
HAL Id: tel-00641569
https://theses.hal.science/tel-00641569v1
Submitted on 16 Nov 2011 (v1), last revised 1 Feb 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assisting in the Reuse of Existing Materials to Build
Adaptative Hypermedia

Nadjet Zemirline

To cite this version:
Nadjet Zemirline. Assisting in the Reuse of Existing Materials to Build Adaptative Hypermedia.
Artificial Intelligence [cs.AI]. Université Paris Sud - Paris XI, 2011. English. �NNT : 2011PA112112�.
�tel-00641569v1�

https://theses.hal.science/tel-00641569v1
https://hal.archives-ouvertes.fr

ASSISTING IN THE REUSE OF

EXISTING MATERIALS TO BUILD

ADAPTIVE HYPERMEDIA

PH.D. IN COMPUTER SCIENCE

by

Nadjet ZEMIRLINE

Intended to be defended on July 12th, 2011

Prof. Chantal REYNAUD University of Paris-Sud-XI, INRIA-Saclay Thesis director

Prof. Yolaine BOURDA Engineering School Supelec Co-advisor

Prof. Serge GARLATTI Engineering School Telecom Bretagne Rapporter

Prof. Philippe TRIGANO University of Technology of Compiegne Rapporter

Prof. Bruno DEFUDE Engineering School Telecom SudParis Examiner

Prof. Jean-Paul SANSONNET Computer Sciences Laboratory for Examiner

Mechanics & Engineering Sciences

University of Paris-Sud XI Scientific UFR - Orsay

Contents

I Introduction 13

1 Introduction 15

1 Context and research questions . 16

2 Contributions . 18

3 Outline of the dissertation . 19

II Close work related to authoring Adaptive Hypermedia 21

2 Positioning 23

1 Adaptive Hypermedia . 25

1.1 Models of Adaptive Hypermedia . 25

1.1.1 Models for Adaptive Hypermedia whatever the application domain 27

1.1.2 Models for Adaptive Educational Hypermedia 29

1.1.3 Summary . 31

1.2 Adaptive Hypermedia Systems . 31

1.2.1 Adaptive Hypermedia whatever the application domain 32

1.2.2 Adaptive Educational Hypermedia Systems 33

1.2.3 Summary . 34

2 Authoring Adaptive Hypermedia . 34

2.1 Specifying the domain model . 35

2.1.1 Solutions dedicated to a particular Adaptive Hypermedia System 35

2.1.2 Solutions compatible with numerous Adaptive Hypermedia

Systems . 36

2.1.3 Summary . 38

2.2 Expressing adaptation . 38

2.2.1 Solutions dedicated to a particular Adaptive Hypermedia System 38

2.2.2 Solutions compatible with numerous Adaptive Hypermedia

Systems . 39

2.2.3 Summary . 44

3 Relative position in comparison with existing work 44

4 CONTENTS

III Assisting in the reuse of author’s domain and user models 47

3 Integrating author’s models into models of Adaptive Hypermedia Systems 49

1 Related work in the knowledge engineering field . 51

1.1 Approaches based on merging models according to a bottom-up approach 51

1.2 Approaches based on merging models according to a top-down approach . 52

1.3 Summary . 54

2 Main aspects of our merging/specialization process 55

2.1 Characteristics of the two models used by the process 55

2.2 Characteristics of the built model . 55

2.3 The merging/specialization process . 56

2.4 Applying the merging/specialization process on John’s use case 57

2.4.1 Description of the generic model 58

2.4.2 Description of the specific model 58

2.4.3 Description of the built model . 60

3 Step 1/4: specification of mappings between classes 61

3.1 Mapping between classes . 61

3.2 Applying the first step on John’s use case . 61

4 Step 2/4: deduction of additional mappings between classes 61

4.1 Pattern-based process for deducing additional mappings between classes . 61

4.2 Applying the second step on John’s use case 65

5 Step 3/4: deduction of mappings between relations and between attributes 65

5.1 Structural knowledge . 66

5.2 Modeling structural knowledge using a meta-model 68

5.2.1 Parts taken back from the OWL meta-model 68

5.2.2 Modification and enrichment of the reused parts of the OWL

meta-model . 68

5.3 Mapping deduction rules . 70

5.3.1 Deducing a potential mapping . 71

5.3.2 Deducing compatible restriction mappings 71

5.3.3 Deducing a probable mapping . 72

5.4 Inconsistency deduction rules . 73

5.5 Applying the third step on John’s use case 73

6 Step 4/4: validation of mappings and presenting inconsistencies 74

6.1 Validating deduced mappings between relations 74

6.2 Presenting inconsistency mappings . 76

6.3 Building the merged model . 76

6.4 Applying the fourth and last step on John’s use case 77

7 Summary . 77

IV Assisting in the expression of adaptive navigation 79

4 Expressing adaptive navigation using adaptation patterns 83

CONTENTS 5

1 Related work in expressing adaptive navigation in Adaptive Systems 85

1.1 What kind of adaptation could be provided? 85

1.2 How can authors express their adaptation? 86

1.2.1 Adaptation languages accompanied by their adaptation engine . . 86

1.2.2 Generic adaptation languages accompanied by translators to

existing adaptation engines . 86

1.2.3 Hypertext and adaptation patterns 87

1.3 Expressing adaptive navigation in open corpus Adaptive Systems 89

1.4 Summary . 89

2 Motivation through Jane’s use case . 90

2.1 Description of Jane’s domain and user models 90

2.2 Description of Jane’s adaptation . 91

3 Main aspects of the EAP framework . 91

3.1 Structure of author’s domain and user models used by the EAP framework 93

3.2 Steps to define a new adaptation strategy . 93

4 Elementary adaptation patterns . 94

4.1 Fundamental criteria for defining elementary adaptation patterns 94

4.1.1 Criteria used to select resources . 94

4.1.2 Criteria used to order the selected resources 94

4.2 Description of elementary adaptation patterns 96

4.2.1 Definition of an elementary adaptation pattern 96

4.2.2 Syntax of an elementary adaptation pattern 96

4.2.3 Semantic of an elementary adaptation pattern 97

4.3 Typology of elementary adaptation patterns 99

5 Using the EAP framework to define adaptation strategies 99

5.1 Step 1/3: defining elementary adaptations 100

5.1.1 Elementary adaptations . 101

5.1.2 Applying the first step on Jane’s use case 101

5.2 Step 2/3: linking elementary adaptations with user characteristics 102

5.2.1 Defining associations . 103

5.2.2 Applying the second step on Jane’s use case 103

5.3 Step 3/3: combining elementary adaptations 103

5.3.1 Process of combining elementary adaptations 103

5.3.2 Applying the third step on Jane’s use case 105

6 Summary . 107

5 Expressivity of EAP framework versus GLAM, LAG 109

1 Study of the expressivity of domain models used by the EAP framework, GLAM

and LAG . 111

1.1 UML representation of domain models used by the EAP framework,

GLAM and LAG . 111

1.1.1 UML representation of domain models used by the EAP framework111

1.1.2 UML representation of domain models used by GLAM 112

6 CONTENTS

1.1.3 UML representation of domain models used by LAG 112

1.2 A unified vision of the domain model used by the EAP framework, GLAM

and LAG . 114

1.2.1 A unified vision of the domain model in AH 114

1.2.2 Applying the unified vision on DM (and GM) used by the EAP

framework and LAG . 115

1.2.3 Applying the unified vision on Jane’s use case for EAP

framework, GLAM and LAG . 116

1.3 Differences of modeling the domain model used by EAP framework,

GLAM versus LAG . 119

2 Study of adaptation expressivity of EAP framework, GLAM and LAG 121

2.1 An integrated model for a taxonomy of basic adaptations (based on the

EAP framework, GLAM and LAG) . 121

2.2 Differences of adaptation modeling using the EAP framework, GLAM

versus LAG . 124

3 Summary . 126

6 Translating generated adaptation strategies to existing adaptation languages 127

1 Plugging the EAP framework to the GLAM platform 129

1.1 Conversion of domain and user models used by the EAP framework to

ones used by GLAM . 129

1.2 Conversion of adaptation strategies from the EAP framework to GLAM . . 129

1.2.1 Translation of expressions to the GLAM format 130

1.2.2 Translation of meta-expressions to the GLAM format 130

2 Plugging the EAP framework to LAG . 131

2.1 Conversion of domain model used by the EAP framework to domain and

goal models used by LAG . 131

2.2 Conversion of user model and adaptation strategies from the EAP

framework to LAG . 133

2.2.1 Translation of expressions to the LAG format 134

2.2.2 Translation of meta-expressions to the LAG format 135

3 Summary . 136

V Implementation, Experiments & Evaluations 139

7 Implementation 141

1 Implementation of the merging/specialization process 143

1.1 Architecture of the MESAM plug-in . 143

1.2 Installation of the MESAM plug-in . 143

1.3 Interaction with the MESAM plug-in . 144

1.3.1 Specification of equivalence or specialization mappings 144

1.3.2 Validation of structural deductions 144

1.3.3 Printing reused classes, relations and properties 145

2 Implementation of the EAP framework . 145

CONTENTS 7

2.1 Architecture of the EAP plug-in . 145

2.2 Installation of the EAP plug-in . 146

2.3 Interaction with the EAP plug-in . 146

2.3.1 Definition of elementary adaptations 146

2.3.2 Association of elementary adaptations with user characteristics . 146

2.3.3 Definition of adaptation strategies 147

2.4 Plugging the EAP framework to LAG . 147

3 Summary . 149

8 Experiments and evaluations in e-learning 151

1 Experiments of the MESAM plug-in in the adaptive e-learning hypermedia domain 153

1.1 Experimental settings . 153

1.2 Obtained results . 153

2 Evaluation of the EAP tab versus existing Adaptive Systems 155

2.1 Evaluation of the EAP framework versus GLAM, a rule-based system . . . 155

2.1.1 Evaluation settings . 155

2.1.2 Obtained results . 155

2.2 Evaluation of the EAP framework versus LAG, a generic adaptation language158

2.2.1 Evaluation settings . 158

2.2.2 Obtained results . 158

3 Summary . 162

VI Conclusion and future work 163

9 Conclusion and future work 165

1 Conclusion . 166

2 Future work . 166

Appendices 177

A OWL Meta-Model 179

B Library of the defined elementary adaptation patterns 183

1 Elementary adaptation patterns using selection only mode 184

2 Elementary adaptation patterns using ordered selection mode 186

3 Elementary adaptation patterns using recommended selection mode 189

4 Elementary adaptation patterns using alternate selection mode 193

5 Summary . 197

C Conversion of our elementary adaptation patterns to LAG 199

1 Conversion of elementary adaptation patterns using selection only mode to LAG . 200

2 Conversion of elementary adaptation patterns using ordered selection mode to LAG202

3 Conversion of elementary adaptation patterns using recommended selection

mode to LAG . 206

8 CONTENTS

List of Tables

3.1 List of inconsistency problems and their resolution in I-PROMPT 54

3.2 Example of adaptation in the GLAM format . 57

3.3 Students characteristics . 58

3.4 Some of the instances in John’s domain model . 59

3.5 Mappings defined between two classes of the merged model 60

3.6 Mappings defined between two properties (or two relations) of the built model . . 60

3.7 SWRL Rules expressing structural knowledge . 71

3.8 A Part of deduced mappings between relations of the generic and specific models 74

3.9 Reasoning to build the merged model. 76

4.1 Refined classification of actions in adaptive strategies according to [66] 86

4.2 Process of deducing meta-expressions of S1 . 107

6.1 Conversions of the three types of the EAP framework expressions to GLAM 131

6.2 Mappings between elements of domain and goal models used by both approaches

at the generic level . 132

6.3 Mappings between elements of author domain model used by both approaches at

the specific level . 133

6.4 Conversions of the three types of the EAP framework expressions to LAG 135

6.5 Conversions of the three types of the EAP framework meta-expressions to LAG . . 136

8.1 Execution of MESAM plug-in according to several situations on models of John’s

use case . 153

B.1 Elementary adaptation patterns using the simple selection mode 186

B.2 Elementary adaptation patterns using the ordered selection mode 189

B.3 Elementary adaptation patterns using the recommended selection mode 193

B.4 Elementary adaptation patterns using the alternate selection mode 197

C.1 Conversion of the elementary adaptation pattern Selection Only - Relation - Resource

to LAG . 201

C.2 Conversion of the elementary adaptation pattern Selection Only - Classes to LAG . . 201

C.3 Conversion of the elementary adaptation pattern Selection Only - Property to LAG . 202

C.4 Conversion of the elementary adaptation pattern Ordered Selection - Relation -

Resource - Depth first to LAG . 203

10 LIST OF TABLES

C.5 Conversion of the elementary adaptation pattern Ordered Selection - Relation -

Resource - Breadth first to LAG . 204

C.6 Conversion of the elementary adaptation pattern Ordered Selection - Classes to LAG 205

C.7 Conversion of the elementary adaptation pattern Ordered Selection - Property to LAG 206

C.8 Conversion of the elementary adaptation pattern Recommended Selection - Relation

- Resource - Depth first to LAG . 207

C.9 Conversion of the elementary adaptation pattern Recommended Selection - Relation

- Resource - Breadth first to LAG . 208

C.10 Conversion of the elementary adaptation pattern Recommended Selection - classes to

LAG . 209

C.11 Conversion of the elementary adaptation pattern Recommended Selection - property

to LAG . 209

List of Figures

2.1 The Brusilovsky typology [6] . 26

2.2 Structure of the elements and attributes of the DTD defining LAG-XLS [66] 41

3.1 The Ontology Mapping Process [55] . 51

3.2 Ontology Merging method [71] . 52

3.3 The flow of I-PROMPT algorithm [51] . 53

3.4 General overview of the merged model . 56

3.5 The architecture of the proposed merging/specialization process 56

3.6 Description of the domain model exploited by the adaptation in Table 3.2 58

3.7 Description of John’s domain model . 59

3.8 Graphical notations . 62

3.9 Patterns corresponding to the formula Requiv ◦ RsubClass = RsubClass 62

3.10 Instantiated patterns (Requiv ◦ RsubClass = RsubClass) 63

3.11 Patterns corresponding to the formula Rsubclass ◦ Requiv = Rsubclass 63

3.12 Instantiated patterns (Rsubclass ◦ Requiv = Rsubclass) 64

3.13 Patterns corresponding to the formula R subclass ◦ R subclass = R subclass 64

3.14 Instantiated patterns (R subclass ◦ R subclass = R subclass) 64

3.15 Patterns corresponding to the formula R equiv ◦ R equiv = R equiv 65

3.16 Instantiated patterns (R equiv ◦ R equiv = R equiv) . 65

3.17 The proposed meta-model . 69

3.18 Rg is linked by only a probable mapping to Rs1 and by inconsistency mappings to

relations of the specific model having the same domain and range as Rs1 75

3.19 Rg is linked by only a probable mapping to Rs1 and by no inconsistency mappings

to relations of the specific model having the same domain and range as Rs1 75

3.20 Rg is linked by a probable mapping to Rs1 and to Rs2 and by inconsistency

mappings to relations of the specific model having the same domain and range

as Rs1 . 75

3.21 Rg is linked by a probable mapping to Rs1 and to Rs2 and by no inconsistency

mappings to relations of the specific model having the same domain and range as

Rs1 . 75

4.1 Description of the structure of a design pattern [31] 87

4.2 Structure of a design pattern as described by Garzotto et al. [32] 88

4.3 Example of a design pattern as defined by Garzotto et al. [32] 88

4.4 Jane’s domain model in UML . 90

12 LIST OF FIGURES

4.5 Jane’s user model in UML . 90

4.6 Jane’s S1 in the GLAM format . 92

4.7 Jane’s S1 in the LAG format . 93

4.8 Description of elementary adaptation patterns . 97

4.9 Syntax of the characteristic Solution . 98

4.10 Description of general elements . 99

4.11 Typology of elementary adaptation patterns . 100

4.12 The elementary adaptation S1-1 . 101

4.13 The elementary adaptation S1-2 . 102

4.14 The elementary adaptation S1-3 . 102

4.15 Description of S1-1, S1-2, S1-3 . 105

5.1 A UML class diagram of the generic domain model used by the EAP framework . 111

5.2 A UML class diagram of the generic domain model used by GLAM [38] 113

5.3 A UML class diagram representing the domain and goal models used by MOT . . 114

5.4 The three domain (goal) modeling levels used in each approach 115

5.5 The three modeling levels in UML of the DM (and GM) used by each approach . . 117

5.6 Example of the three modeling levels of the domain (and goal) models used by

each approach . 118

5.7 An integrated model for a taxonomy of basic adaptations (based on the EAP

framework, GLAM and LAG)) . 122

6.1 Structure of the characteristic Solution of an adaptation strategy written using the

EAP framework . 130

6.2 Examples of expressions described by the EAP framework 134

7.1 Architecture of the MESAM plug-in . 143

7.2 Workspace of the MESAM interface . 144

7.3 Architecture of the eapTab plug-in . 146

7.4 Workspace of the eapTab plug-in . 147

7.5 Workspace of the elementary adaptation editor . 148

8.1 Skills of our volunteers . 156

8.2 Estimation of difficulty to express S1 . 157

8.3 Estimation of time spent to express S1 . 157

8.4 Skills of volunteers participating in our experiments 159

8.5 Estimation of difficulty of expressing an adaptation strategy, understanding and

reusing of existing one in LAG and in the EAP framework. 160

8.6 Estimation of time spent by volunteers to perform the evaluation using LAG and

using EAP framework. 161

A.1 The OWL class diagram of the OWL meta-model . 180

A.2 The OWL property diagram of the OWL meta-model 181

A.3 The OWL restriction diagram of the OWL meta-model 182

B.1 Typology of elementary adaptation patterns . 184

Part I

Introduction

C H A P T E R 1

Introduction

1 Context and research questions . 16

2 Contributions . 18

3 Outline of the dissertation . 19

16 Introduction

1 Context and research questions

Since the explosion of Internet in 1990s, there has been a growing demand for personalization

and the one-size-fits-all approach has been no longer applicable. One of the answers to these

requirements has been Adaptive Hypermedia Systems (AHS), which adapt their behavior to the

needs of individual users. We use the following definition of AHS, which is the more widely

used:

By adaptive hypermedia systems we mean

all hypertext and hypermedia systems which reflect some features of the user in the user model and apply

this model to adapt various visible aspects of the system to the user [6].

Thus, AHS are tools to access information based upon users’ profiles represented in a user

model. They also require a domain model to represent the application domain information.

Adaptation mechanisms are defined in an adaptation model relying on these models and an

adaptation engine is needed to execute the whole system. Systems authored and executed using

these tools are usually referred by Adaptive Hypermedia (AH).

Adaptive Hypermedia Systems have amply proved their utilities, particularly in education,

where they support authoring Adaptive Educational Hypermedia (AEH). In AEH1, learners

get access to personalized information according to their knowledge, preferences and goals.

However, until today only few AEH have been developed, because of the difficulty of their

authoring process.

Indeed, authors of AH, people who design the AH, have to:

1. define a domain model. This means that, they have to model the set of resources to be

accessed by users, which are mainly a piece of media or a combination of pieces of media

built dynamically (for example, a specific exercise). They can be related to each other by

particular relations or characterized by attributes such as the format. Besides, concepts may

be associated to these resources. For example, a document about DBMS explaining what are

the functional dependencies is a resource related to the concept functional dependency. Similarly

to resources, concepts may be related to each other by relations;

2. define a user model. This means that, they have to specify the users’ characteristics that have

to be considered by the AH. The characteristics may include personal information on users

such as their first name, age, information on their preferences, information on their goals or

even information on their historical use of the AH;

3. define an adaptation model. This means that, they have to define the appropriate adaptation

mechanisms for each user. This may include several steps. For each step, authors specify,

on the one hand, the most appropriate resources to propose to users and also the most

appropriate way to present them, and on the other hand, the actions to be performed by

users, those required by the AH in order to move to the next step.

Consequently, authors must know well the architecture of AHS in order to be able to create the

different parts2. However, not all authors have modeling skills for expressing data models or

have logic or programming skills for expressing adaptation.

Furthermore, authors have to answer to two questions:

How can they integrate their own data models into data models of an AHS? most often,

authors come with their own data models and their instantiations and would like to

reuse them.
1AEH are considered as a sub-part of AH
2Note that, defining a domain model or a user model is done in a similar manner. Both domain and user models structure

a set of data. For this reason, in the following, we refer to both of them by data models.

1 Context and research questions 17

1. The first challenge concerns reusing of authors’ data models, their instantiations and

their associated meta-data in the format supported by the used AHS.

A direct consequence of this first challenge is the possibilities of loosing data. It may

happen that some data cannot be translated and thereby will not be considered in the

AH. This issue must not be underestimated.

Another direct consequence concerns update mechanisms that are associated to the

authors’ models. The only way to keep these mechanisms is to rewrite them.

2. The second challenge concerns the lack of standard of the data models in the used

AHS. This is an issue if the used system is no longer maintained or if authors want to

change. Do authors need to re-create all their resources? To avoid this, it is desirable to

move away from a ”one-to-one” adaptive hypermedia authoring paradigm to a general

”write once, use many” [70].

Most of developed solutions [23, 48, 30, 26] propose a translation process of authors’

models. This means that, they require that authors translate all their data and meta-data.

This translation process may come with a change of format or vocabulary. Therefore, such

solutions fail solving the first challenge, but they try to override the second one thanks to

several export possibilities.

How can they express adaptation? for expressing adaptation, authors have to describe multiple

adaptation strategies. An adaptation strategy, as specified in [69], defines how the adaptation

is performed. Namely adaptation rules specified in the strategy are used to adjust the presentation to

the learner with a particular learning preference [2], style [68] or need [6]. Thereby, authors face

numerous challenges when defining their adaptation strategies.

1. The first challenge concerns the expression of adaptation strategies. It is often done

using condition-action rules, event-condition-action rules or programming languages,

which is a complex and time-consuming task. Recent solutions propose graphical tools

or languages using constructors to support expression adaptation.

2. The second challenge concerns the reuse of adaptation strategies from one system to

another one, and the expression of adaptation strategies independently of any AHS.

This reflects the second challenge raised by the first question asked by authors: ”write

once, use many” [70]. The proposed paradigm endorses expressing adaptation at a high

level, independently of all AHS and then translating this adaptation into a particular

AHS.

3. The third challenge concerns the granularity in writing adaptation strategies. An

adaptation strategy is composed of independent parts (for example: proposing

definitions before exercises, proposing only textual textual resources). Its aim is to

avoid writing the common parts of adaptation strategies several times.

Multiple solutions have been proposed [49, 23, 17, 69, 65] in order to meet these challenges.

In [49, 23], they propose to make the expression of adaptation easier, but they were related

to a particular AHS and failed to answer the second and the third challenge. [17, 69, 65]

are concerned with the expression of adaptation using constructors and generic adaptation

language, independent of any adaptation engine. These works failed to answer the third

challenge, because till today, an adaptation strategy has been considered as a whole block

and can not be easily reused.

Up to here, we have presented two groups of challenges. In this thesis, we take up each

one as it is described below.

18 Introduction

2 Contributions

Before going further, we would like to note that in this thesis: (1) we adopt authors’ point of view,

and (2) the aim of our contributions is to assist authors in the design of their AH using existing

AHS, but in any way to build a new AHS.

In the following, we present our contributions taking up each group of challenges.

Integrating authors’ data models into existing AHS : we propose a framework addressing the

two challenges at the same time. Our objectives is to enable authors to reuse existing

adaptation expressed using a particular system. Therefore, we propose an integration

process of authors’ models and data into existing systems without any translation or loss

of information, and we rely on the use of OWL3, a W3C standard4.

For these purposes, we propose, on the one hand, to create a support for defining mappings

between elements of the model included in an existing system and elements of the author’s

models, and on the other hand, to help creating consistent and relevant models integrating

(1) the model included in an existing system and (2) the author’s models and (3) taking into

account the mappings between them. Therefore,

• we assist in the specialization and merging of two models using a semi-automatic

process. This process delivers mappings between elements of both models with 100%

precision;

• we propose a declarative reasoning module based on a modified version of the OWL

meta-model;

• we assist in the detection of inconsistency mappings between elements (classes,

properties or relations) of the two merged models.

Expressing adaptation : we propose a framework addressing the three challenges at the same

time. It concentrates on the ease of defining adaptation strategies at a high level, at a fine

granularity, and on the facility of reusing existing adaptation strategies.

We focus here on the expression of adaptation strategies for adaptive navigation, where

users are forced to navigate among proposed navigation paths. This can be done by

selecting, imposing a particular order or by recommending resources [41].

We perceive an adaptation strategy as a combination of elementary parts. Each part

corresponds to an elementary adaptation and is bound to a user characteristic. A part can

belong to different complex adaptation strategies depending on user characteristics. Our

work takes up this idea. The notion of elementary adaptation patterns that we propose, is

an abstraction of such elementary parts. Elementary adaptation patterns are independent

from any application domain. Therefore,

• we propose the EAP framework supporting the definition of adaptation strategies,

through the use and the combination of elementary adaptation patterns. The most

difficult part of the combination process is done automatically;

• we define a typology of 22 elementary adaptation patterns based on exhaustive criteria

for selecting resources and specifying how to propose them;

• we plug the EAP framework on several existing solutions. For this purpose, we have

studied deeperly some existing solutions: the GLAM platform, a rule-based system

and the LAG language, a procedural language, which is translated to several existing

systems, such as ADE [61] or AHA! [14]. From that, we have proposed a unifying

3www.w3.org/TR/owl-features/
4www.w3.org/standards/

3 Outline of the dissertation 19

vision of the domain model and an integrated vision of basic actions. This has enable

us to define conversion rules from the EAP framework to, firstly, the GLAM platform,

and secondly, LAG language.

These theoretical qualitative studies have been complemented by the development of plug-ins

for the Protégé tool5. We propose

• A MESAM plug-in to merge two OWL models using a specialization process.

• An eapTab plug-in to support the functionalities of the EAP framework. These

functionalities include the instantiation of elementary adaptation patterns, the association

of instantiations with user characteristics and the combination of instantiations of

elementary adaptation patterns. The eapTab also includes a module able to translate

adaptation strategies written by our framework to the LAG format.

Furthermore, we have conducted experimentations and evaluations in the e-learning application

domain, which allowed us to validate our approaches. We have made:

• experimentations of MESAM tab on a use case;

• evaluation with volunteers of the ease of use of the EAP framework versus a rule-based

language (the GLAM platform) and versus a generic adaptation language (LAG).

All these contributions are based on the use of OWL6), and on declarative reasoning [33].

3 Outline of the dissertation

After having introduced in this first part, the context, the research questions and having listed

our contributions, we present now the plan of the thesis.

In part 2, we provide background information on Adaptive Hypermedia (AH), on which we

rely on to position and understand our contributions.

In part 3, we present how authors would be assisted in integrating their data models into

existing systems. This contribution is generic and can be applied to integrate any other authors’

models with any other systems, even for application domains different from the AH field.

In part 4, we detail how authors would express adaptive navigation in an easier manner, at

a higher level and at a finer granularity than what exist in the AH field today. Furthermore,

we study the expressivity of knowledge represented by our solution versus existing systems

and present a unifying vision of expressing the domain model and also a unifying vision of the

adaptation. This study about expressivity has served us to define translators from our approach

to some existing systems.

In part 5, we describe the implementation of our different contributions, experimentations

and evaluations in the e-learning domain application.

Additionally, part 3 and part 4 have been accompanied each by a use case on which we rely

to explain our motivations and our contributions. Several appendices have also been written

to provide more technical details. They haven’t been put in the related contribution in order to

facilitate reading this thesis, but they are clearly referenced.

5Protégé tool is available at protege.stanford.edu/
6http://www.w3.org/TR/owl-features/

20 Introduction

Part II

Close work related to authoring

Adaptive Hypermedia

C H A P T E R 2

Positioning

1 Adaptive Hypermedia . 25

1.1 Models of Adaptive Hypermedia . 25

1.2 Adaptive Hypermedia Systems . 31

2 Authoring Adaptive Hypermedia . 34

2.1 Specifying the domain model . 35

2.2 Expressing adaptation . 38

3 Relative position in comparison with existing work 44

24 Positioning

This chapter provides background information on Adaptive Hypermedia (AH), on which we

rely on to position and understand our contributions.

Section 1 introduces models used in AH. This includes the first reference model AHAM, and

others models developed on the base of AHAM. We give a particular interest to the GLAM

model, which has been extensively used in this thesis as it was previously developed in Supelec.

Therefore, we have a complete access to all its components. Afterward, we describe systems

implementing models describing AH, in order to support the authoring and the execution of

AH.

From this point, we take authors’ point of view for authoring AH. For this purpose, Section 2

describes solutions having been proposed to support the authoring process of AH. These

solutions are organized in two categories: aids helping authors in modeling domain models, and

aids helping authors in expressing adaptation. For each category, there are solutions dedicated to

one AHS or compatible with several AHS. Consequently for each described solution, we specify

whether it is dedicated to one AHS or is compatible with several AHS.

Section 3 points to the actual difficulties when authoring AH and introduce our contributions.

Before going further, two elements, concept and resource, have to be defined as they are

defined and used differently by works presented in this chapter.

• A concept refers in the AH field to a notion.

• A resource refers in the AH field to a piece of media or a combination of pieces of media

built dynamically. This media may be a document, a video etc.

Most often, a concept is related to one or more resources. Conversely, a resource is related to one

or more concepts. Each time we present a work, we specify explicitly how these two elements

are used.

1 Adaptive Hypermedia 25

1 Adaptive Hypermedia

In the following, we start by presenting some models used to describe AH (cf. Section 1.1).

Afterward, we describe systems implementing these models in order to support the authoring

and the execution of AH (cf. Section 1.2).

1.1 Models of Adaptive Hypermedia

Since the 1990s, several AH have been developed. However, during the first decade, they had

been directly developed for specific purposes and in an ad-hoc manner. It was very difficult to

maintain or reuse them. Furthermore, there was no reference model defining a general structure

of the developed AH until 1999 when De Bra has proposed the first model for AH, called AHAM,

which is mainly inspired by the Dexter hypertext Reference model1 [35].

The AHAM model defines an AH as a 4-tuple [74]:

< domain model, user model, adaptation model, adaptation engine >

The domain model. It describes the structure of the available information of a particular

application domain. This structure is modeled using concepts and relationships between

concepts. A concept is an abstract representation of a piece of information of the application

domain. It can be either atomic or composed of multiple concepts. Each concept has an

identifier and may have an arbitrary number of attributes, where each attribute is defined

by a name and a value. It can be linked to other concepts using relationships. A relationship

has a name and is characterized by a weight. The most used types of relationships between

concepts are binary relationships but other types of relations are allowed.

The user model. It consists of a set of properties describing users’ knowledge of the application

domain and personal information. These properties are exploited by the adaptation

process. The user model is more precisely an overlay of the domain model. This means

that, at least a user attribute is defined per concept. At the first execution of the AH, user

properties may be initialized using default values or values collected using a questionnaire.

The adaptation model. It describes, on the one hand, the adaptation that would be proposed to

users according to their defined properties, and on the other hand, how the user properties

must be updated. These functionalities are expressed using event-condition-action rules by

exploiting the structure and the content of the domain and user models. Two types of rules

may be defined, generic or specific rules. Generic rules are expressed on domain and user

models, whilst specific rules are expressed on instances of domain and user models.

The adaptation engine. It is responsible for computing the adaptation. It takes as input the three

previous models. Afterward, it builds the pages that would be proposed to users and it

updates the user properties.

As described above, the specification of the adaptation model in AHAM is very general. It does

not specify explicitly what types of adaptation will be proposed. In fact, in the meantime when

the AHAM model had been defined, another work done by Brusilovsky, had proposed a census

of adaptations [6] in the AH field. This work is an enrichment of the AHAM model for new

models.

Brusilovsky had made a census of two types of adaptations: adaptive presentation and

adaptive navigation. For each type of adaptation, he has defined several non disjoint methods,

that may be implemented differently. We present in Figure 2.1 the Brusilovsky typology

1The Dexter Model had been proposed in the early years of 1990 for hypertext applications.

26 Positioning

of adaptation defined in 2001. From the left to the right, Figure 2.1 describes the two

types of adaptations, for each type its possible methods and for each method its different

implementations. For example, in the adaptive navigation, the link hiding method may be

implemented either by hiding, disabling or removing the links on which the adaptation is acting.

Figure 2.1 – The Brusilovsky typology [6]

Adaptive presentation: it concerns presentation aspects of pages proposed to users. For a

particular user, this method specifies whether fragments has to be enlarged or not.

Adaptive navigation: we give further details on methods of this particular type of adaptation in

Chapter 4, Section 1.

Note that, methods and their implementations can be applied to content, presentation and

navigation adaptation. Recently, Knutov et al. [41] have decided to separate between the three

types of adaptation. Therefore, they propose non-disjoint methods for content adaptation,

adaptive presentation and adaptive navigation.

Often in order to express adaptive presentation and content adaptation, additional

information is needed in the domain model. This is possible only when the structure of the

domain model is not going to evolve, thus they are easily applied on close corpus AH2. Besides,

adaptive navigation consists only of proposing navigational paths to users among a set of

concepts and resources [7], for example: ordering a set of resources. This does not need any

additional information on concepts and resources. Therefore, adaptive navigation can be applied

on both close and open corpus.

The AHAM model is considered as the reference model in the AH field. Consequently,

based on AHAM, several models have been proposed [62, 39, 13] taking its advantages and

trying to propose extensions, particularly for the e-learning domain. They have also exploited

the work done by Brusilovsky in defining adaptation. In [41], a presentation and a deep analysis

of the most known and used models in the AH field has been done.

2Note that, two types of AH have been defined according to whether they act on a close or an open corpus of

documents [9].

1 Adaptive Hypermedia 27

In the following, we present a description of a few models compared to the state of the art

described in [41], and also some other ones not cited in [41]. As we will describe below, we have

chosen these particular models for their specificities. In Section 1.1.1, we present models allowing

to define AH whatever the application domain is (e-learning, on-line help, ...). In Section 1.1.2,

we describe models defined specifically for AEH and we conclude in Section 1.1.3.

1.1.1 Models for Adaptive Hypermedia whatever the application domain

Several models supporting the authoring of AH for any application domain have been proposed.

We present in this section two of them: the SEM-HP model which is based on semantic web

technologies, and the GLAM model which is more generic than existing models and has been

extensively used in this thesis for illustration purposes.

SEM-HP

The SEMantic, Systemic and Evolutionary Model for the development of the adaptive Hypermedia

system [48] is a semantic model for authoring and maintaining AH. It is based on the AHAM

model. Therefore, it proposes the same separation of expressing domain, user and adaptation

models. SEM-HP is different from AHAM in several points. One of them is the fact that SEM-HP

includes two abstraction levels.

The first level is dedicated for authoring the AH through the composition of four subsystems,

presented below.

1. Conceptual subsystem: this subsystem includes the definition of the domain model using a

semantic net [63]. The semantic net can include two types of nodes: concepts or items.

• A concept is similar to the notion of concept used in the AH field (cf. Section 2). It is

defined by a name, an identifier and is possibly linked by semantic relations to other

concepts.

• An item is a piece of information that can be proposed to users. It corresponds to a

resource in the AH field. An item is defined by a name, a content and is linked by an

association to a concept. The association has a name, a domain, a range and a weight.

2. Presentation subsystem: it concerns the specification of the part of the semantic net which is

going to be reused in the AH and adapted to users.

3. Navigation subsystem: in this subsystem, the navigation of the semantic net is described

using rules based on temporal logic. The rules are deduced by exploiting the semantic

relations defined between concepts. More details can be found in [47].

4. Learning subsystem: it concerns the definition of user characteristics, user updates and the

adaptation.

Note that here, the user goals are considered as user characteristics. The definition

of user characteristics includes user knowledge, interest, preferences and goals. These

characteristics are updated according to the interaction of the user with the AH. Therefore,

the user updates are triggered after each user action.

The adaptation concerns the definition of constraints needed to access items. It is specified

using condition-action rules. Each rule is composed of constraints about specific concepts

or specific user characteristics.

The second level is dedicated for maintaining the consistency of the AH after the execution of

user actions. Each user action is evaluated before being executed. This includes verifications on

the definition and the execution of the action itself, like: verification of each of its preconditions

28 Positioning

and postconditions, simulation of the execution of an action etc. Other verifications have been

added, like checking the consistency of the semantic net (ensuring that each semantic association

is defined between two concepts, each functional association must have at least a name, etc.).

These last verifications are checked at the first execution of the AH and checked each time the

user action modifies the domain model. Once all verifications are satisfied, the action is executed

and changes are propagated on the concerned AH.

Another difference between the AHAM and SEM-HP models is that, SEM-HP proposes to

users to navigate inside a conceptual structure (a semantic net) where in the AHAM model users

navigate through a set of hierarchical links (a sort of composition links).

A system, JSEM-HP, has been implemented based on the SEM-HP model (cf. Section 2).

GLAM

The Generic Layered Adaptation Model (GLAM) [38] is a platform allowing to define AH

particular to any application domain. It has been developed previously in the department of

computer science at Supelec in 2006 [39]. The platform is based on the AHAM model. It is

made up of a generic adaptation model relying on generic user and domain models, and of an

adaptation engine. Below, we detail further each of the models composing GLAM.

• The GLAM domain model: it proposes a clear separation between modeling concepts and

resources. The GLAM domain model does not impose any particular constraints on

modeling the available resources. The authors are free in their modeling whatever their

vision is. Following this purpose, GLAM domain model aims to be a generic model, more

generic than others. C. Jacquiot et al. in [38] have shown that AHAM or Munich domain

models are specializations of GLAM domain models.

• The GLAM user model: similarly to the modeling of the GLAM domain model, the GLAM

user model does not impose any particular constraints. A user may be described through

its personal information, knowledge about a specific concept or a resource, and its goals.

Also, the GLAM user model aims to be more generic than other existing user models. C.

Jacquiot et al. in [38] have shown that AHAM or Munich user models are specializations of

GLAM user models.

• The GLAM adaptation model: on the contrary to the existing models which propose to

consider at the same time the user and domain models for expressing adaptation, GLAM

brings a new vision for expressing adaptation (for an example of GLAM adaptation cf.

Chapter 4, Section 2). It proposes to express adaptation at two distinct levels.

A level based only on domain-related knowledge. It concerns data about the domain

model and the position of the user in the domain model. It is exploited using rules.

Rules are expressed using a condition-conclusion format as:

predicate1∧... ∧ predicaten → Action (resourcei, degree)

The condition part describes the conditions having to be satisfied by resources

proposed to users. Usually, this part is related to the existence of a relation defining a

particular navigational path in the domain model, eventually to a type of resources or

to restrictions concerning the resource format expressed using attributes of the Concept

or Resource classes.

The conclusion part describes the activity proposed to users on proposed resources. It

includes two elements:

– Action: an action describes the proposed activity for the proposed resource

(resourcei in the rule above).

1 Adaptive Hypermedia 29

– Degree: a degree can be used in different treatments. In GLAM, it is used to

describe the relevance of a resource against the others. It allows several resources

to be proposed to the user, the degree of relevance being represented with a code

(color for example). The degree of relevance has five values (very high, high,

medium, low, and very low). Each value is associated to a particular color.

A level based on user-related knowledge. It is exploited using meta-rules. Meta-rules

describe mechanisms that govern selection, scheduling, and excluding rules for a

given user according to his profile. Therefore, an association between each user

characteristic and the set of rules applicable for this user characteristic is defined.

As a user has multiple characteristics, meta-rules have been proposed to select the

appropriate rules to be executed.

Let R1, R2 be two sets of rules, four types of meta-rules are proposed. Each meta-rule

is a binary relationship between rules:

– A preference meta-rule between R1 and R2 means that R1 is preferred rather than

R2, noted R1 > R2.

– A requirement meta-rule between R1 and R2 means that the execution of R1

requires the execution of R2, noted R1 ⊃ R2.

– An exclusion meta-rule between R1 and R2 means that either R1 or R2 is executed,

noted R1R2.

– An order meta-rule between R1 and R2 means that R1 must be executed before

R2. It defines a strict order between the elements on which they are expressed,

noted R1 ≺ R2. Note that, in GLAM, two types of orders can be proposed. A

partial order is expressed using the degrees of desirability and an imposed order

is expressed using the order meta-rule.

A set of verifications have been integrated to the adaptation model, such as looking for

dead rules that are no more useful, or checking if the adaptation is deterministic and is

calculated in a polynomial time.

Note that, similarly to the SEM-HP model, the GLAM model proposes to users to navigate

through a set of concepts, on the contrary of the AHAM model where users navigate through

a set of links.

1.1.2 Models for Adaptive Educational Hypermedia

In this section, we present one of the latest models for authoring AEH, called CAM. It is based

at the same time on the AHAM and LAOS models. For this purpose, we start by presenting the

LAOS model. Afterward, we describe the CAM model.

LAOS

The Layered AHS Authoring Model and Operators is specific for defining adaptive hypermedia

in educational field [13]. It is an extension of the AHAM model. In fact in addition to proposing

a domain, a user and an adaptation model, the LAOS model proposes modeling of two other

models: the goal and constraints model and the presentation model. We describe in the following

each of the five models of the LAOS model3.

• The domain model: it is defined through a set of concepts, where each concept has a name

and a set of attributes. Each attribute has a name and a content. The attribute corresponds

to what is referred in the AH field by a resource.

3A simplified modeling of the domain model and goal and constraints model using UML is described in Chapter 5,

Section 1.1.

30 Positioning

Concepts can be linked by two types of relations. A hierarchical relation (a sort of

composition relation) with a multiplicity of 0..* and a relatedness relation with a multiplicity

of 1. The domain model is very similar to the one of the AHAM model except that it does

not allow modeling specific meta-data. The modeling of meta-data is done in the goal and

constraints model.

• The goal and constraints model: it filters and restructures the domain model, with respect to

pedagogical goals. This means that, it is based on some (or all) the concepts of the domain

model. The concepts included in the goal and constraints model may only be

– restructured. By restructuring, we mean that, authors may modify how the concepts

are linked by the hierarchical relation. For example: assume in the domain model the

author defines C1, C2, and C3 as concepts, such as C1 is the parent of C1 and C3. In

the goal and constraints model, the author may restructure these concepts like: C2 is a

parent of C3 and C1.

– enriched with meta-data. Two types of meta-data are allowed for each concept map: a

string named label and an integer named weight.

Note that, the content of concept maps cannot be modified in the goal and constraints

model.

• The user model: it defines two types of user knowledge: knowledge about the domain model

(for example: the attribute access indicating whether a concept has been visited or not by

a user) and personal information (for example: the attribute login used for identifying the

user). It is very similar to the one of the AHAM model.

• The presentation model: it takes into consideration the physical properties (for example: the

attribute widget indicating the type of device used by the user for accessing the AH) and

the environment of the presentation (for example: the attribute scale indicating the width of

texts used when building pages that would be proposed to users).

• The adaptation model: it is also called the LAG model. It is still under development in order

to take into account all types of adaptations of the Brusilovsky typology. It is defined in

three levels [12]. The low level concerns the adaptation event-condition-action rules. The

medium level concerns the expression of adaptation using a set of constructors (a sort of a

higher level language4), an automatic translator has been developed to generate adaptation

at a low level. The high level concerns the description of adaptation strategies and their

annotation in order to make their reuse easier. No translation to the other levels is made.

Authors often express adaptation strategies at the medium level using constructors. In

fact, constructors make it easier the expression of adaptation strategies (for examples of

constructors see LAG cf. Section 2.2, and for an example of a LAG adaptation strategy see

Chapter 4, Section 2). The constructors may be used at a generic level by exploiting the

structure of the domain (and goal) model, or at a specific level by exploiting directly the

content of the domain (and goal) model.

Several implementations enabling to define AH at a high level and compatible with several

adaptation engines have been defined (cf. Section 2.1.2, Section 2.2.2).

CAM

The Conceptual Adaptation Model has been developed in the context of the GRAPPLE project.

The Generic Responsive Adaptive Personalized Learning Environment project is a EU FP7 STREP

Project5. It ran from February 2008 until February 2011.

4Several implementations have been done allowing to express adaptation at this level such as LAG or LAG-XLS (cf.

Section 2.2).
5Information related to the GRAPPLE project including its deliverables are available at http://www.grapple-project.org/

1 Adaptive Hypermedia 31

It has been proposed by the same people than those who developed the AHAM model, and

in collaboration with those who defined the LAOS model. The CAM model aims to be more

general and more flexible than AHAM or LAOS models. In fact, the CAM model allows defining

AH with an extensible number of layers, but with at least three layers. The three layers must

include one layer about the domain model, another layer about the user model and at least one

layer for adaptation aspects. Each layer may interact with all the other layers. We describe below

each of these layers.

• The domain model: it defines the conceptual structure of the available resources of a learning

application. For this purpose, it includes the description of concepts (as defined in the

AH field), their associated properties, binary relations between them6 and the resources (as

defined in the AH field) describing these concepts.

Note that, here, only the semantics of concepts, properties and relations are defined, no

behavior is associated to them. The domain model is very similar to the one defined in the

LAOS model. However, one major distinction with LAOS, is that CAM proposes a graph

organization of resources, rather than a hierarchical tree of resources.

• The user model: it defines the user characteristics that will be considered in the AH. The user

model is very similar to the one defined in the AHAM and LAOS models.

• The adaptation model: it defines the adaptive behaviors. One adaptive behavior is defined

per layer. It is expressed using constraints on the elements (concepts, attributes or relations)

of the domain model. For example, we can define a goal layer: similar to the goal and

constraints model in LAOS. This layer identifies the sequence of concepts that should be

learned in order to reach a particular goal.

All the layers are gathered together in order to compose an adaptive hypermedia.

1.1.3 Summary

As it has been presented in this section, several models based on the AHAM model, have

been proposed. Each of them introduces new terms, new interfaces and new adaptation

implementations. A recent work [41] has highlighted main similarities and differences between

most known and used models in the AH field. This work is considered as an important step in

order to define an unifying model that will group all the specificities of other models.

Based on existing models, Adaptive Hypermedia Systems (AHS) have been implemented.

They propose to authors domain, user and adaptation models and most importantly an

adaptation engine. In the following, we present some existing AHS.

1.2 Adaptive Hypermedia Systems

Similarly when describing models of AH, here, we distinguish between AHS allowing to author

AH for different application domains (cf. Section 1.2.1), from AEHS allowing to author AEH (cf.

Section 1.2.2).

6Only binary relations can be modeled. This means that, when authors want to express n-ary relations, they have to

decompose them in several binary relations.

32 Positioning

1.2.1 Adaptive Hypermedia whatever the application domain

AHA!

The Adaptive Hypermedia for All (AHA!) system7 is an implementation of the AHAM model.

It has been under development since 1996. It has been regularly extended with new features until

2006 where the last version AHA! 3.0 [22, 21] used in this thesis has been developed. It is an open

source system, this means that, its sources are downloadable and modifiable if desired.

The AHA! system proposes an adaptation engine to execute adaptive hypermedias composed

of the following models:

• A user model. It is considered as an overlay of the domain model and it implements two

types of users:

– users knowledge (relating to the position of users in the domain model). Each user

knowledge is necessarily associated to at least one concept. It can be persistent or not,

and its type is of three different kinds: integer, boolean or string;

– personal data (such as the name of a user). As the user model is an overlay of the

domain model, personal data cannot be modeled apart. Consequently, a particular

concept is added that will include all personal data about users.

Note that, AHA! does not consider the goal of users. If authors want to consider it, they

have to explicitly add a particular attribute and write the corresponding adaptation.

• A domain and an adaptation model. Even if AHA! is based on the AHAM model,

one of the major differences is that AHA! does not separate domain and adaptation

models. Therefore, there is only one model describing available concepts with embedded

adaptation.

AHA! considers three types of concepts: abstract concepts, pages and fragments. Each of

them is described further below:

– abstract concepts are equivalent to concepts in the AH field;

– pages and fragments are equivalent to resources in the AH field.

Each concept is characterized by a name, a description, a type (abstract concepts, pages

and fragments) and an unlimited number of attributes. Each attribute can be either

persistent or not. It can be either a meta-data about a concept (for example: the attribute

format indicating the type of media: text, video, or image) or a user’s knowledge (for

example: the attribute access indicating whether the concept has been visited by the user

or not). Furthermore, concepts can be linked between them by relations, necessarily using

a hierarchical relation (a sort of composition relation) and eventually using other types of

relations. The AHA! includes verifications allowing to detect cycles when defining relations

and thus minimizing the termination problem that may happen.

The embedded adaptation includes at the same time adaptation rules and update rules. We

detail each type of rules further below.

– The adaptation rules must be expressed using event-condition-action rules. We are not

going to present the structure of these rules, more details can be found in [21]. Note

that, AHA! supports two types of adaptation in regard to the Brusilovsky typology:

adaptive presentation and adaptive navigation.

1. As for the adaptive presentation, AHA! supports almost all types of adaptive

presentation of the Brusilovsky typology, except the sorting of fragments and

natural language adaptation. However, AHA! allows to define adaptation in a

7http://aha.win.tue.nl/

1 Adaptive Hypermedia 33

static manner. That means that, when a type of adaptation is applied for a user,

it is no more editable. Authors may specify how each page should look using the

conditional inclusion of fragments.

2. As for the adaptive navigation, AHA! supports the hiding, disabling and

removing links, and the adaptive link annotation. However, it does not support

the adaptive link generation and map adaptation of the Brusilovsky typology.

A page presented to users includes a set of links and a content. The AHA!

adaptation engine calculates whether the embedded links are going to be

proposed or not and if yes it calculates the appropriate color (blue for unvisited,

purple for visited)8.

– The update rules act on the user model (i.e., updates user knowledge) and are

expressed using if-then-else rules. We are not going to describe these rules but more

details can be found in [4].

The AHA! adaptation engine includes a component for building HTML pages that would be

proposed to users9. The execution algorithm is iterative and is executed in a sequential way. It

includes three steps.

1. First phase concerns the initialization of user knowledge. This includes the personal data

and all attributes of concepts. After what, rules to be executed are selected.

2. Second phase concerns the updates of user characteristics before performing adaptation.

After what, the new page is built and is presented to the user.

3. Third phase concerns the final updates of user characteristics.

Note that, the phases are executed in that order, i.e. rules belonging to the first phase have a

higher priority than those belonging to the second phase.

1.2.2 Adaptive Educational Hypermedia Systems

APeLS

The Adaptive Personalized e-Service [10, 19] delivers personalized courses to learners, and

these personalized courses are modeled in three distinct models.

• The learner model. It includes the description of learners that have to be considered to

perform personalization, including their learning goals.

This model can be seen as a sub-part of the user model of the AHAM model as the learner

model is dedicated for e-learning domain. Two interesting features have been integrated

to the user model in order to update the learner model: a Rebuild Scope questionnaire

for learner characteristics and a Rebuilt Style for Learning styles. They are proposed as

questionnaires, and learners have to answer them for each update.

• The content model. This model can be seen as the domain model of the AHAM model.

It specifies the learning resources10 that are going to compose the personalized courses.

The learning resources are organized using the Candidate Content Groups11 (CCG). Learning

resources are grouped in the same CCG when they express the same goal but are

implemented differently. Note that, the goal of each CCG is described in its meta-data.

8These colors are those defined by default in the AHA! system but they can be modified by the authors.
9For simplicity here, we say that the built page is presented to the user, but in reality the AHA! acts as a server and

the user is a client. It follows more a client-server architecture.
10ltsc.ieee.org/wg12/20020612-Final-LOM-Draft.html
11We did not find an official description but we used in this thesis the one found at http://www.w3.org/2004/06/DI-

MCA-WS/presentations/final/121450/text18.html and followed by APeLS

34 Positioning

• The narrative model. This model can be seen as the adaptation model of the AHAM model.

It supports two types of adaptation: the adaptive presentation and adaptive navigation.

There is no clear description what is precisely supported and not supported among the two

types of adaptation.

– For the adaptive presentation, it is supported through the principle of candidacy (for

more details see [19]).

– For the adaptive navigation, authors may build narrative courses by defining an order

between the CCG. Afterward, the adaptation engine will choose whenever the most

appropriate learning resources to present from each CCG according to the learning

model.

Therefore, the APeLS implements in its own way the three models of the AHAM model.

1.2.3 Summary

So far, we have introduced some existing AHS that support the authoring process and execution

of AH. We have particularly focused on two types of AHS: those allowing to author AH for any

application domain and those allowing to author AEH.

Now, let us see how authors can use these AHS to create and execute their own AH.

2 Authoring Adaptive Hypermedia

As described before, each AHS proposes a domain, a user and an adaptation model. It also

includes an adaptation engine allowing to execute the adaptation model on domain and user

models. When authors use one of existing systems, they encounter several problems.

The first problem is the difficulty of authoring AH using directly these systems. In fact, using

a AHS requires that authors have multiple skills. When using the domain and user models of

the used AHS, authors must have modeling skills, whilst when using the adaptation model,

they must have logical and programming skills. However, most often authors do not have these

required skills. For example, when a teacher want to propose a AEH, he hasn’t necessarily the

logic and programming skills to author the adaptation model. This is why, solutions have been

proposed in order to help authors during the development process of their AH.

The second problem is the reuse degree of an AH. In fact, when an AH is developed using

a particular AHS, it is dependent of this used system, which is an issue if the system is no

later maintained, if authors want to change the current system or if authors want to express

more than what is supported by the current system. For this reason, a new paradigm has

been proposed ’write once, use many’ [70], where the domain model and the adaptation are

expressed at a high level, and are independent from existing adaptation engines. Therefore,

translations to existing adaptation engines have been encoded in order to execute them using

existing adaptation engines.

Note that, most of the proposed solutions do not consider the user model separately. Some of

them propose to consider the user model at the same time with the domain model like Concept

Editor [23], or at the same time with the adaptation model like MOT adapt [12]. Therefore, we

don’t define a separate section for modeling the user model, but we describe the modeling of the

user model according to specificities of each solution.

In the following, we present solutions to define domain models in Section 2.1, and to express

adaptation in Section 2.2.

2 Authoring Adaptive Hypermedia 35

2.1 Specifying the domain model

Here, we distinguish between solutions proposed at the top of a particular AHS (cf. Section 2.1.1),

from those allowing to express domain model at a high level and therefore compatible with

numerous AHS (cf. Section 2.1.2).

2.1.1 Solutions dedicated to a particular Adaptive Hypermedia System

Concept editor

The Concept editor [23] is a Java applet integrated to AHA! for defining the domain model

and the adaptation rules.

• Definition of a domain model. The Concept editor proposes a domain model, which has to

be followed by authors when defining their own domain model. So, authors have only to

define instances of the proposed domain model.

Authors are allowed to define new instances of concept. For each new instance, they specify

the following information: name, title, content, type, whether it is an element of a hierarchy

(a sort of composition relation) and its parent, siblings and children. An instance may have

several attributes, persistent or non persistent12.

The Concept editor includes also the definition of the user model, which is considered as

an overlay of the domain model. Consequently, for each instance of concept, authors have

to specify attributes on user characteristics to be considered in the adaptation rules later.

• Definition of adaptation rules. Similarly to the user model, the adaptation rules are also

considered as an overlay of the domain model. We detail this process in Section 2.2.

Graph author tool

Similarly to the Concept editor, the Graph author tool [23] is a Java applet integrated to AHA!.

However, this later is closer to the AHAM model in its implementation. That means that, there is

a clearer separation between specifying available instances of concepts and adaptation rules than

what is done in the Concept editor. More precisely, authors specify instances of concepts and

according to that, the tool is able to generate automatically adaptation rules. These two distinct

processes are described below.

• Definition of a domain model. Similarly to the Concept editor, the graph author tool proposes

a domain model that authors have to use when defining their own domain model. That

means that, they have only to define instances of classes in the domain model of the Graph

author tool.

Similarly to Concept editor, the user model is considered as an overlay of the domain

model.

An interesting distinction between both tools is that, using the Graph author tool authors

can specify more relations between instances of concepts. A set of predefined relations

are proposed, furthermore authors may add new ones. However, adding new relations

is advised only for technical authors as it required to extend the generated adaptation

manually (cf. Section 2.2).

• Definition of adaptation rules. Adaptation is generated automatically based on defined

templates exploiting the domain model of the Graph author tool. We detail this process

in Section 2.2.
12Non persistent means that, the attributes are saved only during the current session. They will be reinitialized in the

next session.

36 Positioning

JSEM-HP

Java-based SEM-HP [48] is a tool implementing the SEM-HP model (cf. Section 1.1.1). It

proposes a set of graphical tools supporting the authoring of different subsystems of the SEM-

HP. Here, we detail only the aids concerning the conceptual and presentation subsystems, whilst

in the section 2.2 we present the implementation of the learning and navigation subsystem.

• A graphical tool has been associated to the conceptual subsystem. It enables authors to

define easily their semantic nets in a consistent way. More precisely, the tool enables authors

to define concepts, semantic relations between concepts, items13 and an association between

a concept and items. Each association must have a name and eventually a weight. The

weight represents the importance of the item associated to a concept.

• Similarly, a graphical tool has been associated to the presentation system. It enables authors

to reuse existing semantic nets, to restructure them and eventually extend them. The tool

ensures that the final semantic net is consistent. For this purpose, it integrates automatic

verifications described previously in the SEM-HP model, like the fact that there is no cycle.

2.1.2 Solutions compatible with numerous Adaptive Hypermedia Systems

MOT

My Online Teacher (MOT) [30] has been developed over the last 7 years and several versions

of MOT have been proposed. We detail here the version 3.1. MOT is an implementation of the

specification of the domain model and of the goal and constraints model in LAOS [13]. Therefore,

MOT14 is a tool specific to e-learning applications. It enables an author to express his domain and

goal models at a high level independently of any adaptive hypermedia system. The author may

export his models in CAF or RDF(S)15.

MOT makes a clear separation between modeling the domain model and the goal and

constraints model.

• The domain model includes domain maps (concepts and attributes of concepts16). The

concepts are structured using a hierarchical structure (a sort of composition relation), using

attributes to describe their content and possibly using relatedness relations computed

automatically between concept maps (for more details see [30]). It can be built from

scratch using the visual interface or by importing existing materials such as power point

presentation17, a wikipedia web page18, IMS-QTI19 or SCORM content20, etc.

• The goal and constraints model is based on a part (or parts) of a particular domain model.

Here, the content of the domain maps can’t be modified, but it can be:

– restructured by modifying the hierarchical structure or defining attributes of a concept

as attributes of another concept;

– enriched with meta-data (In the version 3, it supports only two meta-data: a label

which is string and a weight which is an integer)21.

13An item corresponds to a resource in the AH field.
14MOT is available on-line at http://mot.dcs.warwick.ac.uk/.
15http://www.w3.org/TR/rdf-schema/
16Note that, attributes of concepts are called resources in the AH field.
17http://office.microsoft.com/en-us/powerpoint/
18http://www.wikipedia.org/
19http://www.imsglobal.org/
20http://scorm.com/
21Note that, the meta-data used in MOT are specific to educational context.

2 Authoring Adaptive Hypermedia 37

Note that, the goal and constraints model is designed specifically for a particular lesson.

For this reason, MOT people speak about lessons and sub-lessons. In this section, we have

chosen to keep the terms of concept maps and attributes not to disturb the reader.

One of the main advantages of MOT is the separation between roles of authors. An author

working with MOT is assumed to be a content author who has background on modeling

resources and not necessarily on expressing adaptation. Thereby, several authors may be

involved in the design of an AH, even for designing the domain model and the goal and

constraints model.

Domain Model tool

The Domain Model tool [26], often abbreviated by DM tool, has been developed in the

context of the GRAPPLE Project. More precisely, it is one of the tools integrated in the Graphical

Authoring Tool (abbreviated in GAT). In order to explain the role of the DM tool, let us present

first a global overview of GAT.

GAT aims at allowing to define an AH only using visual tools, at a high level and system-

independently. It includes three components.

1. Domain Model (DM) authoring tool: it allows defining concepts, properties of concepts and

relations between concepts. With this tool only the semantics of the relations are specified,

not their behavior which is specified later using the CAM tool.

2. Concept Relationship Type (CRT) authoring tool: a CRT file describes the adaptive behavior

of elements (concepts, resources, properties, or relations) of the domain model using

constraints. It defines also the updates that have to be performed on user knowledge.

3. Conceptual Adaptation Model (CAM) tool: it proposes to instantiate the CRT on concrete

elements (concepts, resources, properties or relations) of the domain model. Furthermore,

the tool aims at gathering all the adaptive behaviors together. Therefore, it proposes a

global vision of adaptation at a high level and using graphical aspects.

All the components are needed. In fact, a concept not defined using the DM tool can’t be exploited

in the CRT or the CAM tool. Also a concept defined using the DM tool will not be proposed to

users if it is not selected using the CRT tool.

Note that, materials modeled using these components are expressed in XML22 in order to

facilitate interoperability between the three components. They are stored in a database using an

internal format. For this purpose, translators as web services have been implemented in order to

facilitate storage and access to these materials.

Similarly to the MOT tool, the DM tool describes the structure of the available concepts and

resources. It enables authors to specify the following information.

• General information about the domain model, like, its name, its creation date, the name of

its authors, etc.

• Available concepts, by defining for each concept: a name, an identifier, a description, a set

of keywords, a set of resources and binary relations with other concepts.

Each resource must be identified by a name, an usage type, a location and a set of meta-data

can be specified using the LOM standard23.

Each binary relation is characterized by its name, its domain and range. A set of relations

with a predefined semantic is proposed: is-composed-by, is-a, belong-to.

22www.w3schools.com/xml/default.asp
23ltsc.ieee.org/wg12/20020612-Final-LOM-Draft.html

38 Positioning

2.1.3 Summary

So far, we have presented solutions enabling authors to define a domain model usable by existing

AHS. But as it has been shown all these existing solutions propose a predefined domain model

that has to be used by authors. That means that, authors must use these predefined models,

which is an issue if they have their own models and instances. Consequently, they become

obliged to translate their instances of their domain model and their associated meta-data in the

format accepted by the used solutions.

2.2 Expressing adaptation

Here, we distinguish also between solutions related to a particular AHS (cf. Section 2.2.1), from

those allowing to express adaptation at a high level and therefore compatible with numerous

AHS (cf. Section 2.2.2).

2.2.1 Solutions dedicated to a particular Adaptive Hypermedia System

Concept editor

As described before in Section 2.1, the Concept editor [23] helps to instantiate the domain

model included in the Concept editor, to specify user characteristics and also adaptation rules.

Here, we focus only on the definition of the adaptation rules.

As the adaptation rules are considered as an overlay of the domain model, authors have to

specify for each concept, what is going to happen when a specific attribute has a particular value

using If-Then-Else rules. They have also to describe how user knowledge must be updated.

There is no support for expressing adaptation rules. Authors have to write the adaptation

rules by themselves using the defined syntax. They have also to specify whether a rule triggers

other rules or not. The AHA! adaptation engine includes automatic verifications in order to

prevent termination and confluence problems.

Consequently, the Concept editor is considered as a low-level authoring tool because authors

have to write the adaptation rules.

The written adaptation is saved in XML or in the AHA! format that is transmitted to the AHA!

adaptation engine as input in addition to the domain model.

Graph Author Tool

As described before in Section 2.1, the Graph author tool [23] is similar to the Concept

editor [23]. It helps to instantiate the domain model included in the Concept editor, to specify

user characteristics and generates automatically adaptation rules. Here, we focus on the parts

related to the generation of adaptation.

The graph author tool includes a set of predefined templates that are used to automatically

generate adaptation rules. These templates exploit relations included in the Graph author tool.

Consequently, adding new types of relations between concepts require to write manually the

associated adaptation. This is why, this process is only let for technical persons.

Note that, AHA! does not consider the goal of a user. This means that, existing templates

used to generate adaptation do not include such processing. Consequently, authors have to write

manually their adaptation for considering the goal of a user.

The adaptation is generated in XML or in the AHA! format and will only be executed by the

AHA! adaptation engine.

2 Authoring Adaptive Hypermedia 39

JSEM-HP

In Section 2.1, we have detailed the implementation of the conceptual and presentation

subsystems. In this section, we focus on the aids proposed by the navigation and the learning

subsystems in JSEM-HP [48].

The navigation subsystem automatically calculates a set of navigational paths based on the

semantic net. The authors have at their disposal a graphical tool in order to modify the generated

rules or eventually to add new ones. They do not have to write rules but they can modify the

condition or conclusion part of a rule in a visual manner.

The learning subsystem implements three distinct parts.

• The user model. A graphical interface is added to the tool in order to define user

characteristics. Remember that, user characteristics include data, like: knowledge on

items, goals, personal information and preferences. A dialogue interface is proposed for

specifying user knowledge. This allows to specify the user experience in navigation/

subject using one of the four allowed values. This is viewed as a limitation if authors want

to consider more values.

• The rules for updating user knowledge. An editor is proposed with a set of constructors to

define updates. An update can be triggered only after visiting an item.

• The adaptation behaviors. It is not clear what type of adaptation can be expressed. There is

no comparison with the Brusilovsky typology.

2.2.2 Solutions compatible with numerous Adaptive Hypermedia Systems

LAG - MOT adapt (its future the PEAL tool)

LAG is considered as the first generic adaptation language. With the help of this language,

which has a context-free grammar [17], an adaptation engineer can construct LAG programs24.

A LAG program contains two parts:

• An initialization part: the aim of this part is to enable authors to specify explicitly the types

of resources to be proposed to users at their first access. Therefore, the initialization part

is executed only once for each user, and all its instructions are processed in a sequential

way. User characteristics are described in a user model. There are a set of attributes,

either free variables or overlay variables, the latter dependent on the domain model. For

simplification, the user model specification is part of the LAG program. Thus, authors can

also include the initialization of free variables or overlay variables, the latter dependent

on the domain model that will be used. From a different viewpoint, we can compare the

initialization part to a constructor in an object oriented programming language.

• An implementation part: the aim of this part is to enable authors to specify what type of

resources should be proposed to users, after each of their interactions with the adaptive

hypermedia. Therefore, the program code contained in is evaluated after each user action,

on all the resources available at runtime in the adaptive system. Using again the object

oriented paradigm, the implementation part could be implemented as a while true do <set-

constructors> loop which is executed after each user action, where <set-constructors> is

the program code of the implementation part.

The grammar is based on a set of constructors25, in order to facilitate the expression and the

reuse of adaptation. The constructors allow to manipulate elements of the domain, the user

24Note that, a LAG program may include at the sime time one or more adaptation strategies.
25The syntax and the semantic of LAG constructors are described at http://www.dcs.warwick.ac.uk/ acristea/mot.html.

40 Positioning

and the presentation models. Most of them can’t be used alone, and they have to be combined

together. Among the proposed constructors we mention:

• while: allows defining a loop on a set of constructors. It has the following syntax:

while <condition> (<set-constructors>). The <set-constructors> are per-

formed as many times as the <condition> part is evaluated to true.

• DM: gives access to information modeled in the domain model. It has to be associated with

a constructor giving access to the modeled information. For instance, checking if a concept

attribute is of type example can be written as:

if (DM.Concept.attribute.type == example)

• Concept: gives access to resources. For example when associated with the constructor

DM, such as in DM.Concept, it gives access to resources modeled in the domain model.

• GM: gives access to information modeled in the goal model, and thus to pedagogical

information. It has to be associated with a constructor specifying the desired modeled

information. For instance, checking if a specific concept in the goal model is labeled as

visual, can be done as follows:

if (GM.Concept.label == visual)

• PM: gives access to information modeled in the presentation model. The presentation

model describes the interaction of the user with the display screen: the resources

currently to be shown to the learner, as well as the way they are to be shown. For

simplification, the presentation model is represented as part of the LAG strategy. Thus,

the presentation information has to be associated with a constructor giving access to the

modeled information. In other words, a concept can be shown by a statement such as:

PM.GM.Concept.show = true

• show: allows to propose or not a resource to the user. It has to be combined with at least

another constructor. For example, PM.GM.Concept.show allows proposing resources of

the goal model.

• UM: gives access to knowledge modeled in the user model. It has to be associated with

at least one constructor giving access to the modeled knowledge. For example, it can be

combined with the DM constructor: UM.DM gives access to user knowledge dependent of

the domain model.

Note that, the adaptation and user models are merged together in LAG. Consequently,

the author has also to specify the user characteristics in the same time when specifying the

adaptation.

When several LAG programs are defined, they can be combined together [61]. Currently, only

priority between LAG programs is supported, LAG programs can’t be merged together unless

they are rewritten. This is due to the fact that, several problems may occur when combining LAG

programs, including:

• Execution order: in which order the LAG programs have to be considered. The results of

execution may be different if LAG programs are reversed, in particular for the initialization

part as it is executed in a sequential way.

• Variable clashes: this mainly happens when the same variable is used in more than one LAG

program. The variable may be updated several times (once in each LAG program).

• Type conflicts: this concerns the fact that one variable may be defined differently in

numerous LAG programs.

2 Authoring Adaptive Hypermedia 41

The adaptation written in LAG is expressed at a high level, and currently it can be executed

by ADE [61], AHA! [14], WHURLE [49] and blackboard [54] adaptation engines.

LAG-XLS

LAG-XLS [67] is also an instantiation of the LAG model (cf. Section 1.1.2) and a generic

adaptation language. However, it is limited to be used with learning styles.

LAG-XLS implements the external actions which can be defined in an adaptation strategy

(cf. Chapter 4, Section 1.1) using constructors. There are constructors to select, to show, to order

resources or to exploit navigational paths. The use of these constructors is described in a DTD.

We are not going to present this DTD here, instead of that, we present a figure reviewing its main

elements and attributes (cf. Figure 2.2) extracted from the thesis of Stash [66].

Figure 2.2 – Structure of the elements and attributes of the DTD defining LAG-XLS [66]

Note that, the name of the elements and attributes used in the DTD are very intuitive. They

allow authors to easily express their actions. The element strategy is the root element. It

refers to one adaptation strategy in LAG-XLS. It has an attribute name referring to the name of

the adaptation strategy, an attribute description referring to its textual description in natural

language and at least one element if. The element if implements the usual if in an imperative

programming language. Therefore, it is composed of an attribute condition, elements then

and else. The elements then and else have the same structure. They allow to select resources

using the element select, to order resources using the element order, to set defaults value

using the element setDefault and to express actions on the learner characteristics using the

element action.

LAG-XLS proposes also meta-strategies allowing to infer learner characteristics according to

learner interactions with the system.

Consequently, as the LAG language, LAG-XLS does not separate adaptation and user models.

However, some differences subsist between both languages. Note that, the two languages have

never been evaluated together. Each language has been evaluated separately with students. The

evaluation and resulted discussions about LAG-XLS can be found in [68]. On the other hand,

42 Positioning

the LAG language has been evaluated several times as it evolves, some of its evaluations and

discussions can be found in [11], or in [30]. We resume the differences in the following.

• Initially, one of the advantages of using LAG-XLS instead of the LAG language in education

was the fact that LAG-XLS expresses adaptation in XML but not LAG. However, today even

LAG allows to write adaptation in XML.

• Another advantage of LAG-XLS concerns its syntax, which is assumed to be easier than the

syntax of the LAG language. It doesn’t include elements such as WHILE, FOR which are

more for technical authors.

• LAG-XLS has been proposed in order to be completely compatible with the AHA!

adaptation engine, no conversion to other adaptation engines has been proposed so far.

One the other hand, the LAG language has conversion to AHA!, WHURLE and blackboard,

etc.

• Since 2007, LAG-XLS has not been extended, whilst the LAG language is regularly enriched

by new constructors.

GAL - GRAPPLE Adaptation Language

The GRAPPLE Adaptation Language, often abbreviated in GAL [65], argues to gather, on the

one hand, all the functionalities of existing adaptation engines, and on the other hand, to be an

intermediate language between existing authoring environments and adaptation engines. For

this purpose, GAL plans to include translators from existing authoring environments to GAL

and from GAL to existing adaptation engines.

However, GAL supports only the adaptive navigation. By adaptive navigation, GAL

considers the structure of web pages and relations between them. Therefore, the author using

this language has a vision of buiding a set of linked web pages.

The navigational structure of a web application is defined using abstract constructors,

organized in a hierarchy of GAL constructors. We are not going to cite all the possible

constructors [64]. We only cite some of them in the following:

• unit: it allows to group together the elements that will be shown together. Concretely,

they can be seen as the definition of a web page.

• subunit: it allows to embed units into another unit.

• attribute: it allows to define characteristics of a unit. For example, the name of a

particular unit.

• query: it allows to exploit information included in the domain or the user model. It is

expressed using the SPARQL26 language.

• link: it allows to define hierarchical links between units (a sort of composition relation).

• order: it allows to define a partial order between non related units. The order is defined

using a variable of integer type. The unit with the lowest order is considered first. When

more than one unit have the same order, they are randomly arranged.

• updateQuery: it allows to update information included in the user model, or the

temporarily variables specified inside the units.

26www.w3.org/TR/rdf-sparql-query/

2 Authoring Adaptive Hypermedia 43

These GAL constructors can be composed together in order to define the structure of web

pages and links between them. They can also be used to specify the following types of adaptive

navigation of the Brusilovsky typology:

• Adaptive multimedia presentation: GAL allows to select several media according to different

constraints. The constraint satisfied by the user determines the suitable media to be

proposed to the user.

• Adaptive text presentation: it is similar to the adaptive multimedia presentation but only

applied on textual resources. This means that, GAL allows to select alternative textual

resources according to different constraints. The constraint satisfied by the user determines

the suitable media to be proposed to the user.

• Direct guidance: GAL allows to express direct guidance by embedding different GAL units.

• Link sorting: this is directly done using the constructor order.

• Link hiding: this is done by defining constraints on the links to be shown. The none selected

links are not hidden but presented in a light gray.

• Map adaptation: it is used to generate menu structures and is defined using the hierarchical

links between units.

Note that, GAL does not allow to express annotation of links, because the authors of GAL

place annotation of links as presentation issues and they do not want to consider such issues.

Consequently, GAL proposes a new vision of building adaptation, particularly of the adaptive

navigation. Comparing with LAG, we cite the following differences:

• GAL proposes a web page vision (note that an adaptation strategy may result in a

composition of web pages), whilst, LAG proposes to write a program for each adaptation

strategy.

• GAL proposes the separation between the specification of the user model and the

adaptation model, which is not the case when using LAG.

Besides, GAL has some similarities with LAG. In fact, similarly to LAG, the generated

adaptation strategies using GAL are considered as a whole block and can not be easily reused

as they are embedded in one or several web pages.

This later point is considered as a drawback when thinking about adaptation strategy

granularity. GAL does not propose an ideal granularity for facilitating reuse of existing GAL

adaptation strategies. Another drawback that we can cite using GAL is the fact that authors have

to write a GAL program (use of SPARQL27 queries to select resources) in a sequential way and

no aid is proposed for them yet.

CAM - Conceptual Adaptation Model tool

The CAM tool [37] aims to be a tool demonstrating the possibilities of the CAM model (cf.

Section 1.1.2). It has been designed in order to be a system-independent tool and to allow a high

level modeling. It focuses on graphical possibilities for authoring AH in order to be as intuitive

as possible.

One or more CRT files (as described before in Section 2.1.2) can be added in the CAM tool.

For each CRT file, authors have to instantiate its elements on instances of the domain model.

27www.w3.org/TR/rdf-sparql-query/

44 Positioning

Initially, the CAM tool has to integrate a translator to GAL, in order to allow adaptation

specified using CAM be executed by all the adaptation engines accessible from GAL. However,

lastly, this idea was abandoned and a direct translator was implemented from CAM to GALE

(GRAPPLE Adaptation Learning Environment)28. Therefore, the adaptive hypermedia defined

using GAT (the Graphical authoring tool to express the domain model. See Section 2.1.2) can

be directly executed by GALE, which is a generic (for e-learning) and an extensible adaptation

engine. GALE is assumed to support all existing types of adaptation29.

2.2.3 Summary

Up to here, we have presented solutions enabling authors to express adaptation. However, as

it has been shown, some of these solutions remain specific for computer science authors (like,

LAG, GAL), whilst, others try to be more visual and therefore propose more guidance. However,

they lack in providing information on what type of adaptations authors can express. Except

expressing the link sorting/ordering of the Brusilovsky typology, no indication is given for the

other types of adaptations. Consequently, till today, expressing adaptation is not possible for all

authors.

3 Relative position in comparison with existing work

After having presented models used to describe AH in Section 1, we have noticed that an AH is

composed of several parts. It necessarily includes domain, user and adaptation models. These

models have been implemented in AHS in order to support authoring and execution of AH.

However, as shown in Section 1.2. authoring AH using directly an AHS requires from authors

several backgrounds which often they haven’t. In fact, it requires modeling skills to express

domain and user models and logic or programming skills to express adaptation.

Recently, solutions assisting authors in the design process of their AH have been proposed.

They concern modeling domain model or expressing adaptation.

Concerning the modeling of domain and user models. Most often authors of AH have

already their domain and user models with their instantiations, and they would like to reuse

them in their AH. For example, in the case of AEH, authors have already their courses and their

learners’ characteristics, and they would like to propose an AEH that exploits their materials.

For this purpose, authors use existing AHS with which they define and execute their AH.

However, each AHS includes domain and user models that authors have to reuse when defining

their AH. One question arises how could an author integrates his domain and user models (specially

instances of his models) into the domain and user models of the used AHS?

Existing solutions presented in Section 2.1 propose to authors an instantiation process. This

means that, their models and their instances would be defined as instances of the models of

the used AHS. The instantiation process is performed twice: once on domain models and once

on the user models. However, these solutions require to transform authors’ models and their

instantiations, which is an issue if some of authors’ models cannot be transformed. Furthermore,

the added instances are only a copy in the domain and user models of the used AHS, which is an

issue if the original instances are updated.

We propose in Part III a new solution considering both the author’s domain and user models

and also their instances. The instances are neither transformed nor modified. Our solution

allows easily and quickly to plug into existing AHS using a specialization process. Thereby,

adaptation defined on the domain and user models of the used AHS can be directly executed on

28GALE is based on the AHA! system.
29Note that, we did not find a reference proving this, for this reason, we said it is assumed to.

3 Relative position in comparison with existing work 45

a specialization of these models (on classes, properties or relations). Note that, defining a model

as a specialization of another model is also useful in other applications, like to exploit SPARQL30

queries expressed on an existing ontology. Indeed, defining an ontology as a specialization of the

existing one allows to reuse the SPARQL queries.

By this process, our objectives are twofold: on the one hand, to create a support for defining

mappings between elements of the model included in an existing system and elements of the

author model, and on the other hand, to help creating consistent and relevant models integrating

(1) the model included in an existing system and (2) the author’s model and (3) taking into

account the mappings between them.

Concerning the expression of adaptation. Most often adaptation AHS is expressed using

condition-action rules or event-condition-action rules. It is considered as the less intuitive part

to be authored in AH by non technical persons (like: teachers who have not the required logic or

programming skills).

Existing solutions presented in Section 2.2 propose graphical tools or languages using

constructors in order to support the expression of adaptation. The graphical tools integrate

predefined templates to generate adaptation. However, when authors add new information that

are not considered in predefined templates (as the goal of users), they have to write manually

adaptation. Furthermore, authors have no control on the types of adaptation to propose to their

users. On the other hand, languages using constructors remain difficult to use as they require

from authors to have skills in programming language.

Among the existing solutions, some of them are expressed at a high level, independently

of any adaptation engines. Therefore, they integrate translators to existing adaptation engines.

However, any of the existing solutions has faced the problem of expressing adaptation strategies

at a fine granularity, and therefore make easier their reuse.

We propose in Part IV a new framework addressing three challenges. It concentrates (1) on the

ease of defining adaptation strategies at a high level and at a fine granularity, (2) on combining

them and (3) on the facility of reusing existing adaptation strategies.

Afterward, we have conducted a study of the expressivity of our framework versus some

existing AHS. We have studied the expressivity of their modeling of adaptation and also the

expressivity of their modeling of the elements on which the adaptation is expressed. From these

studies, we have come up with an integrated vision of the basic actions that can be used in

defining adaptation, and also with an unifying vision of modeling the domain model. These

studies have served us to identify their similarities and thus to propose translators from our

framework to existing AHS. We have also highlighted their main modeling differences.

30www.w3.org/TR/rdf-sparql-query/

46 Positioning

Part III

Assisting in the reuse of author’s

domain and user models

C H A P T E R 3

Integrating author’s models into

models of Adaptive Hypermedia

Systems

1 Related work in the knowledge engineering field 51

1.1 Approaches based on merging models according to a bottom-up approach 51

1.2 Approaches based on merging models according to a top-down approach 52

1.3 Summary . 54

2 Main aspects of our merging/specialization process 55

2.1 Characteristics of the two models used by the process 55

2.2 Characteristics of the built model . 55

2.3 The merging/specialization process . 56

2.4 Applying the merging/specialization process on John’s use case 57

3 Step 1/4: specification of mappings between classes 61

3.1 Mapping between classes . 61

3.2 Applying the first step on John’s use case 61

4 Step 2/4: deduction of additional mappings between classes 61

4.1 Pattern-based process for deducing additional mappings between classes 61

4.2 Applying the second step on John’s use case 65

5 Step 3/4: deduction of mappings between relations and between attributes . . 65

5.1 Structural knowledge . 66

5.2 Modeling structural knowledge using a meta-model 68

5.3 Mapping deduction rules . 70

5.4 Inconsistency deduction rules . 73

5.5 Applying the third step on John’s use case 73

6 Step 4/4: validation of mappings and presenting inconsistencies 74

6.1 Validating deduced mappings between relations 74

6.2 Presenting inconsistency mappings . 76

6.3 Building the merged model . 76

6.4 Applying the fourth and last step on John’s use case 77

7 Summary . 77

50 Integrating author’s models into models of Adaptive Hypermedia Systems

In this part, we propose a new solution allowing easily and quickly to plug author’s models

and also their instances into existing systems using a specialization process.

By this process, our objectives are twofold: on the one hand, to create a support for defining

mappings between elements of the model included in an existing system and elements of

the author model, and on the other hand, to help creating consistent and relevant models

integrating (1) the model included in an existing system and (2) the author’s model and (3)

taking into account the mappings between them. The process is seen as a specialization

process generating specialization and equivalence mappings. It is inspired of schema/ontology

mapping in knowledge engineering. Consequently, we present some close works. This

merging/specialization process is generic, and can be applied on any specific and generic models.

For this purpose, it relies on a meta-model, and reasoning is expressed in a declarative way1 [33]

using SWRL rules2.

We implemented this process as a Protégé plug-in3 (cf. Chapter 7, Section 1) and have

accompanied it with experimentations in the e-learning application domain (cf. Chapter 8,

Section 1).

This has been presented at three international conferences: a conference specific for AHS in

AH’2008 [79], a conference on knowledge engineering in EKAW’2008 [80], and a conference on

the Protégé tool in Protégé’2009 [78].

The reminder of the chapter is the following. In Section 1, we describe succinct close work

in order to position and understand our contribution. Afterward, in Section 2, we present the

main aspects of our merging/specialization process including an illustration on a use case. Then,

we describe successively the different steps of the merging/specialization process in Section 4, 5

and 6. Each of these sections, includes an illustration on a use case. Finally, in Section 7, we

summarize the advantages of our process.

Details on the implementation and experimentations of the presented process can be found

successively in Chapter 7 and Chapter 8.

1According to John mcCarthy, who is a pioneer in Artificial intelligence, there are several advantages to declarative

systems (1) simplicity of use for humans, (2) overall computational efficiency, (3) support for collaboration in

heterogeneous systems, etc.
2http://www.w3.org/Submission/SWRL/
3The plug-in is available at http://protegewiki.stanford.edu/wiki/MESAM/

1 Related work in the knowledge engineering field 51

1 Related work in the knowledge engineering field

In the knowledge engineering field, research on the integration of heterogeneous information

systems has been put in perspective since several years. There are several approaches for

performing a semantic integration depending on the degree of integration usually referred as

ontology [34] mapping, merging or enrichment.

Ontology mapping aims to define correspondences between different entities of the

ontologies (at least two) involved in the ontology mapping process. Generally, the ontology

mapping process consists of three phases (cf. Figure 3.1) [55]

Figure 3.1 – The Ontology Mapping Process [55]

1. Import of ontologies. It enables users to import ontologies expressed in different languages.

The ontologies are converted to a common format in order to perform the next phases.

2. Calculate similarities. Most of existing approaches try to make this phase as automatic

as possible and several of them use a Match operator to calculate similarities between

ontologies [56].

3. Specify mapping or merging. The similarities calculated in the previous phase are used to

define mappings between entities of the ontologies involved in the process. Mostly, it

is an interactive process. Let us take as illustration the I-PROMPT system. I-PROMPT

automaically generates a set of mappings. Then the humain decides whether to retain each

mapping or not. After each choice, a new set of mappings is generated again and has to be

validated again.

Schema or ontology mapping is often an intermediate step in a more global process. So several

approaches [46, 71, 24, 52, 44, 28] propose then to merge the ontologies involved in the mapping

process. The merged ontology must unify the ontologies involved in this mapping process and

has to be coherent.

The mapping ontology can also be a prerequisite for the enrichment of ontologies. In that

case, one ontology is preferred and new elements comming from another one are added.

In the following, we get interest for approaches proposing both mapping and merging

processes, and the solutions to deal with inconsistencies. Note that, we do not consider neither

scalability nor redundancy. We are not interested in these problems in our work.

Surveys through the last years have been provided [45, 55, 57]. Existing approaches are either

based on instances of the two given ontologies that are to be mapped (bottom-up approach) or on

concepts (top-down approach). We describe below each approach.

1.1 Approaches based on merging models according to a bottom-up approach

Here, we present only the FCA-MERGE [71] framework which presents the main principles of

approaches based on merging models according to a bottom-up approach.

52 Integrating author’s models into models of Adaptive Hypermedia Systems

The FCA-MERGE [71] framework proposes a semi-automatic process to build a merged

ontology. It considers as input (1) two ontologies (O1, O2 cf. Figure 3.2) assumed to be related

to the same domain and (2) a set of natural language documents (D cf. Figure 3.2) pertinent for

both ontologies. The process consists of three steps (cf. Figure 3.2).

Figure 3.2 – Ontology Merging method [71]

1. Instances extraction and computation of two contexts (K1, K2 cf. Figure 3.2). This step is

automatic. Instances are extracted from the set of documents and a context is built per

ontology. Each context contains associations between instances of concepts in the ontology

and the documents to which they belong.

2. Deduction of one context from the two contexts and construction of a concept lattice. This step is

automatic thanks to the FCA-Merge core algorithm, which allows to build a context from

two other ones. After that, a concept lattice is constructed using FCA techniques (more

details can be found at [72]. The main idea is that, FCA techniques first calculate concepts

to be included in the concept lattice. A concept gathers all instances of K1, K2 having the

same number of associations and identical associations. Thus, they define as many concepts

as instances with different associations. Afterward, FCA techniques generate the concept

lattice. This includes (1) organizing concepts in different levels depending on the number

of associations of their instances, i.e., concepts having instances with the same number of

associations belong to the same level. It also includes (2) defining links between concepts

of different levels. Concepts of the same level are not linked. Concepts of a level are linked

to concepts of the next level if they include instances of the same context.

3. Construction of the merged ontology from the concept lattice. This step is semi-automatic. The

expert accesses the concept lattice and the sets of relations (R1, R2 cf. Figure 3.2), in order

to create concepts and relations in the merged ontology (Onew cf. Figure 3.2). The concepts

emerge from the content of the concepts in the concept lattice for which the user is asked to

propose a name.

This framework has been integrated to the OntoEdit environment4.

1.2 Approaches based on merging models according to a top-down approach

There are several approaches supporting merging models based on a top-down approach [59, 46,

24, 42, 51, 28]. They can be divided in two groups: approaches proposing to merge ontologies

by creating new classes as in I-PROMPT [51] and approaches making the union of the classes of

ontologies involved in the merging process as OntoMerge [28]. In the following, we present one

system belonging to each approach.

4www.semtalk.com/semnet files/POntoEdit.htm

1 Related work in the knowledge engineering field 53

PROMPT [51] suite includes a set of tools supporting ontology mapping (Anchor-PROMPT),

merging (I-PROMPT), versioning (PROMPT-Diff) and factoring out semantically complete sub-

ontologies (PROMPT-Factor). These tools have been developed such as they can be used together

or independently. Each of them is proposed as a plug-in of the Protégé tool5. For our needs, we

focus only on I-PROMPT6, which is an interactive tool for merging two ontologies (cf. Figure 3.3).

On Figure 3.3 the gray boxes are performed by the I-PROMPT and the white boxes are performed

by the user.

Figure 3.3 – The flow of I-PROMPT algorithm [51]

Given two ontologies, the merging process is the following.

1. Make initial suggestions. I-PROMPT generates a set of potential merge operations based

on the two ontologies and on linguistic similarity measures7 based on the class names.

Suggestions concern merging similar class names of the two ontologies by creating a new

class or copying a class from one of the two ontologies.

2. Select the next operation. The user is invited to select one potential merge operation or to add

a new operation. The allowed operations are a deep or a shallow copy of a class, merge classes,

merge attributes, merge relations and merge instances [52]. The user may select an operation

and classes (or relations or attributes) on which the operation will be performed.

3. This third step includes three different tasks:

(a) Perform automatic updates. I-PROMPT performs the selected operation, for example the

merge classes operation into a new class, which is followed by the following actions:

• specialization (and generalization) links in which the class participates. If these

links establish relations with classes that don’t belong to the merged model, these

classes are added before adding specialization (and equivalence) links.

• all relations and attributes whose domain is a class in the merged ontology are

added.

(b) Find inconsistencies and potential problems. I-PROMPT checks for inconsistency

problems from a list of possible inconsistencies (cf. Table 3.1). For each possible

inconsistency, the tool has a predefined solution.

(c) Make suggestions. I-PROMPT exploits the merged ontology in order to make new

suggestions of classes, attributes, relations or instances.

5Protégé tool is available at protege.stanford.edu/
6PROMPT is available at http://protege.stanford.edu/plugins/prompt/prompt.html
7It uses simple lexical-distance measures to find classes with similar names. Other term-comparison algorithms can

be added.

54 Integrating author’s models into models of Adaptive Hypermedia Systems

After that, the process comes back to the step: Select the next operation.

Inconsistencies Meaning in the merged ontology Solution in I-PROMPT

Name conflicts
Elements8 having the same name but

being different.

The user is invited to rename ele-

ments in conflict.

Dangling

references

An element refers to another which

doesn’t belong to the merged ontology.

The user is invited to add the missing

reference.

Redundancy in the

class hierarchy

There is more than one path from a

class to a superclass

The user is invited to remove one of

the offending parents.

Instances violating

restrictions

Instances don’t follow range or cardi-

nality constraints

Instances are deleted from the

merged ontology.

Table 3.1 – List of inconsistency problems and their resolution in I-PROMPT

OntoMerge [28] proposes a solution to merge two ontologies by considering the union of

both ontologies. It uses namespaces in order to avoid conflicts between names of elements of

both ontologies. Furthermore, it defines bridge axioms between related elements of the two

ontologies involved in the merging process. Therefore, the merged ontology includes the two

ontologies involved in the merging process and also bridge axioms.

OntoMerge uses an internal representation for performing the merging process. It is based

on a typed first-order logic language, called Web-PDDL (Web-Planning Domain Definition

Language), which allows to capture several ontology languages. It proposes import and export

functionalities of DAML + oil and OWL ontologies.

OntoMerge does not support matching. That means that, bridge axioms have to be written

by users (domain expert with first-order logic skills) or calculated using matching algorithms.

Despite this latter disadvantage, OntoMerge aims to be used in tasks like: dataset translation,

ontology extension generation or querying different ontologies.

1.3 Summary

In the engineering field, existing systems are either based on instances or on concepts. They are

either automatic or interactive tools. However, despite they have been used with many different

ontologies and in many different domains, according to me they have not been used to merge

abstract models with specialized ones and have not been applied to the AH field.

In our work, we focus on these specific points. The models to be merged are relatively

small and don’t raise scalability problem. The merging process is performed once at design

time. Generic models are composed of abstract classes which have no instances. The author

of the system knows the models to be integrated in the system very well and can then easily

provide simple correspondences between their elements. Given these initial correspondences,

the software implementing our approach is expected to reason on the models and to generate

additional correspondences between classes, attributes or relations. The hypothesis underlying

this work is that it is easy for authors to specify simple correspondences between classes and then

evaluate mappings returned by the system. However, the consistency of the merged model has

to be automatically checked.

So we propose a semi-automatic merging and top-down approach, that has been motivated

by the context of the AH field. Nevertheless the approach is generic and can be applied to other

applications. Our aim wasn’t to propose ad’hoc solutions.

8An element may be a class, a relation or an attribute.

2 Main aspects of our merging/specialization process 55

2 Main aspects of our merging/specialization process

We propose a generic approach that can be applied on any two models. We define a model as

follows:

Definition 1 a model is composed of a set of classes, of properties and of relations between classes.

We describe in Section 2.1 the characteristics of the two models used by our process, and

in Section 2.2 the characteristics of the model built by the process. Afterward, we present in

Section 2.3 the steps that have to be performed by our merging/specialization process. Finally,

we illustrate in Section 2.4 this process on a use case.

2.1 Characteristics of the two models used by the process

The process is performed on two models.

A generic model. It is any model that can be specialized by another model. The generic model has

no instances.

A specific model. It has to be of the same application domain as the generic model. The specific

model has instances. Furthermore, the author has a good understanding of the specific model.

Our process proves it utility in the case of systems including reasonings expressed on models,

which authors would like to reuse but by making them executed on their own models. Our

process enables authors to integrate their own models into these systems. For this purpose, it

assumes that authors’ models include equivalent or more restrictive elements than those included

in the models on which reasonings are expressed. Once the process is performed, all elements of

models on which reasonings are expressed are related to authors’ models. Consequently, existing

reasonings can directly be executed on authors’ models and their instances.

A concrete application of this process is in the AH field, where currently there are numerous

adaptations expressed on domain and user models. Furthermore, authors have most often their

own domain and user models and they would like to reuse defined adaptations on their own

models. Our process enables authors to integrate their domain model into the domain model on

which adaptations are defined and similarly for the authors’ user model.

For example, in the AH field, the well known AHAM model (cf. Chapter 2, Section 1.1)

proposes a domain model and assumes also a set of predefined adaptations exploiting this

domain model. On the other hand, the domain model proposed by Graph Author Tool (cf.

Chapter 2, Section 2.1.1) is an implementation of the AHAM domain model. A way to reuse

predefined adaptations of the AHAM model can be to perform our merging/specialization

process. The AHAM domain model could be considered as a generic model, while the domain

model of the Graph Author Tool could be considered as a specific model. That way, predefined

adaptations defined in AHAM could be performed on instances of the domain model of the

Graph Author Tool.

2.2 Characteristics of the built model

The result of the merging/specialization process is a merged model (cf. Figure 3.4) that integrates

at the same time: the generic model, the specific model, and mappings between elements of both

models.

By a mapping, we mean a relation linking two elements of the two different models. The

relation can only be defined between two elements of the same type, which are either classes,

56 Integrating author’s models into models of Adaptive Hypermedia Systems

properties or relations. Furthermore, as our aim is to define a model as a specialization of another,

we only consider two types of mappings: equivalence and specialization mappings9.

The mappings are validated at the semantic and structural level. For this purpose, our process

relies on the author who has a very good understanding of his models and of the application

domain of his models. He will be responsible of the semantic validation while all the structural

verifications will be done automatically.

Merged model
Specific model

Generic model
(classes, attributes, relations)

(classes, attributes, relations)

equivalence/
specialization
 mappings

equivalence/
specialization
 mappings

equivalence/
specialization
 mappings

Figure 3.4 – General overview of the merged model

2.3 The merging/specialization process

The main steps of the merging/specialization process are the following (cf. Figure 3.5):

1. Specification, by the author, of equivalence and specialization mappings between classes of

the generic and the specific models, merging the generic model and the mapped classes of

the specific model (together with the associated mappings) in order to obtain a new model

(cf. (1) Figure 3.5).

2. Automatic computation of additional mappings between classes, the mappings and the

linked classes being added in the being built model (cf. (2) Figure 3.5).

3. Structural verification. It automatically computes mappings between elements different

from classes. This includes mappings between properties and between relations (cf. (3)

Figure 3.5).

4. Validation by the author of the deductions made by the system in step 3 (cf. (4) Figure 3.5).

Figure 3.5 – The architecture of the proposed merging/specialization process

The process uses computation in the steps 2 and 3 to make deductions. That means that,

generic and specific models have be described in a language supporting such computations. The

process supports OWL, more particularly OWL-Lite or OWL-DL models. We do not consider

9We present further in this chapter definitions associated to each type of mappings.

2 Main aspects of our merging/specialization process 57

OWL-Full models whose reasoning is not decidable. This choice is not restrictive as today OWL-

DL is widely used to express models. Furthermore, it is a W3C recommendation10 since 2004.

The four steps are described successively in Sections 3, 4, 5 and 6. Furthermore, we adopt the

following notations:

• Cm,i to represent the class i from the model m.

• Rm,d,j to represent the relation j with domain d in the model m.

2.4 Applying the merging/specialization process on John’s use case

Here, we apply our process on an example related to the AH field. We assume that John, who

is a lecturer in computer science, has his domain model and resources belonging to that model.

Furthermore, he would like to use the GLAM platform and the defined adaptations without

transforming his resources.

These adaptations are expressed on domain and user models respecting the GLAM syntax (cf.

Table 3.2). They concern students11 whose learning mode is in-depth and prefer audio resources. It

proposes resources in an audio format if that one is available otherwise in a textual format. They

will be related to concepts ordered according to a depth-first navigational path using the relation

pre-requisite.

The adaptation is defined in three steps (for GLAM syntax see Chapter 2, Section 1.1.1):

Step 1: GLAM rules

• R1: type (r, Resource) ∧ format (r, audio) ∧ abstraction(r, Concept1) ∧ abstraction(currentR, Concept2) ∧
pre-requisite (Concept2, Concept1) ∧ pre-requisite* (Concept1, goal) → Read(r, degree)

• R2: type (r, Resource) ∧ format (r, text) ∧ abstraction(r, Concept1) ∧ abstraction(currentR, Concept2) ∧
pre-requisite (Concept2, Concept1) ∧ pre-requisite* (Concept1, goal) → Read(r, degree)

• R3: type (r, Resource) ∧ format (r, audio) ∧ abstraction(r, Concept1) ∧ pre-requisite* (Concept1, goal) →
Read(r, degree)

• R4: type (r, Resource) ∧ format (r, text) ∧ abstraction(r, Concept1) ∧ pre-requisite* (Concept1, goal) →
Read(r, degree)

R1 proposes audio resources according to a depth-first navigational path on their concepts using the

relation pre-requisite. These concepts can reach the goal12.

R3 proposes audio resources linked to concepts. These concepts can reach the goal.

Step 2: associations between rules and user characteristics:

• The value audio of the user characteristic presentation form is associated to R1, R3

• The value textual of the user characteristic presentation form is associated to R2, R4

• The value depth-first of the user characteristic learning mode is associated to R1, R2, R3, R4

Step 3: GLAM meta-rules

• MR1: The value audio of the user characteristic presentation form > The value textual of the user

characteristic presentation form

• MR2: R1 ⊃ R3

• MR3: R2 ⊃ R4

MR1 means that all rules associated to the characteristic presentation form audio are executed. When no

results are returned, rules associated to the characteristic presentation form text are executed.

Table 3.2 – Example of adaptation in the GLAM format

10www.w3.org/TR/owl-guide/
11cf. Table 3.3
12The goal to be reached by users (students here) is modeled as a property.

58 Integrating author’s models into models of Adaptive Hypermedia Systems

In order to reuse these adaptations, both domain and user models on which adaptations are
expressed have to be integrated with John’s models. In the following, we focus only on the
part relative to the domain model. First, we describe the domain model on which adaptations
are defined and which is considered as generic by our process. Then, we present John’s model,
which will be considered as specific by our process. Finally, we propose an overview of the
merged model that should be obtained after performing our process.

learning mode: in-depth learning mode means that each subject must be known in-depth before going

to a related subject.

presentation form: a verbal presentation form is for learners preferring textual resources, a visual

presentation form is for learners preferring image resources, and an audio presentation form is for those

preferring audio ones.

Table 3.3 – Students characteristics

2.4.1 Description of the generic model

We present in Figure 3.6 the modeling of the generic model (i.e., the domain model on which

GLAM adaptations are expressed). The generic model includes only two classes:

RESOURCE

name_of_resource: integer type
content_of_resource: string type
format: string type

abstraction

pre-requisite*

*

.

.

CONCEPT

name_of_concept: string type

* 1

Figure 3.6 – Description of the domain model exploited by the adaptation in Table 3.2

• A CONCEPT class models abstract notions that must be proposed to users. Concepts can be

pre-requisite of other concepts13. Each concept has a name (modeled in the name of concept

property) and may be related to one or more resources by the relation abstraction.

• A RESOURCE class models documents that will be proposed to users. A resource is

characterized by a name (modeled in the name of resource property), a content (modeled

in the content of resource property) and a format in which it is available (modeled in the

format of resource property). Furthermore, each resource is only related to one concept using

the relation abstraction.

2.4.2 Description of the specific model

Figure 3.7 describes John’s domain model, and Table 3.4 indicates some instances of John’s

domain model.

The domain model includes several classes:

• A NOTION class models notions about AHS that must be learned by users. Notions can be

successors of other notions and they can also be part of other notions. Each notion has a

title describing the notion to be learned and may be related using the relation abstraction to

one or more documents which are either a definition, or descriptions or illustrations.

13Here, names of classes are in upper-case and in italic, and names of instances have the same name as the class for

which they belong in lower-case.

2 Main aspects of our merging/specialization process 59

abstraction
DESCRIPTION

description_identifier: integer type
description_content: string type

1*
*

successor
*

DEFINITION

definition_identifier: integer type
definition_content: string type
definition_format: string type

ILLUSTRATION

illustration_identifier: integer type
illustration_content: string type
presentation_of_illustration: string type

abstra
ction

ab
st

ra
ct

io
n

1

1

1

*

NOTION

title: string type
*

part-of

*

Figure 3.7 – Description of John’s domain model

• A DEFINITION class models documents about definitions. Each document is characterized

by an identifier (modeled in the definition identifier property), a content (modeled in the

definition content property) and a format in which the sample is available (modeled in the

definition format property). A definition document is related to at most one notion using the

relation abstraction.

• An ILLUSTRATION class models documents about samples. Each document is

characterized by an identifier (modeled in the illustration identifier property), a content

(modeled in the illustration content property) and a format in which the sample is available

(modeled in the presentation of illustration property). An illustration document can be at

most related to a notion using the relation abstraction.

• A DESCRIPTION class models documents about descriptions. Each document is

characterized by an identifier (modeled in the description identifier property), and a content

(modeled in the description content property). A descripion document is related to at most

one notion using the relation abstraction.

Instance

number

Class of John’s

domain model
Instance Related to instances

1 NOTION title: adaptive hypermedia system
2 (via successor), 4(via successor),

5(via successor), 7(via successor)

2 NOTION title: architecture of AHS 3(via successor), 6(via successor)

3 NOTION title: GLAM platform 7(via successor)

4 DEFINITION definition identifier: definition 1

definition content: ...

definition format: ...

5 DEFINITION definition identifier: definition 2

definition content: ...

definition format: ...

6 DEFINITION definition identifier: definition 3

definition content: ...

definition format: ...

7 ILLUSTRATION illustration identifier: illustration 1

illustration content: ...

presentation of illustration: text

Table 3.4 – Some of the instances in John’s domain model

60 Integrating author’s models into models of Adaptive Hypermedia Systems

2.4.3 Description of the built model

The model built by the process includes the generic model, the specific model, and the mappings
between the elements of the generic and specific models. Therefore, it includes a set of classes,
of properties and of relations and also mappings between elements (that are either classes,
properties, or relations). We describe in Table 3.5 the classes included in the built model and the
mappings defined between them by John, and in Table 3.6 the properties and relations included
in the built model and the mapping deduced automatically between them.

Class of the generic model Class of the specific model
Mapping between the two

classes

CONCEPT NOTION equivalent class

RESOURCE DEFINITION equivalent class

RESOURCE ILLUSTRATION sub class

Table 3.5 – Mappings defined between two classes of the merged model

Generic model Specific model Mapping

pre-requisite successor equivalent

domain: CONCEPT, range: CONCEPT domain: NOTION, range: NOTION property

name of concept title equivalent

domain: CONCEPT, range: string domain: NOTION, range: string property

abstraction abstraction equivalent

domain: CONCEPT, range: RESOURCE domain: NOTION, range: DEFINITION property

abstraction abstraction equivalent

domain: RESOURCE, range: CONCEPT domain: DEFINITION, range: NOTION property

name of resource definition identifier equivalent

domain: RESOURCE, range: integer domain: DEFINITION, range: integer property

content of resource definition content equivalent

domain: RESOURCE, range: string domain: DEFINITION, range: string property

format definition format equivalent

domain: RESOURCE, range: string domain: DEFINITION,range: string property

abstraction abstraction equivalent

domain: CONCEPT,range: RESOURCE domain: NOTION, range: ILLUSTRATION property

abstraction abstraction equivalent

domain: RESOURCE, range: CONCEPT domain: ILLUSTRATION, range: NOTION property

name of resource definition identifier sub

domain: RESOURCE, range: integer domain: ILLUSTRATION, range: integer property

content of resource definition content equivalent

domain: RESOURCE, range: string domain: ILLUSTRATION, range: string property

format definition format equivalent

domain: RESOURCE, range: string domain: ILLUSTRATION, range: string property

Table 3.6 – Mappings defined between two properties (or two relations) of the built model

We explain in the following sections how each of these mappings can been obtained.

3 Step 1/4: specification of mappings between classes 61

3 Step 1/4: specification of mappings between classes

The process has two main goals. A first goal is to build a new model that includes the generic

and specific models, instances of the specific model and mappings between elements of the two

models. The mappings must be sure at 100% in order to ensure a correct reuse of reasoning (reuse

of adaptation, in case of the AH field) expressed on elements of the generic model. A second goal

is to propose a process as automatic as possible.

Existing solutions are based on efficient algorithms to deduce mappings between two models.

However, they most often need authors to validate the deduced results. Given the size of

potential models involved in the process, we have decided to propose a different process. It

is based on authors’ knowledge on his model and on the used application domain. We argue

that this will allow to avoid non pertinent results. More precisely, the process considers in Step

1 mappings between classes that have to be specified by authors, given the number of classes

which is smaller than the number of relations and attributes of the generic and specific models.

3.1 Mapping between classes

In order to specify mappings between classes of both models, authors can refer to the comments

scope of each class in which they find a description of the class. This step is manual and is

supported by a tool implementing the process.

3.2 Applying the first step on John’s use case

John relies on the description of each class of each model, in order to understand the role of each

class. We assume that, John defines:

• an equivalence mapping between the CONCEPT and NOTION classes;

• a specialization mapping between the RESOURCE and DEFINITION classes;

• a specialization mapping between the RESOURCE and ILLUSTRATION classes;

4 Step 2/4: deduction of additional mappings between classes

Starting from the mappings between classes specified by the author, other mappings between

classes can be automatically deduced. In fact, the author defines in step 1 mappings between two

classes if he estimates that a class of the specific model is equivalent to or is a subclass of a class of

the generic model, but some mappings are implicit for him.

For example: assume that the class Staff belongs to the specific model, and the classes Employee

and Person belong to the generic model such as Employee is a subclass of Person. The author defines

that Staff is a subclass of Employee but he may not define Staff as a subclass of Person because it is

implicit for him. In these cases, the process has to make the implicit mappings explicit in order

to be able to deduce all mappings between the other elements of the two models.

We propose to adopt a pattern-based process to achieve this deduction. Pattern-based

processes for mapping identification across models assume that structural regularities always

characterize the same kind of relations.

4.1 Pattern-based process for deducing additional mappings between classes

We have defined 8 patterns which are characterizations of structural contexts composed of 3

classes, either two classes of the generic model and a class of the specific model or two classes

62 Integrating author’s models into models of Adaptive Hypermedia Systems

of the specific model and a class of the generic model (2 categories). The idea is to deduce the

nature of the relation R (equivalence or specialization) between Cs,1 a class of the specific model

and Cg,1 a class of the generic model, when a third class belonging to one of the two models, Cm,2,

is linked to Cs,1 by a relation R1 and to Cg,1 by a relation R2, R1 and R2 being either equivalence or

specialization relations. We identified four patterns per structural context category to represent

all possible cases, that is to say 8 patterns all in all.

Given Requiv an equivalence relation and RsubClass a specialization relation, the deduction of

supplementary mappings is based on the composition (noted o) properties of these two kinds of

relations described below:

• Requiv ◦ RsubClass = RsubClass

• RsubClass ◦ Requiv = RsubClass

• RsubClass ◦ RsubClass = RsubClass

• Requiv ◦ Requiv = Requiv

The eight patterns we have defined are generic and usable only to identify additional

mappings between classes. In order to describe them further, we propose in Figure 3.8 the

following notation.

R subClass

Class of the generic model

Class of the specific model

Mappings between classes of the generic and specific models (given by the author)
Deduced mapping

Relations between classes of either generic or specific model

R equiv

.

Figure 3.8 – Graphical notations

The formula Requiv ◦ RsubClass = RsubClass describes two patterns (cf. Figure 3.9). The pattern

in the left side (respectively the right side) of Figure 3.9 covers the case where there are two classes

Cg,1, Cg,2 of the generic model (respectively Cs,1, Cs,2 of the specific model) linked by a Requiv .

When the author defines a RsubClass between Cs,1 and Cg,1, the pattern in the left side deduces

a RsubClass between Cs,1 and Cg,2 (respectively the pattern in the right side deduces a RsubClass

between Cs,2 and Cg,1).

C g,1 C g,2

C s,1 C s,2C s,1

C g,1

Figure 3.9 – Patterns corresponding to the formula Requiv ◦ RsubClass = RsubClass

For example, assume three classes Woman, Person and Human.

• In the left side of Figure 3.10, Woman belongs to the specific model, and Person and Human

belong to the generic model. Person is defined as equivalent to Human. If the author defines

4 Step 2/4: deduction of additional mappings between classes 63

Woman as a subclass of Person, the formula Requiv ◦ RsubClass = RsubClass deduces that

Woman is also a subclass of Human.

• In the right side of Figure 3.10, Woman and Female belong to the specific model. Woman is

defined as equivalent to Female. Human belongs to the generic model. If the author defines

Woman as a subclass of Human, the formula Requiv ◦ RsubClass = RsubClass deduces that

Female is also a subclass of Human.

Person Human

Woman FemaleWoman

Human

Figure 3.10 – Instantiated patterns (Requiv ◦ RsubClass = RsubClass)

The formula RsubClass ◦ Requiv = RsubClass describes two patterns (cf. Figure 3.11). The pattern

in the left side (respectively the right side) of Figure 3.11 covers the case where there are two

classes Cg,1, Cg,2 of the generic model (respectively Cs,1, Cs,2 of the specific model) linked by a

RsubClass. When the author defines a Requiv between Cs,1 and Cg,1 (respectively between Cs,2

and Cg,1), the pattern in the left side deduces a RsubClass between Cs,1 and Cg,2 (respectively the

pattern in the right side deduces a RsubClass between Cs,1 and Cg,1).

C g,1 C g,2

C s,1 C s,2C s,1

C g,1

Figure 3.11 – Patterns corresponding to the formula Rsubclass ◦ Requiv = Rsubclass

For example, assume three classes Woman, Female and Human.

• In the left side of Figure 3.12, Woman belongs to the specific model. Female and Human belong

to the generic model. Female is defined as a subclass of Human. If the author defines Woman

as equivalent to Female, the formula RsubClass ◦ Requiv = RsubClass deduces that Woman is a

subclass of Human.

• In the right side of Figure 3.12, Woman and Human belong to the specific model. Woman is

defined as a subclass of Human. Person belongs to the generic model. If the author defines

Human as equivalent to Person. the formula RsubClass ◦ Requiv = RsubClass deduces that

Woman is a subclass of Person.

64 Integrating author’s models into models of Adaptive Hypermedia Systems

Female Human

Woman HumanWoman

Person

Figure 3.12 – Instantiated patterns (Rsubclass ◦ Requiv = Rsubclass)

The formula RsubClass ◦ RsubClass = R subClass describes two patterns (cf. Figure 3.13). The

pattern in the left side (respectively the right side) of Figure 3.13 covers the case where there are

two classes Cg,1, Cg,2 of the generic model (respectively Cs,1, Cs,2 of the specific model) linked

by a RsubClass. When the author defines a RsubClass between Cs,1 and Cg,1 (respectively between

Cs,2 and Cg,1), the pattern in the left side deduces a RsubClass between Cs,1 and Cg,2 (respectively

the pattern in the right side deduces a RsubClass between Cs,2 and Cg,1).

C g,1 C g,2

C s,1 C s,2C s,1

C g,1

Figure 3.13 – Patterns corresponding to the formula R subclass ◦ R subclass = R subclass

For example, assume three classes Student-Assistant, Student and Person.

• In the left side of Figure 3.14, Student-Assistant belongs to the specific model. Student and

Person belong to the generic model. Student is defined as a subclass of Person. If the author

defines Student-Assistant as a subclass of Student, the formula RsubClass ◦ RsubClass = R

subClass deduces that Student-Assistant is also a subclass of Person.

• In the right side of Figure 3.14, Student-Assistant and Student belong to the specific model.

Student-Assistant is defined as a subclass of Student. The class Person belongs to the generic

model. If the author defines Student is as subclass of Person, the formula RsubClass ◦ RsubClass

= R subClass deduces that Student-Assistant is also a subclass of Person.

Student Person

Student-
Assistant StudentStudent-

Assistant

Person

Figure 3.14 – Instantiated patterns (R subclass ◦ R subclass = R subclass)

The formula Requiv ◦ Requiv = R equiv describes two patterns (cf. Figure 3.15). The pattern in

the left side (respectively the right side) of Figure 3.15 covers the case where there are two classes

Cg,1, Cg,2 of the generic model (respectively Cs,1, Cs,2 of the specific model) linked by a Requiv .

When the author defines a Requiv between Cs,1 and Cg,1, the pattern in the left side deduces a

5 Step 3/4: deduction of mappings between relations and between attributes 65

Requiv between Cs,1 and Cg,2 (respectively the pattern in the right side deduces a Requiv between

Cs,2 and Cg,1).

C g,1 C g,2

C s,1 C s,2C s,1

C g,1

Figure 3.15 – Patterns corresponding to the formula R equiv ◦ R equiv = R equiv

For example, assume three classes Human, Individual and Person.

• In the left side of Figure 3.16, Person belongs to the specific model. Human and Individual

belong to the generic model. Human is defined as an equivalent to Individual. If the author

defines Person as an equivalent to Human, the formula Requiv ◦ Requiv = R equiv deduces that

Person is also equivalent to Individual.

• In the right side of Figure 3.16, Human and Individual belong to the specific model. Human is

equivalent to Individual. The class Person belongs to the generic model. If the author defines

only that Human is equivalent to Person, the formula Requiv ◦ Requiv = R equiv deduces that

Individual is also equivalent to Person.

Human Individual

Person IndividualHuman

Person

Figure 3.16 – Instantiated patterns (R equiv ◦ R equiv = R equiv)

So far, we have described how an author can define mappings between classes of the generic

and specific models, and how additional mappings between classes of the two models can be

deduced. The third step deduces mappings between properties and between relations. These

deductions are based on structural knowledge. We present them in the following.

4.2 Applying the second step on John’s use case

No additional mappings can be deduced between classes of the two models manipulated in

John’s use case, as none of the specific (or generic) model includes two equivalent classes or a

class being a specialization of another class.

5 Step 3/4: deduction of mappings between relations and

between attributes

In this section our objective is twofold. Our first goal is to automatically deduce mappings

between relations and between attributes of classes of the generic and specific models. Our

second goal is to check the consistency of the new model created by the merging process.

66 Integrating author’s models into models of Adaptive Hypermedia Systems

To do so, our system uses structural knowledge, which we have modeled at a high level in a

OWL meta-model in order to apply them to whatever the generic and specific models are. In the

following, we present in section 5.1 the structural knowledge we have used in our system. Then,

we detail in section 5.2 the modeling of this structural knowledge in a OWL meta-model. Finally,

we describe how we reason on the defined OWL meta-model in order to, on one hand, deduce

new mappings between relations and between attributes (cf. Section 5.3), and on the other hand,

check the consistency of the new created model (cf. Section 5.4).

5.1 Structural knowledge

First of all, let us remember that we only consider OWL models (cf. Section 2.3). In OWL, a model

includes a set of classes and a set of properties. A property is a binary relation. It is either:

• a relation between an individual and a datatype (representing an attribute);

• a relation between two individuals (representing a relation between two instances).

In this work, we refer to OWL properties by relations as relations (in its usual meaning) and

attributes are both represented by relations in OWL. Furthermore, among the characteristics of

a relation, we consider the characteristics functional and inverse functional. We also consider

the cardinality constraints (OWL:maxCardinality, OWL:minCardinality and OWL:Cardinality).

Other characteristics having no impact on multiplicities, like inverse of, transitive and symmetric,

are processed before starting the process.

In order to deduce mappings between two relations of two different models14, we consider

information related to the domain, range, characteristics (functional, inverse functional) and

cardinalities of the mapped relations. This information is used to establish the compatibility of

the mapped relations. A mapping between two relations is possible only when the two relations

are compatible15. Furthermore, we consider the information characterizing the compatibility of

the mapped relations at different degrees. The order in which they are presented below is from

the less constrained to the most constrained.

The less reliable mapping that can be deduced between two relations is called potential link. It

exploits the (equivalence or specialization) mappings defined (or deduced) between the domain

and range of the mapped relations, and it is described by the following definition.

Definition 2 Two relations Rs,i,j and Rg,k,l are linked by a potential link if a mapping is defined between

their domain and between their range.

We exploit after that the information characterizing the compatibility of each two relations

linked by a potential link. Therefore, more reliable mappings are deduced. We have considered

three characteristics of the mapped relations: functionality property, inverse functionality

property and cardinalities. The comparison of each of the three characteristics may allow to

define a new mapping. We describe these mappings in the definitions below.

Definition 3 Two relations Rs,i,j and Rg,k,l are linked by a compatible functional property link if those

relations are linked by a potential link and if:

Rs,i,j and Rg,k,l are both functional or not or Rs,i,j is functional and Rg,k,l is not.

14By misuse of language, we write in the following only a mapping between two relations instead of writing a mapping

between two relations where one relation belongs to the generic model and the other relation belongs to the specific model. The two

relations must be of the same type: either object or datatype properties.
15By compatible, we mean that, the considered information of the relation of the specific model is equivalent to

(respectively more restrictive than) the same information of the relation of the generic model. We give later in this section

a definition for each information characterizing the compatibility of the mapped relations.

5 Step 3/4: deduction of mappings between relations and between attributes 67

Definition 4 Two relations Rs,i,j and Rg,k,l are linked by a compatible inverse functional property link if

those relations are linked by a potential link and if:

Rs,i,j and Rg,k,l are both inverse functional or not or Rs,i,j is inverse functional and Rg,k,l is not.

Definition 5 Two relations Rs,i,j and Rg,k,l are linked by a compatible cardinality property link if those

relations are linked by a potential link and if:

• (Cardinalitymax(Rs,i,j) ≤ Cardinalitymax(Rg,k,l) and Cardinalitymin(Rs,i,j) ≥

Cardinalitymin(Rg,k,l)).

• Cardinalityvalue (Rs,i,j) ≤ Cardinalityvalue (Rg,k,l).

The three mappings compatible functional property link, compatible inverse functional property link and

compatible cardinality property link have the same reliability, even if each of them satisfies distinct

conditions, one distinct condition at a time: compatible information either about functional

property, either about inverse functional property, or about cardinality property. No condition is

more reliable than the other.

A more reliable mapping can be deduced between two relations if they satisfy at the same

time the three previous conditions. That means that, this mapping satisfies all the compatibility

information that characterize two mapped relations. Consequently, it will be the most reliable

link that can be deduced between two relations. We have called this mapping probable mapping,

and we propose the following definition:

Definition 6 Two relations Rs,i,j and Rg,k,l are linked by a probable link if they are linked by a potential

link and if their cardinalities, functionality properties and inverse functionality properties are compatible.

Probable links can be either equivalence or specialization links according to (1) the nature of

mappings defined between the classes corresponding to the range and (2) the characteristics and

cardinalities associated to the mapped relations. Note that, we do not test domains of relations

to deduce the kind of probable link because domains are used only to define the belonging of

relations and no other constraintes on relations.

Definition 7 A probable link between Rs,i,j and Rg,k,l is an equivalence probable link if the two ranges

are linked by an equivalence relation and if they have the same cardinalities.

Definition 8 A probable link between Rs,i,j and Rg,k,l is a specialization probable link if a mapping is

defined between their range but the cardinalities on Rs,i,j are stronger than those on Rg,k,l or if they have

the same cardinalities but the Rs,i,j range is a subcategory of the Rg,k,l range.

Note that, only links satisfying the most constraints are proposed to authors. This only

concerns (equivalent or specialization) probable links. However, they are based only on structural

knowledge. As their name indicates it, they are only probable and not sure (semantically).

Furthermore, for each relation of the generic model, several relations of the specific model may

have compatible information. That means that, several mappings involving a relation of the

generic model and different relations of the specific model can be deduced (inversely, for each

relation of the specific model). Also, inconsistencies can be deduced between two relations. This

is why, we need authors to choose the correct mappings between all the deduced mappings or

eventually restart the process (further details in section 6).

So far, we have described the structural knowledge considered in our process. In order to

propose a general process that can be applied on whatever generic and specific models can be,

we have modeled the structural knowledge at a higher level than the processed models. More

precisely, we have modeled the structural knowledge in a meta-model. This implies that the

generic and specific models are going to be considered as instances of the proposed meta-model.

68 Integrating author’s models into models of Adaptive Hypermedia Systems

In the following, we detail further our modeling of structural knowledge in a meta-model. After

that, we give mappings deduction rules, followed by inconsistencies deduction rules. Finally, we

apply this step on John’s use case.

5.2 Modeling structural knowledge using a meta-model

As the models to be merged are represented in OWL, we propose to represent structural

knowledge in a meta-model based on the OWL meta-model. The OWL meta-model was defined

by ODM (Ontology Definition Meta Model) of OMG as a MOF2 compliant meta-model16. It is

composed of several UML class diagrams, a class diagram per element of an OWL model. Our

system does not need all the diagrams of the OWL meta-model. Furthermore, it requires specific

structural knowledge that are not yet modeled in the OWL meta-model. Therefore, we have

first decided which parts of the diagrams of the OWL meta-model were needed to be reused (cf.

Section 5.2.1). Then, we have enriched this sub-part in order to represent the needed structural

knowledge (cf. Section 5.2.2).

5.2.1 Parts taken back from the OWL meta-model

As structural knowledge used by the process is relative to classes, properties and cardinalities

according to the OWL terminology, we have reused the Class, Property and Restriction

class diagrams included in the OWL meta-model, which are described in Appendice A.

The three class diagrams propose a complete modeling of classes, properties and cardinalities,

but in our work we do not need all the modeled knowledge. This is why, we have reused only

the parts of the three class diagrams that are reliable in our work. More precisely, we have reused

the following parts of each class diagram (cf. Figure 3.17).

• In the Class diagram (modeled in a UML class diagram), the Class class and the

equivalentClass and subclass relations are needed and have been reused.

• In the Property diagram (modeled in a UML class diagram), the Property,

FunctionalProperty and InverseFunctionalProperty classes are needed and

have been reused. Also, the relation equivalentProperty defined on the Property

class has been reused.

• In the Restriction diagram (modeled in a UML class diagram), only four classes are

needed and have been reused. These classes are: Cardinality Restriction, Max

Cardinality Restriction, Min Cardinality Restriction and Restriction.

5.2.2 Modification and enrichment of the reused parts of the OWL meta-model

Before enriching the reused OWL meta-model in order to support structural knowledge, we

brought some modifications on the reused parts of the OWL meta-model. The modifications

concerns mainly two things.

1. Modeling of XML-Schema datatypes: we have noticed that the XML-Schema datatypes are

considered as individuals of the class Class. This representation is not convenient for us

because some characteristics of OWL classes that we have to represent are not relevant

for datatypes. Consequently, we have decided to separate the modeling of OWL classes

from the modeling of datatypes in two different classes, and we have proposed the creation

of two different classes. Datatypes will be modeled in the class Class, and individuals

different from datatypes will be represented in a new class called Application Class.

16http://www.omg.org/spec/ODM/1.0/

5
S

te
p

3
/4

:
d

e
d

u
ct

io
n

o
f

m
a

p
p

in
g

s
b

e
tw

e
e

n
re

la
ti

o
n

s
a

n
d

b
e

tw
e

e
n

a
tt

ri
b

u
te

s
6

9

T
h

is
n

ew
cl

as
s

h
as

b
ee

n
d

efi
n

ed
as

a
sp

ec
ia

li
za

ti
o

n
o

f
th

e
cl

as
s
C
l
a
s
s

b
ec

au
se

it
s

in
st

an
ce

s

sh
ar

e
so

m
e

ch
ar

ac
te

ri
st

ic
s

w
it

h
th

e
d

at
at

y
p

e
in

st
an

ce
s.

Class

Application
Class

model

Property

functional
inversefunctional

Cardinality

value

Cardinality
Restriction

Max
Cardinality
Restriction

Min
Cardinality

Restriction

subClass

restrictionOnPropertyrange

domain

equivalent

Class
specializationMapping

equivalenceMapping

sub
Properties equivalentProperties

Reused parts of the

OWL meta model

Added Extensions

potentiallyLinkedProperties

probablySubProperties

probablyEquivalent

Properties

probablyLinkedProperties

Mapping

F
ig

u
re

3.
17

–
T

h
e

p
ro

p
o

se
d

m
et

a-
m

o
d

el

2.
M

o
d

el
in

g
th

e
k

in
d

o
f

m
o

d
el

(g
en

er
ir

o
r

sp
ec

ifi
c)

to
w

h
ic

h
ea

ch
in

st
an

ce
b

el
o

n
g

s:
w

e
h

av
e

ad
d

ed
a
m
o
d
e
l

at
tr

ib
u

te
o

n
ly

to
th

e
A
p
p
l
i
c
a
t
i
o
n

C
l
a
s
s

cl
as

s.

70 Integrating author’s models into models of Adaptive Hypermedia Systems

After these modifications, we have enriched the extracted OWL meta-model with the

structural knowledge described in the previous section. The resulting meta-model is presented

in Figure 3.17.

So far, we have presented the structural knowledge used by our process in order to deduce

mappings between two relations, and we have detailed their modeling on a modified version of

the OWL meta-model. In the following section, we present the formalization of the deduction

process of mappings between two relations in a declarative way using SWRL17 rules.

5.3 Mapping deduction rules

In this section, we give the rules to deduce mappings between a relation of the generic model

(noted Pg) and a relation of the specific model (noted Ps). The rules derive directly from the

definitions given in Section 5.1 and are based on the proposed OWL meta-model described

in Section 5.2. Mainly, the rules deduce four types of mappings: potential mapping, compatible

restriction mapping, probable mapping and inconsistency mapping. We have grouped all the rules in

Table 3.7. It includes the rule number, the condition part of the rule, and the conclusion part

of the rule. Also, the table separates the rules allowing to deduce the same type of mappings.

Therefore, the table is divided in four parts, each part is explained further in a section below.

Rule Condition Conclusion

R1

Property(?Pg) ∧ model(?Pg , ”generic”) ∧ domain(?Pg ,?Dg)

∧ range(?Pg ,?Rg) ∧ Property(?Ps) ∧ model(?Ps, ”specific”)

∧ domain(?Ps,?Ds) ∧ range(?Ps,?Rs) ∧ mapping(?Dg ,?Ds) ∧

mapping(?Rg ,?Rs)

potentiallyLinkedProperties(?Pg ,?Ps)

R2
potentialLinkedProperties(?Pg ,?Ps) ∧ functional(?Pg , f) ∧

functional(?Ps, f)

sameFunctionality(?Pg ,?Ps) ∧

compatibleFunctionality(?Pg ,?Ps)

R3
potentialLinkedProperties(?Pg ,?Ps) ∧ functional(?Pg , false) ∧

functional(?Ps, true)

restrictiveFunctionality(?Pg ,?Ps) ∧

compatibleFunctionality(?Pg ,?Ps)

R4
potentialLinkedProperties(?Pg ,?Ps) ∧ inversefunctional(?Pg , f) ∧

inversefunctional(?Ps, f)

sameInverseFunctionality(?Pg ,?Ps) ∧

compatibleInverseFunctionality(?Pg ,?Ps)

R5
potentialLinkedProperties(?Pg ,?Ps) ∧ inversefunctional(?Pg ,

false) ∧ inversefunctional(?Ps, true)

restrictiveInverseFunctionality(?Pg ,?Ps)

∧ compatibleInverseFunctionality(?Pg ,?Ps)

R6

potentialLinkedProperties(?Pg ,?Ps) ∧

MinCardinalityRestriction(?Pg , ?mg) ∧ value(?mg, m)∧

MinCardinalityRestriction(?Ps, ?ms) ∧ value(?ms, m) ∧

MaxCardinalityRestriction(?Pg , ?xg) ∧ value(?xg, x)∧

MaxCardinalityRestriction(?Ps, ?xs) ∧ value(?xs, x)

sameRestriction(?Pg ,?Ps) ∧

compatibleRestriction(?Pg ,?Ps)

R7

potentialLinkedProperties(?Pg ,?Ps) ∧ CardinalityRestriction(?Pg ,

?cg) ∧ value(?cg, m)∧ CardinalityRestriction(?Ps, ?cs) ∧

value(?cs, m)

sameRestriction(?Pg ,?Ps) ∧

compatibleRestriction(?Pg ,?Ps)

R8

potentialLinkedProperties(?Pg ,?Ps) ∧ CardinalityRestriction(?Pg ,

?cg) ∧ value(?cg, mg)∧ CardinalityRestriction(?Ps, ?cs) ∧

value(?cs, mc) ∧ swrlb:greaterThen(mg, ms)

restrictiveRestriction(?Pg ,?Ps) ∧

compatibleRestriction(?Pg ,?Ps)

R9

potentialLinkedProperties(?Pg ,?Ps) ∧

MinCardinalityRestriction(?Pg , ?mg) ∧ value(?mg, vg)∧

MinCardinalityRestriction(?Ps, ?ms) ∧ value(?ms, vs) ∧

swrlb:greaterThen(vs, vg) ∧ MaxCardinalityRestriction(?Pg ,

?xg) ∧ value(?xg, x)∧ MaxCardinalityRestriction(?Ps, ?xs) ∧

value(?xs, x)

restrictiveRestriction(?Pg ,?Ps) ∧

compatibleRestriction(?Pg ,?Ps)

R10

potentialLinkedProperties(?Pg ,?Ps) ∧

MinCardinalityRestriction(?Pg , ?mg) ∧ value(?mg, m)∧

MinCardinalityRestriction(?Ps, ?ms) ∧ value(?ms, m) ∧

MaxCardinalityRestriction(?Pg , ?mg) ∧ value(?mg, vg)∧

MaxCardinalityRestriction(?Ps, ?ms) ∧ value(?ms, vs) ∧

swrlb:greaterThen(vg, vs)

restrictiveRestriction(?Pg ,?Ps) ∧

compatibleRestriction(?Pg ,?Ps)

17http://www.w3.org/Submission/SWRL/

5 Step 3/4: deduction of mappings between relations and between attributes 71

R11

potentialLinkedProperties(?Pg ,?Ps) ∧

MinCardinalityRestriction(?Pg , ?mg) ∧ value(?mg, m)∧

MinCardinalityRestriction(?Ps, ?ms) ∧ value(?ms, m) ∧

MaxCardinalityRestriction(?Pg , ?mg) ∧ value(?mg, vg)∧

MaxCardinalityRestriction(?Ps, ?ms) ∧ value(?ms, vs) ∧

swrlb:greaterThen(vg, vs)

restrictiveRestriction(?Pg ,?Ps) ∧

compatibleRestriction(?Pg ,?Ps)

R12

potentiallyLinkedProperties(?Pg ,?Ps) ∧

compatibleFunctionality(?Pg ,?Ps) ∧

compatibleInverseFunctionality(?Pg ,?Ps)

compatibleRestriction(?Pg ,?Ps)

probablyLinkedProperties(?Pg ,?Ps)

R13

potentiallyLinkedProperties(?Pg ,?Ps) ∧

range(?Pg ,?Rg) ∧ range(?Ps,?Rs) ∧

equivalentMapping(?Rg ,?Rs) ∧ sameFunctionality(?Pg ,?Ps)

∧ sameInverseFunctionality(?Pg ,?Ps) sameRestriction(?Pg ,?Ps)

probablyEquivalentProperties(?Pg ,?Ps)

R14
probablyLinkedProperties(?Ps,?Pg) ∧ range(?Pg ,?Rg) ∧

range(?Ps,?Rs) ∧ specializationMapping(?Rg ,?Rs)
probablySubProperties(?Pg ,?Ps)

R15
probablyLinkedProperties(?Ps,?Pg) ∧ restrictivefunctional(?Pg ,

?Ps)
probablySubProperties(?Pg ,?Ps)

R16
probablyLinkedProperties(?Ps,?Pg) ∧

restrictiveInversefunctional(?Pg , ?Ps)
probablySubProperties(?Pg ,?Ps)

R17
probablyLinkedProperties(?Ps,?Pg) ∧ restrictiveCardinality(?Pg ,

?Ps)
probablySubProperties(?Pg ,?Ps)

R17
potentialLinkedProperties(?Pg ,?Ps) ∧ functional(?Pg , true) ∧

functional(?Ps, false)
incompatibleFunctionality(?Pg ,?Ps)

R19
potentialLinkedProperties(?Pg ,?Ps) ∧ inversefunctional(?Pg ,

true) ∧ inversefunctional(?Ps, false)
incompatibleInverseFunctionality(?Pg ,?Ps)

R20

potentialLinkedProperties(?Pg ,?Ps) ∧

MinCardinalityRestriction(?Pg , ?mg) ∧ value(?mg, msg)∧

MinCardinalityRestriction(?Ps, ?ms) ∧ value(?ms, msr) ∧

swrlb:greaterThan(mgr, msr)

incompatibleRestriction(?Pg ,?Ps)

R21

potentialLinkedProperties(?Pg ,?Ps) ∧

MaxCardinalityRestriction(?Pg , ?mg) ∧ value(?mg, msg)∧

MaxCardinalityRestriction(?Ps, ?ms) ∧ value(?ms, msr) ∧

swrlb:greaterThan(msr, mgr)

incompatibleRestriction(?Pg ,?Ps)

R22

potentialLinkedProperties(?Pg ,?Ps) ∧ CardinalityRestriction(?Pg ,

?cg) ∧ value(?cg, mg)∧ CardinalityRestriction(?Ps, ?cs) ∧

value(?cs, ms)

swrlb:notEqual(mg, ms) ∧

incompatibleRestriction(?Pg ,?Ps)

Table 3.7 – SWRL Rules expressing structural knowledge

5.3.1 Deducing a potential mapping

The rule R1 inferring a potential mapping derives directly from Definition 2. It allows to deduce

a potential mapping between a relation of the generic model (noted Pg) and a relation of the

specific model (noted Ps) whose domains are linked by a mapping and ranges are also linked

by a mapping.

In rule R1, mapping(?Cg , ?Cs) expresses a mapping between a class of the generic model and a

class of the specific model. It is either defined by the author or inferred from additional mappings

automatically deduced.

5.3.2 Deducing compatible restriction mappings

In order to deduce compatible restriction mappings, we compare the functional property, inverse

functional property and cardinalities of two relations linked by a potential mapping. We have eight

rules deducing compatible restriction mappings.

72 Integrating author’s models into models of Adaptive Hypermedia Systems

Two rules compare the functional property of two relations, which derive directly from

Definition 3. Either the two relations have the same functional property (cf. R2 in Table 3.7)

or the functional property of the Ps is more restrictive than the one of Pg (cf. R3 in Table 3.7).

Similarly, there are two rules comparing the inverse functional property of the two relations

(cf. R4, R5 in Table 3.7), which derive directly from Definition 4.

Besides, there are six rules comparing cardinality of the two relations, which derive from Defi-

nition 5. The condition (Cardinalitymax(Rs,i,j) ≤ Cardinalitymax(Rg,k,l) and Cardinalitymin(Rs,i,j) ≥

Cardinalitymin(Rg,k,l)) in Definition 5 is expressed in four rules (cf. R6, R9, R10, R11 in Table 3.7) as

with SWRL we can only express AND operator. Similarly, the condition (Cardinalityvalue (Rs,i,j)

≤ Cardinalityvalue) in Definition 5 (Rg,k,l) is expressed in two rules (cf. R7, R8 in Table 3.7).

5.3.3 Deducing a probable mapping

The rule R12 inferring a probable mapping derives directly from Definition 6. It deduces a probable

mapping between a relation of the generic model (noted Pg) and a relation of the specific model

(noted Ps) that satisfies at the same time the four conditions below:

1. they are linked by a potential mapping;

2. they are linked by a compatible functional mapping;

3. they are linked by an compatible inverse functional mapping;

4. they are linked by a compatible restriction mapping.

We distinguish between two kinds of probable mappings.

1. Equivalent probable mapping that can be deduced using one rule R13 (cf. Table 3.7). The rule

derives directly from Definition 7.

2. Specialization probable mapping that can be deduced using four distinct rules R14, R15, R16

and R17 (cf. Table 3.7). The rules derive from Definition 8. The definition expresses the

following formula.

Probable link ∧ (Restrictive range ∨ restrictive functional ∨ restrictive inverse functional ∨

restrictive cardinality).

As the disjunction operator does not exist in SWRL, we have expressed this formula in four

separate rules.

• R14 to express: probable link ∧ restrictive range.

• R15 to express: probable link ∧ restrictive functional.

• R16 to express: probable link ∧ restrictive inverse functional.

• R17 to express: probable link ∧ restrictive cardinality.

It may happen that relations of the specific model are more permissive than those of the

generic model. Thereby, inconsistencies mappings are deduced. In the following we describe

all the inconsistencies that can be deduced between two relations.

5 Step 3/4: deduction of mappings between relations and between attributes 73

5.4 Inconsistency deduction rules

Inconsistencies relate to potential mappings and derive directly from cardinalities.

If a relation from the specific model is more permissive than the potential mapped relation

of the generic model, then cardinalities of the two relations are incompatible. The cardinality

may concern cardinalities, functional properties or inverse functional properties of the mapped

relations. The process submits the deduced inconsistencies to the author. The author is advised

to restart the process again by specifying other mappings between classes than those specified

during the current process or to modify his model (cf. Section 6).

Let us to consider rule R18, which compares two relations linked by a potential mapping, and

where the relation of the specific model (noted Ps) is more permissive than the relation of the

generic model (noted Pg). That means that, it may be instances in the specific model that do not

respect the cardinality imposed by the relation of the generic model. This is why, when deducing

such inconsistency mapping, we invite the author to modify his model or to restart the merging

process by selecting other mappings between classes.

We have defined at all 5 rules to deduce inconsistencies, one rule for functional property

R18, another for inverse functional property R19 (cf. Table 3.7) and three for cardinality, as for

cardinality the two relations may have a minimum, a maximum or a defined value. We have

defined one rule for each case R20, R21 and R22 (cf. Table 3.7).

Once all structural knowledge have been checked between all two relations, only equivalent

or specialization probable links and inconsistency mappings are proposed to the author.

Concerning the probable links, as their name indicates it, they are only probable and not sure

(semantically). They have to be validated. On the other hand, inconsistencies mappings indicate

possible problems for defining a consistent merged model and the author is notified about that.

5.5 Applying the third step on John’s use case

First of all, the generic and specific models are transformed as instances of the defined meta-

model. Each class of the specific model becomes an instance of the Application Class class,

with the model attribute equal to specific. Similarly, each class of the generic model becomes

an instance of the Application Class class, with the model attribute equal to generic.

Furthermore, the equivalence (respectively specialization) mappings between classes of the

generic and specific models (defined or deduced) are modeled using the equivalenceMapping

(respectively specializationMapping) relation of the Application Class class.

After that, the deduction process can be performed on the defined meta-model and its
instances. Several mappings are deduced. We describe some of them in Table 3.8. Only mappings
in bold are proposed to the author.

Generic model Specific model Tested condition Mapping

pre-requisite successor

domain, range potential mapping

functional prop compatible functional property

compatibe functional property

compatible inverse functional property

compatible restriction probable equivalent mapping

pre-requisite part-of

domain, range potential mapping

functional prop compatible functional property

compatibe functional property

compatible inverse functional property

compatible restriction probable equivalent mapping

abstraction abstraction

domain:CONCEPT

range:RESOURCE

domain:NOTION,

range:DESCRIPTION
domain, range potential mapping

74 Integrating author’s models into models of Adaptive Hypermedia Systems

functional prop restrictive functional property

restrictive functional property

restrictive inverse functional property

compatible restriction
sub equivalent probable map-

ping

Table 3.8 – A Part of deduced mappings between relations of the generic and specific models

6 Step 4/4: validation of mappings and presenting inconsisten-

cies

This step is interactive. It considers two distinct deductions: deduction of probable mappings

and deduction of inconsistencies.

In the following we note Rg a relation of the generic model and Rs a relation of the specific

model. We also use Cg to denote a class of the generic model, and Cs to denote a class of the

specific model.

6.1 Validating deduced mappings between relations

All probable mappings are presented to the author. The author has to validate each deduction,

choose the appropriate deduction when a relation is involved in different probable mappings or

reject a given deduction. In order to suggest the correct actions to be chosen, the process analyzes

relation per relation of the generic model. It distinguishes the following cases:

Rg is linked by only a probable mapping to Rs. In this case, the process checks whether Rg is

linked by inconsistency mappings to relations of the specific model having the same

domain and range as Rs

1. When there are also inconsistency mappings (cf. Figure 3.18), the author is informed

and is invited to validate or to reject the deduction of probable mappings and of

inconsistency mappings.

2. When there no inconsistency mappings (cf. Figure 3.19), the author is invited to

validate or to reject the deduction of probable mappings.

Rg is linked by several probable mappings to relations of the specific model. These relations of

specific model must have the same domain and range. In this case, the process checks

whether Rg is linked by inconsistency mappings to relations of the specific model having

the same domain and range as the considered relations of the specific model.

1. When there are also inconsistency mappings (cf. Figure 3.20), the author is informed

and is invited to choose between these probable mappings (zero, one or more) and of

inconsistency mappings.

2. When there are no inconsistency mappings (cf. Figure 3.21), the author is invited to

choose between these probable mappings (zero, one or more).

6 Step 4/4: validation of mappings and presenting inconsistencies 75

Figure 3.18 – Rg is linked by only a probable mapping to Rs1 and by inconsistency mappings to

relations of the specific model having the same domain and range as Rs1

Figure 3.19 – Rg is linked by only a probable mapping to Rs1 and by no inconsistency mappings

to relations of the specific model having the same domain and range as Rs1

Figure 3.20 – Rg is linked by a probable mapping to Rs1 and to Rs2 and by inconsistency mappings

to relations of the specific model having the same domain and range as Rs1

Figure 3.21 – Rg is linked by a probable mapping to Rs1 and to Rs2 and by no inconsistency

mappings to relations of the specific model having the same domain and range as Rs1

76 Integrating author’s models into models of Adaptive Hypermedia Systems

Note that, when the author validates or chooses a probable mapping, this later become a

sure mapping. Similarly, when the author rejects an inconsistency mapping, this later is no more

considered as a problem preventing from building the merged model. If others inconsistency

mappings subsist, they will be presented to the authors (cf. Section 6.2). Otherwise, the merged

model will be built (cf. Section. 6.3).

6.2 Presenting inconsistency mappings

Inconsistency mappings notify problems, particularly because they prevent from building a

coherent merged model. Consequently, the process advices the author to review his mappings

between classes, either:

1. the author may found mistakes in his definition of classes. The process advices him to start

the process again by specifying new mappings between classes;

2. the author is sure about his mappings between classes. The process advices him to check

his model and suggests him to carefully modify his model. In this case, the author has to

ensure that his modifications will not affect the instances of his model. Remember that, the

author targets to reuse existing reasoning on instances of his model, therefore the instances

are important and must not be lost.

6.3 Building the merged model

We propose an incremental reasoning to build the merged model. We consider class per class

of the generic model. A class of the generic model can have no mapping with any class of the

specific model, have one or more equivalence mappings with classes of the specific model, or

have one or more specialization mappings with classes of the specific model. Table 3.9 presents

reasoning on each of these cases.

Tested case Verifications on Cg , Cs linked Impact on the merged model

Cg has by the tested mapping

No mapping
Cg is added with its relations to the

merged model.

One or more equiva-

lence mappings.

Cg , Cs must have the same number

of relations, and each relation of Cg

has an equivalence mapping with a

relation of Cs.

If these verifications are satisfied,

both classes with their relations18, and

checked equivalence mappings are

added to the merged model, otherwise

the process stops19.

One or more special-

ization mappings.

Cg has a number of relations less

than or equal to the number of

relations of Cs, and each relation of

Cg has a probable mapping with a

relation of Cg .

If these verifications are satisfied, both

classes with their relations and checked

mappings are added to the merged

model, otherwise the process stops.

Table 3.9 – Reasoning to build the merged model.

18Classes and relations are added only if they don’t belong yet to the merged model. They are not duplicated in the

merged model
19The process stops and no merged model is proposed to the author

7 Summary 77

6.4 Applying the fourth and last step on John’s use case

When applying the process of validating deduced mappings between relations, we note that the

relation pre-requisite of the generic model has several probable mappings: a probable mapping

with the relation successor and another one with the relation part-of of the specific model. Both

relations successor and part-of have the same domain and range, but there is no inconsistency

mapping with a relation having the same domain and range as the relation successor. Therefore,

according to the proposed process (cf. Figure 3.21), this later will propose to John to choose

between these two deductions.

A detailled analysis about which mappings are proposed to John and which action John has

to perform is done in the fourth situation in Chapter 8, Section 1.

7 Summary

In this part of the thesis, we have proposed a process enabling an author to integrate his models

and instances with generic models. This process assumes the models to be merged are relatively

small and that the author has a very good understanding of his models. Consequently, he is

responsible for semantic validation.

The process is generic and can be performed on any generic and specific models expressed

in OWL. It relies on the author to start the design process. He has to specify a minimum set of

mappings between classes from which the system automatically deduces all the other possible

mappings and eventual inconsistencies. Above all, this process enables to check and to validate

the model resulting from the merging process.

To sum-up the process is characterized of:

• Conceptualization of 8 patterns. The patterns allow to deduce additional mappings between

classes of the author’s and generic models. They are based on recurrent structures that can

be present when merging the author’s and generic models.

• Definition of a generic solution, based on a modified version of the OWL meta-model. Therefore,

the process can be applied on any two OWL models.

• Expression of constraints in a declarative way by 22 rules. Indeed, we have formalized the

structural deductions needed by our process in 22 rules.

Basing on these characteristics, the process builds a merged model that includes at the same time

the generic and the specific model given as inputs and includes also mappings between the two

models. The mappings are very precise. As for structural deductions it is done automatically, and

for semantic validation we refer to the author’s knowledge. Therefore, the precision of mappings

is 100%.

We have implemented this process as a Protégé plug-in. The implementation and the

installation of the plug-in are presented in Chapter 7, and an experiment with the plug-in is

given in Chapter 8.

We argue that this process would help authors to reuse existing reasonings (reuse adaptation,

in the AH field). Note that, particularly in the AH field, when inside the merged model, some

elements of the generic model are not specialized by at least one element of the specific model,

this implies that, the part of adaptation exploiting these non specialized elements cannot be

reused. On the other hand, when inside the merged model, some elements of the specific model

have not a mapping with at least one element of the generic model, this implies that, the instances

of the non linked elements of the specific model will not be exploited in the adaptation, unless

the author extends manually the adaptation. For this purpose, in our plug-in, in addition of

78 Integrating author’s models into models of Adaptive Hypermedia Systems

proposing this process, we propose an overview of the non specialized elements of the generic

model and of the non linked elements of the specific model. Please refer to Chapter 7 for further

details.

Part IV

Assisting in the expression of

adaptive navigation

81

In this part of the thesis, we focus on the authoring process of the adaptation model, which

is most often the less intuitive part to be authored in AH by non technical persons, like teachers,

for example, who do not have the required logic or programming skills.

Indeed, authors have to specify an adaptation model, in which they describe resources to

propose to users having distinct characteristics and different knowledge, in order to reach their

specific goals. This is done through the definition of multiple adaptation strategies. By an

adaptation strategy, we mean which resources have to be proposed and how they will be proposed to a

set of users who share the same characteristics. Thereby, authors of an AH face numerous challenges

when defining their adaptation strategies.

• The first challenge concerns the expression of adaptation strategies. It is often done

using condition-action rules or event-condition-action rules, which is complex and time-

consuming. Recent solutions propose graphical tools or languages using constructors to

support the expression adaptation.

• The second challenge concerns the reuse of adaptation strategies from one system to

another one, and the expression of adaptation strategies independently of any AHS. To do

so, a new paradigm has been proposed: ”write once, use many” [70]. This paradigm endorses

expressing adaptation at a high level, independently of all AHSs and then translating this

adaptation into a particular AHS.

• The third challenge concerns the granularity in writing adaptation strategies. Its target is

to avoid writing the common parts of adaptation strategies several times.

As shown in Chapter 2, Section 2.2, till now, there have been no works concerning building

complex adaptation strategies, independent of any system by combining simple ones.

In this part of the thesis, we present a new framework addressing these three challenges.

The framework concentrates on the ease of defining adaptation strategies, at a fine granularity,

on combining them and on the facility of reusing existing adaptation strategies. Furthermore,

it enables authors to express their adaptation strategies at a high level, independently of any

adaptation engine.

We also propose a study of the expressivity of knowledge represented by our framework

versus GLAM and LAG. We have studied the expressivity of their modeling of adaptation and

also the expressivity of the elements on which the adaptation is expressed. From these studies,

we have come up with an integrated vision of the basic actions that can be used in defining

adaptation, and also with an unifying vision of modeling the domain model. These studies have

served as a basis for our definition of translators to GLAM and LAG.

This part is organized as follows. Chapter 4 presents our framework enabling authors to

define their own adaptation strategies. Afterward, Chapter 5 proposes a study of the expressivity

in our framework versus the expressivity in GLAM and in LAG. Finally, Chapter 6 describes how

our framework can be plugged to GLAM and LAG.

82

C H A P T E R 4

Expressing adaptive navigation using

adaptation patterns

1 Related work in expressing adaptive navigation in Adaptive Systems 85

1.1 What kind of adaptation could be provided? 85

1.2 How can authors express their adaptation? 86

1.3 Expressing adaptive navigation in open corpus Adaptive Systems 89

1.4 Summary . 89

2 Motivation through Jane’s use case . 90

2.1 Description of Jane’s domain and user models 90

2.2 Description of Jane’s adaptation . 91

3 Main aspects of the EAP framework . 91

3.1 Structure of author’s domain and user models used by the EAP framework 93

3.2 Steps to define a new adaptation strategy 93

4 Elementary adaptation patterns . 94

4.1 Fundamental criteria for defining elementary adaptation patterns 94

4.2 Description of elementary adaptation patterns 96

4.3 Typology of elementary adaptation patterns 99

5 Using the EAP framework to define adaptation strategies 99

5.1 Step 1/3: defining elementary adaptations 100

5.2 Step 2/3: linking elementary adaptations with user characteristics 102

5.3 Step 3/3: combining elementary adaptations 103

6 Summary . 107

84 Expressing adaptive navigation using adaptation patterns

In this chapter, we present a methodology to express adaptation strategies by concentrating

on the ease of defining adaptation strategies, independently of any adaptation engine, at a high

level and in an easy manner.

We perceive an adaptation strategy as a combination of elementary parts. Each part

corresponds to an elementary adaptation and is bound to a user characteristic. A part can belong

to different complex adaptation strategies depending on user characteristics. Our work takes

up this idea. The notion of elementary adaptation patterns that we propose, is an abstraction of

such elementary parts. Elementary adaptation patterns are independent from any application

domain, but limited to express adaptive navigation. We propose a typology for the elementary

adaptation patterns and a semi-automatic process to combine them. The most difficult part is

done automatically.

We implemented this process as a Protégé plug-in (cf. Chapter 7, Section 2). This has been

followed by the implementation of translators and by several experimentations which can be

found later in this thesis (cf. Chapter 8, Section 2.1).

This work has been published in the IEEE journal paper Transaction Learning Tech-

nologies [77], the international conference on Intelligent Systems Design and Applications

ISDA’2010 [75], and the Journées Francophones d’Ingénierie des Connaissances IC’2010 [76].

The chapter is organized as follows. It presents in Section 1 related work on the expression of

adaptation, and demonstrates the intuition of our work in Section 2, with a use case. Section 3

reviews the main aspects of our proposal. Section 4 presents the description of elementary

adaptation patterns and their organization in a typology, and Section 5 describes how elementary

adaptation patterns can be used to define adaptation strategies, and illustrates each step of the

process on the use case.

1 Related work in expressing adaptive navigation in Adaptive Systems 85

1 Related work in expressing adaptive navigation in Adaptive

Systems

Most often, during the authoring process of adaptation on existing domain and user models,

authors ask themselves two questions [7]:

Q1 what kind of adaptation can they provide for users?

Q2 how to produce the desired adaptation?

The two questions are answered in that order. For deciding what kind of adaptation they

can provide, authors may refer to existing typologies on adaptation (cf. Section 1.1), while for

producing adaptation, authors use the adaptation language developed in their own university

or the one adviced by people in their community. We present in Section 1.2 some of existing

adaptation languages.

On the other hand, as there are more and more resources available on the web, recent works

enable authors not only to define adaptation on their sets of resources but also on those available

on the web. So, we present works about integrating adaptive technologies on open corpus (cf.

Section 1.3).

1.1 What kind of adaptation could be provided?

The well-known Brusilovsky taxonomy [6] is undoubtedly the most used typology of adaptation.

It describes several methods of adaptation that can be combined together. The methods are

organized into two non disjoint groups: adaptive presentation and adaptive navigation support,

as presented in Chapter 2, Section 1.1. This typology assumes that the available resources can be

modified and restructured during the adaptation process. Hence, not all methods of this typology

are suitable when there is no control over the distributed resources.

As, in this thesis we focus on the expression of adaptive navigation, we get a particular

interest on methods included in the adaptive navigation support group. This group includes

six methods:

• Guidance: means that users are supervised step by step. It is done by proposing one link at

a time to users. It may be either local or global guidance. Global guidance means that the

system calculates complete navigation paths, while local guidance means that the system

calculates only the next step each time (e.g., it is proposed by Interbook [8]).

• Link sorting/ ordering: defines the priority of all the links of a particular page.

• Link hiding: hides, removes or disables links to users (e.g., AHA! [21] hides links that are

not relevant to users).

• Link annotation: suggests links to users. The suggestions are often expressed using visual

cues (e.g., WHURLE [49] uses colors for suggestions).

• Link generation: generates new links on a page.

• Map generation: proposes a reorganization of links to be presented to users. It is

implemented as a combination of other techniques. For example, AHA! [21] proposes this

reorganization of links in a separate frame.

Besides, Stash and al. [67] have proposed a classification of external actions that can be
implemented in AHS. This classification is summarized in Table 4.1 (as described in Stash

86 Expressing adaptive navigation using adaptation patterns

thesis [66]). It includes actions on individual items1 (e.g, selection, showing items or links to items),
actions on a set of items (e.g, ordering items), hierarchical actions (e.g, define a depth navigational
path using actions on children compared to the current item proposed to users) and actions on the
overall environment (e.g, changing the layout).

Basic actions on items Selection

Showing the content of an item

Showing a link to an item

Hierarchical actions on items Actions on child items of the current item

Actions on parent item of the current item

Actions on groups of items Ordering

(e.g., sibling) Performing “action on items” on each group of items

Action on the overall Changing the layout of the presentation

environment

Table 4.1 – Refined classification of actions in adaptive strategies according to [66]

As cited by Stash, the selection of items has no equivalent among the methods of the adaptive

navigation support group defined by Brusilovsky. However, it can be implemented as a part of

the adaptive multimedia presentation or altering fragments defined by Brusilovsky. The ordering

information can be implemented through direct guidance, link sorting, link annotation or link

hiding. Providing learners with navigational support can be implemented through the map

adaptation.

1.2 How can authors express their adaptation?

Multiple solutions are offered to authors to express adaptation. We have grouped the existing

solutions in three main categories.

1.2.1 Adaptation languages accompanied by their adaptation engine

Adaptation strategies written by these adaptation languages are often expressed in condition-

action or event-condition-action rules, like in AHA [21], WHURLE [49] or GLAM [39] (an

example of a GLAM adaptation strategy is given in the next section). However, authoring

adaptation using rules is not easy to perform and is time consuming.

Thereby, aids have been proposed to make the expression of adaptation easier. E.g, the Graph

Author Tool for AHA! [21] (cf. Chapter 2 in Section 2.2.1) uses visualization in order to help

authors. For each instance of concept, the tool applies templates in order to generate adaptation

rules. Regardless, authors are captive to a particular system. Adaptation strategies expressed in

a system cannot be reused outside this system. They have to be rewritten.

1.2.2 Generic adaptation languages accompanied by translators to existing adaptation

engines

Some generic languages (independent of any system) have been proposed to specify adaptation,

as presented in Chapter 2, Section 2.2.2. Among them, the LAG language [12], which is an

implementation of the specification of the adaptation language defined in the LAOS model [13].

It includes conversion to the WHURLE [49], Blackboard [54] and AHA! [21] adaptation engines.

However, LAG is like a programming language, which is not very suitable for non technical

authors (an example is given in the next section).

1An item refers to a resource in the AH field.

1 Related work in expressing adaptive navigation in Adaptive Systems 87

Recently a new Generic Adaptation Language (GAL) has been developed to describe adaptive

hypermedia [65]. It argues to gather all functionalities of existing adaptation engines and to be

an intermediate language between existing authoring environments and adaptation engines. For

that, GAL plans to include translators from existing authoring environments to GAL and from

GAL to existing adaptation engines. It describes the navigational structure of a web application

using abstract constructs (e.g. units, attributes). But, the description of adaptation remains

difficult to specify, as authors have to write a GAL program (use of SPARQL2queries to select

resources) in a sequential way and no aid is proposed for them.

Furthermore, generated adaptation strategies by these adaptation languages are considered

as a whole block and can not easily be reused.

1.2.3 Hypertext and adaptation patterns

Some design patterns for expressing personalization in web applications have been pro-

posed [20], based on commonly used design structures. Before going further in these

contributions, let us first introduce the notion of design patterns.

Design patterns

We cannot speak about design patterns without citing the definition of the pioneer of design

patterns, the architect Alexander. He describes a design pattern as ”.. a problem which occurs over

and over again in our environment, and then describes the core of the solution to that problem, in such

way that you can use this solution a million times over, without ever doing it the same way twice” [31].

They have been firstly used in architecture, afterward they have been used in other fields and

particularly in software engineering.

In short, a design pattern describes a recurrent solution to a common problem in software

design. The proposed solution is generic and cannot be directly translated to code. A design

pattern is described using the characteristics presented in Figure 4.1.

Pattern Name and Classification: the pattern’s name that helps in identifying the pattern.

Intent: a short description explaining the goal of the pattern and the reason for using it.

Motivation: a scenario illustrating the design problem and a context in which this pattern can be used.

Applicability: situations in which this pattern can be usable. It must highlight how to recognize these

situations.

Solution: a graphical representation of the pattern using a notation based on the Object Modeling

Technique (OMT) [58].

Constituents: the set of the classes and objects used in the pattern and their responsibilities.

Collaboration: a description of the interactions between the participants of this pattern.

Consequences: a description of the results, side effects, and trade offs caused by using this pattern.

Implementation: a description of an implementation of this pattern.

Sample Code: an illustration of how this pattern can be used in a programming language.

Known Uses: examples of real usages of this pattern.

Related Patterns: a discussion compared to other patterns, its similarities or main differences, the pattern

with which it can be combined.

Figure 4.1 – Description of the structure of a design pattern [31]

Using this structure, several design patterns have been proposed. They have been organized

in different groups according to their purpose (creational, structural or behavioral) and their

2www.w3.org/TR/rdf-sparql-query/

88 Expressing adaptive navigation using adaptation patterns

scope (applied on classes or objects) [31].

In practice, design patterns have proved several advantages such as speeding up the

development process by providing tested and proven development paradigms, etc.

Adaptation patterns based on design patterns

Garzotto et al. [32] have proposed patterns to express adaptation strategies according to

learning styles. More precisely, they have used Felder/Silverman learning style model to define

their patterns. For each learning style attribute of this model, a pattern has been proposed. It

is defined using three of the characteristics of the design patterns: Name, Intent and Solution.

These three characteristics are explained further in Figure 4.2 and are illustrated by an example

in Figure 4.3 .

Name: specifies the name of the pattern.

Intent: describes the problem for which this pattern can be used.

Solution: uses four dimensions to describe the solution

• the content: specifies resources that would be proposed to users.

• the possibilities of navigation and interactions: describes how users are going to navigate through

the proposed resources.

• the activities: describes the actions that can be performed on resources by users (like: answering

exercises, tagging)

• the lay-out: describes the presentation tasks (like colors, fonts).

Figure 4.2 – Structure of a design pattern as described by Garzotto et al. [32]

Name: Global learner.

Intent: addresses the needs of a global learner.

Solution: uses four dimensions to describe the solution

• the content:

– provides preview of the topic,

– highlights advanced concepts,

– provides information on relationships to the context of a topic - theoretical/conceptual,

– provides information on relationships to relevant topics,

– includes exercises at any level of detail about a topic and those involving creativity and

involving generating alternative solutions that differ from the classical ones.

• the possibilities of navigation and interactions:

– provide the learner with a wide set of navigation facilities,

– support top-down learning,

– allow learners to look for advanced concepts and to exercise even when all prerequisite

elements are not yet fully explored.

• the activities:

– allow learners to input alternative solutions beside offering the selection among a set of

standard solutions

– allow learners to input comments and criticism

• the lay-out: In the different pages, it highlights challenging exercises and topics.

Figure 4.3 – Example of a design pattern as defined by Garzotto et al. [32]

1 Related work in expressing adaptive navigation in Adaptive Systems 89

However, there is no real formalization and no support for an automatic export to a particular

adaptation language. One adaptation strategy (as complex as it can be defined by authors) is

expressed using only one pattern. Patterns can not be either combined together or modified, i.e,

authors have to find a pattern corresponding to their desired adaptation strategy, otherwise, they

can not express it.

Cristea et al. [5] have identified design tasks and problems that a designer of AEH must

consider. These tasks and problems have been organized in five groups, as follows:

1. A group related to a learner model. It specifies the relevant attributes that have to be

captured in the learner model.

2. A group related to detection mechanisms of learner characteristics. It specifies the structure

of the learner model and the mechanisms that would be used to update it.

3. A group related to instructional strategy definition. It addressed an adaptation strategy for

each distinct learner characteristic.

4. A group related to instructional view definition. It specifies all information needed by

the adaptation. This includes the appropriate resources to be proposed, the structure of

navigation or presentation.

5. A group related to adaptation mechanism definition. It specifies how the system acts after

learner updates. For example: which layout will be proposed or which user characteristic

is going to be updated.

Each group has been associated to one pattern as it defines a single problem. The proposed

patterns consider only three characteristics of the design patterns: Name, Intent and Solution.

However, similarly to the work done by Garzotto et al. [32], there is no formalization and no

support for an automatic export to a particular adaptation language. One adaptation strategy (as

complex as it can be defined by authors) is expressed using only one pattern.

1.3 Expressing adaptive navigation in open corpus Adaptive Systems

In the AH community, research concerning the integration of open corpus content into adaptive

systems has been under scrutiny for several years - mostly in education [7]. Most of the existing

systems are built upon an existing AHS (e.g., [12] on top of [21]). Multiple issues are to be faced in

order to develop open corpus based AHS [5, 9], including automatic hypertext creation, indexing

of open corpus resources and content preparation. None of these systems faces the problem of

expressing adaptation, by AH authors, in a simple way.

1.4 Summary

We have discussed here solutions helping authors to find which adaptation they can propose

and how they can express it. However, till now, there have been no works concerning building

complex adaptation strategies, independent of any system by combining simple adaptations.

In this thesis, we focus on this specific point. Adaptation strategies must be defined at a fine

granularity. Our aim is thus to help authors define their own adaptations, independently of any

adaptation engine, at a high level and in an easy manner. In the next Section, we introduce a use

case giving the intuition of our contribution. This scenario is subsequently used in this chapter.

90 Expressing adaptive navigation using adaptation patterns

2 Motivation through Jane’s use case

Assume that Jane, who is a course author wants, to build an adaptive course from her material,

i.e., Jane is going to author an AEH. She has first to define a domain model, then to describe the

characteristics of her students in a user model, and finally to express the desired adaptation.

2.1 Description of Jane’s domain and user models

Jane proposes a domain model3 (cf. Figure 4.4), in which she considers the addressed notions

as instances of the class Concept4. The concepts must be learned in a particular order, that

is defined through the relation prerequisite. Each concept may be trained using definitions or

examples. Definition and Example are subclasses of the class Resource, i.e. each of their instances

has a content, which can be proposed to students. Furthermore, each resource may be in

different formats: text, image or video. Jane opts thus for textual and audio definitions, textual

examples and audio exercises addressing the database concept, textual definitions and textual

exercises addressing the relational model concept. For example, a textual definition can address

the relational operators concept. In terms of prerequisite relations, the database concept can

be a prerequisite of the relational model concept, which in turn can be a prerequisite of the

relational operators concept.

Definition Example

Conceptabstraction
Resource

format (Text, Image, Video)

* *

pre-requisite
*

*

Figure 4.4 – Jane’s domain model in UML

Jane considers the following student characteristics (cf. Figure 4.5):

• learning mode: in-depth learning mode means that each subject must be known in-depth

before going to a related subject. In-breadth learning mode means that a student has to

know a variety of subjects before going in-depth;

User

 learning mode (in-depth , in-breadth)
 reasoning mode (inductive, deductive)
 presentation form (verbal, audio)

Figure 4.5 – Jane’s user model in UML

• reasoning mode: an inductive reasoning mode means that the student has access to

3UML has been chosen here only for visual reasons.
4Here, names of classes have the first letter in upper-case and are in italic, and names of instances have the same name

as the class for which they belong in lower-case.

3 Main aspects of the EAP framework 91

examples before the related definitions are presented to him. In a deductive reasoning mode

definitions precede examples;

• presentation form: a verbal presentation form is for students preferring textual resources,

an audio presentation form is for those preferring audio ones.

2.2 Description of Jane’s adaptation

Among the adaptation strategies that Jane wants to propose, we only focus on the adaptation

strategy S1. It concerns students whose learning mode is in-depth, with an inductive reasoning

mode and preferring audio resources. S1 proposes resources that are examples before those which

are definitions. They will be in an audio format if available, otherwise in a textual format. They

will be related to concepts ordered according to a depth-first navigational path using the relation

pre-requisite.

Jane can express S1 using solutions supported by her AHS. However, they are not easy to

implement and require good backgrounds. See as an illustration, the implementation of S1 using

GLAM in Figure 4.6 (for GLAM syntax see Section 1.1.1), and using LAG in Figure 4.7 (for LAG

syntax see Section 2.2.2). This implies that Jane already has her domain and user models in the

format understood by her AHS.

Naturally, Jane expressed S1 in three parts:

S1-1 concerns students whose learning mode is in-depth;

S1-2 concerns students with an inductive reasoning mode;

S1-3 concerns students preferring audio resources.

These parts can be considered independently of one another and may compose other

adaptation strategies, for example S2, an adaptation strategy for students whose learning mode

is in-depth, with an inductive reasoning mode and preferring textual resources. S2 differs from S1

only in proposing resources in a textual format if available, otherwise in an audio format.

To enable Jane to easily define her strategies, i.e. in the most natural way possible, we offer

the possibility to specify each part of an adaptation strategy by defining the set of resources to

propose and the order in which they have to be proposed. According to this approach, S1 will

be built from the following parts:

S1-1 presents resources linked to the domain concepts ordered according to a

depth-first navigational path using the prerequisite relation;

S1-2 presents only audio resources if they are available otherwise presents

textual resources;

S1-3 presents examples before definitions.

The adaptation strategy S1 is intended to students with specific characteristics. Therefore,

each part of the strategy has to be labelled by a student characteristic, i.e. S1-1, for example, will

be defined for in-depth learning mode students. Thereby, to define S2, Jane can reuse the parts

S1-1 and S1-3, she only has to define the part S2-2 for the textual presentation form.

We presented here the intuition of our contribution according to Jane’s needs. In the

following, we describe our approach in a more general way.

3 Main aspects of the EAP framework

We propose the EAP framework, an Elementary Adaptation Pattern based framework, in which

authors have a clear separation between what kind of adaptation strategies they want to provide

to users and the technics involved in writing them. The idea is to help authors in selecting the

adaptation strategy and then generate it in a semi-automatic way. Defined adaptation strategies

are described at a high level and independently of any adaptation engine.

92 Expressing adaptive navigation using adaptation patterns

S1 is defined in three steps (for GLAM syntax see Chapter 2, Section 1.1.1):

Step1: defining GLAM rules

R1 type(r, Example) ∧ format(r, audio) ∧ abstraction(r, concept1) ∧ abstraction(currentR, concept2) ∧
prerequisite(concept2, concept1) ∧ prerequisite*(concept1, goal) → Read(r, degree)

R2 type(r, Example) ∧ format(r, text) ∧ abstraction(r, concept1) ∧ abstraction(currentR, concept2) ∧
pr-requisite(concept2, concept1) ∧ prerequisite*(concept1, goal) → Read(r, degree)

R3 type(r, Definition) ∧ format(r, audio) ∧ abstraction(r, concept1) ∧ abstraction(currentR, concept2) ∧
prerequisite(concept2, concept1) ∧ prerequisite*(concept1, goal) → Read(r, degree)

R4 type(r, Definition) ∧ format(r, text) ∧ abstraction(r, concept1) ∧ abstraction(currentR, concept2) ∧
prerequisite(concept2, concept1) ∧ prerequisite*(concept1, goal) → Read(r, degree)

R5 type(r, Example) ∧ format(r, audio) ∧ abstraction(r, concept1) ∧ prerequisite*(concept1, goal) →
Read(r, degree)

R6 type(r, Example) ∧ format(r, text) ∧ abstraction(r, concept1) ∧ prerequisite*(concept1, goal) → Read(r,

degree)

R7 type(r, Definition) ∧ format(r, audio) ∧ abstraction(r, concept1) ∧ prerequisite*(concept1, goal) →
Read(r, degree)

R8 type (r, Definition) ∧ format (r, text) ∧ abstraction(r, concept1) ∧ prerequisite (concept1, goal) →
Read(r, degree)

Note that: each of currentR, concept1 and concept2, presents a variable indicating an instance of

Resource class.

R1 proposes audio examples according to a depth-first navigational path based on concepts using

the relation prerequisite between concepts, and these concepts enable to reach the goala.

R5 proposes audio examples that are linked to concepts which enable to reach the goal.

Step2: defining associations between rules and user characteristics (for each user characteristic,

we associate a set of rules, otherwise the user characteristic is not considered in adaptation) :

• The value audio of the user characteristic presentation form is associated to R1, R3, R5, R7

• The value textual of the user characteristic presentation form is associated to R2, R4, R6, R8

• The value inductive of the user characteristic reasoning mode is associated to R1, R2, R3, R4,

R5, R6, R7, R8

• The value depth-first of the user characteristic learning mode is associated to R1, R2, R3, R4,

R5, R6, R7, R8

Step3: defining GLAM meta-rules

MR1 The value audio of the user characteristic presentation form > The value textual of the user

characteristic presentation form

MR2 R1 ⊃ R5 MR3 R1 ⊃ R6

MR4 R1 ⊃ R7 MR5 R1 ⊃ R8

MR6 R2 ⊃ R5 MR7 R2 ⊃ R6

MR8 R2 ⊃ R7 MR9 R2 ⊃ R8

MR10 R3 ⊃ R5 MR11 R3 ⊃ R6

MR12 R3 ⊃ R7 MR13 R3 ⊃ R8

MR14 R4 ⊃ R5 MR15 R4 ⊃ R6

MR16 R4 ⊃ R7 MR17 R4 ⊃ R8

MR18 R1 ⊃ R3 MR19 R2 ⊃ R4

MR20 R5 ⊃ R7 MR21 R6 ⊃ R8

(MR1 means that the rules associated to the characteristic presentation form whose value is audio

are executed, when they return no results, the rules associated to the characteristic presentation

form whose value is text are executed).

aThe goal is a particular concept to be reached by students

Figure 4.6 – Jane’s S1 in the GLAM format

3 Main aspects of the EAP framework 93

initialization (

while true (

PM.GM.Concept.show = false

UM.Concept.defAudio = false)

while (enough(GM.Concept.type == Example

GM.Concept.label == audio, 2))

do (PM.GM.Concept.show = true)

)

implementation (

if enough(PM.GM.Concept.access == true

GM.Concept.type == Definition , 2)

then (PM.GM.Concept.show = true

UM.Concept.defAudio = true)

if enough (PM.GM.Concept.Parent.access == true

UM.Concept.defAudio == true

GM.Concept.type == Example , 3)

then (PM.DM.Concept.show = true)

)

Figure 4.7 – Jane’s S1 in the LAG format

The EAP framework focuses only on the expression of adaptation strategies. So, it assumes

authors have already created their domain and user models. Furthermore, our framework is

based on design patterns [31] (for an introduction on design patterns, see Section 1.2.3). We argue

that designing an adaptation strategy is a kind of conception: authors design similar adaptation

strategies on different elements. Consequently, the proposed framework uses a set of building

blocks independent from any application domain, called elementary adaptation patterns, which are

based on design patterns. Thereby they can be used and instantiated to define specific adaptation

strategies.

In the following, first, we describe the general structure of author’s domain and user models.

Afterward, we explain the main steps of the EAP framework. Finally, we apply the EAP

framework on Jane’s use case.

3.1 Structure of author’s domain and user models used by the EAP

framework

The EAP framework accepts any domain and user models that are composed of a set of classes,

properties and relations between classes.

As for the domain model, the EAP framework makes a clear separation between concepts

and resources. Therefore, the author’s domain model must include either concepts alone, or

resources alone or both concepts and resources with a clear separation between both. When a

domain model includes both resources and concepts, a particular relation is defined in order to

link the class modeling concepts and the class(es) modeling resources. We refer to this relation

by abstraction and no constraints are defined on it.

3.2 Steps to define a new adaptation strategy

The main steps for authoring an adaptation strategy with the EAP framework are:

1. Selection. The author either selects elementary adaptation patterns (those needed to define

his adaptation strategy) and instantiates them on his own model (thereby, elementary

adaptations are defined), or reuses existing elementary adaptations.

94 Expressing adaptive navigation using adaptation patterns

2. Specification. The creator specifies associations between user characteristics and elementary

adaptations.

3. Computation. The computation of the adaptation strategy resulting from step 2 is automatic.

We have defined a typology and a library of elementary adaptation patterns that can be

selected for use within an adaptation strategy, which we introduce in Section 4. The instantiation

process and the combination process are described in Section 5.

4 Elementary adaptation patterns

The notion of elementary adaptation patterns that we propose, is an abstraction of Jane’s parts

S1-1, S1-2, S1-3. Furthermore, we define our elementary adaptation patterns in a manner that

is independent from any application domain in order to be able to cover other authors’ parts.

Thereby, the criteria used to define our elementary adaptation patterns are defined in a generic

way (cf. Section 4.1). The syntax and semantic of elementary adaptation patterns are described

in Section 4.2, and their typology is defined in Section 4.3.

4.1 Fundamental criteria for defining elementary adaptation patterns

Like each part of S1 defined by Jane, an elementary adaptation pattern targets a set of resources

of a particular type to be presented and also specifies the order in which they will be proposed.

This Section presents exhaustive criteria to select resources (cf. Section 4.1.1) and to organize the

selected resources (cf. Section 4.1.2).

4.1.1 Criteria used to select resources

Criteria used to select resources are based on the domain model, where the available resources

are structured and described. We argue that the general description of a domain model includes

the following elements.

• A set of classes. This set must contain the class representing all the resources (called Resource)

to be proposed to users, and the class representing all the domain concepts (called Concept).

• A set of relations between classes. Each relation defines a graph on instances of classes on

which it is defined. This graph can be navigated according to two different navigational

paths in order to reach the goals: depth-first or breadth first.

• A set of properties.

Thereby, we have differentiated between criteria selecting resources and criteria defining a

navigational path on relations. Our criteria for selecting resources are: their belonging to a

class, the values of some properties, or the presence of a relation that defines a navigational

path through the resources or the concepts graph. Furthermore, our criteria currently considered

for defining a navigational path are either depth-first or breadth-first.

4.1.2 Criteria used to order the selected resources

We have looked over works defining adaptation methods, by giving a particular interest to

adaptive navigation, without worrying whether the methods are applied on a set of links to

resources or resources themselves.

4 Elementary adaptation patterns 95

We have looked over the Brusilovsky typology (cf. Section 1.1) methods of the adaptive

navigation support group excluding those modifying resources (e.g, hiding links belonging to

content of resources). Only direct guidance, adaptive ordering and adaptive link annotation have been

considered. We have grouped the direct guidance and adaptive ordering in one operation as both of

them define a kind of order either on a link or on several links per time. Therefore, two operations

come from the Brusilovsky typology.

We have also looked over the classification of external actions in AHS defined by Stash and

al. [66]. Similarly as before, we only consider the actions having impact on the navigation,

which include: actions on items, actions on a set of items and hierarchical actions. Furthermore, we

distinguish between actions and elements on which the actions are performed. The elements

can be an item, a set of items, parents or children. So, we only consider the selection, show and

order actions. Note that the show action cannot be used alone, it is necessarily combined to other

actions. The combination of order and show actions is equivalent to the order operation defined

by Brusilosvky. Therefore, we can neglect it, and retain only the combination of select and show

actions.

On the other hand, we have looked over AHS implementing adaptive navigation like

AHA! [22], WHURLE [49], GLAM [39] etc. We found that GLAM implements a kind of

adaptation not mentioned elsewhere. This adaptation proposes alternative resources if the

desired resources are not available. We find it interesting and have retained it in our own

typology.

From this study, we retained two operations from the Brusilovsky typology and one

combination of actions from the Stash classification and one adaptation from the GLAM platform.

Thus, we conclude that there are four basic modes to select resources in a setting of adaptive

navigation support, which are described below.

1 - Selection only mode

• Description: it provides a set of resources, which are all proposed to users, i.e, only the

selected resources are proposed to users, the other resources are not proposed.

• Example: we may propose only definitions.

• Comparison with existing works: it is equivalent to the combination of the selection and show

actions described by Stash et al. In fact, Stash et al. propose to select and show selected

resources in two separate processes, while in our approach implicitly all selected resources

are shown. There is no equivalent in the Brusilovsky typology.

2 - Recommended selection mode

• Description: it provides multiple sets of resources (at least two) that include knowledge to

specify which set should be recommended rather than the other (sets of) resources.

• Example: in e-learning, we may recommend definitions rather than examples. The user can

access to both types of resource, but a typographic indication enables the user to identify

which resources are recommended.

• Comparison with existing works: it is equivalent to the adaptive link annotation described by

Brusilovsky. There is no equivalent in the actions described by Stash et al.

3 - Ordered selection mode

• Description: it provides multiple sets of resources (at least two), accompanied with

knowledge to specify the order in which they must be presented. Only one set of resources

is proposed at a time, and the resources of a particular set are not proposed until all the

resources of all sets of higher priority have been viewed by the user.

96 Expressing adaptive navigation using adaptation patterns

• Example: in e-learning, concepts can be selected and ordered using the prerequisite relation

defined between concepts.

• Comparison with existing works: it is equivalent to the adaptive ordering and to the direct

guidance described by Brusilovsky when the returned result includes only one resource in

each set. It is also equivalent to the combination of the order and show actions described by

Stash et al.

4 - Alternate selection mode

• Description: it provides multiple sets of resources (at least two), accompanied with data that

specifies the order in which they must be presented, knowing that only one set is presented

to the user.

• Example: we propose textual resources when they are available, and audio resources in the

absence of textual resources.

• Comparison with existing works: neither Brusilosvky nor Stash et al. have considered this

selection mode.

4.2 Description of elementary adaptation patterns

Here, we present in Section 4.2.1 a general definition of an elementary adaptation pattern.

Afterward in Section 4.2.2 we detail the syntax defined for an elementary adaptation pattern.

Finally, in Section 4.2.3, we present the semantic associated to the defined syntax.

4.2.1 Definition of an elementary adaptation pattern

We propose the following definition for elementary adaptation patterns, based on the definition

of design patterns [31].

Definition 9 An elementary adaptation pattern describes a generic solution for a generic elementary

adaptation problem.

This solution is independent from any language, and exploits the characteristics of the domain

model.

Definition 10 A generic elementary adaptation problem describes a criterion to select resources to be

proposed and a criterion to define in which order the selected resources are going to be proposed.

4.2.2 Syntax of an elementary adaptation pattern

Figure 4.8 presents the characteristics retained from [31] and used to describe elementary

adaptation patterns.

The solution part is the most formal part of the elementary adaptation patterns. We have

defined a grammar using the Extended Backus-Naur Form (EBNF) [29]. This grammar is

described in Figure 4.9. It includes a set of non-terminal elements expressed between brackets,

and a set of terminal elements expressed between quoats. For people not familiar with the EBNF

syntax, we give examples of the solution part respecting the proposed grammar in Appendix B.

These examples are also accompanied by an informal description.

4 Elementary adaptation patterns 97

Name the name of the elementary adaptation pattern described.

Intent the intent is a short statement about an elementary adaptation problem. It answers the

following questions: what is the elementary adaptation pattern supposed to do? i.e. what is

its goal? Indeed, it indicates the way the resources are selected and the way they are presented.

Solution the solution includes two elements:

• Expressions: denote a set of resources to be proposed to the user, and the conditions

which have to be satisfied. These conditions can be represented in one or more logical

expressions. Those to be considered simultaneously are gathered in the same expression,

while excluded conditions are expressed in different expressions. The formal description

of expressions may be accompanied by an informal description.

• Meta-expressions: a binary relation between two expressions. Indeed, when using

multiple expressions, we specify the way they have to be considered by using meta-

expressions. The formal description of meta-expressions may be accompanied by an

informal description.

Constituents describe the elements of the domain model used in the expressions described in the

solution pattern.

Figure 4.8 – Description of elementary adaptation patterns

4.2.3 Semantic of an elementary adaptation pattern

We give an informal description of the semantics of the language defined by the grammar and

some associated constraints. In order to do so, we consider a domain model DM, composed of:

• Cls = {c/ c is a class}

• Rel = {rel/ rel is a relation}

• Prop = {p/ p is a property}

• Valp = {v/ v is a value of the property p}

• Res = {r/ r is a resource}

We defined DM elements as general elements in the grammar (cf. Figure 4.10). Afterward, we

defined predicates to select resources or concepts. The predicates are:

• instanceOf : instanceOf(r, c) is true, for all resources r that are instances of class c.

• characteristicOf : characteristicOf(r, p, op, v) is true, for all resources r having the property p

and satisfying the comparison test using the operator op and the value v.

• linked: linked(i1, i2, rel) is true, for all instances i1 that are linked directly to instance i2 by

relation rel.

• linked-transitive: linked-transitive(i1, i2, rel) is true, for all instances i1 that are linked directly

or indirectly to instance i2 by relation rel.

• distance: distance(i1, i2, rel, n) is true, for all instances i1 that are distant from instance i2 by

n instances using relation rel.

These predicates compose 3 types of expressions:

• <Expcls > for expressions on classes.

98 Expressing adaptive navigation using adaptation patterns

〈Solution〉 ::= 〈Expressions〉 〈Meta-Expressions〉.

〈Expressions〉 ::= (〈Expressionrel〉)*| (〈Expressionprop〉)*| (〈Expressioncls〉)+.

〈Meta-expressions〉 ::= (〈Id〉 ”≺” 〈Id〉)* | (〈Id〉 ”⊎” 〈Id〉)* | (〈Id〉 ”|” 〈Id〉)*.

〈Expressionrel〉 ::= 〈Id〉 ”:”〈Exprel〉 (”∧” 〈Exprel〉)*.

〈Expressionprop〉 ::= 〈Id〉 ”:”〈Expprop〉.
〈Expressioncls〉 ::= 〈Id〉 ”:”〈Expcls〉.

〈Exprel〉 ::= linked ”(”〈Inst〉”,” 〈Inst〉 ”,” 〈Rel〉 ”)” |
linked-transitive ”(”〈Inst〉”,” 〈Inst〉 ”,” 〈Rel〉 ”)” |
distance ”(”〈Inst〉”,” 〈Inst〉 ”,” 〈Rel〉 ”,” 〈Number〉”)”.

〈Expprop〉 ::= characteristicOf ”(”〈Res〉”,” 〈Prop〉 ”,” 〈Operator〉 ”,” 〈Val〉”)” .

〈Operator〉 ::= ”=” |”6=” | ”≤” | ”≥”.

〈Expcls〉 ::= instanceOf ”(” 〈Res〉”,” 〈Cls〉 ”)” .

〈Id〉 ::= 〈String〉.

〈Cls〉 ::= ”c”〈Number〉 .

〈Inst〉 ::= ”concept”〈Number〉 | 〈Res〉.

〈Res〉 ::= ”resource”〈Number〉 .

〈Rel〉 ::= ”r”〈Number〉 .

〈Prop〉 ::= ”p”〈Number〉 .

〈Val〉 ::= (〈String〉 — 〈Number〉)+.

〈String〉 ::= [”a”-”z”] 〈String〉 * .

〈Number〉 ::= [”0”-”9”] 〈Number〉 * .

Figure 4.9 – Syntax of the characteristic Solution

• <Expprop > for expressions on properties. Expressions belonging to the same solution part

are expressed on the same property.

• <Exprel > for expressions on relations. When the expression includes multiple selections,

the variables indicating the selected resources are the same.

When more than one expression is defined in a solution, meta-expressions must be defined

between all expressions of the solution. This is done using the expression identifiers. Each

identifier used in the definition of a meta-expression must correspond to an expression identifier.

Three types of meta-expressions are proposed:

• <Id1> ≺ <Id2> means that the set of resources selected with the expression identified by

Id1 is proposed before the one selected with the expression identified by Id2.

• <Id1> ⊎ <Id2> means that the set of resources selected with the expression identified

by Id1 is recommended rather than the one selected with the expression identified by

Id2. A typographic indication can be used to differentiate between the set of resources

recommended from those that are not.

5 Using the EAP framework to define adaptation strategies 99

Elements Variable referring to

<Number> any integer number

<String> any string

<Id> identifiers. Identifiers belonging to the same solution part have to be different

<Res> a resource

<Inst> either a concept or a resource

<Cls> a class of DM

<Rel> a relation of DM

<Prop> a property of DM

<Val> a value of a property

Figure 4.10 – Description of general elements

• <Id1> | <Id2> means that the set of resources selected with the expression identified by

Id2 is an alternative to the one selected with the expression identified by Id1.

4.3 Typology of elementary adaptation patterns

We have defined a library of 22 elementary adaptation patterns using the criteria defined in

Section 4.1. An elementary adaptation pattern is based simultaneously on:

• one of the 4 selection modes of resources to be proposed;

• one of the 3 elements of the domain model involved in the selection process and when the

element is a relation, we also consider:

– one of the 2 types of navigation through the resources or the concepts graph. The 2

navigation modes are applied for all the selection modes except for the selection only

mode, which proposes a set of resources selected using criterion on classes, properties

or relations.

In order to be able to look easily over the defined elementary adaptation patterns, we have

organized them in a tree where each leaf is an elementary adaptation pattern (cf. Figure 4.11).

The tree represents our typology.

Let us now use this typology to help Jane to define S1. We note that each part of S1 can be

defined thanks to a pattern.

The pattern P2.1.1.1 (cf. Appendix B, Table B.2) is used to define S1-1 (S1-1 consists of ordering

concepts according to a depth-first navigational path using the relation pre-requisite, and

presents resources linked to these concepts).

The pattern P4.3 (cf. Appendix B, Table B.4) is used to define S1-2 (S1-2 consists of presenting

only audio resources if they are available otherwise presents textual resources).

The pattern P2.2 (cf. Appendix B, Table B.2) is used to define S1 -3 (S1-3 consists of presenting

examples before definitions).

After having described the typology and some elementary adaptation patterns, let’s come

back to the process of defining adaptation strategies.

5 Using the EAP framework to define adaptation strategies

This Section gives further information on each step of the process of authoring adaptation

strategies using the EAP framework (cf. Section 3).

100 Expressing adaptive navigation using adaptation patterns

Adaptive
navigation

1. Selection only

2. Ordered
Selection

3. Recommended
Selection

.1. Relations

.2. Classes

.1. Relations

.2. Classes

.3. Properties

.2. Classes

.1. Relations

.2. Classes

.3. Properties

.3. Properties

.3. Properties

Type of navigation on
 the domain model

Selection modes Elements of
the domain model

4. Alternate
Selection

..2. Resource

.1. Relations

..1. Concept

..1. Concept

..2. Resource

...2. Breath-first

...1. Depth-first

...2. Breath-first

...1. Depth-first

Classes related
to relations

Navigational
path on instances

Patterns

P 1.1.1

P 1.1.2

P 1.3

P 1.2

P 2.1.1.2

P 2.1.1.1

P 2.1.2.2

P 2.1.2.1

P 2.3

P 2.2

P 3.3

P 3.2

..1. Concept

..2. Resource

...2. Breath-first

...1. Depth-first

...2. Breath-first

...1. Depth-first

P 3.1.1.2

P 3.1.1.1

P 3.1.2.2

P 3.1.2.1

P 4.3

P 4.2

..1. Concept

..2. Resource

...2. Breath-first

...1. Depth-first

...2. Breath-first

...1. Depth-first

P 4.1.1.2

P 4.1.1.1

P 4.1.2.2

P 4.1.2.1

Figure 4.11 – Typology of elementary adaptation patterns

We first describe step 1 related to the instantiation process of elementary adaptation patterns

(cf. Section 5.1). Then, we present step 2 related to the association of elementary adaptations

with user characteristics, and finally we detail step 3 related to the combination process (cf.

Section 5.3).

5.1 Step 1/3: defining elementary adaptations

In order to propose a generic solution, elementary adaptation patterns are defined on a generic

domain model. Consequently, when authors select an elementary adaptation pattern, they have

to instantiate its constituents on their personal domain model in order to obtain the elementary

adaptation that meets their needs.

5 Using the EAP framework to define adaptation strategies 101

5.1.1 Elementary adaptations

We define elementary adaptations as follows:

Definition 11 An elementary adaptation is obtained after an instantiation of an elementary adaptation

pattern on a particular domain model.

Elementary adaptations have therefore the same structure as elementary adaptation patterns.

The generation of an elementary adaptation is done in a semi-automatic way: the characteristics

Name, Intent are generated in a semi-automatic way and the characteristics Solution and

Constituents are automatically generated.

5.1.2 Applying the first step on Jane’s use case

When Jane wants to express the S1-1 part, she selects the pattern P2.1.1.1 and instantiates it with

relation prerequisite (for informal description, see Section 2, for formal description see Figure 4.12).

Name : Ordered Selection - Depth first- Prerequisite - Concept

Intent : This pattern proposes resources according to a depth first navigational path on concepts.

Solution :

• Expressions

E1:linked(currentR, concept’, abstraction) ∧ linked-transitive(concept, goal, prerequisite) ∧
linked(r, concept, abstraction) ∧ linked(concept, concept’, prerequisite)

E2: linked-transitive(concept, goal, prerequisite) ∧ linked(r, concept, abstraction)

According to E1: selected resources are linked to concepts using abstraction. these concepts

can reach the goal using prerequisite and are directly linked to the current concept. According

to E2: selected resources are linked to concepts using abstraction, these concepts can reach the

goal using prequisite.

• Meta-expressions

E1 ≺ E2

According to this meta-expression, the set of resources selected by E1 is proposed before the

set of resources selected by E2.

Constituents :

• concept: a variable describing an instance of the class Concept.

• currentR: a variable describing the current instance proposed to users of the class Resource or of

one of its specializations.

• goal: a variable describing the goal to reach, which is an instance of the class Concept.

• r: a variable describing an instance of the class Resource or of one of its specializations.

• prerequisite: a variable describing a relation defined between instances of the class Concept.

• abstraction: a variable describing a relation defined between an instance of the class Concept and

one or more instances of the class Resource or of one of its specializations.

Figure 4.12 – The elementary adaptation S1-1

Following this principle, Jane expresses the S1-2 part. She selects the pattern P4.3 and

instantiates it with the property format and attributes audio and textual (for informal description,

see Section 2, for formal description see Figure 4.13).

102 Expressing adaptive navigation using adaptation patterns

Name : Alternate Selection-format-audio/text

Intent : This elementary adaptation proposes audio resources if they are available otherwise, it proposes

textual resources.

Solution :

• Expressions

E1: characteristicOf (r, format, =, audio)

E2: characteristicOf(r, format, =, text)

According to E1, selected resources are all of audio format.

According to E2, selected resources are all of text format.

• Meta-expressions

E1 | E2

According to this meta-expression, only audio resources are proposed if available otherwise

textual resources would be proposed.

Constituents :

• r: a variable which represents an instance of the class Resource or of one of its specializations.

• format: a variable which represents the property format.

• audio (resp. text): a variable which represents value audio (resp. text) of the property format.

Figure 4.13 – The elementary adaptation S1-2

Jane also expresses the S1-3 part. She selects the pattern P2.2 and instantiates it with the

classes Example and Definition (for informal description, see Section 2, for formal description see

Figure 4.14).

Name : Ordered Selection-Example-Definition

Intent : This elementary adaptation proposes ordered resources belonging only to Example and Definition

in this order.

Solution :

• Expressions

E1: instanceOf (r, Example)

E2: instanceOf (r, Definition)

According to E1, selected resources are instances of the class Example.

According to E2, selected resources are instances of the class Definition.

• Meta-expressions

E1 ≺ E2

According to this meta-expression, all examples are proposed before all the definitions.

Constituents :

• r: a variable which represents an instance of the class Resource or of one of its specializations.

• Example: a variable which represents the class Example, a subclass of the class Resource.

• Definition: a variable which represents the class Definition, a subclass of the class Resource.

Figure 4.14 – The elementary adaptation S1-3

5.2 Step 2/3: linking elementary adaptations with user characteristics

After having defined multiple elementary adaptations, each of them must be associated to one

user characteristic (step 2 in Section 3).

5 Using the EAP framework to define adaptation strategies 103

5.2.1 Defining associations

Each user characteristic has to be associated to one elementary adaptation, in order to be

considered in the adaptation proposed to users. When a user characteristic is not associated to

an elementary adaptation, that means that this characteristic is not considered in the adaptation.

5.2.2 Applying the second step on Jane’s use case

This step is the easiest step. Jane has to associate each elementary adaptation previously defined

with user characteristics. She has to associate:

• S1-1 with in-depth learning mode;

• S1-2 with inductive reasoning mode;

• S1-3 with audio presentation form.

When users have a profile composed of several characteristics involved in adaptation,

complex adaptation strategies have to be defined. They are obtained by combining elementary

adaptations, each one being associated with a characteristic of the user profile. The combination

process is described below.

5.3 Step 3/3: combining elementary adaptations

Combining elementary adaptations together defines a combined adaptation.

5.3.1 Process of combining elementary adaptations

We define combined adaptations as follows:

Definition 12 A combined adaptation defines a set of resources that satisfies all constraints imposed by

multiple elementary adaptations simultaneously.

A combined adaptation has the same characteristics and is structurally identical to an

elementary adaptation. Concretely, the combination process of a set of elementary adaptations

consists in combining their characteristics together. A manual process is used to combine the

characteristics Name and Intent as it needs natural language processing (not detailed here). We

propose an automatic process to combine the characteristics Solution and Constituents, which is

explained further below.

The combination of the characteristic Constituents is simple. Constituents coming from the

different adaptations are gathered together into a set of constituents. But, the combination of

the characteristic Solution is more complex and we have defined the following process. We have

chosen to base the process on criteria concerning the selection of resources, as our final aim is

to propose a set of resources. Thereby, we have criteria based on: classes to which a resource

belongs, properties satisfied by a resource, and relations in which a resource participates. We

express this process in two sequential steps:

1. Build different sets of identifiers of expressions, one set for each different criterion.

2. Build one adaptation from the sets built in previous step.

Step one of the combination

Let Sol1, Sol2, ..., Soln be the solution part of the elementary adaptations to combine, where

each Soli is composed of:

104 Expressing adaptive navigation using adaptation patterns

• ni expressions noted Ei, each expression having an identifier Idi.

• mi meta-expressions noted MEi.

We group the identifiers whose expressions are expressed on one given criterion in different

sets.

• the identifiers whose expressions exploit classes are put in the same set Setcls = {Idi/ Idi is

an identifier that denotes an expression exploiting classes}.

• the identifiers whose expressions exploit relations are grouped into sets, one set per relation.

Setrel = {Idj/ Idj is an identifier that denotes an expression exploiting the relation rel}.

• the identifiers whose expressions exploit properties are grouped into sets, one set per

property. Setprop = {Idj/ Idj is an identifier that denotes an expression exploiting the

property prop}.

where each Idi ∈ Soli belongs only to one set, either to:

• the Setcls;

• to a set of {Setrel};

• to a set of {Setprop}.

Sets in a group correspond to exluded criteria. For example: a resource is only definition, and it

cannot be an exercise at the same time (following classical object model).

Step two of the combination

Let Set1, Set2, ..., Setp be the sets of identifiers obtained after the first step, let Solc be the

solution resulting from the second step of the combination process composed of:

• nj expressions noted CEc.

• mj meta-expressions noted CMEc.

Let Setc be the set of p tuples built as follows:

Setc = Set1XSet2X...XSetp

For each tuple, a distinct identifier is defined and is associated to an expression CEc:

CEp = E1 ∧ E2... ∧ Ep

where

• CEp is the expression belonging to Solc.

• Ei is the expression whose identifier is Idi, and Idi ∈ Soli, i = 1...p.

Identifiers are also used to associate knowledge with expressions. This results in defining

meta-expressions. Defining meta-expressions on the expressions Ec of the solution Solc is done

as follows.

Let CEi and CEj be two expressions belonging to the solution Solc, where CEi (resp. CEj)

contains E1 (resp. E2), E1 and E2 belong to the same solution, and are linked by the meta-

expression Id1 Mh Id2 (Id1 (resp. Id2) is the identifier of E1 (resp. E2)). In that case, we deduce

the meta-expression Idi Mh Idj (where Idi (resp. Idj) is the identifier of CEi (resp. CEj)).

5 Using the EAP framework to define adaptation strategies 105

Expressions Meta-expressions

S1-1 E1−1 = linked-transitive(r, goal, prerequisite) ∧ linked(rCurrent,

r, prerequisite)

E1−1 ≺ E1−2

E1−2 = linked-transitive(concept, goal, pre-requisite) ∧ linked(r,

concept, abstraction)

S1-2 E3−1 = instanceOf(r, Example) E3−2 = instanceOf(r, Definition) E3−1 ≺ E3−2

S1-3 E2−1 = characteristicOf(r, format, =, audio) E2−2 = characteris-

ticOf(r, format, =, text)

E2−1 | E2−2

Figure 4.15 – Description of S1-1, S1-2, S1-3

However, as a meta-expression is an anti-symmetric binary relation between two expressions,

two types of conflict can be encountered. They are processed automatically (by deleting all meta-

expressions in conflict except one). The process uses a default solution that can be changed by

the author.

• Conflict 1: The generation of the same relation between CEi and CEj and between CEj and

CEi (e.g. CE1 ≺ CE2 and CE2 ≺ CE1). We propose to order sets of adaptations obtained

after the first step according to (1) sets based on the navigational path of the graph, (2) sets

exploiting the type of the resources, (3) sets exploiting the characteristics of the resources.

• Conflict 2: The generation of two meta-expressions between two identical expressions (e.g.

CE1 ≺ CE2 and CE1 ⊎ CE2). We give a different priority to meta-expressions according to

the defined relation: (1) Priority, (2) Recommendation, (3) Alternate.

We have implemented the following deduction process of CMEc. The p sets of identifiers

coming from the first step are first ordered according to the proposed order in the resolution of

conflict 1. In a second time, each meta-expression defined using these identifiers allows us to

deduce multiple meta-expressions of CMEc. Each time a meta-expression is deduced, we check

if it does not generate a conflict with the already generated meta-expressions. If a conflict of the

first type is generated, the current meta-expression is not considered and the deduction process

will continue. If a conflict of the second type is generated, we retain only one meta-expression

according to the order defined in the solution of the second conflict.

5.3.2 Applying the third step on Jane’s use case

We focus now on the way S1-1, S1-2 and S1-3 are combined in order to produce S1. More

precisely, we detail the combination process of their characteristic Solution, which is performed

automatically as follows. It has as input 3 elementary adaptations expressed on 3 different

elements of the domain model.

After step 1 of the combination process, 3 sets are built, one adaptation per set (cf. Figure 4.15).

After step 2, one combined adaptation is built, which is composed of 8 expressions and 44

meta-expressions. The deduced expressions are the following:

• Ec,1 = E1−1∧ E2−1∧ E3−1 = linked-transitive(r, goal, prerequisite) ∧ linked(rCurrent, r,

prerequisite) ∧ characteristicOf(r, format, =, audio) ∧ instanceOf(r, Example)

• Ec,2 = E1−1∧ E2−1∧ E3−2 = linked-transitive(r, goal, prerequisite) ∧ linked(rCurrent, r,

prerequisite) ∧ characteristicOf(r, format, =, audio) ∧ instanceOf(r, Definition)

• Ec,3 = E1−1∧ E2−2∧ E3−1 = linked-transitive(r, goal, prerequisite) ∧ linked(rCurrent, r,

prerequisite) ∧ characteristicOf(r, format, =, text) ∧ instanceOf(r, Example)

106 Expressing adaptive navigation using adaptation patterns

• Ec,4 = E1−1∧ E2−2∧ E3−2 = linked-transitive(r, goal, prerequisite) ∧ linked(rCurrent, r,

prerequisite) ∧ characteristicOf(r, format, =, text) ∧ instanceOf(r, Definition)

• Ec,5 = E1−2∧ E2−1∧ E3−1 = linked-transitive(r, goal, prerequisite) ∧

characteristicOf(r, format, =, audio) ∧ instanceOf(r, Example)

• Ec,6 = E1−2∧ E2−1∧ E3−2 = linked-transitive(r, goal, prerequisite) ∧ characteristicOf(r,

format, =, text) ∧ instanceOf(r, Definition)

• Ec,7 = E1−2∧ E2−2∧ E3−1 = linked-transitive(r, goal, prerequisite) ∧ characteristicOf(r,

format, =, text) ∧ instanceOf(r, Example)

• Ec,8 = E1−2∧ E2−2∧ E3−2 = linked-transitive(r, goal, prerequisite) ∧ characteristicOf(r,

format, =, text) ∧ instanceOf(r, Definition)

Deducing meta-expressions is more complicated, we summarize the process in Table 4.2. It

has four columns: the first column includes meta-expressions belonging to the initial elementary

adaptations. The second column includes the deduced meta-expressions belonging to S1. The

third column presents the meta-expressions in conflict with the deduced one and the fourth

column presents either the retained meta-expression or why the deduced meta-expression was

not retained. We also crossed the meta-expressions that have been already deduced.

S1-1, S1-2, S1-3

Meta-expressions

S1 meta-

expressions

conflicts with ex-

isting ones
retained/ not retained meta-expressions

E1−1 ≺ E1−2 Ec,1 ≺ Ec,5 Ec,1 ≺ Ec,5

Ec,1 ≺ Ec,6 Ec,1 ≺ Ec,6

Ec,1 ≺ Ec,7 Ec,1 ≺ Ec,7

Ec,1 ≺ Ec,8 Ec,1 ≺ Ec,8

Ec,2 ≺ Ec,5 Ec,2 ≺ Ec,5

Ec,2 ≺ Ec,6 Ec,2 ≺ Ec,6

Ec,2 ≺ Ec,7 Ec,2 ≺ Ec,7

Ec,2 ≺ Ec,8 Ec,2 ≺ Ec,8

Ec,3 ≺ Ec,5 Ec,5 ≺ Ec,5

Ec,3 ≺ Ec,6 Ec,5 ≺ Ec,6

Ec,3 ≺ Ec,7 Ec,5 ≺ Ec,7

Ec,3 ≺ Ec,8 Ec,5 ≺ Ec,3

Ec,4 ≺ Ec,5 Ec,6 ≺ Ec,5

Ec,4 ≺ Ec,6 Ec,6 ≺ Ec,6

Ec,4 ≺ Ec,7 Ec,6 ≺ Ec,7

Ec,4 ≺ Ec,8 Ec,6 ≺ Ec,4

E2−1 | E2−2 Ec,1 | Ec,7 Ec,1 ≺ Ec,7 priority is given to ≺
Ec,1 | Ec,3 Ec,1 | Ec,3

Ec,1 | Ec,4 Ec,1 ≺ Ec,4 priority is given to ≺
Ec,1 | Ec,8 Ec,1 ≺ Ec,8 priority is given to ≺
Ec,2 | Ec,7 Ec,2 ≺ Ec,7 priority is given to ≺
Ec,2 | Ec,3 Ec,2 ≺ Ec,3 priority is given to ≺
Ec,2 | Ec,4 Ec,2 | Ec,4

Ec,2 | Ec,8 Ec,2 | Ec,8

Ec,5 | Ec,7 Ec,5 | Ec,7

Ec,5 | Ec,3 Ec,3 ≺ Ec,5 priority is given to ≺
Ec,5 | Ec,4 Ec,4 ≺ Ec,5 priority is given to ≺
Ec,5 | Ec,8 Ec,5 ≺ Ec,8 priority is given to ≺
Ec,6 | Ec,7 Ec,7 ≺ Ec,6 priority is given to ≺
Ec,6 | Ec,3 Ec,3 ≺ Ec,6 priority is given to ≺
Ec,6 | Ec,4 Ec,4 ≺ Ec,6 priority is given to ≺
Ec,6 | Ec,8 Ec,6 | Ec,8

6 Summary 107

E3−1 ≺ E3−2 Ec,1 ≺ Ec,2 Ec,1 ≺ Ec,2

Ec,1 ≺ Ec,4 Ec,1 ≺ Ec,4

Ec,1 ≺ Ec,6 (repetition)

Ec,1 ≺ Ec,8 (repetition)

Ec,5 ≺ Ec,2 Ec,2 ≺ Ec,5 adaptation on relations is a higher priority

Ec,5 ≺ Ec,4 Ec,4 ≺ Ec,5 adaptation on relations is a higher priority

Ec,5 ≺ Ec,6 Ec,5 ≺ Ec,6

Ec,5 ≺ Ec,8 Ec,3 ≺ Ec,8

Ec,3 ≺ Ec,2 Ec,3 ≺ Ec,2

Ec,3 ≺ Ec,4 Ec,3 ≺ Ec,4

Ec,3 ≺ Ec,4 (repetition)

Ec,3 ≺ Ec,8 (repetition)

Ec,7 ≺ Ec,2 Ec,2 ≺ Ec,7 adaptation on relations is a higher priority

Ec,7 ≺ Ec,4 Ec,4 ≺ Ec,7 adaptation on relations is a higher priority

Ec,7 ≺ Ec,6 Ec,7 ≺ Ec,6

Ec,7 ≺ Ec,8 Ec,7 ≺ Ec,8

Table 4.2 – Process of deducing meta-expressions of S1

6 Summary

This chapter proposes the EAP framework, in which adaptation strategies are defined at a finer

granularity than when using existing adaptation languages. This is obtained by the definition of

22 elementary adaptation patterns (cf. Appendix B) to express the adaptive navigation. We have

proposed a typology to organize them and to be able to look easily over.

The elementary adaptation patterns are based, on the one hand, on a criterion to select

resources and, on the other hand, on a criterion to organize the selected resources. Thereby,

we have defined a set of criteria to select resources and to organize selected resources.

Furthermore, the elementary adaptation patterns are independent from any domain model.

They can be instantiated on a specific application domain in order to define elementary

adaptations. The defined elementary adaptations are associated to user characteristics and

combined to make whole adaptation strategies. One of the major benefits of the framework that

we propose is the automation of a large and complex part of the process of generating complex

adaptation strategies, as we have illustrated it on all the chapter using Jane’s use case.

The generated adaptation strategies are expressed at a high level and are independent of any

adaptation engine. In the next chapter, we are going to describe how they could be executed by

existing adaptation engines.

108 Expressing adaptive navigation using adaptation patterns

C H A P T E R 5

Expressivity of EAP framework

versus GLAM, LAG

1 Study of the expressivity of domain models used by the EAP framework,

GLAM and LAG . 111

1.1 UML representation of domain models used by the EAP framework,

GLAM and LAG . 111

1.2 A unified vision of the domain model used by the EAP framework,

GLAM and LAG . 114

1.3 Differences of modeling the domain model used by EAP framework,

GLAM versus LAG . 119

2 Study of adaptation expressivity of EAP framework, GLAM and LAG 121

2.1 An integrated model for a taxonomy of basic adaptations (based on the

EAP framework, GLAM and LAG) . 121

2.2 Differences of adaptation modeling using the EAP framework, GLAM

versus LAG . 124

3 Summary . 126

110 Expressivity of EAP framework versus GLAM, LAG

After having studied existing solutions allowing to express adaptation (cf. Chapter 4,

Section 1.2), and having proposed the EAP framework (cf. Chapter 4), that introduces a finer

granularity in expressing adaptation, several questions have come out, like: what facilities do the

EAP framework and existing solutions propose to authors?, Do the EAP framework and existing solutions

allow expressing similar adaptation? or Are there lessons learned from the design of the EAP framework

and existing solutions that could suggest features that should be in any adaptation language?

Answering such questions leads to study the expressivity of the EAP framework versus

existing solutions. There are several existing solutions. Each one has its specificities and

constraints for expressing adaptation. It is not possible to study deeply all existing solutions.

Therefore, choices have to be made. However, existing solutions can be grouped in two main

groups1: a group allowing to express adaptation using condition-action or event-condition-action

rules [39, 22], and a group allowing to express adaptation using procedural languages [12, 65].

Consequently, we have decided to study the expressivity of the EAP framework versus a solution

of each group.

• The GLAM platform will be the solution we are going to study for the first group. It is the

only system that today supports the alternate selection mode (cf. Chapter 4, Section 4.1.2).

Furthermore, GLAM has multiple characteristics in common with the EAP framework as

modeling the domain model and the goal of users.

• The LAG language will be the solution we are going to study for the second group. In

addition of proposing a different approach for modeling AHS, it is plugged on several

existing adaptation engines, like AHA!.

First, we have studied the way to model elements on which the adaptation is expressed (cf.

Section 1). Afterward, we have studied the way to model adaptation (cf. Section 2).

This chapter presents two major outcomes.

1. A unifying vision of modeling the available resources used by the EAP framework, GLAM

and LAG. This unifying vision is built on three levels: a generic, a specific and an instance

level which can be applied on other adaptive hypermedia systems.

2. A unifying typology of adaptation used by the EAP framework, GLAM and LAG. This

new typology describes on one hand, the various selection operations that can be done on

the available resources, and on the other hand the main basic actions that are generally

performed to build adaptation. The basic actions define operations on resources previously

selected according to different selection processes. The selection processes and the basic

actions use different criteria, whether they are performed in the EAP framework, GLAM

and LAG. We hence discuss the criteria used in each of them.

The work relative to the LAG language has been done in collaboration with Alexandra

Cristea2, the author of this language.

1We eliminate the group on Hypertext and adaptation patterns as they lack in formalization
2www.dcs.warwick.ac.uk/∼acristea/

1 Study of the expressivity of domain models used by the EAP framework, GLAM and LAG111

1 Study of the expressivity of domain models used by the EAP

framework, GLAM and LAG

For modeling available resources, the EAP framework exploits a domain model, expressed in

OWL, GLAM also exploits a domain model, but expressed in RDF(S)3, while LAG exploits two

models, a domain and a goal model, expressed in the CAF [18] format.

Additionally, the domain model used by the EAP framework or by GLAM are organized

differently than the model used by LAG. For the domain model used by the EAP framework or

GLAM, it supports any graph structure modeling the available instances. This is due to the fact

that the EAP framework or GLAM are not specifically designed for educational applications,

as well as from its roots lying in semantic web technologies. Conversely, the domain and

goal models used by LAG require that their instances to be modeled in a hierarchy (and thus

participate obligatorily in a hierarchical relation, although others are permitted). This is due to

the fact that CAF is mainly aimed at educational resources, which are traditionally organized in

hierarchies.

In the following, we use the notations DM for domain model and GM for goal model.

Furthermore, we model the elements of DM and GM used by the EAP framework, by GLAM

and by LAG in UML. This choice is mainly motivated by the fact that UML is, a widely accepted

standard, as well as a formal and a concise language. Afterward, we propose an unifying

approach for modeling DM and GM used by the EAP framework, by GLAM and by LAG. Finally,

we discuss differences of modeling DM and GM used by the EAP framework, by GLAM and by

LAG.

1.1 UML representation of domain models used by the EAP framework,

GLAM and LAG

We present successively, UML representation of DM used by the EAP framework, then DM used

by GLAM, finally, DM used by LAG.

1.1.1 UML representation of domain models used by the EAP framework

The EAP framework considers domain models composed of a set of classes, of properties and

of relations (cf. Chapter 4, Section 3). The generic domain model in the EAP framework (cf.

Figure 5.1) makes a clear separation between concepts (in a Concept class) and resources (in a

Resource class). The Concept and Resource classes have both of them a name attribute. The Resource

class has additionally a content attribute and is linked to a Property class.

abstraction
Resource

name
content

*

*

relation
*

*
Property

name

* 1
Concept

name

Figure 5.1 – A UML class diagram of the generic domain model used by the EAP framework

The Property class describes the characteristics of the resources. A resource may have

several characteristics, but a characteristic refers to only one resource. The Property class can be

3http://www.w3.org/TR/rdf-schema/

112 Expressivity of EAP framework versus GLAM, LAG

specialized several times. It has been modeled as a class instead of a property in order to propose

more extensibility, the number of properties of a resource being not defined a priori. The concepts

are linked together by at least one relationship, and resources can be also linked together. The

semantics of these two relationships is not a priori defined but they can be hierarchical relations or

relatedness relations (as in the model used by LAG or others). All the multiplicities are multiple

in both cases. Furthermore, a concept is described by one or more resources. This is modeled by

the abstraction relationship.

1.1.2 UML representation of domain models used by GLAM

The generic GLAM domain model (cf. Figure 5.2) includes:

• a Constituent class that models available concepts;

• a Resource representation class that models available resources that may have an undefined

number of properties;

• a relation having as domain and range the Constituent class;

• a relation having as domain the Constituent class and as range the Resource representation

class;

• a relation having as domain and range the Resource representation class;

• a set of classes, that we are not going to cite, which models mathematical properties of the

proposed relations. These classes are proposed to allow the GLAM adaptation engine to

reason on available resources while executing AH.

As we can note, except classes modeling mathematical properties of relations, all the other

elements of the GLAM generic domain model are also elements in the domain model used by the

EAP framework. Consequently, the generic domain model used by the EAP framework can be

seen as an abstraction of the generic domain model used by GLAM.

1.1.3 UML representation of domain models used by LAG

Figure 5.3 is the UML class diagram representing the domain (and goal) models used by LAG.

Concepts are represented by the Domain Model class. They are characterized by attributes. The

Attribute class describes resources viewed as components of a given concept. Both classes have a

name attribute, which in the case of attributes, denotes, for simplicity, the type of an attribute (e.g.,

an attribute called ’theory’ is of the type ’theory’). The Attribute class has additionally a content

attribute, which points to the actual resource. Hierarchical relationships are also allowed between

domain concepts, represented here as a relation between two instances of the Domain Model class

with the cardinalities 1..*. Additionally, relatedness relationships can be defined between two

concepts (or two instances of the Domain Model class) with both multiplicities equal to 1 (this

allows to represent that ’a concept A can be related to another one’). Hierarchical relations of

concepts are obligatory in the MOT system (cf. Chapter 2, Section 2.1.2), i.e., all concepts need to

have a parent concept, with the exception of the root concept. Relatedness relations depict other

types of relations between concepts in the domain. Please note however that all these relations

(hierarchical, relatedness) are domain-specific relationships, and are separated from pedagogical

relations (such as prerequisites4), under the principle of separation of concerns.

The goal model filters and restructures the domain model, with respect to pedagogical goals.

This is depicted here via the Goal Model class linked to the Attribute Class and having attributes

4In LAG, prerequisite is modeled in the goal model.

1 Study of the expressivity of domain models used by the EAP framework, GLAM and LAG113

Figure 5.2 – A UML class diagram of the generic domain model used by GLAM [38]

usable to represent pedagogical characteristics: a label of string type (which can have values such

as, e.g., ’visual’ or ’verbal’ to denote content appropriate for those respective types of learners)

and a weight of integer type (which can additionally describe the label, e.g., a visual content with

weight ’100’ could be suitable for visual learners only, whereas a visual content with weight

114 Expressivity of EAP framework versus GLAM, LAG

’30’ would be also usable by others). Any type of desired pedagogical characteristics can be

added this way. The association class, Link, is depicting the association between Goal Model and

Attribute in order to include valuable information: a string named label, an integer named weight

and a supplementary integer named order. The latter represents one aspect of the prerequisite

relation, the ordering of desired resources, according to the pedagogical goals. Please note that

the concept hierarchy and order in the goal model can be completely different from the hierarchy

in the domain model, as the former are a reflection of pedagogical goals and planning, whilst the

latter is only a new of the domain, regardless of how it will be pedagogically interpreted. This

separation of concerns allows for the same domain model to be used with different pedagogies

and thus with different goal models.

Attribute

name
content

1

*

Goal_
Model

label
weight

Link

label
weight
order

*

1

part_Of

*

.

*

RelationLink

name
weight
label
type

*
*

*

relation

relatedness
0..1

1
Domain_
Model

name .

Figure 5.3 – A UML class diagram representing the domain and goal models used by MOT

1.2 A unified vision of the domain model used by the EAP framework,

GLAM and LAG

1.2.1 A unified vision of the domain model in AH

Modeling the domain model is mostly expressed at three levels of modeling, even if it is not often

shown explicitly.

1. A generic level is for any (generic) author, independently of the application domain, to

create any AH.

2. A specific level is for a particular author (or several authors) to create a particular class of

AH, in which he (they) consider(s) the particularities of his (their) application domain.

3. An instance level is also for a particular author, but the aim is to create a particular AH and

to specify the actual resources to be used by the adaptation, not just the class of AH.

For example, in the case of AEH, the generic level enables authors to describe the structure of

any course, the specific level enables them to describe the structure of a particular course and the

instance level includes particular lessons to be presented to users.

These three levels are thus useful to represent content of resources to be proposed to users,

relations that are defined between resources and possible characteristics about them.

1 Study of the expressivity of domain models used by the EAP framework, GLAM and LAG115

The three levels of modeling are used to describe DM (and GM) models used by the EAP

framework, GLAM and by LAG. Note that, the DM used by the EAP framework is very close to

the one used by GLAM. For this reason, in our study we speak only of the EAP framework and

LAG. In the following, we first present the unifying vision of the domain (and goal) models used

by the EAP framework and LAG. Then, we illustrate the unifying vision on a running scenario

involving Jane (cf. Chapter 4, Section 2) by using the EAP framework and LAG.

1.2.2 Applying the unified vision on DM (and GM) used by the EAP framework and LAG

The EAP framework exploits a single model, DM, which includes in the same model the structure

of the available resources and the modeling of the goal, thus forgoing the paradigm of separation

of principles, and the reusability, in favor of compactness. The EAP framework can be modeled

according to the three levels (cf. right side of Figure 5.4). The generic level includes the generic

domain model. The specific level includes the specific domain model which is a specialization of

the generic domain model, and the instance level describes the instances of the specific model.

Figure 5.4 – The three domain (goal) modeling levels used in each approach

On the other hand, LAG exploits DM and GM that can be defined according to three levels as

described above (illustrated on the left side of Figure 5.4). At the generic level, two models

are described: the domain model which describes the possible structures for any available

resources and the goal and constraints model which presents all possible reorganizations of the

structure of the available resources. At the specific level, two models are also described, which

are instantiations of the models at the generic level: a specific domain model and goal model

structure, which are instantiations of the domain and goal model, respectively. At the instance

level, two concrete maps are described that are instances of the models included in the specific

model: the complete domain maps and complete goal map, respectively.

Now, we analyze in Figure 5.5 the DM (and GM) used by the EAP framework and by LAG at

each level of modeling in more details. Note that the transition between the generic level and the

specific level is performed differently in each approach.

About the DM used by the EAP framework. The transition between the generic level and the

specific level is a specialization process. The Resource Class has to be specialized by at least

one class. The number of specializations of the Property class corresponds to the number

of specific properties useful for characterizing the resources of a given application domain.

This corresponds somewhat to the attributes describing a concept in the LAG approach.

Moreover, the semantics of the relation defined on the Concept and on the Resource classes

116 Expressivity of EAP framework versus GLAM, LAG

have to be defined at this level. In Figure 5.5, at the specific level, the Concept and the

Resource classes appear with a dotted outline to indicate that they do not belong to the

specific level.

About the DM and GM used by LAG. The transition between the generic level and the specific

level is an instantiation process. Some classes are instantiated at the specific level, whereas

other classes are instantiated later at the instance level. At the specific level, in the DM,

the Attribute class is instantiated as many times as desired with values for the attribute

name. Furthermore, also in the DM, the hierarchical relationship between instances of the

Domain Model is also instantiated at the specific level. The instantiation can correspond to

a composition relationship (part Of), and is used to specify the characteristics describing

a concept. Also at the specific level, in the GM, the ordering and pedagogical labeling of

concepts pointing to the attributes in the DM is performed. This allows for the same DM to

be reused in different pedagogical settings, with different pedagogical characteristics.

The transition between the specific level and the instance level is similar for DM (and GM)

used by each approach. It consists on an instantiation process where the author specifies the

actual content of his resources and their characteristics.

So far, we have described the three levels of modeling of the DM (and GM) used by the EAP

framework and by LAG. In the following, we revisit these three levels of modeling for a concrete

example: Jane’s use case (cf. Chapter 4, Section 2) using either the EAP framework or the LAG

approach.

1.2.3 Applying the unified vision on Jane’s use case for EAP framework, GLAM and LAG

When Jane uses either the EAP framework or LAG, she has to describe the resources and the goals

to be achieved by her target learners in the DM (and GM) understood by the used language. For

this purpose, in terms of the three layers described above, Jane has to use the generic level and

define the specific and the instance levels. In this section, we illustrate in Figure 5.6 the results

of this process in the case of Jane using the EAP framework and LAG, respectively, to define her

scenario.

In the first case, we consider Jane uses the EAP framework. She first specializes the classes be-

longing to the model of the generic level as follows.

• She defines a pre-requisite relationship between concepts. No relationship is defined

between resources.

• She defines three specializations of the Resource class: Definition, Example and Exercise.

• She defines a Format class as a specialization of the Property class. She decides that the

name attribute of the Format class can have the value text to denote a textual resource,

image to denote an image resource, or audio to denote a video resource.

Then, Jane specifies her instances and thereby she works at the instance level. Due to lack

of space, the instance level in Figure 5.6 describes only the modeling of the database concept.

For the instance level used by the EAP framework, we have the following instances:

• three instances of the Concept class. They are linked by the prerequisite relationship,

one per concept having to be modeled;

• four instances of the Resource class;

• two instances of the Format class.

1
S

tu
d

y
o

f
th

e
e

x
p

re
ss

iv
it

y
o

f
d

o
m

a
in

m
o

d
e

ls
u

se
d

b
y

th
e

E
A

P
fr

a
m

e
w

o
rk

,
G

L
A

M
a

n
d

L
A

G1
1

7

Attribute

name

content

1

*

abstraction **

*

Property

name

Goal_
Model

label
weightLink

label
weight

order

*

1
part_Of

*

G
en

er
ic

 l
ev

el
S

p
ec

if
ic

 l
ev

el
In

st
an

ce
 l

ev
el

Domain and goal models used by LAG Domain model used by EAP framework

In
st

an
ti

at
io

n

In
st

an
ti

at
io

n

a: Attribute

name= (title,keyword,
pattern, explanation,

conclusion,exercise,
introduction) or string

content:

Resources added: documents -XML / PDF / HTML ... Resources added: documents -XML / PDF / HTML ...

*

.

*

 Relation
Link

name

weight
label

type
*

* Concept

name

Resource

name
content

* 1 1*

relation relation

*

relation

Specific_
Property *

*
*

*
specific_ relation

specific_ relation
Specific_
Resource

Concept

Goal_

Model

label
weight

Link

label

weight
order

.

part_Of

relatedness
0..1

1

Domain_
Model

name

1

r:Relation
 Link

name:partOf
weight
label

type

*

relation

relatedness

0..1
1

Domain
_

Model

name

In
st

an
ti

at
io

n

 semantic has to be defined

Resource

1

F
ig

u
re

5.
5

–
T

h
e

th
re

e
m

o
d

el
in

g
le

v
el

s
in

U
M

L
o

f
th

e
D

M
(a

n
d

G
M

)
u

se
d

b
y

ea
ch

ap
p

ro
ac

h

118 Expressivity of EAP framework versus GLAM, LAG

Attribute

name
content

*

*

Property

name

Goal_
Model

label

weightLink

label
weight

order

*

1
part_Of

*

G
en

er
ic

 l
ev

el
S

p
ec

if
ic

 l
ev

el
Domain and goal models used by LAG Domain model used by EAP framework

*

.*

Definition ExerciseExample

Format

name (text,

image, video)

a1: Attribute

name: exercise
value:

a2: Attribute

name:example

value:

Instantiation

In
st

an
ce

 l
ev

el

c1 : Concept

name:

database

c2 :
Concept

name:

relational_
model

c3: Concept

name:

relational_o
perations

d2: Definition

name:def_ tex

d4: Definition

name:def_aud
content:..

pre-requisite of

pre-requisite of

d1: Domain_
Model

name: database

d2: Domain_
Model

name: relational_model

d3: Domain_
Model

name: relational_operations

a5: Attribute

name: definition
content:...

a1:
Attribute

name:
exercise

content:...

a2: Attribute

name: example

content:...

a3: Attribute

name:definition

content:...

a4:
Attribute

name: title

content:...

has_Part

has_Part

k4: Link

weight: 3

label: first
order: 4

k3: Link

weight: 1
label: first
order: 3

g1: Goal_Model

weight: 0
label: g2:

Goal_Mo
del

weight: 0

label:

g3:
Goal_Mo

del

weight: 0
label:

has_Part

h
a
s_

P
a
rt

f1 : Format

name::text

f2 : Format

name:

audio e3: Example

name:exa_ tex
content: ..

r1 : Exercise

name:exe_aud
content

.

.

.

k2: Link

weight: 3
label: first
order: 3

.

k1: Link

weight: 1
label: first

order: 3

.

k0: Link

weight: 1

label:
first

order: 3
.

abstraction **
Concept

name

Resource

name
content

*
* **

relation relation

1

Relation
Link

weight

label
type

*

relation

Domain_
Model

name

.

a3: Attribute

name: definition

value:

**
Concept

1

r:Relation
 Link

name:partOf

weight
label
type

*

relation

Domain_
Model

name

a5: Attribute

name: definition
value:

e4:
Attribute

name: title

*

*

pre-requisite

Resource

Figure 5.6 – Example of the three modeling levels of the domain (and goal) models used by each

approach

Jane also models links between instances of the Resource class and of the Format class and

between the instances of the Resource class and of the Concept class.

In the second case, we consider Jane uses LAG. She first instantiates the classes belonging to the

models of the generic level as follows.

• She decides to use the hierarchical relation in a domain model, and not the relatedness

relation, for instance. In terms of the three layer model, this is equivalent to only define

1 Study of the expressivity of domain models used by the EAP framework, GLAM and LAG119

one instance of the RelationLink association class and initialize its name Attribute with

the value part-of.

• She then defines five instances of the Attribute class: one instance with title as the

value of the name attribute, the other ones with definition (twice), exercise and example,

respectively. In this way she can decide which characteristics will be used to describe

all the concepts of her domain.

Next, Jane specifies her instances and thereby she works at the instance level. This means

defining instances of classes and links between instances. Due to lack of space, the instance

level in Figure 5.6 describes only the modeling of the database concept. In the concrete

example illustrated here, this includes the definition of:

• three instances of the Domain Model class, in the form of three domain concepts. The

instances are linked by the has part relationship, one per concept having to be modeled;

• additionally, it requires the definition of three domain attribute types, that of definition,

example and exercise (beside of the title type generated automatically), to be used by

the three instances. This corresponds to modeling links between the instances of the

Attribute class and of the Domain model class;

• the automatic generation of three instances of the Goal Model class, one per instance of

the Domain Model class;

• the automatic generation of five instances of the Link association class, one instance

per instance of the Attribute class. This corresponds to modeling links between the

instances of the Goal Model class and of the Attribute class. Moreover, here, Jane can

add pedagogical labels. She uses for the label attribute of the Link class the value ”first”

if the instance refers to a resource to be proposed first, otherwise she leaves an empty

value. She also uses the value of the weight attribute of the Link class as ”1” for textual

resources, ”2” for image resources, ”3” for audio resources and ”0” for other formats.

1.3 Differences of modeling the domain model used by EAP framework,

GLAM versus LAG

We have chosen to study the particularities of modeling the domain model used by the EAP

framework, GLAM and LAG according to common criteria. These criteria include: modeling

properties of resources, modeling only resources and modeling of relations.

Modeling properties of resources

• The EAP framework/ GLAM: properties of resources can be as many as needed. They are

defined as specializations of the class Property of the generic domain model used by the

EAP framework and GLAM.

• LAG: properties of resources are modeled in the label and a weight attributes of the Link

class. When it is necessary to model more than two properties, modeling becomes harder

or even impossible. For example, resources may have a format (text or image), a difficulty

level (easy, high) and a rank (from 1 to 10). Only two of these three properties can

be easily modeled in models used by LAG (although hacks were possible and include

encoding two or more properties as a string, but this is not a straightforward method of

authoring). Recently, this restriction has been lifted from the systems using LAG, as it

was not pedagogy-specific, but only an artificial restriction introduced by implementation

limitations. Currently, any number of pedagogical labels and weights can be added to

resources in the Goal Model (GM). This is conforming to the LAOS theoretical framework

which LAG is based on.

120 Expressivity of EAP framework versus GLAM, LAG

Modeling only resources

• The EAP framework/ GLAM: they support a clear separation between modeling concepts and

resources. In fact, we can model resources independently from concepts. Therefore, they

enable reusing existing taxonomies which are referenced and widely used.

• LAG: the existence of the Attribute Class depends on the existence of the Concept class. For

example, we cannot model resources linked by a successor relation without modeling the

corresponding concepts. We must define a concept for each resource and must define

at least a hierarchical relation between concepts. This is due to the fact that, the vision

of people who proposed LAG is that authors will model concepts first, and relate these

concepts to specific resources at a later stage. This is very important for reusability of the

domain: the same concept can be expressed via various resources. When adaptation is

defined, this is applied at the level of concepts, or characteristics of concepts, and again not

for particular resources. Such adaptation would never be reusable, as the actual pedagogy

behind it is lost [1, 3].

Modeling relations

• The EAP framework/ GLAM: the semantics of relationships between concepts or between

resources is defined by the author. This allows a lot of freedom in the design, and a great

adaptability. As there is not great distinction between pedagogical relations and any other

types of relations, they are all instances of the relation having as domain and range the

Concept class. Relations are not predefined. This can be seen as a disadvantage but on an

other hand, it is also a strong point because when the application domain is not known

in advance, we do not necessarily know all the possible relationships to consider. This

freedom allows authors to define all the relations of their choice.

• LAG: only five types of relations can be defined:

– a hierarchical relationship between concepts linking instances of the Domain Model

class. Only one relation of that kind can be defined;

– a relatedness relationship between two concepts;

– a relationship between resources and concepts, which is defined implicitly;

– an order relation between goal model concepts, corresponding to prerequisite

relations;

– a hierarchical relation (a sort of composition relation) between goal model concepts,

corresponding also to a prerequisite relation.

This again is not a limitation of the theory behind LAG, as the LAOS framework allows

for any type of relations. However, in practice it was observed that teachers tend to use

hierarchical structures and prerequisites mostly (if not only) [40]. So allowing them a

slightly larger choice was considered, in the first rounds of implementation, sufficient.

So far, we have analyzed these three approaches, the EAP framework, GLAM and LAG, from

the content description and manipulation point of view. Both of them propose the modeling of

the DM (and GM) in three levels, which has the main advantage to propose distinct visions of the

DM (and GM) depending on the level at which authors are interested. In the following, we shall

visit the description of adaptation in the EAP framework, GLAM and LAG, respectively.

2 Study of adaptation expressivity of EAP framework, GLAM and LAG 121

2 Study of adaptation expressivity of EAP framework, GLAM

and LAG

The EAP framework, GLAM and LAG allow expressing similar adaptations using different

criteria. In fact, the EAP framework is based on a typology of elementary adaptation patterns

proposed in [75], which is based on three criteria: selection modes, elements of the domain

model and navigational paths. At the same time, LAG is loosely related to the classification

of external actions in AHS as proposed in [69], in which the classification distinguishes basic

actions on items, hierarchical actions on items, actions on groups of items and actions on the

overall environment, where items can be any component in the framework used, from resources,

to concepts, to relations, to whole models. GLAM uses a set of rules and meta-rules to express

adaptation. The possible types of adaptation in GLAM are coded in rules and meta-rules.

We first propose, in Section 2.1, an integrated vision of basic actions that can be performed to

define adaptation whether using the EAP framework, GLAM and LAG. Afterward, we review

the main differences of modeling adaptation using the EAP framework, GLAM and LAG.

2.1 An integrated model for a taxonomy of basic adaptations (based on the

EAP framework, GLAM and LAG)

We propose here a new typology (cf. Figure 5.7) aiming at identifying basic actions that can be

performed to build adaptation. Adaptation allows defining several adaptation strategies, where

an adaptation strategy specifies ”which resources have to be proposed and how they will be proposed

to a set of users who share the same characteristics” [75]. Consequently, in our new typology we

distinguish the basic actions having to be performed on the resources from the selection process

of resources (action types on resources).

• The selection processes define criteria allowing exploiting resources. They can be related to

elements of the domain (and goal) models, user model or presentation model.

• The basic actions define operations on individual resources previously selected according

to different selection processes. They have been obtained after we have analysed techniques

proposed in most of the used architecture and adaptive systems [22, 39, 49].

The selection processes and the basic actions use criteria which are similar in the EAP

framework and GLAM, but different from the ones used in LAG. We present each of them, for the

purpose of comparison and extraction of a more generic framework. In this typology, adaptation

is studied from two points of view: one based on the internal environment, and another based

on the external environment.

The internal environment is considered as being composed of domain and goal concepts,

resources, relations, and the models that support them. The external environment is considered

here as being composed of presentation-dependent aspects, environment-related aspects,

context-related aspects, etc., which can also be modelled as concepts, resources and their

relations, and can be divided into various models, depending on the framework used (e.g.,

AHAM [74], LAOS [13], GAHM [53], GAM [25], etc.).

Concerning actions based on the internal environment, they describe basic actions related to

adaptive navigation support and to adaptive content, according to Brusilovsky’s taxonomy [6].

They are presented in a typology in the upper half of Figure 5.7. We present each column of this

typology going from the left side to the right side.

The EAP framework as GLAM use four criteria to select resources and to perform basic

actions. These four criteria are related to the elements of the domain model used by the EAP

framework (or GLAM) where resources are structured and described. Furthermore, as the EAP

122 Expressivity of EAP framework versus GLAM, LAG

framework uses a domain model expressed in an object model, thereby, the domain model

includes a set of classes, a set of relations and a set of properties (cf. Chapter 4, Section 3).

Consequently, the criteria used to select resources concern:

• their belonging to a class in the Resource hierarchy;

• the values of some properties (any property defined as a specialization of the Property class);

• the presence of a relation between resources;

• the presence of a relation between concepts linked to resources.

Note that, we may consider the same criteria for GLAM in a simplified manner.

Figure 5.7 – An integrated model for a taxonomy of basic adaptations (based on the EAP

framework, GLAM and LAG))

LAG uses seven criteria to select resources and to perform basic actions. They concern

elements of the domain and goal models, and also of the user model (cf. Section 1.2). Thereby,

the seven criteria concern:

• properties of concepts modeled in the Domain Model and Goal Model class. Concepts are

exploited either from the domain model (DM) using their name, or from the goal model

(GM) using their pedagogical label and weight or from the user model (UM) using any

property indicating the progress of the user in the goal model;

• properties of resources modeled in the Attribute class. Similarly to concepts, resources are

exploited either from the domain model using their name, or from the goal model using

their label and weight, or from the user model using any property indicating their progress

in the goal model;

2 Study of adaptation expressivity of EAP framework, GLAM and LAG 123

• hierarchical relations defined between domain concepts;

• relatedness relations defined between domain concepts;

• properties of the relatedness relation defined between two concepts. These properties are

either the label or the weight of the relation;

• hierarchical relations defined between goal concepts (mostly interpreted in the adaptation

specification as prerequisites);

• order relations between goal concepts (mostly interpreted in the adaptation specification as

prerequisites).

Note that there are more criteria to select resources used by LAG than by the EAP framework

or GLAM. This is due to the fact that LAG uses only two types of relationships (hierarchical and

relatedness) explicitly specified at the generic level, while the EAP framework (or GLAM) uses

any type of relationships. As the types are not predefined, they are not specified at the generic

level. In the EAP framework (or GLAM), the meaning of the relations having to be considered is

defined at the specific level (cf. Section 1.2).

Various actions can be performed on selected resources. We distinguish in the 4th column

of the typology between actions for adaptive navigation support [77], and actions triggering

adaptive content. For actions proposing adaptive navigation support, we refer to those defined

in the EAP framework (cf. Chapter 4, Section 4.1.1).

For actions proposing adaptive content, we propose two main actions:

• Aggregation: it consists of building one resource from two or more resources;

• Extraction: it consists of extracting a resource. This entails cutting out a particular part of a

resource in order to define a new resource.

We present in the 5th column the basic actions having to be performed on the resources

previously selected. These basic actions are elementary compared to the action types cited before,

as they act on a single resource. They are described in the following:

• to show or to hide the content of a resource or a link to a resource;

• to annotate a resource or a link to a resource. This is done by adding characteristics to the

concerned resource;

• to show a group of characteristics related to a particular resource;

• to play a resource - This is related to a multimedia resource;

• to update UM characteristics depending on the accessed resource.

Concerning actions based on the external environment, they describe basic actions related

to the adaptive presentation behavior. They are presented in a typology in the lower half of

Figure 5.7. Similarly to the available resources which are modeled in a domain (and goal) model,

the knowledge related to the presentation of resources has to be modeled. Thereby, a particular

model of the external environment is needed. Consequently, adaptation criteria used in the

EAP framework (or GLAM) exploit classes, properties or relations included in the model of the

external environment. Adaptation criteria used in LAG for adapting to the external environment

are created by manipulating elements of the presentation model PM (concepts or attributes),

whose specification is defined conform to the LAOS framework. Various basic actions can be

performed, for example a button destination can change.

124 Expressivity of EAP framework versus GLAM, LAG

This unifying vision of both typologies allowed us to identify the main basic actions that are

generally performed to build adaptation and the various selection operations that are involved.

The typology shows that these systems, the EAP framework, GLAM and LAG, exploit different

aspects for the same target in proposing adaptation.

2.2 Differences of adaptation modeling using the EAP framework, GLAM

versus LAG

Modeling adaptation: according to the typology of Brusilovsky, we specify the types of

adaptation that are supported by each approach.

• The EAP framework: adaptive navigation support.

• GLAM: adaptive navigation support, adaptive presentation.

• LAG: adaptive navigation support, adaptive presentation.

Methodology: it concerns the global vision of authors when authoring adaptation

• The EAP framework: authors focus on what is the desired adaptation to express.

• GLAM: authors focus on how to express the desired adaptation, even if the expression of

adaptation is divided in two levels (rules and meta-rules).

• LAG: authors focus on how to express the desired adaptation, aided by constructors

specifically aimed for that.

Modeling information: this concerns the information exploited by the adaptation.

• The EAP framework: adaptation considers information modeled in:

– the domain model (the goal is modeled as a property);

– the user model.

• GLAM: similarly to the EAP framework, it considers information modeled in:

– the domain model (the goal is modeled as a property);

– the user model.

• LAG: adaptation in LAG considers information modeled in:

– the domain model;

– the goal model;

– the user model;

– the presentation model.

Updating information: this concerns the models that can be updated.

• The EAP framework: it doesn’t propose support for writing updates. The updates have to be

directly expressed in the format of the used adaptation engine.

2 Study of adaptation expressivity of EAP framework, GLAM and LAG 125

• GLAM: it supports updating knowledge modeled in the user model. The updates are

written independently of rules and meta-rules.

• LAG: it supports updating knowledge modeled in the user and presentation models. The

updates have to be included with the modeling of adaptation, as the user and presentation

models are overlay of the adaptation model.

Reasoning with concepts

• The EAP framework: concepts are linked by an abstraction relation. This relation is exploited

in adaptation strategies.

• GLAM: similarly to the EAP framework, concepts are linked by an abstraction relation,

which has to be exploited explicitly by the authors when expressing adaptation.

• LAG: domain concepts are exploited through resources they are linked to. There is no

constructor allowing to select a particular concept.

Proposing different orders between a set of resources to users

• The EAP framework: the order is defined using the meta-expressions expressing the ordered

selection mode. Therefore, several orders may be defined between a set of resources. For

example: defining definitions before exercises is possible in a first adaptation strategy

for inductive students. It is also possible to define exercises before definitions in a

second adaptation strategy for deductive students. Note that, it has no meaning to define

definitions before exercises and exercises before definitions in the same adaptation strategy.

Consequently, only one coherent order between a set of resources is defined per adaptation

strategy, but the adaptive system may include several adaptation strategies.

• GLAM: the order is expressed using the order meta-rules (cf. Chapter 2, Section 1.1.1).

Therefore, several orders may be defined between a set of resources that are selected using

rules for distinct users.

• LAG: the order of the adaptation is defined in the goal model. Several orders can be created

from one domain model, by building different goal models. However, that means that

dynamic change of order of items display in a menu (based only on one goal model) at

runtime is not possible even for distinct users.

Checking if the content of resources is empty or not (in order to propose alternative

resources to users)

• The EAP framework: alternatives between resources are expressed using the alternate meta-

expression.

• GLAM: alternative is possible in GLAM using the exclusion meta-rule. When a rule does

not return any resource, another rule is executed. Therefore, when resources are missing,

alternative may be proposed.

• LAG: LAG does not allow such direct tests. For example, let us assume that we want to

define an adaptation proposing textual resources if available otherwise video resources.

This cannot be expressed for the moment in LAG. Alternatives can be suggested, but if a

resource is unavailable, it will just not be displayed.

126 Expressivity of EAP framework versus GLAM, LAG

3 Summary

In this chapter, we have presented a unifying vision of modeling available resources used by

the EAP framework, GLAM and LAG in three levels. These three level vision of modeling the

domain model includes: a generic level for supporting authoring of any AHS, a specific level,

supporting authoring AHS for a particular application domain and finally an instance level,

supporting authoring of a specific AHS for a particular application domain. We have expressed

this unifying vision using UML, a standard widely used for modeling. In this way, we have

highlighted a potential method of comparing existing domain model expressivity in any other

adaptive delivery systems or adaptation authoring systems and frameworks.

On the other hand, we have also visited the expression of adaptation in the EAP framework,

GLAM and LAG. This has resulted in the definition of a unified vision of a typology on

adaptation. This new typology identifies the main basic actions that are generally performed

to build adaptation and the various selection operations that can be done. Again, this new

adaptation typology can be potentially used to evaluate adaptation expressivity in other adaptive

delivery approaches, be they systems or frameworks.

C H A P T E R 6

Translating generated adaptation

strategies to existing adaptation

languages

1 Plugging the EAP framework to the GLAM platform 129

1.1 Conversion of domain and user models used by the EAP framework to

ones used by GLAM . 129

1.2 Conversion of adaptation strategies from the EAP framework to GLAM . 129

2 Plugging the EAP framework to LAG . 131

2.1 Conversion of domain model used by the EAP framework to domain and

goal models used by LAG . 131

2.2 Conversion of user model and adaptation strategies from the EAP

framework to LAG . 133

3 Summary . 136

128 Translating generated adaptation strategies to existing adaptation languages

After studying the expressivity of the EAP framework, GLAM and LAG, we present in this

chapter successively in Section 1 and in Section 2, the definition of the EAP framework on the top

of the GLAM platform and on the top of the LAG language.

The work of plugging the EAP framework to GLAM has been published in the IEEE journal

paper Transaction Learning Technologies [77].

We have implemented the conversion process of the EAP framework to LAG as an extension

of the EAP framework. We didn’t implement the conversion process of the EAP framework to

GLAM, as this process is direct as it will be presented in this chapter.

1 Plugging the EAP framework to the GLAM platform 129

1 Plugging the EAP framework to the GLAM platform

The EAP framework and GLAM aims to be independent of any application domain model. Thus

they propose more freedom for authors to design their AH. Nevertheless, the EAP framework

and GLAM propose different approaches: the EAP framework is a pattern-based system, while

GLAM is a rule-based system.

In order to be able to plug the EAP framework to the GLAM platform (for introduction to the

GLAM platform see Chapter 2, Section 1.1.1), we first consider conversion of domain and user

models used by the EAP framework to domain and user models used by GLAM (cf. Section 1.1).

Afterward, we translate adaptation strategies expressed using the EAP framework to adaptation

in the GLAM format (cf. Section 1.2).

1.1 Conversion of domain and user models used by the EAP framework to

ones used by GLAM

The EAP framework accepts domain models, composed of a set of classes, properties and

relations. It proposes a clear separation between concepts and resources for better flexibility.

Similarly, it accepts user models, composed of a set of classes, properties and relations. Authors

have only to define the properties and their associated value. Elements composing these domain

and user models correspond to same elements in the GLAM generic domain and the GLAM

generic user models.

Furthermore, GLAM adaptation engine assumes that resources and user characteristics are

modeled in RDF1 format, i.e., all OWL resources (e.g. OWL properties and OWL classes) are

RDF resources by nature.

1.2 Conversion of adaptation strategies from the EAP framework to GLAM

Using the EAP framework, an adaptation strategy is defined in 3 steps (cf. Chapter 4 Section 3).

The resulted adaptation is described by the characteristics: Name, Intent, Solution and Constituents.

Here, we focus only on the formal part of the adaptation, which is the characteristic Solution. It is

composed of a set of expressions and of meta-expressions, as follows.

• Expressions of an adaptation select resources to be proposed to users. Thereby, each of

them is based on a single criterion or a conjunction of the EAP framework criteria defined

in the selection process (cf. Chapter 4 Section 4.2). To be more precise, each expression of

an adaptation may include:

– At most one expression on classes. For example: instanceOf(resource,

Definition) proposes all instances of the class Definition, where the class Definition

models resources which are Definitions.

– Several or none expressions on relations. For example: link (resource,

concept1, abstraction) proposes resources that are linked to concept1 by the

relation abstraction.

– Several or none expressions on properties. For example:

characteristicOf(resource, format, =, text) proposes resources having

a textual format.

• Meta-expressions of an adaptation specify how the selected resources are going to be

proposed. Numerous meta-expressions can be defined, and they can be of three types (cf.

Chapter 4 Section 4.2).

1www.w3.org/RDF/

130 Translating generated adaptation strategies to existing adaptation languages

We summarize in Table 6.1 the structure of the characteristic Solution.

Solution:

• Expressions

Ei: (expressionclasses)0..1 ∧ (expressionreations)∗ ∧ (expressionproperties)∗

where

– expressionclasses: instanceOf(resource, Class)

– expressionrelations: link(resource, concept, relation) | link(concept, concept1, relation) |
link(resource, resource1, relation) | link-transitive(resource, concept, relation) |
link-transitive(concept, concept1, relation) | link-transitive(resource, resource1, relation)

– expressionproperties: characteristicOf(resource, property, operation, value)

• Meta-expressions

– Ei ≺ Ej

– Ei⊎ Ej

– Ei | Ej

Figure 6.1 – Structure of the characteristic Solution of an adaptation strategy written using the

EAP framework

Consequently, we proposed two conversion processes as follows.

1.2.1 Translation of expressions to the GLAM format

For each expression Ei belonging to the set of all the expressions composing an adaptation

strategy, we generate a rule Ri in GLAM as follows.

• The condition part of Ri is based on Ei. Syntactic conversions are needed as the EAP

framework and GLAM do not use the same syntax. We review these conversions in

Table 6.1.

• The conclusion part of Ri is generated with a desirability degree set to ”medium”.

1.2.2 Translation of meta-expressions to the GLAM format

For each meta-expression Mk belonging to the set of all the meta-expressions which compose an

adaptation strategy, we perform the following steps.

• If the kind of Mk is ”Ei ≺ Ej”, and if Ri (resp. Rj) is the rule obtained from Ei (resp. Ej), we

generate the meta-rule Ri ≺ Rj .

• If the kind of Mk is ”Ei | Ej”, and if Ri (resp. Rj) is the rule obtained from Ei (resp. Ej), we

generate the meta-rules Ri ≺ Rj and RiRj .

• If the kind of Mk is ”Ei ⊎ Ej”, and if Ri (resp. Rj) is the rule obtained from Ei (resp. Ej),

we modify the conclusion part of Ri (resp. Rj) as follows: Ri takes a degree of desirability

higher than the desirability degree of Rj and possibly higher than its previous one (resp.

Rj takes a degree of desirability lower than the desirability degree of Ri and possibly

lower than its previous one). Desirability degrees are fixed. When two rules have a very

high desirability degree, they can’t have a higher degree than the existing one. The same

principle is applied to a very bad desirability degree.

2 Plugging the EAP framework to LAG 131

Note that, all types of adaptation strategies generated using the EAP framework are
convertible to the GLAM format. Therefore, they can be executed by the GLAM adaptation
engine.

Expressions of the EAP framework The condition part of a GLAM rule

Expressions on classes

Denotes all resources that are instances of the class Resource. It is expressed by:

instanceOf(resource, Resource) type(resource, Resource)

Expressions on relations: two possible conversions

1- Propose all elements (resources or concepts) related directly to a particular element

(resource or concept).

Linked (element, element, relation) relation(element, element)

2- Propose all elements (resources or concepts) related directly or indirectly to a particular element

(resource or concept).

Linked (element, element, relation) relation(element, element)

Expressions on properties

Denotes all resources having the property and satisfying the comparison test using

the operator op2 and the value val. It is expressed by:

characteristicOf(resource, property, =

, val)
property(resource, val)

Table 6.1 – Conversions of the three types of the EAP framework expressions to GLAM

2 Plugging the EAP framework to LAG

Plugging the EAP framework to LAG is more complicated than plugging the EAP framework

to the GLAM framework, since they have much more differences than the EAP framework with

GLAM. In fact, GLAM expresses adaptation in a declarative way which makes it close to the EAP

framework, even if GLAM is based on a rule-based system and the EAP framework is a pattern-

based system. On the other hand, LAG expresses adaptation in an imperative way and using

constructors.

Furthermore, we cite before that the EAP framework aims to be independent of any

application domain model while LAG is specific for education applications. Also, the EAP

framework makes a clear separation in designing the domain, user models and adaptation

strategies, while LAG exploits domain and goal models and merges the modeling of user model

and adaptation strategies. The EAP framework proposes a set of elementary adaptation patterns

that can be instantiated and combined together while LAG proposes a set of constructors that

can be associated together and are evaluated.

In order to be able to plug the EAP framework to LAG (for introduction to LAG see

Section 2.2.2), we first consider conversion of domain model used by the EAP framework to

domain and goal models used by LAG (cf. Section 2.1). Afterward, we translate user model used

by framework and adaptation strategies expressed using the EAP framework to adaptation in

the LAG format (cf. Section 2.2).

2.1 Conversion of domain model used by the EAP framework to domain and

goal models used by LAG

The EAP framework and LAG uses two different structures of the domain model. In the

EAP framework the available resources are modeled in a domain model, where LAG uses a

2the operator must be equal, other operators are not supported in GLAM

132 Translating generated adaptation strategies to existing adaptation languages

domain and a goal model. In order to define a conversion as generic as possible, we have

studied similarities per level of modeling the domain model (and goal model) used by the EAP

framework and LAG.

Thereby, in the following, we present equivalent elements of the domain model (and goal

model) used by the EAP framework and LAG at each level of modeling3. We have started by

considering first the generic level considered by the EAP framework and LAG. Afterward, we

have considered the specific and the instance levels which are defined by authors. Between each

two equivalent elements, we have defined a mapping.

Definition 13 A mapping is defined between two elements of domain (or goal) models used by different

approaches, if and only if these elements express the same notion.

The defined mappings between elements of the domain model (and goal model) used by the

EAP framework and LAG specify the basis of conversions between the two approaches.

Mappings between elements of the domain model used by the EAP framework and

elements of the domain and goal models used by LAG

Mappings specified between these models are usable regardless of author models. We have
summarized the potential mappings between the domain model used by the EAP framework
and the domain and goal models used by LAG in Table 6.2.

Elements of DM used by the EAP framework Elements of DM & GM used by LAG

The value of the name attribute of the Concept class
The value of the name attribute of the Domain Model

class

The name of the Resource class
The value of the name attribute of the Domain

Attribute class.

The value of the content attribute of the Resource class
The value of the content attribute of the Attribute

class

Table 6.2 – Mappings between elements of domain and goal models used by both approaches at

the generic level

Mappings between elements of the author’s domain model used by the EAP framework

and elements of the domain and goal model used by LAG:

At this level, the domain and goal model structures used by LAG are more restrictive than

the author’s domain model used by the EAP framework, as they are specifically targeted to the

domain of education. Thus the variety of relations is restricted to the concerned application

domain, and the meta-data allowed is clearly divided between domain model meta-data and

goal-oriented, pedagogical meta-data. On the other hand, as the domain model used by the

EAP framework is not restricted to a particular domain application, we do not need to define

the type of relations, but only to specify their domain and range. It is the author who specifies

at the specific level the types of relations in his domain model, and his domain model may be

any model composed of a set of classes, of relations and of properties. Consequently, we cannot

define a whole automatic process of mappings between elements of the domain and goal model

structures used by LAG and elements of the domain model used by the EAP framework. This is

why, we have defined a semi-automatic process in two steps.

First it proposes a set of potential mappings to the author.

Secondly the author selects the most appropriate mappings according to his understanding of

3Complete description of the different levels of modeling resources used by the EAP framework and LAG is described

in Chapter 5

2 Plugging the EAP framework to LAG 133

his domain model.

In the following, we describe the set of proposals made to the author:

In the domain and goal model structures used by LAG,

• The Link class has two attributes, label and weight. The author has to choose to what

specializations of the class Property they correspond to in the domain model used by the

EAP framework.

• The Relation class has two instances at the specific level, in particular the relatedness and

part of relations.

We have summarized in Table 6.3 the possible mappings at the specific level that will be

exploited according to the author’s choices.

Elements of DM used by The EAP framework Elements of DM & GM used by LAG

The name of the Property class
The name corresponding to the attribute label of the class

Link, if this property models meta-data of string type

The name corresponding to the attribute weight of the

class Link, if this property models meta-data of integer

type

The value of the name attribute of the Property

class

The value of the attribute label of the class Link, if this

property models meta-data of string type

The value of the attribute weight of the class Link, if this

property models meta-data of integer type

Table 6.3 – Mappings between elements of author domain model used by both approaches at the

specific level

2.2 Conversion of user model and adaptation strategies from the EAP

framework to LAG

As described before in Section 1.2, the resulted adaptation using the EAP framework is described

by the characteristics: Name, Intent, Solution and Constituents. For our conversions here,

we focus only on the formal part of an adaptation, which is the characteristic Solution.

Converting adaptation expressions expressed using the EAP framework to LAG is limited by

two major constraints:

1. The navigational path requires, additionally to the hierarchical relation between concepts

in the goal model, to annotate the first (set of) concept(s) to be shown (and all its resources).

This is due to the fact that, whilst the hierarchy in the goal model is prescribing in which

order the concepts should be shown, it does not prescribe if they are to be shown or

not. This is a separate decision and needs to be done in a separate step. Concretely, this

annotation is done by using one of the two properties of concepts and of resources, either

label or weight (e.g., specifying that concepts marked ’start’ will be shown at the beginning).

Besides, the EAP framework has not a presentation model, as presentation is an in-built

effect of handling resources. In the EAP framework, concepts or resources to be proposed

are specified in the adaptation and then they are calculated dynamically (i.e., they can be

different from one user to another).

2. Relations between concepts in the domain (and goal) models used by LAG can be (for the

moment) only of two types: hierarchical or relatedness. Consequently, only adaptations using

these relations can be converted.

134 Translating generated adaptation strategies to existing adaptation languages

For example, Table 6.2 describes two expressions:

• only E1 can be converted to LAG. E1 selects all textual definitions whose concepts lead to

the goal, the format property is modeled in the label of the resources and knowledge on the

goal is modeled in the weight of the resources.

• E2 cannot be converted to LAG: E2 selects all textual definitions whose difficulty is high and

whose concepts lead to the goal. Indeed, one of the three constraints cannot be modeled

in the domain (and goal) models, either the format property of resources, the difficulty of

resources, or the knowledge about the goal.

E1 : instanceOf(resource, Definition) ∧ link (resource, concept, abstraction) ∧ link-transitive (concept, goal,

prerequisite) ∧ characteristicOf(resource, format, =, text)

E2 : instanceOf(resource, Definition) ∧ link (resource, concept, abstraction) ∧ link-transitive (concept, goal,

prerequisite) ∧ characteristicOf(resource, format, =, text) ∧ characteristicOf(resource, difficulty, =,

high)

Figure 6.2 – Examples of expressions described by the EAP framework

2.2.1 Translation of expressions to the LAG format

Table 6.4 describes conversions of the three types of expressions used by the EAP framework

into LAG, by respecting the constraints defined before. We remember that, expressions in the

EAP framework allow to select resources to be proposed to users.

The EAP framework LAG (the code presented here is simplified)

Expressions on classes

Denote all resources that are instances

of the class Resource. Selecting them

automatically means showing them. It is

expressed by: instanceOf(resource,

Resource)

The class of a resource is in the value of the name attribute of

the Attribute class. The access to this value is done using the

type constructor. if GM.Concept.type == Resource

then (PM.GM.Concept.show = true)

Expressions on relations: 6 different conversions are considered

1- Propose all resources related to a

particular concept. Linked (resource,

concept, abstraction)

This corresponds to showing all concepts in a goal

model (specially selected for a certain goal): while true

(PM.GM.Concept.show = true)

Alternatively, if some part of the goal model is not to be

shown, additional annotations of resources must be added

by using labels or weights.

2 - Propose all resources whose concepts

have as parent the concept2. Linked

(concept, concept2, hasParent)

∧ Linked (resource, concept,

abstraction)

Using the child constructor, this returns the con-

cepts that are children of one of the resources be-

longing to a given concept. if ’concept2’.access

then(PM.GM.Concept.child.show = true)

3 - Propose all resources whose concepts

have as child the concept2. linked

(concept2, concept, hasParent)

∧ Linked (resource,concept,

abstraction

Using parent constructor. if ’concept2’.access

then(PM.GM.Concept.parent.show=true)

2 Plugging the EAP framework to LAG 135

4 - Propose all resources whose

concepts have as direct or

indirect parent the concept2.

linked-transitive (concept,

concept2, hasParent) ∧ Linked

(resource, concept,abstraction)

Using the level constructor, this returns the level

of a particular resource inside the hierarchy of con-

cepts. if GM.Concept.level>’concept2’.level

then (PM.GM.Concept.show = true)

5 - Propose all resources whose con-

cepts have as direct or indirect child the

concept2.

Similarly to the previous conversion 4.

linked-transitive (concept2,

concept, hasParent) ∧ Linked

(resource,concept, abstraction)

if GM.Concept.level<=âconcept2â.level then

(PM.GM.Concept.show = true

6 - Propose all resources whose concepts

are linked by a relatedness relation to

concept2.

while true (

linked (concept, concept2,

relatedness) ∧ Linked

(resource, concept,

abstraction)

’concept2’.Relatedness.Concept.show = true)

Expressions on properties

Denote all resources having the property

and satisfying the comparison test using

the operator op and the value val. It is

expressed by:

As a property may be expressed using the attributes labels

or weights, two conversions are thus possible. Here is

the conversion where a property is expressed using the

attribute label:

characteristicOf(resource,

property, op, val)

if GM.Concept.label op val then

(PM.GM.Concept.show = true)

Table 6.4 – Conversions of the three types of the EAP framework expressions to LAG

2.2.2 Translation of meta-expressions to the LAG format

Table 6.5 describes conversions of the three types of meta-expressions used by the EAP

framework into LAG, by respecting the constraints defined before. We remember that, meta-

expressions in the EAP framework specify how the selected resources are going to be proposed

to users.

The meta-expression expressing the ordered mode selection Ei ≺ Ej , means that, the set of

resources selected by Ei is first proposed. Once they have been viewed, the set of resources

selected by Ej is proposed and the set selected by Ei is no more accessible. Only one set is

proposed per time. In LAG, resources have to be shown and hidden explicitly, i.e. show first

the set of resources selected by Ei, once they had been viewed, hide them and show the set of

resources selected by Ej . Thus, the meta-expression is mapped in two strategies (cf. Row 2 in

Table 6.5).

The meta-expression expressing the recommended mode selection Ei ⊎ Ej , means that, both

sets of resources selected by Ei and Ej will be proposed in the same time to the user, such as the

set of resources selected by Ei is recommended rather than the one selected by Ej . A typographic

indication can be used to distinguish between the resources that are recommended rather than

those are not. In LAG, this is done by showing all resources in the order of their recommendation

and by hiding the other ones. Thus, the meta-expression is mapped into two strategies (cf. Row

3 in Table 6.5).

136 Translating generated adaptation strategies to existing adaptation languages

The EAP framework LAG (the code presented here is simplified)

Define an imposed order between selected

resources. It is described by: Ei ≺ Ej

It is mapped into 2 strategies, with different priorities, and

these two strategies will be performed according to these

priorities, each strategy containing one of the expressions

Strategy 1, priority 1 :

if UM.GM.Concept.access == true then

(UM.GM.Concept.beenthere+=1)

if UM.GM.Concept.beenthere == 1 then

(Ei.show = true)

Strategy 2, priority 2 :

if UM.GM.Concept.beenthere == 2 then

(Ej.show = true Ei.show = false)

where UM.GM.Concept.beenthere is a variable that can be

defined in the user model. Furthermore, the set of resources

selected by Ei and Ej must have the same order in the goal

model as the one defined by the meta-expression.

Define an optional order between selected

resources. It is described by: Ei ⊎ Ej .

It is mapped into 2 strategies with different priorities and

they will be performed according to these priorities, each

strategy containing one of the expressions:

Strategy 1, priority 1 :

if UM.GM.Concept.access == true then

(UM.GM.Concept.beenthere+=1)

if UM.GM.Concept.beenthere == 1 then

(Ei.show = true)

Strategy 2, priority 2 :

if UM.GM.Concept.beenthere == 2 then

(Ej.show = true)

The set of resources selected by Ei and Ej must have the

same order in the goal model as the one defined by the

meta-expression.

Define alternatives between selected re-

sources. Note that, the alternative re-

sources are proposed only if the desired

resources are not available.

This cannot be converted as LAG does not propose

any constructor to check empty resources. However,

alternatives may be proposed by annotating concept using

the label or weight attribute.

It is described by: Ei | Ej . if (GM.Concept.label == alternative) then

(PM.GM.Concept.show = true)

Table 6.5 – Conversions of the three types of the EAP framework meta-expressions to LAG

3 Summary

This chapter focuses on the possibilities of defining the EAP framework on top of existing

solutions in order to execute adaptation expressed using the EAP framework. More precisely,

we have presented how the EAP framework can be defined on top of the GLAM platform (a

3 Summary 137

rule-based system) and also on top of the LAG language (a procedural language).

To conclude this part, we have promoted two main ideas behind the EAP framework: enabling

authors to specify their adaptation strategies at a high level, and easiness of defining authors’ adaptation

strategies.

So far, we have presented our EAP framework enabling authors to create their own adaptation

strategies, at a high level and at a finer granularity than what is proposed by existing languages.

This is obtained by the definition of 22 elementary adaptation patterns to express the adaptive

navigation, and which are organized in a typology. The elementary adaptation patterns are

based, on the one hand, on a criterion to select resources and, on the other hand, on a criterion to

organize the selected resources. Thereby, we have defined a set of criteria to select resources and

to organize selected resources.

The generated adaptation strategies are expressed at a high level and independent of any

adaptation engine. In order to be executed, we have described how generated adaptation

strategies will be translated to GLAM, a rule-based system, and to LAG, a procedural language.

GLAM and LAG have been intentionally chosen, where each of them belongs to a distinct

solution to express adaptation (either a solution based on rule languages or a solution based

on procedural languages).

We have also proposed a study of the expressivity of the EAP framework, versus GLAM and

versus LAG. This study has been conducted on their modeling of adaptation and also on their

modeling the elements on which the adaptation is expressed. From these studies, we have come

up with an integrated vision of the basic actions that can be used in defining adaptation, and also

with an unifying vision of modeling the domain model.

138 Translating generated adaptation strategies to existing adaptation languages

Part V

Implementation, Experiments &

Evaluations

C H A P T E R 7

Implementation

1 Implementation of the merging/specialization process 143

1.1 Architecture of the MESAM plug-in . 143

1.2 Installation of the MESAM plug-in . 143

1.3 Interaction with the MESAM plug-in . 144

2 Implementation of the EAP framework . 145

2.1 Architecture of the EAP plug-in . 145

2.2 Installation of the EAP plug-in . 146

2.3 Interaction with the EAP plug-in . 146

2.4 Plugging the EAP framework to LAG . 147

3 Summary . 149

142 Implementation

In this chapter, we present the implementation of our contributions, that have been described

previously in parts III and IV.

First, we have implemented the process of merging models by specialization. This process can

be performed on any two OWL models, not necessary models used in the AH field (cf. Section 1).

Second, we have implemented the process of specifying adaptation strategies according to

the EAP framework. We have also allowed their execution using existing adaptation engines,

more particularly through the interaction with LAG (cf. Section 2). Note that, we did not

implement a translator from the EAP framework to the GLAM framework, as the translation is

direct (for further details on the translation process of the EAP framework to the GLAM platform

see Chapter 5, Section 1).

Both implementations rely on semantic web technologies, like using OWL1 language for

modeling and SWRL2 for expressing reasoning. Consequently, we have chosen to integrate our

implementations to the Protégé tool3 supporting such technologies. This later is considered as

the most used tool by the semantic web community to create, edit, and reason on OWL models.

It has been developed by a team in the Stanford university over the last 10 years in various minor

and major reiterations4. The tool is open source. Therefore, it has motivated several developers

to propose extensions. Several plug-ins have been proposed, going from visual edition of OWL

models (ontoVizTab), to reasoning on OWL models using jess (Jess tab) and so on.

1http://www.w3.org/TR/owl-features/
2http://www.w3.org/Submission/SWRL/
3http:protege.stanford.edu/
4Protégé tool is available at protege.stanford.edu/

1 Implementation of the merging/specialization process 143

1 Implementation of the merging/specialization process

In part III, we have described a merging/specialization process of two models. We have

implemented this process as a Protégé plug-in, called MESAM. In Section 1.1, we describe the

architecture of the MESAM plug-in, which is an abbreviation of Model mErging by Specialization

of Abstract and generic Models. Afterward, in Section 1.2, we detail the installation of the MESAM

plug-in on a local machine. Finally, a general overview of its implementation is discussed in

Section 1.3.

1.1 Architecture of the MESAM plug-in

As described in Figure 7.1, the plug-in includes two parts.

First, a knowledge part gathers generic models, the meta-model and deduction rules (4

rules related to patterns and 22 others are related to mappings and inconsistency). All these

components are reusable across applications.

Second, the process part is made of some components performing interaction with an

inference engine (in our case Jess) and the Protégé OWL editor. We have used the OWL Protégé

API5 to manipulate OWL models, as editing OWL models or generating meta-model instances

from OWL models, and the SWRL Jess Bridge6 to execute SWRL rules7 using the Jess inference

engine8.

Figure 7.1 – Architecture of the MESAM plug-in

1.2 Installation of the MESAM plug-in

In order to be able to use the MESAM plug-in, Protégé v3.4 has to be downloaded from the wiki

of Protégé and installed on a local machine. Furthermore, as the plug-in needs a rule engine to

make inferences, it must be installed separately and configured to be used with Protégé v 3.4. At

present, only the Jess rule engine is supported9.

Once Protégé v3.4 and Jess have been installed and configured to be used together, you have

to download the fr.supelec.csd.mesam.zip file either from the wiki of Protégé10or from the Wiki of

Supélec11 then to unzip it in the Protégé plug-ins directory. The plug-in MESAM is now ready to

be used as any other Protégé v3.4 plug-in.

5http:protege.stanford.edu/plugins/owl/api/
6http://protege.cim3.net/cgi-bin/wiki.pl?SWRLJessBridge
7http://www.w3.org/Submission/SWRL/
8http://www.jessrules.com/
9Information on installing Jess is described at http://protege.cim3.net/cgi-bin/wiki.pl?SWRLJessInstall

10The MESAM plug-in is downloadable from http://protegewiki.stanford.edu/wiki/MESAM
11http://wwwdi.supelec.fr/software/cahier

144 Implementation

1.3 Interaction with the MESAM plug-in

Here, we describe how an author can interact with the plug-in, what facilities the plug-in

proposes to guide him in order to obtain a consistent merged model.

At first, the developed plug-in provides an interface allowing the author to indicate the OWL

files of both the generic and specific models to be merged (cf. (1, 2) Figure 7.2). Then, it guides

the author through the other steps of the process. These steps are described below.

Figure 7.2 – Workspace of the MESAM interface

1.3.1 Specification of equivalence or specialization mappings

The developed plug-in proposes a vision of the reused generic and specific models in separate

windows, as it can be seen in (cf. (3) Figure 7.2). The author can specify either equivalence

or specialization mappings between the classes of the two models (cf. (4) Figure 7.2). Given

these correspondences, additional correspondences between classes, properties or relations

are generated using a reasoning module (based on deductions of Chapter III, Section 4).

The hypothesis underlying this work is that it is much easier for authors to specify simple

correspondences from small numbers of classes in the models, and then to evaluate mappings

returned by the system. The consistency of the merged model is automatically checked.

1.3.2 Validation of structural deductions

After running the deduction process (cf. (5) Figure 7.2), the plug-in deduces mappings and

inconsistency problems. The different deductions are presented in separate windows as it can

be seen in (cf. (6, 7, 8) Figure 7.2). The author can confirm, choose the right one among several

solutions, and can view inconsistency problems that are in the specific model to eventually

2 Implementation of the EAP framework 145

modify it outside the plug-in. Problems can be exported in a textual file (cf. (9) Figure 7.2). If no

inconsistency problems are deduced, the plug-in proposes the creation of the merged model (cf.

(10) Figure 7.2).

1.3.3 Printing reused classes, relations and properties

The merged model includes elements of both generic and specific models. The elements concern

classes, relations and properties. It may happen that some elements of the generic model haven’t

been specialized or elements of the specific model haven’t been reused in the merged model. This

is due to the fact that the author doesn’t define a mapping between each element of the specific

model and one element of the generic model or a mapping between one element of the specific

model and each element of the generic model.

Consequently, the plug-in proposes to the author to have a global view of the elements of the

generic model that have been used or not. It also proposes a similar view for elements of the

specific model. These features have been implemented by a 3rd year engineering student from

Romania in current April - June 2009.

Note that, the meta-model (defined in Chapter III, Section 5 on which reasoning is made)

is loaded inside the plug-in, then meta-model instances are generated from the specific and

generic models. We have chosen to keep these processes invisible to the author. So, in our

plug-in, the author will have the illusion to work over the specific and generic models.

2 Implementation of the EAP framework

In part IV, we have described the EAP framework enabling authors to specify adaptation at a fine

granularity, independently of any adaptation engine, at a high level and in an easy manner. We

have implemented this solution as a Protégé plug-in, called eapTab, which is an abbreviation of

Elementary Adaptation Patterns Tab. In Section 2.1, we describe the architecture of the eapTab plug-

in. Afterward, in Section 2.2, we detail the installation of the eapTab plug-in on a local machine.

Finally, a general overview of its implementation is discussed in Section 2.3.

2.1 Architecture of the EAP plug-in

As described in Figure 7.3, the plug-in includes two parts.

First, a knowledge part gathers the library of elementary adaptation patterns and combination

rules. The library is modeled in OWL12, where each elementary adaptation pattern is an OWL

class and is defined as a specialization of a class called ElementaryAdaptationPattern. Besides, the

combination rules implement the combination process (cf. Chapter 4, Section 5.3) in a declarative

way using SWRL rules13 and the swrlx build-ins14.

Second, the process part is made of components performing interaction with an inference

engine (in our case Jess) and the Protégé OWL editor. We have used the OWL Protégé API15 to

manipulate the author’s domain and user models, the library of elementary adaptation patterns

and their instantiations. We have also used the SWRL Jess Bridge16 to execute SWRL rules using

Jess.

12www.w3.org/TR/owl-guide/
13www.w3.org/Submission/SWRL/
14The swrlx built-ins augment swrl rules with additional functionalities, e.g, creating new instances
15http://protege.stanford.edu/plugins/owl/api/
16http://protege.cim3.net/cgi-bin/wiki.pl?SWRLJessBridge

146 Implementation

Figure 7.3 – Architecture of the eapTab plug-in

2.2 Installation of the EAP plug-in

Similarly to the installation of the MESAM plug-in 1.2, Protégé v3.4.2 (or v3.4.3) has to be

downloaded and installed on a local machine. Furthermore, as the plug-in needs a rule engine

to make inferences, it must be installed separately and configured to be used with Protégé v 3.4.2

(or v3.4.3). At present, only the Jess rule engine is supported17.

Once Protégé v 3.4.2 (or v3.4.3) and Jess are installed and configured to be used together, get

fr.supelec.csd.eap.zip file from the Wiki of Supélec18 and unzip it in the Protege plugins directory

(cf. Section 1).

2.3 Interaction with the EAP plug-in

Here, we describe how an author can interact with the plug-in, which facilities the plug-in

proposes to guide him in order to define adaptation strategies.

First, the plug-in asks the author to load his user and domain models in OWL format (cf.

(1) Figure 7.4). Then, it assists the author to define adaptation strategies according to the steps

specified in the EAP framework (cf. Chapter 4, Section 3). We describe below how these steps are

performed using the eapTab plug-in.

2.3.1 Definition of elementary adaptations

The plug-in proposes authors to add elementary adaptations one by one (cf. (3) Figure 7.4).

For each new elementary adaptation, the author selects the appropriate elementary adaptation

patterns by selecting the criteria on which it is expressed. For example: by selecting ordered

selection mode, and the element of the domain model classes, the plug-in automatically selects the

pattern P2.2 (cf. Appendix B, Table B.2).

Once the elementary adaptation pattern has been selected (cf. (1) Figure 7.5), the author

may access its description (cf. (2) Figure 7.5), specify the name of the elementary adaptation,

its intent and the elements of the author domain model on which the elementary adaptation will

be expressed. Afterward, he may add this new elementary adaptation (cf. (3) Figure 7.5) to the

list of elementary adaptations (cf. (4) Figure 7.4).

2.3.2 Association of elementary adaptations with user characteristics

After defining each elementary adaptation, the author may associate it to a user characteristic

or possibly wait till he has defined all needed elementary adaptations. The plug-in integrates

17Information on installing Jess is described at http://protege.cim3.net/cgi-bin/wiki.pl?SWRLJessInstall
18http://wwwdi.supelec.fr/software/cahier

2 Implementation of the EAP framework 147

Figure 7.4 – Workspace of the eapTab plug-in

a button (cf. (5) Figure 7.4) allowing the author to associate the selected elementary adaptation

from the list of defined elementary adaptations with one of the available user characteristics.

2.3.3 Definition of adaptation strategies

The plug-in also assists the author in defining adaptation strategies. Similarly to performing the

previous steps, the plug-in proposes a button to generate adaptation strategies. These adaptation

strategies are based on the combination of values of user characteristics that a user may have at

a given instant.

Therefore, the plug-in builds several adaptation strategies, each of them corresponds to a

composition of user characteristics that a user may have (cf. (7) Figure 7.4). S1 is the last line in

the list of generated adaptation strategies.

2.4 Plugging the EAP framework to LAG

We implemented a prototype of conversion of adaptations described using the EAP framework

to LAG. This prototype has been implemented in JAVA and has been integrated to eapPTab.

Once the author has defined his adaptations using eapTab, the plug-in proposes exporting the

adaptation to LAG. This conversion process takes as input the following elements:

• the domain, user models expressed in OWL;

• adaptation strategies described in OWL having the same structure than the elementary

adaptation patterns.

It proposes as output the following elements.

• The domain and goal models in the CAF XML-based format.

148 Implementation

Figure 7.5 – Workspace of the elementary adaptation editor

• The adaptation, user and presentation models described using the LAG adaptation

language. Note that this decision to merge adaptation model, user model and presentation

model is a simplification from the LAOS framework, which defines them separately.

Nevertheless, the LAG language allows for clear distinction of parameters coming from

each of the three models (for example, all user model variables start with UM, all

presentation model variables start with PM, etc.), so a clear differentiation is possible.

The process of conversion is based on the studies presented in Chapter 5 and is the following:

Conversion of the domain model The domain model used by the EAP framework is converted

to a domain and goal model used by LAG according to the process described in Chapter 5,

Section 2.1.

As the EAP framework is independent of any application domain and as LAG is only for

e-learning applications, the domain model used by the EAP framework may have more

expressivity than the domain (and goal) models used by LAG. In such cases, the domain

model used by the EAP framework cannot be converted to domain (and goal) models used

by LAG. In the following, we cite the cases where such conversions cannot be performed.

• The domain model used by the EAP framework includes a typology of resources, and

more than two properties. In this case, the typology of resources is expressed in the

name attribute of the ATTRIBUTE class (cf. Chapter 5, Figure 5.3), one property is

expressed using the label attribute of the LINK class (cf. Chapter 5, Figure 5.3) and

the other one property is expressed using the weight attribute of the LINK class (cf.

Chapter 5, Figure 5.3). However, the additional properties expressed in the domain

model used by the EAP framework cannot be converted. Therefore, in such case there

is no way to convert the domain model and the author will be notified about this.

• The domain model used by the EAP framework includes more than two relations

between concepts. In this case, only two of them can be converted (hierarchical and

relatedness). The other relations cannot be converted. Therefore, the author will be

informed about this and the domain model will not be converted.

Conversion of the user model The user model used by the EAP framework is not converted to a

separate user model used by LAG. As adaptation in LAG is defined, for simplification and

compactness, within the adaptation specification, when authors initialize and manipulate

(specify updates for) user attributes, authors don’t need to specify a user model separately

3 Summary 149

from the adaptation specification. For that, user characteristics defined in the user model

used by the EAP framework are converted to user attributes in the generated adaptation in

the LAG format.

Conversion of adaptation Adaptations described using the EAP framework are converted

according to the process and the constraints described in Chapter 5, Section 2.2.

• First, expressions included in adaptations to be converted are considered. The

expressions on classes and on properties are directly converted to LAG. However,

expressions on relations need additionally to annotate resources in the goal model

by interpreting either their labels or their weights. For example, for an adaptation to be

converted specifying a navigational path on the concept graph, we have to annotate

the first concept to be proposed inside the goal model used by LAG. This annotation

is done using the property label of goal concepts, if it is not used for characterizing

other pedagogical characteristics; otherwise, the annotation is done using the property

weight of the goal concepts.

• Second, meta-expressions included in adaptations to be converted are considered. The

priority and recommendation meta-expressions are converted to LAG. Furthermore,

we have to organize the resources within the goal model using the same order

expressed by the converted meta-expressions. This is done using the property order

of the Link class in the goal model that will be used by LAG. Consequently, the

goal model is modified during the process of converting adaptation. The alternate

meta-expression is not converted to LAG (cf. Chapter 5, Section 2.2).

These conversions of adaptations are based on the conversion on the elementary adaptation

patterns19. We have thus proposed a conversion process for the elementary adaptation

patterns defined in the EAP framework. We have converted the elementary adaptation

patterns (cf. Appendices B) except the elementary adaptation patterns using the alternate

selection mode P4.1.1.1, P4.1.1.2, P4.1.2.1, P4.1.2.2, P4.2 and P4.3 which haven’t been

converted to LAG as this later does not support to check whether a resource is empty

or not. The elementary adaptation patterns expressed on concepts directly (P1.1.1,

P2.1.1.1, P2.1.1.2, P3.1.1.1 and P3.1.1.2) cannot also be converted to LAG as this later does

not propose constructors to access concepts but only resources. These conversions are

expressed in AppendixC

3 Summary

So far, we have presented the implementation of our contributions. These implementations

propose a support for defining merging models by specialization and for defining adaptation

strategies.

In the following, we present experiments and evaluations of our contributions that have been

conducted thanks to the development made.

19An adaptation expressed using the EAP framework is defined by the instantiation of one or more elementary

adaptation patterns and the combination of these instantiations.

150 Implementation

C H A P T E R 8

Experiments and evaluations in

e-learning

1 Experiments of the MESAM plug-in in the adaptive e-learning hypermedia

domain . 153

1.1 Experimental settings . 153

1.2 Obtained results . 153

2 Evaluation of the EAP tab versus existing Adaptive Systems 155

2.1 Evaluation of the EAP framework versus GLAM, a rule-based system . . 155

2.2 Evaluation of the EAP framework versus LAG, a generic adaptation

language . 158

3 Summary . 162

152 Experiments and evaluations in e-learning

In this chapter, we present experiments and evaluations that have been conducted using

MESAM tab and EAP tab in the e-learning domain.

Section 1 presents our experiments followed using MESAM tab on models included in John’s

use case (cf. Chapter 3, Section 2.4).

Section 2 presents our evaluations using the eapTab to determine whether it is easier and

faster to express adaptation strategies using EAP framework versus the GLAM platform in a first

time, and using LAG in a second time. These evaluations have been done with volunteers on

Jane’s use case (cf. Chapter 4, Section 2).

1 Experiments of the MESAM plug-in in the adaptive e-learning hypermedia domain 153

1 Experiments of the MESAM plug-in in the adaptive e-

learning hypermedia domain

In this experiment, our aim is to show how the MESAM plug-in could be useful for authors of

AH. For this purpose, we have executed MESAM plug-in on models included in John’s use case

(cf. Chapter 3, Section 2.4).

1.1 Experimental settings

John’s use case (cf. Chapter 3, Section 2.4) includes a generic model with 2 classes and 7 relations

and a specific model with 4 classes and 17 relations.

To perform the merging process, the MESAM plug-in relates on the author to start the process

by defining mappings between classes. We have played the role of an author. Therefore, we have

defined mappings between classes. More precisely, we have defined 7 different situations1, each

situation considers different mappings between classes (cf. line 2 in Table 8.1). Afterward, we

have run the plug-in on these situations and have summarized the obtained results in line 3 and

line 5 in Table 8.1. We also compare the total number of deduced mappings versus the correct

mappings that have to be defined (cf. line 4 in Table 8.1).

1.2 Obtained results

Table 8.1 presents results of execution of the MESAM plug-in according to particular situations.

Situations sit 1 sit 2 sit 3 sit 4 sit 5 sit 6 sit 7

Number of mappings 4 4 3 3 4 2 1

Correct mappings that can be defined

- CONCEPT and NOTION
√ √ √ √ √

- RESOURCE and ILLUSTRATION
√ √ √ √

- RESOURCE and DESCRIPTION
√ √ √ √

Wrong mappings that can be defined

- RESOURCE and DEFINITION
√ √ √

- CONCEPT and DEFINITION
√

- CONCEPT and ILLUSTRATION
√ √

- CONCEPT and DESCRIPTION
√

- RESOURCE and NOTION
√ √

Deductions proposed to the author

- for validation 10 7 5 7 2 4 3

- for choice between 2 mappings 6 * 2 4 * 2 4 5 * 2 2 * 2 3 0

- about inconsistency 0 0 4 0 6 0 0

Total of proposed mappings 22 15 13 17 12 10 3

Correct mappings that should be pro-

posed
16 11 6 12 0 7 2

Missing mappings 1 3 4 0 5 1

Built merged model X X X
√

X
√

X

Table 8.1 – Execution of MESAM plug-in according to several situations on models of John’s use

case

1Note that, we may have 80 situations, as there are 4 classes in the specific model and each of them may be in three

cases (linked to the CONCEPT or RESOURCE class or not linked). We don’t consider the case where no class of the

specific model is related to a class of the generic model, as in this case the process does not make deductions.

154 Experiments and evaluations in e-learning

The fourth situation (column sit 4 in Table 8.1) corresponds to the john’s use case (cf.

Chapter 3). It assumes that John only defines correct mappings, between the classes CONCEPT

and NOTION, RESOURCE and ILLUSTRATION, RESOURCE and DESCRIPTION. The plug-in

deduces 7 mappings that have to be validated by the author. This includes mappings between:

(V1) name of concept and title;

(V2) abstraction having as domain the class CONCEPT, as range the class RESOURCE and

abstraction having as domain the class NOTION, as range the class ILLUSTRATION;

(V3) abstraction having as domain the class RESOURCE, as range the class CONCEPT and

abstraction having as domain the class ILLUSTRATION, as range the class NOTION;

(V4) name of resource and illustration identifier;

(V5) abstraction having as domain the class CONCEPT, as range the class RESOURCE and

abstraction having as domain the class NOTION, as range the class DESCRIPTION;

(V6) abstraction having as domain the class RESOURCE, as range the class CONCEPT and

abstraction having as domain the class DESCRIPTION, as range the class NOTION.

(V7) name of resource and description identifier;

The plug-in also deduces 5 cases, where John has to choose between two mappings. He can

choose no, one or two mapping (s) in each case.

C1 content of resource and illustration content/content of resource and presentation of illustration.

C2 format and illustration content/format and presentation of illustration.

C3 content of resource and description content/content of resource and description format.

C4 format and description content/format and description format.

C5 pre-requisite and successor/pre-requisite and part-of.

At all the plug-in proposes 17 mappings where the merged model will include 12 mappings. We

argue that it remains manageable by the author, as 7 mappings are almost sure and there are only

5 cases where the author has to choose between 2 mappings.

Note that, the plug-in would have return better results if relations in both specific and

generic models have been better defined, for example, format, presentation of illustration and

description format have been defined with a distinct types of content of resource, illustration content

and description content. In this case, the author wiould have 11 validations to make and only

one case with choice between two deductions. Conversely, the plug-in returns more choices if

relations in both specific and generic models have multiplicities equals to *. This is due to the

fact that, the plug-in exploits structural knowledge to deduce mappings and lets the semantic to

be validated by the author himself.

Consequently, the results provided by the plug-in do not only depend on the initial set of

mappings defined by the author between classes of the two models but also on the constraints

defined on relations of the models themselves.

The fifth situation (column sit 5 in Table 8.1) corresponds to the situation where the author

only defines wrong mappings. He specifies mappings between the classes CONCEPT and

ILLUSTRATION, CONCEPT and DESCRIPTION. CONCEPT and DEFINITION and RESOURCE

and NOTION.

The plug-in deduces 2 mappings that have to be validated by the author. This includes

mappings between:

2 Evaluation of the EAP tab versus existing Adaptive Systems 155

(V1) name of concept and definition identifier;

(V2) format of resource and title;

(V3) content of resource and title.

The plug-in also deduces 2 cases, where John has to choose between two mappings. He can

choose no, one or two mapping (s) in each case.

C1 name of concept and illustration content/name of concept and presentation of illustration.

C2 name of concept and description content/name of concept and description format.

The plug-in deduces 6 inconsistency mappings and informs the author about 5 relations of the

generic model that have no probable mappings. We notice that in such a situation (i.e., with

only wrong mappings between classes) the plug-in deduces more inconsistency and missing

mappings.

From these executions, we note that more there are wrong mappings between classes, more

the plug-in doesn’t find structural mappings between relations of specific and generic models.

Therefore, more missing mappings between relations are detected.

2 Evaluation of the EAP tab versus existing Adaptive Systems

We have conducted two successive evaluations: evaluation of the EAP tab versus GLAM (cf.

Section 2.1), and evaluation of the EAP tab versus LAG (cf. Section 2.2).

2.1 Evaluation of the EAP framework versus GLAM, a rule-based system

We have carried out an experiment with real users to see if it is easier and faster to express

adaptation strategies using elementary adaptation patterns versus using GLAM.

2.1.1 Evaluation settings

We asked course teachers2 from Supélec3 and INRIA4 to define adaptation strategies according

to Jane’s use case (cf. Chapter 4, Section 2).

As in our experiments, we focus on the expression of adaptation, we expressed the domain

and user models according to each solution. We performed the evaluation on each volunteer

separately (mainly due to their different availabilities). Seven volunteers5 performed the

evaluation. They were between 20 and 30 years old, with between 1 and 7 years experience

in higher education. Among the volunteers, there were 6 men and 1 woman and all of them were

new to both solutions.

2.1.2 Obtained results

We divided the sequence of experiments into two steps before and after specifying adaptation

strategies. We detail them below.

Before specifying adaptation strategies.

2working on ICT (Information Communcation & Technology): wireless network, energy or computer science
3www.supelec.fr/
4www.inria.fr/saclay/recherche/
5In [50], the author proved that with at least 5 persons we can obtain significant results.

156 Experiments and evaluations in e-learning

We argue that some skills may introduce a biais in our experiment. For example: people

often manipulating rules, will easily and quickly express adaptation using rules. To avoid this,

we defined a questionnaire estimating skills related to our experiments, and the volunteers

were asked to fill it in. The questionnaire included 16 questions, which we gathered in 5

groups: principles and implementation of AH, principals and modeling of personalization, use

of rule-based languages, use and implementation of design patterns and courses building. The

volunteers had to estimate their knowledge between: none, little, intermediate, good or very

good.

Figure 8.1 presents skills of the volunteers in a graph with two axes. In the abscissa, we

present the groups of questions and in the column, 10% presents one volunteer. For AH skills,

3 volunteers had no background, 3 others only knew the principles and 1 estimated that he had

intermediate knowledge. Volunteers had better understanding of personalization: 4 volunteers

knew about the principles, whilst 3 others had intermediate understanding. Concerning rule-

based languages, 5 volunteers had little understanding, 1 volunteer had already used such

language and another one estimated that he had good skills. For design patterns’ principles,

3 volunteers admitted having no knowledge at all, 1 volunteer only knew the principles and

had never used a design pattern, 1 volunteer estimated he had an intermediate understanding

and 2 other volunteers said that they knew them well. For courses building, 3 volunteers had

intermediate notions as they had just start teaching and 3 others estimated they had good skills

and 1 volunteer estimated he had very good skills.

Figure 8.1 – Skills of our volunteers

Thus, none of them had any knowledge on the implementation of an AH, particularly on

writing adaptation. They knew more or less what we mean by personalization. Consequently,

we first explain general knowledge of AH. We then trained the volunteers using examples to

introduce them to both solutions. Finally, they had to define at least S1 (cf. Chapter 4, Section 2),

first according to the EAP framework using eapTab, secondly according to GLAM using a

notepad. Starting with one system does not influence the results as they didn’t know which one

was our solution.

After specifying adaptation strategies.

Once the volunteers had specified adaptation using both approaches, they were asked to

evaluate the difficulty of expressing adaptation strategies using each solution. They had to

choose between (very easy, easy, intermediate, difficult and very difficult). We present their

answer in Figure 8.2 using a graph with two axes. In the abscissa, we present the answers

related to GLAM and eapTab and in the column 10% presents one volunteer. When using GLAM,

4 volunteers (i.e, more than half of the volunteers) found that it was hard, mainly to express

navigational paths and to specify the correct meta-rules. Using eapTab, 3 volunteers estimated

2 Evaluation of the EAP tab versus existing Adaptive Systems 157

that it was simple and 1 volunteer estimated that it was very simple. Therefore, more than

half of our volunteers estimated that it was easy to express adaptation strategies using eapTab.

Furthermore, the approach of breaking down an adaptation into multiple elementary ones

seemed to be pleasant and intuitive for them, as they never think about how they should write

their adaptation strategy, but only what they wanted to express. Only ergonomic requirements

were given in order to improve the usability of eapTab.

Figure 8.2 – Estimation of difficulty to express S1

Additionally to this, we measured the time spent to express adaptation strategies using each

approach. We grouped our estimation in 4 intervals (less than 10 min, between 10 and 15,

between 15 and 20, more than 20 min). We present these estimations in Figure 8.3 with two axes.

In the abscissa, we present the time spent using GLAM or eapTab and in the column 10% presents

one volunteer. We noticed that most volunteers were able to create similar adaptation strategies

using eapTab within approximately half the time than when using GLAM. Furthermore, they

defined only S1 when they used GLAM, while they did not hesitate to define others using

eapTab. We explain these results by the fact that when using GLAM, authors have to manually

find all the conditions that must be satisfied by the proposed resources and manually compose

the different conditions. These conditions must be written as rules in GLAM. Then, they have

to define which rules are to be applied to which user by writing meta-rules. When using

eapTab, volunteers only have to define the elementary adaptations, then to associate them to

user characteristics and the combination process is done automatically. They have to trust the

solution for the combination process.

Figure 8.3 – Estimation of time spent to express S1

158 Experiments and evaluations in e-learning

Note that, S1 is defined using 8 rules and 6 meta-rules in GLAM (cf. Chapter 4, Figure 4.6),

where GLAM rules include repetitive parts, e.g, the selection of definitions is present in 4 rules.

Only 3 elementary adaptations (cf. Chapter 4, Section 5.1) are required using the EAP framework.

2.2 Evaluation of the EAP framework versus LAG, a generic adaptation

language

Similarly to the previous evaluation, we have carried-out an experiment with real users to see

if it is easier and faster to express adaptation strategies using LAG rather than using the EAP

framework or vice versa.

2.2.1 Evaluation settings

We asked assistant professors from Supélec and INRIA to define adaptation strategies following

the scenario described in section 3 using LAG and using the EAP framework. The scenario

includes (cf. Chapter 4, Section 2):

A domain model (abbreviated DM) with three concepts and a few resources having different

types (definition, example, etc) and formats (text, image, etc). This choice was motivated

by the fact that we asked assistant professors to book 2 (at most 3) hours for the evaluation.

We had also to consider that some of these volunteers are not computer scientists. Also,

most of the volunteers do not have background about adaptive hypermedia or authoring

adaptation strategies, i.e., they will need more explanation about the context of the

evaluation. Consequently, we have included few resources and concepts for illustration

purpose. Furthermore, they will not express their adaptation strategies directly on

resources but on the domain model structuring the used resources. Even if the domain

model is small, it is enough complex. In fact, it includes enough elements to define a large

number of different adaptation strategies.

A user model with three user characteristics.

Two adaptation strategies where each of them proposes a set of resources for learners with

specific characteristics (S1 and S2 in Chapter 4, Section 2).

In our experiment, we focus on the expression of adaptation. For that, we have built for the

volunteers the domain, goal, or user models, according to each approach. Thus, for expressing

adaptation using LAG, we have built domain and goal models in CAF, but we have not built

a user model, as the LAG language requires specification of the user model in the adaptation

specification. For expressing adaptation using the EAP framework, we have built domain and

user models in OWL that can be used by the EAP framework.

Thereby, the volunteers have only to express adaptation strategies using both approaches.

We have performed the evaluation for each volunteer separately (this is mainly due to their

different availabilities). Eight volunteers [50] have performed the evaluation. They have between

25 and 40 years old, and between 1 to 15 years experience in higher education. Among the

eight volunteers, there were 3 women and 5 men. Two of the volunteers have participated in a

previous evaluation with the EAP framework. Therefore, we estimate they knew more or less the

eaptab [75]. The other 6 volunteers were new to both systems.

2.2.2 Obtained results

We have divided the sequence of the experiments in two steps: before creating adaptation

strategies and after creating adaptation strategies. In each step, volunteers have to answer one

2 Evaluation of the EAP tab versus existing Adaptive Systems 159

questionnaire. We describe each step further in the following.

Step 1: before creating adaptation strategies

The volunteers were asked to fill in a questionnaire about their skills before starting the

evaluation. We argue that volunteers’ skills may affect the evaluation6. For example, people

having good skills in AHS can easily express their adaptation strategies. This is why we have

defined a targeted questionnaire about specific skills involved when using LAG or the EAP

framework. The volunteers were asked to evaluate their skills on object modeling, on AHS,

on personalization, on programming languages and on building courses. They had to answer

each question by choosing one of the following values: none, little, intermediate, good or very

good. We present in Figure 8.4 the skills of the volunteers participating in our experiments

using a graph with two axes. The graph includes in the abscissa the different questions of

the questionnaire with their possible answers. A distinct gray scale is used for each possible

answer. We notice that most of our volunteers have good skills in programming languages, skills

in building courses and knowledge on object modeling. However, they have limited skills on

AHS, and intermediate understanding of personalization in general.

Figure 8.4 – Skills of volunteers participating in our experiments

Consequently, we started first by explaining to volunteers general notions on adaptive

hypermedia systems, illustrated by examples in the e-learning domain and describing their

utilities for learners. This has given to them a user’s point of view of AHS. After that, we

have explained to them the role of an author for AHS, which is more technical, and we let the

volunteers manipulate the authoring tools (those used in this evaluation: the PEAL tool for the

LAG adaptation language, and the eapTab plug-in for the EAP framework) for 10 minutes first,

to get somewhat used with our tools. Finally, we have defined domain and goal models and have

asked volunteers to express adaptation strategies using both approaches and to complete another

questionnaire, in order to evaluate the ease of use of each approach. We have also measured the

time spent to express adaptation strategies using each approach.

Note that we did not impose to volunteers to start with either LAG or the EAP framework.

They have to choose which approach they want to consider first, and they were not influenced

by one or the other approach before the test. We have told them that writing adaptation using

LAG is like writing a code using a programming language, whilst writing adaptation using the

EAP framework is based on design patterns vision. From the 8 volunteers, 5 volunteers have

started with the EAP framework, and the 3 others have started with LAG.

6Note that, skills needed in this evaluation are different from the ones needed in the evaluation of the EAP framework

and GLAM. Therefore, we have defined specific questionnaire to each evaluation.

160 Experiments and evaluations in e-learning

Step 2: after creating adaptation strategies

Once volunteers have created adaptation strategies with both approaches, they had to

complete a questionnaire in order to evaluate the ease of use of each approach. The questionnaire

concerns questions about the difficulty of expressing an adaptation strategy, understanding and

reusing of existing adaptation strategies. We have asked volunteers to answer each question by

choosing one of the following values: very easy, easy, intermediate, difficult or very difficult. In

Figure 8.5 we summarize answers collected from volunteers through a graph with two axes. At

the abscissa, there are the different questions of the questionnaire with their possible answers.

A distinct grey scale is used for each possible answer. The column represents the numbers of

people.

Figure 8.5 – Estimation of difficulty of expressing an adaptation strategy, understanding and

reusing of existing one in LAG and in the EAP framework.

Concerning the difficulty of expressing an adaptation strategy, our volunteers’ opinions were

divided. With the EAP framework, 4 of them think that it does not require lot of effort, 3 others

think that it is easy and one of them finds it is very easy to express adaptation strategies. It seems

for them very natural to express an adaptation strategy as a combination of elementary units.

While with LAG, 2 of them think that it does not require a lot of efforts, 4 others think that it is

hard to express adaptation strategy. One volunteer has refused to express the required adaptation

strategy in LAG. This is mainly due to the fact that with LAG they had to write adaptation

strategies using a grammar which was unfamiliar to them, and they lacked training with.

Concerning the understanding of existing adaptation strategies, most of the volunteers found

that with the EAP framework, it is relatively easy to understand the aim of an adaptation

strategy. We explain this because in the EAP framework an adaptation strategy is a combination

of elementary units and each elementary unit is based on defined elements of the domain model.

With LAG, it needs more effort to understand an existing adaptation strategy, as a LAG strategy

may includes variables and tests on the used variables.

Concerning the reuse of existing adaptation strategies, all our volunteers found that with

the EAP framework, it is easy to reuse existing ones. This is mainly because, once they have

defined elementary adaptations, they can reuse them to compose other adaptation strategies.

Furthermore, once they have expressed an elementary adaptation using a particular pattern,

they find very easy to express another elementary adaptation using the same pattern (on other

elements of the domain model). With LAG, it does not require a lot of effort to reuse existing

ones. Once they have understood the desired adaptation strategy, they can adapt it according to

their needs. Here, they find the approach proposed by the EAP framework easier than the one

proposed by LAG, even if the one proposed by LAG is not difficult to perform.

Some volunteers have noticed that with the EAP framework. They do not write any

instructions, they have only to select, to instantiate elementary adaptation patterns and to make

2 Evaluation of the EAP tab versus existing Adaptive Systems 161

associations between user characteristics and the defined instantiations, and the adaptation

strategy is generated automatically for them. In other words, they have only to click on the right

button and to select the right elements. Thereby, authors using the EAP framework have to trust

the eapTab in the combination process. When using LAG, volunteers have to write themselves

the adaptation strategy using LAG constructors and respecting the proposed grammar. Even if

they are good programmers they estimate they need more effort and time, in order to get used

to the LAG syntax and to be sure of the defined adaptation strategy. Consequently, they have

estimated that we are evaluating two distinct processes.

Additionally to the questionnaires above, we have measured the time spent to express

adaptation strategies using each approach. We present in Figure 8.6 the estimation of the time

spent to express adaptation strategies using each approach with a graph with two axes. We have

grouped the time spent by the volunteers in four time intervals: less than 5 minutes, between 5

and 10 minutes, between 10 and 15 minutes, more than 15 minutes. In the graph, at the abscissa,

the two used approaches are represented. For each approach, there are the four defined time

intervals, a distinct gray scale is used for each time interval. On the column, the numbers of

people having expressed adaptation strategies are represented. We notice that, when using the

EAP framework, most of volunteers have spent between 5 minutes to 10 minutes to complete

the scenario. This is due to the fact that they do not have to write instructions. They focus more

on what adaptation they require and for whom (what type of users) it is proposed. Some of the

volunteers prefer to propose the alternate selection mode rather than selection of a particular

type of resource only. When using LAG, most of volunteers have spent between 10 minutes

to 15 minutes to complete the scenario. One of the volunteers has even refused to express any

adaptation strategy, and thereby he was not included in the graphic. As volunteers have not had

enough time to learn about LAG, they were asking for assistance.

Figure 8.6 – Estimation of time spent by volunteers to perform the evaluation using LAG and

using EAP framework.

Additionally, we have asked the volunteers to comment on the two tools they were using to

express the two languages. Volunteers commented that they find the eapTab interface very basic

and added that it needs improvement especially on guidance for becoming a realistic interface.

On the contrary to their eapTab experience, volunteers have noted that they appreciated playing

with the PEAL tool when expressing adaptation in LAG. They said that the PEAL tool is

ergonomic. It proposes several helps to assist them, for example, LAG constructors are written

in distinct colors according to their purpose, when their LAG code includes syntax errors, PEAL

detects and highlights the errors.

Summary of the evaluation LAG versus the EAP framework

The evaluation was conducted with only 8 volunteers. Even if they are enough to make some

conclusions, in our case, we cannot draw a conclusion on whether it is more easy to use the EAP

162 Experiments and evaluations in e-learning

framework than LAG to express adaptation and conversely. However, we can say that expressing

adaptation using the EAP framework is much faster than expressing adaptation using LAG. Note

that some of the volunteers were not from the computer science field. Thereby they did not have

technical background and they prefer using the EAP framework to express their adaptation.

Besides, most of the volunteers have identified that we had evaluated not only two different

adaptation languages, but two distinct approaches, where one proposes an automatic process

to combine several constraints, that means that, authors have to trust the combination process.

The other approach lets the author to combine himself the defined constraints to select and to

define how the selected resources are going to be proposed. Thereby the first approach was

more appreciated than the second, as the latter needs more focus and thus requires more effort

to check if their expressed adaptation proposes all the desired resources in the wanted way. The

volunteers said that if they have to choose, they will surely base their decision on the expressivity

of each approach. They did not evaluate the expressivity of any approach, they have only told

us that if they had to choose between both for defining complex adaptation strategies, they will

trust the combination process.

3 Summary

In this chapter, we have described experiments using the MESAM plug-in showing the helps that

can be provided to authors in several situations, when they define correct mappings between

classes, or when define wrong mappings between classes.

We have also described evaluations of the EAP framework versus GLAM and the EAP

framework versus LAG. In the first evaluation, volunteers have declared that it is much easier

to express adaptation using the EAP framework than using GLAM, they have also spent less

time using the EAP framework than GLAM. In the second evaluation, volunteers were divided.

They estimate that the EAP framework is much easier for people without computer science

knowledge, but LAG could be useful for people having good programing skills. In this later,

people will have more control on the combination process of several adaptations as it is manual.

For remember LAG is a generic adaptation language, aiming at facilitating expressing adaptation

using constructors.

Part VI

Conclusion and future work

C H A P T E R 9

Conclusion and future work

1 Conclusion . 166

2 Future work . 166

166 Conclusion and future work

1 Conclusion

In this thesis, we have focused on providing assistance to authors when designing their AH.

Indeed, designing an AH is a hard and time-consuming task. It also requires from authors to

have good skills in modeling data logic and programing skills, which most often authors haven’t.

We have proposed two main contributions that avoid authors having such skills.

On the one hand, we have proposed a solution enabling authors to integrate their

domain and user models into existing systems. This solution proposes a semi-automatic

merging/specialization process of two models. Therefore, it allows to consider the entire model

of an author, on the contrary of existing solutions in AH which propose to authors to instantiate

models of existing systems. Thus, the author has to translate his instances. Our solution can be

used in other fields than AH in order to merge by specialization two OWL models.

On the other hand, we have proposed a solution enabling authors to express their adaptation

strategies, at a high level, independently of any adaptation engine and at a fine granularity.

This solution relies on our definition of 22 elementary adaptation patterns and on a semi-

automatic process of combining instances of elementary adaptation patterns. We argue that

these 22 elementary adaptation patterns are enough for expressing adaptive navigation, as we

have identified exhaustive criteria to select resources and to specify how they will be proposed.

Furthermore, we have organized the 22 elementary adaptation patterns in a typology in order to

be able to look easily over them. Afterward, we have conducted a study of the expressivity of

knowledge of our solution versus expressivity in some existing systems, and we have come up

with an unifying vision of the domain model and also with an integrated vision of basic actions

that can be used to express adaptation.

We have complemented these theoretical qualitative solutions by the development of plug-ins

for the Protégé tool1. We propose a plug-in per solution. The MESAM plug-in merges two OWL

models using a specialization process. This plug-in is already integrated to the Protégé tool. The

eapTab plug-in supports the definition of adaptation strategies by using elementary adaptation

patterns. It also includes a module able to translate adaptation strategies written by our solution

to LAG format.

Furthermore, we have conducted experimentations and evaluations in the e-learning

application domain, which have allowed us to validate our solutions. We have made

experimentations of MESAM tab on a use case using the GLAM domain model. We have also

made evaluations of the ease of use of the eapTab versus a rule-based language and versus a

generic adaptation language. We have used GLAM in the first case, and LAG in the second case.

Results have shown that it is much easier to use our solution than a rule-based language or a

programing language to express adaptation.

After having summarized our most contributions, we are going below to present possible

extensions to these contributions.

2 Future work

The work done in this thesis is only a starting point in the help that can be provided for authors

of AH. It has received promising critics in conferences or by reviewers of accepted journal paper.

Thus, several future works are envisioned.

Future works for merging/ specialization solution : our solution of merging by specialization

two models has been motivated by the need of authors to reuse existing adaptations. An

interesting extension is to consider relations between existing adaptations and the author’s

1Protégé tool is available at protege.stanford.edu/

2 Future work 167

user and domain models, to present to authors reused parts of existing adaptations and

which parts of his models is not considered yet by these reused adaptations. Therefore, we

envision an extension enabling authors of AH to interact with the adaptation model.

Till today, we have performed experimentations using models of the GLAM platform. It

would be useful to perform experimentations using other models of the AH field, like the

domain model of the LAOS model or the CAM model, in order to study the impact of our

solution on their adaptation specifications.

Even, if our solution has been motivated by problems from the AH field, we have proposed

a generic solution that can be applied to other application fields, like reusing existing

SPARQL queries. Thus, in order to enlarge the reuse of our solution to more fields, we

envision to consider other types of mappings than equivalence and specialization, like

inclusion. We argue that our meta-model can include more structural knowledge that will

serve to deduce other types of mappings.

Future works for expressing adaptation : we propose a solution allowing to express complex

adaptation strategies using elementary adaptation patterns. An elementary adaptation

pattern has been defined per criterion to select available resources and per criterion

to organize selected resources. It can be instantiated on a particular domain model

and associated to a specific user characteristic. For users having several characteristics,

we have accompanied this solution by a combination process to define complex

adaptation strategies. An interesting extension we are about undertaken is to propose

a set of combinations of elementary adaptation patterns defining complex adaptations.

Furthermore, to illustrate this contribution, we use our combination process on the

felder/silverman learning style. On the contrary of existing works on complex adaptation,

using our combination process, authors of AH may modify the proposed complex

adaptations, and execute them using several existing adaptation engines.

Till today, we have proposed elementary adaptation patterns for the adaptive navigation.

It could be useful to extend our library of elementary adaptation patterns by considering

the content adaptation and adaptive presentation.

In our solution, authors focus only on what they would like to express as adaptation

rather than the technicalities involving writing such adaptation. It would be interesting

to include verifications on the resulted adaptation strategies, like checking whether

adaptation strategies lead users to their goal. For this purpose, we envision to propose

more formalization of our solution.

Finally, we have been collaborating with Alexandra Cristea from the university of Warwick

since February 2010. Today, generated adaptation strategies using our solution can be

translated to adaptations in the LAG format. We would like to propose a library of existing

adaptation strategies that can be used independently of the language in which they are

expressed. This library may be enriched by proposing a translator from LAG to our solution

in order to reuse existing LAG adaptations. Note that, we have already specified the

translation from LAG to our solution2, but it remains to develop the translator following

our specification.

We have also proposed, on the one hand a unifying vision of modeling domain model at

a three levels, and on the other hand an integrated vision of the basic actions that could

be proposed in adaptation. It could be interesting to face this unifying vision of modeling

the domain model to other existing AHS, such as AHA!. We envision also to confront

the integrated vision of basic adaptations to recent generic adaptation languages. We

argue that these unifying visions will allow identifying a generic unified model that should

encompassed a wider area of AH and adaptive engine than each language separately.

2Translation from LAG to our solution hasn’t been detailed in this thesis, however it is detailed in our journal paper

written with Alexandra Cristea.

168 Conclusion and future work

In this thesis, till today, we have been working on two distinct contributions: (1) supporting

reuse of existing authors’ models into existing systems and (2) supporting expression of

adaptation at a high level, independently of any system and in an easy manner. We envision

to relate both contributions in one integrated system. We are thinking that once the author has

integrated his models into an existing system in order to reuse existing adaptations, we will show

him existing adaptations using our solution based on elementary adaptation patterns. Therefore,

the author will be able to understand easily reused adaptations, and also to extend them using

our elementary adaptation patterns.

Furthermore, it would be interesting to consider the evolution of domain and user models

and their impact on adaptation strategies defined through our solution.

2 Future work 169

NATIONAL AND INTERNATIONAL PROMOTIONS

In this section, we present an overview of our publications from 2008 to 2011.

JOURNAL PAPERS

IEEE Transaction Learning Technologies. TLT’11 :

Expressing Adaptation Strategies using Adaptation patterns

N. Zemirline, Y. Bourda, C. Reynaud. (14 pages) accepted, to appear current 2011

(PrePrint ISSN: 1939-1382, IEEE computer Society Digital Library.

http://doi.ieeecomputersociety.org/10.1109/TLT.2011.15)

UMAI (paper already written (40 pages) being finalized for submission in late June) :

A Study of expressivity and interoperability of Adaptation Languages: EAP framework versus LAG

N. Zemirline, Y. Bourda, A. Cristea, C. Reynaud.

INTERNATIONAL CONFERENCES

10th International Conference on Intelligent Systems Design and Applications. ISDA’10 :

A Pattern-based Framework for expressing Adaptation Strategies in Adaptive Systems

N. Zemirline, Y. Bourda, C. Reynaud.

On page(s): 336 - 341, IEEE, Print ISBN: 978-1-4244-8134-7

11th International Protégé Conference. Protégé’09 :

MESAM : A Protégé Plug-in for the Specialization of Models

N. Zemirline, Y. Bourda, C. Reynaud, F. Popineau. (3 pages)

16th International Conference on Knowledge Engineering and Knowledge Management. EKAW’08

A pattern and a rule-based Approach for reusing Adaptive Hypermedia Creator’s Models

N. Zemirline, C. Reynaud, Y. Bourda, F. Popineau.

On page(s): 17-31, Proceedings. LNCS 5268, Springer, ISBN 978-3-540-87695-3

5th International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems. AH’08

Assisting of reuse of Adaptive Hypermedia Creator’s Models

N. Zemirline, Y. Bourda, C. Reynaud, F. Popineau.

On page(s): 357-360, Proceedings. LNCS 5149, Springer, ISBN 978-3-540-70984-8

NATIONAL CONFERENCES

Ingénierie des Connaissances. IC’10 :

Réutilisation de patrons d’adaptation - Application aux systemes hypermédia adaptatifs

N. Zemirline, Y. Bourda, C. Reynaud. (12 pages)

Dans Actes des 21emes Journées Francophones d’Ingénierie des Connaissances

TECHNICAL REPORTS: all our technical reports had been published on the LRI web site3

LRI’11 n 1541 :

A typology of Adaptation Patterns for Expressing Adaptive Navigation in Adaptive Hypermedia

N. Zemirline, Y. Bourda, C. Reynaud. (16 pages)

LRI’11 n 1540 :

Expressing adaptation strategies using adaptation patterns

N. Zemirline, Y. Bourda, C. Reynaud. (15 pages)

LRI’09 n 1529 :

Leveraging Adaptive Web with Adaptation patterns. Technical report

N. Zemirline, Y. Bourda, C. Reynaud. (10 pages)

3They are available at http://www.lri.fr/srubrique.php?news=33

170 Conclusion and future work

Bibliography

[1] Ian H. Beaumont. User modelling in the interactive anatomy tutoring system anatom-tutor.

User Model. User-Adapt. Interact, 4(1):21–45, 1994.

[2] Adriana Berlanga and Francisco J. Garcia. Towards reusable adaptive rules. In Workshop

on AH and Collaborative Web-based Systems, ICWE, 2004.

[3] Craig Boyle and Antonio O. Encarnacion. Metadoc: An adaptive hypertext reading system.

User Model. User-Adapt. Interact., 4(1):1–19, 1994.

[4] Paul De Bra, A. T. M. Aerts, Geert-Jan Houben, and Hongjing Wu. Making general-purpose

adaptive hypermedia work. In WebNet, pages 117–123, 2000.

[5] Alexandra I. Brown, Elizabeth J.and Cristea, Craig D. Stewart, and Tim J. Brailsford.

Patterns in authoring of adaptive educational hypermedia: A taxonomy of learning styles.

Educational Technology & Society, 8(3):77–90, 2005.

[6] Peter Brusilovsky. Adaptive hypermedia. User Modeling and User-Adapted Interaction,

11:87–110, March 2001.

[7] Peter Brusilovsky. Adaptive navigation support. In P. Brusilovsky, A. Kobsa, and W. Neidl,

editors, The Adaptive Web: Methods and Strategies of Web Personalization, volume 4321 of

LNCS, pages 263–290. Springer, Berlin Heidelberg, USA, New York, 2007.

[8] Peter Brusilovsky, John Eklund, and Elmar W. Schwarz. Web-based education for all: A tool

for development adaptive courseware. Computer Networks, 30(1-7):291–300, 1998.

[9] Peter Brusilovsky and Nicola Henze. Open corpus adaptive educational hypermedia. In

P. Brusilovsky, A. Kobsa, and W. Neidl, editors, The Adaptive Web: Methods and Strategies

of Web Personalization, volume 4321 of LNCS, pages 672–696. Springer, 2007.

[10] Owen Conlan, Vincent P. Wade, Catherine Bruen, and Mark Gargan. Multi-model, metadata

driven approach to adaptive hypermedia services for personalized elearning. In 2nd

International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems,

pages 100–111, 2002.

[11] Alexandra I. Cristea. Evaluating adaptive hypermedia authoring while teaching adaptive

systems. In SAC, pages 929–934, 2004.

[12] Alexandra I. Cristea and Licia Calvi. The three layers of adaptation granularity. In

Proceedings of the 9th international conference on User modeling, UM’03, pages 4–14,

Berlin, Heidelberg, 2003. Springer-Verlag.

[13] Alexandra I. Cristea and Arnout De Mooij. Laos: Layered www ahs authoring model with

algebraic operators. In WWW (Alternate Paper Tracks), 2003.

[14] Alexandra I. Cristea, Davy Floes, Natalia Stach, and Paul De Bra. Mot meets aha! In PEG,

2003.

172 BIBLIOGRAPHY

[15] Alexandra I. Cristea, Maurice Hendrix, and Wolfgang Nejdl. Automatic and manual

annotation using flexible schemas for adaptation on the semantic desktop. In EC-TEL, pages

88–102, 2006.

[16] Alexandra I. Cristea, David Smits, Jon Bevan, and Maurice Hendrix. Lag 2.0: Refining

a reusable adaptation language and improving on its authoring. In Proceedings of the

4th European Conference on Technology Enhanced Learning: Learning in the Synergy of

Multiple Disciplines, EC-TEL ’09, pages 7–21, Berlin, Heidelberg, 2009. Springer-Verlag.

[17] Alexandra I. Cristea and Michael Verschoor. The lag grammar for authoring the adaptive

web. In Proceedings of the International Conference on Information Technology: Coding

and Computing (ITCC’04) Volume 2 - Volume 2, ITCC ’04, pages 382–, Washington, DC,

USA, 2004. IEEE Computer Society.

[18] David Cristea, Alexandra I.and Smits and Paul De Bra. Towards a generic adaptive

hypermedia platform: a conversion case study. J. Digit. Inf., 8(3), 2007.

[19] Declan Dagger, Owen Conlan, and Vincent P. Wade. An architecture for candidacy in

adaptive elearning systems to facilitate the reuse of learning resources. In World Conference

on E-Learning in Corporate, Government, Healthcare and Higher Education E-Learn, pages

49–56, 2003.

[20] Juan Danculovic, Gustavo Rossi, Daniel Schwabe, and Leonardo Miaton. Patterns for

personalized web applications. In Eur. Conf. Pattern Languages of Program-EuroPLoP,

pages 34–43, 2001.

[21] Paul De Bra, David Smits, and Natalia Stash. Creating and delivering adaptive courses with

aha! In EC-TEL, pages 21–33, 2006.

[22] Paul De Bra, David Smits, and Natalia Stash. The design of aha! In Hypertext, pages 171–

195, 2006.

[23] Paul De Bra, Natalia Stash, and David Smits. Creating adaptive web-based applications. In

Tutorial at the 10th International Conference on User Modeling, Edinburgh, Scotland, July -

2005.

[24] R. De-Diego. Metodo de mezcla de catalogos electronicos final year project. Technical report,

Facultad de Informatica de la Universidad Politécnica, May - 2002.

[25] Paul De Vrieze, Patrick Van Bommel, and Theo P. Van der Weide. A generic adaptivity

model in adaptive hypermedia. In 3rd International Conference on Adaptive Hypermedia

and Adaptive Web-Based Systems, pages 344–347, 2004.

[26] Michele Dicerto and Lucia Oneto. Initial implementation of the domain model tool, page 1

- 37, january 2010. Technical report, January - 2010.

[27] Dejing Dou, Drew McDermott, and Peishen Qi. Ontology translation by ontology merging

and automated reasoning. In In Proceedings EKAW2002 Workshop on Ontologies for

Multi-Agent Systems, pages 3 – 18, 2002.

[28] Dejing Dou, Drew V. McDermott, and Peishen Qi. Ontology translation on the semantic

web. Journal on Data Semantics, 2:35–57, 2005.

[29] International Organization for Standardization. Information technology — syntactic

metalanguage — extended bnf. ISO/IEC 14977, August 2001.

[30] Jonathan G. K. Foss and Alexandra I. Cristea. The next generation authoring adaptive

hypermedia: using and evaluating the mot3.0 and peal tools. In 21th ACM Conference

on Hypertext and Hypermedia, pages 83–92, 2010.

BIBLIOGRAPHY 173

[31] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[32] Franca Garzotto, Symeon Retalis, and K. Papasalouros Siassiakos. Patterns for designing

adaptive/adaptable educational hypermedia. Advanced Technology for Learning, 1(4):23–

38, 2004.

[33] Michael R. Genesereth. Mccarthy’s idea. In Proceedings of the European Workshop on

Logics in Artificial Intelligence, pages 134–142, London, UK, 1996.

[34] Thomas R. Gruber and Gregory R. Olsen. An ontology for engineering mathematics. In KR,

pages 258–269, 1994.

[35] Frank G. Halasz and Mayer D. Schwartz. The dexter hypertext reference model. Commun.

ACM, 37(2):30–39, 1994.

[36] Maurice Hendrix, Alexandra I. Cristea, Martin Harrigan, Vincent Wade, Frederic

Kleinermann, and Olga De Troyer. Design of cam, page 1 - 52, march 2009. Technical report,

March - 2009.

[37] Maurice Hendrix and Martin Harrigan. Initial implementation of the concept adaptation

model tool, page 1 - 42, november 2009. Technical report, 11 - 11 - 2009.

[38] Cédric Jacquiot. Modélisation logique et générique des systèmes d’hypermédia adaptatifs.

PhD thesis, In collaboration between university of Paris-Sud 11 and Supélec - France,

defended in December 2006.

[39] Cédric Jacquiot, Yolaine Bourda, Fabrice Popineau, Alexandre Delteil, and Chantal

Reynaud. Glam: A generic layered adaptation model for adaptive hypermedia systems. In

3rd International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems,

pages 131–140, 2006.

[40] Ioannis Kazanidis and Maya Satratzemi. Adaptivity in a scorm compliant adaptive

educational hypermedia system. In ICWL, volume 4823 of Lecture Notes in Computer

Science, pages 196–206. Springer, 2008.

[41] Evgeny Knutov, Paul De Bra, and Mykola Pechenizkiy. Ah 12 years later: a comprehensive

survey of adaptive hypermedia methods and techniques. New Rev. Hypermedia

Multimedia, 15:5–38, April 2009.

[42] Konstantinos Kotis, George A. Vouros, and Konstantinos Stergiou. Towards automatic

merging of domain ontologies: The hcone-merge approach. J. Web Sem., 4(1):60–79, 2006.

[43] Milos Kravcik. Specification of adaptation strategy by fosp method. New Review

Hypermedia Multimedia, pages 429–435, 2004.

[44] Patrick Lambrix and He Tan. Sambo - a system for aligning and merging biomedical

ontologies. J. Web Sem., 4(3):196–206, 2006.

[45] Ravi Lourdusamy and Gopinath Ganapathy. Feature analysis of ontology mediation tools.

Journal of Computer Science, 4(6), pages 437–446, 2008.

[46] Richard McGuinness, Deborah L.and Fikes, James Rice, and Steve Wilder. An environment

for merging and testing large ontologies. In Principles of Knowledge Representation and

Reasoning Proceedings of the Seventh International Conference, pages 483–493. Morgan

Kaufmann, 2000.

174 BIBLIOGRAPHY

[47] Nuria Medina-Medina, Lina Garcı́a Cabrera, Marı́a José Rodrı́guez-Fórtiz, and José Parets-

Llorca. Adaptation in an evolutionary hypermedia system: Using semantic and petri nets. In

2nd International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems,

pages 284–295, 2002.

[48] Fernando Molina-Ortiz, Nuria Medina-Medina, and Lina Garcia-Cabrera. An author tool

based on sem-hp for the creation and evolution of adaptive hypermedia systems. In ICWE

Workshops, page 12, 2006.

[49] Adam Moore, Timothy J. Brailsford, and Craig D. Stewart. Personally tailored teaching

in whurle using conditional transclusion. In Proceedings of the 12th ACM conference on

Hypertext and Hypermedia, 12th ACM Conference on Hypertext and Hypermedia, pages

163–164, New York, NY, USA, 2001. ACM.

[50] Jakob Nielsen and Thomas K. Landauer. A mathematical model of the finding of usability

problems. In Proceedings of the INTERACT ’93 and CHI ’93 conference on Human factors

in computing systems, CHI ’93, pages 206–213, New York, NY, USA, 1993. ACM.

[51] Natalya Fridman Noy. Tools for mapping and merging ontologies. In Handbook on

Ontologies, pages 365–384, 2004.

[52] Natalya Fridman Noy and Mark A. Musen. The prompt suite: interactive tools for ontology

merging and mapping. Int. J. Hum.-Comput. Stud., 59:983–1024, December 2003.

[53] James Ohene-Djan and Alvaro A. Fernandes. Modelling personalisable hypermedia: The

goldsmiths model. The New Review of Hypermedia and Multimedia, 8:99–137, 2002.

[54] Guillermo Power, Hugh C. Davis, Alexandra I. Cristea, Craig D. Stewart, and Helen

Ashman. Goal oriented personalisation with scorm. In ICALT, pages 467–471, 2005.

[55] Livia Predoiu, Cristina Feier, Francois Scharffe, Jos de Bruijn, Francisco Martin-Recuerda,

Dimitar Manov, and Marc Ehrig. D4.2.2 state-of-the-art survey on ontology merging and

aligning v2. EU-IST Integrated Project (IP) IST-2003-506826 SEKT, pages 1–125, 31-01-2006.

[56] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema

matching. The VLDB Journal, 10:334–350, December 2001.

[57] Chitra Ramesh and Aghila Gnanasekaran. Methodology based survey on ontology

management. International Journal of Computer Science and Engineering Survey, 1:437–

446, August 2010.

[58] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William

Lorensen. Object-oriented modeling and design. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 1991.

[59] Francois Scharffe. Dynamerge: A merging algorithm for structured data integration on the

web. In International Workshop on Scalable Web Information Integration and Service at

DASFAA, pages 85 – 94, 2007.

[60] Daniel Schwabe and Gustavo Rossi. An object oriented approach to web-based applications

design. TAPOS, 4(4):207–225, 1998.

[61] Joshua Scotton, Sabine Moebs, Jennifer McManis, and Alexandra Cristea. Merging strategies

for authoring qoe-based adaptive hypermedia. J.UCS - The Journal of Universal Computer

Science, Special Issue on Advances in Authoring of Adaptive Web-based Systems, submitted

2010, to appear.

BIBLIOGRAPHY 175

[62] Patricia Seefelder de Assis, Daniel Schwabe, and Demetrius Arraes Nunes. Ashdm -

model-driven adaptation and meta-adaptation. In 4th International Conference on Adaptive

Hypermedia and Adaptive Web-Based Systems, pages 213–222, 2006.

[63] Stuart C. Shapiro. Encyclopedia of Artificial Intelligence. John Wiley & Sons, Inc., New York,

NY, USA, 2nd edition, 1992.

[64] Kees van der Sluijs, Jan Hidders, Milos Kravcik, Geert-Jan Houben, and Eva Ploum. Grapple

d1.1a version: 1.0 cam to adaptation rule translator (specification), page 1 - 37, february 2009.

Technical report, February - 2009.

[65] Kees van der Sluijs, Jan Hidders, E Leonardi, and Geer-Jan Houben. Gal: A generic

adaptation language for describing adaptive hypermedia. In 1st International Workshop

on Dynamic and Adaptive Hypertext: Generic Frameworks, Approaches and Techniques,

pages 13–24, 2009.

[66] Natalia Stash. Incorporating Cognitive/ Learning Styles in General-Purpose Adaptive

Hypermedia System. PhD thesis, University of Eindhoven, the Netherlands, defended in

2006.

[67] Natalia Stash, Alexandra I. Cristea, and Paul De Bra. Explicit intelligence in adaptive hyper-

media: Generic adaptation languages for learning preferences and styles. In International

Workshop on Combining Intelligent and Adaptive Hypermedia Methods/Techniques in

Web-Based Education Systems, 2005.

[68] Natalia Stash, Alexandra I. Cristea, and Paul De Bra. Learning styles adaptation language

for adaptive hypermedia. In 4th International Conference on Adaptive Hypermedia and

Adaptive Web-Based Systems, pages 323–327, 2006.

[69] Natalia Stash, Alexandra I. Cristea, and Paul De Bra. Adaptation languages as vehicles

of explicit intelligence in adaptive hypermedia. In International Journal of Continuing

Engineering Education and Life-Long Learning (IJCEELL), ISSN 1560-4624, pages 319–336,

2007.

[70] Craig Stewart, Alexandra I. Cristea, Tim Brailsford, and Helen Ashman. Authoring once,

delivering many: Creating reusable adaptive coursewar. In 4th IASTED International

Conference on Web-Based Education - WBE 2005. Grindelwald, pages 21–23, 2005.

[71] Gerd Stumme and Alexander Maedche. Fca-merge: Bottom-up merging of ontologies. In

IJCAI, pages 225–234, 2001.

[72] Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, and Lotfi Lakhal. Fast

computation of concept lattices using data mining techniques. In Mokrane Bouzeghoub,

Matthias Klusch, Werner Nutt, and Ulrike Sattler, editors, Proceedings of the 7th

International Workshop on Knowledge Representation meets Databases (KRDB 2000),

Berlin, Germany, August 21, 2000, volume 29 of CEUR Workshop Proceedings, pages 129–

139. CEUR-WS.org, 2000.

[73] T Theophanis and M.C. Schraefel. Adaptive presentation supporting focus and context. In

Workshop on Adaptive Hypermedia and Adaptive Web-Based Systems, 14th Conference on

Hypertext and Hypermedia, 2003.

[74] Hongjing Wu, Geert-jan Houben, and Paul De Bra. Aham: A reference model to support

adaptive hypermedia authoring. In Proceedings of the quot;Zesde Interdisciplinaire

Conferentie Informatiewetenschap, pages 77–88, 1998.

[75] Nadjet Zemirline, Yolaine Bourda, and Chantal Reynaud. A pattern-based framework for

expressing adaptation strategies in adaptive systems. In ISDA, pages 336–341, 2010.

176 BIBLIOGRAPHY

[76] Nadjet Zemirline, Yolaine Bourda, and Chantal Reynaud. Réutilisation de patrons

d’adaptation - application aux systemes hypermédia adaptatifs. In Ingénierie des

Connaissances. IC2010, page 12, 2010.

[77] Nadjet Zemirline, Yolaine Bourda, and Chantal Reynaud. Expressing adaptation strategies

using adaptation patterns. IEEE Transaction Learning Technology, to appear, pages 1– 14,

2011.

[78] Nadjet Zemirline, Yolaine Bourda, Chantal Reynaud, and Fabrice Popineau. A protégé plug-

in for the specialization of models. In 11th International Protege Conference, page 3, 2009.

[79] Nadjet Zemirline, Chantal Reynaud, Yolaine Bourda, and Fabrice Popineau. Assisting in

reuse of adaptive hypermedia creator’s models. In 5th International Conference on Adaptive

Hypermedia and Adaptive Web-Based Systems, pages 357–360, 2008.

[80] Nadjet Zemirline, Chantal Reynaud, Yolaine Bourda, and Fabrice Popineau. A pattern and

rule-based approach for reusing adaptive hypermedia creator’s models. In EKAW, pages

17–31, 2008.

Appendices

APPENDIX A

OWL Meta-Model

Here, we present parts of OWL meta-model. More precisely, we present the OWL class diagram

(cf. Figure A.1), the OWL property diagram (cf. Figure A.2) and the OWL restriction diagram

(cf. Figure A.3). These three diagrams have been used in order to define the OWL model (cf.

Chapter III, Section 5) on which the structural knowledge of the specialization and merging

process has been defined.

180 OWL Meta-Model

Figure A.1 – The OWL class diagram of the OWL meta-model

181

Figure A.2 – The OWL property diagram of the OWL meta-model

182 OWL Meta-Model

Figure A.3 – The OWL restriction diagram of the OWL meta-model

APPENDIX B

Library of the defined elementary

adaptation patterns

184 Library of the defined elementary adaptation patterns

As described before in Chapter 4, we have defined at all 22 elementary adaptation patterns for

defining adaptive navigation, which we have organized in a typology (cf. Figure B.1) according

to three criteria selection modes, elements of the domain model and possibly a navigational path.

In this appendix, we describe the elementary adaptation patterns per selection mode. The

Section 1, Section 2, Section 3, and Section 4 describe successively the elementary adaptation

patterns that use the simple selection, ordered, recommended and alternate mode.

Adaptive
navigation

1. Selection only

2. Ordered
Selection

3. Recommended
Selection

.1. Relations

.2. Classes

.1. Relations

.2. Classes

.3. Properties

.2. Classes

.1. Relations

.2. Classes

.3. Properties

.3. Properties

.3. Properties

Type of navigation on
 the domain model

Selection modes Elements of
the domain model

4. Alternate
Selection

..2. Resource

.1. Relations

..1. Concept

..1. Concept

..2. Resource

...2. Breath-first

...1. Depth-first

...2. Breath-first

...1. Depth-first

Classes related
to relations

Navigational
path on instances

Patterns

P 1.1.1

P 1.1.2

P 1.3

P 1.2

P 2.1.1.2

P 2.1.1.1

P 2.1.2.2

P 2.1.2.1

P 2.3

P 2.2

P 3.3

P 3.2

..1. Concept

..2. Resource

...2. Breath-first

...1. Depth-first

...2. Breath-first

...1. Depth-first

P 3.1.1.2

P 3.1.1.1

P 3.1.2.2

P 3.1.2.1

P 4.3

P 4.2

..1. Concept

..2. Resource

...2. Breath-first

...1. Depth-first

...2. Breath-first

...1. Depth-first

P 4.1.1.2

P 4.1.1.1

P 4.1.2.2

P 4.1.2.1

Figure B.1 – Typology of elementary adaptation patterns

1 Elementary adaptation patterns using selection only mode

In Table B.1, we describe the elementary adaptation patterns using the selection only mode.
It includes the elementary adaptation patterns P1.1.1, P1.1.2, P1.2 and P1.3 (cf. Chapter 4,
Section 4.3, Figure 4.11).

Pattern 1.1.1

Name: Selection Only - Relation - Concept

Intent: This pattern proposes resources that are linked to concepts by abstraction, and where each

concept can reach the concept named goal directly or indirectly using relationi.

1 Elementary adaptation patterns using selection only mode 185

Solution:

• Expression

– E1: linked-transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)

According to E1: selected resources are linked to concepts using abstraction, and these concepts

are linked directly or indirectly to the goal using relationi.

Constituents:

• concept: a variable representing an instance of the class Concept.

• goal: a variable representing the goal to reach, which is an instance of the class Concept.

• r: a variable representing an instance of the class Resource or of one of its specializations.

• relationi: a variable representing a relation defined between instances of the class Concept.

• abstraction: a variable representing a relation defined between an instance of the class Concept

and one or more instances of the class Resource or of one of its specializations.

Pattern 1.1.2

Name: Selection Only - Relation - Resource

Intent: This pattern proposes resources that can reach the resource named goal directly or indirectly

using relationi.

Solution:

• Expression

– E1: linked-transitive(r, goal, relationi)

According to E1: selected resources are linked directly or indirectly to the goal using relationi.

Constituents:

• goal: a variable representing the goal to reach, which is an instance of the class Concept.

• r: a variable representing an instance of the class Resource or of one of its specializations.

• relationi: a variable representing a relation defined between instances of the class Concept.

Pattern 1.2

Name: Selection only - Classes

Intent: This pattern allows to select all resources of a specific type.

Solution:

• Expressions

– E1: instanceOf (r, Class1)

According to E1: resources proposed to the user must be instances of the class Classi

Constituents:

• r: a variable representing an instance of the class Resource or of one of its specializations.

• Classi: a variable representing a subclass of the class Resource.

Pattern 1.3

Name: Selection only- particular value of a property

Intent: This pattern allows to select resources according to some values of a property.

186 Library of the defined elementary adaptation patterns

Solution:

• Expressions

– E1: characteristicOf(r, propertyi , op, val)

According to E1: selected resources must have the property propertyi and their value must

satisfy the comparison test.

Constituents:

• r: a variable representing an instance of the class Resource or of one of its specializations.

• propertyi: a variable representing a property of the class Resource.

• val: a variable representing a possible value for the property propertyi.

Table B.1 – Elementary adaptation patterns using the simple selection mode

2 Elementary adaptation patterns using ordered selection mode

In Table B.2, we describe the elementary adaptation patterns using the odrdered selection mode.
It includes the elementary adaptation patterns P2.1.1.1, P2.1.1.2, P2.1.2.1, P2.1.2.2, P2.2 and P2.3
(cf. Chapter 4, Section 4.3, Figure 4.11).

Pattern 2.1.1.1

Name: Ordered Selection - Depth first- Relation - Concept

Intent: This pattern proposes resources according to a depth first navigational path on concepts.

Solution:

• Expression

– E1: linked(currentR, concept’, abstraction) ∧ linked-transitive(concept, goal, relationi) ∧
linked(r, concept, abstraction) ∧ linked(concept, concept’, relationi)

– E2: linked-transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)

According to E1: selected resources are linked to concepts using abstraction. these concepts can

reach the goal using relationi and are directly linked to the current concept. According to E2:

selected resources are linked to concepts using abstraction, these concepts can reach the goal

using relationi.

• Meta-expressions

– E1 ≺ E2

According to this meta-expression, the set of resources selected by E1 is proposed before the

ones selected by E2.

Constituents:

• concept: a variable describing an instance of the class Concept.

• currentR: a variable describing the current instance proposed to users of the class Resource or of

one of its specializations.

• goal: a variable describing the goal to reach, which is an instance of the class Concept.

• r: a variable describing an instance of the class Resource or of one of its specializations.

• relationi: a variable describing a relation defined between instances of the class Concept.

• abstraction: a variable describing a relation defined between an instance of the class Concept and

one or more instances of the class Resource or of one of its specializations.

Pattern 2.1.1.2

Name: Ordered Selection - Relation - Concept - breadth first

2 Elementary adaptation patterns using ordered selection mode 187

Intent: This pattern proposes resources that are linked to concepts by abstraction, and where each

concept can reach the concept named goal directly or indirectly using relationi according to a depth

first navigational path.

Solution:

• Expression

– E1: linked-transitive(concept2, goal, relationi) ∧ linked(r, concept2, abstraction) ∧
distance(concept2, origin, relationi) ∧ distance(concept, origin, relationi) ∧ linked(currentR,

concept, abstraction)

– E2: linked-transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)

According to E1: selected resources are linked to concepts using abstraction, these concepts

are linked directly or indirectly to the goal using relationi and they have the same distance of

the concept which is an abstraction of the current resource from the first resource proposed to

the user. According to E2: selected resources linked to concepts using abstraction, and these

concepts are linked directly or indirectly to the goal using relationi.

• Meta-expressions

– E1 ≺ E2

According to this meta-expression, the set of resources selected by the criterion specified by E1

is proposed before the ones selected by the criterion specified by E2.

Constituents:

• concept: a variable representing an instance of the class Concept.

• goal: a variable representing the goal to reach, which is an instance of the class Concept.

• origin: a variable representing the first resources proposed to the user.

• r: a variable representing an instance of the class Resource or of one of its specializations.

• currentR: a variable representing an instance of the current resource proposed to the user.

• relationi: a variable representing a relation defined between instances of the class Concept.

• abstraction: a variable representing a relation defined between an instance of the class Concept

and one or more instances of the class Resource or of one of its specializations.

Pattern 2.1.2.1

Name: Ordered Selection - Relation - Resource - Depth-first

Intent: This pattern proposes resources that can reach the resource named goal directly or indirectly

using relationi according to a depth first navigational path.

188 Library of the defined elementary adaptation patterns

Solution:

• Expression

– E1: linked-transitive(resource, goal, relationi) ∧ linked(currentR, resource, relationi)

– E2: linked-transitive(r, goal, relationi)

According to E1: selected resources are linked directly or indirectly to the goal using relationi

and they are linked directly to the current resource using relationi. According to E2: selected

resources are linked directly or indirectly to the goal using relationi.

• Meta-expressions

– E1 ≺ E2

According to this meta-expression, the set of resources selected by the criterion specified by E1

is proposed before the ones selected by the criterion specified by E2.

Constituents:

• goal: a variable representing the goal to reach, which is an instance of the class Concept.

• r: a variable representing an instance of the class Resource or of one of its specializations.

• currentR: a variable representing an instance of the current resource proposed to the user.

• relationi: a variable representing a relation defined between instances of the class Concept.

Pattern 2.1.2.2

Name: Ordered Selection - Relation - Resource - Breadth-first

Intent: This pattern proposes resources that can reach the resource named goal directly or indirectly

using relationi according to a breadth first navigational path.

Solution:

• Expression

– E1: linked-transitive(resource, goal, relationi) ∧ distance(resource, origin, relationi) ∧
distance(currentR, origin, relationi)

– E2: linked-transitive(r, goal, relationi)

According to E1: selected resources linked directly or indirectly to the goal using relationi and

they have the same distance of the current resource from the first resource proposed to the user.

According to E2: selected resources linked directly or indirectly to the goal using relationi.

• Meta-expressions

– E1 ≺ E2

According to this meta-expression, the set of resources selected by the criterion specified by E1

is proposed before the ones selected by the criterion specified by E2.

Constituents:

• goal: a variable representing the goal to reach, which is an instance of the class Concept.

• r: a variable representing an instance of the class Resource or of one of its specializations.

• currentR: a variable representing an instance of the current resource proposed to the user.

• relationi: a variable representing a relation defined between instances of the class Concept.

Pattern 2.2

Name: Ordered Selection - Classes

Intent: This pattern proposes ordered resources belonging only to subclasses of the class Resource.

3 Elementary adaptation patterns using recommended selection mode 189

Solution:

• Expressions

– E1: instanceOf (r, Class1)

– ...

– En: instanceOf (r, Classn)

According to Ei:selected resources are instances of the class Classi

• Meta-expressions

– Ei ≺ Ej , i < j, i = 1..n and j = 1..n.

According to this meta-expression, the set of resources selected by the criterion specified by Ei

is proposed before the ones selected by the criterion specified by Ej (i < j).

Constituents:

• r: a variable representing an instance of the class Resource or of one of its specializations.

• Classi: a variable representing a subclass of the class Resource.

Pattern 2.3

Name: Ordered Selection - Properties

Intent: This pattern proposes ordered resources that satisfy some values of the property propertyi.

Solution:

• Expressions

– E1: characteristicOf(r, propertyi , op, val1)

–

– En: characteristicOf(r, propertyi , op, valn)

According to Ei: selected resources must have the property propertyi and their value must

satisfy the comparison test.

• Meta-expressions

– Ei ≺ Ej , i < j, i = 1..n and j = 1..n.

According to this meta-expression, the set of resources selected by the criterion specified by Ei

is proposed before the ones selected by the criterion specified by Ej (i < j).

Constituents:

• r: a variable representing an instance of the class Resource or of one of its specializations.

• propertyi: a variable representing a property of the class Resource.

• val: a variable representing a possible value for the property propertyi.

Table B.2 – Elementary adaptation patterns using the ordered selection mode

3 Elementary adaptation patterns using recommended selection

mode

In Table B.3, we describe the elementary adaptation patterns using the recommended selection
mode. It includes the elementary adaptation patterns P3.1.1.1, P3.1.1.2, P3.1.2.1, P3.1.2.2, P3.2
and P3.3 (cf. Chapter 4, Section 4.3, Figure 4.11).

Pattern 3.1.1.1

Name: Recommended Selection - Relation - Concept- Depth first

190 Library of the defined elementary adaptation patterns

Intent: This pattern proposes recommended resources that are linked to concepts by abstraction, and

where each concept can reach the concept named goal directly or indirectly using relationi according

to a depth-first navigational.

Solution:

• Expression

– E1: linked-transitive(concept2, goal, relationi) ∧ linked(r, concept2, abstraction) ∧
linked(concept, concept2, relationi) ∧ linked(currentResource, concept, abstraction)

– E2: linked-transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)

According to E1: the selected resources are linked to concepts using abstraction, these concepts

are linked directly to a concept that is an abstraction of the current resource and they are linked

directly or indirectly to the goal using relationi. According to E2: the selected resources are

linked to concepts using abstraction, and these concepts are linked directly or indirectly to the

goal using relationi.

• Meta-expressions

– E1 ⊎ E2

According to this meta-expression, the set of resources selected by the criterion specified by E1

is recommended rather than the ones selected by the criterion specified by E2.

Constituents:

• concept: a variable representing an instance of the class Concept.

• goal: a variable representing the goal to reach, which is an instance of the class Concept.

• r: a variable representing an instance of the class Resource or of one of its specializations.

• currentResource: a variable representing an instance of the current resource proposed to the

user.

• relationi: a variable representing a relation defined between instances of the class Concept.

• abstraction: a variable representing a relation defined between an instance of the class Concept

and one or more instances of the class Resource or of one of its specializations.

Pattern 3.1.1.2

Name: Recommended Selection - Relation - Concept - breadth first

Intent: This pattern proposes recommended resources that are linked to concepts by abstraction, and

where each concept can reach the concept named goal directly or indirectly using relationi according

to a depth first navigational path.

3 Elementary adaptation patterns using recommended selection mode 191

Solution:

• Expression

– E1: linked-transitive(concept2, goal, relationi) ∧ linked(r, concept2, abstraction)

∧ distance(concept2, origin, relationi) ∧ distance(concept, origin, relationi) ∧
linked(currentResource, concept, abstraction)

– E2: linked-transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)

According to E1: the selected resources are linked to concepts using abstraction, these are linked

directly or indirectly to the goal using relationi and they have the same distance of the concept

which is an abstraction of the current resource from the first resource proposed to the user.

According to E2: the selected resources are linked to concepts using abstraction, and these

concepts are linked directly or indirectly to the goal using relationi.

• Meta-expressions

– E1 ⊎ E2

According to this meta-expression, the set of resources selected by the criterion specified by E1

is recommended rather than the ones selected by the criterion specified by E2.

Constituents:

• concept: a variable representing an instance of the class Concept.

• goal: a variable representing the goal to reach, which is an instance of the class Concept.

• origin: a variable representing the first resources proposed to the user.

• r: a variable representing an instance of the class Resource or of one of its specializations.

• currentResource: a variable representing an instance of the current resource proposed to the

user.

• relationi: a variable representing a relation defined between instances of the class Concept.

• abstraction: a variable representing a relation defined between an instance of the class Concept

and one or more instances of the class Resource or of one of its specializations.

Pattern 3.1.2.1

Name: Recommended Selection - Relation - Resource - Depth-first

Intent: This pattern proposes recommended resources that can reach the resource named goal directly

or indirectly using relationi according to a depth first navigational path.

192 Library of the defined elementary adaptation patterns

Solution:

• Expression

– E1: linked-transitive(resource, goal, relationi) ∧ linked(currentResource, resource, relationi)

– E2: linked-transitive(r, goal, relationi)

According to E1: the selected resources are linked directly or indirectly to the goal using

relationi and they are linked directly to the current resource using relationi. According to

E2: the selected resources are linked directly or indirectly to the goal using relationi.

• Meta-expressions

– E1 ⊎ E2

According to this meta-expression, the set of resources selected by the criterion specified by E1

is recommended rather than the ones selected by the criterion specified by E2.

Constituents:

• goal: a variable representing the goal to reach, which is an instance of the class Concept.

• r: a variable representing an instance of the class Resource or of one of its specializations.

• currentResource: a variable representing an instance of the current resource proposed to the

user.

• relationi: a variable representing a relation defined between instances of the class Concept.

Pattern 3.1.2.2

Name: Recommended Selection - Relation - Resource - Breadth-first

Intent: This pattern proposes recommended resources that can reach the resource named goal directly

or indirectly using relationi according to a breadth first navigational path.

Solution:

• Expression

– E1: linked-transitive(resource, goal, relationi) ∧ distance(resource, origin, relationi) ∧
distance(currentResource, origin, relationi)

– E2: linked-transitive(r, goal, relationi)

According to E1: the selected resources are linked directly or indirectly to the goal using

relationi and they have the same distance of the current resource from the first resource

proposed to the user. According to E2: the selected resources are linked directly or indirectly to

the goal using relationi.

• Meta-expressions

– E1 ⊎ E2

According to this meta-expression, the set of resources selected by the criterion specified by E1

is recommended rather than the ones selected by the criterion specified by E2.

Constituents:

• goal: a variable representing the goal to reach, which is an instance of the class Concept.

• origin: a variable representing the first resources proposed to the user.

• r: a variable representing an instance of the class Resource or of one of its specializations.

• currentResource: a variable representing an instance of the current resource proposed to the

user.

• relationi: a variable representing a relation defined between instances of the class Concept.

Pattern 3.2

Name: Recommended Selection - Classes

Intent: This patterns proposes recommended resources according to their type.

4 Elementary adaptation patterns using alternate selection mode 193

Solution:

• Expressions

– E1: instanceOf (r, Class1)

– ...

– En: instanceOf (r, Classn)

According to Ei: the selected resources are instances of the class Classi

• Meta-expressions

– Ei ⊎ Ej , i < j, i = 1..n and j = 1..n.

According to this meta-expression, the set of resources selected by the criterion specified by Ei

is recommended rather than the ones selected by the criterion specified by Ej (i < j).

Constituents:

• r: a variable representing an instance of the class Resource or of one of its specializations.

• Classi: a variable representing a subclass of the class Resource.

Pattern 3.3

Name: Recommended Selection - Properties

Intent: This pattern proposes resources that satisfy some values of the property propertyi.

Solution:

• Expressions

– E1: characteristicOf(r, propertyi , op, val1)

–

– En: characteristicOf(r, propertyi , op, valn)

According to Ei: The selected resources must have the property propertyi and their value must

satisfy the comparison test.

• Meta-expressions

– Ei⊎ Ej , i < j, i = 1..n and j = 1..n.

According to this meta-expression, the set of resources selected by the criterion specified by Ei

is recommended rather than the ones selected by the criterion specified by Ej (i < j).

Constituents:

• r: a variable representing an instance of the class Resource or of one of its specializations.

• propertyi: a variable representing a property of the class Resource.

• val: a variable representing a possible value for the property propertyi.

Table B.3 – Elementary adaptation patterns using the recommended selection mode

4 Elementary adaptation patterns using alternate selection

mode

In Table B.4, we describe the elementary adaptation patterns using the alternate selection mode.
It includes the elementary adaptation patterns P4.1.1.1, P4.1.1.2, P4.1.2.1, P4.1.2.2, P4.2 and P4.3
(cf. Chapter 4, Section 4.3, Figure 4.11).

Pattern 4.1.1.2

Name: Alternate Selection - Relation - Concept- Depth first

194 Library of the defined elementary adaptation patterns

Intent: This pattern proposes alternate resources that are linked to concepts by abstraction, and where

each concept can reach the concept named goal directly or indirectly using relationi according to a

depth-first navigational.

Solution:

• Expression

– E1: linked-transitive(concept2, goal, relationi) ∧ linked(r, concept2, abstraction) ∧
linked(concept, concept2, relationi) ∧ linked(currentResource, concept, abstraction)

– E2: linked-transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)

According to E1: selected resources are linked to concepts using abstraction, these concepts are

linked directly to a concept that is an abstraction of the current resource and they are linked

directly or indirectly to the goal using relationi. According to E2: selected resources are linked

to concepts using abstraction, and these concepts are linked directly or indirectly to the goal

using relationi.

• Meta-expressions

– E1 | E2

According to this meta-expression, the set of resources selected by the criterion specified by E1

is alternate of the ones selected by the criterion specified by E2.

Constituents:

• concept: a variable representing an instance of the class Concept.

• goal: a variable representing the goal to reach, which is an instance of the class Concept.

• r: a variable representing an instance of the class Resource or of one of its specializations.

• currentResource: a variable representing an instance of the current resource.

• relationi: a variable representing a relation defined between instances of the class Concept.

• abstraction: a variable representing a relation defined between an instance of the class Concept

and one or more instances of the class Resource or of one of its specializations.

Pattern 4.1.1.2

Name: Alternate Selection - Relation - Concept - breadth first

Intent: This pattern proposes alternate resources that are linked to concepts by abstraction, and where

each concept can reach the concept named goal directly or indirectly using relationi according to a

depth first navigational path.

4 Elementary adaptation patterns using alternate selection mode 195

Solution:

• Expression

– E1: linked-transitive(concept2, goal, relationi) ∧ linked(r, concept2, abstraction)

∧ distance(concept2, origin, relationi) ∧ distance(concept, origin, relationi) ∧
linked(currentResource, concept, abstraction)

– E2: linked-transitive(concept, goal, relationi) ∧ linked(r, concept, abstraction)

According to E1: selected resources are linked to concepts using abstraction, these concepts are

linked directly or indirectly to the goal using relationi and they have the same distance of the

concept which is an abstraction of the current resource from the first resource proposed to the

user. According to E2: selected resources are linked to concepts using abstraction, and these

concepts are linked directly or indirectly to the goal using relationi.

• Meta-expressions

– E1 | E2

According to this meta-expression, the set of resources selected by the criterion specified by E1

is alternate of the ones selected by the criterion specified by E2.

Constituents:

• concept: a variable representing an instance of the class Concept.

• goal: a variable representing the goal to reach, which is an instance of the class Concept.

• origin: a variable representing the first resources proposed to the user.

• r: a variable representing an instance of the class Resource or of one of its specializations.

• currentResource: a variable representing an instance of the current resource.

• relationi: a variable representing a relation defined between instances of the class Concept.

• abstraction: a variable representing a relation defined between an instance of the class Concept

and one or more instances of the class Resource or of one of its specializations.

Pattern 4.1.2.1

Name: Alternate Selection - Relation - Resource - Depth-first

Intent: This pattern proposes alternate resources that can reach the resource named goal directly or

indirectly using relationi according to a depth first navigational path.

196 Library of the defined elementary adaptation patterns

Solution:

• Expression

– E1: linked-transitive(resource, goal, relationi) ∧ linked(currentResource, resource, relationi)

– E2: linked-transitive(r, goal, relationi)

According to E1: selected resources have to be linked directly or indirectly to the goal using

relationi and they are linked directly to the current resource using relationi. According to E2:

selected resources have to be linked directly or indirectly to the goal using relationi.

• Meta-expressions

– E1 | E2

According to this meta-expression, the set of resources selected by the criterion specified by E1

is alternate of the ones selected by the criterion specified by E2.

Constituents:

• goal: a variable representing the goal to reach, which is an instance of the class Concept.

• r: a variable representing an instance of the class Resource or of one of its specializations.

• currentResource: a variable representing an instance of the current resource.

• relationi: a variable representing a relation defined between instances of the class Concept.

Pattern 4.1.2.2

Name: Alternate Selection - Relation - Resource - Breadth-first

Intent: This pattern proposes alternate resources that can reach the resource named goal directly or

indirectly using relationi according to a breadth first navigational path.

Solution:

• Expression

– E1: linked-transitive(resource, goal, relationi) ∧ distance(resource, origin, relationi) ∧
distance(currentResource, origin, relationi)

– E2: linked-transitive(r, goal, relationi)

According to E1: the selected resources are linked directly or indirectly to the goal using

relationi and they have the same distance of the current resource from the first resource

proposed to the user. According to E2: the selected resources are linked directly or indirectly to

the goal using relationi.

• Meta-expressions

– E1 | E2

According to this meta-expression, the set of resources selected by the criterion specified by E1

is alternate of the ones selected by the criterion specified by E2.

Constituents:

• goal: a variable representing the goal to reach, which is an instance of the class Concept.

• r: a variable representing an instance of the class Resource or of one of its specializations.

• currentResource: a variable representing an instance of the current resource.

• relationi: a variable representing a relation defined between instances of the class Concept.

Pattern 4.2

Name: Alternate Selection - Classes

Intent: This patterns proposes alternative resources according to their type.

5 Summary 197

Solution:

• Expressions

– E1: instanceOf (r, Class1)

– ...

– En: instanceOf (r, Classn)

According to Ei: selected resources must be instances of the class Classi

• Meta-expressions

– Ei | Ej , i < j, i = 1..n and j = 1..n.

According to this meta-expression, the set of resources selected by the criterion specified by Ei

is an alternative of the ones selected by the criterion specified by Ej (i < j).

Constituents:

• r: a variable representing an instance of the class Resource or of one of its specializations.

• Classi: a variable representing a subclass of the class Resource.

Pattern 4.3

Name: Alternate Selection - Properties

Intent: This pattern proposes alternate resources that satisfy some values of the property propertyi.

Solution:

• Expressions

– E1: characteristicOf(r, propertyi , op, val1)

–

– En: characteristicOf(r, propertyi , op, valn)

According to Ei: selected resources must have the property propertyi and their value must

satisfy the comparison test.

• Meta-expressions

– Ei | Ej , i < j, i = 1..n and j = 1..n.

According to this meta-expression, the set of resources selected by the criterion specified by Ei

is alternate of the ones selected by the criterion specified by Ej (i < j).

Constituents:

• r: a variable representing an instance of the class Resource or of one of its specializations.

• propertyi: a variable representing a property of the class Resource.

• val: a variable representing a possible value for the property propertyi.

Table B.4 – Elementary adaptation patterns using the alternate selection mode

5 Summary

In this appendix, we have presented the different elementary adaptation patterns that we propose

to define adaptation strategies for the adaptive navigation, accompanied by the the typology in

which they are organized. The typology groups all our elementary adaptation patterns in order

to make easier their use and their understanding. In fact, each elementary adaptation pattern is

defined according to two criteria: a criteria selecting a set of resources and a criteria defining how

the selected resources are going to be proposed.

Each elementary adaptation pattern can be used separately or with others in the definition

198 Library of the defined elementary adaptation patterns

of an adaptation strategy. The process of combination is automatic and is described in [75].

Note that, the generated adaptation strategies are expressed at a high level, independent of

any adaptation engine. This is why we have defined our framework at the top of the GLAM

adaptation engine [38] and on the LAG adaptation language [17] which is considered as the first

generic adaptation language and which is already interfaced with several existing adaptation

engines.

APPENDIX C

Conversion of our elementary

adaptation patterns to LAG

1 Elementary adaptation patterns using selection only mode 184

2 Elementary adaptation patterns using ordered selection mode 186

3 Elementary adaptation patterns using recommended selection mode 189

4 Elementary adaptation patterns using alternate selection mode 193

5 Summary . 197

200 Conversion of our elementary adaptation patterns to LAG

In this appendix, we detail the conversion of the defined elementary adaptation patterns (cf.

Appendix B, Figure B.1) to LAG.

We have organized the presentation of this appendix per selection mode as the converted

elementary adaptation are also organized per selection mode. Therefore, Section 1, Section 2,

and Section 3 present successively the conversion of elementary adaptation patterns using the

simple selection mode, using the ordered selection mode and the recommended selection mode.

The elementary adaptation patterns using the alternate selection mode haven’t been converted

to LAG as this later does not support to check whether a resource is empty or not. Furthermore,

the elementary adaptation patterns that are expressed on concepts directly cannot be converted

to LAG as this later does not propose constructors to access concepts but only resources.

Remember that a concept, in LAG is also referred by concept, but a resource is referred by an

attribute.

1 Conversion of elementary adaptation patterns using selection

only mode to LAG

Table C.1 describes the conversion of P1.1.2 (cf. Table B.1) to LAG

Pattern P1.1.2

In the user model, we add the following attributes

• goalnum to count the number of concepts to be shown before the goal message concept. The

attribute is independent from each concept.

• beenthere related to each concept in order to count the number of times a concept has been

visited.

In the goal model, we define the following labels

• MessageReachGoal to indicate that the associated concept is the goal message concept.

• reachGoal to indicate that the associated concept have to be shown before the goal message

concept.

LAG program

initialization(

while true (

// show all concept

PM.GM.Concept.show = true

UM.GM.Concept.beenthere = 0

// hide the goal message concept

if GM.Concept.label == MessageReachGoal)

then (PM.GM.Concept.show = false)

)

)

UM.GM.Goalnum = 0

while GM.Concept.label == reachGoal (

PM.GM.Concept.show = true

UM.GM.Goalnum += 1

)

UM.GM.reach = false

)

1 Conversion of elementary adaptation patterns using selection only mode to LAG 201

implementation (

if UM.GM.Concept.access == true then (

if (UM.GM.Concept.beenthere == 0)

then (if (GM.Concept.label == reachGoal)

then (UM.GM.Goalnum -= 1)

)

UM.GM.Concept.beenthere += 1

)

if UM.GM.Goalnum == 0

then (UM.GM.reach = true)

/// show the goal

if enough (UM.GM.reach == true

GM.Concept.label == MessageReachGoal, 2)

then (PM.GM.Concept.show = true)

)

Table C.1 – Conversion of the elementary adaptation pattern Selection Only - Relation - Resource to

LAG

Table C.2 describes the conversion of P1.2 (cf. Table B.1) to LAG

Pattern P1.2

In the EAP framework, the classification of concepts is done using ’is-a’ relation. However, in LAG,

the classification of concepts is expressed using attributes1 of domain concepts (goal model concepts).

LAG program

initialization(

while true(

if GM.Concept.type == typeConcept1

then (PM.GM.Concept.show = true)

else PM.GM.Concept.show = false

)

)

implementation (

if GM.Concept.type == typeConcept1

then (PM.GM.Concept.show = true)

)

Table C.2 – Conversion of the elementary adaptation pattern Selection Only - Classes to LAG

Table C.3 describes the conversion of P1.3 (cf. Table B.1) to LAG

Pattern P1.3

In LAG, we can only consider two goal model properties ’label’, ’weight’. The weight can have

only integer values. Additionally, one can create user model variables for each concept (for example,

UM.GM.Concept.difficulty).

1instances of the class Attribute

202 Conversion of our elementary adaptation patterns to LAG

1. if different for each concept: use instances

• ’\ EAP Course\ EAP\ Video’.difficulty = 35

• ’\ EAP Course \ EAP\ Text’.difficulty = 15

2. if domain specific: use types

• If GM.Concept.type == Video

• then UM.GM.Concept.difficulty = 35

3. if pedagogic: use weights (or labels)

• While true (UM.GM.Concept.difficulty = GM.Concept.weight)

Program in LAG

initialization(

while true (

if (GM.Concept.weight == val)

then (PM.GM.Concept.show = true)

else (PM.GM.Concept.show = false)

)

)

implementation (

if (GM.Concept.weight == val)

then (PM.GM.Concept.show = true)

)

Table C.3 – Conversion of the elementary adaptation pattern Selection Only - Property to LAG

2 Conversion of elementary adaptation patterns using ordered

selection mode to LAG

Table C.4 describes the conversion of P2.1.2.1 (cf. Table B.2) to LAG

Pattern P2.1.2.1

This pattern can be translated in three different ways, either

1. by exploiting the parent-child relation.

2. by exploiting weights.

3. By building the goal model according to the needed navigational path.

Solution by exploiting the parent-child relation

In the user model, we define the following attributes

• The attribute ’reach’ to indicate whether the user has reached the goal or not yet.

• The attribute ’beenthere’ is defined for each concept. It indicates how many times each concept

has been visited.

In the goal model, we define the following labels

• The label ’start’ is used to define the first concept to be proposed.

• The label ’goal’ used to indicate the goal message concept.

• The label ’reach’ used to indicate that the associated concept is on the path of the goal and should

be proposed to the user.

Program in LAG

2 Conversion of elementary adaptation patterns using ordered selection mode to LAG 203

initialization(

PM.next = true

PM.ToDo = false

PM.menu = false

UM.GM.reach = false

while true (

// hide all concepts

PM.GM.Concept.show = false

UM.GM.Concept.beenthere = 0

)

if GM.Concept.label == start

then (PM.GM.Concept.show = true)

)

implementation (

if enough (UM.GM.Concept.parent.access

GM.Concept.label == reach

UM.GM.Concept.beenthere == 0

UM.GM.reach == false

, 4)

then (

UM.GM.Concept.beenthere += 1

GM.Concept.show = true

GM.Concept.parent.show = false

)

if enough (UM.GM.Concept.parent.access

GM.Concept.label == goal

UM.GM.Concept.beenthere == 0

, 3)

then (

UM.GM.Concept.beenthere += 1

UM.GM.reach = true

GM.Concept.show = true

)

)

Table C.4 – Conversion of the elementary adaptation pattern Ordered Selection - Relation - Resource

- Depth first to LAG

Table C.5 describes the conversion of P2.1.2.2 (cf. Table B.2) to LAG

Pattern P2.1.2.2

This pattern can be translated in three different ways, either

1. by exploiting the parent-child relation.

2. by exploiting weights.

3. By building the goal model according to the needed navigational path.

Solution by exploiting the parent-child relation

204 Conversion of our elementary adaptation patterns to LAG

In the user model, we define the following attributes

• The attribute ’reach’ is independent from all concepts. It indicates whether the user has reached

the goal or not yet.

• The attribute ’beenthere’ is defined for each concept. It indicates how many times each concept

has been visited.

In the goal model, we define the following labels

• The label ’start’ is used to define the first concept to be proposed.

• The label ’MessageReachGoal’ to indicate that the associated concept is the goal message

concept.

• The label ’reachGoal’ to indicate that the associated concept is on the path of the goal and should

be proposed to the user.

Program in LAG

initialization(

PM.next = true

PM.ToDo = true

PM.menu = true

while true(

if GM.Concept.label == first

then (PM.GM.Concept.show = true)

)

UM.GM.reach = false

UM.GM.level= 2

)

implementation (

if enough (GM.Concept.level ¡= UM.GM.level

GM.Concept.label == reachGoal

UM.GM.reach == false

, 3)

then (PM.GM.Concept.show = true)

else if (UM.GM.Concept.access == true)

then (UM.GM.level +=1)

if enough (GM.Concept.level ¡= UM.GM.level

GM.Concept.label == MessageReachGoal

, 2)

then (

UM.GM.reach = true

GM.Concept.show = true

)

)

Table C.5 – Conversion of the elementary adaptation pattern Ordered Selection - Relation - Resource

- Breadth first to LAG

Table C.6 describes the conversion of P2.2 (cf. Table B.2) to LAG

Pattern P2.2

this pattern can be translated either

1. by using weights.

2. by using types of concepts

Solution 1 (solution using weights)

Concepts of type of Class1 will have a weight = 1

2 Conversion of elementary adaptation patterns using ordered selection mode to LAG 205

...

Concepts of type of Classn will have a weight = n

Program in LAG

initialization(

while true (

UM.GM.Concept.beenthere = 0

if GM.Concept.weight == 1

then (PM.GM.Concept.show = true)

else PM.GM.Concept.show = false)

)

implementation (

if UM.GM.Concept.access == true then (

UM.GM.Concept.beenthere += 1

)

if UM.GM.Concept.beenthere ¿ GM.Concept.weight

then (PM.GM.Concept.show = false)

if UM.GM.Concept.beenthere == GM.Concept.weight

then (PM.GM.Concept.show = true)

)

Solution 2 (solution using types of concepts)

initialization(

while true (

UM.GM.Concept.beenthere = 0

if GM.Concept.type == typeConcept1

then (PM.GM.Concept.show = true

else PM.GM.Concept.show = false

)

) implementation (

if UM.GM.Concept.access == true then (

UM.GM.Concept.beenthere += 1

)

if enough (UM.GM.Concept.beenthere == 2 GM.Concept.type == typeConcepti , 2)

then (PM.GM.Concept.show = true)

if enough (UM.GM.Concept.beenthere == 2 GM.Concept.type != typeConcepti , 2)

then (PM.GM.Concept.show = false)

...

if enough (UM.GM.Concept.beenthere == n GM.Concept.type == typeConcepti , 2)

then (PM.GM.Concept.show = true)

if enough (UM.GM.Concept.beenthere == n GM.Concept.type != typeConcepti , 2)

then (PM.GM.Concept.show = false)

)

Table C.6 – Conversion of the elementary adaptation pattern Ordered Selection - Classes to LAG

Table C.7 describes the conversion of P2.3 (cf. Table B.2) to LAG

Pattern P2.3

Concepts will have either

a weight = 1 to represent concepts with property = value1

...

a weight = n to represent concepts with property = valuen

(Because weight can have only integer values.)

Program in LAG

initialization(

while true (

206 Conversion of our elementary adaptation patterns to LAG

UM.GM.Concept.beenthere = 0

if GM.Concept.weight == 1

then (PM.GM.Concept.show = true)

else PM.GM.Concept.show = false

)

)

implementation (

if UM.GM.Concept.access == true then (

UM.GM.Concept.beenthere += 1

)

if enough(UM.GM.Concept.beenthere ¡ 2

GM.Concept. weight == 2 ,2)

then (PM.GM.Concept.show = false)

if enough(UM.GM.Concept.beenthere == 2

GM.Concept. weight == 3 ,2)

then (PM.GM.Concept.show = true)

...

if enough(UM.GM.Concept.beenthere ¡ n

GM.Concept. weight == n ,2)

then (PM.GM.Concept.show = false)

if enough(UM.GM.Concept.beenthere == n

GM.Concept. weight == n , 2)

then (PM.GM.Concept.show = true)

)

Table C.7 – Conversion of the elementary adaptation pattern Ordered Selection - Property to LAG

3 Conversion of elementary adaptation patterns using recom-

mended selection mode to LAG

Table C.8 describes the conversion of P3.1.2.1 (cf. Table B.3) to LAG

Pattern P3.1.2.1

This pattern can be translated in three different ways, either

1. by exploiting the parent-child relation.

2. by exploiting weights.

3. By building the goal model according to the needed navigational path.

Solution by exploiting the parent-child relation

In the user model, we define the following attributes

• The attribute ’reach’ to indicate whether the user has reached the goal or not yet.

• The attribute ’beenthere’ is defined for each concept. It indicates how many times each concept

has been visited.

In the goal model, we define the following labels

• The label ’start’ is used to define the first concept to be proposed.

• The label ’goal’ used to indicate the goal message concept.

• The label ’reach’ used to indicate that the associated concept is on the path of the goal and should

be proposed to the user.

3 Conversion of elementary adaptation patterns using recommended selection mode to LAG207

Program in LAG

initialization(

PM.next = true

PM.ToDo = false

PM.menu = false

UM.GM.reach = false

while true (

// hide all concepts

PM.GM.Concept.show = false

UM.GM.Concept.beenthere = 0

)

if GM.Concept.label == start

then (PM.GM.Concept.show = true)

)

implementation (

if enough (UM.GM.Concept.parent.access

GM.Concept.label == reach

UM.GM.Concept.beenthere == 0

UM.GM.reach == false

, 4)

then (

UM.GM.Concept.beenthere += 1

GM.Concept.show = true

)

if enough (UM.GM.Concept.parent.access

GM.Concept.label == goal

UM.GM.Concept.beenthere == 0

, 3)

then (

UM.GM.Concept.beenthere += 1

UM.GM.reach = true

GM.Concept.show = true

)

)

Table C.8 – Conversion of the elementary adaptation pattern Recommended Selection - Relation -

Resource - Depth first to LAG

Table C.9 describes the conversion of P3.1.2.2 (cf. Table B.3) to LAG

Pattern P3.1.2.2

This pattern can be translated in three different ways, either

1. by exploiting the parent-child relation.

2. by exploiting weights.

3. By building the goal model according to the needed navigational path.

Solution by exploiting the parent-child relation

208 Conversion of our elementary adaptation patterns to LAG

In the user model, we define the following attributes

• The attribute ’reach’ is independent from all concepts. It indicates whether the user has reached

the goal or not yet.

• The attribute ’beenthere’ is defined for each concept. It indicates how many times each concept

has been visited.

In the goal model, we define the following labels

• The label ’start’ is used to define the first concept to be proposed.

• The label ’MessageReachGoal’ to indicate that the associated concept is the goal message

concept.

• The label ’reachGoal’ to indicate that the associated concept is on the path of the goal and should

be proposed to the user.

Program in LAG

initialization(

PM.next = true

PM.ToDo = true

PM.menu = true

while true(

if GM.Concept.label == first

then (PM.GM.Concept.show = true)

)

UM.GM.reach = false

UM.GM.level= 2

)

implementation (

if enough (GM.Concept.level ¡= UM.GM.level

GM.Concept.label == reachGoal

UM.GM.reach == false

, 3)

then (PM.GM.Concept.show = true)

else if (UM.GM.Concept.access == true)

then (UM.GM.level +=1)

if enough (GM.Concept.level ¡= UM.GM.level

GM.Concept.label == MessageReachGoal

, 2)

then (

UM.GM.reach = true

GM.Concept.show = true

)

)

Table C.9 – Conversion of the elementary adaptation pattern Recommended Selection - Relation -

Resource - Breadth first to LAG

Table C.10 describes the conversion of P3.2 (cf. Table B.3) to LAG

Pattern P3.2

This pattern can be translated either

1. using weights.

2. using the type of concepts.

However, the order has to be first defined in the CAF file.

Program in LAG (solution using the type of concepts)

initialization(

3 Conversion of elementary adaptation patterns using recommended selection mode to LAG209

while true (

if (GM.Concept.type == Class1) (

PM.GM.Concept.show = true

...

if(GM.Concept.type == Classn) (

PM.GM.Concept.show = true

)

)

implementation (

if (GM.Concept.type == Class1) (

PM.GM.Concept.show = true

)

...

if (GM.Concept.type == Classn) (

PM.GM.Concept.show = true

)

)

Table C.10 – Conversion of the elementary adaptation pattern Recommended Selection - classes to

LAG

Table C.11 describes the conversion of P3.3 (cf. Table B.3) to LAG

Pattern P3.3

• The recommendation is expressed by defining an order between attributes in the CAF file.

• The order proposed to the user must match with the order defined in the CAF file.

Program in LAG

initialization(

While true (

if GM.Concept.weight == 1

then (PM.GM.Concept.show = true)

...

if GM.Concept.weight == n

then (PM.GM.Concept.show = true)

)

)

implementation (

if GM.Concept.weight == 1

then (PM.GM.Concept.show = true)

...

if GM.Concept.weight == n

then (PM.GM.Concept.show = true)

)

Table C.11 – Conversion of the elementary adaptation pattern Recommended Selection - property to

LAG

210 Conversion of our elementary adaptation patterns to LAG

	I Introduction
	Introduction
	Context and research questions
	Contributions
	Outline of the dissertation

	II Close work related to authoring Adaptive Hypermedia
	Positioning
	Adaptive Hypermedia
	Models of Adaptive Hypermedia
	Models for Adaptive Hypermedia whatever the application domain
	Models for Adaptive Educational Hypermedia
	Summary

	Adaptive Hypermedia Systems
	Adaptive Hypermedia whatever the application domain
	Adaptive Educational Hypermedia Systems
	Summary

	Authoring Adaptive Hypermedia
	Specifying the domain model
	Solutions dedicated to a particular Adaptive Hypermedia System
	Solutions compatible with numerous Adaptive Hypermedia Systems
	Summary

	Expressing adaptation
	Solutions dedicated to a particular Adaptive Hypermedia System
	Solutions compatible with numerous Adaptive Hypermedia Systems
	Summary

	Relative position in comparison with existing work

	III Assisting in the reuse of author's domain and user models
	Integrating author's models into models of Adaptive Hypermedia Systems
	Related work in the knowledge engineering field
	Approaches based on merging models according to a bottom-up approach
	Approaches based on merging models according to a top-down approach
	Summary

	Main aspects of our merging/specialization process
	Characteristics of the two models used by the process
	Characteristics of the built model
	The merging/specialization process
	Applying the merging/specialization process on John's use case
	Description of the generic model
	Description of the specific model
	Description of the built model

	Step 1/4: specification of mappings between classes
	Mapping between classes
	Applying the first step on John's use case

	Step 2/4: deduction of additional mappings between classes
	Pattern-based process for deducing additional mappings between classes
	Applying the second step on John's use case

	Step 3/4: deduction of mappings between relations and between attributes
	Structural knowledge
	Modeling structural knowledge using a meta-model
	Parts taken back from the OWL meta-model
	Modification and enrichment of the reused parts of the OWL meta-model

	Mapping deduction rules
	Deducing a potential mapping
	Deducing compatible restriction mappings
	Deducing a probable mapping

	Inconsistency deduction rules
	Applying the third step on John's use case

	Step 4/4: validation of mappings and presenting inconsistencies
	Validating deduced mappings between relations
	Presenting inconsistency mappings
	Building the merged model
	Applying the fourth and last step on John's use case

	Summary

	IV Assisting in the expression of adaptive navigation
	Expressing adaptive navigation using adaptation patterns
	Related work in expressing adaptive navigation in Adaptive Systems
	What kind of adaptation could be provided?
	How can authors express their adaptation?
	Adaptation languages accompanied by their adaptation engine
	Generic adaptation languages accompanied by translators to existing adaptation engines
	Hypertext and adaptation patterns

	Expressing adaptive navigation in open corpus Adaptive Systems
	Summary

	Motivation through Jane's use case
	Description of Jane's domain and user models
	Description of Jane's adaptation

	Main aspects of the EAP framework
	Structure of author's domain and user models used by the EAP framework
	Steps to define a new adaptation strategy

	Elementary adaptation patterns
	Fundamental criteria for defining elementary adaptation patterns
	Criteria used to select resources
	Criteria used to order the selected resources

	Description of elementary adaptation patterns
	Definition of an elementary adaptation pattern
	Syntax of an elementary adaptation pattern
	Semantic of an elementary adaptation pattern

	Typology of elementary adaptation patterns

	Using the EAP framework to define adaptation strategies
	Step 1/3: defining elementary adaptations
	Elementary adaptations
	Applying the first step on Jane's use case

	Step 2/3: linking elementary adaptations with user characteristics
	Defining associations
	Applying the second step on Jane's use case

	Step 3/3: combining elementary adaptations
	Process of combining elementary adaptations
	Applying the third step on Jane's use case

	Summary

	Expressivity of EAP framework versus GLAM, LAG
	Study of the expressivity of domain models used by the EAP framework, GLAM and LAG
	UML representation of domain models used by the EAP framework, GLAM and LAG
	UML representation of domain models used by the EAP framework
	UML representation of domain models used by GLAM
	UML representation of domain models used by LAG

	A unified vision of the domain model used by the EAP framework, GLAM and LAG
	A unified vision of the domain model in AH
	Applying the unified vision on DM (and GM) used by the EAP framework and LAG
	Applying the unified vision on Jane's use case for EAP framework, GLAM and LAG

	Differences of modeling the domain model used by EAP framework, GLAM versus LAG

	Study of adaptation expressivity of EAP framework, GLAM and LAG
	An integrated model for a taxonomy of basic adaptations (based on the EAP framework, GLAM and LAG)
	Differences of adaptation modeling using the EAP framework, GLAM versus LAG

	Summary

	Translating generated adaptation strategies to existing adaptation languages
	Plugging the EAP framework to the GLAM platform
	Conversion of domain and user models used by the EAP framework to ones used by GLAM
	Conversion of adaptation strategies from the EAP framework to GLAM
	Translation of expressions to the GLAM format
	Translation of meta-expressions to the GLAM format

	Plugging the EAP framework to LAG
	Conversion of domain model used by the EAP framework to domain and goal models used by LAG
	Conversion of user model and adaptation strategies from the EAP framework to LAG
	Translation of expressions to the LAG format
	Translation of meta-expressions to the LAG format

	Summary

	V Implementation, Experiments & Evaluations
	Implementation
	Implementation of the merging/specialization process
	Architecture of the MESAM plug-in
	Installation of the MESAM plug-in
	Interaction with the MESAM plug-in
	Specification of equivalence or specialization mappings
	Validation of structural deductions
	Printing reused classes, relations and properties

	Implementation of the EAP framework
	Architecture of the EAP plug-in
	Installation of the EAP plug-in
	Interaction with the EAP plug-in
	Definition of elementary adaptations
	Association of elementary adaptations with user characteristics
	Definition of adaptation strategies

	Plugging the EAP framework to LAG

	Summary

	Experiments and evaluations in e-learning
	Experiments of the MESAM plug-in in the adaptive e-learning hypermedia domain
	Experimental settings
	Obtained results

	Evaluation of the EAP tab versus existing Adaptive Systems
	Evaluation of the EAP framework versus GLAM, a rule-based system
	Evaluation settings
	Obtained results

	Evaluation of the EAP framework versus LAG, a generic adaptation language
	Evaluation settings
	Obtained results

	Summary

	VI Conclusion and future work
	Conclusion and future work
	Conclusion
	Future work

	Appendices
	OWL Meta-Model
	Library of the defined elementary adaptation patterns
	Elementary adaptation patterns using selection only mode
	Elementary adaptation patterns using ordered selection mode
	Elementary adaptation patterns using recommended selection mode
	Elementary adaptation patterns using alternate selection mode
	Summary

	Conversion of our elementary adaptation patterns to LAG
	Conversion of elementary adaptation patterns using selection only mode to LAG
	Conversion of elementary adaptation patterns using ordered selection mode to LAG
	Conversion of elementary adaptation patterns using recommended selection mode to LAG

