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Abstra
tIn this thesis we 
onsider the problem of information hiding in thes
enarios of intera
tive systems, statisti
al dis
losure 
ontrol, and re�ne-ment of spe
i�
ations. We apply quantitative approa
hes to information�ow in the �rst two 
ases, and we propose improvements for the usualsolutions based on pro
ess equivalen
es for the third 
ase.In the �rst s
enario we 
onsider the problem of de�ning the infor-mation leakage in intera
tive systems where se
rets and observables 
analternate during the 
omputation and in�uen
e ea
h other. We showthat the information-theoreti
 approa
h whi
h interprets su
h systemsas (simple) noisy 
hannels is not valid. The prin
iple 
an be re
overed,however, if we 
onsider 
hannels of a more 
ompli
ated kind, that ininformation theory are known as 
hannels with memory and feedba
k.We show that there is a 
omplete 
orresponden
e between intera
tivesystems and these 
hannels, and we propose the use of dire
ted informa-tion from input to output as the real measure of leakage in intera
tivesystems. We also show that our model is a proper extension of the 
las-si
al one, i.e. in the absen
e of intera
tivity the model of 
hannels withmemory and feedba
k 
ollapses into the model of memoryless 
hannelswithout feedba
k.In the se
ond s
enario we 
onsider the problem of statisti
al dis
lo-sure 
ontrol, whi
h 
on
erns how to reveal a

urate statisti
s about aset of respondents while preserving the priva
y of individuals. We fo
uson the 
on
ept of di�erential priva
y, a notion that has be
ome verypopular in the database 
ommunity. Roughly, the idea is that a ran-domized query me
hanism provides su�
ient priva
y prote
tion if theratio between the probabilities that two adja
ent datasets give the sameanswer is bound by a 
onstant. We observe the similarity of this goalwith the main 
on
ern in the �eld of information �ow, namely limitingthe possibility of inferring the se
ret information from the observables.We show how to model the query system in terms of an information-theoreti
 
hannel, and we 
ompare the notion of di�erential priva
y withthat of min-entropy leakage. We show that di�erential priva
y implies abound on the min-entropy leakage, and we also 
onsider the utility of therandomization me
hanism, whi
h represents how 
lose the randomizedanswers are, in average, to the real ones. Finally we show that the notionof di�erential priva
y implies a tight bound on utility, and we propose amethod that under 
ertain 
onditions builds an optimal randomizationme
hanism.Moving the fo
us away from quantitative approa
hes, in the thirds
enario we address the problem of using pro
ess equivalen
es to 
har-a
terize information-hiding properties (for instan
e se
re
y, anonymityand non-interferen
e). In literature, some works have used this approa
h,based on the prin
iple that a proto
ol P with a variable x satis�es su
hproperty if and only if, for every pair of se
rets s1 and s2, P [s1/x] is equiv-alent to P [s2/x]. We show that, in the presen
e of nondeterminism, theabove prin
iple relies on the assumption that the s
heduler �works for thebene�t of the proto
ol�, and this is usually not a safe assumption. Non-safe equivalen
es, in this sense, in
lude 
omplete-tra
e equivalen
e and



bisimulation. This problem arises naturally when re�ning a spe
i�
ationinto an implementation, sin
e usually the former is more abstra
t thanthe latter, and the re�nement pro
ess involves redu
ing the nondeter-minism. The s
heduler is, in this sense, a �nal produ
t of the re�nementpro
ess, after all the nondeterminism is ruled out. We present a formal-ism in whi
h we 
an spe
ify admissible s
hedulers and, 
orrespondingly,safe versions of 
omplete-tra
e equivalen
e and bisimulation. We provethat safe bisimulation is still a 
ongruen
e. Finally, we show that safeequivalen
es 
an be used to establish information-hiding properties.





One Introdu
tion
�There are two mistakes one 
an make along the road to truth:not going all the way, and not starting.�Gautama Siddharta1.1 Information hidingIn the last few de
ades the amount of information �owing through 
ompu-tational systems has in
reased dramati
ally. Never before in history has aso
iety been so dependent on su
h a huge amount of information being gener-ated, transmitted and pro
essed. It is expe
ted that this vertiginous trend ofin
rease will 
ontinue in the near future, if not virtually inde�nitely, reinfor
ingthe need for e�
ient and safe ways to 
ope with this reality.Although the e�
ient and broad dissemination of information is a goalin many situations, there are instan
es where the dis
losure of information isundesirable or even una

eptable. The �eld of information hiding 
on
erns theproblem of guaranteeing that part of the information relative to an event is keptse
ret. In 
omputer s
ien
e, the term information hiding en
ompasses a largespe
trum of �elds. Di�erent �elds have distin
t histori
al motivations and theresulting resear
h followed a unique path. The variation of the sub�elds ofinformation hiding depends on three main fa
tors: (i) what one wants to keepse
ret; (ii) from whi
h adversary or atta
ker does one want to keep it se
ret;and (iii) how powerful the adversary or atta
ker is.The �eld of 
on�dentiality (or se
re
y) refers to the problem of keeping ana
tion se
ret. One appli
ation of 
on�dentiality are 
ryptographi
 proto
ols,where the sender and the re
eiver of a message 
an be known, but the 
on-tents of the message itself is 
onsidered to be sensitive information. Generally,we 
an say that 
on�dentiality 
on
erns data, while the �eld of priva
y 
on-
erns people's personal information. When dealing with priva
y, we may be1



1. Introdu
tioninterested in prote
ting the information about someone (a 
redit 
ard num-ber, for instan
e) or the person's identity itself. Anonymity is the �eld that
on
erns the prote
tion of the identities of agents involved in events. In prin-
iple, anonymity 
an be related to both the a
tive agent (often the senderof a message), or to the passive agent (often the re
eiver of a message). Forinstan
e, in the 
ase of a journalist re
eiving information from a 
on�dentialsour
e, the identity of the sender is intended to be se
ret. As for the 
ase ofan intelligen
e agen
y sending a 
oded message to a spy, the identity of there
eiver is 
on�dential information. There is yet another kind of anonymity,sometimes referred to as unlinkability, where the identity of agents and a
tionsperformed are publi
 information, but the linkage between agents and the a
-tions performed should not be determined. One example of unlinkability is a
on�dential voting system, where both the voters and the �nal vote 
ount arein the publi
 domain, but the relationship between the voters' identities andthe ballots 
ast is prote
ted.One appli
ation of priva
y that has drawn a lot of attention in re
ent yearsis the problem of statisti
al databases. A statisti
 is a quantity 
omputed froma sample, and the goal of statisti
al dis
losure 
ontrol is to enable the user of thedatabase to learn properties of the population as a whole, while maintainingthe priva
y of individuals in the sample. The �eld of statisti
al databaseshighlights the deli
ate equilibrium between the bene�ts and the drawba
ks ofthe spread of information. A pra
ti
al example o

urs in medi
al resear
h,where it is desirable that a great number of individuals agree to give in theirpersonal medi
al information. With the information a
quired, resear
hers orpubli
 authorities 
an 
al
ulate a series of statisti
s from the sample (su
h asthe average age of people with a parti
ular 
ondition) and de
ide, say, howmu
h money the health 
are system should spend next year in the treatmentof a spe
i�
 disease. It is in the interest of ea
h individual, however, that herparti
ipation in the sample will not harm her priva
y. In our example, theindividuals usually do not want to have dis
losed their spe
i�
 status withrelation to a given disease, not even to the users querying the database. Somestudies, e.g. [Joi01℄, suggest that when individuals are guaranteed anonymityand priva
y they tend to be more 
ooperative in giving in personal information.Another important �eld of information hiding is information �ow, whi
h
on
erns the leakage of 
lassi�ed information via publi
 outputs in programsand systems. Consider a system that asks the users a password to grant theira

ess to some fun
tionality. Naturally, the password itself is intended to bese
ret, however an atta
ker trying to guess it will always get an observablerea
tion from the system, whether the response is an a

eptan
e or a reje
tionof the entered 
ode. In either 
ase, the observable behavior of the systemreveals some information about the password, be
ause even if it is not guessed
orre
tly, at least the sear
h spa
e is narrowed (even if, in this 
ase, onlyslightly).It is important to note that the subdivisions of information hiding are not2



1.2. Qualitative and quantitative approa
hes to information hiding: a briefhistorymutually ex
lusive. In a system where publi
 outputs 
an reveal the identity ofagents, for instan
e, both the problems of information �ow and of anonymityare present. The 
lassi�
ation is usually based more on the 
ontextual mo-tivation for the problem than on a rigid taxonomy of sub�elds. In fa
t, inre
ent years there has been an a
tive line of resear
h exploring the similaritiesbetween problems su
h as the foundations of anonymity and information �ow,and also priva
y and information �ow. The result has been an in
reasing 
on-vergen
e between these �elds. In this thesis we explore the similarities betweeninformation �ow, statisti
al databases, and anonymity.In a broader 
ontext, the importan
e of information hiding goes far beyondthe realm of 
omputer s
ien
e, and there are a lot of subtle questions that needto be 
onsidered 
arefully. From a politi
al and even philosophi
al perspe
tive,the unrestri
ted use of priva
y prote
tion 
an be 
ontroversial. Even thoughit is broadly a

epted that people should have the right to ex
hange e-mailsprivately, to vote in demo
rati
 ele
tions anonymously, and to express theirideas on the Internet freely, there are situations where information prote
tionpoli
ies 
an be argued to have serious drawba
ks. The same me
hanism thatgrants a politi
al a
tivist anonymity and free spee
h on the Internet, whileliving under a repressive government, also grants a pedophile anonymity tobroad
ast harmful material. This balan
e between freedom and 
ontrol in thevirtual media has been the subje
t of passionate dis
ussion. Independently ofwhether one's goal is to maximize or to minimize the degree of informationprote
tion in a given situation, it is anyway desirable to measure the extentto whi
h the information is prote
ted, to de�ne whi
h spe
i�
 de�nition ofprote
tion the information falls under, and from whom the information is pro-te
ted.In this thesis we avoid the 
ontroversy of de
iding in whi
h 
ases the appli-
ation and extent of information hiding methods are justi�able. Rather, ourfo
us is on measuring the degree of information prote
tion o�ered by a system,thus making evaluation and 
omparison of di�erent systems possible . Spe
i�-
ally, we are interested in using 
on
epts of information theory to quantify theleakage of information.1.2 Qualitative and quantitative approa
hes toinformation hiding: a brief historyHistori
ally, the resear
h on information hiding has evolved from the simplebut impre
ise qualitative approa
h toward the more re�ned, but at the sametime more 
omplex, quantitative approa
h. In the following se
tions we willbrie�y overview both. We do not intend to provide here an exhaustive study ofthe subje
t, but rather to highlight some of the most important 
ontributionsof ea
h of these lines of resear
h to the �eld of information hiding. 3



1. Introdu
tion1.2.1 The qualitative approa
hThe qualitative approa
h emerged �rst in the literature of information hiding.The 
entral idea is that, by observing the output of a system, the adversary
annot be 
ompletely sure of what the se
ret information is. The prin
iple of
onfusion says that for every observable output generated by a se
ret input,there is another se
ret that 
ould also have generated the same output. Inanonymity, for instan
e, this 
orresponds to the 
on
ept of possible inno
en
e,i.e. the impossibility of identifying the 
ulprit with 
ertainty by only observingthe system's output. The prin
iple of 
onfusion does not take into 
onsider-ation the adversary's 
ertainty on the value of the se
ret: it is enough thatthere be an alternative hypothesis, no matter how unlikely it is. This is alsoknown as the possibilisti
 approa
h.One of the �rst developments in this �eld dates from 1976, when Bell andLa Padula de�ned the model of multilevel se
urity systems [BLP76℄. In thismodel the 
omponents of a system are 
lassi�ed as either subje
ts, i.e. a
tiveentities su
h as users or pro
esses, or as obje
ts, i.e. passive entities su
h as �les.The subje
ts are divided into trusted and untrusted entities, and the authorsde�ne restri
tions on how to manage untrusted obje
ts. The rule �read up andwrite down� states that untrusted entities 
an read only from obje
ts of thesame or lower levels, and that they 
an only write into obje
ts of the same orhigher levels. This model was developed to support di�erent levels of se
urity,and aimed to ensure that information only �ows from lower to higher levels andnever in the opposite dire
tion. Ea
h input into and output from the systemis labeled with a se
urity level. Any pair of an input and its 
orrespondentoutput is 
alled an event. A view of a se
urity level l 
orresponds to the eventsat level l or lower, and all the events of a higher level are hidden to level l.Usually in this model only two levels are distinguished: high and low.The high level 
orresponds to sensitive information, whi
h should only beavailable to some users with spe
ial privileges, while the low level 
orrespondsto publi
 information a

essible to everyone. The goal of se
ure information�ow analysis is, in this 
ontext, to avoid leakage from the high level to the lowlevel.Bell and La Padula's model, however, did not address the problem of leak-age of information due to 
overt 
hannels. A 
overt 
hannel is a way of trans-mitting information from the high to the low environment by means not de-signed or intended for this purpose. Consider, for instan
e, a system where alow user ℓ 
an send a �le to a high user h, and h has the power to rede�ne thea

ess rights to the �le. The user h 
an either maintain the permission of ℓ towrite in the �le, or she 
an 
hange the poli
y so ℓ no longer has a

ess to it. Inthis s
enario, a 
overt 
hannel between a 
orrupted high user h and low user ℓ
an be established as follows. The low user sends a �le to the high user, whothen uses her power of de
iding whether to grant or to deny ℓ further a

essto it to en
ode a message. In a later stage, ℓ tries to write in the �le, and an4
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hes to information hiding: a briefhistorya

ess failure 
an be interpreted as the bit 0, while a su

ess 
an be interpretedas the bit 1. In this way any message 
an eventually be sent through the 
overt
hannel from the 
orrupted high user to the low one.To 
ope with the threat of 
overt 
hannels, Goguen and Meseguer devel-oped the 
on
ept of noninterferen
e[GM82℄. A system is noninterfering whenthe a
tions of high users do not alter what 
an be seen by low users. In otherwords, the low outputs of the system will only re�e
t the values of the lowinputs, independently of what the high inputs are (if any). The authors pro-posed a model of noninterferen
e that separated the system from the se
uritypoli
ies. Their model, nevertheless, was only appropriate for deterministi
systems.Noninterferen
e, however, may be a too restri
tive 
on
ept for several pra
-ti
al appli
ations. It does not allow, for instan
e, the summarization of data.It is often the 
ase where a system allows statisti
al (or summarizing) fun
-tions (e.g. mean, total number) to be 
al
ulated on its high inputs and thendis
losed to low users, even if the high inputs themselves are supposed to bekept se
ret. These systems are typi
al in the area of statisti
al databases, andwe will dis
uss this issue in more detail in Se
tion 1.3.2. Clearly, a systemthat allows the summarization of high data for the low environment violatesnoninterferen
e, sin
e a 
hange on the high input may a�e
t the low output.Considering this problem, in 1986 Sutherland [D.S86℄ proposed the 
on-
ept of nondedu
ibility on inputs, whi
h fo
uses not on whether the output isa�e
ted a

ording to a 
hange in the input, but on whether it is possible todedu
e the input from the output. Under this de�nition, a system may allowsummarization of data and still be se
ure, sin
e the output of a statisti
al fun
-tion does not ne
essarily allow the adversary to dedu
e what the inputs are.One drawba
k of the 
on
ept of nondedu
ibility on inputs is that it assumesthat the strongest form of the prin
iple of 
onfusion is enough to ensure se
u-rity. Notably, it relies on the assumption that �no high value 
an be ruled outafter observing a low value�. This is not a strong enough se
urity guaranteein many real systems. In some 
ases, even if no high value 
an be ruled out asa possibility, a single value (or a small set of values) 
an be mu
h more likelythan the others, and in pra
ti
e it makes little sense to 
onsider the alterna-tives. This 
riti
ism 
an be seen as an early attempt 
onsider a quantitativeapproa
h for information �ow, where it is taken into 
onsideration �how mu
h�an atta
ker learns (or does not learn) about the se
ret matters.Another important issue in se
urity systems is the problem of 
omposi-tionality. In [M
C87℄, M
Cullough pointed out the importan
e of hook-upse
urity, i.e. the 
ompositionality of multi-user systems. Usually, real systemsare far too 
omplex to be analyzed as a whole, espe
ially be
ause the taskof designing and implementing a system is normally divided between teams.Ea
h team is responsible for a number of 
omponents that, in a later stage,will be put to work together. It is highly desirable that se
urity propertiesbe veri�ed in ea
h 
omponent separately, and that this veri�
ation guarantee5



1. Introdu
tionthat the �nal 
omposite system is also se
ure. M
Cullough showed that the
on
epts of multilevel se
urity systems, noninterferen
e, and nondedu
ibilityon inputs are not 
omposable. As a repla
ement, he proposed the 
on
ept ofrestri
tiveness, a

ording to whi
h no high level information should a�e
t thebehavior of the system, as seen by a low user.In [WJ90℄ Wittbold addressed the question of nondedu
ibility on inputsunder a di�erent perspe
tive, showing that it is not a guarantee of absen
e ofleakage. Consider the following algorithm, where H and L stand for the highand the low environments, respe
tively. Here we assume the the variables xand y are binary, and the randomized 
ommand x ← 0 ⊕0.5 1 assigns to xeither the value 0 or the value 1 with 0.5 probability ea
h.while true do
x← 0⊕0.5 1;output x to H;input y from H;output (x XOR y) to L;end whileIn the above algorithm, the low environment only has a

ess to the value (xXOR y). Note, however, that the high environment H learns the value of xbefore having to 
hoose the value of y, and therefore it 
an use this knowledgeto en
ode a message: To transmit the bit 0, H 
hooses y = x, and to transmitthe bit 1, H 
hooses y = 1−x. It is 
lear that there is some �ow of informationfrom the high to the low environment, even though L 
annot dedu
e the highinput y from the low output (x XOR y). Hen
e, satisfying nondedu
ibility oninputs does not guarantee a system to be se
ure. Wittbold de�ned, then, the
on
ept of nondedu
ibility on strategies, whi
h means that regardless of whatview L has of the ma
hine, no strategy is ex
luded from being used by H.1.2.2 The quantitative approa
hThe qualitative approa
h, although simple and easy to apply, does not re�e
treality in many pra
ti
al situations. In many 
ases some information leakageis tolerable or even intentional. Take an ele
tion proto
ol. After the �nal vote
ount is released, there are fewer possible hypothesis 
on
erning who voted forwhom than the hypothesis available before the votes were 
ast. In this exam-ple there is a natural leakage of information, sin
e the un
ertainty about thesensitive information de
reases after the observation of the proto
ol's output.This leakage o

urs, however, as a ne
essary fun
tionality of the proto
ol.In fa
t, in most of real systems noninterferen
e 
annot be a
hieved, as typ-i
al systems will always leak some information. This does not mean, however,that all systems are equally good or bad, be
ause the amount of leakage usu-ally varies from system to system. Therefore it is important to quantify how6



1.2. Qualitative and quantitative approa
hes to information hiding: a briefhistorymu
h leakage a system allows. Quantitative methods are useful to evaluatethe extent to whi
h a system is se
ure, and to 
ompare it to other systems.One of the �rst attempts to quantify information leakage was made byDenning in 1982. In [DPD82℄ she de�ned the leakage from a state s to a state
s′ as the de
rease in un
ertainty about the high information in s resultingfrom the low information in s′. She used the 
on
ept of 
onditional entropy1
H(hs|ℓs′), where hs is the high information in s and ℓs′ is the low informationin s′. Her de�nition of leakage was:

M1 = H(hs|ℓs)−H(hs|ℓs′) > 0If the quantity M1 is positive, then it is 
onsidered to be the leakage of in-formation. This measure of leakage, however, does not 
onsider the history oflow inputs, a problem pointed out by Clark, Hunt and Mala
aria in [CHM07℄.Without the history one 
annot summate the in
rease in knowledge (or de-
rease in un
ertainty) that a

umulates between the low states s and s′. Theyproposed, instead, the following measure of leakage:
M2 = H(hs|ℓs)−H(hs|ℓs′ , ℓs) > 0Sin
e H(X|Y,Z) ≤ H(X|Y ) for all random variables X, Y and Z, we have

M1 ≤ M2. The quantity M2 
orresponds to the Shannon 
onditional mutualinformation I(hs; ℓs′ |ℓs).In 1987, Millen made a formal 
onne
tion between information �ow andShannon information theory by relating noninterferen
e and mutual informa-tion [Mil87℄. In Millen's model, a 
omputer system is seen as a 
hannel whoseinput is a sequen
e W , possibly generated by a set of users, and whose output(after the 
omputation is 
ompleted) is Y . The random variable X representsa subsequen
e of W generated by a user U , while X represents the high inputsgenerated by users other than U . Millen showed that in deterministi
 systemsif X and X are independent and X is not interfering with Y , then the Shan-non mutual information I(X;Y ) between X and Y is zero. In other words,noninterferen
e is a su�
ient 
ondition for absen
e of information �ow.In 1990, Massey gave an important 
ontribution to the �eld of informationtheory, whi
h in�uen
ed the further development of quantitative information�ow. In [Mas90℄ he showed that the usual de�nition of dis
rete memoryless(i.e. history-independent) 
hannels used at that time in fa
t did not take intoa

ount the possibility for the use of feedba
k. He highlighted the 
on
eptualdi�eren
e between 
ausality and statisti
al dependen
e, and presented an a
-
urate mathemati
al des
ription of dis
rete memoryless 
hannels that allowed1The 
on
epts of entropy, 
onditional entropy and mutual information will be de�nedformally in Chapter 3. For the moment it is enough to know that entropy is a measure ofthe un
ertainty of a random variable; 
onditional entropy is a measure of the un
ertainty ofone random variable given another random variable; and mutual information is a measureof how mu
h information two random variables share. 7



1. Introdu
tionfeedba
k. Then he introdu
ed the 
on
ept of dire
ted information, whi
h 
ap-tures the idea of 
ausality between the input and the output of a 
hannel, andargued that in the presen
e of feedba
k, dire
ted information is a more appro-priate measure of the �ow of information from input to output than mutualinformation.In the same year, M
Lean also 
onsidered the 
on
ept of time in the de-s
ription of systems by proposing his Flow Model [M
L90℄. A

ording to thismodel, there is a �ow of information only when a high user H assigns valuesto obje
ts in a state that pre
edes the state in whi
h a low user L makes herassignment. In this situation only part of the 
orrelation between high and lowinformation is 
onsidered as leakage. This addressed the problem of 
ausality,but this model was too general, and relatively di�
ult to apply.In [Gra91℄ Gray worked on bridging the gap between the overly 
ompli-
ated Flow Model and the more pra
ti
al, yet restri
ted, approa
h of Millen.Gray used a general-purpose probabilisti
 (as opposed to nondeterministi
)state ma
hine that resembled Millen's model. In Gray's model, the value
T (s, I,′ s′, O) represents the probability of a given state s evolving into an-other state s′, under the input I, and produ
ing output O. The 
hannelsare partitioned into two sets, H and L, representing the 
hannels 
onne
tedto high and low pro
esses, respe
tively. The high and the low environments
an 
ommuni
ate only through their intera
tions with the system, as no otherform of 
ommuni
ation between them is allowed. Gray wanted to take timeand 
ausality into 
onsideration in his de�nition of leakage, and he did so byallowing feedba
k and memory in his model. His formulation of a se
urityguarantee was the following:

P (LI ∩ LO ∩HI ∩HO) > 0 =⇒

P (ℓ|LI ∩ LO ∩HI ∩HO) = P (ℓ|LI ∩ LO)
(1.1)where LI and LO represent the history of low inputs and outputs, respe
tively,and HI and HO represent the history of high inputs and outputs, respe
tively.The symbol ℓ represents the �nal output event 
hannels in the low environment.The formulation (1.1) states that the probability of a low output may dependon the previous history of the low environment, but not on the previous historyof the high environment.Gray also tried to generalize the 
on
ept of 
apa
ity to the 
ase of 
hannelswith memory and feedba
k. He provided a formula expressing the �ow ofinformation from the whole history of inputs and outputs (during time 0 . . . t−

1) to the the low output (at time t), and 
onje
tured that the 
apa
ity of the
hannel would be:
C

def
= lim

n→∞
Cn (1.2)8



1.2. Qualitative and quantitative approa
hes to information hiding: a briefhistorywhere
Cn

def
= max

H,L

1

n

n∑

i=1

I(In_Seq_EventH,t,Out_Seq_EventH,t;

Final_Out_EventL,t|In_Seq_EventL,t,Out_Seq_EventL,t)

(1.3)and In_Seq_EventA,t is the input history at 
hannel A (where A stands for LorH) up to time t−1, Out_Seq_EventA,t is the output history at 
hannel A upto time t−1, and Final_Out_EventL,t is the low output event at time t. Grayshowed that the absen
e of information �ow implies that the formulation of
apa
ity as formulated in (1.2) is zero. He also 
onje
tured that this de�nitionof 
apa
ity would 
orrespond to the notion of maximum transmission ratesupported by the 
hannel. As pointed out in [AAP℄, however, the problemwith Gray's 
onje
ture is the following. For an output at time t, the only
ausal relation 
onsidered is the one with the history of inputs up to time
t − 1, while the e�e
t that the input at time t itself may have on the outputis ignored. In this way, (1.2) does not express the 
omplete 
ausal relationbetween input and output. The 
orre
t notion of 
apa
ity in the presen
e ofmemory and feedba
k, whi
h 
orresponds to the maximum transmission ratefor the 
hannel, was proposed in 2009 by Tatikonda and Mitter [TM09℄, andit will be dis
ussed later on in Chapter 4.A similar formal approa
h, although with di�erent motivations, was pre-sented by M
Iver and Morgan in [MM03℄. They fo
used on the problem ofpreserving se
urity guarantees while re�ning spe
i�
ations into implementa-tions. The authors used an equation similar to (1.3), but in the 
ontext ofsequential programing languages enri
hed with probabilities. Their aim wasto prote
t the high values during the whole exe
ution of the program, insteadof the initial high values only. In other words, they wanted to assure that if thehigh information is not known by the low environment at the beginning of the
omputation, then it 
annot be inferred at any later stage. They proved that,for deterministi
 programs, if the �nal values of the high obje
ts are prote
ted,then the initial values are prote
ted as well. M
Iver and Morgan also de�nedthe 
on
ept of information es
ape as:

H(h|ℓ) −H(h′|ℓ′)where H(h|ℓ) represents the un
ertainty (
onditional entropy) of the high in-formation given the low information at the beginning of the 
omputation, and
H(h′|ℓ′) represents the same un
ertainty at the end of the 
omputation. Theyde�ned the 
hannel 
apa
ity as the least upper bound of information es
apeover all possible input distributions. In this 
ontext, a system is 
onsideredse
ure if it has 
apa
ity equal to zero. One advantage of this model is that itis not ne
essary to keep tra
k of the whole history of the 
omputation, but onthe other hand it 
an be applied only in s
enarios where the adversary doesnot have memory. 9



1. Introdu
tionIn Chapter 3 we will take up again the dis
ussion of quantitative approa
hesto information �ow based on information theory. For the moment we will fo
uson some topi
s related to information hiding that are of spe
ial relevan
e forthis thesis.1.3 Case studies of information hidingIn this se
tion we present three 
ase studies of information hiding that weaddress in this thesis.1. The 
ase of quantitative information �ow, i.e. how mu
h about the se
retinformation an adversary 
an learn by observing the system's output,and by knowing how the system works. We give spe
ial attention to thebroadly studied problem of anonymity, whi
h 
an be seen as parti
ular
ase of the more general problem of information �ow where the se
retinformation is the identity of the agents.2. The question of statisti
al dis
losure 
ontrol, whi
h 
on
erns the problemof allowing users of a database to obtain meaningful answers to statisti-
al queries, while prote
ting the priva
y of the individuals parti
ipatingin the database. We fo
us on di�erential priva
y, an approa
h to thisproblem that has drawn a lot of attention in re
ent years.3. The problem of preserving se
urity guarantees wile deriving implementa-tions from spe
i�
ations. Usually spe
i�
ations are more abstra
t thanimplementations, i.e. they present more nondeterminism. The task ofimplementing a system redu
es the nondeterminism of the spe
i�
ation,and if it is not done 
arefully, an implementation may rule out possibili-ties allowed by spe
i�
ation that are essential for the se
urity guarantees.1.3.1 Quantitative information �ow and anonymityAnonymity is one of the most studied subje
ts of information hiding. Theresear
h in this area has been a
tive in the past several years, and the advan
esmade 
an be extended to the more general s
enario of information �ow. Asbrie�y introdu
ed in Se
tion 1.1, anonymity 
on
erns the prote
tion of theidentities of the agents involved in the events.With the advent of the Internet, the prote
tion of anonymity has be
ome anissue in the daily life of millions of people around the world. The importan
eof anonymity is even more evident 
on
erning the prote
tion of freedom ofspee
h, a situation that is parti
ularly deli
ate in 
ountries under repressiveregimes.P�tzmann, Dresden and Hansen [PDH08℄ have proposed a standard termi-nology for anonymity 
on
epts. In their work there are three di�erent notionsof anonymity based on the agents involved:10



1.3. Case studies of information hiding
• Sender anonymity : when the identity of the originator should be pro-te
ted;
• Re
eiver anonymity : when the identity of the re
ipient should be pro-te
ted;
• Unlinkability : when it might be known that an agent A originated amessage and an agent B re
eived a message, yet it should not be knownwhether the message sent by A was a
tually the one re
eived by B.Reiter and Rubin also gave a 
lassi�
ation of the types of adversary inan anonymity system in [RR98℄, where they also proposed the anonymityproto
ol Crowds (see Se
tion 1.3.1). In their work, they 
onsidered that theadversary 
an be an eavesdropper simply observing the tra�
 of messages onthe network, or she 
an be an a
tive atta
ker (i.e. a 
ollaboration betweensenders, between re
eivers, or between others taking part in the system), oreven a 
ombination of the previous two types. The authors also de�ned ahierar
hy of anonymity degrees that a system 
an provide. In de
reasing orderof strength, the proposed s
ale is listed below. In this list, let s, s′ denotese
rets and o an observable, i.e. a parti
ular a
tion or output of the systemthat is distinguishable from the point of view of the atta
ker.Strong anonymity From the atta
ker's point of view, the observables pro-du
ed by the system do not in
rease her knowledge about the se
retinformation, i.e. the identity of the individual involved in an event.Chaum also des
ribed the 
on
ept of strong anonymity in his work onthe Dining Cryptographers proto
ol [Cha88℄. It represents the ideal sit-uation where the exe
ution of the proto
ol does not give to the adversaryany extra information about the se
rets. The 
on
ept was formalized asfollows.

∀s, o p(s|o) = p(s) (1.4)This de�nition is the equivalent of �probabilisti
 noninterferen
e�. In[CPa℄, Chatzikokolakis and Palamidessi showed that the 
ondition ex-pressed by (1.4) is equivalent to:
∀s, s′, o p(o|s) = p(o|s′) (1.5)i.e. the probability of the system produ
ing an observable is the same,no matter what the se
ret information is. This de�nition is known asequality of likelihoods and is advantageous as it does not take into 
on-sideration the probability distribution on se
rets.Another de�nition of strong anonymity, more restri
tive, was proposedby Halpern and O'Neill [HO03, HP05℄. It is equivalent to ea
h of the pre-vious de�nitions ((1.4) or (1.5)) plus the assumption that the input prob-ability is uniform. Halpern and O'Neill fo
used on the adversary's la
k of11
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tion
on�den
e in her guess about the se
ret, and de�ned strong anonymityas:
∀s, s′, o p(s|o) = p(s′|o) (1.6)The formulation (1.6) is also known as 
onditional anonymity and 
or-responds to the level of anonymity 
alled beyond suspi
ion in Reiter andRubin's 
lassi�
ation.Beyond suspi
ion From the atta
ker's point of view, an agent is no morelikely to be the 
ulprit than any other agent in the system. It 
an beformalized as in (1.6).Probable inno
en
e From the atta
ker's point of view, an agent does notappear more likely to be involved in an event than not to be involved.Formally:
∀s, o p(s|o) ≤ 0.5 (1.7)The formulation (1.7), however, is not broadly a

epted as the de�ni-tion of probable inno
en
e. In [CPa℄, Chatzikokolakis and Palamidessishowed that the property that Reiter and Rubin indeed proved for theCrowds proto
ol in [RR98℄ was:
∀s, o p(o|s) ≤ 0.5 (1.8)Possible inno
en
e From the atta
ker's point of view, there is always a non-negligible probability that the agent involved in the event is someone else.Formally:

∀s, o.
(
p(s|o) > 0 =⇒ ∃s′.p(s′|o) > 0

)The above hierar
hy gives a ri
her 
lassi�
ation of the degree of prote
tiono�ered by a system than would be possible with simpler possibilisti
 models.Among the quantitative approa
hes to anonymity, two are of our spe
ialinterest: the ones based on information-theoreti
 
on
epts and the ones basedon the Bayes risk. In the following se
tion we give a brief overview of thesetwo approa
hes. These 
on
epts will be revisited in more detail in Chapter 3.Anonymity proto
ols as noisy 
hannelsInformation theoreti
 approa
hes to anonymity, and more in general to in-formation �ow, rely on 
on
epts su
h as entropy and mutual information tomeasure the adversary's la
k of information about the se
ret before and afterobserving the system's output. Typi
ally the system is seen as a noisy 
hanneland the 
on
ept of noninterferen
e 
orresponds to the 
onverse of the 
hannel
apa
ity.There are several works in the literature that have proposed measures of de-grees of anonymity in terms of the entropy and mutual information, for instan
e12



1.3. Case studies of information hiding[SD02, DSCP02, ZB05, DPW06℄. In [CPP08a℄ Chatzikokolakis, Palamidessiand Pananganden proposed the 
on
ept of 
onditional 
apa
ity to 
ope withthe situation where some leakage of information is intended by the system.Consider again the ele
tion proto
ol example. By design, the �nal vote 
ount-ing needs to be announ
ed and it usually in
reases the atta
ker's knowledgeabout the se
ret. In this situation, the leakage should be 
al
ulated modulo theinformation that is supposed to be dis
losed, i.e. the vote 
ount. In this workthe authors also proposed methods to 
al
ulate the 
hannel 
apa
ity exploitingsome symmetries present in several pra
ti
al systems.Hypothesis testing and Bayes riskIn some real world situations an individual fa
es the following situation: she isinterested in the value of some random variable A ∈ A but she has a

ess onlyto the values of another random variable O ∈ O. She knows that A and Oare 
orrelated by a known 
onditional probability distribution. This situationo

urs in several �elds, for instan
e in medi
ine (to make a diagnosis, thephysi
ian has a

ess to a list of symptoms, but not to the disease itself). Theattempt to infer A from O is known as the problem of hypothesis testing. Herewe are interested in the use of hypothesis testing in the 
ontext of anonymity(and information �ow). More spe
i�
ally, the adversary tries to infer the se
ret
A given that she has a

ess to the observables O and she knows how the systemworks, i.e. how the probabilities of O are 
onditioned with relation to A.A 
ommonly studied approa
h to the problem is based on the Bayesianmethod and 
onsists of assuming the a priori probability distribution on Aas known, and then deriving from that and from the knowledge about howthe system works, an a posteriori probability distribution after some fa
t hasbeen observed. It is well known that the best strategy for the adversary isto apply the MAP rule (Maximum A posteriori Probability rule), whi
h asthe name suggests, 
hooses the hypothesis with the maximum probability forthe given observation. Here, by �best� strategy we mean the one that indu
esthe smallest probability of error in guessing the hypothesis, that in this 
ase
orresponds to the Bayes risk.In [CPP08b℄ Chatzikokolakis, Palamidessi and Pananganden explored thehypothesis testing approa
h to anonymity, in a s
enario where the adversaryhas one single try to guess the se
ret (after exa
tly one observation). Theyasso
iated the level of anonymity to the probability of error, i.e. the probabilityof an atta
ker making a wrong guess about the se
ret. In order to 
onsiderthe worst 
ase s
enario and to give upper bounds for the level of anonymityprovided, the adversary is assumed to use the MAP rule strategy. In this
ase, the probability of error 
orresponds to the Bayes risk, and the degree ofprote
tion o�ered by a proto
ol 
orresponds to the Bayes risk asso
iated withthe 
hannel matrix. 13



1. Introdu
tionIn [Smi07, Smi09℄ Smith also 
onsidered the s
enario of one-try atta
ksand proposed the notion of vulnerability, whi
h takes into 
onsideration theprobability that the adversary 
an guess the se
ret 
orre
tly after observingthe behavior of the system only on
e. Smith proposed the framework of min-entropy leakage, whi
h is 
losely related to the Bayes risk, but is di�erent asit uses the 
on
ept of entropy (more pre
isely min-entropy) and formalizesleakage in information theoreti
 terms.In Chapter 3 we will present a deeper dis
ussion about the use of infor-mation theory for the formalization of information �ow, in
luding the notionsof Shannon entropy, mutual information and the framework of min-entropyleakage for one-try atta
ks. First, however, we will review some fundamentalanonymity proto
ols in literature.Examples of anonymity proto
olsOn the Internet, every 
omputer has a unique IP address whi
h spe
i�es the
omputer's logi
al lo
ation in the topology of the network. This IP addressis usually sent along with any request originating from the 
omputer. Evenif the 
omputer uses an IP address for a single session via an ISP (InternetServi
e Provider), the identi�
ation 
an be logged and retrieved later with theISP's 
omplian
e. One 
ommon way to try to preserve anonymity is to use aproxy, i.e. an intermediary 
omputer that gathers all the requests of a groupof 
omputers and serves as a unique gate for any 
ommuni
ation with theworld outside of the network. For pra
ti
al purposes, it is as if all the requestsoriginated from the proxy, and the members of the group are indistinguishablefrom the point of view of an outside observer. One drawba
k presented bythe use of proxies is that it 
reates single points of failures, de
reasing thenetwork's robustness.The problem illustrated above is one of the motivations for the use of 
om-muni
ation proto
ols spe
i�
ally designed to prote
t anonymity. In this se
tionwe review two of the most fundamental, and probably most famous, examplesof anonymity proto
ols in literature: the dining 
ryptographers proto
ol, andthe Crowds proto
ol.The dining 
ryptographers The dining 
ryptographers proto
ol was pro-posed by Chaum in [Cha88℄. It is one of the �rst anonymity proto
ols in theliterature, and it is one of the few proto
ols that 
an assure strong anonymity.The proto
ol is usually presented in a simpli�ed s
enario, where three 
ryp-tographers employed by the NSA (The National Se
urity Agen
y of the UnitedStates) are having dinner in a restaurant. At the end of the dinner, the NSAde
ides whether it will pay the bill itself or whether it will assign the duty ofpaying to one of the 
ryptographers at the table. In the 
ase the NSA de
idesthat one of the 
ryptographers will pay, it announ
es the de
ision se
retly tothe 
hosen one. The goal of the proto
ol is to reveal whether one 
ryptographer14



1.3. Case studies of information hidingwill pay the bill or not, without revealing the identity of the payer. In otherwords, to an external observer (and to the non-paying 
ryptographers as well),the only a

essible information is whether the NSA is paying or not, but notthe identity of the 
ryptographer paying (if any). We assume that the NSAdoes not dis
lose its de
ision to anyone but to the 
ryptographer it 
hooses(again, if any), and that the solution should be distributed, i.e. only messagepassing between agents is allowed, and no 
entralized agent 
oordinates thepro
ess.The dining 
ryptographers proto
ol solves this problem as shown s
hemat-i
ally in Figure 1.1. Ea
h 
ryptographer (Crypt0 , Crypt1 and Crypt2 ) tosses a
oin that is visible only to himself and to his right-hand neighbor. In this wayevery 
ryptographer has a shared 
oin with ea
h of the other two. After allthree 
oins (c0, c1 and c2) are tossed, ea
h 
ryptographer 
he
ks whether thetwo 
oins visible to himself agree (both are heads or both are tails) or disagree(one is head and the other is tails). Then they announ
e publi
ly agree ordisagree, a

ording to the result they obtained with their 
oins. The only ex-
eption is that, if a 
ryptographer is paying, he will announ
e the opposite ofwhat he sees, i.e. he will announ
e disagree in the 
ase that his 
oins agree andagree if they do not. It 
an be proven that if the number of disagrees is even,then the NSA is paying, and if the number of disagrees is odd, then one of the
ryptographers is paying. Moreover, if the 
oins are all fair, the proto
ol o�ersstrong anonymity in the following sense: The exe
ution of the proto
ol doesnot provide to an external observer enough eviden
e to 
hange her knowledgeabout whi
h 
ryptographer is the payer, if any. In other words the probabilityof any 
ryptographer being the payer, under the adversary's point of view,does not 
hange after the observation of the proto
ol's exe
ution.The dining 
ryptographers proto
ol 
an be generalized to any number ofgraph nodes (i.e. 
ryptographers) and any type of graph 
onne
tivity (i.e. theshared 
oins between pairs of 
ryptographers). Then the same solution 
anbe used for anonymous 
ommuni
ation as follows. Ea
h pair of nodes share a
ommon se
ret (the value of the 
oin) of length n, equal to the length of thetransmitted data. It is assumed that the 
oins are drawn uniformly from the setof possible se
rets. Ea
h node then 
omputes the binary sum (XOR operation)of all its shared se
rets and announ
es the result. The only ex
eption is thatthe node that wants to transmit adds the datum, also of length n, to the sumit announ
es. It 
an be shown that the total sum of the announ
ements ofall nodes is equals to the data to be transmitted, sin
e ea
h se
ret is 
ountedtwi
e (on
e by ea
h node that 
an see it) and, therefore, is 
an
eled out bythe XOR operation. The proto
ol works under the assumption that only onenode at a time tries to transmit, and if it is the 
ase that more than one senderwants to transmit at the same time, the 
on�i
t needs to be solved by somesort of 
oordinator.One drawba
k of the dining 
ryptographers proto
ol is its ine�
ien
y:whenever a single node wants to transmit, all the nodes in the graph need15
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Figure 1.1: An example of the dining 
ryptographers proto
olto 
ollaborate to make it happen, at the 
ost of a large number of messageex
hanges. Moreover, as previously stated, in the 
ase where more than onenode wants to transmit at the same time, a 
oordinator is ne
essary to solvethe 
on�i
t.Crowds The Crowds proto
ol was �rst presented in [RR98℄ and it allowsInternet users to perform web transa
tions without revealing their identity.Usually, on the Internet, when a user 
ommuni
ates with a server the latter
an dis
over the IP address of the originator. The idea behind Crowds is togather users into a 
rowd and randomly redire
t the request multiple timesinside the group before �nally letting it rea
h the server. In this situation, itis impossible for the server, and for any other user, to identify the initiator ofthe request on
e it re
eives the message: whenever someone sends a messagethere is a 
onsiderable probability that she is only a forwarder for someoneelse.To be more pre
ise, a 
rowd is a group of m users who parti
ipate in theproto
ol. It is possible that a subgroup of c users are 
orrupted and 
ollaborateto dis
lose the identity of the original sender. Also, we assume that the proto
olhas a parameter pf ∈ (0, 1]. We 
all originator or initiator the user who wantsto make a request to the server. The originator needs to 
reate a path betweenherself and the server in order to have her request rea
h the �nal destination,as shown in Figure 1.2.The proto
ol works as follows:
• At the �rst step the initiator 
hooses, a

ording to a uniform probability16



1.3. Case studies of information hiding
Crowd

Initiator

Server

Figure 1.2: The Crowds proto
ol at workdistribution, another user in the 
rowd (possibly herself) and forwardsthe request to this user;
• The user who re
eives the message then makes a random 
hoi
e. Withprobability pf she forwards the message to the server, and with prob-ability 1 − pf she de
ides to forward the message to some user in the
rowd. If this is the 
ase, she 
hooses a user (possibly herself) a

ordingto a uniform probability distribution, and forwards the message to thisuser. This step is then repeated by the new message holder.The response from the server to the originator follows the same path, inthe opposite dire
tion. Moreover, all the 
ommuni
ations in a path are en-
rypted using a path key, whi
h prote
ts the path from threats posed by lo
aleavesdroppers. Ea
h user has a

ess to the 
ommuni
ations in whi
h she par-ti
ipates, but it is assumed that a user 
annot inter
ept messages ex
hangedbetween other users. It 
an be proven that the proto
ol is strongly anonymouswith respe
t to the web server. Intuitively this is the 
ase be
ause at least oneforward step is always performed, and after this step any user 
an be the holderof the message with equal probability. Therefore, from the server's point ofview any user is equally likely to be the originator of the request.A more interesting 
ase is to analyze the level of anonymity ensured withrespe
t to a 
orrupted user. If in the very �rst step of the exe
ution of theproto
ol the message is forwarded to a 
orrupted user, she 
an gain moreinformation about the possible originator than the server. A user, whether theoriginator or not, is said to be dete
ted if she sends a message to a 
orrupteduser. Sin
e the originator always appears in a path, she is more likely to bedete
ted than the rest of the users. Dete
ting a user (at least for the �rst timein a path) in
reases the probability that this user is the originator. Therefore,strong anonymity 
annot hold with relation to 
orrupted users.In [RR98℄ it is proven that if the number c of 
orrupted users is not toolarge, the proto
ol 
an at least ensure the level prote
tion of probable inno-17
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tion
en
e. More pre
isely, if the number m of users in the 
rowd satis�es
m ≥

pf

pf −
1
2

(c+ 1)then the proto
ol ensures probable inno
en
e in the sense of (1.8).1.3.2 Statisti
al dis
losure 
ontrolThe �eld of statisti
al dis
losure 
ontrol 
on
erns the problem of revealing a
-
urate statisti
s about a set of respondents while preserving the priva
y ofindividuals. In statisti
al databases, the data of a (large) number of par-ti
ipants is 
ompiled, and users are allowed to pose statisti
al queries (su
has average or total 
ounting) about the sample. This kind of database is ofspe
ial importan
e in many areas. For instan
e, medi
al databases 
an pro-vide information about how a disease spreads, and a 
ensus database 
an helpauthorities to de
ide how to spend the next year's budget.The data in a statisti
al database 
an be obtained in di�erent ways. It 
anbe 
olle
ted in a 
ensus, for instan
e, it 
an be obtained opportunisti
ally bymonitoring the tra�
 in a network, or it 
an even be given in by the parti
i-pants by their own 
hoi
e. No matter how the data is obtained, however, it isstill important to ensure that the individual's parti
ipation in the database willnot harm her priva
y. This is not a trivial goal to a
hieve: the main purposeof a statisti
al database, in the �rst pla
e, is to reveal some information aboutthe population as a whole, i.e. to let users infer �general truths� about thispopulation. As an example, suppose that a statisti
al database of individualsof a 
ertain 
ountry indi
ates that, in this population, the life expe
tan
y forwomen is 5 years longer than for men. Clearly this pie
e of information revealssomething about the whole population, even about individuals not present inthe database.There are several approa
hes to dealing with the problem of preservingpriva
y in statisti
al databases. One of them is based on ensuring large querysets, i.e. that no query 
an be posed for a small set of individuals. Theproblem with this approa
h is that, even if two query sets are �large enough�,their 
ombination may not be. Consider the following two queries: �How manypeople have disease y?� and �How many people, not named X, have disease
y?�. Both queries operate on large sets, but 
learly the superposition of the twoqueries immediately reveals sensitive information about the individual named
X. Another attempt to a
hieve priva
y is based on the en
ryption of the datain the dataset. This is not a general solution sin
e, as we have seen, the priva
ythreats do not 
on
ern only the individuals in the database and, therefore, theen
ryption of the data will not address this issue.Another possible solution is to apply some sort of query auditing : the
urator of the database 
he
ks whether or not a query is possibly dis
losingbefore de
iding to provide an answer to it. This approa
h would 
ope with the18



1.3. Case studies of information hidingproblem of the two superposing queries mentioned above, yet it presents twoserious drawba
ks: �rst, automati
 tools to 
he
k every query are pra
ti
allyinfeasible; and, se
ond, the refuse to answer a query 
an be in itself a dis
losinga
t. Another attempt to deal with the problem is by using subsampling of thedataset. We normally view a dataset as a 
olle
tion of rows, where ea
h row
ontains the data of an parti
ular parti
ipant. The idea of subsampling is torandomly 
hoose a subset of the rows, 
ompute the answer to the query basedon this subsample, and then report it as the �nal answer. If the subset islarge enough, it should re�e
t the statisti
al properties of the whole database.This approa
h, however, prote
ts a parti
ipant only to the extent to whi
hit is unlikely that she is in the subsample. If being in the subsample has
atastrophi
 results, then someone will always be seriously harmed.The input perturbation approa
h is based on modifying either the dataor the query in hope of 
onfusing the adversary. For instan
e, a randomizedresponse me
hanism 
an be used at the moment it is a
quired. This modi�-
ation is permanent and not even the 
urator knows what the original datawas. The queries to the database are then made taking into 
onsideration therandomized noise.Yet another approa
h is to add randomized noise to the answer of thequery. The idea is to 
ompute the answer on the 
omplete set of (the original)values in the database, and then randomize the response before reporting itto the user. If this is done naively, however, it 
an easily be taken 
are ofby the adversary. Suppose that the noise is 
hosen to be a Gaussian additivenoise with mean zero. If the query is repeated a su�
ient number of times,a statisti
al analysis of the answers 
an easily estimate with high a

ura
ywhat the real answer is. Even if the 
urator of the database opts to re
ord thequery and always report the same answer for it, it may not solve the problem:synta
ti
ally di�erent queries 
an be semanti
ally equivalent, and if the querylanguage is ri
h enough the semanti
 equivalen
e is unde
idable.In this 
ontext, it is 
lear that the problem of statisti
al dis
losure 
ontrolis not trivial. Yet another issue to be 
onsidered is the auxiliary (or side)information. Auxiliary information is any pie
e of data about individualsthat the atta
ker has and that does not 
ome from the database itself. Itmay originate from priors, beliefs, newspapers or even other databases. Somede
ades ago, Dalenius [Dal77℄ 
onsidered the problem of auxiliary informationand proposed a famous �ad omnia� priva
y desideratum: nothing about anindividual should be learnable from the database that 
ould not be learnedwithout a

ess to the database. In other words, if the adversary has someside information and gains some knowledge about the individuals using it,by learning the response from the database this knowledge about individualsshould not in
rease. Dalenius' property is, however, too strong to be usefulin pra
ti
e: Dwork showed in [Dwo06℄ that no useful database 
an provideit. She then proposed the notion of di�erential priva
y, whi
h is based onthe idea that the presen
e or absen
e of an individual in the database, or the19



1. Introdu
tionindividual's parti
ular value, should not signi�
antly 
hange the probability ofobtaining a 
ertain answer for a given query [Dwo06, Dwo10, Dwo11, DL09℄.The 
on
ept of di�erential priva
y 
an be formalized as follows. Let X bethe set of all possible databases, and Z be the set of possible answers to aquery. Two databases x, x′ ∈ X are adja
ent (or neighbors), written x ∼ x′, ifthey di�er in the value of exa
tly one individual. Then, for some ǫ > 0:De�nition 1 ([Dwo11℄). A randomized fun
tion K from X to Z satis�es ǫ-di�erential priva
y if for all pairs x, x′ ∈ X , with x ∼ x′, and all S ⊆ Z, wehave:
Pr [K(x) ∈ S] ≤ eǫ × Pr [K(x′) ∈ S]The 
on
ept of di�erential priva
y has had an extraordinary impa
t inthe database 
ommunity, and we will dis
uss the meaning and impli
ationsof the above formulation in greater depth in Chapter 5. For the moment, itis enough to note that this de�nition intuitively ensures that individuals 
anopt in or out of the database without signi�
antly 
hanging the probability ofany given answer to a query to be reported. In other words, it is �safe� for anindividual to join (or to leave) the database. Dwork also showed that in orderto ensure di�erential priva
y it is enough to 
onsider a Lapla
ian me
hanismof noise [Dwo06℄.Although di�erential priva
y is a promising approa
h to the question ofstatisti
al dis
losure 
ontrol, the fa
t that it relies on the randomization of thequery response poses some 
hallenges with respe
t to the utility of the queryme
hanism. If the noise is not added with su�
ient 
are, the reported answer
an be so �di�erent� from the real answer that the informative purpose of thedatabase is 
ompromised. In Chapter 5 we will 
ome ba
k to the questionof how to apply di�erential priva
y and, at the same time, provide maximumutility to the query me
hanism.1.3.3 Re�ning spe
i�
ations into implementationsDeriving implementations of a system given its spe
i�
ation, while respe
tingse
urity 
onstraints, is a 
hallenging problem in information hiding and, morein general, in se
urity. A spe
i�
ation S is re�ned by an implementation P if Ppreserves all logi
 expressible properties of S. One needs to be 
areful, however,when re�ning a spe
i�
ation in the realm of information hiding. A

ording toMorgan [Mor09℄:A rigorous de�nition of how spe
i�
ations relate to implementa-tions, as part of reasoning, must ensure that implementations re-veal no more than their spe
i�
ations: they must, in e�e
t, preserveignoran
e.20



1.3. Case studies of information hidingBy �ignoran
e�, the author means what the user does not know about whatshe 
annot see. This notion is 
losely related to the problem of information�ow, i.e. determining how mu
h about the se
ret behavior of a system anadversary 
an infer from an observation and her knowledge about how thesystem works.To illustrate the problem, we will dis
uss the following example, adaptedfrom the original one in [Mor09℄. Consider a partition of the program statesinto visible (v) and hidden (h). Assume that the two variables v and h havethe same domain N (the natural numbers), and in a spe
i�
ation S, after thevalue of h is assigned, the following is stated: 
hoose v from the domain N.Then we 
an ask �from the �nal value of v, what 
an the observer dedu
e aboutthe value of h, given that she knows how the system works?�. Of 
ourse theanswer will depend on how the implementation I of the spe
i�
ation is done.If I is simply v := 0, then nothing is learned, sin
e what the user knows aboutthe value of h is exa
tly what she already knew before. If the implementationis v := h mod 2, then she 
an learn h's parity. If the implementation is v := h,then she learns the exa
t value of h. Intuitively, the three implementations arein in
reasing order a

ording to the loss of ignoran
e they indu
e.It is desirable that the implementation of a spe
i�
ation be �ignoran
epreserving�, in the sense that the implementation should not reveal more aboutthe se
rets than the spe
i�
ation does. Some works in the literature suggestthat one should be 
areful when dealing with se
ure re�nements if one wants topreserve information-�ow se
urity properties. In [Ja
89℄, for instan
e, Ja
obshows that even if an implementation is a 
onsistent re�nement with respe
t toa spe
i�
ation, it does not imply that the (information-�ow) se
urity propertiesof the spe
i�
ation are preserved in the implementation.As pointed out in [CNP09℄, nondeterminism is often used in system spe
i�-
ations as a way of abstra
ting from implementation details (su
h as s
hedulerpoli
y). Implementations are obtained from spe
i�
ations by re�nement alge-bras, whi
h redu
e nondeterminism. As we have seen in a previous example, ifwe assume v and h are both of type N, then the spe
i�
ation 
hoose v from thedomain N 
an be re�ned to v := h, whi
h is simply a redu
tion of nondeter-minism. This is known as the �re�nement paradox� [Mor09℄, be
ause it doesnot preserve ignoran
e. While the spe
i�
ation does not tell anything aboutthe value of h, the re�nement 
ompletely reveals it.The pro
ess of redu
ing nondeterminism by re�nements is related to thenotion of s
hedulers in nondeterministi
 systems: designing an implementationof a spe
i�
ation involves 
hoosing a s
heduler to solve all the nondeterminismof the spe
i�
ation. The s
heduler is indeed a �nal result of the re�nementpro
ess, after all the nondeterminism is ruled out.A

ording to this perspe
tive, similar 
on
erns about re�nement algebrasshould be taken into 
onsideration when dealing with s
hedulers. Indeed, it
an be shown that, given a spe
i�
ation S and a s
heduler that leads to a
onsistent implementation P with respe
t to S, it is not guaranteed that the21



1. Introdu
tionse
urity properties of S are preserved in P .In the domain of re�nement of spe
i�
ations, the solution proposed in[Mor09℄ is to apply some prin
iples to the re�nement algebra in order to assurethe preservation of ignoran
e. These prin
iples restri
t the re�nement relation,eliminating the 
ases that do not preserve ignoran
e.A similar problem arises in the 
ontext of 
on
urrent systems, where thes
heduler that solves the nondeterminism 
an violate se
urity properties. InChapter 6 we fo
us on this problem and we propose restri
tions on the s
hed-ulers that also lead to ignoran
e-preserving re�nements.1.4 Plan of the thesis and 
ontributionIn Chapter 2 we review some basi
 notions ne
essary for the developmentof this thesis, in
luding the 
on
epts of probability spa
es, probabilisti
 au-tomata and CCSp (a probabilisti
 version of the pro
ess algebra of 
on
urrent
ommuni
ating pro
esses).In Chapter 3 we review the main approa
hes that have been 
onsideredto quantify the notion of information leakage using 
on
epts of informationtheory. We explain 
on
epts su
h as entropy, 
onditional entropy, mutualinformation and 
apa
ity. We fo
us on how distin
t notions of entropy 
anmodel atta
kers with di�erent levels of power, and we introdu
e the mathe-mati
al ba
kground ne
essary for most of this thesis. Finally we 
ompare themain notions of un
ertainty and leakage in the literature.In Chapter 4 we 
onsider the problem of de�ning the information leak-age in intera
tive systems where se
rets and observables 
an alternate duringthe 
omputation. We show that the information-theoreti
 approa
h whi
hinterprets su
h systems as 
lassi
 
hannels is not valid. The prin
iple 
anbe re
overed, however, if we 
onsider 
hannels of a more 
ompli
ated kind,namely 
hannels with memory and feedba
k. We show that there is a 
om-plete 
orresponden
e between intera
tive systems and su
h 
hannels. We alsopropose the use of dire
ted information, as opposed to mutual information,to represent leakage in intera
tive systems. This proposal is based on re
entresults in information theory that have shown that, in 
hannels with mem-ory and feedba
k, the transmission rate does not 
orrespond to the maximummutual information (the standard notion of 
apa
ity), but rather to the max-imum (normalized) dire
ted information. We show that our model is a properextension of the 
lassi
al one, i.e. in the absen
e of intera
tivity the model of
hannels with memory and feedba
k 
ollapses into the model of memoryless
hannels without feedba
k. Finally, we show that the 
apa
ity of the 
hannelsasso
iated with intera
tive systems is a 
ontinuous fun
tion with respe
t to apseudometri
 based on the Kantorovi
h metri
.In Chapter 5 we analyze 
riti
ally the notion of di�erential priva
y in thelight of the 
on
eptual framework provided by the min-entropy leakage. We22



1.5. Publi
ationsshow that there is a 
lose relationship between di�erential priva
y and leakage,due to the graph symmetries indu
ed by the adja
en
y relation on databases.Furthermore, we 
onsider the utility of the randomized answer, whi
h measuresits expe
ted degree of a

ura
y. We fo
us on 
ertain kinds of utility fun
tions
alled �binary�, whi
h have a 
lose 
orresponden
e with the notion of min-entropy leakage and the Bayes risk. Again, there 
an be a tight 
orresponden
ebetween di�erential priva
y and utility, depending on the symmetries indu
edby the adja
en
y relation and by the query. Using these symmetries we 
an, insome 
ases, build an optimal-utility randomization me
hanism while preservingthe required level of di�erential priva
y. We also provide a study of the kindof stru
tures that 
an be indu
ed by the adja
en
y relation and the query,and how to use them to derive bounds on the leakage and a
hieve the optimalutility.In Chapter 6 we move away from the quantitative realm and fo
us on theproblem of nondeterminism in systems spe
i�
ations. In the �eld of se
urity,pro
ess equivalen
es have been used to 
hara
terize various information-hidingproperties (for instan
e se
re
y, anonymity and noninterferen
e) based on theprin
iple that a proto
ol P with a variable x satis�es su
h a property if andonly if, for every pair of se
rets s1 and s2, P [s1/x] is equivalent to P [s2/x]. Weargue that, in the presen
e of nondeterminism, the above prin
iple relies on theassumption that the s
heduler �works for the bene�t of the proto
ol�, and thisis usually not a safe assumption. Non-safe equivalen
es, in this sense, in
lude
omplete-tra
e equivalen
e and bisimulation. We present a formalism in whi
hwe 
an spe
ify admissible s
hedulers and, 
orrespondingly, safe versions ofthese equivalen
es. We prove that safe bisimulation is still a 
ongruen
e. Thenwe show that safe equivalen
es 
an be used to establish information-hidingproperties.Finally, in Chapter 7 we make our �nal 
onsiderations.1.5 Publi
ationsMost of the results in this thesis have already been subje
t of s
ienti�
 publi-
ations. More pre
isely:
• Chapter 2 is based on the paper Probabilisti
 Information Flow[AAP10b℄ that appeared in the pro
eedings of 25th Annual IEEE Sym-posium on Logi
 in Computer S
ien
e (LICS 2010).
• Chapter 4 is based on the papers:� Information Flow in Intera
tive Systems [AAP10a℄ that ap-peared in the pro
eedings of the 21st International Conferen
e onCon
urren
y Theory (CONCUR 2010); 23
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tion� Quantitative Information Flow in Intera
tive Systems [AAP℄to appear in the Journal of Computer Se
urity.
• Chapter 5 is based on two 
omplementary works:� The paper On the relation between Di�erential Priva
y andQuantitative Information Flow [AACP℄ to appear in the pro-
eedings of the 38th International Colloquium on Automata, Lan-guages and Programming (ICALP 2011);� The te
hni
al report Di�erential Priva
y: on the trade-o�between Utility and Information Leakage [AAC+11℄.
• Chapter 6 is based on the paper Safe Equivalen
es for Se
urityProperties [AAPvR10℄ that appeared in the the pro
eedings of the 6thIFIP International Conferen
e on Theoreti
al Computer S
ien
e (IFIP-TCS 2010).
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Two Preliminaries
�I 
an make just su
h ones if I had tools, and I 
ould make toolsif I had tools to make them with.�Eli WhitneyIn this 
hapter we review some te
hni
al 
on
epts from the literature thatwill be used throughout this thesis.2.1 Probability spa
esIn this se
tion we re
all some 
on
epts about probability spa
es.Let Ω be a set and P(Ω) represent its powerset, i.e. the 
olle
tion of allsubsets of Ω. A σ-algebra (also 
alled σ-�eld) over Ω is a non-empty 
olle
tionof sets F ⊆ P(Ω) that is 
losed under 
omplementation and 
ountable union.For any σ-�eld F , the property Ω ∈ F holds, and also that F is 
losed under
ountable interse
tion (by De Morgan's laws).A measure on F is a fun
tion µ : F → [0,∞) su
h that1. µ(∅) = 0, and2. µ(

⋃

iCi) =
∑

i µ(Ci), where {Ci}i is a 
ountable 
olle
tion of pairwisedisjoint sets in F .A probability measure on F is a measure µ on F su
h that µ(Ω) = 1.A probability spa
e is a tuple (Ω,F , µ) where Ω is a non-empty set 
alledthe sample spa
e, F is a σ-algebra on Ω 
alled the event spa
e, and µ is aprobability measure on F . In the dis
rete 
ase, we have
∀C ∈ F . µ(C) =

∑

x∈C

µ({x})25



2. PreliminariesIn this 
ase we 
an 
onstru
t µ from a fun
tion p : Ω → [0, 1] satisfy-ing ∑x∈Ω p(x) = 1 by assigning µ({x}) = p(x). The fun
tion p is 
alled aprobability distribution over Ω.The set of all probability measures with sample spa
e Ω will be denotedby D(Ω). We will also denote by δ(x) (
alled the Dira
 measure on x or alsoa point mass) the probability distribution su
h that µ({x}) = 1.If A and B are events, i.e. elements of a σ-�eld F , then A ∩ B is also anevent. If µ(A) > 0 then we 
an de�ne the 
onditional probability p(B|A) as
p(B|A) =

µ(A ∩B)

µ(A)representing the probability of B given that A holds. Note that p(·|A) is a newprobability measure on F . For the s
ope of this thesis we are interested onlyin the dis
rete 
ase, so it is enough to use the de�nition above and make surethat we never 
ondition on an event A with zero probability.Let F ,F ′ be two σ-�elds on Ω,Ω′ respe
tively. A random variable X isa fun
tion X : Ω 7→ Ω′ that is measurable, meaning that the inverse of everyelement of F ′ belongs to F :
∀C ∈ F ′. X−1(C) ∈ FThen, given a probability measure µ on F , X indu
es a probability measure

µ′ on F ′ as
∀C ∈ F ′. µ′(C) = µ(X−1(C))If µ′ is a dis
rete probability measure then it 
an be 
onstru
ted by aprobability distribution over Ω′, 
alled probability mass fun
tion (pmf), de�nedas

P ([X = x]) = µ(X−1(x))for ea
h x ∈ Ω′. The random variable in this 
ase is 
alled dis
rete. If X,Y aredis
rete random variables then we 
an de�ne a dis
rete random valuer (X,Y )by its pmf
P ([X = x, Y = y]) = µ(X−1(x) ∩X−1(y))If X is a real-valued dis
rete random variable then its expe
ted value (orexpe
tation) is de�ned as

E(X) =
∑

i

xi P ([X = xi])A family ρ = {pv(·)}v of probability measures parametrized on v is 
alleda sto
hasti
 kernel.1.1The general de�nition of sto
hasti
 kernel is more 
ompli
ated (
fr. [TM09℄), but itredu
es to this one in the dis
rete 
ase, whi
h is what we use in this thesis.26



2.2. Probabilisti
 automataNotation: We will use 
apital letters A,B,X, Y, Z to denote random vari-ables and 
alligraphi
 letters A,B,X ,Y,Z to denote their image. With a slightabuse of notation we will use p (and p(x), p(y)) to denote either
• a probability distribution, when x, y ∈ Ω, or
• a probability measure, when x, y ∈ F are events, or
• the probability mass fun
tion P ([X = x]), P ([Y = y]) of the randomvariables X,Y respe
tively, when x ∈ X , y ∈ Y.2.2 Probabilisti
 automataLet µ : S → [0, 1] be a dis
rete probability distribution on a 
ountable set S,and let the set of all dis
rete probability distributions on S be D(S).A probabilisti
 automaton [Seg95℄ is a quadruple M = (S,L, ŝ, ϑ) where

S is a 
ountable set of states, L is a �nite set of labels or a
tions, ŝ is theinitial state, and ϑ is a transition fun
tion ϑ : S → P(D(L× S)). Here P(X)is the powerset of X. If ϑ(s) = ∅ then s is a terminal state. We write s→µfor µ ∈ ϑ(s), s ∈ S. Moreover, we write s
ℓ
→r for s, r ∈ S whenever s→µand µ(ℓ, r) > 0. A fully probabilisti
 automaton is a probabilisti
 automatonsatisfying |ϑ(s)| ≤ 1 for all states. In su
h an automaton, when ϑ(s) 6= ∅, weoverload the notation and denote by ϑ(s) the distribution outgoing from s.A path in a probabilisti
 automaton is a sequen
e σ = s0

ℓ1→ s1
ℓ2→ · · ·where si ∈ S, ℓi ∈ L and si

ℓi+1
→ si+1. A path 
an be �nite in whi
h 
ase itends with a state. A path is 
omplete if it is either in�nite, or �nite endingin a terminal state. Given a �nite path σ, last(σ) denotes its last state. Let

Pathss(M) denote the set of all paths, Paths⋆s(M) the set of all �nite paths,and CPathss(M) the set of all 
omplete paths of an automaton M , startingfrom the state s. We will omit s if s = ŝ. Paths are ordered by the pre�xrelation, whi
h we denote by ≤. The tra
e of a path is the sequen
e of a
tionsin L∗ ∪ L∞ obtained by removing the states, hen
e for the above σ we have
trace(σ) = l1l2 . . .. If L′ ⊆ L, then traceL′(σ) is the proje
tion of trace(σ) onthe elements of L′.Let M = (S,L, ŝ, ϑ) be a (fully) probabilisti
 automaton, s ∈ S a state,and let σ ∈ Paths⋆s(M) be a �nite path starting in s. The 
one generated by
σ is the set of 
omplete paths 〈σ〉 = {σ′ ∈ CPathss(M) | σ ≤ σ′}. Given afully probabilisti
 automaton M = (S,L, ŝ, ϑ) and a state s, we 
an 
al
ulatethe probability value Ps(σ) of any �nite path σ starting in s as follows:

Ps(s) = 1, and
Ps(σ

ℓ
→ s′) = Ps(σ) µ(ℓ, s

′) where last(σ)→ µ 27



2. PreliminariesLet Ωs
def
= CPathss(M) be the sample spa
e, and let Fs be the smallest

σ-algebra indu
ed by the 
ones generated by all the �nite paths of M . Then
P indu
es a unique probability measure on Fs (whi
h we will also denote by
Ps) su
h that Ps(〈σ〉) = Ps(σ) for every �nite path σ starting in s. For s = ŝwe write P instead of Pŝ.A s
heduler for a probabilisti
 automaton M is a fun
tion ζ : Paths⋆(M)→
(L×D(S)∪ {⊥}) su
h that for all �nite path σ, if ϑ(last(σ)) 6= ∅ then ζ(σ) ∈
ϑ(last(σ)), and ζ(σ) = ⊥ otherwise. Hen
e, a s
heduler ζ sele
ts one of theavailable transitions in ea
h state, and determines therefore a fully probabilisti
automaton, obtained by pruning from M the alternatives that are not 
hosenby ζ. A s
heduler is history dependent sin
e it takes into a

ount the path andnot only the 
urrent state. It may be partial, i.e. it may halt the exe
ution atany time. In this thesis, however, we will 
onsider only total s
hedulers, to bemore in line with the standard semanti
s of CCS.2.3 CCS with internal probabilisti
 
hoi
eIn this se
tion we present an extension of standard CCS ([Mil89℄) obtainedby adding internal probabilisti
 
hoi
e. The resulting 
al
ulus 
an be seen asa simpli�ed version of the probabilisti
 π-
al
ulus presented in [HP, PH℄ andit is similar to the one 
onsidered in [DPP℄. The restri
tion to CCS and tointernal 
hoi
e is suitable for the s
ope of this thesis.Let a range over a 
ountable set of 
hannel names.The syntax of CCSp is the following:

α ::= a | ā | τ pre�xes
P,Q ::= pro
esses

α.P pre�x
| P | Q parallel
| P +Q nondeterministi
 
hoi
e
|
∑

i piPi internal probabilisti
 
hoi
e
| (νa)P restri
tion
| !P repli
ation
| 0 nilwhere the pi's in the probabilisti
 
hoi
e should be non-negative and their sumshould be 1. We will also use the notation P1 +p P2 to represent a binary sum

∑

i piPi with p1 = p and p2 = 1− p.The semanti
s of a CCSp term is a probabilisti
 automaton de�ned indu
-tively on the basis of the syntax a

ording to the rules in Figure 2.1. We write
s

a
−→ µ when (s, a, µ) is a transition of the probabilisti
 automaton. Givena pro
ess Q and a measure µ, we denote by µ | Q the measure µ′ su
h that28



2.3. CCS with internal probabilisti
 
hoi
eACT
α.P

α
−→ δ(P )

RES P
α
−→ µ α 6= a, a

(νa)P
α
−→ (νa)µSUM1 P

α
−→ µ

P +Q
α
−→ µ

SUM2 Q
α
−→ µ

P +Q
α
−→ µPAR1 P

α
−→ µ

P | Q
α
−→ µ | Q

PAR2 Q
α
−→ µ

P | Q
α
−→ P | µCOM P

a
−→ δ(P ′) Q

a
−→ δ(Q′)

P | Q
τ
−→ δ(P ′ | Q′)

PROB ∑

i piPi
τ
−→

∑

i pi δ(Pi)REP1 P
α
−→ µ

!P
α
−→ µ | !P

REP2 P
a
−→ δ(P1) P

a
−→ δ(P2)

!P
τ
−→ δ(P1 | P2 | !P )Figure 2.1: The semanti
s of CCSp

µ′(P | Q) = µ(P ) for all pro
esses P and µ′(R) = 0 if R is not of the form
P | Q. Similarly (νa)µ = µ′ su
h that µ′((νa)P ) = µ(P ).A transition of the form P

a
−→ δ(P ′), i.e. a transition having for target aDira
 measure, 
orresponds to a transition of a non-probabilisti
 automaton (astandard labeled transition system). Note that ea
h rule of CCSp 
orrespondsto one rule of CCS, ex
ept for PROB. The latter models the internal prob-abilisti
 
hoi
e: a silent τ transition is available from the sum to a measure
ontaining all of its operands, with the 
orresponding probabilities.Note that in the produ
ed probabilisti
 automaton, all transitions to non-Dira
 measures are silent. This is similar to the alternating model [HJ89℄,however our 
ase is more general be
ause the silent and non-silent transitionsare not ne
essarily alternated. On the other hand, with respe
t to the simpleprobabilisti
 automata the fa
t that the probabilisti
 transitions are silentlooks like a restri
tion. It has been proved by Bandini and Segala [BS01℄,however, that the simple probabilisti
 automata and the alternating model areessentially equivalent, so, being in between, our model is equivalent as well.En
oding message passing into CCSp Sometimes it is 
onvenient tomake message passing expli
it in the notation of CCSp. Namely, we enri
hits syntax by making the pre�xes to be c(a) | c〈x〉 | τ , where c, a, x arenames, and the semanti
 rule COM is substituted by:COM' P
c〈a〉
−→ δ(P ′) Q

c(x)
−→ δ(Q′)

P | Q
τ
−→ δ(P ′ | Q′ [a/x])where P

c〈a〉
−→ δ(P ′) denotes a pro
ess that sends the name a through 
hannel29



2. Preliminaries
c and then evolves to P ′, and Q

c(x)
−→ δ(Q′) denotes a pro
ess that re
eives thename x through 
hannel c and then evolves to Q′. Here Q′ [a/x] is the pro
ess

Q′ in whi
h every o

urren
e of x is repla
e by a.The expressive power of CCSp with message passing and without it is thesame. In this thesis we will use this fa
t and 
onsider expli
it message passingas an alias for the 
orrespondent en
oding into the presentation of CCSp givenin Figure 2.1.

30



ThreeThe rationale behind the use ofinformation theory for leakage
�Why, only why?�Nadia VerttiIn this 
hapter we review the most important 
on
epts related to the informa-tion theoreti
 approa
h to quantitative information �ow. We aim at presentingthese 
on
epts in a 
ontextualized way, dis
ussing the intuition behind themand interpreting what they mean in terms of se
urity.Plan of the Chapter Se
tion 3.1 gives a brief overview on informationtheory for 
ommuni
ation. Se
tion 3.2 introdu
es the information theoreti
approa
h to information �ow. Se
tion 3.3 presents and 
ompares several dif-ferent notions based on information theory that have been used in literatureto 
hara
terize un
ertainty and leakage.3.1 Information theory and 
ommuni
ationThe study of information theory started with Claude E. Shannon's work on theproblem of 
oding messages to be transmitted through unreliable (or noisy)
hannels. A 
ommuni
ation 
hannel is a (physi
al) mean through whi
h infor-mation 
an be transmitted. The input is fed to the 
hannel, but due to noiseor any other problem that 
an o

ur during the transmission, the output of the
hannel may not re�e
t with �delity the input. It is usual to des
ribe the un-reliable behavior of the 
hannel in a probabilisti
 way. In the dis
rete (�nite)
ase, if A = {a1, a2, . . . , an} represent the possible inputs for the 
hannel, and

B = {b1, b2, . . . , bm} represent the possible outputs, the 
hannel's probabilisti
behavior 
an be represented as a 
hannel matrix Mn×m where ea
h element31



3. The rationale behind the use of information theory forleakage
Mi,j (1 ≤ i ≤ n, 1 ≤ j ≤ m) is de�ned as the probability of the 
hanneloutputting bj when the input is ai. In this way, we 
an see the input and out-put as two 
orrelated random variables linked by the 
hannel's probabilisti
behavior.A unique feature of information theory is its use of a numeri
al measure ofthe amount of information gained when the 
ontents of a message are learned.More spe
i�
ally, information theory reasons about the degree of un
ertaintyof a 
ertain random variable, and the amount of information that it 
an revealabout another random variable. Among the tools provided by informationtheory there are 
on
epts as entropy, 
onditional entropy, mutual informationand 
hannel 
apa
ity, whi
h will be reviewed in Se
tion 3.3.1. We 
onsiderhere only the dis
rete 
ase, sin
e this is enough for the s
ope of this thesis.
3.2 Information theory and information �owSeveral works in the literature use an information theoreti
 approa
h to modelthe problem of information �ow and de�ne the leakage in a quantitative way, asfor example [ZB05, CHM05, Mal07, MC08, MNS03, MNCM03, CPP08a℄. Theidea is to model the 
omputational system as a information theoreti
 
hannel.The input represents the se
ret, the output represents the observable, and the
orrelation between the input and output (mutual information) represents theinformation leakage. The worst 
ase leakage 
orresponds then to the 
apa
ityof the 
hannel, whi
h is by de�nition the maximum mutual information that
an be obtained by varying the input distribution.In the works mentioned above, the notion of mutual information is basedon Shannon entropy, whi
h (be
ause of its mathemati
al properties) is themost established measure of un
ertainty. From the se
urity point of view, thismeasure 
orresponds to a parti
ular model of atta
k and a parti
ular way ofestimating the se
urity threat (vulnerability of the se
ret). Other notions havebeen 
onsidered, and argued to be more appropriate for se
urity in 
ertain s
e-narios. These in
lude: min-entropy [R�61, Smi09℄, Bayes risk [CT91, CPP08b℄,guessing entropy [Mas94℄, and marginal guesswork [Pli00℄. In Se
tion 3.3 wewill dis
uss their meaning and show how they relate (or do not relate) to ea
hother and to Shannon entropy.Whatever de�nition of un
ertainty (i.e. vulnerability) we want to adopt,the notion of leakage is inherent to the system and 
an be expressed in auniform way as the di�eren
e between the initial un
ertainty, i.e. the degreeof ignoran
e about the se
ret before we run the system, and the remainingun
ertainty, i.e. the degree of ignoran
e about the se
ret after we run thesystem and observe its out
ome. Following the prin
iple advo
ated by Smith32



3.2. Information theory and information �ow[Smi09℄, and by many others:information leakage = initial uncertainty
−remaining uncertainty

(3.1)In (3.1), the initial un
ertainty depends solely on the input distribution,aka a priori distribution or prior. Intuitively, the more uniform it is, theless we know about the se
ret (in the probabilisti
 sense). After we run thesystem, if there is a probabilisti
 
orrelation between input and output, thenthe observation of the output should in
rease our knowledge of the se
ret. Thisis determined by the fa
t that the distribution on the input 
hanges: in fa
t we
an update the probability of ea
h input with the 
orresponding 
onditionalprobability of the same input, given the output. The new distribution is 
alleda posteriori distribution. In 
ase input and output are independent, thenthe a priori and the a posteriori distributions 
oin
ide and the knowledgeshould remain the same. We will use the attributes �a priori� (or �prior�)and �a posteriori� to refer to before and after the observation of the output,respe
tively.The above intuitions should be re�e
ted by any reasonable notion of un-
ertainty: it should be higher on more uniform distributions, and it shouldde
rease or remain equal with the observation of related events.If the un
ertainty is expressed in terms of Shannon entropy, then the initialun
ertainty is the entropy of the input, the remaining un
ertainty is the 
ondi-tional entropy of the input given the output, and (3.1) mat
hes exa
tly the de�-nition of mutual information. This justi�es the notion of leakage adopted in theworks mentioned before ([ZB05, CHM05, Mal07, MC08, MNS03, MNCM03,CPP08a℄).The analogy between information �ow in a system and a (simple) 
hannelworks well when:(i) there is no nondeterminism, i.e. either the system is deterministi
, orpurely probabilisti
; and(ii) there is a pre
ise temporal relation between se
rets and observables in the
omputations; namely, the value of the se
ret is 
hosen at the beginningof the 
omputation, and the 
omputation of the system produ
es anobservable out
ome with a probability that depends solely on the 
hoseninput and on the system. Furthermore, ea
h new run of the system isindependent from the previous ones.Restri
tion (i) implies that for ea
h se
ret there is exa
tly one 
ondi-tional probability distribution on the observables, where the 
ondition is these
ret value. Restri
tion (ii) ensures that this 
onditional distribution de-pends uniquely on the system (not on the input distribution). These 
ondi-tional probabilities 
onstitute the the 
hannel matrix. Note that in a (basi
)33



3. The rationale behind the use of information theory forleakageinformation-theoreti
 
hannel the matrix must be invariant with respe
t to theinput distribution, whi
h is exa
tly what 
ondition (ii) guarantees.If a system is deterministi
, then under the same input ea
h run produ
esalways the same output, with probability 1. Therefore the matrix 
ontains only
0's and 1's. Yet the problem of inferring the se
ret is interesting, be
ause thesame output may 
orrespond to di�erent inputs. If the system is probabilisti
,i.e. it uses some randomized me
hanisms, then the matrix usually 
ontainsprobabilities di�erent from 0 and 1.Unfortunately, usually 
onditions (i) and (ii) are too restri
tive for real-lifesystems:
• Spe
i�
ations typi
ally need to use nondeterminism in order to abstra
tfrom implementation details. This is parti
ularly 
ompelling in the 
aseof 
on
urrent and distributed systems: The order in whi
h the various
omponents get exe
uted and their intera
tions depend on s
hedulingpoli
ies that may di�er from implementation to implementation. Fur-thermore, even if the s
heduling poli
y is �xed, there are run time 
ir-
umstan
es that may in�uen
e the relative speed of the pro
esses. Non-determinism is, in pra
ti
e, an unavoidable aspe
t of 
on
urren
y.
• Se
rets and observables often alternate and intera
t during an exe
u-tion. In parti
ular, the 
hoi
e of a new se
ret may depend on previousobservables. Furthermore, new exe
ution of the systems may depend onprevious ones. This may be due to the way the system works, or tothe presen
e of an a
tive adversary that may use the knowledge derivedfrom previous observations to try to tamper with the me
hanisms of thesystem, with the purpose of in
reasing the leakage. Examples of su
hsystems, that we 
all here intera
tive systems (where intera
tion refersto the interplay between se
rets and observables), 
an be found in theareas of game theory, au
tion proto
ols, web servers, GUI appli
ations,et
.In this thesis we 
onsider the 
hallenges of extending the information-theoreti
 approa
h to 
ases where these 
onditions are lifted. More spe
i�
ally,Chapter 4 
on
erns the suppression of 
ondition (ii), and Chapter 6 deals withthe suppression of 
ondition (i).3.3 Un
ertainty and leakageIn this se
tion we re
all various de�nitions of un
ertainty based on informationtheory proposed in literature, and we dis
uss the relation with se
urity atta
ksand the way of measuring their su

ess. In general we 
onsider the kind ofthreats that in the model of Köpf and Basin [KB07a℄ are 
alled brute-for
e34



3.3. Un
ertainty and leakageguessing atta
ks, whi
h 
an be summarized as follows: The goal of the adver-sary is to determine the value of a random variable. He 
an make a seriesof queries to an ora
le. Ea
h query must have a yes/no answer. In generalthe adversary is adaptive, i.e. he 
an 
hoose the next query depending on theanswer to the previous ones. We assume that the adversary knows the proba-bility distribution. In this se
tion, when we talk about the meaning in se
urityof a parti
ular measure of un
ertainty, we refer to the work in [KB07a℄.In the following, A,B denote two dis
rete random variables with �nitelymany values A = {a1, . . . , an}, B = {b1, . . . , bm}, and probability distributions
pA(·), pB(·), respe
tively. We will use A∧B to represent the random variablewith 
arrier A×B and joint probability distribution pA∧B(a, b) = pA(a) · p(b |
A = a), while A · B will denote the random variable with 
arrier A × B andprobability distribution de�ned as produ
t, i.e. pA·B(a, b) = pA(a) · pB(b).Clearly, if A and B are independent, we have A ∧ B = A · B. We shall omitthe subs
ripts on the probabilities when they are 
lear from the 
ontext. Inreferen
e to a 
hannel, in general A will denote the input (se
ret), and B theoutput (observable).3.3.1 Shannon entropyThe (Shannon) entropy of A is de�ned as

H(A) = −
∑

A

p(a) log p(a)The entropy measures the un
ertainty of A. It takes its minimum value
H(A) = 0 when pA(·) is a point mass (also 
alled delta of Dira
). The maxi-mum value H(A) = log |A| is obtained when pA(·) is the uniform distribution.Usually the base of the logarithm is set to be 2 and the entropy is measuredin bits. Roughly speaking, m bits of entropy means that we have 2m values to
hoose from, assuming a uniform distribution.The 
onditional entropy of A given B is de�ned as

H(A | B) =
∑

b∈B

p(b) H(A | B = b) (3.2)where
H(A | B = b) = −

∑

a∈A

p(a|b) log p(a|b)The 
onditional entropy measures the un
ertainty of A when B is known. Itis well-known that 0 ≤ H(A|B) ≤ H(A). The minimum value, 0, is obtainedwhen A is 
ompletely determined by B. The maximum value H(A) is obtainedwhen A and B are independent.The mutual information between A and B is de�ned as
I(A;B) = H(A)−H(A|B) (3.3)35



3. The rationale behind the use of information theory forleakageThe mutual information measures the amount of information about A thatwe gain by observing B. It 
an be shown that I(A;B) = I(B;A) and 0 ≤
I(A;B) ≤ H(A). If C is a third random variable, the 
onditional mutualinformation between A and B given C is de�ned as

I(A;B|C) = H(A|C)−H(A|B,C)The (
onditional) entropy and mutual information respe
t the 
hain rules.Namely, given the random variables A1, A2, . . . , Ak, B and C, we have:
H(A1, A2, . . . , Ak|C) =

k∑

i=1

H(Ai|A1, . . . , Ai−1, C)

I(A1, A2, . . . , Ak;B|C) =

k∑

i=1

I(Ai;B|A1, . . . , Ai−1, C) (3.4)A dis
rete memoryless 
hannel is a tuple (A,B, p(·|·)), where A,B are thesets of input and output symbols, respe
tively, and p(b|a) is the probability ofobserving the output symbol b when the input symbol is a. These 
onditionalprobabilities 
onstitute the 
hannel matrix. An input distribution pA(·) over
A together with the 
hannel determine the joint distribution p(a, b) = p(a|b) ·
p(a) and 
onsequently I(A;B). The maximum I(A;B) over all possible inputdistributions is the 
hannel's 
apa
ity C:

C = max
pA(·)

I(A;B)The famous Channel Coding Theorem by Shannon relates the 
apa
ity ofthe 
hannel to its maximum transmission rate. In brief, the 
hannel 
apa
ityis a tight upper bound for the maximum rate by whi
h information 
an betransmitted using the 
hannel. If the number of times the 
hannel is used islarge enough, there is an en
oding that a
hieves the optimal transmission rate,i.e. the 
hannel 
apa
ity, with a negligible probability of error.Meaning in se
urity To explain what H(A) represents from the se
uritypoint of view, 
onsider a partition {Ai}i∈I of A. The adversary is allowed toask questions of the form �does A ∈ Ai?� a

ording to some strategy. Let
n(a) be the number of questions that are needed to determine the value of a,when A = a. Then H(A) represents the lower bound to the expe
ted valueof n(·), with respe
t to all possible partitions and strategies of the adversary[Pli00, KB07a℄.3.3.2 Min-entropyIn [R�61℄, Rényi introdu
ed a one-parameter family of entropy measures, in-tended as a generalization of Shannon entropy. The Rényi entropy of order α36



3.3. Un
ertainty and leakage(α > 0, α 6= 1) of a random variable A is de�ned as
Hα(A) =

1

1− α
log

∑

a∈A

p(a)αRényi's motivations were of axiomati
 nature: Shannon entropy satis�esfour axioms, namely symmetry, 
ontinuity, value 1 on the Bernoulli uniformdistribution, and the 
hain rule1:
H(A ∧B) = H(A) +H(B |A) (3.5)The entropy of the joint probability, H(A∧B), is more 
ommonly denotedby H(A,B). We will use the latter notation in the following.Shannon entropy is also the only fun
tion that satis�es those axioms. Ifwe repla
e, however, (3.5) with a weaker property representing the additivityof entropy for independent distributions:
H(A ·B) = H(A) +H(B)then there are more fun
tions satisfying the axioms, among whi
h all those ofthe Rényi's family.Shannon entropy is obtained by taking the limit of Hα as α approa
hes 1.In fa
t we 
an easily prove, using l'H�pital's rule, that

H1(A)
def
= lim

α→1
Hα(A) = −

∑

a∈A

p(a) log p(a)We are parti
ularly interested in the limit of Hα as α approa
hes ∞. Thisis 
alled min-entropy. It 
an be proven that
H∞(A)

def
= lim

α→∞
Hα(A) = − log max

a∈A
p(a)Rényi 
onsidered also the α-generalization of the Kullba
k-Liebler diver-gen
e, whi
h is de�ned as (assuming that p and q are distributions on the sameset X ):

DKL(p ‖ q) =
∑

x∈X

p(x) log
p(x)

q(x)Rényi's α-generalization is:
Dα(p ‖ q) =

1

1− α
log

∑

x∈X

p(x)α q(x)α−11The original axiom, 
alled the grouping axiom, does not mention the 
onditional en-tropy. It 
orresponds, however, to the 
hain rule if the 
onditional entropy is de�ned as in(3.2). 37



3. The rationale behind the use of information theory forleakageThe standard 
ase, i.e. the Kullba
k-Liebler divergen
e, is again obtainedby taking the limit of Dα as α→ 1.The interest of the above for our purposes lies on the fa
t that Shannon mu-tual information 
an equivalently be de�ned in terms of the Kullba
k-Lieblerdivergen
e (see for instan
e [CT91℄):
I(A;B) = DKL(A ∧B ‖ A ·B)Therefore, it seems natural to de�ne the α-generalization of the mutualinformation as:
I∗α(A;B) = Dα(A ∧B ‖ A · B)Other α-generalizations of the mutual information, based on the same idea,are explored in [Csi95℄.As α → ∞, the above de�nition gives the following min-version of themutual information:

I∗∞(A;B)
def
= lim

α→∞
Iα(A;B) = log max

a,b

p(a, b)

p(a) p(b)
(3.6)Another natural way to generalize I(A;B) would be to repla
e H by Hαin De�nition 3.3. Rényi did not de�ne, however, the α-generalization of the
onditional entropy, and there is no agreement on what it should be.Various resear
hers, in
luding Ca
hin [Ca
97℄, have 
onsidered the follow-ing de�nition, based on (3.2):

HCachin
α (A | B) =

∑

b∈B

p(b) Hα(A | B = b)whi
h, as α→∞, be
omes
HCachin

∞ (A | B) = −
∑

b∈B

p(b) log max
a∈A

p(a | b) (3.7)An alternative proposal for H∞(· | ·) 
ame from Smith [Smi09℄2:
HSmith

∞ (A | B) = − log
∑

b∈B maxa∈A p(a, b) (3.8)Using (3.7) and 3.8), and the analogue of (3.3) we 
an de�ne ICachin
∞ and

ISmith
∞

3.2The same formulation had been already used by Dodis et al. in [DORS04℄, and Smithproposed it independently. Sin
e it is Smith's work on the subje
t that motivates theapproa
h used in this thesis, we opt to refer to this formulation as Smith's.3The notation ISmith
∞ is ours. Smith himself opts for not adopting it, sin
e ISmith

∞ is notsymmetri
.38



3.3. Un
ertainty and leakageMeaning in se
urity The min-entropy 
an be related to a model of adver-sary who is allowed to ask exa
tly one question, whi
h must be of the form �is
A = a?� (one-try atta
ks). More pre
isely, the min-entropy H∞(A) representsthe (logarithm of the inverse of the) probability of su

ess for this kind of at-ta
ks and with the best strategy, whi
h 
onsists, of 
ourse, in 
hoosing the awith the maximum probability.As for H∞(A | B) and I∞(A;B), the most interesting versions in termsof se
urity seem to be those of Smith. In fa
t, in this thesis we adopt hisapproa
h to information leakage, and we will, from now on, use the followingnotation:
• H∞(A | B) stands for HSmith

∞ (A | B) and is referred to as 
onditionalmin-entropy ;
• I∞(A;B) stands for ISmith

∞ (A;B) and is referred to as min-entropy leak-age.In fa
t, the 
onditional min-entropy H∞(A | B) represents the inverseof the (expe
ted value of the) probability that the same kind of adversarysu

eeds in guessing the value of A a posteriori, i.e. after observing the resultof B. The 
omplement of this probability is also known as probability of erroror Bayes risk. Sin
e in general B and A are 
orrelated, observing B in
reasesthe probability of su

ess. In fa
t, we 
an prove formally that H∞(A | B) ≤
H∞(A), with equality if A and B are independent. The min-entropy leakage
I∞(A;B) 
orresponds to the ratio between the probabilities of su

ess a prioriand a posteriori, whi
h is a natural notion of leakage. Here I∞(A;B) is in theformat of (3.1), but the di�eren
e be
omes a ratio due to the presen
e of thelogarithms. Note that I∞(A;B) ≥ 0, whi
h seems desirable for a good notionof leakage. It has been proven in [BCP09℄ that C∞ is obtained at the uniformdistribution, and that it is equal to the sum of the maxima of ea
h 
olumn inthe 
hannel matrix, i.e. C∞ =

∑

b∈B maxa∈A p(b | a).The de�nition of I∗∞(A;B) in (3.6) has also an interpretation in se
urity:it represents the maximum gain in the probability of su

ess, i.e. the max-imum ratio between the a posteriori and the a priori probability. Note thatalso I∗∞(A;B) is always non-negative and it is 0 if and only if A and B are in-dependent. More in general, DKL(p ‖ q) and its α-extension Dα(p ‖ q) shouldrepresent the �ine�
ien
y� of an adversary who bases its strategy on the dis-tribution q, when in fa
t the real distribution is p. Hen
e I∗α(A;B) de�ned as
Dα(A ∧ B ‖ A · B) should represent the gain of the adversary in revising hisstrategy a

ording to the knowledge of the 
orrelation between A and B.Con
erning HCachin

α and ICachin
α , they have some ni
e properties. For in-stan
e they enjoy weak versions of the 
hain rule (3.5). More pre
isely, the�=� in (3.5) be
omes �≥� for α < 1, and �≤� for α > 1. There is no generalrelation between HCachin

∞ (A | B) and H∞(A), and in parti
ular ICachin
∞ is notguaranteed to be non-negative. 39



3. The rationale behind the use of information theory forleakage3.3.3 Guessing entropyThe notion of guessing entropy was introdu
ed by Massey in [Mas94℄. Letus assume, for simpli
ity, that the elements of A are ordered by de
reasingprobabilities, i.e. if 1 ≤ i < j ≤ n then p(ai) ≥ p(aj). Then the guessingentropy is de�ned as follows:
HG(A) =

∑

1≤i≤|A|

i p(ai)Massey did not de�ne the notion of 
onditional guessing entropy. In someworks, like [Ca
97, KB07a℄, it is de�ned analogously to (3.2):
HG(A | B) =

∑

b∈B

p(b) HG(A | B = b)Meaning in se
urity Guessing entropy represents an adversary who is al-lowed to ask repeatedly questions of the form �is A = a?�. More pre
isely,
HG(A) represents the expe
ted number of questions that the adversary needsto ask to determine the value of A, assuming that he follows the best strategy,whi
h 
onsists, of 
ourse, in 
hoosing the a's in order of de
reasing probability.

HG(A | B) represents the expe
ted number of questions a posteriori, i.e.after observing the value of B and reordering the queries a

ording to theupdated probabilities (i.e. the queries will be 
hosen in order of de
reasing aposteriori probabilities).Also in this 
ase, HG(A | B) is not ne
essarily smaller than or equal to
HG(A), so the 
orresponding notion of mutual information is not guaranteedto be non-negative4.3.3.4 Marginal guessworkThe marginal guesswork is a variant of guessing entropy that was proposedby Pliam [Pli00℄. It is parametri
 to a number η > 0, and is de�ned asfollows. Again, we assume that the elements of A are ordered by de
reasingprobabilities.

Hη(A) = min{j |
∑

1≤i≤j

p(ai) > η}Pliam did not de�ne the 
onditional version of marginal guesswork, but in[KB07a℄ it is de�ned following (3.2):
Hη(A | B) =

∑

b∈B

p(b) Hη(A | B = b)4This problem is inherent to the probabilisti
 
ase, and therefore it does not o

ur in[KB07a℄, sin
e that work 
onsiders only deterministi
 systems.40



3.3. Un
ertainty and leakageMeaning in se
urity Consider again an adversary who is allowed to askrepeatedly questions of the form �is A = a?�. Hη(A) represents the minimumnumber of questions that the adversary needs to ask to determine the value of
A with probability at least η.

Hη(A | B) represents the same notion, but using the a posteriori probabil-ities. Again, it is not ne
essarily the 
ase that Hη(A | B) ≤ Hη(A).3.3.5 Comparison and dis
ussionThe various notions of entropy dis
ussed in this se
tion have been 
arefully
ompared with Shannon entropy, to 
on
lude that in general there is no tightrelation. Fano's inequality gives a lower bound to the Bayes risk in terms of(
onditional) Shannon entropy, and Rényi [R�60℄, Hellman-Raviv [HR07℄, andSanthi-Vardi [SV06℄ give upper bounds as well, but all these are rather weak.Smith has shown in [Smi09℄ that the orderings indu
ed on 
hannels by theBayes risk and by Shannon entropy are in general unrelated.Massey has shown that the exponential of the Shannon entropy is a lowerbound for the guessing entropy, and that, in 
ase of a geometri
 distribution,the bound is tight. Massey has also shown that in the general 
ase the Shannonentropy 
an be arbitrarily 
lose to 0 while the guessing entropy is 
onstant[Mas94℄.As for the marginal guesswork. Pliam has shown that it is essentiallyunrelated with Shannon entropy [Pli00℄.In this thesis we fo
us on the 
on
epts of leakage based on Shannon entropy(Chapter 4) and min-entropy (Chapter 5).
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FourInformation �ow in intera
tive systems
�True intera
tivity is not about 
li
king on i
ons or downloading �les,it's about en
ouraging 
ommuni
ation.�Edwin S
hlossbergThe key idea behind the information-theoreti
 approa
hes to information �owis to interpret the system as an information-theoreti
 
hannel, where the se
retsare the input and the observables are the output. The 
hannel matrix 
onsistsof the 
onditional probabilities p(b | a), de�ned as the measure of the exe
utionsprodu
ing the observable b, relative to those whi
h 
ontain the se
ret a. Theleakage is represented by the mutual information, and the worst-
ase leakageby the 
apa
ity of the 
hannel.In information theory, however, there are several di�erent models of 
han-nels. So far the works in the literature about information theory applied toinformation �ow have fo
used on the simplest kind of 
hannels: dis
rete memo-ryless 
hannels where the absen
e of feedba
k is impli
itly assumed. This 
las-si
al approa
h has been su

essfully used in s
enarios where the se
ret valueis assumed to be 
hosen at the beginning of the 
omputation. In this 
hapter,however, we are interested in the more general s
enario in whi
h se
rets 
anbe 
hosen at any point. More pre
isely, we 
onsider intera
tive systems, i.e.systems in whi
h the generation of se
rets and the o

urren
e of observables
an alternate during the 
omputation and in�uen
e ea
h other. Examples ofintera
tive systems in
lude au
tion proto
ols like [Vi
61, Sub98, SA99℄. Someof these have be
ome very popular thanks to their integration in Internet-basedele
troni
 
ommer
e platforms [Eba, Ebi, Mer℄. Other examples of intera
tiveprograms in
lude web servers, GUI appli
ations, and 
ommand-line programs[BPS+09℄.Unfortunately, the information-theoreti
 approa
h whi
h interprets inter-a
tive systems as 
lassi
al 
hannels is not valid. More spe
i�
ally, in su
hsystems the 
hannel matrix is not invariant with relation to the input distri-43



4. Information flow in intera
tive systemsbution, so the 
hannel 
apa
ity 
annot be 
al
ulated in the traditional way.Therefore, the notion of maximum leakage as standard 
apa
ity is also 
om-promised.The goal of this 
hapter is to extend the 
lassi
al information-theoreti
approa
h to information �ow to the more 
ompli
ated s
enario of intera
tivesystems.Contribution The main 
ontributions of this 
hapter 
an be summarizedas follows.
• We show that by 
onsidering the ri
her 
hannels that support memoryand feedba
k it is possible to retrieve the 
orresponden
e between sys-tems and 
hannels. We prove that there is a 
omplete 
orresponden
ebetween intera
tive systems and 
hannels with memory and feedba
k,and we show how to model the latter as the former.
• We propose the use of dire
ted information, as opposed to mutual in-formation, to represent leakage in intera
tive systems. Re
ent results ininformation theory [TM09℄ have shown that, in 
hannels with memoryand feedba
k, the transmission rate does not 
orrespond to the maxi-mum mutual information (the standard notion of 
apa
ity), but rather tothe maximum normalized dire
ted information, a 
on
ept introdu
ed byMassey [Mas90℄. We argue that in intera
tive 
hannels the real leakage isdue to the dire
ted information from se
rets to observables, whereas thedire
ted information from observables to se
rets (
orresponding to feed-ba
k) is a 
hara
teristi
 of the system itself and should not be 
ountedas leakage.
• We show that our model is a proper extension of the 
lassi
al one, i.e.in the absen
e of intera
tivity the model of 
hannels with memory andfeedba
k 
ollapses into the model of memoryless 
hannels without feed-ba
k. Moreover, in that 
ase also the 
on
epts of mutual information anddire
ted information from input to output 
oin
ide, the same for the 
on-
epts of 
apa
ity and dire
ted 
apa
ity. We argue that in the 
lassi
alapproa
h mutual information is a good measure of leakage exa
tly be-
ause of this property: in the absen
e of feedba
k mutual informationand dire
ted information from input to output are the same.
• We show that the 
apa
ity of the 
hannels asso
iated to intera
tive sys-tems is a 
ontinuous fun
tion with respe
t to a pseudometri
 based onthe Kantorovi
h metri
. The 
ontinuity of the 
hannel 
apa
ity was alsoproved in [DJGP02℄ for simple 
hannels, but the proof does not adaptto the 
ase of 
hannels with memory and feedba
k and we had to devisea di�erent te
hnique.Plan of the Chapter This 
hapter is organized as follows. In Se
tion 4.1we introdu
e the 
on
ept of intera
tive systems and we show why 
hannels44



4.1. Intera
tive systemswithout memory and feedba
k are inadequate in this s
enario. In Se
tion 4.2we review the notion of 
hannels with memory and feedba
k, whi
h is the 
oreof the model we propose. We dis
uss the 
on
ept of dire
ted information andalso the 
on
ept of 
apa
ity in the presen
e of feedba
k. Se
tion 4.3 
ontainsthe main 
ontribution in this 
hapter: We explain how Intera
tive Informa-tion Hiding Systems (IIHSs) 
an be modeled using 
hannels with memory andfeedba
k. In parti
ular we show that for any IIHS there is always a 
hannelthat simulates its probabilisti
 behavior. In Se
tion 4.4 we dis
uss our no-tion of adversary and we de�ne the quanti�
ation of information leakage asthe 
hannel's dire
ted information from input to output, or as the dire
ted
apa
ity, depending on whether the input distribution is �xed or not. In Se
-tion 4.5 we apply our model to an example, the Co
aine Au
tion proto
ol. InSe
tion 4.6 we propose a pseudometri
 stru
ture on IIHSs based on the Kan-torovi
h metri
. We also show that the 
apa
ity of the 
hannels asso
iated tointera
tive systems is a 
ontinuous fun
tion with respe
t to this pseudometri
.In Se
tion 4.7 we present some related work, and in Se
tion 4.8 we review anddis
uss the main results of the 
hapter, and 
onsider future work.4.1 Intera
tive systemsIn this se
tion we exemplify the problems that arise when we try to applythe 
lassi
al information-theoreti
 approa
h to intera
tive systems. In orderto derive an information-theoreti
 
hannel, at a �rst glan
e it would seemnatural to de�ne the 
hannel matrix by using the de�nition of p(b | a) in termsof the joint and marginal probabilities p(a, b) and p(b). Namely, the entry
p(b | a) would be de�ned as the measure of the tra
es with (se
ret, observable)-proje
tion (a, b), divided by the measure of the tra
es with se
ret proje
tion a.An approa
h of this kind was proposed in [DJGP02℄. In the intera
tive 
ase,however, this 
onstru
tion does not really produ
e an information-theoreti

hannel. In fa
t, by de�nition a 
hannel should be invariant with respe
t tothe input distribution, and this is not the 
ase here, as shown by the followingexample.Example 1. Figure 4.1 represents a web-based intera
tion between one sellerand two possible buyers, ri
h and poor. The seller 
an o�er two di�erentprodu
ts, 
heap and expensive, with given probabilities. On
e the produ
t iso�ered, ea
h buyer may try to buy it, with a 
ertain probability. For simpli
itywe assume that the buyers' o�ers are mutually ex
lusive. We assume that theo�ers are observables, in the sense that they are made publi
 on the website,while the identity of the buyer that a
tually buys the produ
t should be keptse
ret from an external observer. The symbols r, q1, q2, r, q1, q2 representprobabilities, with the 
onvention that r = 1 − r (and the same for the pairs
q1, q1 and q2, q2). 45



4. Information flow in intera
tive systems
cheap expensive

poor rich
poor rich

r r

q1 q1 q2 q2Figure 4.1: Intera
tive system of Example 1Following [DJGP02℄ we 
an 
ompute the 
onditional probabilities as p(b|a) =
p(a,b)
p(a) , thus obtaining the matrix in Table 4.1. The matrix however is not in-variant with respe
t to the input distribution. For instan
e for r = r = 1

2 ,
q1 = 2

3 , and q2 = 1
3 we obtain the matrix in Table 4.2(a). If we 
hange theinput distribution, for instan
e by 
hanging the value of q2 to be 1

6 , also thematrix 
hanges. We obtain, indeed, the new matrix illustrated in Table 4.2(b).
heap expensivepoor rq1
rq1+rq2

rq2
rq1+rq2ri
h rq1

rq1+rq2

rq2
rq1+rq2Table 4.1: Channel matrix for Example 1Consequently, when the se
rets o

ur after the observables and depend onthem, we 
annot 
onsider the 
onditional probabilities (of the observables giventhe se
rets) as representing a 
lassi
al 
hannel from se
rets to observables, andwe 
annot apply the standard information-theoreti
 
on
epts. In parti
ular,we 
annot use �the 
apa
ity of the matrix� (de�ned by 
onsidering the matrixas a 
hannel matrix, and taking the maximum mutual information over allpossible inputs) be
ause in general the maximum is given by a distributiondi�erent from the one that has originated the matrix, hen
e the result wouldbe unsound.The �rst 
ontribution of this 
hapter is to 
onsider an extension of thetheory of 
hannels whi
h makes the information-theoreti
 approa
h appli
ablealso in the 
ase of intera
tive systems. A ri
her notion of 
hannels, known ininformation theory as 
hannels with memory and feedba
k, serves our purposes.The dependen
e of inputs on previous outputs 
orresponds to feedba
k, andthe dependen
e of outputs on previous inputs and outputs 
orresponds tomemory. Re
ent results in information theory [TM09℄ have shown that, in su
h
hannels, the transmission rate does not 
orrespond to the maximum mutualinformation (the standard notion of 
apa
ity), but rather to the maximumnormalized dire
ted information, a 
on
ept introdu
ed by Massey [Mas90℄.We propose to adopt this latter notion to represent leakage.46



4.1. Intera
tive systems
cheap expensive Input distr.

poor 2
3

1
3 p(poor) = 1

2

rich 1
3

2
3 p(rich) = 1

2(a) r = 1
2
, q1 = 2

3
, ρ = 1

2
, q2 = 1

3

cheap expensive Input distr.
poor 4

5
1
5 p()poor = 5

12

rich 2
7

5
7 p(rich) = 7

12(b) r = 1
2
, q1 = 2

3
, ρ = 1

4
, q2 = 1

6Table 4.2: Two di�erent 
hannel matri
es indu
ed by two di�erent input dis-tributions for Example 1Our model of atta
ker is the intera
tive version of the atta
ker asso
iatedto Shannon entropy in the 
lassi�
ation of Köpf and Basin [KB07b℄, dis
ussedin Chapter 3. In the 
ase of a standard single-use 
hannel, the invulnerabilitydegree of the se
ret before the atta
ker observes the output is the entropy of theinput, determined by its a priori distribution. The invulnerability degree afterthe atta
ker observes the output is the 
onditional entropy of the input giventhe output, determined by its a posteriori distribution. The latter is alwayssmaller than or equal to the �rst. The di�eren
e between these invulnerabilitydegrees 
orresponds to the mutual information, and represents the leakage ofthe system. In our intera
tive framework we 
onsider the same s
enario, butiterated. At ea
h time step, we 
onsider the input sequen
e so far; and thein
rease of its vulnerability 
aused by the observation of the new output isgiven by the 
ontribution of the present step to the leakage. The sum of allthese 
ontributions represents the total leakage and, as we will see, 
orrespondsto Massey's dire
ted information. We will 
ome ba
k to the model of atta
kerin Se
tion 4.4, and dis
uss also a variant of this interpretation.A se
ond 
ontribution of our work is the proof that the 
hannel 
apa
ityis a 
ontinuous fun
tion of a pseudometri
 on intera
tive systems based onthe Kantorovi
h metri
. The reason why we are interested in the 
ontinuityof the 
apa
ity is for 
omputability purposes. Given a fun
tion f from a(pseudo)metri
 spa
e X to a (pseudo)metri
 spa
e Y the 
ontinuity of f meansthat, given a sequen
e of obje
ts x1, x2, . . . ∈ X 
onverging to x ∈ X , the series
f(x1), f(x2), . . . ∈ Y 
onverges to f(x) ∈ Y. Hen
e f(x) 
an be approximatedby the obje
ts f(x1), f(x2), . . .. The typi
al use of this property is in the
ase of exe
ution trees generated by programs 
ontaining loops. Generallythe automaton expressing the semanti
s of the program 
an be seen as the(metri
) limit of the sequen
e of trees generated by unfolding the loop to an47



4. Information flow in intera
tive systemsin
reasingly deeper level. The 
ontinuity of the 
apa
ity means that we 
anapproximate the real 
apa
ity by the 
apa
ities of these trees.4.2 Dis
rete 
hannels with memory and feedba
kIn this se
tion we present the notion of 
hannel with memory and feedba
k. Weassume a s
enario in whi
h the 
hannel is used repeatedly, in a �nite temporalsequen
e of steps 1, . . . , T . Intuitively, memory means that the output at time
t(1 ≤ t ≤ T ) depends on the input and output histories, i.e. on the inputs upto time t, and on the output up to time t− 1. Feedba
k means that the inputat time t depends on the outputs up to time t− 1.We adopt the following notation.Convention 2. Given sets of symbols (alphabets) A = {a1, . . . , bn}, B =
{b1, . . . , bn}, we use a Greek letter (α, β, . . . ) to denote a sequen
e of symbolsordered in time. Given a sequen
e α = ai1ai2 . . . aim, the notation αt representsthe symbol at time t, i.e. ait, while αt represents the sequen
e αi1

αi2
. . . αit

.For instan
e, in the sequen
e α = a3a7a5, we have α2 = a7 and α2 = a3a7.Analogously, if X is a random variable, then Xt denotes the sequen
e of t
onse
utive instan
es X1, . . . ,Xt of X.We now de�ne formally the 
on
epts of memory and feedba
k. Consider a
hannel from input A to output B. The 
hannel behavior after T uses 
an befully des
ribed by the joint distribution of AT×BT , namely by the probabilities
p(αT , βT ). Using the 
hain rule, we 
an de
ompose these probabilities asfollows:

p(αT , βT ) =
T∏

t=1

p(αt|α
t−1, βt−1)p(βt|α

t, βt−1) (4.1)De�nition 3. We say that a 
hannel has feedba
k if, in general,
p(αt|α

t−1, βt−1) 6= p(αt|α
t−1), i.e. the probability of αt depends not only on

αt−1, but also on βt−1. Analogously, we say that the 
hannel has memory if,in general, p(βt|αt, βt−1) 6= p(βt|αt), i.e. the probability of βt depends on αtand βt−1.Note that in the opposite 
ase, i.e. when p(αt|α
t−1, βt−1) 
oin
ides with

p(αt|α
t−1) and p(βt|α

t, βt−1) 
oin
ides with p(βt|αt), we have a 
lassi
al 
han-nel (memoryless, and without feedba
k), in whi
h ea
h use is independent fromthe previous ones. The only possible dependen
y on the history is the one of
at on at−1. This is be
ause A1, . . . , AT are in general 
orrelated, due to thefa
t that they are produ
ed by an en
oding fun
tion. Note that in absen
e of48



4.2. Dis
rete 
hannels with memory and feedba
kmemory and feedba
k (4.1) redu
es to:
p(αT , βT ) =

T∏

t=1

p(αt|α
t−1) p(βt|αt)

= p(αT )

T∏

t=1

p(βt|αt) (by the 
hain rule) (4.2)from whi
h we 
an derive the standard formula for a 
lassi
al 
hannel after Tuses.
p(βT |αT ) =

p(αT , βT )

p(αT )

=
T∏

t=1

p(βt|αt) (by (4.2))So far we have given a very abstra
t des
ription of a 
hannel with memoryand feedba
k. We now dis
uss a more 
on
rete notion following the presen-tation of [TM09℄. Su
h a 
hannel, represented in Figure 4.2, 
onsists ofa sequen
e of 
omponents formally de�ned as a family of sto
hasti
 kernels
{p(· |αt, βt−1)}Tt=1 over B.The probabilities p(βt|αt, βt−1) represent innermost behavior of the 
hannelat time t, 1 ≤ t ≤ T : the internal 
hannel takes the input αt and, dependingon the history of inputs and outputs so far, it produ
es an output symbol βt.The output is then fed ba
k to the en
oder with delay one. On the input side,at time t the en
oder takes the message and the past output symbols βt−1 andprodu
es a 
hannel input symbol αt a

ording to the 
ode fun
tion ϕt (we willexplain this 
on
ept in the next paragraph). At �nal time T the de
oder takesall the 
hannel outputs βT and produ
es the de
oded message Ŵ . The orderin time is the following:Message W, α1, β1, α2, β2, . . . , αT , βT , De
oded Message ŴLet us now explain the 
on
ept of 
ode fun
tion. Intuitively, a 
ode fun
-tion is a strategy to en
ode the message into a suitable representation to betransmitted through the 
hannel. There is a 
ode fun
tion for ea
h possiblemessage, and the fun
tions are �xed at the very beginning of the transmission(time t = 0). The en
oding, however, 
an use the information provided viafeedba
k, so ea
h 
omponent ϕt (1 ≤ t ≤ T ) of the 
ode fun
tion takes asparameter the history of feedba
k βt−1 to generate the next input symbol αt.Formally, let Ft be the set of all measurable maps ϕt : Bt−1 → A en-dowed with a probability distribution, and let Ft be the 
orresponding ran-dom variable. Let FT , F T denote the Cartesian produ
t on the domain and49



4. Information flow in intera
tive systems
W //

Code-
Functions

ϕT

ϕt
//

Encoder
{αt = ϕt(β

t−1)}Tt=1

αt
//

Channel
{p(βt|α

t, βt−1)}Tt=1

βt
//

oo

Decoder

Ŵ = γ(βT )
//Ŵ
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Time

t = 1 . . . TFigure 4.2: Model for dis
rete 
hannel with memory and feedba
kthe random variable, respe
tively. A 
hannel 
ode fun
tion is an element
ϕT = (ϕ1, . . . , ϕT ) ∈ F

T .Note that, by the 
hain rule, p(ϕT ) =
∏T

t=1 p(ϕt|ϕ
t−1). Hen
e the distri-bution on FT is uniquely determined by a sequen
e {p(ϕt|ϕ

t−1)}Tt=1. The no-tation ϕt(βt−1) will represent the A-valued t-tuple (ϕ1, ϕ2(β
1), . . . , ϕt(β

t−1)).In Information Theory this kind of 
hannel is used to en
ode and transmitmessages. If W is a set of messages of 
ardinality M with typi
al element w,endowed with a probability distribution, a 
hannel 
ode is a set of M 
hannel
ode fun
tions ϕT [w], interpreted as follows: for message w, if at time t the
hannel feedba
k is βt−1, then the 
hannel en
oder outputs ϕt[w](β
t−1). A
hannel de
oder is a map from BT to W whi
h attempts to re
onstru
t theinput message after observing all the output history βT from the 
hannel.4.2.1 The power of feedba
kThe original purpose of 
ommuni
ation 
hannel models is to represent datatransmission from a sour
e to a re
eiver. Shannon's Channel Coding Theo-rem states that for every 
hannel there is an en
oding s
heme that allows atransmission rate arbitrarily 
lose to the 
hannel 
apa
ity with a negligibleprobability of error (if the number of uses of the 
hannel is large enough). Ageneral way to �nd an optimal en
oding s
heme that is also easy to de
odehas not been found yet. The use of feedba
k, however, 
an simplify the designof the en
oder and of the de
oder. The following example illustrates the idea.

0 1 e
0 0.8 0 0.2

1 0 0.8 0.2Table 4.3: Channel matrix for binary erasure 
hannelExample 2. Consider a dis
rete memoryless binary 
hannel {A,B, p(.|.)} with
A = {0, 1}, B = {0, 1, e} and the 
hannel matrix of Table 4.3. This kind of50



4.2. Dis
rete 
hannels with memory and feedba
k
hannel is 
alled erasure 
hannel be
ause it 
an lose (or erase) bits during thetransmission with a 
ertain probability. Namely, any bit has 0.8 probability ofbeing 
orre
tly transmitted, and 0.2 probability of being lost. On the outputside the en
oder is able to dete
t whether the bit was erased (by re
eiving an esymbol), but it 
annot tell whi
h was the a
tual value of the original bit. TheChannel Coding Theorem guarantees that the maximum information transmis-sion rate in this 
hannel is (2 to the power of) the 
hannel 
apa
ity, i.e. 0.8bits per use of the 
hannel.Following simple prin
iples des
ribed in [CT06℄, an en
oding that a
hievesthe 
apa
ity 
an be easily obtained if the 
hannel 
an be used with feedba
k. Theidea is an adaptation of the stop-and-wait proto
ol [Sta06, Tan89℄. Supposethat every bit re
eived on the output end of the 
hannel is fed ba
k noiselessly tothe sour
e with delay 1. De�ne the en
oding as follows: for ea
h bit transmitted,the en
oder 
he
ks via feedba
k whether the bit was erased. If not, the en
odermoves on to transmit the text of the message. If yes, the en
oder transmits thesame bit again.It is easy to see that with this en
oding s
heme the transmission rate is 0.8bit per usage of the 
hannel, sin
e in 80% of the 
ases the bit is transmittedproperly, and in 20% it is lost and a retransmission is needed.We now pro
eed to illustrate in more detail the design and the fun
tion ofthe en
oder and de
oder.An example illustrating the the en
oder/de
oder designWe pro
eed with the erasure 
hannel of Example 2 to show how the enri
hedmodel of 
hannels with memory and feedba
k 
an be used to transmit themessage, and in parti
ular how the feedba
k 
an be used to design the en
oder.We assume that the setW of possible messages 
onsists of all �nite sequen
es ofbits. The role of the 
ode fun
tions is to en
ode the message W into a suitablerepresentation for the sto
hasti
 kernels within the 
hannel. The input andoutput alphabets for the sto
hasti
 kernels are A = {0, 1} and B = {0, 1, e},respe
tively. We assume that at most T uses of the 
hannel are allowed andwe use t, with 1 ≤ t ≤ T , to represent the tth time step.We 
onsider a sort of memory that depends only on the input history andwe abstra
t from its spe
i�
 form by de�ning a fun
tion η : P(At) → [0, 1]that maps ea
h possible input history to a 
orre
tion fa
tor to be added to (orsubtra
ted from) a base probability value. We 
ompute the 
ontribution of ηto the base values using arithmeti
s modulo 2, in su
h a way that the resultingvalues are still a probability distribution. More pre
isely, the sto
hasti
 kernels51



4. Information flow in intera
tive systemsare de�ned as follows.
p(βt = 0|αt−10, βt−1) = 0.8 − η(αt−1)
p(βt = 1|αt−10, βt−1) = 0
p(βt = e|αt−10, βt−1) = 0.2 + η(αt−1)
p(βt = 0|αt−11, βt−1) = 0
p(βt = 1|αt−11, βt−1) = 0.8 − η(αt−1)
p(βt = e|αt−11, βt−1) = 0.2 + η(αt−1)

(4.3)Correspondingly, the general form of the 
hannel matrix for ea
h time
1 ≤ t ≤ T is shown in Table 4.4.

0 1 e
αt = 0, βt−1 0.8 − η(αt−1) 0 0.2 + η(αt−1)

αt = 1, βt−1 0 0.8 − η(αt−1) 0.2 + η(αt−1)Table 4.4: General form of 
hannel matrixThe 
ode fun
tions are 
hosen at time t = 0, based on the message to betransmitted. For illustration purposes, let us suppose that the message is thesequen
e of three bits W = 011. The other 
ases of W are analogous.At time t = 1, the 
hannel is used for its �rst time and the feedba
k historyso far is empty β0 = ǫ. The en
oder sele
ts the input symbol α0 = 0, as in(4.4).
f1[W = 011](β0 = ǫ) = 0 (4.4)At time t = 2, the feedba
k history 
onsists of only one symbol, and inprin
iple the possibilities are either β1 = 0, β1 = 1 or β1 = e. In the �rst
ase, the �rst bit was su

essfully transmitted and the en
oder 
an go on tothe se
ond bit of the message. By the way the 
hannel is de�ned, the se
ond
ase is not really possible, so it is not important how the rea
tion fun
tion isde�ned for this 
ase. We will denote this indi�eren
e by attributing to thefun
tion the symbol x instead of a 0 or a 1. In the last 
ase, β1 = e, the �rstbit was erased and the en
oder tries to retransmit the bit 0. We 
an write itformally as below.
f2[W = 011](β1 = 0) = 1
f2[W = 011](β1 = 1) = x

f2[W = 011](β1 = e) = 0
(4.5)At time t = 3 the feedba
k histories allowed by the 
hannel are β2 ∈

{01, 0e, e0, ee} (the other ones have zero probability). In the �rst 
ase, β2 = 01the two �rst bits of the message have been transmitted 
orre
tly and theen
oder 
an send the third bit. If β2 = 0e, the transmission of the �rst bit52



4.2. Dis
rete 
hannels with memory and feedba
kwas su

essful, but the se
ond bit was erased and needs to be resent. In the
ase β2 = e0, the �rst bit was erased in the �rst try but was su

essfullytransmitted in the se
ond try, so now the en
oder 
an move to the se
ond bitof the message. In the last 
ase, β2 = ee, the two tries were unsu

essful andthe en
oder still needs to transmit the �rst bit of the message. Formally:
f3[W = 011](β2 = 00) = x

f3[W = 011](β2 = 01) = 1
f3[W = 011](β2 = 0e) = 1
f3[W = 011](β2 = 10) = x

f3[W = 011](β2 = 11) = x

f3[W = 011](β2 = 1e) = x

f3[W = 011](β2 = e0) = 1
f3[W = 011](β2 = e1) = x

f3[W = 011](β2 = ee) = 0

(4.6)
We 
an easily extend the 
onstru
tion of 
ode fun
tions ft for 3 ≤ t ≤ Tusing this en
oding s
heme.The de
oder is very simple: on
e all time steps 1, . . . , T have taken pla
e,it just takes the whole output tra
e βT and removes the o

urren
es of theerased bit symbol e in order to re
over the original message.Table 4.5 shows a possible behavior of a binary erasure 
hannel with mem-ory and feedba
k in a s
enario where the message is W = 011 and the 
hannel
an be used at most T = 3 times. Note that in this parti
ular example themaximum number of uses of the 
hannel is a
hieved before the whole mes-sage is su

essfully sent: the de
oder 
an re
over only the two �rst bits of theoriginal message.We 
an observe that the 
hannel 
apa
ity in the above example does notin
rease with the addition of feedba
k (it is 0.8 bit per usage of the 
hannel withor without feedba
k). This is be
ause the 
hannel is memoryless: feedba
k doesnot in
rease the 
apa
ity of dis
rete memoryless 
hannels [CT06℄. In generalhowever, feedba
k does in
rease the 
apa
ity.4.2.2 Dire
ted information and 
apa
ity of 
hannels withfeedba
kIn 
lassi
al Information Theory, the 
hannel 
apa
ity, whi
h is related to the
hannel's transmission rate by Shannon's Channel Coding Theorem, 
an beobtained as the supremum of the mutual information over all possible inputdistributions. In the presen
e of feedba
k, however, this 
orresponden
e nolonger holds. More spe
i�
ally, mutual information no longer represents theinformation �ow from AT to BT . Intuitively, this is due to the fa
t that mutualinformation expresses 
orrelation, and therefore it is in
reased by feedba
k (seeExample 5). Yet feedba
k, i.e. the way the output in�uen
es the next input,is not part of the information to be transmitted. If we want to maintain the53



4. Information flow in intera
tive systemsTime Code Feedba
k En
oder Channel De
oder
t fun
tions history αt = p(βt|α

t, βt−1) Ŵ =

ft(β
t−1) βt−1 ft[W ](βt−1) γ(βT )Code

t = 0 fun
tions ��� ��� ��� ���for W = 011are sele
ted.
α1 = A

ording to

t = 1 As in (4.4) ǫ f1[W = 011](ǫ) p(β1|0, ǫ) ���
= 0 produ
es

β1 = e
α2 = A

ording to

t = 2 As in (4.5) e f2[W = 011](e) p(β2|00, e) ���
= 0 produ
es

β2 = 0

α3 = A

ording to
t = 3 As in (4.6) e0 f3[W = 011](e0) p(β3|001, e0) ���

= 1 produ
es
β3 = 1 De
oded

t = 4 ��� ��� ��� ��� message Ŵ =

γ(β3 = e01)
= 01Table 4.5: A possible evolution of the binary 
hannel with time, for W = 011and T = 3
orresponden
e between the transmission rate and 
apa
ity, we need to repla
ethe mutual information with dire
ted information [Mas90℄.De�nition 4. In a 
hannel with feedba
k, the dire
ted information from input

AT to output BT is de�ned as
I(AT → BT ) =

T∑

t=1

I(At;Bt|B
t−1)In the other dire
tion, the dire
ted information from BT to AT is de�ned as

I(BT → AT ) =

T∑

t=1

I(At;B
t−1|At−1)In Se
tion 4.4 we will dis
uss the relation between dire
ted information andmutual information, as well as the 
orresponden
e with information leakage.For the moment, we only present the extension of the 
on
ept of 
apa
ity.Let DT = {p(αt|α

t−1, βt−1)}Tt=1 be the set of all input distributions inpresen
e of feedba
k. For �nite T , the 
apa
ity of a 
hannel with memory andfeedba
k is:
CT = sup

DT

1

T
I(AT → BT ) (4.7)54



4.3. Intera
tive systems as 
hannels with memory and feedba
kThe 
apa
ity is also de�ned when T is in�nite, see [TM09℄. In this thesis,however, we only need to 
onsider the �nite 
ase.4.3 Intera
tive systems as 
hannels with memoryand feedba
kIntera
tive Information Hiding Systems (IIHS) were introdu
ed in [APvRS10℄to represent systems where se
rets (inputs) and observables (outputs) 
an in-terleave and in�uen
e ea
h other. They are a variant of probabilisti
 au-tomata in whi
h a
tions are divided in se
rets and observables. They 
anbe of two kinds: fully probabilisti
, and se
ret-nondeterministi
 (or input-nondeterministi
). In the former there is no nondeterminism, while in thelatter every se
ret 
hoi
e is fully nondeterministi
. In this 
hapter we 
onsidernormalized IIHSs, in whi
h se
rets and observables alternate, and the a
tionsat the �rst level are se
rets. We note that this is not really a restri
tion, be-
ause given an IIHS whi
h is not normalized, it is always possible to transformit into a normalized IIHS whi
h is equivalent to the former one up to a givenexe
ution level. The reader 
an �nd in Se
tion 4.3 the formal de�nition of thetransformation. Furthermore, we require that for ea
h state s and ea
h a
tion
ℓ there is at most one state that 
an be rea
hed from s by performing an ℓtransition.In this se
tion we formalize the notion of IIHS and we show how to asso
iateto an IIHS a 
hannel with memory and feedba
k.De�nition 5. A (normalized) IIHS is a triple I = (M,A,B), where A and
B are disjoint sets of se
rets and observables respe
tively, M is a probabilisti
automaton (S,L, ŝ, ϑ) with L = A ∪ B, and, for ea
h s ∈ S:1. either ϑ(s) ⊆ D(A×S) or ϑ(s) ⊆ D(B ×S). We 
all s a se
ret state inthe �rst 
ase, and an observable state in the se
ond 
ase;2. if s ℓ

→ r then: if s is a se
ret state then r is an observable state, and if
s is an observable state then r is a se
ret state;3. ŝ is a se
ret state;4. if s is an observable state then |ϑ(s)| ≤ 1 ;5. either:(i) for every se
ret state s we have |ϑ(s)| ≤ 1 (fully probabilisti
 IIHS),or(ii) for every se
ret state s there exist ai and si (i = 1, . . . , n) su
h that

ϑ(s) = {δ(ai, si)}
n
i=1, where δ(ai, si) is the Dira
 measure (se
ret-nondeterministi
 IIHS); 55



4. Information flow in intera
tive systems6. for every state s and a
tion ℓ there exists a unique state r su
h that
s

ℓ
→ r.In the rest of the paper we will omit the adje
tive �normalized� for sim-pli
ity. In the above de�nition, Conditions 1 and 2 imply that the IIHS isalternating between se
rets and observables. Moreover, all the transitionsbetween nodes at two 
onse
utive depths have either se
ret a
tions only, orobservable a
tions only. Condition 3 means that the �rst level 
ontains se
reta
tions. Condition 4 means that all observable transitions are fully probabilis-ti
. Condition 5 means that all se
ret transitions are either fully probabilisti
or fully nondeterministi
. The term �nondeterministi
� is justi�ed by the fa
tthat the s
heme of Condition 5i represented in Figure 4.3(a), is equivalent tothe one of Figure 4.3(b).
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(a) Nondeterministi
 input using Dira
 measures
s

r11
rjj

rnn
· · · · · ·

a1
aj

an(b) Equivalent s
hemeFigure 4.3: S
heme of se
ret transitions for se
ret-nondeterministi
 IIHSsNote that we do not 
onsider here internal nondeterminism su
h as thatone arising from interleaving of 
on
urrent pro
esses. This means that wemake a rather restri
ted use of probabilisti
 automata, but this is enough forour purposes. The nondeterminism generated by 
on
urren
y gives rise to anew set of problems (see for example [CPP08a℄) whi
h are orthogonal to those
onsidered in this paper.Condition 6 means that the se
ret and observable a
tions determine thestates. As a 
onsequen
e, the a
tions are enough to retrieve the path. This isexpressed by the following proposition:Proposition 6. Given an IIHS, 
onsider two paths σ and σ′. If traceA(σ) =
traceA(σ

′) and traceB(σ) = traceB(σ
′), then σ = σ′.Proof. By indu
tion on the length of the tra
es. The initial state of the au-tomaton is uniquely determined by the empty (se
ret and observable) tra
es.Assume now we are in a state s uniquely determined by se
ret and observabletra
es α and β , respe
tively. If s makes a se
ret transition s

a
→ s′, then byCondition 6 there is only one state s′ rea
hable from s via an a-transition,and therefore s′ is uniquely determined by the se
ret tra
e α′ = αa and the56



4.3. Intera
tive systems as 
hannels with memory and feedba
kobservable tra
e β . The 
ase in whi
h s makes an observable transition issimilar.The normalization of IIHS treesIn this se
tion we will address the problem of normalizing an IIHS, namelytransforming it into a strati�ed automaton in whi
h se
ret and observablea
tions alternate level by level. The pro
ess of normalization des
ribed bellowis general enough to be applied to any IIHS without loss of generality orexpressive power.Let A and B represent the se
ret and observable a
tions, respe
tively. Con-sider a general IIHS I = (M,A,B) with M = (Q,L, ŝ, ϑ), where L = A ∪ B.Assume that we are only interested in exe
utions that involve up to T intera
-tions, i.e. T uses of the system, with one se
ret taking pla
e and one observableprodu
ed at ea
h time.In the normalization pro
ess, we unfold the automaton up to level 2T , sin
ethere is one se
ret symbol and one observable symbol for ea
h step. We alsoextend the se
ret alphabet A with a new symbol a∗ /∈ A and the observablealphabet B with a new symbol b∗ /∈ B. These new symbols will be used aspla
eholders when we need to re-balan
e the tree. Let A′ = A ∪ {a∗} and
B′ = B ∪ {b∗}.For a given level t let labels(I, t) be the set of all labels of transitions that
an be performed with a non-zero probability from the states at the tth levelof the automaton. Formally:

labels(I, t) ≡ {ℓ ∈ L | ∃σ, s . |σ| = t, last(σ)
ℓ
→ s}The normalization of the IIHS I leads to an equivalent IIHS I′ = (M ′,A′,B′),where M ′ = (Q′,L′, ŝ′, ϑ′) and L′ = A′ ∪ B′; and su
h that, for every 1 ≤ t ≤

2T :1. labels(I′, t) ⊆ A′ or labels(I′, t) ⊆ B′;2. labels(I′, t) ⊆ A′ if and only if labels(I′, t+1) ⊆ B′, for 1 ≤ t ≤ T−1;3. labels(I′, 1) ⊆ A′;Condition 1 states that ea
h level 
onsists of either the se
ret a
tions only,or the observable a
tions only. Condition 2 states that se
ret and observablelevels alternate. Condition 3 says that the automaton starts with a se
ret level.The proof is straightforward. First, the new symbols a∗ and b∗ are pla
e-holders for the absen
e of a se
ret and observable symbol, respe
tively. If ina given level t we want to have only se
ret symbols, we 
an postpone the o
-
urren
es of observable symbols at this level as follows: add a∗ to the se
retlevel and �move� all the observable symbols to the subtree of a∗. Figure 4.4exempli�es the lo
al transformations we need to make on the tree. 57



4. Information flow in intera
tive systems
· · · · · ·
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p′a1 p′an
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p′b1 p′bm(b) Lo
al nodes of the tree afterthe transformationFigure 4.4: Lo
al transformation in an IIHS treeNote that in 4.4(b) the introdu
tion of new nodes 
hanged the probabilitiesof the transitions in the tree. In general, whenever we need to introdu
e a∗ inorder to postpone the observable symbols, the probabilities 
hange as follows:1. For every ai, 1 ≤ i ≤ n, the asso
iated probability is maintained as
p′ai = pai ;2. The probability of the new symbol a∗ is introdu
ed as pa∗ =

∑m
k=0 pbk ;3. If pa∗ 6= 0, then for 1 ≤ i ≤ m, the asso
iated probability of bj is updatedto p′bj = pbj/pa∗ = pbj/

∑m
k=0 pbk . If pa∗ = 0, then p′bj

= 0, for 1 ≤ i ≤ m,and pb∗ = 1.The subtrees of ea
h node of the original tree are preserved as they are,until we apply the same transformation to them. If a node does not have asubtree (i.e. no des
endants), we 
reate a subtree by adding all the possiblea
tions in B with probability 0, and the a
tion b∗ with probability 1.If we are normalizing an observable level, the same rules apply, guardingthe proper symmetry between se
rets and observables. We then pro
eed onthe same way on the deeper levels of the tree. Figure 4.5 shows an example ofa full transformation on a tree (for the sake of readability, we omit the levelswhere only a∗ = 1 or b∗ = 1).4.3.1 Constru
tion of the 
hannel asso
iated to an IIHSWe now show how to asso
iate a 
hannel to an IIHS.In an intera
tive system se
rets and observables may interleave and in�u-en
e ea
h other. Considering a 
hannel with memory and feedba
k is a wayto 
apture this ri
h behavior. Se
rets have a 
ausal in�uen
e on observablesvia the 
hannel, and, in the presen
e of intera
tivity, observables have a 
ausalin�uen
e on se
rets via feedba
k. This alternating mutual in�uen
e betweense
rets and observables 
an be modeled by repeated uses of the 
hannel. Ea
htime the 
hannel is used it represents a di�erent state of the 
omputation, andthe 
onditional probabilities of observables on se
rets 
an depend on this state.58
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0(b) Tree after transformationFigure 4.5: Transformation in an IIHS treeThe addition of memory to the model allows expressing the dependen
y of the
hannel matrix on su
h a state.We will see that a se
ret-nondeterministi
 IIHS determines a 
hannel asspe
i�ed by its sto
hasti
 kernels, while a fully probabilisti
 IIHS determines,additionally, the input distribution.In Se
tion 4.5 we will give an extensive and detailed example of how tomake su
h a 
onstru
tion for an a
tual se
urity proto
ol.Given a path σ of length 2t − 1, we will denote traceA(σ) by αt, and
traceB(σ) by βt−1.De�nition 7. Let I be an IIHS. For ea
h t, the 
hannel's sto
hasti
 kernel
orresponding to I is de�ned as p(βt|α

t, βt−1) = ϑ(s)(βt, s
′), where s is thestate rea
hed from the root via the path σ whose se
ret and observable tra
esare αt and βt−1 respe
tively.Note that s and s′ in the previous de�nition are well de�ned: by Proposi-tion 6, s is unique, and sin
e the 
hoi
e of βt is fully probabilisti
, s′ is alsounique.The following example illustrates how to apply De�nition 7, with the helpof Proposition 6, to build the 
hannel matrix of a simple example.Example 3. Let us 
onsider an extended version of the website intera
tive sys-tem of Figure 4.1. We maintain the general de�nition of the system, i.e. thereare two possible buyers (rich and poor, represented by rc. and pr., respe
tively)and two possible produ
ts (cheap and expensive, represented by chp. and exp.,respe
tively). We still assume that o�ers are observable, sin
e they are visibleto everyone on the website, but the identity of buyers should be kept se
ret. We
onsider two 
onse
utive rounds of o�ers and buys, whi
h implies that, afternormalization, T = 3. Figure 4.6 shows an automaton for this example innormalized form. Transitions with null probability are omitted, and the symbol

a∗ is used as a pla
e holder to a
hieve the normalized IIHS (see Se
tion 4.3).59



4. Information flow in intera
tive systemsTo 
onstru
t the sto
hasti
 kernels {p(βt|αt, βt−1)}Tt=1, we need to deter-mine the 
onditional probability of an observable at time t given the history upto time t.Let us take the 
ase t = 2 and 
ompute the 
onditional probability of theobservable β2 = cheap given that the history of se
rets up to time t = 2 is
α2 = a∗, poor and the history of observables is β1 = expensive. ApplyingDe�nition 7, we see that p(β2 = cheap|α2 = a∗, poor, β

1 = expensive) =
ϑ(s)(cheap, s′). By Proposition 6, the tra
es α2 = a∗, poor, β

1 = expensivedetermine a unique state s in the automaton, namely, the state s = 5. More-over, from the state 5 a unique transition labeled with the a
tion cheap ispossible, leading to the state s′ = 11. Therefore, we 
an 
on
lude that p(β2 =
cheap|α2 = a∗, poor, β

1 = expensive) = ϑ(s = 5)(cheap, s′ = 11) = p23.Similarly, with t = 1 and history α1 = a∗, β
0 = ǫ, the observable sym-bol β1 = expensive 
an be observed with probability p(β1 = expensive|α1 =

a∗, β
0 = ǫ) = ϑ(s = 0)(cheap, s′ = 2) = p1.If I is fully probabilisti
, then it determines also the input distribution andthe dependen
y of αt on βt−1 (feedba
k) and on αt−1.De�nition 8. Let I be an IIHS. If I is fully probabilisti
, the asso
iated 
han-nel has a 
onditional input distribution for ea
h t de�ned as p(αt|α

t−1, βt−1) =
ϑ(s)(αt, s

′), where s is the state rea
hed from the root via the path σ whose se-
ret and observable tra
es are αt−1 and βt−1 respe
tively.Example 4. Sin
e the system of Example 3 is fully probabilisti
, we 
an 
al-
ulate the values of the 
onditional probabilities {p(αt|α
t−1, βt−1)}Tt=1.Let us take, for instan
e, the 
ase where t = 2 and 
ompute the 
onditionalprobability of se
ret α2 = poor given that the history of se
rets up to time t = 2is α1 = a∗ and the history of observables is β1 = expensive. Applying De�ni-tion 8, we see that p(α2 = poor|α1 = a∗, β

1 = expensive) = ϑ(s)(poor, s′). ByProposition 6, the tra
es α1 = a∗, β
1 = expensive determine a unique state sin the automaton, namely, the state s = 2. Moreover, from the state 2 a uniquetransition labeled with the a
tion poor is possible, leading to the state s′ = 5.Therefore, we 
an 
on
lude that p(α2 = poor|α1 = a∗, β

1 = expensive) =
ϑ(s = 2)(poor, s′ = 5) = q12.Similarly, with t = 3 and history α2 = a∗, rich, β

2 = cheap, expensive,the se
ret symbol α3 = rich 
an be observed with probability p(α3 = rich|α2 =
α∗, rich, β

0 = cheap, expensive) = ϑ(s = 10)(cheap, s′ = 22) = q24.4.3.2 Lifting the 
hannel inputs to rea
tion fun
tionsTaken together, De�nitions 7 and 8 show how to obtain the the joint probabil-ities p(αt, βt) for a fully probabilisti
 IIHS. We still need to show, however, inwhat sense this joint probability distribution de�nes an information-theoreti

hannel.60
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Figure 4.6: The normalized IIHS for the extended website exampleThe {p(βt|αt, βt−1)}Tt=1 determined by the IIHS trivially 
orrespond to a
hannel's sto
hasti
 kernel. The problem resides in the 
onditional probabili-ties {p(αt|α
t−1, βt−1)}Tt=1. In an information-theoreti
 
hannel, the value of αtis determined in the en
oder by a deterministi
 fun
tion ϕt(β

t−1). Therefore,inside the en
oder there is no possibility for a probabilisti
 des
ription of αt.The solution is to externalize this probabilisti
 behavior to the 
ode fun
tions.As shown in [TM09℄, the original 
hannel with feedba
k from input symbols
AT to output symbols BT 
an be lifted to an equivalent 
hannel without feed-ba
k from 
ode fun
tions FT to output symbols BT . This transformation alsoallows us to 
al
ulate the 
hannel 
apa
ity. Let {p(ϕt|ϕ

t−1)}Tt=1 be a sequen
eof 
ode fun
tion sto
hasti
 kernels and let {p(βt|αt, βt−1)}Tt=1 be a 
hannelwith memory and feedba
k. The 
hannel from F T to BT is 
onstru
ted usinga joint measure Q(ϕT , αT , βT ) that respe
ts the following 
onstraints:De�nition 9. A measure Q(ϕT , αT , βT ) is said to be 
onsistent with re-spe
t to the 
ode fun
tion sto
hasti
 kernels {p(ϕt|ϕ
t−1)}Tt=1 and the 
hannel

{p(βt|α
t, βt−1)}Tt=1 if, for ea
h t:1. There is no feedba
k to the 
ode fun
tions:

Q(ϕt|ϕ
t−1, αt−1, βt−1) = p(ϕt|ϕ

t−1)2. The input is a fun
tion of the past outputs:
Q(αt|ϕ

t, αt−1, βt−1) = δ{ϕt(β
t−1)}(αt) 61



4. Information flow in intera
tive systemswhere δ is the Dira
 measure;3. The properties of the underlying 
hannel are preserved:
Q(βt|F

t = ϕt, At = αt, Bt−1 = βt−1) = p(βt|α
t, βt−1)The following result states that there is only one 
onsistent measure

Q(ϕT , αT , βT ).Theorem 10 ([TM09℄). Given the probability distributions {p(ϕt|ϕ
t−1)}Tt=1and a 
hannel de�ned by {p(βt|αt, βt−1)}Tt=1, there exists only one 
onsistentmeasure Q(ϕT , αT , βT ). Furthermore the 
hannel from FT to BT is given by:

Q(βt|ϕ
t, βt−1) = p(βt|ϕ

t(βt−1), βt−1)Sin
e in our setting the 
on
ept of en
oder makes little sense as there isno information to en
ode, we externalize the probabilisti
 behavior of αt asfollows. Code fun
tions be
ome a single set of rea
tion fun
tions {ϕt}
T
t=1 with

βt−1 as parameter (the message w does not play a role any more). Rea
tionfun
tions 
an be seen as a model of how the environment rea
ts to given systemoutputs, produ
ing new system inputs (they do not play a role of en
oding amessage). These rea
tion fun
tions are endowed with a probability distributionthat generates the probabilisti
 behavior of the values of αt.De�nition 11. A rea
tor is a distribution on rea
tion fun
tions, i.e. a se-quen
e of sto
hasti
 kernels {p(ϕt|ϕ
t−1)}Tt=1. A rea
tor R is 
onsistent with afully probabilisti
 IIHS I if it indu
es the 
ompatible distribution Q(ϕT , αT , βT )su
h that, for every 1 ≤ t ≤ T , Q(αt|α

t−1, βt−1) = p(αt|α
t−1, βt−1), where thelatter is the probability distribution indu
ed by I.The main result of this se
tion states that for any fully probabilisti
 IIHSthere is a rea
tor that generates the probabilisti
 behavior of the IIHS. Beforemoving to this result, we need to introdu
e a lemma.Lemma 12. Let X ,Y be non-empty �nite sets, and let x̃ ∈ X , ỹ ∈ Y. Let

p : X × Y → [0, 1] be a fun
tion su
h that, for every x ∈ X , we have:
∑

y∈Y p(x, y) = 1. Then:
∑

f∈X→Y

f(x̃)=ỹ

∏

x∈X

p(x, f(x)) = p(x̃, ỹ)Proof. By indu
tion on the number of elements of X .62



4.3. Intera
tive systems as 
hannels with memory and feedba
kBase 
ase: X = {x̃}. In this 
ase:
∑

f∈X→Y

f(x̃)=ỹ

∏

x∈X

p(x, f(x)) = p(x̃, f(x̃)) = p(x̃, ỹ)

Indu
tive 
ase: Let X = X ′ ∪ {x̊}, with x̃ ∈ X ′ and x̊ /∈ X ′. Then:
∑

f∈X ′∪{x̊}→Y

f(x̃)=ỹ

∏

x∈X ′∪{x̊}

p(x, f(x)) = (by distributivity)









∑

f∈X ′→Y

f(x̃)=ỹ

∏

x∈X ′

p(x, f(x))










∑

g∈{x̊}→Y

p(̊x, g(̊x)) = (by the assumption)
∑

f∈X ′→Y

f(x̃)=ỹ

∏

x∈X ′

p(x, f(x)) = (by the ind. hyp.)
p(x̃, ỹ)

Theorem 13. Let I be a fully probabilisti
 IIHS indu
ing the joint probabilitydistribution p(αt, βt), 1 ≤ t ≤ T , on se
ret and observable tra
es. It is alwayspossible to 
onstru
t a 
hannel with memory and feedba
k, and an asso
iatedprobability distribution Q(ϕT , αT , βT ), whi
h 
orresponds to I in the sense that,for every 1 ≤ t ≤ T , αt, βt, the equality Q(αt, βt) = p(αt, βt) holds.Proof. First note that, by laws of probability, Q(αt, βt) =
∑

ϕt Q(ϕt, αt, βt).So we need to show that ∑ϕt Q(ϕt, αt, βt) = p(αt, βt) by indu
tion on t.Base 
ase: t = 1. Let us de�ne Q(ϕ1|ǫ) = p(ϕ1(ǫ)) and Q(β1|α
1, ǫ) =63



4. Information flow in intera
tive systems
p(β1|α1). Then:

∑

ϕ1

Q(ϕ1, α1, β1) =

∑

ϕ1

Q(ϕ1, α1, β1) = (by the 
hain rule)
∑

ϕ1

(Q(ϕ1|ǫ, ǫ, ǫ) ·Q(α1|ϕ1, ǫ, ǫ)·

Q(β1|ϕ1, α1, ǫ)) = (by De�nition 9)
∑

ϕ1

Q(ϕ1|ǫ)δ{ϕ1(ǫ)}
(α1)Q(β1|α

1, ǫ) = (by 
onstru
tion of Q)
∑

ϕ1

p(ϕ1(ǫ))δ{ϕ1(ǫ)}
(α1)p(β1|α1) = (by de�nition of δ)

p(α1)p(β1|α1) =

p(α1, β1) =

p(α1, β1)Indu
tive 
ase: Let us de�ne Q(βt|α
t, βt−1) = p(βt|α

t, βt−1), and
Q(ϕt|ϕ

t−1) =
∏

βt−1

p(ϕt(β
t−1)|ϕt−1(βt−2), βt−1)Note that, if we 
onsider X = {βt−1 | βi ∈ B, 1 ≤ i ≤ t − 1}, Y = A,and p(βt−1, αt) = p(αt|ϕ

t−1(βt−2), βt−1), then X , Y and p satisfy thehypothesis of Lemma 12.Then:
∑

ϕt

Q(ϕt, αt, βt) = (by the 
hain rule)
∑

ϕt

(
Q(ϕt−1, αt−1, βt−1)·

Q(ϕt|ϕ
t−1, αt−1, βt−1)·

Q(αt|ϕ
t, αt−1, βt−1) ·Q(βt|ϕ

t, αt, βt−1)
)
= (by De�nition 9)

∑

ϕt

(
Q(ϕt−1, αt−1, βt−1) ·Q(ϕt|ϕ

t−1)

δ{ϕt(β
t−1)}(αt) ·Q(βt|α

t, βt−1)
)

= (by 
onstr. of Q)
∑

ϕt

(
Q(ϕt−1, αt−1, βt−1)·64
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k



∏

β
′t−1

p(ϕt(β
′t−1)|ϕt−1(β

′t−2), β
′t−1)



 ·

δ{ϕt(β
t−1)}(αt) · p(βt|α

t, βt−1)
)

= (by de�nition of δ)
∑

ϕt

ϕt(β
t−1)=αt

(
Q(ϕt−1, αt−1, βt−1) ·




∏

β
′t−1

p(ϕt(β
′t−1)|ϕt−1(β

′t−2), β
′t−1)



 ·

p(βt|α
t, βt−1)

)
=

∑

ϕt−1

( Q(ϕt−1, αt−1, βt−1)p(βt|α
t, βt−1)

∑

ϕt

ϕt(β
t−1)=αt

∏

β
′t−1

p(ϕt(β
′t−1)|ϕt−1(β

′t−2), β
′t−1) ) = (by Lemma 12)

∑

ϕt−1

( Q(ϕt−1, αt−1, βt−1) · p(βt|α
t, βt−1)·

p(αt|α
t−1, βt−1) ) =

p(βt|α
t, βt−1) · p(αt|α

t−1, βt−1)·
∑

ϕt−1

Q(ϕt−1, αt−1, βt−1) = (by ind. hyp.)
p(βt|α

t, βt−1) · p(αt|α
t−1, βt−1) · p(αt−1, βt−1) = (by the 
hain rule)

p(αt, βt)

Corollary 14. Let I be a fully probabilisti
 IIHS. Let {p(βt|αt, βt−1)}Tt=1 bea sequen
e of sto
hasti
 kernels and {p(αt|α
t−1, βt−1)}Tt=1 a sequen
e of inputdistributions de�ned by I a

ording to De�nitions 7 and 8. Then the rea
tor

R = {p(ϕt|ϕ
t−1)}Tt=1 
ompatible with respe
t to the I is given by:

p(ϕ1) = p(α1|α
0, β0) = p(α1) (4.8)

p(ϕt|ϕ
t−1) =

∏

βt−1

p(ϕt(β
t−1)|ϕt−1(βt−2), βt−1), 2 ≤ t ≤ T (4.9)Figure 4.7 depi
ts the model for IIHS. Note that, in relation to Figure 4.2,there are some simpli�
ations: (1) no message W is needed; 2) the en
oder65



4. Information flow in intera
tive systemsbe
omes an �intera
tor�; (3) the de
oder is not used. At the beginning, a rea
-tion fun
tion sequen
e ϕT is 
hosen and then the 
hannel is used T times. Atea
h usage t, the intera
tor produ
es the next input symbol αt by applying therea
tion fun
tion ϕt to the fed ba
k output βt−1. Then the 
hannel produ
esan output βt based on the sto
hasti
 kernel p(βt|αt, βt−1). The output is thenfed ba
k to the en
oder, whi
h uses it for produ
ing the next input.
Reaction-
Functions

ϕT

ϕt
//

“Interactor”
{αt = ϕt(β

t−1)}Tt=1

αt
//

Channel
{p(βt|α

t, βt−1)}Tt=1

βt
//

ooDelay
βt−1

OO
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k model for IIHSWe 
on
lude this se
tion by remarking on an intriguing 
oin
iden
e: Thenotion of rea
tion fun
tion sequen
e ϕT , on the IIHSs, 
orresponds to thenotion of deterministi
 s
heduler [Seg95℄. In fa
t, ea
h rea
tion fun
tion ϕtsele
ts the next step, αt, on the basis of the βt−1 and αt−1 (generated by ϕt−1),and βt−1, αt−1 represent the path until that state.4.4 Leakage in intera
tive systemsIn this se
tion we propose a de�nition for the notion of leakage in intera
tivesystems. We �rst argue that mutual information is not the 
orre
t notion, andwe propose to repla
e it with the dire
ted information instead.In the 
ase of 
hannels with memory and feedba
k, mutual information isde�ned as I(AT ;BT ) = H(AT ) − H(AT |BT ), and it is still symmetri
 (i.e.
I(AT ;BT ) = I(BT ;AT )). Sin
e the roles of AT and BT in I(AT ;BT ) areinter
hangeable, this 
on
ept 
annot 
apture 
ausality, in the sense that it doesnot imply that AT 
auses BT , nor 
onversely. Mutual information expresses
orrelation between the sequen
es of random variables AT and BT .Mathemati
ally the mutual information I(AT ;BT ) for T uses of the 
han-nel 
an be expressed with the help of the 
hain rule of (3.4) in the followingway.

I(AT ;BT ) =
T∑

t=1

I(AT ;Bt|B
t−1)In the equation above, ea
h term of the sum is the mutual informationbetween the random variable Bt and the whole sequen
e of random variables

AT = A1, . . . , AT , given the history Bt−1. The equation emphasizes that attime 1 ≤ t ≤ T , even though only the inputs αt = α1, α2, . . . , αt have been66



4.4. Leakage in intera
tive systemsfed to the 
hannel, the whole sequen
e AT , in
luding At+1, At+2, . . . , AT , hasa statisti
al 
orrelation with Bt. Indeed, in the presen
e of feedba
k, Bt mayin�uen
e At+1, At+2, . . . , AT .In order to show how the 
on
ept of dire
ted information 
ontrasts withthe above, let us re
all its de�nition:
I(AT → BT ) =

T∑

t=1

I(At;Bt|B
t−1).

I(BT → AT ) =
T∑

t=1

I(At;B
t−1|At−1).These notions 
apture the 
on
ept of 
ausality, to whi
h the de�nition ofmutual information is indi�erent. The 
orrelation between inputs and outputs

I(AT ;BT ) is split into the information I(AT → BT ) that �ows from input tooutput through the 
hannel and the information I(BT → AT ) that �ows fromoutput to the input via feedba
k. Note that the dire
ted information is notsymmetri
: the �ow from AT to BT takes into a

ount the 
orrelation between
At and Bt, while the �ow from BT to AT takes into a

ount the 
orrelationbetween Bt−1 and At.It was proved in [TM09℄ that

I(AT ;BT ) = I(AT → BT ) + I(BT → AT ) (4.10)i.e. the mutual information is the sum of the dire
ted information �ow inboth senses. Note that this formulation highlights the symmetry of mutualinformation from yet another perspe
tive.On
e we split mutual information into dire
ted information in the two op-posite dire
tions, it is important to understand the di�erent roles that theinformation �ow in ea
h dire
tion plays. I(AT → BT ) represents the systembehavior: via the 
hannel the information �ows from inputs to outputs a
-
ording to the spe
i�
ation of the system, modeled by the 
hannel sto
hasti
kernels. This �ow represents the amount of information an atta
ker 
an gainfrom the inputs by observing the outputs, and we argue that this is the realinformation leakage.On the other hand, I(BT → AT ) represents how the environment rea
ts tothe system: given the system outputs, the environment produ
es new inputs.We argue that the information �ow from outputs to inputs is independent ofany parti
ular system: it is a 
hara
teristi
 of the environment itself. Hen
e,if an atta
ker knows how the environment rea
ts to outputs (the probabilisti
behavior of the rea
tions of the environment given the system outputs), thisknowledge is part of the a priori knowledge of the adversary. As a furtherjusti�
ation, observe that this is a natural extension of the 
lassi
al approa
h,where the 
hoi
e of se
rets is seen as external to the system, i.e. determined bythe environment. The probability distribution on the se
rets 
onstitutes the67



4. Information flow in intera
tive systemsa priori knowledge and does not 
ount as leakage. In order to en
ompass the
lassi
al approa
h, in our extended model we should preserve this prin
iple,and a natural way to do so is to 
onsider the se
ret 
hoi
es, at every stage ofthe 
omputation, as external. Their probability distributions, whi
h are nowin general 
onditional probability distributions depending on the history ofse
rets and observables, should therefore be 
onsidered as part of the externalknowledge, and not 
ounted as leakage.The following example supports our 
laim that, in the presen
e of feedba
k,mutual information is not a 
orre
t notion of leakage.Example 5. Consider the dis
rete memoryless 
hannel with se
ret alphabet
A = {a1, a2} and observable alphabet B = {b1, b2} whose matrix is representedin Table 4.6.

b1 b2
a1 0.5 0.5

a2 0.5 0.5Table 4.6: Channel matrix for Example 5Suppose that the 
hannel is used with feedba
k, in su
h a way that, for all
1 ≤ t ≤ T , we have αt+1 = a1 if βt = b1, and αt+1 = a2 if βt = b2. It iseasy to show that if T ≥ 2 then I(AT ;BT ) 6= 0. Yet there is no leakage from
AT to BT , sin
e the rows of the matrix are all equal. We have indeed that
I(AT → BT ) = 0, and the mutual information I(AT ;BT ) is only due to thefeedba
k information �ow I(BT → AT ).Having in mind the above dis
ussion, we now propose a notion of infor-mation �ow based on our model. We follow the idea of de�ning leakage andmaximum leakage using the 
on
epts of mutual information and 
apa
ity, mak-ing the ne
essary adaptations.As dis
ussed in Chapter 3, in the non intera
tive 
ase the de�nition ofleakage as mutual information, for a single use of the 
hannel, is

I(A;B) = H(A)−H(A|B)(
fr. for instan
e [CPP08a, KB07b℄). This amounts to viewing the leakage asthe di�eren
e between the a priori invulnerability and the a posteriori one. Asexplained in Chapter 3, these 
orrespond to H(A) and H(A|B), respe
tively.This 
orresponds to the model of an atta
ker based on Shannon entropy dis-
ussed by Köpf and Basin in [KB07b℄.In the intera
tive 
ase, we 
an extend this notion by 
onsidering the leakageat every step t as given by
I(At;Bt|B

t−1) = H(At|Bt−1)−H(At|Bt, B
t−1)68



4.4. Leakage in intera
tive systemsThe notion of atta
k is the same modulo the fa
t that we 
onsider all theinput from the beginning up to step t, and the di�eren
e in its vulnerabilityindu
ed by the observation of Bt (the output at step t), taking into a

ountthe observation history Bt−1. It is then natural to 
onsider as total leakagethe summation of the 
ontributions I(At;Bt|B
t−1) for all the steps t. This isexa
tly the notion of dire
ted information (
fr. De�nition 4):

I(BT → AT ) =

T∑

t=1

I(At;Bt|B
t−1)De�nition 15. The information leakage of a fully probabilisti
 IIHS is de-�ned as the dire
ted information I(AT → BT ) of the asso
iated 
hannel withmemory and feedba
k.We now show an equivalent formulation of dire
ted information that leadsto a new interpretation in terms of an atta
k model. First we need the followinglemma.Lemma 16. I(BT → AT ) = H(AT )−

∑T
t=1 H(At|A

t−1, Bt−1)Proof.
I(BT → AT ) =

T∑

t=1

I(At;B
t−1|At−1) (by De�nition 4)

=

T∑

t=1

(
H(At|A

t−1)

−H(At|A
t−1, Bt−1)

) (by def. of mutual info.)
= H(AT )−

T∑

t=1

H(At|A
t−1, Bt−1) (by the 
hain rule)

The next proposition points out the announ
ed alternative formulation ofdire
ted information from input to output:Proposition 17. I(AT → BT ) =
∑T

t=1 H(At|A
t−1, Bt−1)−H(AT |BT ) 69



4. Information flow in intera
tive systemsProof.
I(AT → BT ) = I(AT ;BT )− I(BT → AT ) (by (4.10))

= I(AT ;BT )−H(AT )

+
T∑

t=1

H(At|A
t−1, Bt−1) (by Lemma 16)

= H(AT )−H(AT |BT )−H(AT )

+

T∑

t=1

H(At|A
t−1, Bt−1) (by def. of mutual info.)

=

T∑

t=1

H(At|A
t−1, Bt−1)−H(AT |BT )

We note that the term ∑T
t=1 H(At|A

t−1, Bt−1) 
an be seen as the entropy
HR of the rea
tor R, i.e. the entropy of the inputs, taking into a

ount theirdependen
y on the previous outputs. This brings us to an intriguing alternativeinterpretation of leakage.Remark 18. The leakage 
an be seen as the di�eren
e between the a prioriinvulnerability degree of the whole se
ret AT , assuming that the atta
ker knowsthe distribution of the rea
tor, and the a posteriori invulnerability degree, afterthe adversary has observed the whole output BT .In Se
tion 4.5 we give an extensive and detailed example of how to 
al
ulatethe leakage for an a
tual se
urity proto
ol.In the 
ase of se
ret-nondeterministi
 IIHS, we have a sto
hasti
 kernelbut no distribution on the rea
tion fun
tions. In this 
ase it seems natural to
onsider the worst leakage over all possible distributions on rea
tion fun
tions.This is exa
tly the 
on
ept of 
apa
ity.De�nition 19. The maximum leakage of a se
ret-nondeterministi
 IIHS isde�ned as the 
apa
ity CT of the asso
iated 
hannel with memory and feedba
k(
fr. (4.7)).A 
omparison with the de�nition of Gray (
fr. [Gra91℄, De�nition 5.3) isin order. As explained in the introdu
tion, Gray's model is more 
ompli
atedthan ours, be
ause it assumes that low and high variables are present at bothends of the 
hannel. If we restri
t the de�nition of Gray's 
apa
ity CG to our
ase, by eliminating the low input and the high output, we obtain the followingformula:

CG
T = sup

DT

1

T

T∑

t=1

I(At−1;Bt|B
t−1) (4.11)70



4.4. Leakage in intera
tive systemsBy 
omparing (4.7), whi
h is based on De�nition 4, to (4.11), we 
an seethat the only di�eren
e is that (4.11) 
onsiders the 
orrelation between Bt and
At−1 instead of At. This seems to be intentional (
fr. [Gra91℄, dis
ussion afterDe�nition 4.1). We are not sure why CG is de�ned in this way, our best guessis that the high values must be those of the previous time step in order toen
ompass the theory of M
Lean [M
L90℄. In any 
ase, Gray's 
onje
ture that
CG
T 
orresponds to the 
hannel transmission rate does not hold. For instan
e,it is easy to see that for T = 1 we always have CG

T = 0, but there obviouslyare 
hannels whi
h 
an transmit a non-zero amount of information even withone single use.We 
on
lude this se
tion by showing that our approa
h to the notion ofleakage generalizes the 
lassi
al approa
h (based on mutual information) tothe 
ase of feedba
k. The idea is that, if a 
hannel does not have feedba
k,then I(BT → AT ) = 0 and therefore I(AT ;BT ) = I(AT → BT ). In ouropinion, the fa
t that mutual information turns out to be a parti
ular 
ase ofdire
ted information helps to justify the former as a good measure of infor-mation �ow, despite its symmetry: in 
hannels without feedba
k it is a goodmeasure be
ause it 
oin
ides with dire
ted information from input to output.Lemma 20. In absen
e of feedba
k, I(BT → AT ) = 0Proof. When feedba
k is not allowed, Bt−1 and At are independent for 1 ≤
t ≤ T . Then:

I(BT → AT ) =
T∑

t=1

I(At;B
t−1|At−1) (by De�nition 4)

=

T∑

t=1

(H(At|A
t−1)

−H(At|A
t−1, Bt−1)) (by def. of mutual info.)

=

T∑

t=1

(H(At|A
t−1)

−H(At|A
t−1)) (Bt−1 and At are independent)

= 0Proposition 21. In absen
e of feedba
k, leakage 
an be equivalently de�nedas dire
ted information or as mutual information. Similarly, in absen
e offeedba
k, the maximum leakage 
an be equivalently de�ned as dire
ted 
apa
ityor as 
apa
ity.Proof. It follows dire
tly from Lemma 20 and (4.10). 71



4. Information flow in intera
tive systems4.5 An example: the Co
aine Au
tion proto
olIn this se
tion we show the appli
ation of our approa
h to the Co
aine Au
tionProto
ol [SA99℄. The formalization of this proto
ol in terms of IIHSs using ourframework makes it possible to prove the 
laim in [SA99℄ suggesting that if theseller knows the identity of the bidders then the (strong) anonymity guarantiesare no longer assured.Let us 
onsider a s
enario in whi
h several mobsters are gathered arounda table. An au
tion is about to be held in whi
h one of them o�ers his nextshipment of 
o
aine to the highest bidder. The seller des
ribes the mer
handiseand proposes a starting pri
e. The others then bid in
reasing amounts untilthere are no bids for, say, 30 
onse
utive se
onds. At that point the sellerde
lares the au
tion 
losed and arranges a se
ret appointment with the winnerto deliver the goods.The basi
 proto
ol is fairly simple and is organized as a su

ession of roundsof bidding. Round i starts with the seller announ
ing the bid pri
e bi for thatround. Buyers have t se
onds to make an o�er (i.e. to say yes, meaning �I'mwilling to buy at the 
urrent bid pri
e bi�). As soon as one buyer anonymouslysays yes, he be
omes the winner wi of that round and a new round begins. Ifnobody says anything for t se
onds, round i is 
on
luded by timeout and theau
tion is won by the winner wi−1 of the previous round, if one exists. If thetimeout o

urs during round 0, this means that nobody made any o�ers at theinitial pri
e b0, so there is no sale.Although our framework allows the formalization of this proto
ol for anarbitrary number of bidders and bidding rounds, for illustration purposes wewill 
onsider the 
ase of two bidders (Candlemaker and S
arfa
e) and tworounds of bids. Furthermore, we assume that the initial bid is always 100euros, so the �rst bid does not need to be announ
ed by the seller. In ea
hturn the seller 
an 
hoose how mu
h he wants to in
rease the 
urrent bidvalue. This is done by adding an in
rement to the last bid. There are twooptions of in
rements, namely inc1 (100 euros) and inc2 (200 euros). In thatway, bi+1 is either bi + inc1 or bi + inc2. We 
an des
ribe this proto
ol asa normalized IIHS I = (M,A,B), where A = {Candlemaker,S
arfa
e, a∗} isthe set of se
ret a
tions, B = {inc1, inc2, b∗} is the set of observable a
tions,and the probabilisti
 automaton M is represented in Figure 4.8. For 
larityreasons, transitions with probability 0 are not represented in the automaton.Note that the spe
ial se
ret a
tion a∗ represents the situation where neitherCandlemaker nor S
arfa
e bid. The spe
ial observable a
tion b∗ representsthe end of the au
tion and it 
an only o

ur if no one has bid in the round.Table 4.7 shows all the sto
hasti
 kernels for this example.The next step is to 
onstru
t all possible rea
tion fun
tions {ϕt(β
t−1)}Tt=1.As seen in Se
tion 4.3.2, the rea
tion fun
tions are the 
orrespondent to theen
oder in the 
hannel. They take the feedba
k story and de
ide how theworld will rea
t to this situation. Table 4.8 
ontains the rea
tion fun
tions for72
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aine Au
tion proto
ol
Cmp1

Sf p2

a∗ p3

inc1q4
inc2

q5
inc1q6

inc2
q7 b∗

1

Cm
p9 Sf

p10

a∗ p11
Cm

p12 Sf
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a∗ p14
Cm

p15 Sf
p16

a∗ p17
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p18 Sf
p19

a∗ p20 a∗
1

inc1
q22

inc2
q23

inc1
q24

inc2
q25

b∗
1

inc1
q27

inc2
q28

inc1
q29

inc2
q30

b∗
1

inc1
q32

inc2
q33

inc1
q34

inc2
q35

b∗
1

inc1
q37

inc2
q38

inc1
q39

inc2
q40

b∗
1

b∗
1Figure 4.8: Co
aine au
tion example

α1 → β1 inc1 inc2 b∗Candlemaker q4 q5 0S
arfa
e q6 q7 0
a∗ 0 0 1(a) t=1, p(β1|α

1, β0)

α1, β1, α2 → β2 inc1 inc2 b∗Candlemaker,inc1,Candlemaker q22 q23 0Candlemaker,inc1,S
arfa
e q24 q25 0Candlemaker,inc1,a∗ 0 0 1Candlemaker,inc2,Candlemaker q27 q28 0Candlemaker,inc2,S
arfa
e q29 q30 0Candlemaker,inc2,a∗ 0 0 1S
arfa
e,inc1,Candlemaker q32 q33 0S
arfa
e,inc1,S
arfa
e q34 q35 0S
arfa
e,inc1,a∗ 0 0 1S
arfa
e,inc2,Candlemaker q37 q38 0S
arfa
e,inc2,S
arfa
e q39 q40 0S
arfa
e,inc2,a∗ 0 0 1
a∗,b∗,a∗ 0 0 1All other lines 0 0 1(b) t = 2, p(β2|α

2, β1)Table 4.7: Sto
hasti
 kernels for the Co
aine Au
tion exampleea
h time t ≤ 2.Now we need to de�ne the rea
tor, i.e. the probability distribution onrea
tion fun
tions. Corollary 14 shows that we 
an do so by using the followingequations:
p(ϕ1) = p(α1|α

0, β0) = p(α1)

p(ϕt|ϕ
t−1) =

∏

βt−1

p(ϕt(β
t−1)|ϕt−1(βt−2), βt−1), 2 ≤ t ≤ TFor instan
e, p(f1(1)) = p(Candlemaker) = p1. In the same way, p(f1(2)) =

p(S
arfa
e) = p2 and p(f1(3)) = p(a∗) = p3. 73
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β0 f1(1) f1(2) f1(3)

∅ Candlemaker S
arfa
e a∗(a) All 3 rea
tion fun
tions ϕ1

β1 f2(1)(β
1) f2(2)(β

1) f2(3)(β
1) f2(4)(β

1)

inc1 Candlemaker Candlemaker Candlemaker Candlemaker
inc2 Candlemaker Candlemaker Candlemaker S
arfa
e
b∗ Candlemaker S
arfa
e a∗ Candlemaker
β1 f2(5)(β

1) f2(6)(β
1) f2(7)(β

1) f2(8)(β
1)

inc1 Candlemaker Candlemaker Candlemaker Candlemaker
inc2 S
arfa
e S
arfa
e a∗ a∗

b∗ S
arfa
e a∗ Candlemaker S
arfa
e
β1 f2(9)(β

1) f2(10)(β
1) f2(11)(β

1) f2(12)(β
1)

inc1 Candlemaker S
arfa
e S
arfa
e S
arfa
e
inc2 a∗ Candlemaker Candlemaker Candlemaker
b∗ a∗ Candlemaker S
arfa
e a∗

β1 f2(13)(β
1) f2(14)(β

1) f2(15)(β
1) f2(16)(β

1)

inc1 S
arfa
e S
arfa
e S
arfa
e S
arfa
e
inc2 S
arfa
e S
arfa
e S
arfa
e a∗

b∗ Candlemaker S
arfa
e a∗ Candlemaker
β1 f2(17)(β

1) f2(18)(β
1) f2(19)(β

1) f2(20)(β
1)

inc1 S
arfa
e S
arfa
e a∗ a∗

inc2 a∗ a∗ Candlemaker Candlemaker
b∗ S
arfa
e a∗ Candlemaker S
arfa
e
β1 f2(21)(β

1) f2(22)(β
1) f2(23)(β

1) f2(24)(β
1)

inc1 a∗ a∗ a∗ a∗

inc2 Candlemaker S
arfa
e S
arfa
e S
arfa
e
b∗ a∗ Candlemaker S
arfa
e a∗

β1 f2(25)(β
1) f2(26)(β

1) f2(27)(β
1) �

inc1 a∗ a∗ a∗ �
inc2 a∗ a∗ a∗ �
b∗ Candlemaker S
arfa
e a∗ �(b) All 27 rea
tion fun
tions ϕ2(β

1)Table 4.8: Rea
tion fun
tions for the 
o
aine au
tion example
74



4.5. An example: the Co
aine Au
tion proto
olLet us take as an example the 
al
ulation of p(f2(6)|f1(3)):
p(f2(6)|f1(1)) =

∏

β1

p(f2(6)(β
1)|ϕ1(1), β

1)

= p(f2(6)(inc1)|Candlemaker , inc1)·
p(f2(6)(inc2)|Candlemaker , inc2)·
p(f2(6)(b∗)|Candlemaker , b∗)

= p(Candlemaker |Candlemaker , inc1)·
p(S
arfa
e |Candlemaker , inc2)
p(a∗|Candlemaker , b∗)

= p9 · p13 · 1

= p9p13Note that some rea
tion fun
tions 
an have probability 0, whi
h is 
onsis-tent with the probabilisti
 automaton. For instan
e:
p(f2(25)|f1(3)) =

∏

β1

p(f2(25)(β
1)|ϕ1(3), β

1)

= p(f2(25)(inc1)|a∗, inc1) · p(f2(25)(inc2)|a∗, inc2)·

p(f2(25)(b∗)|a∗, b∗)

= p(a∗|a∗, inc1) · p(a∗|a∗, inc2) · p(Candlemaker |a∗, b∗)
= 1 · 1 · 0

= 04.5.1 Cal
ulating the information leakageLet us now 
al
ulate the information leakage for this example using the 
on-
epts from Se
tion 4.4. We will analyze three di�erent s
enarios:Example a: There is feedba
k, but the probability of an observable does notdepend on the history of se
rets. In the au
tion proto
ol, this 
orre-sponds to a s
enario where the probability of one of the mobsters to bid
an depend on the in
rement imposed by the seller, but the history ofwho has previously bid in the past has no in�uen
e on how the seller
hooses the bid in
rement in the 
oming turns. In other words, theseller 
annot use the information of who has been bidding to 
hange hisstrategy of de�ning the new in
rements. This situation 
orresponds tothe original des
ription of the proto
ol in [SA99℄, where the seller does75



4. Information flow in intera
tive systemsnot have a

ess to the identity of the bidder, for the sake of anonymitypreservation. In general, we have p(βt|α
t, βt−1) = p(βt|β

t−1) for every
1 ≤ t ≤ T . There is an ex
eption, however: if there is no bidder, the
ase modeled by the se
ret being a∗, then the au
tion terminates, whi
his signaled by the observable b∗.Example b: This is the most general 
ase, without any restri
tions. Thepresen
e of feedba
k allows the probability of the bidder to depend ofthe in
rement on the pri
e. For instan
e, if Candlemaker is ri
her thanS
arfa
e, it is more likely that the former bids if the in
rement in the pri
eis inc2 instead of inc1. Also, the probability of an observable 
an dependon the history of se
rets, i.e. in general p(βt|αt, βt−1) 6= p(βt|β

t−1) for
1 ≤ t ≤ T . This s
enario 
an represent a situation where the selleris 
orrupted and 
an use his information to a�e
t the out
ome of theau
tion. As an example, suppose that the seller is a friend of S
arfa
eand he wants to help him in the au
tion. One way of doing so is to 
he
kwho was the winner of the last bidding round. Whenever the winner isCandlemaker, the seller 
hooses as in
rement the small value inc1, hopingthat it will give S
arfa
e a good 
han
e to bid in the next round. Onthe other hand, whenever the seller dete
ts that the winner is S
arfa
e,he 
hooses as the next in
rement the greater value inc2, hoping thatit will minimize the 
han
es of Candlemaker to bid in the next round(and therefore maximizing the 
han
es of the au
tion to end up havingS
arfa
e as the �nal winner).Example 
: There is no feedba
k. In the 
o
aine au
tion, we 
an have the(perhaps unrealisti
) situation in whi
h the in
rement added to the bidhas no in�uen
e on the probability of Candlemaker or S
arfa
e being thebidder. Mathemati
ally, we have p(αt|α

t−1, βt−1) = p(αt|α
t−1) for every

1 ≤ t ≤ T . As in Example b, however, we do not impose any restri
tionon p(βt|α
t, βt−1).For ea
h s
enario we need to �ll in the values of the probabilities in theproto
ol tree in Figure 4.8. The probabilities for ea
h example are listed inTable 4.9. Table 4.10 shows a 
omparison between some relevant values on thethree 
ases.In Example a, sin
e the probability of observables does not depend on thehistory of se
rets, there is (almost) no information �owing from the input tothe output, and the dire
ted information I(AT → BT ) is 
lose to zero, i.e.the leakage is low. The only reason why the leakage is not zero is be
ause theend of an au
tion needs to be signaled. Due to presen
e of feedba
k, however,the dire
ted information in the other sense I(BT → AT ) is non-zero, and sois the mutual information I(AT ;BT ). This is an example where the mutualinformation does not 
orrespond to the real information leakage, sin
e some (in76



4.5. An example: the Co
aine Au
tion proto
olProbability Example a Example b Example 
variable value value value
p1 0.75 0.70 0.70
p2 0.24 0.24 0.24
p3 0.01 0.01 0.01
q4 0.50 0.55 0.30
q5 0.50 0.45 0.70
q6 0.50 0.45 0.70
q7 0.50 0.55 0.30
p9 0.04 0.80 0.75
p10 0.95 0.19 0.20
p11 0.01 0.01 0.05
p12 0.95 0.19 0.75
p13 0.04 0.80 0.20
p14 0.01 0.01 0.05
p15 0.04 0.90 0.65
p16 0.95 0.09 0.35
p17 0.01 0.01 0.05
p18 0.95 0.09 0.65
p19 0.04 0.90 0.35
p20 0.01 0.01 0.05
q22 0.50 0.80 0.45
q23 0.50 0.20 0.55
q24 0.50 0.20 0.55
q25 0.50 0.80 0.45
q27 0.45 0.75 0.45
q28 0.55 0.25 0.55
q29 0.45 0.35 0.55
q30 0.55 0.65 0.45
q32 0.50 0.55 0.45
q33 0.50 0.45 0.55
q34 0.50 0.40 0.55
q35 0.50 0.60 0.45
q37 0.45 0.60 0.45
q38 0.55 0.40 0.55
q39 0.45 0.35 0.55
q40 0.55 0.55 0.45Table 4.9: Values of the probabilities in Figure 4.8 for Examples a, b, and 
this 
ase, most) of the 
orrelation between input and output 
an be attributedto the feedba
k.In Example b the information �ow from input to output I(AT → BT ) issigni�
antly higher than zero, but still, due to feedba
k, the information �owfrom outputs to inputs I(BT → AT ) is not zero and the mutual information

I(AT ;BT ) is higher than the dire
ted information I(AT → BT ). 77



4. Information flow in intera
tive systemsInterpretation Symbol Example a Example b Example 
Input un
ertainty H(AT ) 1.9319 1.9054 1.9158Rea
tor un
ertainty HR 1.1911 1.5804 1.9158A posteriori un
ertainty H(AT |BT ) 1.0303 1.2371 1.4183Mutual information I(AT ;BT ) 0.9016 0.6684 0.4975Leakage I(AT → BT ) 0.1608 0.3433 0.4975Feedba
k information I(BT → AT ) 0.7408 0.3250 0.0000Table 4.10: Values of the entropy and dire
ted information for Examples a, b,and 
, where I(AT ;BT ) = H(AT ) − H(AT |BT ) and I(AT → BT ) = HR −
H(AT |BT )In Example 
, the absen
e of feedba
k implies that I(BT → AT ) is zero.In that 
ase the values of I(AT ;BT ) and I(AT → BT ) 
oin
ide, and representthe real leakage.Finally, Figure 4.9 shows a 
omparison between the values of the entropyand of the dire
ted information in the examples. The totality of the mutualinformation I(AT ;BT ) is represented by the height of the 
orrespondent bar,and we emphasize the 
ontribution of the dire
ted information in ea
h dire
-tion by splitting the bar into two parts. This �gure highlights the fa
t thatmutual information 
an be misleading as a measure of leakage. The great-est mutual information is obtained in Example a, followed by Example b andthen by Example 
. The real leakage, however, given by I(AT → BT ), re-spe
ts exa
tly the inverse order, namely Example a presents the lowest valuewhile Example 
 presents the highest one. Indeed, in Example a the value of
I(AT → BT ) represents only 18% of the mutual information, while in Exampleb it represents 51% and in Example 
 it amounts to 100%.4.6 Topologi
al properties of IIHSs and their
apa
ityIn this se
tion we show how to extend to IIHSs the notion of pseudometri
de�ned in [DJGP02℄ for Con
urrent Labeled Markov Chains, and we provethat the 
apa
ity of the 
orresponding 
hannels is a 
ontinuous fun
tion withrespe
t to this pseudometri
. The pseudometri
 
onstru
tion is sound for gen-eral IIHSs, but the result on 
apa
ity is only valid for se
ret-nondeterministi
IIHSs.Given a set of states S, a pseudometri
 is a fun
tion d that yields a non-negative real number for ea
h pair of states and satis�es the following:(i) d(s, s) = 0;78



4.6. Topologi
al properties of IIHSs and their 
apa
ity

Figure 4.9: Comparison between the leakage in Examples a, b, and 
(i) d(s, t) = d(t, s); and(i) d(s, t) ≤ d(s, u) + d(u, t).We say that a pseudometri
 d is c-bounded if ∀s, t : d(s, t) ≤ c, where c isa positive real number.Note that, in 
ontrast to metri
s, in pseudometri
s two elements 
an havedistan
e 0 without being identi
al. We 
onsider pseudometri
s instead of met-ri
s be
ause our purpose is to extend the notion of (probabilisti
) bisimulation:having distan
e 0 will 
orrespond to being bisimilar.We now de�ne a 
omplete latti
e on pseudometri
s, in order to de�ne thedistan
e between IIHSs as the greatest �xpoint of a parti
ular transformation,in line with the 
oindu
tive theory of bisimilarity. Sin
e larger bisimulationsidentify more, the natural extension of the ordering to pseudometri
s mustshorten the distan
es as we go up in the latti
e:De�nition 22. M is the 
lass of 1-bounded pseudometri
s on states with theordering
d � d′ if ∀s, s′ ∈ S : d(s, s′) ≥ d′(s, s′).It is easy to see that (M,�) is a 
omplete latti
e. In order to de�nepseudometri
s on IIHSs, we now need to lift the pseudometri
s on states topseudometri
s on distributions in D(L×S). Following standard lines [vBW01,DJGP02, DCPP℄, we apply the 
onstru
tion based on the Kantorovi
h metri
[Kan42℄. 79



4. Information flow in intera
tive systemsDe�nition 23. For d ∈ M, and µ, µ′ ∈ D(L × S), we de�ne d(µ, µ′) (over-loading the notation d) as
d(µ, µ′) = max

∑

(ℓi,si)∈L×S

(µ(ℓi, si)− µ′(ℓi, si))xiwhere the maximum is taken over all possible values of the xi's, subje
t to the
onstraints 0 ≤ xi ≤ 1 and xi − xj ≤ d̂((ℓi, si), (ℓj , sj)), where
d̂((ℓi, si), (ℓj , sj)) =

{
1 if ℓi 6= ℓj
d(si, sj) otherwiseIt 
an be shown that with this de�nition m is a pseudometri
 on D(L×S).De�nition 24. A pseudometri
 d ∈ M is a bisimulation pseudometri
 1 if,for all ǫ ∈ [0, 1), d(s, s′) ≤ ǫ implies that if s → µ, then there exists some µ′su
h that s′ → µ′ and d(µ, µ′) ≤ ǫ.Note that it is not ne
essary to require the 
onverse of the 
ondition inDe�nition 24 to get a 
omplete analogy with bisimulation: the 
onverse isindeed implied by the symmetry of d as a pseudometri
. Note also that weprohibit ǫ to be 1 be
ause, throughout this 
hapter, 1 represents the maximumdistan
e, whi
h in
ludes the 
ase where one state may perform a transition andthe other may not.The greatest bisimulation pseudometri
 is

dmax =⊔{d ∈ M | d is a bisimulation pseudometri
} (4.12)We now 
hara
terize dmax as a �xed point of a monotoni
 fun
tion Φ on
M. Eventually we are interested in the distan
e between IIHSs, and for thesake of simpli
ity, from now on we 
onsider only the distan
e between statesbelonging to di�erent IIHSs. The extension to the general 
ase is trivial. For
larity purposes, we assume that di�erent IIHSs have disjoint sets of states.De�nition 25. Given two IIHSs with transition relations θ and θ′ respe
tively,and a pseudometri
 d on states, de�ne Φ :M→M as:

Φ(d)(s, s′) =







maxi d(si, s
′
i) if ϑ(s) = {δ(a1,s1), . . . , δ(am,sm)}and ϑ′(s′) = {δ(a1 ,s′1), . . . , δ(am,s′m)}

d(µ, µ′) if ϑ(s) = {µ} and ϑ′(s′) = {µ′}

0 if ϑ(s) = ϑ′(s′) = ∅

1 otherwise1In literature a pseudometri
 with this property is also known as bisimulation metri
,although it is still a pseudometri
.80



4.6. Topologi
al properties of IIHSs and their 
apa
ityIt is easy to see that the de�nition of Φ is a parti
ular 
ase of the fun
tion
F de�ned in [DJGP02, DCPP℄, whi
h is 
hara
terized as follows (
f. Lemma3.8 in the full version of [DJGP02℄, and De�nition 2.7 in [DCPP℄):

F (d)(s, s′) = max{sup
s→µ

inf
s′→µ′

d(µ, µ′) , sup
s′→µ′

inf
s→µ

d(µ, µ′)}Hen
e it 
an be proved, as an instan
e of the analogous result for F (
f.Lemma 2.8 in [DCPP℄), that Φ(d) is a pseudometri
, and that the followingproperty holds.Lemma 26. For ǫ ∈ [0, 1), Φ(d)(s, s′) ≤ ǫ holds if and only if whenever s→ µ,there exists some µ′ su
h that s′ → µ′ and d(µ, µ′) ≤ ǫ.From the above lemma and De�nition 24 we derive (see also Lemma 2.9 in[DCPP℄):Corollary 27. A pseudometri
 d is a bisimulation pseudometri
 if and onlyif d � Φ(d).By applying Corollary 27 to (4.12) we obtain
dmax =⊔{d ∈ M | d � Φ(d)}Furthermore, by adapting the proof of the monotoni
ity result for F (
f.Lemma 3.9 in the full version of [DJGP02℄) we 
an prove the following:Lemma 28. Φ is monotoni
 on (M�).Thanks to Lemma 28, and using Tarski's �xed point theorem as formulatedin [Tar55℄, we have that dmax is the greatest �xed point of Φ. Furthermore,by Corollary 27 we know that dmax is indeed a bisimulation pseudometri
, andthat it is the greatest bisimulation pseudometri
.In addition, the �nite bran
hing property of IIHSs ensures that the 
losureordinal of Φ is ω (
f. Lemma 3.10 in the full version of [DJGP02℄). Thereforewe 
an pro
eed in a standard way to show that
dmax = {Φi(⊤) | i ∈ N},where ⊤ is the greatest pseudometri
 (i.e. ⊤(s, s′) = 0 for every s, s′), and

Φ0(⊤) = ⊤.Given two IIHSs I and I
′, with initial states s and s′ respe
tively, we de�nethe distan
e between I and I
′ as d(I, I′) = dmax(s, s′). The following propertiesare auxiliary to the theorem whi
h states the 
ontinuity of the 
apa
ity.Lemma 29. Consider two IIHSs I and I′ with transition fun
tions ϑ and

ϑ′ respe
tively. Given t ≥ 2 and two sequen
es αt and βt, assume that both
I(αt−1, βt−1) and I′(αt−1, βt−1) are de�ned. Assume also it is the 
ase that
dmax(I(αt−1, βt−1), I′(αt−1, βt−1)) < p(βt | α

t, βt−1), and ϑ(I(αt, βt−1)) 6= ∅.Then: 81



4. Information flow in intera
tive systems1. ϑ′(I′(αt, βt−1)) 6= ∅ holds as well,2. I(αt, βt) and I′(αt, βt) are both de�ned, p(βt | αt, βt−1) > 0, and
dmax(I(αt, βt), I′(αt, βt)) ≤

dmax(I(αt−1, βt−1), I′(αt−1, βt−1))

p(βt | αt, βt−1).Proof.1. Assume ϑ(I(αt, βt−1)) 6= ∅ and, by 
ontradi
tion, ϑ′(I′(αt, βt−1)) = ∅.Sin
e dmax is a �xed point of Φ, we have dmax = Φ(dmax), and therefore
dmax(I(αt, βt−1), I′(αt, βt−1)) = Φ(dmax)(I(αt, βt−1), I′(αt, βt−1))

= 1

≥ p(βt | α
t, βt−1),whi
h 
ontradi
ts the hypothesis.2. If ϑ(I(αt, βt−1)) 6= ∅, then, by the �rst point of this lemma, we havethat ϑ′(I′(αt, βt−1)) 6= ∅ holds as well, and therefore both I(αt, βt) and

I′(αt, βt) are de�ned. The hypothesis dmax(I(αt−1, βt−1), I′(αt−1, βt−1)) <
p(βt | α

t, βt−1) ensures that p(βt | αt, βt−1) ≥ 0.Let us now prove the bound on dmax(I(αt, βt), I′(αt, βt)). By de�nitionof Φ, we have
Φ(dmax)(I(αt−1, βt−1), I′(αt−1, βt−1)) ≥ dmax(I(αt, βt−1), I′(αt, βt−1)).Sin
e dmax = Φ(dmax), we have
dmax(I(αt−1, βt−1), I′(αt−1, βt−1)) ≥ dmax(I(αt, βt−1), I′(αt, βt−1)).(4.13)By de�nition of Φ and of the Kantorovi
h metri
, we have
Φ(dmax)(I(αt, βt−1), I′(αt, βt−1)) ≥ p(βt | α

t, βt−1)·
dmax(I(αt, βt), I′(αt, βt)).Using again dmax = Φ(dmax), we get

dmax(I(αt, βt−1), I′(αt, βt−1)) ≥ p(βt | α
t, βt−1)·

dmax(I(αt, βt), I′(αt, βt)),whi
h, together with (4.13), allows us to 
on
lude.82



4.6. Topologi
al properties of IIHSs and their 
apa
ityLemma 30. Consider two IIHSs I and I
′, and let p(· | ·, ·) and p′(· | ·, ·)be their distributions on the output nodes. Given T > 0, and two sequen
es

αT and βT , assume that p(βt | α
t, βt−1) > 0 for every t < T . Let m =

min1≤t<T p(βt | α
t, βt−1) and let ǫ ∈ (0,mT−1). Assume d(I, I′) < ǫ. Then,for every t ≤ T , we have
p(βt | α

t, βt−1)− p′(βt | α
t, βt−1) <

ǫ

mT−1
.Proof. Observe that, for every t < T , I(αt, βt) must be de�ned, and, by re-peatedly applying Lemma 29(1), we get that also I

′(αt, βt) is de�ned. Byde�nition of Φ, and of the Kantorovi
h metri
, we have
p(βt | α

t, βt−1)− p′(βt | α
t, βt−1) ≤ Φ(dmax)(I(αt−1, βt−1), I′(αt−1, βt−1)),and sin
e dmax is a �xed point of Φ, we get

p(βt | α
t, βt−1)−p′(βt | α

t, βt−1) ≤ dmax(I(αt−1, βt−1), I′(αt−1, βt−1)). (4.14)By applying Lemma 29(2) t− 1 times, from (4.14) we get
p(βt | α

t, βt−1)− p′(βt | α
t, βt−1) ≤ dmax(I(α0,β0),I′(α0,β0))

mt−1

= d(I,I′)
mt−1

≤ d(I,I′)
mT−1

< ǫ
mT−1Note that previous lemma states a sort of 
ontinuity property of the matri-
es obtained from IIHSs, but not uniform 
ontinuity, be
ause of the dependen
eon one of the two IIHSs. It is easy to see (from the proof of the Lemma) thatuniform 
ontinuity does not hold.The main 
ontribution of this se
tion, stated in next theorem, is the 
on-tinuity of the 
apa
ity with respe
t to the pseudometri
 on IIHSs. For thistheorem, we assume that the IIHSs are normalized. Furthermore, it is 
ru
ialthat they are se
ret-nondeterministi
 (while the de�nition of the pseudometri
holds in general).Theorem 31. Consider two normalized IIHSs I and I′, and �x a T > 0. Forevery ǫ > 0 there exists ν > 0 su
h that if d(I, I′) < ν then |CT (I) −

CT (I
′)| < ǫ.Proof. Consider two normalized IIHSs I and I′ and 
hoose T, ǫ > 0. Let DTbe the set of all input distributions in presen
e of feedba
k. Observe that
|CT (I)−CT (I

′)| = |max
DT

1

T
I(AT → BT )−max

DT

1

T
I(A′T → B′T )|

≤ 1
T
max
DT

|I(AT → BT )− I(A′T → B′T )| 83



4. Information flow in intera
tive systemsSin
e the dire
ted information I(AT → BT ) is de�ned by means of arith-meti
 operations and logarithms on the joint probabilities p(αt, βt) and on the
onditional probabilities p(αt, βt), p(αt, βt−1), whi
h in turn 
an be obtainedby means of arithmeti
 operations from the probabilities p(βt | α
t, βt−1) and

pF (ϕ
t), we have that I(AT → BT ) is a 
ontinuous fun
tions of the distribu-tions p(βt | αt, βt−1) and pF (ϕ

t), for every t ≤ T . Let p(βt | αt, βt−1), p′(βt |
αt, βt−1) be the distributions on the output nodes of I and I′, modi�ed in thefollowing way: starting from level T , whenever p(βt | αt, βt−1) = 0, then we re-de�ne the distributions at all the output nodes of the subtree rooted in I(αt, βt)so that they 
oin
ide with the distribution of the 
orresponding nodes of in I

′,and analogously for p′(βt | αt, βt−1). Note that this transformation does not
hange the dire
ted information, be
ause the subtree rooted in I(αt, βt) doesnot 
ontribute to it, due to the fa
t that the probability of rea
hing any of itsnodes is 0. The 
ontinuity of I(AT → BT ) implies that there exists ǫ′ > 0 su
hthat, if |p(βt | αt, βt−1)− p′(βt | α
t, βt−1)| < ǫ′ for all t ≤ T and all sequen
es

αt, βt, then, for any pF (ϕ
t), we have |I(AT → BT )− I(A′T → B′T )| < ǫ. Theresult then follows from Lemma 30, by 
hoosing

ν = ǫ′ ·min









min
1 ≤ t < T

p(βt | α
t, βt−1) > 0

p(βt | α
t, βt−1),

min
1 ≤ t < T

p′(βt | α
t, βt−1) > 0

p′(βt | α
t, βt−1)









.

We 
on
lude this se
tion with an example showing that the 
ontinuityresult for the 
apa
ity does not hold if the 
onstru
tion of the 
hannel is donestarting from a system in whi
h the se
rets are endowed with a probabilitydistribution. This is also the reason why we 
ould not simply adopt the proofte
hnique of the 
ontinuity result in [DJGP02℄ and we had to 
ome up with adi�erent reasoning.Example 6. Consider the two following programs, where a1, a2 are se
rets,
b1, b2 are observable, ‖ is the parallel operator, and +p is a binary probabilisti

hoi
e that assigns probability p to the left bran
h, and probability 1− p to theright one.s) (send(a1) +p send(a2)) ‖ re
eive(x).output(b2)t) (send(a1)+q send(a2)) ‖ re
eive(x).if x = a1 then output(b1) else output(b2).84



4.7. Related workTable 4.11 shows the fully probabilisti
 IIHSs 
orresponding to these pro-grams, and their asso
iated 
hannels, whi
h in this 
ase (sin
e the se
ret a
-tions are all at the top-level) are 
lassi
al 
hannels, i.e. memoryless and with-out feedba
k. As usual for 
lassi
 
hannels, they do not depend on p and q. Itis easy to see that the 
apa
ity of the �rst 
hannel is 0 and the 
apa
ity of these
ond one is 1. Hen
e their di�eren
e is 1, independently from p and q.Let now p = 0 and q = ǫ. It is easy to see that the distan
e between s and
t is ǫ. Therefore (when the automata have probabilities on the se
rets), the
apa
ity is not a 
ontinuous fun
tion of the distan
e.

s t

p 1−p

0 1 0 1

a1 a2

b1 b2 b1 b2

q 1−q

1 0 0 1

a1 a2

b1 b2 b1 b2s b1 b2
a1 0 1

a2 0 1(a) (Channel for s

t b1 b2
a1 1 0

a2 0 1(b) Channel for tTable 4.11: The IIHSs of Example 6 and their 
orresponding 
hannels4.7 Related workGray investigated a 
on
ept similar to dire
ted information in [Gra91℄. In
ontrast to our model, whi
h is based on an eavesdropper s
enario, he 
on-sidered leakage in a sender-re
eiver model. More pre
isely, he 
onsidered asystem based on Millen's syn
hronous state ma
hine [Mil90℄, and 
onne
ted to�low� and �high� environments via 
ommuni
ation 
hannels. His purpose wasto measure the �ow of information from the high environment to the low one,assuming that the only way for the low environment to learn about the highone (and vi
e versa) is through the system. To this end, he de�ned a notionof �quasi-dire
ted information� by extending Gallager's formula for dis
rete�nite state 
hannels [Gal68℄. He also 
onje
tured a 
orresponden
e betweenthe quasi-dire
ted information and the transmission rate of the 
hannel. Hisformulation of quasi-dire
ted information, however, is not 
ompletely the sameas dire
ted information, and as a result the 
onje
ture does not hold.The 
ontinuity of the 
hannel 
apa
ity was also proved in [DJGP02℄ forsimple 
hannels, but the proof does not adapt to the 
ase of 
hannels withmemory and feedba
k and we had to devise a di�erent te
hnique. 85



4. Information flow in intera
tive systems4.8 Chapter summary and dis
ussionIn this 
hapter we have investigated the problem of information leakage inintera
tive systems, and proved that these systems 
an be modeled as 
hannelswith memory and feedba
k. We have also proved that the 
hannel 
apa
ity isa 
ontinuous fun
tion of a pseudometri
 based on the Kantorovi
h metri
.We have 
onsidered various kinds of automata 
orresponding to di�erent
ombinations of nondeterministi
 and probabilisti
 
hoi
e, as summarized inTable 4.12(a). Note that in this the third row 
orresponds to the limit 
ase inwhi
h the rea
tor is a Dira
 measure, i.e. the probability is all 
on
entratedon exa
tly one ϕT ∈ F . It is easy to see that in this 
ase I(AT → BT ) = 0 (allthe entropies that 
onstitute I(AT → BT ) are 0), although I(BT → AT ) 6=
0. Therefore there is no leakage. In the 
lassi
 
ase this 
orresponds to thesituation in whi
h the input distribution is a Dira
 measure.Table 4.12(b) summarizes the 
omparison between the 
hannels with mem-ory and feedba
k investigated in this paper, and the 
lassi
 
hannels.Throughout this 
hapter we have assumed that the dependen
e of the se
ret
hoi
es on the observables is part of the external knowledge and, therefore,not 
onsidered leakage. The reader may wonder what would happen if thisassumption were dropped. We argue that in this 
ase I(BT → AT ) 
ould be
onsidered as part of the leakage. In the 
ases a and b of the 
o
aine au
tionexample in Se
tion 4.5, for instan
e, one may want to 
onsider the informationthat we 
an dedu
e about the se
rets (the identities of the bidder) from theobservables (the in
rements of the seller) as a leak due to the proto
ol.In some other 
ases the �ow of information from the observables to these
rets may even be 
onsidered as a 
onsequen
e of the a
tive atta
ks of anadversary, whi
h uses the observables to modify the probability of the se
rets.In this 
ase I(BT → AT ) 
ould represent a measure of the e�e
tiveness of theadversary.As future work, we would like to provide algorithms to 
ompute the leak-age and maximum leakage of intera
tive systems. These are rather 
hallengingproblems given the exponential growth of rea
tion fun
tions (needed to 
om-pute the leakage) and the quanti�
ation over in�nitely many rea
tors (givenby the de�nition of maximum leakage in terms of 
apa
ity). One possible so-lution is to study the relation between deterministi
 s
hedulers and sequen
eof rea
tion fun
tions. In parti
ular, we believe that for ea
h sequen
e of rea
-tion fun
tions and distribution over it there exists a probabilisti
 s
heduler forthe automata representation of the se
ret-nondeterministi
 IIHS. In this way,the problem of 
omputing the leakage and maximum leakage would redu
e toa standard probabilisti
 model 
he
king problem (where the 
hallenge is to
ompute probabilities ranging over in�nitely many s
hedulers).In addition, we plan to investigate measures of leakage for intera
tive sys-tems other than mutual information and 
apa
ity.We intend to study the appli
ability of our framework to the area of86



4.8. Chapter summary and dis
ussionIIHSs as automata IIHSs as 
hannels Notion of leakageNormalized IIHSs with Sequen
e ofnondeterministi
 se
rets sto
hasti
 kernels Leakage as 
apa
ityand probabilisti
 observables {p(βt|α
t, βt−1)}Tt=1Sequen
e ofFully probabilisti
 sto
hasti
 kernels Leakage as dire
tednormalized IIHSs {p(βt|α
t, βt−1)}Tt=1 information+ rea
tor I(AT → BT )

{p(ϕt|ϕ
t−1)}Tt=1Sequen
e ofNormalized IIHSs with a sto
hasti
 kernelsdeterministi
 s
heduler {p(βt|α
t, βt−1)}Tt=1 No leakagesolving the nondeterminism + rea
tion fun
tionsequen
e ϕT(a) The various models 
onsidered in this 
hapterClassi
al 
hannels Channels with memory and feedba
kThe system is modeled in The system is modeled in severalindependent uses of the 
hannel, 
onse
utive uses of the 
hannel.often a unique use.The 
hannel is de�ned on

AT → BT , i.e. its input is The 
hannel is de�ned on F → B, i.e.a single string αT = α1 . . . αT its input is a rea
tion fun
tion ϕtof se
ret symbols and its output and its output is an observable βt.is a single string βT = β1 . . . βTof observable symbols.The 
hannel is memoryless and The 
hannel has memory. Despite thein general it is impli
itly assumed fa
t that the 
hannel de�ned on F → Bthe absen
e of feedba
k. does not have feedba
k, the internalsto
hasti
 kernels do.The 
apa
ity is 
al
ulated using The 
apa
ity is 
al
ulated using mutualmutual information I(AT ;BT ). dire
ted information I(AT → BT ).(b) Classi
al 
hannels vs. 
hannels with memory and feedba
kTable 4.12: Summary of resultsgame theory. In parti
ular, the intera
tive nature of games su
h as PrisonerDilemma [Pou92℄ and Stag and Hunt [Sky03℄ (in their iterative versions) 
anbe modeled as 
hannels with memory and feedba
k following the te
hniquesproposed in this work. Furthermore, (probabilisti
) strategies 
an be en
odedas rea
tion fun
tions. In this way, optimal strategies are attained by rea
tionfun
tions maximizing the leakage of the 
hannel.
87





FiveDi�erential priva
y: the trade-o�between leakage and utility
�If you have nothing to hide, then you don't have a life.�
ited by Daniel J. SoloveIn this 
hapter we 
onsider the di�erential priva
y approa
h to the prob-lem of statisti
al dis
losure 
ontrol. In general a statisti
al database 
ontainsdata of a group of individuals, and users 
an pose queries to obtain statis-ti
al information about the sample in the dataset. To preserve the priva
yof the the parti
ipants in the database, it is desirable to restri
t the amountof information that the system leaks about their individual values. One wayof dealing with the problem is by using randomization me
hanisms: to avoidleakage, the real answer is modi�ed with some 
arefully added noise beforebeing reported to the users. A very popular and studied way of doing so isbased on the 
on
ept of di�erential priva
y.In our work we 
onsider the relation between di�erential priva
y and quan-titative information �ow. We address the problem of 
hara
terizing the pro-te
tion that di�erential priva
y provides to individuals with respe
t to infor-mation leakage, and the problem of the utility, i.e. the measure of how 
losethe reported answer is to the true answer.Contribution The main 
ontributions of this 
hapter 
an be summarizedas follows.

• We propose an information-theoreti
 framework to reason about bothinformation leakage and utility. 89



5. Differential priva
y: the trade-off between leakage andutility
• We explore the graph-theoreti
 foundations of the adja
en
y relation ondatabases1, and we point out two types of symmetries whi
h allow usto establish a stri
t link between di�erential priva
y and informationleakage.
• We prove that ǫ-di�erential priva
y implies a tight bound on the min-entropy leakage.
• We prove that ǫ-di�erential priva
y implies a bound on the utility, mea-sured in terms of binary gain fun
tions. We prove that, under 
ertain
onditions, the bound is tight.
• We identify a method that, under 
ertain 
onditions, 
onstru
ts therandomization me
hanisms whi
h maximizes utility while providing ǫ-di�erential priva
y.Plan of the Chapter This 
hapter is organized as follows. In Se
tion 5.1we formalize the notion of di�erential priva
y and present an alternative inter-pretation for it in the spe
ial 
ase where the adja
en
y relation on databasesis 
omplete (i.e. every two distin
t databases are adja
ent). In Se
tion 5.2 weintrodu
e our model to reason about leakage and utility for randomized fun
-tions in the 
ase where the query and the randomization me
hanism 
an besplit into two distin
t 
hannels. In Se
tion 5.3 we review some 
on
epts fromgraph theory and present two spe
ial 
lasses of graphs having symmetries thatwe will explore to make the 
onne
tion between di�erential priva
y and quan-titative information �ow. We also show that the graph stru
ture on databases,indu
ed by the adja
en
y relation and the query, presents these symmetries.In Se
tion 5.4 we use the results of the previous se
tion to prove a bound onthe a posteriori min-entropy of the 
hannel matrix. Then we apply this boundto derive our results for leakage in Se
tion 5.5 and for utility in Se
tion 5.6.Finally, in Se
tion 5.7 we review some of the related work in the literature,and in Se
tion 5.8 we make our �nal remarks and 
on
lude this 
hapter.5.1 Di�erential priva
yDatabases are 
ommonly used for obtaining statisti
al information about theirparti
ipants. Simple examples of statisti
al queries are, for instan
e, the pre-dominant disease in a 
ertain population, or the average salary of a group ofpeople. The fa
t that the answer is publi
ly available may, however, 
onstitutea threat for the priva
y of the individuals.In order to illustrate the problem, 
onsider a database that stores the valuesof the salaries of a set of individuals, and assume that a user 
an pose the query�what is the average salary of the parti
ipants in the database?�. In prin
iple1The adja
en
y relation on databases will be de�ned pre
isely in Se
tion 5.2.90



5.1. Di�erential priva
ywe would like to 
onsider the global information relative to the database aspubli
, and the individual information about a parti
ipant as private. In thisexample, we would like to obtain the average salary without being able toinfer the salary of any spe
i�
 parti
ipant. Unfortunately this is not alwayspossible. In parti
ular, if the number of parti
ipants in the database is known,and an individual is removed from (or in
luded in) the database, it is possibleto infer his salary by querying again the database and 
al
ulating the in�uen
eof the removal (or in
lusion) on the reported answer to the query.Another kind of private information we may want to prote
t is whethera spe
i�
 individual is parti
ipating or not in a database. If we know that aparti
ular individual earns, say, 5.000e a month, and all the other individualsearn less than 4.000e a month, then learning that the average salary is greaterthat 4.000e will reveal immediately the presen
e of our individual of interestin the database.A 
ommon approa
h to this problem is to introdu
e some output pertur-bation me
hanism based on randomization: instead of the exa
t answer, thequerying me
hanism reports a �noisy� answer. Namely, a randomized fun
tionis used to produ
e answers a

ording to some probability distribution thatdepends on the database. The goal is to report this randomized answer, thatideally should be �
lose enough� to the real one, yet should make it harderfor the user to guess the values of individual parti
ipants. For 
ertain distri-butions, however, it may still be possible to guess the value of an individualwith a high probability of su

ess. The notion of di�erential priva
y, due toDwork [Dwo06, DL09, Dwo10, Dwo11℄, is a proposal to 
ontrol the risk ofviolating priva
y for both kinds of threats des
ribed above (value and parti
i-pation). The idea is to say that a randomized fun
tion K satis�es ǫ-di�erentialpriva
y (for some ǫ > 0) if the ratio between the probabilities that two ad-ja
ent databases give the same answer is bound by eǫ, where by �adja
ent�we mean that the databases di�er in only one individual (either for the valueof an individual or for the presen
e/absen
e of an individual). The notion ofdi�erential priva
y was developed to be independent of the side (or auxiliary)information the user 
an have about the database, and how it 
an a�e
t hisknowledge about the database before posing the query. This information 
an
ome from external sour
es (e.g. newspapers, 
ommon knowledge, et
), butdoes not a�e
t the guarantees assured by di�erential priva
y.In this 
hapter we explore the similarities between di�erential priva
y andquantitative information �ow. We base our approa
h on the following observa-tions: at the motivational level, the 
on
ern about priva
y is akin the 
on
ernabout information leakage. At the 
on
eptual level, the randomized fun
tion
K 
an be seen as an information-theoreti
 
hannel, and the limit 
ase of ǫ = 0,for whi
h the priva
y prote
tion is total, 
orresponds to a 0-
apa
ity 
hannel,whi
h does not allow any leakage. More spe
i�
ally, we investigate the no-tion of di�erential priva
y and its impli
ations in the light of the min-entropyframework for information �ow dis
ussed in Chapter 3. 91



5. Differential priva
y: the trade-off between leakage andutility5.1.1 Formal de�nitionLet X be the set of all possible databases. Two databases x, x′ ∈ X areadja
ent (or neighbors), written x ∼ x′, if they di�er in the value of exa
tlyone individual. Note that the stru
ture (X ,∼) forms an undire
ted graph.Intuitively, di�erential priva
y is based on the idea that a randomized queryfun
tion provides su�
ient prote
tion if the ratio between the probabilities oftwo adja
ent databases to give a 
ertain answer is bound by eǫ, for some ǫ > 0.Formally:De�nition 32 ([Dwo11℄). A randomized fun
tion K from X to Z satis�es
ǫ-di�erential priva
y if for all pairs x, x′ ∈ X , with x ∼ x′, and all S ⊆ Z, wehave:

Pr [K(x) ∈ S] ≤ eǫ × Pr [K(x′) ∈ S]In this thesis we 
onsider Z to be �nite, therefore its probability distribu-tion is dis
rete and we 
an rewrite the property of ǫ-di�erential priva
y moresimply. Using the notation of 
onditional probabilities, and 
onsidering bothquotients, we 
an say that ǫ-di�erential-priva
y holds in the dis
rete 
ase if,for all x, x′ ∈ X with x ∼ x′, and all z ∈ Z:
1

eǫ
≤

Pr [Z = z|X = x]

Pr [Z = z|X = x′]
≤ eǫ (5.1)where X and Z represent the random variables asso
iated to X and Z, respe
-tively.Intuitively, (5.1) implies that, if a value of one single individual 
hangesin a dataset (either by in
lusion, removal or modi�
ation), the probability ofthe querying me
hanism to report a spe
i�
 answer will not �vary mu
h�. Inother words, the in�uen
e of a single individual in a database is �negligible�with respe
t to the whole set of individuals. Of 
ourse the notion of what ismeant by �mu
h� and �negligible� depends on the value of ǫ.5.1.2 Alternative interpretation in the 
ase of 
liquesA spe
ial interpretation of di�erential priva
y is possible in the 
ase whereevery two distin
t databases in X are neighbors. More pre
isely, if (X ,∼) isa 
lique (i.e. a 
omplete graph), it is possible to ensure that he ratio betweenany a priori knowledge Pr [X = x] of the user (before the query is posed) andhis a posteriori knowledge Pr [X = x|Z = z] (after the answer to the query isreported) is bound by eǫ. Formally, if for every x, x′ ∈ X with x 6= x′ we have

x ∼ x′ then:
1

eǫ
≤

Pr [X = x|Z = z]

Pr [X = x]
≤ eǫ for all priors Pr [X = x], (5.2)all x ∈ X , and all z ∈ Z92



5.1. Di�erential priva
ywhere X and Z represent the random variables asso
iated to X and Z, respe
-tively.Intuitively, (5.2) states that the observation of the reported answer shouldnot �
hange mu
h� the user's knowledge about the database. The next propo-sition shows that in the spe
ial 
ase of every pair of distin
t databases areneighbors, the above formulation of di�erential priva
y is equivalent to the
lassi
 one.Proposition 33. If for all x, x′ ∈ X with x 6= x′ we have x ∼ x′, then (5.1)and (5.2) are equivalent.Proof. Let us represent by X and Z the random variables asso
iated to X and
Z, respe
tively. For better readability, we will denote Pr [X = x], Pr [Z = z],
Pr [Z = z|X = x] and Pr [X = x|Z = z] by Pr(x), Pr(z), Pr(x|z) and Pr(z|x),respe
tively.
• (5.1) =⇒ (5.2)

Pr(x|z) =
Pr(z|x)Pr (x)

Pr(z)
(by the Bayes law)

=
Pr(z|x)Pr (x)

∑

x′∈X (Pr(x′)Pr(z|x′))

≥
Pr(z|x)Pr (x)

∑

x′∈X (Pr(x′) · eǫPr(z|x))
by (5.1)

=
Pr(z|x)Pr (x)

eǫPr(z|x)

=
Pr(x)

eǫfrom whi
h it follows that Pr(x)
Pr(x|z) ≤ eǫ. The 
ase of 1

eǫ
≤ Pr(x)

Pr(x|z) is aanalogous: just take the symmetri
al step when applying (5.1) in thederivation above.
• (5.2) =⇒ (5.1)For every prior Pr(x) we have

Pr(x|z)

Pr(x)
=

Pr(z|x)

p(z)
(by the Bayes law)

=
Pr(z|x)

∑

x′′ (Pr(x′′)Pr(z|x′′)) 93



5. Differential priva
y: the trade-off between leakage andutilityIn parti
ular, the above is valid for every prior of the form Pr(x) = δx′(x),where x′ ∈ X . Therefore, for all x′ ∈ X
Pr(x|z)

Pr(x)
=

Pr(z|x)
∑

x′′ (δx′(x′′)Pr(z|x′′))

=
Pr(z|x)

Pr(z|x′)Sin
e by (5.2) we have 1
eǫ
≤ Pr(z|x)

Pr(x) ≤ eǫ for every prior Pr(x), it followsfrom the derivation above that also 1
eǫ
≤ Pr(z|x)

Pr(z|x′) ≤ eǫ for all x′ ∈ X .
5.2 A model of utility and priva
y for statisti
aldatabasesIn this se
tion we present a model of statisti
al queries on databases, wherenoise is 
arefully added to prote
t the priva
y of the parti
ipants in the sample,and the reported answer to a query does not need to be the real one. In thismodel, the notion of information leakage is to measure the amount informationthat an adversary 
an learn about the database by posing queries and thenanalyzing the reported answers. Note that in prin
iple the adversary 
an be auser of the database, and therefore the priva
y guarantees should not dependon distin
tions of who is posing the queries. Our model will also allow us toquantify the utility of the query, i.e. how mu
h information about the realanswer 
an be obtained from the reported one. In our work we fo
us on the
ase in whi
h all the values of interest are dis
rete.We �x a �nite set Ind = {1, 2, . . . , u} of u individuals parti
ipating in thedatabase. In addition, we �x a �nite set Val = {v1, v2, . . . , vv}, representingthe set of (v di�erent) possible values for the sensitive attribute of ea
h indi-vidual (e.g. disease-name in a medi
al database). In the more general 
asewhere there are several sensitive attributes in the database (e.g. salary andse
urity number in a 
ensus sample), we 
an think of the elements of Val as tu-ples. The absen
e of an individual in the database, if allowed, 
an be modeledwith one spe
ial value in Val (see the dis
ussion in Se
tion 5.2.2). A database
D = d0 . . . du−1 is a u-tuple where ea
h di ∈ Val is the value of the 
orrespond-ing individual. The set of all databases is X = Valu. Two databases x, x′ areadja
ent, written x ∼ x′, if and only if they di�er in the value of exa
tly oneindividual. The stru
ture (X ,∼) forms an undire
ted graph, and we 
al ∼ itsadja
en
y relation.Let K be a randomized fun
tion from X to Z, where Z = Range(K) (seeFigure 5.1). This fun
tion 
an be modeled by a 
hannel (X ,Y, pZ|X(·|·)), where94



5.2. A model of utility and priva
y for statisti
al databases
X and Z are the input and output alphabets, respe
tively, and pZ|X(·|·) is the
hannel matrix. The random variables modeling the input and output of the
hannel are denoted by X and Z, respe
tively. The de�nition of di�erentialpriva
y 
an be dire
tly expressed as a property of the 
hannel: it satis�es
ǫ-di�erential priva
y if

p(z|x) ≤ eǫp(z|x′) for all x, x′ ∈ X with x ∼ x′, and all z ∈ Z
X

dataset
K

ǫ-diff. priv.
randomized function

Z

reported
answerFigure 5.1: Randomized fun
tion KIntuitively, the 
orrelation between X and Z measures how mu
h infor-mation about the 
omplete database the atta
ker 
an obtain by observing thereported answer. We will refer to this 
orrelation as the leakage of the 
han-nel, denoted by L(X,Z). In Se
tion 5.5 we will dis
uss how this leakage 
anbe quanti�ed using notions from information theory, and we will study thebehavior of the leakage for di�erentially private queries.In our model the true answer to the query f is modeled by the randomvariable Y ranging over Y = Range(f). The 
orrelation between Y and Zmeasures how mu
h we 
an learn about the real answer from the reportedone. We will refer to this 
orrelation as the utility of the 
hannel, denoted by

U(Y,Z). In Se
tion 5.6 we will dis
uss in detail how the utility 
an be quan-ti�ed, and we will investigate how to 
onstru
t a randomization me
hanism,i.e. a way of adding noise to the query outputs, so that utility is maximizedwhile preserving di�erential priva
y.In pra
ti
e, the randomization me
hanism is often oblivious, meaning thatthe reported answer Z only depends on the real answer Y and not on thedatabase X. In this 
ase, the randomized fun
tion K, seen as 
hannel, 
an bede
omposed into two parts: a 
hannel modeling the query f , and a 
hannelmodeling the oblivious randomization me
hanism H. The de�nition of utility
an be then simpli�ed as it only depends on properties of the sub-
hannel
orrespondent to H. The leakage relating X and Y and the utility relating Yand Z for a de
omposed randomized fun
tion are shown in Figure 5.2.We 
apture the notion of the atta
ker's side information as the prior dis-tribution on X, whi
h is standard in information �ow and also in papers ondi�erential priva
y [GRS09, KS℄. 95



5. Differential priva
y: the trade-off between leakage andutility
X

dataset
f

query

Y

real answer
H

randomization
mechanism

Z

reported answer

K (ǫ-diff. priv. randomized function)

Utility

LeakageFigure 5.2: Leakage and utility for oblivious me
hanisms5.2.1 Leakage about an individualAs already dis
ussed, L(X,Z) 
an be used to quantify the information that theatta
ker 
an learn about the whole database. Prote
ting the entire databaseat on
e, however, is not the main goal of di�erential priva
y. In fa
t, someinformation will ne
essarily be revealed, otherwise the query would not beuseful. Instead, di�erential priva
y aims at prote
ting the value of any singleindividual, even in the worst 
ase where the values of all other individuals areknown. To quantify this information leakage we 
an de�ne smaller 
hannels,where only the information of a spe
i�
 individual varies. Let x− ∈ Valu−1 bea (u−1)-tuple with the values of all individuals but one (the individual whosedegree of prote
tion we want to quantify). We 
reate a 
hannel Kx− whoseinput alphabet is the set of all databases in whi
h the u− 1 other individualshave the same values as in x−. Note that, sin
e x− is �xed, to de�ne the inputof the 
hannel it is enough to spe
ify the value of the individual of interest. Inthis way the input for the 
hannel 
an be seen as a random variable V rangingover the set Val . Intuitively, the information leakage of this 
hannel measureshow mu
h information about one parti
ular individual the atta
ker 
an learnif the values of all others are known to be x−. This leakage will be studied inSe
tion 5.5.1.5.2.2 A note on the 
hoi
e of valuesThe 
hoi
e of the set Val depends on the assumptions about the atta
ker'sknowledge. In parti
ular, if the atta
ker does not know whi
h individualsparti
ipate in the database, a distinguished value in Val 
ould be interpretedas absen
e (e.g. the value 0 or the spe
ial value null). As dis
ussed in [Dwo11℄,a database x′ adja
ent to x 
an be though of either being a superset (or subset)of x with one extra (or missing) row, or being exa
tly the same database as96
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al databases
x in all rows ex
ept from one whi
h has a di�erent (non-null) value. Ourde�nition of ∼ with the possibility of null values 
overs all these 
ases.At this point an important observation should be made about the 
hoi
e of
Val . Most often we are interested in prote
ting the a
tual value of an individ-ual, not only his parti
ipation in the database. In this 
ase, the de�nition ofdi�erential priva
y (as well as the 
hannels we are 
onstru
ting) should in
ludedatabases with all possible values for ea
h individual, not just the �real� ones.In other words, to prevent the atta
ker from �nding out the individual's value,the probability p(z|x), where x 
ontains the individual's true value, should be
lose to p(z|x′) where x′ 
ontains a hypotheti
al value for this individual. Thismight seem unne
essary at �rst sight, sin
e di�erential priva
y is often thoughas prote
ting an parti
ipation of an individual in a database. Hiding the par-ti
ipation of an individual, however, does not imply hiding his value. Considerthe following example: we aim at learning the average salary of employees in asmall 
ompany, and it happens that all of them have exa
tly the same salary
s. We allow anyone to parti
ipate or not, while o�ering ǫ-di�erential priva
y.If we only 
onsider s as the value in all possible databases, then the queryis always 
onstant, so answering it any number of times without any noiseshould satisfy di�erential priva
y for any ǫ > 0. Sin
e all reported answersare s, the atta
ker 
an dedu
e that the salary of all employees, in
luding thosenot parti
ipating in the query, is s. Indeed, the atta
ker 
annot �nd out whoparti
ipated, despite the value of all individuals is revealed.In other 
ases, we are only interested in hiding the parti
ipation (e.g. in adatabase with information about anonymous donations). Thus, Val should beproperly sele
ted a

ording to the appli
ation. If parti
ipation is known andwe only wish to hide the values, then Val should 
ontain all possible values,e.g. all possible salaries in the example above. If the values are known andparti
ipation is to be hidden, then Val 
an 
ontain just the values 0 and 1denoting absen
e and presen
e respe
tively. Finally, if both the value and theparti
ipation are to be prote
ted, then Val should 
ontain all values plus null .5.2.3 The questions we explore with the help of our modelWe will use the model we just introdu
ed to explore the following questions:1. Does ǫ-di�erential priva
y indu
e a bound on the information leakage ofthe randomized fun
tion K?2. Does ǫ-di�erential priva
y indu
e a bound on the information leakagerelative to an individual?3. Does ǫ-di�erential priva
y indu
e a bound on the utility?4. Given a query f and a value ǫ > 0, 
an we 
onstru
t a randomized fun
-tion K whi
h satis�es ǫ-di�erential priva
y and also presents maximumutility? 97



5. Differential priva
y: the trade-off between leakage andutilityWe will see that the answers to 1 and 2 are positive in 
ase we take themeasure of leakage to be the min-entropy leakage, and we provide bounds thatare tight (i.e. for every ǫ there is a K whose leakage rea
hes the bound). For 3we are able to give a tight bound in some 
ases whi
h depend on the stru
tureof the query, and for the same 
ases, we are able to 
onstru
t an oblivious Kwith maximum utility (de�ned in terms of a binary gain fun
tion), as requestedby 4.5.3 Graph symmetriesIn this se
tion we explore some 
lasses of graphs that will allow us to derivea stri
t 
orresponden
e between ǫ-di�erential priva
y and the a posteriori en-tropy of the input. As we already mentioned, the input domain of databasesand the adja
en
y relation forms an undire
ted graph, and this fa
t will beused to derive bounds on information leakage and utility. We will present two
lasses of graphs, distan
e-regular and V T+, that will be used in the nextse
tion to transform a generi
 
hannel matrix into a matrix with a symmetri
stru
ture, while preserving the a posteriori min-entropy and the ǫ-di�erentialpriva
y.Let us �rst re
all some basi
 notions. Given a graph G = (V,∼), thedistan
e d(v, w) between two verti
es v, w ∈ V is the number of edges in ashortest path 
onne
ting them. The diameter δ of G is the maximum distan
ebetween any two verti
es in V. The degree of a vertex is the number of edgesin
ident to it. G is 
alled regular if every vertex has the same degree. A regulargraph with verti
es of degree k is 
alled a k-regular graph. An automorphismof G is a permutation σ on the vertex set V, su
h that for any pair of verti
esv, w, if v ∼ w, then σ(v) ∼ σ(w). If σ is an automorphism, and v is a vertex,the orbit of v under σ is the set {v, σ(v), . . . , σk−1(v)} where k is the smallestpositive integer su
h that σk(v) = v. Clearly, the orbits of the verti
es under
σ de�ne a partition of V. If V is the set of verti
es of G, we denote by V〈d〉(v)the subset of verti
es in V that are at distan
e d from the vertex v.The following two de�nitions introdu
e the 
lasses of graphs that we areinterested in. The �rst 
lass is well known in literature.De�nition 34 (Distan
e-regular graph). A graph G = (V,∼) is 
alled distan
e-regular if there exist integers bd and cd (d ∈ {0, . . . , δ}) (
alled interse
tionnumbers) su
h that, for all verti
es v, w at distan
e d(v, w) = d, there areexa
tly
• bd neighbors of w in V〈d+1〉(v)
• cd neighbors of w in V〈d−1〉(v)Some examples of distan
e-regular graphs are illustrated in Figure 5.3.98



5.3. Graph symmetries
(a) Tetrahedral graph (b) Cubi
al graph (
) Petersen graphFigure 5.3: Some distan
e-regular graphs with degree 3The se
ond 
lass we are interested in is a variant of the VT (vertex-transitive2) 
lass:De�nition 35 (V T+ graph). A graph G = (V,∼) is V T+ ( vertex-transitive+) if there are n automorphisms σ0, σ1, . . .σn−1, where n = |V|, su
h that,for every vertex v ∈ V, we have that {σi(v) | 0 ≤ i ≤ n− 1} = V.In parti
ular, the graphs for whi
h there exists an automorphism σ whi
hindu
es only one orbit are V T+: it is su�
ient to de�ne σi = σi for all ifrom 0 to n − 1. Figure 5.4 illustrates some V T+ graphs with a single-orbitautomorphism.
(a) Cy
le: degree 2 (b) Degree 4 (
) Clique: degree 5Figure 5.4: Some V T+ graphsFrom graph theory we know that neither of the two 
lasses subsumes theother. They have however a non-empty interse
tion, whi
h 
ontains in parti
-ular all the stru
tures of the form (Valu,∼), i.e. the database domains.The two next propositions show that the stru
ture (X ,∼) = (Valu,∼) isboth a distan
e-regular graph and a V T+ graph.Proposition 36. The graph (Valu,∼) is a 
onne
ted distan
e-regular graphwith diameter δ = u, and interse
tion numbers bd = (u− d)(v− 1) and cd = d,for all 0 ≤ d ≤ δ.2A graph G = (V,∼) is said to be vertex-transitive if for any pair v, w ∈ V there existsan automorphism σ su
h that σ(v) = w. 99



5. Differential priva
y: the trade-off between leakage andutilityProof. The verti
es of (Valu,∼) are u-tuples (v1, . . . , vu), vi ∈ Val and twoverti
es are adja
ent if and only if the di�er in exa
tly one element vi. It iseasy to see that the distan
e between two verti
es is the number of elementsin whi
h they di�er. Let x1, x2 ∈ Valu with d(x1, x2) = d, so they di�er inexa
tly d elements. To go at distan
e d + 1 from x1 we 
an sele
t any of theremaining u − d elements and 
hange it in v − 1 possible ways, so the totalnumber is (u − d)(v − 1) and depends only on d, not on x1, x2. Similarly, by
hanging one of the di�ering elements of x2 to mat
h the value of x1 we get avertex at distan
e d− 1, and there are d su
h elements.Proposition 37. The graph (Valu,∼) is a V T+ graph.Proof. Re
all that we assume the values in the set Val to be indexed, i.e.
Val = {v0, . . . , vj , . . . , vv−1}, where v = |Val |. Note that, for 
onvenien
e, weopt to use here the indexing from 0 to v−1. Let us de�ne an inje
tive fun
tion
ρ : Val → Val as

ρ(vj) = vj⊕1for every vj ∈ Val , and where ⊕ represents the sum modulo v. We de�ne the
omposition of ρ with itself i times as
ρi(vj) = ρ ◦ ρ ◦ . . . ◦ ρ

︸ ︷︷ ︸

i times (vj)Note that sin
e ρ is inje
tive, ρi is inje
tive as well.We represent a database in Valu as x = vk0 . . . vkℓ . . . vku−1 , with 0 ≤ ℓ ≤

u− 1 and 1 ≤ kℓ ≤ v. We now de�ne a family {σι}vu−1
ι=0 of automorphisms asfollows. Given a 0 ≤ ι ≤ vu − 1, 
onsider the representation in base v of ι:

ι = i0 · v
0 + . . .+ iℓ · v

ℓ + . . . + iu−1 · v
u−1 (5.3)where 0 ≤ iℓ ≤ v − 1. Then de�ne

σι(x) = ρi0(vk0) . . . ρiℓ(vkℓ) . . . ρiu−1(vku−1) (5.4)where x = vk0 . . . vkℓ . . . vku−1 .We have to show that:
• σι is an automorphism for all 0 ≤ ι ≤ vu − 1.First we show that σι is inje
tive. Let us 
onsider two arbitrary databases

x = vk0 . . . vkℓ . . . vku−1 and x′ = vk′0 . . . vk′ℓ . . . vk′u−1
, and assume σι =

ρi0(·) . . . ρiℓ(·) . . . ρiu−1(·). If x 6= x′ then vkℓ 6= vk′
ℓ
for some ℓ, and sin
e

ρiℓ is inje
tive we have ρiℓ(vkℓ) 6= ρiℓ(vk′
ℓ
). Therefore σι(x) 6= σι(x

′).Now we show that if x ∼ x′ then σι(x) ∼ σι(x
′). Consider a ar-bitrary pair of adja
ent databases x = vk0 . . . vkℓ . . . vku−1 and x′ =100



5.3. Graph symmetriesvk0 . . . vk′ℓ . . . vku−1 , where x and x′ di�er exa
tly for vkℓ 6= vk′
ℓ
. Weknow that σι(x) = ρi0(vk0) . . . ρiℓ(vkℓ) . . . ρiu−1(vku−1) and we also knowthat σι(x

′) = ρi0(vk0) . . . ρiℓ(vk′ℓ) . . . ρiu−1(vku−1). Therefore σι(x) and
σι(x

′) 
an di�er at most in ρiℓ(vkℓ) and ρiℓ(vk′
ℓ
). Sin
e ρiℓ is inje
tive,we have ρiℓ(vkℓ) 6= ρiℓ(vk′

ℓ
), and it follows that σι(x) ∼ σι(x

′).
• For every x = vk0 . . . vkℓ . . . vku−1 in Valu we have ⋃vu−1

ι=0 {σι(x)} = Valu.Take an arbitrary element x′ = vk′0 . . . vk′ℓ . . . vk′u−1
in Valu. Note that

ρkm(vkn) = vkm⊕n
for all 0 ≤ m,n ≤ v− 1. Therefore the automorphism

σ = ρk
′
0⊖k0(·) . . . ρk

′
ℓ
⊖kℓ(·) . . . ρk

′
u−1⊖ku−1(·), where ⊖ represents the sub-tra
tion modulo v, satis�es σ(x) = x′. Sin
e 0 ≤ k′ℓ⊖ kℓ ≤ v− 1 we havethat σ = σι for ι = (k′0⊖k0)·v

0+. . .+(k′ℓ⊖kℓ)·v
ℓ+. . .+(k′u−1⊖ku−1)·v

u−1,and therefore σ belongs to the family {σι}vu−1
ι=0 .

Figure 5.5 illustrates some examples of stru
tures (Valu,∼). Note thatwhen |Val | = 2, (Valu,∼) is the u-dimensional hyper
ube.
aaaa aaab

abababaa

aaba aabb

abbbabba

baaa baab

bbabbbaa

baba babb

bbbbbbba

(a) u = 4,Val = {a, b} (4-dimensional hyper
ube) aaa

aba

aca

aab

abb

acb

aac

abc

acc

baa

bba

bca

caa

cba

cca bcb

bccccb

ccc

(b) u = 3,Val = {a, b, c} (for read-ability sake we show only part of thegraph)Figure 5.5: Some (Valu,∼) graphsThe relation between graph stru
tures we 
onsider in this 
hapter is sum-marized in Figure 5.6. We remark that in general the graphs (Valu,∼) do nothave a single-orbit automorphism. The only ex
eptions are the two simpleststru
tures (|Val | = 2, |Ind | ≤ 2). 101



5. Differential priva
y: the trade-off between leakage andutility
Dist-regular VT++V Ind

Single-
orbit

S∗Figure 5.6: Venn diagram for the 
lasses of graphs 
onsidered in this se
tion.Here S∗ = {Valu | |Val | = 2, u ≤ 2}5.4 Deriving the relation between di�erentialpriva
y and quantitative information �ow onthe basis of the graph stru
tureIn this se
tion we present the main te
hni
al 
ontribution of the 
hapter: ageneral te
hnique that explores the graph stru
ture indu
ed by the adja
en
yrelation ∼ on X and the query f to determine relations between ǫ-di�erentialpriva
y and min-entropy leakage, and between ǫ-di�erential priva
y and utility.We use the symmetries of the graph stru
ture (X ,∼) to transform the 
hannelmatrix into an equivalent matrix with 
ertain regularities. These regularitiesare the key that allow us to establish the link between ǫ-di�erential priva
yand the a posteriori min-entropy (i.e. the 
onditional min-entropy asso
iatedto the 
hannel). The establishment of bounds on the a posteriori entropyentropy will allow us to derive bounds on leakage and utility: in Se
tion 5.5we will 
ope with leakage and in Se
tion 5.6 we will 
ope with utility.But �rst, in Se
tion 5.4.2 we will present how to perform the transformationon the 
hannel matrix, and in Se
tion 5.4.3 we will show how to derive a boundon the a posteriori min-entropy for the matrix obtained. It is important to notethat we 
onsider the 
ase where the 
hannel input has the uniform distribution.This is not a restri
tion for our bounds on the leakage: as seen in Chapter 3, themaximum min-entropy leakage is a
hieved in the uniform input distributionand, therefore, any bound for the uniform input distribution is also a bound forall other input distributions. In the 
ase of utility the assumption of uniforminput distribution is more restri
tive, but we will see that it still providesinteresting results for several pra
ti
al 
ases.Before we present formally our te
hnique, let us �x some notation.5.4.1 Assumptions and notationIn the rest of this se
tion we 
onsider 
hannels (usually referred to by M , M ′,
M ′′ or N) with input A and output B, with �nite 
arriers A and B respe
tively,and we assume that the probability distribution of A is uniform. Furthermore,we assume that |A| = n ≤ |B| = m. If it is the 
ase that n > m, we just add102



5.4. Deriving the relation between di�erential priva
y and quantitativeinformation �ow on the basis of the graph stru
tureto the matrix enough zero-ed 
olumns, i.e. 
olumns 
ontaining only 0's, so tomat
h the number of rows. Note that adding zero-ed 
olumns does not 
hangethe min-entropy leakage nor the 
onditional min-entropy of the 
hannel. Weassume as well an adja
en
y relation ∼ on A, i.e. that (A,∼) is an undire
tedgraph stru
ture. With a slight abuse of notation, we will also write i ∼ h when
i and h are asso
iated to adja
ent elements of A, and we will write d(i, h) todenote the distan
e between the elements of A asso
iated to i and h.We note that a 
hannel matrix M satis�es ǫ-di�erential priva
y if for ea
h
olumn j and for ea
h pair of rows i and h su
h that i ∼ h we have that:

1

eǫ
≤

Mi,j

Mh,j
≤ eǫ.The a posteriori entropy of a 
hannel with matrix M will be denoted by

HM
∞ (A|B), and its min-entropy leakage by IM∞ (A;B).We denote by M [l → k] the matrix obtained by �
ollapsing� the 
olumn linto k, i.e.

M [l→ k]i,j =







Mi,k +Mi,l if j = k,

0 if j = l,

Mi,j otherwiseGiven a partial fun
tion ρ : A → B, the image of A under ρ is ρ(A) =
{ρ(a)|a ∈ A, ρ(a) 6= ⊥}, where ⊥ stands for �unde�ned�.In the proofs we will need to use several indi
es, and we will typi
ally usethe letters i, j, h, k, l to range over rows and 
olumns (usually i, h, l will rangeover rows and j, k will range over 
olumns). Given a matrix M , we denote by
maxMj the maximum value of 
olumn j over all rows i, i.e. maxMj = maxi Mi,j ,and by maxM = maxi,j Mi,j the maximum element of the matrix.Finally, given a graph G = (V,∼) with diameter δ, we denote by ∆G theset {0, 1, . . . , δ}. We may omit the subs
ript and denote the set only by ∆ ifthe 
ontext does not allow any 
onfusion. The notation V〈d〉(v) represents thesubset of V of all elements w at distan
e d from v. For a �xed d, we de�ne
nd = |V〈d〉(v)| as the number of verti
es in V at distan
e d from v, and weassume that it will be always 
lear by the 
ontext to whi
h set of verti
es Vand element v the value nd is asso
iated to.5.4.2 The matrix transformationThe transformation on the 
hannel matri
es is divided into two steps, and westart this se
tion by giving an overview of the pro
ess. Consider a 
hannelwhose matrix M has at least as many 
olumns as rows and assume that theinput distribution is uniform. First, we transformM into a matrixM ′ in whi
hea
h of the �rst n 
olumns has a maximum in the diagonal, and the remaining
olumns are all 0's. Se
ond, under the assumption that the input domain isdistan
e-regular or V T+, we transform M ′ into a matrix M ′′ whose diagonal103



5. Differential priva
y: the trade-off between leakage andutilityelements are all the same, and 
oin
ide with the maximum element maxM
′′of M ′′. The transformation ensures that both M ′ and M ′′ are valid 
hannelmatri
es (i.e. ea
h row is a probability distribution), also respe
t ǫ-di�erentialpriva
y, and preserve the value of the a posteriori entropy for the uniforminput distribution. A s
heme of the transformation is shown in Figure 5.7,where Lemma 38 (Step 1) is applied on the �rst step of the transformation,and on the se
ond step either Lemma 39 (Step 2a) or Lemma 40 (Step 2b) isapplied, depending on whether the graph stru
ture is distan
e-regular or V T+,respe
tively.

M








M0,0 M0,1 . . . M0,m−1

M1,0 M1,1 . . . M1,m−1

...
...

. . .
...

Mn−1,0 Mn−1,1 . . . Mn−1,m−1








Lemma Step 1

(dist-reg or V T+)

M ′








maxM
′

0 − . . . − 0 . . . 0

− maxM
′

1 . . . − 0 . . . 0
...

...
. . .

...
...

. . .
...

− − . . . maxM
′

n−1 0 . . . 0








Lemma Step 2a

(dist-reg)

Lemma Step 2b

(V T+)

M ′′








maxM
′′

− . . . − 0 . . . 0

− maxM
′′

. . . − 0 . . . 0
...

...
. . .

...
...

. . .
...

− − . . . maxM
′′

0 . . . 0






Figure 5.7: Steps of the matrix transformation for distan
e-regular and V T+graphsWe now present formally the transformation. The next Lemma is relativeto the �rst step.Lemma 38 (Step 1). Let M be a 
hannel matrix of dimensions n ×m withat least as many 
olumns as rows, and assume that M satis�es ǫ-di�erentialpriva
y. Then it is possible to transform M into a matrix M ′ satisfying thefollowing 
onditions:104



5.4. Deriving the relation between di�erential priva
y and quantitativeinformation �ow on the basis of the graph stru
ture(i) M ′ is a valid 
hannel matrix: ∑j M
′
i,j = 1 for all 0 ≤ i ≤ n− 1 and all

0 ≤ j ≤ m− 1;(ii) Ea
h of the �rst n 
olumns has a maximum in the diagonal: M ′
i,i =

maxM
′

i for all 0 ≤ i ≤ n− 1;(iii) The m− n last 
olumns 
ontain only 0's: M ′
i,j = 0 for all 0 ≤ i ≤ n− 1and all n ≤ j ≤ m− 1;(iv) M ′ satis�es ǫ-di�erential priva
y: M ′

i,j

M ′
h,j
≤ eǫ for all 0 ≤ i, h ≤ n− 1 andall 0 ≤ j ≤ m− 1;(v) HM ′

∞ (A|B) = HM
∞ (A|B), if A has the uniform distribution.Proof. We �rst show that there exists a matrix N of dimensions n ×m, andan inje
tive total fun
tion ρ : A → B su
h that:

• Ni,ρ(i) = maxN
ρ(i) for all i ∈ A, and

• Ni,j = 0 for all j ∈ B\ρ(A) and all i ∈ A.We iteratively 
onstru
t ρ and N �
olumn by 
olumn� via a sequen
e ofapproximating partial fun
tions ρs and matri
es Ns (0 ≤ s ≤ m).
• Initial step (s = 0)De�ne ρ0(i) = ⊥ for all i ∈ A and N0 = M .
• sth step (1 ≤ s ≤ m)Let j be the s-th 
olumn and let i ∈ A be one of the rows 
ontainingthe maximum value of 
olumn j in M , i.e. Mi,j = maxMj . There are two
ases:1. ρs−1(i) = ⊥. We de�ne:

ρs = ρs−1 ∪ {i 7→ j} and
Ns = Ns−12. ρs−1(i) = k ∈ B. We �
ollapse� 
olumn j into 
olumn k:
ρs = ρs−1 and
Ns = Ns−1[j → k] 105



5. Differential priva
y: the trade-off between leakage andutilitySin
e the operation of �
ollapsing� assigns j in ρs and then zeroes the
olumn j in Ns, all unassigned 
olumns B \ ρm(A) must be zero in Nm. We�nish the 
onstru
tion by taking ρ to be the same as ρm after assigning toea
h unassigned row one of the 
olumns in B \ ρm(A) (there are enough su
h
olumns sin
e n ≤ m). We also take N = Nm. Note that by 
onstru
tion Nis a 
hannel matrix.Thus we get a matrix N and a fun
tion ρ : A → B whi
h, by 
onstru
tion,is inje
tive and satis�es Ni,ρ(i) = maxN
ρ(i) for all i ∈ A, and Ni,j = 0 for all

j ∈ B\ρ(A) and all i ∈ A. Furthermore, N provides ǫ-di�erential priva
y(
ondition (iv)) be
ause ea
h 
olumn is a linear 
ombination of 
olumns of M .It is also easy to see that∑j maxNj =
∑

j maxMj , and from that it immediatelyfollows that HN
∞(A|B) = HM

∞ (A|B) (re
all that A has the uniform distributionand therefore the a posteriori entropy is a fun
tion of the sum of the maximumof ea
h 
olumn), so 
ondition (v) is satis�ed.Finally, we 
reate our 
laimed matrix M ′ from N just by rearranging the
olumns a

ording to ρ. Note that the order of the 
olumns is irrelevant, sin
eany permutation represents the same 
onditional probabilities and thereforethe same 
hannel. The resulting matrix M ′ has all maxima in the diagonal
M ′

i,i for 0 ≤ i ≤ n− 1, and every element in the 
olumns n ≤ j ≤ m− 1 are 0,whi
h satis�es 
onditions (ii) and (iii). Also, sin
e N is a valid 
hannel matrix,so is M ′ and 
ondition (i) is also satis�ed.The se
ond step of the transformation depends on the graph stru
ture of
(A,∼). But before we dis
uss this step, let us introdu
e a notion of distan
ebetween elements in B, derived from the notion of distan
e between elementsin A. Let M be a 
hannel matrix in whi
h the maximum of ea
h 
olumn isin the diagonal, as in Figure 5.8. Then we de�ne the distan
e between twoelements j1, j2 ∈ B as follows:
d(j1, j2) =

{

d(i1, i2) if there are i1, i2 ∈ A su
h that i1 = j1 and i2 = j2,
⊥ otherwise. (5.5)Note that the range of the notion of distan
e de�ned above is the set

∆ = {0, 1, . . . , δ}, where δ is the diameter of (A,∼). Based on (5.5), we de�nethe set B〈d〉(j) as the subset of B of elements at distan
e d from an element
j ∈ B. It is 
lear that for any j ∈ B, we have ⋃d∈∆ B〈d〉(j) = B.We 
an extend the adja
en
y relation ∼ on A to an adja
en
y relation ∼′on B by using the notion of distan
e of (5.5). For any j1, j2 ∈ B, we have
j1 ∼

′ j2 if and only if d(j1, j2) = 1. Therefore, if (A,∼) is distan
e-regular, soit is (B,∼′).Now we are ready to present the lemma for the se
ond step of the trans-formation, in the 
ase of distan
e-regular graphs.106



5.4. Deriving the relation between di�erential priva
y and quantitativeinformation �ow on the basis of the graph stru
ture
row i Mi,0 . . . . . . . . . Mi,m−1Mi,j′

...
Mj′,j′ = maxMj′

d(i, j′)

{

Mi,j′′

...

...

...
Mj′′,j′′ = maxMj′′







d(i, j′′)

M0,0 M0,1 . . .
M1,0 . . .

...

. . . M0,m−2 M0,m−1

. . . M1,m−1

...

...
Mn−2,0 . . .
Mn−1,0 Mn−1,1 . . .

...
. . . Mn−2,m−1

. . . Mn−1,m−2 Mn−1,m−1Figure 5.8: The relation between elements of a row i and the elements in thediagonalLemma 39 (Step 2a). Let M ′ be a 
hannel matrix of dimensions n×m withat least as many 
olumns as rows, and assume that M ′ satis�es ǫ-di�erentialpriva
y. Let ∼ be an adja
en
y relation on A su
h that the graph (A,∼)is 
onne
ted and distan
e-regular. Assume that the maximum value of ea
h
olumn is on the diagonal, that is Mi,i = maxMi for all i ∈ A, and that all thelast m−n 
olumns have only zero elements, i.e. M ′
i,j = 0 for all 0 ≤ i ≤ n−1and n ≤ j ≤ m − 1. Then it is possible to transform M ′ into a matrix M ′′satisfying the following 
onditions:(i) M ′′ is a valid 
hannel matrix: ∑j M

′′
i,j = 1 for all 0 ≤ i ≤ n− 1 and all

0 ≤ j ≤ m− 1;(ii) The elements of the diagonal are all the same, and are equal to the max-imum of the matrix: M ′′
i,i = maxM

′′ for all 0 ≤ i ≤ n− 1;(iii) The m− n last 
olumns 
ontain only 0's: M ′′
i,j = 0 for all 0 ≤ i ≤ n− 1and all n ≤ j ≤ m− 1;(iv) M ′′ satis�es ǫ-di�erential priva
y: M ′

i,j

M ′
h,j
≤ eǫ for all 0 ≤ i, h ≤ n− 1 andall 0 ≤ j ≤ m− 1;(v) HM ′′

∞ (A|B) = HM ′

∞ (A|B), if A has the uniform distribution.Proof. Let us de�ne B∗ = {0, 1, . . . , n − 1}, i.e. the subset of B that ex
ludesthe zero-ed 
olumns of M ′ from n to m − 1. Note that we 
an safely use theset B∗ instead of B in this proof be
ause the zero-ed 
olumns do not 
ontributeto the a posteriori entropy, and trivially respe
t ǫ-di�erential priva
y. 107



5. Differential priva
y: the trade-off between leakage andutilityWe then de�ne the matrix M ′′ as follows.
M ′′

i,j =

{
1

n|A〈d(i,j)〉(i)|

∑

k∈B∗

∑

h∈A〈d(i,j)〉(k)
M ′

h,k if j ∈ B∗,
0 otherwise.By the de�nition above, 
ondition (iii) is immediately satis�ed. We thenshow that this de�nition also indu
es a 
hannel matrix. We have

∑

j∈B∗

M ′′
i,j =

∑

j∈B∗

1

n|A〈d(i,j)〉(i)|

∑

k∈B∗

∑

h∈A〈d(i,j)〉(k)

M ′
h,k

=
1

n

∑

k∈B∗

∑

j∈B∗

1

|A〈d(i,j)〉(i)|

∑

h∈A〈d(i,j)〉(k)

M ′
h,kRe
all that ∆ = {0, . . . , δ}, where δ is the diameter of the graph. Note thatfor every i, B∗ = ⋃d∈∆ B

∗
〈d〉(i), and the for di�erent values of d the sets B∗〈d〉(i)are disjoint. Therefore the summation over j ∈ B∗ 
an be split as follows

=
1

n

∑

k∈B∗

∑

d∈∆

∑

j∈B∗
〈d〉

(i)

1

|A〈d〉(i)|

∑

h∈A〈d〉(k)

M ′
h,k

=
1

n

∑

k∈B∗

∑

d∈∆

∑

h∈A〈d〉(k)

M ′
h,k

∑

j∈B∗
〈d〉

(i)

1

|A〈d〉(i)|as ∑

j∈B∗
〈d〉

(i)

1

|A〈d〉(i)|
= 1, we obtain
=

1

n

∑

k∈B∗

∑

d∈∆

∑

h∈A〈d〉(k)

M ′
h,kand now the summations over h 
an be joined together

=
1

n

∑

k∈B∗

∑

h∈A

M ′
h,k

= 1whi
h implies that 
ondition (i) is satis�ed.We now turn our attention to the elements of the diagonal. We have
M ′′

i,i =
1

n

∑

h∈A

M ′
h,h108



5.4. Deriving the relation between di�erential priva
y and quantitativeinformation �ow on the basis of the graph stru
tureand so they are all identi
al. To ful�ll 
ondition (ii) we still need to show that
M ′′

i,i = maxM
′′

i for all i ∈ A.
M ′′

i,j =
1

n|A〈d(i,j)〉(i)|

∑

k∈B∗

∑

h∈A〈d(i,j)〉(k)

M ′
h,k

≤
1

n|A〈d(i,j)〉(i)|

∑

k∈B∗

∑

h∈A〈d(i,j)〉(k)

M ′
h,h (sin
e the biggest elementis in the diagonal)

=
1

n

∑

k∈B∗

M ′
h,h

1

|A〈d(i,j)〉(i)|

∑

h∈A〈d(i,j)〉(k)

1

=
1

n

∑

k∈B∗

M ′
h,h

|A〈d(i,j)〉(k)|

|A〈d(i,j)〉(i)|

=
1

n

∑

k∈B∗

M ′
h,h · 1 (sin
e the graphis distan
e-regular)

= M ′′
i,iSin
e A has the uniform distribution, HM ′

∞ (A|B) = HM ′′

∞ (A|B) (
ondition(v)) follows immediately.It remains to show that M ′′ satis�es ǫ-di�erential priva
y (
ondition (iv)).We need to show that
M ′′

i,j ≤ eǫM ′′
i′,j ∀j ∈ B, i, i′ ∈ A : i ∼ i′From the triangular inequality we have (sin
e d(i, i′) = 1)

d(i′, j) − 1 ≤ d(i, j) ≤ d(i′, j) + 1Thus, there are 3 possible 
ases:1. d(i, j) = d(i′, j)The result is immediate sin
e M ′′
i,j = M ′′

i′,j .2. d(i, j) = d(i′, j)− 1We de�ne the set of neighbors of h �one step further away� from k:
Fh,k = {h′ ∼ h | h′ ∈ A〈d(h,k)+1〉(k)}Note that |Fh,k| = bd(h,k) sin
e the graph is distan
e-regular. The fol-lowing inequalities hold for any h, h′ ∈ A:

M ′
h,k ≤ eǫM ′

h′,k ∀h′ ∈ Fh,k (di�. priva
y)⇒
bd(h,k)M

′
h,k ≤ eǫ

∑

h′∈Fh,k

M ′
h′,k (sum of the above)109



5. Differential priva
y: the trade-off between leakage andutilitywe now �x a distan
e d and sum the above inequalities for all verti
es atdistan
e d from h:
∑

h∈A〈d〉(k)

bdM
′
h,k ≤ eǫ

∑

h∈A〈d〉(k)

∑

h′∈Fh,k

M ′
h′,kNote that ea
h h′ ∈ A〈d+1〉(k) is 
ontained in Fh,k for exa
tly cd+1di�erent h ∈ A〈d〉(k). So the right-hand side above sums all verti
es of

A〈d+1〉(k) exa
tly cd+1 times ea
h. Thus we get that for all k ∈ B∗, d ∈ ∆:
bd

∑

h∈A〈d〉(k)

M ′
h,k ≤ eǫ cd+1

∑

h∈A〈d+1〉(k)

M ′
h,k (5.6)Finally, note that cd+1|A〈d+1〉(i)| = bd|A〈d〉(i)| (both sides 
ount thenumber of edges between a vertex at distan
e d and a vertex at distan
e

d+ 1). So we have
M ′′

i,j =
1

n|A〈d〉(i)|

∑

k∈B∗

∑

h∈A〈d〉(k)

M ′
h,k

≤ eǫ
1

n|A〈d〉(i)|

cd+1

bd

∑

k∈B∗

∑

h∈A〈d+1〉(k)

M ′
h,k (from (5.6))

= eǫ
1

n|A〈d+1〉(i)|

∑

k∈B∗

∑

h∈A〈d+1〉(k)

M ′
h,k

= eǫM ′′
i′,j3. d(i, j) = d(i′, j) + 1This 
ase is analogous to the 
ase 
ase where d(i, j) = d(i′, j)− 1.The next lemma is relative to the se
ond step of the transformation, forthe 
ase of V T+ graphs.Lemma 40 (Step 2b). Consider a 
hannel matrix M ′ satisfying the assump-tions of Lemma 39, ex
ept for the assumption about distan
e-regularity, whi
hwe repla
e by the assumption that (A,∼) is V T+. Then it is possible to trans-form M ′ into a matrix M ′′ with the same properties as in Lemma 39.Proof. Let us de�ne B∗ = {0, 1, . . . , n − 1}, i.e. the subset of B that ex
ludesthe zero-ed 
olumns of M ′ from n to m− 1. Note that we 
an safely use theset B∗ instead of B in this proof be
ause the zero-ed 
olumns do not 
ontributeto the a posteriori entropy, and trivially respe
t ǫ-di�erential priva
y.110



5.4. Deriving the relation between di�erential priva
y and quantitativeinformation �ow on the basis of the graph stru
tureWe then de�ne the matrix M ′′ as follows.
M ′′

i,j =

{
1
n

∑n−1
h=0 M

′
σh(i),σh(j)

if j ∈ B∗,
0 otherwise.By the de�nition above, 
ondition (iii) is immediately satis�ed. We thenshow that this de�nition also indu
es a 
hannel matrix. Re
all that {σh(j)|0 ≤

i ≤ n− 1} = A sin
e the graph is V T+.
n−1∑

j=0

M ′′
i,j =

n−1∑

j=0

1

n

n−1∑

h=0

M ′
σh(i),σh(j)

=
n−1∑

h=0

1

n

n−1∑

j=0

M ′
σh(i),σh(j)

=
n−1∑

h=0

1

n
· 1 (sin
e {σh(j)|0 ≤ i ≤ n− 1} = A )

= 1whi
h implies that 
ondition (i) is satis�ed.Now we prove that the diagonal 
ontains the maximum values of the matrix(
ondition (ii)), i.e. for every i, M ′′
i,i = maxM . It is easy to see that, byde�nition, the elements of the diagonal are all the same. Then we need toshow that they are the maximum of ea
h 
olumn, from whi
h it follows thatthey are the maximum of the matrix.

M ′′
i,i =

1

n

n−1∑

h=0

M ′
σh(i),σh(i)

≥
1

n

n−1∑

h=0

M ′
σh(i),σh(j)

(sin
e M ′
σh(j),σh(j)

= maxM
′

σi(j)
)

= M ′′
i,jWe now prove that M ′′ provides ǫ-di�erential priva
y (
ondition (iv)). For111



5. Differential priva
y: the trade-off between leakage andutilityevery pair i ∼ i′ and every j:
M ′′

i,j =
1

n

n−1∑

h=0

M ′
σh(i),σh(j)

≤
1

n

n−1∑

h=0

eǫM ′
σh(i′),σh(j)

(by ǫ-di�. priva
y, for some i′s.t. σh(i′) = σh(j))
= eǫM ′′

i′,jFinally, we prove 
ondition (v):
HM ′′

∞ (A|B) =

n−1∑

i=0

M ′
h,h

=
1

n

n−1∑

i=0

n−1∑

h=0

M ′
σh(i),σh(i)

=
1

n

n−1∑

i=0

HM ′

∞ (A|B) (sin
e M ′
σh(i),σh(i)

= maxM
′

σi(i)
)

= HM ′

∞ (A|B)

5.4.3 The bound on the a posteriori entropy of the 
hannelOn
e the transformation presented in the previous se
tion has been applied,and the 
hannel matrix respe
ts the properties of M ′′, we 
an use again thegraph stru
ture of (A,∼) to determine a bound on the a posteriori entropy
HM ′′

∞ (A|B) of M ′′. Re
all that our matrix transformation preserves the valueof the a posteriori 
onditional entropy, so the bound we �nd is also valid forthe original 
hannel matrix we started with.It is a known result in literature (
fr. [BCP09℄) that, if the distributionon A is uniform, then the a posteriori entropy of the 
hannel M is given by
HM

∞ (A|B) = − log2
∑

j∈B

maxMjHen
e, under our assumption that the input distribution A is uniform,and knowing that matrix the M ′′ the diagonal elements are all equal to themaximum maxM
′′ , we have

HM ′′

∞ (A|B) = − log2maxM
′′ (5.7)112



5.4. Deriving the relation between di�erential priva
y and quantitativeinformation �ow on the basis of the graph stru
tureTherefore to �nd a bound on the a posteriori entropy of the 
hannel M ′′it is enough to �nd a bound on maxM
′′ . This is exa
tly what we do in thisse
tion.We pro
eed by noting that the property of ǫ-di�erential priva
y indu
es arelation between the ratio of elements at any distan
e:Remark 41. Let M be a matrix satisfying ǫ-di�erential priva
y. Then, forany 
olumn j, and any pair of rows i and h we have that:

1

eǫ d(i,h)
≤

Mi,j

Mh,j

≤ eǫ d(i,h)In parti
ular, as we know that the diagonal elements of M are equal to themaximum element maxM , then for ea
h element Mi,j we have that:
Mi,j ≥

maxM

eǫ d(i,j)
(5.8)whi
h motivates the next proposition.Proposition 42. Let M be a 
hannel matrix where the diagonal elements arethe maximum element maxM of the matrix. Then:

maxM ≤ 1∑
d∈∆

nd

eǫdwhere ∆ = {0, 1, . . . , δ}, δ is the diameter of the graph (A,∼), and nd =
A〈d〉(j) is the number of elements Mi,j that are at distan
e d from the 
orre-sponding diagonal element Mj,j, i.e. su
h that d(i, j) = d.Proof. The elements of any given row i of M represent a probability distribu-tion, therefore they summate to 1.

∑

j

Mi,j = 1By substituting (5.8) in the equation above we obtain:
∑

j

(
maxM

eǫd(i,j)

)

≤ 1

∑

d

( nd

eǫd
maxM

)

≤ 1and therefore
maxM ≤

1
∑

d
nd

eǫd 113



5. Differential priva
y: the trade-off between leakage andutilityPutting together all the steps of this se
tion, we obtain our main result.Theorem 43. Consider a 
hannel matrix M satisfying ǫ-di�erential priva
yfor some ǫ > 0, and assume that (A,∼) is either distan
e-regular or V T+.Then we have:
HM

∞ (A|B) ≥ − log2
1

∑

d
nd

eǫ d

(5.9)where nd = |A〈d〉(i)| is the number of nodes j ∈ A at distan
e d from i ∈ A.Moreover, this bound it tight, in the sense that we 
an build a matrix forwhi
h (5.9) holds with equality.Proof. The inequality follows dire
tly from (5.7) and Proposition 42. To provethat the bound is tight, it is su�
ient to de�ne ea
h element Mi,j a

ordingto (5.8) with equality instead of inequality.In the next se
tions we will see how to use this theorem for establishing abound on the leakage and on the utility.5.5 Appli
ation to leakageAs dis
ussed in the Se
tion 5.2, the 
orrelation L(X,Z) between X and Zmeasures the information that the atta
ker 
an learn about the database byobserving the reported answers. In this se
tion we 
onsider the min-entropyleakage as a measure of this information, that is L(X,Z) = I∞(X;Z). We theninvestigate bounds on information leakage imposed by di�erential priva
y.Before we 
ontinue, let us make a very important observation about theresults we obtain in this se
tion.Remark 44. The bounds on the min-entropy leakage we present in this se
tion(Theorem 45, Proposition 48, and Proposition 49) are derived under the as-sumption that the input distribution X for the 
hannel is uniform. As seen inChapter 3, we know from the literature [BCP09, Smi09℄ that the min-entropyleakage IM∞ (X;Z) of a given matrix M is maximum when input distributionis uniform (even though it may not be the only 
ase). Therefore the boundswe present in this se
tion, although based on the assumption that X has theuniform distribution, are valid for every possible input distribution. As wemodel side information as input distributions, and as we provide bounds onthe leakage for any possible input distribution, it follows that our bounds onthe min-entropy leakage are valid for any possible side information the atta
kermay have.Our �rst result shows that the min-entropy leakage of a randomized fun
-tion K is bounded by a quantity depending on ǫ, and on the numbers u = |Ind |and v = |Val | of individuals and values respe
tively. We assume that v ≥ 2.114



5.5. Appli
ation to leakageAs seen in Se
tion 5.2, K 
an be modeled as a 
hannel with input X andoutput Z. From Propositions 36 and 37 we know that (X ,∼) is both distan
e-regular and V T+, and therefore we 
an apply Theorem 43. Then, by (5.8) weknow that j ∈ X〈d〉(x) (i.e. every j in X at distan
e d from a given x) it is the
ase that Mx,j ≥
maxM

eǫd
. Furthermore we note that ea
h element j at distan
e

d from x 
an be obtained by 
hanging the value of d individuals in the u-tuplerepresenting i. We 
an 
hoose those d individuals in (u
d

) possible ways, andfor ea
h of these individuals we 
an 
hange the value (with respe
t to the onein x) in v − 1 possible ways. Therefore |X〈d〉(x)| =
(
u
d

)
(v − 1)d, and we obtainthat the number of databases at distan
e d from x is

nd = |X〈d〉(x)| =

(
u
d

)

(v − 1)d (5.10)In fa
t, re
all that x 
an be represented as a u-tuple with values in V . Weneed to sele
t d individuals in the u-tuple and then 
hange their values, andea
h of them 
an be 
hanged in v − 1 di�erent ways.Using the value of nd from (5.10) in Theorem 43 we obtain the followingresult.Theorem 45. If K satis�es ǫ-di�erential priva
y, then the information leakageis bound from above as follows:
I∞(X;Z) ≤ u log2

v eǫ

v − 1 + eǫ
= Bnd(u, v, ǫ)Proof. For this proof we need a matrix with all 
olumn maxima on the di-agonal, and all equal. We obtain su
h a matrix by transforming the matrixasso
iated to K as follows: �rst we apply Lemma 38 to it (with A = X and

B = Z), and then we apply either Lemma 39 or Lemma 40 (we 
an 
hoose anyof them, sin
e (X ,∼) is both distan
e-regular and V T+). The �nal matrix
M has all non-zero elements on its n × n submatrix, with n = |X | = Valu,provides ǫ-di�erential priva
y, and for every row i we have that Mi,i = maxM .Furthermore, IM∞ (X;Y ) is equal to the min-entropy leakage of K.Then we 
an derive:

n∑

j=1

Mi,j ≥
u∑

d=0

nd
maxM

(eǫ)d

=

u∑

d=0

(
u

d

)

(v − 1)d
maxM

(eǫ)d
(by (5.10))Sin
e ea
h row represents a probability distribution, the elements of row imust sum up to 1:

u∑

d=0

(
u

d

)

(v − 1)d
maxM

(eǫ)d
≤ 1 115



5. Differential priva
y: the trade-off between leakage andutilityand by multiplying both sides of the inequality by eǫu we get
maxM

∑u
d=0

(
u
d

)
(v − 1)deǫ(u−d) ≤ eǫuSin
e by the binomial expansion maxM

∑u
d=0

(
u
d

)
(v − 1)d(eǫ)u−d = (v −

1 + eǫ)u, we obtain:
maxM ≤

(
eǫ

v−1+eǫ

)u (5.11)Therefore:
IM∞ (X;Y ) = H∞(X)−HM

∞ (X|Y ) (by de�nition)
= log2Val

u + log2maxM (by (5.7))
≤ log2Val

u + log2

(
eǫ

v − 1 + eǫ

)u (by (5.11))
= u log2

v eǫ

v − 1 + eǫTo 
on
lude our proof we re
all that, sin
e the above bound on IM∞ (X;Y )is valid for the 
ase where X has the uniform distribution, it is also valid forany distribution on X.Note that the bound Bnd(u, v, ǫ) = u log2
v eǫ

(v−1+eǫ) is a 
ontinuous fun
tionin ǫ, has value 0 when ǫ = 0, and 
onverges to u log2 v as ǫ approa
hes in�nity.Figure 5.9 shows the growth of Bnd(u, v, ǫ) along with ǫ, for various �xedvalues of u and v.

Figure 5.9: Graphs of Bnd(u, v, ǫ) for u=100 and v=2 (lowest line), v=10(intermediate line), and v=100 (highest line), respe
tively.The next proposition shows that the bound obtained in previous theoremis tight.116



5.5. Appli
ation to leakageProposition 46. For every u, v, and ǫ there exists a randomized fun
tion Kwhi
h provides ǫ-di�erential priva
y and whose min-entropy leakage, for theuniform input distribution, is I∞(X;Z) = Bnd(u, v, ǫ).Proof. The adja
en
y relation in X determines a graph stru
ture GX . Set
Z = X and de�ne the matrix of K as follows:

pK(z|x) =
Bnd(u, v, ǫ)

(eǫ)d
(5.12)where d is the distan
e between x and z in GX .We need to show that pK(·|x) is a probability distribution for every x:

∑

z∈Z

Bnd(u, v, ǫ)

(eǫ)d
= Bnd(u, v, ǫ)

∑

z∈Z

1

(eǫ)d

= Bnd(u, v, ǫ)
∑

d

nd

(eǫ)d

= Bnd(u, v, ǫ)
1

maxM
by Proposition 42

= Bnd(u, v, ǫ)
1

Bnd (u, v, ǫ)
take d = 0 in (5.12)

= 1To see that K provides ǫ-di�erential priva
y, just take d = 1 in (5.12), andto see that I∞(X;Z) = Bnd(u, v, ǫ) take d = 0 in the same equation.We now show an example of the use of Bnd(u, v, ǫ) as a bound for themin-entropy leakage.Example 7. Assume that we are interested in the eyes 
olor of a 
ertain pop-ulation Ind = {Ali
e,Bob}. Let Val = {a, b, c} where a stands for absent(i.e. the null value), b stands for blue, and c stands for coalblack . We 
anrepresent ea
h dataset as a tuple d0d1, where d0 ∈ Val represents the eyes
olor of Ali
e (
ases d0 = b and d0 = c), or that Ali
e is not in the dataset(
ase d0 = a). d1 provides the same kind of information for Bob. Note that
v = 3. Fig 5.10(a) represents the set X of all possible datasets and its adja-
en
y relation. Fig 5.10(b) represents the matrix with input X whi
h provides
ǫ-di�erential priva
y and has the highest min-entropy leakage. In the repre-sentation of the matrix, the generi
 entry α stands for maxM

eǫ α
, where maxM isthe highest value in the matrix, i.e. maxM = eǫ

(v−1+eǫ) =
eǫ

(2+eǫ) .Note that the bound Bnd(u, v, ǫ) is guaranteed to be rea
hed with theuniform input distribution. The 
onstru
tion of the matrix for Proposition 46gives a square matrix of dimension Valu × Valu. Often, however, the rangeof K is �xed, as it is usually related to the possible answers to the query f .117



5. Differential priva
y: the trade-off between leakage andutility
ca cb cc

ba bb bc

aa ab ac

(a) The datasets and theiradja
en
y relation
aa ab ac ba ca bb bc cb cc

aa 0 1 1 1 1 2 2 2 2
ab 1 0 1 2 2 1 2 1 2
ac 1 1 0 2 2 2 1 2 1
ba 1 2 2 0 1 1 2 1 2
ca 1 2 2 1 0 2 2 1 1
bb 2 1 2 1 2 0 1 1 2
bc 2 2 1 1 2 1 0 2 1
cb 2 1 2 2 1 1 2 0 1
cc 2 2 1 2 1 2 1 1 0(b) The representation ofthe matrixFigure 5.10: Universe and highest min-entropy leakage matrix giving ǫ-di�erential priva
y for Example 7.Hen
e it is natural to 
onsider the s
enario in whi
h we are given a number

r < Valu, and want to 
onsider only those K's whose range has 
ardinalityat most r. Proposition 48 shows that in n this restri
ted setting we 
an �nda better bound than the one given by Theorem 45. But �rst we need thefollowing lemma.Lemma 47. Let K be a randomized fun
tion with input X, where X = Valu,providing ǫ-di�erential priva
y. Assume that r = |Range(K)| = vℓ, for some
ℓ < u. Let M be the matrix asso
iated to K. Then it is possible to build asquare matrix M ′ of size vℓ × vℓ, with row and 
olumn indi
es in A ⊆ X , anda binary relation ∼′⊆ A×A su
h that (A,∼′) is isomorphi
 to (Val ℓ,∼ℓ), andsu
h that:(i) M ′ is a valid 
hannel matrix: ∑j M

′
i,j = 1 for all 0 ≤ i ≤ n − 1 and all

0 ≤ j ≤ m− 1;(ii) M ′
i,j ≤ (eǫ)u−l+dM ′

h,j for all i, h ∈ X and j ∈ Y, where d is the ∼′-distan
e between i and h;(iii) The elements of the diagonal are all equal to the maximum element ofthe matrix: M ′
i,i = maxM

′ for all i ∈ X ;(iv) HM ′

∞ (X|Y ) = HM
∞ (X|Y ), if X has the uniform distribution.Proof. We �rst apply a pro
edure similar to that of Lemma 38 to 
onstru
t asquare matrix of size vℓ × vℓ whi
h has the maximum values of ea
h 
olumnin the diagonal. (In this 
ase we 
onstru
t an inje
tion from the 
olumns torows 
ontaining their maximum value, and we eliminate the rows that at theend are not asso
iated to any 
olumn.) Then de�ne ∼′ as the proje
tion of ∼uon Val ℓ. It is easy to see that 
ondition (ii) in is satis�ed by this de�nition of118



5.5. Appli
ation to leakage
∼′. Finally, apply the pro
edure in Lemma 39, or equivalently the pro
edurein Lemma 40, on the stru
ture (X ,∼′) to make all elements in the diagonalequal to the maximum element of the matrix (
ondition (iii)). Note that thispro
edure preserves the property of 
ondition (ii), and 
onditional min-entropy((iv)). Also the matrix obtained is a valid 
hannel matrix (
ondition (i)).Now we are ready to prove the proposition.Proposition 48. Let K be a randomized fun
tion with asso
iated 
hannelmatrix M , and let r = |Range(K)|. If K provides ǫ-di�erential priva
y thenthe min-entropy leakage asso
iated to K is bounded from above as follows:

IM∞ (X;Z) ≤ log2
r (eǫ)u

(v − 1 + eǫ)ℓ − (eǫ)ℓ + (eǫ)uwhere ℓ = ⌊logv r⌋.Proof. Assume �rst that r is of the form vℓ. We transform the matrix Masso
iated to K by applying Lemma 47, and let M ′ be the resulting matrix.Let us denote by maxM
′ the value of every element in the diagonal of M ′, i.e.

maxM
′
= M ′

i,i for every row i, and let us denote by A′
〈d〉(i) the set of elementswhose ∼′-distan
e from i is d. Note that for every j ∈ A′

〈d〉(i) we have that
M ′

j,j ≤M ′
i,j(e

ǫ)u−ℓ+d, hen
e
M ′

i,j ≥
maxM

(eǫ)u−ℓ+dFurthermore ea
h element j at ∼′-distan
e d from i 
an be obtained by
hanging the value of d individuals in the ℓ-tuple representing i (rememberthat (A,∼′) is isomorphi
 to (Val ℓ,∼ℓ)). We 
an 
hoose those d individualsin (ℓ
d

) possible ways, and for ea
h of these individuals we 
an 
hange the value(with respe
t to the one in i) in v − 1 possible ways. Therefore
|A′

〈d〉(i)| =

(
ℓ

d

)

(v − 1)dTaking into a

ount that for M ′
i,i we do not need to divide by (eǫ)u−ℓ+d,we obtain:

maxM +
∑ℓ

d=1

(
ℓ
d

)
(v − 1)d maxM

(eǫ)u−ℓ+d ≤
∑

j M
′
i,jSin
e ea
h row represents a probability distribution, the elements of row imust sum up to 1. Hen
e:

maxM +
∑u

d=1

(
u
d

)
(v − 1)d maxM

(eǫ)u−ℓ+d ≤ 1 (5.13)By performing some simple 
al
ulations, similar to those of the proof ofTheorem 45, we obtain:
maxM ≤ (eǫ)u

(v−1+eǫ)ℓ−(eǫ)ℓ+(eǫ)u 119



5. Differential priva
y: the trade-off between leakage andutilityTherefore:
IM

′

∞ (X;Z) = H∞(X)−HM ′

∞ (X|Z) (by de�nition) (5.14)
= log2 v

u + log2

vℓ∑

j=1

maxM 1
vu

(5.15)
= log2 v

u + log2
1

vu
+ log2(v

ℓ maxM ) (5.16)
≤ log2

vℓ (eǫ)u

(v − 1 + eǫ)ℓ − (eǫ)ℓ + (eǫ)u
(by (5.13) ) (5.17)Consider now the 
ase in whi
h r is not of the form vℓ. Let ℓ be themaximum integer su
h that vℓ < r, and let m = r − vℓ. We transform thematrix M asso
iated to K by 
ollapsing the m 
olumns with the smallestmaxima into the m 
olumns with highest maxima. Namely, let j1, j2, . . . , jmthe indi
es of the 
olumns whi
h have smallest maxima values, i.e. maxMjt ≤

maxMj for every 
olumn j 6= j1, j2, . . . , jm. Similarly, let k1, k2, . . . , km be theindexes of the 
olumns whi
h have maxima values. Then, de�ne
N = M [j1 → k1][j2 → k2] . . . [jm → km]Finally, eliminate the m zero-ed 
olumns to obtain a matrix with exa
tly

vℓ 
olumns. It is easy to show that
IM∞ (X;Z) ≤ IN∞(X;Z)

r

vℓAfter transforming N into a matrix M ′ with the same min-entropy leakageas des
ribed in the �rst part of this proof, from (5.14) we 
on
lude
IM∞ (X;Z) ≤ IM

′

∞ (X;Z)
r

vℓ
≤ log2

r (eǫ)u

(v − 1 + eǫ)ℓ − (eǫ)ℓ + (eǫ)uNote that this bound 
an be mu
h smaller than the one provided by The-orem 45. For instan
e, if r = v this bound be
omes:
log2

v (eǫ)u

v − 1 + (eǫ)uwhi
h for large values of u is mu
h smaller than Bnd(u, v, ǫ).Let us 
larify that there is no 
ontradi
tion with the fa
t that the bound
Bnd(u, v, ǫ) is stri
t: in fa
t it is stri
t when we are free to 
hoose the range,but here we �x the dimension of the range.120



5.5. Appli
ation to leakage5.5.1 Measuring the leakage about an individualAs dis
ussed in Se
tion 5.2, the main goal of di�erential priva
y is not toprote
t information about the 
omplete database, but about ea
h of its indi-vidual parti
ipants. To 
apture the leakage about a parti
ular individual, westart from a tuple x− ∈ Valu−1 
ontaining the given (and known) values of allother u− 1 individuals. Then we 
reate a 
hannel whose input V ranges overthe values in Val and represents the value of our individual of interest. Notethat this means that we take into 
onsideration all possible input databaseswhere the values of the other individuals are exa
tly those of x− and onlythe value of the sele
ted individual varies. Intuitively, Ix−

∞ (V ;Z) measures theleakage about the individual's value where all other values are known to be asin x−. (Similarly, Hx−

∞ (V |Z) represents the 
onditional entropy of V given Zfor a �xed database where all other values are x−.) As all these databases areadja
ent, di�erential priva
y provides a stronger bound for this leakage.Therefore, the leakage for a single individual 
an be 
hara
terized as fol-lows.Proposition 49. Assume that K satis�es ǫ-di�erential priva
y. Then theinformation leakage for an individual is bound from above by:
Ix

−

∞ (V ;B) ≤ log2
v eǫ

v − 1 + eǫProof. Let us �x a database x, and a parti
ular individual i in Ind . Thepossible ways in whi
h we 
an 
hange the value of i in x are v − 1. All thenew databases obtained in this way are adja
ent to ea
h other, i.e. the graphstru
ture asso
iated to the input is a 
lique of v nodes. Re
all that nd is thenumber of elements of the input at distan
e d from a given element x. In this
ase we have
nd =







1 for d = 0,
v − 1 for d = 1,
0 otherwise.By substituting this value of nd in Theorem 43, we get

Hx−

∞ (V |Z) ≥ − log2
1

1 +
v − 1

eǫ

= − log2
eǫ

v − 1 + eǫ 121



5. Differential priva
y: the trade-off between leakage andutilityThe parti
ular individual 
an present v di�erent values, and thus in the
ase the input distribution is uniform its min-entropy is Hx−

∞ (V ) = log2 v.
Ix

−

∞ (V ;Z) = Hx−

∞ (V )−Hx−

∞ (V |Y ) (by de�nition)
= log2 v + log2

eǫ

v − 1 + eǫ
(by the derivations above)

= log2
v eǫ

v − 1 + eǫSin
e the min-entropy leakage is maximum in the 
ase of the uniform inputdistribution, the result follows.Note that the bound on the leakage for an individual does not depend onthe size u of Ind , nor on the database x− that we �x.5.6 Appli
ation to utilityAs dis
ussed in Se
tion 5.2, the utility of a randomized fun
tion K is the
orrelation between the real answers Y for a query and the reported answers
Z. For our analysis we assume an oblivious randomization me
hanism. Asdis
ussed in Se
tion 5.2, in this 
ase the system 
an be de
omposed into two
hannels, and the utility be
omes a property of the 
hannel asso
iated to therandomization me
hanism H whi
h maps the real answer y ∈ Y into a reportedanswer z ∈ Z a

ording to given probability distributions pZ|Y (·|·). The user,however, does not ne
essarily take z as her guess for the real answer, sin
e she
an use some Bayesian post-pro
essing to maximize the probability of su

ess,i.e. a right guess. Thus for ea
h reported answer z the user 
an remap herguess to a value y′ ∈ Y a

ording to some strategy that maximizes her expe
tedgain.The standard way to de�ne utility is by means of gain fun
tions (see forinstan
e [BS94℄). We de�ne gain : Y × Y → R and the value gain(y, y′)represents the reward for guessing the answer y′ when the 
orre
t answer is y.It is natural to de�ne the global utility of the me
hanism H as the expe
tedgain:

U(Y,Z) =
∑

y

p(y)
∑

y′

p(y′|y)gain(y, y′) (5.18)where p(y) is the prior probability of real answer y, and p(y′|y) is the proba-bility of the user guessing y′ when the real answer is y.122



5.6. Appli
ation to utilityAssuming that the user uses a remapping fun
tion guess : Z → Y, we 
anderive the following 
hara
terization of the utility. Re
all that δx(·) representsthe probability distribution whi
h has value 1 on x and 0 elsewhere.
U(Y,Z) =

∑

y

p(y)
∑

y′

p(y′|y)gain(y, y′) (by (5.18))
=
∑

y

p(y)
∑

y′

(
∑

z

p(z|y)p(y′|z)

)

gain(y, y′)

=
∑

y

p(y)
∑

y′

(
∑

z

p(z|y)δy′(guess(z))

)

gain(y, y′) (y′ = guess(z))
=
∑

y

p(y)
∑

z

p(z|y)
∑

y′

δy′(guess(z))gain(y, y
′)

=
∑

y,z

p(y, z)
∑

y′

δy′(guess(z))gain(y, y
′)

=
∑

y,z

p(y, z)gain(y, guess(z)) (5.19)We fo
us here on the so-
alled binary gain fun
tion, whi
h is de�ned as
gainbin(y, y

′) =

{

1 if y = y′,

0 otherwise.Note that in the above equation the value y′ represents the user's guessafter the observed answer z. Therefore we have
gainbin = δy(guess(z))This kind of fun
tion represents the 
ase in whi
h there is no reason toprefer an answer over the other, ex
ept if it is the 
orre
t answer. Morepre
isely, we obtain some gain if and only if we guess the right answer. Notethat if the answer domain is equipped with a notion of distan
e (i.e. even iftwo answers are wrong, one of them may be �
loser� to the 
orre
t one thanthe other) then the gain fun
tion 
ould take into a

ount the proximity of thereported answer to the real one. In this 
ase a �
lose� answer, even if wrong,is 
onsidered better than a distant one. We do not assume here a notion ofdistan
e, and therefore we will fo
us on the binary 
ase. The use of binarygain fun
tions in the 
ontext of di�erential priva
y was also investigated in[GRS09℄3.By substituting gain with gainbin in (5.19) we obtain:

U(Y,Z) =
∑

y,z

p(y, z)δy(guess(z)) (5.20)3The authors of [GRS09℄ used the dual notion of loss fun
tions instead of gain fun
tions,but the �nal result is equivalent. 123



5. Differential priva
y: the trade-off between leakage andutilitywhi
h tells us that the expe
ted utility is the greatest when guess(z) = y is
hosen to maximize p(y, z). Assuming that the user 
hooses su
h a maximizingremapping, we have:
U(Y,Z) =

∑

z

max
y

p(y, z)

=
∑

z

max
y

(p(y) p(z|y)) (by the Bayes law) (5.21)If the gain fun
tion is binary, and the fun
tion guess is 
hosen to optimizeutility (i.e. it represents the user's best strategy), then there is a well-known
orresponden
e between U and the Bayes risk / the a posteriori min-entropy.Su
h 
orresponden
e is expressed by the following proposition:Proposition 50. Assume that fun
tion gain is binary and the fun
tion guessis optimal. Then:
U(Y,Z) =

∑

z

max
y

(p(y) p(z|y)) = 2−H∞(Y |Z)Proof. Just substitute (5.21) in the de�nition of 
onditional min-entropy: H∞(Z |
Y ) = − log2

∑

z maxy((p(y) p(z|y)).5.6.1 The bound on the utilityIn this se
tion we show that the fa
t that K provides ǫ-di�erential priva
yindu
es a bound on the utility as de�ned in terms of a binary gain fun
tion.We start by extending the adja
en
y relation ∼ from the datasets X to thereal answers Y. Intuitively, the fun
tion f asso
iated to the query determinesa partition on the set of all databases (X , i.e. Valu), and we say that two
lasses are adja
ent if they 
ontain an adja
ent pair. More formally:De�nition 51. Given y, y′ ∈ Y, with y 6= y′, we say that y and y′ are adja
ent(notation y ∼ y′), if and only if there exist x, x′ ∈ Valu with x ∼ x′ su
h that
y = f(x) and y′ = f(x′).Sin
e ∼ is symmetri
 on databases, it is also symmetri
 on Y, thereforealso (Y,∼) forms an undire
ted graph.In the following, we assume that the distribution of Y is uniform.Theorem 52. Consider a randomized me
hanism H, and let y be an elementof Y. Assume that (Y,∼) is either distan
e-regular or V T+ and that H sat-is�es ǫ-di�erential priva
y. For ea
h distan
e d ∈ {0, 1, . . . , δ}, where δ is thediameter of (Y,∼), we have that:

U(Y,Z) ≤
1

∑

d

nd

eǫ d

(5.22)where nd is the number of nodes y′ ∈ Y at distan
e d from y.124



5.6. Appli
ation to utilityProof. Sin
e (Y,∼) is distan
e-regular or V T+, we 
an apply Theorem 43 toderive that HM
∞ (Z|Y ) ≥ − log2

1∑
d

nd

eǫ d

. Then we just substitute this result inProposition 50.The above bound is tight, in the sense that (provided (Y,∼) is distan
e-regular or V T+) we 
an 
onstru
t a me
hanism H whi
h satis�es (5.22) withequality. More pre
isely, for 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n − 1, we de�ne H(here identi�ed with its 
hannel matrix for simpli
ity) as follows:
Hi,j =

γ

eǫ d(i,j)
(5.23)where

γ =
1

∑

d

nd

eǫ d

(5.24)Note that H is a square matrix of dimension n× n, where n = |X | This isnot a problem be
ause sin
e we assume (Y,∼) to be either distan
e-regular or
V T+, via Theorem 43 we 
an transform the 
hannel matrix into an equivalentone su
h that all non zero elements are in the submatrix of dimensions n× n.Let us introdu
e now Z∗ = {0, 1, . . . , n−1}, i.e. the subset of Z that ex
ludesthe zero-ed 
olumns of the 
hannel matrix from n to m− 1. Note that for thefollowing result we 
an safely use the set Z∗ instead of Z be
ause the zero-ed
olumns do not 
ontribute to the a posteriori entropy, and trivially respe
t
ǫ-di�erential priva
y.Theorem 53. Assume (Y,∼) is distan
e-regular or V T+. Then the matrix
H de�ned in (5.23) satis�es ǫ-di�erential priva
y and has maximal utility:

U(Y,Z) =
1

∑

d

nd

eǫ dProof. First we prove that the matrix as de�ned in (5.23) is a 
hannel matrix,i.e. that ea
h row is a probability distribution.
∑

j∈Z∗

Hi,j =
∑

j∈Z∗

γ

eǫd(i,j)

= γ
∑

j∈Z∗

1

eǫd(i,j)

= γ
∑

d

nd

eǫd
by (5.24)

= γ
1

γ

= 1 125



5. Differential priva
y: the trade-off between leakage andutilityNow we show that the utility is maximum.
U(Y,Z) =

∑

z∈Z∗

max
y

(p(y)H(z|y)) by (5.21)
=
∑

z∈Z∗

max
y

1

|Y|
H(z|y) sin
e Y is uniform

=
1

|Y|

∑

z∈Z∗

max
y

γ

maxd eǫd(i,j)
by (5.23)

=
1

|Y|

∑

z∈Z∗

γ maximum is d = 0

=
1

|Y|
· |Z|γ

= γ sin
e |Y| = |Z∗| = nTherefore we 
an always de�ne H as in (5.23): the matrix so de�ned willbe a legal 
hannel matrix, and it will satisfy ǫ-di�erential priva
y. If (Y,∼) isneither distan
e-regular nor V T+, then the utility of su
h H is not ne
essarilyoptimal.The 
onditions for the 
onstru
tion of the optimal matrix are strong, butthere are some interesting s
enarios in whi
h they are satis�ed. Depending onthe degree of 
onne
tivity c of the graph (Y,∼), we 
an have ⌊ |Y|
2 ⌋−1 di�erent
ases (note that the 
ase of c = 1 is not possible be
ause the datasets are fully
onne
ted via their adja
en
y relation), whose extremes are:

• (Y,∼) is a 
lique, i.e. every element has exa
tly |Y|−1 adja
ent elements.
• (Y,∼) is a ring, i.e. every element has exa
tly two adja
ent elements.This is similar to the 
ase of the 
ounting queries 
onsidered in [GRS09℄,with the di�eren
e that our �
ounting� is in arithmeti
 modulo |Y|.Remark 54. Note that our method 
an be applied also when the 
onditionsof Theorem 53 are not met: We 
an always add �arti�
ial� adja
en
ies tothe graph stru
ture so to meet those 
onditions. Namely, for 
omputing thedistan
e in (5.23) we use, instead of (Y,∼), a stru
ture (Y,∼′) whi
h satis�esthe 
onditions of Theorem 53, and su
h that ∼⊆∼′. Naturally, the matrix
onstru
ted in this way provides ǫ-di�erential priva
y, but in general is notoptimal. It is 
lear that, in general, the smaller ∼′ is, the highest is the utility.The matri
es generated by (5.23) 
an be very di�erent, depending on thevalue of c. The next two examples illustrate queries that give rise to the 
liqueand to the ring stru
tures, and show the 
orresponding matri
es.126



5.6. Appli
ation to utilityExample 8. Consider a database with ele
toral information where ea
h entry
orresponds to a voter and 
ontains the following three �elds:
• Id: a unique (anonymized) identi�er assigned to ea
h voter;
• City: the name of the 
ity where the user voted;
• Candidate: the name of the 
andidate the user voted for.Consider the query �What is the 
ity with the greatest number of votesfor a given 
andidate cand?�. For su
h a query the binary utility fun
tion isthe natural 
hoi
e: only the right 
ity gives some gain, and all wrong answersare equally bad. It is easy to see that every two answers are neighbors, i.e. thegraph stru
ture of the answers is a 
lique.Let us 
onsider the s
enario where City = {A,B,C,D,E, F} and assumefor simpli
ity that there is a unique answer for the query, i.e. there are no two
ities with exa
tly the same number of individuals voting for 
andidate cand .Table 5.1 shows two alternative me
hanisms providing ǫ-di�erential priva
y(with ǫ = log 2). The �rst one, M1, is based on the trun
ated geometri
 me
h-anism method used in [GRS09℄ for 
ounting queries (here extended to the 
asewhere every two distin
t answers are neighbors). The se
ond me
hanism, M2,is obtained by applying the de�nition of (5.23). From Theorem 53 we knowthat for the uniform input distribution M2 gives optimal utility.For the uniform input distribution, it is easy to see that U(M1) = 0.2242 <

0.2857 = U(M2). Even for non-uniform distributions, our me
hanism stillprovides better utility. For instan
e, for p(A) = p(F ) = 1/10 and p(B) =
p(C) = p(D) = P (E) = 1/5, we have U(M1) = 0.2412 < 0.2857 = U(M2).This is not too surprising: the geometri
 me
hanism, as well as the Lapla
ianme
hanism proposed by Dwork, perform very well when the domain of answersis provided with a metri
 and the utility fun
tion is not binary4. It also workswell when (Y,∼) has low 
onne
tivity, in parti
ular in the 
ases of a ringand of a line. But in this example, we are not in these 
ases, be
ause we are
onsidering binary gain fun
tions and high 
onne
tivity.Example 9. Let us 
onsider the same database as the previous example, butnow assume a 
ounting query of the form �What is the number of votes for
andidate cand?�. It is easy to see that ea
h answer has at most two neighbors.More pre
isely, the graph stru
ture on the answers is a line. For illustrationpurposes, let us assume that only 5 individuals have parti
ipated in the ele
tion.Table 5.2 shows two alternative me
hanisms providing ǫ-di�erential priva
y(ǫ = log 2): the trun
ated geometri
 me
hanism M1 proposed in [GRS09℄ andthe me
hanism we propose M2. Note that in order to apply our method we4As we mentioned before, in the metri
 
ase the gain fun
tion 
an take into a

ount theproximity of the reported answer to the real one, the idea being that a 
lose answer, even ifwrong, is better than a distant one. 127



5. Differential priva
y: the trade-off between leakage andutility In/Out A B C D E F

A 0.535 0.060 0.052 0.046 0.040 0.267
B 0.465 0.069 0.060 0.053 0.046 0.307
C 0.405 0.060 0.069 0.060 0.053 0.353
D 0.353 0.053 0.060 0.069 0.060 0.405
E 0.307 0.046 0.053 0.060 0.069 0.465
F 0.267 0.040 0.046 0.052 0.060 0.535(a) M1: trun
ated geometri
 me
hanismIn/Out A B C D E F

A 2/7 1/7 1/7 1/7 1/7 1/7
B 1/7 2/7 1/7 1/7 1/7 1/7
C 1/7 1/7 2/7 1/7 1/7 1/7
D 1/7 1/7 1/7 2/7 1/7 1/7
E 1/7 1/7 1/7 1/7 2/7 1/7
F 1/7 1/7 1/7 1/7 1/7 2/7(b) M2: our me
hanismTable 5.1: Me
hanisms for the 
ity with higher number of votes for 
andidate

candhave �rst to apply Remark 54 to transform the graph stru
ture from a line intoa ring.Le us 
onsider the uniform prior distribution. We see that the utility of
M1 is higher than the utility of M2, in fa
t the �rst is 4/9 and the se
ond is
8/21. This does not 
ontradi
t our theorem, be
ause our matrix is guaranteedto be optimal only in the 
ase of a ring stru
ture, not a line as we have in thisexample. If the stru
ture were a ring, i.e. if the last row were adja
ent to the�rst one, then M1 would not provide ǫ-di�erential priva
y. In 
ase of a line asin this example, the trun
ated geometri
 me
hanism has been proved optimal[GRS09℄.5.7 Related workTo the best of our knowledge, the �rst work to investigate the relation betweendi�erential priva
y and information-theoreti
 leakage for an individual was[ACDP10℄. In this work, the de�nition of 
hannel was relative to a givendatabase x, and the 
hannel inputs were all possible databases adja
ent to
x. Two bounds on leakage were presented, one for the min-entropy, and onefor Shannon entropy. Our bound in Proposition 49 is an improvement withrespe
t to the (min-entropy) bound in [ACDP10℄.Barthe and Köpf [BK11℄ were the �rst to investigate the (more 
halleng-ing) 
onne
tion between di�erential priva
y and the min-entropy leakage forthe entire universe of possible databases. They 
onsidered the �end-to-end128



5.7. Related workIn/Out 0 1 2 3 4 5

0 2/3 1/6 1/12 1/24 1/48 1/48
1 1/3 1/3 1/6 1/12 1/24 1/24
2 1/6 1/6 1/3 1/6 1/12 1/12
3 1/12 1/12 1/6 1/3 1/6 1/6
4 1/24 1/24 1/12 1/6 1/3 1/3
5 1/48 1/48 1/24 1/12 1/6 2/3(a) M1: trun
ated 1

2
-geom. me
hanismIn/Out 0 1 2 3 4 5

0 8/21 4/21 2/21 1/21 2/21 4/21
1 4/21 8/21 4/21 2/21 1/21 2/21
2 2/21 4/21 8/21 4/21 2/21 1/21
3 1/21 2/21 4/21 8/21 4/21 2/21
8 2/21 1/21 2/21 4/21 8/21 4/21
5 4/21 2/21 1/21 2/21 4/21 8/21(b) M2: our me
hanismTable 5.2: Me
hanisms for the 
ounting query (5 voters)di�erentially private me
hanisms�, whi
h 
orrespond to what we 
all the ran-domized fun
tion K in this 
hapter, and proposed, like we do, to interpret themas information-theoreti
 
hannels. They provided a bound for the leakage, butpointed out that it was not tight in general. They also showed that there
annot be a domain-independent bound, by proving that for any number ofindividuals u the optimal bound must be at least a 
ertain expression f(u, ǫ).Finally, they showed that the question of providing optimal upper bounds forthe leakage of ǫ-di�erentially private randomized fun
tions in terms of rationalfun
tions of ǫ is de
idable, and left the a
tual fun
tion as an open question.In our work we used rather di�erent te
hniques and found (independently) thesame fun
tion f(u, ǫ) (the bound in Theorem 43), but we a
tually proved that

f(u, ǫ) is the optimal bound5. Another di�eren
e between their work and oursis that [BK11℄ 
aptures the 
ase in whi
h the fo
us of di�erential priva
y ison hiding parti
ipation of individuals in a database, whereas we 
onsider boththe parti
ipation and the values of the parti
ipants.Clarkson and S
hneider also 
onsidered di�erential priva
y as a 
ase studyof their proposal for quanti�
ation of integrity [CS11℄. There, the authorsanalyzed database priva
y 
onditions from the literature (su
h as di�erentialpriva
y, k-anonymity, and l-diversity) using their framework for utility quan-ti�
ation. In parti
ular, they studied the relationship between di�erentialpriva
y and a notion of leakage (whi
h is di�erent from ours - in parti
ulartheir de�nition is based on Shannon entropy) and they provided a tight bound5When dis
ussing our result with Barthe and Köpf, they said that they also 
onje
turedthat f(u, ǫ) is the optimal bound. 129



5. Differential priva
y: the trade-off between leakage andutilityon leakage.Heusser and Mala
aria [HM09℄ were among the �rst to explore the appli
a-tion of information-theoreti
 
on
epts to databases queries. They proposed tomodel database queries as programs, whi
h allows for stati
al analysis of theinformation leaked by the query. [HM09℄, however, did not attempt to relateinformation leakage to di�erential priva
y.In [GRS09℄ the authors aimed at obtaining optimal-utility randomizationme
hanisms while preserving di�erential priva
y. The authors proposed addingnoise to the output of the query a

ording to the geometri
 me
hanism. Theirframework is very interesting in the sense it provides a general de�nition ofutility for a me
hanism M that 
aptures any possible side information andpreferen
e (de�ned as a loss fun
tion) the users of M may have. They provedthat the geometri
 me
hanism is optimal in the parti
ular 
ase of 
ountingqueries. Our results in Se
tion 5.6 do not restri
t to 
ounting queries, but onthe other hand we only 
onsider the 
ase of binary loss fun
tion.5.8 Chapter summary and dis
ussionIn this 
hapter we have investigated the relation between ǫ-di�erential priva
yand leakage, and between ǫ-di�erential priva
y and utility. Our main 
on-tribution was the development of a general te
hnique for determining theserelations depending on the graph stru
ture of the input domain, indu
ed bythe adja
en
y relation and by the query. We have 
onsidered two parti
ularstru
tures, the distan
e-regular graphs, and the V T+ graphs, whi
h allowed usto obtain tight bounds on the leakage and on the utility. We also 
onstru
tedan optimal randomization me
hanism satisfying ǫ-di�erential priva
y for somespe
ial 
ases.As future work, we plan to extend our result to other kinds of utilityfun
tions. In parti
ular, we are interested in the 
ase in whi
h the the answerdomain is provided with a metri
, and we are interested in taking into a

ountthe degree of a

ura
y of the inferred answer.
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SixSafe equivalen
es for se
urityproperties
�Too mu
h may be the equivalent of none at all.�Lee LoevingerIn the �eld of Se
urity, pro
ess equivalen
es have been used to 
hara
ter-ize various information-hiding properties (for instan
e se
re
y, anonymity andnoninterferen
e) based on the prin
iple that a proto
ol P with a variable x sat-is�es su
h a property if and only if, for every pair of se
rets s1 and s2, P [s1/x]is equivalent to P [s2/x]. We argue that, in the presen
e of nondeterminism,the above prin
iple relies on the assumption that the s
heduler �works for thebene�t of the proto
ol�, and this usually is not a safe assumption. Non-safeequivalen
es, in this sense, in
lude 
omplete-tra
e equivalen
e and bisimula-tion.The goal of this 
hapter is to present a formalism in whi
h we 
an spe
ifyadmissible s
hedulers and, 
orrespondingly, safe versions of these equivalen
es.Then we are able to show that safe equivalen
es 
an be used to establishinformation-hiding properties.Contribution The main 
ontributions of this 
hapter 
an be summarizedas follows.

• We propose a formalism for 
on
urrent distributed systems whi
h a
-
ounts for both probabilisti
 and nondeterministi
 behavior, and in whi
hthe latter is of two kinds: global and lo
al. The global nondeterminismrepresents the possible interleavings produ
ed by the parallel 
ompo-nents, whi
h may be in�uen
ed by the atta
ker. The lo
al nondeter-minism is asso
iated to the possible internal 
hoi
es of ea
h 
omponent,131



6. Safe equivalen
es for se
urity propertieswhi
h may depend on the se
rets or other unknown parameters, not 
on-trolled by the atta
ker. Correspondingly, we split the s
heduler into two
onstituents: a global one and a lo
al one. The latter is a
tually a tupleof lo
al s
hedulers, one for ea
h 
omponent of the system.
• We propose a notion of admissible s
heduler for the above systems,in whi
h the global 
onstituent is not allowed to see the se
rets, andea
h lo
al 
onstituent is not allowed to see any information about theother 
omponents. We then generalize the standard de�nition of strong(probabilisti
) information hiding (su
h as noninterferen
e and stronganonymity) to the 
ase in whi
h also nondeterminism is present, underthe assumption that the s
hedulers are admissible.
• We use admissible s
hedulers to de�ne safe versions of 
omplete-tra
e1equivalen
e and bisimilarity whi
h are spe
ially tuned for se
urity. Thismeans that we a

ount for the possibility that the global 
onstituent ofthe s
heduler is in 
ollusion with the atta
ker, and therefore does notne
essarily help the system to obfus
ate the se
ret. We show that thebisimilarity is still a 
ongruen
e, like in the 
lassi
al 
ase.
• We �nally show that our notions of safe 
omplete-tra
e equivalen
e andbisimilarity imply strong information hiding in the sense dis
ussed above.Plan of the Chapter This 
hapter is organized as follows. In Se
tion 6.1we review the role equivalen
es traditionally play in formalizing se
urity prop-erties. In Se
tion 6.2 we formalize the notions of distributed systems and
omponents used in this 
hapter. In Se
tion 6.3 we fo
us on restri
ting thedis
erning power of global and lo
al s
hedulers, and in Se
tion 6.4 we presentour proposal for safe equivalen
es, namely safe 
omplete-tra
es and safe bisim-ilarity. In Se
tion 6.5 we de�ne the notion of information hiding under thenovel assumption that nondeterminism is handled partly in a demoni
 wayand partly in an angeli
 way. Finally, in Se
tion 6.6 we review the relatedbibliography, and in Se
tion 6.7 we summarize the 
hapter and outline somefuture work.6.1 The use of equivalen
es in se
urityAs we have seen in Chapter 1, one te
hnique used to prevent an atta
ker ofinferring the se
ret from the observables is to 
reate noise, namely to make surethat for every exe
ution in whi
h a given se
ret produ
es a 
ertain observable,there is at least another exe
ution in whi
h a di�erent se
ret produ
es thesame observable. In pra
ti
e this is often done by using randomization.1In this 
hapter we may refer to �
omplete tra
es� simply as �tra
es�.132



6.1. The use of equivalen
es in se
urityIn the literature about the foundations of 
omputer se
urity, however, thequantitative aspe
ts are often abstra
ted away, and probabilisti
 behavior isrepla
ed by nondeterministi
 behavior. Correspondingly, there have been var-ious approa
hes in whi
h information-hiding properties are expressed in termsof equivalen
es based on nondeterminism, espe
ially in a 
on
urrent setting.For instan
e, [SS96℄ de�nes anonymity as follows2: A proto
ol S is anonymousif, for every pair of 
ulprits a and b, S[a/x] and S[b/x] produ
e the same ob-servable tra
es. A similar de�nition is given in [AG99℄ for se
re
y, with thedi�eren
e that S[a/x] and S[b/x] are required to be bisimilar. In [DKR09℄, anele
toral system S preserves the 
on�dentiality of the vote if for any voters vand w, the observable behavior of S is the same if we swap the votes of v and
w, i.e. if S[a/v |b /w] is bisimilar to S[b/v |

a /w].These proposals are based on the impli
it assumption that all the nonde-terministi
 exe
utions present in the spe
i�
ation of S will always be possibleunder every implementation of S. Or at least, that the adversary will believeso. In 
on
urren
y, however, as argued in [CNP09℄, nondeterminism has arather di�erent meaning: if a spe
i�
ation S 
ontains some nondeterministi
alternatives, typi
ally it is be
ause we want to abstra
t from spe
i�
 imple-mentations, su
h as the s
heduling poli
y. A spe
i�
ation is 
onsidered 
or-re
t, with respe
t to some property, if every alternative satis�es the property.Correspondingly, an implementation is 
onsidered 
orre
t if all exe
utions areamong those possible in the spe
i�
ation, i.e. if the implementation is a re-�nement of the spe
i�
ation. There is no expe
tation that the implementationwill a
tually make possible all the alternatives indi
ated by the spe
i�
ation.We argue that the use of nondeterminism in 
on
urren
y 
orresponds to ademoni
 view: the s
heduler, i.e. the entity that will de
ide whi
h alternativeto sele
t, may try to 
hoose the �worst� alternative. Hen
e we need to makesure that all alternatives are �good�, in the sense that they satisfy the intendedproperty. In the approa
hes to formalize se
urity properties mentioned above,on the 
ontrary, the interpretation of nondeterminism is angeli
: the s
heduleris expe
ted to a
tually help the proto
ol to 
onfuse the adversary and thusprote
t the se
ret information.There is another issue, orthogonal to the angeli
/demoni
 di
hotomy, butrelevant for the a
hievement of se
urity properties: the s
heduler should not beable to make its 
hoi
es dependent on the se
ret, or else nearly every proto
olwould be inse
ure, i.e. the s
heduler would always be able to leak the se
retto an external observer (for instan
e by produ
ing di�erent interleavings ofthe observables, depending on the se
ret). This remark has been made severaltimes already, and several approa
hes have been proposed to 
ope with theproblem of full-information s
hedulers (aka almighty, omnis
ient, 
lairvoyant,et
.), see for example [CCK+06a, CCK+06b, CPb, CNP09, APvRS℄.The risk of a naive use of nondeterminism to spe
ify a se
urity property is2The a
tual de�nition of [SS96℄ is more 
ompli
ated, but the spirit is the same. 133



6. Safe equivalen
es for se
urity propertiesnot only that it may rely on an impli
it assumption that the s
heduler behavesangeli
ally, but also that it is 
lairvoyant (fully-informed), i.e. that it peeksat the se
rets (that it is not supposed to be able to see) to a
hieve its angeli
strategy.Example 10. Consider the following system, in a CCS-like syntax: S
def
=

(c)(A ‖ H1 ‖ H2 ‖ Corr), with A
def
= c〈sec〉, H1

def
= c(s).out〈a〉, H2

def
=

c(s).out〈b〉, Corr def
= c(s).out〈s〉. The name sec represents a se
ret.It is easy to see that we have S [a/sec] ∼ S

[
b/sec

], as shown in the exe
utiontress in Figure 6.1. Note that, in order to simulate the rightmost bran
h in
S [a/sec], the pro
ess S [b/sec] needs to follow its leftmost bran
h. Vi
e-versa, inorder to simulate the rightmost bran
h in S

[
b/sec

], the pro
ess S [a/sec] needsto follow its middle bran
h. This means that, in order to a
hieve bisimulation,the s
heduler needs to know the se
ret, and 
hange its 
hoi
e a

ordingly.
c〈a〉 || c(s).out〈a〉 || c(s).out〈b〉 || c(s).out〈s〉

− || out〈a〉 || − || − − || − || out〈b〉 || − − || − || − || out〈a〉

− || − || − || − − || − || − || − − || − || − || −

τ
τ

τ

out〈a〉 out〈b〉 out〈a〉(a) S[a/sec]

c〈b〉 || c(s).out〈a〉 || c(s).out〈b〉 || c(s).out〈s〉

− || out〈a〉 || − || − − || − || out〈b〉 || − − || − || − || out〈b〉

− || − || − || − − || − || − || − − || − || − || −

τ
τ

τ

out〈a〉 out〈b〉 out〈b〉(b) S[b/sec]Figure 6.1: Exe
ution trees for Example 10This example shows a distributed system that intuitively is not se
ure,be
ause one of its 
omponents, Corr , reveals whatever se
ret it re
eives. A
-
ording to the equivalen
e-based notions of se
urity dis
ussed above, however,it is se
ure. But it is 
onsidered se
ure thanks to a s
heduler that:134



6.2. Distributed systems and 
omponents(i) angeli
ally helps the system to prote
t the se
ret; and(ii) does so by making its 
hoi
es dependent on the se
ret.We 
onsider these assumptions on the s
heduler to be ex
essively strong.Here we do not 
laim, however, that we should rule out the use of angeli
nondeterminism in se
urity: on the 
ontrary, angeli
 nondeterminism 
an be apowerful spe
i�
ation 
on
ept. We only advo
ate a 
autious use of this notion.In parti
ular, it should not be used in a 
ontext in whi
h the s
heduler may bein 
ollusion with the atta
ker. The goal of this 
hapter is to de�ne a frameworkin whi
h we 
an 
ombine both angeli
 and demoni
 nondeterminism in a settingin whi
h also probabilisti
 behavior may be present, and in a 
ontext in whi
hthe s
heduler is restri
ted (i.e. not fully-informed). We de�ne �safe� variant oftypi
al equivalen
e relations (
omplete tra
es and bisimulation), and we showhow to use them to 
hara
terize information-hiding properties.6.2 Distributed systems and 
omponentsIn this se
tion we des
ribe the kind of distributed systems we are dealingwith. We start by introdu
ing a variant of probabilisti
 automata, that we
all Tagged Probabilisti
 Automata (TPA). These systems are parallel 
om-positions of probabilisti
 pro
esses, 
alled 
omponents. Ea
h 
omponent isequipped with a unique identi�er, 
alled tag. Whenever a 
omponent (or apair of 
omponents in 
ase of syn
hronization) makes a step, the 
orrespond-ing transition will be de
orated with the asso
iated tag (or pair of tags).Similar systems have been already introdu
ed in [APvRS℄. The main dif-feren
es are that here the 
omponents may 
ontain nondeterminism6.2.1 Tagged Probabilisti
 AutomataWe now formalize the notion of TPA.De�nition 55. A Tagged Probabilisti
 Automaton (or TPA) is a tuple
(Q,T ,L, q̂, ϑ), where Q is a set of states, T is a set of tags, L is a setof a
tions, q̂ ∈ Q is the initial state, and ϑ : Q → P(T × L × D(Q)) is atransition fun
tion.In the following we write q

tg :a
−→ µ for (tg, a, µ) ∈ ϑ(q), and we use enab(q)to denote the tags of the 
omponents that are enabled to make a transition.More formally:

enab(q)
def
= {tg ∈ T | there exists a ∈ L, µ ∈ D(Q) such that q

tg :a
−→ µ}In these systems, we 
an de
ompose the s
heduler into two: a global s
heduler,whi
h, via tags, de
ides whi
h 
omponent or pair of 
omponents makes the135



6. Safe equivalen
es for se
urity propertiesnext move, and a lo
al s
heduler, whi
h, also via tags, solves the internalnondeterminism of the sele
ted 
omponent.We assume that the lo
al s
heduler 
an only sele
t enabled transitions, andthat the global s
heduler 
an only sele
t enabled 
omponents. This meansthat the exe
ution does not stop unless all 
omponents are blo
ked. This is inline with the tradition of pro
ess algebra and of Markov De
ision Pro
esses,but 
ontrasts with that of Probabilisti
 Automata [SL95℄. The results in this
hapter, however, do not depend on this assumption.De�nition 56. Let M = (Q,T ,L, q̂, ϑ) be a TPA. Then:
• A global s
heduler for M is a fun
tion ζ : Paths⋆(M)→ (T ∪ {⊥}) su
hthat for all �nite paths σ, if enab(last(σ)) 6= ∅ then ζ(σ) ∈ enab(last(σ)),and ζ(σ) = ⊥ otherwise.
• A lo
al s
heduler for M is a fun
tion ξ : Paths⋆(M)→ (T ×L×D(Q)∪
{⊥}) su
h that, for all �nite paths σ, if ϑ(last(σ)) 6= ∅ then ξ(σ) ∈
ϑ(last(σ)), and ξ(σ) = ⊥ otherwise.

• A global s
heduler ζ and a lo
al s
heduler ξ for M are 
ompatible if,for all �nite paths σ, ξ(σ) = (tg, a, µ) implies ζ(σ) = tg, and ξ(σ) = ⊥implies ζ(σ) = ⊥.
• A s
heduler is a pair (ζ, ξ) of 
ompatible global and lo
al s
hedulers.6.2.2 ComponentsWe will use a simple probabilisti
 pro
ess 
al
ulus, very 
lose to the CCSp weintrodu
ed in Chapter 2, to spe
ify the 
omponents.We assume a set of a
tions or 
hannel names L with elements a, a1, a2, · · · ,in
luding the spe
ial symbol τ denoting a silent step. Ex
ept τ , ea
h a
tion ahas a 
o-a
tion ā ∈ L and we assume ¯̄a = a. Components are spe
i�ed by thefollowing grammar:

q ::= 0 | a.q | q1+q2 |
∑

i

pi : qi | q1|q2 | (a)q | QThe 
onstru
ts 0, a.q, q1+ q2, q1|q2 and (a)q represent termination, pre�x-ing, nondeterministi
 
hoi
e, parallel 
omposition, and the restri
tion operator,respe
tively. ∑i pi : qi is a probabilisti
 
hoi
e, where pi represents the prob-ability of the i-th bran
h and must satisfy 0 ≤ pi ≤ 1 and ∑i pi = 1. Thepro
ess 
all Q is a simple pro
ess identi�er. For ea
h identi�er, we assumea 
orresponding unique pro
ess de
laration of the form Q
def
= q. The idea isthat, whenever Q is exe
uted, it triggers the exe
ution of q. Note that q 
an
ontain Q or another pro
ess identi�er, whi
h means that our language allows(mutual) re
ursion. We will denote by f n(q) the free 
hannel names o

urringin q, i.e. the 
hannel names not bound by a restri
tion operator.136



6.2. Distributed systems and 
omponentsComponents' semanti
s: The operational semanti
s 
onsists of probabilis-ti
 transitions of the form q
a
→µ where q ∈ Q is a pro
ess, a ∈ L is an a
tion and

µ ∈ D(Q) is a distribution on pro
esses. They are spe
i�ed by the followingrules: PRF
a.q

a
→ δq

NDT q1
a
→ µ

q1 + q2
a
→ µPRB ∑

i pi : qi
τ
→ ◦
∑

i pi · δqi

PAR q1
a
→ µ

q1 | q2
a
→ µ | q2CALL q

a
→ µ

A
a
→ µ

if A
def
= q COM q1

a
→ δr1 q2

ā
→ δr2

q1 | q2
τ
→ δr1|r2RST q

a
→ µ

(b)q
a
→ (b)µ

a,ā6=bWe assume also the symmetri
 versions of the rules NDT, PAR and COM.Re
all that the symbol δq is the delta of Dira
, whi
h assigns probability 1 to qand 0 to all other pro
esses. The symbol ◦∑i is the summation on distributions.Namely, ◦∑i pi · µi is the distribution µ su
h that µ(x) =
∑

i pi · µi(x). Thenotation µ | q represents the distribution µ′ su
h that µ′(r) = µ(q′) if r = q′ | q,and µ′(r) = 0 otherwise. Similarly, (b)µ represents the distribution µ′ su
hthat µ′(q) = µ(q′) if q = (b)q′, and µ′(q) = 0 otherwise.Remark 57. In some of the examples in this 
hapter we use an extension ofour pro
ess 
al
ulus that allows message passing (
fr. Chapter 2). Sin
e theexpressive power of our 
al
ulus with message passing or without it is the same,we 
onsider expli
it message passing simply as an alias for the 
orrespondenten
oding into the presentation of the 
al
ulus given above.6.2.3 Distributed systemsA distributed system has the form (A) q1 ‖ q2 ‖ · · · ‖ qn, where the qi's are
omponents and A ⊆ L. The restri
tion on A enfor
es syn
hronization on the
hannel names belonging to A, in a

ordan
e with the CCS spirit.Systems' semanti
s The semanti
s of a system gives rise to a TPA, wherethe states are terms representing systems during their evolution. A transitionnow is of the form q
tg:a
−→ µ where a ∈ L, µ ∈ D(Q), and tg ∈ T is either thetag of the 
omponent whi
h makes the move, or a (unordered) pair of tagsrepresenting the two partners of a syn
hronization. We 
an simply de�ne Tas T = I ∪ I2 where I = {1, 2, . . . , n} is the set of 
omponents' identi�ers.137



6. Safe equivalen
es for se
urity properties
Interleaving qi

a
→ ◦
∑

k pk · δqik

(A) q1 ‖ · · · ‖ qi ‖ · · · ‖ qn
i:a
−→ ◦

∑

k pk · δ(A)q1‖···‖qik‖···‖qn

a6∈Awhere i is the tag indi
ating that the 
omponent i is making the step. Notethat we assume that probabilisti
 
hoi
es are �nite. This implies that everytransition q
tg :a
−→ µ 
an be written q

tg :a
−→ ◦

∑

k pk · δqk , and justi�es the notationused in the interleaving rule.Syn
h. qi
a
→ δq′i qj

ā
→ δq′j

(A) q1 ‖ · · · ‖ qi ‖ · · · ‖ qj ‖ · · · ‖ qn
{i,j}:τ
−→ δ(A)q1‖···‖q′i‖···‖q

′
j‖···‖qnhere {i, j} is the tag indi
ating that the 
omponents making the step are i and

j. Note that it is an unordered pair. Sometimes we will write i, j instead of
{i, j}, for simpli
ity.Example 11. Consider again the systems of Example 10. Figures 6.2(a) and6.2(b) show the TPAs for S [a/sec] and for S [b/sec] respe
tively. For simpli
itywe do not write the restri
tion on 
hannels c and out, nor the terminationsymbol 0. We use '−' to denote a 
omponent that is stu
k. The 
orrespondingtags are indi
ated in the �gure with numbers above the 
omponents.The set of enabled transitions should be 
lear from the �gures. For instan
e,we have enab(S

[
b/sec

]
) = {{1, 2}, {1, 3}, {1, 4}} and enab( − || out〈a〉 || −

|| − ) = {2}. The s
heduler ζ de�ned as
ζ(σ)

def
=







{1, 4} if σ = S [a/sec] ,

2 if σ = S [a/sec]
1,2:τ
−→ ( − || out〈a〉 || − || − ),

3 if σ = S [a/sec]
1,3:τ
−→ ( − || − || out〈b〉 || − ),

4 if σ = S [a/sec]
1,4:τ
−→ ( − || − || − || out〈a〉 ),

⊥ otherwise,is a global s
heduler for S [a/sec].6.3 Admissible s
hedulersIn this se
tion we restri
t the dis
erning power of the global and lo
al s
hed-ulers in order to avoid the problem of the information leakage indu
ed by138



6.3. Admissible s
hedulers
1 2 3 4

c〈a〉 || c(s).out〈a〉 || c(s).out〈b〉 || c(s).out〈s〉

− || out〈a〉 || − || − − || − || out〈b〉 || − − || − || − || out〈a〉

− || − || − || − − || − || − || − − || − || − || −

{1,2} :τ
{1,3} :τ

{1,4} :τ

2 :out〈a〉 3 :out〈b〉 4 :out〈a〉(a) S[a/sec]

1 2 3 4

c〈b〉 || c(s).out〈a〉 || c(s).out〈b〉 || c(s).out〈s〉

− || out〈a〉 || − || − − || − || out〈b〉 || − − || − || − || out〈b〉

− || − || − || − − || − || − || − − || − || − || −

{1,2} :τ
{1,3} :τ

{1,4} :τ

2 :out〈a〉 3 :out〈b〉 4 :out〈b〉(b) S[b/sec]Figure 6.2: TPAs for Example 11
lairvoyant s
hedulers. We impose two kinds of restri
tions: For the globals
heduler, following [APvRS℄, we assume that it 
an only see, and keep mem-ory of, the observable a
tions and the 
omponents that are enabled, but notthe se
ret a
tions. As for the lo
al s
heduler, we assume that the lo
al nonde-terminism of ea
h 
omponent is solved on the basis of the view of the historylo
al to that 
omponent, i.e. the proje
tion of the history of the system onthat 
omponent. In other words, ea
h 
omponent has to make de
isions basedonly on the history of its own exe
ution; it 
annot see anything of the other
omponents.6.3.1 Restri
ting global s
hedulersWe assume that the set of a
tions L is divided in two disjoint sets, the se
reta
tions S and the observable a
tions O, su
h that S ∪ O = L. The se
reta
tions are supposed to be invisible to the global s
heduler. Formally, this 
an139



6. Safe equivalen
es for se
urity propertiesbe a
hieved using a fun
tion sift with
sift(a) =

{

τ if a ∈ S,
a otherwise.Then, we restri
t the power of the global s
heduler by for
ing it to make thesame de
isions on paths he 
annot tell apart.De�nition 58. Given a TPA M , a global s
heduler ζ for M is admissible iffor all paths σ1 and σ2 we have view(σ1) = view(σ2) implies ζ(σ1) = ζ(σ2),where

view
(

q̂
tg1:a1
−→ q1

tg2:a2
−→ · · ·

tgn:an
−→ qn+1

) def
= (enab(q̂), sift(a1), tg1)

(enab(q1), sift(a2), tg2) · · · (enab(qn), sift(an), tgn)The idea is that view sifts the information of the path that the s
heduler
an see. Sin
e sift �hides� the se
rets, the s
heduler 
annot take di�erentde
isions based on them.6.3.2 Restri
ting lo
al s
hedulersThe restri
tion on lo
al s
hedulers is based on the idea that a step of the
omponent i of a system 
an only be based on the view that i has of the history,i.e. its own history. In order to formalize this restri
tion, it is 
onvenient tointrodu
e the 
on
ept of i-view of a path σ, or proje
tion of σ on i, whi
h wewill denote by σ↾i. We de�ne it indu
tively:
(σ

tg :a
−→ µ)↾i =







σ↾i
i:b
−→ δqi if tg = {i, j} and µ = δ(A) q1‖...‖qi‖...‖qj‖...‖qn

σ↾i
i:a
−→ µ if tg = i

σ↾i otherwiseIn the above de�nition, the �rst line represents the 
ase of a syn
hronizationstep involving the 
omponent i, where we assume that the premise for i is ofthe form q′i
b
−→ δqi . The se
ond line represents an interleaving step in whi
h iis the a
tive 
omponent. The third line represents step in whi
h the 
omponent

i is idle.The restri
tion to the lo
al s
heduler 
an now be expressed as follows:De�nition 59. Given a TPA M and a lo
al s
heduler ξ for M , we say that
ξ is admissible if for all paths σ and σ′, if whenever ξ(σ) = (tg, a, µ), and
ξ(σ′) = (t′g, a

′, µ′) we have:
• if tg = t′g = i and σ↾i = σ′

↾i, then ξ(σ) = ξ(σ′),
• if tg = t′g = {i, j}, σ↾i = σ′

↾i, and σ↾j = σ′
↾j then ξ(σ) = ξ(σ′).A pair of 
ompatible s
hedulers (ζ, ξ) is 
alled admissible if ζ and ξ areadmissible.140



6.4. Safe equivalen
es6.4 Safe equivalen
esIn this se
tion we revise pro
ess equivalen
e notions to make them safe forse
urity.6.4.1 Safe 
omplete tra
esWe de�ne here a safe version of 
omplete-tra
e semanti
s. The idea is thatwe 
ompare two pro
esses based not only on their tra
es, but also on the
hoi
es that the global s
heduler makes at every step. We do this by re
ordingexpli
itly the tags in the tra
es.De�nition 60. Here we de�ne the notion of safe 
omplete tra
es.
• Given a TPA M = (Q,T ,L, q̂, ϑ), the (
omplete) safe tra
es of M , de-noted here by Tracess, are de�ned as the probabilities of sequen
es of tagsand a
tions 
orresponding to all possible 
omplete exe
utions, i.e.

Tracess(M) ={ f : (T × L)∞ → [0, 1] |there exists an admissible s
heduler(ζ, ξ) s.t.
∀t ∈ (T × L)∞

f(t) = PM,ζ,ξ({σ ∈ CPaths(M) | trace ta(σ) = t}) }where PM,ζ,ξ is the probability measure in M under (ζ, ξ), and trace taextra
ts from a path the sequen
e of tags and a
tions, i.e.
trace ta(ǫ) = ǫ

trace ta(q
tg :a
−→ σ) = tg : a · trace ta(σ)

• We denote by Tracess(q) the safe tra
es of the automaton asso
iated toa system q.
• Two systems q1 and q2 are safe-tra
e equivalent, denoted by q1 ≃s q2, ifand only if Tracess(q1) = Tracess(q2).The following example points out the di�eren
e between ≃s and the stan-dard (
omplete) tra
e equivalen
e.Example 12. Consider the TPAs of Example 11. The two TPAs have thesame 
omplete tra
es. In fa
t we have

Traces(S [a/sec]) = {τ · out〈a〉 , τ · out〈b〉} = Traces(S
[
b/sec

]

)But on the other hand, we have
Tracess(S [a/sec]) = {f1, f2, f3} 6= {f1, f2, f4} = Tracess(S [a/sec]) 141



6. Safe equivalen
es for se
urity propertieswhere
f1(t) =

{

1 if t = {1, 2} : τ · 2 : out〈a〉,
0 for all other values of t ∈ (T × L)∞.

f2(t) =

{

1 if t = {1, 3} : τ · 3 : out〈b〉,
0 for all other values of t ∈ (T × L)∞.

f3(t) =

{

1 if t = {1, 4} : τ · 4 : out〈a〉,
0 for all other values of t ∈ (T × L)∞.

f4(t) =

{

1 if t = {1, 4} : τ · 4 : out〈b〉,
0 for all other values of t ∈ (T × L)∞.6.4.2 Safe bisimilarityIn this se
tion we propose a se
urity-safe version of strong bisimulation, thatwe 
all safe bisimulation. This is an equivalen
e relation stri
ter than safe-tra
e equivalen
e, with the advantage of being a 
ongruen
e. Sin
e in this
hapter we assume that s
hedulers 
an always observe whi
h 
omponent ismaking a step (even a silent step), it does not seem natural to 
onsider weakbisimulation.We start with some notation. Given a TPA M = (Q,T ,L, q̂, ϑ), and aglobal s
heduler ζ, we write q

a
−→ζ µ if there exists σ ∈ Paths⋆(M) su
h that

ζ(σ) 6= ⊥, (ζ(σ), a, µ) ∈ ϑ(q), and q = last(σ). Note that the restri
tion to ζstill allows nondeterminism, i.e. there may be µ1, µ2, su
h that q a1−→ζ µ1 and
q

a2−→ζ µ2 (with either a1 = a2 or a1 6= a2).We now de�ne the notion of safe bisimulation. The idea is that, if q1 and
q2 are bisimilar states, then every move from q1 should be mimi
ked by a movefrom q2 using the same (admissible) s
heduler.De�nition 61. Given a TPA M = (Q,T ,L, q̂, ϑ), we say that a relation
R ⊆ Q×Q is a safe bisimulation if and only if1. whenever q1R q2, then enab(q1) = enab(q2), and2. for all admissible global s
hedulers ζ for M su
h that ζ(σ1) = ζ(σ2)whenever last(σ1) = q1 and last(σ2) = q2:

• if q1 a
−→ζ µ1, then there exists µ2 su
h that q2 a

−→ζ µ2 and µ1Rµ2,and
• if q2 a

−→ζ µ2, then there exists µ1 su
h that q1 a
−→ζ µ1 and µ1Rµ2,where µ1Rµ2 means that for all equivalen
e 
lasses X ∈ QR̂, we have

µ1(X) = µ2(X), where R̂ is the smallest equivalen
e 
lass indu
ed by R.142



6.4. Safe equivalen
esIt is possible to simplify De�nition 61, restri
ting the s
hedulers to behistory-independent. In other words, to show that two distributed systemsare bisimilar, it su�
es to 
onsider one-step 
omputations and show that twostates are equivalent by using only history-independent s
hedulers. The lemmabellow justi�es this 
laim.Lemma 62. Let M = (Q,T ,L, q̂, ϑ) be a TPA, and let R be an equivalen
erelation on the set of states Q. Consider ζ to be a global s
heduler for M su
hthat, for every pair of states q1, q2 ∈ Q, if q1 = last(σ1)R last(σ2) = q2 then
ζ(σ1) = ζ(σ2). In that 
ase ζ is history-independent, i.e. it depends only onthe last state of a path σ.Proof. It is easy to see that the relation of having the same last state is anequivalen
e relation on paths, and therefore it determines a partition on the setof paths. Sin
e the above q1 and q2 may be identi
al, the s
heduler must givethe same value on equivalent paths and it is, therefore, history-independent.Using the lemma above, in the following results about safe bisimulationwe will usually write ζ(q) where q is a state. Note however that this doesnot mean that in the 
omputations of safely bisimilar systems the s
hedulersare ne
essarily history-independent: at ea
h step of the 
omputation we may
hange s
heduler, and therefore we may 
hange alternative when we pass bythe same state q at a later time.The following result is analogous to the 
ase of standard bisimulation. Itimplies that largest safe bisimulation exists, and 
oin
ides with the union ofall safe bisimulations. We 
all it safe bisimilarity, and we denote it by ∼s.Proposition 63. The union of all the safe bisimulations is still a safe bisim-ulation.Proof. Assume that q1 ∼s q2. Then q1R q2 holds, for some safe bisimulation
R. Hen
e we have enab(q1) = enab(q2), and for every global s
heduler ζ, if
ζ(q1) = ζ(q2), and q1

a
−→ζ µ1, then there exists µ2 su
h that q2

a
−→ζ µ2,and µ1Rµ2. This implies that µ1 ∼s µ2. In fa
t R̂ (the smallest equivalen
e
lass indu
ed by R) is a �ner relation than ∼̂s, i.e. q1 R̂ q2 implies q1∼̂sq2.Also, R̂ is an equivalen
e relation, and therefore it indu
es a partition onea
h of the equivalen
e 
lasses X ∈ Q∼̂s

. Hen
e we have, for ea
h X ∈ Q∼̂s
,

µ1(X) =
∑

Y ∈X
R̂
µ1(Y ) =

∑

Y ∈X
R̂
µ2(Y ) = µ2(X).We pro
eed analogously to show that, if q2 a

−→ζ µ2, then there exists µ1su
h that q1 a
−→ζ µ1 and µ1 ∼s µ2.Given two TPAs M1 = (Q1,T ,L, q̂1, ϑ1) and M2 = (Q2,T ,L, q̂2, ϑ2) shar-ing the same set of tags T and a
tions L, we 
an de�ne bisimulation and143



6. Safe equivalen
es for se
urity propertiesbisimilarity a
ross their states, i.e. as relations on (Q1 ∪ Q2), in the obviousway, by 
onstru
ting the TPA M with a new initial state q̂ with transitions to
δq̂1 and to δq̂2 , respe
tively.Given two 
omponents or systems q1 and q2, we will say that q1 and q2 aresafely bisimilar, denoted by q1 ∼s q2, if the initial states of the 
orrespondingTPAs are safely bisimilar. Note that q1 ∼s q2 is possible only if q1 and q2 havethe same number of a
tive 
omponents, where �a
tive�, for a 
omponent, meansthat during the exe
ution of the system it will make at least one step. Note thatin the 
ase of 
omponents, or of systems 
onstituted by one 
omponent only,safe bisimulation and safe bisimilarity 
oin
ide with standard bisimulation andbisimilarity (denoted by ∼), respe
tively. This is not the 
ase for systems, asshown by the following example:Example 13. Consider again the TPAs of Example 11. As pointed out earlierin this 
hapter, we have S [a/sec] ∼ S

[
b/sec

]. Yet S [a/sec] 6∼s S
[
b/sec

]. Toshow this, let us 
onstru
t a new TPA (as des
ribed before) with initial state
q̂ su
h that q̂ tg :τ

−→ S [a/sec] and q̂
tg :τ
−→ S

[
b/sec

]. Now 
onsider the (admissible)global s
heduler ζ su
h that
ζ(σ)

def
=







tg if σ = q̂,

{1, 4} if σ = q̂
tg:τ
−→ S [a/sec] ,

2 if σ = q̂
tg:τ
−→ S [a/sec]

1,2:τ
−→ ( − || out〈a〉 || − || − ),

3 if σ = q̂
tg:τ
−→ S [a/sec]

1,3:τ
−→ ( − || − || out〈b〉 || − ),

4 if σ = q̂
tg:τ
−→ S [a/sec]

1,4:τ
−→ ( − || − || − || out〈a〉 ),

{1, 4} if σ = q̂
tg:τ
−→ S

[
b/sec

]
,

2 if σ = q̂
tg:τ
−→ S

[
b/sec

] 1,2:τ
−→ ( − || out〈a〉 || − || − ),

3 if σ = q̂
tg:τ
−→ S

[
b/sec

] 1,3:τ
−→ ( − || − || out〈b〉 || − ),

4 if σ = q̂
tg:τ
−→ S

[
b/sec

] 1,4:τ
−→ ( − || − || − || out〈b〉 ),

⊥ otherwise.It is easy to see that S [b/sec] 
annot mimi
 the transition 4 : out〈a〉 produ
edby S [a/sec] using the same s
heduler ζ.We now show that safe bisimulation is a 
ongruen
e with respe
t to all theoperators of our language. In the following theorem, statements 2a and 2b arejust the standard 
ompositionality result for probabilisti
 bisimulation.Theorem 64.1. ∼s is an equivalen
e relation.2. Let a ∈ L be an a
tion and A,B,B′ ⊆ L be sets of restri
tions. Let
p1, . . . , pn be probability values, and let q, q1, q2, . . . , qn, q′1, q′2, . . . , q′n be
omponents.144



6.4. Safe equivalen
esa) If q1 ∼s q2, then a.q1 ∼s a.q2, q1 + q ∼s q2 + q, (a)q1 ∼s

(a)q2, and q1 | q ∼s q2 | q.b) If q1 ∼s q
′
1, . . . , qn ∼s q

′
n , then ∑

i pi : qi ∼s

∑

i pi : q
′
i.
) If (B) q1 ‖ . . . ‖ qn ∼s (B′) q′1 ‖ . . . ‖ q

′
n, and f n(q) 6∈ B ∪ B′,then

(A ∪B) q1 ‖ . . . ‖ q ‖ . . . ‖ qn ∼s (A ∪B′) q′1 ‖ . . . ‖ q ‖ . . . ‖ q
′
n.Proof.1. Although safe bisimulations are not equivalen
e relations in general, theirunion, i.e. safe bisimilarity, is an equivalen
e. In fa
t:

• It is easy to see that, if R is a safe bisimulation, then the smallestequivalen
e that in
ludes R, namely R̂, is also a safe bisimulation.
• From Proposition 63 we know that ∼s is a safe bisimulation.
• Hen
e we derive that ∼̂s is a safe bisimulation, and therefore ∼̂s ⊆
∼s. But sin
e obviously ∼s⊆ ∼̂s, we 
on
lude that ∼s= ∼̂s, whi
hmeans that ∼s is already an equivalen
e relation.2. Assume that a, A,B,B′, p1, . . . , pn, q, q1, q2, . . . , qn, q′1, q′2, . . . , q′n are ofthe type pres
ribed by the hypothesis of the theorem.a) Assume q1 ∼s q2.
• Let

R = {(a.q1, a.q2)}∪ ∼s .We show that R is a safe bisimulation, whi
h is su�
ient toprove that a.q1 ∼s a.q2. Note that, sin
e there is only one
omponent in ea
h of those states, and it is enabled, we have
enab(a.q1) = enab(a.q2) = {1}, and ζ(a.q1) = ζ(a.q2) = 1 forany global s
heduler ζ. Given a global s
heduler ζ, there isexa
tly one transition from ea
h of a.q1 and a.q2: these are
a.q1

a
→ζ δq1 and a.q2

a
→ζ δq2 , respe
tively, whi
h mimi
 ea
hother in the a
tion a. Finally, sin
e q1 ∼s q2, we have δq1 ∼s δq2and therefore δq1 R δq2 .

• Let
R = {(q1 + q, q2 + q)}∪ ∼s .We show that R is a safe bisimulation, whi
h is su�
ient toprove that q1 + q ∼s q2 + q. We have that enab(q1 + q) =

enab(q1)∪enab(q) = enab(q2)∪enab(q) = enab(q2+ q), in fa
t
enab(q1) = enab(q2) sin
e q1 ∼s q2. Correspondingly, given a145



6. Safe equivalen
es for se
urity propertiesglobal s
heduler ζ, we have either ζ(q1 + q) = ζ(q2 + q) = 1 or
ζ(q1 + q) = ζ(q2 + q) =⊥, sin
e there is only one 
omponent.Assume q1 + q

a
→ζ µ1. We have two 
ases: either q1 a

→ζ µ1, or
q

a
→ζ µ1. The se
ond 
ase is obvious. In the �rst 
ase, sin
e

q1 ∼s q2, we have that also q2
a
→ζ µ2, with µ1 ∼s µ2. We derivethat µ1Rµ2. For the transitions from q2 + q we pro
eed in theanalogous way.

• Let
R = {((a)q1, (a)q2) | q1 ∼s q2}.We show that R is a safe bisimulation, whi
h is su�
ient toprove that, if q1 ∼s q2, then (a)q1 ∼s (a)q2. First observe that

enab((a)q1) = enab(q1) = {1} if q1 
an make a transition witha label di�erent from a, otherwise enab((a)q1) = ∅. The sameholds for (a)q2. Sin
e q1 ∼s q2, we derive that enab((a)q1) =
enab((a)q2). A

ordingly, given a global s
heduler ζ, we havethat either ζ((a)q1) = ζ((a)q2) = 1, or ζ((a)q1) = ζ((a)q2) =⊥.Assume (a)q1

b
→ζ µ1. Then we must have b 6= a and µ1 =

(a)µ′
1, where q1

b
→ζ µ

′
1. Sin
e q1 ∼s q2, we have also q2

b
→ζ µ

′
2,with µ′

1 ∼s µ
′
2. We derive (a)q2

b
→ζ (a)µ

′
2, and (a)µ′

1R (a)µ′
2.We pro
eed in an analogous way for the transitions from (a)q2.

• The 
ase of the parallel operator in 
omponents is similar tothe 
ase of the parallel operator on systems (see the last itemof this proof).b) Assume q1 ∼s q
′
1, . . . , qn ∼s q

′
n. Let

R = {(
∑

i

pi : qi,
∑

i

pi : q
′
i)}∪ ∼s .We show that R is a safe bisimulation, whi
h is su�
ient to provethat ∑i pi : qi ∼s

∑

i pi : q′i. Observe that both ∑i pi : qi and
∑

i pi : q′i are enabled, and, sin
e there is only one 
omponent,
enab(

∑

i pi : qi) = enab(
∑

i pi : q
′
i) = {1}. A

ordingly, if ζ is aglobal s
heduler, we have enab(

∑

i pi : qi) = enab(
∑

i pi : q
′
i) = 1.Given a global s
heduler ζ, the only transitions from ∑

i pi : qi and∑

i pi : q
′
i are ∑i pi : qi

τ
→ζ ◦

∑

i pi · δqi and ∑i pi : q
′
i

τ
→ζ ◦

∑

i pi · δq′irespe
tively, whi
h mimi
 ea
h other in the a
tion τ . It is easyto see that we have (
∑

i pi : qi) ∼s (
∑

i pi : q′i), and therefore
(
∑

i pi : qi)R (
∑

i pi : q
′
i).146
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es
) Let
R =







((A ∪B) q1 ‖ . . . ‖ q ‖ . . . ‖ qn,
(A ∪B′) q′1 ‖ . . . ‖ q ‖ . . . ‖ q

′
n) |

(B) q1 ‖ . . . ‖ qn ∼s (B′) q′1 ‖ . . . ‖ q
′
n





We show that R is a safe bisimulation, whi
h is su�
ient to provethat, if
(B) q1 ‖ . . . ‖ qn ∼s (B′) q′1 ‖ . . . ‖ q

′
n ,then

(A ∪B) q1 ‖ . . . ‖ q ‖ . . . ‖ qn ∼s (A ∪B′) q′1 ‖ . . . ‖ q ‖ . . . ‖ q
′
n .Observe �rst that

enab((A ∪B) q1 ‖ . . . ‖ q ‖ . . . ‖ qn) =

enab((A ∪B′) q′1 ‖ . . . ‖ q ‖ . . . ‖ q
′
n)In fa
t the enabled 
omponents are the same as those of

(B) q1 ‖ . . . ‖ qn and of (B′) q′1 ‖ . . . ‖ q′n (modulo the indexshift), whi
h are equal by the bisimilarity hypothesis, plus possiblythe 
omponent q, plus possibly the syn
hronizations with q, whi
hagain are equal by the bisimilarity hypothesis, minus the transitionswith labels in A. Note that the hypothesis f n(q) 6∈ B ∪B′ is essen-tial here to guarantee that the 
omponent q is enabled (or disabled)in both sides.Let us 
onsider the syn
hronization 
ase; the interleaving 
ase isjust a simpli�ed variant. Given a global s
heduler ζ, assume
ζ((A∪B) q1 ‖ . . . ‖ q ‖ . . . ‖ qn) = ζ((A∪B′) q′1 ‖ . . . ‖ q ‖ . . . ‖ q

′
n).Consider a move from the system in the left-hand side:

(A ∪B) q1 ‖ · · · ‖ qi ‖ · · · ‖ qj ‖ · · · ‖ qn
i,j:τ
−→ δ(A)q1‖···‖ri‖···‖rj‖···‖qn .Then we must have

qi
a
→ δri , qj

ā
→ δrj ,where one of the qi, qj 
ould be q, and

ζ((A ∪B) q1 ‖ · · · ‖ qi ‖ · · · ‖ qj ‖ · · · ‖ qn) = {i, j}.Sin
e qi ∼s q
′
i and qj ∼s q

′
j (in 
ase qi = q then q′i = q and therefore

qi ∼s q′i be
ause ∼q is re�exive, and analogously for qj), we musthave
q′i

a
→ δr′i , q′j

ā
→ δr′j , 147



6. Safe equivalen
es for se
urity propertiesfor some r′i, r
′
j su
h that δri ∼s δr′i and δrj ∼s δr′j . We derive that

(A ∪B) q′1 ‖ · · · ‖ q
′
i ‖ · · · ‖ q

′
j ‖ · · · ‖ q

′
n

i,j:τ
−→ δ(A)q′1‖···‖r

′
i‖···‖r

′
j‖···‖q

′
n
,and, sin
e δri ∼s δr′i , δrj ∼s δr′j imply ri ∼s r

′
i, rj ∼s r

′
j , and by thede�nition of R, we 
on
lude

(δ(A)q1‖···‖ri‖···‖rj‖···‖qn) R (δ(A)q′1‖···‖r
′
i‖···‖r

′
j‖···‖q

′
n
).We pro
eed in an analogous way for the transitions from the right-hand side.The following property shows that bisimulation is stronger than safe-tra
eequivalen
e, like in the standard 
ase.Proposition 65. If q1 ∼s q2 then q1 ≃s q2.Proof. For this proof, it is 
onvenient to 
onsider a 
oindu
tive approxima-tion of safe-tra
e equivalen
e. We start with a 
oindu
tive 
hara
terization ofthe safe tra
es. This in itself is not a key notion of the proof, but will helpunderstanding the de�nition of the approximation.Given a TPA M = (Q,T ,L, q̂, ϑ), 
onsider the operator

TTr : (Q → P(CPaths(M)→ [0, 1])) → (Q → P(CPaths(M)→ [0, 1]))de�ned as:
TTr(F )(q) = { f : (T × L)∞ → [0, 1] |if q 6→ then f(ǫ) = 1, else f(ǫ) = 0 and,for all tg ∈ T , a ∈ L,

• if there exists µ s.t. q tg :a
−→ µ, then for ea
h q′ ∈ Qthere exists f ′

q′ ∈ F (q′) s.t. for every t ∈ (T × L)∞,

f(tg : a · t) =
∑

q′ µ(q
′)f ′

q′(t)

• if q 6
tg :a
−→, then f(q)(tg : a · t) = 0 }where q 6→ means that for all tg ∈ T , a ∈ L, we have q 6

tg :a
−→.Consider the ordering ⊑ on Q → P(CPaths(M)→ [0, 1]) given by

F ⊑ F ′ if and only if for all q ∈ Q, F (q) ⊆ F ′(q)Clearly (CPaths(M)→ [0, 1]),⊑) is a 
omplete latti
e and TTr is monotoni
, soby the theorem of Knaster-Tarski it has a greatest �xed point, whi
h 
oin
ideswith Tracess.148
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esFollowing the de�nition of TTr, we now give a 
oindu
tive approximation ofthe equivalen
e relation indu
ed by Tracess. Given a TPAM = (Q,T ,L, q̂, ϑ),
onsider the operator
TTreq : (CPaths(M)→ Q×Q)→ (CPaths(M)→ Q×Q)de�ned as:

q1 TTreq(R)(ǫ) q2
def
⇔ (q1 6→ ⇔ q2 6→)and

q1 TTreq(R)(tg : a · t) q2
def
⇔






q1
tg :a
−→ µ1 ⇒ ∃µ2.(q2

tg :a
−→ µ2 ∧ µ1 R(t) µ2)

∧

q2
tg :a
−→ µ2 ⇒ ∃µ1.(q1

tg :a
−→ µ1 ∧ µ1 R(t) µ2)





Consider the ordering � on CPaths(M)→ Q×Q given by

R � R
′ if and only if for all t ∈ CPaths(M), R(t) ⊆ R

′(t)Clearly (CPaths(M)→ Q×Q,�) is a 
omplete latti
e and TTreq is monotoni
,hen
e by the Knaster-Tarski theorem it has a greatest �xed point, whi
h also
oin
ides with the greatest pre-�xed point, i.e. the greatest relation R su
hthat R � TTreq(R). Using the de�nition of TTr it is easy to see that, if R isa pre-�xed point, and q1 R(t) q2 for all t ∈ CPaths(M), then Tracess(q1) =
Tracess(q2), i.e. q1 ≃s q2. In fa
t, if F (q1) = F (q2), and q1 R(t) q2 forall t ∈ CPaths(M), and R is a pre-�xed point of TTreq, then TTr(F )(q1) =
TTr(F )(q2)

3. Consider now a safe bisimulation R, and let us lift it to a 
onstantfun
tion R : CPaths(M)→ Q×Q de�ned as R(t) = R. It is easy to see that
R is a pre-�xed point of TTreq

4.Assume now q1 R q2. We trivially derive that q1 R(t) q2 for all t ∈
CPaths(M), from whi
h we 
on
lude q1 ≃ q2.Like in the standard 
ase, the vi
e-versa does not hold, and safe-tra
eequivalen
e is not a 
ongruen
e5.3Note that the 
ondition is only su�
ient, be
ause ∑

q′
µ1(q

′)f ′
q′1(t) =

∑
q′
µ2(q

′)f ′
q′2(t)may hold even if µ1 and µ2 assign di�erent probability to some equivalen
e 
lass of ˆR(t).4Note that the 
onverse does not hold, i.e. R 
ould be a pre-�xpoint of TTreq even if

R is not a bisimulation. This is be
ause R is sensitive to the (nondeterministi
) bran
hingstru
ture, while R is not.5This is be
ause we are 
onsidering the 
omplete tra
es. 149



6. Safe equivalen
es for se
urity properties6.5 Safe nondeterministi
 information hidingIn this se
tion we de�ne the notion of information hiding under the mostgeneral hypothesis that the nondeterminism is handled partly in a demoni
way and partly in an angeli
 way. We assume that the demoni
 part is inthe realm of the global s
heduler, while the angeli
 part is 
ontrolled by thelo
al s
heduler. The motivation is that in a proto
ol the lo
al 
omponents
an be thought of as programs running lo
ally in a single ma
hine, and lo
allypredi
table and 
ontrollable, while the network 
an be subje
t to atta
ks thatmake the intera
tions unpredi
table.We re
all that, in a purely probabilisti
 setting, the absen
e of leakage,su
h as noninterferen
e and strong anonymity, is expressed as follows (see forinstan
e [BP℄). Given a purely probabilisti
 automaton M , and a sequen
e
ã = a1a2 . . . an, let PM ([ã]) represent the probability measure of all 
ompletepaths with tra
e ã in M . Let S be a proto
ol 
ontaining a variable a
tion
secr , and let s be se
ret a
tions. Let Ms be the automaton 
orresponding to
S[s/secr ]. De�ne Pr(ã | s) as PMs([ã]). Then S is leakage-free if for everyobservable tra
e ã , and for every se
ret s1 and s2, we have Pr(ã | s1) = Pr(ã |
s2).In a purely nondeterministi
 setting, on the other hand, the absen
e ofleakage has been 
hara
terized in the literature by the property S[s1/secr ] ∼=
S[s2/secr ], where ∼= is an equivalen
e relation like tra
e equivalen
e, or bisim-ulation. As we have argued in the introdu
tion, this de�nition assumes anangeli
 interpretation of nondeterminism.We want to 
ombine the above notions so to 
ope with both probabilityand nondeterminism. Furthermore, we want to extend it to the 
ase in whi
hpart of the nondeterminism is interpreted demoni
ally. Let us �rst introdu
esome notation.Let S be a system 
ontaining a variable a
tion secr . Let s be a se
ret a
tion.Let Ms be the TPA asso
iated to S[s/secr ] and let (ζ, ξ) be a 
ompatible pairof global and lo
al s
hedulers for Ms. The probability of an observable tra
e
ã given s is de�ned as Prζ,ξ(ã | s) = PMs,ζ,ξ([ã]).The global nondeterminism is interpreted demoni
ally, and therefore weneed to ensure that the 
onditional of an observable, given the two se
rets,are 
al
ulated with respe
t to the same global s
heduler. On the other hand,the lo
al s
heduler is interpreted angeli
ally, and therefore we 
an 
ompare the
onditional probabilities generated by the two se
rets as sets under di�erents
hedulers. In other words, we have the freedom to mat
h 
onditional proba-bility from the �rst set with one of the other set, without requiring the lo
als
heduler to be the same.Either angeli
 or demoni
, we want to avoid the 
lairvoyant s
hedulers,i.e. a s
heduler should not be able to use the se
ret information to a
hieve itsgoals. For this purpose, we require both the global and the lo
al s
heduler tobe admissible.150



6.6. Related workDe�nition 66. A system is leakage-free if, for every se
rets s1 and s2, everyadmissible global s
heduler ζ, and every observable tra
e ã,
{Pr ζ,ξ(ã | s1) | ξ is admissible and 
ompatible with ζ} =

{Pr ζ,ξ(ã | s2) | ξ is admissible and 
ompatible with ζ}The safe equivalen
es de�ned in Se
tion 6.4 imply the absen
e of leakage:Theorem 67. Let S be a system with a variable a
tion secr and assume
S[s1/secr ] ≃s S[

s2/secr ] for every pair of se
rets s1 and s2. Then S is leakage-free.Proof. Consider the abstra
tion operator β from safe tra
es to pairs of theform (tagged observable tra
e, probability) de�ned as:
(ã, p) ∈ β(F )

def
⇔ p =

∑

f ∈ F
t↾T ×O = ã

f(t)It is easy to see that β is an abstra
tion, i.e. if F1 = F2 then β(F1) =
β(F2). Therefore, S[s1/secr ] ≃s S[s2/secr ] implies β(Traces s(S[

s1/secr ]) =
β(Tracess(S[

s2/secr ]). Finally, the latter holds (for every pair of se
rets s1,
s2) if and only if S is leakage-free.Note that the vi
e versa is not true, i.e. it is not the 
ase that the leakage-freedom of S implies S[s1/secr ] ≃s S[

s2/secr ]. This is be
ause in the de�nition ofsafe tra
e equivalen
e we 
ompare the set of probability fun
tions (determinedby the s
hedulers) on tra
es, while in the de�nition of leakage-freedom we
ompare the set of probabilities of ea
h tra
e, whi
h may 
ome from di�erentfun
tions. This additional degree of freedom generated by the lo
al s
hedulerhelps the system to obfus
ate the se
ret, and provides further justi�
ation forthe adje
tive �angeli
� for the lo
al nondeterminism.From the above theorem and from Proposition 65, we also have the follow-ing 
orollary (with the same premises as the previous theorem):Corollary 68. If S[s1/secr ] ∼s S[s2/secr ] for every pair of se
rets s1 and s2,then S is leakage-free.6.6 Related workThe problem of deriving 
orre
t implementations from se
re
y spe
i�
ationshas re
eived a lot of attention already. One of the �rst works to address theproblem was [Ja
89℄, whi
h showed that the fa
t that an implementationis a 
onsistent re�nement with respe
t to a spe
i�
ation does not imply that151



6. Safe equivalen
es for se
urity propertiesthe (information-�ow) se
urity properties are preserved. More re
ently, [AZ06℄has proposed a notion of se
re
y-preserving re�nement, and a simulation-basedte
hnique for proving that a system is the re�nement of another. [CS08℄ arguesthat important 
lasses of se
urity poli
ies su
h as noninterferen
e and averageresponse time 
annot be expressed by traditional notion of properties, whi
h
onsist of sets of tra
es, and proposes to use hyperproperties (sets of properties)instead. [DDM10℄ addresses the problem of supervisory 
ontrol, i.e. given a
riti
al system G that may leak 
on�dential information, how to design a
ontroller C so that the system G|C dos not leak. An e�e
tive algorithm ispresented to 
ompute the most permissible 
ontroller su
h that the system isstill opaque with respe
t to a se
ret.Con
erning angeli
 and demoni
 nondeterminism, there are various workswhi
h investigate their relation and possible 
ombination. In [BvW92℄ it isshown that angeli
 and demoni
 nondeterminism are dual. [MCR07℄ usesmulti-relations to express spe
i�
ations involving both angeli
 and demoni
nondeterminism. There are two kinds of agents, demoni
 and angeli
 ones, andthere is the point of view of the internal system and the one of the externaladversary.[Mor09℄ 
onsiders the problem of re�ning spe
i�
ations while preservingignoran
e. While the fo
us is on the redu
tion of demoni
 nondeterminism ofthe spe
i�
ation, the hidden values are treated essentially in a angeli
 way.The problem of the leakage 
aused by full-information s
hedulers has alsobeen investigated in the literature. [CCK+06a℄ and [CCK+06b℄ work in theframework of probabilisti
 automata and introdu
e a restri
tion on the s
hed-uler to the purpose of making them suitable to appli
ations in se
urity pro-to
ols. Their approa
h is based on dividing the a
tions of ea
h 
omponent ofthe system in equivalen
e 
lasses (tasks). The order of exe
ution of di�erenttasks is de
ided in advan
e by a so-
alled task s
heduler, whi
h is history-independent and therefore mu
h more restri
ted than our notion of globals
heduler. [APvRS℄ proposes a notion of system and admissible s
heduler verysimilar to our notion of system and admissible global s
heduler. The maindi�eren
e is that in that work the 
omponents are deterministi
 and thereforethere is no notion of lo
al s
heduler.The work in [CPb, CNP09℄ is similar to ours in spirit, but in a sense dualfrom a te
hni
al point of view. Instead of de�ning a restri
tion on the 
lassof s
hedulers, the authors a way to spe
ify that a 
hoi
e is transparent to thes
heduler. They a
hieve this by introdu
ing labels in pro
ess terms, used torepresent both the states of the exe
ution tree and the next a
tion or stepto be s
heduled. They make two states indistinguishable to s
hedulers, andhen
e the 
hoi
e between them private, by asso
iating to them the same label.We believe that every s
heduler in our formalism 
an be expressed in theirs,too. In [CNP09℄ the authors 
onsider the problem of de�ning a safe version ofbisimulation for expressing se
urity properties. They 
all it demoni
 bisimu-lation. The main di�eren
e with our work is that we 
onsider a 
ombination152



6.7. Chapter summary and dis
ussionof angeli
 and demoni
 nondeterminism, and this a�e
ts also the de�nition ofbisimulation. Similarly, our de�nition of leakage-freedom re�e
ts this 
ombi-nation. In [CNP09℄ the aspe
t of angeli
ity is not 
onsidered, although theymay be able to simulate it with an appropriate labeling.The fa
t that full-information s
hedulers are unrealisti
 has also been ob-served in �elds other than se
urity. First attempts used restri
ted s
hedulersin order to obtain rules for 
ompositional reasoning [dAHJ01℄. The justi�
a-tion for those restri
ted s
hedulers is the same as for ours, namely, that notall information is available to all entities in the system. That work 
onsidersa syn
hronous parallel 
omposition, however, so the setting is rather di�erentfrom ours. Later on, it was shown that model 
he
king is unfeasible in itsgeneral form for the restri
ted s
hedulers in [dAHJ01℄ (see [GD07℄ and, morere
ently, [Gir09℄). Despite of unde
idability, not all results 
on
erning su
hs
hedulers have been negative as, for instan
e, the te
hnique of partial-orderredu
tion 
an be improved by assuming that s
hedulers 
an only use partialinformation [GDF09℄.6.7 Chapter summary and dis
ussionIn this 
hapter we have observed that some de�nitions of se
urity propertiesbased on pro
ess equivalen
es may be too naive, in the sense that they assumethe s
heduler to be angeli
, and, worse yet, to a
hieve its angeli
 strategy bypeeking at the se
rets. We have presented a formalism allowing us to spe
ify ademoni
 
onstituent of the s
heduler, possibly in 
ollusion with the atta
ker,and an angeli
 one, under the 
ontrol of the system. We have also 
onsideredrestri
tions on the s
hedulers to limit the power of what they 
an see, andextended to our nondeterministi
 framework the (probabilisti
) information-hiding properties like non interferen
e and strong anonymity. We then havede�ned �safe� equivalen
es. In parti
ular we have de�ned the notions of safetra
e equivalen
e and safe bisimilarity, and we have shown that the latter isstill a 
ongruen
e. Finally, we have shown that the safe equivalen
es 
an beused to prove information-hiding properties.For the future, we plan to extend our framework to quantitative notionsof information leakage, possibly based on information theory. We also plan toimplement model 
he
king te
hniques to verify information hiding propertiesfor our kind of systems.
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Seven Con
lusion
�To su

eed, jump as qui
kly at opportunities as you do at 
on
lusions.�Benjamin FranklinIn this thesis we 
on
entrated on the problem of information hiding in the s
e-narios of intera
tive systems, statisti
al dis
losure 
ontrol, and the re�nementof spe
i�
ations. We started by giving a general overview of the �eld of infor-mation hiding, in
luding a brief des
ription of its histori
al development. Wethen dis
ussed the main di�eren
es between the qualitative and the quantita-tive approa
hes to information hiding, and we introdu
ed the ba
kground forthe three main topi
s 
overed in this thesis: information �ow (exempli�ed byanonymity), statisti
al dis
losure 
ontrol, and the re�nement of spe
i�
ationsinto implementations.Having adopted the quantitative approa
h, we then 
ontinued to dis
ussthe rationale of the use of information theory for quantitative information �ow.We reviewed several formulations of entropy, with a spe
ial fo
us on Shannonentropy and min-entropy, and the related 
on
ept of mutual information andits interpretation in terms of atta
ks and information leakage.We then pro
eeded to present the te
hni
al 
ontributions of the thesis. Westarted with the s
enario of intera
tive systems, i.e systems where se
rets andobservables 
an alternate and in�uen
e ea
h other during the 
omputation.In this type of systems the traditional information theoreti
al approa
h thatmakes use of 
lassi
 memoryless 
hannels, and the related 
on
epts of mutualinformation and 
lassi
al 
apa
ity, no longer works. We proposed to modelintera
tive systems with a ri
her notion of 
hannels, namely 
hannels withmemory and feedba
k. In this more general model it is possible to split thestatisti
al 
orrelation between se
rets and observables (that 
orrespond to theinput and the output of the 
hannel, respe
tively) into two 
ausal 
omponents:the dire
ted information from input to output represents the �ow of informa-tion through the 
hannel, and the dire
ted information from output to input155



7. Con
lusion
orresponds to the way the input is in�uen
ed by the output via feedba
k.We showed that the dire
ted information is the 
orre
t measure of leakage inintera
tive systems, and so is the 
on
ept of dire
ted 
apa
ity if we are inter-ested in the worst 
ase leakage. We also proved that our model is a properextension of the 
lassi
 one: in the absen
e of feedba
k (i.e intera
tion) ourmodel 
ollapses into the simpler 
lassi
 model. Finally, we showed that the
apa
ity of 
hannels with memory and feedba
k is a 
ontinuous fun
tion of apseudometri
 based on the Kantorovi
h metri
.With respe
t to intera
tive systems, as future work we want to explorealgorithms to 
al
ulate the leakage and the maximum leakage using our model.This is a rather 
hallenging problem, given the exponential growth of rea
tionfun
tions (a te
hni
al aspe
t of our model) and the quanti�
ation of possiblyin�nite many rea
tors (also another te
hni
ality of our model). We also wantto explore other notions of entropy as a measure of leakage, as for instan
e themin-entropy and the 
orresponding notion of one-try atta
k.In the sequen
e we moved to the problem of statisti
al dis
losure 
ontrol.We 
onsidered the problem of preserving the priva
y of individuals parti
ipat-ing in a database that allows statisti
al queries to be posed by users. Usingdi�erential priva
y, databases that are similar, i.e di�er by the 
ontents of atmost one row, should give statisti
ally �similar� answers to the same query.This is a
hieved by introdu
ing noise in the query me
hanism to blur the linkbetween the reported answer and the data about individuals. We proposeda model where the di�erential priva
y me
hanism 
an be split into two 
han-nels in 
as
ade, in the 
ase the randomization me
hanism is oblivious (i.e itonly depends on the real answer to the query, and not on the database it-self). The �rst 
hannel 
orresponds to the query, and it maps the databaseto the real answer to the query. The se
ond 
hannel 
orresponds to the obliv-ious randomization me
hanism, and it takes the real answer and maps it toa randomized answer to be reported to the user. In this s
enario we see theleakage as the 
orrelation between the reported answer and the database, andthe utility as the 
orrelation between the real answer and the reported one.We used this model to derive bounds for the leakage and utility based on thelevel of di�erential priva
y designed for the system (namely the parameter ǫ).As a measure of leakage we adopted the min-entropy leakage, and for utilitywe used the notion of gain fun
tions, fo
using on the binary gain fun
tion,whi
h is stri
tly related to min-entropy leakage and Bayes risk. We used thegraph stru
ture on the input domain derived from the adja
en
y relation ondatabases to derive bounds for the maximum min-entropy leakage of 
hannels.We showed that if the graph stru
ture is distan
e-regular or V T+ (whi
h isalways the 
ase for the database domain), then we 
an derive bounds for themaximum min-entropy leakage asso
iated to the 
hannel. Finally, we found away of 
onstru
ting a utility-maximizing randomization fun
tion that respe
tsdi�erential priva
y for a spe
ial 
lass of graph stru
tures.In relation to statisti
al databases, as future work we intend to extend our156



results to other types of gain fun
tions that not only the binary one, namelygain fun
tions that take into 
onsideration a notion of distan
e between an-swers. We also want to investigate whether or not non-oblivious randomizationme
hanisms 
an be used to improve utility while still preserving di�erentialpriva
y.The last s
enario we investigated in the thesis was the use of equivalen
erelations to spe
ify se
urity guarantees, whi
h is a 
ommon approa
h whenre�ning implementations into spe
i�
ations. Under this perspe
tive, two sys-tems (e.g a spe
i�
ation and its implementation) are 
onsidered equivalentlyse
ure if they respe
t some equivalen
e relation de�ned to 
apture the intendedse
urity guarantee. Su
h equivalen
es in
lude, for instan
e, tra
e-equivalen
eand bisimilarity. We showed that a naive use of these equivalen
es 
an lead tounrealisti
 assumptions about the s
heduler: (i) that the s
heduler is angeli
,i.e that it will help to keep the se
ret information from the atta
ker; and (ii)that the s
heduler 
an peek at the se
rets to make its 
hoi
es. Those assump-tions are not safe in pra
ti
al 
ases and, therefore, we proposed a model thatdeals with the problem. We introdu
ed a formalism that expli
itly separatesthe demoni
 and angeli
 parts of the s
heduler, and we imposed restri
tionsto limit the power of the s
heduler with respe
t to what it 
an see. Namely,the s
heduler 
annot peek at the se
rets to make its 
hoi
es. We then de-�ned notions of safe-equivalen
es (safe tra
e equivalen
e and safe bisimilarity)and we showed that the latter is a 
ongruen
e. Finally, we showed that safeequivalen
es 
an be used to prove information hiding properties.As future work regarding safe equivalen
es, we want to extend our modelto quantitative notions based on information theory, and we want to use model
he
king to 
ertify information hiding properties for our systems.As �nal remark, we believe that information hiding is a very promising�eld of resear
h, and we are ex
ited and thrilled by the promising 
hallengesthat lie ahead.
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