[ ]

The continuous improvement of DW-MRI acquisition schemes, diffusion mod-
els and tractography algorithms leads to increasingly complex and large tractography
datasets. Unlike a simplistic bundle model, where known white matter (WM) tracts are
represented by a relatively small number of fibers with the same shape, current tractog-
raphy datasets reconstruct WM tracts represented by thousands of fibers, composed by
various fiber fascicles of different shapes and lengths. Literature presents several examples
of decomposition of major WM tracts [Lawes et al. (2008)]. For instance, the arcuate fasci-
culus is decomposed in a direct and an indirect WM pathway. The direct connection runs
medially between Broca’s and Wernicke’s area. The indirect pathway runs laterally and
is composed by an anterior segment connecting the inferior parietal cortex (Geschwind’s
area) and Broca’s area and a posterior segment connecting Geschwind’s and Wernicke’s
area [Catani et al. (2005)]. Also, a big amount of short association bundles, that until now
have been rarely studied, can be tracked in each subject. The segmentation of WM fiber
bundles is therefore a complex and not completely solved problem.

The segmentation of anatomical bundles requires the inclusion of anatomical informa-
tion in some way, in a more or less interactive manner, depending on the used approach.
The usual strategies proposed for the reconstruction of fiber bundles follow two comple-
mentary ideas. The first approach is based on regions of interest (ROI) used to select
or exclude tracts. For the segmentation of new tractography data, the ROIs can be de-
fined manually [Catani et al. (2002); Mori et al. (2005); Wakana et al. (2007); Catani and
Thiebaut de Schotten (2008)], or using an ROI atlas after the application of affine [Oishi
et al. (2008)] or non-linear [Zhang et al. (2010)] normalization. These automatic ROI-
based approaches have shown to be very powerful but present a big dependence on the
normalization quality. Furthermore, these methods do not use fiber shape and position
information to detect the bundles. The second strategy is based on tract clustering using
pairwise similarity measures [Zhang et al. (2008a); O’Donnell et al. (2006); Visser et al.
(2011)]. This last approach is potentially less intensive in terms of user interaction and
can also embed predefined knowledge represented by a bundle template [Maddah et al.
(2005); O’Donnell and Westin (2007)]. For example, O’Donnell and Westin (2007) created
a “high-dimensional” WM atlas containing a representation of the known anatomical deep
WM 3D tracts from ten different subjects, in an embedded space (see section 4.4). The
atlas was then used to automatically segment the most known 3D fiber bundles from five
other subjects. The anatomical information embedded in manually labelled clusters can
also be used as prior data for the clustering/classification of new tractography datasets
[Wang et al. (2011)]. Other recent hybrid approaches extract the most known WM tracts
by the combination of a priori information given by a GM/WM atlas and a fiber clustering
based on a similarity measure [Wassermann et al. (2010a); Li et al. (2010)].

The fiber clustering approach has been successfully used to map the well-known fiber
bundles of deep white matter (DWM). However, the clustering-based methods commonly

present a limitation on the number of fibers that can be analyzed. The studies across a
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population of subjects are then limited in the number of tracts and the number of subjects
that can be analyzed together. In spite of two recent works that describe the analysis of
huge datasets (120,000 [Wang et al. (2011)] and 480,000 fibers [Visser et al. (2011)]), the
segmentation of huge tractography datasets, presenting more than one million tracts, is
still a challenge.

Furthermore, it would be very interesting to apply a clustering using tract pairwise
similarity measures to complex massive tractography datasets stemming from several sub-
jects. This strategy could help to discover new reproducible bundles, in particular short
association bundles. The limitation on the tractography dataset size can be one of the
reasons why until now short fibers of superficial white matter (SWM) have been rarely
considered. Other issues than can also make more difficult this kind of study are the big
inter-subject variability of these tracts as well as their important number.

Our goal is to infer a model of the brain white matter organisation from HARDI
tractography results computed for a group of subjects. For that, we use a fiber clustering
approach able to overcome the limitation on the tractography size and additionally allows
considering the shape of the fibers in the analysis. We propose a two-level strategy chaining
intra and inter-subject fiber clustering. The first level, the multiresolution intra-subject
clustering presented in the previous chapter, can be viewed as a compression procedure
reducing a huge set of fibers to a few thousand bundles. The second level is an inter-subject
clustering of the resulting fiber bundles. This group analysis relies on a pairwise distance
between bundles computed after affine spatial normalization. A simulation is performed
in next section to prove that affine normalization is sufficient to detect consistent clusters

in the bundle space.

6.1.1 First level: intra-subject clustering

This step is developed following a multiresolution paradigm including five steps, described
in the previous chapter (chapter 5). See section 5.2 for an overview of the whole method,
which is illustrated in Figure 5.1.

A key point in this clustering is the use of a voxel-based parcellation of the white
matter, allowing the analysis of any number of fibers. This parcellation produces small
fiber clusters that can be split further using additional clustering performed in the space
of fiber extremities. The resulting output is a set of a few thousand of thin and regular
bundles, composed by fibers presenting similar length and shape. In addition, during the
analysis most of noise fibers are discarded, leading to a cleaner fiber dataset. Due to its
regular shape, each resulting fiber bundle can be represented by a single fiber, called a
bundle centroid. This compressed representation of a tractography dataset allows the

application of further processing steps that could not be applied to the whole fiber dataset.

In order to get a good representation of the thalamic radiations in the model, a pro-
cessing is added to the Step 1, a hierarchical decomposition of the tractography dataset

that originally uses a mask of both brain hemispheres and the cerebellum. The analysis
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uses a mask of the thalami, described in [Marrakchi-Kacem et al. (2010c¢)], for cutting
and extracting the fibers passing through these structures. The fibers passing through
each thalamus form two additional fiber subsets: left-thalamus and right-thalamus, that
are processed separately from the Step 2, as the other subsets. Figure 6.1 shows a scheme
of the Step 1 of the intra-subject clustering including these new subsets. Figure 6.2 (A)
shows all the resulting bundles for a subject, composed by the six fiber subsets: right

hemisphere, left hemisphere, interhemispheric, cerebellum, right thalamic and left thalamic
fibers.

brain hemispheres and
cerebellum mask

W

cerebellum

- right left ir_1ter— )
hemisphere hemisphere hemispheric

whole brain

e
tractography / L=
right thalamic left thalamic

thalami

— STEP 1: Hierarchical decomposition

Figure 6.1: Addition of thalamic fiber subsets in hierarchical decomposition (Step 1) of intra-
subject clustering. A thalami mask, described in [Marrakchi-Kacem et al. (2010c)] is used to cut and
extract the fibers passing through these structures.

6.1.2 Second level: inter-subject clustering

The second clustering level aims at matching the putative bundles produced by the previous
level across a population of subjects. This step is very similar to the clustering performed
in section 5.2.5 (Step 5), where the subject fascicle centroids are clustered using a pairwise
distance. But here the calculation considers the bundles obtained from all the subjects for
a fiber subset. Figure 6.3 illustrates the main steps of the clustering.

A centroid is first calculated for each bundle using the mean of the two mean closest
point distances [Corouge et al. (2004); O’Donnell et al. (2006); O’Donnell and Westin
(2007)] (see equation 5.5). A bundle centroid, representing the main geometry of the
bundle, is localized in the center of the bundle and is determined as the tract minimizing
the distance to the rest of the fascicle fibers. In order to make this processing more

efficient, a random sample of one hundred fibers is used to perform the calculation of each
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right hemisphere left hemisphere

all the bundles

cerebellum right thalamic left thalamic

all the‘ céhtroids

Figure 6.2: Example of the intra-subject clustering results for one subject. A: All the subject
resulting bundles. Bundles are separated into six subsets: right hemisphere, left hemisphere, interhemi-
spheric, cerebellum, right thalamic and left thalamic fibers. B: All the bundles and the corresponding
centroids obtained for the left hemisphere subset.

bundle centroid. This simplification is possible as fibers belonging to a bundle present very
similar shapes, lengths and positions. Figure 6.2 (B) shows the resulting centroids for all

the bundles obtained for the left hemisphere of a subject.

Once all the centroids from all the subjects for the analyzed subset are computed,
they are transformed to the Talairach space (TS) using an affine transformation estimated
from the T1-weighted image. Then, a bundle centroid affinity graph is computed using a

pairwise distance between fibers.

Centroids pairwise distance. The distance measure used is the maximum of the Eu-
clidean distances between corresponding points, normalized by the minimum centroid
length, called (dprgn)-

The maximum of the Euclidean distances between corresponding points (dysg) is de-
fined, for two fibers A and B as

dyp(A, B) = min (max Il a; — b; ||, max || a; — by, ||> , (6.1)

where a; and b; are the position of the points of fibers A and B respectively, for
i = 0..N, — 1. This restringent measure puts a focus on matching bundles with similar
shapes and positions in Talairach space. It is more restrictive than distances based on the
closest points [Corouge et al. (2004); O’Donnell et al. (2006)]. For the calculation, the

centroids are resampled using 21 equally distributed points.

To take into account the length of the centroids, we normalize this distance by the
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Figure 6.3: A general scheme of the inter-subject fiber clustering. This analysis considers all the
bundles obtained for a subset with the intra-subject clustering from a population of subjects. First,
a bundle centroid is calculated for each subset bundle. Then, all the bundle centroids from all the
subjects are transformed to the Talairach space. A restrictive distance is calculated between all the pairs
of centroids and converted to an affinity value. A bundle centroids affinity graph is then calculated,
using a maximum distance threshold. The centroids are clustered using a Hierarchical Clustering and
tight clusters containing centroids from at least half of the subjects are selected as generic bundles. An
optional final step adds discarded close centroids to the tight clusters.

minimum centroid length (I):

d A’B — M’ ifl < drre(A,B)x(mazL—minL) +man,
dMEn(A, B) = ME( ) (maxL—minL) nf

0, otherwise.

(6.2)
where [ is the minimum centroid length, maxL and minL are the maximum and minimum
fiber lengths in the tractography dataset and nf is the normalization factor.

Then, the distance dysgy, (A, B) will be equal to the non-normalized distance dy;g (A, B)
for a pair of centroids A and B, with a minimum centroid length equal to minL. As
the minimum centroid length increases, the distance dy;p, (A, B) decreases linearly until
reaching a distance equal to dyg(A, B) — nf, for a minimum centroid length equal to
mazxL. Typically, we used minL = 20mm, maxL = 250 mm and nf = 10.0. Figure 6.4
(A) presents a plot of dyrgn (A, B) in function of the minimum centroid length (I) for three
different values of dyp (5, 10 and 15mm). This normalization makes more restrictive
the distance for short centroids, which will lead to very tight clusters for short association

fibers, avoiding the inclusion of outliers.

Centroids affinity graph. For the construction of the affinity graph, a maximum dis-
tance threshold (Myy,) is used to define the maximum normalized distance dpsg, between

centroids. Then, for a fixed threshold My, , the non-normalized Euclidean distance between
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Figure 6.4: Normalized Euclidean distance used for inter-subject centroids clustering. The dis-
tance used is the maximum of the Euclidean distances between corresponding points (dasx), normalized
by the minimum centroid length (), called dysgy. The maximum and minimum fiber lengths in the trac-
tography dataset are minL = 20 mm and maxzL = 250 mm, and the normalization factor is nf = 10.0.
A: A plot of dpsgy (see equation 6.2) in function of the minimum centroid length (1) for three different
values of dpyrg: 5mm (blue), 10 mm (red) and 15 mm (green). The normalized distance decreases lin-
early with the minimum centroid length (7). B: A plot representing the non-normalized distance djsf in
function of the minimum centroid length (1), for three different values of maximum normalized distance
threshold My,,. Three different values of maximum normalized distance threshold My, are illustrated:
10 mm (cyan), 12.5mm (magenta) and 15 mm (ocre). The normalized distance is then less restrictive
for long centroids, which present in general bigger shape variations than short association fibers.

corresponding points (dysg) will be close to My, for a pair of short centroids and will be
higher for a pair of long centroids. Figure 6.4 (B) presents a plot of the maximum distance
threshold My, in fonction of the minimum centroid length (I) for three different values of
dyp (10, 12.5 and 15mm). For the construction of the affinity graph, the distances are

converted to affinities using the equation 4.2.

Centroids clustering. The affinity graph is used to compute an average-link hierarchi-
cal clustering. The resulting tree is analyzed in order to extract only very tight clusters,
where the distance between all the fibers within a cluster is inferior to the maximum dis-
tance threshold (Mg, ). The resulting clusters, called generic bundles, are discarded if they

do not contain at least half of the subjects.

Addition of discarded close centroids to the tight clusters. An optional final
procedure aims at relaxing the constraints in order to recover some instances of the generic
bundles that were missed during the stringent clustering analysis. The goal is to be less
demanding on the match between centroids, which is specially important for the subjects
that present a deficient normalization in Talairach space. For each non attributed centroid,
we compute the distance to each of the centroids of the tight clusters. When the distance
to the nearest neighbor is below a threshold Mgy, the non attributed centroid is added

to the final generic bundle representation. The distance measure used is the normalized
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Euclidean distance dysgy, (see equation 6.2). We use the same distance as for the centroids
clustering as is takes into account the centroids length. At the same time, the already
calculated affinity graph is employed, avoiding the recalculation of the distances. The
threshold is calculated as Mgyy = Mg, *0.75. Most of the added centroids belong to long
fiber bundles.

Figures 6.5 and 6.6 show an example of the clusters obtained for a maximal intra-
subject distance between fibers max_cdist equal to 10 mm and a maximum inter-subject
centroid distance My, equal to 15 mm. For a better visualization of the results, a sample

of some clusters are shown in Figure 6.7.

6 2 Inter-subject clustering validation
[ ]

In order to study the behavior of the inter-subject clustering over a population
of subjects aligned with affine registration, we created a simulated dataset of fiber bundle
centroids. First, one subject of the adult NMR HARDI database (cf. section 5.4.2) was
selected to generate a set of 200 simulated bundle centroids. The bundle centroids were
fibers selected from the right hemisphere of the subject with a minimum pairwise distance
across the set. The distance used was the maximum Fuclidean distance between corre-
sponding points dj;p (cf. equation 6.1). The minimum distance was set to 12mm (see
Figure 6.8 A). The obtained bundle centroids set was transformed to the space of each one
of the eleven remaining subjects of the database, using a non-rigid transform, calculated
between T1-weigthed images. To normalize the images we applied non-rigid Diffeomor-
phic Demons [Vercauteren et al. (2009)] after an affine normalization using MedINRIA
software .

Hence, we obtained a set of 200 ground truth clusters, each one containing a centroid
in each subject (see Figures 6.8 B and D). In addition, 500 fibers from each subject were
selected to simulate noise. These fibers were pairwise separated by a minimum distance
equal to 11 mm (see. Figure 6.8 C). For each subject, we got a fiber dataset of 700 fibers,
200 centroids and 500 added noise fibers, leading to a total number of 8,400 fibers for the
twelve subjects.

We applied the inter-subject clustering to the fibers dataset, with the maximum dis-
tance within clusters (My,) varying from 5 to 25 mm, with a length normalization factor
(nf) equal to 0. Resulting clusters where analyzed and compared with the ground truth.
First, only clusters containing centroids from a minimum of seven different subjects were
selected. Then, a cluster was counted as recovered only if all its centroids belonged to the
same simulated cluster, otherwise, it was counted as a missed cluster. Fig. 6.8 E presents
the simulation results as a function of the distance My,. From the analysis, we note, as
expected, that the number of recovered clusters (color bars) increases with My,, as well
as the number of subjects in the clusters (from 7 to 12, indicated by different colors in the
color bars). For distances My, superior to 11 mm, a large number of clusters was recov-

ered, but for distances between 11 and 15mm, most of the clusters miss some centroids.

Yhttp://www-sop.inria.fr/asclepios/software/MedINRIA
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65-80 mm (134 clusters) 80-95 mm (89 clusters) 95-110 mm (73 clusters)

Figure 6.5: Example of inter-subject clusters (short centroid clusters of left hemisphere). Ex-
ample of the short clusters obtained for a maximal intra-subject distance between fibers max_cdist equal
to 10 mm and a maximum inter-subject centroid distance My, equal to 15 mm. Clusters are composed
by the intra-subject centroids obtained in the firt level clustering. They are composed by centroids from
a minimum of 6 different subjects. Clusters are separated into groups of different centroid length. This
figure shows clusters between 20 and 110 mm. See long clusters in Figure 6.6. Colors may be repeated
in different clusters.
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110-130 mm (52 custers) 130-150 mm (42 clusters) 150-175 mm (24 clusters)

175-200 mm (14 clusters) 200-225 mm (5 clusters)

Figure 6.6: Example of inter-subject clusters (long centroid clusters of left hemisphere). Ex-
ample of the long clusters obtained for a maximal intra-subject distance between fibers max_cdist equal
to 10 mm and a maximum inter-subject centroid distance My, equal to 15 mm. Clusters are composed
by the intra-subject centroids obtained in the firt level clustering. They are composed by centroids from
a minimum of 6 different subjects. Clusters are separated into groups of different centroid length. This
figure shows clusters between 110 and 225 mm. No cluster was found between 225 and 250 mm. See
short clusters in Figure 6.5. Colors may be repeated in different clusters.
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150-175 mm

o =
175-200 mm 200-225 mm

Figure 6.7: Example of some inter-subject clusters (left hemisphere). These clusters are a sample
of the clusters obtained for a maximal intra-subject distance between fibers max_cdist equal to 10 mm
and a maximum inter-subject centroid distance My, equal to 15 mm, shown in Figures 6.5 and 6.6.
Clusters are composed by centroids from a minimum of 6 different subjects.
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Figure 6.8: Inter-subject clustering validation using simulated centroids. A: The original 200
fibers selected from the right hemisphere of a subject, used as simulated bundle centroids. B: The
200 simulated bundles for the 12 subjects in Talairach space. Each bundle contains one centroid from
each subject. C: Noise fibers set of one subject. A noise set is determined for each subject, composed
by 500 fibers. D: A selection of bundles from B. Note that, in spite of the inter-subject variability of
the bundles, the fibers of a bundle present a close shape. E: Inter-subject clustering simulation results.
Recovered clusters are presented using color bars, missed clusters are indicated with a red line and
clusters with added noise with a black line.

This behavior is accepted by the method, which adds a cluster to the model as soon as it
includes at least half of the subjects. The red line indicates the number of missed clusters,
which is very low. These are most of the time fused with other clusters. The black line
shows the number of recovered clusters that contain also added noise fibers. Finally, a
large number of clusters made up of only noise fibers was found but discarded by the

method because none of these clusters had fibers from more than six different subjects.

6 3 An example of application for the analysis of U-fibers
[ J

Most of the fiber clustering and bundle automatic segmentation methods have
targeted the large WM tracts described in anatomy books. In return, the cartography of
the U-fiber bundles of superficial white matter (SWM) is a complex and largely unachieved
task for the human brain. Oishi et al. performed a study of the structure of SWM
using a voxel-based group analysis relying on linear normalization [Oishi et al. (2008)].
They could identify only four U-fiber bundles because of the blurring resulting from the
linear normalization process. In a recent work, Zhang et al. (2010) improved the results,
finding 29 short association fibers connecting different brain regions. This kind of ROI-
based approaches have shown to be very powerful but present a big dependence on the

normalization quality. Furthermore, no analysis is performed on the fibers shape.

Hence, tract clustering into putative bundles performed for each subject followed by
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bundle clustering performed across subjects, described in section 6.1, is an attractive alter-
native. Indeed similarities defined in the space of tracts overcome some of the ambiguities
occurring at a voxel-based similarity level. A preliminary attempt to infer a U-fiber bun-
dle atlas from such a strategy coupled with linear normalization led to about 30 putative
U-fiber bundles matched across a group of 12 subjects [Guevara et al. (2009, 2010)]. For
this atlas, a maximal intra-subject distance between fibers maz_cdist equal to 5mm, a
maximum inter-subject centroid distance My, equal to 10 mm and a length normalization
factor (nf) equal to 10.0 were used. Each U-fiber bundle is a short generic bundle, i.
e., an inter-subject cluster composed by the individual centroids from the intra-subject

clustering (see Figure 6.9).

Figure 6.9: Preliminary U-fiber bundle atlas from inter-subject clustering results. A preliminary
attempt to infer automatically an U-fiber bundle atlas using the inter-subject clustering was presented
in Guevara et al. (2009, 2010). This strategy, coupled with linear normalization led to about 30 putative
U-fiber bundles matched across a group of 12 subjects. A: The U-fiber bundle atlas (left size), containing
about 30 short generic bundles. Each bundle is an inter-subject cluster, composed by the individual
centroids from the intra-subject clustering. B-C: Two views for a selection of the U-fibers from the
bundle atlas in A. D: The short generic bundles corresponding to a one subject.

A selection of the most reproducible U-fibers of this preliminary atlas are illustrated
in Figure 6.10. This illustration shows nine U-bundles present in four subjects. The
main sulci of these regions are shown in order to verify the correspondence of the fibers
between subjects. Analyzing the links between the folding patterns and U-bundles will
help to discard spurious match across fiber bundles and to improve our understanding of

the folding variability.

6 4 HARDI multi-subject atlas of DWM known bundles
[ ]

The two-level clustering was performed using the method described above, ap-
plied on the twelve subjects of the adult NMR HARDI database (cf. section 5.4.2). First,
intra-subject clustering, briefly described in section 6.1, an detailed in previous chapter,
was applied to each dataset. This intra-subject clustering reduces the tractography dataset
information from more than one million of tracts to a few thousand fiber bundles. The
analysis was performed for the following segments: right hemisphere, left hemisphere, in-
terhemispheric, right thalamic and left thalamic fibers. The cerebellum segment could
not be analyzed as the dMRI data of this database does not include systematically this
structure.

The intra-subject bundle centroids were calculated for each subset for all the subjects,

using a maximal intra-subject distance between fibers maz_cdist equal to 10 mm. Then, the
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Figure 6.10: lllustration of the use of inter-subject clustering results for U-fibers analysis. The
figure presents a selection of the most reproducible U-fibers of the preliminary atlas, illustrated in
Figure 6.9, located in the fronto-parietal cortex. Nine U-bundles are presented in four subjects. For
visual guidance, the main sulci of these regions are shown: central sulcus (red), several subdivisions of
the precentral sulcus (orange, yellow), superior frontal sulcus (green), intermediate frontal sulcus (light
blue), inferior frontal sulcus (purple).

inter-subject clustering was performed across subjects, separately for each subset, in order
to infer a list of generic bundles with consistent shape and localization in the normalized
space. The maximum inter-subject centroid distance My, was set to 15mm and the
length normalization factor (nf) was set to 10.0. In order to get population representative
clusters, only clusters composed by centroids from at least half of the subjects were selected.

The resulting clusters are those shown in Figures 6.5 and 6.6.

The inter-subject clusters computed from the database of 12 brains were manually
labeled in order to identify known WM tracts. Each atlas bundle is then represented by the
complete set of individual centroids belonging to the underlying intra-subject clusters. For
labelling, our criteria included various anatomical informations related to the bundle path
and localization, and especially to the cortical morphology around bundle extremities. We
used anatomical definitions of each bundle, as those described in Catani and Thiebaut de
Schotten (2008). Sulci segmentations and cortical surface parcellations into gyri were used
as visual guidance. A last visual inspection led to discard a few artefactual centroids

clearly including spurious parts like loops.

An atlas bundle corresponds then to several inter-subject clusters to account for subdi-

visions of the underlying pathway often presenting large variability across subjects. Each
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atlas bundle is further represented by the list of the centroids of the first level clusters
from all the subjects to get a better sampling of the shape and localization variability.
The resulting multi-subject representation provides a good sampling of the inter-
subject variability of the bundle trajectory after affine normalization. The atlas inference
was done for the bundles of the left hemisphere (LH) and the corpus callosum. The
bundles of the right hemisphere were obtained using the symmetric of those of the LH
with respect to Talairach inter-hemispheric plane. The goal is to get a symmetric atlas
for the validation described in this thesis. Ongoing work aims at performing the same

inference for the right hemisphere in order to remove any bias.

The proposed atlas includes a total of 36 bundles, composed by 11 WM tracts in each

hemisphere and the corpus callosum. Several tracts are divided into a few fascicles:

e Arcuate fasciculus (left and right)

— Direct segment
— Anterior segment

— Posterior segment

e Inferior longitudinal fasciculus (left and right)
e Inferior fronto-occipital fasciculus (left and right)
e Uncinate fasciculus (left and right)

e Cingulum (left and right)

— Cingulate long fibers
— Cingulate short fibers
— Temporal fibers
e Corticospinal tract (left and right)
e Fornix (left and right)
e Thalamic radiations (left and right)
— Anterior radiations
— Superior motor radiations
— Superior parietal radiations

— Posterior radiations
e Corpus callosum

— Rostrum
— Genu
— Body

— Splenium

Figure 6.11 shows the HARDI multi-subject atlas of known bundles, composed by a
total of 4189 centroids.
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Figure 6.11: The HARDI multi-subject atlas of known bundles. A: All the bundles (4189 centroids):
right (A1), top (As2) and front (A3) views. B: A detailed view of the bundles. Bj: Interior view of
left fornix (black), uncinate (cyan), inferior fronto-occipital (violet), inferior longitudinal (purple) and
corticospinal (orange) tracts. By: Exterior view of the left arcuate fasciculus segments: direct (red),
anterior (green) and posterior (yellow). Bs: Interior view of the left cingulum fascicles: long cingulate
(brown), shorts cingulate (light green) and temporal (blue). By: Exterior view of the corpus callosum
tracts: rostrum (fucshia), genu (dark blue), body (dark green) and splenium (dark brown). Bs: Exterior
view of the left thalamic radiations: anterior (gray), superior motor (teal), superior parietal (pink),
posterior (light blue) and inferior (ocre).
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6 5 HARDI multi-subject atlas of SWM short association
o bundles

Short bundles have been rarely studied, therefore there does not exist detailed anatomical

description in the literature. As mentioned above, only ROI-based approaches [Oishi et al.
(2008); Zhang et al. (2010)] have been used to study the structure of superficial white
matter (SWM). For example, Zhang et al. (2010) used an atlas-based brain GM/WM
segmentation, relying on non-linear normalization, to identify short association bundles
reproducible across subjects (see Section 4.3). All the pair of adjacent cortical regions
were analyzed in order to find those that were connected by fibers in a population of 20
subjects. Twenty-nine short association bundles, connecting two adjacent cortical regions,
were found in all the subjects. Even though this kind of approach has shown to be very
powerful, it presents a big dependence on the normalization quality. Furthermore, no
analysis was performed on the fibers shape. The only condition used was the existence
of fibers connecting both cortical regions (and not passing through deeper regions), which
may lead to irregular and different bundles across subjects.

In order to study the short association bundles and construct a HARDI multi-subject
atlas of these bundles, we applied our two-level fiber clustering strategy (section 6.1).
The intra-subject bundle centroids were calculated for the left hemisphere and right hemi-
sphere subsets for all the subjects, using a maximal intra-subject distance between fibers
maz_cdist equal to 7mm. Then, the inter-subject clustering was performed across subjects
separately for each subset, in order to infer a list of generic bundles with consistent shape
and localization in the normalized space. The maximum inter-subject centroid distance
My, was set to 12mm, and the length normalization factor (nf) was set to 10.0. In or-
der to get population representative clusters, only clusters composed by centroids from at
least half of the subjects (six subjects) were selected. The final addition of closest centroids
described was not performed in order to keep very tight clusters.

The inter-subject clusters belonging to SWM were manually labeled using a gyral
parcellation of the cortical surfaces [Cachia et al. (2003)], in order to give an anatomical
name to each reproducible bundle. Only clusters that presented a regular shape and an
unambiguous localization were selected and labeled. Figure 6.12 shows the gyri that were
finally used to label the short association bundles.

The atlas inference was done for the bundles of the left hemisphere, with a length
between 35 and 110mm. A name was given for each bundle, following the criterion used
by Zhang et al. (2010), who proposed bundle names composed by the two regions (or only
one region in some cases) connecting each bundle (see Figure A.5). Most of the labeled
bundles are composed by only one generic bundle (or inter-subject cluster), but some
bundles are composed by a few clusters.

In some cases, we could differentiate subdivisions of some bundles, connecting two dif-
ferent gyri. In that cases, we added a string to the name in order to specify the bundle
position: sup (superior), mid (middle), inf (inferior) for superior-inferior axis differentia-

tion, and fr (frontal), mid (middle), bck (back) for anterior-posterior axis differentiation.
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Region Abbreviation
Superior frontal gyrus SFG
Middle frontal gyrus MFG
Inferior frontal gyrus IFG
Medial fronto-orbital gyrus MFOG
Lateral fronto-orbital gyrus LFOG
Precentral gyrus PrCG
Postcentral gyrus PoCG
Supramarginal gyrus SMG
Angular gyrus AG
Superior parietal gyrus SPG
Middle occipital gyrus MOG
Superior temporal gyrus STG
Middle temporal gyrus MTG
Inferior temporal gyrus ITG
Cuneus Cu
Pre-cuneus PrCu
Cingulate gyrus CG
Paracentral gyrus PaCG
Fusiform gyrus FuG
Lingual gyrus LG
Insular Ins

Figure 6.12: Anatomical regions of the cortical surface used to label the short association
bundles of the HARDI multi-subject atlas. [Images where adapted from http://www.bartleby.com/
107/ and http://www.netterimages.com/]

Sometimes a number was added when more than one bundle was found within the same
location. Most of the labeled bundles are composed by only one generic bundle. Forty
seven SWM bundles were identified for the left hemisphere; these bundles are individually
illustrated in Figures 6.13 and 6.14.

The bundles of the right hemisphere were obtained using the symmetric of those of
the left hemisphere with respect to Talairach inter-hemispheric plane. The same inference
can be performed for the right hemisphere in order to remove any bias. Figure 6.15 shows
different views of the SWM bundle atlas.
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Figure 6.13: The HARDI multi-subject atlas of short association bundles: Part 1 (24 bundles).
The whole atlas includes a total of 47 bundles per hemisphere. The second group of bundles is shown in
Figure 6.14. Bundle names were assigned in function of the regions that the bundles connect, following
the region names illustrated in Figure 6.12. In some cases, an additional spatial specification was added:

fr (frontal), mid (middle), bck (back), sup (superior) and inf (inferior).
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Figure 6.14: The HARDI multi-subject atlas of short association bundles: Part 2 (23 bundles).
The whole atlas includes a total of 47 bundles per hemisphere. The first group of bundles is shown in
Figure 6.13. Bundle names were assigned in function of the regions that the bundles connect, following
the bundle names illustrated in Figure 6.12. In some cases, an additional spatial specification was added:

fr (frontal), mid (middle), bck (back), sup (superior) and inf (inferior).
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Left bundles (lateral view) Left bundles (medial view)

" A/

All the bundles (frontal view) All the bundles (Top view)

Figure 6.15: The HARDI multi-subject atlas of short association bundles. The whole atlas includes
a total of 47 bundles per hemisphere. The inference was done from a two-level fiber clustering strategy
for the left hemisphere. The bundles of the right hemisphere were obtained using the symmetric of
those of the left hemisphere with respect to Talairach inter-hemispheric plane.

6 6 Conclusion
[ J

In this chapter we presented a method inferring a model of the brain white

matter organisation from HARDI tractography results computed for a group of subjects.

As for any fiber tracts analysis method, our results depend strongly on the quality

of the tractography results. Our method can not detect bundles that are not tracked in

individuals. Also, spurious bundles can not be differentiated from real bundles if they are

reproducible across subjects. Besides, anomalous final bundles can be found due to errors

in the propagation mask. Since this mask defines where fibers are tracked, bundles can be

erroneously cut or fused. Nevertheless, independently of the tracking results, our method

is a powerful tool to extract the main generic bundles that are present in most of the
subjects.

Our method is able to analyze huge fiber datasets and infer a model of the generic
bundles present in a population. The first level, composed by an intra-subject clustering,
can be seen as a compression of information and a filtering, where bundles representing
the individual whole white matter structure are identified. The second level, an inter-
subject clustering, deals with a reasonable number of bundle centroids from a population
of subjects and is capable to extract generic bundles present in most of the subjects. Long

known bundles were identified, but the result of major significance is the capability to
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identify generic short association bundles, which cartography is a complex and unachieved
task for the human brain. Hence, our approach will scale up easily to the 1 mm spatial
resolution that can now be achieved with highly parallel imaging or very high fields. This
spatial resolution is bound to highlight a myriad of U-fiber bundles and better delineate
other bigger bundles crossing.

The multi-subject representation of our model, embedding the shape and localization
variability of the bundles is a powerful tool for further analyses. It has been shown recently
to be more efficient than the usual single template approach for brain structure recognition
because of weaknesses of the spatial normalization paradigm [Lyu et al. (2010)]. An
example is given in the next chapter for the automatic segmentation of new tractography
datasets.

As fiber shape and position information is used for its inference, the proposed HARDI
multi-subject atlas allows a better decomposition of the known DWM bundles, which can
be of great interest to neuroanatomists and neuroscientists. For instance, the cingulum
is a bundle composed by fibers of different lengths, including a big number of short U-
shaped fibers [Catani and Thiebaut de Schotten (2008)]. Our atlas contains a separated
representation of the long and the short fibers which can allow a systematic identification
of both kind of bundles. The same principle was applied to the arcuate fasciculus, which
was divided into one long and two short segments, as described by Catani et al. (2005).
Our atlas is bound to be refined with more of such subdivisions of the known DWM tracts
in the near future. This capability to represent subdivisions of fiber bundles is also true for
SWM bundles. Several examples were included in the proposed HARDI multi-subject atlas
of short association bundles, for instance the fibers connecting the superior and inferior
frontal gyri, were divided into three bundles: an anterior, a middle and a posterior bundle.

We have shown that the affine registration to standard space is sufficient to align
reasonably the deep tracts across all the subjects. Furthermore, it allows the inference of
a model of the most reproducible short association bundles in a population of subjects.
Each U-fiber bundle inferred in this work did require a reasonable alignment of the bundles
of only half of the subjects, which happens in the most stable brain regions. However,
increasing the number of generic U-fiber bundles, will require an improvement of the spatial
normalisation used to compare bundles across subjects. Therefore, the use of non-linear
normalization relying on sulci segmentation [Auzias et al. (2011)] will have an important
improvement on the results. Moreover, further work will lead us to improve iteratively
the spatial normalization using the inferred bundles as constraints in order to better align
other bundles [Durrleman et al. (2009)].

Neverless, whatever the efficiency of the normalization strategy, a better sampling
of the bundle variability will require the application of this strategy to a bigger HARDI
database. This will be of special interest for the study and representation of the anatomical

variability of tract subdivisions and short association bundles.
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Automatic segmentation of

massive tractography datasets
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Overview

As described in previous chapters, there are two usual strategies proposed for the segmen-
tation of fiber bundles. The first approach is based on regions of interest (ROI) used to
select or exclude tracts. The second strategy is based on tract clustering using pairwise
similarity measures. This last approach requires less interaction than manual approaches
and integrates fiber shape and position information in the analysis, which is not the case of
most ROI-based segmentation approaches. However, the clustering-based methods com-
monly present a limitation on the number of fibers that can be analyzed. In spite of
two recent works that describe the analysis of huge datasets the segmentation of huge
tractography datasets, presenting more than one million tracts, is still a challenge.

Hence, in this chapter we present a direct application of the methods developed in
this thesis, for the automatic segmentation of fiber bundles from massive tractography
datasets. The method uses a priori information embedded in the multi-subject (MS)
fiber bundle atlas developed in previous chapter. This atlas represents the shape and
localization variability of 36 deep white matter bundles and 94 short association bundles
of superficial white matter. Some atlas bundles are hierarchically subdivided into several
fascicles to take into account subdivisions of the WM tracts described in the literature.
This multi-subject strategy, has been shown recently to be more efficient than the usual
single template approach for brain structure recognition because of weaknesses of the
spatial normalization paradigm [Lyu et al. (2010)].

The method builds upon the multiresolution intra-subject clustering that can compress
millions of tracts into a few thousand consistent bundles, described in chapter 5. New
tractography datasets are first compressed with the intra-subject clustering. The resulting
bundles are then labeled using a pairwise distance to the centroids representing the multi-
subject atlas bundles. The segmentation of deep white matter bundles is applied to eight
adults and four children while the segmentation of short association bundles is applied to

ten adults.

Keywords: WM clustering, WM atlas, fiber clustering, U-fibers, WM bundle segmen-

tation, tractography segmentation

Organization of this chapter:

The chapter is organized as follows. We first describe automatic bundle segmentation
method in Section 7.1. Then, we present the results in Section 7.2. These are shown
separately for known deep white matter tracts and short association bundles of superficial

white matter.
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7 1 Automatic segmentation of massive tractography
o datasets

We propose a simple but powerful method for the segmentation of new massive tractog-
raphy datasets using the multi-subject atlas described in chapter 6. This bundle atlas
was constructed from twelve subjects of a HARDI adult database. Each atlas bundle is
represented by the multi-subject list of the centroids of intra-subject clusters in order to
get a good sampling of the shape and localization variability of the bundle trajectory af-
ter affine normalization. The atlas includes 36 deep white matter bundles, some of these
representing a few subdivisions of known WM tracts and 94 short association bundles of
superficial white matter.

A scheme of the automatic segmentation method is shown in Figure 7.1. The seg-
mentation of a new tractography dataset begins with a compression into a few thousand
bundles, using the intra-subject clustering described in chapter 5. Then, the resulting
bundles are labeled using a supervised classification based on the fiber bundle atlas. The
bundle centroids are normalized to the Talairach Space using an affine transformation.
Then pairwise distances are computed between each centroid of the new subject and all
the centroids of the atlas.

The distance measure used is the maximum of the Euclidean distances between cor-
responding points (darg), defined in equation 6.1. As mentioned before, this restrictive
distance is a good representation of the similarity between two fibers, as it takes into
account the fiber positions and shapes. For the calculation, the atlas fibers and the in-
dividual centroids are resampled using 21 equally distributed points. The whole set of
pairwise distances is obtained in a few minutes.

Each individual centroid is labeled by the closest atlas bundle, provided that the dis-
tance to this bundle, namely the smallest pairwise distance to the centroids representing
this bundle, is lower than a threshold.

For known deep white matter bundles, this threshold is adapted to each atlas bundle
using a leave-one-out strategy: for each atlas bundle, the threshold is the minimum value
allowing the labeling of all the centroids of each subject considering the atlas made up
by the eleven other subjects. This leave-one-out point of view leads to define each atlas
bundle specific threshold as the maximum of the minimum distance from one centroid of
this bundle to all the centroids of the same bundle belonging to the other subjects. One
may expect that increasing the size of the database used to infer the atlas will improve
the sampling of the bundle variability, which will decrease the thresholds used to catch the
same bundle in unknown subjects.

For short association bundles, this threshold was empirically adapted to each atlas
bundle (between 8-14mm) taking into account the bundle mean fiber length and the
proximity to other atlas bundles, leading to higher thresholds for long and isolated bundles.
A leave-one-out strategy for the determination of the thresholds could be implemented in

the future.
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Figure 7.1: Automatic fiber bundle segmentation method based on the multi-subject bundle atlas. The segmentation of a new tractography dataset
begins with a compression into a few thousand bundles, using the intra-subject clustering described in chapter 5. Then, the resulting bundles are labeled using a
supervised classification based on the fiber bundle atlas. The bundle centroids are first normalized to the Talairach Space using an affine transformation. Then,
pairwise distances are computed between each centroid of the new subject and all the centroids of the atlas. Each individual centroid is labeled by the closest
atlas bundle, provided that the distance to this bundle, namely the smallest pairwise distance to the centroids representing this bundle, is lower than a threshold.




7 2 Results
[ J

A general problem for evaluating white matter bundle segmentation is the lack of
gold standard. This is even more complex for superficial white matter, which cartography
is still largely unknown and to the best of our knowledge, only the shape of four SWM
bundles has been described in the literature [Oishi et al. (2008)]. We evaluate our approach
using other databases: eight adults and four children for the segmentation of deep white

matter bundles, and ten adults for the segmentation of short association bundles.

7.2.1 Results for the segmentation of deep white matter bundles

Adult HARDI test database. Eight subjects of another adult HARDI database'
(DB2), were used to test the segmentation method of known deep white matter bundles.
This database provides high quality T1-weighted images and DW data acquired with a
Siemens 3.0 T Tim Trio system. The DW data is based on 41 directions and a b-value of
1000s/mm? (voxel size of 2x2x2mm). DW data were acquired using a twice refocusing
spin echo technique compensating Eddy currents to the first order. Geometrical distortions
linked to susceptibility artifacts were corrected using a phase map acquisition. T1 and DW
data were automatically realigned using a rigid 3D transform. The diffusion Orientation
Distribution Function (ODF) was reconstructed in each voxel using an analytical solution
of the g-ball model [Descoteaux et al. (2007)], with a maximum spherical harmonic order
SH.. = 6 and a Laplace-Beltrami regularization factorA;g = 0.006. Whole-brain trac-
tography was performed using an FA-based tractography mask, with a threshold equal to
0.15, and a regularized deterministic tractography algorithm [Perrin et al. (2005a)]. We
do not used our T1-based tractography propagation mask in order to avoid any bias when
performing comparisons between our results and other methods, adapted to a FA-based
mask. Tractography was initiated from seven seeds in each voxel of the mask, in both ret-
rograde and anterograde directions, according to the maximal direction of the underlying
ODF. Tracking parameters included a maximum curvature angle of 30° and a minimum
and maximum fiber length of 20 mm and 250 mm, respectively, leading to a set of about

1.5 millions tracts per subject.

The segmentation results are presented in Figure 7.2. Bundles are colored following
the colors of the known DWM atlas (Figure 6.11). All the atlas bundles were found in
all the subjects with the exception of the fornix and the longest subdivision of the right
arcuate fasciculus. The segmentations were validated by an expert. The problem with
the fornix was usually related to a common error in the tractography mask induced by
the small diameter of this tract. The right arcuate fasciculus problem could be related
to the symmetrization of our atlas that can not correctly account for asymmetry of this
tract related to language. However, exploring the tractography dataset further with a

ROI-based strategy to select fiber tracts, we did not manage to segment this tract in the

!Thanks to Drs. Marion Leboyer and Josselin Houenou for providing this HARDI brain datasets
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Figure 7.2: Automatic DWM fiber bundle segmentation results for adult brains. Colors are the
same as for the bundle atlas (Fig. 6.11). A: all the bundles for the eight subjects (front view). B: some
bundles segmented, for four subjects: First row: left thalamic radiations (exterior view). Second row:
left cingulum and fornix (exterior view). Third row: left and right inferior fronto-occipital, inferior
longitudinal and uncinate (oblique view from left anterior angle). Fourth row: left arcuate fasciculus
(exterior view).

brains where our atlas-based strategy failed. What could happen is that when the right
arcuate fasciculus is not large enough, the current spatial resolution of diffusion data is
not sufficient with a deterministic tracking strategy. Indeed several studies have shown

large asymmetry of the size of the arcuate fasciculus related to asymmetry of the language
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system [Catani et al. (2007)]. To get an insight of the quality of the results, the bundles
were visually compared with those obtained using larger distance thresholds. It was found
that the estimated thresholds were close to optimal for all the bundles.

The same behaviour was found after the application of the segmentation method to
four children of the Child DTI database, described in section 5.4.3. Results are shown in
Figure 7.3.

Figure 7.3: Automatic DWM fiber bundle segmentation results for child brains. Colors are the
same as for the bundle atlas (Fig. 6.11). First row: corpus callosum bundles (left exterior view).
Second row: left arcuate fasciculus (exterior view). Third row: left thalamic radiations (exterior
view). Fourth row: left inferior fronto-occipital, inferior longitudinal, uncinate and corticospinal tract
(exterior view). Fifth row: left cingulum and fornix (exterior view).

Comparison with a ROI-based approach. A comparison was also done for the adult
database with a well known method, proposed by Zhang et al. (2010). For that, we
determined the fibers segmented by both methods, and those segmented only by one of
the methods. The common fibers seem to be well segmented by both methods, following the
definition of each bundle (see for example [Catani and Thiebaut de Schotten (2008)]). But,
when analyzing the fibers segmented only by one of the methods, our results seem to be
better for the tested database. For most bundles, we noted that the ROI-based approach is
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B Mean distance d,,. between fibers segmented only by one
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Figure 7.4: Comparison of our DWM bundle segmentation method with a ROI-based approach
[Zhang et al. (2010)]. Bundle abbreviations are the following: cingulum (CG), uncinate (UN), in-
ferior longitudinal (IL), long segment of the arcuate fasciculus (AR), inferior fronto-occipital (IFO),
corticospinal tract (CST), with an added "R” or "L", indicating the right or left bundles, respectively. A:
Examples for some individual bundles. Bundles segmented by both methods are colored in red, bundles
segmented only by our method are colored in blue, and bundles segmented only by the ROI-based ap-
proach are colored in green. B: Plot of the mean distances djsg (in mm) between the fibers segmented
by each method and the closest fiber segmented by both methods, for all the subjects.

missing some tracts perfectly fitting the definition and the shape of the bundle, but located
at the bundle periphery. This weakness is probably induced by non perfect registration.
We also noted that the ROI-based strategy selects spurious fibers with weird trajectory
because fiber shape is not considered. Some examples are given for four different bundles
in Figure 7.4 (A). To confirm this behaviour, we calculated the mean distance dy/g (see
equation 6.1) between the fibers segmented by each method and the closest fiber segmented
by both methods, for all the subjects (see Figure 7.4 (B)). This analysis was performed
for the fiber bundles segmented by both methods and which presented similar definitions.
All the distances were found to be bigger for the ROI-based method, confirming that, in
general, our method detects a non negligible amount of fibers with a strong probability to
belong to the bundle that are missed by the ROI-based method, and that the fibers not
detected by our method are quite different from the bundle shape.
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7.2.2 Results for the segmentation of short association bundles of SWM

For the segmentation of short association bundles, we used ten subjects of the database
DB2 (described above), but using in this case our T1-based propagation mask, that im-
proves the detection of this subcortical connectivity (see section 5.4.1).

The results for the ten subjects are presented in Figures 7.5, 7.6 and 7.7. All the bundles
were found in at least half of the subjects, which is consistent with our atlas construction
requirements. Twenty-one bundles were found in all the subjects (see Figure 7.5), twelve
bundles were found in nine subjects (see Figure 7.6) and fourteen bundles were found
in between five and eight subjects (see Figure 7.7). The segmentations were validated
by an expert. As for deep WM bundles, the bundles were visually compared with those
obtained using larger distance thresholds. It was found that the chosen thresholds were
close to optimal for most of the bundles. Long and isolated bundles were in general well
segmented, when these existed, but some classifications errors were found in short bundles

localized very close to other atlas bundles.

Bundle Name L R
CG_fr 10 10
CG_mid 10 10
Cg_bck 10 10
Cu 10 10
MFOG-CG 10 10
LFOG_inf 10 10
MFG-PrCG_inf 10 10
MFG-PrCG_sup 10 10
LG 10 10
MFG_bck 10 10
MFOG 10 10
PrCG-PoCG_inf 10 10
PrCG-SMG 10 10
PrCu-CG 10 10
PrCu-SFG 10 10
SFG-IFG_fr 10 10
SFG-IFG_mid 10 10
SFG-IFG_bck 10 10
SFG-MFG_fr 10 10
SFG-MFG_mid 10 10
STG-Ins 10 10

Figure 7.5: Automatic SWM fiber bundle segmentation results (1). Colors and names are the
same as for the bundle atlas (Fig. 6.15). The figure shows the 21 short association bundles found in
both hemispheres (left (L) and right (R)), of all the subjects (10 subjects).
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#subjects

Bundle Name L R
SFG-CG_mid 9 10
FuG_fr 10 9
FuG_mid 9 9
IFG-Ins 10 9
IFG_bck 10 9
MFG_mid 9 10
PrCG-Ins 9 9
PrCG-PoCG_sup 10 9
PoCG-SMG 9 9
SPG 9 9
STG-AG 9 10
MTG-AG 10 9

Figure 7.6: Automatic SWM fiber bundle segmentation results (2). Colors and names are the
same as for the bundle atlas (Fig. 6.15). The figure shows the 12 short association bundles found in 9
of the 10 hemispheres (left (L) and right (R)) of the ten subjects.
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#subjects *
Bundle Name L R gt
AG_sup 6 7
AG_inf 8 5
Cu-LG 10 7
LFOG_sup 5 6
FuG_bck 9 7
ITG-MOG 8 7
MFG_bck2 6 6
MFG-IFG_mid 6 5
MFG_mid2 6 5
MTG-Ins 7 6
PrCu-PaCG 6 5
SFG-MFG_bck 9 8
SMG 7 5
STG_bck 5 5

Figure 7.7: Automatic SWM fiber bundle segmentation results (3). Colors and names are the
same as for the bundle atlas (Fig. 6.15). The figure shows the 14 short association bundles found in 5
to 8 hemispheres (left (L) and right (R)) of the ten subjects.
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7 3 Conclusion

Our results depend strongly on the quality of the tractography results: bundles
that are not tracked in individuals can not be segmented. Therefore, a future research
program could be the use of the deep white matter atlas to add a priori knowledge in the
tractography algorithm.

Nevertheless, the current method is already successful for the major tracts of deep
WM. Thanks to the use of a novel multi-subject representation of bundles and shape
information, the bundles are cleaner than when using a ROI-based strategy, which may
improve the sensitivity of morphometric studies.

Furthermore, this new atlas and the possibility to manipulate massive tractography
datasets allow fine decompositions of the bundles, for instance the arcuate fasciculus and
the cingulum. The cingulum is a good example of what a clustering-based method using
a restrictive distance measure and a bundle atlas can do. This bundle is composed by
fibers of different lengths, including a big number of short U-shaped fibers [Catani and
Thiebaut de Schotten (2008)]. Some methods extract only the long fibers [Wang et al.
(2011)], other methods extract the long and the short fibers together [Zhang et al. (2010);
Visser et al. (2011)]. Our method is the first to extract separately the long and the short
fibers. The same principle was applied to the arcuate fasciculus, which was divided into
one long and two short segments, as described by Catani et al. (2005).

Regarding short association bundles, the proposed method shows that it is possible to
segment the most reproducible superficial white matter bundles using our clustering-based
approach in a population of subjects. Furthermore, this new atlas and the possibility to
manipulate massive tractography datasets allow also finer decompositions of the SWM
bundles, for instance, we proposed two subdivisions of the bundle connecting the pre-
and post-central gyri. Our atlas is bound to be refined with more of such subdivisions for

both, deep and superficial WM, in the near future.

The results presented in this chapter show that our multi-subject representation of
the variability of bundles, combined with a robust affine normalization is sufficient to
get systematic recognition of the large known bundles of deep white matter. In our
opinion, our approach including parsimony relative to atlas registration is more robust
than approaches requiring risky non-linear normalization. Nevertheless, the inclusion of
better normalization could allow a better sampling of the bundle variability with a smaller
number of brains. However, the anatomical variability of tract subdivisions could impose

a minimum number of brains whatever the efficiency of the normalization strategy.

In the case of short association bundles, the proposed method has more limitations.
This is due in part to the high inter-subject variability of short association bundles of
SWM and the current limitations of dMRI techniques. As mentioned above, our results
depend strongly on the quality of the tractography results, and some bundles are not

systematically tracked, a problem that particularly affects SWM due to the partial volume
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effect. We think that an important improvement can be obtained by the use of non-linear
normalization relying on anatomical segmentations [Auzias et al. (2011)]. First, the atlas
construction can be performed using this kind of normalization, leading to a better multi-
subject representation of the variability of the atlas bundles. Furthermore, the recognition
of the bundles should be also improved if non-linear normalization is used between the
subjects and the atlas, reducing the classification errors produced in bundles presenting

very similar shapes and close positions.
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CHAPTER 8

Conclusion

In this thesis, we have proposed new methods for the clustering and analysis of massive
and complex tractography datasets, containing more than a million of fibers per subject
and presenting complex fiber configurations. The main analysis is composed by two parts:
an intra-subject clustering and a clustering performed across a population of subjects.
This strategy allowed the inference of a human brain white matter (WM) bundle model
based on high angular resolution diffusion imaging. A multi-subject atlas was thus inferred,
composed by 36 deep WM bundles, some of these representing a few subdivisions of known
white matter tracts and 94 short association bundles of superficial white matter. Finally,
this atlas is used for the automatic segmentation of known deep WM and some short
association fiber bundles from massive dMRI tractography datasets.

These methodological contributions were described and developed in the Methods part
of the thesis and the bundle segmentation application was shown in a separate Application
part.

These contributions required some background knowledge on cerebral white matter
anatomy, diffusion MRI principles and fiber clustering methods. All these topics were
reviewed and covered in the Background part of the thesis.

All along this thesis, we have tried to make the good mathematical and algorithmic
choices to solve the problems of interest. First, we used an intra-subject hierarchical clus-
tering strategy based on a voxel-based clustering for an efficient analysis and compression
of individual tractography datasets. This approach, composed by several processing steps,
ensures robustness and good results quality to the whole method. Then, we developed
a new and efficient inter-subject clustering method, able to analyse huge tractography
datasets from a population of subjects and infer a model of generic bundles present in
most of the subjects. To deal with the limitation of dataset size, the method uses as in-
put the intra-subject clustering results, consisting in a few thousand bundles representing
the whole fiber dataset structure. Overall, we have tested the robustness and the results
quality of our methods using simulated datasets. The intra-subject clustering was also
compared with another brute-force non-scalable strategy. Finally, we proposed a fast,
robust and automatic bundle segmentation method, based on the created multi-subject
bundle atlas and the intra-subject clustering method. We have made a special effort to

study and discuss many existing state-of-the-art methods in the literature to highlight the
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strengths and limitations of the proposed methods.

As for any fiber tracts analysis method, our results depend strongly on the quality
of the tractography results. Our method can not detect bundles that are not tracked in
individuals. Besides, anomalous final bundles can be found due to errors in the propagation
mask. Since this mask defines where fibers are tracked, bundles can be erroneously cut
or fused. Nevertheless, independently of the tracking results, the developed methods are
a powerful tool for the analysis of tractography datasets structure, the extraction of the
main generic bundles that are present in a population of subjects and the segmentation of

massive tractography-based datasets.

Contributions

Throughout the thesis, we have enumerated our major and minor contributions. In sum-

mary, the important and original contributions of the thesis are:

Major contributions.

A robust intra-subject fiber clustering method of massive diffusion-based
datasets. This novel robust clustering of white matter fibers can deal with millions
of diffusion-based tracts. It is made by a sequence of algorithms in a way that give robust-
ness and good results quality. The analysis is mainly based on geometrical fiber properties
and no strong anatomical a priori are used. The output consists in a few thousands of
homogeneous fiber bundles, where each one can be represented by a bundle centroid. This
compressed representation can be used as input to more sophisticated analysis algorithms
that can not deal with millions of fibers. In addition, during the analysis most of noise
fibers are discarded, leading to a cleaner fiber dataset. An example of application was
detailed with the phantom analysis. It was shown that our clustering method, applied to
a hardware phantom gives a robust and powerful way to evaluate local diffusion models

and tractography algorithms.

A two-level fiber clustering strategy for the inference of a WM bundle model
from HARDI tractography datasets. We presented a method inferring a model of
the brain white matter organisation from HARDI tractography results computed for a
group of subjects. Our method is able to analyze huge fiber datasets and infer a model of
the generic bundles present in a population. The first level uses the developed intra-subject
clustering, that can be seen as a compression of information and a filtering, where bundles
representing the individual whole white matter structure are identified. The second level,
an inter-subject clustering, deals with a reasonable number of bundle centroids from a
population of subjects and is capable to extract generic bundles present in most of the

subjects. Long known bundles were identified, but the result of major significance is the
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capability to identify generic short association bundles, which cartography is a complex
and unachieved task for the human brain.

Using simulated datasets we shown that the affine registration to standard space is suf-
ficient to align reasonably the deep tracts across all the subjects and the most reproducible

short association bundles in a population of subjects.

The construction of a HARDI multi-subject bundle atlas using the two-level
fiber strategy. The generic bundles obtained with the developed two-level fiber cluster-
ing strategy were manually labelled in order to create a HARDI multi-subject bundle atlas
in the Talairach space. For labelling, our criteria included various anatomical information
related to the bundle path and localization, and especially to the cortical morphology
around bundle extremities. We used sulci segmentations and cortical surface parcellations
as visual guidance.

In the case of known deep white matter bundles, we used the anatomical definitions
proposed in the literature. The created atlas includes a total of 36 bundles, composed by 11
white matter tracts in each hemisphere and the corpus callosum, with several tracts divided
into a few fascicles. Regarding short association bundles of superficial white matter, which
have been rarely studied until now, our labelling was based on the name of the cortical
regions that are connected by each bundle. A total of 47 SWM bundles were thus identified
for each hemisphere.

As fiber shape and position information is used for its inference, the proposed HARDI
multi-subject atlas allows a better decomposition of the known DWM bundles and short
association bundles of SWM, which can be of great interest to neuroanatomists and neu-
roscientists. This multi-subject representation of our atlas, embedding the shape and

localization variability of the bundles is a powerful tool for further analyses.

An automatic method for the segmentation of massive tractography datasets.
We developed a method for the automatic segmentation of massive tractography datasets
based on the multi-subject bundle atlas. The method allows a fast and robust segmentation
of the bundles of DWM and SWM represented in the atlas and successfully tracked in the
dataset. The method builds upon the multiresolution intra-subject clustering, that can
compress millions of tracts into a few thousand consistent bundles. New tractography
datasets are first compressed with this intra-subject clustering and the resulting bundles
are then labeled using a pairwise distance to the centroids representing the multi-subject
atlas bundles.

The results show that our multi-subject representation of the variability of bundles,
combined with a robust affine normalization is sufficient to get systematic recognition
of the large known bundles of DWM. In our opinion, our approach including parsimony
relative to atlas registration is more robust than approaches requiring risky non-linear
normalization. Nevertheless, the inclusion of better normalization could allow a better

sampling of the bundle variability with a smaller number of brains. However, the
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anatomical variability of tract subdivisions could impose a minimum number of brains
whatever the efficiency of the normalization strategy. In the case of short association
bundles, the proposed method has more limitations, due in part to the high inter-subject
variability of short association bundles of SWM and the current limitations of dMRI

techniques.

Minor contributions.

A method for the construction of a robust T1-based tractography propagation
mask. To overcome the limitations of the FA-based propagation mask, we propose the
use of a robust propagation mask stemming from T1 anatomy. The mask is constructed
using three anatomical segmentations obtained with the T1 image, allowing a better de-
limitation of the cortical regions and the inclusion of the deep nuclei and other small brain
structures.

This mask, in conjunction with tractography techniques, improves the accuracy of
the anatomical connectivity of the brain by reducing false positives and increasing the
detection of deep nuclei and subcortical connectivity. It was already used in cortico-
cortical and striato-thalamo-cortical connectivity studies. Furthermore, this mask allowed
us to study the organization of superficial WM and infer a model of short association
bundles.

Simulated tractography datasets for the analysis of intra-subject and
inter-subject fiber clustering. We developed a total of 30 tractography datasets,
corresponding to ten different tractography data combined with three different noise
datasets, for the analysis of intra-subject clustering methods. We also developed a set of
tractography datasets for the evaluation of inter-subject clustering methods, consisting in

200 bundle centroids per subject, for a database of twelve subjects.

We believe that these contributions meet the initial goal of this thesis that was to
infer a model of human brain white matter bundles using high angular resolution diffusion

imaging.

Perspectives

We do think that our approach is a necessary and crucial processing step for the analysis
of huge fiber datasets. Hence, our approach will scale up easily to the 1mm spatial
resolution that can now be achieved with highly parallel imaging at very high fields. This
spatial resolution is bound to highlight a myriad of U-fiber bundles and better delineate
other bigger bundles crossing. Therefore, we can expect in the near future, to see more

exploratory studies in order to improve the knowledge of WM bundles structure, in special,
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of short association bundles. Our atlas is bound to be refined with more subdivisions of
the known DWM tracts and more short association bundles in the near future.

Regarding short association bundles, each U-fiber bundle inferred in this work did re-
quire a reasonable alignment of the bundles from only half of the subjects, which happens
in the most stable brain regions. However, increasing the number of generic U-fiber bun-
dles, will require an improvement of the spatial normalisation used to compare bundles
across subjects. Therefore, the use of non-linear normalization relying on sulci segmenta-
tion [Auzias et al. (2011)] will have an important improvement on the results. Moreover,
further work will lead us to improve iteratively the spatial normalization using the inferred
bundles as constraints in order to better align other bundles [Durrleman et al. (2009)].

Nevertheless, whatever the efficiency of the normalization strategy, a better sampling
of the bundle variability will require the application of this strategy to a bigger HARDI
database. This will be of special interest for the study and representation of the anatomical
variability of tract subdivisions and short association bundles.

Furthermore, a bigger database is been used for the validation of the automatic bundle

segmentation results.

We believe that the main contributions from the thesis can now be applied to an-
swer more neuroscientific questions. In fact, our algorithms are starting to be used
by neuroscientists, in part because they are available on demand through the Brain-
VISA /Connectomist2.0 software’. The intra-subject clustering method is been used for
the analysis of tractography datasets from children with corpus callosum agenesis, al-
lowing a better understanding of the bundle structure for this pathology, which is very
different than normal brains. Furthermore, diffusion analyses will be performed over a
big database of patients with bipolar syndrome and controls using our automatic DWM
bundles segmentation method.

We think that several applications of the developed methods will arise in the future.
The resulting fiber bundles of the individual fiber clustering can be combined with
functional data for neuroscientific studies or with other brain segmentations like tumors,
for the analysis of WM structure in pathological brains. Furthermore, cortical surface
parcellation methods could be developed based on the results obtained with our two-level
fiber clustering strategy. Fiber clusters present in most of the population may be
processed in order to find diffusion-based reproducible cortical brain regions across a
population of subjects. Finally, we believe that the automatic segmentation method of
known DWM bundles and also several SWM bundles will be a powerful tool for tract

based diffusion studies.

From a computer sciences point of view, the developed algorithms can be optimized
by the use of computer parallelization and the codification of time-consuming parts using

a more efficient platform as the Graphics Processing Unit (GPU). The improvement and

"http://brainvisa.info
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development of algorithms able to deal with huge tractography datasets will be a contin-
uous research area as tractography datasets size will continue to increase. These datasets
are already extremely huge in the case of streamline probabilistic tractography, which are

composed by about 30 millions of fibers for the current spatial resolutions.
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APPENDIX A

White Matter atlases

WM atlases are commonly used as input, intermediate step or output of fiber segmentation
and identification methods. Some of these atlases are images with gray matter and/or
white matter labeled regions. Other consist of labeled tractographic fibers in some
normalized space. In this section we briefly describe the most known WM atlases, some

of these already cited in previous chapters.

As described in section 4.3, Wakana et al. (2004) generated two- and three-dimensional
WM atlases created on the basis of high-spatial-resolution DT-MRI and 3D tract recon-
struction of 17 prominent WM tracts. The WM tracts were selected using a manual
ROI-based approach, over a whole-brain tractography. Then, 3D tracts were superim-
posed on coregistered anatomic MR images to parcel the white matter and generate the
3D atlas. These parcellation maps were also compared with coregistered DTI color maps

to provide a 2D color map atlas with structural assignments.

Maddah et al. (2005) also created a bundle template using hand-selected ROIs in
white matter. This atlas was then used to identify fiber tracts from a new subject (see
section 4.4.3).

As mentioned in section 4.3, Catani and Thiebaut de Schotten (2008) proposed
another method to reconstruct WM pathways using an ROI approach. The authors
provided a template to guide the delineation of ROIs for the reconstruction of the
association, projection and commissural pathways. An average dataset was used for the
DT template, calculated from the DT-MRI of 12 subjects spatially normalized. Then,
the average color and FA diffusion tensor images were combined to create a split-half
template with delineated ROIs. An atlas of the 3D reconstructions of the single tracts was
generated from two subjects and was provided as anatomical reference in the Montreal

Neurological Institute (MNI) space.

O’Donnell and Westin (2006, 2007) created a “high-dimensional” WM atlas containing
a representation of the known anatomical deep WM 3D tracts in an embedded space (see
section 4.4). The atlas was constructed using tractography datasets from ten different

subjects using a spectral clustering approach [O’Donnell et al. (2006)] and an expert
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Figure A.1: Example of comparison performed by [Lawes et al. (2008)] between fiber tracts from
tractography with tracts isolated with classical post-mortem dissection. lllustration for the left inferior
fronto-occipital fasciculus. (left) Track representation of the whole fasciculus from the mean DTI.
(right) The dissected inferior fronto-occipital fasciculus [From Lawes et al. (2008).]

labeling of WM clusters. The atlas was then used to automatically segment the most
known 3D fiber bundles from five other subjects O’Donnell and Westin (2007).

Lawes et al. (2008) presented a method for constructing a white matter atlas from DT
tractography by making use of the locations of the anatomical terminations of individual
streamlines that pass through white matter. The method provides a manually labeled
preliminary map of WM regions close to gray matter (juxtacortical white matter), used
to map pathways termination voxels. For that, a mean normalized DTI created from
15 healthy subjects was used to perform a whole-brain tractography. Every seed voxel
that gave rise to a streamline was assigned a ”"combined label”, made as a combination
of the numbers corresponding to the areas connected by the track termination points.
A normalized whole-brain map of seed points (voxel centers) was then created, where
each seed voxel was labelled by its membership to a specific track. Tracks were then
reconstructed for each subject by initiating tractography from the center of seed points
bearing the same anatomical label. The anatomical labels, initially defined by a priori
knowledge of brain anatomy, were subsequently modified by the morphology of the fiber
tracks. Inter-subject track variability maps were determined for the major tracks studied.
Finally, the tracks produced by this technique were compared to tracts dissected in
postmortem brains, showing a close correspondence of the fiber tracts from tractography
with tracts isolated with classical dissection (see Figure A.1). This work is a common

reference in the literature due to this comparison.

Hua et al. (2008) created a white matter parcellation atlas based on probabilistic
maps of 11 major white matter tracts derived from the DTI data of 28 normal subjects
(see Figure A.2). White matter tracts were manually extracted using the protocol for the
delineation of ROIs proposed by [Wakana et al. (2004)]. Subjects were registered into
a common template in the DTI-JHU space (Ibam.med.jhmi.edu) [Wakana et al. (2004)]
and the MNI-ICBM152 space (www.loni.ucla.edu/ICBM) [Mazziotta et al. (2001)]. For
each subject, an affine transformation was calculated to register the DTI images to the

template and then used to transform subject’s fiber tracts to this common space. The
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Figure A.2: Probabilistic maps of 11 white matter tracts, proposed by Hua et al. (2008). Results are
superimposed on a single-subject JHU template. The 3D volume rendering of the averaged tract (A)
and color-scaled probabilistic maps (B) are superimposed on 2D slices. Maximum intensity projection
is used for the color intensity in (A). The color in (B) represents probability, as shown in the color bar.
[From Hua et al. (2008).]

tract binarized masks in the standard coordinates were averaged over the 28 subjects to
generate probabilistic maps, in which each pixel contains information about the probabil-
ity. In this approach, pixels that belong to core regions of tracts, which are reproducible
in the normal population, have larger weighting while the less reproducible regions are
mostly at peripheral regions close to the cortex. The probabilistic approach diminishes
contributions of random errors through the group-averaging process. Nonetheless, the

probabilistic maps can contain erroneous white matter regions [Hua et al. (2008)].

Mori et al. (2005) provided a book containing annotated 3D WM tracts images and
crosssectional maps derived from DTI data. 3D WM tracts were manually extracted from
fiber tractography using the method described in [Wakana et al. (2004)]. The 2D atlas is
arranged in a series of axial, coronal, and sagittal images. Color maps are presented at
multiple slice levels and the three orientations, and WM structures are identified, assigned

and annotated by comparison with their reconstructed 3D trajectories.

Mori et al. (2008) introduced a stereotaxic population-averaged WM atlas, called
ICBM-DTI-81, in which DTI-based white matter information was fused with an existing
anatomical template (ICBM-152) [Mazziotta et al. (2001)]. DWI images from 81 normal
subjects were normalized to the template using an affine transformation. Population-
averaged data was obtained by simple scalar averaging of tensor elements. From the
averaged tensor field, the FA and color-coded (RGB) maps were recalculated. Twenty
height deep WM (DWM) structures were manually segmented using RGB maps, into var-
ious anatomical regions, to obtain a WM parcellation map (WMPM) (See Figure A.3 (A)).
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Figure A.3: DWM and SWM atlases from manual ROI-based labeling [Oishi et al. (2008)]. A A 3D
view of the ICBM-DTI-81 atlas, hand-segmented deep WM parcellation map (WMPM) [Mori et al.
(2008)]. B-C The SWM obtained in [Oishi et al. (2008)], defined by 0.6 WM probability, with (B) and
without (C) the DWM. D Results of the nine blades of SWM manually identified for one individual
brain. E The four identified short association fibers: frontal (yellow), fronto-central (green), central

(red), and parietal (blue). The parieto-temporal long association fiber is shown in purple [From Oishi
et al. (2008)].

Oishi et al. (2008) provided a parcellation of the superficially located WM (SWM),
defined as the area between the cortex and the DWM. First, a “probabilistic’ WM map
was generated from WM binarized FA maps of the 81 subjects used for the construction of
the WMPM [Mori et al. (2008)]. The SWM was extracted as the WM between the WMPM
and the cortex, using thresholds applied to the probabilistic WM map. The SWM was then
manually parcellated into nine major structures called “blades”. The 9 blades were further
sub-parcellated into 23 regions based on the relationships with 24 cerebral cortical areas
and the cerebellum. The blades were used as ROIs for tractography selections. Intra-blade
fibers could not be located.

Four short and one long inter-blade fibers were found. The four short association
fibers were designated as follows: frontal (connecting the superior frontal and the inferior
frontal blades); fronto-central (connecting the middle frontal and the pre-central blades);
central (connecting the pre- and post-central blades); parietal (connecting the superior
parietal and the parieto-temporal blades). A parieto-temporal long association fiber
bundle (connecting the superior parietal and the parieto-temporal blades) was also
described. See Figure A.3 (B-E) for a 3D view of the SWM parcellation and the identified
inter-blade fibers.
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Figure A.4:  Normalized FA map overlaid with Type I-lll WM parcellation maps (WMPMs) [Oishi
et al. (2009)]. (A) Type | WMPM cannot accurately delineate the boundary of the SWM because of
excessive anatomical differences between the atlas and the participant. Yellow solid arrows indicate the
WM areas, which were misclassified as “cortex” based on Type | WMPM. A yellow dotted arrow indicates
the cortex, which was misclassified as “WM" based on Type | WMPM. (B) Type Il WMPM parcellates
the cortex and associated SWM together. (C) After the type Il parcellation, SWM structures can be
individually parcellated using the FA threshold of 0.25. (D) Type Il WMPM can label the core part of
SWM, defined by the white matter probability (90% in the presented case) [From Oishi et al. (2009)].

Oishi et al. (2009) generated single-participant WM atlases based on DTI. High-quality
DTI data from a single-participant were BO-distortion-corrected and transformed to the
ICBM-152 atlas (JHU-DTI-MNI atlas) or to Talairach coordinates (JHU-DTI-Talairach at-
las). The atlas was generated based on the anatomical labeling in the ICBM-DTI-81 atlas.
First, the DWM structures were manually segmented into 28 regions [Mori et al. (2008)].
Then, the SWM areas beneath the cortex were defined, based on a population-averaged
WM probability map and manually parcellated into 23 regions [Oishi et al. (2008)]. The
parcellation map, containing more than 100 regions, was called WM parcellation map
(WMPM).

Three different WMPM were defined (see Figure A.4). WMPM Type I contains manual
parcellation of 176 structures (56 DWM, 46 SWM, 10 subcortical GM, 52 gyri, 10 others).
WMPM Type II contains manual parcellation of 130 structures, where 22 SWM of Type I
WMPM are included in the corresponding gyri (56 DWM, 10 subcortical GM, 52 gyri, 10
others). WMPM Type III contains manual parcellation of SWM and the DWM areas (56
DWM, 46 SWM). The outline of the SWM is based on 90% white matter probability, so
these are not clear anatomical boundaries. In this WMPM, structures in the cerebellum
and the cingulum white matter are not included.

To create the “probabilistic” WM map, data from 21 normal participants were used
first to define individual WM binary masks using a FA threshold of 0.25. Then, a dual-
channel Large Deformation Diffeomorphic Metric Mapping (LDDMM) [Ceritoglu et al.
(2009)] was performed to register each participant’s data to the JHU-DTI-MNI template,
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using FA and b0 images. Finally, the normalized binarized WM masks were averaged to
obtain the probabilistic WM map in each pixel in the ICBM152 coordinates. A 90% WM
probability was used to define the boundary of the SWM in Type III WMPM.

The atlas was used to perform automated brain segmentation by warping the WMPM

to normal controls and Alzheimer’s disease patients with severe atrophy.

Zhang et al. (2010) used the Type II WMPM [Oishi et al. (2009)], to perform an atlas-
based tract segmentation of 30 well-knowm DWM and 29 SWM tracts. The approach
defined a Template Roi Set (TRS) for the extraction of each bundle (see more details in
section 4.3).

Probabilistic maps of the 59 tract trajectories were created from twenty normal sub-
jects. For that, the normalized fiber streamlines of each tract were converted to binary
images, which were averaged across the subjects (see Figure A.5). The atlas and the fiber

probability maps were incorporated into RoiEditor software (www.mristudio.org).
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Figure A.5: Short association fibers (short AF) reconstructed by the TRS automated method [Zhang
et al. (2010)]. (A) The individual cases and the probabilistic maps of four U-fibers connecting the
following cortical region pairs: SFG-IFG (frontal short AF); MFG-PrCG (fronto-central short AF); PrCG-
PoCG (central short AF); and SFG-SMG (parietal short AF). (B) The probabilistic maps of the other
25 short AF connecting the cortical region pairs as indicated in the figure. The color scale bar is the
same for figures (A) and (B). [From Zhang et al. (2010)].
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APPENDIX B

Publications of the Author Arising
from this Work

Journal papers

1.

Pamela Guevara, Cyril Poupon, Denis Riviere, Yann Cointepas, Maxime Descoteaux,
Bertrand Thirion and Jean-Francois Mangin. Robust clustering of massive tractog-
raphy datasets. Neuroimage, Volume 54, Issue 3, Pages 1975-1993, 2011.

Conference papers

1.

Pamela Guevara, Delphine Duclap, Cyril Poupon, Linda Marrakchi-Kacem, Josselin
Houenou, Marion Leboyer and Jean-Francois Mangin. Automatic fiber bundle seg-
mentation in massive tractography datasets using a multi-subject bundle atlas. In
MICCAT 2011 Workshop on Computational Diffusion MRI (CDMRI'11), Toronto,
Canada, September 2011.

Pamela Guevara, Delphine Duclap, Cyril Poupon, Linda Marrakchi-Kacem, Josselin
Houenou, Marion Leboyer and Jean-Francois Mangin. Segmentation of short associ-
ation bundles in massive tractography datasets using a multi-subject bundle atlas. 111
Chilean Workshop on Pattern Recognition (CWPR 2011), Pucén, Chile, November
2011.

Pamela Guevara, Cyril Poupon, Denis Riviere, Yann Cointepas, Linda Marrakchi,
Maxime Descoteaux, Pierre Fillard, Bertrand Thirion and Jean-Francois Mangin.
Inference of a HARDI fiber bundle atlas using a two-level clustering strategy. Medical
Image Computing and Computer Assisted Intervention (MICCAI) 2010, Beijing,
China, September 2010.

Linda Marrakchi-Kacem, Christine Delmaire, Alan Tucholka, Pauline Roca, Pamela
Guevara, Fabrice Poupon, Jérome Yelnik, Alexandra Durr, Jean-Francois Mangin,
Stéphane Lehéricy and Cyril Poupon. Analysis of the striato-thalamo-cortical con-
nectivity on the cortical surface to infer biomarkers of Huntington’s disease. Medical
Image Computing and Computer Assisted Intervention (MICCAI) 2010, Beijing,
China, September 2010.
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5. Pauline Roca, Alan Tucholka, Denis Riviere, Pamela Guevara, Cyril Poupon and
Jean-Francois Mangin. Inter-subject Connectivity-based Parcellation of a Patch of
Cerebral Cortex. Medical Image Computing and Computer Assisted Intervention
(MICCAI) 2010, Beijing, China, September 2010.

6. Pauline Roca, Denis Riviere, Pamela Guevara, Cyril Poupon and Jean-Francois
Mangin. Tractography-Based Parcellation of the Cortex using a Spatially-Informed
Dimension Reduction of the Connectivity Matriz. Medical Image Computing and
Computer Assisted Intervention (MICCAI) 2009, London, UK, September 2009.

7. Pamela Guevara, Yann Cointepas, Denis Riviere, Cyril Poupon, Bertrand Thirion
and Jean-Frangois Mangin. Inference of a fiber bundle atlas using a two-level clus-
tering strategy. In MICCAI 2009 Workshop on Diffusion Modelling, London, UK,
September 2009.

8. Pamela Guevara, Muriel Perrin, Pascal Cathier, Yann Cointepas, Denis Riviere, Cyril
Poupon and Jean-Frangois Mangin. Connectivity-based parcellation of the cortical
surface using Q-ball imaging. 5th IEEE International Symposium on Biomedical
Imaging: From Nano to Macro (ISBI'08), Paris, France, May 2008.

Conference abstracts

1. Pamela Guevara, Delphine Duclap, Linda Marrakchi-Kacem, Denis Riviere, Yann
Cointepas, Cyril Poupon, and Jean-Francois Mangin. Accurate tractography propa-
gation mask using T1-weighted data rather than FA. Annual Meeeting of ISMRM,
Montréal, Canada, May 2011.

2. Linda Marrakchi-Kacem, Christine Delmaire, Alan Tucholka, Pauline Roca, Pamela
Guevara, Sophie Lecomte, Fabrice Poupon, Jérome Yelnik, Alexandra Durr, Jean-
Francois Mangin, Stéphane Lehéricy and Cyril Poupon. Using surface connectivity

atlases to measure striato-cortical “disconnection rate” in Huntington disease. Annual
Meeeting of ISMRM, Montréal, Canada, May 2011.

3. Linda Marrakchi-Kacem, Christine Delmaire, Alan Tucholka, Pauline Roca, Pamela
Guevara, Sophie Lecomte, Fabrice Poupon, Jérome Yelnik, Alexandra Durr, Jean-
Frangois Mangin, Stéphane Lehéricy and Cyril Poupon. Distribution of the func-
tional atrophy in the striatum territory of Huntington’s patients. Annual Meeeting
of ISMRM, Montréal, Canada, May 2011.

4. Pamela Guevara, Cyril Poupon, Denis Riviére, Yann Cointepas, Maxime Descoteaux,
Laurent Laribiere, Grégory Tournier, Pierre Fillard, Bertrand Thirion and Jean-
Francois Mangin. Ewvaluation of HARDI local diffusion models and tractography al-
gorithms using fiber clustering. 16th annual meeting of the Organization for Human
Brain Mapping (HBM), Barcelona, Spain, June 2010.
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Jean-Francois Mangin. Inter-subject Connectivity-based Parcellation of the Human
Post-central Gyrus. 16th annual meeting of the Organization for Human Brain Map-
ping (HBM), Barcelona, Spain, June 2010.

. Pamela Guevara, Yann Cointepas, Denis Riviere, Cyril Poupon, Bertrand Thirion
and Jean-Frangois Mangin. A framework for a hierarchical fiber bundle model in-
ference using high angular resolution diffusion imaging. 15th annual meeting of the

Organization for Human Brain Mapping (HBM), San Francisco, USA, June 2009.

. Pauline Roca, Denis Riviére, Pamela Guevara, Cyril Poupon and Jean-Frangois Man-
gin. DWI-based parcellation of the human cortex with a new dimension reduction of
the connectivity matriz. 15th annual meeting of the Organization for Human Brain
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