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Abstract

Embedded devices are currently used in many critical systems, ranging from
automotive to medical devices and industrial control systems. Most of the research
on such devices has focused on improving their reliability against unintentional
failures, while fewer efforts have been spent to prevent intentional and malicious
attacks. These devices are increasingly being connected via wireless and connected
to the Internet for remote administration, this increases the risk of remote exploits
and malicious code injected in such devices. Failures in such devices might cause
physical damage and health and safety risks. Therefore, protecting embedded
devices from attacks is of the utmost importance.

In this thesis we present novel attacks and defenses against low-end embedded
devices. We present several attacks against software-based attestation techniques
proposed for embedded devices. Furthermore we design and implement a novel
software-based attestation technique that is immune to the aforementioned attacks.
Finally, we design a hardware solution to attest and establish a dynamic root of
trust on embedded devices, this solution is proven secure and does not rely on the
strong assumptions used for software attestation.

Résumé

Les systèmes embarqués sont utilisés dans de nombreux systèmes critiques, des
les automobiles jusqu’aux les systèmes de contrôle industriels. La plupart des
recherches sur ces systèmes embarqués se sont concentrés sur l’amélioration de
leur fiabilité face à des fautes ou erreurs de fonctionnement non intentionnelles,
moins de travaux on été réalisés considérant les attaques intentionnelles. Ces
systèmes embarqués sont de plus en plus connectés, souvent à Internet, via des
réseaux sans fils, par exemple pour leur administration à distance. Cela augmente
les risques d’attaques à distance ou d’injection de code malicieux. Les fautes
de fonctionnement de ces équipements peuvent causer des dommages physiques
comme par example rendre des appareils médicaux defectueux. Par conséquent, il
est primordial de protéger ces systèmes embarqués contre les attaques.

Dans cette thèse nous présentons des attaques et défenses contre les systèmes
embarqués contraints. Nous présentons plusieurs attaques contre des techniques
d’attestation logicielle utilisées dans les systèmes embarqués. Puis nous présentons
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la conception et l’implémentation d’une technique d’attestation logicielle qui est
résistante aux attaque présentées précédemment. Finalement, nous présentons la
conception d’une solution permettant de réaliser l’attestation de code ainsi que la
création d’une racine de confiance dynamique (dynamic root of trust) pour les
systèmes embarqués. La sécurité de cette solution est prouvée, et ne repose pas
sur des hypothèses fortes, comme dans le cas des solutions d’attestation logicielle.
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Chapter 1

Introduction

Contents
1.1 Context of This Work . . . . . . . . . . . . . . . . . . . 2

1.1.1 Low-end Embedded Devices . . . . . . . . . . . . . . . 2

1.1.2 Cyber-Physical Systems . . . . . . . . . . . . . . . . . 3

1.1.3 Critical Infrastructure . . . . . . . . . . . . . . . . . . 4

1.1.4 Embedded Systems Security . . . . . . . . . . . . . . . 4

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Code Injection Attacks . . . . . . . . . . . . . . . . . . 6

1.2.2 Attacks Against the Integrity and Confidentiality of the
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 8

Embedded systems are encountered in many settings, ranging from mundane to
critical. In particular, sensor and actuator networks are used to control industrial
systems as well as various utility distribution networks, such as electric power,
water and fuel. They are also widely utilized in automotive, railroad and other
transportation systems. Furthermore they are widely used to control implanted
medical devices, such as pacemakers. In such environments, it is often imperative
to verify the internal state of an embedded device to assure lack of spurious,
malicious or simply residual code and/or data. It is also imperative to prevent
remote exploitation when security vulnerabilities (e.g., due to coding mistakes)
are present in the code.

In the past, embedded devices used in critical applications were rarely inter
connected to the outside world or to other devices, hence they benefited from
a blanket protection against remote intrusion. However, in the last few years
the increased adoption of open wireless communications for these devices has
augmented the risk of remote exploits for such devices.
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When embedded devices are used in safety critical applications, software faults
caused by malicious activity can have dire real-world consequences. Notably, the
recent Stuxnet worm [FMC11] demonstrated the magnitude of damage that could
stem from attacks to embedded devices. Stuxnet infected Programmable Logic
Controllers (PLC) used in industrial control systems for nuclear reactors. By doing
so, it altered the operational parameters of the uranium enrichment centrifuges of
one nuclear plant located in Iran, causing permanent damage to the centrifuges.
Embedded devices are also used in automotive control systems. Recently, such
systems have been shown vulnerable to a variety of attacks [KK10], including
malicious re-flashing of in-car electronic safety systems. Protecting such devices
from exploitation is still an open research challenge. Another possible application
domain is direct recording electronic (DRE) voting machines, that have been
shown vulnerable to return-oriented programming attacks in [CFK+09] and other
forms of manipulation of the ballot reporting [WWH+10]. These machines are
equipped with embedded devices similar to those targeted by our work.

These facts make embedded devices security an important challenge. We
believe that, while examples of real life attacks are still limited, it is vital to design
and deploy the correct security solutions in a proactive rather than reactive way.

1.1 Context of This Work

The focus of this work is the protection of the execution environment in low-end
embedded devices from malicious attacks. In particular, we focus on embedded
devices used in cyber-physical systems and used to operate the critical infrastruc-
ture.

1.1.1 Low-end Embedded Devices

Embedded devices are computer systems designed to perform one or a limited
set of specific functions. They are embedded in the sense that all their parts
(e.g. memory and CPU) are contained in one single encasing or chip. Embedded
devices usually lack of any user interface and are programmed and debugged using
a single debug interface.

In this work we focus on low-end embedded devices, that have hard constraints
on their computational capabilities, memory, energy and cost. In particular,
all the protocols and techniques presented in this work have been implemented
and tested on two devices, the Texas Instruments MSP-430 and the Atmel AVR
family of micro-controller units (MCU). These embedded devices rely, respectively,
on a 16-bit and an 8-bit instruction set. The MSP-430 is based on a Von
Neumann architecture, which means that both instructions and data are stored in
a single address space. The AVR instead relies on a Harvard architecture, where
instructions and data are stored in physically separate memories.
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These micro-controllers are both embedded on one silicon die where the CPU
as well as the memories reside (both RAM and flash storage). The same chip also
holds external peripherals such as signal converters (digital to analog and analog to
digital), bus interfaces (e.g., UART, etc.), with the possibility of attaching network
interface (e.g., Zigbee). Encasing all the components in one single die allows
to keep productions costs and energy consumption low. Also, since embedded
devices are designed to perform specific tasks, their design can be optimized
further reducing their final cost.

Embedded devices are used in a variety of applications ranging from safety
critical (e.g., energy plants or automotive systems) to mundane (MP3 players
and digital watches). In this work we concentrate on the challenges that arise
in securing the operation of the former class of applications, where embedded
devices are used as part of cyber physical systems and perform as both actuators
and sensors.

1.1.2 Cyber-Physical Systems

A cyber-physical system (CPS) is a system where there is tight coordination of the
system’s computational and physical elements [Lee08]. Cyber-physical systems
are composed of three main components: the processing unit, one or more physical
sensor (temperature, humidity, etc.) and actuators. Today, CPS are used in a wide
variety of applications ranging from automotive, industrial control systems, energy
production, health care, aerospace, etc. The definition of cyber-physical systems
and embedded devices often overlap, however when referring to cyber-physical
systems the stress is on the tight integration between the computing part and the
sensors and actuators, rather then the embedded nature of the computation.

There are a number of applications already deployed of cyber-physical systems
and more are envisioned to come in the future. Embedded devices are used to
control medical devices, such as internal defibrillators and pacemakers or insulin
pumps. Most modern cars are largely controlled by, so called, electronic control
devices that supervision many aspects of the driving ranging from steering to
breaking and more. Energy plants of all types (including nuclear plants) rely on
embedded devices to monitor and adjust the operational parameters of the systems.
Factories rely on embedded devices to control various aspects the production and
distribution, called industrial control systems. Cyber-physical systems present a
number of interesting challenges that sets them apart from traditional computers
and, in 2007, they were identified as as the most important research priority by
the NITRD in an address to the US President [NN07].

Cyber-physical systems are required to operate unattended for extended periods
of time, possibly in harsh environments. They are often subject to strict reliability
and timing constraints. Faults might results in real-world safety risks. The devices
can be physically tampered with for malicious purposes. In this work we are
interested in exploring the security challenges that arise when embedded devices
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are used in cyber-physical systems, especially when these devices are used to
operate and control the critical infrastructure.

1.1.3 Critical Infrastructure

The term critical infrastructure is used by governments to identify and describe
assets and systems that are essential to the proper functioning of a society and
economy. According to a 2006 report to the European Union [fCIP07] member
states are advised to identify their critical infrastructure based on criteria that
include:

• “Scope - The disruption or destruction of a particular critical infrastructure
will be rated by the extent of the geographic area which could be affected
by its loss or unavailability.

• Severity - The consequences of the disruption or destruction of a particular
infrastructure will be assessed on the basis of several parameters listed
below.”

In turn severity is rated in terms of: public effect (population affected);
economic effect (significance of economic loss and/or degradation of products or
services); environmental effect; political effects; psychological effects; public health
consequences.

While there is no general consensus on what exactly constitutes the critical
infrastructure, based on this definition the following national assets associated
with: transport and distribution; telecommunication; electricity generation and
distribution; water supply; public health; financial services (banks); security
services (police and military) and more.

1.1.4 Embedded Systems Security

In the context of cyber physical systems and the critical infrastructure, embedded
devices security poses a number of unique challenges that are different from
traditional computing devices.

Energy Constraints Some embedded devices are battery powered and need to
operate for extended periods of time. Implantable medical devices, for example,
are fully encased in the patient’s body and cannot rely on any external energy
source, but still need to operate for years without any intrusive replacement.
Any security protocol designed for such devices needs to use computation and
communication in a very efficient manner to preserve battery life. Furthermore,
the security protocols themselves might introduce threats to the availability of the
device, if the attacker is specifically interested in exhausting the device’s battery1.

1This class of attacks is sometimes called sleep deprivation attacks.
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Low Cost Some embedded devices are deployed in large numbers and are
therefore very cost sensitive: even a small addition in the design might result in
high final costs. An increase in few cents in the production cost might render a
system economically infeasible.

Real-time Constraints Most embedded devices operate under tight timing
constraints. Security related operation must be designed not to interrupt normal
operation. This presents a very hard challenge since many cryptographic primitives
(e.g., cryptographic hashes) are extremely difficult to be made efficient.

Physical Attacks Embedded devices might be left unattended in unprotected
areas for extended periods of time. This leaves them vulnerable to physical
tampering to completely subvert the platform, gain cryptographic keys and more.
Embedded devices must be designed to withstand such attacks, or at least make
these attacks detectable remotely.

1.2 Problem Statement

As explained, embedded devices are used in a large number of critical applications.
It is therefore essential to protect them against malicious attackers. However,
given the vast number of possible attacks against low-end embedded devices one
is confronted with the problem of designing a set of counter-measures that covers
as many attack vectors as possible (ideally all) while remaining efficient and,
possibly, low-cost. Several trade-offs, corner cases and implicit assumptions need
to be analyzed and made explicit. For example, are the embedded devices tamper
resistant? If yes, to which degree and at what cost? If no, are hardware attacks
realistic?

The list of such questions is very big and very soon one realizes that the
design space is extremely vast. First there is a very large combination of possible
adversarial assumptions. Second and perhaps more important, there is a large
number of solutions to choose from. These solutions can be implemented in
hardware or software; can be implemented on the device or at the network level;
they can rely on tamper resistant hardware or not; etc. Luckily, this vast design
space has already been charted on commodity devices, where the problem of
securing execution has been studied for more than a decade. This means that
designing security solutions for embedded devices has the advantage of being
able to look at the big picture and choosing the solutions that provide the best
trade-offs, for example, in terms of security and efficiency. Also, this approach
guarantees that the solutions implemented do not overlap or collide.

One of the great advantages of working with embedded devices is the general
lack of legacy constraints. In fact, it is not uncommon for a micro-controller unit
to be heavily customized to fit the needs of a specific application. This is in stark
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contrast with commodity devices, such as server and desktop computers, where
legacy is one of the biggest, if not the biggest, hurdle in designing solutions to the
problem of securing execution.

To guide in the design of our solutions we follow a map of possible attacks
and, therefore, explore adversarial assumptions.

1.2.1 Code Injection Attacks

Here we list the attacks that we consider and address in this work. They encompass
the ways in which malicious code can be injected in an embedded device.

Remote Exploits This form of attacks is perhaps the most well-known and
widely studied. In this case, the attacker and the victim device communicate
over a communication channel, for example a TCP/IP connection or the system
call interface of an operating system. The attacker tries to abuse and subvert
the communication protocol and format to expose an implementation bug on
the victim device. Once discovered, the bug can be used to subvert the flow of
control on the victim and inject malicious code that performs actions chosen by
the attacker.

Attacks Against Software Updates Most software systems – and the ones
on embedded devices are not an exception – share the need of being amendable
to updates. Updates can occur for a number of reason, but most commonly it is
due to a implementation bug that needs to be fixed or a feature that needs to
be added. This factor has important consequences on security, since, often, there
is no immutable trusted code base that can be trusted implicitly. Instead the
system needs to be able to accept new code, provided that it comes from a trusted
source. This process can be subverted by an attacker, if the right countermeasures
are not put in place, and lead to malicious code being injected on the victim
device. This type of attack could be possible even if remote exploits are completely
mitigated. More subtly, even if the software update protocol is secure, malicious
code injection is still possible if the computer that issues the update has been
compromised. This type of attacks have been recently discovered in the context of
external defibrillators [HRMM+11] and it was the case in the StuxNet outbreak
[FMC11].

Attack Against Management Interfaces Furthermore, embedded devices
often have debugging and management interfaces, e.g., JTAG interfaces. These
interface are frequently used during development and prior to deployment and
give highly privileged access to the device and allow to upload new software or
change the settings. As explained, embedded devices are often left unattended for
long periods of time and therefore these debugging interface might be accessed
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by an attacker. Security of the debugging interfaces is enforced in two main
fashions, either by preventing un-authorized access by authenticating the legitimate
administrators (for example via passwords) or by blocking completely the debug
interface when the device goes to a production environment (for example by
blowing specific fuses on the device). Neither of these approaches are completely
secure though (passwords can be guessed and fuses can be tampered with) allowing
malicious code injection.

Injection at Production Time Consider the following situation2, Alice sells
an empty SIM card to Bob. Bob goes ahead and uploads its code on the SIM
card. Bob does not see anything wrong, however the card originally contained
malicious code and the upload procedure was rigged to allow a malicious piece
of code by Alice to be present on Bob’s SIM card. This malicious piece of code
could remain silent unless a specific event is triggered by Alice.

1.2.2 Attacks Against the Integrity and Confidentiality of
the Data

There are other attacks that, albeit not addressed in our work need to be considered
in the design of secure embedded devices. Even though these attacks range from
logical to physical, we group them because the goal they achieve, which is violating
the integrity or confidentiality of the data stored on the embedded devices.

Non Control Data Attacks Non control data attacks have been explored in
[CXS+05a] and involve an attacker remotely exploiting an implementation bug,
not unlikely the code injection remote exploitation mentioned above. However,
the goal of the attacker is not to inject code but to simply change the value of
variables used for security purposes. Consider, for example, an attacker that could
change the value of a key to a known value, therefore exposing all subsequent
communications. Also consider the case of an attacker resetting the value of a
flag used for access control purposes. In both these examples, no code is injected
on the victim device but a comparable effect is produced for the attacker.

Side Channel Attacks Simple and Differential Power Analysis attacks trace
the power consumption of an embedded device and measure the tiny fluctuations
that occur when the MCU is computing different instructions or handling different
data [MOP07]. By doing so, these attacks are able to recover bits of the secret
key. Several related attacks are possible that fall in the broad definition of side
channel attacks, these include electro-magnetic analysis and timing analysis. Side
channel attacks have been originally developed to extract secret from smart cards
and therefore, are extremely relevant to embedded devices.

2This example is taken from [GN07]
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Physical Attacks Physical attacks encompass a wide variety of attack tech-
niques that range from fault injection to the depackaging of the embedded chip to
steal its secrets. Fault injection attacks, for example, aim at putting the embedded
device in state that can be exploited by the attacker via the manipulation of
its surrounding conditions, e.g., manipulating the voltage issued to the CPU.
More invasive attacks can modify paths on the circuits of an embedded device to
cause faults and recover secrets stored on the device. A complete survey of such
techniques is beyond the scope of this work and can be found at [Sko05]. Such
attacks can be countered by encasing the embedded device in tamper resistant or
tamper evident casing and by including appropriate control logic to detect the
unusual conditions exploited in fault injection attacks. Those attacks operate at a
different layer than the one analyzed in this work. However, when designing our
solutions we considered the amenability to such protective techniques.

1.3 Contributions

Given the landscape defined above we can now proceed to explain where our
contributions stand. First, we are interested in investigating techniques to prevent
code injection via control flow exploitation of low-end embedded devices. Our
solution can only help prevent remote exploit attacks (commonly referred as
buffer overflow attacks), but it cannot prevent other forms of injection, such
as malware introduced at production time. For this reason we also focus our
attention to techniques that can detect malicious code if present. Hence, we look
at techniques to verify the current state of a remote embedded device, namely via
device attestation. We also concentrate on techniques to establish a dynamic root
of trust, i.e., executing a small trusted piece of code untampered even when the
embedded device has been compromised. This small trusted piece of code can, if
needed, perform device attestation.

In doing so we focus on techniques that minimize hardware modifications to
existing embedded devices in order to reduce cost. Furthermore, we strive to
design solutions that have a small footprint and overhead on the normal operations,
realizing how security protocols might interfere with the normal operations of the
cyber-physical systems.

The contributions of this work are manifold:

• First, we present a lightweight hardware modification to the AVR MCU
family, called IBMAC, that helps preventing remote exploitation of buffer
overflows on embedded devices (Chapter 2).

• Then we thoroughly review several protocols proposed in the literature to
perform software attestation of embedded devices. We find that most of the
proposed solutions are vulnerable to several attacks and do not provide the
claimed guarantees (Section 3.2).
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• We therefore design PoSE, a software attestation solution that overcomes
the limitation of the previously proposed protocols (Section 3.3).

• Finally, we present SMART that uses a hardware/software co-design to
guarantee the execution of a piece of code on a remote embedded device
(Section 4). This small piece of code can perform device attestation, if
needed.
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Chapter 2

Protecting Embedded Devices
against Remote Attacks

Contents
2.1 State of The Art . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Control Flow Exploitation . . . . . . . . . . . . . . . . 12

2.1.2 Control Flow Protection . . . . . . . . . . . . . . . . . 15

2.2 Instruction Based Memory Access Control for Con-

trol Flow Integrity . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Overview of our solution . . . . . . . . . . . . . . . . . 17

2.2.2 A separate return stack . . . . . . . . . . . . . . . . . 18

2.2.3 Instruction Based Memory Access Control . . . . . . 19

2.2.4 Other design considerations . . . . . . . . . . . . . . . 20

2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Considerations . . . . . . . . . . . . . . . . . . . . . . . 25

This chapter presents a control flow enforcement technique based on an In-
struction Based Memory Access Control (IBMAC) implemented in hardware. It
is specifically designed to protect low-cost embedded systems against malicious
manipulation of their control flow as well as preventing accidental stack overflows.
This is achieved by using a simple hardware modification to divide the stack in a
data and a control flow stack (or return stack). Moreover access to the control flow
stack is restricted only to return and call instructions, which prevents control flow
manipulation. This Return Stack is stored in data memory at a different location
than the normal stack and is protected in hardware against accidental or malicious
modification. Our approach is binary compatible with legacy applications, only
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requires minimal changes to the tool-chain and does not the increase memory
requirements. Additionally, it makes an optimal usage of stack memory and
prevents accidental stack corruption at run-time. The solution is implemented on
the AVR micro-controller using both a simulator and a full implementation on an
FPGA. The implementation on reconfigurable hardware showed a small resulting
overhead in terms of number of gates, and therefore a low overhead of expected
production costs.

This demonstrates the possibility to implement this feature with a modest
overhead in terms of logical elements units, with no run-time impact, and backward
compatibility on all major software functionality. In order to support this feature
the device needs application specific configuration to be performed at boot time.
This configuration is performed during the boot of the software on the device.
This configuration is performed during the very first step of software initialisation
and therefore can be performed by the C library after basic initialisation of
memory. Apart from this change the compiler libraries and programs do not need
modifications.

2.1 State of The Art

By control flow exploitation we mean all the techniques and attacks that try to
subvert the normal flow of control of a program and inject malicious code. These
attacks are aimed at gaining remote and privileged access to a computer systems
by subverting the data structures that regulate the control flow of a program
(e.g., the return addresses stored on the stack). Programs that do not implement
appropriate checks allow attackers to remotely write data beyond the normal
boundaries and thus overwrite control structures in the program. This enables
the attacker to execute code with the same privileges as the exploited code.

In this section we will survey the current state of the art of both prevention as
well as exploitation techniques. We begin by describing older attack techniques first
and introduce the general problem. We then move to more recent attack techniques
and finally describe the prevention mechanisms that have been proposed.

2.1.1 Control Flow Exploitation

2.1.1.1 Buffer Overflows

Buffer overflows were first described by Spafford in [Spa89]. Spafford reports his
efforts in reverse engineering the remote infection of a BSD derived versions of
UNIX that occurred in November 1988. Spafford finds that a worm propagated
through the network by exploiting a bug in the implementation of the fingerd
demon that allowed remote code injection and the execution of a UNIX shell. These
types of attacks, later called buffer overflows (or buffer overruns), did not become
popular until later in the nineties following the publication of [One96, Mud95].
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Figure 2.1: Common stack layout

In order to understand how buffer overflows work one needs first to understand
how functions and procedures are managed in most systems and programming
languages [Ale05]. When a piece of code calls a function the following steps take
place:

1. the calling procedure pushes arguments on the stack in reverse order;

2. the calling procedure executes a call instruction that stores the address of
the calling procedure on the stack and then jumps to the called function;

3. the called function saves the old frame pointer on the stack and then the
stack pointer is decremented to make room for the local variables.

In figure 2.1 there is a depiction of the resulting typical stack layout when a
function call occurs. Now consider the following code:

#include <stdio.h>

int main (int argc, char ∗argv[]) {
char buf[16];
strcpy(buf, argv[1]);
return 0;

}
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This code is trivially vulnerable to a buffer overflow attack. In fact, according to
the ANSI C specifications the strcpy function copies characters in the destination
buffer buf until a ’\0’ character is encountered. However, if an attacker provides
a string that is longer than the allocated length, buf is overflown and data adjacent
to buf in memory can be overwritten. Specifically, the attacker can overwrite the
saved return address on the stack. By carefully crafting the content of the input
buffer the attacker can divert the return address, inject its own code and make
the process execute arbitrary code. This arbitrary code is usually referred to as
payload or shell code.

However, the attack is slightly more complicated than this simple explanation.
In fact the attacker has to know the current address of the stack frame to overwrite
the return address in memory with the correct value. A common technique is to
include a NOP sledge in the payload: a NOP sledge is a series of NOP instructions
that have the sole purpose of increasing the attacker’s chances of correctly guessing
the address of the payload. In fact, if the guessed address points to any location
within the series of NOPs, execution will continue through the NOPs and eventually
reach the payload. This way the attacker does not need to know the exact location
of the payload but only its approximate location to fall within the sequence of
NOPs.

2.1.1.2 Return to libc

The buffer overflow technique described above assumes the data on the stack to
be executable, this way the attacker can inject arbitrary code on the stack and
execute it. However, this assumption is not always true. Harvard architectures
(like the AVR used in this work) explicitly distinguish code and data. This makes
the data non executable. Furthermore, one of the first techniques proposed to
prevent buffer overflows (described later in Section 2.1.2.1) is designed to prevent
the execution of the data on the stack.

In order to circumvent this limitation, soon a new class of attacks was discovered
[Sol97b]. In this class of attacks the attacker does not inject any payload code on
the stack, since its execution would be impossible. Instead, the attacker overwrites
the return address on the stack with the address of a function already present
in the address space of the vulnerable program. The attacker can manipulate
the parameters stored on the stack to pass parameters to the target function
appropriately. The target function can be any function that has been loaded
inside the address space of the attacked process.

Since most C programs load the C library by default (libc) this class of
attacks often used functions in the C library and was called return to libc or
return-into-libc.

14



2.1.1.3 Return-Oriented Programming

The return to libc attack is somewhat limited to the functions already present
in the program’s memory and, in general, does not allow the attacker to execute
arbitrary code. To counter the effectiveness of this attack, for example, certain
security critical functions (like the UNIX system call) could be removed entirely
from the program’s code making the exploit more difficult to accomplish.

In order to circumvent these limitations Shacham introduced a technique
called return-oriented programming (ROP) [Sha07] to exploit vulnerable pro-
grams. Instead of executing a complete function present in the address space of
a vulnerable program, ROP aims at discovering very short sequences of assem-
bly instructions (two or three instructions long) that terminate with a return.
These short sequences, called gadgets, provide the basis for a return oriented
programming attack. In fact, by carefully crafting the data injected on the stack,
a chained sequence of gadgets can be executed within the attacked process to
perform arbitrary computation. Later the technique was expanded and augmented
to perform attacks without relying on the return instruction [CDD+10].

2.1.2 Control Flow Protection

Control flow attacks have been predominant in many forms since their first
appearance. Many different techniques have been proposed to prevent the remote
exploitation of vulnerable code, mostly on commodity computers like servers and
desktop class machines.

2.1.2.1 Non-Executable Data

One of the first methods to defeat stack based buffer overflows was to make the
stack non-executable [Sol97a]. This way even if the attacker is able to inject code
on the stack, she cannot execute it. This eventually evolved into what is now
referred to as DEP – Data Execution Prevention – (also referred to as X ˆW) that
is now included in most modern operation systems. In DEP the data memory
pages are marked as non-executable either using hardware or software support.
When using hardware support, a Non Execute (NX) flag is set for the memory
pages of the stack. The processor in turn refuses to execute such memory locations
preventing simple stack based overflow. It must be noted, however, that this
technique does not prevent other types of exploits like, for example, return-to-libc
or ROP attacks.

2.1.2.2 Control Flow Integrity

In Control Flow Integrity, Abadi et al. [ABEL05] propose to embed additional
code and labels in the code, such that at each function call, or return, a program
is able to check whether it is following a legitimate path in a precomputed control
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flow graph. If the corruption of a return address occurs, that would make the
program follow a non legitimate path, then the execution is aborted as malicious
action or malfunction is probably ongoing. The main drawback of the approach is
the need for instrumentation of the code, although this could be automated by
the compiler tool-chain, it has both a memory and computational overhead and
thus might be infeasible on resource constrained devices.

2.1.2.3 Stack Canaries

Canaries were proposed as a solution to buffer overflows in [BST00]. The authors
propose to place a canary value between the return pointer and local function
variables. The value of the canary value is set in the prologue of each function and
is checked for validity in the epilogue. In cases when the canary value is altered,
there is a clear indication that a memory corruption has occurred and appropriate
actions can be taken by the epilogue function, like terminating the process and
logging the event.

Canaries introduce a measurable overhead in the normal operation of a program,
as the prologue and epilogue are instrumented inside the code at compilation time.
Furthermore, canaries have been shown to have a number of vulnerabilities [Ale05].
For example, if the attacker is able to find a double corruption then it can first
corrupt a pointer to point past the canary and then modify the return pointer on
the stack without modifying the canary.

2.1.2.4 Address Space Layout Randomization

Address space layout randomization [The] can hinder control flow attacks. It
is a technique where the base addresses of various sections ( .text,.data,.bss,
etc.) of a program memory are randomized before each program execution. The
memory corruption is not prevented with this technique but exploitation of the
vulnerabilities is made considerably more difficult. In fact, the attacker has to
correctly guess the randomized address of the target code to execute to complete
the attack.

Although, in [SPP+04] show that the effectiveness of address-space randomiza-
tion is limited on 32-bit architectures by the number of bits available for address
randomization. This problem would be even more severe on embedded systems
that typically have a 8-bit or 16-bit address space.

2.1.2.5 Protecting the Return Stack

In [Sta] the authors present StackShield that uses a compiler supported return
stack. Where the compiler inserts a header and a trailer to each function in order
to copy to/from a separate stack the return address from/to the normal stack.
As this is implemented at the compiler level there is no backward compatibility,
the programs need to be re-compiled with this modified compiler. Moreover, as
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additional instructions are introduced there is non negligible a computation and
memory overhead.

Furthermore in [XKPI02] the authors propose a return stack mechanism where
dedicated call and ret instructions store and read control flow information from
a dedicated stack. However the only guarantee for this return stack integrity is
that is located far away the normal stack, which does not prevent modification of
the return stack, it just makes it more difficult. Double corruption attacks [Ale05]
would allow an attacker to corrupt a data pointer first and then modify an arbitrary
memory location on the return stack.

A number of systems already use a separate control flow stack like the
PIC micro-controller (for example the pic16[bbM]) or some AVR chips (AVR
AT90S1200 [08302]). However those solutions are not designed to improve security.
They either allow direct modification of the hardware stack (vulnerable to double
corruption) or have a limited stack stored inside the MCU (very limited call
depth). For example the AVR AT90S1200 has a return stack supporting only
3 re-entrant routines, if more than 3 re-entrant interrupts or functions calls are
performed the hardware return stack is corrupted.

2.2 Instruction Based Memory Access Control

for Control Flow Integrity

2.2.1 Overview of our solution

The main idea behind IBMAC is to protect return addresses on the stack from
being overwritten with arbitrary data. By doing so, as we will show later, IBMAC
also protects embedded systems from memory corruption caused by stack overflows.

The intuition is that control flow data should be only read and written by
the call and ret family of instructions and modifications by other instructions
should be prevented. Hence, restricting access to return addresses to call and
ret instructions in hardware seems only logical. However in a normal stack layout,
return addresses are interleaved to other types of data, making access controls
difficult. In fact, such a fine grained access control would be slow and would lead
to a considerable memory overhead, since all the words in memory that have to
be protected would need to have an additional flag bit.

That is the main reason why we decided to modify the stack layout adding
an additional Return Stack, specifically designed to store only return addresses.
However, changing the memory layout could have lead to major compatibility
issues. That is why our principal design goal was to have a very simple hardware
implementation, without extra memory requirement and focused on compatibility.
The result is that IBMAC does not require modifications to the tool-chain and
most binary libraries could be used without being rebuilt. IBMAC also improves
software reliability as stack memory over-consumption [RRW05] can be detected
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Figure 2.2: Traditional stack layout

at run-time so that a reboot or other actions can be performed (e.g. dedicated
interrupt).

Finally we implemented IBMAC as an optional feature that can be activated for
example with a write-once configuration register at boot1. With those constraints
fulfilled and a proven implementation, we believe that this is a very realistic
scheme with limited production costs and significantly increased security.

2.2.2 A separate return stack

In Figure 2.2 an architecture with a single stack is shown. While it is convenient to
have a single stack, it makes it very difficult to protect the stored return addresses.
We therefore implemented a modification to the instruction set architecture in
order to support the use of two separate stacks: a Return Stack and a Data Stack.
The return stack is used to store control flow information (return addresses) and
the data stack is used to store regular data.

There are several different possible layouts in which those two stacks could be
arranged in memory. The arrangement chosen in our implementation is depicted
in figure 2.3. The first thing to note comparing figure 2.2 and 2.3 is that the
data stack lies where the original single stack was. This was the best solution to
maximize backward compatibility, as with this layout the allocation of the stack
works in exactly the same way as before and no modifications to the compiler are
necessary.

The second thing to note is that the return stack and the data stack grow in
opposite directions. This was done in order to optimize memory consumption,
as with this layout no memory is wasted in comparison with the original stack
layout. The fact that the return stack grows in the opposite direction does not

1This could be a fuse register on the AVR for example, as fuses cannot be modified without
physical tampering.
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Figure 2.3: IBMAC stack layout. The Base control flow stack pointer is the only
register that needs to be initialized in order to support IBMAC.

hinder backward compatibility, as this stack is exclusively handled in hardware by
the modified call and ret instructions.

The third thing to note is that the return stack does not have any static
limitation, but instead is only limited by the data stack. However this can also be
a drawback as it those not leave room for an unbounded heap. In section 2.2.4 we
discuss this problem in more detail.

2.2.3 Instruction Based Memory Access Control

The separate return stack layout presented in the previous section provides an
easy way to separate control flow information from regular data allocated on the
stack. However, it does not prevent modification and corruption of control flow
information, but only makes it a bit more difficult as control flow data is not
close to stack allocated buffers. Complex attacks would still be able to exploit
the return stack. For example if an attacker is able to corrupt the pointer to an
array and to further write data to this array she would be able to write data at
an arbitrary memory location.

This is the reason why an extra protection layer for the return stack is required.
On a general purpose operating system this could be provided by an MMU.
However, those are generally not available on low-end embedded devices. The
reasons for that are multiple: first, those MCUs are designed for to be at a very
low price range, each additional feature comes at an increase of the silicon size
and consequently increase the final manufacture price. Second, they are usually
designed to execute monolithic applications, therefore they do not require memory
protection between different applications or the application and a kernel. The
challenge is therefore to protect only the return stack at a very small cost, which
is not the case with a complete Memory Management Unit.
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Our hardware modification has been designed around the following considera-
tions:

• only control flow related instructions will need to modify the control flow
stack

• the data manipulation instructions do not need to access control flow infor-
mation

Given this observations it is possible to control memory accesses and decide
whether to grant or refuse access to the return stack based on which instruction
is performing the memory access. On the AVR we used, we identified only two
instructions that needed to be able to access the return stack, namely the call
and the ret instructions and their derivatives. The hardware implementation of
these two instructions has been modified in such a way to set an internal flag to 1
whenever they are executed. When this signal is high memory access is granted
to the control flow stack. If not, the system is rebooted (or could alternatively
trow a dedicated interrupt).

2.2.4 Other design considerations

Dynamic memory allocation is one of the basic building blocks of modern operating
systems and programing languages. However, it is often avoided on low cost
embedded systems for the following reasons: first it is usually difficult to predict
the worst case memory usage, which can quickly lead to memory exhaustion on
these systems; second, memory fragmentation is a serious problem for architectures
without a memory management unit. In fact, on architectures with a memory
management unit even if memory fragmentation happens in the virtual address
space, it is always possible to defragment the physical memory, freeing large
blocks of contiguous memory, in a transparent way for the application. This is not
possible in the case of processors lacking a MMU because it would be necessary
to keep track of all pointers and update them when the defragmentation process
moves a contiguous memory block 2.

Usually on the AVR family of processors memory allocation is either performed
statically i.e. global variables or when with dynamic allocation on the stack 3.

Nevertheless, if a heap is needed it is usually allocated within a fixed range of
memory addresses for allocation. In such a case, the return stack can be made to
start after the end of the heap, with risking overflows or memory waste.

2It is possible to use double pointers, as done in the Contiki operating system. However, all
access must be preformed with double de-reference, if an intermediate pointer is kept by the
application and defragmentation occurs the memory might be corrupted by accessing an invalid
address

3Variable memory allocation on the stack is possible using as GNU gcc’s non standard alloca

function
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Register Name Description Atmega103 Atmega128
Address Address

SP CF L Control Flow stack pointer Low $00 ($20) $46 ($66)
SP CF H Control Flow stack pointer High $01 ($21) $47 ($67)
SSCR Split Stack Control Register (sec 2.3.1.4) $10 ($30) $49 ($69)
CF SS L Control Flow Stack Start Low $02 ($22) $55 ($75)
CF SS H Control Flow Stack Start High $03 ($23) $56 ($76)

(a) New register allocation for the additional registers.

Register name Needs Locking Unlocking Authorized
Register name Locking condition condition modifications
SP No N/A N/A Any
CF SP Partial After First Write Reboot Internal to CF instructions
CF SP Start Yes After First Write Reboot None
SSCR Yes After First Write Reboot None

(b) New registers locking logic

Figure 2.4: Stack configurations and Control flow stack pointer description and
additional locking logic

2.3 Implementation

2.3.1 Implementation

In order to validate our approach we implemented the changes to both a simulator
and a soft core in a FPGA.

2.3.1.1 Implementation on a simulator

We modified the AVRORA [TLP05] simulator in order to simulate the modi-
fied core, this made possible simulate the complete platform composed of an
Atmega128[ATM] MCU and a IEEE 802.15.4[Soc] radio device. The simulation
involved running unmodified TinyOS applications, for wireless sensor networks.
The changes to AVRORA simulator were implemented in about 200 lines of
code out of the 50,000 lines of code that compose the AVRORA simulator (0.4%
change).

2.3.1.2 Implementation on an FPGA

We implemented the modifications in a VHDL implementation of the Atmega103
core available at opencores.org. Although this micro-controller version is discon-
tinued, it is very similar to the Atmega128 and the modifications implemented are
probably very similar to those required for an Atmega128. The modifications were
made with changes of 8% of the VHDL source code ( 500 lines out of 6000). The
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resulting core was implemented on an Altera Cyclone II FPGA the overhead in
number of logical elements used (LUT) is of 9% ( 2323 LUT for the original MCU
and 2538 LUT for the modified MCU). Although, this overhead might appear
significant it is a non optimized implementation and as there is no extra memory
requirements for its implementation its overhead when implemented in an ASIC
would probably be much lower.

2.3.1.3 Control flow modification operations

In the Atmel AVR core the program counter (PC) is not accessible as a general
purpose register, instructions such as load and store cannot modify it. Therefore,
there are only few instructions that can change the control flow, i.e. modifying
the program counter or its saved value 4. On the AVR the following instructions
can modify the control flow :

• Branch and jump (JMP) instructions update the control flow. However, as
the destination address is provided as an immediate constant value, they
are not vulnerable to manipulation and no return address is stored on the
stack.

• Call and return instructions use the control flow stack pointer to access the
control flow stack. Those instructions will store or fetch the control flow
instructions on the control flow stack.

• Load and Store instructions are prevented to alter the return stack, only
access to data stack or other regions is allowed. The control flow stack and
the data stack are checked to be consistent when a store is performed.

• Calli instruction takes a function pointer as parameter (from a register).
This instruction is used for example in schedulers or object oriented code,
in such a case an indirect call instruction is performed. If the attacker is
able to modify the pointer (or register) before it is used by an indirect call
instruction, she would be able to control one control flow change but not
the following ones.

• Interrupts transfer the control flow to a fixed interrupt handler and the
instruction that was executed while the interruption occurred is saved on
the control flow stack, in our modified architecture the return address is
therefore protected as well.

One difficulty with the implementation of IBMAC is that the stack pointer
as well as the control flow stack pointer are 16 bit values and are modified with

4This is not the case in all embedded cores, for example ARM cores have the PC as a regular
register, therefore many instructions are able to alter the control flow.
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two instructions. Therefore, the update of the stack pointer is non atomic and its
value can be temporally invalid. As a consequence it is not possible to enforce the
constraints on stack pointers constantly. The solution we used is to enforce this
constraint only when memory writes or reads are performed, with this approach
the stack pointer can have a temporary invalid value when it is updated, without
triggering an error.

2.3.1.4 Control flow stack configuration

The control flow stack needs to be configured before any control flow operation
is used. It is activated from the “Split Stack configuration Register” (SSCR). In
order to prevent the attacker from maliciously change this register configuration, it
is made “writable once per boot”: this configuration register is locked in hardware
after the first write. The software (e.g. the boot loader) is therefore responsible
for setting this register during the boot process. We use for this purpose the init
sections provided in the default linker scripts, so that the configuration is made
as early as possible.

2.3.1.5 Memory layout stack memory areas configuration

Compared to a traditional memory layout some configuration must be performed
in order to enable the control flow stack and the memory access enforcement. For
this purpose we implemented new configuration registers:

• SSTACKEN Split stack enable is a configuration bit which, when set, enables
the split stack feature. It is part of the SSCR register.

• CF START is a configuration register used to fix the start of the control flow
stack. It is automatically initialized from the libc to the end of the statically
allocated memory (data/bss) therefore requires no user configuration.

• CF SP is the control flow stack pointer it is initialized with the same value
as CF START at boot and cannot be directly modified after initialisation.

• CF STACK configured is an internal flag in our modified core and it is
automatically set after control flow registers have been set up. It cannot be
modified by software and is reset when a reboot occurs. When this value is
set any direct update of the CF START and CF SP registers are detected
as possibly malicious modifications and therefore triggering a reboot.

These additional registers are described in Figure 2.4. In order to avoid conflict
with existing peripherals devices or internal logic of the AVR cores the addresses
of those configuration registers were chosen in the unused I/O registers addresses.
The previously mentioned locking mechanisms that we implemented to prevent
malicious manipulation of those registers are presented in Figure 2.4(b).
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volatile uint16 t abssvar;
volatile uint32 t adatavar=10;

uint16 t factorial(uint16 t val){
volatile local [10];
if (val==1) return 1;
else return val∗myfact(val−1);

}

void factorial with smallalloc(){
volatile uint8 t large[20];
factorial(8);

}

void factorial with bigalloc(){
volatile uint8 t large[200];
factorial(8);

}

int main(){
abssvar=10;
factorial with smallalloc();
factorial with bigalloc();
return 0;

}

Figure 2.5: Example of a program that causes the stack to overflow
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2.3.2 Evaluation

We evaluated the approach with different programs. Figure 2.5 shows an example
program that has large stack memory usage. Two functions are present and are
computing the factorial of a number with recursive calls. When the function
with a larger array allocated on stack (factorial with bigalloc) is called a stack
overflow occurs. Figure 2.6(a) shows the memory usage on an unmodified core,
when the stack memory usage is too high the memory is corrupted and eventually
unexpected behaviour occurs. On the other hand Figure 2.6(b) shows the resulting
memory usage on an AVR core with split stacks and IBMAC. When the memory
usage becomes too high the two stacks collide and the processor is rebooted by
IBMAC. Similar results would be achieved if a malicious attempt to modify the
control flow stack occurred.

2.4 Considerations

In addition to preventing stack based buffer overflows and stack overflows, IB-
MAC also prevents malicious software present in the MCU to use Return Ori-
ented Programming. In a MCU without IBMAC an attacker can use Return
Oriented Programming for malicious purposes, such as maliciously hiding code
memory [HHF09a, CFPS09b]. In order to use Return Oriented Programming
a malicious program needs to write a stack containing both data and return
addresses. While an attacker can craft such a stack on normal MCU, IBMAC
prevents this as the malicious code is not able to freely modify the return stack.
Therefore, it is not possible to maliciously manipulate the control flow with return
oriented programming, even tough arbitrary code can be run on the device. In
order to prevent this behaviour, on a MCU where the attacker had full control,
IBMAC needs to be permanently enabled. This can be performed using an irre-
versible configuration fuse. Without this the attacker would be able to restart
the MCU on a modified program and deactivate the SSTACKEN configuration
register.

Although our stack protection technique prevents control flow attacks as we
described, it does not prevent all types of software or logical attacks. Mainly, non
control data attacks [CXS+05b] are not addressed because they do not rely on a
change of the control flow but on overwriting adjacent variables. For example, a
buffer overflow could be used to change the value of a variable used as a flag in an
if statement. This in turn could be used for example to bypass specific controls in
the program code.

Regarding the backward compatibility, while most software can run without
modifications, the split stack scheme can make the implementation of features
such as tasks with context switching and longjump / setjump difficult. Those
features requires the software to be able to modify the stack and its control flow.
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(a) Execution without IBMAC. At point 1000 the stack is overflowing in the data/BSS section
and later on the I/O register memory area.
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Figure 2.6: Comparison of the data memory layout during the execution of the
program of figure 2.5. In order to keep the example simple we ran the simulation
with only 512 bytes of data memory address space.
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If a kernel execution ( or execution rings) mode were available those features could
be implemented safely. However, they cannot be implemented without major
changes to the AVR core without the presence of such a privileged mode.
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Preventing remote exploits does not provide a complete guarantee that an
embedded device cannot be compromised. As explained, there are a number of
possible vectors that can be used to inject malicious code like, for example, a
faulty software update process or attaching the device to a debug interface. In
these scenarios, one might still be interested in detecting the presence of malware
on a remote embedded device, without physically accessing it. Detection could be
possibly followed by the eradication of the infection.

The process of verifying the internal state of a remote device is called attestation.
In this chapter, we first study the security of several previously proposed attestation
schemes that rely purely on software support, therefore they are called software
attestation schemes. We discover many of the previously proposed protocols to be
vulnerable to a number of novel attacks we devise. Second, we devise an improved
software-attestation scheme we call PoSE (Proof of Secure Erasure). PoSE bases its
foundation on the lessons learned by attacking the previous attestation protocols
and achieves provable security guarantees.

3.1 State of the Art

In this section we will introduce in more depth the concept of remote attestation
and explain the current state of the art. Remote attestation is the process of
secure verification of the internal state (code, data and configurations) of a remote
hardware platform. Generally, it can be achieved either statically (at boot time)
or dynamically, during normal operation in order to establish a dynamic root of
trust. Attestation takes place between a trusted the Verifier and an untrusted
Prover (the device we wish to ascertain the status of).

A naive approach for verifying the prover’s memory content is for the verifier
to challenge the prover to compute a message authentication code (MAC) of its
memory contents. The verifier can generate a fresh and random key before each
attestation and send it to the prover. The prover, in turn, can use the key to
compute a MAC of the relevant portions of its memory and send the result back to
the verifier. However, this approach is clearly not secure as the prover can easily
cheat in the protocol. The prover in fact is not forced in any way to compute the
MAC correctly over the requested portions of code. Even if the original code was
altered, say by a remote exploit, the attacker can still save a copy of the original
memory content. A malicious prover would rather deviate from this behavior
and compute the MAC over the copy of the original saved copy of memory and
pass attestation. In such a simple protocol the verifier would have no way to
distinguish between a legitimate and a malicious prover.
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Figure 3.1: Basic attestation challenge response protocol

3.1.1 Software Attestation

Software attestation techniques try to solve the challenge explained in the past
section using only software support, i.e., no special hardware support to perform
attestation. Most software-based techniques rely on a challenge-response protocol
that verifies the integrity of the code memory of a remote device: an attestation
routine on the prover computes a checksum of its memory along with a challenge
supplied by the verifier. In practice, memory words are read sequentially and fed
into the attestation function. The challenge lies in making sure that a malicious
prover cannot deviate from the protocol and pass attestation even in the presence
of some malicious memory content.

Software attestation protocols can be divided in two broad categories: time
based and memory based. In time based attestation protocols, the finite computa-
tional resources of the prover are used to estimate the expected time needed to
correctly compute attestation of its memory. If the attestation routine is carefully
designed, every deviation from the standard behavior is assumed to produce a
measurable time delay on the prover, therefore allowing the verifier to detect
malicious behavior. Memory based attestation protocols on the other hand utilize
the fact that the prover only possesses a limited and known amount of accessible
memory. During attestation, the free memory on the prover can be filled with
random or pseudo-random values, so that the prover does not have any storage
left to store malicious code.

One important and noteworthy assumption in almost all software attestation
scheme is that the compromised prover device does not have any real time help.
In particular, most (perhaps all) software techniques assume “adversarial silence”,
meaning that, during every attestation process, only the intended prover (device
being attested) is communicating with the verifier (entity that performs attesta-
tion). In other words, even though the prover might have malware installed, it is
not aided – or impersonated – by any external party during attestation. The same
assumption is sometimes referred to as “non collusion”. Any attestation technique
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Figure 3.2: Generic remote attestation.

that makes this assumption is limited to close-range (one-hop) communication
between the prover and the verifier and its security often relies on strict round-trip
time measurements.

Also, software-based attestation assumes that, the adversary impersonating
(or colluding with) the prover must use the same hardware as the genuine prover.
While this assumption might hold in a few specific settings, it is unrealistic for
many applications.

3.1.1.1 Time-based attestation

SWATT [SPvDK04] is an software attestation technique for embedded devices
that relies on response timing to identify compromised code. The prover computes
a checksum of its memory by traversing it using a pseudo-random sequence of
indexes generated from a unique seed sent by the verifier. If a compromised prover
wants to pass attestation, it has to redirect some memory accesses to compute a
correct checksum. These redirections are assumed to induce a remotely measurable
delay in the attestation that can be used by the verifier to decide whether to
trust the prover’s response. The same concept is used in [SLP+06b] where, the
checksum calculation is extended to include also dynamic properties, e.g., the
program counter or the status register. Furthermore the computation is optimised
by having the checksum computed only on the attestation function itself.

Jakobsson, et al. [JJ10] proposed an attestation scheme to detect malware
on mobile phones. This attestation scheme relies on both careful response timing
and memory filling. Timing is used to measure attestation computation as well
as external memory access and wireless links. Security of this approach depends
on a number of hardware-specific details (e.g., flash memory access time). Hence,
formal guarantees and portability to different platforms appear difficult to achieve.
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3.1.1.2 Memory-based attestation

In [YWZC07] wireless sensors nodes collaborate to attest the integrity of their
peers. At deployment time, each empty node’s memory is filled with randomness,
that is supposed to prevent malicious software from being stored, without deleting
some parts of the original memory. A similar approach is taken in [CKN07],
but, instead of relying on pre-deployed randomness, random values are generated
using a PRF seeded by a challenge sent by the verifier and are used to fill the
prover’s memory. However, this does not assure compliance to the protocol of
a malicious node that could trade computation for memory and still produce a
valid checksum.

Gatzer et al. [GN07] suggest a method where random values are sent to a
low-end embedded device (e.g., a SIM card) and then read back by the verifier,
together with the attestation routine itself (called Quine in the paper). This
construction, while quite valid, was only shown to be effective on an 8-bit Motorola
MCU with an extremely simple instruction set.

3.1.1.3 Hybrid Remote Attestation Approaches

[SMKK05] proposed to use a distinct attestation routine for each attestation
instance. The routine is transferred right before the protocol is run and uses self-
modifying code and obfuscation techniques to prevent static analysis. Combined
with timing of responses, this makes it difficult for the adversary to reverse-engineer
the attestation routine fast enough to cheat the protocol and produce a valid
(but forged) result. However, this approach relies on obfuscation techniques that
are difficult to prove secure. Furthermore, some such techniques are difficult to
implement on embedded systems that rely on the Harvard architecture, where
code is stored in flash memory programmable only by pages.

In [SSW11] the authors propose a remote attestation scheme that makes use
of Physically Unclonable Functions (PUFs). Physically unclonable functions are
a class of noisy functions implemented in hardware and embedded in integrated
circuits. The output of a PUF depends both on the input and on the intrinsic
physical properties of the PUF itself, PUFs have the desirable property of being
unclonable, hence they are well suited when authentication of the PUF-carrying
device is needed. The proposal in [SSW11] makes use of a combination of the
output of a PUF on the prover and an attestation routine derived from SWATT
to achieve attestation with prover’s authentication.
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3.2 Attacks on Existing Software-based Attesta-

tion Schemes

Virtually all of the existing software-based attestation techniques previously
proposed are based on a challenge-response paradigm where the verifier challenges
a prover (a target device) to compute a checksum of its memory.

This section describes this basic challenge-response protocol and then presents
how it is used by the existing software-based attestation schemes. We will present
several attacks against various existing attestation protocols. But first we will
start by introducing the adversarial model assumed by the attacked proposals.

3.2.1 Generic Challenge-response protocol

A challenge-response attestation routine uses a suitable checksum function H(·)
to compute the checksum of the attested memory. A nonce provided by the
verifier (Figure 3.1) is used as the first input to H(·); then memory words are
sequentially read (from the first to the last) and incrementally input to the
function. The output of the last iteration of the function is the result of the
attestation. The nonce provided by the verifier prevents pre-computation or replay
attacks. Alternatively, the sequence of input memory words can be determined by
a pseudo-random number generator, initialized with a seed provided by the verifier.
In this case, to make sure that all memory words are used in the computation of
the checksum with high probability, the number of memory accesses increases from
n to n ln(n), where n is the total number of memory words (using the Coupon
Collector Problem). Pre-computation or replay attacks are prevented because
it is not feasible for the attacker to guess the seed ahead of time and learn the
sequence in which memory words are going to be input to H(·).

3.2.2 Adversary model

In most attestation proposals [CKN07, PS05, SLP08, SLP+06b, SLS+05, SPvDK04,
SMKK05, YWZC07], the envisioned adversary has the objective of installing its
malicious code in an executable memory of the target device and passing the
attestation protocol without being detected. Before attestation, the attacker has
full control over all device memories. It is therefore able to modify program and
data memory or any other memories on the platform. However, it is assumed
that at attestation time, while the malicious code is still running, the attacker
has no direct control on the device anymore (what we called adversarial silence
assumption). Finally, it is assumed that the attacker does not modify the device
hardware. It is also assumed that the verifier knows the hardware and memory
configuration of the prover. The attack succeeds if the device passes the attestation
protocol despite the presence of the malicious code.
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How the attacker installs its code on the device is not discussed in detail.
Malicious code installation could be performed via remote exploitation of a software
vulnerability as we explained above, a non invasive hardware attack [AK96]
or simply using an off-the-shelf JTAG programming adapter, if the feature is
activated1. Yet another possibility would be to use a non authenticated or
vulnerable code update mechanism.

3.2.3 Two generic attacks on code attestation protocols

This Section introduces two attacks that are applicable to several software-based
code attestation protocols.

The first attack circumvents malware detection by moving malicious code
between program memory and non-executable memory, during the code attestation
procedure. This is achieved using a technique called Return-Oriented Programming.
The second attack uses code compression to free space in the program memory in
order to hide the malicious code.

3.2.3.1 A Rootkit-based attack

As discussed, recent work [Sha07, BRSS08, HHF09b] showed that Return-Oriented
Programming can be used to maliciously execute legitimate pieces of code on a
system, even within the constraints imposed by embedded systems [FC08]. These
pieces of code are called gadgets and are sequences of instructions terminated
by a return instruction. By crafting a stack and carefully controlling its return
addresses an adversary can perform arbitrary computations2

While ROP has been initially introduced to perform arbitrary computations
without injecting code and hence gain control over a system, we demonstrate
that it can also be used to implement a rootkit. We show that ROP can be used
to hide malware on an embedded system, and prevent its detection during the
attestation procedure. We also show that ROP can be used to restore the malware
after the attestation procedure to re-gain control of the compromised device.

The rootkit hiding code has been implemented on a MicaZ sensor and only
uses the instructions present in the device bootloader. It works by inserting a
hook (a jump instruction) into the attestation routine. Upon attestation, the hook
triggers the rootkit hiding functionality that deletes the rootkit code from the
program memory. In practice, the rootkit deletes its code from program memory
executing instructions (using ROP) stored in the bootloader. ROP is also used,
once attestation is completed, to re-install the rootkit and regain control over the
device.

1JTAG access can be deactivated before deployment, yet it is often left active.
2If the malicious code has complete control over the data memory, techniques such as memory

safety [CAE+07] and stack canaries cannot prevent the usage of ROP.

35



���������	���


���	
�������������	

�����

��������
����	

������������	� ���	
�����������	

���������	���


�	
���	���	���


������	���


����

�����

������

����������������

���	
�������������	

�	��
�	�
�����

�� ��!������������������

����

���	
��������	"�	
�

���	
��������	����

Figure 3.3: Return-Oriented Programming attack.

Figure 3.4 presents a generic attestation function. In our prototype, we insert
a hook to the rootkit bootstrap code, by replacing the first instruction of the
attestation function with a jump. When the latter is invoked the hook transfers
execution to the rootkit bootstrap code which deletes malicious content (including
itself) from the program memory. It then returns to the attestation code that
runs on a clean program memory. Once attestation is over, the rootkit restores
itself into program memory using ROP.

Rootkit description Our rootkit requires two hooks: one in the program
memory at the beginning of the attestation routine and one in the data memory
after the attestation function returns (Figure 3.3). It is composed of different
parts:

Rootkit bootstrap code: the code used to hide and restore the malicious
payload and itself from program memory.

Rootkit payload: the malicious code, i.e. the malware.

Program memory hook: the hook installed in the function receiving the
attestation request message. Hooking is performed by replacing the first instruction
of the receive_checksum_request function with a jump to the rootkit, so that
the latter is called at each attestation request.

Data memory hook: the second hook bootstraps the ROP that restores
the rootkit in program memory. This hook can not be included in program
memory (e.g., at the end of the receive_checksum_request function) without
being detected by the verifier. Therefore, it is added in the stack, replacing the
stored return address of the receive_checksum_request function.
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void receive checksum request(uint8 t nonce){
uint8 t checksum[8];
prepare checksum(nonce);
do checksum(checksum);
send(checksum);
return;

}

Figure 3.4: Example of attestation function.

Return-oriented programs: the ROP used to move the rootkit hiding code
is composed of two gadgets chains (or return-oriented programs) in the data
memory: the first (ROP1) is used before attestation to erase the rootkit and
restore the original program memory contents, while the second one (ROP2) is
used after attestation to restore the rootkit.

Attack description When an attestation request is received (Initial State in
Figure 3.3), the rootkit bootstrap code is called by the program memory hook and
performs the following operations:

1. Copies ROP1 to data memory. The rootkit bootstrap code is 620 bytes,
hence it requires the gadget chain to use 3 reprogramming gadgets [FC08],
each of them containing 256 bytes of the code to be restored. A fourth
reprogramming gadget is used to restore the program memory page where
the program memory hook is present.

2. Writes ROP2 to data memory.

3. Copies the malicious payload to EEPROM (about 1 KByte) where it will
be temporarily stored until attestation ends.

4. Places the data memory hook by changing the return address (saved on
stack) of the receive_checksum_request function.

5. Removes the malicious payload from program memory.

6. Executes the first gadget chain (ROP1 ) that restores the program memory
in its original state. Upon completion ROP1 returns to the address of the
receive_checksum_request function.

The attestation function is therefore executed over a clean program memory
(Attestation State in Figure 3.3). Its output is sent to the verifier and the
receive_checksum_request function returns. When the final ret instruction of
this function is executed the following actions are triggered:
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Figure 3.5: Compression Attack.

1. The data memory hook launches the restoration gadget chain (ROP2 ).

2. The restoration gadget chain writes the rootkit bootstrap code to program
memory and executes it.

3. The rootkit bootstrap code copies the malicious payload code from EEPROM
to program memory.

4. The malicious payload re-installs the program memory hook in the re-

ceive_checksum_request function; the device is therefore ready to receive
a new attestation request (Initial State).

Experimental results The rootkit detailed above was implemented on a MicaZ
device and used to attack the attestation protocol presented in [SPvDK04]. The
entire rootkit fits in 1.6 KBytes, of which, only 620 bytes need to be stored
in data memory to be re-installed with ROP. The remaining code is restored
from EEPROM (or external flash memory). In our experimental setup, the time
required to the rootkit to hide itself is less than 50 milliseconds (Figure 3.7).
Compared to the running time of SWATT, introduced overhead is about 0.3%.

Discussion In our implementation the attack relies on a single reprogramming
meta-gadget that is composed of more than 100 instructions. Therefore, it does
not require a Turing complete gadget set 3. It uses instructions that manipulate

3Without using a Turing complete gadget set the technique we use could be refereed to as an
hybrid between return-oriented programming and the borrowed code chunks [Kra05] techniques.
Nevertheless, the availability of a Turing complete gadget set would probably make the attack
easier to implement without changing its effectiveness or its results.
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the code memory and that are very likely to be found in devices that are equipped
with a bootloader. Additionally, as this reprogramming meta-gadget is a part of
the default TinyOS bootloader, it is independent of the application executed on
the device. The presence of this reprogramming meta-gadget in the bootloader is
sufficient to mount the attack.

3.2.3.2 Compression attack

Common sensor applications are appreciably smaller than the available program
memory 4. Empty memory locations contain a fixed value, i.e. 0xFF, which is
the default state of non-programmed flash memory. Even if those locations are
considered for attestation, an adversary could just write them with arbitrary data
and “remember” the original value when it is requested by the attestation routine.

Previously proposed schemes [YWZC07] tried to prevent malicious empty
memory usage, filling it with pseudo-random values at deployment time. Those
values are generated, for example, using a stream cipher with a key only known
to the verifier. The advantage of this approach is clear: random values do not
hinder attestation, since the verifier knows them, and the attacker cannot simply
overwrite those values because they are used in the computation of the checksum.

The following attack is effective against any attestation scheme that uses
random data to fill empty memory space before deployment.

The idea is to compress the original code in program memory in order to
free enough space to store malicious data (Figure 3.5). At attestation time, the
malicious code can decompress the original program on-the-fly, retrieve the original
program words and succeed in the attestation. As our tests show on demo TinyOS
applications, code size can be significantly compressed, reducing it by 11.6%, on
average (Table 3.1). That translates to around 2.3 KBytes of free space for the
considered applications.

For the implementation of the compression attack, we used Canonical Huffman
encoding [Huf62] because of its simplicity and its ability to start decompression
from arbitrary positions of the compressed stream. Which is important if the
attestation routine requires pseudo-random memory access.

Our decompression routine uses a list of checkpoints in the compressed stream
as a trade-off between space (to keep the list in memory) and average speed
to decompress an arbitrary memory word. The decompression routine of the
Canonical Huffman encoding was implemented on the Atmel AVR platform. It
uses only 1707 bytes of program memory and 2565 bytes of data memory. Using
Canonical Huffman encoding, we were able to compress the code of Multi-hop
Oscilloscope for Micaz (31836 bytes) to 27368 bytes. Using 512 bytes for the
Canonical Huffman tree and 995 bytes for the checkpoints, we were left with 2961
bytes of free program memory to install arbitrary code. Although this seems a

4For example, MicaZ motes have 128 KBytes of program memory while a typical application
size is between 10 to 60 KBytes.
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Application Size Compression Gain (Bytes)
(Bytes) Huffman Gzip PPM

6LowPan Cli 23982 2669 8667 10180
Base Station 15778 1858 5400 7029
Oscilloscope 13276 1679 4740 6091
”Multi-hop 31836 4208 14241 16948
”Multi-hopLqi 23848 2952 9311 11611
Sense 2950 252 484 1124
Avg Gain (B) - 2269 7186 8830
Avg Gain (%) - 12.19 38.61 47.45

Table 3.1: Compression results for Micaz applications (similar results where found
for TelosB applications).

Sequential Access Random Access
Compression Time Freed Space Time Freed Space
Algorithm (Sec) (Bytes) (Sec) (Bytes)

Huffman 6 2220 269 1252
None 1 - 145 -

Table 3.2: Compression Attack, using Canonical Huffman encoding.

small gain for the attacker, it is sufficient to implement the attack we presented
in Section 3.2.3.1.

Table 3.2 compares the time to access Multi-hop Oscilloscope code with and
without compression for sequential and pseudo-random access, respectively. For the
latter, if compression is used, total time could be reduced incrementing the number
of checkpoints. While incurred delay could be detected by a verifier, previously
proposed protocols that fills program memory with randomness [YWZC07] do
not rely on strict time bounding.

3.2.4 On the difficulty of designing secure time-based at-
testation protocols

This section presents attacks on some specific code attestation schemes. Our goal
is to show that secure time-based attestation schemes are hard to design. We
first focus on SWATT [SPvDK04] and describe an attack that questions its main
design assumption; we then show that SWATT can not be easily ported to devices
others than the ones used in the original implementation. Finally, we investigate
how to extend SWATT to prevent those attacks.

The second part of this section considers the ICE protocol [SLP+06b] and
presents an attack that violates one of its security features.
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original added comment
instructions instructions
... previous instr

sbrs r31,7 skip next instruction if bit
7 is set in r31,
i.e. if address > 0x8000

cbr r31, 6 clear bit 6 of address
lpm Z read program memory

at address (r31,r30)
...

(a) Additional instructions of the memory shadowing attack; r31 holds
high byte of random address, (Z is a 16 bit register and an alias to the
8 bit registers r30 and r31).

Addr. expected changed resulting
MSB address range MSB address range
0 0 0x0000-0x3FFF 0 0 0x0000-0x3FFF

0 1 0x4000-0x7FFF 0 1 0x4000-0x7FFF

1 0 0x8000-0xBFFF 1 0 0x8000-0xBFFF

1 1 0xC000-0xFFFF 1 0 0x8000-0xBFFF
(b) Address translation performed with the memory shadowing
attack in Figure 3.6(a); as the address range (0xC000,0xFFFF) is
not included in the checksum, the attacker could store the modified
attestation code there.

Figure 3.6: Outline of the memory shadowing attack, with inserted instructions
and translated addresses.
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Method Time of Attack Attack (%)
Method Execution (ms) Overhead (ms) Overhead (%)

Original SWATT 11061 - -
Original SWATT Attack - - 13 %

Our Shadow Attack 11879 818 7,4 %

SWATT 128 KBytes 13103 - -
Shadow Attack 128 KBytes 13956 852 6,51 %

Attack ROP (Hiding time) - 42,3 0,32 %

Figure 3.7: Timing of different attacks. The timings collected on SWATT with 128
KBytes were performed with the same number of cycles that the original SWATT.
On 128 KBytes the number of SWATT cycles should be increased, according
to the Coupon’s Collector Problem; we have not done it in order to have easily
comparable values.

3.2.4.1 SWATT

The security of SWATT [SPvDK04] relies on the time it takes for the attested
device to compute its memory checksum. Memory words, to be input to the
checksum function, are chosen in a pseudo-random fashion using a seed provided
by the verifier. To succeed in the checksum computation, a malicious device would
need to test each memory access and, if it points to a location where the malware
is stored, redirect it to the location where the original memory word was copied,
or alternatively “guess” its value. The authors claim that redirection incurs in a
delay that can be easily detected by the verifier. If response time is below a given
threshold, the verifier can be confident that the prover is not running malicious
code. Precise estimation of the threshold is therefore crucial to the security of
SWATT, in order to differentiate between modifications to the original checksum
function and transmission delays.

3.2.4.2 A memory shadowing attack

The authors of [SPvDK04], assumed that the best attack against SWATT is to
check each address generated in the pseudo-random sequence. This test would
be implemented by performing a test and redirection using branch and compare
instructions. They expect at least 3 machine code cycles for test and redirection.

Since their implementation of the attestation function main loop is 23 cycles
long, adding 3 cycles for test and redirection would lead to a malicious attestation
function that is 13% slower than the original one. It is clear that this argument
holds assuming that (1) they have the fastest implementation of the checksum
function 5 and (2) they considered the fastest implementation of the attack. Such

5Speed requirements force implementation in assembly language, which is a very error-prone
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assumptions might lead to unexpected security flaws. Indeed, test and redirection
can be implemented with less than 3 machine cycles.

Our attack leverages the fact that most of the program memory available on
a sensor is usually empty (i.e., set to 0xFF). If the second half of the program
memory (addresses 1xxx...x) is empty 6, all accesses to the last quarter of the
memory (addresses 11xx...x) could be redirected to the third quarter (addresses
10xx...x) just flipping one bit in the address. The last quarter of the program
memory would then be shadowed and could be used to hide malicious code.

At each memory access by the attestation routine, the adversary checks the
highest bit of the address to load and, if it is set, sets the second highest bit to
zero (Figure 3.6(b)). This can be implemented in an AVR micro-controller with
two instructions (Figure 3.6(a)). We used the instruction sbrs R, k (skip next
instruction if bit k is set in register R) followed by a cbr R, k instruction (clear
bit k in register R).

Those two instructions take exactly 2 cycles to execute (irrespective of the
result of the bit test). In our tests, we also needed to reorder some instructions to
avoid corruption of the address pointer which is later included in the checksum
computation. Instruction reordering does not change the global timing of the
checksum algorithm.

We tested the attack on our complete TinyOS implementation of SWATT
and found that the new routine is only 7.4% slower than the original one (Figure
3.7). This result, on a practical implementation, leads to an attack that is
43% faster than the best attack expected by the designers of SWATT (13% of
overhead). While this overhead could still be detected by the verifier, it shows
that it is extremely difficult for protocol designers to assess what is the best
attack against their protocols. Indeed, the best possible attack highly depends
on the functionalities present in the instruction set of the micro-controller and
on the set of available peripherals7. We therefore cannot exclude the existence of
other implementations of a malicious checksum computation function that would
compute a valid checksum without any noticeable delay.

process. For example, we found one bug in the original implementation of SWATT provided
in [SPvDK04]: the assembly code is not performing the RC4 table swap properly. Although this
is just a simple coding error, it has a dramatic effect on the quality of the generated random
numbers. In fact, this error decreases the entropy of the internal state of the stream cipher. At
each RC4 round, one position of the 256 bytes RC4 internal state is overwritten with the value
of a register that is not initialized.

6This attack would therefore not be possible if the free program memory is used or filled
with randomness (as in [CKN07, YWZC07]), but this is not the case with SWATT.

7For example, AVR micro-controllers have powerful bit manipulation instructions and a
DMA engine is present on the MSP430 micro-controller used in Telosb motes.
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3.2.4.3 Porting SWATT on MicaZ

SWATT was implemented for an early mica Berkeley mote, based on an AT-
Mega163L micro-controller which has 16 KBytes of program memory. The devices
considered in this thesis are the most recent Mica2 and MicaZ sensors that use an
ATMega128L micro-controller [ATM] which has 128 KBytes of program memory.
Although the two micro-controllers are very similar, using the original SWATT
code on the ATMega128L micro-controller would fail to check half of the program
memory. Running SWATT once for each half of program memory would be fatal
for the security of the protocol as the attacker could copy its malicious code from
one half of the program memory to the other in a constant time between the two
checks.

Surprisingly, porting SWATT to the new device was not straightforward and
required a heavy redesign of the protocol. On the Atmega163L micro-controller
the whole program memory can be addressed with a 16 bit pointer (the Z pointer)
and a specific instruction “LPM” (Load from Program Memory). In SWATT
this address is computed with one byte generated from RC4 pseudo-random
stream and an extra byte specific to the SWATT algorithm. The 16 bit address is
sufficient to address 64 KBytes of program memory.

In order to check the whole program memory of an ATMega128L micro-
controller, we need to use another instruction, “ELPM” (Extended Load from
Program Memory), that can access the whole memory byte-wise. This instruction
uses the Z pointer plus another bit in a configuration register (RAMPZ) in order
to build the 17 bit address needed to access the whole program memory. We
implemented this solution by using, at each step of the partially unrolled loop, an
extra random bit. As the unrolled loop contains 8 memory accesses, the extra
random bit is provided by a spare register loaded with one RC4 random byte.
For each of the 8 memory accesses, our modified implementation uses one bit of
the spare register to compute the 17-th bit of the address.

Changes to the original SWATT protocol have a non-negligible side effect.
The main loop of the SWATT attestation routine is extended by 4.8 cycles on
average, while the original attack [SPvDK04] as well as the memory shadowing
one (Section 3.2.4.2) are possible in the same time. Therefore, the overhead of the
original attack is reduced from 13% to 10.7% and the memory shadowing attack
overhead is reduced from 7.4% to 6.5% (Figure 3.7).

We conclude that the security of SWATT relies on some unique characteristic
of the devices considered by the authors to run their experiments. Porting SWATT
on a new device with a new instruction set or a different memory size, dramatically
changes the rules for both the attacker and the verifier, which can undermine the
security of the scheme.
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3.2.4.4 Preventing the rootkit attack

In [SPvDK04] the authors do not consider attestation of data memory as the AVR
architecture does not allow to execute code stored there. As seen in Section 3.2.3.1,
an attacker could use ROP to transfer malicious code between executable mem-
ory and non-executable ones. To prevent such attacks there are two possible
approaches: attesting data memory, or having SWATT clean data memory at the
end of the attestation protocol.

Data memory attestation Modifying SWATT to check data memory as well
is non-trivial and requires a deep redesign of the SWATT main loop. One of
the challenges is that program and data memory are not accessed with the same
instructions and are located in different address spaces. A possible solution would
be to check the program memory and the data memory in two consecutive steps.
This would be risky as the attacker could move malicious data/instructions right
between the two steps and avoid detection. Alternatively, SWATT could be
designed such that, at each iteration of the checksum function one of the two
memories is chosen at random and then a random word is accessed within the
selected memory. However, accessing one out of two memories per iteration
would let the attacker insert its malicious instructions in a branch executed every
two memory loads, on average. As a result, the overhead of an attack such
as the memory shadowing one (Section 3.2.4.2), would be divided by two, i.e.,
the malicious instructions would be executed half of the time. Therefore, both
memories must be attested at the same time to guarantee the trustworthiness of
the device.

Lastly, it is important to consider that the data address space contains different
regions (registers, I/O space and Data sections) that might not be included in the
checksum computation because their values are unpredictable to the verifier.

3.2.4.5 Enforcing memory cleanup

SWATT can enforce memory cleanup at the end of the attestation protocol, by
erasing the whole data memory and rebooting the device without performing any
function return.

The verifier has a copy of the original code on the device, so it can check if
checksum computation has been performed without returning. Not executing a
return instruction would prevent the attack presented in Section 3.2.3.1, but not
the shadowing attack showed in Section 3.2.4.2.

3.2.5 ICE-based attestation schemes

Indisputable Code Execution (ICE) based protocols (such as, SCUBA [SLP+06b],
SAKE [SLP08] and Message-in-a-bottle [KLNP07]) are a class of protocols that use
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Figure 3.8: While the legitimate ICE routine is stored at address 0x9100, a
malicious copy of the routine is stored at address 0x1100. These two addresses
differ only in their most significant bit allowing the attacker to run the malicious
copy of ICE and still pass attestation.

the ICE routine to perform attestation. The ICE routine is a self-checksumming
routine used to bootstrap trust on a remote device. The self checksumming code
is based on a class of functions, called T-functions [KS04], used to generate a
random permutation of memory locations. For each memory location traversed, a
160 bit checksum value C composed of ten 16 bit registers Cj (C = [C0, ..., C9]) is
updated as follows:

Cj = Cj−1 + PC ⊕mem[current address]

+j ⊕ Cj−1 + x⊕ current address+ Cj−2 ⊕ SR

where PC is the program counter, x is the last value returned by the T-
function, j is a loop counter, SR is the status register, + denotes the addition of
two 16 bit words without carry and ⊕ is the 16 bit exclusive or operation. The
program counter and the status register are included to prevent a wide range of
attacks detailed in the original paper. To optimize the computations, these values
are mixed together only using bit-wise exclusive or operation and addition, two
functions that provide poor diffusion of the input bits.

As explained earlier, some micro-controllers do not make the current program
counter directly accessible to software. Unlike other protocols reviewed in this work,
ICE has been originally proposed for TelosB devices based on an MSP430 [Tex]
micro-controller with a Von Neumann memory architecture. On the MSP430 the
program counter is directly accessible as a special register.

Our attack aims at altering two input values, such that these two alterations
would cancel out and therefore lead to a correct checksum. This could be accom-
plished flipping the most significant bit (MSB) of, for example, the PC and of
the status register. Altering the MSB is the best choice because, since additions
discard the carry, a change of this bit does not propagate to other bits. Another
possibility to obtain the same result is to flip the MSB of the PC register (i.e.
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running a copy of ICE at a different address) and the MSB of every memory value
accessed by ICE (i.e. mem[current address]).

Alteration to the PC leads to the attack depicted in Figure 3.8. It allows to
store a copy of the ICE routine at a different position than it was intended to,
violating one of the main security property that ICE is expected to guarantee.
This specific property is crucial for several protocols that rely on ICE, as they
assume that after its execution, ICE will hand execution to an attested part of
the code. Because the displaced copy of the ICE routine is not modified, it runs
in exactly the same time as the original one and computes the correct checksum.
Therefore, it passes the attestation and it is able to hand over execution to any
code of its choice.

3.2.6 Considerations

We investigated the security of existing software-based device attestation protocols.
Software based attestation on general purpose operating systems [KJ03] has been
previously shown to have serious weaknesses [SCT04]. However, we are the first
to present a security analysis of software based attestation schemes specifically
designed for low-end embedded systems.

We discussed two generic attacks on software code attestation. We also
designed and implemented new specific attacks (and discussed possible fixes)
against existing software attestation techniques, namely SWATT and ICE.

From our experience, we can conclude that secure time-based attestation
schemes are very difficult to design correctly. Time-based attestation schemes
must rely on very tight timing bounds. Their implementation must therefore be
small, simple and time-optimized. Otherwise, a memory access redirection attack
would not be detected as its overhead would be insignificant compared to the time
spent by the checksum computation.

Those properties rule out cryptographic functions as they are complex and time
consuming. Design choices are then restricted to ad-hoc functions (usually based
on permutations or bit-wise exclusive or operations) which very often provide only
weak security. In fact, one of our attacks partially leverages on a weakness of the
functions used for checksum computation. We also stress that attesting only the
code memory, as performed by existing schemes, is not sufficient. As shown by
our rootkit attack, an attacker can still hide malicious code using Return-Oriented
Programming. We argue that all memories (RAM, ROM, EEPROM) have to be
attested. Designing an attestation scheme that involves all the memories of the
end device is quite challenging.

In the next section we will investigate the feasibility of a software-based
attestation protocol that can guarantee security while being efficient and portable
across different architectures.
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3.3 Improving Software Attestation via Proof of

Secure Erasure

As we showed in the last section designing software-based attestation protocols is
a challenging task. The prover has little to no hardware support to guarantee the
execution of the attestation routine. As a consequence, the attestation routine
has to be designed to be resilient against malicious manipulation.

In this section we will describe PoSE (Proof of Secure Erasure), that performs
attestation following a simple premise. If attestation is combined with software
updates, then one can guarantee the absence of malware by overwriting the entire
memory content of the prover with randomness generated by the verifier. The
fact that the randomness is generated by the verifier at each protocol run and
with an unknown seed to the prover, guarantees that the prover has to store the
randomness entirely and therefore delete any malware present on its memories.

The advantages of our scheme are the following:

1. We suggest a simple, novel and practical approach to secure erasure, code
update and attestation that falls between (secure, but costly) hardware-
based and (efficient, but uncertain in terms of security) software-based
techniques.

2. We show that the problem of secure remote code update can be addressed
using Proofs of Secure Erasure (PoSE-s), i.e., a proof that a remote device
is not storing anything except a set of random values newly selected by the
verifier, which is equivalent to all prior state having been erased.

3. We propose several PoSE variants and analyze their security as well as
efficiency features. We also assess their viability on a commodity sensor
platform.

3.3.1 Assumptions

As explained, secure attestation involves a verifier VRF and a prover PRV .
Internal state of PRV is represented by a tuple S = (M,RG, pc) where M
denotes PRV ’s memory of size n (in bits), RG = rg1, ..., rgm is the set of registers
and pc is the program counter. We refer to SP as the real internal state of the
prover and SV the internal state of the prover, as viewed by the verifier. Secure
code update can be viewed as a means to ensure that SV = SP . Our notation is
reflected in Table 3.3.
PRV is assumed to be a generic embedded device – e.g., a sensor, an actuator

or a computer peripheral – with limited memory and other forms of storage.
For the ease of exposition, we assume that all PRV ’s storage is homogeneous
and contiguous. (This assumption can be easily relaxed, as discussed in section
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Table 3.3: Notation Summary.

X ←− Y : Z Y sends message Z to X
X1, ..., Xt ⇐= Y : Z Y multicasts message Z to X1, ..., Xt

VRF Verifier
PRV Prover
ADV Adversary

M Prover’s contiguous memory
M [i] i-th bit in M (0 ≤ i < n)

n Bit-size of M
RG Prover’s registers rg1, ..., rgm
pc Prover’s program counter

SP = (M,R, pc) Prover’s internal state
SV Verifier’ view of Prover’s internal state

R1...Rn Verifier’s n-bit random challenge
C1...Cn n-bit program code (see below)

k Security parameter
K MAC key

3.3.5.2) From here on, the term “memory” is used to denote all writable storage
on the device. The verifier is a comparatively powerful computing device, e.g., a
laptop-class machine.

Our protocol aims to ascertain the internal state of PRV . The adversary is a
program running in the prover’s memory, e.g., a malware or a virus. Since the
adversary executes on PRV , it is bounded by the computational capabilities of
the latter, i.e., memory size n.

We assume that the adversary cannot modify hardware configuration of PRV8,
i.e., all anticipated attacks are software-based. The adversary has complete
read/write access to PRV ’s memory, including all cryptographic keys and code.
However, in order to achieve provable security, our protocol relies on the avail-
ability of a small amount of Read-Only Memory (ROM) that the adversary can
read, but not modify. Finally, the adversary can perform both passive (such as
eavesdropping) and active (such as replay) attacks. An attack succeeds if the
compromised PRV device passes the attestation protocol despite presence of
malicious code or data.

We note that ROM is not unusual in commodity embedded systems. For
example, the Atmel ATMEGA128 micro-controller allows a small portion of its
flash memory to be designated as read-only. Writing to this memory portion via
software becomes impossible and can only be enabled by physically accessing the
micro-controller with an external debugger.

As in prior attestation literature, [CKN07, PS05, SLP08, SLP+06b, SLS+05,
SPvDK04, SMKK05, YWZC07], we assume that the compromised prover device
does not have any real time help. In other words, during attestation, it does

8In fact, one could easily prove that software attestation is in general impossible to achieve
against hardware modifications.
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not communicate with any other party, except the verifier. Put another way,
the adversary maintains complete radio silence during attestation. In all other
respects, the adversary’s power is assumed to be unlimited.

3.3.2 Design Rationale

Our design rationale is simple and based on three premises:

• First, we broaden our scope beyond attestation, to include both secure
memory erasure and secure code update. In the event that the updated
code is the same as the prior code, secure code update yields secure code
attestation. We thus consider secure code update to be a more general
primitive than attestation.

• Second, we consider two ways of obtaining secure code update: (1) download
new code to the device and then perform code attestation, or, (2) securely
erase everything on the device and then download new code. The former
brings us right back to the problematic software-based attestation, while the
latter translates into a simpler problem of secure memory erasure, followed
by the download of the new code. We naturally choose the latter.

Correctness of this approach is intuitive: since the prover’s memory is strictly
limited, its secure erasure implies that no prior data or code is resident;
except for a small amount of code in ROM, which is immutable. Because
the adversary is assumed to be passive during code update, download of
new code always succeeds, barring any communication errors.

• Third, based on the above, we do not aim to detect the presence of any
malicious code or extraneous data on the prover. Instead, our goal is to
make sure that, after erasure or secure code update, no malicious code or
extraneous data remains.

Because our approach entails secure erasure of all memory, followed by the
code download, it might appear to be very inefficient. However, as discussed in
subsequent sections, we use the aforementioned approach as a base case that offers
unconditional security. Thereafter, we consider ways of improving and optimizing
the base case to obtain appreciably more practical solutions.

3.3.3 Secure Code Update

The base case for our secure code update approach is depicted in Figure 3.10. It
is essentially a four-round protocol, where:

• Rounds one and two comprise secure erasure of all writable memory contents.

• Rounds three and four represent code update.
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Figure 3.9: Prover’s Memory during Protocol Execution

Note that there is absolutely no interleaving between any adjacent rounds. The
“evolution” of prover’s memory during the protocol is shown in Figure 3.9.

[1] PRV ←− VRF : R1, ..., Rn

[2] PRV −→ VRF : R1, ..., Rn

[3] PRV ←− VRF : C1, ..., Cn

[4] PRV −→ VRF : ACK or H(C1, ..., Cn)

Figure 3.10: Base Case Protocol

As mentioned earlier, we assume a small ROM unit on the prover. In the base
case, ROM houses two functions: read-and-send and receive-and-write. During
round one, receive-and-write is used to receive a random bit Ri and write it in
location M [i], for 0 ≤ i < n. At round two, read-and-send reads a bit from
location M [i] and sends it to the prover, for 0 ≤ i < n. (In practice, read and
write operations involve words and not individual bits. However, this makes no
difference in our description.)

If we assume that the VRF↔PRV communication channel is lossless and
error-free, it suffices for round four to be a simple acknowledgement. Otherwise,
round four must be a checksum of the code downloaded in round three. In this
case, the checksum routine must reside in ROM; denoted by H() in round four of
Figure 3.10. In the event of an error, the entire procedure is repeated.
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3.3.4 Efficient Proof of Secure Erasure

As shown in Figure 3.10, secure erasure is achieved by filling prover’s memory
with verifier-selected randomness, followed by the prover returning the very same
randomness to the verifier. On the prover, these two tasks are executed by the
ROM-resident read-and-send and receive-and-write functions, respectively.

It is easy to see that, given our assumptions of: i) adversary’s software
only attacks, ii) prover’s fixed-size memory M , iii) no hardware modification of
compromised provers, and iv) source of true randomness on the verifier, the proof
of secure erasure holds. In fact, the security of erasure is unconditional, due to
lack of any computational assumptions.

Unfortunately, this simple approach is woefully inefficient as it requires a
resource-challenged PRV to send and receive n bits. This prompts us to consider
whether secure erasure can be achieved by either (1) sending fewer than n bits to
PRV in round one, or (2) having PRV respond with fewer than n bits in round
two. We defer (1) to future work. However, if we sacrifice unconditional security,
bandwidth in round two can be reduced significantly.

One way to reduce bandwidth is by having PRV return a fixed-sized function
of entire randomness received in round one. However, choosing this function
is not entirely obvious: for example, simply using a cryptographically suitable
hash function yields an insecure protocol. Suppose we replace round two with
CHK = H(R1, ..., Rn) where H() is a hash function, e.g., SHA. Then, a malicious
PRV can start computing CHK in real time, while receiving R1, ..., Rn during
round one, without storing these random values.

An alternative is for PRV to compute a MAC (Message Authentication Code)
using the last k bits of randomness – received from VRF in round one – as the
key. (Where k is sufficiently large, i.e., at least 128 bits.) A MAC function can
be instantiated using constructs, such as AES CBC-based MAC [BKR94], AES
CMAC or HMAC [BCK96] However, minimum code size varies, as discussed in
Section 3.3.5. In this version of the protocol, the MAC function must be stored
in ROM. Clearly, a function with the lowest memory utilization is preferable in
order to minimize the amount of working memory that PRV needs to reserve for
computing MAC-s.
Claim: Assuming a cryptographically strong source of randomness on VRF and
a cryptographically strong MAC function, the following 2-round protocol achieves
secure erasure of all writable memory M on PRV :

[1] PRV ←− VRF : R1, ..., Rn where K = Rn−k+1...Rn

[2] PRV −→ VRF : MACK(R1, ..., Rn−k)

where k is the security parameter (bit-size of the MAC key) and K is the k-bit
string Rn−k+1, ..., Rn.
Proof (Sketch): Suppose that malicious code MC occupies b > 0 bits and
persists in M after completion of the secure code update protocol. Then, during
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round one, either: (1) some MAC pre-computation was performed and certain bits
(at least b) of R1, ..., Rn−k were not stored in M , or (2) the bit-string R1, ..., Rn−k

was compressed into a smaller x-bit string (x < n − k − b). However, (1) is
infeasible since the key K is only communicated to PRV at the very end of round
one, which precludes any MAC pre-computation. Also, (2) is infeasible since
R1, ..., Rn−k is originates from a cryptographically strong source of randomness
and its entropy rules out any compression.

Despite its security and greatly reduced bandwidth overhead, this approach is
still computationally costly considering that it requires a MAC to be computed
over entire n-bit memory M . One way to alleviate its computational cost is by
borrowing a technique from [ADPMT08] that is designed to obtain a probabilistic
proof in a Provable Data Possession (PDP). The PDP scheme in [ADPMT08]
assumes that data outsourced by VRF (client) to PRV (server) is partitioned
into fixed-size m-bit blocks. VRF generates a sequence of t block indices and a
one-time key K which are sent to PRV . The latter is then asked to compute and
return a MAC (using K) of the t index blocks. In fact, these t indices are not
explicitly transferred to PRV ; instead, VRF supplies a random seed from which
PRV (e.g., using a hash function or a PRF) generates a sequence of indices.

As shown in [ADPMT08], this technique achieves detection probability of:
P = 1− (1− m

d
)t where m is the number of blocks that VRF did not store (i.e.,

blocks where malicious code resides), d is the total number of blocks and t is the
number of blocks being checked.

Consider a concrete example of a Mica Mote with 128 Kbytes of processor RAM
and further 512 Kbytes of data memory, totaling 640 Kbytes. Suppose that block
size is 128 bytes and there are thus 5, 120 blocks. If m

d
= 1%, i.e., m = 51 blocks,

with t = 512, detection probability amounts to about 99.94%. This represents an
acceptable trade-off for applications where the advantage of MAC-ing 1

10
-th of

verifier memory outweighs the 0.06% chance of residual malicious code and/or
data. Figure 3.11 plots the probability t for different values of m.

3.3.4.1 Optimizing Code Update

Recall that, in the base case of Figure 3.10, round three corresponds to code
update. Although, in practice, code size is likely to be less than n, receiving
and storing entire code is a costly step. This motivates the need for shortcuts.
Fortunately, there is one effective and obvious shortcut. The main idea is to
replace a random (n− k)-bit string with the same-length encryption of new code
under some key K ′. This way, after round two (whether as in the base case or
optimized as in the previous section), VRF sends K ′ to PRV which uses K ′ to
decrypt the code. The resulting protocol is shown in Figure 3.12.

Note again that, since we assume no communication interference and no packet
loss or communication errors, the last round is just an acknowledgement, i.e.,
not a function of decrypted code or K ′. This optimization does not affect the
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Figure 3.11: Probability of detecting memory modifications for # of checked
blocks varying between 256 (5%) and 1024 (20%)

[1] PRV ←− VRF : R1, ..., Rn

[2] PRV −→ VRF : MACK(R1, ..., Rn−k)

[3.1] PRV ←− VRF : K ′

[3.2] PRV : C1, ..., Cn−k = DK′(R1, ..., Rn−k),

where D() is decryption and C1, ..., Cn−k is new code

[4] PRV −→ VRF : ACK

Figure 3.12: Optimized Protocol
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security of our scheme if a secure block cipher is used, since encryption of code
[C1, ..., Cn−k] with key K ′ is random and unpredictable to the prover before key
K ′ is disclosed. Hence, the proof in Section 3.3.4 also holds for this optimized
version of the protocol.

3.3.5 Implementation and Performance

In order to estimate its performance and power requirements, we implemented
PoSE on the ATMEGA128 micro-controller mounted on a MicaZ sensor. Char-
acteristics of this sensor [Cro] platform relevant to our scheme are: 648KB total
programmable memory; 250kbps data rate for the wireless communication channel.
The total memory is divided into: 128KB of internal flash; 4KB of internal SRAM;
4KB of configuration EEPROM; 512KB of external flash memory. The application
was implemented on TinyOS.

3.3.5.1 Performance Evaluation

Three main metrics affect the performance of our scheme and for this reason will
be evaluated separately: communication speed; read/write memory access time;
computation speed of the message authentication code.

Communication channel throughput The maximum claimed throughput of
TI-CC2420 radio chip, as reported in the specifications, is 250kbps, which translates
to 31, 250 bytes/sec. This upper-bound is unfortunately quite unattainable and
our tests show that, in a realistic scenario, throughput hovers around 11, 000
bytes/sec. The total memory available on a MicaZ is 644KB, including external
and internal flash and EEPROM. Our efficient proof of erasure only requires
randomness to be sent once, from the verifier to the prover. Then a realistic
estimate for the transmission time of the randomness amounts to approximately
59 seconds, as was indeed witnessed in our experimental setup.

Memory Access Another important factor in the performance of PoSE is
memory access and write time. Write speed on the internal and external flash
memory is 60KB/sec according to specifications. This estimate has also been
confirmed by our experiments. Therefore, memory access accounts for only a
small fraction of the total run-time.

MAC Computation We evaluated the performance of three different MAC
constructs: HMAC-MD5, HMAC-SHA1 and SkipJack in CBC-MAC. Note that,
even though there are well-known attacks on MD5 that find chosen-prefix collisions
[SLW07], the short-lived nature of the integrity check needed in our protocol rules
out attacks that require 250 calls to the underlying compression function. Table
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Table 3.4: MAC constructions on MicaZ.
(a) Energy consumption and time

MAC Time (sec) Energy (µJ/byte)
HMAC-MD5 28.3 1
HMAC-SHA1 95 3.5

Skipjack CBC-MAC 88 3.1

(b) Code and working memory required

MAC ROM (bytes) RAM (bytes)
HMAC-MD5 9,728 110
HMAC-SHA1 4,646 124

Skipjack CBC-MAC 2,590 106

3.4(a) shows the results: in each case we timed MAC computation over 644KB of
memory on MicaZ.

The fact that MD5 is the fastest is not surprising, given that, in our implemen-
tation, the code is heavily in-lined, which reduces the number of context switches
for function calls while also resulting in increased code size.

3.3.5.2 Memory Usage

We now attempt to estimate the amounts of code and volatile memory needed to
run PoSe. An estimate of code memory needed to run it is necessary to understand
ROM size requirements. Furthermore, estimating required volatile memory is
critical for the security of the protocol. In fact, in order to correctly follow the
protocol, the prover needs a minimal amount of working memory. This memory
can not be filled with randomness and hence PRV could use it to store arbitrary
values. However, by keeping the amount of volatile memory to a minimum we
can guarantee that PRV can not store both arbitrary values and carry on the
necessary computation to complete the protocol.

Since assuring that the amount of volatile memory used in a specific imple-
mentation is difficult, one way to minimize effects of volatile memory is to include
it in the computation of the keyed MAC (or send it back to VRF in the base
case). Even though the contents of volatile memory are dynamic, they are entirely
depended on the inputs from VRF . Therefore, they are essentially deterministic.
In this case, the verifier would have to either simulate or re-run the attestation
routine to compute the correct (expected) volatile memory contents.

Code Size To estimate code size, we implemented the base case PoSE protocol
in TinyOS. It transmits and receives over the wireless channel using Active
Messages. The entire application takes 11, 314 bytes of code memory and 200
bytes of RAM. RAM is needed to hold the necessary data structures along with the
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Table 3.5: Code and volatile memory size.
Protocol ROM (bytes) RAM (bytes)

PoSE(Base Case) 11,314 200
PoSE-MD5 21,042 264
PoSE-SHA1 15,960 274

PoSE-SkipJack 13,904 260

stack. Our implementation used regular TinyOS libraries and compiler. Careful
optimization would most likely reduce memory consumption.

In the optimized version of PoSE, we also need a MAC housed in ROM. Table
3.4(b) shows the amount of additional memory necessary to store code and data
for various MAC constructions. Finally, Table 3.5 shows the size of both code and
working memory for all presented above.

The reason for MD5 having a larger memory footprint is because, as discussed
above, the implementation we used is highly inlined. While this leads to better
performance (faster code) it also results in a bigger code size.

Memory Mapping In the previous discussion, we have abstracted away from
specific architectures by considering a system with uniformly addressable memory
space M . However, in formulating this generalization extra care must be taken:
in real systems, memory is not uniform, since there can be regions assigned to
specific functions, such as memory-mapped registers or I/O buffers. In the former
case, changing these memory locations can result in modified registers which, in
turn, might cause unintended side effects. In the latter, memory content of I/O
buffers might change due to asynchronous and non-deterministic events, such
as reception of a packet from a wireless link. When we refer to prover memory
M , we always exclude these special regions of memory. Hence both the verifier
and the prover have to know a mapping from the virtual memory M to the real
memory. However, this mapping can be very simple, thus not requiring a memory
management unit. For example on the Atmel ATMEGA128, as used in the MicaZ,
the first 96 bytes of internal SRAM are reserved for memory-mapped register and
I/O memory.

3.3.5.3 Read-Only Memory

PoSE needs a sufficient amount of read-only memory (ROM) to store the routines
(read-and-send, receive-and-write and, in its optimized version, MAC) needed to run
the protocol. While the use of mask ROM has always been prominent in embedded
devices, recently, due to easier configuration, flash memory has supplanted cheaper
mask ROM.

However, there are other means to obtain read-only memory using different
and widely available technologies. For example, ATMEGA128 [ATM] allows a
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portion of its flash memory to be locked in order to prevent overwriting. Even
though the size of this lockable portion of memory is limited to 4KB, this feature
shows the feasibility of such an approach on current embedded devices. Note that,
once locked, the memory portion cannot be unlocked unless an external JTAG
debugger is attached to unset the lock bit.

Moreover, ATMEGA128 has so-called fuse bits that, once set, cannot be
restored without unpacking the MCU and restoring the fuse. This clearly illustrates
that the functionalities needed to have secure read-only memory are already present
in commodity hardware.

Another way to achieve the same goal would be to use one-time programmable
(OTP) memory. Although this memory is less expensive than flash, it still offers
some flexibility over conventional ROM.

3.3.6 Limitations and Challenges

Our design was guided mainly by the need to obtain clear security guarantees
and not to maximize efficiency and performance. Specifically, we aimed to
explore whether remote attestation without secure hardware is possible at all.
Hence, PoSE-based protocols (even the optimized ones) have certain performance
drawbacks. In particular, the first protocol round is the most resource-consuming
part of all proposed protocols. The need to transmit, receive and write n bits is
quite expensive. It remains to be investigated whether it is possible to achieve
same security guarantees with a more efficient design.

In terms of provable security, our discussion of Proofs-of-Secure-Erasure (PoSE-
s) has been rather light-weight. A more formal treatment of the PoSE primitive
needs to be undertaken.

Furthermore, we have side-stepped the issue of verifier authentication. However,
in practice, VRF must certainly authenticate itself to PRV before engaging in
any PoSE-like protocol. This would entail additional requirements (e.g., storage
of VRF ’s public key in PRV ’s ROM) and raise new issues, such as exactly how
(possibly compromised) PRV can authenticate VRF?

Another future direction for improving our present work is by giving the
adversary the capability of attacking our protocol with another device (not just
the actual prover). This device would try to aid the prover in computing the correct
responses in the protocol and pass the PoSE. Assuming wireless communication,
one way for verifier to prevent the prover from communicating with another
malicious device is is by actively jamming the prover.

Jamming can be used to selectively allow the prover to complete the protocol,
while preventing it from communicating with any other party. Any attempt to
circumvent jamming by increasing transmission power can be limited by using
readily available hardware. For example, the CC2420 radio, present on the
MicaZ, supports transmission power control. Thresholds can be set for the
Received Signal Strength (RSS), RSSmin and RSSmax, such that only frames
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with RSS ∈ [RSSmin, RSSmax] are accepted and processed. This is enforced in
hardware by the radio chip. Hence, if the verifier wants to make sure that the
prover does not communicate, it can simply emit a signal with RSS > RSSmax.
This approach is similar to the one employed in [MPS09], albeit, in a different
setting.

3.3.7 Considerations

We considered secure erasure, secure code update and remote attestation in
the context of embedded devices. Having examined prior software attestation
approaches, we concluded that they offer uncertain guarantees. We explored an
alternative approach that generalized the attestation problem to remote code
update and secure erasure. Our approach, based on Proofs-of-Secure-Erasure relies
neither on secure hardware nor on tight timing constraints. Moreover, although
not particularly efficient, it is viable, secure and offers some promise for the future.
We also assess the feasibility of the proposed method in the context of commodity
sensors.
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As explained above, software based attestation techniques aim at providing
attestation without any hardware support, this, however, comes at the cost
of reduced applicability and security of the those solutions. Hardware based
attestation techniques aim at solving the major drawback of software attestation,
namely, the strong adversarial silence assumption. This assumption is needed
because, when all the memories of the prover can be read and modified by the
attacker, no secret keys are left to authenticate the verifier to the prover and vice
versa. This limitation underlies any attestation technique that relies purely on
software. Hence, it makes sense to design an attestation techniques that uses
some form of hardware support to address this limitation. The goal of SMART

(Secure and Minimal Architecture for a dynamic Root of Trust ) is to provide a
minimal set of hardware modifications to establish a dynamic root of trust on
embedded devices.

Furthermore, typical software attestation protocols require the prover to
compute a checksum of its entire memory, this process can take several seconds
on low end embedded devices. This extended computation time poses several
problems in the context of embedded devices used in cyber physical systems. First,
it consumes considerable amounts of memory by requiring intensive computation
by a device that would normally be idly responding to periodic events. Second,
it requires the entire platform to be uniquely used for attestation, i.e., no other
application can run concurrently. All these issues pose severe constraints to
the applicability of the proposed software attestation protocols in real world
application. We therefore turn our attention to hardware/software co-designs that
can achieve the same (in fact more) security guarantees while requiring a fraction
of the time.

We start by explaining the hardware attestation techniques proposed in the
context of commodity high end devices. Such techniques, are usually based
on a secure co-processor that provides a root of trust to base attestation upon.
Techniques based on a secure co-processor, however, are ill suited to embedded
devices whose computational capabilities are in the same range as the secure
co-processor itself. The co-processor would therefore add a considerable overhead
to the platform cost. Therefore, we design a solution that relies on a minimal
(albeit secure) hardware modification to existing embedded devices to provide
attestation and dynamic root of trust on embedded devices. We will describe
the concept of a dynamic root of trust in detail in the following section. The
solution has been implemented and tested on the MSP430 and the AVR family of
micro-controllers.
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4.1 State of the Art

4.1.1 Hardware attestation

Many hardware-based attestation have been proposed in the context of commodity
devices, like desktop grade or mobile devices. We will survey the state of the art
in hardware attestation techniques to better introduce our solution to hardware
attestation on embedded devices.

4.1.1.1 Static Integrity Measures

Secure boot [AFS97] was proposed to ensure a chain of trusted integrity checks,
beginning at power-on with the BIOS and continuing until the kernel is loaded.
These integrity checks compare the computation of a cryptographic hash function
with a signed value associated with the checked component. If one of the checks
fails, the system is rebooted and brought back to a known saved state.

4.1.1.2 Attestation using Trusted Platform Modules

Trusted Platform Module (TPM) is a secure coprocessor that stores a integrity
measures of a system according to the specifications of the Trusted Computing
Group (TCG) [Trua]. Upon boot, the control is passed to an immutable code base
that computes a cryptographic hash of the BIOS, hash that is then securely stored
in the TPM. Later, control is passed to the BIOS and the same procedure is applied
recursively until the kernel is loaded. In contrast to secure boot, this approach
does not detect integrity violations, instead the task is left to a remote verifier.
The integrity measures are implemented as cryptographic hashes of the content of
the attested memory regions, e.g., code components. The integrity measures are
stored in special registers inside the TPM called Platform Configuration Registers
(PCR). The TPM has 16 or 24 of such registers (depending on the version) that
are zeroed only at boot time. Starting from the BIOS the values of the PCRs are
extended by hashing their previous value together with the hash of the software
component that is being measured. In detail this is how the PCR value is updated:
PCRnew = H(PCRold||H(code)).

Attestation is implemented using the TPM by extending the measurements
at boot of all the desired software components (BIOS, master boot record, OS
Kernel, etc.) and a quote of the PCR measurement to the TPM. The quote is
a digital signature of the contents of the attestation PCR and a nonce sent by
the verifier to assure freshness. The TPM uses the private part of the Attestation
Identity Key (AIK) to generate the signature. The verifier can use the public part
of the AIK together with the signature sent by the prover to verify the internal
software state of the prover.

An experimental embedded device that includes a full TPM as a separate chip
(together with a low-end microcontroller) has been proposed [HTC+10]. However,
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this approach is expensive for low-end devices, as the cost of a TPM chip is close
to that of a low-end microcontroller itself. Indeed, a typical TPM includes a
microcontroller, memory and cryptographic accelerators [ATM05]. Thus, adding a
TPM to a device doubles the number of actual CPUs. Finally, increase in number
of components also impacts devices cost and size.

4.1.1.3 Dynamic Integrity Measures

In [KSA+09], the use of TPM is extended to provide system integrity checks of
run-time properties with ReDAS (Remote Dynamic Attestation System). At
every system call, a kernel module checks the integrity of constant properties of
dynamic objects, e.g., invariant relations between the saved frame pointer and the
caller’s stack frame. Upon detection of an integrity violation, the kernel driver
seals the information about the violation in the TPM. A remote verifier can ask
the prover to send the sealed integrity measures and thus verify that no integrity
violations occurred. However ReDAS only checks for violations of a subset of
the invariant system properties and nothing prevents an adversary to succeed
in subverting a system without modifying the properties checked by ReDAS.
Extending the set of attested properties is difficult due to the increased number
of false positives generated by this approach, for example in case of dynamic
properties classified as invariants by mistake. [SZJvD04] proposed to extend the
functionality of the TPM to maintain a chain of trust up to the application layer
and system configuration. In order to do so, they extend the Linux kernel to
include a new system call that measures files and adds the checksum in a list
stored by the kernel. The integrity of this list is then sealed in the TPM.

4.1.2 Dynamic Root of Trust

Recently the TPM specifications [Trub] have been extended to provide a way to
perform attestation dynamically after boot. This is accomplished by allowing a
specific CPU instruction to reset the state of some PCRs (PCR 17 to 24). From
that moment on, new measurements can be extended into these PCRs to establish
a dynamic root of trust and execute a piece of code in full isolation.

These mechanism have been recently implemented by AMD SVM [Adv] and
Intel TXT [Int09] in their respective CPU to perform a late launch. Two new
instructions, SKINIT on AMD and SENTER on Intel, are invoked to establish
a dynamic root of trust. Several hardware protections measures, such as disabling
debugging and resetting the TPM PCRs, are included to prevent fraudulent
attestation.

McCune, et al. proposed the Flicker system architecture [MPP+08] to establish
a dynamic root of trust on commodity computers. Leveraging AMD and Intel
advances, Flicker can establish a dynamic root of trust by running a PAL (Piece
of Application Logic) on the prover. The execution of the PAL is guaranteed even
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if the BIOS, OS and DMA of the system are all compromised. This was further
extended into TrustVisor [MLQ+10] which provides a dynamic root of trust for
PALs directly from a minimal hypervisor. This allows to significantly improve the
performance of the Dynamic Root of Trust mechanism as it can be handled by
the hypervisor avoiding to use the relatively slow SKINIT/SENTER process.
Trustvisor also allows to use PALs on legacy Operating systems as a hypercall can
be done directly from an application without support from the operating system.

4.2 Design Elements and Goals

As mentioned above, the main result discussed in this chapter is the development
of a new technique called SMART: Secure and Minimal Architecture for a dynamic
Root of Trust. SMART is executed by the prover and, in doing so, attests a region
of code and executes it. At the end of the execution, the prover is able to provide
proof to the verifier that attests the execution, including the input and output
parameters, therefore establishing a dynamic root of trust. SMART guarantees
that the attested code is executed even if the entire prover system is compromised.

SMART was designed with one main goal: minimality and efficiency. Low-end
embedded devices are very cost sensitive and the addition of secure co-processors
is infeasible. Even extending the core functionality of the MCU must be done
to minimize the number of gate equivalences added to the original design. The
efficiency of the protocol is important because embedded devices often have to
operate in real-time and with rigid time constraints.

4.3 Overview of the Solution

4.3.1 Building Blocks

The main idea behind SMART is to identify a minimal combination of additional
features to add to a micro-controller to support attestation and the establishment
of a dynamic root of trust. We begin by considering and justifying various
components that allow us to assemble a secure attestation primitive. (Note that
we are focusing on the prover, i.e., the device being attested.) Our approach relies
on three main components:

Attestation Read-Only Memory: Region of memory in ROM inside the MCU.
Only this code segment is granted access to a key K, by the MCU. We will
sometimes refer to this code as SMART code.

Secure Key Storage: Memory region inside the CPU; this region can be ac-
cessed only from SMART code in ROM.
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MCU Access Controls: Control access to K and prevent non-SMART code
from accessing it.

4.3.1.1 Attestation Read-Only Memory (ROM)

It is used as the root of trust to faithfully compute an message authentication
code (MAC) of the target memory region 1 Generally, ROM incurs very little
overhead in the design and construction of the MCU since it constitutes a cheap
form of storage. What makes this ROM special is its ability to access K , that
is used only for attestation. This rule is enforced in hardware and is clarified in
subsequent sections. The SMART code resides in read-only memory and therefore
cannot be tampered with by any malicious code. This implicit integrity guarantee
is one of the foundations of our technique.

While the SMART code is the only one that can access the attestation key K
there are certain corner cases that have to be properly handled to preserve the
secrecy of K . In fact, part the entire key K or parts of it necessarily have to be
handled by SMART code and copied in register or temporarily stored in RAM.
Therefore it is important that, before the SMART code terminates its execution,
all the data structure derived from K are deleted.

To enforce this, in SMART, a memory cleanup is performed by immutable
code in ROM that is executed upon every boot or reset. Also, special care must
be taken to avoid that the key is accidentally leaked by SMART for example, as a
result of buggy SMART code.

This phenomenon is conceptually similar to cold boot attacks [HSH+08] where
a computer is stopped during execution and its memory is removed in order
to recover keying material. However, since a typical microcontroller features
processor and memory in a single “package”, the latter cannot be accessed directly.
If debugging interfaces are permanently deactivated and memory is freed upon
each reset, only hardware attacks (that are out of scope of SMART) would allow
recovery of parts of memory.

4.3.1.2 Secure Key Storage

The next question is where to store the key used for computing the keyed hash
function (HMAC). We note that any un-keyed function, such a cryptographic
hash (e.g., SHA), would be unsuitable for attestation. This is because, without a
secret key, anyone can compute a hash of any input and impersonate the prover’s
reply. In particular, malware that has infected the prover can do so.

Therefore, secret storage is needed. In SMART, we use it to house a single
(symmetric or private) key. K is kept in a secure key storage supported in hardware.
This storage must be immune to software attacks. However, we do not require

1In our implementation we use a hash-based message authentication code (HMAC) that uses
SHA-1.
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it to be secure against hardware (physical) attacks, since such attacks are out of
scope of this work (i.e., not part of our adversary model). Furthermore, hardware
attacks could be mitigated using well-known tamper-resistance techniques, such
as anomaly detection, internal power regulators, additional metal layers or meshes
for tamper detection.

Although we do not consider the details of initializing the attestation key,
we note that there are at least two ways to do it: (1) either K is assigned at
production time and never changed again, or (2) a secure way to modify, but not
read, K is provided, e.g., by relying on a secure debug channel.

If a public-private key pair is used, the public key can be signed by a certifica-
tion authority that can certify that the SMART module was built according to
specifications.

4.3.1.3 MCU Access Controls

To enforce secrecy of K, it can be accessed only when the program counter (PC)
is in the memory region of Attestation ROM. This prevents software running in
other memory regions from accessing K directly (See Section 4.4.2.2). However,
additional memory access checks are necessary in the MCU to prevent code reuse
attacks that would invoke code within SMART region to obtain the key, e.g., via
ROP attacks [Sha07, BRSS08, CDD+10] (See Section 4.4.2.3).

4.3.2 Adversarial Assumptions

We assume that verifier, VRF , and prover, PRV , share a secret key K. The
adversary, ADV , has complete control over the software state, code and data, of
PRV . In particular, ADV can modify any writable code on PRV and learn any
secret that is not protected by the MCU. Furthermore, ADV has complete control
over the communication channel and – during the protocol – can use multiple
colluding devices in order to pass or subvert attestation.

We also assume that ADV does not perform hardware attacks on PRV .
Specifically, it can not alter code stored in ROM or retrieve K using side-channel
attacks. Likewise, ADV has no means of interrupting execution of ROM-resident
code on PRV . A software only timing side-channel attack against the HMAC-
SHA function used in SMART is not possible either. Code used for the HMAC
computation does not have conditional branching instructions, resulting in constant
execution time. Furthermore, MSP430 nor the AVR possess caches, that could be
used for timing attacks due to cache hits and misses. Also, differences in execution
time due to bus contention are data independent and cannot leak K. Also, to the
best of our knowledge no timing attacks have been reported against HMAC-SHA
in the literature. Protection against hardware-based attacks could be added by, for
example, encasing the MCU in tamper-resistant coating and employing standard
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techniques to prevent side-channel key leakage. (Since our approach is confined
within the MCU, employing such techniques is quite natural.)

4.3.3 Security Objectives

• Prover Authentication: Upon successful completion of the attestation proto-
col, VRF obtains entity authentication of PRV .

• External Verification: Upon successful completion of the attestation protocol,
VRF is assured that memory segment [a, b] on PRV has the expected
content.

• Guaranteed Execution: Upon successful completion of the attestation proto-
col, VRF is assured that code at location a was executed by PRV .

4.4 SMART in Detail

This section describes, in detail, SMART features and components.

As mentioned earlier, SMART is executed by PRVIt attests a segment of
memory and optionally jumps to it. SMART guarantees that this code is executed
without modifications, even if the entire prover system is compromised. At
the start of the protocol, VRF sends several parameters to PRV : attestation
region boundaries: a and b; address x ∈ [a, b] where PRV passes control to after
attestation; and a nonce r to prevent replay attacks. A code segment on PRV
residing in ROM computes a cryptographic checksum C of a region [a, b] in PRV ’s
memory (using nonce r) and then passes control to x. After execution of code
starting at x, PRV sends C to VRF . The latter verifies correctness of C by
re-computing it using the same parameters and attestation key K. We refer to
the code in ROM as RC and the code optionally executed after completion as
HC. A protocol view of SMART is shown in Figure 4.1 and the corresponding
pseudo-code RC is illustrated in Algorithm 1.

The cryptographic checksum function is implemented as an HMAC keyed with
K stored in secure storage in PRV MCU. Usage of, and access to, K is restricted
by the MCU such that only (trusted and immutable) RC is allowed to use it.
For its part, RC only uses K to compute HMAC and then passes control to HC.
Furthermore, RC is instrumented using both static and dynamic analysis tools
to prevent accidental leakage of K or other cryptographic material. During this
process, all interrupts are masked such that execution cannot be interrupted.

Additionally, when the xflag is set interrupts remain masked after the execution
of RC. This is to ensure that HC is actually executed. This could be prevented by
an attacker that installs a malicious interrupt handler and prepares an interrupt
(e.g., a timer) to happen during the first instructions of HC . Such an interrupt

68



Algorithm 1: SMART code in ROM.

input : a, b start/end addresses for attestation
x address to jump to after attestation
xflag jump or not?
r nonce sent by verifier
out output address where to store checksum
in (optional) input parameter

output: output of HMAC
begin

// Attestation key is unlocked automatically by the MCU
// read K into ka
ka ←− loadAttestKey();
// Initialize HMAC with ka
initHmac(ka);
// Attest all parameters
HmacProcess(a||b||x||xflag||r||in||out);
for i ∈ [a, b] do

// Attest memory region [a, b]
HmacProcess(Mem[i]);

end
C ←− finishHmac();
copy(∗out, C);
// Erase cryptographic material
ka ←− 0;
resetMemory();
// If execute flag set, go to address x
if xflag = True then

call(x, in);
end

end
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VRF PRV

generates nonce r
R = (r, a, b, x, xflag)

computes: C = SMART(R)
if xflag == True then exec(x)

C

if C is correct
then accept else reject

Figure 4.1: Protocol description

handler could allow for example to read or modify memory between the execution
of RC and HC.

4.4.1 Attestation ROM

As shown in Algorithm 1, SMART computes an HMAC of a particular memory
segment and then jumps – without ever being interrupted – to a verifier-specified
address within that segment. All code is written in C and consists of approximately
500 lines of code. This makes checking its correctness both feasible and relatively
easy. Furthermore, our implementation experience shows that ROM code remains
largely unchanged for various MCU platforms, such AVR and TI-MSP430. Thus,
porting it to other commodity MCUs should be a fairly simple task.

ROM code must guarantee the following properties:

1. Key Isolation: K must not be leaked from ROM during normal operation.

2. Memory Safety: no bugs exploitable for temporary memory exposure or key
leakage.

3. Atomic Execution: can be executed only from the very beginning and must
not be interruptable until it terminates.

Property (3) is guaranteed by the MCU, as discussed in Section 4.4.2 below.
Property (1) and (2) are guaranteed by using two code instrumentation tools:
CQUAL [FTA02] and Deputy [CHA+07].

4.4.1.1 Key Isolation

Upon termination, SMART passes control to the untrusted portion of PRV , where
malicious code can sift through memory and search for traces of the attestation key
or intermediate states used in HMAC computation. This could lead to disclosure
of K. For this reason, we instrumented SMART code with CQUAL – a tool that
detects information leakage in C programs. Specifically, K is marked with a
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SECRET type. CQUAL propagates this type to each variable that is computed with
any involvement of any other variable of type SECRET. Each function is equipped
with a check that no SECRET variable was leaked. Using CQUAL provides insights on
preventing key leakage. The end-result is simple: each variable marked as SECRET
by CQUAL is zeroed out in the epilogue of each function 2. The only variables
not erased are the outputs of each function. Also, upon SMART completion, the
memory location of the attestation key (K) is no longer accessible.

4.4.1.2 Memory Safety

Key isolation alone does not prevent key leakage, since our code could contain
vulnerabilities that permit ADV to retrieve K by running SMART on malicious
(or malformed) inputs. Fortunately, SMART is comprised of only around 500 lines
of code. This relatively small size allows manual inspection for memory corruption
bugs. However, we enhance manual inspection using Deputy – a C compiler built
upon GCC, that provides an annotation language to describe memory boundaries
in C. For example, a C array can be augmented with information about its
size. The compiler adds instructions to check all memory accesses to the array
and detects memory corruptions. Once SMART code is reinforced with Deputy,
whenever a memory corruption is detected, a special reset is performed by Deputy

instrumentation code. As for other error conditions that could cause a reset, we
deal with them by making sure that, at each reset, all memory (stack, heap, and
registers) is erased. Figure 4.2 shows a SMART code snippet with annotation.

hmac_sha1_nonce

(uint8_t * COUNT(klen) k, size_t klen,

uint8_t * COUNT(noncelen) nonce, size_t noncelen,

void * COUNT(exec_len) exec, size_t exec_len,

uint8_t exec_flag,

uint8_t * in, size_t inlen,

uint8_t * COUNT(SHA1HashSize) resbuf);

Figure 4.2: Annotated HMAC invocation in SMART. Note the use of COUNT

annotation for pointers. It specifies the maximum size of buffers used.

4.4.2 MCU Modifications

Simplicity and minimal cost are two important design objectives of SMART .
Hardware modifications are therefore limited to memory access checking and the
addition of ROM.

2One must check that the compiler does not optimize it.
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Figure 4.3: Schematic view of access control for attestation key

4.4.2.1 ROM

ROM is a standard feature in many commodity microcontrollers. Typically, a
portion of memory is hardwired during manufacture, rendering it immutable.
In fact, because it requires little logic it can be built by connecting “wires” and
transistors, ROM is the cheapest memory type. In SMART ROM is used for both
holding the SMART code and the key.

4.4.2.2 Key Access Controls

Figure 4.3 shows how access to the key is controlled in the MCU. Essentially,
the data bus is connected to the key memory bus when the program counter is
in ROM and the data address is within the range of addresses where the key is
mapped. The internal reset signal is set if the key memory is accessed while the
program counter is not in ROM memory range.

4.4.2.3 ROM Execution Control

Because ROM is authorized to access the key its usage must be controlled to
prevent key recovery by malicious code on the platform. The adversary can, for
example, attempt to selectively execute (invoke) portions of ROM code by using
code reuse techniques (e.g., return to libc [Sol97b], borrowed code chunks [Kra05]
or Return-Oriented Programming [BRSS08]). To prevent such attacks, we provide
additional address controls upon ROM entry and exit. The program counter is
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only allowed to move into ROM starting at SMART initial address. Similarly,
the program counter can leave ROM only from the last SMART address. This
way, ROM code cannot be invoked partially: once any attempt to do otherwise is
detected, the MCU is immediately reset.

Those constraints on entry and exit from SMART and the data memory usage
needs to be closely controlled. Therefore, SMART code is designed to use only
stack allocated memory and is compiled and linked with custom scripts; more
details are provided in Section 4.7.

4.5 Security Analysis

Our security argument is informal. A more substantial argument (or a proof)
would require formal analysis and verification of SMART code, which is planned
as part of future work. The security argument is based on the following assertions:

A1 Cryptographic checksum C computed by PRV can not be forged. Since C
is a result of secure MAC function (e.g., HMAC-SHA1) we assume that, for
any ADV – external to PRV – that observes a polynomial number of such
checksums, finding MAC collisions and/or learning bits of the attestation
key is infeasible.

A2 Physical and hardware-based attacks on PRV are beyond ADV ’s capabili-
ties.

A3 Attestation key K can be accessed only from within ROM-resident SMART

code. This is guaranteed by MCU-based access controls.

A4 SMART code can not be modified since it resides in ROM.

A5 SMART code can be only invoked at its beginning. The hardware checks
that when the program counter is in ROM code range, excluding the first
address of it, it had to be in ROM code range before.

A6 Any invocation of SMART starts by masking (disabling) all interrupts, they
remain disabled if, on SMART code completion, control is passed to HC .

A7 Once invoked, SMART code can not be interrupted. This also implies
that, regardless of the input, SMART does not encounter any exceptions or
reach any undefined state. Hardware checks that if the current value of the
program counter is not in SMART code range it must have been previously
outside of SMART code range or at the address of the last instruction of
SMART code.

A8 Attestation key K can not be extracted by any software-based ADV internal
to PRV . Before SMART terminates execution, K (actually, ka) is securely
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erased and the only value based on (statistically dependent on) K is the
output C.

A9 For each invocation, SMART computes a correct value of C based on the
contents of the requested memory segment [a, b]. Although C is guaranteed to
be computed correctly, it may or may not result in PRV passing attestations,
since [a, b] might be previously corrupted by ADV .

A10 Any erroneous state (e.g., violation of assertions A3, A5, A7) lead to a
hardware reset. Upon reset, all data memory and registers are erased, which
prevents K leakage. This boot-time memory erasure also guaranties that
if power loss occurs during SMART execution, no K information remains
available in memory to untrusted code at next boot.

A11 No observations of the normal execution of SMART when called by an
untrusted code on the MCU should reveal information about the key. This
could be used to gather information on the key value by comparing several
SMART executions with different parameters. This means that execution
time and amount of memory used must not be key dependent.

Armed with the above assertions, we can argue that postulated three security
objectives are satisfied.

4.5.0.4 Prover Authentication

Once again, since C is correct and r is a random challenge (nonce) of sufficient
bit-length, VRF concludes that C was computed by PRV within the interval of
time between the initial request message and the receipt of C. This yields fresh
and timely entity authentication of PRV .

4.5.0.5 External Verification

We assume that VRF receives and successfully verifies C.3 Assertions A1-A9
imply that C was computed by SMART code on PRV . Therefore, memory region
[a, b] on PRV contained code or data expected by VRF .

4.5.0.6 Guaranteed Execution

Assertion A8 implies that, immediately after computing C, PRV commenced
execution of code referred to by optional parameter in. If C is deemed correct by
VRF and in = a, VRF is assured that the correct code, start at location a was
executed. However, this does not mean that the entire code segment, e.g., between

3Note that, if C is incorrect, VRF can not distinguish between cases of: (1) corruption of
memory region [a, b] on the actual PRV and (2) another entity (ADV) attempting to impersonate
PRV or manipulating input or output of SMART.
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a and b was executed, which is dependent on the objectives and correctness of
this code.

4.5.0.7 Key Protection Guarantee

Assertion A3 implies that K is not directly available to untrusted software. As-
sertions A6 and A8 guaranties that code reuse attacks to recover the key are
impossible. Assertions A10 implies that when error condition occurs execution
is stopped and that there is no information leakage about K . Assertion A11
guarantees that side channels cannot be used to gather information about the key
by untrusted software executing on the processor. Other side channels commonly
used in key recovery attacks rely on power consumption analysis and electromag-
netic emanations[SLP06a], however, those are hardware or physical attacks and
we assume that they are infeasible by a “software” local attacker 4.

4.6 Protocols with SMART

In this section we describe several protocols or mechanisms that can be imple-
mented by software components that rely on SMART as a building block.

4.6.1 Remote Attestation of Memory Parts

The most natural usage of SMART is to attest a certain range of memory and
verify that it contains the data (or code) that it is supposed to contain. This can
be achieved by invoking SMART with the start and end address of the memory
range to be attested, as shown in Algorithm 2.

Algorithm 2: SMART usage to attest a range in memory.

input : r nonce sent by verifier
a memory to be attested start address
b memory to be attested end address
H1 Hmac function (global variable)

output: the output of the HMAC
begin

SMARTa, b, ∅, False,r,&H1,∅;
send(H1);
ReActivateInterrupts();

end

4We note that those channels might be exploitable in very specific cases, e.g., if the hardware
to perform such measurements is available as a peripheral of the device, e.g., a coulomb counter
that measures remaining battery power. This could, in theory, provide information on power
consumption of SMART code. We assume that such features are not available on the device.
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4.6.2 Remote Proof of Reset

In some applications there is a need to ensure that a device has been reset
successfully. This can be easily achieved by utilizing SMART as a building block
to construct the protocol shown in Algorithm 3. The HMAC guaranties that the
R function has been verified and executed,

In that case we asume that the HMAC result can be stored on a memory not
erased during reset (e.g. Flash, EEPROM), or is sent before the reset.

Algorithm 3: SMART usage to attest a value, e.g., a reading form a
peripheral accessed from memory mapped I/O.

input : r nonce sent by verifier
in address to read from device
R reset function address
|R| the reset function size
H Hmac (global variable)

output: the output of the HMAC
begin

SMARTR, R + |R|, R, True,r,&H1,∅;
end
// ResetFunction: R()
begin

V ←− ReadValueFromHW() ;
ShutdownDevices();
EraseAllMemoryButH();
PC = 0 ;

end
// The value H will be returned to verifier after boot
// is completed.

4.6.3 Attested Reading of Measurements

Some applications need to make sure that values read from a peripheral device
cannot be forged by malicious code possibly present on that device. For example,
large-scale incorrect reports of current electricity consumption by smart meters
might lead to power outages. An IMD that returns incorrect values when queried
by a physician might result in a incorrect prescription being issued to a patient,
with potentially catastrophic consequences.

Predictably, measurements attestation should satisfy the following properties:

• Freshness of the value(s) read.

• Proof of reading the value(s) from the peripheral.
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• Integrity of the messages involved.

Freshness is provided via a nonce, present by default in the SMART setup. Proof
of reading the value is provided by calling SMART to attest and run HC, which
will read the value. Finally HC will call SMART a second time, as a normal
HMAC function, to protect the integrity of the read value. Algorithm 4 presents
this primitive.

In summary, the final HMAC contains the following information: the reading
function was executed atomically, the verifier can confirm that the function
actually reads the value from the correct built-in address and immediately attests
it. HMAC correctness therefore ensures integrity of the reported value.

This approach is similar to the extend TPM functionality. Since hashes are
chained, they attest all previously hashed data. There are however important
differences: HMAC attests each output of SMART with the secret key of the
device. This allows for a simpler design. Besides integrity, HMAC correctness
confirms that it was produced by SMART. This is fundamentally different from
the extend operation preformed by a TPM, since integrity of the PCR is enforced
by hardware.

It can be noted that the Send function, which sends the HMAC to VRF , is
not guaranteed to be executed as it is not verified by SMART . However, this does
not impact the validity of the HMAC or the read measurements. On the other
hand, it is an availability issue, but malicious code on the MCU could just prevent
the whole process to happen (and still be detected by not doing so), solutions for
this it is left for future work.

4.6.4 Other Uses and Extensions

In addition to the protocols presented above, a primitive providing a dynamic
root of trust can be used for many purposes in embedded devices. For example, if
certain known malicious code propagates on networked devices, the verifier can
send detection or disinfection code. This code would be launched by SMART

to perform remote search for known malicious patterns in code or data. Using
SMART, validity of returned HMAC would guarantee that detection code was
executed uninterrupted and that the detection result is genuine.

SMART also makes it possible to perform mutual authentication as well as
shared key generation between two (or more) previously paired devices that share
the same key. In this process, each device acts both as a prover and a verifier.
Because SMART guarantees that, even in the presence of full software compromise
of either device, a device’s long-term attestation key cannot be modified or
disclosed. Consequently, the adversary cannot clone a genuine device or eavesdrop
on communication between two devices.

Fine-grained access control to sensitive peripherals can be limited to HC only
with simple hardware extensions to SMART. For example,HC code can be provided
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Algorithm 4: SMART usage to attest a measurement, e.g., a reading from
a peripheral accessed from memory mapped I/O.

input : r nonce sent by verifier
in address to read from device
R reading function address
|R| the reading function size
H1 first Hmac (global variable)
H2 second Hmac (global variable)

output: the output of the HMAC
begin

SMARTR, R + |R|, R, True,r,&H1,∅;
send(V,H2);

end
// ReadingFunction: R()
begin

V ←− ReadValueFromHW() ;
IN=V ||H1 ;
SMART&IN ,&IN + sizeof(IN),0,False,r,&H2,∅;
ReActivateInterrupts();

end

in a bundle with its own HMAC and a bit field that describes authorization to
access specific memory regions corresponding to memory mapped peripherals.
Access to these memory regions would, in turn, be authorized only if HMAC is
validated. This is useful in many applications, e.g., pacemakers where it could
control delivery of pacing impulses.

4.7 Implementation

To assess the feasibility and impact of SMART we implemented it on two low-end
commodity MCU platforms. We believe that this is the best way to understand its
advantages and limitations as well as to evaluate the impact of required processor
modifications.

We chose to base our implementation on two fully open-source clones of widely
used off-the-shelf MCU-s: Atmel AVR and Texas Instruments MSP430. The two
processors share many features. They both have a limited memory address space
with 16-bit addresses. Common memory sizes in both devices are between 2− 16
KBytes of SRAM used as data memory and between 16 − 64 KBytes of flash
memory used for program storage 5. Both are designed for low-power, low-cost

5Some can have slightly larger memory sizes with small changes to the bus size and the
instruction set
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and are widely adopted in many application areas e.g., in the automotive industry,
utility meters, consumer devices and peripherals in addition to wireless sensor
networks.

AVR and MSP430 also have some major architectural differences. Notably,
MSP430 is a 16-bit Von Neumann architecture processor with common data and
code address spaces. Whereas, AVR is an 8-bit Harvard architecture processor that
has separate address spaces for data and program memory. Another prominent
difference is in the instruction set: AVR is a RISC architecture with most instruc-
tions requiring a single 16-bit word and executing in one clock cycle. In contrast,
MSP430 can perform multiple memory accesses within a single instruction. Its
instruction execution time can range from 1 to 6 clock cycles, and its instruction
length can vary from 16 to 48 bits.

The differences between AVR and MSP430 make them good representatives of
architectures commonly used in many modern embedded systems. We demonstrate
feasibility of SMART by the small increase in area and low impact in terms
of performance that we experienced in the process of integrating it into both
processors.

4.7.1 Implementation details

SMART implementation consists of three main components:

• Processor modifications to add ROM code memory, key storage and memory
access controls.

• Largely architecture-independent SMART routine stored in ROM mem-
ory that implements Algorithm 1. This C code has a small number of
architecture-dependent lines.

• One or more software protocol implementations that utilize the SMART

primitive.

4.7.1.1 Implementation on AVR and MSP430 Cores

We first implemented the hardware part of SMART on the AVR processor, an
Atmega103[ATM] clone from the Opencores Project [ope]. Figure 4.4 illustrates
the execution core and its memory. Parts that had to be modified or added
are shaded. They mainly correspond to memory and memory access controls on
memory buses.

Next, we implemented SMART on the MSP430. We used the open-source
openmsp430 core from the Opencores Project [ope] and ported SMART to it. The
port consists of processor modifications, adaptation of ROM code to MSP430
architecture as well as testing and synthesizing the resulting core. These tasks
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Figure 4.4: Modifications to AVR. Dark gray boxes represent logic added to the
processor. Core control signals provide information about internal processor status
to memory bus controls.

were performed in one week by one developer with moderate Verilog knowledge
and no previous experience with the openmsp430 core. Processor modifications
were limited to implementing and adding modules for ROM code and key memory.
In addition, minor modifications and address checks were required in the memory
backbone module of the openmsp430 core. The memory backbone module performs
arbitration of memory accesses. Figure 4.5 presents required modifications (shaded)
for MSP430.

In both processors, less than 200 lines of code (Table 4.2) were changed to
implement these modifications. In addition to processor modifications, we extended
existing regression tests (or test benches) to verify correct implementation of each
of assertion from Section 4.5 that is relevant here: A3, A6, A8, and A11.

4.7.1.2 ROM-Resident Code

This code corresponds to 487 lines of portable C and uses a standard SHA-1
implementation [EJ01]. It requires 4KBytes of ROM for the AVR and 6KBytes
for MSP430. It executes in 10-s to 100-s of milliseconds (Table 4.7.1.2), depending
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Figure 4.5: Modifications to MSP430. Memory backbone was modified to control
access to ROM and K. Since MSP430 is based on Von Neumann architecture,
concurrent access can occur to different memory parts (e.g., instruction fetch and
read data). In that case, memory backbone arbitrates bus access and temporarily
saves/restores data.

on the size of the memory to attest.
Memory usage in SMART has to be carefully managed. SMART code cannot

reserve memory for its own usage. Memory should only be allocated on the stack
(i.e. local functions variables). It should not attempt to use global variables or
heap allocated memory. Finally, the code is compiled and linker scripts are used
to generate the ROM image suitable to the modified processor.

4.7.1.3 Hardware Footprint

Simulating the design demonstrates its functional status. Whereas, comparing
the number of lines of code of its implementation provides insight about the effort
required to implement SMART on a given MCU. However, this is insufficient to
assess real impact of SMART in terms of hardware overhead, i.e., surface increase
due to its presence on an actual manufactured device. We note that a single line
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Data Size Cycles Time at 8Mhz
1 KByte 2302281 287 ms
512 Bytes 1281049 160 ms
32 Bytes 387471 48 ms

Table 4.1: HMAC execution timing

of HDL can add a simple wire, a register or an entire memory block; all these
would be counted as one line of code, although each has very different impact on
synthesized hardware.

To this end, we synthesized the original and SMART-ified designs for both
AVR and MSP430. This provides an initial estimate of the impact of SMART

on the final devices. Synthesizing is the act of transforming (or compiling) the
design from a high-level description language (Verilog or VHDL) into a set of
wires and elementary gates that serve as building blocks of an Application-Specific
Integrated Circuit (ASIC).

Synthesizing needs to be performed for a specific target hardware. We used the
library from UMC 180nm process [Far04c] and Synopsys Design Compiler [Syn10].
Since memory cannot be generated the same way, we used a specific tool [Far04b,
Far04a]. However, because we did not have access to a tool to generate FLASH
memory, we used the numbers gleaned from publicly available information [Chi11].
Table 4.3 shows the resulting surface as gate equivalents for the original processor
and its SMART-ified version.

We stress that these numbers can vary greatly depending on many parame-
ters, such as: required maximum frequency, latency, placement and routing and
availability of better memory IP. However, our specific numbers show that the
impact of SMART on surface area is minimal. Adding SMART to both AVR
and MSP430 caused only a 10% increase in their respective surface areas. As
mentioned before, most of that added area is due to ROM housing SMART code.
Modifications to the core required only 1K and 0.7K gate equivalents in AVR and
MSP430, respectively This could probably be reduced as we did not perform any
optimizations.

4.7.2 Lessons Learned from Experiments

The first observation from our experiments is that implementing SMART is not a
complex task and porting it to a different architecture is even easier. Second, the
additional footprint of our implementation is minimal. One change that impacted
the chip surface area the most is the additional ROM memory required to store
SMART code.

Another important issue is that, in both cases, we did not have to change the
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Component Original Changed
Ratio

AVR, core (VHDL) 3932 151 3.84%
AVR, tests 2244 760
MSP430, core (Verilog) 4593 182 3.96%
MSP430, tests 17665 1122

Table 4.2: Changes made (in # of HDL lines of code) in AVR and MSP430
processors, respectively, excluding comments and blank lines.

Component Original Size Changed Size
in kGE in kGE Ratio

AVR MCU 103 113 10%
Core 11.3 11.6 2.6%
Sram 4 kB 26,6 26.6 0%
Flash 32 kB 65 65 0%
ROM 6 kB - 10.3 -

MSP430 MCU 128 141 10%
Core 7.6 8.3 9.2%
Sram 10 kB 55.4 55.4 0%
Flash 32 kB 65 65 0%
ROM 4 kB - 12.7 -

Table 4.3: Comparison of chip surface used by each component of the original
MCU to its modified version. kGE stands for thousands of Gate Equivalents
(GE-s). One GE is proportional to the surface of the chip and computed form the
surface of the module divided by the surface of a NAND2 gate, 9, 37 ∗ 10−6mm2

with this library.

processor core itself, we only modified the memory access controller.6 Therefore,
SMART might be also well-suited to settings where the processor core is available
only as a “black box” and provides enough information about accessed memory
on its external interface.

One limitation of our approach is that we rely on reasonably fast HMAC
computation, which might make SMART too slow for some applications. This is a
consequence of the conscious trade-off made when we chose to limit the amount
of hardware changes in the processor. Depending on the application, it may be
possible to use a hardware SHA-1 implementation (e.g., [EJ01]), which would
significantly improve performance without requiring major processor modifications.

6The only exception is that, in some cases, we needed information about the execution engine
state (e.g. detection of wait states).
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4.8 Discussion

SMART is motivated by lack of currently feasible techniques for providing dynamic
a root of trust on remote embedded devices. We proposed SMART – a very simple,
lightweight and low-cost architecture that nonetheless offers concrete security
guarantees in the presence of any kind of non-physical attacks. Future work will
consist in formally verifying the ROM-resident code in order to obtain a strong
security proof for the entire architecture; this is likely to be a challenging task.
More experiments using current MCU implementations need to be performed to
better assess the overhead. We also plan to implement and evaluate SMART on
several other common MCU platforms and among a larger project we plan to
produce a few test ASIC samples of micro-controllers with SMART.
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Chapter 5

Conclusion and Future Directions
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In this work we aimed at laying a foundation for securing the execution of
code on embedded devices. As explained, embedded devices have a remarkably
simple design when compared to higher end CPU, however they suffer from the
same security vulnerabilities. While in the past such devices have benefited from
a blanket protection because of their general lack of connectivity, a recent trend
is pushing those devices to be increasingly interconnected. Both amongst them
and to the outside world via the Internet. As a result, these devices might be
remotely attacked and manipulated in the future.

Such devices are widely used in cyber physical systems to operate critical sys-
tems, such as industrial systems, energy production and distribution, automotive
systems and medical devices. While the reliability of such devices has been widely
studied, their security has only recently come under the scrutiny by the research
community. As a result, several attacks and vulnerabilities have been discov-
ered in medical devices, automotive electronic control devices, industrial control
systems and more. These attacks use different techniques, ranging from remote
exploitation to subversion of the update and management protocols. However,
their end result is generally the injection of malicious code on the victim device.

5.1 Objectives

Our main objective has been to design efficient and effective solutions to prevent
and detect malicious code on embedded devices. On the side of prevention, we
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designed IBMAC a hardware supported stack integrity enforcement technique.
IBMAC can guarantee that the return addresses stored in the stack are not
maliciously manipulated, by restricting access to the return address only to the
ret and call instructions. The solution designed is lightweight in terms of
additional gates added to the MCU and does not added any overhead to the
computation.

However, as explained, remote exploitation is not the only way malicious code
can be injected on an embedded device. It is therefore imperative to design solu-
tions to detect malicious code and behavior in embedded devices via attestation.
To this end we first analyzed state of the art software attestation protocols and
identified vulnerabilities and hidden assumptions in their design. Specifically, we
devised a ROP based rootkit that can defeat any software attestation scheme
that only attests code memory, if this specific attack is not taken into account.
Furthermore, we devised attacks tailored to two protocols, SWATT and SCUBA,
that challenge the assumption that malicious modifications of the attestation
routine produce significant time overheads. We then introduced PoSE, a software
attestation protocol that relies on a simple premise to achieve attestation: combin-
ing attestation with the erasure and update of the previous code on the embedded
device. Such a solution has the advantage of being easily proven secure.

Software attestation protocols, however, have quite severe limitations given by
their performance and their strict adversarial assumption. We therefore designed
a secure attestation solution based on a hardware and software co-design, SMART

. In addition to attestation SMART gives the ability to establish a dynamic root
of trust on an embedded device and, thus, execute a piece of code untampered
even if the entire platform is compromised. SMART was designed to minimize the
overhead to the embedded platform both in terms of additional gates (that affect
cost and energy consumption) and in terms of time overhead to complete the
protocol. The project was inspired by the late launch technology implemented via
TPMs, however the goal was to have a minimal solution that could be implemented
and used on embedded devices.

5.2 Future Directions

5.2.1 Extensions to our Work

The solutions proposed in this work provide a clear basis for the protection of
embedded devices, however they are still limited in some factors.

Our control flow protection technique, only prevents stack based buffer over-
flows. There are other classes of exploits, like heap based overflows, that are
common on high end embedded devices and are not covered by our solution.
Although we note that the use of a heap is not common on low-end embedded
devices, it might still be desirable to design a solution to cover all possible remote

86



exploitation attacks. IBMAC can be a part of this broader solution, yet to come,
as it imposes no real time overhead and only a minimal addition to the hardware.

SMART currently uses an HMAC based on a secret key shared between the
verifier and the (secure part) of the prover. A reasonable and needed addition would
be to use public key cryptography instead, so that the prover provide attestation
of its internal state to any verifier. Similarly to the TPM, the prover would need to
be given a public/private key pair certified by the hardware producer to guarantee
that the prover has indeed been manufactured according to specification.

Furthermore, SMART now requires the computation of a SHA based MAC
over the memory region to be attested. However, computing cryptographic hash
functions on embedded devices is a costly operation. It would be desirable to either
implement the cryptographic hash function in hardware (which would increase
cost) or rely on a lighter weight implementation of a MAC. This latter approach
would be based on the fact that the life span of a typical attestation protocol is
short, therefore preventing sophisticated and expensive attacks against the MAC
function, given the short time available to an attacker.

5.2.2 Future Applications

Medical Devices We plan on adapting the solutions designed in this work to
the specific needs of medical devices. In such devices, and especially in implantable
medical devices, many of the security goals conflict with the normal operation and
requirements for such devices. For example, the computation of an HMAC or a
digital signature can incur in too much overhead, both in terms of time and battery
consumption. In fact, these devices often operate under tight time constraints
and at periodic intervals. Solutions like SMART however require complete control
of the device to assure untampered execution and suspend interrupts to avoid
malicious software to interfere with their operation. As a solution, one can envision
a possible extension in which SMART allow an embedded device to run attested
and trusted routines at specific time intervals.

Smart Phone Security This work was mainly focused on low-end embedded
devices that have a comparatively simple design compared to commodity devices
(e.g., laptop and desktop computers). One possible way to extend this line of
research would be to focus on solutions to prevent and detect malicious activity on
higher end CPUs, like the ones found in smart phones. In fact, as smart phones
become ubiquitously connected to the Internet, we envision that they will become
a central target for all sorts of abuse: from remote exploitation, to data theft and
participation in botnets. This calls for solutions that will prevent remote exploits
and guarantee that the software running on the smart phones remains untampered.
Similarly to embedded devices, smart phones have few legacy problems as software
and hardware is changed at a fast pace. This calls for clean solutions that can
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provably guarantee control flow integrity while remaining efficient for battery
powered devices.
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