S. Alinhac and P. Gérard, Pseudo-dierential Operators and the Nash- Moser Theorem, Graduate Studies in Mathematics, vol.82

A. Babin, A. Mahalov, and B. Nicolaenko, Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating uids, Eur. J. Mech., B/Fluids, vol.3, p.291300, 1996.

A. Babin, A. Mahalov, and B. Nicolaenko, Regularity and integrability of 3D Euler and Navier-Stokes equations for rotating uids, Asympt. Anal, vol.15, p.103150, 1997.

A. Babin, A. Mahalov, and B. Nicolaenko, Global regularity of 3D rotating Navier-Stokes equations for resonant domains, Applied Mathematics Letters, vol.13, issue.4, p.11331176, 1999.
DOI : 10.1016/S0893-9659(99)00208-6

J. Y. Chemin, B. Desjardins, I. Gallagher, and E. Grenier, Mathematical Geophysics : An introduction to rotating uids and the Navier-Stokes equations, Lectures Series In Mathematics And Its Applications, 2006.

J. Bernard, Solutions globales variationnelles et classiques des uides de grade deux, C. R. Acad. Sci. Paris, vol.327, p.953958, 1988.

V. Busuioc, Sur quelques problèmes en mécanique des uides non newtoniens, 2000.

V. Busuioc, Iftimie : Global existence and uniqueness of solutions for the equations of third grade uids, Int. J. Non-Linear Mech, vol.39, issue.1, p.112, 2004.

V. Busuioc, Iftimie : A non-Newtonian uid with Navier boundary conditions, Journal of Dynamics and Dierential Equations, vol.18, issue.2, p.357379, 2006.

V. Busuioc and D. Iftimie, Paicu : On steady third grade uids equations, Nonlinearity, vol.21, issue.7, p.16211635, 2008.

A. Carpio, Asymptotic behavior for the vorticity equations in dimensions two and three, Communications in Partial Differential Equations, vol.18, issue.5-6, pp.5-6, 1994.
DOI : 10.1112/jlms/s2-35.2.303

A. Carpio, Large-Time Behavior in Incompressible Navier???Stokes Equations, SIAM Journal on Mathematical Analysis, vol.27, issue.2, p.449475, 1996.
DOI : 10.1137/S0036141093256782

. Th, A. Cazenave, and . Haraux, Introduction aux problèmes d'évolution semilinéaires, Math. Appl, vol.1, 1990.

J. Y. Chemin, B. Desjardins, I. Gallagher, and E. Grenier, Mathematical Geophysics : An introduction to rotating uids and the Navier-Stokes equations, Lectures Series In Mathematics And Its Applications, 2006.

D. Cioranescu and V. Girault, Weak and classical solutions of a family of second grade uids, Int. J. Nonlinear Mechanics, vol.32, p.317335, 1997.

D. Cioranescu and E. H. Ouazar, Existence and uniqueness for uids of second grade, Nonlinear Partial Dierential Equations, p.178197, 1984.

J. E. Dunn and R. L. , Fosdick : Thermodynamics, stability and boundedness of uids of complexity two and uids of second grade, Arch. Rat. Mech

R. L. Fosdick and K. R. , Anomalous features in the model of second order uids, Arch. Rat. Mech. Anal, vol.3, issue.70, p.146, 1979.

R. L. Fosdick and K. R. , Thermodynamics and stability of uids of and third grade, Proc. Royal Soc. London, pp.339-351377, 1980.

G. P. Galdi, Mathemathical theory of second-grade uids, Stability and Wave propagation in Fluids and Solids, CISM Course and Lectures, p.67104, 1995.

I. Gallagher, Applications of Schochet's methods to parabolic equations, Journal de Math??matiques Pures et Appliqu??es, vol.77, issue.10, p.9891054, 1998.
DOI : 10.1016/S0021-7824(99)80002-6

G. Galdi and A. , Sequeira : Further existence results for classical solutions of the equations of a second-grade uid, Arch. Rational Mech. Anal, vol.128, p.297312, 1994.

G. Galdi, M. Grobbelaar-van-dalsen, and N. Sauer, Existence ans uniqueness of classical solutions of the equations od motion for second-grade uids, Arch. Rational Mech. Anal, vol.124, p.221237, 1993.

. Th and . Gallay, Raugel : Scaling variables and asymptotic expansions in damped wave equations, J. Di. Eq, vol.150, p.4297, 1998.

. Th, C. E. Gallay, and . Wayne, Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R 2, Arch. Ration. Mech. Anal, vol.163, issue.3, p.209258, 2002.

. Th, C. E. Gallay, and . Wayne, Global stability of vortex solutions of the two-dimensional Navier-Stokes equation, Comm. Math. Phys, vol.255, p.97129, 2005.

H. P. Greenspan, The theory of Rotating uids, 1968.

E. Grenier, Rotating Fluids and Inertial Waves, Proc. Acad. Sci, pp.321-711714, 1995.

E. Grenier, Oscillatory perturbations of the Navier Stokes equations, Journal de Math??matiques Pures et Appliqu??es, vol.76, issue.6, p.477498, 1997.
DOI : 10.1016/S0021-7824(97)89959-X

J. Hale, Raugel : Convergence in gradient-like systems with applications to PDE, Z angew Math Phys, vol.43, p.63124, 1992.

J. Hale, Raugel : A modied Poincaré method for the persistence of periodic orbits and applications, J. Dyn. Di. Equat, vol.22, p.368, 2010.

T. Hayat and K. Hutter, Rotating ow of a second-order uid on a porous plate, Int. J. Non Lin. Mech, vol.39, p.767777, 2004.

T. Hayat, K. Hutter, S. Nadeem, and S. Asghar, Unsteady hydromagnetic rotating ow of a conducting second grade uid, Z. angew. Math. Phys, vol.55, p.626641, 2004.

T. Hayat, C. Fetecau, and M. Sajid, Analytic solution for MHD transient rotating ow of a second grade uid in a porous space, Nonlinear Analysis : Real World Applications, vol.9, p.16191627, 2008.

D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol.840, 1981.
DOI : 10.1007/BFb0089647

D. Iftimie, Existence et unicité globale des solutions pour les équations des uides de grade 3, C. R. Acad. Sci. Paris Sér.I Math, vol.330, issue.8, p.741744, 2000.

D. Iftimie, Remarques sur la limite ? ? 0 pour les uides de grade deux, Comm. Math. Phys, vol.255, p.97129, 2005.

T. Kato, StrongL p -solutions of the Navier-Stokes equation inR m , with applications to weak solutions, Mathematische Zeitschrift, vol.74, issue.4, pp.471-480, 1984.
DOI : 10.1007/BF01174182

T. Kato, Perturbation theory for linear operators, Classics in Mathematics, 1995.

I. Moise, R. Rosa, and X. Wang, Attractors for non-compact semigroups via energy equations, Nonlinearity, vol.11, issue.5, p.13691393, 1998.
DOI : 10.1088/0951-7715/11/5/012

M. Paicu, Etude asymptotique pour les uides anisotropes en rotation rapide dans le cas périodique, J. Math. Pures Appl, vol.83, p.163242, 2004.

M. Paicu, Hamza : Global existence and uniqueness result of a class of third-grade uids equations, Nonlinearity, vol.20, issue.5, pp.1095-1114, 2007.

M. Paicu and G. Raugel, Rekalo : Regularity of the global attractor and nite-dimensional behavior for the second grade uid equations [45] A.Pazy : Semi groups of linear operators and applications to partial differential equations, Appl. Math. Sci, vol.44, 1983.

K. R. Rajagopal and A. S. Gupta, Flows and stability of a second grade uid between two parallel plates rotating about noncoincident axes, Int. J. Eng

R. S. Rivlin and . Ericksen, Stress-deformation relations for isotropic materials, J. Rational Mech. Anal, vol.4, p.323425, 1955.
DOI : 10.1512/iumj.1955.4.54011

URL : http://doi.org/10.1512/iumj.1955.4.54011

L. M. Rodrigues, Comportement en temps long des uides visqueux bidimensionnels, 2007.

S. Schochet, Fast Singular Limits of Hyperbolic PDEs, Journal of Differential Equations, vol.114, issue.2, p.476512, 1994.
DOI : 10.1006/jdeq.1994.1157

R. Temam, Navier-Stokes equations, 1984.
DOI : 10.1090/chel/343

R. Temam, Innite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol.68, 1997.