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AbstratIn this thesis we onsider the problem of information hiding in thesenarios of interative systems, statistial dislosure ontrol, and re�ne-ment of spei�ations. We apply quantitative approahes to information�ow in the �rst two ases, and we propose improvements for the usualsolutions based on proess equivalenes for the third ase.In the �rst senario we onsider the problem of de�ning the infor-mation leakage in interative systems where serets and observables analternate during the omputation and in�uene eah other. We showthat the information-theoreti approah whih interprets suh systemsas (simple) noisy hannels is not valid. The priniple an be reovered,however, if we onsider hannels of a more ompliated kind, that ininformation theory are known as hannels with memory and feedbak.We show that there is a omplete orrespondene between interativesystems and these hannels, and we propose the use of direted informa-tion from input to output as the real measure of leakage in interativesystems. We also show that our model is a proper extension of the las-sial one, i.e. in the absene of interativity the model of hannels withmemory and feedbak ollapses into the model of memoryless hannelswithout feedbak.In the seond senario we onsider the problem of statistial dislo-sure ontrol, whih onerns how to reveal aurate statistis about aset of respondents while preserving the privay of individuals. We fouson the onept of di�erential privay, a notion that has beome verypopular in the database ommunity. Roughly, the idea is that a ran-domized query mehanism provides su�ient privay protetion if theratio between the probabilities that two adjaent datasets give the sameanswer is bound by a onstant. We observe the similarity of this goalwith the main onern in the �eld of information �ow, namely limitingthe possibility of inferring the seret information from the observables.We show how to model the query system in terms of an information-theoreti hannel, and we ompare the notion of di�erential privay withthat of min-entropy leakage. We show that di�erential privay implies abound on the min-entropy leakage, and we also onsider the utility of therandomization mehanism, whih represents how lose the randomizedanswers are, in average, to the real ones. Finally we show that the notionof di�erential privay implies a tight bound on utility, and we propose amethod that under ertain onditions builds an optimal randomizationmehanism.Moving the fous away from quantitative approahes, in the thirdsenario we address the problem of using proess equivalenes to har-aterize information-hiding properties (for instane serey, anonymityand non-interferene). In literature, some works have used this approah,based on the priniple that a protool P with a variable x satis�es suhproperty if and only if, for every pair of serets s1 and s2, P [s1/x] is equiv-alent to P [s2/x]. We show that, in the presene of nondeterminism, theabove priniple relies on the assumption that the sheduler �works for thebene�t of the protool�, and this is usually not a safe assumption. Non-safe equivalenes, in this sense, inlude omplete-trae equivalene and



bisimulation. This problem arises naturally when re�ning a spei�ationinto an implementation, sine usually the former is more abstrat thanthe latter, and the re�nement proess involves reduing the nondeter-minism. The sheduler is, in this sense, a �nal produt of the re�nementproess, after all the nondeterminism is ruled out. We present a formal-ism in whih we an speify admissible shedulers and, orrespondingly,safe versions of omplete-trae equivalene and bisimulation. We provethat safe bisimulation is still a ongruene. Finally, we show that safeequivalenes an be used to establish information-hiding properties.





One Introdution
�There are two mistakes one an make along the road to truth:not going all the way, and not starting.�Gautama Siddharta1.1 Information hidingIn the last few deades the amount of information �owing through ompu-tational systems has inreased dramatially. Never before in history has asoiety been so dependent on suh a huge amount of information being gener-ated, transmitted and proessed. It is expeted that this vertiginous trend ofinrease will ontinue in the near future, if not virtually inde�nitely, reinforingthe need for e�ient and safe ways to ope with this reality.Although the e�ient and broad dissemination of information is a goalin many situations, there are instanes where the dislosure of information isundesirable or even unaeptable. The �eld of information hiding onerns theproblem of guaranteeing that part of the information relative to an event is keptseret. In omputer siene, the term information hiding enompasses a largespetrum of �elds. Di�erent �elds have distint historial motivations and theresulting researh followed a unique path. The variation of the sub�elds ofinformation hiding depends on three main fators: (i) what one wants to keepseret; (ii) from whih adversary or attaker does one want to keep it seret;and (iii) how powerful the adversary or attaker is.The �eld of on�dentiality (or serey) refers to the problem of keeping anation seret. One appliation of on�dentiality are ryptographi protools,where the sender and the reeiver of a message an be known, but the on-tents of the message itself is onsidered to be sensitive information. Generally,we an say that on�dentiality onerns data, while the �eld of privay on-erns people's personal information. When dealing with privay, we may be1



1. Introdutioninterested in proteting the information about someone (a redit ard num-ber, for instane) or the person's identity itself. Anonymity is the �eld thatonerns the protetion of the identities of agents involved in events. In prin-iple, anonymity an be related to both the ative agent (often the senderof a message), or to the passive agent (often the reeiver of a message). Forinstane, in the ase of a journalist reeiving information from a on�dentialsoure, the identity of the sender is intended to be seret. As for the ase ofan intelligene ageny sending a oded message to a spy, the identity of thereeiver is on�dential information. There is yet another kind of anonymity,sometimes referred to as unlinkability, where the identity of agents and ationsperformed are publi information, but the linkage between agents and the a-tions performed should not be determined. One example of unlinkability is aon�dential voting system, where both the voters and the �nal vote ount arein the publi domain, but the relationship between the voters' identities andthe ballots ast is proteted.One appliation of privay that has drawn a lot of attention in reent yearsis the problem of statistial databases. A statisti is a quantity omputed froma sample, and the goal of statistial dislosure ontrol is to enable the user of thedatabase to learn properties of the population as a whole, while maintainingthe privay of individuals in the sample. The �eld of statistial databaseshighlights the deliate equilibrium between the bene�ts and the drawbaks ofthe spread of information. A pratial example ours in medial researh,where it is desirable that a great number of individuals agree to give in theirpersonal medial information. With the information aquired, researhers orpubli authorities an alulate a series of statistis from the sample (suh asthe average age of people with a partiular ondition) and deide, say, howmuh money the health are system should spend next year in the treatmentof a spei� disease. It is in the interest of eah individual, however, that herpartiipation in the sample will not harm her privay. In our example, theindividuals usually do not want to have dislosed their spei� status withrelation to a given disease, not even to the users querying the database. Somestudies, e.g. [Joi01℄, suggest that when individuals are guaranteed anonymityand privay they tend to be more ooperative in giving in personal information.Another important �eld of information hiding is information �ow, whihonerns the leakage of lassi�ed information via publi outputs in programsand systems. Consider a system that asks the users a password to grant theiraess to some funtionality. Naturally, the password itself is intended to beseret, however an attaker trying to guess it will always get an observablereation from the system, whether the response is an aeptane or a rejetionof the entered ode. In either ase, the observable behavior of the systemreveals some information about the password, beause even if it is not guessedorretly, at least the searh spae is narrowed (even if, in this ase, onlyslightly).It is important to note that the subdivisions of information hiding are not2



1.2. Qualitative and quantitative approahes to information hiding: a briefhistorymutually exlusive. In a system where publi outputs an reveal the identity ofagents, for instane, both the problems of information �ow and of anonymityare present. The lassi�ation is usually based more on the ontextual mo-tivation for the problem than on a rigid taxonomy of sub�elds. In fat, inreent years there has been an ative line of researh exploring the similaritiesbetween problems suh as the foundations of anonymity and information �ow,and also privay and information �ow. The result has been an inreasing on-vergene between these �elds. In this thesis we explore the similarities betweeninformation �ow, statistial databases, and anonymity.In a broader ontext, the importane of information hiding goes far beyondthe realm of omputer siene, and there are a lot of subtle questions that needto be onsidered arefully. From a politial and even philosophial perspetive,the unrestrited use of privay protetion an be ontroversial. Even thoughit is broadly aepted that people should have the right to exhange e-mailsprivately, to vote in demorati eletions anonymously, and to express theirideas on the Internet freely, there are situations where information protetionpoliies an be argued to have serious drawbaks. The same mehanism thatgrants a politial ativist anonymity and free speeh on the Internet, whileliving under a repressive government, also grants a pedophile anonymity tobroadast harmful material. This balane between freedom and ontrol in thevirtual media has been the subjet of passionate disussion. Independently ofwhether one's goal is to maximize or to minimize the degree of informationprotetion in a given situation, it is anyway desirable to measure the extentto whih the information is proteted, to de�ne whih spei� de�nition ofprotetion the information falls under, and from whom the information is pro-teted.In this thesis we avoid the ontroversy of deiding in whih ases the appli-ation and extent of information hiding methods are justi�able. Rather, ourfous is on measuring the degree of information protetion o�ered by a system,thus making evaluation and omparison of di�erent systems possible . Spei�-ally, we are interested in using onepts of information theory to quantify theleakage of information.1.2 Qualitative and quantitative approahes toinformation hiding: a brief historyHistorially, the researh on information hiding has evolved from the simplebut impreise qualitative approah toward the more re�ned, but at the sametime more omplex, quantitative approah. In the following setions we willbrie�y overview both. We do not intend to provide here an exhaustive study ofthe subjet, but rather to highlight some of the most important ontributionsof eah of these lines of researh to the �eld of information hiding. 3



1. Introdution1.2.1 The qualitative approahThe qualitative approah emerged �rst in the literature of information hiding.The entral idea is that, by observing the output of a system, the adversaryannot be ompletely sure of what the seret information is. The priniple ofonfusion says that for every observable output generated by a seret input,there is another seret that ould also have generated the same output. Inanonymity, for instane, this orresponds to the onept of possible innoene,i.e. the impossibility of identifying the ulprit with ertainty by only observingthe system's output. The priniple of onfusion does not take into onsider-ation the adversary's ertainty on the value of the seret: it is enough thatthere be an alternative hypothesis, no matter how unlikely it is. This is alsoknown as the possibilisti approah.One of the �rst developments in this �eld dates from 1976, when Bell andLa Padula de�ned the model of multilevel seurity systems [BLP76℄. In thismodel the omponents of a system are lassi�ed as either subjets, i.e. ativeentities suh as users or proesses, or as objets, i.e. passive entities suh as �les.The subjets are divided into trusted and untrusted entities, and the authorsde�ne restritions on how to manage untrusted objets. The rule �read up andwrite down� states that untrusted entities an read only from objets of thesame or lower levels, and that they an only write into objets of the same orhigher levels. This model was developed to support di�erent levels of seurity,and aimed to ensure that information only �ows from lower to higher levels andnever in the opposite diretion. Eah input into and output from the systemis labeled with a seurity level. Any pair of an input and its orrespondentoutput is alled an event. A view of a seurity level l orresponds to the eventsat level l or lower, and all the events of a higher level are hidden to level l.Usually in this model only two levels are distinguished: high and low.The high level orresponds to sensitive information, whih should only beavailable to some users with speial privileges, while the low level orrespondsto publi information aessible to everyone. The goal of seure information�ow analysis is, in this ontext, to avoid leakage from the high level to the lowlevel.Bell and La Padula's model, however, did not address the problem of leak-age of information due to overt hannels. A overt hannel is a way of trans-mitting information from the high to the low environment by means not de-signed or intended for this purpose. Consider, for instane, a system where alow user ℓ an send a �le to a high user h, and h has the power to rede�ne theaess rights to the �le. The user h an either maintain the permission of ℓ towrite in the �le, or she an hange the poliy so ℓ no longer has aess to it. Inthis senario, a overt hannel between a orrupted high user h and low user ℓan be established as follows. The low user sends a �le to the high user, whothen uses her power of deiding whether to grant or to deny ℓ further aessto it to enode a message. In a later stage, ℓ tries to write in the �le, and an4



1.2. Qualitative and quantitative approahes to information hiding: a briefhistoryaess failure an be interpreted as the bit 0, while a suess an be interpretedas the bit 1. In this way any message an eventually be sent through the overthannel from the orrupted high user to the low one.To ope with the threat of overt hannels, Goguen and Meseguer devel-oped the onept of noninterferene[GM82℄. A system is noninterfering whenthe ations of high users do not alter what an be seen by low users. In otherwords, the low outputs of the system will only re�et the values of the lowinputs, independently of what the high inputs are (if any). The authors pro-posed a model of noninterferene that separated the system from the seuritypoliies. Their model, nevertheless, was only appropriate for deterministisystems.Noninterferene, however, may be a too restritive onept for several pra-tial appliations. It does not allow, for instane, the summarization of data.It is often the ase where a system allows statistial (or summarizing) fun-tions (e.g. mean, total number) to be alulated on its high inputs and thendislosed to low users, even if the high inputs themselves are supposed to bekept seret. These systems are typial in the area of statistial databases, andwe will disuss this issue in more detail in Setion 1.3.2. Clearly, a systemthat allows the summarization of high data for the low environment violatesnoninterferene, sine a hange on the high input may a�et the low output.Considering this problem, in 1986 Sutherland [D.S86℄ proposed the on-ept of nondeduibility on inputs, whih fouses not on whether the output isa�eted aording to a hange in the input, but on whether it is possible todedue the input from the output. Under this de�nition, a system may allowsummarization of data and still be seure, sine the output of a statistial fun-tion does not neessarily allow the adversary to dedue what the inputs are.One drawbak of the onept of nondeduibility on inputs is that it assumesthat the strongest form of the priniple of onfusion is enough to ensure seu-rity. Notably, it relies on the assumption that �no high value an be ruled outafter observing a low value�. This is not a strong enough seurity guaranteein many real systems. In some ases, even if no high value an be ruled out asa possibility, a single value (or a small set of values) an be muh more likelythan the others, and in pratie it makes little sense to onsider the alterna-tives. This ritiism an be seen as an early attempt onsider a quantitativeapproah for information �ow, where it is taken into onsideration �how muh�an attaker learns (or does not learn) about the seret matters.Another important issue in seurity systems is the problem of omposi-tionality. In [MC87℄, MCullough pointed out the importane of hook-upseurity, i.e. the ompositionality of multi-user systems. Usually, real systemsare far too omplex to be analyzed as a whole, espeially beause the taskof designing and implementing a system is normally divided between teams.Eah team is responsible for a number of omponents that, in a later stage,will be put to work together. It is highly desirable that seurity propertiesbe veri�ed in eah omponent separately, and that this veri�ation guarantee5



1. Introdutionthat the �nal omposite system is also seure. MCullough showed that theonepts of multilevel seurity systems, noninterferene, and nondeduibilityon inputs are not omposable. As a replaement, he proposed the onept ofrestritiveness, aording to whih no high level information should a�et thebehavior of the system, as seen by a low user.In [WJ90℄ Wittbold addressed the question of nondeduibility on inputsunder a di�erent perspetive, showing that it is not a guarantee of absene ofleakage. Consider the following algorithm, where H and L stand for the highand the low environments, respetively. Here we assume the the variables xand y are binary, and the randomized ommand x ← 0 ⊕0.5 1 assigns to xeither the value 0 or the value 1 with 0.5 probability eah.while true do
x← 0⊕0.5 1;output x to H;input y from H;output (x XOR y) to L;end whileIn the above algorithm, the low environment only has aess to the value (xXOR y). Note, however, that the high environment H learns the value of xbefore having to hoose the value of y, and therefore it an use this knowledgeto enode a message: To transmit the bit 0, H hooses y = x, and to transmitthe bit 1, H hooses y = 1−x. It is lear that there is some �ow of informationfrom the high to the low environment, even though L annot dedue the highinput y from the low output (x XOR y). Hene, satisfying nondeduibility oninputs does not guarantee a system to be seure. Wittbold de�ned, then, theonept of nondeduibility on strategies, whih means that regardless of whatview L has of the mahine, no strategy is exluded from being used by H.1.2.2 The quantitative approahThe qualitative approah, although simple and easy to apply, does not re�etreality in many pratial situations. In many ases some information leakageis tolerable or even intentional. Take an eletion protool. After the �nal voteount is released, there are fewer possible hypothesis onerning who voted forwhom than the hypothesis available before the votes were ast. In this exam-ple there is a natural leakage of information, sine the unertainty about thesensitive information dereases after the observation of the protool's output.This leakage ours, however, as a neessary funtionality of the protool.In fat, in most of real systems noninterferene annot be ahieved, as typ-ial systems will always leak some information. This does not mean, however,that all systems are equally good or bad, beause the amount of leakage usu-ally varies from system to system. Therefore it is important to quantify how6



1.2. Qualitative and quantitative approahes to information hiding: a briefhistorymuh leakage a system allows. Quantitative methods are useful to evaluatethe extent to whih a system is seure, and to ompare it to other systems.One of the �rst attempts to quantify information leakage was made byDenning in 1982. In [DPD82℄ she de�ned the leakage from a state s to a state
s′ as the derease in unertainty about the high information in s resultingfrom the low information in s′. She used the onept of onditional entropy1
H(hs|ℓs′), where hs is the high information in s and ℓs′ is the low informationin s′. Her de�nition of leakage was:

M1 = H(hs|ℓs)−H(hs|ℓs′) > 0If the quantity M1 is positive, then it is onsidered to be the leakage of in-formation. This measure of leakage, however, does not onsider the history oflow inputs, a problem pointed out by Clark, Hunt and Malaaria in [CHM07℄.Without the history one annot summate the inrease in knowledge (or de-rease in unertainty) that aumulates between the low states s and s′. Theyproposed, instead, the following measure of leakage:
M2 = H(hs|ℓs)−H(hs|ℓs′ , ℓs) > 0Sine H(X|Y,Z) ≤ H(X|Y ) for all random variables X, Y and Z, we have

M1 ≤ M2. The quantity M2 orresponds to the Shannon onditional mutualinformation I(hs; ℓs′ |ℓs).In 1987, Millen made a formal onnetion between information �ow andShannon information theory by relating noninterferene and mutual informa-tion [Mil87℄. In Millen's model, a omputer system is seen as a hannel whoseinput is a sequene W , possibly generated by a set of users, and whose output(after the omputation is ompleted) is Y . The random variable X representsa subsequene of W generated by a user U , while X represents the high inputsgenerated by users other than U . Millen showed that in deterministi systemsif X and X are independent and X is not interfering with Y , then the Shan-non mutual information I(X;Y ) between X and Y is zero. In other words,noninterferene is a su�ient ondition for absene of information �ow.In 1990, Massey gave an important ontribution to the �eld of informationtheory, whih in�uened the further development of quantitative information�ow. In [Mas90℄ he showed that the usual de�nition of disrete memoryless(i.e. history-independent) hannels used at that time in fat did not take intoaount the possibility for the use of feedbak. He highlighted the oneptualdi�erene between ausality and statistial dependene, and presented an a-urate mathematial desription of disrete memoryless hannels that allowed1The onepts of entropy, onditional entropy and mutual information will be de�nedformally in Chapter 3. For the moment it is enough to know that entropy is a measure ofthe unertainty of a random variable; onditional entropy is a measure of the unertainty ofone random variable given another random variable; and mutual information is a measureof how muh information two random variables share. 7



1. Introdutionfeedbak. Then he introdued the onept of direted information, whih ap-tures the idea of ausality between the input and the output of a hannel, andargued that in the presene of feedbak, direted information is a more appro-priate measure of the �ow of information from input to output than mutualinformation.In the same year, MLean also onsidered the onept of time in the de-sription of systems by proposing his Flow Model [ML90℄. Aording to thismodel, there is a �ow of information only when a high user H assigns valuesto objets in a state that preedes the state in whih a low user L makes herassignment. In this situation only part of the orrelation between high and lowinformation is onsidered as leakage. This addressed the problem of ausality,but this model was too general, and relatively di�ult to apply.In [Gra91℄ Gray worked on bridging the gap between the overly ompli-ated Flow Model and the more pratial, yet restrited, approah of Millen.Gray used a general-purpose probabilisti (as opposed to nondeterministi)state mahine that resembled Millen's model. In Gray's model, the value
T (s, I,′ s′, O) represents the probability of a given state s evolving into an-other state s′, under the input I, and produing output O. The hannelsare partitioned into two sets, H and L, representing the hannels onnetedto high and low proesses, respetively. The high and the low environmentsan ommuniate only through their interations with the system, as no otherform of ommuniation between them is allowed. Gray wanted to take timeand ausality into onsideration in his de�nition of leakage, and he did so byallowing feedbak and memory in his model. His formulation of a seurityguarantee was the following:

P (LI ∩ LO ∩HI ∩HO) > 0 =⇒

P (ℓ|LI ∩ LO ∩HI ∩HO) = P (ℓ|LI ∩ LO)
(1.1)where LI and LO represent the history of low inputs and outputs, respetively,and HI and HO represent the history of high inputs and outputs, respetively.The symbol ℓ represents the �nal output event hannels in the low environment.The formulation (1.1) states that the probability of a low output may dependon the previous history of the low environment, but not on the previous historyof the high environment.Gray also tried to generalize the onept of apaity to the ase of hannelswith memory and feedbak. He provided a formula expressing the �ow ofinformation from the whole history of inputs and outputs (during time 0 . . . t−

1) to the the low output (at time t), and onjetured that the apaity of thehannel would be:
C

def
= lim

n→∞
Cn (1.2)8



1.2. Qualitative and quantitative approahes to information hiding: a briefhistorywhere
Cn

def
= max

H,L

1

n

n∑

i=1

I(In_Seq_EventH,t,Out_Seq_EventH,t;

Final_Out_EventL,t|In_Seq_EventL,t,Out_Seq_EventL,t)

(1.3)and In_Seq_EventA,t is the input history at hannel A (where A stands for LorH) up to time t−1, Out_Seq_EventA,t is the output history at hannel A upto time t−1, and Final_Out_EventL,t is the low output event at time t. Grayshowed that the absene of information �ow implies that the formulation ofapaity as formulated in (1.2) is zero. He also onjetured that this de�nitionof apaity would orrespond to the notion of maximum transmission ratesupported by the hannel. As pointed out in [AAP℄, however, the problemwith Gray's onjeture is the following. For an output at time t, the onlyausal relation onsidered is the one with the history of inputs up to time
t − 1, while the e�et that the input at time t itself may have on the outputis ignored. In this way, (1.2) does not express the omplete ausal relationbetween input and output. The orret notion of apaity in the presene ofmemory and feedbak, whih orresponds to the maximum transmission ratefor the hannel, was proposed in 2009 by Tatikonda and Mitter [TM09℄, andit will be disussed later on in Chapter 4.A similar formal approah, although with di�erent motivations, was pre-sented by MIver and Morgan in [MM03℄. They foused on the problem ofpreserving seurity guarantees while re�ning spei�ations into implementa-tions. The authors used an equation similar to (1.3), but in the ontext ofsequential programing languages enrihed with probabilities. Their aim wasto protet the high values during the whole exeution of the program, insteadof the initial high values only. In other words, they wanted to assure that if thehigh information is not known by the low environment at the beginning of theomputation, then it annot be inferred at any later stage. They proved that,for deterministi programs, if the �nal values of the high objets are proteted,then the initial values are proteted as well. MIver and Morgan also de�nedthe onept of information esape as:

H(h|ℓ) −H(h′|ℓ′)where H(h|ℓ) represents the unertainty (onditional entropy) of the high in-formation given the low information at the beginning of the omputation, and
H(h′|ℓ′) represents the same unertainty at the end of the omputation. Theyde�ned the hannel apaity as the least upper bound of information esapeover all possible input distributions. In this ontext, a system is onsideredseure if it has apaity equal to zero. One advantage of this model is that itis not neessary to keep trak of the whole history of the omputation, but onthe other hand it an be applied only in senarios where the adversary doesnot have memory. 9



1. IntrodutionIn Chapter 3 we will take up again the disussion of quantitative approahesto information �ow based on information theory. For the moment we will fouson some topis related to information hiding that are of speial relevane forthis thesis.1.3 Case studies of information hidingIn this setion we present three ase studies of information hiding that weaddress in this thesis.1. The ase of quantitative information �ow, i.e. how muh about the seretinformation an adversary an learn by observing the system's output,and by knowing how the system works. We give speial attention to thebroadly studied problem of anonymity, whih an be seen as partiularase of the more general problem of information �ow where the seretinformation is the identity of the agents.2. The question of statistial dislosure ontrol, whih onerns the problemof allowing users of a database to obtain meaningful answers to statisti-al queries, while proteting the privay of the individuals partiipatingin the database. We fous on di�erential privay, an approah to thisproblem that has drawn a lot of attention in reent years.3. The problem of preserving seurity guarantees wile deriving implementa-tions from spei�ations. Usually spei�ations are more abstrat thanimplementations, i.e. they present more nondeterminism. The task ofimplementing a system redues the nondeterminism of the spei�ation,and if it is not done arefully, an implementation may rule out possibili-ties allowed by spei�ation that are essential for the seurity guarantees.1.3.1 Quantitative information �ow and anonymityAnonymity is one of the most studied subjets of information hiding. Theresearh in this area has been ative in the past several years, and the advanesmade an be extended to the more general senario of information �ow. Asbrie�y introdued in Setion 1.1, anonymity onerns the protetion of theidentities of the agents involved in the events.With the advent of the Internet, the protetion of anonymity has beome anissue in the daily life of millions of people around the world. The importaneof anonymity is even more evident onerning the protetion of freedom ofspeeh, a situation that is partiularly deliate in ountries under repressiveregimes.P�tzmann, Dresden and Hansen [PDH08℄ have proposed a standard termi-nology for anonymity onepts. In their work there are three di�erent notionsof anonymity based on the agents involved:10



1.3. Case studies of information hiding
• Sender anonymity : when the identity of the originator should be pro-teted;
• Reeiver anonymity : when the identity of the reipient should be pro-teted;
• Unlinkability : when it might be known that an agent A originated amessage and an agent B reeived a message, yet it should not be knownwhether the message sent by A was atually the one reeived by B.Reiter and Rubin also gave a lassi�ation of the types of adversary inan anonymity system in [RR98℄, where they also proposed the anonymityprotool Crowds (see Setion 1.3.1). In their work, they onsidered that theadversary an be an eavesdropper simply observing the tra� of messages onthe network, or she an be an ative attaker (i.e. a ollaboration betweensenders, between reeivers, or between others taking part in the system), oreven a ombination of the previous two types. The authors also de�ned ahierarhy of anonymity degrees that a system an provide. In dereasing orderof strength, the proposed sale is listed below. In this list, let s, s′ denoteserets and o an observable, i.e. a partiular ation or output of the systemthat is distinguishable from the point of view of the attaker.Strong anonymity From the attaker's point of view, the observables pro-dued by the system do not inrease her knowledge about the seretinformation, i.e. the identity of the individual involved in an event.Chaum also desribed the onept of strong anonymity in his work onthe Dining Cryptographers protool [Cha88℄. It represents the ideal sit-uation where the exeution of the protool does not give to the adversaryany extra information about the serets. The onept was formalized asfollows.

∀s, o p(s|o) = p(s) (1.4)This de�nition is the equivalent of �probabilisti noninterferene�. In[CPa℄, Chatzikokolakis and Palamidessi showed that the ondition ex-pressed by (1.4) is equivalent to:
∀s, s′, o p(o|s) = p(o|s′) (1.5)i.e. the probability of the system produing an observable is the same,no matter what the seret information is. This de�nition is known asequality of likelihoods and is advantageous as it does not take into on-sideration the probability distribution on serets.Another de�nition of strong anonymity, more restritive, was proposedby Halpern and O'Neill [HO03, HP05℄. It is equivalent to eah of the pre-vious de�nitions ((1.4) or (1.5)) plus the assumption that the input prob-ability is uniform. Halpern and O'Neill foused on the adversary's lak of11



1. Introdutionon�dene in her guess about the seret, and de�ned strong anonymityas:
∀s, s′, o p(s|o) = p(s′|o) (1.6)The formulation (1.6) is also known as onditional anonymity and or-responds to the level of anonymity alled beyond suspiion in Reiter andRubin's lassi�ation.Beyond suspiion From the attaker's point of view, an agent is no morelikely to be the ulprit than any other agent in the system. It an beformalized as in (1.6).Probable innoene From the attaker's point of view, an agent does notappear more likely to be involved in an event than not to be involved.Formally:
∀s, o p(s|o) ≤ 0.5 (1.7)The formulation (1.7), however, is not broadly aepted as the de�ni-tion of probable innoene. In [CPa℄, Chatzikokolakis and Palamidessishowed that the property that Reiter and Rubin indeed proved for theCrowds protool in [RR98℄ was:
∀s, o p(o|s) ≤ 0.5 (1.8)Possible innoene From the attaker's point of view, there is always a non-negligible probability that the agent involved in the event is someone else.Formally:

∀s, o.
(
p(s|o) > 0 =⇒ ∃s′.p(s′|o) > 0

)The above hierarhy gives a riher lassi�ation of the degree of protetiono�ered by a system than would be possible with simpler possibilisti models.Among the quantitative approahes to anonymity, two are of our speialinterest: the ones based on information-theoreti onepts and the ones basedon the Bayes risk. In the following setion we give a brief overview of thesetwo approahes. These onepts will be revisited in more detail in Chapter 3.Anonymity protools as noisy hannelsInformation theoreti approahes to anonymity, and more in general to in-formation �ow, rely on onepts suh as entropy and mutual information tomeasure the adversary's lak of information about the seret before and afterobserving the system's output. Typially the system is seen as a noisy hanneland the onept of noninterferene orresponds to the onverse of the hannelapaity.There are several works in the literature that have proposed measures of de-grees of anonymity in terms of the entropy and mutual information, for instane12



1.3. Case studies of information hiding[SD02, DSCP02, ZB05, DPW06℄. In [CPP08a℄ Chatzikokolakis, Palamidessiand Pananganden proposed the onept of onditional apaity to ope withthe situation where some leakage of information is intended by the system.Consider again the eletion protool example. By design, the �nal vote ount-ing needs to be announed and it usually inreases the attaker's knowledgeabout the seret. In this situation, the leakage should be alulated modulo theinformation that is supposed to be dislosed, i.e. the vote ount. In this workthe authors also proposed methods to alulate the hannel apaity exploitingsome symmetries present in several pratial systems.Hypothesis testing and Bayes riskIn some real world situations an individual faes the following situation: she isinterested in the value of some random variable A ∈ A but she has aess onlyto the values of another random variable O ∈ O. She knows that A and Oare orrelated by a known onditional probability distribution. This situationours in several �elds, for instane in mediine (to make a diagnosis, thephysiian has aess to a list of symptoms, but not to the disease itself). Theattempt to infer A from O is known as the problem of hypothesis testing. Herewe are interested in the use of hypothesis testing in the ontext of anonymity(and information �ow). More spei�ally, the adversary tries to infer the seret
A given that she has aess to the observables O and she knows how the systemworks, i.e. how the probabilities of O are onditioned with relation to A.A ommonly studied approah to the problem is based on the Bayesianmethod and onsists of assuming the a priori probability distribution on Aas known, and then deriving from that and from the knowledge about howthe system works, an a posteriori probability distribution after some fat hasbeen observed. It is well known that the best strategy for the adversary isto apply the MAP rule (Maximum A posteriori Probability rule), whih asthe name suggests, hooses the hypothesis with the maximum probability forthe given observation. Here, by �best� strategy we mean the one that induesthe smallest probability of error in guessing the hypothesis, that in this aseorresponds to the Bayes risk.In [CPP08b℄ Chatzikokolakis, Palamidessi and Pananganden explored thehypothesis testing approah to anonymity, in a senario where the adversaryhas one single try to guess the seret (after exatly one observation). Theyassoiated the level of anonymity to the probability of error, i.e. the probabilityof an attaker making a wrong guess about the seret. In order to onsiderthe worst ase senario and to give upper bounds for the level of anonymityprovided, the adversary is assumed to use the MAP rule strategy. In thisase, the probability of error orresponds to the Bayes risk, and the degree ofprotetion o�ered by a protool orresponds to the Bayes risk assoiated withthe hannel matrix. 13



1. IntrodutionIn [Smi07, Smi09℄ Smith also onsidered the senario of one-try attaksand proposed the notion of vulnerability, whih takes into onsideration theprobability that the adversary an guess the seret orretly after observingthe behavior of the system only one. Smith proposed the framework of min-entropy leakage, whih is losely related to the Bayes risk, but is di�erent asit uses the onept of entropy (more preisely min-entropy) and formalizesleakage in information theoreti terms.In Chapter 3 we will present a deeper disussion about the use of infor-mation theory for the formalization of information �ow, inluding the notionsof Shannon entropy, mutual information and the framework of min-entropyleakage for one-try attaks. First, however, we will review some fundamentalanonymity protools in literature.Examples of anonymity protoolsOn the Internet, every omputer has a unique IP address whih spei�es theomputer's logial loation in the topology of the network. This IP addressis usually sent along with any request originating from the omputer. Evenif the omputer uses an IP address for a single session via an ISP (InternetServie Provider), the identi�ation an be logged and retrieved later with theISP's ompliane. One ommon way to try to preserve anonymity is to use aproxy, i.e. an intermediary omputer that gathers all the requests of a groupof omputers and serves as a unique gate for any ommuniation with theworld outside of the network. For pratial purposes, it is as if all the requestsoriginated from the proxy, and the members of the group are indistinguishablefrom the point of view of an outside observer. One drawbak presented bythe use of proxies is that it reates single points of failures, dereasing thenetwork's robustness.The problem illustrated above is one of the motivations for the use of om-muniation protools spei�ally designed to protet anonymity. In this setionwe review two of the most fundamental, and probably most famous, examplesof anonymity protools in literature: the dining ryptographers protool, andthe Crowds protool.The dining ryptographers The dining ryptographers protool was pro-posed by Chaum in [Cha88℄. It is one of the �rst anonymity protools in theliterature, and it is one of the few protools that an assure strong anonymity.The protool is usually presented in a simpli�ed senario, where three ryp-tographers employed by the NSA (The National Seurity Ageny of the UnitedStates) are having dinner in a restaurant. At the end of the dinner, the NSAdeides whether it will pay the bill itself or whether it will assign the duty ofpaying to one of the ryptographers at the table. In the ase the NSA deidesthat one of the ryptographers will pay, it announes the deision seretly tothe hosen one. The goal of the protool is to reveal whether one ryptographer14



1.3. Case studies of information hidingwill pay the bill or not, without revealing the identity of the payer. In otherwords, to an external observer (and to the non-paying ryptographers as well),the only aessible information is whether the NSA is paying or not, but notthe identity of the ryptographer paying (if any). We assume that the NSAdoes not dislose its deision to anyone but to the ryptographer it hooses(again, if any), and that the solution should be distributed, i.e. only messagepassing between agents is allowed, and no entralized agent oordinates theproess.The dining ryptographers protool solves this problem as shown shemat-ially in Figure 1.1. Eah ryptographer (Crypt0 , Crypt1 and Crypt2 ) tosses aoin that is visible only to himself and to his right-hand neighbor. In this wayevery ryptographer has a shared oin with eah of the other two. After allthree oins (c0, c1 and c2) are tossed, eah ryptographer heks whether thetwo oins visible to himself agree (both are heads or both are tails) or disagree(one is head and the other is tails). Then they announe publily agree ordisagree, aording to the result they obtained with their oins. The only ex-eption is that, if a ryptographer is paying, he will announe the opposite ofwhat he sees, i.e. he will announe disagree in the ase that his oins agree andagree if they do not. It an be proven that if the number of disagrees is even,then the NSA is paying, and if the number of disagrees is odd, then one of theryptographers is paying. Moreover, if the oins are all fair, the protool o�ersstrong anonymity in the following sense: The exeution of the protool doesnot provide to an external observer enough evidene to hange her knowledgeabout whih ryptographer is the payer, if any. In other words the probabilityof any ryptographer being the payer, under the adversary's point of view,does not hange after the observation of the protool's exeution.The dining ryptographers protool an be generalized to any number ofgraph nodes (i.e. ryptographers) and any type of graph onnetivity (i.e. theshared oins between pairs of ryptographers). Then the same solution anbe used for anonymous ommuniation as follows. Eah pair of nodes share aommon seret (the value of the oin) of length n, equal to the length of thetransmitted data. It is assumed that the oins are drawn uniformly from the setof possible serets. Eah node then omputes the binary sum (XOR operation)of all its shared serets and announes the result. The only exeption is thatthe node that wants to transmit adds the datum, also of length n, to the sumit announes. It an be shown that the total sum of the announements ofall nodes is equals to the data to be transmitted, sine eah seret is ountedtwie (one by eah node that an see it) and, therefore, is aneled out bythe XOR operation. The protool works under the assumption that only onenode at a time tries to transmit, and if it is the ase that more than one senderwants to transmit at the same time, the on�it needs to be solved by somesort of oordinator.One drawbak of the dining ryptographers protool is its ine�ieny:whenever a single node wants to transmit, all the nodes in the graph need15



1. Introdution
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Figure 1.1: An example of the dining ryptographers protoolto ollaborate to make it happen, at the ost of a large number of messageexhanges. Moreover, as previously stated, in the ase where more than onenode wants to transmit at the same time, a oordinator is neessary to solvethe on�it.Crowds The Crowds protool was �rst presented in [RR98℄ and it allowsInternet users to perform web transations without revealing their identity.Usually, on the Internet, when a user ommuniates with a server the latteran disover the IP address of the originator. The idea behind Crowds is togather users into a rowd and randomly rediret the request multiple timesinside the group before �nally letting it reah the server. In this situation, itis impossible for the server, and for any other user, to identify the initiator ofthe request one it reeives the message: whenever someone sends a messagethere is a onsiderable probability that she is only a forwarder for someoneelse.To be more preise, a rowd is a group of m users who partiipate in theprotool. It is possible that a subgroup of c users are orrupted and ollaborateto dislose the identity of the original sender. Also, we assume that the protoolhas a parameter pf ∈ (0, 1]. We all originator or initiator the user who wantsto make a request to the server. The originator needs to reate a path betweenherself and the server in order to have her request reah the �nal destination,as shown in Figure 1.2.The protool works as follows:
• At the �rst step the initiator hooses, aording to a uniform probability16



1.3. Case studies of information hiding
Crowd

Initiator
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Figure 1.2: The Crowds protool at workdistribution, another user in the rowd (possibly herself) and forwardsthe request to this user;
• The user who reeives the message then makes a random hoie. Withprobability pf she forwards the message to the server, and with prob-ability 1 − pf she deides to forward the message to some user in therowd. If this is the ase, she hooses a user (possibly herself) aordingto a uniform probability distribution, and forwards the message to thisuser. This step is then repeated by the new message holder.The response from the server to the originator follows the same path, inthe opposite diretion. Moreover, all the ommuniations in a path are en-rypted using a path key, whih protets the path from threats posed by loaleavesdroppers. Eah user has aess to the ommuniations in whih she par-tiipates, but it is assumed that a user annot interept messages exhangedbetween other users. It an be proven that the protool is strongly anonymouswith respet to the web server. Intuitively this is the ase beause at least oneforward step is always performed, and after this step any user an be the holderof the message with equal probability. Therefore, from the server's point ofview any user is equally likely to be the originator of the request.A more interesting ase is to analyze the level of anonymity ensured withrespet to a orrupted user. If in the very �rst step of the exeution of theprotool the message is forwarded to a orrupted user, she an gain moreinformation about the possible originator than the server. A user, whether theoriginator or not, is said to be deteted if she sends a message to a orrupteduser. Sine the originator always appears in a path, she is more likely to bedeteted than the rest of the users. Deteting a user (at least for the �rst timein a path) inreases the probability that this user is the originator. Therefore,strong anonymity annot hold with relation to orrupted users.In [RR98℄ it is proven that if the number c of orrupted users is not toolarge, the protool an at least ensure the level protetion of probable inno-17



1. Introdutionene. More preisely, if the number m of users in the rowd satis�es
m ≥

pf

pf −
1
2

(c+ 1)then the protool ensures probable innoene in the sense of (1.8).1.3.2 Statistial dislosure ontrolThe �eld of statistial dislosure ontrol onerns the problem of revealing a-urate statistis about a set of respondents while preserving the privay ofindividuals. In statistial databases, the data of a (large) number of par-tiipants is ompiled, and users are allowed to pose statistial queries (suhas average or total ounting) about the sample. This kind of database is ofspeial importane in many areas. For instane, medial databases an pro-vide information about how a disease spreads, and a ensus database an helpauthorities to deide how to spend the next year's budget.The data in a statistial database an be obtained in di�erent ways. It anbe olleted in a ensus, for instane, it an be obtained opportunistially bymonitoring the tra� in a network, or it an even be given in by the partii-pants by their own hoie. No matter how the data is obtained, however, it isstill important to ensure that the individual's partiipation in the database willnot harm her privay. This is not a trivial goal to ahieve: the main purposeof a statistial database, in the �rst plae, is to reveal some information aboutthe population as a whole, i.e. to let users infer �general truths� about thispopulation. As an example, suppose that a statistial database of individualsof a ertain ountry indiates that, in this population, the life expetany forwomen is 5 years longer than for men. Clearly this piee of information revealssomething about the whole population, even about individuals not present inthe database.There are several approahes to dealing with the problem of preservingprivay in statistial databases. One of them is based on ensuring large querysets, i.e. that no query an be posed for a small set of individuals. Theproblem with this approah is that, even if two query sets are �large enough�,their ombination may not be. Consider the following two queries: �How manypeople have disease y?� and �How many people, not named X, have disease
y?�. Both queries operate on large sets, but learly the superposition of the twoqueries immediately reveals sensitive information about the individual named
X. Another attempt to ahieve privay is based on the enryption of the datain the dataset. This is not a general solution sine, as we have seen, the privaythreats do not onern only the individuals in the database and, therefore, theenryption of the data will not address this issue.Another possible solution is to apply some sort of query auditing : theurator of the database heks whether or not a query is possibly dislosingbefore deiding to provide an answer to it. This approah would ope with the18



1.3. Case studies of information hidingproblem of the two superposing queries mentioned above, yet it presents twoserious drawbaks: �rst, automati tools to hek every query are pratiallyinfeasible; and, seond, the refuse to answer a query an be in itself a dislosingat. Another attempt to deal with the problem is by using subsampling of thedataset. We normally view a dataset as a olletion of rows, where eah rowontains the data of an partiular partiipant. The idea of subsampling is torandomly hoose a subset of the rows, ompute the answer to the query basedon this subsample, and then report it as the �nal answer. If the subset islarge enough, it should re�et the statistial properties of the whole database.This approah, however, protets a partiipant only to the extent to whihit is unlikely that she is in the subsample. If being in the subsample hasatastrophi results, then someone will always be seriously harmed.The input perturbation approah is based on modifying either the dataor the query in hope of onfusing the adversary. For instane, a randomizedresponse mehanism an be used at the moment it is aquired. This modi�-ation is permanent and not even the urator knows what the original datawas. The queries to the database are then made taking into onsideration therandomized noise.Yet another approah is to add randomized noise to the answer of thequery. The idea is to ompute the answer on the omplete set of (the original)values in the database, and then randomize the response before reporting itto the user. If this is done naively, however, it an easily be taken are ofby the adversary. Suppose that the noise is hosen to be a Gaussian additivenoise with mean zero. If the query is repeated a su�ient number of times,a statistial analysis of the answers an easily estimate with high auraywhat the real answer is. Even if the urator of the database opts to reord thequery and always report the same answer for it, it may not solve the problem:syntatially di�erent queries an be semantially equivalent, and if the querylanguage is rih enough the semanti equivalene is undeidable.In this ontext, it is lear that the problem of statistial dislosure ontrolis not trivial. Yet another issue to be onsidered is the auxiliary (or side)information. Auxiliary information is any piee of data about individualsthat the attaker has and that does not ome from the database itself. Itmay originate from priors, beliefs, newspapers or even other databases. Somedeades ago, Dalenius [Dal77℄ onsidered the problem of auxiliary informationand proposed a famous �ad omnia� privay desideratum: nothing about anindividual should be learnable from the database that ould not be learnedwithout aess to the database. In other words, if the adversary has someside information and gains some knowledge about the individuals using it,by learning the response from the database this knowledge about individualsshould not inrease. Dalenius' property is, however, too strong to be usefulin pratie: Dwork showed in [Dwo06℄ that no useful database an provideit. She then proposed the notion of di�erential privay, whih is based onthe idea that the presene or absene of an individual in the database, or the19



1. Introdutionindividual's partiular value, should not signi�antly hange the probability ofobtaining a ertain answer for a given query [Dwo06, Dwo10, Dwo11, DL09℄.The onept of di�erential privay an be formalized as follows. Let X bethe set of all possible databases, and Z be the set of possible answers to aquery. Two databases x, x′ ∈ X are adjaent (or neighbors), written x ∼ x′, ifthey di�er in the value of exatly one individual. Then, for some ǫ > 0:De�nition 1 ([Dwo11℄). A randomized funtion K from X to Z satis�es ǫ-di�erential privay if for all pairs x, x′ ∈ X , with x ∼ x′, and all S ⊆ Z, wehave:
Pr [K(x) ∈ S] ≤ eǫ × Pr [K(x′) ∈ S]The onept of di�erential privay has had an extraordinary impat inthe database ommunity, and we will disuss the meaning and impliationsof the above formulation in greater depth in Chapter 5. For the moment, itis enough to note that this de�nition intuitively ensures that individuals anopt in or out of the database without signi�antly hanging the probability ofany given answer to a query to be reported. In other words, it is �safe� for anindividual to join (or to leave) the database. Dwork also showed that in orderto ensure di�erential privay it is enough to onsider a Laplaian mehanismof noise [Dwo06℄.Although di�erential privay is a promising approah to the question ofstatistial dislosure ontrol, the fat that it relies on the randomization of thequery response poses some hallenges with respet to the utility of the querymehanism. If the noise is not added with su�ient are, the reported answeran be so �di�erent� from the real answer that the informative purpose of thedatabase is ompromised. In Chapter 5 we will ome bak to the questionof how to apply di�erential privay and, at the same time, provide maximumutility to the query mehanism.1.3.3 Re�ning spei�ations into implementationsDeriving implementations of a system given its spei�ation, while respetingseurity onstraints, is a hallenging problem in information hiding and, morein general, in seurity. A spei�ation S is re�ned by an implementation P if Ppreserves all logi expressible properties of S. One needs to be areful, however,when re�ning a spei�ation in the realm of information hiding. Aording toMorgan [Mor09℄:A rigorous de�nition of how spei�ations relate to implementa-tions, as part of reasoning, must ensure that implementations re-veal no more than their spei�ations: they must, in e�et, preserveignorane.20



1.3. Case studies of information hidingBy �ignorane�, the author means what the user does not know about whatshe annot see. This notion is losely related to the problem of information�ow, i.e. determining how muh about the seret behavior of a system anadversary an infer from an observation and her knowledge about how thesystem works.To illustrate the problem, we will disuss the following example, adaptedfrom the original one in [Mor09℄. Consider a partition of the program statesinto visible (v) and hidden (h). Assume that the two variables v and h havethe same domain N (the natural numbers), and in a spei�ation S, after thevalue of h is assigned, the following is stated: hoose v from the domain N.Then we an ask �from the �nal value of v, what an the observer dedue aboutthe value of h, given that she knows how the system works?�. Of ourse theanswer will depend on how the implementation I of the spei�ation is done.If I is simply v := 0, then nothing is learned, sine what the user knows aboutthe value of h is exatly what she already knew before. If the implementationis v := h mod 2, then she an learn h's parity. If the implementation is v := h,then she learns the exat value of h. Intuitively, the three implementations arein inreasing order aording to the loss of ignorane they indue.It is desirable that the implementation of a spei�ation be �ignoranepreserving�, in the sense that the implementation should not reveal more aboutthe serets than the spei�ation does. Some works in the literature suggestthat one should be areful when dealing with seure re�nements if one wants topreserve information-�ow seurity properties. In [Ja89℄, for instane, Jaobshows that even if an implementation is a onsistent re�nement with respet toa spei�ation, it does not imply that the (information-�ow) seurity propertiesof the spei�ation are preserved in the implementation.As pointed out in [CNP09℄, nondeterminism is often used in system spei�-ations as a way of abstrating from implementation details (suh as shedulerpoliy). Implementations are obtained from spei�ations by re�nement alge-bras, whih redue nondeterminism. As we have seen in a previous example, ifwe assume v and h are both of type N, then the spei�ation hoose v from thedomain N an be re�ned to v := h, whih is simply a redution of nondeter-minism. This is known as the �re�nement paradox� [Mor09℄, beause it doesnot preserve ignorane. While the spei�ation does not tell anything aboutthe value of h, the re�nement ompletely reveals it.The proess of reduing nondeterminism by re�nements is related to thenotion of shedulers in nondeterministi systems: designing an implementationof a spei�ation involves hoosing a sheduler to solve all the nondeterminismof the spei�ation. The sheduler is indeed a �nal result of the re�nementproess, after all the nondeterminism is ruled out.Aording to this perspetive, similar onerns about re�nement algebrasshould be taken into onsideration when dealing with shedulers. Indeed, itan be shown that, given a spei�ation S and a sheduler that leads to aonsistent implementation P with respet to S, it is not guaranteed that the21



1. Introdutionseurity properties of S are preserved in P .In the domain of re�nement of spei�ations, the solution proposed in[Mor09℄ is to apply some priniples to the re�nement algebra in order to assurethe preservation of ignorane. These priniples restrit the re�nement relation,eliminating the ases that do not preserve ignorane.A similar problem arises in the ontext of onurrent systems, where thesheduler that solves the nondeterminism an violate seurity properties. InChapter 6 we fous on this problem and we propose restritions on the shed-ulers that also lead to ignorane-preserving re�nements.1.4 Plan of the thesis and ontributionIn Chapter 2 we review some basi notions neessary for the developmentof this thesis, inluding the onepts of probability spaes, probabilisti au-tomata and CCSp (a probabilisti version of the proess algebra of onurrentommuniating proesses).In Chapter 3 we review the main approahes that have been onsideredto quantify the notion of information leakage using onepts of informationtheory. We explain onepts suh as entropy, onditional entropy, mutualinformation and apaity. We fous on how distint notions of entropy anmodel attakers with di�erent levels of power, and we introdue the mathe-matial bakground neessary for most of this thesis. Finally we ompare themain notions of unertainty and leakage in the literature.In Chapter 4 we onsider the problem of de�ning the information leak-age in interative systems where serets and observables an alternate duringthe omputation. We show that the information-theoreti approah whihinterprets suh systems as lassi hannels is not valid. The priniple anbe reovered, however, if we onsider hannels of a more ompliated kind,namely hannels with memory and feedbak. We show that there is a om-plete orrespondene between interative systems and suh hannels. We alsopropose the use of direted information, as opposed to mutual information,to represent leakage in interative systems. This proposal is based on reentresults in information theory that have shown that, in hannels with mem-ory and feedbak, the transmission rate does not orrespond to the maximummutual information (the standard notion of apaity), but rather to the max-imum (normalized) direted information. We show that our model is a properextension of the lassial one, i.e. in the absene of interativity the model ofhannels with memory and feedbak ollapses into the model of memorylesshannels without feedbak. Finally, we show that the apaity of the hannelsassoiated with interative systems is a ontinuous funtion with respet to apseudometri based on the Kantorovih metri.In Chapter 5 we analyze ritially the notion of di�erential privay in thelight of the oneptual framework provided by the min-entropy leakage. We22



1.5. Publiationsshow that there is a lose relationship between di�erential privay and leakage,due to the graph symmetries indued by the adjaeny relation on databases.Furthermore, we onsider the utility of the randomized answer, whih measuresits expeted degree of auray. We fous on ertain kinds of utility funtionsalled �binary�, whih have a lose orrespondene with the notion of min-entropy leakage and the Bayes risk. Again, there an be a tight orrespondenebetween di�erential privay and utility, depending on the symmetries induedby the adjaeny relation and by the query. Using these symmetries we an, insome ases, build an optimal-utility randomization mehanism while preservingthe required level of di�erential privay. We also provide a study of the kindof strutures that an be indued by the adjaeny relation and the query,and how to use them to derive bounds on the leakage and ahieve the optimalutility.In Chapter 6 we move away from the quantitative realm and fous on theproblem of nondeterminism in systems spei�ations. In the �eld of seurity,proess equivalenes have been used to haraterize various information-hidingproperties (for instane serey, anonymity and noninterferene) based on thepriniple that a protool P with a variable x satis�es suh a property if andonly if, for every pair of serets s1 and s2, P [s1/x] is equivalent to P [s2/x]. Weargue that, in the presene of nondeterminism, the above priniple relies on theassumption that the sheduler �works for the bene�t of the protool�, and thisis usually not a safe assumption. Non-safe equivalenes, in this sense, inludeomplete-trae equivalene and bisimulation. We present a formalism in whihwe an speify admissible shedulers and, orrespondingly, safe versions ofthese equivalenes. We prove that safe bisimulation is still a ongruene. Thenwe show that safe equivalenes an be used to establish information-hidingproperties.Finally, in Chapter 7 we make our �nal onsiderations.1.5 PubliationsMost of the results in this thesis have already been subjet of sienti� publi-ations. More preisely:
• Chapter 2 is based on the paper Probabilisti Information Flow[AAP10b℄ that appeared in the proeedings of 25th Annual IEEE Sym-posium on Logi in Computer Siene (LICS 2010).
• Chapter 4 is based on the papers:� Information Flow in Interative Systems [AAP10a℄ that ap-peared in the proeedings of the 21st International Conferene onConurreny Theory (CONCUR 2010); 23



1. Introdution� Quantitative Information Flow in Interative Systems [AAP℄to appear in the Journal of Computer Seurity.
• Chapter 5 is based on two omplementary works:� The paper On the relation between Di�erential Privay andQuantitative Information Flow [AACP℄ to appear in the pro-eedings of the 38th International Colloquium on Automata, Lan-guages and Programming (ICALP 2011);� The tehnial report Di�erential Privay: on the trade-o�between Utility and Information Leakage [AAC+11℄.
• Chapter 6 is based on the paper Safe Equivalenes for SeurityProperties [AAPvR10℄ that appeared in the the proeedings of the 6thIFIP International Conferene on Theoretial Computer Siene (IFIP-TCS 2010).
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Two Preliminaries
�I an make just suh ones if I had tools, and I ould make toolsif I had tools to make them with.�Eli WhitneyIn this hapter we review some tehnial onepts from the literature thatwill be used throughout this thesis.2.1 Probability spaesIn this setion we reall some onepts about probability spaes.Let Ω be a set and P(Ω) represent its powerset, i.e. the olletion of allsubsets of Ω. A σ-algebra (also alled σ-�eld) over Ω is a non-empty olletionof sets F ⊆ P(Ω) that is losed under omplementation and ountable union.For any σ-�eld F , the property Ω ∈ F holds, and also that F is losed underountable intersetion (by De Morgan's laws).A measure on F is a funtion µ : F → [0,∞) suh that1. µ(∅) = 0, and2. µ(

⋃

iCi) =
∑

i µ(Ci), where {Ci}i is a ountable olletion of pairwisedisjoint sets in F .A probability measure on F is a measure µ on F suh that µ(Ω) = 1.A probability spae is a tuple (Ω,F , µ) where Ω is a non-empty set alledthe sample spae, F is a σ-algebra on Ω alled the event spae, and µ is aprobability measure on F . In the disrete ase, we have
∀C ∈ F . µ(C) =

∑

x∈C

µ({x})25



2. PreliminariesIn this ase we an onstrut µ from a funtion p : Ω → [0, 1] satisfy-ing ∑x∈Ω p(x) = 1 by assigning µ({x}) = p(x). The funtion p is alled aprobability distribution over Ω.The set of all probability measures with sample spae Ω will be denotedby D(Ω). We will also denote by δ(x) (alled the Dira measure on x or alsoa point mass) the probability distribution suh that µ({x}) = 1.If A and B are events, i.e. elements of a σ-�eld F , then A ∩ B is also anevent. If µ(A) > 0 then we an de�ne the onditional probability p(B|A) as
p(B|A) =

µ(A ∩B)

µ(A)representing the probability of B given that A holds. Note that p(·|A) is a newprobability measure on F . For the sope of this thesis we are interested onlyin the disrete ase, so it is enough to use the de�nition above and make surethat we never ondition on an event A with zero probability.Let F ,F ′ be two σ-�elds on Ω,Ω′ respetively. A random variable X isa funtion X : Ω 7→ Ω′ that is measurable, meaning that the inverse of everyelement of F ′ belongs to F :
∀C ∈ F ′. X−1(C) ∈ FThen, given a probability measure µ on F , X indues a probability measure

µ′ on F ′ as
∀C ∈ F ′. µ′(C) = µ(X−1(C))If µ′ is a disrete probability measure then it an be onstruted by aprobability distribution over Ω′, alled probability mass funtion (pmf), de�nedas

P ([X = x]) = µ(X−1(x))for eah x ∈ Ω′. The random variable in this ase is alled disrete. If X,Y aredisrete random variables then we an de�ne a disrete random valuer (X,Y )by its pmf
P ([X = x, Y = y]) = µ(X−1(x) ∩X−1(y))If X is a real-valued disrete random variable then its expeted value (orexpetation) is de�ned as

E(X) =
∑

i

xi P ([X = xi])A family ρ = {pv(·)}v of probability measures parametrized on v is alleda stohasti kernel.1.1The general de�nition of stohasti kernel is more ompliated (fr. [TM09℄), but itredues to this one in the disrete ase, whih is what we use in this thesis.26



2.2. Probabilisti automataNotation: We will use apital letters A,B,X, Y, Z to denote random vari-ables and alligraphi letters A,B,X ,Y,Z to denote their image. With a slightabuse of notation we will use p (and p(x), p(y)) to denote either
• a probability distribution, when x, y ∈ Ω, or
• a probability measure, when x, y ∈ F are events, or
• the probability mass funtion P ([X = x]), P ([Y = y]) of the randomvariables X,Y respetively, when x ∈ X , y ∈ Y.2.2 Probabilisti automataLet µ : S → [0, 1] be a disrete probability distribution on a ountable set S,and let the set of all disrete probability distributions on S be D(S).A probabilisti automaton [Seg95℄ is a quadruple M = (S,L, ŝ, ϑ) where

S is a ountable set of states, L is a �nite set of labels or ations, ŝ is theinitial state, and ϑ is a transition funtion ϑ : S → P(D(L× S)). Here P(X)is the powerset of X. If ϑ(s) = ∅ then s is a terminal state. We write s→µfor µ ∈ ϑ(s), s ∈ S. Moreover, we write s
ℓ
→r for s, r ∈ S whenever s→µand µ(ℓ, r) > 0. A fully probabilisti automaton is a probabilisti automatonsatisfying |ϑ(s)| ≤ 1 for all states. In suh an automaton, when ϑ(s) 6= ∅, weoverload the notation and denote by ϑ(s) the distribution outgoing from s.A path in a probabilisti automaton is a sequene σ = s0

ℓ1→ s1
ℓ2→ · · ·where si ∈ S, ℓi ∈ L and si

ℓi+1
→ si+1. A path an be �nite in whih ase itends with a state. A path is omplete if it is either in�nite, or �nite endingin a terminal state. Given a �nite path σ, last(σ) denotes its last state. Let

Pathss(M) denote the set of all paths, Paths⋆s(M) the set of all �nite paths,and CPathss(M) the set of all omplete paths of an automaton M , startingfrom the state s. We will omit s if s = ŝ. Paths are ordered by the pre�xrelation, whih we denote by ≤. The trae of a path is the sequene of ationsin L∗ ∪ L∞ obtained by removing the states, hene for the above σ we have
trace(σ) = l1l2 . . .. If L′ ⊆ L, then traceL′(σ) is the projetion of trace(σ) onthe elements of L′.Let M = (S,L, ŝ, ϑ) be a (fully) probabilisti automaton, s ∈ S a state,and let σ ∈ Paths⋆s(M) be a �nite path starting in s. The one generated by
σ is the set of omplete paths 〈σ〉 = {σ′ ∈ CPathss(M) | σ ≤ σ′}. Given afully probabilisti automaton M = (S,L, ŝ, ϑ) and a state s, we an alulatethe probability value Ps(σ) of any �nite path σ starting in s as follows:

Ps(s) = 1, and
Ps(σ

ℓ
→ s′) = Ps(σ) µ(ℓ, s

′) where last(σ)→ µ 27



2. PreliminariesLet Ωs
def
= CPathss(M) be the sample spae, and let Fs be the smallest

σ-algebra indued by the ones generated by all the �nite paths of M . Then
P indues a unique probability measure on Fs (whih we will also denote by
Ps) suh that Ps(〈σ〉) = Ps(σ) for every �nite path σ starting in s. For s = ŝwe write P instead of Pŝ.A sheduler for a probabilisti automaton M is a funtion ζ : Paths⋆(M)→
(L×D(S)∪ {⊥}) suh that for all �nite path σ, if ϑ(last(σ)) 6= ∅ then ζ(σ) ∈
ϑ(last(σ)), and ζ(σ) = ⊥ otherwise. Hene, a sheduler ζ selets one of theavailable transitions in eah state, and determines therefore a fully probabilistiautomaton, obtained by pruning from M the alternatives that are not hosenby ζ. A sheduler is history dependent sine it takes into aount the path andnot only the urrent state. It may be partial, i.e. it may halt the exeution atany time. In this thesis, however, we will onsider only total shedulers, to bemore in line with the standard semantis of CCS.2.3 CCS with internal probabilisti hoieIn this setion we present an extension of standard CCS ([Mil89℄) obtainedby adding internal probabilisti hoie. The resulting alulus an be seen asa simpli�ed version of the probabilisti π-alulus presented in [HP, PH℄ andit is similar to the one onsidered in [DPP℄. The restrition to CCS and tointernal hoie is suitable for the sope of this thesis.Let a range over a ountable set of hannel names.The syntax of CCSp is the following:

α ::= a | ā | τ pre�xes
P,Q ::= proesses

α.P pre�x
| P | Q parallel
| P +Q nondeterministi hoie
|
∑

i piPi internal probabilisti hoie
| (νa)P restrition
| !P repliation
| 0 nilwhere the pi's in the probabilisti hoie should be non-negative and their sumshould be 1. We will also use the notation P1 +p P2 to represent a binary sum

∑

i piPi with p1 = p and p2 = 1− p.The semantis of a CCSp term is a probabilisti automaton de�ned indu-tively on the basis of the syntax aording to the rules in Figure 2.1. We write
s

a
−→ µ when (s, a, µ) is a transition of the probabilisti automaton. Givena proess Q and a measure µ, we denote by µ | Q the measure µ′ suh that28



2.3. CCS with internal probabilisti hoieACT
α.P

α
−→ δ(P )

RES P
α
−→ µ α 6= a, a

(νa)P
α
−→ (νa)µSUM1 P

α
−→ µ

P +Q
α
−→ µ

SUM2 Q
α
−→ µ

P +Q
α
−→ µPAR1 P

α
−→ µ

P | Q
α
−→ µ | Q

PAR2 Q
α
−→ µ

P | Q
α
−→ P | µCOM P

a
−→ δ(P ′) Q

a
−→ δ(Q′)

P | Q
τ
−→ δ(P ′ | Q′)

PROB ∑

i piPi
τ
−→

∑

i pi δ(Pi)REP1 P
α
−→ µ

!P
α
−→ µ | !P

REP2 P
a
−→ δ(P1) P

a
−→ δ(P2)

!P
τ
−→ δ(P1 | P2 | !P )Figure 2.1: The semantis of CCSp

µ′(P | Q) = µ(P ) for all proesses P and µ′(R) = 0 if R is not of the form
P | Q. Similarly (νa)µ = µ′ suh that µ′((νa)P ) = µ(P ).A transition of the form P

a
−→ δ(P ′), i.e. a transition having for target aDira measure, orresponds to a transition of a non-probabilisti automaton (astandard labeled transition system). Note that eah rule of CCSp orrespondsto one rule of CCS, exept for PROB. The latter models the internal prob-abilisti hoie: a silent τ transition is available from the sum to a measureontaining all of its operands, with the orresponding probabilities.Note that in the produed probabilisti automaton, all transitions to non-Dira measures are silent. This is similar to the alternating model [HJ89℄,however our ase is more general beause the silent and non-silent transitionsare not neessarily alternated. On the other hand, with respet to the simpleprobabilisti automata the fat that the probabilisti transitions are silentlooks like a restrition. It has been proved by Bandini and Segala [BS01℄,however, that the simple probabilisti automata and the alternating model areessentially equivalent, so, being in between, our model is equivalent as well.Enoding message passing into CCSp Sometimes it is onvenient tomake message passing expliit in the notation of CCSp. Namely, we enrihits syntax by making the pre�xes to be c(a) | c〈x〉 | τ , where c, a, x arenames, and the semanti rule COM is substituted by:COM' P
c〈a〉
−→ δ(P ′) Q

c(x)
−→ δ(Q′)

P | Q
τ
−→ δ(P ′ | Q′ [a/x])where P

c〈a〉
−→ δ(P ′) denotes a proess that sends the name a through hannel29



2. Preliminaries
c and then evolves to P ′, and Q

c(x)
−→ δ(Q′) denotes a proess that reeives thename x through hannel c and then evolves to Q′. Here Q′ [a/x] is the proess

Q′ in whih every ourrene of x is replae by a.The expressive power of CCSp with message passing and without it is thesame. In this thesis we will use this fat and onsider expliit message passingas an alias for the orrespondent enoding into the presentation of CCSp givenin Figure 2.1.
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ThreeThe rationale behind the use ofinformation theory for leakage
�Why, only why?�Nadia VerttiIn this hapter we review the most important onepts related to the informa-tion theoreti approah to quantitative information �ow. We aim at presentingthese onepts in a ontextualized way, disussing the intuition behind themand interpreting what they mean in terms of seurity.Plan of the Chapter Setion 3.1 gives a brief overview on informationtheory for ommuniation. Setion 3.2 introdues the information theoretiapproah to information �ow. Setion 3.3 presents and ompares several dif-ferent notions based on information theory that have been used in literatureto haraterize unertainty and leakage.3.1 Information theory and ommuniationThe study of information theory started with Claude E. Shannon's work on theproblem of oding messages to be transmitted through unreliable (or noisy)hannels. A ommuniation hannel is a (physial) mean through whih infor-mation an be transmitted. The input is fed to the hannel, but due to noiseor any other problem that an our during the transmission, the output of thehannel may not re�et with �delity the input. It is usual to desribe the un-reliable behavior of the hannel in a probabilisti way. In the disrete (�nite)ase, if A = {a1, a2, . . . , an} represent the possible inputs for the hannel, and

B = {b1, b2, . . . , bm} represent the possible outputs, the hannel's probabilistibehavior an be represented as a hannel matrix Mn×m where eah element31



3. The rationale behind the use of information theory forleakage
Mi,j (1 ≤ i ≤ n, 1 ≤ j ≤ m) is de�ned as the probability of the hanneloutputting bj when the input is ai. In this way, we an see the input and out-put as two orrelated random variables linked by the hannel's probabilistibehavior.A unique feature of information theory is its use of a numerial measure ofthe amount of information gained when the ontents of a message are learned.More spei�ally, information theory reasons about the degree of unertaintyof a ertain random variable, and the amount of information that it an revealabout another random variable. Among the tools provided by informationtheory there are onepts as entropy, onditional entropy, mutual informationand hannel apaity, whih will be reviewed in Setion 3.3.1. We onsiderhere only the disrete ase, sine this is enough for the sope of this thesis.
3.2 Information theory and information �owSeveral works in the literature use an information theoreti approah to modelthe problem of information �ow and de�ne the leakage in a quantitative way, asfor example [ZB05, CHM05, Mal07, MC08, MNS03, MNCM03, CPP08a℄. Theidea is to model the omputational system as a information theoreti hannel.The input represents the seret, the output represents the observable, and theorrelation between the input and output (mutual information) represents theinformation leakage. The worst ase leakage orresponds then to the apaityof the hannel, whih is by de�nition the maximum mutual information thatan be obtained by varying the input distribution.In the works mentioned above, the notion of mutual information is basedon Shannon entropy, whih (beause of its mathematial properties) is themost established measure of unertainty. From the seurity point of view, thismeasure orresponds to a partiular model of attak and a partiular way ofestimating the seurity threat (vulnerability of the seret). Other notions havebeen onsidered, and argued to be more appropriate for seurity in ertain se-narios. These inlude: min-entropy [R�61, Smi09℄, Bayes risk [CT91, CPP08b℄,guessing entropy [Mas94℄, and marginal guesswork [Pli00℄. In Setion 3.3 wewill disuss their meaning and show how they relate (or do not relate) to eahother and to Shannon entropy.Whatever de�nition of unertainty (i.e. vulnerability) we want to adopt,the notion of leakage is inherent to the system and an be expressed in auniform way as the di�erene between the initial unertainty, i.e. the degreeof ignorane about the seret before we run the system, and the remainingunertainty, i.e. the degree of ignorane about the seret after we run thesystem and observe its outome. Following the priniple advoated by Smith32



3.2. Information theory and information �ow[Smi09℄, and by many others:information leakage = initial uncertainty
−remaining uncertainty

(3.1)In (3.1), the initial unertainty depends solely on the input distribution,aka a priori distribution or prior. Intuitively, the more uniform it is, theless we know about the seret (in the probabilisti sense). After we run thesystem, if there is a probabilisti orrelation between input and output, thenthe observation of the output should inrease our knowledge of the seret. Thisis determined by the fat that the distribution on the input hanges: in fat wean update the probability of eah input with the orresponding onditionalprobability of the same input, given the output. The new distribution is alleda posteriori distribution. In ase input and output are independent, thenthe a priori and the a posteriori distributions oinide and the knowledgeshould remain the same. We will use the attributes �a priori� (or �prior�)and �a posteriori� to refer to before and after the observation of the output,respetively.The above intuitions should be re�eted by any reasonable notion of un-ertainty: it should be higher on more uniform distributions, and it shouldderease or remain equal with the observation of related events.If the unertainty is expressed in terms of Shannon entropy, then the initialunertainty is the entropy of the input, the remaining unertainty is the ondi-tional entropy of the input given the output, and (3.1) mathes exatly the de�-nition of mutual information. This justi�es the notion of leakage adopted in theworks mentioned before ([ZB05, CHM05, Mal07, MC08, MNS03, MNCM03,CPP08a℄).The analogy between information �ow in a system and a (simple) hannelworks well when:(i) there is no nondeterminism, i.e. either the system is deterministi, orpurely probabilisti; and(ii) there is a preise temporal relation between serets and observables in theomputations; namely, the value of the seret is hosen at the beginningof the omputation, and the omputation of the system produes anobservable outome with a probability that depends solely on the hoseninput and on the system. Furthermore, eah new run of the system isindependent from the previous ones.Restrition (i) implies that for eah seret there is exatly one ondi-tional probability distribution on the observables, where the ondition is theseret value. Restrition (ii) ensures that this onditional distribution de-pends uniquely on the system (not on the input distribution). These ondi-tional probabilities onstitute the the hannel matrix. Note that in a (basi)33



3. The rationale behind the use of information theory forleakageinformation-theoreti hannel the matrix must be invariant with respet to theinput distribution, whih is exatly what ondition (ii) guarantees.If a system is deterministi, then under the same input eah run produesalways the same output, with probability 1. Therefore the matrix ontains only
0's and 1's. Yet the problem of inferring the seret is interesting, beause thesame output may orrespond to di�erent inputs. If the system is probabilisti,i.e. it uses some randomized mehanisms, then the matrix usually ontainsprobabilities di�erent from 0 and 1.Unfortunately, usually onditions (i) and (ii) are too restritive for real-lifesystems:
• Spei�ations typially need to use nondeterminism in order to abstratfrom implementation details. This is partiularly ompelling in the aseof onurrent and distributed systems: The order in whih the variousomponents get exeuted and their interations depend on shedulingpoliies that may di�er from implementation to implementation. Fur-thermore, even if the sheduling poliy is �xed, there are run time ir-umstanes that may in�uene the relative speed of the proesses. Non-determinism is, in pratie, an unavoidable aspet of onurreny.
• Serets and observables often alternate and interat during an exeu-tion. In partiular, the hoie of a new seret may depend on previousobservables. Furthermore, new exeution of the systems may depend onprevious ones. This may be due to the way the system works, or tothe presene of an ative adversary that may use the knowledge derivedfrom previous observations to try to tamper with the mehanisms of thesystem, with the purpose of inreasing the leakage. Examples of suhsystems, that we all here interative systems (where interation refersto the interplay between serets and observables), an be found in theareas of game theory, aution protools, web servers, GUI appliations,et.In this thesis we onsider the hallenges of extending the information-theoreti approah to ases where these onditions are lifted. More spei�ally,Chapter 4 onerns the suppression of ondition (ii), and Chapter 6 deals withthe suppression of ondition (i).3.3 Unertainty and leakageIn this setion we reall various de�nitions of unertainty based on informationtheory proposed in literature, and we disuss the relation with seurity attaksand the way of measuring their suess. In general we onsider the kind ofthreats that in the model of Köpf and Basin [KB07a℄ are alled brute-fore34



3.3. Unertainty and leakageguessing attaks, whih an be summarized as follows: The goal of the adver-sary is to determine the value of a random variable. He an make a seriesof queries to an orale. Eah query must have a yes/no answer. In generalthe adversary is adaptive, i.e. he an hoose the next query depending on theanswer to the previous ones. We assume that the adversary knows the proba-bility distribution. In this setion, when we talk about the meaning in seurityof a partiular measure of unertainty, we refer to the work in [KB07a℄.In the following, A,B denote two disrete random variables with �nitelymany values A = {a1, . . . , an}, B = {b1, . . . , bm}, and probability distributions
pA(·), pB(·), respetively. We will use A∧B to represent the random variablewith arrier A×B and joint probability distribution pA∧B(a, b) = pA(a) · p(b |
A = a), while A · B will denote the random variable with arrier A × B andprobability distribution de�ned as produt, i.e. pA·B(a, b) = pA(a) · pB(b).Clearly, if A and B are independent, we have A ∧ B = A · B. We shall omitthe subsripts on the probabilities when they are lear from the ontext. Inreferene to a hannel, in general A will denote the input (seret), and B theoutput (observable).3.3.1 Shannon entropyThe (Shannon) entropy of A is de�ned as

H(A) = −
∑

A

p(a) log p(a)The entropy measures the unertainty of A. It takes its minimum value
H(A) = 0 when pA(·) is a point mass (also alled delta of Dira). The maxi-mum value H(A) = log |A| is obtained when pA(·) is the uniform distribution.Usually the base of the logarithm is set to be 2 and the entropy is measuredin bits. Roughly speaking, m bits of entropy means that we have 2m values tohoose from, assuming a uniform distribution.The onditional entropy of A given B is de�ned as

H(A | B) =
∑

b∈B

p(b) H(A | B = b) (3.2)where
H(A | B = b) = −

∑

a∈A

p(a|b) log p(a|b)The onditional entropy measures the unertainty of A when B is known. Itis well-known that 0 ≤ H(A|B) ≤ H(A). The minimum value, 0, is obtainedwhen A is ompletely determined by B. The maximum value H(A) is obtainedwhen A and B are independent.The mutual information between A and B is de�ned as
I(A;B) = H(A)−H(A|B) (3.3)35



3. The rationale behind the use of information theory forleakageThe mutual information measures the amount of information about A thatwe gain by observing B. It an be shown that I(A;B) = I(B;A) and 0 ≤
I(A;B) ≤ H(A). If C is a third random variable, the onditional mutualinformation between A and B given C is de�ned as

I(A;B|C) = H(A|C)−H(A|B,C)The (onditional) entropy and mutual information respet the hain rules.Namely, given the random variables A1, A2, . . . , Ak, B and C, we have:
H(A1, A2, . . . , Ak|C) =

k∑

i=1

H(Ai|A1, . . . , Ai−1, C)

I(A1, A2, . . . , Ak;B|C) =

k∑

i=1

I(Ai;B|A1, . . . , Ai−1, C) (3.4)A disrete memoryless hannel is a tuple (A,B, p(·|·)), where A,B are thesets of input and output symbols, respetively, and p(b|a) is the probability ofobserving the output symbol b when the input symbol is a. These onditionalprobabilities onstitute the hannel matrix. An input distribution pA(·) over
A together with the hannel determine the joint distribution p(a, b) = p(a|b) ·
p(a) and onsequently I(A;B). The maximum I(A;B) over all possible inputdistributions is the hannel's apaity C:

C = max
pA(·)

I(A;B)The famous Channel Coding Theorem by Shannon relates the apaity ofthe hannel to its maximum transmission rate. In brief, the hannel apaityis a tight upper bound for the maximum rate by whih information an betransmitted using the hannel. If the number of times the hannel is used islarge enough, there is an enoding that ahieves the optimal transmission rate,i.e. the hannel apaity, with a negligible probability of error.Meaning in seurity To explain what H(A) represents from the seuritypoint of view, onsider a partition {Ai}i∈I of A. The adversary is allowed toask questions of the form �does A ∈ Ai?� aording to some strategy. Let
n(a) be the number of questions that are needed to determine the value of a,when A = a. Then H(A) represents the lower bound to the expeted valueof n(·), with respet to all possible partitions and strategies of the adversary[Pli00, KB07a℄.3.3.2 Min-entropyIn [R�61℄, Rényi introdued a one-parameter family of entropy measures, in-tended as a generalization of Shannon entropy. The Rényi entropy of order α36



3.3. Unertainty and leakage(α > 0, α 6= 1) of a random variable A is de�ned as
Hα(A) =

1

1− α
log

∑

a∈A

p(a)αRényi's motivations were of axiomati nature: Shannon entropy satis�esfour axioms, namely symmetry, ontinuity, value 1 on the Bernoulli uniformdistribution, and the hain rule1:
H(A ∧B) = H(A) +H(B |A) (3.5)The entropy of the joint probability, H(A∧B), is more ommonly denotedby H(A,B). We will use the latter notation in the following.Shannon entropy is also the only funtion that satis�es those axioms. Ifwe replae, however, (3.5) with a weaker property representing the additivityof entropy for independent distributions:
H(A ·B) = H(A) +H(B)then there are more funtions satisfying the axioms, among whih all those ofthe Rényi's family.Shannon entropy is obtained by taking the limit of Hα as α approahes 1.In fat we an easily prove, using l'H�pital's rule, that

H1(A)
def
= lim

α→1
Hα(A) = −

∑

a∈A

p(a) log p(a)We are partiularly interested in the limit of Hα as α approahes ∞. Thisis alled min-entropy. It an be proven that
H∞(A)

def
= lim

α→∞
Hα(A) = − log max

a∈A
p(a)Rényi onsidered also the α-generalization of the Kullbak-Liebler diver-gene, whih is de�ned as (assuming that p and q are distributions on the sameset X ):

DKL(p ‖ q) =
∑

x∈X

p(x) log
p(x)

q(x)Rényi's α-generalization is:
Dα(p ‖ q) =

1

1− α
log

∑

x∈X

p(x)α q(x)α−11The original axiom, alled the grouping axiom, does not mention the onditional en-tropy. It orresponds, however, to the hain rule if the onditional entropy is de�ned as in(3.2). 37



3. The rationale behind the use of information theory forleakageThe standard ase, i.e. the Kullbak-Liebler divergene, is again obtainedby taking the limit of Dα as α→ 1.The interest of the above for our purposes lies on the fat that Shannon mu-tual information an equivalently be de�ned in terms of the Kullbak-Lieblerdivergene (see for instane [CT91℄):
I(A;B) = DKL(A ∧B ‖ A ·B)Therefore, it seems natural to de�ne the α-generalization of the mutualinformation as:
I∗α(A;B) = Dα(A ∧B ‖ A · B)Other α-generalizations of the mutual information, based on the same idea,are explored in [Csi95℄.As α → ∞, the above de�nition gives the following min-version of themutual information:

I∗∞(A;B)
def
= lim

α→∞
Iα(A;B) = log max

a,b

p(a, b)

p(a) p(b)
(3.6)Another natural way to generalize I(A;B) would be to replae H by Hαin De�nition 3.3. Rényi did not de�ne, however, the α-generalization of theonditional entropy, and there is no agreement on what it should be.Various researhers, inluding Cahin [Ca97℄, have onsidered the follow-ing de�nition, based on (3.2):

HCachin
α (A | B) =

∑

b∈B

p(b) Hα(A | B = b)whih, as α→∞, beomes
HCachin

∞ (A | B) = −
∑

b∈B

p(b) log max
a∈A

p(a | b) (3.7)An alternative proposal for H∞(· | ·) ame from Smith [Smi09℄2:
HSmith

∞ (A | B) = − log
∑

b∈B maxa∈A p(a, b) (3.8)Using (3.7) and 3.8), and the analogue of (3.3) we an de�ne ICachin
∞ and

ISmith
∞

3.2The same formulation had been already used by Dodis et al. in [DORS04℄, and Smithproposed it independently. Sine it is Smith's work on the subjet that motivates theapproah used in this thesis, we opt to refer to this formulation as Smith's.3The notation ISmith
∞ is ours. Smith himself opts for not adopting it, sine ISmith

∞ is notsymmetri.38



3.3. Unertainty and leakageMeaning in seurity The min-entropy an be related to a model of adver-sary who is allowed to ask exatly one question, whih must be of the form �is
A = a?� (one-try attaks). More preisely, the min-entropy H∞(A) representsthe (logarithm of the inverse of the) probability of suess for this kind of at-taks and with the best strategy, whih onsists, of ourse, in hoosing the awith the maximum probability.As for H∞(A | B) and I∞(A;B), the most interesting versions in termsof seurity seem to be those of Smith. In fat, in this thesis we adopt hisapproah to information leakage, and we will, from now on, use the followingnotation:
• H∞(A | B) stands for HSmith

∞ (A | B) and is referred to as onditionalmin-entropy ;
• I∞(A;B) stands for ISmith

∞ (A;B) and is referred to as min-entropy leak-age.In fat, the onditional min-entropy H∞(A | B) represents the inverseof the (expeted value of the) probability that the same kind of adversarysueeds in guessing the value of A a posteriori, i.e. after observing the resultof B. The omplement of this probability is also known as probability of erroror Bayes risk. Sine in general B and A are orrelated, observing B inreasesthe probability of suess. In fat, we an prove formally that H∞(A | B) ≤
H∞(A), with equality if A and B are independent. The min-entropy leakage
I∞(A;B) orresponds to the ratio between the probabilities of suess a prioriand a posteriori, whih is a natural notion of leakage. Here I∞(A;B) is in theformat of (3.1), but the di�erene beomes a ratio due to the presene of thelogarithms. Note that I∞(A;B) ≥ 0, whih seems desirable for a good notionof leakage. It has been proven in [BCP09℄ that C∞ is obtained at the uniformdistribution, and that it is equal to the sum of the maxima of eah olumn inthe hannel matrix, i.e. C∞ =

∑

b∈B maxa∈A p(b | a).The de�nition of I∗∞(A;B) in (3.6) has also an interpretation in seurity:it represents the maximum gain in the probability of suess, i.e. the max-imum ratio between the a posteriori and the a priori probability. Note thatalso I∗∞(A;B) is always non-negative and it is 0 if and only if A and B are in-dependent. More in general, DKL(p ‖ q) and its α-extension Dα(p ‖ q) shouldrepresent the �ine�ieny� of an adversary who bases its strategy on the dis-tribution q, when in fat the real distribution is p. Hene I∗α(A;B) de�ned as
Dα(A ∧ B ‖ A · B) should represent the gain of the adversary in revising hisstrategy aording to the knowledge of the orrelation between A and B.Conerning HCachin

α and ICachin
α , they have some nie properties. For in-stane they enjoy weak versions of the hain rule (3.5). More preisely, the�=� in (3.5) beomes �≥� for α < 1, and �≤� for α > 1. There is no generalrelation between HCachin

∞ (A | B) and H∞(A), and in partiular ICachin
∞ is notguaranteed to be non-negative. 39



3. The rationale behind the use of information theory forleakage3.3.3 Guessing entropyThe notion of guessing entropy was introdued by Massey in [Mas94℄. Letus assume, for simpliity, that the elements of A are ordered by dereasingprobabilities, i.e. if 1 ≤ i < j ≤ n then p(ai) ≥ p(aj). Then the guessingentropy is de�ned as follows:
HG(A) =

∑

1≤i≤|A|

i p(ai)Massey did not de�ne the notion of onditional guessing entropy. In someworks, like [Ca97, KB07a℄, it is de�ned analogously to (3.2):
HG(A | B) =

∑

b∈B

p(b) HG(A | B = b)Meaning in seurity Guessing entropy represents an adversary who is al-lowed to ask repeatedly questions of the form �is A = a?�. More preisely,
HG(A) represents the expeted number of questions that the adversary needsto ask to determine the value of A, assuming that he follows the best strategy,whih onsists, of ourse, in hoosing the a's in order of dereasing probability.

HG(A | B) represents the expeted number of questions a posteriori, i.e.after observing the value of B and reordering the queries aording to theupdated probabilities (i.e. the queries will be hosen in order of dereasing aposteriori probabilities).Also in this ase, HG(A | B) is not neessarily smaller than or equal to
HG(A), so the orresponding notion of mutual information is not guaranteedto be non-negative4.3.3.4 Marginal guessworkThe marginal guesswork is a variant of guessing entropy that was proposedby Pliam [Pli00℄. It is parametri to a number η > 0, and is de�ned asfollows. Again, we assume that the elements of A are ordered by dereasingprobabilities.

Hη(A) = min{j |
∑

1≤i≤j

p(ai) > η}Pliam did not de�ne the onditional version of marginal guesswork, but in[KB07a℄ it is de�ned following (3.2):
Hη(A | B) =

∑

b∈B

p(b) Hη(A | B = b)4This problem is inherent to the probabilisti ase, and therefore it does not our in[KB07a℄, sine that work onsiders only deterministi systems.40



3.3. Unertainty and leakageMeaning in seurity Consider again an adversary who is allowed to askrepeatedly questions of the form �is A = a?�. Hη(A) represents the minimumnumber of questions that the adversary needs to ask to determine the value of
A with probability at least η.

Hη(A | B) represents the same notion, but using the a posteriori probabil-ities. Again, it is not neessarily the ase that Hη(A | B) ≤ Hη(A).3.3.5 Comparison and disussionThe various notions of entropy disussed in this setion have been arefullyompared with Shannon entropy, to onlude that in general there is no tightrelation. Fano's inequality gives a lower bound to the Bayes risk in terms of(onditional) Shannon entropy, and Rényi [R�60℄, Hellman-Raviv [HR07℄, andSanthi-Vardi [SV06℄ give upper bounds as well, but all these are rather weak.Smith has shown in [Smi09℄ that the orderings indued on hannels by theBayes risk and by Shannon entropy are in general unrelated.Massey has shown that the exponential of the Shannon entropy is a lowerbound for the guessing entropy, and that, in ase of a geometri distribution,the bound is tight. Massey has also shown that in the general ase the Shannonentropy an be arbitrarily lose to 0 while the guessing entropy is onstant[Mas94℄.As for the marginal guesswork. Pliam has shown that it is essentiallyunrelated with Shannon entropy [Pli00℄.In this thesis we fous on the onepts of leakage based on Shannon entropy(Chapter 4) and min-entropy (Chapter 5).
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FourInformation �ow in interative systems
�True interativity is not about liking on ions or downloading �les,it's about enouraging ommuniation.�Edwin ShlossbergThe key idea behind the information-theoreti approahes to information �owis to interpret the system as an information-theoreti hannel, where the seretsare the input and the observables are the output. The hannel matrix onsistsof the onditional probabilities p(b | a), de�ned as the measure of the exeutionsproduing the observable b, relative to those whih ontain the seret a. Theleakage is represented by the mutual information, and the worst-ase leakageby the apaity of the hannel.In information theory, however, there are several di�erent models of han-nels. So far the works in the literature about information theory applied toinformation �ow have foused on the simplest kind of hannels: disrete memo-ryless hannels where the absene of feedbak is impliitly assumed. This las-sial approah has been suessfully used in senarios where the seret valueis assumed to be hosen at the beginning of the omputation. In this hapter,however, we are interested in the more general senario in whih serets anbe hosen at any point. More preisely, we onsider interative systems, i.e.systems in whih the generation of serets and the ourrene of observablesan alternate during the omputation and in�uene eah other. Examples ofinterative systems inlude aution protools like [Vi61, Sub98, SA99℄. Someof these have beome very popular thanks to their integration in Internet-basedeletroni ommere platforms [Eba, Ebi, Mer℄. Other examples of interativeprograms inlude web servers, GUI appliations, and ommand-line programs[BPS+09℄.Unfortunately, the information-theoreti approah whih interprets inter-ative systems as lassial hannels is not valid. More spei�ally, in suhsystems the hannel matrix is not invariant with relation to the input distri-43



4. Information flow in interative systemsbution, so the hannel apaity annot be alulated in the traditional way.Therefore, the notion of maximum leakage as standard apaity is also om-promised.The goal of this hapter is to extend the lassial information-theoretiapproah to information �ow to the more ompliated senario of interativesystems.Contribution The main ontributions of this hapter an be summarizedas follows.
• We show that by onsidering the riher hannels that support memoryand feedbak it is possible to retrieve the orrespondene between sys-tems and hannels. We prove that there is a omplete orrespondenebetween interative systems and hannels with memory and feedbak,and we show how to model the latter as the former.
• We propose the use of direted information, as opposed to mutual in-formation, to represent leakage in interative systems. Reent results ininformation theory [TM09℄ have shown that, in hannels with memoryand feedbak, the transmission rate does not orrespond to the maxi-mum mutual information (the standard notion of apaity), but rather tothe maximum normalized direted information, a onept introdued byMassey [Mas90℄. We argue that in interative hannels the real leakage isdue to the direted information from serets to observables, whereas thedireted information from observables to serets (orresponding to feed-bak) is a harateristi of the system itself and should not be ountedas leakage.
• We show that our model is a proper extension of the lassial one, i.e.in the absene of interativity the model of hannels with memory andfeedbak ollapses into the model of memoryless hannels without feed-bak. Moreover, in that ase also the onepts of mutual information anddireted information from input to output oinide, the same for the on-epts of apaity and direted apaity. We argue that in the lassialapproah mutual information is a good measure of leakage exatly be-ause of this property: in the absene of feedbak mutual informationand direted information from input to output are the same.
• We show that the apaity of the hannels assoiated to interative sys-tems is a ontinuous funtion with respet to a pseudometri based onthe Kantorovih metri. The ontinuity of the hannel apaity was alsoproved in [DJGP02℄ for simple hannels, but the proof does not adaptto the ase of hannels with memory and feedbak and we had to devisea di�erent tehnique.Plan of the Chapter This hapter is organized as follows. In Setion 4.1we introdue the onept of interative systems and we show why hannels44



4.1. Interative systemswithout memory and feedbak are inadequate in this senario. In Setion 4.2we review the notion of hannels with memory and feedbak, whih is the oreof the model we propose. We disuss the onept of direted information andalso the onept of apaity in the presene of feedbak. Setion 4.3 ontainsthe main ontribution in this hapter: We explain how Interative Informa-tion Hiding Systems (IIHSs) an be modeled using hannels with memory andfeedbak. In partiular we show that for any IIHS there is always a hannelthat simulates its probabilisti behavior. In Setion 4.4 we disuss our no-tion of adversary and we de�ne the quanti�ation of information leakage asthe hannel's direted information from input to output, or as the diretedapaity, depending on whether the input distribution is �xed or not. In Se-tion 4.5 we apply our model to an example, the Coaine Aution protool. InSetion 4.6 we propose a pseudometri struture on IIHSs based on the Kan-torovih metri. We also show that the apaity of the hannels assoiated tointerative systems is a ontinuous funtion with respet to this pseudometri.In Setion 4.7 we present some related work, and in Setion 4.8 we review anddisuss the main results of the hapter, and onsider future work.4.1 Interative systemsIn this setion we exemplify the problems that arise when we try to applythe lassial information-theoreti approah to interative systems. In orderto derive an information-theoreti hannel, at a �rst glane it would seemnatural to de�ne the hannel matrix by using the de�nition of p(b | a) in termsof the joint and marginal probabilities p(a, b) and p(b). Namely, the entry
p(b | a) would be de�ned as the measure of the traes with (seret, observable)-projetion (a, b), divided by the measure of the traes with seret projetion a.An approah of this kind was proposed in [DJGP02℄. In the interative ase,however, this onstrution does not really produe an information-theoretihannel. In fat, by de�nition a hannel should be invariant with respet tothe input distribution, and this is not the ase here, as shown by the followingexample.Example 1. Figure 4.1 represents a web-based interation between one sellerand two possible buyers, rih and poor. The seller an o�er two di�erentproduts, heap and expensive, with given probabilities. One the produt iso�ered, eah buyer may try to buy it, with a ertain probability. For simpliitywe assume that the buyers' o�ers are mutually exlusive. We assume that theo�ers are observables, in the sense that they are made publi on the website,while the identity of the buyer that atually buys the produt should be keptseret from an external observer. The symbols r, q1, q2, r, q1, q2 representprobabilities, with the onvention that r = 1 − r (and the same for the pairs
q1, q1 and q2, q2). 45



4. Information flow in interative systems
cheap expensive

poor rich
poor rich

r r

q1 q1 q2 q2Figure 4.1: Interative system of Example 1Following [DJGP02℄ we an ompute the onditional probabilities as p(b|a) =
p(a,b)
p(a) , thus obtaining the matrix in Table 4.1. The matrix however is not in-variant with respet to the input distribution. For instane for r = r = 1

2 ,
q1 = 2

3 , and q2 = 1
3 we obtain the matrix in Table 4.2(a). If we hange theinput distribution, for instane by hanging the value of q2 to be 1

6 , also thematrix hanges. We obtain, indeed, the new matrix illustrated in Table 4.2(b).heap expensivepoor rq1
rq1+rq2

rq2
rq1+rq2rih rq1

rq1+rq2

rq2
rq1+rq2Table 4.1: Channel matrix for Example 1Consequently, when the serets our after the observables and depend onthem, we annot onsider the onditional probabilities (of the observables giventhe serets) as representing a lassial hannel from serets to observables, andwe annot apply the standard information-theoreti onepts. In partiular,we annot use �the apaity of the matrix� (de�ned by onsidering the matrixas a hannel matrix, and taking the maximum mutual information over allpossible inputs) beause in general the maximum is given by a distributiondi�erent from the one that has originated the matrix, hene the result wouldbe unsound.The �rst ontribution of this hapter is to onsider an extension of thetheory of hannels whih makes the information-theoreti approah appliablealso in the ase of interative systems. A riher notion of hannels, known ininformation theory as hannels with memory and feedbak, serves our purposes.The dependene of inputs on previous outputs orresponds to feedbak, andthe dependene of outputs on previous inputs and outputs orresponds tomemory. Reent results in information theory [TM09℄ have shown that, in suhhannels, the transmission rate does not orrespond to the maximum mutualinformation (the standard notion of apaity), but rather to the maximumnormalized direted information, a onept introdued by Massey [Mas90℄.We propose to adopt this latter notion to represent leakage.46



4.1. Interative systems
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6Table 4.2: Two di�erent hannel matries indued by two di�erent input dis-tributions for Example 1Our model of attaker is the interative version of the attaker assoiatedto Shannon entropy in the lassi�ation of Köpf and Basin [KB07b℄, disussedin Chapter 3. In the ase of a standard single-use hannel, the invulnerabilitydegree of the seret before the attaker observes the output is the entropy of theinput, determined by its a priori distribution. The invulnerability degree afterthe attaker observes the output is the onditional entropy of the input giventhe output, determined by its a posteriori distribution. The latter is alwayssmaller than or equal to the �rst. The di�erene between these invulnerabilitydegrees orresponds to the mutual information, and represents the leakage ofthe system. In our interative framework we onsider the same senario, butiterated. At eah time step, we onsider the input sequene so far; and theinrease of its vulnerability aused by the observation of the new output isgiven by the ontribution of the present step to the leakage. The sum of allthese ontributions represents the total leakage and, as we will see, orrespondsto Massey's direted information. We will ome bak to the model of attakerin Setion 4.4, and disuss also a variant of this interpretation.A seond ontribution of our work is the proof that the hannel apaityis a ontinuous funtion of a pseudometri on interative systems based onthe Kantorovih metri. The reason why we are interested in the ontinuityof the apaity is for omputability purposes. Given a funtion f from a(pseudo)metri spae X to a (pseudo)metri spae Y the ontinuity of f meansthat, given a sequene of objets x1, x2, . . . ∈ X onverging to x ∈ X , the series
f(x1), f(x2), . . . ∈ Y onverges to f(x) ∈ Y. Hene f(x) an be approximatedby the objets f(x1), f(x2), . . .. The typial use of this property is in thease of exeution trees generated by programs ontaining loops. Generallythe automaton expressing the semantis of the program an be seen as the(metri) limit of the sequene of trees generated by unfolding the loop to an47



4. Information flow in interative systemsinreasingly deeper level. The ontinuity of the apaity means that we anapproximate the real apaity by the apaities of these trees.4.2 Disrete hannels with memory and feedbakIn this setion we present the notion of hannel with memory and feedbak. Weassume a senario in whih the hannel is used repeatedly, in a �nite temporalsequene of steps 1, . . . , T . Intuitively, memory means that the output at time
t(1 ≤ t ≤ T ) depends on the input and output histories, i.e. on the inputs upto time t, and on the output up to time t− 1. Feedbak means that the inputat time t depends on the outputs up to time t− 1.We adopt the following notation.Convention 2. Given sets of symbols (alphabets) A = {a1, . . . , bn}, B =
{b1, . . . , bn}, we use a Greek letter (α, β, . . . ) to denote a sequene of symbolsordered in time. Given a sequene α = ai1ai2 . . . aim, the notation αt representsthe symbol at time t, i.e. ait, while αt represents the sequene αi1

αi2
. . . αit

.For instane, in the sequene α = a3a7a5, we have α2 = a7 and α2 = a3a7.Analogously, if X is a random variable, then Xt denotes the sequene of tonseutive instanes X1, . . . ,Xt of X.We now de�ne formally the onepts of memory and feedbak. Consider ahannel from input A to output B. The hannel behavior after T uses an befully desribed by the joint distribution of AT×BT , namely by the probabilities
p(αT , βT ). Using the hain rule, we an deompose these probabilities asfollows:

p(αT , βT ) =
T∏

t=1

p(αt|α
t−1, βt−1)p(βt|α

t, βt−1) (4.1)De�nition 3. We say that a hannel has feedbak if, in general,
p(αt|α

t−1, βt−1) 6= p(αt|α
t−1), i.e. the probability of αt depends not only on

αt−1, but also on βt−1. Analogously, we say that the hannel has memory if,in general, p(βt|αt, βt−1) 6= p(βt|αt), i.e. the probability of βt depends on αtand βt−1.Note that in the opposite ase, i.e. when p(αt|α
t−1, βt−1) oinides with

p(αt|α
t−1) and p(βt|α

t, βt−1) oinides with p(βt|αt), we have a lassial han-nel (memoryless, and without feedbak), in whih eah use is independent fromthe previous ones. The only possible dependeny on the history is the one of
at on at−1. This is beause A1, . . . , AT are in general orrelated, due to thefat that they are produed by an enoding funtion. Note that in absene of48



4.2. Disrete hannels with memory and feedbakmemory and feedbak (4.1) redues to:
p(αT , βT ) =

T∏

t=1

p(αt|α
t−1) p(βt|αt)

= p(αT )

T∏

t=1

p(βt|αt) (by the hain rule) (4.2)from whih we an derive the standard formula for a lassial hannel after Tuses.
p(βT |αT ) =

p(αT , βT )

p(αT )

=
T∏

t=1

p(βt|αt) (by (4.2))So far we have given a very abstrat desription of a hannel with memoryand feedbak. We now disuss a more onrete notion following the presen-tation of [TM09℄. Suh a hannel, represented in Figure 4.2, onsists ofa sequene of omponents formally de�ned as a family of stohasti kernels
{p(· |αt, βt−1)}Tt=1 over B.The probabilities p(βt|αt, βt−1) represent innermost behavior of the hannelat time t, 1 ≤ t ≤ T : the internal hannel takes the input αt and, dependingon the history of inputs and outputs so far, it produes an output symbol βt.The output is then fed bak to the enoder with delay one. On the input side,at time t the enoder takes the message and the past output symbols βt−1 andprodues a hannel input symbol αt aording to the ode funtion ϕt (we willexplain this onept in the next paragraph). At �nal time T the deoder takesall the hannel outputs βT and produes the deoded message Ŵ . The orderin time is the following:Message W, α1, β1, α2, β2, . . . , αT , βT , Deoded Message ŴLet us now explain the onept of ode funtion. Intuitively, a ode fun-tion is a strategy to enode the message into a suitable representation to betransmitted through the hannel. There is a ode funtion for eah possiblemessage, and the funtions are �xed at the very beginning of the transmission(time t = 0). The enoding, however, an use the information provided viafeedbak, so eah omponent ϕt (1 ≤ t ≤ T ) of the ode funtion takes asparameter the history of feedbak βt−1 to generate the next input symbol αt.Formally, let Ft be the set of all measurable maps ϕt : Bt−1 → A en-dowed with a probability distribution, and let Ft be the orresponding ran-dom variable. Let FT , F T denote the Cartesian produt on the domain and49



4. Information flow in interative systems
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t = 1 . . . TFigure 4.2: Model for disrete hannel with memory and feedbakthe random variable, respetively. A hannel ode funtion is an element
ϕT = (ϕ1, . . . , ϕT ) ∈ F

T .Note that, by the hain rule, p(ϕT ) =
∏T

t=1 p(ϕt|ϕ
t−1). Hene the distri-bution on FT is uniquely determined by a sequene {p(ϕt|ϕ

t−1)}Tt=1. The no-tation ϕt(βt−1) will represent the A-valued t-tuple (ϕ1, ϕ2(β
1), . . . , ϕt(β

t−1)).In Information Theory this kind of hannel is used to enode and transmitmessages. If W is a set of messages of ardinality M with typial element w,endowed with a probability distribution, a hannel ode is a set of M hannelode funtions ϕT [w], interpreted as follows: for message w, if at time t thehannel feedbak is βt−1, then the hannel enoder outputs ϕt[w](β
t−1). Ahannel deoder is a map from BT to W whih attempts to reonstrut theinput message after observing all the output history βT from the hannel.4.2.1 The power of feedbakThe original purpose of ommuniation hannel models is to represent datatransmission from a soure to a reeiver. Shannon's Channel Coding Theo-rem states that for every hannel there is an enoding sheme that allows atransmission rate arbitrarily lose to the hannel apaity with a negligibleprobability of error (if the number of uses of the hannel is large enough). Ageneral way to �nd an optimal enoding sheme that is also easy to deodehas not been found yet. The use of feedbak, however, an simplify the designof the enoder and of the deoder. The following example illustrates the idea.

0 1 e
0 0.8 0 0.2

1 0 0.8 0.2Table 4.3: Channel matrix for binary erasure hannelExample 2. Consider a disrete memoryless binary hannel {A,B, p(.|.)} with
A = {0, 1}, B = {0, 1, e} and the hannel matrix of Table 4.3. This kind of50



4.2. Disrete hannels with memory and feedbakhannel is alled erasure hannel beause it an lose (or erase) bits during thetransmission with a ertain probability. Namely, any bit has 0.8 probability ofbeing orretly transmitted, and 0.2 probability of being lost. On the outputside the enoder is able to detet whether the bit was erased (by reeiving an esymbol), but it annot tell whih was the atual value of the original bit. TheChannel Coding Theorem guarantees that the maximum information transmis-sion rate in this hannel is (2 to the power of) the hannel apaity, i.e. 0.8bits per use of the hannel.Following simple priniples desribed in [CT06℄, an enoding that ahievesthe apaity an be easily obtained if the hannel an be used with feedbak. Theidea is an adaptation of the stop-and-wait protool [Sta06, Tan89℄. Supposethat every bit reeived on the output end of the hannel is fed bak noiselessly tothe soure with delay 1. De�ne the enoding as follows: for eah bit transmitted,the enoder heks via feedbak whether the bit was erased. If not, the enodermoves on to transmit the text of the message. If yes, the enoder transmits thesame bit again.It is easy to see that with this enoding sheme the transmission rate is 0.8bit per usage of the hannel, sine in 80% of the ases the bit is transmittedproperly, and in 20% it is lost and a retransmission is needed.We now proeed to illustrate in more detail the design and the funtion ofthe enoder and deoder.An example illustrating the the enoder/deoder designWe proeed with the erasure hannel of Example 2 to show how the enrihedmodel of hannels with memory and feedbak an be used to transmit themessage, and in partiular how the feedbak an be used to design the enoder.We assume that the setW of possible messages onsists of all �nite sequenes ofbits. The role of the ode funtions is to enode the message W into a suitablerepresentation for the stohasti kernels within the hannel. The input andoutput alphabets for the stohasti kernels are A = {0, 1} and B = {0, 1, e},respetively. We assume that at most T uses of the hannel are allowed andwe use t, with 1 ≤ t ≤ T , to represent the tth time step.We onsider a sort of memory that depends only on the input history andwe abstrat from its spei� form by de�ning a funtion η : P(At) → [0, 1]that maps eah possible input history to a orretion fator to be added to (orsubtrated from) a base probability value. We ompute the ontribution of ηto the base values using arithmetis modulo 2, in suh a way that the resultingvalues are still a probability distribution. More preisely, the stohasti kernels51



4. Information flow in interative systemsare de�ned as follows.
p(βt = 0|αt−10, βt−1) = 0.8 − η(αt−1)
p(βt = 1|αt−10, βt−1) = 0
p(βt = e|αt−10, βt−1) = 0.2 + η(αt−1)
p(βt = 0|αt−11, βt−1) = 0
p(βt = 1|αt−11, βt−1) = 0.8 − η(αt−1)
p(βt = e|αt−11, βt−1) = 0.2 + η(αt−1)

(4.3)Correspondingly, the general form of the hannel matrix for eah time
1 ≤ t ≤ T is shown in Table 4.4.

0 1 e
αt = 0, βt−1 0.8 − η(αt−1) 0 0.2 + η(αt−1)

αt = 1, βt−1 0 0.8 − η(αt−1) 0.2 + η(αt−1)Table 4.4: General form of hannel matrixThe ode funtions are hosen at time t = 0, based on the message to betransmitted. For illustration purposes, let us suppose that the message is thesequene of three bits W = 011. The other ases of W are analogous.At time t = 1, the hannel is used for its �rst time and the feedbak historyso far is empty β0 = ǫ. The enoder selets the input symbol α0 = 0, as in(4.4).
f1[W = 011](β0 = ǫ) = 0 (4.4)At time t = 2, the feedbak history onsists of only one symbol, and inpriniple the possibilities are either β1 = 0, β1 = 1 or β1 = e. In the �rstase, the �rst bit was suessfully transmitted and the enoder an go on tothe seond bit of the message. By the way the hannel is de�ned, the seondase is not really possible, so it is not important how the reation funtion isde�ned for this ase. We will denote this indi�erene by attributing to thefuntion the symbol x instead of a 0 or a 1. In the last ase, β1 = e, the �rstbit was erased and the enoder tries to retransmit the bit 0. We an write itformally as below.
f2[W = 011](β1 = 0) = 1
f2[W = 011](β1 = 1) = x

f2[W = 011](β1 = e) = 0
(4.5)At time t = 3 the feedbak histories allowed by the hannel are β2 ∈

{01, 0e, e0, ee} (the other ones have zero probability). In the �rst ase, β2 = 01the two �rst bits of the message have been transmitted orretly and theenoder an send the third bit. If β2 = 0e, the transmission of the �rst bit52



4.2. Disrete hannels with memory and feedbakwas suessful, but the seond bit was erased and needs to be resent. In thease β2 = e0, the �rst bit was erased in the �rst try but was suessfullytransmitted in the seond try, so now the enoder an move to the seond bitof the message. In the last ase, β2 = ee, the two tries were unsuessful andthe enoder still needs to transmit the �rst bit of the message. Formally:
f3[W = 011](β2 = 00) = x

f3[W = 011](β2 = 01) = 1
f3[W = 011](β2 = 0e) = 1
f3[W = 011](β2 = 10) = x

f3[W = 011](β2 = 11) = x

f3[W = 011](β2 = 1e) = x

f3[W = 011](β2 = e0) = 1
f3[W = 011](β2 = e1) = x

f3[W = 011](β2 = ee) = 0

(4.6)
We an easily extend the onstrution of ode funtions ft for 3 ≤ t ≤ Tusing this enoding sheme.The deoder is very simple: one all time steps 1, . . . , T have taken plae,it just takes the whole output trae βT and removes the ourrenes of theerased bit symbol e in order to reover the original message.Table 4.5 shows a possible behavior of a binary erasure hannel with mem-ory and feedbak in a senario where the message is W = 011 and the hannelan be used at most T = 3 times. Note that in this partiular example themaximum number of uses of the hannel is ahieved before the whole mes-sage is suessfully sent: the deoder an reover only the two �rst bits of theoriginal message.We an observe that the hannel apaity in the above example does notinrease with the addition of feedbak (it is 0.8 bit per usage of the hannel withor without feedbak). This is beause the hannel is memoryless: feedbak doesnot inrease the apaity of disrete memoryless hannels [CT06℄. In generalhowever, feedbak does inrease the apaity.4.2.2 Direted information and apaity of hannels withfeedbakIn lassial Information Theory, the hannel apaity, whih is related to thehannel's transmission rate by Shannon's Channel Coding Theorem, an beobtained as the supremum of the mutual information over all possible inputdistributions. In the presene of feedbak, however, this orrespondene nolonger holds. More spei�ally, mutual information no longer represents theinformation �ow from AT to BT . Intuitively, this is due to the fat that mutualinformation expresses orrelation, and therefore it is inreased by feedbak (seeExample 5). Yet feedbak, i.e. the way the output in�uenes the next input,is not part of the information to be transmitted. If we want to maintain the53



4. Information flow in interative systemsTime Code Feedbak Enoder Channel Deoder
t funtions history αt = p(βt|α

t, βt−1) Ŵ =

ft(β
t−1) βt−1 ft[W ](βt−1) γ(βT )Code

t = 0 funtions ��� ��� ��� ���for W = 011are seleted.
α1 = Aording to

t = 1 As in (4.4) ǫ f1[W = 011](ǫ) p(β1|0, ǫ) ���
= 0 produes

β1 = e
α2 = Aording to

t = 2 As in (4.5) e f2[W = 011](e) p(β2|00, e) ���
= 0 produes

β2 = 0

α3 = Aording to
t = 3 As in (4.6) e0 f3[W = 011](e0) p(β3|001, e0) ���

= 1 produes
β3 = 1 Deoded

t = 4 ��� ��� ��� ��� message Ŵ =

γ(β3 = e01)
= 01Table 4.5: A possible evolution of the binary hannel with time, for W = 011and T = 3orrespondene between the transmission rate and apaity, we need to replaethe mutual information with direted information [Mas90℄.De�nition 4. In a hannel with feedbak, the direted information from input

AT to output BT is de�ned as
I(AT → BT ) =

T∑

t=1

I(At;Bt|B
t−1)In the other diretion, the direted information from BT to AT is de�ned as

I(BT → AT ) =

T∑

t=1

I(At;B
t−1|At−1)In Setion 4.4 we will disuss the relation between direted information andmutual information, as well as the orrespondene with information leakage.For the moment, we only present the extension of the onept of apaity.Let DT = {p(αt|α

t−1, βt−1)}Tt=1 be the set of all input distributions inpresene of feedbak. For �nite T , the apaity of a hannel with memory andfeedbak is:
CT = sup

DT

1

T
I(AT → BT ) (4.7)54



4.3. Interative systems as hannels with memory and feedbakThe apaity is also de�ned when T is in�nite, see [TM09℄. In this thesis,however, we only need to onsider the �nite ase.4.3 Interative systems as hannels with memoryand feedbakInterative Information Hiding Systems (IIHS) were introdued in [APvRS10℄to represent systems where serets (inputs) and observables (outputs) an in-terleave and in�uene eah other. They are a variant of probabilisti au-tomata in whih ations are divided in serets and observables. They anbe of two kinds: fully probabilisti, and seret-nondeterministi (or input-nondeterministi). In the former there is no nondeterminism, while in thelatter every seret hoie is fully nondeterministi. In this hapter we onsidernormalized IIHSs, in whih serets and observables alternate, and the ationsat the �rst level are serets. We note that this is not really a restrition, be-ause given an IIHS whih is not normalized, it is always possible to transformit into a normalized IIHS whih is equivalent to the former one up to a givenexeution level. The reader an �nd in Setion 4.3 the formal de�nition of thetransformation. Furthermore, we require that for eah state s and eah ation
ℓ there is at most one state that an be reahed from s by performing an ℓtransition.In this setion we formalize the notion of IIHS and we show how to assoiateto an IIHS a hannel with memory and feedbak.De�nition 5. A (normalized) IIHS is a triple I = (M,A,B), where A and
B are disjoint sets of serets and observables respetively, M is a probabilistiautomaton (S,L, ŝ, ϑ) with L = A ∪ B, and, for eah s ∈ S:1. either ϑ(s) ⊆ D(A×S) or ϑ(s) ⊆ D(B ×S). We all s a seret state inthe �rst ase, and an observable state in the seond ase;2. if s ℓ

→ r then: if s is a seret state then r is an observable state, and if
s is an observable state then r is a seret state;3. ŝ is a seret state;4. if s is an observable state then |ϑ(s)| ≤ 1 ;5. either:(i) for every seret state s we have |ϑ(s)| ≤ 1 (fully probabilisti IIHS),or(ii) for every seret state s there exist ai and si (i = 1, . . . , n) suh that

ϑ(s) = {δ(ai, si)}
n
i=1, where δ(ai, si) is the Dira measure (seret-nondeterministi IIHS); 55



4. Information flow in interative systems6. for every state s and ation ℓ there exists a unique state r suh that
s

ℓ
→ r.In the rest of the paper we will omit the adjetive �normalized� for sim-pliity. In the above de�nition, Conditions 1 and 2 imply that the IIHS isalternating between serets and observables. Moreover, all the transitionsbetween nodes at two onseutive depths have either seret ations only, orobservable ations only. Condition 3 means that the �rst level ontains seretations. Condition 4 means that all observable transitions are fully probabilis-ti. Condition 5 means that all seret transitions are either fully probabilistior fully nondeterministi. The term �nondeterministi� is justi�ed by the fatthat the sheme of Condition 5i represented in Figure 4.3(a), is equivalent tothe one of Figure 4.3(b).
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an(b) Equivalent shemeFigure 4.3: Sheme of seret transitions for seret-nondeterministi IIHSsNote that we do not onsider here internal nondeterminism suh as thatone arising from interleaving of onurrent proesses. This means that wemake a rather restrited use of probabilisti automata, but this is enough forour purposes. The nondeterminism generated by onurreny gives rise to anew set of problems (see for example [CPP08a℄) whih are orthogonal to thoseonsidered in this paper.Condition 6 means that the seret and observable ations determine thestates. As a onsequene, the ations are enough to retrieve the path. This isexpressed by the following proposition:Proposition 6. Given an IIHS, onsider two paths σ and σ′. If traceA(σ) =
traceA(σ

′) and traceB(σ) = traceB(σ
′), then σ = σ′.Proof. By indution on the length of the traes. The initial state of the au-tomaton is uniquely determined by the empty (seret and observable) traes.Assume now we are in a state s uniquely determined by seret and observabletraes α and β , respetively. If s makes a seret transition s

a
→ s′, then byCondition 6 there is only one state s′ reahable from s via an a-transition,and therefore s′ is uniquely determined by the seret trae α′ = αa and the56



4.3. Interative systems as hannels with memory and feedbakobservable trae β . The ase in whih s makes an observable transition issimilar.The normalization of IIHS treesIn this setion we will address the problem of normalizing an IIHS, namelytransforming it into a strati�ed automaton in whih seret and observableations alternate level by level. The proess of normalization desribed bellowis general enough to be applied to any IIHS without loss of generality orexpressive power.Let A and B represent the seret and observable ations, respetively. Con-sider a general IIHS I = (M,A,B) with M = (Q,L, ŝ, ϑ), where L = A ∪ B.Assume that we are only interested in exeutions that involve up to T intera-tions, i.e. T uses of the system, with one seret taking plae and one observableprodued at eah time.In the normalization proess, we unfold the automaton up to level 2T , sinethere is one seret symbol and one observable symbol for eah step. We alsoextend the seret alphabet A with a new symbol a∗ /∈ A and the observablealphabet B with a new symbol b∗ /∈ B. These new symbols will be used asplaeholders when we need to re-balane the tree. Let A′ = A ∪ {a∗} and
B′ = B ∪ {b∗}.For a given level t let labels(I, t) be the set of all labels of transitions thatan be performed with a non-zero probability from the states at the tth levelof the automaton. Formally:

labels(I, t) ≡ {ℓ ∈ L | ∃σ, s . |σ| = t, last(σ)
ℓ
→ s}The normalization of the IIHS I leads to an equivalent IIHS I′ = (M ′,A′,B′),where M ′ = (Q′,L′, ŝ′, ϑ′) and L′ = A′ ∪ B′; and suh that, for every 1 ≤ t ≤

2T :1. labels(I′, t) ⊆ A′ or labels(I′, t) ⊆ B′;2. labels(I′, t) ⊆ A′ if and only if labels(I′, t+1) ⊆ B′, for 1 ≤ t ≤ T−1;3. labels(I′, 1) ⊆ A′;Condition 1 states that eah level onsists of either the seret ations only,or the observable ations only. Condition 2 states that seret and observablelevels alternate. Condition 3 says that the automaton starts with a seret level.The proof is straightforward. First, the new symbols a∗ and b∗ are plae-holders for the absene of a seret and observable symbol, respetively. If ina given level t we want to have only seret symbols, we an postpone the o-urrenes of observable symbols at this level as follows: add a∗ to the seretlevel and �move� all the observable symbols to the subtree of a∗. Figure 4.4exempli�es the loal transformations we need to make on the tree. 57



4. Information flow in interative systems
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p′ai = pai ;2. The probability of the new symbol a∗ is introdued as pa∗ =

∑m
k=0 pbk ;3. If pa∗ 6= 0, then for 1 ≤ i ≤ m, the assoiated probability of bj is updatedto p′bj = pbj/pa∗ = pbj/

∑m
k=0 pbk . If pa∗ = 0, then p′bj

= 0, for 1 ≤ i ≤ m,and pb∗ = 1.The subtrees of eah node of the original tree are preserved as they are,until we apply the same transformation to them. If a node does not have asubtree (i.e. no desendants), we reate a subtree by adding all the possibleations in B with probability 0, and the ation b∗ with probability 1.If we are normalizing an observable level, the same rules apply, guardingthe proper symmetry between serets and observables. We then proeed onthe same way on the deeper levels of the tree. Figure 4.5 shows an example ofa full transformation on a tree (for the sake of readability, we omit the levelswhere only a∗ = 1 or b∗ = 1).4.3.1 Constrution of the hannel assoiated to an IIHSWe now show how to assoiate a hannel to an IIHS.In an interative system serets and observables may interleave and in�u-ene eah other. Considering a hannel with memory and feedbak is a wayto apture this rih behavior. Serets have a ausal in�uene on observablesvia the hannel, and, in the presene of interativity, observables have a ausalin�uene on serets via feedbak. This alternating mutual in�uene betweenserets and observables an be modeled by repeated uses of the hannel. Eahtime the hannel is used it represents a di�erent state of the omputation, andthe onditional probabilities of observables on serets an depend on this state.58



4.3. Interative systems as hannels with memory and feedbak
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0(b) Tree after transformationFigure 4.5: Transformation in an IIHS treeThe addition of memory to the model allows expressing the dependeny of thehannel matrix on suh a state.We will see that a seret-nondeterministi IIHS determines a hannel asspei�ed by its stohasti kernels, while a fully probabilisti IIHS determines,additionally, the input distribution.In Setion 4.5 we will give an extensive and detailed example of how tomake suh a onstrution for an atual seurity protool.Given a path σ of length 2t − 1, we will denote traceA(σ) by αt, and
traceB(σ) by βt−1.De�nition 7. Let I be an IIHS. For eah t, the hannel's stohasti kernelorresponding to I is de�ned as p(βt|α

t, βt−1) = ϑ(s)(βt, s
′), where s is thestate reahed from the root via the path σ whose seret and observable traesare αt and βt−1 respetively.Note that s and s′ in the previous de�nition are well de�ned: by Proposi-tion 6, s is unique, and sine the hoie of βt is fully probabilisti, s′ is alsounique.The following example illustrates how to apply De�nition 7, with the helpof Proposition 6, to build the hannel matrix of a simple example.Example 3. Let us onsider an extended version of the website interative sys-tem of Figure 4.1. We maintain the general de�nition of the system, i.e. thereare two possible buyers (rich and poor, represented by rc. and pr., respetively)and two possible produts (cheap and expensive, represented by chp. and exp.,respetively). We still assume that o�ers are observable, sine they are visibleto everyone on the website, but the identity of buyers should be kept seret. Weonsider two onseutive rounds of o�ers and buys, whih implies that, afternormalization, T = 3. Figure 4.6 shows an automaton for this example innormalized form. Transitions with null probability are omitted, and the symbol

a∗ is used as a plae holder to ahieve the normalized IIHS (see Setion 4.3).59



4. Information flow in interative systemsTo onstrut the stohasti kernels {p(βt|αt, βt−1)}Tt=1, we need to deter-mine the onditional probability of an observable at time t given the history upto time t.Let us take the ase t = 2 and ompute the onditional probability of theobservable β2 = cheap given that the history of serets up to time t = 2 is
α2 = a∗, poor and the history of observables is β1 = expensive. ApplyingDe�nition 7, we see that p(β2 = cheap|α2 = a∗, poor, β

1 = expensive) =
ϑ(s)(cheap, s′). By Proposition 6, the traes α2 = a∗, poor, β

1 = expensivedetermine a unique state s in the automaton, namely, the state s = 5. More-over, from the state 5 a unique transition labeled with the ation cheap ispossible, leading to the state s′ = 11. Therefore, we an onlude that p(β2 =
cheap|α2 = a∗, poor, β

1 = expensive) = ϑ(s = 5)(cheap, s′ = 11) = p23.Similarly, with t = 1 and history α1 = a∗, β
0 = ǫ, the observable sym-bol β1 = expensive an be observed with probability p(β1 = expensive|α1 =

a∗, β
0 = ǫ) = ϑ(s = 0)(cheap, s′ = 2) = p1.If I is fully probabilisti, then it determines also the input distribution andthe dependeny of αt on βt−1 (feedbak) and on αt−1.De�nition 8. Let I be an IIHS. If I is fully probabilisti, the assoiated han-nel has a onditional input distribution for eah t de�ned as p(αt|α

t−1, βt−1) =
ϑ(s)(αt, s

′), where s is the state reahed from the root via the path σ whose se-ret and observable traes are αt−1 and βt−1 respetively.Example 4. Sine the system of Example 3 is fully probabilisti, we an al-ulate the values of the onditional probabilities {p(αt|α
t−1, βt−1)}Tt=1.Let us take, for instane, the ase where t = 2 and ompute the onditionalprobability of seret α2 = poor given that the history of serets up to time t = 2is α1 = a∗ and the history of observables is β1 = expensive. Applying De�ni-tion 8, we see that p(α2 = poor|α1 = a∗, β

1 = expensive) = ϑ(s)(poor, s′). ByProposition 6, the traes α1 = a∗, β
1 = expensive determine a unique state sin the automaton, namely, the state s = 2. Moreover, from the state 2 a uniquetransition labeled with the ation poor is possible, leading to the state s′ = 5.Therefore, we an onlude that p(α2 = poor|α1 = a∗, β

1 = expensive) =
ϑ(s = 2)(poor, s′ = 5) = q12.Similarly, with t = 3 and history α2 = a∗, rich, β

2 = cheap, expensive,the seret symbol α3 = rich an be observed with probability p(α3 = rich|α2 =
α∗, rich, β

0 = cheap, expensive) = ϑ(s = 10)(cheap, s′ = 22) = q24.4.3.2 Lifting the hannel inputs to reation funtionsTaken together, De�nitions 7 and 8 show how to obtain the the joint probabil-ities p(αt, βt) for a fully probabilisti IIHS. We still need to show, however, inwhat sense this joint probability distribution de�nes an information-theoretihannel.60



4.3. Interative systems as hannels with memory and feedbak
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t−1, βt−1)}Tt=1. In an information-theoreti hannel, the value of αtis determined in the enoder by a deterministi funtion ϕt(β

t−1). Therefore,inside the enoder there is no possibility for a probabilisti desription of αt.The solution is to externalize this probabilisti behavior to the ode funtions.As shown in [TM09℄, the original hannel with feedbak from input symbols
AT to output symbols BT an be lifted to an equivalent hannel without feed-bak from ode funtions FT to output symbols BT . This transformation alsoallows us to alulate the hannel apaity. Let {p(ϕt|ϕ

t−1)}Tt=1 be a sequeneof ode funtion stohasti kernels and let {p(βt|αt, βt−1)}Tt=1 be a hannelwith memory and feedbak. The hannel from F T to BT is onstruted usinga joint measure Q(ϕT , αT , βT ) that respets the following onstraints:De�nition 9. A measure Q(ϕT , αT , βT ) is said to be onsistent with re-spet to the ode funtion stohasti kernels {p(ϕt|ϕ
t−1)}Tt=1 and the hannel

{p(βt|α
t, βt−1)}Tt=1 if, for eah t:1. There is no feedbak to the ode funtions:

Q(ϕt|ϕ
t−1, αt−1, βt−1) = p(ϕt|ϕ

t−1)2. The input is a funtion of the past outputs:
Q(αt|ϕ

t, αt−1, βt−1) = δ{ϕt(β
t−1)}(αt) 61



4. Information flow in interative systemswhere δ is the Dira measure;3. The properties of the underlying hannel are preserved:
Q(βt|F

t = ϕt, At = αt, Bt−1 = βt−1) = p(βt|α
t, βt−1)The following result states that there is only one onsistent measure

Q(ϕT , αT , βT ).Theorem 10 ([TM09℄). Given the probability distributions {p(ϕt|ϕ
t−1)}Tt=1and a hannel de�ned by {p(βt|αt, βt−1)}Tt=1, there exists only one onsistentmeasure Q(ϕT , αT , βT ). Furthermore the hannel from FT to BT is given by:

Q(βt|ϕ
t, βt−1) = p(βt|ϕ

t(βt−1), βt−1)Sine in our setting the onept of enoder makes little sense as there isno information to enode, we externalize the probabilisti behavior of αt asfollows. Code funtions beome a single set of reation funtions {ϕt}
T
t=1 with

βt−1 as parameter (the message w does not play a role any more). Reationfuntions an be seen as a model of how the environment reats to given systemoutputs, produing new system inputs (they do not play a role of enoding amessage). These reation funtions are endowed with a probability distributionthat generates the probabilisti behavior of the values of αt.De�nition 11. A reator is a distribution on reation funtions, i.e. a se-quene of stohasti kernels {p(ϕt|ϕ
t−1)}Tt=1. A reator R is onsistent with afully probabilisti IIHS I if it indues the ompatible distribution Q(ϕT , αT , βT )suh that, for every 1 ≤ t ≤ T , Q(αt|α

t−1, βt−1) = p(αt|α
t−1, βt−1), where thelatter is the probability distribution indued by I.The main result of this setion states that for any fully probabilisti IIHSthere is a reator that generates the probabilisti behavior of the IIHS. Beforemoving to this result, we need to introdue a lemma.Lemma 12. Let X ,Y be non-empty �nite sets, and let x̃ ∈ X , ỹ ∈ Y. Let

p : X × Y → [0, 1] be a funtion suh that, for every x ∈ X , we have:
∑

y∈Y p(x, y) = 1. Then:
∑

f∈X→Y

f(x̃)=ỹ

∏

x∈X

p(x, f(x)) = p(x̃, ỹ)Proof. By indution on the number of elements of X .62



4.3. Interative systems as hannels with memory and feedbakBase ase: X = {x̃}. In this ase:
∑

f∈X→Y

f(x̃)=ỹ

∏

x∈X

p(x, f(x)) = p(x̃, f(x̃)) = p(x̃, ỹ)

Indutive ase: Let X = X ′ ∪ {x̊}, with x̃ ∈ X ′ and x̊ /∈ X ′. Then:
∑

f∈X ′∪{x̊}→Y

f(x̃)=ỹ

∏

x∈X ′∪{x̊}

p(x, f(x)) = (by distributivity)









∑

f∈X ′→Y

f(x̃)=ỹ

∏

x∈X ′

p(x, f(x))










∑

g∈{x̊}→Y

p(̊x, g(̊x)) = (by the assumption)
∑

f∈X ′→Y

f(x̃)=ỹ

∏

x∈X ′

p(x, f(x)) = (by the ind. hyp.)
p(x̃, ỹ)

Theorem 13. Let I be a fully probabilisti IIHS induing the joint probabilitydistribution p(αt, βt), 1 ≤ t ≤ T , on seret and observable traes. It is alwayspossible to onstrut a hannel with memory and feedbak, and an assoiatedprobability distribution Q(ϕT , αT , βT ), whih orresponds to I in the sense that,for every 1 ≤ t ≤ T , αt, βt, the equality Q(αt, βt) = p(αt, βt) holds.Proof. First note that, by laws of probability, Q(αt, βt) =
∑

ϕt Q(ϕt, αt, βt).So we need to show that ∑ϕt Q(ϕt, αt, βt) = p(αt, βt) by indution on t.Base ase: t = 1. Let us de�ne Q(ϕ1|ǫ) = p(ϕ1(ǫ)) and Q(β1|α
1, ǫ) =63



4. Information flow in interative systems
p(β1|α1). Then:

∑

ϕ1

Q(ϕ1, α1, β1) =

∑

ϕ1

Q(ϕ1, α1, β1) = (by the hain rule)
∑

ϕ1

(Q(ϕ1|ǫ, ǫ, ǫ) ·Q(α1|ϕ1, ǫ, ǫ)·

Q(β1|ϕ1, α1, ǫ)) = (by De�nition 9)
∑

ϕ1

Q(ϕ1|ǫ)δ{ϕ1(ǫ)}
(α1)Q(β1|α

1, ǫ) = (by onstrution of Q)
∑

ϕ1

p(ϕ1(ǫ))δ{ϕ1(ǫ)}
(α1)p(β1|α1) = (by de�nition of δ)

p(α1)p(β1|α1) =

p(α1, β1) =

p(α1, β1)Indutive ase: Let us de�ne Q(βt|α
t, βt−1) = p(βt|α

t, βt−1), and
Q(ϕt|ϕ

t−1) =
∏

βt−1

p(ϕt(β
t−1)|ϕt−1(βt−2), βt−1)Note that, if we onsider X = {βt−1 | βi ∈ B, 1 ≤ i ≤ t − 1}, Y = A,and p(βt−1, αt) = p(αt|ϕ

t−1(βt−2), βt−1), then X , Y and p satisfy thehypothesis of Lemma 12.Then:
∑

ϕt

Q(ϕt, αt, βt) = (by the hain rule)
∑

ϕt

(
Q(ϕt−1, αt−1, βt−1)·

Q(ϕt|ϕ
t−1, αt−1, βt−1)·

Q(αt|ϕ
t, αt−1, βt−1) ·Q(βt|ϕ

t, αt, βt−1)
)
= (by De�nition 9)

∑

ϕt

(
Q(ϕt−1, αt−1, βt−1) ·Q(ϕt|ϕ

t−1)

δ{ϕt(β
t−1)}(αt) ·Q(βt|α

t, βt−1)
)

= (by onstr. of Q)
∑

ϕt

(
Q(ϕt−1, αt−1, βt−1)·64



4.3. Interative systems as hannels with memory and feedbak



∏

β
′t−1

p(ϕt(β
′t−1)|ϕt−1(β

′t−2), β
′t−1)



 ·

δ{ϕt(β
t−1)}(αt) · p(βt|α

t, βt−1)
)

= (by de�nition of δ)
∑

ϕt

ϕt(β
t−1)=αt

(
Q(ϕt−1, αt−1, βt−1) ·




∏

β
′t−1

p(ϕt(β
′t−1)|ϕt−1(β

′t−2), β
′t−1)



 ·

p(βt|α
t, βt−1)

)
=

∑

ϕt−1

( Q(ϕt−1, αt−1, βt−1)p(βt|α
t, βt−1)

∑

ϕt

ϕt(β
t−1)=αt

∏

β
′t−1

p(ϕt(β
′t−1)|ϕt−1(β

′t−2), β
′t−1) ) = (by Lemma 12)

∑

ϕt−1

( Q(ϕt−1, αt−1, βt−1) · p(βt|α
t, βt−1)·

p(αt|α
t−1, βt−1) ) =

p(βt|α
t, βt−1) · p(αt|α

t−1, βt−1)·
∑

ϕt−1

Q(ϕt−1, αt−1, βt−1) = (by ind. hyp.)
p(βt|α

t, βt−1) · p(αt|α
t−1, βt−1) · p(αt−1, βt−1) = (by the hain rule)

p(αt, βt)

Corollary 14. Let I be a fully probabilisti IIHS. Let {p(βt|αt, βt−1)}Tt=1 bea sequene of stohasti kernels and {p(αt|α
t−1, βt−1)}Tt=1 a sequene of inputdistributions de�ned by I aording to De�nitions 7 and 8. Then the reator

R = {p(ϕt|ϕ
t−1)}Tt=1 ompatible with respet to the I is given by:

p(ϕ1) = p(α1|α
0, β0) = p(α1) (4.8)

p(ϕt|ϕ
t−1) =

∏

βt−1

p(ϕt(β
t−1)|ϕt−1(βt−2), βt−1), 2 ≤ t ≤ T (4.9)Figure 4.7 depits the model for IIHS. Note that, in relation to Figure 4.2,there are some simpli�ations: (1) no message W is needed; 2) the enoder65



4. Information flow in interative systemsbeomes an �interator�; (3) the deoder is not used. At the beginning, a rea-tion funtion sequene ϕT is hosen and then the hannel is used T times. Ateah usage t, the interator produes the next input symbol αt by applying thereation funtion ϕt to the fed bak output βt−1. Then the hannel produesan output βt based on the stohasti kernel p(βt|αt, βt−1). The output is thenfed bak to the enoder, whih uses it for produing the next input.
Reaction-
Functions

ϕT

ϕt
//

“Interactor”
{αt = ϕt(β

t−1)}Tt=1

αt
//

Channel
{p(βt|α

t, βt−1)}Tt=1

βt
//

ooDelay
βt−1

OO
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _Figure 4.7: Channel with memory and feedbak model for IIHSWe onlude this setion by remarking on an intriguing oinidene: Thenotion of reation funtion sequene ϕT , on the IIHSs, orresponds to thenotion of deterministi sheduler [Seg95℄. In fat, eah reation funtion ϕtselets the next step, αt, on the basis of the βt−1 and αt−1 (generated by ϕt−1),and βt−1, αt−1 represent the path until that state.4.4 Leakage in interative systemsIn this setion we propose a de�nition for the notion of leakage in interativesystems. We �rst argue that mutual information is not the orret notion, andwe propose to replae it with the direted information instead.In the ase of hannels with memory and feedbak, mutual information isde�ned as I(AT ;BT ) = H(AT ) − H(AT |BT ), and it is still symmetri (i.e.
I(AT ;BT ) = I(BT ;AT )). Sine the roles of AT and BT in I(AT ;BT ) areinterhangeable, this onept annot apture ausality, in the sense that it doesnot imply that AT auses BT , nor onversely. Mutual information expressesorrelation between the sequenes of random variables AT and BT .Mathematially the mutual information I(AT ;BT ) for T uses of the han-nel an be expressed with the help of the hain rule of (3.4) in the followingway.

I(AT ;BT ) =
T∑

t=1

I(AT ;Bt|B
t−1)In the equation above, eah term of the sum is the mutual informationbetween the random variable Bt and the whole sequene of random variables

AT = A1, . . . , AT , given the history Bt−1. The equation emphasizes that attime 1 ≤ t ≤ T , even though only the inputs αt = α1, α2, . . . , αt have been66



4.4. Leakage in interative systemsfed to the hannel, the whole sequene AT , inluding At+1, At+2, . . . , AT , hasa statistial orrelation with Bt. Indeed, in the presene of feedbak, Bt mayin�uene At+1, At+2, . . . , AT .In order to show how the onept of direted information ontrasts withthe above, let us reall its de�nition:
I(AT → BT ) =

T∑

t=1

I(At;Bt|B
t−1).

I(BT → AT ) =
T∑

t=1

I(At;B
t−1|At−1).These notions apture the onept of ausality, to whih the de�nition ofmutual information is indi�erent. The orrelation between inputs and outputs

I(AT ;BT ) is split into the information I(AT → BT ) that �ows from input tooutput through the hannel and the information I(BT → AT ) that �ows fromoutput to the input via feedbak. Note that the direted information is notsymmetri: the �ow from AT to BT takes into aount the orrelation between
At and Bt, while the �ow from BT to AT takes into aount the orrelationbetween Bt−1 and At.It was proved in [TM09℄ that

I(AT ;BT ) = I(AT → BT ) + I(BT → AT ) (4.10)i.e. the mutual information is the sum of the direted information �ow inboth senses. Note that this formulation highlights the symmetry of mutualinformation from yet another perspetive.One we split mutual information into direted information in the two op-posite diretions, it is important to understand the di�erent roles that theinformation �ow in eah diretion plays. I(AT → BT ) represents the systembehavior: via the hannel the information �ows from inputs to outputs a-ording to the spei�ation of the system, modeled by the hannel stohastikernels. This �ow represents the amount of information an attaker an gainfrom the inputs by observing the outputs, and we argue that this is the realinformation leakage.On the other hand, I(BT → AT ) represents how the environment reats tothe system: given the system outputs, the environment produes new inputs.We argue that the information �ow from outputs to inputs is independent ofany partiular system: it is a harateristi of the environment itself. Hene,if an attaker knows how the environment reats to outputs (the probabilistibehavior of the reations of the environment given the system outputs), thisknowledge is part of the a priori knowledge of the adversary. As a furtherjusti�ation, observe that this is a natural extension of the lassial approah,where the hoie of serets is seen as external to the system, i.e. determined bythe environment. The probability distribution on the serets onstitutes the67



4. Information flow in interative systemsa priori knowledge and does not ount as leakage. In order to enompass thelassial approah, in our extended model we should preserve this priniple,and a natural way to do so is to onsider the seret hoies, at every stage ofthe omputation, as external. Their probability distributions, whih are nowin general onditional probability distributions depending on the history ofserets and observables, should therefore be onsidered as part of the externalknowledge, and not ounted as leakage.The following example supports our laim that, in the presene of feedbak,mutual information is not a orret notion of leakage.Example 5. Consider the disrete memoryless hannel with seret alphabet
A = {a1, a2} and observable alphabet B = {b1, b2} whose matrix is representedin Table 4.6.

b1 b2
a1 0.5 0.5

a2 0.5 0.5Table 4.6: Channel matrix for Example 5Suppose that the hannel is used with feedbak, in suh a way that, for all
1 ≤ t ≤ T , we have αt+1 = a1 if βt = b1, and αt+1 = a2 if βt = b2. It iseasy to show that if T ≥ 2 then I(AT ;BT ) 6= 0. Yet there is no leakage from
AT to BT , sine the rows of the matrix are all equal. We have indeed that
I(AT → BT ) = 0, and the mutual information I(AT ;BT ) is only due to thefeedbak information �ow I(BT → AT ).Having in mind the above disussion, we now propose a notion of infor-mation �ow based on our model. We follow the idea of de�ning leakage andmaximum leakage using the onepts of mutual information and apaity, mak-ing the neessary adaptations.As disussed in Chapter 3, in the non interative ase the de�nition ofleakage as mutual information, for a single use of the hannel, is

I(A;B) = H(A)−H(A|B)(fr. for instane [CPP08a, KB07b℄). This amounts to viewing the leakage asthe di�erene between the a priori invulnerability and the a posteriori one. Asexplained in Chapter 3, these orrespond to H(A) and H(A|B), respetively.This orresponds to the model of an attaker based on Shannon entropy dis-ussed by Köpf and Basin in [KB07b℄.In the interative ase, we an extend this notion by onsidering the leakageat every step t as given by
I(At;Bt|B

t−1) = H(At|Bt−1)−H(At|Bt, B
t−1)68



4.4. Leakage in interative systemsThe notion of attak is the same modulo the fat that we onsider all theinput from the beginning up to step t, and the di�erene in its vulnerabilityindued by the observation of Bt (the output at step t), taking into aountthe observation history Bt−1. It is then natural to onsider as total leakagethe summation of the ontributions I(At;Bt|B
t−1) for all the steps t. This isexatly the notion of direted information (fr. De�nition 4):

I(BT → AT ) =

T∑

t=1

I(At;Bt|B
t−1)De�nition 15. The information leakage of a fully probabilisti IIHS is de-�ned as the direted information I(AT → BT ) of the assoiated hannel withmemory and feedbak.We now show an equivalent formulation of direted information that leadsto a new interpretation in terms of an attak model. First we need the followinglemma.Lemma 16. I(BT → AT ) = H(AT )−

∑T
t=1 H(At|A

t−1, Bt−1)Proof.
I(BT → AT ) =

T∑

t=1

I(At;B
t−1|At−1) (by De�nition 4)

=

T∑

t=1

(
H(At|A

t−1)

−H(At|A
t−1, Bt−1)

) (by def. of mutual info.)
= H(AT )−

T∑

t=1

H(At|A
t−1, Bt−1) (by the hain rule)

The next proposition points out the announed alternative formulation ofdireted information from input to output:Proposition 17. I(AT → BT ) =
∑T

t=1 H(At|A
t−1, Bt−1)−H(AT |BT ) 69



4. Information flow in interative systemsProof.
I(AT → BT ) = I(AT ;BT )− I(BT → AT ) (by (4.10))

= I(AT ;BT )−H(AT )

+
T∑

t=1

H(At|A
t−1, Bt−1) (by Lemma 16)

= H(AT )−H(AT |BT )−H(AT )

+

T∑

t=1

H(At|A
t−1, Bt−1) (by def. of mutual info.)

=

T∑

t=1

H(At|A
t−1, Bt−1)−H(AT |BT )

We note that the term ∑T
t=1 H(At|A

t−1, Bt−1) an be seen as the entropy
HR of the reator R, i.e. the entropy of the inputs, taking into aount theirdependeny on the previous outputs. This brings us to an intriguing alternativeinterpretation of leakage.Remark 18. The leakage an be seen as the di�erene between the a prioriinvulnerability degree of the whole seret AT , assuming that the attaker knowsthe distribution of the reator, and the a posteriori invulnerability degree, afterthe adversary has observed the whole output BT .In Setion 4.5 we give an extensive and detailed example of how to alulatethe leakage for an atual seurity protool.In the ase of seret-nondeterministi IIHS, we have a stohasti kernelbut no distribution on the reation funtions. In this ase it seems natural toonsider the worst leakage over all possible distributions on reation funtions.This is exatly the onept of apaity.De�nition 19. The maximum leakage of a seret-nondeterministi IIHS isde�ned as the apaity CT of the assoiated hannel with memory and feedbak(fr. (4.7)).A omparison with the de�nition of Gray (fr. [Gra91℄, De�nition 5.3) isin order. As explained in the introdution, Gray's model is more ompliatedthan ours, beause it assumes that low and high variables are present at bothends of the hannel. If we restrit the de�nition of Gray's apaity CG to ourase, by eliminating the low input and the high output, we obtain the followingformula:

CG
T = sup

DT

1

T

T∑

t=1

I(At−1;Bt|B
t−1) (4.11)70



4.4. Leakage in interative systemsBy omparing (4.7), whih is based on De�nition 4, to (4.11), we an seethat the only di�erene is that (4.11) onsiders the orrelation between Bt and
At−1 instead of At. This seems to be intentional (fr. [Gra91℄, disussion afterDe�nition 4.1). We are not sure why CG is de�ned in this way, our best guessis that the high values must be those of the previous time step in order toenompass the theory of MLean [ML90℄. In any ase, Gray's onjeture that
CG
T orresponds to the hannel transmission rate does not hold. For instane,it is easy to see that for T = 1 we always have CG

T = 0, but there obviouslyare hannels whih an transmit a non-zero amount of information even withone single use.We onlude this setion by showing that our approah to the notion ofleakage generalizes the lassial approah (based on mutual information) tothe ase of feedbak. The idea is that, if a hannel does not have feedbak,then I(BT → AT ) = 0 and therefore I(AT ;BT ) = I(AT → BT ). In ouropinion, the fat that mutual information turns out to be a partiular ase ofdireted information helps to justify the former as a good measure of infor-mation �ow, despite its symmetry: in hannels without feedbak it is a goodmeasure beause it oinides with direted information from input to output.Lemma 20. In absene of feedbak, I(BT → AT ) = 0Proof. When feedbak is not allowed, Bt−1 and At are independent for 1 ≤
t ≤ T . Then:

I(BT → AT ) =
T∑

t=1

I(At;B
t−1|At−1) (by De�nition 4)

=

T∑

t=1

(H(At|A
t−1)

−H(At|A
t−1, Bt−1)) (by def. of mutual info.)

=

T∑

t=1

(H(At|A
t−1)

−H(At|A
t−1)) (Bt−1 and At are independent)

= 0Proposition 21. In absene of feedbak, leakage an be equivalently de�nedas direted information or as mutual information. Similarly, in absene offeedbak, the maximum leakage an be equivalently de�ned as direted apaityor as apaity.Proof. It follows diretly from Lemma 20 and (4.10). 71



4. Information flow in interative systems4.5 An example: the Coaine Aution protoolIn this setion we show the appliation of our approah to the Coaine AutionProtool [SA99℄. The formalization of this protool in terms of IIHSs using ourframework makes it possible to prove the laim in [SA99℄ suggesting that if theseller knows the identity of the bidders then the (strong) anonymity guarantiesare no longer assured.Let us onsider a senario in whih several mobsters are gathered arounda table. An aution is about to be held in whih one of them o�ers his nextshipment of oaine to the highest bidder. The seller desribes the merhandiseand proposes a starting prie. The others then bid inreasing amounts untilthere are no bids for, say, 30 onseutive seonds. At that point the sellerdelares the aution losed and arranges a seret appointment with the winnerto deliver the goods.The basi protool is fairly simple and is organized as a suession of roundsof bidding. Round i starts with the seller announing the bid prie bi for thatround. Buyers have t seonds to make an o�er (i.e. to say yes, meaning �I'mwilling to buy at the urrent bid prie bi�). As soon as one buyer anonymouslysays yes, he beomes the winner wi of that round and a new round begins. Ifnobody says anything for t seonds, round i is onluded by timeout and theaution is won by the winner wi−1 of the previous round, if one exists. If thetimeout ours during round 0, this means that nobody made any o�ers at theinitial prie b0, so there is no sale.Although our framework allows the formalization of this protool for anarbitrary number of bidders and bidding rounds, for illustration purposes wewill onsider the ase of two bidders (Candlemaker and Sarfae) and tworounds of bids. Furthermore, we assume that the initial bid is always 100euros, so the �rst bid does not need to be announed by the seller. In eahturn the seller an hoose how muh he wants to inrease the urrent bidvalue. This is done by adding an inrement to the last bid. There are twooptions of inrements, namely inc1 (100 euros) and inc2 (200 euros). In thatway, bi+1 is either bi + inc1 or bi + inc2. We an desribe this protool asa normalized IIHS I = (M,A,B), where A = {Candlemaker,Sarfae, a∗} isthe set of seret ations, B = {inc1, inc2, b∗} is the set of observable ations,and the probabilisti automaton M is represented in Figure 4.8. For larityreasons, transitions with probability 0 are not represented in the automaton.Note that the speial seret ation a∗ represents the situation where neitherCandlemaker nor Sarfae bid. The speial observable ation b∗ representsthe end of the aution and it an only our if no one has bid in the round.Table 4.7 shows all the stohasti kernels for this example.The next step is to onstrut all possible reation funtions {ϕt(β
t−1)}Tt=1.As seen in Setion 4.3.2, the reation funtions are the orrespondent to theenoder in the hannel. They take the feedbak story and deide how theworld will reat to this situation. Table 4.8 ontains the reation funtions for72



4.5. An example: the Coaine Aution protool
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α1 → β1 inc1 inc2 b∗Candlemaker q4 q5 0Sarfae q6 q7 0
a∗ 0 0 1(a) t=1, p(β1|α

1, β0)

α1, β1, α2 → β2 inc1 inc2 b∗Candlemaker,inc1,Candlemaker q22 q23 0Candlemaker,inc1,Sarfae q24 q25 0Candlemaker,inc1,a∗ 0 0 1Candlemaker,inc2,Candlemaker q27 q28 0Candlemaker,inc2,Sarfae q29 q30 0Candlemaker,inc2,a∗ 0 0 1Sarfae,inc1,Candlemaker q32 q33 0Sarfae,inc1,Sarfae q34 q35 0Sarfae,inc1,a∗ 0 0 1Sarfae,inc2,Candlemaker q37 q38 0Sarfae,inc2,Sarfae q39 q40 0Sarfae,inc2,a∗ 0 0 1
a∗,b∗,a∗ 0 0 1All other lines 0 0 1(b) t = 2, p(β2|α

2, β1)Table 4.7: Stohasti kernels for the Coaine Aution exampleeah time t ≤ 2.Now we need to de�ne the reator, i.e. the probability distribution onreation funtions. Corollary 14 shows that we an do so by using the followingequations:
p(ϕ1) = p(α1|α

0, β0) = p(α1)

p(ϕt|ϕ
t−1) =

∏

βt−1

p(ϕt(β
t−1)|ϕt−1(βt−2), βt−1), 2 ≤ t ≤ TFor instane, p(f1(1)) = p(Candlemaker) = p1. In the same way, p(f1(2)) =

p(Sarfae) = p2 and p(f1(3)) = p(a∗) = p3. 73



4. Information flow in interative systems
β0 f1(1) f1(2) f1(3)

∅ Candlemaker Sarfae a∗(a) All 3 reation funtions ϕ1

β1 f2(1)(β
1) f2(2)(β

1) f2(3)(β
1) f2(4)(β

1)

inc1 Candlemaker Candlemaker Candlemaker Candlemaker
inc2 Candlemaker Candlemaker Candlemaker Sarfae
b∗ Candlemaker Sarfae a∗ Candlemaker
β1 f2(5)(β

1) f2(6)(β
1) f2(7)(β

1) f2(8)(β
1)

inc1 Candlemaker Candlemaker Candlemaker Candlemaker
inc2 Sarfae Sarfae a∗ a∗

b∗ Sarfae a∗ Candlemaker Sarfae
β1 f2(9)(β

1) f2(10)(β
1) f2(11)(β

1) f2(12)(β
1)

inc1 Candlemaker Sarfae Sarfae Sarfae
inc2 a∗ Candlemaker Candlemaker Candlemaker
b∗ a∗ Candlemaker Sarfae a∗

β1 f2(13)(β
1) f2(14)(β

1) f2(15)(β
1) f2(16)(β

1)

inc1 Sarfae Sarfae Sarfae Sarfae
inc2 Sarfae Sarfae Sarfae a∗

b∗ Candlemaker Sarfae a∗ Candlemaker
β1 f2(17)(β

1) f2(18)(β
1) f2(19)(β

1) f2(20)(β
1)

inc1 Sarfae Sarfae a∗ a∗

inc2 a∗ a∗ Candlemaker Candlemaker
b∗ Sarfae a∗ Candlemaker Sarfae
β1 f2(21)(β

1) f2(22)(β
1) f2(23)(β

1) f2(24)(β
1)

inc1 a∗ a∗ a∗ a∗

inc2 Candlemaker Sarfae Sarfae Sarfae
b∗ a∗ Candlemaker Sarfae a∗

β1 f2(25)(β
1) f2(26)(β

1) f2(27)(β
1) �

inc1 a∗ a∗ a∗ �
inc2 a∗ a∗ a∗ �
b∗ Candlemaker Sarfae a∗ �(b) All 27 reation funtions ϕ2(β

1)Table 4.8: Reation funtions for the oaine aution example
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4.5. An example: the Coaine Aution protoolLet us take as an example the alulation of p(f2(6)|f1(3)):
p(f2(6)|f1(1)) =

∏

β1

p(f2(6)(β
1)|ϕ1(1), β

1)

= p(f2(6)(inc1)|Candlemaker , inc1)·
p(f2(6)(inc2)|Candlemaker , inc2)·
p(f2(6)(b∗)|Candlemaker , b∗)

= p(Candlemaker |Candlemaker , inc1)·
p(Sarfae |Candlemaker , inc2)
p(a∗|Candlemaker , b∗)

= p9 · p13 · 1

= p9p13Note that some reation funtions an have probability 0, whih is onsis-tent with the probabilisti automaton. For instane:
p(f2(25)|f1(3)) =

∏

β1

p(f2(25)(β
1)|ϕ1(3), β

1)

= p(f2(25)(inc1)|a∗, inc1) · p(f2(25)(inc2)|a∗, inc2)·

p(f2(25)(b∗)|a∗, b∗)

= p(a∗|a∗, inc1) · p(a∗|a∗, inc2) · p(Candlemaker |a∗, b∗)
= 1 · 1 · 0

= 04.5.1 Calulating the information leakageLet us now alulate the information leakage for this example using the on-epts from Setion 4.4. We will analyze three di�erent senarios:Example a: There is feedbak, but the probability of an observable does notdepend on the history of serets. In the aution protool, this orre-sponds to a senario where the probability of one of the mobsters to bidan depend on the inrement imposed by the seller, but the history ofwho has previously bid in the past has no in�uene on how the sellerhooses the bid inrement in the oming turns. In other words, theseller annot use the information of who has been bidding to hange hisstrategy of de�ning the new inrements. This situation orresponds tothe original desription of the protool in [SA99℄, where the seller does75



4. Information flow in interative systemsnot have aess to the identity of the bidder, for the sake of anonymitypreservation. In general, we have p(βt|α
t, βt−1) = p(βt|β

t−1) for every
1 ≤ t ≤ T . There is an exeption, however: if there is no bidder, thease modeled by the seret being a∗, then the aution terminates, whihis signaled by the observable b∗.Example b: This is the most general ase, without any restritions. Thepresene of feedbak allows the probability of the bidder to depend ofthe inrement on the prie. For instane, if Candlemaker is riher thanSarfae, it is more likely that the former bids if the inrement in the prieis inc2 instead of inc1. Also, the probability of an observable an dependon the history of serets, i.e. in general p(βt|αt, βt−1) 6= p(βt|β

t−1) for
1 ≤ t ≤ T . This senario an represent a situation where the selleris orrupted and an use his information to a�et the outome of theaution. As an example, suppose that the seller is a friend of Sarfaeand he wants to help him in the aution. One way of doing so is to hekwho was the winner of the last bidding round. Whenever the winner isCandlemaker, the seller hooses as inrement the small value inc1, hopingthat it will give Sarfae a good hane to bid in the next round. Onthe other hand, whenever the seller detets that the winner is Sarfae,he hooses as the next inrement the greater value inc2, hoping thatit will minimize the hanes of Candlemaker to bid in the next round(and therefore maximizing the hanes of the aution to end up havingSarfae as the �nal winner).Example : There is no feedbak. In the oaine aution, we an have the(perhaps unrealisti) situation in whih the inrement added to the bidhas no in�uene on the probability of Candlemaker or Sarfae being thebidder. Mathematially, we have p(αt|α

t−1, βt−1) = p(αt|α
t−1) for every

1 ≤ t ≤ T . As in Example b, however, we do not impose any restritionon p(βt|α
t, βt−1).For eah senario we need to �ll in the values of the probabilities in theprotool tree in Figure 4.8. The probabilities for eah example are listed inTable 4.9. Table 4.10 shows a omparison between some relevant values on thethree ases.In Example a, sine the probability of observables does not depend on thehistory of serets, there is (almost) no information �owing from the input tothe output, and the direted information I(AT → BT ) is lose to zero, i.e.the leakage is low. The only reason why the leakage is not zero is beause theend of an aution needs to be signaled. Due to presene of feedbak, however,the direted information in the other sense I(BT → AT ) is non-zero, and sois the mutual information I(AT ;BT ). This is an example where the mutualinformation does not orrespond to the real information leakage, sine some (in76



4.5. An example: the Coaine Aution protoolProbability Example a Example b Example variable value value value
p1 0.75 0.70 0.70
p2 0.24 0.24 0.24
p3 0.01 0.01 0.01
q4 0.50 0.55 0.30
q5 0.50 0.45 0.70
q6 0.50 0.45 0.70
q7 0.50 0.55 0.30
p9 0.04 0.80 0.75
p10 0.95 0.19 0.20
p11 0.01 0.01 0.05
p12 0.95 0.19 0.75
p13 0.04 0.80 0.20
p14 0.01 0.01 0.05
p15 0.04 0.90 0.65
p16 0.95 0.09 0.35
p17 0.01 0.01 0.05
p18 0.95 0.09 0.65
p19 0.04 0.90 0.35
p20 0.01 0.01 0.05
q22 0.50 0.80 0.45
q23 0.50 0.20 0.55
q24 0.50 0.20 0.55
q25 0.50 0.80 0.45
q27 0.45 0.75 0.45
q28 0.55 0.25 0.55
q29 0.45 0.35 0.55
q30 0.55 0.65 0.45
q32 0.50 0.55 0.45
q33 0.50 0.45 0.55
q34 0.50 0.40 0.55
q35 0.50 0.60 0.45
q37 0.45 0.60 0.45
q38 0.55 0.40 0.55
q39 0.45 0.35 0.55
q40 0.55 0.55 0.45Table 4.9: Values of the probabilities in Figure 4.8 for Examples a, b, and this ase, most) of the orrelation between input and output an be attributedto the feedbak.In Example b the information �ow from input to output I(AT → BT ) issigni�antly higher than zero, but still, due to feedbak, the information �owfrom outputs to inputs I(BT → AT ) is not zero and the mutual information

I(AT ;BT ) is higher than the direted information I(AT → BT ). 77



4. Information flow in interative systemsInterpretation Symbol Example a Example b Example Input unertainty H(AT ) 1.9319 1.9054 1.9158Reator unertainty HR 1.1911 1.5804 1.9158A posteriori unertainty H(AT |BT ) 1.0303 1.2371 1.4183Mutual information I(AT ;BT ) 0.9016 0.6684 0.4975Leakage I(AT → BT ) 0.1608 0.3433 0.4975Feedbak information I(BT → AT ) 0.7408 0.3250 0.0000Table 4.10: Values of the entropy and direted information for Examples a, b,and , where I(AT ;BT ) = H(AT ) − H(AT |BT ) and I(AT → BT ) = HR −
H(AT |BT )In Example , the absene of feedbak implies that I(BT → AT ) is zero.In that ase the values of I(AT ;BT ) and I(AT → BT ) oinide, and representthe real leakage.Finally, Figure 4.9 shows a omparison between the values of the entropyand of the direted information in the examples. The totality of the mutualinformation I(AT ;BT ) is represented by the height of the orrespondent bar,and we emphasize the ontribution of the direted information in eah dire-tion by splitting the bar into two parts. This �gure highlights the fat thatmutual information an be misleading as a measure of leakage. The great-est mutual information is obtained in Example a, followed by Example b andthen by Example . The real leakage, however, given by I(AT → BT ), re-spets exatly the inverse order, namely Example a presents the lowest valuewhile Example  presents the highest one. Indeed, in Example a the value of
I(AT → BT ) represents only 18% of the mutual information, while in Exampleb it represents 51% and in Example  it amounts to 100%.4.6 Topologial properties of IIHSs and theirapaityIn this setion we show how to extend to IIHSs the notion of pseudometride�ned in [DJGP02℄ for Conurrent Labeled Markov Chains, and we provethat the apaity of the orresponding hannels is a ontinuous funtion withrespet to this pseudometri. The pseudometri onstrution is sound for gen-eral IIHSs, but the result on apaity is only valid for seret-nondeterministiIIHSs.Given a set of states S, a pseudometri is a funtion d that yields a non-negative real number for eah pair of states and satis�es the following:(i) d(s, s) = 0;78



4.6. Topologial properties of IIHSs and their apaity

Figure 4.9: Comparison between the leakage in Examples a, b, and (i) d(s, t) = d(t, s); and(i) d(s, t) ≤ d(s, u) + d(u, t).We say that a pseudometri d is c-bounded if ∀s, t : d(s, t) ≤ c, where c isa positive real number.Note that, in ontrast to metris, in pseudometris two elements an havedistane 0 without being idential. We onsider pseudometris instead of met-ris beause our purpose is to extend the notion of (probabilisti) bisimulation:having distane 0 will orrespond to being bisimilar.We now de�ne a omplete lattie on pseudometris, in order to de�ne thedistane between IIHSs as the greatest �xpoint of a partiular transformation,in line with the oindutive theory of bisimilarity. Sine larger bisimulationsidentify more, the natural extension of the ordering to pseudometris mustshorten the distanes as we go up in the lattie:De�nition 22. M is the lass of 1-bounded pseudometris on states with theordering
d � d′ if ∀s, s′ ∈ S : d(s, s′) ≥ d′(s, s′).It is easy to see that (M,�) is a omplete lattie. In order to de�nepseudometris on IIHSs, we now need to lift the pseudometris on states topseudometris on distributions in D(L×S). Following standard lines [vBW01,DJGP02, DCPP℄, we apply the onstrution based on the Kantorovih metri[Kan42℄. 79



4. Information flow in interative systemsDe�nition 23. For d ∈ M, and µ, µ′ ∈ D(L × S), we de�ne d(µ, µ′) (over-loading the notation d) as
d(µ, µ′) = max

∑

(ℓi,si)∈L×S

(µ(ℓi, si)− µ′(ℓi, si))xiwhere the maximum is taken over all possible values of the xi's, subjet to theonstraints 0 ≤ xi ≤ 1 and xi − xj ≤ d̂((ℓi, si), (ℓj , sj)), where
d̂((ℓi, si), (ℓj , sj)) =

{
1 if ℓi 6= ℓj
d(si, sj) otherwiseIt an be shown that with this de�nition m is a pseudometri on D(L×S).De�nition 24. A pseudometri d ∈ M is a bisimulation pseudometri 1 if,for all ǫ ∈ [0, 1), d(s, s′) ≤ ǫ implies that if s → µ, then there exists some µ′suh that s′ → µ′ and d(µ, µ′) ≤ ǫ.Note that it is not neessary to require the onverse of the ondition inDe�nition 24 to get a omplete analogy with bisimulation: the onverse isindeed implied by the symmetry of d as a pseudometri. Note also that weprohibit ǫ to be 1 beause, throughout this hapter, 1 represents the maximumdistane, whih inludes the ase where one state may perform a transition andthe other may not.The greatest bisimulation pseudometri is

dmax =⊔{d ∈ M | d is a bisimulation pseudometri} (4.12)We now haraterize dmax as a �xed point of a monotoni funtion Φ on
M. Eventually we are interested in the distane between IIHSs, and for thesake of simpliity, from now on we onsider only the distane between statesbelonging to di�erent IIHSs. The extension to the general ase is trivial. Forlarity purposes, we assume that di�erent IIHSs have disjoint sets of states.De�nition 25. Given two IIHSs with transition relations θ and θ′ respetively,and a pseudometri d on states, de�ne Φ :M→M as:

Φ(d)(s, s′) =







maxi d(si, s
′
i) if ϑ(s) = {δ(a1,s1), . . . , δ(am,sm)}and ϑ′(s′) = {δ(a1 ,s′1), . . . , δ(am,s′m)}

d(µ, µ′) if ϑ(s) = {µ} and ϑ′(s′) = {µ′}

0 if ϑ(s) = ϑ′(s′) = ∅

1 otherwise1In literature a pseudometri with this property is also known as bisimulation metri,although it is still a pseudometri.80



4.6. Topologial properties of IIHSs and their apaityIt is easy to see that the de�nition of Φ is a partiular ase of the funtion
F de�ned in [DJGP02, DCPP℄, whih is haraterized as follows (f. Lemma3.8 in the full version of [DJGP02℄, and De�nition 2.7 in [DCPP℄):

F (d)(s, s′) = max{sup
s→µ

inf
s′→µ′

d(µ, µ′) , sup
s′→µ′

inf
s→µ

d(µ, µ′)}Hene it an be proved, as an instane of the analogous result for F (f.Lemma 2.8 in [DCPP℄), that Φ(d) is a pseudometri, and that the followingproperty holds.Lemma 26. For ǫ ∈ [0, 1), Φ(d)(s, s′) ≤ ǫ holds if and only if whenever s→ µ,there exists some µ′ suh that s′ → µ′ and d(µ, µ′) ≤ ǫ.From the above lemma and De�nition 24 we derive (see also Lemma 2.9 in[DCPP℄):Corollary 27. A pseudometri d is a bisimulation pseudometri if and onlyif d � Φ(d).By applying Corollary 27 to (4.12) we obtain
dmax =⊔{d ∈ M | d � Φ(d)}Furthermore, by adapting the proof of the monotoniity result for F (f.Lemma 3.9 in the full version of [DJGP02℄) we an prove the following:Lemma 28. Φ is monotoni on (M�).Thanks to Lemma 28, and using Tarski's �xed point theorem as formulatedin [Tar55℄, we have that dmax is the greatest �xed point of Φ. Furthermore,by Corollary 27 we know that dmax is indeed a bisimulation pseudometri, andthat it is the greatest bisimulation pseudometri.In addition, the �nite branhing property of IIHSs ensures that the losureordinal of Φ is ω (f. Lemma 3.10 in the full version of [DJGP02℄). Thereforewe an proeed in a standard way to show that
dmax = {Φi(⊤) | i ∈ N},where ⊤ is the greatest pseudometri (i.e. ⊤(s, s′) = 0 for every s, s′), and

Φ0(⊤) = ⊤.Given two IIHSs I and I
′, with initial states s and s′ respetively, we de�nethe distane between I and I
′ as d(I, I′) = dmax(s, s′). The following propertiesare auxiliary to the theorem whih states the ontinuity of the apaity.Lemma 29. Consider two IIHSs I and I′ with transition funtions ϑ and

ϑ′ respetively. Given t ≥ 2 and two sequenes αt and βt, assume that both
I(αt−1, βt−1) and I′(αt−1, βt−1) are de�ned. Assume also it is the ase that
dmax(I(αt−1, βt−1), I′(αt−1, βt−1)) < p(βt | α

t, βt−1), and ϑ(I(αt, βt−1)) 6= ∅.Then: 81



4. Information flow in interative systems1. ϑ′(I′(αt, βt−1)) 6= ∅ holds as well,2. I(αt, βt) and I′(αt, βt) are both de�ned, p(βt | αt, βt−1) > 0, and
dmax(I(αt, βt), I′(αt, βt)) ≤

dmax(I(αt−1, βt−1), I′(αt−1, βt−1))

p(βt | αt, βt−1).Proof.1. Assume ϑ(I(αt, βt−1)) 6= ∅ and, by ontradition, ϑ′(I′(αt, βt−1)) = ∅.Sine dmax is a �xed point of Φ, we have dmax = Φ(dmax), and therefore
dmax(I(αt, βt−1), I′(αt, βt−1)) = Φ(dmax)(I(αt, βt−1), I′(αt, βt−1))

= 1

≥ p(βt | α
t, βt−1),whih ontradits the hypothesis.2. If ϑ(I(αt, βt−1)) 6= ∅, then, by the �rst point of this lemma, we havethat ϑ′(I′(αt, βt−1)) 6= ∅ holds as well, and therefore both I(αt, βt) and

I′(αt, βt) are de�ned. The hypothesis dmax(I(αt−1, βt−1), I′(αt−1, βt−1)) <
p(βt | α

t, βt−1) ensures that p(βt | αt, βt−1) ≥ 0.Let us now prove the bound on dmax(I(αt, βt), I′(αt, βt)). By de�nitionof Φ, we have
Φ(dmax)(I(αt−1, βt−1), I′(αt−1, βt−1)) ≥ dmax(I(αt, βt−1), I′(αt, βt−1)).Sine dmax = Φ(dmax), we have
dmax(I(αt−1, βt−1), I′(αt−1, βt−1)) ≥ dmax(I(αt, βt−1), I′(αt, βt−1)).(4.13)By de�nition of Φ and of the Kantorovih metri, we have
Φ(dmax)(I(αt, βt−1), I′(αt, βt−1)) ≥ p(βt | α

t, βt−1)·
dmax(I(αt, βt), I′(αt, βt)).Using again dmax = Φ(dmax), we get

dmax(I(αt, βt−1), I′(αt, βt−1)) ≥ p(βt | α
t, βt−1)·

dmax(I(αt, βt), I′(αt, βt)),whih, together with (4.13), allows us to onlude.82



4.6. Topologial properties of IIHSs and their apaityLemma 30. Consider two IIHSs I and I
′, and let p(· | ·, ·) and p′(· | ·, ·)be their distributions on the output nodes. Given T > 0, and two sequenes

αT and βT , assume that p(βt | α
t, βt−1) > 0 for every t < T . Let m =

min1≤t<T p(βt | α
t, βt−1) and let ǫ ∈ (0,mT−1). Assume d(I, I′) < ǫ. Then,for every t ≤ T , we have
p(βt | α

t, βt−1)− p′(βt | α
t, βt−1) <

ǫ

mT−1
.Proof. Observe that, for every t < T , I(αt, βt) must be de�ned, and, by re-peatedly applying Lemma 29(1), we get that also I

′(αt, βt) is de�ned. Byde�nition of Φ, and of the Kantorovih metri, we have
p(βt | α

t, βt−1)− p′(βt | α
t, βt−1) ≤ Φ(dmax)(I(αt−1, βt−1), I′(αt−1, βt−1)),and sine dmax is a �xed point of Φ, we get

p(βt | α
t, βt−1)−p′(βt | α

t, βt−1) ≤ dmax(I(αt−1, βt−1), I′(αt−1, βt−1)). (4.14)By applying Lemma 29(2) t− 1 times, from (4.14) we get
p(βt | α

t, βt−1)− p′(βt | α
t, βt−1) ≤ dmax(I(α0,β0),I′(α0,β0))

mt−1

= d(I,I′)
mt−1

≤ d(I,I′)
mT−1

< ǫ
mT−1Note that previous lemma states a sort of ontinuity property of the matri-es obtained from IIHSs, but not uniform ontinuity, beause of the dependeneon one of the two IIHSs. It is easy to see (from the proof of the Lemma) thatuniform ontinuity does not hold.The main ontribution of this setion, stated in next theorem, is the on-tinuity of the apaity with respet to the pseudometri on IIHSs. For thistheorem, we assume that the IIHSs are normalized. Furthermore, it is ruialthat they are seret-nondeterministi (while the de�nition of the pseudometriholds in general).Theorem 31. Consider two normalized IIHSs I and I′, and �x a T > 0. Forevery ǫ > 0 there exists ν > 0 suh that if d(I, I′) < ν then |CT (I) −

CT (I
′)| < ǫ.Proof. Consider two normalized IIHSs I and I′ and hoose T, ǫ > 0. Let DTbe the set of all input distributions in presene of feedbak. Observe that
|CT (I)−CT (I

′)| = |max
DT

1

T
I(AT → BT )−max

DT

1

T
I(A′T → B′T )|

≤ 1
T
max
DT

|I(AT → BT )− I(A′T → B′T )| 83



4. Information flow in interative systemsSine the direted information I(AT → BT ) is de�ned by means of arith-meti operations and logarithms on the joint probabilities p(αt, βt) and on theonditional probabilities p(αt, βt), p(αt, βt−1), whih in turn an be obtainedby means of arithmeti operations from the probabilities p(βt | α
t, βt−1) and

pF (ϕ
t), we have that I(AT → BT ) is a ontinuous funtions of the distribu-tions p(βt | αt, βt−1) and pF (ϕ

t), for every t ≤ T . Let p(βt | αt, βt−1), p′(βt |
αt, βt−1) be the distributions on the output nodes of I and I′, modi�ed in thefollowing way: starting from level T , whenever p(βt | αt, βt−1) = 0, then we re-de�ne the distributions at all the output nodes of the subtree rooted in I(αt, βt)so that they oinide with the distribution of the orresponding nodes of in I

′,and analogously for p′(βt | αt, βt−1). Note that this transformation does nothange the direted information, beause the subtree rooted in I(αt, βt) doesnot ontribute to it, due to the fat that the probability of reahing any of itsnodes is 0. The ontinuity of I(AT → BT ) implies that there exists ǫ′ > 0 suhthat, if |p(βt | αt, βt−1)− p′(βt | α
t, βt−1)| < ǫ′ for all t ≤ T and all sequenes

αt, βt, then, for any pF (ϕ
t), we have |I(AT → BT )− I(A′T → B′T )| < ǫ. Theresult then follows from Lemma 30, by hoosing

ν = ǫ′ ·min









min
1 ≤ t < T

p(βt | α
t, βt−1) > 0

p(βt | α
t, βt−1),

min
1 ≤ t < T

p′(βt | α
t, βt−1) > 0

p′(βt | α
t, βt−1)









.

We onlude this setion with an example showing that the ontinuityresult for the apaity does not hold if the onstrution of the hannel is donestarting from a system in whih the serets are endowed with a probabilitydistribution. This is also the reason why we ould not simply adopt the prooftehnique of the ontinuity result in [DJGP02℄ and we had to ome up with adi�erent reasoning.Example 6. Consider the two following programs, where a1, a2 are serets,
b1, b2 are observable, ‖ is the parallel operator, and +p is a binary probabilistihoie that assigns probability p to the left branh, and probability 1− p to theright one.s) (send(a1) +p send(a2)) ‖ reeive(x).output(b2)t) (send(a1)+q send(a2)) ‖ reeive(x).if x = a1 then output(b1) else output(b2).84



4.7. Related workTable 4.11 shows the fully probabilisti IIHSs orresponding to these pro-grams, and their assoiated hannels, whih in this ase (sine the seret a-tions are all at the top-level) are lassial hannels, i.e. memoryless and with-out feedbak. As usual for lassi hannels, they do not depend on p and q. Itis easy to see that the apaity of the �rst hannel is 0 and the apaity of theseond one is 1. Hene their di�erene is 1, independently from p and q.Let now p = 0 and q = ǫ. It is easy to see that the distane between s and
t is ǫ. Therefore (when the automata have probabilities on the serets), theapaity is not a ontinuous funtion of the distane.

s t

p 1−p

0 1 0 1

a1 a2

b1 b2 b1 b2

q 1−q

1 0 0 1

a1 a2

b1 b2 b1 b2s b1 b2
a1 0 1

a2 0 1(a) (Channel for s

t b1 b2
a1 1 0

a2 0 1(b) Channel for tTable 4.11: The IIHSs of Example 6 and their orresponding hannels4.7 Related workGray investigated a onept similar to direted information in [Gra91℄. Inontrast to our model, whih is based on an eavesdropper senario, he on-sidered leakage in a sender-reeiver model. More preisely, he onsidered asystem based on Millen's synhronous state mahine [Mil90℄, and onneted to�low� and �high� environments via ommuniation hannels. His purpose wasto measure the �ow of information from the high environment to the low one,assuming that the only way for the low environment to learn about the highone (and vie versa) is through the system. To this end, he de�ned a notionof �quasi-direted information� by extending Gallager's formula for disrete�nite state hannels [Gal68℄. He also onjetured a orrespondene betweenthe quasi-direted information and the transmission rate of the hannel. Hisformulation of quasi-direted information, however, is not ompletely the sameas direted information, and as a result the onjeture does not hold.The ontinuity of the hannel apaity was also proved in [DJGP02℄ forsimple hannels, but the proof does not adapt to the ase of hannels withmemory and feedbak and we had to devise a di�erent tehnique. 85



4. Information flow in interative systems4.8 Chapter summary and disussionIn this hapter we have investigated the problem of information leakage ininterative systems, and proved that these systems an be modeled as hannelswith memory and feedbak. We have also proved that the hannel apaity isa ontinuous funtion of a pseudometri based on the Kantorovih metri.We have onsidered various kinds of automata orresponding to di�erentombinations of nondeterministi and probabilisti hoie, as summarized inTable 4.12(a). Note that in this the third row orresponds to the limit ase inwhih the reator is a Dira measure, i.e. the probability is all onentratedon exatly one ϕT ∈ F . It is easy to see that in this ase I(AT → BT ) = 0 (allthe entropies that onstitute I(AT → BT ) are 0), although I(BT → AT ) 6=
0. Therefore there is no leakage. In the lassi ase this orresponds to thesituation in whih the input distribution is a Dira measure.Table 4.12(b) summarizes the omparison between the hannels with mem-ory and feedbak investigated in this paper, and the lassi hannels.Throughout this hapter we have assumed that the dependene of the serethoies on the observables is part of the external knowledge and, therefore,not onsidered leakage. The reader may wonder what would happen if thisassumption were dropped. We argue that in this ase I(BT → AT ) ould beonsidered as part of the leakage. In the ases a and b of the oaine autionexample in Setion 4.5, for instane, one may want to onsider the informationthat we an dedue about the serets (the identities of the bidder) from theobservables (the inrements of the seller) as a leak due to the protool.In some other ases the �ow of information from the observables to theserets may even be onsidered as a onsequene of the ative attaks of anadversary, whih uses the observables to modify the probability of the serets.In this ase I(BT → AT ) ould represent a measure of the e�etiveness of theadversary.As future work, we would like to provide algorithms to ompute the leak-age and maximum leakage of interative systems. These are rather hallengingproblems given the exponential growth of reation funtions (needed to om-pute the leakage) and the quanti�ation over in�nitely many reators (givenby the de�nition of maximum leakage in terms of apaity). One possible so-lution is to study the relation between deterministi shedulers and sequeneof reation funtions. In partiular, we believe that for eah sequene of rea-tion funtions and distribution over it there exists a probabilisti sheduler forthe automata representation of the seret-nondeterministi IIHS. In this way,the problem of omputing the leakage and maximum leakage would redue toa standard probabilisti model heking problem (where the hallenge is toompute probabilities ranging over in�nitely many shedulers).In addition, we plan to investigate measures of leakage for interative sys-tems other than mutual information and apaity.We intend to study the appliability of our framework to the area of86



4.8. Chapter summary and disussionIIHSs as automata IIHSs as hannels Notion of leakageNormalized IIHSs with Sequene ofnondeterministi serets stohasti kernels Leakage as apaityand probabilisti observables {p(βt|α
t, βt−1)}Tt=1Sequene ofFully probabilisti stohasti kernels Leakage as diretednormalized IIHSs {p(βt|α
t, βt−1)}Tt=1 information+ reator I(AT → BT )

{p(ϕt|ϕ
t−1)}Tt=1Sequene ofNormalized IIHSs with a stohasti kernelsdeterministi sheduler {p(βt|α
t, βt−1)}Tt=1 No leakagesolving the nondeterminism + reation funtionsequene ϕT(a) The various models onsidered in this hapterClassial hannels Channels with memory and feedbakThe system is modeled in The system is modeled in severalindependent uses of the hannel, onseutive uses of the hannel.often a unique use.The hannel is de�ned on

AT → BT , i.e. its input is The hannel is de�ned on F → B, i.e.a single string αT = α1 . . . αT its input is a reation funtion ϕtof seret symbols and its output and its output is an observable βt.is a single string βT = β1 . . . βTof observable symbols.The hannel is memoryless and The hannel has memory. Despite thein general it is impliitly assumed fat that the hannel de�ned on F → Bthe absene of feedbak. does not have feedbak, the internalstohasti kernels do.The apaity is alulated using The apaity is alulated using mutualmutual information I(AT ;BT ). direted information I(AT → BT ).(b) Classial hannels vs. hannels with memory and feedbakTable 4.12: Summary of resultsgame theory. In partiular, the interative nature of games suh as PrisonerDilemma [Pou92℄ and Stag and Hunt [Sky03℄ (in their iterative versions) anbe modeled as hannels with memory and feedbak following the tehniquesproposed in this work. Furthermore, (probabilisti) strategies an be enodedas reation funtions. In this way, optimal strategies are attained by reationfuntions maximizing the leakage of the hannel.
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FiveDi�erential privay: the trade-o�between leakage and utility
�If you have nothing to hide, then you don't have a life.�ited by Daniel J. SoloveIn this hapter we onsider the di�erential privay approah to the prob-lem of statistial dislosure ontrol. In general a statistial database ontainsdata of a group of individuals, and users an pose queries to obtain statis-tial information about the sample in the dataset. To preserve the privayof the the partiipants in the database, it is desirable to restrit the amountof information that the system leaks about their individual values. One wayof dealing with the problem is by using randomization mehanisms: to avoidleakage, the real answer is modi�ed with some arefully added noise beforebeing reported to the users. A very popular and studied way of doing so isbased on the onept of di�erential privay.In our work we onsider the relation between di�erential privay and quan-titative information �ow. We address the problem of haraterizing the pro-tetion that di�erential privay provides to individuals with respet to infor-mation leakage, and the problem of the utility, i.e. the measure of how losethe reported answer is to the true answer.Contribution The main ontributions of this hapter an be summarizedas follows.

• We propose an information-theoreti framework to reason about bothinformation leakage and utility. 89



5. Differential privay: the trade-off between leakage andutility
• We explore the graph-theoreti foundations of the adjaeny relation ondatabases1, and we point out two types of symmetries whih allow usto establish a strit link between di�erential privay and informationleakage.
• We prove that ǫ-di�erential privay implies a tight bound on the min-entropy leakage.
• We prove that ǫ-di�erential privay implies a bound on the utility, mea-sured in terms of binary gain funtions. We prove that, under ertainonditions, the bound is tight.
• We identify a method that, under ertain onditions, onstruts therandomization mehanisms whih maximizes utility while providing ǫ-di�erential privay.Plan of the Chapter This hapter is organized as follows. In Setion 5.1we formalize the notion of di�erential privay and present an alternative inter-pretation for it in the speial ase where the adjaeny relation on databasesis omplete (i.e. every two distint databases are adjaent). In Setion 5.2 weintrodue our model to reason about leakage and utility for randomized fun-tions in the ase where the query and the randomization mehanism an besplit into two distint hannels. In Setion 5.3 we review some onepts fromgraph theory and present two speial lasses of graphs having symmetries thatwe will explore to make the onnetion between di�erential privay and quan-titative information �ow. We also show that the graph struture on databases,indued by the adjaeny relation and the query, presents these symmetries.In Setion 5.4 we use the results of the previous setion to prove a bound onthe a posteriori min-entropy of the hannel matrix. Then we apply this boundto derive our results for leakage in Setion 5.5 and for utility in Setion 5.6.Finally, in Setion 5.7 we review some of the related work in the literature,and in Setion 5.8 we make our �nal remarks and onlude this hapter.5.1 Di�erential privayDatabases are ommonly used for obtaining statistial information about theirpartiipants. Simple examples of statistial queries are, for instane, the pre-dominant disease in a ertain population, or the average salary of a group ofpeople. The fat that the answer is publily available may, however, onstitutea threat for the privay of the individuals.In order to illustrate the problem, onsider a database that stores the valuesof the salaries of a set of individuals, and assume that a user an pose the query�what is the average salary of the partiipants in the database?�. In priniple1The adjaeny relation on databases will be de�ned preisely in Setion 5.2.90



5.1. Di�erential privaywe would like to onsider the global information relative to the database aspubli, and the individual information about a partiipant as private. In thisexample, we would like to obtain the average salary without being able toinfer the salary of any spei� partiipant. Unfortunately this is not alwayspossible. In partiular, if the number of partiipants in the database is known,and an individual is removed from (or inluded in) the database, it is possibleto infer his salary by querying again the database and alulating the in�ueneof the removal (or inlusion) on the reported answer to the query.Another kind of private information we may want to protet is whethera spei� individual is partiipating or not in a database. If we know that apartiular individual earns, say, 5.000e a month, and all the other individualsearn less than 4.000e a month, then learning that the average salary is greaterthat 4.000e will reveal immediately the presene of our individual of interestin the database.A ommon approah to this problem is to introdue some output pertur-bation mehanism based on randomization: instead of the exat answer, thequerying mehanism reports a �noisy� answer. Namely, a randomized funtionis used to produe answers aording to some probability distribution thatdepends on the database. The goal is to report this randomized answer, thatideally should be �lose enough� to the real one, yet should make it harderfor the user to guess the values of individual partiipants. For ertain distri-butions, however, it may still be possible to guess the value of an individualwith a high probability of suess. The notion of di�erential privay, due toDwork [Dwo06, DL09, Dwo10, Dwo11℄, is a proposal to ontrol the risk ofviolating privay for both kinds of threats desribed above (value and partii-pation). The idea is to say that a randomized funtion K satis�es ǫ-di�erentialprivay (for some ǫ > 0) if the ratio between the probabilities that two ad-jaent databases give the same answer is bound by eǫ, where by �adjaent�we mean that the databases di�er in only one individual (either for the valueof an individual or for the presene/absene of an individual). The notion ofdi�erential privay was developed to be independent of the side (or auxiliary)information the user an have about the database, and how it an a�et hisknowledge about the database before posing the query. This information anome from external soures (e.g. newspapers, ommon knowledge, et), butdoes not a�et the guarantees assured by di�erential privay.In this hapter we explore the similarities between di�erential privay andquantitative information �ow. We base our approah on the following observa-tions: at the motivational level, the onern about privay is akin the onernabout information leakage. At the oneptual level, the randomized funtion
K an be seen as an information-theoreti hannel, and the limit ase of ǫ = 0,for whih the privay protetion is total, orresponds to a 0-apaity hannel,whih does not allow any leakage. More spei�ally, we investigate the no-tion of di�erential privay and its impliations in the light of the min-entropyframework for information �ow disussed in Chapter 3. 91



5. Differential privay: the trade-off between leakage andutility5.1.1 Formal de�nitionLet X be the set of all possible databases. Two databases x, x′ ∈ X areadjaent (or neighbors), written x ∼ x′, if they di�er in the value of exatlyone individual. Note that the struture (X ,∼) forms an undireted graph.Intuitively, di�erential privay is based on the idea that a randomized queryfuntion provides su�ient protetion if the ratio between the probabilities oftwo adjaent databases to give a ertain answer is bound by eǫ, for some ǫ > 0.Formally:De�nition 32 ([Dwo11℄). A randomized funtion K from X to Z satis�es
ǫ-di�erential privay if for all pairs x, x′ ∈ X , with x ∼ x′, and all S ⊆ Z, wehave:

Pr [K(x) ∈ S] ≤ eǫ × Pr [K(x′) ∈ S]In this thesis we onsider Z to be �nite, therefore its probability distribu-tion is disrete and we an rewrite the property of ǫ-di�erential privay moresimply. Using the notation of onditional probabilities, and onsidering bothquotients, we an say that ǫ-di�erential-privay holds in the disrete ase if,for all x, x′ ∈ X with x ∼ x′, and all z ∈ Z:
1

eǫ
≤

Pr [Z = z|X = x]

Pr [Z = z|X = x′]
≤ eǫ (5.1)where X and Z represent the random variables assoiated to X and Z, respe-tively.Intuitively, (5.1) implies that, if a value of one single individual hangesin a dataset (either by inlusion, removal or modi�ation), the probability ofthe querying mehanism to report a spei� answer will not �vary muh�. Inother words, the in�uene of a single individual in a database is �negligible�with respet to the whole set of individuals. Of ourse the notion of what ismeant by �muh� and �negligible� depends on the value of ǫ.5.1.2 Alternative interpretation in the ase of liquesA speial interpretation of di�erential privay is possible in the ase whereevery two distint databases in X are neighbors. More preisely, if (X ,∼) isa lique (i.e. a omplete graph), it is possible to ensure that he ratio betweenany a priori knowledge Pr [X = x] of the user (before the query is posed) andhis a posteriori knowledge Pr [X = x|Z = z] (after the answer to the query isreported) is bound by eǫ. Formally, if for every x, x′ ∈ X with x 6= x′ we have

x ∼ x′ then:
1

eǫ
≤

Pr [X = x|Z = z]

Pr [X = x]
≤ eǫ for all priors Pr [X = x], (5.2)all x ∈ X , and all z ∈ Z92



5.1. Di�erential privaywhere X and Z represent the random variables assoiated to X and Z, respe-tively.Intuitively, (5.2) states that the observation of the reported answer shouldnot �hange muh� the user's knowledge about the database. The next propo-sition shows that in the speial ase of every pair of distint databases areneighbors, the above formulation of di�erential privay is equivalent to thelassi one.Proposition 33. If for all x, x′ ∈ X with x 6= x′ we have x ∼ x′, then (5.1)and (5.2) are equivalent.Proof. Let us represent by X and Z the random variables assoiated to X and
Z, respetively. For better readability, we will denote Pr [X = x], Pr [Z = z],
Pr [Z = z|X = x] and Pr [X = x|Z = z] by Pr(x), Pr(z), Pr(x|z) and Pr(z|x),respetively.
• (5.1) =⇒ (5.2)

Pr(x|z) =
Pr(z|x)Pr (x)

Pr(z)
(by the Bayes law)

=
Pr(z|x)Pr (x)

∑

x′∈X (Pr(x′)Pr(z|x′))

≥
Pr(z|x)Pr (x)

∑

x′∈X (Pr(x′) · eǫPr(z|x))
by (5.1)

=
Pr(z|x)Pr (x)

eǫPr(z|x)

=
Pr(x)

eǫfrom whih it follows that Pr(x)
Pr(x|z) ≤ eǫ. The ase of 1

eǫ
≤ Pr(x)

Pr(x|z) is aanalogous: just take the symmetrial step when applying (5.1) in thederivation above.
• (5.2) =⇒ (5.1)For every prior Pr(x) we have

Pr(x|z)

Pr(x)
=

Pr(z|x)

p(z)
(by the Bayes law)

=
Pr(z|x)

∑

x′′ (Pr(x′′)Pr(z|x′′)) 93



5. Differential privay: the trade-off between leakage andutilityIn partiular, the above is valid for every prior of the form Pr(x) = δx′(x),where x′ ∈ X . Therefore, for all x′ ∈ X
Pr(x|z)

Pr(x)
=

Pr(z|x)
∑

x′′ (δx′(x′′)Pr(z|x′′))

=
Pr(z|x)

Pr(z|x′)Sine by (5.2) we have 1
eǫ
≤ Pr(z|x)

Pr(x) ≤ eǫ for every prior Pr(x), it followsfrom the derivation above that also 1
eǫ
≤ Pr(z|x)

Pr(z|x′) ≤ eǫ for all x′ ∈ X .
5.2 A model of utility and privay for statistialdatabasesIn this setion we present a model of statistial queries on databases, wherenoise is arefully added to protet the privay of the partiipants in the sample,and the reported answer to a query does not need to be the real one. In thismodel, the notion of information leakage is to measure the amount informationthat an adversary an learn about the database by posing queries and thenanalyzing the reported answers. Note that in priniple the adversary an be auser of the database, and therefore the privay guarantees should not dependon distintions of who is posing the queries. Our model will also allow us toquantify the utility of the query, i.e. how muh information about the realanswer an be obtained from the reported one. In our work we fous on thease in whih all the values of interest are disrete.We �x a �nite set Ind = {1, 2, . . . , u} of u individuals partiipating in thedatabase. In addition, we �x a �nite set Val = {v1, v2, . . . , vv}, representingthe set of (v di�erent) possible values for the sensitive attribute of eah indi-vidual (e.g. disease-name in a medial database). In the more general asewhere there are several sensitive attributes in the database (e.g. salary andseurity number in a ensus sample), we an think of the elements of Val as tu-ples. The absene of an individual in the database, if allowed, an be modeledwith one speial value in Val (see the disussion in Setion 5.2.2). A database
D = d0 . . . du−1 is a u-tuple where eah di ∈ Val is the value of the orrespond-ing individual. The set of all databases is X = Valu. Two databases x, x′ areadjaent, written x ∼ x′, if and only if they di�er in the value of exatly oneindividual. The struture (X ,∼) forms an undireted graph, and we al ∼ itsadjaeny relation.Let K be a randomized funtion from X to Z, where Z = Range(K) (seeFigure 5.1). This funtion an be modeled by a hannel (X ,Y, pZ|X(·|·)), where94



5.2. A model of utility and privay for statistial databases
X and Z are the input and output alphabets, respetively, and pZ|X(·|·) is thehannel matrix. The random variables modeling the input and output of thehannel are denoted by X and Z, respetively. The de�nition of di�erentialprivay an be diretly expressed as a property of the hannel: it satis�es
ǫ-di�erential privay if

p(z|x) ≤ eǫp(z|x′) for all x, x′ ∈ X with x ∼ x′, and all z ∈ Z
X

dataset
K

ǫ-diff. priv.
randomized function

Z

reported
answerFigure 5.1: Randomized funtion KIntuitively, the orrelation between X and Z measures how muh infor-mation about the omplete database the attaker an obtain by observing thereported answer. We will refer to this orrelation as the leakage of the han-nel, denoted by L(X,Z). In Setion 5.5 we will disuss how this leakage anbe quanti�ed using notions from information theory, and we will study thebehavior of the leakage for di�erentially private queries.In our model the true answer to the query f is modeled by the randomvariable Y ranging over Y = Range(f). The orrelation between Y and Zmeasures how muh we an learn about the real answer from the reportedone. We will refer to this orrelation as the utility of the hannel, denoted by

U(Y,Z). In Setion 5.6 we will disuss in detail how the utility an be quan-ti�ed, and we will investigate how to onstrut a randomization mehanism,i.e. a way of adding noise to the query outputs, so that utility is maximizedwhile preserving di�erential privay.In pratie, the randomization mehanism is often oblivious, meaning thatthe reported answer Z only depends on the real answer Y and not on thedatabase X. In this ase, the randomized funtion K, seen as hannel, an bedeomposed into two parts: a hannel modeling the query f , and a hannelmodeling the oblivious randomization mehanism H. The de�nition of utilityan be then simpli�ed as it only depends on properties of the sub-hannelorrespondent to H. The leakage relating X and Y and the utility relating Yand Z for a deomposed randomized funtion are shown in Figure 5.2.We apture the notion of the attaker's side information as the prior dis-tribution on X, whih is standard in information �ow and also in papers ondi�erential privay [GRS09, KS℄. 95



5. Differential privay: the trade-off between leakage andutility
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LeakageFigure 5.2: Leakage and utility for oblivious mehanisms5.2.1 Leakage about an individualAs already disussed, L(X,Z) an be used to quantify the information that theattaker an learn about the whole database. Proteting the entire databaseat one, however, is not the main goal of di�erential privay. In fat, someinformation will neessarily be revealed, otherwise the query would not beuseful. Instead, di�erential privay aims at proteting the value of any singleindividual, even in the worst ase where the values of all other individuals areknown. To quantify this information leakage we an de�ne smaller hannels,where only the information of a spei� individual varies. Let x− ∈ Valu−1 bea (u−1)-tuple with the values of all individuals but one (the individual whosedegree of protetion we want to quantify). We reate a hannel Kx− whoseinput alphabet is the set of all databases in whih the u− 1 other individualshave the same values as in x−. Note that, sine x− is �xed, to de�ne the inputof the hannel it is enough to speify the value of the individual of interest. Inthis way the input for the hannel an be seen as a random variable V rangingover the set Val . Intuitively, the information leakage of this hannel measureshow muh information about one partiular individual the attaker an learnif the values of all others are known to be x−. This leakage will be studied inSetion 5.5.1.5.2.2 A note on the hoie of valuesThe hoie of the set Val depends on the assumptions about the attaker'sknowledge. In partiular, if the attaker does not know whih individualspartiipate in the database, a distinguished value in Val ould be interpretedas absene (e.g. the value 0 or the speial value null). As disussed in [Dwo11℄,a database x′ adjaent to x an be though of either being a superset (or subset)of x with one extra (or missing) row, or being exatly the same database as96



5.2. A model of utility and privay for statistial databases
x in all rows exept from one whih has a di�erent (non-null) value. Ourde�nition of ∼ with the possibility of null values overs all these ases.At this point an important observation should be made about the hoie of
Val . Most often we are interested in proteting the atual value of an individ-ual, not only his partiipation in the database. In this ase, the de�nition ofdi�erential privay (as well as the hannels we are onstruting) should inludedatabases with all possible values for eah individual, not just the �real� ones.In other words, to prevent the attaker from �nding out the individual's value,the probability p(z|x), where x ontains the individual's true value, should belose to p(z|x′) where x′ ontains a hypothetial value for this individual. Thismight seem unneessary at �rst sight, sine di�erential privay is often thoughas proteting an partiipation of an individual in a database. Hiding the par-tiipation of an individual, however, does not imply hiding his value. Considerthe following example: we aim at learning the average salary of employees in asmall ompany, and it happens that all of them have exatly the same salary
s. We allow anyone to partiipate or not, while o�ering ǫ-di�erential privay.If we only onsider s as the value in all possible databases, then the queryis always onstant, so answering it any number of times without any noiseshould satisfy di�erential privay for any ǫ > 0. Sine all reported answersare s, the attaker an dedue that the salary of all employees, inluding thosenot partiipating in the query, is s. Indeed, the attaker annot �nd out whopartiipated, despite the value of all individuals is revealed.In other ases, we are only interested in hiding the partiipation (e.g. in adatabase with information about anonymous donations). Thus, Val should beproperly seleted aording to the appliation. If partiipation is known andwe only wish to hide the values, then Val should ontain all possible values,e.g. all possible salaries in the example above. If the values are known andpartiipation is to be hidden, then Val an ontain just the values 0 and 1denoting absene and presene respetively. Finally, if both the value and thepartiipation are to be proteted, then Val should ontain all values plus null .5.2.3 The questions we explore with the help of our modelWe will use the model we just introdued to explore the following questions:1. Does ǫ-di�erential privay indue a bound on the information leakage ofthe randomized funtion K?2. Does ǫ-di�erential privay indue a bound on the information leakagerelative to an individual?3. Does ǫ-di�erential privay indue a bound on the utility?4. Given a query f and a value ǫ > 0, an we onstrut a randomized fun-tion K whih satis�es ǫ-di�erential privay and also presents maximumutility? 97



5. Differential privay: the trade-off between leakage andutilityWe will see that the answers to 1 and 2 are positive in ase we take themeasure of leakage to be the min-entropy leakage, and we provide bounds thatare tight (i.e. for every ǫ there is a K whose leakage reahes the bound). For 3we are able to give a tight bound in some ases whih depend on the strutureof the query, and for the same ases, we are able to onstrut an oblivious Kwith maximum utility (de�ned in terms of a binary gain funtion), as requestedby 4.5.3 Graph symmetriesIn this setion we explore some lasses of graphs that will allow us to derivea strit orrespondene between ǫ-di�erential privay and the a posteriori en-tropy of the input. As we already mentioned, the input domain of databasesand the adjaeny relation forms an undireted graph, and this fat will beused to derive bounds on information leakage and utility. We will present twolasses of graphs, distane-regular and V T+, that will be used in the nextsetion to transform a generi hannel matrix into a matrix with a symmetristruture, while preserving the a posteriori min-entropy and the ǫ-di�erentialprivay.Let us �rst reall some basi notions. Given a graph G = (V,∼), thedistane d(v, w) between two verties v, w ∈ V is the number of edges in ashortest path onneting them. The diameter δ of G is the maximum distanebetween any two verties in V. The degree of a vertex is the number of edgesinident to it. G is alled regular if every vertex has the same degree. A regulargraph with verties of degree k is alled a k-regular graph. An automorphismof G is a permutation σ on the vertex set V, suh that for any pair of vertiesv, w, if v ∼ w, then σ(v) ∼ σ(w). If σ is an automorphism, and v is a vertex,the orbit of v under σ is the set {v, σ(v), . . . , σk−1(v)} where k is the smallestpositive integer suh that σk(v) = v. Clearly, the orbits of the verties under
σ de�ne a partition of V. If V is the set of verties of G, we denote by V〈d〉(v)the subset of verties in V that are at distane d from the vertex v.The following two de�nitions introdue the lasses of graphs that we areinterested in. The �rst lass is well known in literature.De�nition 34 (Distane-regular graph). A graph G = (V,∼) is alled distane-regular if there exist integers bd and cd (d ∈ {0, . . . , δ}) (alled intersetionnumbers) suh that, for all verties v, w at distane d(v, w) = d, there areexatly
• bd neighbors of w in V〈d+1〉(v)
• cd neighbors of w in V〈d−1〉(v)Some examples of distane-regular graphs are illustrated in Figure 5.3.98



5.3. Graph symmetries
(a) Tetrahedral graph (b) Cubial graph () Petersen graphFigure 5.3: Some distane-regular graphs with degree 3The seond lass we are interested in is a variant of the VT (vertex-transitive2) lass:De�nition 35 (V T+ graph). A graph G = (V,∼) is V T+ ( vertex-transitive+) if there are n automorphisms σ0, σ1, . . .σn−1, where n = |V|, suh that,for every vertex v ∈ V, we have that {σi(v) | 0 ≤ i ≤ n− 1} = V.In partiular, the graphs for whih there exists an automorphism σ whihindues only one orbit are V T+: it is su�ient to de�ne σi = σi for all ifrom 0 to n − 1. Figure 5.4 illustrates some V T+ graphs with a single-orbitautomorphism.
(a) Cyle: degree 2 (b) Degree 4 () Clique: degree 5Figure 5.4: Some V T+ graphsFrom graph theory we know that neither of the two lasses subsumes theother. They have however a non-empty intersetion, whih ontains in parti-ular all the strutures of the form (Valu,∼), i.e. the database domains.The two next propositions show that the struture (X ,∼) = (Valu,∼) isboth a distane-regular graph and a V T+ graph.Proposition 36. The graph (Valu,∼) is a onneted distane-regular graphwith diameter δ = u, and intersetion numbers bd = (u− d)(v− 1) and cd = d,for all 0 ≤ d ≤ δ.2A graph G = (V,∼) is said to be vertex-transitive if for any pair v, w ∈ V there existsan automorphism σ suh that σ(v) = w. 99



5. Differential privay: the trade-off between leakage andutilityProof. The verties of (Valu,∼) are u-tuples (v1, . . . , vu), vi ∈ Val and twoverties are adjaent if and only if the di�er in exatly one element vi. It iseasy to see that the distane between two verties is the number of elementsin whih they di�er. Let x1, x2 ∈ Valu with d(x1, x2) = d, so they di�er inexatly d elements. To go at distane d + 1 from x1 we an selet any of theremaining u − d elements and hange it in v − 1 possible ways, so the totalnumber is (u − d)(v − 1) and depends only on d, not on x1, x2. Similarly, byhanging one of the di�ering elements of x2 to math the value of x1 we get avertex at distane d− 1, and there are d suh elements.Proposition 37. The graph (Valu,∼) is a V T+ graph.Proof. Reall that we assume the values in the set Val to be indexed, i.e.
Val = {v0, . . . , vj , . . . , vv−1}, where v = |Val |. Note that, for onveniene, weopt to use here the indexing from 0 to v−1. Let us de�ne an injetive funtion
ρ : Val → Val as

ρ(vj) = vj⊕1for every vj ∈ Val , and where ⊕ represents the sum modulo v. We de�ne theomposition of ρ with itself i times as
ρi(vj) = ρ ◦ ρ ◦ . . . ◦ ρ

︸ ︷︷ ︸

i times (vj)Note that sine ρ is injetive, ρi is injetive as well.We represent a database in Valu as x = vk0 . . . vkℓ . . . vku−1 , with 0 ≤ ℓ ≤

u− 1 and 1 ≤ kℓ ≤ v. We now de�ne a family {σι}vu−1
ι=0 of automorphisms asfollows. Given a 0 ≤ ι ≤ vu − 1, onsider the representation in base v of ι:

ι = i0 · v
0 + . . .+ iℓ · v

ℓ + . . . + iu−1 · v
u−1 (5.3)where 0 ≤ iℓ ≤ v − 1. Then de�ne

σι(x) = ρi0(vk0) . . . ρiℓ(vkℓ) . . . ρiu−1(vku−1) (5.4)where x = vk0 . . . vkℓ . . . vku−1 .We have to show that:
• σι is an automorphism for all 0 ≤ ι ≤ vu − 1.First we show that σι is injetive. Let us onsider two arbitrary databases

x = vk0 . . . vkℓ . . . vku−1 and x′ = vk′0 . . . vk′ℓ . . . vk′u−1
, and assume σι =

ρi0(·) . . . ρiℓ(·) . . . ρiu−1(·). If x 6= x′ then vkℓ 6= vk′
ℓ
for some ℓ, and sine

ρiℓ is injetive we have ρiℓ(vkℓ) 6= ρiℓ(vk′
ℓ
). Therefore σι(x) 6= σι(x

′).Now we show that if x ∼ x′ then σι(x) ∼ σι(x
′). Consider a ar-bitrary pair of adjaent databases x = vk0 . . . vkℓ . . . vku−1 and x′ =100



5.3. Graph symmetriesvk0 . . . vk′ℓ . . . vku−1 , where x and x′ di�er exatly for vkℓ 6= vk′
ℓ
. Weknow that σι(x) = ρi0(vk0) . . . ρiℓ(vkℓ) . . . ρiu−1(vku−1) and we also knowthat σι(x

′) = ρi0(vk0) . . . ρiℓ(vk′ℓ) . . . ρiu−1(vku−1). Therefore σι(x) and
σι(x

′) an di�er at most in ρiℓ(vkℓ) and ρiℓ(vk′
ℓ
). Sine ρiℓ is injetive,we have ρiℓ(vkℓ) 6= ρiℓ(vk′

ℓ
), and it follows that σι(x) ∼ σι(x

′).
• For every x = vk0 . . . vkℓ . . . vku−1 in Valu we have ⋃vu−1

ι=0 {σι(x)} = Valu.Take an arbitrary element x′ = vk′0 . . . vk′ℓ . . . vk′u−1
in Valu. Note that

ρkm(vkn) = vkm⊕n
for all 0 ≤ m,n ≤ v− 1. Therefore the automorphism

σ = ρk
′
0⊖k0(·) . . . ρk

′
ℓ
⊖kℓ(·) . . . ρk

′
u−1⊖ku−1(·), where ⊖ represents the sub-tration modulo v, satis�es σ(x) = x′. Sine 0 ≤ k′ℓ⊖ kℓ ≤ v− 1 we havethat σ = σι for ι = (k′0⊖k0)·v

0+. . .+(k′ℓ⊖kℓ)·v
ℓ+. . .+(k′u−1⊖ku−1)·v

u−1,and therefore σ belongs to the family {σι}vu−1
ι=0 .

Figure 5.5 illustrates some examples of strutures (Valu,∼). Note thatwhen |Val | = 2, (Valu,∼) is the u-dimensional hyperube.
aaaa aaab

abababaa

aaba aabb

abbbabba

baaa baab

bbabbbaa

baba babb

bbbbbbba

(a) u = 4,Val = {a, b} (4-dimensional hyperube) aaa

aba

aca

aab

abb

acb

aac

abc

acc

baa

bba

bca

caa

cba

cca bcb

bccccb

ccc

(b) u = 3,Val = {a, b, c} (for read-ability sake we show only part of thegraph)Figure 5.5: Some (Valu,∼) graphsThe relation between graph strutures we onsider in this hapter is sum-marized in Figure 5.6. We remark that in general the graphs (Valu,∼) do nothave a single-orbit automorphism. The only exeptions are the two simpleststrutures (|Val | = 2, |Ind | ≤ 2). 101



5. Differential privay: the trade-off between leakage andutility
Dist-regular VT++V Ind

Single-
orbit

S∗Figure 5.6: Venn diagram for the lasses of graphs onsidered in this setion.Here S∗ = {Valu | |Val | = 2, u ≤ 2}5.4 Deriving the relation between di�erentialprivay and quantitative information �ow onthe basis of the graph strutureIn this setion we present the main tehnial ontribution of the hapter: ageneral tehnique that explores the graph struture indued by the adjaenyrelation ∼ on X and the query f to determine relations between ǫ-di�erentialprivay and min-entropy leakage, and between ǫ-di�erential privay and utility.We use the symmetries of the graph struture (X ,∼) to transform the hannelmatrix into an equivalent matrix with ertain regularities. These regularitiesare the key that allow us to establish the link between ǫ-di�erential privayand the a posteriori min-entropy (i.e. the onditional min-entropy assoiatedto the hannel). The establishment of bounds on the a posteriori entropyentropy will allow us to derive bounds on leakage and utility: in Setion 5.5we will ope with leakage and in Setion 5.6 we will ope with utility.But �rst, in Setion 5.4.2 we will present how to perform the transformationon the hannel matrix, and in Setion 5.4.3 we will show how to derive a boundon the a posteriori min-entropy for the matrix obtained. It is important to notethat we onsider the ase where the hannel input has the uniform distribution.This is not a restrition for our bounds on the leakage: as seen in Chapter 3, themaximum min-entropy leakage is ahieved in the uniform input distributionand, therefore, any bound for the uniform input distribution is also a bound forall other input distributions. In the ase of utility the assumption of uniforminput distribution is more restritive, but we will see that it still providesinteresting results for several pratial ases.Before we present formally our tehnique, let us �x some notation.5.4.1 Assumptions and notationIn the rest of this setion we onsider hannels (usually referred to by M , M ′,
M ′′ or N) with input A and output B, with �nite arriers A and B respetively,and we assume that the probability distribution of A is uniform. Furthermore,we assume that |A| = n ≤ |B| = m. If it is the ase that n > m, we just add102



5.4. Deriving the relation between di�erential privay and quantitativeinformation �ow on the basis of the graph strutureto the matrix enough zero-ed olumns, i.e. olumns ontaining only 0's, so tomath the number of rows. Note that adding zero-ed olumns does not hangethe min-entropy leakage nor the onditional min-entropy of the hannel. Weassume as well an adjaeny relation ∼ on A, i.e. that (A,∼) is an undiretedgraph struture. With a slight abuse of notation, we will also write i ∼ h when
i and h are assoiated to adjaent elements of A, and we will write d(i, h) todenote the distane between the elements of A assoiated to i and h.We note that a hannel matrix M satis�es ǫ-di�erential privay if for eaholumn j and for eah pair of rows i and h suh that i ∼ h we have that:

1

eǫ
≤

Mi,j

Mh,j
≤ eǫ.The a posteriori entropy of a hannel with matrix M will be denoted by

HM
∞ (A|B), and its min-entropy leakage by IM∞ (A;B).We denote by M [l → k] the matrix obtained by �ollapsing� the olumn linto k, i.e.

M [l→ k]i,j =







Mi,k +Mi,l if j = k,

0 if j = l,

Mi,j otherwiseGiven a partial funtion ρ : A → B, the image of A under ρ is ρ(A) =
{ρ(a)|a ∈ A, ρ(a) 6= ⊥}, where ⊥ stands for �unde�ned�.In the proofs we will need to use several indies, and we will typially usethe letters i, j, h, k, l to range over rows and olumns (usually i, h, l will rangeover rows and j, k will range over olumns). Given a matrix M , we denote by
maxMj the maximum value of olumn j over all rows i, i.e. maxMj = maxi Mi,j ,and by maxM = maxi,j Mi,j the maximum element of the matrix.Finally, given a graph G = (V,∼) with diameter δ, we denote by ∆G theset {0, 1, . . . , δ}. We may omit the subsript and denote the set only by ∆ ifthe ontext does not allow any onfusion. The notation V〈d〉(v) represents thesubset of V of all elements w at distane d from v. For a �xed d, we de�ne
nd = |V〈d〉(v)| as the number of verties in V at distane d from v, and weassume that it will be always lear by the ontext to whih set of verties Vand element v the value nd is assoiated to.5.4.2 The matrix transformationThe transformation on the hannel matries is divided into two steps, and westart this setion by giving an overview of the proess. Consider a hannelwhose matrix M has at least as many olumns as rows and assume that theinput distribution is uniform. First, we transformM into a matrixM ′ in whiheah of the �rst n olumns has a maximum in the diagonal, and the remainingolumns are all 0's. Seond, under the assumption that the input domain isdistane-regular or V T+, we transform M ′ into a matrix M ′′ whose diagonal103



5. Differential privay: the trade-off between leakage andutilityelements are all the same, and oinide with the maximum element maxM
′′of M ′′. The transformation ensures that both M ′ and M ′′ are valid hannelmatries (i.e. eah row is a probability distribution), also respet ǫ-di�erentialprivay, and preserve the value of the a posteriori entropy for the uniforminput distribution. A sheme of the transformation is shown in Figure 5.7,where Lemma 38 (Step 1) is applied on the �rst step of the transformation,and on the seond step either Lemma 39 (Step 2a) or Lemma 40 (Step 2b) isapplied, depending on whether the graph struture is distane-regular or V T+,respetively.

M








M0,0 M0,1 . . . M0,m−1

M1,0 M1,1 . . . M1,m−1

...
...

. . .
...

Mn−1,0 Mn−1,1 . . . Mn−1,m−1








Lemma Step 1

(dist-reg or V T+)

M ′








maxM
′

0 − . . . − 0 . . . 0

− maxM
′

1 . . . − 0 . . . 0
...

...
. . .

...
...

. . .
...

− − . . . maxM
′

n−1 0 . . . 0








Lemma Step 2a

(dist-reg)

Lemma Step 2b

(V T+)

M ′′








maxM
′′

− . . . − 0 . . . 0

− maxM
′′

. . . − 0 . . . 0
...

...
. . .

...
...

. . .
...

− − . . . maxM
′′

0 . . . 0






Figure 5.7: Steps of the matrix transformation for distane-regular and V T+graphsWe now present formally the transformation. The next Lemma is relativeto the �rst step.Lemma 38 (Step 1). Let M be a hannel matrix of dimensions n ×m withat least as many olumns as rows, and assume that M satis�es ǫ-di�erentialprivay. Then it is possible to transform M into a matrix M ′ satisfying thefollowing onditions:104



5.4. Deriving the relation between di�erential privay and quantitativeinformation �ow on the basis of the graph struture(i) M ′ is a valid hannel matrix: ∑j M
′
i,j = 1 for all 0 ≤ i ≤ n− 1 and all

0 ≤ j ≤ m− 1;(ii) Eah of the �rst n olumns has a maximum in the diagonal: M ′
i,i =

maxM
′

i for all 0 ≤ i ≤ n− 1;(iii) The m− n last olumns ontain only 0's: M ′
i,j = 0 for all 0 ≤ i ≤ n− 1and all n ≤ j ≤ m− 1;(iv) M ′ satis�es ǫ-di�erential privay: M ′

i,j

M ′
h,j
≤ eǫ for all 0 ≤ i, h ≤ n− 1 andall 0 ≤ j ≤ m− 1;(v) HM ′

∞ (A|B) = HM
∞ (A|B), if A has the uniform distribution.Proof. We �rst show that there exists a matrix N of dimensions n ×m, andan injetive total funtion ρ : A → B suh that:

• Ni,ρ(i) = maxN
ρ(i) for all i ∈ A, and

• Ni,j = 0 for all j ∈ B\ρ(A) and all i ∈ A.We iteratively onstrut ρ and N �olumn by olumn� via a sequene ofapproximating partial funtions ρs and matries Ns (0 ≤ s ≤ m).
• Initial step (s = 0)De�ne ρ0(i) = ⊥ for all i ∈ A and N0 = M .
• sth step (1 ≤ s ≤ m)Let j be the s-th olumn and let i ∈ A be one of the rows ontainingthe maximum value of olumn j in M , i.e. Mi,j = maxMj . There are twoases:1. ρs−1(i) = ⊥. We de�ne:

ρs = ρs−1 ∪ {i 7→ j} and
Ns = Ns−12. ρs−1(i) = k ∈ B. We �ollapse� olumn j into olumn k:
ρs = ρs−1 and
Ns = Ns−1[j → k] 105



5. Differential privay: the trade-off between leakage andutilitySine the operation of �ollapsing� assigns j in ρs and then zeroes theolumn j in Ns, all unassigned olumns B \ ρm(A) must be zero in Nm. We�nish the onstrution by taking ρ to be the same as ρm after assigning toeah unassigned row one of the olumns in B \ ρm(A) (there are enough suholumns sine n ≤ m). We also take N = Nm. Note that by onstrution Nis a hannel matrix.Thus we get a matrix N and a funtion ρ : A → B whih, by onstrution,is injetive and satis�es Ni,ρ(i) = maxN
ρ(i) for all i ∈ A, and Ni,j = 0 for all

j ∈ B\ρ(A) and all i ∈ A. Furthermore, N provides ǫ-di�erential privay(ondition (iv)) beause eah olumn is a linear ombination of olumns of M .It is also easy to see that∑j maxNj =
∑

j maxMj , and from that it immediatelyfollows that HN
∞(A|B) = HM

∞ (A|B) (reall that A has the uniform distributionand therefore the a posteriori entropy is a funtion of the sum of the maximumof eah olumn), so ondition (v) is satis�ed.Finally, we reate our laimed matrix M ′ from N just by rearranging theolumns aording to ρ. Note that the order of the olumns is irrelevant, sineany permutation represents the same onditional probabilities and thereforethe same hannel. The resulting matrix M ′ has all maxima in the diagonal
M ′

i,i for 0 ≤ i ≤ n− 1, and every element in the olumns n ≤ j ≤ m− 1 are 0,whih satis�es onditions (ii) and (iii). Also, sine N is a valid hannel matrix,so is M ′ and ondition (i) is also satis�ed.The seond step of the transformation depends on the graph struture of
(A,∼). But before we disuss this step, let us introdue a notion of distanebetween elements in B, derived from the notion of distane between elementsin A. Let M be a hannel matrix in whih the maximum of eah olumn isin the diagonal, as in Figure 5.8. Then we de�ne the distane between twoelements j1, j2 ∈ B as follows:
d(j1, j2) =

{

d(i1, i2) if there are i1, i2 ∈ A suh that i1 = j1 and i2 = j2,
⊥ otherwise. (5.5)Note that the range of the notion of distane de�ned above is the set

∆ = {0, 1, . . . , δ}, where δ is the diameter of (A,∼). Based on (5.5), we de�nethe set B〈d〉(j) as the subset of B of elements at distane d from an element
j ∈ B. It is lear that for any j ∈ B, we have ⋃d∈∆ B〈d〉(j) = B.We an extend the adjaeny relation ∼ on A to an adjaeny relation ∼′on B by using the notion of distane of (5.5). For any j1, j2 ∈ B, we have
j1 ∼

′ j2 if and only if d(j1, j2) = 1. Therefore, if (A,∼) is distane-regular, soit is (B,∼′).Now we are ready to present the lemma for the seond step of the trans-formation, in the ase of distane-regular graphs.106



5.4. Deriving the relation between di�erential privay and quantitativeinformation �ow on the basis of the graph struture
row i Mi,0 . . . . . . . . . Mi,m−1Mi,j′

...
Mj′,j′ = maxMj′

d(i, j′)

{

Mi,j′′

...

...

...
Mj′′,j′′ = maxMj′′







d(i, j′′)

M0,0 M0,1 . . .
M1,0 . . .

...

. . . M0,m−2 M0,m−1

. . . M1,m−1

...

...
Mn−2,0 . . .
Mn−1,0 Mn−1,1 . . .

...
. . . Mn−2,m−1

. . . Mn−1,m−2 Mn−1,m−1Figure 5.8: The relation between elements of a row i and the elements in thediagonalLemma 39 (Step 2a). Let M ′ be a hannel matrix of dimensions n×m withat least as many olumns as rows, and assume that M ′ satis�es ǫ-di�erentialprivay. Let ∼ be an adjaeny relation on A suh that the graph (A,∼)is onneted and distane-regular. Assume that the maximum value of eaholumn is on the diagonal, that is Mi,i = maxMi for all i ∈ A, and that all thelast m−n olumns have only zero elements, i.e. M ′
i,j = 0 for all 0 ≤ i ≤ n−1and n ≤ j ≤ m − 1. Then it is possible to transform M ′ into a matrix M ′′satisfying the following onditions:(i) M ′′ is a valid hannel matrix: ∑j M

′′
i,j = 1 for all 0 ≤ i ≤ n− 1 and all

0 ≤ j ≤ m− 1;(ii) The elements of the diagonal are all the same, and are equal to the max-imum of the matrix: M ′′
i,i = maxM

′′ for all 0 ≤ i ≤ n− 1;(iii) The m− n last olumns ontain only 0's: M ′′
i,j = 0 for all 0 ≤ i ≤ n− 1and all n ≤ j ≤ m− 1;(iv) M ′′ satis�es ǫ-di�erential privay: M ′

i,j

M ′
h,j
≤ eǫ for all 0 ≤ i, h ≤ n− 1 andall 0 ≤ j ≤ m− 1;(v) HM ′′

∞ (A|B) = HM ′

∞ (A|B), if A has the uniform distribution.Proof. Let us de�ne B∗ = {0, 1, . . . , n − 1}, i.e. the subset of B that exludesthe zero-ed olumns of M ′ from n to m − 1. Note that we an safely use theset B∗ instead of B in this proof beause the zero-ed olumns do not ontributeto the a posteriori entropy, and trivially respet ǫ-di�erential privay. 107



5. Differential privay: the trade-off between leakage andutilityWe then de�ne the matrix M ′′ as follows.
M ′′

i,j =

{
1

n|A〈d(i,j)〉(i)|

∑

k∈B∗

∑

h∈A〈d(i,j)〉(k)
M ′

h,k if j ∈ B∗,
0 otherwise.By the de�nition above, ondition (iii) is immediately satis�ed. We thenshow that this de�nition also indues a hannel matrix. We have

∑

j∈B∗

M ′′
i,j =

∑

j∈B∗

1

n|A〈d(i,j)〉(i)|

∑

k∈B∗

∑

h∈A〈d(i,j)〉(k)

M ′
h,k

=
1

n

∑

k∈B∗

∑

j∈B∗

1

|A〈d(i,j)〉(i)|

∑

h∈A〈d(i,j)〉(k)

M ′
h,kReall that ∆ = {0, . . . , δ}, where δ is the diameter of the graph. Note thatfor every i, B∗ = ⋃d∈∆ B

∗
〈d〉(i), and the for di�erent values of d the sets B∗〈d〉(i)are disjoint. Therefore the summation over j ∈ B∗ an be split as follows

=
1

n

∑

k∈B∗

∑

d∈∆

∑

j∈B∗
〈d〉

(i)

1

|A〈d〉(i)|

∑

h∈A〈d〉(k)

M ′
h,k

=
1

n

∑

k∈B∗

∑

d∈∆

∑

h∈A〈d〉(k)

M ′
h,k

∑

j∈B∗
〈d〉

(i)

1

|A〈d〉(i)|as ∑

j∈B∗
〈d〉

(i)

1

|A〈d〉(i)|
= 1, we obtain
=

1

n

∑

k∈B∗

∑

d∈∆

∑

h∈A〈d〉(k)

M ′
h,kand now the summations over h an be joined together

=
1

n

∑

k∈B∗

∑

h∈A

M ′
h,k

= 1whih implies that ondition (i) is satis�ed.We now turn our attention to the elements of the diagonal. We have
M ′′

i,i =
1

n

∑

h∈A

M ′
h,h108



5.4. Deriving the relation between di�erential privay and quantitativeinformation �ow on the basis of the graph strutureand so they are all idential. To ful�ll ondition (ii) we still need to show that
M ′′

i,i = maxM
′′

i for all i ∈ A.
M ′′

i,j =
1

n|A〈d(i,j)〉(i)|

∑

k∈B∗

∑

h∈A〈d(i,j)〉(k)

M ′
h,k

≤
1

n|A〈d(i,j)〉(i)|

∑

k∈B∗

∑

h∈A〈d(i,j)〉(k)

M ′
h,h (sine the biggest elementis in the diagonal)

=
1

n

∑

k∈B∗

M ′
h,h

1

|A〈d(i,j)〉(i)|

∑

h∈A〈d(i,j)〉(k)

1

=
1

n

∑

k∈B∗

M ′
h,h

|A〈d(i,j)〉(k)|

|A〈d(i,j)〉(i)|

=
1

n

∑

k∈B∗

M ′
h,h · 1 (sine the graphis distane-regular)

= M ′′
i,iSine A has the uniform distribution, HM ′

∞ (A|B) = HM ′′

∞ (A|B) (ondition(v)) follows immediately.It remains to show that M ′′ satis�es ǫ-di�erential privay (ondition (iv)).We need to show that
M ′′

i,j ≤ eǫM ′′
i′,j ∀j ∈ B, i, i′ ∈ A : i ∼ i′From the triangular inequality we have (sine d(i, i′) = 1)

d(i′, j) − 1 ≤ d(i, j) ≤ d(i′, j) + 1Thus, there are 3 possible ases:1. d(i, j) = d(i′, j)The result is immediate sine M ′′
i,j = M ′′

i′,j .2. d(i, j) = d(i′, j)− 1We de�ne the set of neighbors of h �one step further away� from k:
Fh,k = {h′ ∼ h | h′ ∈ A〈d(h,k)+1〉(k)}Note that |Fh,k| = bd(h,k) sine the graph is distane-regular. The fol-lowing inequalities hold for any h, h′ ∈ A:

M ′
h,k ≤ eǫM ′

h′,k ∀h′ ∈ Fh,k (di�. privay)⇒
bd(h,k)M

′
h,k ≤ eǫ

∑

h′∈Fh,k

M ′
h′,k (sum of the above)109



5. Differential privay: the trade-off between leakage andutilitywe now �x a distane d and sum the above inequalities for all verties atdistane d from h:
∑

h∈A〈d〉(k)

bdM
′
h,k ≤ eǫ

∑

h∈A〈d〉(k)

∑

h′∈Fh,k

M ′
h′,kNote that eah h′ ∈ A〈d+1〉(k) is ontained in Fh,k for exatly cd+1di�erent h ∈ A〈d〉(k). So the right-hand side above sums all verties of

A〈d+1〉(k) exatly cd+1 times eah. Thus we get that for all k ∈ B∗, d ∈ ∆:
bd

∑

h∈A〈d〉(k)

M ′
h,k ≤ eǫ cd+1

∑

h∈A〈d+1〉(k)

M ′
h,k (5.6)Finally, note that cd+1|A〈d+1〉(i)| = bd|A〈d〉(i)| (both sides ount thenumber of edges between a vertex at distane d and a vertex at distane

d+ 1). So we have
M ′′

i,j =
1

n|A〈d〉(i)|

∑

k∈B∗

∑

h∈A〈d〉(k)

M ′
h,k

≤ eǫ
1

n|A〈d〉(i)|

cd+1

bd

∑

k∈B∗

∑

h∈A〈d+1〉(k)

M ′
h,k (from (5.6))

= eǫ
1

n|A〈d+1〉(i)|

∑

k∈B∗

∑

h∈A〈d+1〉(k)

M ′
h,k

= eǫM ′′
i′,j3. d(i, j) = d(i′, j) + 1This ase is analogous to the ase ase where d(i, j) = d(i′, j)− 1.The next lemma is relative to the seond step of the transformation, forthe ase of V T+ graphs.Lemma 40 (Step 2b). Consider a hannel matrix M ′ satisfying the assump-tions of Lemma 39, exept for the assumption about distane-regularity, whihwe replae by the assumption that (A,∼) is V T+. Then it is possible to trans-form M ′ into a matrix M ′′ with the same properties as in Lemma 39.Proof. Let us de�ne B∗ = {0, 1, . . . , n − 1}, i.e. the subset of B that exludesthe zero-ed olumns of M ′ from n to m− 1. Note that we an safely use theset B∗ instead of B in this proof beause the zero-ed olumns do not ontributeto the a posteriori entropy, and trivially respet ǫ-di�erential privay.110



5.4. Deriving the relation between di�erential privay and quantitativeinformation �ow on the basis of the graph strutureWe then de�ne the matrix M ′′ as follows.
M ′′

i,j =

{
1
n

∑n−1
h=0 M

′
σh(i),σh(j)

if j ∈ B∗,
0 otherwise.By the de�nition above, ondition (iii) is immediately satis�ed. We thenshow that this de�nition also indues a hannel matrix. Reall that {σh(j)|0 ≤

i ≤ n− 1} = A sine the graph is V T+.
n−1∑

j=0

M ′′
i,j =

n−1∑

j=0

1

n

n−1∑

h=0

M ′
σh(i),σh(j)

=
n−1∑

h=0

1

n

n−1∑

j=0

M ′
σh(i),σh(j)

=
n−1∑

h=0

1

n
· 1 (sine {σh(j)|0 ≤ i ≤ n− 1} = A )

= 1whih implies that ondition (i) is satis�ed.Now we prove that the diagonal ontains the maximum values of the matrix(ondition (ii)), i.e. for every i, M ′′
i,i = maxM . It is easy to see that, byde�nition, the elements of the diagonal are all the same. Then we need toshow that they are the maximum of eah olumn, from whih it follows thatthey are the maximum of the matrix.

M ′′
i,i =

1

n

n−1∑

h=0

M ′
σh(i),σh(i)

≥
1

n

n−1∑

h=0

M ′
σh(i),σh(j)

(sine M ′
σh(j),σh(j)

= maxM
′

σi(j)
)

= M ′′
i,jWe now prove that M ′′ provides ǫ-di�erential privay (ondition (iv)). For111



5. Differential privay: the trade-off between leakage andutilityevery pair i ∼ i′ and every j:
M ′′

i,j =
1

n

n−1∑

h=0

M ′
σh(i),σh(j)

≤
1

n

n−1∑

h=0

eǫM ′
σh(i′),σh(j)

(by ǫ-di�. privay, for some i′s.t. σh(i′) = σh(j))
= eǫM ′′

i′,jFinally, we prove ondition (v):
HM ′′

∞ (A|B) =

n−1∑

i=0

M ′
h,h

=
1

n

n−1∑

i=0

n−1∑

h=0

M ′
σh(i),σh(i)

=
1

n

n−1∑

i=0

HM ′

∞ (A|B) (sine M ′
σh(i),σh(i)

= maxM
′

σi(i)
)

= HM ′

∞ (A|B)

5.4.3 The bound on the a posteriori entropy of the hannelOne the transformation presented in the previous setion has been applied,and the hannel matrix respets the properties of M ′′, we an use again thegraph struture of (A,∼) to determine a bound on the a posteriori entropy
HM ′′

∞ (A|B) of M ′′. Reall that our matrix transformation preserves the valueof the a posteriori onditional entropy, so the bound we �nd is also valid forthe original hannel matrix we started with.It is a known result in literature (fr. [BCP09℄) that, if the distributionon A is uniform, then the a posteriori entropy of the hannel M is given by
HM

∞ (A|B) = − log2
∑

j∈B

maxMjHene, under our assumption that the input distribution A is uniform,and knowing that matrix the M ′′ the diagonal elements are all equal to themaximum maxM
′′ , we have

HM ′′

∞ (A|B) = − log2maxM
′′ (5.7)112



5.4. Deriving the relation between di�erential privay and quantitativeinformation �ow on the basis of the graph strutureTherefore to �nd a bound on the a posteriori entropy of the hannel M ′′it is enough to �nd a bound on maxM
′′ . This is exatly what we do in thissetion.We proeed by noting that the property of ǫ-di�erential privay indues arelation between the ratio of elements at any distane:Remark 41. Let M be a matrix satisfying ǫ-di�erential privay. Then, forany olumn j, and any pair of rows i and h we have that:

1

eǫ d(i,h)
≤

Mi,j

Mh,j

≤ eǫ d(i,h)In partiular, as we know that the diagonal elements of M are equal to themaximum element maxM , then for eah element Mi,j we have that:
Mi,j ≥

maxM

eǫ d(i,j)
(5.8)whih motivates the next proposition.Proposition 42. Let M be a hannel matrix where the diagonal elements arethe maximum element maxM of the matrix. Then:

maxM ≤ 1∑
d∈∆

nd

eǫdwhere ∆ = {0, 1, . . . , δ}, δ is the diameter of the graph (A,∼), and nd =
A〈d〉(j) is the number of elements Mi,j that are at distane d from the orre-sponding diagonal element Mj,j, i.e. suh that d(i, j) = d.Proof. The elements of any given row i of M represent a probability distribu-tion, therefore they summate to 1.

∑

j

Mi,j = 1By substituting (5.8) in the equation above we obtain:
∑

j

(
maxM

eǫd(i,j)

)

≤ 1

∑

d

( nd

eǫd
maxM

)

≤ 1and therefore
maxM ≤

1
∑

d
nd

eǫd 113



5. Differential privay: the trade-off between leakage andutilityPutting together all the steps of this setion, we obtain our main result.Theorem 43. Consider a hannel matrix M satisfying ǫ-di�erential privayfor some ǫ > 0, and assume that (A,∼) is either distane-regular or V T+.Then we have:
HM

∞ (A|B) ≥ − log2
1

∑

d
nd

eǫ d

(5.9)where nd = |A〈d〉(i)| is the number of nodes j ∈ A at distane d from i ∈ A.Moreover, this bound it tight, in the sense that we an build a matrix forwhih (5.9) holds with equality.Proof. The inequality follows diretly from (5.7) and Proposition 42. To provethat the bound is tight, it is su�ient to de�ne eah element Mi,j aordingto (5.8) with equality instead of inequality.In the next setions we will see how to use this theorem for establishing abound on the leakage and on the utility.5.5 Appliation to leakageAs disussed in the Setion 5.2, the orrelation L(X,Z) between X and Zmeasures the information that the attaker an learn about the database byobserving the reported answers. In this setion we onsider the min-entropyleakage as a measure of this information, that is L(X,Z) = I∞(X;Z). We theninvestigate bounds on information leakage imposed by di�erential privay.Before we ontinue, let us make a very important observation about theresults we obtain in this setion.Remark 44. The bounds on the min-entropy leakage we present in this setion(Theorem 45, Proposition 48, and Proposition 49) are derived under the as-sumption that the input distribution X for the hannel is uniform. As seen inChapter 3, we know from the literature [BCP09, Smi09℄ that the min-entropyleakage IM∞ (X;Z) of a given matrix M is maximum when input distributionis uniform (even though it may not be the only ase). Therefore the boundswe present in this setion, although based on the assumption that X has theuniform distribution, are valid for every possible input distribution. As wemodel side information as input distributions, and as we provide bounds onthe leakage for any possible input distribution, it follows that our bounds onthe min-entropy leakage are valid for any possible side information the attakermay have.Our �rst result shows that the min-entropy leakage of a randomized fun-tion K is bounded by a quantity depending on ǫ, and on the numbers u = |Ind |and v = |Val | of individuals and values respetively. We assume that v ≥ 2.114



5.5. Appliation to leakageAs seen in Setion 5.2, K an be modeled as a hannel with input X andoutput Z. From Propositions 36 and 37 we know that (X ,∼) is both distane-regular and V T+, and therefore we an apply Theorem 43. Then, by (5.8) weknow that j ∈ X〈d〉(x) (i.e. every j in X at distane d from a given x) it is thease that Mx,j ≥
maxM

eǫd
. Furthermore we note that eah element j at distane

d from x an be obtained by hanging the value of d individuals in the u-tuplerepresenting i. We an hoose those d individuals in (u
d

) possible ways, andfor eah of these individuals we an hange the value (with respet to the onein x) in v − 1 possible ways. Therefore |X〈d〉(x)| =
(
u
d

)
(v − 1)d, and we obtainthat the number of databases at distane d from x is

nd = |X〈d〉(x)| =

(
u
d

)

(v − 1)d (5.10)In fat, reall that x an be represented as a u-tuple with values in V . Weneed to selet d individuals in the u-tuple and then hange their values, andeah of them an be hanged in v − 1 di�erent ways.Using the value of nd from (5.10) in Theorem 43 we obtain the followingresult.Theorem 45. If K satis�es ǫ-di�erential privay, then the information leakageis bound from above as follows:
I∞(X;Z) ≤ u log2

v eǫ

v − 1 + eǫ
= Bnd(u, v, ǫ)Proof. For this proof we need a matrix with all olumn maxima on the di-agonal, and all equal. We obtain suh a matrix by transforming the matrixassoiated to K as follows: �rst we apply Lemma 38 to it (with A = X and

B = Z), and then we apply either Lemma 39 or Lemma 40 (we an hoose anyof them, sine (X ,∼) is both distane-regular and V T+). The �nal matrix
M has all non-zero elements on its n × n submatrix, with n = |X | = Valu,provides ǫ-di�erential privay, and for every row i we have that Mi,i = maxM .Furthermore, IM∞ (X;Y ) is equal to the min-entropy leakage of K.Then we an derive:

n∑

j=1

Mi,j ≥
u∑

d=0

nd
maxM

(eǫ)d

=

u∑

d=0

(
u

d

)

(v − 1)d
maxM

(eǫ)d
(by (5.10))Sine eah row represents a probability distribution, the elements of row imust sum up to 1:

u∑

d=0

(
u

d

)

(v − 1)d
maxM

(eǫ)d
≤ 1 115



5. Differential privay: the trade-off between leakage andutilityand by multiplying both sides of the inequality by eǫu we get
maxM

∑u
d=0

(
u
d

)
(v − 1)deǫ(u−d) ≤ eǫuSine by the binomial expansion maxM

∑u
d=0

(
u
d

)
(v − 1)d(eǫ)u−d = (v −

1 + eǫ)u, we obtain:
maxM ≤

(
eǫ

v−1+eǫ

)u (5.11)Therefore:
IM∞ (X;Y ) = H∞(X)−HM

∞ (X|Y ) (by de�nition)
= log2Val

u + log2maxM (by (5.7))
≤ log2Val

u + log2

(
eǫ

v − 1 + eǫ

)u (by (5.11))
= u log2

v eǫ

v − 1 + eǫTo onlude our proof we reall that, sine the above bound on IM∞ (X;Y )is valid for the ase where X has the uniform distribution, it is also valid forany distribution on X.Note that the bound Bnd(u, v, ǫ) = u log2
v eǫ

(v−1+eǫ) is a ontinuous funtionin ǫ, has value 0 when ǫ = 0, and onverges to u log2 v as ǫ approahes in�nity.Figure 5.9 shows the growth of Bnd(u, v, ǫ) along with ǫ, for various �xedvalues of u and v.

Figure 5.9: Graphs of Bnd(u, v, ǫ) for u=100 and v=2 (lowest line), v=10(intermediate line), and v=100 (highest line), respetively.The next proposition shows that the bound obtained in previous theoremis tight.116



5.5. Appliation to leakageProposition 46. For every u, v, and ǫ there exists a randomized funtion Kwhih provides ǫ-di�erential privay and whose min-entropy leakage, for theuniform input distribution, is I∞(X;Z) = Bnd(u, v, ǫ).Proof. The adjaeny relation in X determines a graph struture GX . Set
Z = X and de�ne the matrix of K as follows:

pK(z|x) =
Bnd(u, v, ǫ)

(eǫ)d
(5.12)where d is the distane between x and z in GX .We need to show that pK(·|x) is a probability distribution for every x:

∑

z∈Z

Bnd(u, v, ǫ)

(eǫ)d
= Bnd(u, v, ǫ)

∑

z∈Z

1

(eǫ)d

= Bnd(u, v, ǫ)
∑

d

nd

(eǫ)d

= Bnd(u, v, ǫ)
1

maxM
by Proposition 42

= Bnd(u, v, ǫ)
1

Bnd (u, v, ǫ)
take d = 0 in (5.12)

= 1To see that K provides ǫ-di�erential privay, just take d = 1 in (5.12), andto see that I∞(X;Z) = Bnd(u, v, ǫ) take d = 0 in the same equation.We now show an example of the use of Bnd(u, v, ǫ) as a bound for themin-entropy leakage.Example 7. Assume that we are interested in the eyes olor of a ertain pop-ulation Ind = {Alie,Bob}. Let Val = {a, b, c} where a stands for absent(i.e. the null value), b stands for blue, and c stands for coalblack . We anrepresent eah dataset as a tuple d0d1, where d0 ∈ Val represents the eyesolor of Alie (ases d0 = b and d0 = c), or that Alie is not in the dataset(ase d0 = a). d1 provides the same kind of information for Bob. Note that
v = 3. Fig 5.10(a) represents the set X of all possible datasets and its adja-eny relation. Fig 5.10(b) represents the matrix with input X whih provides
ǫ-di�erential privay and has the highest min-entropy leakage. In the repre-sentation of the matrix, the generi entry α stands for maxM

eǫ α
, where maxM isthe highest value in the matrix, i.e. maxM = eǫ

(v−1+eǫ) =
eǫ

(2+eǫ) .Note that the bound Bnd(u, v, ǫ) is guaranteed to be reahed with theuniform input distribution. The onstrution of the matrix for Proposition 46gives a square matrix of dimension Valu × Valu. Often, however, the rangeof K is �xed, as it is usually related to the possible answers to the query f .117



5. Differential privay: the trade-off between leakage andutility
ca cb cc

ba bb bc

aa ab ac

(a) The datasets and theiradjaeny relation
aa ab ac ba ca bb bc cb cc

aa 0 1 1 1 1 2 2 2 2
ab 1 0 1 2 2 1 2 1 2
ac 1 1 0 2 2 2 1 2 1
ba 1 2 2 0 1 1 2 1 2
ca 1 2 2 1 0 2 2 1 1
bb 2 1 2 1 2 0 1 1 2
bc 2 2 1 1 2 1 0 2 1
cb 2 1 2 2 1 1 2 0 1
cc 2 2 1 2 1 2 1 1 0(b) The representation ofthe matrixFigure 5.10: Universe and highest min-entropy leakage matrix giving ǫ-di�erential privay for Example 7.Hene it is natural to onsider the senario in whih we are given a number

r < Valu, and want to onsider only those K's whose range has ardinalityat most r. Proposition 48 shows that in n this restrited setting we an �nda better bound than the one given by Theorem 45. But �rst we need thefollowing lemma.Lemma 47. Let K be a randomized funtion with input X, where X = Valu,providing ǫ-di�erential privay. Assume that r = |Range(K)| = vℓ, for some
ℓ < u. Let M be the matrix assoiated to K. Then it is possible to build asquare matrix M ′ of size vℓ × vℓ, with row and olumn indies in A ⊆ X , anda binary relation ∼′⊆ A×A suh that (A,∼′) is isomorphi to (Val ℓ,∼ℓ), andsuh that:(i) M ′ is a valid hannel matrix: ∑j M

′
i,j = 1 for all 0 ≤ i ≤ n − 1 and all

0 ≤ j ≤ m− 1;(ii) M ′
i,j ≤ (eǫ)u−l+dM ′

h,j for all i, h ∈ X and j ∈ Y, where d is the ∼′-distane between i and h;(iii) The elements of the diagonal are all equal to the maximum element ofthe matrix: M ′
i,i = maxM

′ for all i ∈ X ;(iv) HM ′

∞ (X|Y ) = HM
∞ (X|Y ), if X has the uniform distribution.Proof. We �rst apply a proedure similar to that of Lemma 38 to onstrut asquare matrix of size vℓ × vℓ whih has the maximum values of eah olumnin the diagonal. (In this ase we onstrut an injetion from the olumns torows ontaining their maximum value, and we eliminate the rows that at theend are not assoiated to any olumn.) Then de�ne ∼′ as the projetion of ∼uon Val ℓ. It is easy to see that ondition (ii) in is satis�ed by this de�nition of118



5.5. Appliation to leakage
∼′. Finally, apply the proedure in Lemma 39, or equivalently the proedurein Lemma 40, on the struture (X ,∼′) to make all elements in the diagonalequal to the maximum element of the matrix (ondition (iii)). Note that thisproedure preserves the property of ondition (ii), and onditional min-entropy((iv)). Also the matrix obtained is a valid hannel matrix (ondition (i)).Now we are ready to prove the proposition.Proposition 48. Let K be a randomized funtion with assoiated hannelmatrix M , and let r = |Range(K)|. If K provides ǫ-di�erential privay thenthe min-entropy leakage assoiated to K is bounded from above as follows:

IM∞ (X;Z) ≤ log2
r (eǫ)u

(v − 1 + eǫ)ℓ − (eǫ)ℓ + (eǫ)uwhere ℓ = ⌊logv r⌋.Proof. Assume �rst that r is of the form vℓ. We transform the matrix Massoiated to K by applying Lemma 47, and let M ′ be the resulting matrix.Let us denote by maxM
′ the value of every element in the diagonal of M ′, i.e.

maxM
′
= M ′

i,i for every row i, and let us denote by A′
〈d〉(i) the set of elementswhose ∼′-distane from i is d. Note that for every j ∈ A′

〈d〉(i) we have that
M ′

j,j ≤M ′
i,j(e

ǫ)u−ℓ+d, hene
M ′

i,j ≥
maxM

(eǫ)u−ℓ+dFurthermore eah element j at ∼′-distane d from i an be obtained byhanging the value of d individuals in the ℓ-tuple representing i (rememberthat (A,∼′) is isomorphi to (Val ℓ,∼ℓ)). We an hoose those d individualsin (ℓ
d

) possible ways, and for eah of these individuals we an hange the value(with respet to the one in i) in v − 1 possible ways. Therefore
|A′

〈d〉(i)| =

(
ℓ

d

)

(v − 1)dTaking into aount that for M ′
i,i we do not need to divide by (eǫ)u−ℓ+d,we obtain:

maxM +
∑ℓ

d=1

(
ℓ
d

)
(v − 1)d maxM

(eǫ)u−ℓ+d ≤
∑

j M
′
i,jSine eah row represents a probability distribution, the elements of row imust sum up to 1. Hene:

maxM +
∑u

d=1

(
u
d

)
(v − 1)d maxM

(eǫ)u−ℓ+d ≤ 1 (5.13)By performing some simple alulations, similar to those of the proof ofTheorem 45, we obtain:
maxM ≤ (eǫ)u

(v−1+eǫ)ℓ−(eǫ)ℓ+(eǫ)u 119



5. Differential privay: the trade-off between leakage andutilityTherefore:
IM

′

∞ (X;Z) = H∞(X)−HM ′

∞ (X|Z) (by de�nition) (5.14)
= log2 v

u + log2

vℓ∑

j=1

maxM 1
vu

(5.15)
= log2 v

u + log2
1

vu
+ log2(v

ℓ maxM ) (5.16)
≤ log2

vℓ (eǫ)u

(v − 1 + eǫ)ℓ − (eǫ)ℓ + (eǫ)u
(by (5.13) ) (5.17)Consider now the ase in whih r is not of the form vℓ. Let ℓ be themaximum integer suh that vℓ < r, and let m = r − vℓ. We transform thematrix M assoiated to K by ollapsing the m olumns with the smallestmaxima into the m olumns with highest maxima. Namely, let j1, j2, . . . , jmthe indies of the olumns whih have smallest maxima values, i.e. maxMjt ≤

maxMj for every olumn j 6= j1, j2, . . . , jm. Similarly, let k1, k2, . . . , km be theindexes of the olumns whih have maxima values. Then, de�ne
N = M [j1 → k1][j2 → k2] . . . [jm → km]Finally, eliminate the m zero-ed olumns to obtain a matrix with exatly

vℓ olumns. It is easy to show that
IM∞ (X;Z) ≤ IN∞(X;Z)

r

vℓAfter transforming N into a matrix M ′ with the same min-entropy leakageas desribed in the �rst part of this proof, from (5.14) we onlude
IM∞ (X;Z) ≤ IM

′

∞ (X;Z)
r

vℓ
≤ log2

r (eǫ)u

(v − 1 + eǫ)ℓ − (eǫ)ℓ + (eǫ)uNote that this bound an be muh smaller than the one provided by The-orem 45. For instane, if r = v this bound beomes:
log2

v (eǫ)u

v − 1 + (eǫ)uwhih for large values of u is muh smaller than Bnd(u, v, ǫ).Let us larify that there is no ontradition with the fat that the bound
Bnd(u, v, ǫ) is strit: in fat it is strit when we are free to hoose the range,but here we �x the dimension of the range.120



5.5. Appliation to leakage5.5.1 Measuring the leakage about an individualAs disussed in Setion 5.2, the main goal of di�erential privay is not toprotet information about the omplete database, but about eah of its indi-vidual partiipants. To apture the leakage about a partiular individual, westart from a tuple x− ∈ Valu−1 ontaining the given (and known) values of allother u− 1 individuals. Then we reate a hannel whose input V ranges overthe values in Val and represents the value of our individual of interest. Notethat this means that we take into onsideration all possible input databaseswhere the values of the other individuals are exatly those of x− and onlythe value of the seleted individual varies. Intuitively, Ix−

∞ (V ;Z) measures theleakage about the individual's value where all other values are known to be asin x−. (Similarly, Hx−

∞ (V |Z) represents the onditional entropy of V given Zfor a �xed database where all other values are x−.) As all these databases areadjaent, di�erential privay provides a stronger bound for this leakage.Therefore, the leakage for a single individual an be haraterized as fol-lows.Proposition 49. Assume that K satis�es ǫ-di�erential privay. Then theinformation leakage for an individual is bound from above by:
Ix

−

∞ (V ;B) ≤ log2
v eǫ

v − 1 + eǫProof. Let us �x a database x, and a partiular individual i in Ind . Thepossible ways in whih we an hange the value of i in x are v − 1. All thenew databases obtained in this way are adjaent to eah other, i.e. the graphstruture assoiated to the input is a lique of v nodes. Reall that nd is thenumber of elements of the input at distane d from a given element x. In thisase we have
nd =







1 for d = 0,
v − 1 for d = 1,
0 otherwise.By substituting this value of nd in Theorem 43, we get

Hx−

∞ (V |Z) ≥ − log2
1

1 +
v − 1

eǫ

= − log2
eǫ

v − 1 + eǫ 121



5. Differential privay: the trade-off between leakage andutilityThe partiular individual an present v di�erent values, and thus in thease the input distribution is uniform its min-entropy is Hx−

∞ (V ) = log2 v.
Ix

−

∞ (V ;Z) = Hx−

∞ (V )−Hx−

∞ (V |Y ) (by de�nition)
= log2 v + log2

eǫ

v − 1 + eǫ
(by the derivations above)

= log2
v eǫ

v − 1 + eǫSine the min-entropy leakage is maximum in the ase of the uniform inputdistribution, the result follows.Note that the bound on the leakage for an individual does not depend onthe size u of Ind , nor on the database x− that we �x.5.6 Appliation to utilityAs disussed in Setion 5.2, the utility of a randomized funtion K is theorrelation between the real answers Y for a query and the reported answers
Z. For our analysis we assume an oblivious randomization mehanism. Asdisussed in Setion 5.2, in this ase the system an be deomposed into twohannels, and the utility beomes a property of the hannel assoiated to therandomization mehanism H whih maps the real answer y ∈ Y into a reportedanswer z ∈ Z aording to given probability distributions pZ|Y (·|·). The user,however, does not neessarily take z as her guess for the real answer, sine shean use some Bayesian post-proessing to maximize the probability of suess,i.e. a right guess. Thus for eah reported answer z the user an remap herguess to a value y′ ∈ Y aording to some strategy that maximizes her expetedgain.The standard way to de�ne utility is by means of gain funtions (see forinstane [BS94℄). We de�ne gain : Y × Y → R and the value gain(y, y′)represents the reward for guessing the answer y′ when the orret answer is y.It is natural to de�ne the global utility of the mehanism H as the expetedgain:

U(Y,Z) =
∑

y

p(y)
∑

y′

p(y′|y)gain(y, y′) (5.18)where p(y) is the prior probability of real answer y, and p(y′|y) is the proba-bility of the user guessing y′ when the real answer is y.122



5.6. Appliation to utilityAssuming that the user uses a remapping funtion guess : Z → Y, we anderive the following haraterization of the utility. Reall that δx(·) representsthe probability distribution whih has value 1 on x and 0 elsewhere.
U(Y,Z) =

∑

y

p(y)
∑

y′

p(y′|y)gain(y, y′) (by (5.18))
=
∑

y

p(y)
∑

y′

(
∑

z

p(z|y)p(y′|z)

)

gain(y, y′)

=
∑

y

p(y)
∑

y′

(
∑

z

p(z|y)δy′(guess(z))

)

gain(y, y′) (y′ = guess(z))
=
∑

y

p(y)
∑

z

p(z|y)
∑

y′

δy′(guess(z))gain(y, y
′)

=
∑

y,z

p(y, z)
∑

y′

δy′(guess(z))gain(y, y
′)

=
∑

y,z

p(y, z)gain(y, guess(z)) (5.19)We fous here on the so-alled binary gain funtion, whih is de�ned as
gainbin(y, y

′) =

{

1 if y = y′,

0 otherwise.Note that in the above equation the value y′ represents the user's guessafter the observed answer z. Therefore we have
gainbin = δy(guess(z))This kind of funtion represents the ase in whih there is no reason toprefer an answer over the other, exept if it is the orret answer. Morepreisely, we obtain some gain if and only if we guess the right answer. Notethat if the answer domain is equipped with a notion of distane (i.e. even iftwo answers are wrong, one of them may be �loser� to the orret one thanthe other) then the gain funtion ould take into aount the proximity of thereported answer to the real one. In this ase a �lose� answer, even if wrong,is onsidered better than a distant one. We do not assume here a notion ofdistane, and therefore we will fous on the binary ase. The use of binarygain funtions in the ontext of di�erential privay was also investigated in[GRS09℄3.By substituting gain with gainbin in (5.19) we obtain:

U(Y,Z) =
∑

y,z

p(y, z)δy(guess(z)) (5.20)3The authors of [GRS09℄ used the dual notion of loss funtions instead of gain funtions,but the �nal result is equivalent. 123



5. Differential privay: the trade-off between leakage andutilitywhih tells us that the expeted utility is the greatest when guess(z) = y ishosen to maximize p(y, z). Assuming that the user hooses suh a maximizingremapping, we have:
U(Y,Z) =

∑

z

max
y

p(y, z)

=
∑

z

max
y

(p(y) p(z|y)) (by the Bayes law) (5.21)If the gain funtion is binary, and the funtion guess is hosen to optimizeutility (i.e. it represents the user's best strategy), then there is a well-knownorrespondene between U and the Bayes risk / the a posteriori min-entropy.Suh orrespondene is expressed by the following proposition:Proposition 50. Assume that funtion gain is binary and the funtion guessis optimal. Then:
U(Y,Z) =

∑

z

max
y

(p(y) p(z|y)) = 2−H∞(Y |Z)Proof. Just substitute (5.21) in the de�nition of onditional min-entropy: H∞(Z |
Y ) = − log2

∑

z maxy((p(y) p(z|y)).5.6.1 The bound on the utilityIn this setion we show that the fat that K provides ǫ-di�erential privayindues a bound on the utility as de�ned in terms of a binary gain funtion.We start by extending the adjaeny relation ∼ from the datasets X to thereal answers Y. Intuitively, the funtion f assoiated to the query determinesa partition on the set of all databases (X , i.e. Valu), and we say that twolasses are adjaent if they ontain an adjaent pair. More formally:De�nition 51. Given y, y′ ∈ Y, with y 6= y′, we say that y and y′ are adjaent(notation y ∼ y′), if and only if there exist x, x′ ∈ Valu with x ∼ x′ suh that
y = f(x) and y′ = f(x′).Sine ∼ is symmetri on databases, it is also symmetri on Y, thereforealso (Y,∼) forms an undireted graph.In the following, we assume that the distribution of Y is uniform.Theorem 52. Consider a randomized mehanism H, and let y be an elementof Y. Assume that (Y,∼) is either distane-regular or V T+ and that H sat-is�es ǫ-di�erential privay. For eah distane d ∈ {0, 1, . . . , δ}, where δ is thediameter of (Y,∼), we have that:

U(Y,Z) ≤
1

∑

d

nd

eǫ d

(5.22)where nd is the number of nodes y′ ∈ Y at distane d from y.124



5.6. Appliation to utilityProof. Sine (Y,∼) is distane-regular or V T+, we an apply Theorem 43 toderive that HM
∞ (Z|Y ) ≥ − log2

1∑
d

nd

eǫ d

. Then we just substitute this result inProposition 50.The above bound is tight, in the sense that (provided (Y,∼) is distane-regular or V T+) we an onstrut a mehanism H whih satis�es (5.22) withequality. More preisely, for 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n − 1, we de�ne H(here identi�ed with its hannel matrix for simpliity) as follows:
Hi,j =

γ

eǫ d(i,j)
(5.23)where

γ =
1

∑

d

nd

eǫ d

(5.24)Note that H is a square matrix of dimension n× n, where n = |X | This isnot a problem beause sine we assume (Y,∼) to be either distane-regular or
V T+, via Theorem 43 we an transform the hannel matrix into an equivalentone suh that all non zero elements are in the submatrix of dimensions n× n.Let us introdue now Z∗ = {0, 1, . . . , n−1}, i.e. the subset of Z that exludesthe zero-ed olumns of the hannel matrix from n to m− 1. Note that for thefollowing result we an safely use the set Z∗ instead of Z beause the zero-edolumns do not ontribute to the a posteriori entropy, and trivially respet
ǫ-di�erential privay.Theorem 53. Assume (Y,∼) is distane-regular or V T+. Then the matrix
H de�ned in (5.23) satis�es ǫ-di�erential privay and has maximal utility:

U(Y,Z) =
1

∑

d

nd

eǫ dProof. First we prove that the matrix as de�ned in (5.23) is a hannel matrix,i.e. that eah row is a probability distribution.
∑

j∈Z∗

Hi,j =
∑

j∈Z∗

γ

eǫd(i,j)

= γ
∑

j∈Z∗

1

eǫd(i,j)

= γ
∑

d

nd

eǫd
by (5.24)

= γ
1

γ

= 1 125



5. Differential privay: the trade-off between leakage andutilityNow we show that the utility is maximum.
U(Y,Z) =

∑

z∈Z∗

max
y

(p(y)H(z|y)) by (5.21)
=
∑

z∈Z∗

max
y

1

|Y|
H(z|y) sine Y is uniform

=
1

|Y|

∑

z∈Z∗

max
y

γ

maxd eǫd(i,j)
by (5.23)

=
1

|Y|

∑

z∈Z∗

γ maximum is d = 0

=
1

|Y|
· |Z|γ

= γ sine |Y| = |Z∗| = nTherefore we an always de�ne H as in (5.23): the matrix so de�ned willbe a legal hannel matrix, and it will satisfy ǫ-di�erential privay. If (Y,∼) isneither distane-regular nor V T+, then the utility of suh H is not neessarilyoptimal.The onditions for the onstrution of the optimal matrix are strong, butthere are some interesting senarios in whih they are satis�ed. Depending onthe degree of onnetivity c of the graph (Y,∼), we an have ⌊ |Y|
2 ⌋−1 di�erentases (note that the ase of c = 1 is not possible beause the datasets are fullyonneted via their adjaeny relation), whose extremes are:

• (Y,∼) is a lique, i.e. every element has exatly |Y|−1 adjaent elements.
• (Y,∼) is a ring, i.e. every element has exatly two adjaent elements.This is similar to the ase of the ounting queries onsidered in [GRS09℄,with the di�erene that our �ounting� is in arithmeti modulo |Y|.Remark 54. Note that our method an be applied also when the onditionsof Theorem 53 are not met: We an always add �arti�ial� adjaenies tothe graph struture so to meet those onditions. Namely, for omputing thedistane in (5.23) we use, instead of (Y,∼), a struture (Y,∼′) whih satis�esthe onditions of Theorem 53, and suh that ∼⊆∼′. Naturally, the matrixonstruted in this way provides ǫ-di�erential privay, but in general is notoptimal. It is lear that, in general, the smaller ∼′ is, the highest is the utility.The matries generated by (5.23) an be very di�erent, depending on thevalue of c. The next two examples illustrate queries that give rise to the liqueand to the ring strutures, and show the orresponding matries.126



5.6. Appliation to utilityExample 8. Consider a database with eletoral information where eah entryorresponds to a voter and ontains the following three �elds:
• Id: a unique (anonymized) identi�er assigned to eah voter;
• City: the name of the ity where the user voted;
• Candidate: the name of the andidate the user voted for.Consider the query �What is the ity with the greatest number of votesfor a given andidate cand?�. For suh a query the binary utility funtion isthe natural hoie: only the right ity gives some gain, and all wrong answersare equally bad. It is easy to see that every two answers are neighbors, i.e. thegraph struture of the answers is a lique.Let us onsider the senario where City = {A,B,C,D,E, F} and assumefor simpliity that there is a unique answer for the query, i.e. there are no twoities with exatly the same number of individuals voting for andidate cand .Table 5.1 shows two alternative mehanisms providing ǫ-di�erential privay(with ǫ = log 2). The �rst one, M1, is based on the trunated geometri meh-anism method used in [GRS09℄ for ounting queries (here extended to the asewhere every two distint answers are neighbors). The seond mehanism, M2,is obtained by applying the de�nition of (5.23). From Theorem 53 we knowthat for the uniform input distribution M2 gives optimal utility.For the uniform input distribution, it is easy to see that U(M1) = 0.2242 <

0.2857 = U(M2). Even for non-uniform distributions, our mehanism stillprovides better utility. For instane, for p(A) = p(F ) = 1/10 and p(B) =
p(C) = p(D) = P (E) = 1/5, we have U(M1) = 0.2412 < 0.2857 = U(M2).This is not too surprising: the geometri mehanism, as well as the Laplaianmehanism proposed by Dwork, perform very well when the domain of answersis provided with a metri and the utility funtion is not binary4. It also workswell when (Y,∼) has low onnetivity, in partiular in the ases of a ringand of a line. But in this example, we are not in these ases, beause we areonsidering binary gain funtions and high onnetivity.Example 9. Let us onsider the same database as the previous example, butnow assume a ounting query of the form �What is the number of votes forandidate cand?�. It is easy to see that eah answer has at most two neighbors.More preisely, the graph struture on the answers is a line. For illustrationpurposes, let us assume that only 5 individuals have partiipated in the eletion.Table 5.2 shows two alternative mehanisms providing ǫ-di�erential privay(ǫ = log 2): the trunated geometri mehanism M1 proposed in [GRS09℄ andthe mehanism we propose M2. Note that in order to apply our method we4As we mentioned before, in the metri ase the gain funtion an take into aount theproximity of the reported answer to the real one, the idea being that a lose answer, even ifwrong, is better than a distant one. 127



5. Differential privay: the trade-off between leakage andutility In/Out A B C D E F

A 0.535 0.060 0.052 0.046 0.040 0.267
B 0.465 0.069 0.060 0.053 0.046 0.307
C 0.405 0.060 0.069 0.060 0.053 0.353
D 0.353 0.053 0.060 0.069 0.060 0.405
E 0.307 0.046 0.053 0.060 0.069 0.465
F 0.267 0.040 0.046 0.052 0.060 0.535(a) M1: trunated geometri mehanismIn/Out A B C D E F

A 2/7 1/7 1/7 1/7 1/7 1/7
B 1/7 2/7 1/7 1/7 1/7 1/7
C 1/7 1/7 2/7 1/7 1/7 1/7
D 1/7 1/7 1/7 2/7 1/7 1/7
E 1/7 1/7 1/7 1/7 2/7 1/7
F 1/7 1/7 1/7 1/7 1/7 2/7(b) M2: our mehanismTable 5.1: Mehanisms for the ity with higher number of votes for andidate

candhave �rst to apply Remark 54 to transform the graph struture from a line intoa ring.Le us onsider the uniform prior distribution. We see that the utility of
M1 is higher than the utility of M2, in fat the �rst is 4/9 and the seond is
8/21. This does not ontradit our theorem, beause our matrix is guaranteedto be optimal only in the ase of a ring struture, not a line as we have in thisexample. If the struture were a ring, i.e. if the last row were adjaent to the�rst one, then M1 would not provide ǫ-di�erential privay. In ase of a line asin this example, the trunated geometri mehanism has been proved optimal[GRS09℄.5.7 Related workTo the best of our knowledge, the �rst work to investigate the relation betweendi�erential privay and information-theoreti leakage for an individual was[ACDP10℄. In this work, the de�nition of hannel was relative to a givendatabase x, and the hannel inputs were all possible databases adjaent to
x. Two bounds on leakage were presented, one for the min-entropy, and onefor Shannon entropy. Our bound in Proposition 49 is an improvement withrespet to the (min-entropy) bound in [ACDP10℄.Barthe and Köpf [BK11℄ were the �rst to investigate the (more halleng-ing) onnetion between di�erential privay and the min-entropy leakage forthe entire universe of possible databases. They onsidered the �end-to-end128



5.7. Related workIn/Out 0 1 2 3 4 5

0 2/3 1/6 1/12 1/24 1/48 1/48
1 1/3 1/3 1/6 1/12 1/24 1/24
2 1/6 1/6 1/3 1/6 1/12 1/12
3 1/12 1/12 1/6 1/3 1/6 1/6
4 1/24 1/24 1/12 1/6 1/3 1/3
5 1/48 1/48 1/24 1/12 1/6 2/3(a) M1: trunated 1

2
-geom. mehanismIn/Out 0 1 2 3 4 5

0 8/21 4/21 2/21 1/21 2/21 4/21
1 4/21 8/21 4/21 2/21 1/21 2/21
2 2/21 4/21 8/21 4/21 2/21 1/21
3 1/21 2/21 4/21 8/21 4/21 2/21
8 2/21 1/21 2/21 4/21 8/21 4/21
5 4/21 2/21 1/21 2/21 4/21 8/21(b) M2: our mehanismTable 5.2: Mehanisms for the ounting query (5 voters)di�erentially private mehanisms�, whih orrespond to what we all the ran-domized funtion K in this hapter, and proposed, like we do, to interpret themas information-theoreti hannels. They provided a bound for the leakage, butpointed out that it was not tight in general. They also showed that thereannot be a domain-independent bound, by proving that for any number ofindividuals u the optimal bound must be at least a ertain expression f(u, ǫ).Finally, they showed that the question of providing optimal upper bounds forthe leakage of ǫ-di�erentially private randomized funtions in terms of rationalfuntions of ǫ is deidable, and left the atual funtion as an open question.In our work we used rather di�erent tehniques and found (independently) thesame funtion f(u, ǫ) (the bound in Theorem 43), but we atually proved that

f(u, ǫ) is the optimal bound5. Another di�erene between their work and oursis that [BK11℄ aptures the ase in whih the fous of di�erential privay ison hiding partiipation of individuals in a database, whereas we onsider boththe partiipation and the values of the partiipants.Clarkson and Shneider also onsidered di�erential privay as a ase studyof their proposal for quanti�ation of integrity [CS11℄. There, the authorsanalyzed database privay onditions from the literature (suh as di�erentialprivay, k-anonymity, and l-diversity) using their framework for utility quan-ti�ation. In partiular, they studied the relationship between di�erentialprivay and a notion of leakage (whih is di�erent from ours - in partiulartheir de�nition is based on Shannon entropy) and they provided a tight bound5When disussing our result with Barthe and Köpf, they said that they also onjeturedthat f(u, ǫ) is the optimal bound. 129



5. Differential privay: the trade-off between leakage andutilityon leakage.Heusser and Malaaria [HM09℄ were among the �rst to explore the applia-tion of information-theoreti onepts to databases queries. They proposed tomodel database queries as programs, whih allows for statial analysis of theinformation leaked by the query. [HM09℄, however, did not attempt to relateinformation leakage to di�erential privay.In [GRS09℄ the authors aimed at obtaining optimal-utility randomizationmehanisms while preserving di�erential privay. The authors proposed addingnoise to the output of the query aording to the geometri mehanism. Theirframework is very interesting in the sense it provides a general de�nition ofutility for a mehanism M that aptures any possible side information andpreferene (de�ned as a loss funtion) the users of M may have. They provedthat the geometri mehanism is optimal in the partiular ase of ountingqueries. Our results in Setion 5.6 do not restrit to ounting queries, but onthe other hand we only onsider the ase of binary loss funtion.5.8 Chapter summary and disussionIn this hapter we have investigated the relation between ǫ-di�erential privayand leakage, and between ǫ-di�erential privay and utility. Our main on-tribution was the development of a general tehnique for determining theserelations depending on the graph struture of the input domain, indued bythe adjaeny relation and by the query. We have onsidered two partiularstrutures, the distane-regular graphs, and the V T+ graphs, whih allowed usto obtain tight bounds on the leakage and on the utility. We also onstrutedan optimal randomization mehanism satisfying ǫ-di�erential privay for somespeial ases.As future work, we plan to extend our result to other kinds of utilityfuntions. In partiular, we are interested in the ase in whih the the answerdomain is provided with a metri, and we are interested in taking into aountthe degree of auray of the inferred answer.
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SixSafe equivalenes for seurityproperties
�Too muh may be the equivalent of none at all.�Lee LoevingerIn the �eld of Seurity, proess equivalenes have been used to harater-ize various information-hiding properties (for instane serey, anonymity andnoninterferene) based on the priniple that a protool P with a variable x sat-is�es suh a property if and only if, for every pair of serets s1 and s2, P [s1/x]is equivalent to P [s2/x]. We argue that, in the presene of nondeterminism,the above priniple relies on the assumption that the sheduler �works for thebene�t of the protool�, and this usually is not a safe assumption. Non-safeequivalenes, in this sense, inlude omplete-trae equivalene and bisimula-tion.The goal of this hapter is to present a formalism in whih we an speifyadmissible shedulers and, orrespondingly, safe versions of these equivalenes.Then we are able to show that safe equivalenes an be used to establishinformation-hiding properties.Contribution The main ontributions of this hapter an be summarizedas follows.

• We propose a formalism for onurrent distributed systems whih a-ounts for both probabilisti and nondeterministi behavior, and in whihthe latter is of two kinds: global and loal. The global nondeterminismrepresents the possible interleavings produed by the parallel ompo-nents, whih may be in�uened by the attaker. The loal nondeter-minism is assoiated to the possible internal hoies of eah omponent,131



6. Safe equivalenes for seurity propertieswhih may depend on the serets or other unknown parameters, not on-trolled by the attaker. Correspondingly, we split the sheduler into twoonstituents: a global one and a loal one. The latter is atually a tupleof loal shedulers, one for eah omponent of the system.
• We propose a notion of admissible sheduler for the above systems,in whih the global onstituent is not allowed to see the serets, andeah loal onstituent is not allowed to see any information about theother omponents. We then generalize the standard de�nition of strong(probabilisti) information hiding (suh as noninterferene and stronganonymity) to the ase in whih also nondeterminism is present, underthe assumption that the shedulers are admissible.
• We use admissible shedulers to de�ne safe versions of omplete-trae1equivalene and bisimilarity whih are speially tuned for seurity. Thismeans that we aount for the possibility that the global onstituent ofthe sheduler is in ollusion with the attaker, and therefore does notneessarily help the system to obfusate the seret. We show that thebisimilarity is still a ongruene, like in the lassial ase.
• We �nally show that our notions of safe omplete-trae equivalene andbisimilarity imply strong information hiding in the sense disussed above.Plan of the Chapter This hapter is organized as follows. In Setion 6.1we review the role equivalenes traditionally play in formalizing seurity prop-erties. In Setion 6.2 we formalize the notions of distributed systems andomponents used in this hapter. In Setion 6.3 we fous on restriting thediserning power of global and loal shedulers, and in Setion 6.4 we presentour proposal for safe equivalenes, namely safe omplete-traes and safe bisim-ilarity. In Setion 6.5 we de�ne the notion of information hiding under thenovel assumption that nondeterminism is handled partly in a demoni wayand partly in an angeli way. Finally, in Setion 6.6 we review the relatedbibliography, and in Setion 6.7 we summarize the hapter and outline somefuture work.6.1 The use of equivalenes in seurityAs we have seen in Chapter 1, one tehnique used to prevent an attaker ofinferring the seret from the observables is to reate noise, namely to make surethat for every exeution in whih a given seret produes a ertain observable,there is at least another exeution in whih a di�erent seret produes thesame observable. In pratie this is often done by using randomization.1In this hapter we may refer to �omplete traes� simply as �traes�.132



6.1. The use of equivalenes in seurityIn the literature about the foundations of omputer seurity, however, thequantitative aspets are often abstrated away, and probabilisti behavior isreplaed by nondeterministi behavior. Correspondingly, there have been var-ious approahes in whih information-hiding properties are expressed in termsof equivalenes based on nondeterminism, espeially in a onurrent setting.For instane, [SS96℄ de�nes anonymity as follows2: A protool S is anonymousif, for every pair of ulprits a and b, S[a/x] and S[b/x] produe the same ob-servable traes. A similar de�nition is given in [AG99℄ for serey, with thedi�erene that S[a/x] and S[b/x] are required to be bisimilar. In [DKR09℄, aneletoral system S preserves the on�dentiality of the vote if for any voters vand w, the observable behavior of S is the same if we swap the votes of v and
w, i.e. if S[a/v |b /w] is bisimilar to S[b/v |

a /w].These proposals are based on the impliit assumption that all the nonde-terministi exeutions present in the spei�ation of S will always be possibleunder every implementation of S. Or at least, that the adversary will believeso. In onurreny, however, as argued in [CNP09℄, nondeterminism has arather di�erent meaning: if a spei�ation S ontains some nondeterministialternatives, typially it is beause we want to abstrat from spei� imple-mentations, suh as the sheduling poliy. A spei�ation is onsidered or-ret, with respet to some property, if every alternative satis�es the property.Correspondingly, an implementation is onsidered orret if all exeutions areamong those possible in the spei�ation, i.e. if the implementation is a re-�nement of the spei�ation. There is no expetation that the implementationwill atually make possible all the alternatives indiated by the spei�ation.We argue that the use of nondeterminism in onurreny orresponds to ademoni view: the sheduler, i.e. the entity that will deide whih alternativeto selet, may try to hoose the �worst� alternative. Hene we need to makesure that all alternatives are �good�, in the sense that they satisfy the intendedproperty. In the approahes to formalize seurity properties mentioned above,on the ontrary, the interpretation of nondeterminism is angeli: the sheduleris expeted to atually help the protool to onfuse the adversary and thusprotet the seret information.There is another issue, orthogonal to the angeli/demoni dihotomy, butrelevant for the ahievement of seurity properties: the sheduler should not beable to make its hoies dependent on the seret, or else nearly every protoolwould be inseure, i.e. the sheduler would always be able to leak the seretto an external observer (for instane by produing di�erent interleavings ofthe observables, depending on the seret). This remark has been made severaltimes already, and several approahes have been proposed to ope with theproblem of full-information shedulers (aka almighty, omnisient, lairvoyant,et.), see for example [CCK+06a, CCK+06b, CPb, CNP09, APvRS℄.The risk of a naive use of nondeterminism to speify a seurity property is2The atual de�nition of [SS96℄ is more ompliated, but the spirit is the same. 133



6. Safe equivalenes for seurity propertiesnot only that it may rely on an impliit assumption that the sheduler behavesangelially, but also that it is lairvoyant (fully-informed), i.e. that it peeksat the serets (that it is not supposed to be able to see) to ahieve its angelistrategy.Example 10. Consider the following system, in a CCS-like syntax: S
def
=

(c)(A ‖ H1 ‖ H2 ‖ Corr), with A
def
= c〈sec〉, H1

def
= c(s).out〈a〉, H2

def
=

c(s).out〈b〉, Corr def
= c(s).out〈s〉. The name sec represents a seret.It is easy to see that we have S [a/sec] ∼ S

[
b/sec

], as shown in the exeutiontress in Figure 6.1. Note that, in order to simulate the rightmost branh in
S [a/sec], the proess S [b/sec] needs to follow its leftmost branh. Vie-versa, inorder to simulate the rightmost branh in S

[
b/sec

], the proess S [a/sec] needsto follow its middle branh. This means that, in order to ahieve bisimulation,the sheduler needs to know the seret, and hange its hoie aordingly.
c〈a〉 || c(s).out〈a〉 || c(s).out〈b〉 || c(s).out〈s〉

− || out〈a〉 || − || − − || − || out〈b〉 || − − || − || − || out〈a〉

− || − || − || − − || − || − || − − || − || − || −

τ
τ

τ

out〈a〉 out〈b〉 out〈a〉(a) S[a/sec]

c〈b〉 || c(s).out〈a〉 || c(s).out〈b〉 || c(s).out〈s〉

− || out〈a〉 || − || − − || − || out〈b〉 || − − || − || − || out〈b〉

− || − || − || − − || − || − || − − || − || − || −

τ
τ

τ

out〈a〉 out〈b〉 out〈b〉(b) S[b/sec]Figure 6.1: Exeution trees for Example 10This example shows a distributed system that intuitively is not seure,beause one of its omponents, Corr , reveals whatever seret it reeives. A-ording to the equivalene-based notions of seurity disussed above, however,it is seure. But it is onsidered seure thanks to a sheduler that:134



6.2. Distributed systems and omponents(i) angelially helps the system to protet the seret; and(ii) does so by making its hoies dependent on the seret.We onsider these assumptions on the sheduler to be exessively strong.Here we do not laim, however, that we should rule out the use of angelinondeterminism in seurity: on the ontrary, angeli nondeterminism an be apowerful spei�ation onept. We only advoate a autious use of this notion.In partiular, it should not be used in a ontext in whih the sheduler may bein ollusion with the attaker. The goal of this hapter is to de�ne a frameworkin whih we an ombine both angeli and demoni nondeterminism in a settingin whih also probabilisti behavior may be present, and in a ontext in whihthe sheduler is restrited (i.e. not fully-informed). We de�ne �safe� variant oftypial equivalene relations (omplete traes and bisimulation), and we showhow to use them to haraterize information-hiding properties.6.2 Distributed systems and omponentsIn this setion we desribe the kind of distributed systems we are dealingwith. We start by introduing a variant of probabilisti automata, that weall Tagged Probabilisti Automata (TPA). These systems are parallel om-positions of probabilisti proesses, alled omponents. Eah omponent isequipped with a unique identi�er, alled tag. Whenever a omponent (or apair of omponents in ase of synhronization) makes a step, the orrespond-ing transition will be deorated with the assoiated tag (or pair of tags).Similar systems have been already introdued in [APvRS℄. The main dif-ferenes are that here the omponents may ontain nondeterminism6.2.1 Tagged Probabilisti AutomataWe now formalize the notion of TPA.De�nition 55. A Tagged Probabilisti Automaton (or TPA) is a tuple
(Q,T ,L, q̂, ϑ), where Q is a set of states, T is a set of tags, L is a setof ations, q̂ ∈ Q is the initial state, and ϑ : Q → P(T × L × D(Q)) is atransition funtion.In the following we write q

tg :a
−→ µ for (tg, a, µ) ∈ ϑ(q), and we use enab(q)to denote the tags of the omponents that are enabled to make a transition.More formally:

enab(q)
def
= {tg ∈ T | there exists a ∈ L, µ ∈ D(Q) such that q

tg :a
−→ µ}In these systems, we an deompose the sheduler into two: a global sheduler,whih, via tags, deides whih omponent or pair of omponents makes the135



6. Safe equivalenes for seurity propertiesnext move, and a loal sheduler, whih, also via tags, solves the internalnondeterminism of the seleted omponent.We assume that the loal sheduler an only selet enabled transitions, andthat the global sheduler an only selet enabled omponents. This meansthat the exeution does not stop unless all omponents are bloked. This is inline with the tradition of proess algebra and of Markov Deision Proesses,but ontrasts with that of Probabilisti Automata [SL95℄. The results in thishapter, however, do not depend on this assumption.De�nition 56. Let M = (Q,T ,L, q̂, ϑ) be a TPA. Then:
• A global sheduler for M is a funtion ζ : Paths⋆(M)→ (T ∪ {⊥}) suhthat for all �nite paths σ, if enab(last(σ)) 6= ∅ then ζ(σ) ∈ enab(last(σ)),and ζ(σ) = ⊥ otherwise.
• A loal sheduler for M is a funtion ξ : Paths⋆(M)→ (T ×L×D(Q)∪
{⊥}) suh that, for all �nite paths σ, if ϑ(last(σ)) 6= ∅ then ξ(σ) ∈
ϑ(last(σ)), and ξ(σ) = ⊥ otherwise.

• A global sheduler ζ and a loal sheduler ξ for M are ompatible if,for all �nite paths σ, ξ(σ) = (tg, a, µ) implies ζ(σ) = tg, and ξ(σ) = ⊥implies ζ(σ) = ⊥.
• A sheduler is a pair (ζ, ξ) of ompatible global and loal shedulers.6.2.2 ComponentsWe will use a simple probabilisti proess alulus, very lose to the CCSp weintrodued in Chapter 2, to speify the omponents.We assume a set of ations or hannel names L with elements a, a1, a2, · · · ,inluding the speial symbol τ denoting a silent step. Exept τ , eah ation ahas a o-ation ā ∈ L and we assume ¯̄a = a. Components are spei�ed by thefollowing grammar:

q ::= 0 | a.q | q1+q2 |
∑

i

pi : qi | q1|q2 | (a)q | QThe onstruts 0, a.q, q1+ q2, q1|q2 and (a)q represent termination, pre�x-ing, nondeterministi hoie, parallel omposition, and the restrition operator,respetively. ∑i pi : qi is a probabilisti hoie, where pi represents the prob-ability of the i-th branh and must satisfy 0 ≤ pi ≤ 1 and ∑i pi = 1. Theproess all Q is a simple proess identi�er. For eah identi�er, we assumea orresponding unique proess delaration of the form Q
def
= q. The idea isthat, whenever Q is exeuted, it triggers the exeution of q. Note that q anontain Q or another proess identi�er, whih means that our language allows(mutual) reursion. We will denote by f n(q) the free hannel names ourringin q, i.e. the hannel names not bound by a restrition operator.136



6.2. Distributed systems and omponentsComponents' semantis: The operational semantis onsists of probabilis-ti transitions of the form q
a
→µ where q ∈ Q is a proess, a ∈ L is an ation and

µ ∈ D(Q) is a distribution on proesses. They are spei�ed by the followingrules: PRF
a.q

a
→ δq

NDT q1
a
→ µ

q1 + q2
a
→ µPRB ∑

i pi : qi
τ
→ ◦
∑

i pi · δqi

PAR q1
a
→ µ

q1 | q2
a
→ µ | q2CALL q

a
→ µ

A
a
→ µ

if A
def
= q COM q1

a
→ δr1 q2

ā
→ δr2

q1 | q2
τ
→ δr1|r2RST q

a
→ µ

(b)q
a
→ (b)µ

a,ā6=bWe assume also the symmetri versions of the rules NDT, PAR and COM.Reall that the symbol δq is the delta of Dira, whih assigns probability 1 to qand 0 to all other proesses. The symbol ◦∑i is the summation on distributions.Namely, ◦∑i pi · µi is the distribution µ suh that µ(x) =
∑

i pi · µi(x). Thenotation µ | q represents the distribution µ′ suh that µ′(r) = µ(q′) if r = q′ | q,and µ′(r) = 0 otherwise. Similarly, (b)µ represents the distribution µ′ suhthat µ′(q) = µ(q′) if q = (b)q′, and µ′(q) = 0 otherwise.Remark 57. In some of the examples in this hapter we use an extension ofour proess alulus that allows message passing (fr. Chapter 2). Sine theexpressive power of our alulus with message passing or without it is the same,we onsider expliit message passing simply as an alias for the orrespondentenoding into the presentation of the alulus given above.6.2.3 Distributed systemsA distributed system has the form (A) q1 ‖ q2 ‖ · · · ‖ qn, where the qi's areomponents and A ⊆ L. The restrition on A enfores synhronization on thehannel names belonging to A, in aordane with the CCS spirit.Systems' semantis The semantis of a system gives rise to a TPA, wherethe states are terms representing systems during their evolution. A transitionnow is of the form q
tg:a
−→ µ where a ∈ L, µ ∈ D(Q), and tg ∈ T is either thetag of the omponent whih makes the move, or a (unordered) pair of tagsrepresenting the two partners of a synhronization. We an simply de�ne Tas T = I ∪ I2 where I = {1, 2, . . . , n} is the set of omponents' identi�ers.137



6. Safe equivalenes for seurity properties
Interleaving qi

a
→ ◦
∑

k pk · δqik

(A) q1 ‖ · · · ‖ qi ‖ · · · ‖ qn
i:a
−→ ◦

∑

k pk · δ(A)q1‖···‖qik‖···‖qn

a6∈Awhere i is the tag indiating that the omponent i is making the step. Notethat we assume that probabilisti hoies are �nite. This implies that everytransition q
tg :a
−→ µ an be written q

tg :a
−→ ◦

∑

k pk · δqk , and justi�es the notationused in the interleaving rule.Synh. qi
a
→ δq′i qj

ā
→ δq′j

(A) q1 ‖ · · · ‖ qi ‖ · · · ‖ qj ‖ · · · ‖ qn
{i,j}:τ
−→ δ(A)q1‖···‖q′i‖···‖q

′
j‖···‖qnhere {i, j} is the tag indiating that the omponents making the step are i and

j. Note that it is an unordered pair. Sometimes we will write i, j instead of
{i, j}, for simpliity.Example 11. Consider again the systems of Example 10. Figures 6.2(a) and6.2(b) show the TPAs for S [a/sec] and for S [b/sec] respetively. For simpliitywe do not write the restrition on hannels c and out, nor the terminationsymbol 0. We use '−' to denote a omponent that is stuk. The orrespondingtags are indiated in the �gure with numbers above the omponents.The set of enabled transitions should be lear from the �gures. For instane,we have enab(S

[
b/sec

]
) = {{1, 2}, {1, 3}, {1, 4}} and enab( − || out〈a〉 || −

|| − ) = {2}. The sheduler ζ de�ned as
ζ(σ)

def
=







{1, 4} if σ = S [a/sec] ,

2 if σ = S [a/sec]
1,2:τ
−→ ( − || out〈a〉 || − || − ),

3 if σ = S [a/sec]
1,3:τ
−→ ( − || − || out〈b〉 || − ),

4 if σ = S [a/sec]
1,4:τ
−→ ( − || − || − || out〈a〉 ),

⊥ otherwise,is a global sheduler for S [a/sec].6.3 Admissible shedulersIn this setion we restrit the diserning power of the global and loal shed-ulers in order to avoid the problem of the information leakage indued by138



6.3. Admissible shedulers
1 2 3 4

c〈a〉 || c(s).out〈a〉 || c(s).out〈b〉 || c(s).out〈s〉

− || out〈a〉 || − || − − || − || out〈b〉 || − − || − || − || out〈a〉

− || − || − || − − || − || − || − − || − || − || −

{1,2} :τ
{1,3} :τ

{1,4} :τ

2 :out〈a〉 3 :out〈b〉 4 :out〈a〉(a) S[a/sec]

1 2 3 4

c〈b〉 || c(s).out〈a〉 || c(s).out〈b〉 || c(s).out〈s〉

− || out〈a〉 || − || − − || − || out〈b〉 || − − || − || − || out〈b〉

− || − || − || − − || − || − || − − || − || − || −

{1,2} :τ
{1,3} :τ

{1,4} :τ

2 :out〈a〉 3 :out〈b〉 4 :out〈b〉(b) S[b/sec]Figure 6.2: TPAs for Example 11lairvoyant shedulers. We impose two kinds of restritions: For the globalsheduler, following [APvRS℄, we assume that it an only see, and keep mem-ory of, the observable ations and the omponents that are enabled, but notthe seret ations. As for the loal sheduler, we assume that the loal nonde-terminism of eah omponent is solved on the basis of the view of the historyloal to that omponent, i.e. the projetion of the history of the system onthat omponent. In other words, eah omponent has to make deisions basedonly on the history of its own exeution; it annot see anything of the otheromponents.6.3.1 Restriting global shedulersWe assume that the set of ations L is divided in two disjoint sets, the seretations S and the observable ations O, suh that S ∪ O = L. The seretations are supposed to be invisible to the global sheduler. Formally, this an139



6. Safe equivalenes for seurity propertiesbe ahieved using a funtion sift with
sift(a) =

{

τ if a ∈ S,
a otherwise.Then, we restrit the power of the global sheduler by foring it to make thesame deisions on paths he annot tell apart.De�nition 58. Given a TPA M , a global sheduler ζ for M is admissible iffor all paths σ1 and σ2 we have view(σ1) = view(σ2) implies ζ(σ1) = ζ(σ2),where

view
(

q̂
tg1:a1
−→ q1

tg2:a2
−→ · · ·

tgn:an
−→ qn+1

) def
= (enab(q̂), sift(a1), tg1)

(enab(q1), sift(a2), tg2) · · · (enab(qn), sift(an), tgn)The idea is that view sifts the information of the path that the sheduleran see. Sine sift �hides� the serets, the sheduler annot take di�erentdeisions based on them.6.3.2 Restriting loal shedulersThe restrition on loal shedulers is based on the idea that a step of theomponent i of a system an only be based on the view that i has of the history,i.e. its own history. In order to formalize this restrition, it is onvenient tointrodue the onept of i-view of a path σ, or projetion of σ on i, whih wewill denote by σ↾i. We de�ne it indutively:
(σ

tg :a
−→ µ)↾i =







σ↾i
i:b
−→ δqi if tg = {i, j} and µ = δ(A) q1‖...‖qi‖...‖qj‖...‖qn

σ↾i
i:a
−→ µ if tg = i

σ↾i otherwiseIn the above de�nition, the �rst line represents the ase of a synhronizationstep involving the omponent i, where we assume that the premise for i is ofthe form q′i
b
−→ δqi . The seond line represents an interleaving step in whih iis the ative omponent. The third line represents step in whih the omponent

i is idle.The restrition to the loal sheduler an now be expressed as follows:De�nition 59. Given a TPA M and a loal sheduler ξ for M , we say that
ξ is admissible if for all paths σ and σ′, if whenever ξ(σ) = (tg, a, µ), and
ξ(σ′) = (t′g, a

′, µ′) we have:
• if tg = t′g = i and σ↾i = σ′

↾i, then ξ(σ) = ξ(σ′),
• if tg = t′g = {i, j}, σ↾i = σ′

↾i, and σ↾j = σ′
↾j then ξ(σ) = ξ(σ′).A pair of ompatible shedulers (ζ, ξ) is alled admissible if ζ and ξ areadmissible.140



6.4. Safe equivalenes6.4 Safe equivalenesIn this setion we revise proess equivalene notions to make them safe forseurity.6.4.1 Safe omplete traesWe de�ne here a safe version of omplete-trae semantis. The idea is thatwe ompare two proesses based not only on their traes, but also on thehoies that the global sheduler makes at every step. We do this by reordingexpliitly the tags in the traes.De�nition 60. Here we de�ne the notion of safe omplete traes.
• Given a TPA M = (Q,T ,L, q̂, ϑ), the (omplete) safe traes of M , de-noted here by Tracess, are de�ned as the probabilities of sequenes of tagsand ations orresponding to all possible omplete exeutions, i.e.

Tracess(M) ={ f : (T × L)∞ → [0, 1] |there exists an admissible sheduler(ζ, ξ) s.t.
∀t ∈ (T × L)∞

f(t) = PM,ζ,ξ({σ ∈ CPaths(M) | trace ta(σ) = t}) }where PM,ζ,ξ is the probability measure in M under (ζ, ξ), and trace taextrats from a path the sequene of tags and ations, i.e.
trace ta(ǫ) = ǫ

trace ta(q
tg :a
−→ σ) = tg : a · trace ta(σ)

• We denote by Tracess(q) the safe traes of the automaton assoiated toa system q.
• Two systems q1 and q2 are safe-trae equivalent, denoted by q1 ≃s q2, ifand only if Tracess(q1) = Tracess(q2).The following example points out the di�erene between ≃s and the stan-dard (omplete) trae equivalene.Example 12. Consider the TPAs of Example 11. The two TPAs have thesame omplete traes. In fat we have

Traces(S [a/sec]) = {τ · out〈a〉 , τ · out〈b〉} = Traces(S
[
b/sec

]

)But on the other hand, we have
Tracess(S [a/sec]) = {f1, f2, f3} 6= {f1, f2, f4} = Tracess(S [a/sec]) 141



6. Safe equivalenes for seurity propertieswhere
f1(t) =

{

1 if t = {1, 2} : τ · 2 : out〈a〉,
0 for all other values of t ∈ (T × L)∞.

f2(t) =

{

1 if t = {1, 3} : τ · 3 : out〈b〉,
0 for all other values of t ∈ (T × L)∞.

f3(t) =

{

1 if t = {1, 4} : τ · 4 : out〈a〉,
0 for all other values of t ∈ (T × L)∞.

f4(t) =

{

1 if t = {1, 4} : τ · 4 : out〈b〉,
0 for all other values of t ∈ (T × L)∞.6.4.2 Safe bisimilarityIn this setion we propose a seurity-safe version of strong bisimulation, thatwe all safe bisimulation. This is an equivalene relation striter than safe-trae equivalene, with the advantage of being a ongruene. Sine in thishapter we assume that shedulers an always observe whih omponent ismaking a step (even a silent step), it does not seem natural to onsider weakbisimulation.We start with some notation. Given a TPA M = (Q,T ,L, q̂, ϑ), and aglobal sheduler ζ, we write q

a
−→ζ µ if there exists σ ∈ Paths⋆(M) suh that

ζ(σ) 6= ⊥, (ζ(σ), a, µ) ∈ ϑ(q), and q = last(σ). Note that the restrition to ζstill allows nondeterminism, i.e. there may be µ1, µ2, suh that q a1−→ζ µ1 and
q

a2−→ζ µ2 (with either a1 = a2 or a1 6= a2).We now de�ne the notion of safe bisimulation. The idea is that, if q1 and
q2 are bisimilar states, then every move from q1 should be mimiked by a movefrom q2 using the same (admissible) sheduler.De�nition 61. Given a TPA M = (Q,T ,L, q̂, ϑ), we say that a relation
R ⊆ Q×Q is a safe bisimulation if and only if1. whenever q1R q2, then enab(q1) = enab(q2), and2. for all admissible global shedulers ζ for M suh that ζ(σ1) = ζ(σ2)whenever last(σ1) = q1 and last(σ2) = q2:

• if q1 a
−→ζ µ1, then there exists µ2 suh that q2 a

−→ζ µ2 and µ1Rµ2,and
• if q2 a

−→ζ µ2, then there exists µ1 suh that q1 a
−→ζ µ1 and µ1Rµ2,where µ1Rµ2 means that for all equivalene lasses X ∈ QR̂, we have

µ1(X) = µ2(X), where R̂ is the smallest equivalene lass indued by R.142



6.4. Safe equivalenesIt is possible to simplify De�nition 61, restriting the shedulers to behistory-independent. In other words, to show that two distributed systemsare bisimilar, it su�es to onsider one-step omputations and show that twostates are equivalent by using only history-independent shedulers. The lemmabellow justi�es this laim.Lemma 62. Let M = (Q,T ,L, q̂, ϑ) be a TPA, and let R be an equivalenerelation on the set of states Q. Consider ζ to be a global sheduler for M suhthat, for every pair of states q1, q2 ∈ Q, if q1 = last(σ1)R last(σ2) = q2 then
ζ(σ1) = ζ(σ2). In that ase ζ is history-independent, i.e. it depends only onthe last state of a path σ.Proof. It is easy to see that the relation of having the same last state is anequivalene relation on paths, and therefore it determines a partition on the setof paths. Sine the above q1 and q2 may be idential, the sheduler must givethe same value on equivalent paths and it is, therefore, history-independent.Using the lemma above, in the following results about safe bisimulationwe will usually write ζ(q) where q is a state. Note however that this doesnot mean that in the omputations of safely bisimilar systems the shedulersare neessarily history-independent: at eah step of the omputation we mayhange sheduler, and therefore we may hange alternative when we pass bythe same state q at a later time.The following result is analogous to the ase of standard bisimulation. Itimplies that largest safe bisimulation exists, and oinides with the union ofall safe bisimulations. We all it safe bisimilarity, and we denote it by ∼s.Proposition 63. The union of all the safe bisimulations is still a safe bisim-ulation.Proof. Assume that q1 ∼s q2. Then q1R q2 holds, for some safe bisimulation
R. Hene we have enab(q1) = enab(q2), and for every global sheduler ζ, if
ζ(q1) = ζ(q2), and q1

a
−→ζ µ1, then there exists µ2 suh that q2

a
−→ζ µ2,and µ1Rµ2. This implies that µ1 ∼s µ2. In fat R̂ (the smallest equivalenelass indued by R) is a �ner relation than ∼̂s, i.e. q1 R̂ q2 implies q1∼̂sq2.Also, R̂ is an equivalene relation, and therefore it indues a partition oneah of the equivalene lasses X ∈ Q∼̂s

. Hene we have, for eah X ∈ Q∼̂s
,

µ1(X) =
∑

Y ∈X
R̂
µ1(Y ) =

∑

Y ∈X
R̂
µ2(Y ) = µ2(X).We proeed analogously to show that, if q2 a

−→ζ µ2, then there exists µ1suh that q1 a
−→ζ µ1 and µ1 ∼s µ2.Given two TPAs M1 = (Q1,T ,L, q̂1, ϑ1) and M2 = (Q2,T ,L, q̂2, ϑ2) shar-ing the same set of tags T and ations L, we an de�ne bisimulation and143



6. Safe equivalenes for seurity propertiesbisimilarity aross their states, i.e. as relations on (Q1 ∪ Q2), in the obviousway, by onstruting the TPA M with a new initial state q̂ with transitions to
δq̂1 and to δq̂2 , respetively.Given two omponents or systems q1 and q2, we will say that q1 and q2 aresafely bisimilar, denoted by q1 ∼s q2, if the initial states of the orrespondingTPAs are safely bisimilar. Note that q1 ∼s q2 is possible only if q1 and q2 havethe same number of ative omponents, where �ative�, for a omponent, meansthat during the exeution of the system it will make at least one step. Note thatin the ase of omponents, or of systems onstituted by one omponent only,safe bisimulation and safe bisimilarity oinide with standard bisimulation andbisimilarity (denoted by ∼), respetively. This is not the ase for systems, asshown by the following example:Example 13. Consider again the TPAs of Example 11. As pointed out earlierin this hapter, we have S [a/sec] ∼ S

[
b/sec

]. Yet S [a/sec] 6∼s S
[
b/sec

]. Toshow this, let us onstrut a new TPA (as desribed before) with initial state
q̂ suh that q̂ tg :τ

−→ S [a/sec] and q̂
tg :τ
−→ S

[
b/sec

]. Now onsider the (admissible)global sheduler ζ suh that
ζ(σ)

def
=







tg if σ = q̂,

{1, 4} if σ = q̂
tg:τ
−→ S [a/sec] ,

2 if σ = q̂
tg:τ
−→ S [a/sec]

1,2:τ
−→ ( − || out〈a〉 || − || − ),

3 if σ = q̂
tg:τ
−→ S [a/sec]

1,3:τ
−→ ( − || − || out〈b〉 || − ),

4 if σ = q̂
tg:τ
−→ S [a/sec]

1,4:τ
−→ ( − || − || − || out〈a〉 ),

{1, 4} if σ = q̂
tg:τ
−→ S

[
b/sec

]
,

2 if σ = q̂
tg:τ
−→ S

[
b/sec

] 1,2:τ
−→ ( − || out〈a〉 || − || − ),

3 if σ = q̂
tg:τ
−→ S

[
b/sec

] 1,3:τ
−→ ( − || − || out〈b〉 || − ),

4 if σ = q̂
tg:τ
−→ S

[
b/sec

] 1,4:τ
−→ ( − || − || − || out〈b〉 ),

⊥ otherwise.It is easy to see that S [b/sec] annot mimi the transition 4 : out〈a〉 produedby S [a/sec] using the same sheduler ζ.We now show that safe bisimulation is a ongruene with respet to all theoperators of our language. In the following theorem, statements 2a and 2b arejust the standard ompositionality result for probabilisti bisimulation.Theorem 64.1. ∼s is an equivalene relation.2. Let a ∈ L be an ation and A,B,B′ ⊆ L be sets of restritions. Let
p1, . . . , pn be probability values, and let q, q1, q2, . . . , qn, q′1, q′2, . . . , q′n beomponents.144



6.4. Safe equivalenesa) If q1 ∼s q2, then a.q1 ∼s a.q2, q1 + q ∼s q2 + q, (a)q1 ∼s

(a)q2, and q1 | q ∼s q2 | q.b) If q1 ∼s q
′
1, . . . , qn ∼s q

′
n , then ∑

i pi : qi ∼s

∑

i pi : q
′
i.) If (B) q1 ‖ . . . ‖ qn ∼s (B′) q′1 ‖ . . . ‖ q

′
n, and f n(q) 6∈ B ∪ B′,then

(A ∪B) q1 ‖ . . . ‖ q ‖ . . . ‖ qn ∼s (A ∪B′) q′1 ‖ . . . ‖ q ‖ . . . ‖ q
′
n.Proof.1. Although safe bisimulations are not equivalene relations in general, theirunion, i.e. safe bisimilarity, is an equivalene. In fat:

• It is easy to see that, if R is a safe bisimulation, then the smallestequivalene that inludes R, namely R̂, is also a safe bisimulation.
• From Proposition 63 we know that ∼s is a safe bisimulation.
• Hene we derive that ∼̂s is a safe bisimulation, and therefore ∼̂s ⊆
∼s. But sine obviously ∼s⊆ ∼̂s, we onlude that ∼s= ∼̂s, whihmeans that ∼s is already an equivalene relation.2. Assume that a, A,B,B′, p1, . . . , pn, q, q1, q2, . . . , qn, q′1, q′2, . . . , q′n are ofthe type presribed by the hypothesis of the theorem.a) Assume q1 ∼s q2.
• Let

R = {(a.q1, a.q2)}∪ ∼s .We show that R is a safe bisimulation, whih is su�ient toprove that a.q1 ∼s a.q2. Note that, sine there is only oneomponent in eah of those states, and it is enabled, we have
enab(a.q1) = enab(a.q2) = {1}, and ζ(a.q1) = ζ(a.q2) = 1 forany global sheduler ζ. Given a global sheduler ζ, there isexatly one transition from eah of a.q1 and a.q2: these are
a.q1

a
→ζ δq1 and a.q2

a
→ζ δq2 , respetively, whih mimi eahother in the ation a. Finally, sine q1 ∼s q2, we have δq1 ∼s δq2and therefore δq1 R δq2 .

• Let
R = {(q1 + q, q2 + q)}∪ ∼s .We show that R is a safe bisimulation, whih is su�ient toprove that q1 + q ∼s q2 + q. We have that enab(q1 + q) =

enab(q1)∪enab(q) = enab(q2)∪enab(q) = enab(q2+ q), in fat
enab(q1) = enab(q2) sine q1 ∼s q2. Correspondingly, given a145



6. Safe equivalenes for seurity propertiesglobal sheduler ζ, we have either ζ(q1 + q) = ζ(q2 + q) = 1 or
ζ(q1 + q) = ζ(q2 + q) =⊥, sine there is only one omponent.Assume q1 + q

a
→ζ µ1. We have two ases: either q1 a

→ζ µ1, or
q

a
→ζ µ1. The seond ase is obvious. In the �rst ase, sine

q1 ∼s q2, we have that also q2
a
→ζ µ2, with µ1 ∼s µ2. We derivethat µ1Rµ2. For the transitions from q2 + q we proeed in theanalogous way.

• Let
R = {((a)q1, (a)q2) | q1 ∼s q2}.We show that R is a safe bisimulation, whih is su�ient toprove that, if q1 ∼s q2, then (a)q1 ∼s (a)q2. First observe that

enab((a)q1) = enab(q1) = {1} if q1 an make a transition witha label di�erent from a, otherwise enab((a)q1) = ∅. The sameholds for (a)q2. Sine q1 ∼s q2, we derive that enab((a)q1) =
enab((a)q2). Aordingly, given a global sheduler ζ, we havethat either ζ((a)q1) = ζ((a)q2) = 1, or ζ((a)q1) = ζ((a)q2) =⊥.Assume (a)q1

b
→ζ µ1. Then we must have b 6= a and µ1 =

(a)µ′
1, where q1

b
→ζ µ

′
1. Sine q1 ∼s q2, we have also q2

b
→ζ µ

′
2,with µ′

1 ∼s µ
′
2. We derive (a)q2

b
→ζ (a)µ

′
2, and (a)µ′

1R (a)µ′
2.We proeed in an analogous way for the transitions from (a)q2.

• The ase of the parallel operator in omponents is similar tothe ase of the parallel operator on systems (see the last itemof this proof).b) Assume q1 ∼s q
′
1, . . . , qn ∼s q

′
n. Let

R = {(
∑

i

pi : qi,
∑

i

pi : q
′
i)}∪ ∼s .We show that R is a safe bisimulation, whih is su�ient to provethat ∑i pi : qi ∼s

∑

i pi : q′i. Observe that both ∑i pi : qi and
∑

i pi : q′i are enabled, and, sine there is only one omponent,
enab(

∑

i pi : qi) = enab(
∑

i pi : q
′
i) = {1}. Aordingly, if ζ is aglobal sheduler, we have enab(

∑

i pi : qi) = enab(
∑

i pi : q
′
i) = 1.Given a global sheduler ζ, the only transitions from ∑

i pi : qi and∑

i pi : q
′
i are ∑i pi : qi

τ
→ζ ◦

∑

i pi · δqi and ∑i pi : q
′
i

τ
→ζ ◦

∑

i pi · δq′irespetively, whih mimi eah other in the ation τ . It is easyto see that we have (
∑

i pi : qi) ∼s (
∑

i pi : q′i), and therefore
(
∑

i pi : qi)R (
∑

i pi : q
′
i).146



6.4. Safe equivalenes) Let
R =







((A ∪B) q1 ‖ . . . ‖ q ‖ . . . ‖ qn,
(A ∪B′) q′1 ‖ . . . ‖ q ‖ . . . ‖ q

′
n) |

(B) q1 ‖ . . . ‖ qn ∼s (B′) q′1 ‖ . . . ‖ q
′
n





We show that R is a safe bisimulation, whih is su�ient to provethat, if
(B) q1 ‖ . . . ‖ qn ∼s (B′) q′1 ‖ . . . ‖ q

′
n ,then

(A ∪B) q1 ‖ . . . ‖ q ‖ . . . ‖ qn ∼s (A ∪B′) q′1 ‖ . . . ‖ q ‖ . . . ‖ q
′
n .Observe �rst that

enab((A ∪B) q1 ‖ . . . ‖ q ‖ . . . ‖ qn) =

enab((A ∪B′) q′1 ‖ . . . ‖ q ‖ . . . ‖ q
′
n)In fat the enabled omponents are the same as those of

(B) q1 ‖ . . . ‖ qn and of (B′) q′1 ‖ . . . ‖ q′n (modulo the indexshift), whih are equal by the bisimilarity hypothesis, plus possiblythe omponent q, plus possibly the synhronizations with q, whihagain are equal by the bisimilarity hypothesis, minus the transitionswith labels in A. Note that the hypothesis f n(q) 6∈ B ∪B′ is essen-tial here to guarantee that the omponent q is enabled (or disabled)in both sides.Let us onsider the synhronization ase; the interleaving ase isjust a simpli�ed variant. Given a global sheduler ζ, assume
ζ((A∪B) q1 ‖ . . . ‖ q ‖ . . . ‖ qn) = ζ((A∪B′) q′1 ‖ . . . ‖ q ‖ . . . ‖ q

′
n).Consider a move from the system in the left-hand side:

(A ∪B) q1 ‖ · · · ‖ qi ‖ · · · ‖ qj ‖ · · · ‖ qn
i,j:τ
−→ δ(A)q1‖···‖ri‖···‖rj‖···‖qn .Then we must have

qi
a
→ δri , qj

ā
→ δrj ,where one of the qi, qj ould be q, and

ζ((A ∪B) q1 ‖ · · · ‖ qi ‖ · · · ‖ qj ‖ · · · ‖ qn) = {i, j}.Sine qi ∼s q
′
i and qj ∼s q

′
j (in ase qi = q then q′i = q and therefore

qi ∼s q′i beause ∼q is re�exive, and analogously for qj), we musthave
q′i

a
→ δr′i , q′j

ā
→ δr′j , 147



6. Safe equivalenes for seurity propertiesfor some r′i, r
′
j suh that δri ∼s δr′i and δrj ∼s δr′j . We derive that

(A ∪B) q′1 ‖ · · · ‖ q
′
i ‖ · · · ‖ q

′
j ‖ · · · ‖ q

′
n

i,j:τ
−→ δ(A)q′1‖···‖r

′
i‖···‖r

′
j‖···‖q

′
n
,and, sine δri ∼s δr′i , δrj ∼s δr′j imply ri ∼s r

′
i, rj ∼s r

′
j , and by thede�nition of R, we onlude

(δ(A)q1‖···‖ri‖···‖rj‖···‖qn) R (δ(A)q′1‖···‖r
′
i‖···‖r

′
j‖···‖q

′
n
).We proeed in an analogous way for the transitions from the right-hand side.The following property shows that bisimulation is stronger than safe-traeequivalene, like in the standard ase.Proposition 65. If q1 ∼s q2 then q1 ≃s q2.Proof. For this proof, it is onvenient to onsider a oindutive approxima-tion of safe-trae equivalene. We start with a oindutive haraterization ofthe safe traes. This in itself is not a key notion of the proof, but will helpunderstanding the de�nition of the approximation.Given a TPA M = (Q,T ,L, q̂, ϑ), onsider the operator

TTr : (Q → P(CPaths(M)→ [0, 1])) → (Q → P(CPaths(M)→ [0, 1]))de�ned as:
TTr(F )(q) = { f : (T × L)∞ → [0, 1] |if q 6→ then f(ǫ) = 1, else f(ǫ) = 0 and,for all tg ∈ T , a ∈ L,

• if there exists µ s.t. q tg :a
−→ µ, then for eah q′ ∈ Qthere exists f ′

q′ ∈ F (q′) s.t. for every t ∈ (T × L)∞,

f(tg : a · t) =
∑

q′ µ(q
′)f ′

q′(t)

• if q 6
tg :a
−→, then f(q)(tg : a · t) = 0 }where q 6→ means that for all tg ∈ T , a ∈ L, we have q 6

tg :a
−→.Consider the ordering ⊑ on Q → P(CPaths(M)→ [0, 1]) given by

F ⊑ F ′ if and only if for all q ∈ Q, F (q) ⊆ F ′(q)Clearly (CPaths(M)→ [0, 1]),⊑) is a omplete lattie and TTr is monotoni, soby the theorem of Knaster-Tarski it has a greatest �xed point, whih oinideswith Tracess.148



6.4. Safe equivalenesFollowing the de�nition of TTr, we now give a oindutive approximation ofthe equivalene relation indued by Tracess. Given a TPAM = (Q,T ,L, q̂, ϑ),onsider the operator
TTreq : (CPaths(M)→ Q×Q)→ (CPaths(M)→ Q×Q)de�ned as:

q1 TTreq(R)(ǫ) q2
def
⇔ (q1 6→ ⇔ q2 6→)and

q1 TTreq(R)(tg : a · t) q2
def
⇔






q1
tg :a
−→ µ1 ⇒ ∃µ2.(q2

tg :a
−→ µ2 ∧ µ1 R(t) µ2)

∧

q2
tg :a
−→ µ2 ⇒ ∃µ1.(q1

tg :a
−→ µ1 ∧ µ1 R(t) µ2)





Consider the ordering � on CPaths(M)→ Q×Q given by

R � R
′ if and only if for all t ∈ CPaths(M), R(t) ⊆ R

′(t)Clearly (CPaths(M)→ Q×Q,�) is a omplete lattie and TTreq is monotoni,hene by the Knaster-Tarski theorem it has a greatest �xed point, whih alsooinides with the greatest pre-�xed point, i.e. the greatest relation R suhthat R � TTreq(R). Using the de�nition of TTr it is easy to see that, if R isa pre-�xed point, and q1 R(t) q2 for all t ∈ CPaths(M), then Tracess(q1) =
Tracess(q2), i.e. q1 ≃s q2. In fat, if F (q1) = F (q2), and q1 R(t) q2 forall t ∈ CPaths(M), and R is a pre-�xed point of TTreq, then TTr(F )(q1) =
TTr(F )(q2)

3. Consider now a safe bisimulation R, and let us lift it to a onstantfuntion R : CPaths(M)→ Q×Q de�ned as R(t) = R. It is easy to see that
R is a pre-�xed point of TTreq

4.Assume now q1 R q2. We trivially derive that q1 R(t) q2 for all t ∈
CPaths(M), from whih we onlude q1 ≃ q2.Like in the standard ase, the vie-versa does not hold, and safe-traeequivalene is not a ongruene5.3Note that the ondition is only su�ient, beause ∑

q′
µ1(q

′)f ′
q′1(t) =

∑
q′
µ2(q

′)f ′
q′2(t)may hold even if µ1 and µ2 assign di�erent probability to some equivalene lass of ˆR(t).4Note that the onverse does not hold, i.e. R ould be a pre-�xpoint of TTreq even if

R is not a bisimulation. This is beause R is sensitive to the (nondeterministi) branhingstruture, while R is not.5This is beause we are onsidering the omplete traes. 149



6. Safe equivalenes for seurity properties6.5 Safe nondeterministi information hidingIn this setion we de�ne the notion of information hiding under the mostgeneral hypothesis that the nondeterminism is handled partly in a demoniway and partly in an angeli way. We assume that the demoni part is inthe realm of the global sheduler, while the angeli part is ontrolled by theloal sheduler. The motivation is that in a protool the loal omponentsan be thought of as programs running loally in a single mahine, and loallypreditable and ontrollable, while the network an be subjet to attaks thatmake the interations unpreditable.We reall that, in a purely probabilisti setting, the absene of leakage,suh as noninterferene and strong anonymity, is expressed as follows (see forinstane [BP℄). Given a purely probabilisti automaton M , and a sequene
ã = a1a2 . . . an, let PM ([ã]) represent the probability measure of all ompletepaths with trae ã in M . Let S be a protool ontaining a variable ation
secr , and let s be seret ations. Let Ms be the automaton orresponding to
S[s/secr ]. De�ne Pr(ã | s) as PMs([ã]). Then S is leakage-free if for everyobservable trae ã , and for every seret s1 and s2, we have Pr(ã | s1) = Pr(ã |
s2).In a purely nondeterministi setting, on the other hand, the absene ofleakage has been haraterized in the literature by the property S[s1/secr ] ∼=
S[s2/secr ], where ∼= is an equivalene relation like trae equivalene, or bisim-ulation. As we have argued in the introdution, this de�nition assumes anangeli interpretation of nondeterminism.We want to ombine the above notions so to ope with both probabilityand nondeterminism. Furthermore, we want to extend it to the ase in whihpart of the nondeterminism is interpreted demonially. Let us �rst introduesome notation.Let S be a system ontaining a variable ation secr . Let s be a seret ation.Let Ms be the TPA assoiated to S[s/secr ] and let (ζ, ξ) be a ompatible pairof global and loal shedulers for Ms. The probability of an observable trae
ã given s is de�ned as Prζ,ξ(ã | s) = PMs,ζ,ξ([ã]).The global nondeterminism is interpreted demonially, and therefore weneed to ensure that the onditional of an observable, given the two serets,are alulated with respet to the same global sheduler. On the other hand,the loal sheduler is interpreted angelially, and therefore we an ompare theonditional probabilities generated by the two serets as sets under di�erentshedulers. In other words, we have the freedom to math onditional proba-bility from the �rst set with one of the other set, without requiring the loalsheduler to be the same.Either angeli or demoni, we want to avoid the lairvoyant shedulers,i.e. a sheduler should not be able to use the seret information to ahieve itsgoals. For this purpose, we require both the global and the loal sheduler tobe admissible.150



6.6. Related workDe�nition 66. A system is leakage-free if, for every serets s1 and s2, everyadmissible global sheduler ζ, and every observable trae ã,
{Pr ζ,ξ(ã | s1) | ξ is admissible and ompatible with ζ} =

{Pr ζ,ξ(ã | s2) | ξ is admissible and ompatible with ζ}The safe equivalenes de�ned in Setion 6.4 imply the absene of leakage:Theorem 67. Let S be a system with a variable ation secr and assume
S[s1/secr ] ≃s S[

s2/secr ] for every pair of serets s1 and s2. Then S is leakage-free.Proof. Consider the abstration operator β from safe traes to pairs of theform (tagged observable trae, probability) de�ned as:
(ã, p) ∈ β(F )

def
⇔ p =

∑

f ∈ F
t↾T ×O = ã

f(t)It is easy to see that β is an abstration, i.e. if F1 = F2 then β(F1) =
β(F2). Therefore, S[s1/secr ] ≃s S[s2/secr ] implies β(Traces s(S[

s1/secr ]) =
β(Tracess(S[

s2/secr ]). Finally, the latter holds (for every pair of serets s1,
s2) if and only if S is leakage-free.Note that the vie versa is not true, i.e. it is not the ase that the leakage-freedom of S implies S[s1/secr ] ≃s S[

s2/secr ]. This is beause in the de�nition ofsafe trae equivalene we ompare the set of probability funtions (determinedby the shedulers) on traes, while in the de�nition of leakage-freedom weompare the set of probabilities of eah trae, whih may ome from di�erentfuntions. This additional degree of freedom generated by the loal shedulerhelps the system to obfusate the seret, and provides further justi�ation forthe adjetive �angeli� for the loal nondeterminism.From the above theorem and from Proposition 65, we also have the follow-ing orollary (with the same premises as the previous theorem):Corollary 68. If S[s1/secr ] ∼s S[s2/secr ] for every pair of serets s1 and s2,then S is leakage-free.6.6 Related workThe problem of deriving orret implementations from serey spei�ationshas reeived a lot of attention already. One of the �rst works to address theproblem was [Ja89℄, whih showed that the fat that an implementationis a onsistent re�nement with respet to a spei�ation does not imply that151



6. Safe equivalenes for seurity propertiesthe (information-�ow) seurity properties are preserved. More reently, [AZ06℄has proposed a notion of serey-preserving re�nement, and a simulation-basedtehnique for proving that a system is the re�nement of another. [CS08℄ arguesthat important lasses of seurity poliies suh as noninterferene and averageresponse time annot be expressed by traditional notion of properties, whihonsist of sets of traes, and proposes to use hyperproperties (sets of properties)instead. [DDM10℄ addresses the problem of supervisory ontrol, i.e. given aritial system G that may leak on�dential information, how to design aontroller C so that the system G|C dos not leak. An e�etive algorithm ispresented to ompute the most permissible ontroller suh that the system isstill opaque with respet to a seret.Conerning angeli and demoni nondeterminism, there are various workswhih investigate their relation and possible ombination. In [BvW92℄ it isshown that angeli and demoni nondeterminism are dual. [MCR07℄ usesmulti-relations to express spei�ations involving both angeli and demoninondeterminism. There are two kinds of agents, demoni and angeli ones, andthere is the point of view of the internal system and the one of the externaladversary.[Mor09℄ onsiders the problem of re�ning spei�ations while preservingignorane. While the fous is on the redution of demoni nondeterminism ofthe spei�ation, the hidden values are treated essentially in a angeli way.The problem of the leakage aused by full-information shedulers has alsobeen investigated in the literature. [CCK+06a℄ and [CCK+06b℄ work in theframework of probabilisti automata and introdue a restrition on the shed-uler to the purpose of making them suitable to appliations in seurity pro-tools. Their approah is based on dividing the ations of eah omponent ofthe system in equivalene lasses (tasks). The order of exeution of di�erenttasks is deided in advane by a so-alled task sheduler, whih is history-independent and therefore muh more restrited than our notion of globalsheduler. [APvRS℄ proposes a notion of system and admissible sheduler verysimilar to our notion of system and admissible global sheduler. The maindi�erene is that in that work the omponents are deterministi and thereforethere is no notion of loal sheduler.The work in [CPb, CNP09℄ is similar to ours in spirit, but in a sense dualfrom a tehnial point of view. Instead of de�ning a restrition on the lassof shedulers, the authors a way to speify that a hoie is transparent to thesheduler. They ahieve this by introduing labels in proess terms, used torepresent both the states of the exeution tree and the next ation or stepto be sheduled. They make two states indistinguishable to shedulers, andhene the hoie between them private, by assoiating to them the same label.We believe that every sheduler in our formalism an be expressed in theirs,too. In [CNP09℄ the authors onsider the problem of de�ning a safe version ofbisimulation for expressing seurity properties. They all it demoni bisimu-lation. The main di�erene with our work is that we onsider a ombination152



6.7. Chapter summary and disussionof angeli and demoni nondeterminism, and this a�ets also the de�nition ofbisimulation. Similarly, our de�nition of leakage-freedom re�ets this ombi-nation. In [CNP09℄ the aspet of angeliity is not onsidered, although theymay be able to simulate it with an appropriate labeling.The fat that full-information shedulers are unrealisti has also been ob-served in �elds other than seurity. First attempts used restrited shedulersin order to obtain rules for ompositional reasoning [dAHJ01℄. The justi�a-tion for those restrited shedulers is the same as for ours, namely, that notall information is available to all entities in the system. That work onsidersa synhronous parallel omposition, however, so the setting is rather di�erentfrom ours. Later on, it was shown that model heking is unfeasible in itsgeneral form for the restrited shedulers in [dAHJ01℄ (see [GD07℄ and, morereently, [Gir09℄). Despite of undeidability, not all results onerning suhshedulers have been negative as, for instane, the tehnique of partial-orderredution an be improved by assuming that shedulers an only use partialinformation [GDF09℄.6.7 Chapter summary and disussionIn this hapter we have observed that some de�nitions of seurity propertiesbased on proess equivalenes may be too naive, in the sense that they assumethe sheduler to be angeli, and, worse yet, to ahieve its angeli strategy bypeeking at the serets. We have presented a formalism allowing us to speify ademoni onstituent of the sheduler, possibly in ollusion with the attaker,and an angeli one, under the ontrol of the system. We have also onsideredrestritions on the shedulers to limit the power of what they an see, andextended to our nondeterministi framework the (probabilisti) information-hiding properties like non interferene and strong anonymity. We then havede�ned �safe� equivalenes. In partiular we have de�ned the notions of safetrae equivalene and safe bisimilarity, and we have shown that the latter isstill a ongruene. Finally, we have shown that the safe equivalenes an beused to prove information-hiding properties.For the future, we plan to extend our framework to quantitative notionsof information leakage, possibly based on information theory. We also plan toimplement model heking tehniques to verify information hiding propertiesfor our kind of systems.
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Seven Conlusion
�To sueed, jump as quikly at opportunities as you do at onlusions.�Benjamin FranklinIn this thesis we onentrated on the problem of information hiding in the se-narios of interative systems, statistial dislosure ontrol, and the re�nementof spei�ations. We started by giving a general overview of the �eld of infor-mation hiding, inluding a brief desription of its historial development. Wethen disussed the main di�erenes between the qualitative and the quantita-tive approahes to information hiding, and we introdued the bakground forthe three main topis overed in this thesis: information �ow (exempli�ed byanonymity), statistial dislosure ontrol, and the re�nement of spei�ationsinto implementations.Having adopted the quantitative approah, we then ontinued to disussthe rationale of the use of information theory for quantitative information �ow.We reviewed several formulations of entropy, with a speial fous on Shannonentropy and min-entropy, and the related onept of mutual information andits interpretation in terms of attaks and information leakage.We then proeeded to present the tehnial ontributions of the thesis. Westarted with the senario of interative systems, i.e systems where serets andobservables an alternate and in�uene eah other during the omputation.In this type of systems the traditional information theoretial approah thatmakes use of lassi memoryless hannels, and the related onepts of mutualinformation and lassial apaity, no longer works. We proposed to modelinterative systems with a riher notion of hannels, namely hannels withmemory and feedbak. In this more general model it is possible to split thestatistial orrelation between serets and observables (that orrespond to theinput and the output of the hannel, respetively) into two ausal omponents:the direted information from input to output represents the �ow of informa-tion through the hannel, and the direted information from output to input155



7. Conlusionorresponds to the way the input is in�uened by the output via feedbak.We showed that the direted information is the orret measure of leakage ininterative systems, and so is the onept of direted apaity if we are inter-ested in the worst ase leakage. We also proved that our model is a properextension of the lassi one: in the absene of feedbak (i.e interation) ourmodel ollapses into the simpler lassi model. Finally, we showed that theapaity of hannels with memory and feedbak is a ontinuous funtion of apseudometri based on the Kantorovih metri.With respet to interative systems, as future work we want to explorealgorithms to alulate the leakage and the maximum leakage using our model.This is a rather hallenging problem, given the exponential growth of reationfuntions (a tehnial aspet of our model) and the quanti�ation of possiblyin�nite many reators (also another tehniality of our model). We also wantto explore other notions of entropy as a measure of leakage, as for instane themin-entropy and the orresponding notion of one-try attak.In the sequene we moved to the problem of statistial dislosure ontrol.We onsidered the problem of preserving the privay of individuals partiipat-ing in a database that allows statistial queries to be posed by users. Usingdi�erential privay, databases that are similar, i.e di�er by the ontents of atmost one row, should give statistially �similar� answers to the same query.This is ahieved by introduing noise in the query mehanism to blur the linkbetween the reported answer and the data about individuals. We proposeda model where the di�erential privay mehanism an be split into two han-nels in asade, in the ase the randomization mehanism is oblivious (i.e itonly depends on the real answer to the query, and not on the database it-self). The �rst hannel orresponds to the query, and it maps the databaseto the real answer to the query. The seond hannel orresponds to the obliv-ious randomization mehanism, and it takes the real answer and maps it toa randomized answer to be reported to the user. In this senario we see theleakage as the orrelation between the reported answer and the database, andthe utility as the orrelation between the real answer and the reported one.We used this model to derive bounds for the leakage and utility based on thelevel of di�erential privay designed for the system (namely the parameter ǫ).As a measure of leakage we adopted the min-entropy leakage, and for utilitywe used the notion of gain funtions, fousing on the binary gain funtion,whih is stritly related to min-entropy leakage and Bayes risk. We used thegraph struture on the input domain derived from the adjaeny relation ondatabases to derive bounds for the maximum min-entropy leakage of hannels.We showed that if the graph struture is distane-regular or V T+ (whih isalways the ase for the database domain), then we an derive bounds for themaximum min-entropy leakage assoiated to the hannel. Finally, we found away of onstruting a utility-maximizing randomization funtion that respetsdi�erential privay for a speial lass of graph strutures.In relation to statistial databases, as future work we intend to extend our156



results to other types of gain funtions that not only the binary one, namelygain funtions that take into onsideration a notion of distane between an-swers. We also want to investigate whether or not non-oblivious randomizationmehanisms an be used to improve utility while still preserving di�erentialprivay.The last senario we investigated in the thesis was the use of equivalenerelations to speify seurity guarantees, whih is a ommon approah whenre�ning implementations into spei�ations. Under this perspetive, two sys-tems (e.g a spei�ation and its implementation) are onsidered equivalentlyseure if they respet some equivalene relation de�ned to apture the intendedseurity guarantee. Suh equivalenes inlude, for instane, trae-equivaleneand bisimilarity. We showed that a naive use of these equivalenes an lead tounrealisti assumptions about the sheduler: (i) that the sheduler is angeli,i.e that it will help to keep the seret information from the attaker; and (ii)that the sheduler an peek at the serets to make its hoies. Those assump-tions are not safe in pratial ases and, therefore, we proposed a model thatdeals with the problem. We introdued a formalism that expliitly separatesthe demoni and angeli parts of the sheduler, and we imposed restritionsto limit the power of the sheduler with respet to what it an see. Namely,the sheduler annot peek at the serets to make its hoies. We then de-�ned notions of safe-equivalenes (safe trae equivalene and safe bisimilarity)and we showed that the latter is a ongruene. Finally, we showed that safeequivalenes an be used to prove information hiding properties.As future work regarding safe equivalenes, we want to extend our modelto quantitative notions based on information theory, and we want to use modelheking to ertify information hiding properties for our systems.As �nal remark, we believe that information hiding is a very promising�eld of researh, and we are exited and thrilled by the promising hallengesthat lie ahead.
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