
HAL Id: tel-00641579
https://theses.hal.science/tel-00641579

Submitted on 16 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Main Memory XML Update Optimization: algorithms
and experiments.

Sahakyan Marina

To cite this version:
Sahakyan Marina. Main Memory XML Update Optimization: algorithms and experiments..
Databases [cs.DB]. Université Paris Sud - Paris XI, 2011. English. �NNT : �. �tel-00641579�

https://theses.hal.science/tel-00641579
https://hal.archives-ouvertes.fr

UNIVERSITY PARIS SUD 11 - ORSAY

P H D T H E S I S

to obtain the title of

Dr. of Science

(informatics)

Defended on November 17, 2011 by
Marina Sahakyan

Main Memory XML Update Optimization:
algorithms and experiments

Jury :
President : Pr. Anne Vilnat University Paris Sud 11 - LIMSI
Reviewers : Pr. Anne Doucet University Paris 6 - LIP6

Pr. Irene Guessarian University Paris 6 - LIAFA

Thesis Advisors : Pr. Nicole Bidoit-Tollu

University Paris Sud 11 - LRI - INRIA

Assistant Pr. Dario Colazzo

University Paris Sud 11 - LRI - INRIA

Joint advisors: Assistant Pr. Hrachya Astsatryan

National Academia of Science of Armenia

Pr. Gevorg Margarov

State Engineering University of Armenia

Acknowledgments

Main Memory XML Update Optimization:
algorithms and experiments

Abstract:
XML projection is one of the main adopted optimization techniques for reducing

memory consumption in XQuery in-memory engines. The main idea behind this

technique is quite simple: given a query Q over an XML document D, instead of

evaluating Q on D, the query Q is evaluated on a smaller document D′ obtained

from D by pruning out, at loading-time, parts of D that are unrelevant for Q.

The actual queried document D′ is a projection of the original one, and is often

much smaller than D due to the fact that queries tend to be quite selective in general.

While projection techniques have been extensively investigated for XML query-

ing, we are not aware of applications to XML updating. This Thesis investigates

application of a projection based optimization mechanism for XQuery Update

Facility expressions in the presence of a schema. The current work includes study of

the method and a formal development of Merge algorithm as well as experiments

testifying its effectiveness.

Keywords: XML, XML Updates, XML Projection

Contents

1 Introduction 3

1.1 Problem statement . 3

1.2 Main contribution . 4

1.3 XQuery engines supporting updates 5

1.4 Related work . 6

2 Preliminaries 9

2.1 XML . 9

2.2 XQuery Update Facility (XUF) . 14

2.2.1 Simple updates . 14

2.2.2 Complex Updates . 16

2.2.3 Constraints and semantics 17

2.2.4 Snapshot semantics . 18

3 State of the Art, XQuery Engines 21

3.1 Introduction . 21

3.2 MonetDB/XQuery . 22

3.2.1 General Data structure . 23

3.2.2 Data structure supporting structural updates 26

3.2.3 XML Serialization . 32

3.2.4 MonetDB/XQuery vs. projection 33

3.3 Native XML databases . 34

3.3.1 BaseX . 34

3.3.2 General Datastructure . 34

3.3.3 Data structure supporting structural updates 36

3.3.4 XML Serialization . 40

3.3.5 BaseX vs. projection . 40

3.4 eXist . 42

3.4.1 General Data Structure . 43

3.4.2 XML serialization . 46

3.4.3 eXist vs. projection . 47

3.5 Saxon Processor . 48

3.5.1 General Data Structure . 48

3.5.2 XML Serialization . 52

3.5.3 Saxon vs. projection . 52

3.6 Conclusion . 52

vi Contents

4 Enabling XML Update Optimization ... 55
4.1 Motivations . 55

4.2 The three level type-projector . 58

4.3 Merge for enabling XML Update Optimization... 69

4.3.1 The procedure NoMerge . 71

4.3.2 Procedure OlbMerge . 75

4.4 Implementation and Experiments . 80

4.4.1 Implementation issues . 80

4.4.2 Experiments . 87

4.5 Conclusion . 104

5 Extending the Type Projection based evaluation... 117
5.1 Introduction . 117

5.2 Extending the Type Projector for Update Optimization 120

5.2.1 Case analysis: update operation in isolation 120

5.2.2 Case analysis: mixing update operations of different kinds . . 128

5.3 Definition of the Extended Projection 146

5.3.1 Merge . 148

5.3.2 Function TreeMerge - one projector component at a time - . . 149

5.3.3 Function TreeMerge - general case - 159

5.3.4 Conclusion . 164

6 Conclusion 167

References 169

Contents 1

Chapter 1

Introduction

Contents

1.1 Problem statement . 3

1.2 Main contribution . 4

1.3 XQuery engines supporting updates 5

1.4 Related work . 6

Recent years have seen the rapidly emerging of XML query and transformation

languages, due to the vast class of applications where XML plays a central role.

Examples are Web applications, data integration, and P2P distributed database

systems.

In these contexts, one of the main emerging needs is the ability to update large

XML data sets. There are several proposals of XML update languages, all of them

based on extension of XQuery. The most relevant one is that proposed by the W3C

in the XQuery Update Facility current draft. This specification states what kind

of updates can be applied to XML documents, by formalizing the semantics of the

proposed operations, by taking into account only the effects on the data present

in main memory. Issues related to the problem of making updates persistent and

efficiently executed are not dealt with, and left to the implementation. Addressing

these issues is of crucial importance as, very often, the size of XML documents to

update can become quite large, and update operations can be quite complex, due

to both the intrinsic irregular nature of XML data and to the rich expressiveness of

the XQuery update language.

1.1 Problem statement

XML projection is a well-known optimization technique for reducing memory con-

sumption of XQuery in-memory engines. The main idea behind this technique is

quite simple: given a query q over an XML document t, instead of evaluating q over

t, the query q is evaluated on a smaller document t′ obtained from t by pruning

out, at loading-time, parts of t that are not relevant for q. The queried document

t′, a projection of the original one, is often much smaller than t due to selectivity of

queries.

In order to determine an optimal projection of t several approaches exist [15, 21,

33, 36]. Most of them are based on query path extraction: all the paths expressing

4 Chapter 1. Introduction

the data-needs for the query q are first extracted and then used for projecting t.

In particular, the type based approach [15] assumes that documents are typed by

a dtd and combines path extraction with type inference, to determine the type

names (labels) of the elements required for the query. This set of type names is

dubbed type-projector, and used at loading time to prune out elements whose type

labels do not belong to it.

While projection techniques have been extensively investigated for XML query-

ing, we are not aware of any application to XML updating, although several XML

querying engines like Galax [3], Saxon [7], QizX [5, 4], BaseX [29, 30] and eXist

[2] perform updates in main-memory: the input document is first loaded in main-

memory, then updated, and finally stored back on the disk. As a consequence, each

one of these systems has some limitations on the maximal size of documents that

can be processed. For instance, we checked that for eXist, QizX/open [5] and Saxon

it is not possible to update documents whose size is greater than 150 MB (no matter

the update query at hand) with standard settings and memory limitations.

XML projection, as described above, cannot be applied directly for updating

XML documents. Obviously, updating a projection of a document t is not equivalent

to updating the document t itself: the pruned out sub-trees will be missing.

1.2 Main contribution

Our main contribution is that we develop a type based optimization technique for

updates. Our update scenario is designed as follows for an update u and a document

t typed by a dtd D.

• First, we build the projection t′ of t using a type-projector π

• Then we evaluate the update u over the projection t′ and obtain the partial

result u(t′).

• Finally we process the last step, called Merge, parses in a streaming and

synchronized fashion both the original document t and u(t′) in order to produce

the final result u(t).

For the sake of efficiency, the Merge step is designed so that (a) only child position of

nodes and the projector π are checked in order to decide whether to output elements

of t or of u(t′) and (b) no further changes are made on elements after the partial

updated document u(t′) has been computed: output elements are either elements

of the original document t or elements of u(t′).

We would like to emphasize that our scenario is totally independent of any

particular engine (Saxon, eXist, BaseX and etc.) Our framework lies on the fact

that the new technique can be used with any in-memory engine, since it does not

require any change in the internal algorithms of the engine itself, nor it requires

query rewriting. To make some preliminary tests, we have implemented the

proposed projection and merging algorithm in Java.

1.3. XQuery engines supporting updates 5

The main contributions are the following ones:

• i) Design and implementation of a simple and thus efficient algorithm Merge,

to make updates persistent. The Merge algorithm uses a buffer whose size is

upper bounded by the maximal depth of the input document t. This algorithm

uses three−level type projector (work of Mohamed-Amine Baazizi).

• ii) Extension of three−level type projector which optimizes memory savings.

• iii) Design and implementation of the extension of the Merge algorithm.

• iv) Extensive experiments whose results validate the efficiency of the proposed

approach. We have implemented the projection and merging algorithms in

Java and considered several popular systems to perform tests.

1.3 XQuery engines supporting updates

There exist several XQuery engines supporting updates. Well know and most

effective once among them are MonetDB/XQuery, BaseX, eXist, Qizx and Saxon.

Chapter 3 provides detailed explanation of data structure of these engines. To store

XML document all these engines map XML data to certain storage data structure.

To map XML data on the disk MonetDB/XQuery uses relational XML encod-

ing. This encoding aims reduce main-memory consumption and decrease query

evaluation time. To update node n, MonetDB/XQuery loads pages in the rid table.

When MonetDB/XQuery finds a page containing a node matching to the target

path, MonetDB/XQuery modifies the found page to make intended updates. Then

MonetDB/XQuery writes back modified pages to the disk at actual points. The im-

portant point is that MonetDB/XQuery writes back only modified pages (therefore,

the second part is also true). In general, disk-write is more time-consuming activity

than disk-read. MonetDB/XQuery architecture is carefully designed to minimize

disk-write.

BaseX is very efficient for memory savings. Similarly to MonetDB/XQuery BaseX

uses relational encoding to map XML Documents. BaseX, to save memory, depend-

ing on the kind of the node element, attribute or text stores different references of

the node properties in the same column. For instance, in the same column for the

element preserves number of attributes and number of children, while for the text

and attribute nodes it stores references to the corresponding values.

eXist stores XML documents in hierarchical collection. As a storage unit on a disk

it uses B+Tree. To insert a node at a target n eXist first retrieves the set of types

corresponding to the target path and then evaluates query on them.

To evaluate an update query Saxon maps XML data to DOM like Objects, it is very

efficient for the small documents, but quite memory consuming for the big ones.

6 Chapter 1. Introduction

After analyzing the data structures of these engines we were capable to prove that

applying our method helps to optimize the memory limitations issuses.

1.4 Related work

The approach here presented introduces substantial novelties wrt the type based

approach for queries presented in [15]. As it will be explained in Chapter 4, we adopt

a three-level projector, while the projector proposed in [15] is one level. A three level

projector allows to optimize (minimize) the size of projection. In particular, it allows

to avoid keeping in the projection useless text nodes that would be kept with the

technique proposed in [15]: this can result into substantial improvements since in

many cases large parts of documents consist of textual content.

Other works propose techniques to optimize update execution time by using

static analysis in order to detect independence between several update operations, so

that query rewriting techniques can be used for logical optimization [27, 28, 12, 13].

Our work is definitely orthogonal wrt this line of research, and indeed, the two

techniques can be combined in order to increase the efficiency in terms of time.

Some recent works [24, 25] addressed the problem of translating an XQuery

update expression u into a pure query expression Qu, with the aim of executing the

update u via the query Qu. The advantages of these approaches are that updates can

be executed even if the XQuery engine only deals with queries, and well established

query-optimization techniques can be adopted to optimize update execution. A

peculiar characteristic of these approaches [24, 25] is that the query Qu needs to

select and return all nodes that are not updated, while those which are updated are

selected and processed to compute new nodes. As a consequence, using standard

projection techniques [15, 33] for the query Qu would lead to no improvement, since

the whole document would be projected.

It is worth observing that, although not directly, existing projection techniques

[15, 33] could be used for a single update, provided that the projected document

is used only to compute the update pending list, so that this last one can be then

propagated to the input document in a streaming fashion [22]. Such approach would

require some techniques similar to those here developed in order to: opportunely

determine the projection, and make node identity persistent in order to propagate,

in the second phase, the calculated update pending list. This approach has two

drawbacks. Firstly, it does not allow to use XML querying engines in a straight

manner as we propose to do: controlling the two phase evaluation of XML updates

would become necessary. Secondly, this approach would perform very inefficiently

in the quite frequent case where a bunch of n updates has to be executed, according

to a given order, because each update would need to be fully processed one after

the other entailing the document to be processed/parsed n times.

Our approach is different and allows to evaluate the n updates by processing our

method just once: a global projector can be easily inferred (it is sufficient to consider

the union of each update projector); the n updates are evaluated on the global

1.4. Related work 7

projection wrt the specified order; finally, the updates are propagated on the original

document in a single pass, using one of the Merge functions. As testified by our

tests (Chapter 4), this results in a much more efficient processing.

Organization The Thesis is organized as follows.

Chapter 2 introduces XML and XQuery Update Facility and provides some basic

notifications and definitions.

Chapter 3 examines the Data Structure of well know XQuery engines supporting

updates. For each engine the optimizations of using our method while an update

query evaluation are reported.

Chapter 4 introduces the main features of our method and Merge algorithm through

examples. The last section of the Chapter reports the implementation and experi-

ments of the Merge algorithm.

Chapter 5 introduces the extension of the method both for the three−level type pro-

jector and Merge algorithm. The implementation and experiments of the extended

algorithm are reported in the last section of the Chapter.

Chapter 2

Preliminaries

Contents

2.1 XML . 9

2.2 XQuery Update Facility (XUF) 14

2.2.1 Simple updates . 14

2.2.2 Complex Updates . 16

2.2.3 Constraints and semantics 17

2.2.4 Snapshot semantics . 18

The Chapter is organized as follows. In Section 2.1 we introduce some basic

notions about XML and provide some basic notations and definitions. In Section

2.2 we introduce XQuery Update Facility: simple and complex updates, snapshot

semantics including update primitives and pending update list.

2.1 XML

During the last decade, fast developing and widely used web applications have cen-

tered their main functionalities around the management of semistructured data.

XML (eXtensible Markup Language) is Semi-Structured Data format (SSD) which

is used to manage data whose structure can be highly irregular, can change over

time and provides users a high flexibility to exchange different types of data. XML,

was developed by an XML Working Group (originally known as the SGML Edito-

rial Review Board) formed under the auspices of the World Wide Web Consortium

(W3C) in 1996 [8].

XML is very flexible, which makes it able to easily model the various kind of data

format that are present over the Web: HTML data, relational and object database

data, structured and unstructured textual data, audio and video data, and etc. Each

XML document has both a logical and a physical structure.

According to W3C, the basic component of an XML is the element, which

is defined as a piece of text enclosed by open-tag (e.g. <country>) and its

corresponding close-tag (<country/>). The following is an example of XML

element:

<country> Singapore </country>.

10 Chapter 2. Preliminaries

The content of each XML element takes one of three essential forms: simple

text value, a sequence of elements, or a complex sequence which includes the two

previous forms: text values and elements.

For the sake of simplicity, we restrict our study to element declarations and

omitted the treatment of others such as attributes.

Figure 2.1 illustrates the textual representation of a simple XML document. It

shows that element nodes are denoted by markup tags. For example, the open-tag

<a> and the close-tag represent an XML element, and the text value "oof"

included between both of them refers to the content of this XML element. Elements

that do not contain text content are called empty element, such as <c/>, <f/>

and <g/>. The elements <d> represents a complex element which includes empty

elements: <f/> and <g/>.

Elements can be annotated with attributes that contain meta data about the

element and its contents. For simplicity we do not consider attributes in this study

(our results can be easily extended to attributes).

<docexample>

<a>

 oof

<c/>

<c/>

<d>

<f/>

<g/>

</d>

<a>

<d>

<f/>

<g/>

</d>

</docexample>

Figure 2.1: Textual representation of docexample.xml

Figure 2.2 illustrates a graphical tree representation of the XML document given

in Figure 2.1. Tree representations are useful for understanding the structure of the

XML document, and are also used inside engines to define navigational mechanisms.

In this Thesis we rely on a store-based representation of XML trees. Stores

are defined in the following, along the lines of [14].

I, J,K designate sets (id-set) or lists (id-seq) of identifiers denoted by i, j ...; ()

2.1. XML 11

docexample
[ε]

a
[1]

b
[1.1]

’oof’

c
[1.2]

c
[1.3]

d
[1.4]

f
[1.4.1]

g
[1.4.2]

a
[2]

d
[2.1]

f
[2.1.1]

g
[2.1.2]

Figure 2.2: Tree representation t of docexample.xml

denotes the empty id-seq; I·I ′ denotes id-seq composition, and the intersection of I

and J preserving the order in the id-seq I is denoted by I|J .

A store σ over the id-set I is a mapping associating each identifier i∈I with

either an element node a[J] or a text node text[st] where a is a label, J is an id-seq

of identifiers in I (the ordered list of children) and st is a string. We define:

− lab(i)=a if σ(i)=a[J], and lab(i)=String if σ(i)=text[st],

− child(σ,K)={j | ∃i∈K,σ(i)=a[J] and j∈J},

− roots(σ)={i | ¬∃j, i∈child(σ, {j})}.

It is worth noticing that we also decorate each node with unique identifier which

is calculated by appending to the identifier of the parent node the delimiter "."

followed by the numeric value representing the position of the node in the current

level. For instance the identifier of b-node of the tree t is assigned to 1.1, since the

identifier of its parent a-node is equal to 1. The identifier of the root node is set to

ε. A node of a document t whose identifier is i is next denoted by t@i.

The following example defines the store for the document t of Figure 2.2.

Example 2.1.1. The document t of Figure 2.2 is a store σ.

Its id-set is I={ε, 1, 1.1, 1.2, 1.3, 1.4, 1.4.1, 1.4.2, 2.1, 2.1.1, 2.1.2}.

For example σ(ε)=doc[1, 2], σ(1)=a[1.1, 1.2, 1.3, 1.4], σ(1.4)=d[1.4.1, 1.4.2], σ(1.1)=

text[oof], σ(2)=a[2.1], σ(2.1)=d[2.1.1, 2.1.2].

We have that lab(ε)=docexample, lab(1)=a, lab(2)=a, lab(1.1)=b, lab(1.2)=c,

lab(1.3)=c, lab(1.4)=d and etc.

And finally, child(σ, {1})={1.1, 1.2, 1.3, 1.4}, child(σ, {2})={2.1},

child(σ, {2.1})={2.

1.1, 2.1.2}, child(σ, {1.4})={1.4.1, 1.4.2} and roots(σ)=ε. 2

We only consider stores corresponding to XML forests and trees. A forest f over

I is given by a pair (J, σ) where σ is as above and J=roots(σ). We write dom(f)

for I and σf for σ and f◦f ′ for the concatenation of two disjoint forests f and f ′.

Example 2.1.2. The document t of Figure 2.2 is a store (roots(t), σ) where

roots(t)=ε. Obviously, it is a tree. The sub-forest of this store is composed of

the two trees of σ rooted respectively at t@1 and t@2. 2

Similarly, a tree t over I is given by (roots(t), σt) where roots(t) is the root

identifier of the store t over I that is, roots(σt)={roots(t)}. The sub-forest of t,

12 Chapter 2. Preliminaries

denoted subfor(t), is defined by ΠI\{roots(t)}(t).

For the sake of simplicity we often use t in place of σt.

For the sake of the formal presentation, the identifiers used in the definition of

a store are sometimes giving the position of the nodes in the XML document (see

the motivating example). Such stores are called p-stores.

Example 2.1.3. The identifiers used to define the store of the document in Figure

2.2 are positions of the node. Thus this store is a p-store. 2

A XML document considered as well formed if it has correct XML syntax. A

valid XML document is a well formed XML document, which conforms to the rules

of a Document Type Definition (DTD).

A DTD defines the structure of XML elements occurring in a document. Each

possible tag is declared together with the structure of its content. To this end

regular expressions are used.

DTD declarations are of the form:

<!ELEMENT element-name (element-content)>

element-name is the element tag, while element-content is a regular expression

over tags and text-symbols types describing the structure of the element content.

<!DOCTYPE docexample[

<!ELEMENT docexample (a*)>

<!ELEMENT a (b*, c*, d?)>

<!ELEMENT b (#PCDATA)>

<!ELEMENT c (#PCDATA)>

<!ELEMENT d (f | g)*>

<!ELEMENT f (EMPTY)>

<!ELEMENT g (EMPTY)>

]>

Figure 2.3: DTD of docexample.xml

Figure 2.3 illustrates the whole declaration for docexample document.

Each DTD has to begin with the declaration for the root element

<!DOCTYPE docexample, and then it continues with specification for other ele-

ments.

The declaration for the root element is given as follows:

<!ELEMENT docexample (a*)>

It specifies that the element is tagged as docexample and that its content must

be a sequence of zero or more of elements tagged as a.

2.1. XML 13

<!ELEMENT a (b*, c*, d?)>

The content of each a element consists of an optional b element, followed by an

optional c element, in turn followed by an optional d element.

#PCDATA stands for "parsable character data", that is sequences of simple char-

acters, without interleaved XML elements.

doc → a*,e*

a → b*,c*,e*,d?

b → String

d → (f | g)∗

Figure 2.4: The dtd D

In this Thesis we use a more compact notation for DTDs, coming from [26].

We consider XML trees valid wrt a schema defined by means of the dtd lan-

guage, which features the core mechanisms of mainstream schema languages.

Given a finite set of labels Σ, and the reserved symbol String, a dtd over Σ is

a tuple (D, sD) where D is a total function from Σ to the set of regular expressions

over Σ ∪ {String}, and sD ∈ Σ is the root symbol. Given a regular expression r,

the language generated by r, respectively the set of symbols in Σ occurring in r, is

denoted by L(r), respectively S(r). We denote t∈D the fact that t is valid wrt D.

Example 2.1.4. The DTD D given in Figure 2.4 maps the elements of

Σ = {a, e, b, c, d, f, g} ∪ String to regular expressions over Σ: doc→a*,e* ;

a→b*,c*,e*,d? etc, where lab(ε)=sD.

Note that for the sake of simplicity, the rules defining c, e, f and g are omitted.

These rules are c → ∈, e → ∈, f → ∈ and g → ∈ where ∈ is an empty regular

expression.

Note that Σ contains all the labels occurring in the XML document t in Figure 2.2. 2

docexample
[ε]

a
[1]

b
[1.1]

’oof’

c
[1.2]

c
[1.3]

d
[1.4]

f
[1.4.1]

g
[1.4.2]

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

Figure 2.5: The projection t′ of t

Figure 2.5 illustrates the projection of the tree t of Figure 2.2. As the reader

can observe, the projection selects the root node labelled by docexample followed

14 Chapter 2. Preliminaries

by the a-node having the identifier equal to 1. The projection outputs two children

nodes of the a-node: the b-node with identifier is equal to 1.1 and the d-node with

identifier 1.4. The other children of the a-node are pruned out. For the a-node

whose identifier is equal two 2, the projection selects d-node having identifier equal

to 2.1.

Given a store σ over I, the projection on J⊆I of σ, is a store over J , denoted

ΠJ(σ), defined by: for each j∈J , if σ(j)=a[K] then ΠJ(σ)(j)=a[K|J] otherwise

σ(j)=text[st] and ΠJ(σ)(j)=σ(j). The reader should pay attention to the fact that

the domain and the "co-domain" of the projection on J of σ is J .

Example 2.1.5. Let us consider J={ε, 1, 2, 1.1, 1.4, 2.1}. Then ΠJ(t) (t of fig. 2.2)

is the store corresponding to the XML document t′ of Figure 2.5. 2

2.2 XQuery Update Facility (XUF)

The update language we consider is the one proposed in [14], a large core of XUF.

The main features of the language are:

• use of XQuery expressions to compute target node and update content,

• statement-based update executions,

• complex updates,

• constraint checking,

• snapshot semantics.

XQuery uses different types of expressions: path, arithmetics, conditional, logical,

comparison and FLWOR expressions.

In XQuery the expression which simply returns the value. The XUF introduces

a new category of expression called an updating expression (or statement).

Updates are classified into simple and complex updates.

Simple updates are the basic data modification operations like insert, rename or

remove.

Complex updates can be either conditional or iterative expressions, using simple

expressions.

2.2.1 Simple updates

Simple updates support the following operations:

• insertion of new XML fragments,

2.2. XQuery Update Facility (XUF) 15

SimpleUpdate ::= InsertExpr | DeleteExpr | ReplaceExpr

InsertExpr ::= "insert" ("node" | "nodes")

SourceExpr InsertExprTargetChoice TargetExpr

InsertExprTargetChoice ::= "into" | "as first into" | "as last into"

"before" | "after"

DeleteExpr "delete" ("node" | "nodes") TargetExpr
ReplaceExpr ::= "replace" ("value" "of")? "node" TargetExpr

"with" SourceExpr

Figure 2.6: The syntax of simple updates

<a>

<d>

<c>s<c/>

</d>

<p/>

<k>

<f/><e/>

</k>

a
[ε]

b
[1]

d
[2]

c
[2.1]

s
[2.1.1]

p
[3]

k
[4]

f
[4.1]

e
[4.2]

(a) XML document doc (b) Tree representation of doc
a
[ε]

f
[5]

z
[5.1]

b
[1]

d
[2]

c
[2.1]

s
[2.1.1]

p
[3]

k
[4]

f
[4.1]

e
[4.2]

a
[ε]

b
[1]

p
[5]

p
[3]

k
[4]

f
[4.1]

e
[4.2]

a
[ε]

b
[1]

d
[2]

c
[2.1]

s
[2.1.1]

p
[3]

(c) insert (d) replace (f) delete

Figure 2.7: Simple updates execution

• deletion of existing fragments,

• replacement of an existing fragment by a new one.

For each case XQuery computes the location where the update occurs and the

content of the update.

The syntax of simple updates expressions is given in Figure 2.6. In this syntax

TargetExpr is an XPath expression which computes the target location where the

update is taking place. SourceExpr is an XQuery expression, that returns a new

document fragment which is to be inserted or replaced at the target location.

The following example given in Figure 2.7 illustrates the result of the evaluation

of the simple update expressions "insert", "replace" and "delete" on the document

doc.xml.

16 Chapter 2. Preliminaries

ComplexUpdate ::= FLWUpdate | ConditionalUpdate

FLWUpdate ::= "update" (ForClause | LetClause)+

WhereClause? SimpleUpdate+

ConditionalUpdate ::= "update" "if"(XQueryExpr | "then")+

SimpleUpdate "else"? SimpleUpdate

Figure 2.8: The syntax of complex updates

Figures 2.7-(a),(b) illustrate XML document doc and its tree representation. Figure

2.7-(c) illustrates the document after the execution of the simple update expression

su1 specified by:

insert

<f><z/></f>

as first into doc(doc.xml)/a.

XQuery element constructor constructs a new inserted "as first" subtree rooted

at node labelled by f whose identifier is 5.

Figure 2.7-(d) illustrates the updated doc after the execution of the simple

update expression su2 which replaces the d-node and specified by:

replace

doc(doc.xml)/d

with doc(doc.xml)/p.

Figure 2.7-(f) illustrates the updated doc after the execution of the simple update

expression su3 specified by:

delete

doc(doc.xml)/k.

This expression deletes the last element of the a-node.

2.2.2 Complex Updates

Complex updates are built from simple updates using either conditional or FLWOR

expressions having syntax as illustrated in Figure 2.8.

Complex updates can be either conditional or iterative expressions, using simple

expressions.

Conditional updates relies on if-then-else query expressions.

Let us consider the conditional update statement cu1 specified by:

update

if empty doc(doc.xml)/p/f

then

2.2. XQuery Update Facility (XUF) 17

<a>

<d>

<c>s<c/>

</d>

<p/>

<k>

<f/><e/>

</k>

a
[ε]

b
[1]

d
[2]

c
[2.1]

s
[2.1.1]

p
[3]

k
[4]

f
[4.1]

e
[4.2]

a
[ε]

b
[1]

d
[2]

c
[2.1]

s
[2.1.1]

p
[9]

k
[4]

f
[4.1]

e
[4.2]

(a) XML document doc (b) Tree of doc (c) Result of the conditional update

<a>

<p/>

<p/>

<p>

<f/><e/>

</p>

a
[ε]

b
[1]

p
[2]

p
[3]

p
[4]

f
[4.1]

e
[4.2]

a
[ε]

b
[1]

p
[2]

p
[3]

p
[4]

f
[4.1]

e
[4.2]

g
[4.3]

(d) XML document doc′
(f) Tree of doc′ (e) Result of FLWUpdate

Figure 2.9: Complex updates execution

delete /doc(doc.xml)/p

else

replace node /doc(doc.xml)/p with

This update deletes p-node if it does not contain a child element labelled by f ,

otherwise it replaces it with a new b-node.

The result of the execution of cu1 over the document doc is illustrated in Figure

2.9-(c).

FLWUpdate expression used to apply simple updates throughout iterations. Fo

instance, let us consider the FLWUpdate statement cu2 specified by:

update

for $x in doc(doc.xml)/a/p

where $x/f

insert node <g/> as last into $x

This update checks for each p-node whether it contains a child f -node and, in

this case, it inserts a new element as the last child of that p-node. The result of the

execution of cu2 over the document doc′ is illustrated in Figure 2.9-(e).

2.2.3 Constraints and semantics

While executing updates a set of basic semantic constraints must be respected to

preserve the logical structure of the data model instance. For each update the

following constraints are preserved:

18 Chapter 2. Preliminaries

Insert - The TargetExpr of a simple update must be a single node. If it contains

an empty value or more than one node a static error is raised and the insertion

is not performed. When the into is specified, the result must be evaluated to

a single element or document node; any other non-empty result raises a type

error.

If before or after is specified, the result of TargetExpr must be a single

element, text, comment, or processing instruction node; any other non-empty

result raises a type error.

Delete - The TargetExpr result must be a simple expression; otherwise a static

error is raised and be a sequence of zero or more nodes; otherwise a type error

is raised.

Replace - The SourceExpr must be a content sequence, which is any sequence

of zero or more element nodes, atomic values, processing instructions and

comment nodes.

2.2.4 Snapshot semantics

A snapshot semantics is used in XML update languages to avoid the inconsistent re-

sults and ensure the semantics integrity. For instance, when the consecutive updates

in a single FLWUpdate expression impact the same XML nodes, the execution of

this expression can lead to inconsistent result. According to [9] snapshot semantics:

all the variables in the for/let clauses of FLWUpdate must be bound with respect

to the initial snapshot before the simple updates in the body of the FLWUpdate are

executed. Based on the initial snapshot the simple update expressions are executed

sequentially and evaluated independently of each other.

The XUF 1.0 defines an entire query as one snapshot, within which the updating

expression is evaluated, resulting in a pending update list.

A pending update list is an unordered collection of update primitives, which represent

node state changes that have not yet been applied.

Update primitives The main points of the semantics of these primitives are

below described (see [9] for more details).

Given a tree t=(roots(t), σ), where the store σ is over I, the $target variable is bound

to a node having identifier i∈I, while the variable $content is bound to sequence of

nodes having an id-seq of identifiers in I.

insertBefore($target, $content) - This primitive inserts $content into the tree

t immediately before $target. Note that the order of these nodes is preserved.

insertAfter($target, $content) - This primitive inserts $content into t immedi-

ately after $target.

insertInto($target, $content) - The insert primitive inserts $content which are

inserted as children of $target. The choice of position is implementation-

dependent.

2.2. XQuery Update Facility (XUF) 19

insertIntoAsLast($target, $content) - The insert primitive inserts $content

into t which are inserted as the last children of $target.

insertIntoAsFirst($target, $content) - The insert primitive inserts $content

into t which are inserted as the first children of $target.

delete($target) - This primitive removes given $target node from the data model.

replaceNode($target, $content) - This primitive replaces a given $target node

with one or more new nodes bound to $content.

rename($target $newName) - Changes the node-name of $target to new name.

replaceValue($target as node(), $string-value as xs:string) - This primi-

tive replaces the string value of $target with string-value.

The semantics of an update primitive do not become effective until their pending

update list is processed by the applyUpdates routine.

Update primitives in appending lists are applied in the following order:

First, all insertInto, replaceV alue, and rename primitives are applied.

Next, all insertBefore, insertAfter, insertIntoAsFirst, and insertIntoAsLast

primitives are applied.

Next, all replaceNode primitives are applied.

Next, all delete primitives are applied.

It is worth noticing that pending update list can not have more then one

rename(replaceNode or replaceV alue) primitives have the same $target node.

Chapter 3

State of the Art, XQuery Engines

Contents

3.1 Introduction . 21

3.2 MonetDB/XQuery . 22

3.2.1 General Data structure . 23

3.2.2 Data structure supporting structural updates 26

3.2.3 XML Serialization . 32

3.2.4 MonetDB/XQuery vs. projection 33

3.3 Native XML databases . 34

3.3.1 BaseX . 34

3.3.2 General Datastructure . 34

3.3.3 Data structure supporting structural updates 36

3.3.4 XML Serialization . 40

3.3.5 BaseX vs. projection . 40

3.4 eXist . 42

3.4.1 General Data Structure . 43

3.4.2 XML serialization . 46

3.4.3 eXist vs. projection . 47

3.5 Saxon Processor . 48

3.5.1 General Data Structure . 48

3.5.2 XML Serialization . 52

3.5.3 Saxon vs. projection . 52

3.6 Conclusion . 52

In this Chapter we present main strategies adopted by XML query engines to

represent, store and manipulate XML document. Besides illustrating how projection

can improve query processing in each of these systems, this Chapter constitutes a

contribution in its own, providing a detailed overview of several existing systems.

3.1 Introduction

Currently existing XML database management systems can be classified into three

categories: XML-enabled, Native XML and main-memory XQuery proces-
sors.

22 Chapter 3. State of the Art, XQuery Engines

XML-enabled - These systems map XML data to traditional relational databases,

by encoding XML data into tables of tuples. They accept XML as input and

redirect XML as output. This entails that the database does the conversion

itself. An example of this system is MonetDB/XQuery [19, 20].

Native XML - The internal model of such databases depends on XML and defines

a logical model for XML documents, according to which the documents are

stored and retrieved. It is worth noticing that the XML files are not necessarily

stored in the form of text files. The model includes elements, attributes and

PCDATA. Main database engines that belong to this category are: BaseX [29,

30], Qizx [4, 5] and eXist [2, 34].

Main-memory XQuery processors - They are very efficient on small XML files.

On the contrary, while querying larger files the behavior of these systems is

less efficient because the temporary XML representations occupy 6 to 8 times

the size of the original file in main memory. Examples of this processors are

Saxon [7] and Galax [3].

It is worth noticing that we can consider MonetDB/XQuery both as XML-enabled

DBMS and as native XML database, since the XML documents are mapped into

a relational representation. From a technical viewpoint, MonetDB/XQuery is an

XML database "implemented on the top of a relational storage". As described in

the [20], MonetDB/XQuery uses a relational table to represent the structure of

an XML document. From a user’s viewpoint, MonetDB/XQuery can store only

XML documents and accept only XQuery. In this context, MonetDB/XQuery is a

"native XML DBMS".

The following sections provide detailed explanation of the data structures used

in MonetDB/XQuery, BaseX, eXist and Saxon. Each section covers XML encoding

(if used), axis relations, general data structure and data structure supporting

updates. At the end of each section we compare the differences between evaluating

queries on XML document using the engines with and without projection (see

Chapter 4).

The QizX, Zorba and Galax systems are not covered in this chapter, since there

are not enough documentations explaining their internal data structure.

3.2 MonetDB/XQuery

MonetDB/XQuery is an open source column-oriented database management system,

which stores data table into files on the disk. The important point is that these data

table files are "memory mapped files".

In ModetDB/XQuery, a data table is represented as a set of arrays in the memory.

Each array is directly mapped to a file on the disk. In MonetDB/XQuery XML data

3.2. MonetDB/XQuery 23

<a>

<d>

<c>s<c/>

</d>

<p/>

<k>

<f/><e/>

</k>

a
[0:8]

b
[1:0]

d
[2:3]

c
[3:2]

s
[4:1]

p
[5:4]

k
[6:7]

f
[7:5]

e
[8:6]

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

b

b

b

b

b

b

b

b

bancestor

descendant

pre

post

preceding

following

a

b

d
c

s

p

k

f

e

(a) XML document doc (b) Tree representation

with pre/post numbers

(c)XPath axe /a/p in

the pre/post plane

pre size level kind prop

0 8 0 elem a

1 0 1 elem b

2 2 1 elem d

3 1 2 elem c

4 0 3 text s

5 0 1 elem p

6 2 1 elem k

7 0 2 elem f

8 0 2 elem e

(d) Relational storage

Figure 3.1: XML encoding used in MonetDB/XQuery

manipulations (queries, updates, etc.) have to be mapped into SQL expressions.

To support this mapping several compilation techniques have been designed and

developed by some research teams [23, 31, 37]. MonetDB uses the one proposed

by [31]. It is worth noticing that compilation used for query evaluation does not

involve interaction with the back-end, once delivered to DBMS, the emitted SQL

code evaluates the input XQuery expression by means of a single SQL query [31].

3.2.1 General Data structure

Relational XML encoding in MonetDB/XQuery The relational encoding of

XML documents is described in [19, 20]. This encoding is based on pre-order and

post-order traversal ranks, is used to encode the XML tree structure. In pre/post

encoding the pre value describes the pre-order traversal rank of the tree starting

from the root, while the post value describes the postorder traversal rank, which

visits the root last. The pre and post values are mapped into a two-dimensional

plane, where each node partitions the plane into four regions, is used to calculate a

step’s axis. We will illustrate it by means of an example.

Example 3.2.1. Relational storage used in MonetDB/XQuery.

Figure 3.1 illustrates actual relational XML representation used in MonetD-

B/XQuery, which instead of pre/post encoding uses pre/size/level encoding.

MonetDB/XQuery instead of the post column stores two columns holding a tree

level and a subtree size. This pre/size/level encoding is equivalent to pre/post

24 Chapter 3. State of the Art, XQuery Engines

since post=pre+size−level.

Figure 3.1-(a) shows the example document doc. In Figure 3.1-(b) pre and

post ranks are assigned to the nodes of the XML tree. For instance, for the root

node labelled by a the pre and post ranks are equal to 0 and 8 respectively. Figure

3.1-(c) illustrates the nodes in a pre/post plane. As the reader can observe, for each

node the quadrants of the pre/post plane correspond to the major XPath axes:

descendant, following, ancestor and preceding. For our example, the corresponding

axes for the target node labelled by p for a given XPath expression a/p are following:

• ancestor - The a-node having coordinates pre=0 and post=8.

• preceding - The b-node with (pre=1, post=0), the d-node with (pre=2, post=3)

followed by the c-node having (pre=3, post=2) and the node of type text s

with (pre=4, post=1);

• following - The nodes labelled by k, f and e.

• descendant - The p-node contains no descendants.

Finally, Figure 3.1-(d) shows the actual relational XML representation used in

MonetDB/XQuery, which instead of the post column stores two columns holding a

tree level and subtree size. This encoding represented in our example is generated

while traversing the XML tree and stored in the doc table. The encoding contains

the three attributes pre, size and level, bellow described.

pre - Is a unique value associated to a node n. When n is traversed a pre value is

assigned to that node and is incremented throughout the traversal. It is denoted by

n.pre.

For our example, while parsing the document doc, the first node found is the

root labelled by a; thus its na.pre property is set to 0. When the next child nb

labelled by b is parsed, the pre value is incremented and thus nb.pre is set to 1.

The same is true for the remaining nodes. It is worth noticing that the texts are

considered as nodes and are encoded. For example, for the text node "s" it is true

that: ns.pre=4.

size - Is the number of nodes in the subtree below a node n and is denoted by n.size.

For our example, because the root labelled by a has 8 descendants, the value na.size

is equal to 8. For the first child of the a-root we have that nb.size=0: it has no

children; while for the k-node size is equal to 2. For the text node ns the value of

the size property is set to 0.

level - Is the distance from the root to a node n and it is denoted by n.level. For

instance, na.level=0, nb.level=1 and ns.level=3.

Some additional properties of a node are stored in doc, like:

3.2. MonetDB/XQuery 25

kind - The kind of a node n is either an element, a text or an attribute. For the

a-root we have that na.kind=elem, while for the text node ns.kind=text.

prop - This property stores tag names for element nodes, or a text value for text

nodes.

2

This relational representation is used to express the semantics of XPath axes.

Axis Relational characterization

ancestor(n,n′) n.pre < n
′.pre AND n

′.pre ≤ n.pre+ n.size

descendant(n,n′) axis(n′, n, descendant) AND n.level = n
′.level + 1

child(n,n′) n.pre < n
′.pre AND n

′.pre ≤ n.pre+ n.size

following(n,n′) n.pre > n
′.pre+ n

′.size

preceding(n,n′) n.pre+ n.size < n
′.pre

Table 3.1: Relational characterization

Axes Relationships For instance, given a tree t and two nodes n1 and n2 it is

true that:

n1∈n2/ancestor ⇔ n1.pre<n2.pre

AND

n2.pre≤n1.pre+n1.size

Table 3.1 represents XPath semantics for some of the axes. The full list is given in

[32].

For our example illustrated in 3.1, the children of the node labelled by k in the

document doc are the nodes labelled by f and by e.

These children are calculated using the rule for finding the child relationship

child(n,n′) from the table 3.1, where we have:

k.pre=6, k.size=2, f.pre=7

k.pre < f.pre AND f.pre ≤ k.pre+k.size
(3.1)

k.pre=6, k.size=2, e.pre=8

k.pre < e.pre AND e.pre ≤ k.pre+k.size
(3.2)

One of the reasons why MonetDB/XQuery uses size/level instead of post,

is related to the node skipping property: node skipping allows to find out

that certain regions of pre values do not contain any result nodes for XPath

step. Thus, it avoids any data access or computation and skips over these

tuples. For example, finding all children of the a-node (na.pre) works by

26 Chapter 3. State of the Art, XQuery Engines

checking the first child: nb.pre=na.pre+1=1; then skipping to its siblings:

nd=nb+size[nb.pre]+1=1+0+1=2 (d-node) until the last child a-node is reached:

(na.pre+size[na.pre]).

The encoding described above is not able to support XML structural updates.

There are two important issues: the first one arises as a result of a subtree insertion

and requires renumbering all pre values starting from the inserted point. The

second issue is that the size values of the ancestors of the inserted node must be

recalculated.

Figure 3.2 illustrates an example how the pre/size/level document encoding is

affected by an insertion of new nodes.

Example 3.2.2. New nodes insertion.

Let us assume that new subtree (containing nodes labelled by n and by m) has

been inserted at the target node labelled by p. For our example 3.2.1, the pre values

of all following nodes after the insert point must be changed, as well as, the size

values of all ancestor nodes.

Figure 3.2-(c) exhibits the changes applied on the relational storage after the update

which inserts nodes labelled n and m as the children of the node labelled by p. As

a result of this insertion the pre values of the following nodes of p-node must be

re-calculated: pre value of the k-node is changed to 8, of f -node to 9 and for e-node

to 10. All pre values of the followings are augmented by two (two elements have

been inserted). The next change must be applied on the size value of the ancestor

of the p-node the a-node. This value is augmented by the number of the inserted

elements, for our example by two. The new value of the na.size is set to 10. In

Figure 3.2-(c) all the changes are colored gray.

The recalculation of these property values can be expensive and complex,

therefore the storage scheme illustrated in Figure 3.2 is used as a read-only

representation of the XML encoding. Next we present the encoding which supports

the structural updates.

3.2.2 Data structure supporting structural updates

To support the updatable representation of the XML Encoding in [20] the following

changes on the table pre/size/level have been proposed:

1 - The table is called rid/size/level.

2 - It is divided into logical pages, where the size is defined in terms of the

number of tuples.

3 - Each logical page contains unused tuples.

4 - New logical pages are appended at the end.

3.2. MonetDB/XQuery 27

a
[0:8]

b
[1:0]

d
[2:3]

c
[3:2]

s
[4:1]

p
[5:4]

k
[6:7]

f
[7:5]

e
[8:6]

(b) Tree representation of doc

pre size level prop

0 8 0 a

1 0 1 b

2 2 1 d

3 1 2 c

4 0 3 s

5 0 1 p

6 2 1 k

7 0 2 f

8 0 2 e

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

b

b

b

b

b

b

b

b

b

pre

post

ancestor

descendant

preceding

following

a

b

d
c

s

p

k

f

e

(a) Relational storage before

the structural update

(b) Tree representation

with pre/post numbers before

pre size level prop

0 10 0 a

1 0 1 b

2 2 1 d

3 1 2 c

4 0 3 s

5 2 1 p

6 0 2 n

7 0 2 m

8 2 1 k

9 0 2 f

10 0 2 e

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

b

b

b

b

b

b

b

b

b

new

pre

post

ancestor

size + 2

descendantpreceding

pre + 2

following

a

b

d
c

s

p

k

f

e

(c) Relational storage after

the structural update

(d) Tree representation

with pre/post numbers after

Figure 3.2: The impact of structural updates on pre/size/level XML storage

28 Chapter 3. State of the Art, XQuery Engines

rid

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

size level prop

10 0 a

0 1 b

2 1 d

1 2 c

0 3 s

2 1 p

1 null

0 null

2 1 k

0 2 f

0 2 e

4 null

3 null

2 null

1 null

0 null

(a) before the update

p
a
g
e
0

p
a
g
e
1

rid

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

size level prop

10 0 a

0 1 b

2 1 d

1 2 c

0 3 s

2 1 p

0 2 n

0 2 m

2 1 k

0 2 f

0 2 e

4 null

3 null

2 null

1 null

0 null

(b) after the update
p
a
g
e
0

p
a
g
e
1

Figure 3.3: Insert within a logical page

5 - The pre/size/level table is a view on rid/size/level with all pages in logical

order. This is implemented by mapping the underlying table into a new virtual

memory region.

The XML updating algorithm deals with a pre−view table that is a virtual

table comprising pre, size and level column. This pre−view table is implemented

by a rid(row-id) table and a page offset table (pg_Off table, which is explained in

the example given in Figure 3.5).

To look up a tuple with a specific pre-value in a pre−view table, we need to cal-

culate the corresponding rid-value from given pre-value. The "Swizzling" technique

is used to efficiently perform this computation. It is worth noticing that the rid

column is non-materialized integer column that is mapped to the row-id of the table.

Two possible update scenarios are possible for the updatable representations:

• an insert which is handled within a logical page,

• an insert when a new logical page is inserted.

To illustrate the differences we provide examples for each of scenario.

The following examples illustrate the updatable representation of the document doc

from Figure 3.1-(a) for each case. First example exhibits the case: insertion within

a logical page.

Example 3.2.3. Insert within a logical page.

As it is illustrated in Figure 3.3-(a), the document doc is stored in two logical

pages, each page containing 8 tuples filled in by the properties of nodes. For example,

the size properties of the a-node and p-node are set to 10 and 2 respectively. Each

3.2. MonetDB/XQuery 29

rid

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

size level prop

10 0 a

0 1 b

2 1 d

1 2 c

0 3 s

2 1 p

1 null

0 null

2 1 k

0 2 f

0 2 e

4 null

3 null

2 null

1 null

0 null

(a) before the update

p
a
g
e
0

p
a
g
e
1

rid

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

size level prop

16 0 a

0 1 b

2 1 d

1 2 c

0 3 s

10 1 p

0 2 n

0 2 m

2 1 k

0 2 f

0 2 e

4 null

3 null

2 null

1 null

0 null

0 2 l

6 null

5 null

4 null

3 null

2 null

1 null

0 null

(b) after the update

p
a
g
e
0

p
a
g
e
1

n
ew

p
a
g
e
2

Figure 3.4: Insert with a new logical page insertion

page has certain percentage of tuples stored as "unused". For our example we keep

at least two unused tuples (see the tuples colored gray). n.level values for these

tuples are set to null. The n.size values are set equal to the number of directly

following consecutive unused tuples, which allows to skip unused tuples.

The unused tuples have an important role for the inserts that do not cause insertion

of new logical pages.

Let us suppose that an update specified by insert nodes {<n/><m/>} into a/p is

applied on the document doc. When the update is executed the new nodes are added

to the table. Figure 3.3-(b) reflects the modifications applied on the rid/size/level

table. The new nodes: n and m (illustrated in bold) are inserted in the logical

page 0; size values are set to 0 and level to 2. Because this insertion fits into the

page 0, there is no necessity to recalculate the size values of a- and p-nodes. It

is important to note, that in the rid/size/level table we added the prop column,

which is done to make the example more easy to follow. 2

The next example illustrates an update where the insert triggers a new logical

page insertion in the rid/size/level table.

Example 3.2.4. New logical page insertion.

Let us assume that an update specified by insert nodes {<n/><m/><l/>} into

a/p is applied on the document doc. As it is illustrated in Figure 3.4-(b) the newly

30 Chapter 3. State of the Art, XQuery Engines

pre

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

size level node

10 0 na

0 1 nb

2 1 nd

1 2 nc

0 3 ns

2 2 np

1 null

0 null

2 1 k

0 2 f

0 2 e

4 null

3 null

2 null

1 null

0 null

(a) mem - mapped view

p
a
g
e
0

p
a
g
e
1

rid

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

size level node

10 0 na

0 1 nb

2 1 nd

3 2 nc

0 3 ns

0 3 nn

0 3 nm

0 2 np

2 1 nk

0 2 nf

0 2 ne

4 null

3 null

2 null

1 null

0 null

(b) rid/size/level table

move

(c) attributes

attr node qn prop

:

np p

nn n

nm m

:

node rid

: 0

np 7

nn 5

nm 6

:

(d) node/rid

page offset

0 0

1 1

(f) pg_Off

modify

Figure 3.5: Update schema (within a page)

inserted nodes, labelled by n, m and l, do not fit into the free space of the page 0,

which has only two unused tuples having rid=6 and rid=7. Therefore a new page 2

is inserted. The first tuple of this page is filled in by the properties of the l-node:

nl.size=0, nl.level=2. As the reader can observe, the insertion of the page triggers

recalculation of the size properties of a- and p-nodes, which are set to et to 16 and

10 respectively. It is worth noticing that there is no need to recalculate the rid

values of the preceding and following of the p-node. 2

To support the structural updates the storage schema is enriched by the following

tables pg_Off and node/rid tables.

• pg_Off - used to maintains a logical page order under updates and used to

construct the pre/size/level view.

• node/rid - used to translate unique node numbers into pre. It is worth notic-

ing that node/rid used in the updatable representation to deal with the issue

related to the attribute table. The problem is that the read-only schema uses

the pre value (now changed to rid) to find the attribute of the node. Because

in updatable schema all pre columns are replaced by rid, in rid/size/level

table a unique property: node, is assigned to each node, which is the number

that never changes.

The following two examples illustrate the new update schema enriched by pg_Off

and node/rid tables, for two update scenarios.

Example 3.2.5. Insert within the page: pg_Off and node/rid.

Let us consider that new nodes n and m are inserted as last children of the

c-node (see fig. 3.5-(b)). First, the tuple preserving the properties of the p-node is

3.2. MonetDB/XQuery 31

pre

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

size level node

16 0 na

0 1 nb

2 1 nd

1 2 nc

0 3 ns

10 1 np

0 2 nn

0 2 nm

0 2 nl

6 null

5 null

4 null

3 null

2 null

1 null

0 null

2 1 nk

0 2 nf

0 2 ne

4 null

3 null

2 null

1 null

0 null

(a) mem - mapped view

p
a
g
e
0

n
ew

p
a
g
e
1

p
a
g
e
2

rid

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

size level node

16 0 na

0 1 nb

2 1 nd

1 2 nc

0 3 ns

10 1 np

0 2 nn

0 2 nm

2 1 nk

0 2 nf

0 2 ne

4 null

3 null

2 null

1 null

0 null

0 2 nl

6 null

5 null

4 null

3 null

2 null

1 null

0 null

(b) rid/size/level table
p
a
g
e
1

rid=
pre.sw

izzle=
16

pre=
rid.sw

izzle=
8

(d) immutable node-IDs

node rid

: 0

nl 16

:

attr node qn prop

:

nl l

:

(c) attributes

(f) pg_Off

page offset

0 0

1 2

2 1

pre value calculation
(rid = 16, n = 3)

pre = swizzle(rid, pg_Off) =

pg_Off [rid >> 3] << 3 + rid&7 =

pg_Off [16 >> 3] << 3 + 16&7 =

pg_Off [2] << 3 + 0 =

1 << 3 + 0 =

8 + 0 = 8

pre=8

Figure 3.6: Update schema (with a new page insertion)

moved further in the page: new p.rid=7. Second, the new rid value of the p-node

is modified in the node/rid table (see fig. 3.5-(d)). Finally, newly inserted nodes

labelled n and m are stored into the rid/size/level (see the italic lines in the page 0

and in the attributes table (see fig. 3.5-(c))). It is worth noticing that a unique

node number must be assigned to each of them. This number can be looked up in

the node/rid table by searching for the node values of the entries where rid=null.

In the case that we do not find any node number, new tuples are appended to the

node/rid table and new node values are assigned to them in rid/size/level.

Example 3.2.6. Insert with new logical page insertion: pg_Off and node/rid.

Let us assume that new nodes n, m and l are inserted as the children of the

p-node (see fig. 3.6-(b)). First, because the insert does not fit into the page 0, a

new logical page 2 (colored pink) is appended to rid/size/level. Next, a new entry

for the page 2 is appended to the pg_Off table, and the offsets of all pages after

the insert point are incremented (see fig. 3.6-(f)). The size values of the ancestor

a-node is set to 16. Finally the node and the rid values of newly inserted elements

are added to the node/rid table.

It is worth noticing that when we said that a new logical page is appended to

rid/size/level it is appended to the end, while for the pre/size/level view it is

inserted in between (see the difference in fig. 3.6(a) and (b)). Therefore to look up

32 Chapter 3. State of the Art, XQuery Engines

a tuple with a specific pre-value in a pre/size/level-view, we need to calculate the

corresponding rid-value from given pre-value. This process is called swizzling and

helps to efficiently perform this computation. Example in Figure 3.6 illustrates the

update schema together with the rid-pre swizzling.

By using 2n as the page size, we can calculate rid by using "bit operations" (this

is the most important point) including bitwise AND and bit shift operations. This

approach is very efficient because the bit operations are not expensive.

The page size used in our example is 8 (n=3). If n=3, we can calculate pre from

rid by using the following formula:

pre=pg_Off [rid >> 3] << 3+rid &00000111; (3.3)

As it is illustrated in Figure 3.6, the pre value of the l-node is calculated as

followes:

The swizzle procedure takes as an input two parameters: the rid of the node and

the pg_Off table. We have that l.rid=16 and n=3 hence:

l.pre=swizzle(l.rid, pg_Off)=pg_Off [rid >> 3] << 3+rid&7.

It is worth noticing that 7 is a binary representation of 0000 0111 which is a

"bit masks"."0000 0111 is a mask for taking lower 3 bits of data by using bitwise

AND operation. "x AND 0000 0111 is equivalent for the modulo operation such

that "x mod 8 (00001000)". Please note, that in our exploration the size of pre and

rid is 8 bit. We used 8-bit for the convenience of presentation. Because l.rid=16

we have that:

l.pre=pg_Off [16 >> 3] << 3+16&7 where 16 >> 3=2 and 16&7=0

thus l.pre=pg_Off [2] << 3+0.

As the reader can see in Figure 3.6-(f) the offset entry for the page 2 in

pg_Off is set to 2 and l.pre=1 << 3+0=8+0=8 hence the l.pre=8.

To calculate rid from pre we use the following formula:

rid=pre&00000111+pg_Off [(pre &11111000) >> 3] << 3; (3.4)

The l.rid=16.

3.2.3 XML Serialization

An encoded XML document stored in a table can be serialized as an XML docu-

ment. The serialization processes by scanning the nodes in the table in ascending

3.2. MonetDB/XQuery 33

rid

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

size level prop

10 0 a

0 1 b

2 1 d

1 2 c

0 3 s

2 1 p

1 null

0 null

2 1 k

0 2 f

0 2 e

4 null

3 null

2 null

1 null

0 null

(a) without projection

p
ag

e
0

p
ag

e
1

rid

0

1

2

3

4

5

6

7

size level prop

7 0 a

6 1 p

5 null

4 null

3 null

2 null

1 null

0 null

(b) before the update
p
ag

e
0

p
ag

e
1

rid

0

1

2

3

4

5

6

7

size level prop

7 0 a

6 1 p

0 2 n

0 2 m

3 2 l

2 null

1 null

0 null

(c) after the update

p
ag

e
0

p
ag

e
1

Figure 3.7: Relational storage with projection

pre column order and by outputting them to the output console. The problem

arises while closing the tags of the nodes having descendants. Thus, each node n is

pushed onto a stack S to remember to print the closing tag of n.

The post (post=pre+size−level) rank of n encodes the relative order of closing

tags in the serialized XML text.

3.2.4 MonetDB/XQuery vs. projection

Figure 3.7 illustrates the relational storage for MonetDB/XQuery using projection

technique (see Chapter 4). Using the projection we can benefit from two kinds of

possible optimizations for some of the cases. The first one skips new logical page

insertion and the second one skips to moves the nodes after the insertion point.

As it is illustrated in Figures 3.7-(b), applying the projection on doc, in order to

perform an update (insert new nodes n, m and l to the target p-node) we need to

store only a- and p-nodes. Thus, diffrently from the example in Figure 3.6 there is

no necessity to insert a new logical page and (see fig. 3.7-(c)) deal with sifts and

recalculations of the size property.

The second optimization achieved with the projection is that for the example illus-

trated in Figure 3.5 (insert nodes {<n/><m/>} into a/d/c) it is not necessary to

perform the move of the p-node within the page. Hence there is no need to change

the p.rid value in the node/rid table. As the reader can see using projection helps

to perform less expensive updates.

As it has been stated in the Introduction and the Preliminaries Chapters to make

updates persistent the Merge algorithm is used. The issue here is that execution of

Merge, as the reader can see in Chapter 5, increases the total execution time for the

XML document whose size is less then 150MB. One of the reasons of this increase

is due to the facts that, the updated document is first serialized and after is used as

34 Chapter 3. State of the Art, XQuery Engines

an input to the Merge algorithm.

This time could be reduced by integrating the Merge algorithm with the serial-

ization. To achieve this, several changes must be applied to the implementation.

Mainly to add the steps of the algorithm while scanning the table.

3.3 Native XML databases

The following two sections cover the data storage architecture of the Native XML

database systems. As described in the introduction of this Chapter, the main dif-

ference between NXD and enabled databases is that the first one maps the XML

documents into logical models, for example like DOM [1]. This storage proceeds in

the following way: first the XML document is parsed (for example by using SAX

Parser [6]). While parsing the document, the NXD database system translates each

element of the document tree to its logical representation, which is then stored at

the backend of the system. Then the XQuery expression will be evaluated using

that stored data.

3.3.1 BaseX

BaseX was developed as native XML database. BaseX is a database prototype,

which maps XML documents to a table-based tree encoding [29, 30]. It is derived

from the XPath accelerator encoding used in the MonetDB/XQuery.

The following example given in Figure 3.8 illustrates the relational mapping of

an XML document in BaseX. First we provide an example explaining the general

data structure and then give an example for the updatable structure.

3.3.2 General Datastructure

Example 3.3.1. Document encoding in BaseX (pre/par encoding).

Figure 3.8-(a) shows the XML document doc. (We choose the doc from the example

3.2.1, to make the BaseX storage comparable to the MonetDB/XQuery). Figure

3.8-(b) shows the tree of doc assigned with pre values. Important to note that,

similarly to the MonetDB/XQuery mapping, the pre values are assigned to the text

nodes. Figure 3.8-(c) exhibits the node table, storing the pre/par references of all

nodes. These references point to the disk blocks. The references of the node table

are the followings:

• pre - Similarly to the pre property of the MonetDB/XQuery encoding, this

property is assigned to each node and is incremented throughout the tree

traversal. For our example the pre value of the root node labelled a is set to

0.

• par - This value represents a direct mapping between children and their par-

ents. For instance, the a-node is the parent of b-node since na.pre=nb.par

3.3. Native XML databases 35

<a>

<d>

<c>s<c/>

</d>

<p/>

<k>

<f/><e/>

</k>

a
[0:0]

b
[1:0]

d
[2:0]

c
[3:2]

s
[4:3]

p
[5:0]

k
[6:0]

f
[7:6]

e
[8:6]

pre par token kind att attVal

0 0 a elem

1 0 b elem

2 0 d elem

3 2 c elem

4 3 s text

5 0 p elem

6 0 k elem

7 6 f elem

8 6 e elem

(a) XML document (b) Tree with pre/par values (c) Relational storage

id tag

....0000 a

....0001 b

....0010 d

....0011 c

....0100 p

.... ...

TagIndex

id tag

....0000 s

.... ...

TextIndex

par kind/token attribute

...0000 0......0000 null

...0000 0......0001 null

...0000 0......0010 null

...0010 0......0011 null

...0011 1......0000 null

...0000 0......0100 null

id att

.... ...

attNameIndex

id attVal

.... ...

attValIndex

(d) Internal representation

Figure 3.8: XML encoding in BaseX (pre/par)

36 Chapter 3. State of the Art, XQuery Engines

• token - This value represents a tag name or a text contend. Token for the

a-node is a, for the text s-node is s.

• kind - This value represents the kind of a node: can be either an element or

a text.

• att - This value represents the attribute names of a node. null reference is

assigned if no attributes are give, which is a case for our example.

• attVal - This value represents the attribute value of a node. 2

All textual tokens like tags, texts, attribute names and values are uniformly

stored in a hash structure and referenced by integers. To optimize CPU processing,

the table data is encoded with integer values (see fig. 3.8-(d)). Important to note

that, the integer values are stored as integer arrays. For instance, for the b-node

having nb.par=.....0000(0 in decimal) kind/token properties are stored together

where the first bit set to 0 defines the element kind. The remaining bits0001 is

the id value, which points to the second entry in the TagIndex table, where the

tag=b. For the text node s with ns.par=.....0011(3), we have that kind=1 and the

text value is searched in the TextIndex table at the entry id=0, where text=s.

The weak point of this encoding is that the update operations based on pre/par

can get expensive. Because in case of the insertion or deletion the change of pre

value triggers the change in par after the update point.

To support the updates in less expensive way the pre/dist/size encoding is used

which is depicted in Figure 3.9-(d).

3.3.3 Data structure supporting structural updates

The following example illustrated in Figure 3.9 encodes the doc document in

pre/dist/size. Figure 3.9-(d) illustrates the internal representation of the table

on the disk. It is worth noticing that default storage reserves 16 bytes for a single

table row.

Example 3.3.2. Document encoding in BaseX (pre/dist/size encoding).

The doc is mapped into pre/dist/size where:

• pre - Note, that the pre value is not stored in the internal representation of

the table on the disk, since it is implicitly given by the table position. As

the reader can see, for our example in Figure 3.9-(d), na.pre=0, nb.pre=1 of

pre/dist/size are implicitly given at positions 0000 and 0010.

• size - This value contains the number of descendants of a node. The size

value for the a-node is set to 00 00 00 08. Note, that for the text node ns we

do not store the size value.

3.3. Native XML databases 37

<a>

<d>

<c>s<c/>

</d>

<p/>

<k>

<f/><e/>

</k>

a
[0:0]

b
[1:1]

d
[2:2]

c
[3:1]

s
[4:1]

p
[5:5]

k
[6:6]

f
[7:1]

e
[8:2]

(a) XML document (b) Tree with pre/dist values

id tag

1 a

2 b

3 d

4 c

5 p

6 k

7 f

8 e

TagIndex

id tag

00 s

Text

id Kind

0 doc

1 elem

2 text

3 att

4 com

5 pi

Kind

id att

.... ...

attName

id attVal

.... ...

attVal

pre dist size kind tag txt atS atN atV

0 0 8 elem a

1 1 0 elem b

2 2 2 elem d

3 1 1 elem c

4 1 text s

5 5 0 elem p

6 6 2 elem k

7 1 0 elem f

8 2 0 elem e

(c) Relational storage

kind tag attS/Size/txt/attVal dist

0000 01 0001 00 00 00 00 08 00 00 00 00

0010 01 0002 00 00 00 00 00 00 00 00 01

0020 01 0003 00 00 00 00 02 00 00 00 02

0030 01 0004 00 00 00 00 01 00 00 00 01

0040 02 0000 00 00 00 00 00 00 00 00 01

0050 01 0005 00 00 00 00 00 00 00 00 05

0060 01 0006 00 00 00 00 02 00 00 00 06

0070 01 0007 00 00 00 00 00 00 00 00 01

0080 02 0008 00 00 00 00 00 00 00 00 02

(d) Internal representation

Figure 3.9: XML encoding in BaseX (pre/dist/size)

38 Chapter 3. State of the Art, XQuery Engines

• kind - This value preserves six different node kinds. For instance, nb.kind=01

and n.s.kind=2. All six kinds are stored in the Kind table.

• dist - This value stores the distance to the parent node, allowing access to

parents and ancestors. The dist value for the a-node is 0 for thef -node is

2. For our example, the internal representation preserves 8 bits for the dist

value. For instance, for the p-node we have: np.dist=00 00 00 05. It is worth

noticing that the dist value can get large.

• tag - This value stores references to the TagIndex table where the corre-

sponding tag names are indexed and referenced by integer keys. For instance,

na.tag=0001 and in the TagIndex table the entry corresponding to 0001 pre-

serves the tag name a.

• txt - This text value of a text node is stored in text containers and table entries

reference test offsets. For our example we have that ns.txt=00 00 00 00 00 (see

the column attS/Size/txt in fig. 3.9-(d)) and the corresponding text value in

the Texts container is stored at the offset 00 and contains the text value ”s”.

Note that, the text value of the next text node in the tree will be stored at

the offset 01.

• attS - This value stores an attribute size, which denotes the number of at-

tributes of an element. In the internal representation of the pre/dist/size/

the first two bits preserve the attS value. For our example, it is set to 00 for

all nodes (see first to bits of the column attS/Size/txt in fig. 3.9-(d)).

• attN - This value represents an attribute name. null reference is assigned if

no attributes are give, which is a case for our example.

• attVal - This value represents an attribute value.

The following paragraph analyzes the evaluation of XPath axes in BaseX.

Axes Relationships

parent - n′ is a parent of n if n
′.pre=n.pre−n.dist. For our example we have that

d-node is a parent of c-node since nd.pre=nc.pre−nc.size=3−1

ancestors - The ancestors step is evaluated using n
′.pre=n.pre−n.dist to access

next parent n′ and traversal is completed if n′=null.

The evaluation procedure:

foreach c in context do
n ← node(c.pre−c.dist)

while n! = null do
add n to results

n ← node(n.pre−n.dist)

return ordered results without duplicates.

3.3. Native XML databases 39

a
[0:0]

b
[1:1]

d
[2:2]

c
[3:1]

s
[4:1]

p
[5:5]

k
[6:6]

f
[7:1]

e
[8:2]

q
[9:3]

r
[10:4]

t
[11:5]

a
[0:0]

b
[1:1]

d
[2:2]

c
[3:1]

os
[4:1]

s
[5:2]

p
[6:6]

k
[7:7]

f
[8:1]

e
[9:2]

q
[10:3]

r
[11:4]

t
[12:5]

(a) pre/dist before the update (b) pre/dist after the update

a
[0:0]

b
[1:0]

d
[2:0]

c
[3:2]

s
[4:3]

p
[5:0]

k
[6:0]

f
[7:6]

e
[8:6]

q
[9:6]

r
[10:6]

t
[11:6]

a
[0:0]

b
[1:0]

d
[2:0]

c
[3:2]

os
[4:3]

s
[5:3]

p
[6:0]

k
[7:0]

f
[8:7]

e
[9:7]

q
[9:7]

r
[10:7]

t
[11:7]

(c) pre/par before the update (d) pre/par after the update

Figure 3.10: dist value recalculation

next sibling - n′ is a sibling of n if pre(n)+size(n)+1. For our example, h-node is

a next sibling of d-node since pre(np)+size(np)=5+0+1=6.

child - For a given context c the size property simplifies the evaluation of child axis.

The child step is evaluated using pre(n)+size(n)+1 to access next sibling n
′

and traversal is completed if pre(n)=pre(c)+size(c) where c is a context node.

The evaluation procedure:

foreach c in context do
n ← node(c.pre+1)

while n.pre! =c.pre+c.size do
add n to result

n ← node(n.pre+n.size+1)

return ordered results without duplicates.

descendant-or-self - For each context c the descendant-or-self is searched between

c.pre and (c.pre+c.size−1).

The evaluation procedure:

foreach c in context do
foreach n in nodes(n.pre=c.pre;n.pre=c.pre+c.size−1) do

add n to results

return ordered results without duplicates.

It is worth noticing that to facilitate updates, the table structure is organized in

disk blocks. Similar to MonetDB/XQuery, the table is divided into pages holding

a fixed number of tuples. On the contrary to MonetDB/XQuery, these pages may

not contain gaps in between tuples. A block directory references the first pre value

40 Chapter 3. State of the Art, XQuery Engines

of each block. The dist and size values have to be recalculated if deletions and

insertions are performed. The size values are updated for all ancestor of that node

and the dist values are updated for the following siblings and the following siblings

of the ancestor nodes.

Note, that on the contrary to the pre/par in the pre/dist/size encoding the

subtrees preserve their original distance when moved or inserted.

For instance Figure 3.10-(b) illustrates the changes applied on the tree given in

Figure 3.10-(a) after the insertion of a new text node "os" as the first child of the

c-node. As the reader can observe, the dist values of the subtree rooted at the k-

node are not affected by this insertion. The recalculation of dist value is performed

on the s, p and k-nodes: ns.dist=2, np.dist=6 and nk.dist=7. The number of the

total updates of the dist values for this insertion is equal to 3.

The same update applied on the pre/par encoding is more expensive. As it is

illustrated in Figure 3.10-(d) the insertion result in the recalculation of all nodes of

the subtree rooted at the k-node. The number of updates on par values is equal to

5, thus the updates on pre/par gets more expensive compared to pre/dist/size.

3.3.4 XML Serialization

In BaseX the encoded XML document stored in the current database can be "ex-

ported" to the specified path. Similarly to MonetDB/XQuery, the implementation

(Java classes: Export, XMLSerialazer and Serializer) scans the arrays where the

nodes are stored and for each node it outputs the tags, the attributes and text. The

implementations uses the stack to close the tags.

3.3.5 BaseX vs. projection

Figure 3.11 illustrates the difference between the update insertion using "pure" Ba-

seX vs. using projection. An update specified by an insertion of a new text node

”os” as the first child of the c-node. As it has been explained in Figure 3.10-(b) the

insertion of the new node results in the recalculation of the dist value for the c, p

and h-nodes. On the contrary, if the projection is used, only the a, d and c -nodes

of the doc are mapped into pre/dist/size (see fig. 3.11-(b),(c)). Thus, there is no

need to recalculate the dist values of the p and h-nodes, as it was the case in Figure

3.10 -(b). As the reader can observe, we are obliged to update the dist value of the

s-node: ns.dist=2.

Another optimization, which can be achieved, by using the projection is the follow-

ing. Recall that, in BaseX the gaps between the tuples in the pages are not allowed,

therefore, for instance, if a structural update performs a deletion, first, nodes are

deleted and possible gaps on the page are filled by shifting following tuples, which

is time consuming. On the contrary, using projection may optimize the execution

time for some of the cases as it is illustrated in Figures 3.11-(d), (f), (g) and (k). Let

3.3. Native XML databases 41

<a>

<d>

<c>s<c/>

</d>

<p/>

<k>

<f/><e/>

</k>

a
[0:0]

b
[1:0]

d
[1:1]

c
[2:1]

s
[3:1]

p
[5:0]

k
[6:0]

f
[7:6]

e
[8:6]

a
[0:0]

b
[1:0]

d
[1:1]

c
[2:1]

os
[3:1]

s
[4:2]

p
[5:0]

k
[6:0]

f
[7:6]

e
[8:6]

(a) XML document (b) projection with

pre/dist/size values

(c) after insertion

kind tag ...

0000 01 0001 ...

0010 01 0002 ...

0020 01 0003 ...

0030 01 0004 ...

0040 02 0000 ...

0050 01 0005 ...

0060 01 0006 ...

0070 01 0007 ...

0080 02 0008 ...

kind tag ...

0000 01 0001 ...

0010 01 0002 ...

0030 01 0004 ...

0040 02 0000 ...

0050 01 0005 ...

0060 01 0006 ...

0070 01 0007 ...

0080 02 0008 ...

(d) disk block before

the deletion of d-node

without projection

(f) disk block after

the deletion of d-node

without projection

kind tag ...

0000 01 0001 ...

0010 01 0002 ...

kind tag ...

0000 01 0001 ...

(g) disk block before

the deletion of d-node

with projection

(k) disk block after

the deletion of d-node

with projection

Figure 3.11: Optimazations in BaseX using projection

42 Chapter 3. State of the Art, XQuery Engines

<a>

<d>

<c>s<c/>

</d>

<p/>

<k>

<f/><e/>

</k>

a
[1]

b
[1.1]

d
[1.2]

c
[1.2.1]

s

p
[1.3]

k
[1.4]

f
[1.4.1]

e
[1.4.2]

a
[1]

n
[1.0/1]

n1
[1.0/1.1]

b
[1.1]

d
[1.2]

c
[1.2.1]

s

p
[1.3]

k
[1.4]

f
[1.4.1]

n2
[1.4.1/1]

e
[1.4.2]

(a) XML document doc (b) Tree assigned IDs (c) Updated tree

Figure 3.12: XML encoding in eXist (DLN)

us assume that an update specified by a deletion of the d-node is preformed on the

document. If we execute the update without projection, as it is shown in Figures

3.11-(d),(f) tuples following the target d-node must be shifted up. While, as it is

illustrated in Figures 3.11-(g),(k), using the projection requires no shifting.

It is worth noticing that, after the projection the projected document is merged

with the original one, thus for small documents the execution of the update query

is less time consuming without the projection. The time execution can be reduced

by integrating the Merge algorithm with the XML serialization process of BaseX.

3.4 eXist

eXist is a Native XML Database which stores XML document in hierarchical collec-

tion. To map the XML document eXist use dynamic level numbering [18]. Impor-

tant to note, that the general data structural used in eXist supports the structural

updates. First we start by an example illustrating the DLN encoding.

Example 3.4.1. DLN encoding used in eXist.

To illustrate DLN we use the document doc (see fig. 3.12-(a)). As the reader can

observe, while traversing doc a unique ID is assigned to each node. For instance,

the node labelled by c has ID equal to 1.2.1. This ID is calculated in the following

way: ID of the root labelled by a is assigned to value 1 (see fig. 3.12-(b)). ID

of the child is calculated by appending to ID of the parent node the delimiter "."

and the numeric value representing the position of the node in the current level,

denoted level value. As it is illustrated in Figure 3.12-(b), the node labelled by d

(child of the a-node) has level value equal to 2, thus ID of the d-node is equal to

1.2. Finally, ID of the c-node is calculated as follows: nd.parentID.nc.level=1.2.1.

It is worth noticing that the level value of a left sibling of a given node must be

less than the last one. For our example we have that ID of the k-node is 1.4 which

is less than ID of the p-node 1.3.

This encoding makes possible to avoid the renumbering of ID values after a new

node insertion. For example, as it is illustrated in Figure 3.12-(c), new nodes have

been inserted before the node labelled by b and after the node labelled by f. New

3.4. eXist 43

IDs are calculated using the idea of sub-value. For example, ID of the new node

labelled n is equal to 1.0/1. This sub-values can be used recursively. For instance,

to insert a node between nodes having IDs 1.1/1 and 1.1/2 we can add a further

sub-value level and assign 1.1/1/1 to the new node.

Based on this numeric scheme we can easily identify structural relationships

between nodes, such as parent/child, ancestor/descendant or previous-/next-sibling.

Axes Relationships Before giving the rules identifying these relationships, it is

important to note that, all IDs are encoded in bits. In binary encoding, the level

separator ’.’ is represented by a 0-bit while ’/’ is written as a 1-bit. For example,

the id 1.1/4 is encoded as follows:

0001 0 0001 1 0100

All path relationships are calculated on the bits. Based on this encoding we have

the following properties of DLN:

1 - It supports the computation of ancestor-descendant relationships between

two nodes using the length l of the ID with smaller value. If the first l bits

of a node n are identical then it is an ancestor of a node n
′. At least one 1-bit

is appended to ID of the parent node leading to a greater ID value,

2 - n, n′, are the following sibling nodes with ids ID1, ID2, respectively, if ID2

was created using ID1 and a sub-value, then ID1<ID2, and the prefix of ID1

is equal to the one of ID2. Finally, ID2 has at least one 1-bit at the next

position.

Next, we cover the general data structure used in eXist.

3.4.1 General Data Structure

The following example illustrates the data storage architecture used in eXist.

Example 3.4.2. Data storage architecture.

First of all it is important to note that, in eXist documents are managed in hier-

archical collections, similar to storing files in a file system. This collection hierarchy

is managed by the collections.dbx. Each collection has unique identifier ID.

The next important feature of this architecture is that data is stored on B + trees

and paged files. The file dom.dbx collects nodes in a paged file and associates unique

node identifiers to the actual nodes.

Figure 3.13-(c) illustrates the structure of dom.dbx for XML documents given in

Figure 3.13-(a,b). Each document in the collection has its own unique ID - docID.

The stored data is backed by multiroot B+ tree. B+ tree keys are pairs of <docId,

nodeID>. Using these keys we could search for the address of the actual node ob-

ject corresponding to the given nodeID. For example, if we need to search for the

44 Chapter 3. State of the Art, XQuery Engines

a
[0:0]

b
[1.1]

b
[1:2]

s
[1.2.1]

”so”

p
[1:3]

b
[1.4]

f
[1.4.1]

e
[1.4.2]

z
[0:0]

k
[1.1]

”ot” b
[1.1.1]

”to”

v
[1:2]

(a) doc1 (b) doc2

(c) dom.dbx

(c) elements.dbx

Figure 3.13: Data storage in eXist

3.4. eXist 45

address of the node with ID=1.2.3 in the first document (docID is 1), the engine

searches in the B + tree starting from the root doc1, then terminates after finding

the leaf in tree, containing the searched key. After that reads the storage address

from DataPage, where the node object nodeID8 is preserved and accesses it. After

that, all properties of the node object could be retrieved. The same scenario will

take place if we search for any node objects in the second document, with only

difference that the processing will start from, the root docID=2.

Because the access to the persistent DOM is always expensive, eXist has been

implemented in a way that XPath or XQuery expressions are processed mostly

without accessing dom.dbx (an example of this processing is given in the next

paragraph). On the contrary, the query is executed in such a way that node

relationships could be identified using the node sets. This can be achieved via the

combination of structural joins and numbering scheme. All this is managed by the

third indexed file in the architecture, called elements.dbx. It maps an element and

an attribute QNames to a list of tuples <docID,nodeID>, where:

docID – unique identifyer for the document

nodeID – ID assigned by a level-order traversal of the document tree (DLN)

Similarly to the dom.dbx, elements.dbx, depicted in Figure 3.13-(d), is backed by

B+ trees, with the difference that the keys are a pair of <collection-id, name-id>.

The addresses in the leafs of B + tree are pointing to the array values containing

an ordered list of nodeIDs separated by docIds. For example, to find, all elements

labelled p, the query engine will need a single index lookup to retrieve the complete

set of node identifiers pointing to that elements. Suppose we are searching for

the nodes IDs of an element labelled p in the tree Figure 3.13. The key for this

node is (1,ns:p). Once the leaf, where the searched key is stored, is found we can

retrieved the address of the array value containing all NodeIDs of the tag, which

is in our example equal to 1.3. Next, depending on the query expression, if during

the evaluation process the engine needs to retrieve some property of the node

object, like attribute or text, it will be first looked up in elements.dbx to retrieve

the nodeID of the searched tag. Once nodeID of the tag is found, the engine will

search for the address of the node object corresponding to that ID in the dom.dbx

The last index file is words.dbx. By default, eXist indexes all text nodes and

attribute values by tokenizing text into keywords. In words.dbx, which has a similar

structure as elements.dbx, the extracted keywords are mapped to an ordered list

of documents and unique node identifiers. The B + tree key for this file consist of

a pair <collectionID, keyword>. Each entry in the value list points to a text or

attribute node where the keyword occurred.

46 Chapter 3. State of the Art, XQuery Engines

Set A Set B Join Result Set

1 1.1 1.1

1.2 1.2

1.4 1.4

(a) result for a//b

Set a//b Set b[s] Join Result Set

1.1 1.2.1 1.2.1

1.2

1.4

(b) following expression

Figure 3.14: Sets

XQuery Processing Based on the numbering scheme features, eXist uses struc-

tural joins to evaluate path expressions.

Example 3.4.3. XPath expression evaluation.

For example, consider the XPath expression specified by a//b[s="so"] which

is executed on the tree doc1 3.13-(a). The expression is decomposed into three sub

parts:

a - The engine retrieves the set of nodes labelled by a.

b - The engine retrieves the set of nodes labelled by b.

b[s] - The engine retrieves the set of nodes labelled by b and having a child text

node s.

s="so" - The engine retrieves all nodes having keyword "so".

It is important to note, that the exact positions of all elements for the first

two expressions are retrieved from element.dbx in a way explained in the previous

section. Therefore, each node in the set is described by the <docID, nodeID> tuple

ordered by document order. While for the third one it is looked up at words.dbx.

Then the engine executes structural join on the first two node sets, to find all

nodes from the b set being descendants nodes in the a node set. As a result of

this join a new set is created which serves as the context node set for the following

expression. Therefore, this new node set for expression a//b becomes ancestor for

the node set for expression b[s], while the descendant node set is generated from the

evaluation of the expression s="so". Figure 3.14 exhibits two tables containing the

sets and the joins results for the a//b and b[s], receptively.

3.4.2 XML serialization

To serialize a document stored in the database eXist uses several Java classes.

The Serializer base class, used to serialize a document or document frag-

ment back to XML. This class offers two overloaded methods: serialize() and

toSAX().serialize(). The first one returns the XML as a string, the second one

generates a stream of SAX events.

3.4. eXist 47

a
[0:0]

d
[1.1]

b
[1:2]

s
[1.2.1]

”so”

p
[1:3]

b
[1.3.1]

b
[1.3.2]

(a) doc3

(c) elements.dbx without the Projection (c) elements.dbx with projection

Set A Set B Join Result Set

1 1.2 1.2

1.3.1 1.3.1

1.3.2 1.3.2

Set A Set B Join Result Set

1 1.2 1.2

(d) Sets selection without the Projection (f) Sets selection with projection

Figure 3.15: Data storage in eXist with and without projection

Serializer accepts NodeV alue, NodeProxy, and DocumentImpl. NodeV alue

class represents a node value and may either be an in-memory node or a persis-

tent node. DocumentImpl class represents a persistent document object stored in

the database. NodeProxy is an internal proxy class which stores the node’s unique

id and the document it belongs to. NodeProxy is acting as a placeholder for all

types of persistent XML nodes during query processing.

3.4.3 eXist vs. projection

Figure 3.15 illustrates the difference between the execution of XPath expression

from the example 3.4.3, with and without projection. Figure 3.15-(b) shows doc3
(see fig. 3.15-(a)) stored in element.dbx, while Figure 3.15-(c) stores the projected

doc3. As the reader can observe, the second file contains only one node labelled

by b having the nodeID=1.2, while the first one stores three nodes: nodeID=1.2,

nodeID=1.3.1 and nodeID=1.3.2. The reason is that while the projection the b-

nodes having nodeIDs 1.3.1 and 1.3.2 have been pruned out (see Chapter 4). As

a consequence, to evaluate the path a//b selected setB (see fig. 3.15-(f)) of the

projected doc3 contains only one element vs. the three ones of the original one (see

fig. 3.15-(d)). Therefore, we can state that using the projection with eXist optimize

the memory usage.

48 Chapter 3. State of the Art, XQuery Engines

Similarly to MonetDB/XQuery and BaseX to reduce the total execution time with

the projection it is necessary to integrate the Merge algorithm with the implemen-

tation of the serialization.

3.5 Saxon Processor

In this paragraph we will provide some details and explanations about the archi-

tecture of the Saxon Processor. It is important to note, that Saxon must not be

considered as a database system. In general the query compilation is done without

any information about the content of the input document in advance, which means

that it does not maintain persistent indexes, like NXDs or enabled databases.

3.5.1 General Data Structure

Differently from implementations that wraps external object models e.g. DOM

and etc., Saxon has two native models: linked tree and tinytree, each one

implementing their own builder and navigation classes. The first model is an "object-

per-node" tree structure in which parent nodes contain a list of their children. The

second one represents a document using six arrays of integers. We will explain the

structure of the tinytree using the following example:

Example 3.5.1. TinyTree array.

To illustrate this example we chose the document doc used in Example 3.2.1.

Data corresponding to each node is stored in arrays. These arrays are preserved

in document order and contain one entry for each node and are indexed by node

number. It is important to note, that the attribute and namespace nodes are stored

in attributes and namespace tables, respectively. Each array contains:

node code - This is an integer value that references to the NamePool object. It is

used to determine the prefix, local name, or namespace URI of an element or an

attribute name. As the reader can see, Figure 3.16 -(c) exhibits the NamePool

object, where the local names are stored. For instance, the node code value

for the root labelled by a is equal to n1. If we search for the corresponding

name code in the NamePool, we will find that the local name value of that

element is a.

depth - It preserves the depth of the node in the tree. For instance, the depth

value stored in the array for the root l is equal to 0. For the node labelled by

e set to 2.

node kind - Stores the type of the nodes (e.g. element, text or comment). Each

node type is represented as an integer value from 1 to 12. For our example, we

have two types of nodes: element node and one text node. As it is illustrated

in Figure 3.16-(a) the kind value for a-node is set to 1, while for the text node

s having index 4 in the array, it is set to 3.

3.5. Saxon Processor 49

a
[0]

b
[1]

d
[2]

c
[3]

s
[4]

p
[5]

k
[6]

f
[7]

e
[8]

XML document doc

Array Name Array Values

name kind 1 1 1 1 3 1 1 1 1
next sibling 2 5 6 8
alpha -1 - 1 -1 -1 0 -1 -1 -1 -1
beta -1 -1 -1 -1 1 -1 -1 -1 -1
depth 0 1 1 2 1 1 2 2
node code n1 n2 n3 n4 n5 n6 n7 n8

array Indexes 0 1 2 3 4 5 6 7 8

(a) TinyTree Arrays

0 "s"

index text value

(b) StringBuffer

name code URI Local Name Prefix

n1 a

n2 b

n3 d

n4 c

n5 p

n6 k

n7 f

n8 e

(c) NamePool

Figure 3.16: TinyTree structure

50 Chapter 3. State of the Art, XQuery Engines

next sibling - It contains the indexes of the next siblings. For instance, in our

example the next sibling of the node labelled by p having index 5, is the

node labelled by k, whose index in the array is equal to 6. Therefore, the

corresponding value in the next sibling is set to 6.

alpha/beta - The meaning of "alpha" and "beta" depends on the node type.

For text nodes, comment nodes, and processing instructions the alpha value

of this property points to StringBuffer holding the text. For element nodes,

"alpha" is an index into the attributes table, and "beta" is an offset into the

namespaces table. If an element does not have any attributes or namespaces

the value is set to −1. For instance, in our example, there is no any element

that has an attribute or namespace, therefore the values in the arrays are set

to −1. As the reader can observe, we have one text node the value of which

is stored in the StringBuffer (see fig. 3.16-(b)). This buffer contains only "s"

string. It is worth noticing, that alpha for the c node is set to 0. The beta
for the same node stores the offset of the text value in the buffer, which is the

length of the string. For our example, the length of the text is equal to 1, thus

beta value is set to 1.

The TinyTree model is designed to minimize the memory usage. It avoids the

overhead of instantiating one Java object for each node in the tree, which is the

case for DOM. The only drawback of this model is that it can not support XQuery

Updates. Updates are supported by the mutabe linked tree model, which will be

explained latter.

3.5.1.1 Updatable Data Structure

As it has been stated in the previous section the TinyTree model is efficient for

memory savings, but it is not updatable, since it is based on static allocation of

space in fixed arrays. In order to support XQuery updates in Saxon, some changes

have been applied on the linked tree model. It has been changed in a way to

become similar to a mutable tree. Similar to a mutable tree, the linked tree, which

preserves the references to the children, now additionally, stores references to the

parent Objects.

Figure 3.17 illustrates the structure of the mutable linked tree for doc. In this

tree, for instance, the root node labelled a is represented as an object that stores

the local name a, and the list of references to the children objects: nb, nd, np

and nk. The value and the parent properties are set to null. The first child of

the a-node, b-node preserves following properties: name=b, parent=na, which is

a reference to the parent object. The children and the value properties are set

to null. As the reader can see, the remaining nodes are mapped into the ob-

jects in the same way, except the text node ns, where value=”s”, while name=null.

Let us suppose that an update query specified by insert nodes {<n/><m/>} into

a/p is applied.

3.5. Saxon Processor 51

Object_na

kind: 1
value: null
name: a
parent: null
children: nb, nd, ...

Object_nb

kind: 1
value: null
name: b
parent: na

children: null

Object_nd

kind: 1
value: null
name: d
parent: na

children: nc

Object_nc

kind: 1
value: null
name: c
parent: nd

children: ns

Object_ns

kind: 3
value: "s"
name: null
parent: nc

children: null

Object_np

kind: 1
value: null
name: p
parent: na

children: null

Object_nk

kind: 1
value: null
name: k
parent: na

children: nf , ne

Object_nf

kind: 1
value: null
name: f
parent: nk

children: null

Object_ne

kind: 1
value: null;
name: e
parent: nk

children: null

Figure 3.17: Mutable linked tree before update

Object_na

kind: 1
value: null
name: a
parent: null
children: nb, nd, ...

Object_nb

kind: 1
value: null
name: b
parent: na

children: null

Object_nd

kind: 1
value: null
name: d
parent: na

children: nc

Object_nc

kind: 1
value: null
name: c
parent: nd

children: ns

Object_ns

kind: 3
value: "s"
name: null
parent: nc

children: null

Object_np

kind: 1
value: null
name: p
parent: na

children: nn, nm

Object_nn

kind: 1
value: null
name: n
parent: np

children: null

Object_nm

kind: 1
value: null;
name: m
parent: np

children: null

Object_nk

kind: 1
value: null
name: k
parent: na

children: nf , ne

Object_nf

kind: 1
value: null
name: f
parent: nk

children: null

Object_ne

kind: 1
value: null;
name: e
parent: nk

children: null

Figure 3.18: Updated mutable linked tree

52 Chapter 3. State of the Art, XQuery Engines

The result of this update is illustrated in Figure 3.18. As the reader can observe, new

Objects: Object_nn and Object_nm are created with parent variables containing

the reference to Object_np.

3.5.2 XML Serialization

Saxon has two ways of serialization: raw and wrapped outputs. The first one works

only if the result consists of a single document or element node. It outputs the

subtree rooted at that element node in the form of a serialized XML document. The

second one works for any result sequence (ex. a sequence of integers, a sequence of

attributes). Each item is wrapped as an XML element, with details of its type and

value.

To produce the wrapped output, first the result sequence is wrapped as an XML

tree, next this tree is serialized. To produce the unwrapped output, we skip the

wrapping stage and just call the serializer directly. The QueryResult class is used

for both cases. The QueryResult.wrap method is used during the wrapped output.

It takes as an input the iterator produced by evaluating the query and produces

as an output a DocumentInfo object representing the results wrapped as an XML

tree. The QueryResult.serialize method takes any document or element node as

an input, and writes it to a specified destination, using specified output properties.

The destination is supplied as an object of the Result class.

3.5.3 Saxon vs. projection

As the reader can observe, the updatable data structure used in Saxon is not very

effective for memory savings. The weak point is that it occupies lots of space and

operates in main-memory.

Applying the projection helps to optimize the memory usage: executing the update

specified in the example given in Figure 3.18 on doc allocates eleven Objects vs.

four using projection. It is worth noticing that using the projection requeres several

changes to be applied to integrate the Merge algorithm with the serialization.

3.6 Conclusion

In this Chapter we have examined internal data representation and evaluation

strategies of main XQuery engines, namely: MonetDB/XQuery, BaseX, eXist and

Saxon.

Both MonetDB/XQuery and BaseX use relational XML encoding to store data.

These systems compared to the others are most efficient for memory savings.

Nevertheless, executing structural updates (performing insertion or deletion) using

these systems maybe be more expensive from the execution time point of view.

For instance, executing structural updates performing an insertion of new nodes

using MonetDB/XQuery can require a new logical page insertion. In this case

3.6. Conclusion 53

several shifts of nodes within the existing page and recalculations of some properties

are performed.

For BaseX new nodes insertion may, as well, result in a new page insertion and the

recalculation of some properties values. It worth noticing that in BaseX no gaps

are allowed, thus if after executing an update the page contains an empty tuple,

the tuples following it are shifted up.

To perform an update eXist first retrieves the set of types corresponding to the

target path and then evaluates query on them.

Saxon maps each tree node to a DOM Object, thus projection optimizes the memory

usage by pruning the nodes which are not used by an update.

As the reader can observe all these systems have memory limitations, next Chapter

introduces the method to optimize memory usage while updating documents using

these systems.

Chapter 4

Enabling XML Update

Optimization based on Type

Projection

Contents

4.1 Motivations . 55

4.2 The three level type-projector 58

4.3 Merge for enabling XML Update Optimization... 69

4.3.1 The procedure NoMerge . 71

4.3.2 Procedure OlbMerge . 75

4.4 Implementation and Experiments 80

4.4.1 Implementation issues . 80

4.4.2 Experiments . 87

4.5 Conclusion . 104

This chapter is devoted to introducing and illustrating, through examples, the

main features of our method of XML Update Optimization and especially of the

Merge Algorithm.

In Section 4.2 we introduce some basic notions of the three−level type projector.

In Section 4.3 we introduce the Merge algorithm together with its two procedures

NoMerge and OlbMerge.

4.1 Motivations

The choices and assumptions made in the formal presentation are motivated. As

it has been stated in Introduction, XML projection is technique to reduce memory

consumption in XQuery in-memory engines. The main idea behind this technique

is quite simple: given a query q over an XML document t, instead of evaluating q

over t, the query q is evaluated on a smaller document t′ obtained from t by pruning

out, at loading-time, parts of t that are unrelevant for q. The queried document t′,

a projection of the original one, is often much smaller than t due to selectivity of

queries.

Applying, the Projection Technique is not sufficient, since updating a projection

of a document t is not equivalent to updating the document t itself: the pruned out

56 Chapter 4. Enabling XML Update Optimization ...

sub-trees will be missing. Thus a method has to be found in order to make updates

persistent.

We propose to investigate a type based technique for optimizing updates. The

update scenario is designed as follows for an update u and a document t typed by a

dtd D. First, the projection t′ of t is built using a type-projector π. Second, the

update u is performed over the projection t′, yielding the partial result u(t′). We

would like to emphasize that no rewriting of the update u is required. The last step,

called Merge, parses in a streaming and synchronized fashion both the original doc-

ument t and u(t′) in order to produce the final result u(t). For the sake of efficiency,

the Merge step is designed so that (a) only child position of nodes and the projector

π are checked in order to decide whether to output elements of t or of u(t′) and (b)

no further changes are made on elements after the partial updated document u(t′)

has been computed: output elements are either elements of the original document

t or elements of u(t′). It should be noted that the revalidation issue is not considered.

To sum up, our technique processes following three steps:

Step1 - an update type projector π for u is inferred and t is projected wrt π. The

notion of update type projector has been defined as well as the inference of

the type projector. This part is M. A. Baazizi’s contribution [11].

Step 2 - the update u is evaluated over the projected document π(t) producing an

updated partial document u(π(t));

Step 3 - the fully updated document u(t) is built by merging the initial document

t and u(π(t)); this step, called Merge, is detailed below in section 4.3. This

part is my contribution [16, 17].

Example 4.1.1. Motivating example

Let us consider the update u specified by for $x in /doc/a where $x/d return

delete node $x/b with dtd D and document t of Figures 4.1-1 and 4.1-4. Note

that for the sake of simplicity, the two rules defining f and g are omitted. These

rules are f → ∈ and g → ∈ where ∈ is an empty regular expression.In order to pro-

duce the final result u(t), we extract the type-projector, then project the document

t, execute the update and merge the initial document t and the partial updated

document u(t′).

projection extraction - Intuitively, the paths corresponding to data relevant for

the update u are /doc/a/b and /doc/a/d. The labels of nodes traversed by

these paths are {doc, a, b, d}. The projector inferred for the update u is given

by this set of labels (see fig. 4.1-3), with the intention to keep the nodes of

the document that are typed by labels in π.

projection - First, we apply projection on the document t. Notice that each

node of the initial document t is adorned with its label (a, b, ...) and with

an identifier i inside square brackets (1, 1.1, 1.2...). A node of a document t

4.1. Motivations 57

doc → a*,e*

a → b*,c*,e*,d?

b → String

d → (f | g)∗

(1) The dtd D

for $x in /doc/a

where $x/d

return delete node $x/b

(2) The update u

πno={doc, a, b, d}

πolb=πeb=∅

(3) The projector π for u

doc
[ε]

a
[1]

b
[1.1]

’oof’

c
[1.2]

c
[1.3]

d
[1.4]

f
[1.4.1]

g
[1.4.2]

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(4) The XML document t

doc
[ε]

a
[1]

b
[1.1]

’oof’

c
[1.2]

c
[1.3]

d
[1.4]

f
[1.4.1]

g
[1.4.2]

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(5) The projection t′ of t wrt π

doc
[ε]

a
[1]

d
[1.4]

a
[2]

d
[2.1]

(6) The partial result u(t′)

doc
[ε]

a
[1]

c
[1.2]

c
[1.3]

d
[1.4]

f
[1.4.1]

g
[1.4.2]

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(7) The final result u(t)

Figure 4.1: A motivating example of the update scenario

58 Chapter 4. Enabling XML Update Optimization ...

whose identifier is i is denoted by t@i. We make the choice that the identifier

of a node in t gives its position in t according to document order. However,

it should be reminded that this only holds for the initial document t. During

the projection we pruned out all nodes having labels that do not belong to π

(see fig. 4.1-5). The projection first outputs node t@ε labelled by doc∈πno.

Next, it selects node t@1 labelled by a∈πno and its children t@1.1 and t@1.4

labelled by b∈πno and d∈πno. Projecting the second sub-tree of the root

proceeds in a similar manner. Note that the position of the node t′@1.4 in t′

is 1.2 and not 1.4 like it is in t.

update - The partial updated document u(t′) (see fig. 4.1-6) reflects the changes

applied by the update u: node t′@1.1 labelled by b∈πno of the projection t′

has been deleted.

merge - In this example we illustrate the basic steps of the Merge algorithm. The

goal is to build the final result starting from t and the partially updated

document u(π(t)). The idea is to parse both documents in a synchronized

manner. For example, Merge proceeds as follows: first while merging t and

u(t′), nothing special happens until the nodes t@1 (see fig. 4.1-4) and u(t′)@1

(see fig. 4.1-6), both labelled a, have been parsed. At this point, the two

nodes examined by Merge are: the first child node t@1.1 labelled b of t@1,

and the first child node u(t′)@1.4 labelled d of u(t′)@1. Because the child rank

4 of u(t′)@1.4 is strictly greater than the child rank 1 of t@1.1 and because

the label b belongs to the projector π indicating that the node t@1.1 has been

projected in t′, the node t@1.1 is not output (it has been deleted by the update

u), the original document t is further parsed. The next two nodes examined

are: t@1.2 labelled c and u(t′)@1.4 labelled d. Once again, the child rank 4 of

u(t′)@1.4 is strictly greater than the child rank 2 of t@1.2, however this time,

the label c does not belong to the projector π (the node t@1.2 was not needed

for the partial update and thus not projected in t′) and thus the node t@1.2

is output in the final result (see fig. 4.1-7), the original document t is further

parsed. The process will continue parsing t and u(t′) until both documents

are fully scanned. Note that, positions of nodes (more precisely child rank) in

the initial document play a crucial role in the Merge process. 2

The following sections cover the Projection Technique (4.2) and The Merge Al-

gorithm (4.3) respectively.

4.2 The three level type-projector

The content of this section is the contribution of M. A. Baazizi, who developed the

formalization of the projector.

The type-projector designed for the purpose of update optimization has features

4.2. The three level type-projector 59

related to

-the update expressions and

-the Merge algorithm.

The type-projector π, used to prune out the tree t is a 3-level projector which

consists of components πno, πolb and πeb, where no stands for "node only",

olb stands for "one level below" and eb stands for "everything below". Each

component is a set of labels (node types). In the following paragraphs, we provide

examples motivating each component of the type-projector π.

The behavior of the projector is different for each kind of components. For

instance, during projection:

- if a node is labelled by a type in πno, it is projected and its children are

visited to check if they need to be projected,

- if a node is labelled by a type in πolb, it is projected as well as its children.

Each child will be visited and if its label belongs to π its children will be

examined for projection wrt to the semantics of the projector,

- if a node is labelled by a type in πeb, it is projected together with all its

descendants.

Note that:

- if a node label does not belong to any of the projector components it is not

projected (exceptions are side effects of πolb and πeb components, see above)

and its descendants are pruned out,

- if a node is not projected, then its children are not projected either,

Note that, if a node is projected as a side effect of πolb and πeb and its label

does not belong to π, then its children are not projected.

In the following paragraph, we provide examples motivating each component of π.

First we provide example explaining the use of the πno component. To make it

clear to the reader we explain the four steps of the projection technique applied

on the document being updated: projector extraction, projection, update and

merge.

Example 4.2.1. "node only" label and delete operation.

To explain the application of the 3-level projection which contains only compo-

nent πno, we will consider the example of Figure 4.2.

projection extraction - The update u1 (see fig. 4.2-1) involves a "delete" opera-

tion. Intuitively, the path corresponding to data relevant for the update u1 is

doc/a/d and the types of nodes traversed by this path are doc, a, d. The type

60 Chapter 4. Enabling XML Update Optimization ...

for $x in /doc/a/d
return delete node $x

(1) The update u1

πno={doc, a, d}

(2) The three level type projector π1

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

f
[2.1.1]

e
[3]

d
[3.1]

f
[3.1.1]

b
[3.2]

’uz’

(4) The projection t1 of t wrt π1

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

f
[2.1.1]

e
[3]

d
[3.1]

f
[3.1.1]

b
[3.2]

’uz’

(3) The XML document t

doc

[ε]

a
[1]

a
[2]

(5) The partial result u1(t1)

Figure 4.2: The projector component πno, illustrated for "delete"

projector for this update will contain only one component πno={doc, a, d} (see

fig. 4.2-2).

projection - During projection only the nodes labelled by types contained in πno
are projected. In our example projection first outputs node t@ε (labelled by

doc∈πno) of the tree t (see fig. 4.2-3,4). Next, it selects node t@1 labelled by

a∈πno and node t@1.1 labelled by d∈πno. After that it outputs nodes t@2 and

t@2.1 for the same reason. Note that, the projection does not output node

t@3.1 labelled by d∈πno, since the parent node t@3 is labelled by e/∈πno and

has not been projected.

update - The partially updated document u1(t1) (see fig. 4.2-5) reflects the result

of the execution of query u1 over the projection t1. The new partially updated

tree u(t1) contains only nodes t1@1 and t1@2 because the children nodes t1@1.1

and t1@1.2 have been deleted.

merge - Merge is processed on the trees t and u1(t1) to obtain a final result u1(t)

(equivalent to the update performed on t). We cover the behavior of Merge

in details in the next section. 2

Example 4.2.2. "node only" component and "rename" operation.

The update u2, given in Figure 4.3 involves a "rename" operation.

projection extraction - As for the previous example the path corresponding to

relevant data wrt to the update is doc/a/c and the type-projector contains only a

πno component (4.3-2).

projection - The projection outputs the following nodes: t@ε labelled by doc∈πno,

t@1 labelled by a∈πno followed by t@1.3 and t@1.4 labelled by c∈πno, finally node

t@2 labelled by a∈πno (see fig. 4.3-4). Once again, note that the node t@3.2 is not

projected because its parent node t@3 is labelled by e/∈πno thus not projected.

4.2. The three level type-projector 61

for $x in /doc/a
return
rename node $x/c as "b"

(1) The update u2

πno={doc, a, c}

(2) The three level type projector π2

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

f
[2.1.1]

e
[3]

d
[3.1]

f
[3.1.1]

b
[3.2]

’uz’

(4) The projection t1 of t wrt π2

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

f
[2.1.1]

e
[3]

d
[3.1]

f
[3.1.1]

c
[3.2]

’uz’

(3) The XML document t

doc

[ε]

a
[1]

b
[1.3]

b
[1.4]

a
[2]

(5) The partial result u2(t1)

Figure 4.3: The projector component πno, illustrated for "rename"

update - The partially updated tree u2(t1) (see fig.4.3-5) illustrates the changes

applied during the evaluation of the update u2 on the projected tree t1. Mainly the

labels of two nodes t1@1.3 and t1@1.4 labelled by c∈πno have been renamed to b.

merge - Merge synchronizes the trees t and u2(t1) to obtain the final result u2(t).

The πolb component is introduced for queries involving "insert as first/last",

"insert before/after" or "replace" operations. Replace updates have to be treated

like insert wrt to the target path: replace is a delete followed by an insert.

Example 4.2.3. The example given in Figure 4.4 motivates the need of the

"one level below" component of the projector. Let us show that the "node only"

projection is not adequate here by showing the whole scenario. We start with by

treating the example using only πno component, to show its deficiency.

Using the πno projection

projection extraction - The update query u3 involves an "insert as first" operation

(see fig. 4.4-1). Intuitively, the path corresponding to data relevant for the update

u3 is doc/a and the types of nodes traversed by this path are doc, a. Thus, let us

consider the projector containing one component πno={doc, a} (see fig. 4.4-2).

projection - The projection t1 (see fig. 4.4-4) for the given projector applied on the

document t proceeds as follows: first the root node t@ε labelled by doc is selected,

followed by the nodes t@1 and t@2 labelled by a.

update - The result of the evaluation of the query u3 on the projected tree t1 is

illustrated in Figure 4.4-5. The subtrees t3@1 and t3@2 of the partially updated

tree u3(t1) (denoted t3) contain two children nodes t3@i and t3@i1. Note that, i
and i1 are new identifiers and that they convey no information about the child rank

of the new nodes.

62 Chapter 4. Enabling XML Update Optimization ...

for $x in /doc/a
return
insert node <e/>
as first into $x

(1) The update u3

πno={doc, a}

(2) The three level type projector π3

doc

[ε]

a
[1]

a
[2]

(4) The projection t1 of t wrt to π3

πno={doc}
πolb={a}

(6) The three level type projector π′

3

doc

[ε]

a
[1]

d
[1.1]

b
[1.2]

c
[1.3]

c
[1.4]

e
[i]

a
[2]

d
[2.1]

e
[i1]

(8) The partial result t′3=u3(t2)

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

f
[2.1.1]

(3) The XML document t

doc

[ε]

a
[1]

e
[i]

a
[2]

e
[i1]

(5) The partial result t3=u3(t1)

doc

[ε]

a
[1]

d
[1.1]

b
[1.2]

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

(7) The projection t2 of t wrt π′

3

doc

[ε]

a
[1]

e
[i]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

e
[i1]

d
[2.1]

f
[2.1.1]

(9) The final result

Figure 4.4: The projector component πolb, illustrated for "insert as first"

4.2. The three level type-projector 63

merge - While parsing t and t3 and examining node t@1.1 and t3@i there is no way

to decide whether t3@i has to be output as first or in another order. Recall here

our assumption: no rewriting performed on the update and Merge has no access to

the update. 2

The projector of Figure 4.4-2 is not appropriate, because it does not keep

enough information for the last step of the evaluation. The proposed solution is to

introduce another component πolb (see fig. 4.4-6).

Introducing the πolb projection

projection extraction - The new projector for the update u3 takes into account

that the path /doc/a is the target of an insertion. As such, the projector will have

2 components: the type doc of category "node only" and the type a of category

"one level below". The label a belongs to πolb because the update u3 is suppose to

perform an insert "below" nodes of type a.

projection - Applying this projector to the document t proceeds as follows: for our

example it first outputs node t@ε followed by node t@1 labelled by a∈πolb together

with its children t@1.1, t@1.2, t@1.3 and t@1.4 (see fig. 4.4-7). We have the same

for t@2.

update - The partially updated tree u3(t2) (denoted as t′3) contains all children of

t2@1 and t2@2 plus newly inserted ones having identifiers i and i1 (see fig. 4.4-8).

merge - During the Merge phase the synchronization of the trees t and t′3 leads to

the correct result. While synchronizing nodes t@1.1 and t′3@i, t′3@i is output as the

first child (see fig. 4.4-9). Merge uses the fact that t@1 is of type a∈πolb to enter a

mode where t′3 guides the synchronization: it is known that every child of t@1 have

been projected and thus every child of t′3@1 (the old and the new one) are in the

right order. 2

Example 4.2.4. "one level below" component for "insert before" operation.

Now let us consider the example given in Figure 4.5 with the update u4 which

involves an "insert before" operation.

projection extraction - This update intends to insert a new node before the target

path doc/a/d (see fig. 4.5-1). Thus the projector π4 has two components: the "node

only" component πno={doc} and the "one level below" component πolb={a} (see

fig. 4.5-2).

projection - Applying this projector to the document t (see 4.5-3) proceeds as fol-

lows: first it outputs node t@ε labelled by doc∈πno followed by node t@1 labelled

by a∈πolb (see fig. 4.5-4); after that, it outputs all children of t@1. It proceeds in

similar way on t@2.

update - Figure 4.5-5 illustrates the changes applied by the update u4: nodes

u4(t1)@i and u4(t1)@i1 has been inserted before the nodes u4(t1)@i and u4(t1)@i1

respectively.

64 Chapter 4. Enabling XML Update Optimization ...

for $x in /doc/a
return
insert node <e/>
before $x/d

(1) The update u4

πno={doc}
πolb={a}

(2) The three level type projector π4

doc

[ε]

a
[1]

d
[1.1]

b
[1.2]

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

(4) The projection t1 of t wrt π4

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

f
[2.1.1]

(3) The XML document t

doc

[ε]

a
[1]

e
[i]

d
[1.1]

b
[1.2]

c
[1.3]

c
[1.4]

a
[2]

e
[i1]

d
[2.1]

(5) The partial result u4(t1)

doc

[ε]

a
[1]

e
[i]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

e
[i1]

d
[2.1]

f
[2.1.1]

(6) The final result

Figure 4.5: The projector component πolb, illustrated for "insert before"

merge - Similarly to the previous example, while synchronizing nodes t@1.1 and

t′4@i, t′4@i is output as the first child (see fig. 4.5-6) based on the fact that t@1 is

of type a∈πolb. 2

Example 4.2.5. This example illustrates the "one level below" and mixed-content.

This example shows that the "node only" projection is not appropriate when

dealing with mixed content.

Using the πno projection

Consider the update u5 specified by for $x in /doc/a where

$x/b/text()=’foot’ return delete node $x/d (see fig. 4.6-1). Let us consider the

document t given in Figure 4.6-3 and its projection π5(t).

projection extraction - Intuitively, /doc/a/d and /doc/a/b/text() are the paths

corresponding to data relevant for the update u3. The associated types are

π5={doc, a, b, String, d} (see fig. 4.6-2).

projection - Let us consider the document t given in Figure. 4.6-3 and its projection

π5(t). Notice that projecting t wrt π5 has the side effect to concatenate the two

Strings ’fo’ and ’ot’ (see fig. 4.6-4).

4.2. The three level type-projector 65

for $x in /doc/a
where $x/b/text()=’foot’
return delete node $x/d

(1) The update u5

πno={doc, a, b, String, d}

(2) The type projector π5

doc

[ε]

a
[1]

b
[1.1]

’foot’

d
[1.4]

(4) The projection t1 of π5

πno={doc, a, d}
πolb={b}

(6) The three level type projector π′

5

doc

[ε]

a
[1]

b
[1.1]

’fo’
c

[1.1.2] ’ot’

(8) The partial result u5(t2)

doc

[ε]

a
[1]

b
[1.1]

’fo’
c

[1.1.2] ’ot’

c
[1.3]

d
[1.4]

(3) The XML document t

doc

[ε]

a
[1]

b
[1.1]

’foot’

(5) The partial result u5(t1)

doc

[ε]

a
[1]

b
[1.1]

’fo’
c

[1.1.2] ’ot’

d
[1.4]

(7) The projection t2 of π′

5

Figure 4.6: The projector component πolb, for String and mixed-content

66 Chapter 4. Enabling XML Update Optimization ...

update - The node t@1.4 labelled by d is deleted when the update u5 is applied to

the projected document t1 (see fig. 4.6-5).

merge - Recall the assumption that Merge is not supposed to change the elements

parsed in t and u5(t1) and has only access to the projector. The problem here is

due to mixed-content nodes: when merging the initial document t and the partial

updated result u5(t1), there is no way to be able to recover the right descendant for

t@1.1.

The projector of Figure 4.4-2 is not appropriate, because of mixed-content

nodes and their behavior. We now present how to solve this problem using the πolb
component (see fig. 4.4-6).

Using the πolb projection

projection extraction - The new projector π′
5 generated for the example will have

two components: πno={doc, a, d} and πolb={b} (see fig. 4.6-6).

Indeed, we could have solved the problem, in a syntactic manner, by extending the

extracted path /doc/a/b/text() to /doc/a/b/text()/parent :: node()/child :: node()

leading (by type inference) to a simple projector {doc, a, b, c, d, String} which in

fact projects the whole document t. On the other hand, the projector π′
5 allows us

to restrict the projection of text nodes to children of b nodes. To better illustrate

this, let us assume that doc is now defined by doc→(a | String)∗, then applying

the simple projector {doc, a, b, c, d, String} would lead to project all text children

of a-nodes although not useful for the update.

projection - Applying projector π′
5 on the document t does not concatenate Strings

’fo’ and ’ot’, since it projects all children of t@1.1 (see fig. 4.6-7)

update - Figure 4.6-8 illustrates the changes applied by the update u5 on the tree

t2: node t2@1.4 is deleted.

merge - The synchronization of the children of t@1 and u5(t2)@1 is guided by the

nodes of u5(t2). 2

Example 4.2.6. This example illustrates the "everything below" component for ex-

tracting element.

For example in Figure 4.7 the update u6 involves a "replace" operation (see fig.

4.7-1). Recall that "replace" operation is a delete followed by an insert, therefore,

the type-projector must contain πolb component.

projection extraction - The path /doc/a/d is meant to return the element copied

at the target node computed by /doc/a/b, thus the complete subtrees rooted at

nodes of type d have to be completely projected. Thus, for this update, the projector

π6 is composed of three sets of types (see fig. 4.7-2); πno={doc} of category "node

only", πolb={a} of category "one level below", and πeb={d} of category "everything

below".

4.2. The three level type-projector 67

for $x in /doc/a
return replace node $x/b
with $x[last]/d

(1) The update u6

πno={doc, b}
πolb={a}
πeb={d}

(2) The three level type projector π6

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

f
[2.1.1]

(4) The projection t1 of t wrt π6

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

f
[2.1.1]

(3) The XML document t

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

d
[i]

f
[i1]

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

f
[2.1.1]

(5) The partial result u6(t1)

Figure 4.7: The projector component πeb, illustrated for "replace"

projection - Applying the projector π6 to the document t (see fig. 4.7-3) proceeds

as follows: first root t@ε is projected, followed by node ti@1. Because t@1 is labelled

by a∈πolb all its children are projected. Note that, the complete subtrees rooted at

node t@1.1 is projected (see fig. 4.7-4).

update - After executing the update u6 on the projected tree t1 the tree having the

root t1@1.2 is replaced by a new one (see fig. 4.7-5).

merge - While processing nodes t@2.1 and u6(t2)@2.1 Merge outputs the tree hav-

ing root u6(t2)@2.1. 2

We now proceed to a formal presentation of the three level projector. Once

again, this part of the work is the contribution of A. Baazizi.

Update type projector First of all, we formally define three-level type projectors:

Définition 1 (Type Projector). Given a dtd (D, sD) over the alphabet Σ, a

type projector π is a triple (πno, πolb, πeb) such that (π also denotes πno∪πolb∪πeb):

i) π⊆Σ,

ii) πno, πolb and πeb are pairwise disjoint, and

iii) sD∈π and for each b∈π there exists a∈π such that D(a)=r and b occurs in r.

The πno (resp. πolb and πeb) component of π contains "node only" types (resp.

"one level below" and "∀ below" types). Notice that condition iii) ensures some

closure property wrt to the dtd D: label a∈π cannot be deconnected from the

root label sd although it does not need to be connected in all possible manners

(see projector π4 below). Notice that the String type itself never belongs to a type

projector π: as explained in the example 4.2.5, a string is projected "indirectly"

68 Chapter 4. Enabling XML Update Optimization ...

when its parent node type is of category ’olb’ or ’eb’.

The next definition formalizes the effect of executing a type projector on a doc-

ument.

Définition 2 (Type Projection). Let us consider the dtd (D, sD), the type projec-

tor π=(πno, πolb, πeb) and the document t∈D with roots(t)={rt} and subfor(t)=F .

The projection of t wrt π, denoted π(t), is the tree ΠK(t,π)(t) where K(t, π) is re-

cursively defined by:

− if lab(rt)6∈π then K(t, π)=∅,

− if lab(rt)∈πα then K(t, π)={rt}∪Kα(F) for α∈{no,olb,eb} with:

Kα(F)=∅ if F=() and otherwise, assuming F=t′◦F ′,

Kno(F)=K(t′, π)∪Kno(F
′),

Kolb(F)=K(t′, π)∪Kolb(F
′) if lab(rt′)∈π

Kolb(F)={rt′}∪Kolb(F
′) if lab(rt′)6∈π

Keb(F)=dom(F).

Example 4.2.7. Example of the projection.

For our example illustrated in Figure 4.7 the projector π is well-defined: it consists

of three components πno, πolb and πeb. For the document t, the set K(t, π) is

{ε, 1, 1.1, 1.2, 1.3, 1.4, 1.1.1, 1.1.2, 2, 2.1, 2.1.1}.

This set has been obtained as follows:

K(t, π)={ε}∪Kno(F) where F is the sub-forest of t and α=no because

lab(ε)∈πno

Let assume that F=t1◦F
′ where t1 is the first tree of the forest F then:

Kno(F)=K(t1, π)∪Kno(F
′)

K(t1, π)={1}∪Kolb(F1) where F1 is the sub-forest of t1 and F1=t11◦F
′
1

Kolb(F1)=K(t11, π)∪Kolb(F
′
1)

K(t11, π)={1.1}∪Keb(F11) where F11 is the sub-forest of t11
Keb(F11)={1.1.1, 1.1.2}

Let assume that

F ′
1=t12◦F

′
2 where t12 is the first tree of the forest F ′

1.

F ′
2=t13◦F

′
3 where t13 is the first tree of the forest F ′

2.

F ′
3=t14◦F

′
2 where t14 is the first tree of the forest F ′

3.

Kolb(F
′
1)={1.2}∪Kolb(F

′
2)

Kolb(F
′
2)={1.3}∪Kolb(F

′
3)

Kolb(F
′
4)={1.4}∪Kolb(F

′
4)

etc.

4.3. Merge for enabling XML Update Optimization... 69

ai

ti
fi

Fi

bi

tu
fu

Fu

TreeMerge

bi

tr
fr

Fr

Figure 4.8: TreeMerge processing

The closure property iii) of definition 1 entails that the result of a type projection

is a well-formed tree although it may not conform to the dtd D.

4.3 Merge for enabling XML Update Optimization

based on type projection

This section formalizes the Merge algorithm and provides the detailed explanations

and examples for each step. Recall that the task of Merge is to build the result

u(t) of the update u over t starting from the initial p-tree t and the updated partial

tree u(π(t)).

The following assumptions are important for the definition of Merge.

1. The input XML document t is valid with respect to the DTD D. For the

purpose of the formal presentation, we assume that the tree t is a p-store: the

identifiers are the node positions (in document order).

2. The execution of the update u has possibly produced new identifiers for the

purpose of node creation induced by replace and insert operations.

The goal of merging the input document t and the partial update t′ is to construct

the update u(t). Merging processes by parsing both trees t and t′. The merge

algorithm is decomposed as follows:

• The procedure TreeMerge takes as input two subtrees τ and τ ′. The first one,

τ , is a subtree of the initial tree t. The second one, τ ′ is a subtree of the

partially updated tree t′.

Let us assume that:

lab(roots(τ))=ai
lab(roots(τ ′))=bi
subfor(τ)=Fi

subfor(τ ′)=Fu

Merge takes care of synchronization of parsing the trees t and t′. Here we as-

sume that the trees τ and τ ′ have identical root identifier: roots(τ)=roots(τ ′).

70 Chapter 4. Enabling XML Update Optimization ...

They may have different labels if the update u has renamed the label of the

node roots(τ). The procedure TreeMerge is quite simple: it builds a tree whose

root is τ ′ root (see fig. 4.8) and whose sub-forest Fr is generated as follows:

the label ai of roots(τ) is checked with respect to π components in order to

decide how to merge the sub-forests Fi and Fu. The procedure TreeMerge is

presented formally by:

Fr= NoMerge(Fi | Fu) if lab(roots(τ))∈πno
OlbMerge(Fi | Fu) if lab(roots(τ))∈πolb

subfor(tu) if lab(roots(τ))∈πeb

Note that, in case of lab(roots(τ))∈πeb we have TreeMerge(τ | τ ′)=τ ′.

Next, the parent node of Fi, resp. of Fu is denoted by n, resp. by m.

Now we are going to explain the functions NoMerge and OlbMerge which are

formalized in Figures 4.9 and 4.15. For the sake of simplicity, the update

projector π is kept implicit in the specification.

• The functions NoMerge and OlbMerge have to be thought of as mechanisms

parsing in parallel two forests: Fi belonging to the initial p-tree t and Fu

belonging to the updated partial tree u(π(t)); synchronization is captured by

the fact that the parent nodes of Fi and Fu are assumed to share the same

identifier; because of projection and update, Fu contains identifiers belonging

to t, besides the new ones due to insert and replace operation.

The two functions differ on the following pre-conditions: (see the definition of

TreeMerge)

− NoMerge assumes that (†) the parent node n of the forest Fi is of

category "node only" which implies that, because of synchronization, i) none

of the top level trees in Fu is of type String, ii) root identifiers of top level

trees in Fu belong to Fi that is roots(Fu)⊆roots(Fi).

− OlbMerge considers that (††) the node n is of category "one level be-

low" which implies that each node in roots(Fi) has been projected and that

roots(Fu) are exactly the top level nodes of Fu that have to be output by

OlbMerge.

We provide explanations and examples for each line of the formalization. First we

start with the procedure NoMerge, next we explain the procedure OlbMerge.

The reader should pay attention to the fact that next we use ti and tu to designate

the first tree of the forest Fi (resp. Fu). In the following examples, we will explain

4.3. Merge for enabling XML Update Optimization... 71

1 NoMerge(Fi | Fu) = Fu if roots(Fi)=∅,
otherwise assume Fi=ti◦fi

2 ti ◦ NoMerge(fi | Fu) if σti(roots(ti))=text[st],
otherwise assume σti(roots(ti))=a[J],

3 NoMerge(fi | Fu) if a∈π and either roots(Fu)=∅ or Fu=tu◦fu with
roots(tu) > roots(ti)

4 TreeMerge(ti | tu) ◦ NoMerge(fi | fu) if a∈π, Fu=tu◦fu and roots(ti)=roots(tu)

5 ti ◦ NoMerge(fi | Fu) if a6∈π

Figure 4.9: The function NoMerge

a
[1]

′uz′
c

[1.1]

(1) sub-forest Fi

a
[1]

b
[1.1]

(2) sub-forest Fu

a
[1]

′uz′ b
[1.1]

(3) result Fr

Figure 4.10: Example for the procedure NoMerge, line 2

how merge preceeds over the forest Fi and Fu. When drawing the examples, for the

sake of the presentation, we keep showing the parent node of Fi (resp. Fu). It will

be separated from Fi (resp. Fu) by a double horizontal line.

4.3.1 The procedure NoMerge

The function NoMerge (see fig. 4.9) proceeds as follows:

Line 2: Line 2 takes care of the case where the current parsed tree ti of Fi is of

type String. The assumpion † entails that it has been pruned out by π. Thus, ti is

simply output.

Example 4.3.1. Consider the update u1 specified by for $x in /a where $x/a

return rename node $x/c with "b" illustrated in Figure 4.10.

projector - The type projector π1 derived from the update u1 has one component

πno = {a, c}.

update - Figure 4.10-2 illustrates the changes applied by the update u1: node Fi@1.1

labelled by c is renamed to b (see fig. 4.10-2).

merge - Because the parent node of Fi (see fig. 4.10-1) is labelled by a∈πno, the

forests Fi and Fu are going to be processed by NoMerge. Here, because the parsed

tree ti is of type String and the condition σti(roots(ti))=text[st] is satisfied, NoMerge

executes line 2 and outputs tree ti as the first tree of Fr (see fig. 4.10-3). 2

72 Chapter 4. Enabling XML Update Optimization ...

a
[1]

b
[1.1]

e
[1.1.1]

b
[1.2]

e
[1.2.1]

b
[1.3]

c
[1.3.1]

(1) sub-forest Fi

a
[1]

ddd

ddddd

ddd

ddddd

b
[1.3]

c
[1.3.1]

(2) sub-forest Fu

a

b
[1.3]

c
[1.3.1]

(3) result Fr

Figure 4.11: Example for the procedure NoMerge line 3

Line 3: Line 3 deals with the case where the label a of the root roots(ti) of ti
belongs to π (thus a subtree of ti has been projected) and roots(ti) does not occur

in Fu (the projection of ti has been deleted by the update). When Fu is not empty,

this latter fact is identified by comparing the identifiers of the currently parsed

nodes (which are positions in Fi): roots(tu)>roots(ti) indicates that the tree ti
comes before the tree tu in the forest Fi. Thus ti is not output.

Example 4.3.2. Consider the update u2 specified by for $x in /a/b where not

$x/c return delete node $x illustrated in Figure 4.11.

projector - The type projector π2 derived from the update u2 has one component

πno={a, b, c}.

update - Figure 4.11-2 illustrates the changes applied by the update u2. The parent

node of Fu labelled by a contains only two descendants Fu@1.3 and Fu@1.3.1 labelled

by b and c respectively (trees rooted at Fi@1.1 and Fi@1.2 of the original tree have

been deleted). Note that, the node Fu@1.3 has not been deleted by the update u2,

since it contains a child node labelled by c.

merge - Because the parent node of Fi is labelled by a∈πno (see fig. 4.11-1), the

forests Fi and Fu are going to be processed by NoMerge. First NoMerge examines

nodes Fi@1.1 and Fu@1.3, where Fi@1.1 is labelled by b∈πno. Because the rank 3 of

Fu@1.3 is strictly greater than the rank 1 of Fi@1.1 (the tree with the root Fi@1.1

has been deleted by the update u2), NoMerge applies line 3. Mainly, NoMerge skips

the tree with the root node Fi@1.1 (see fig. 4.11-3) and moves only on Fi. After

that, NoMerge processes nodes Fi@1.2 and Fu@1.3. Once again, we have that node

Fi@1.2 is labelled by b∈πno and the rank 3 of Fu@1.3 is strictly greater than the

one of Fi@1.2. Therefore, NoMerge skips tree Fi@1.2, according to line 3, and parses

Fi. Finally it examines nodes Fi@1.3 labelled b∈πno and Fu@1.3. This time we

have that the ranks of the two nodes are equal, thus NoMerge applies line 4, which

is explained in the next paragraph. 2

Line 4: Line 4 takes care of synchronization on the nodes roots(tu) and roots(ti):

these nodes can only differ by their labels because of some potential renaming. In

that case, the tree TreeMerge(ti | tu) is output.

4.3. Merge for enabling XML Update Optimization... 73

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

d
[1.2]

d
[1.3]

(1) sub-forest Fi

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

e
[i]

d
[1.2]

e
[i1]

d
[1.3]

e
[i2]

(2) sub-forest Fu

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

e
[i]

d
[1.2]

e
[i1]

d
[1.3]

e
[i2]

(3) result Fr

Figure 4.12: Example for the procedure NoMerge line 4

Example 4.3.3. Consider the update u3 specified by for $x in /a/d return

insert node <e/> as last into $x illustrated in Figure 4.12.

projector - Because the update u3 involves an "insert" operation, the type projector

π derived from it has two components πno={a} and πolb={d}.

update - Figure 4.12-2 illustrates the changes applied by the update u3. Nodes

Fu@1.2 and Fu@1.3 contains newly inserted nodes Fu@i, Fu@i1 and Fu@i2 respec-

tively, where i1 and i2 are new identifiers.

merge - Because the parent node of Fi is labelled by a∈πno (see fig. 4.12-1), the

forests Fi and Fu are going to be processed by NoMerge. First, NoMerge pro-

cesses nodes Fi@1.1 and Fu@1.1 and since they have equal ranks (the condition

roots(Fi@1.1)=roots(Fu@1.1) is true), NoMerge synchronizes them according to line

4. It proceeds as follows: builds a tree tr having root node Fu@1.1 (see fig. 4.12-3).

Because Fi@1.1 is labelled by d∈πolb the sub-forest of tr is defined by the procedure

OlbMerge. Section 4.3.2 provides detailed explanation of the OlbMerge behavior. For

our example, we assume that the synchronization has been done and NoMerge, ac-

cording to line 4, processes nodes Fi@1.2 and Fu@1.2. Here we have that Fi@1.2 is

labelled by d ∈ πolb hence, once again it outputs Fu@1.2 and the synchronization

of the first level nodes is specified by OlbMerge. Finally NoMerge processes nodes

Fi@1.3 and Fu@1.3 specified by line 4. 2

Line5: Finally, line 5 deals with the case where the label a of ti root does not

belong to the projector π implying that ti has been pruned out. Hence ti is output.

Example 4.3.4. Let us slightly change the previous example by changing the input

and adding a tree rooted at ti@1.1 labelled by b/∈π as the first child of the parent

of Fi (see fig. 4.13-1) and a tree rooted at ti@1.5 labelled by c/∈π.

projector - Projector applied to the document t does not changed.

update - The is identical to that of the previous example.

merge - This time, NoMerge first processes nodes Fi@1.1 and Fu@1.2. Because

Fi@1.1 is labelled by b/∈π it executes line 5 and outputs the tree rooted at Fi@1.1

74 Chapter 4. Enabling XML Update Optimization ...

a
[1]

b
[1.1]

z
[1.1.1]

d
[1.2]

f
[1.2.1]

g
[1.2.2]

d
[1.3]

d
[1.4]

c
[1.5]

(1) sub-forest Fi

a
[1]

ddddd

ddddd

d
[1.2]

f
[1.2.1]

g
[1.2.2]

e
[i]

d
[1.3]

e
[i1]

d
[1.4]

e
[i2]

(2) sub-forest Fu

a
[1]

b
[1.1]

z
[1.1.1]

d
[1.2]

f
[1.2.1]

g
[1.2.2]

e
[i]

d
[1.3]

e
[i1]

d
[1.4]

e
[i2]

c
[1.5]

(3) result Fr

Figure 4.13: Example for the procedure NoMerge line 5

as a first tree of Fr and moves only on Fi (see fig. 4.13-3). After that, NoMerge

parses forests Fi and Fu in the way explained in the previous example. Only when

NoMerge processes the last tree of Fi rooted at Fi@1.5 and labelled by c/∈π it is

selected, once again specified by line 5. 2

Example 4.3.5. The following example illustrated in Figure 4.14 explains the

behavior of Merge while mixing cases. The example assumes that the update is

composed of several elementary changes given in the previous examples. Let us

consider the update u5 specified by

for $x in /a

return

{

rename node $x/c with "k",

insert node <e/> as last into $x/d,

delete node $x/b

}

As it has been explained in Chapter 2, the update primitives are held in the

pending update list and are applied in restricted order. For our example we have

that: first rename, next insert as last operations and finally delete operation are

applied.

projector - The type projector π5 derived from the update u has two components

πno={a, b, c} and πolb={d}.

update - Figure 4.14-2 reflects all changes applied on the document t. Mainly, the

first tree rooted at Fi@1.1 has been deleted, the new nodes have been inserted as

the last children to nodes Fi@1.2 and Fi@1.3 resp., and the label of the node Fi@1.4

has been renamed (see fig. 4.14-2).

merge - Because the parent node of Fi, is labelled by a∈πno the forests Fi and Fu

are going to be processed by NoMerge. Because the root Fi@1.1 is labelled by b∈πno
and roots(Fi@1.1)<roots(Fu@1.2) (the rank 2 of Fu@1.2 is strictly greater than the

rank 1 of Fi@1.1), NoMerge executes line 3. Thus NoMerge skips the tree rooted

at Fi@1.1 and executes the procedure NoMerge on the trees rooted at Fi@1.2 and

4.3. Merge for enabling XML Update Optimization... 75

a
[1]

b
[1.1]

z
[1.1.1]

d
[1.2]

f
[1.2.1]

g
[1.2.2]

d
[1.3]

c
[1.4]

(1) sub-forest Fi

a
[1]

ddddd

ddddd

d
[1.2]

f
[1.2.1]

g
[1.2.2]

e
[i]

d
[1.3]

e
[i1]

k
[1.4]

(2) sub-forest Fu

a
[1]

d
[1.2]

f
[1.2.1]

g
[1.2.2]

e
[i]

d
[1.3]

e
[i1]

k
[1.4]

(3) result Fr

Figure 4.14: Example for the procedure NoMerge, mixing cases

c.1 OlbMerge(Fi | Fu) = Fu if roots(Fi)=∅,

c.1′ () if roots(Fu)=∅,
otherwise assume Fu=tu◦fu

c.2 tu ◦ OlbMerge(Fi | fu) if σtu(roots(tu))=text[st] or new(roots(tu))=true,

otherwise assume σtu(roots(tu))=b[K] and Fi=ti◦fi

c.3 OlbMerge(fi | Fu) if σti(roots(ti))=text[st] or σti(roots(ti))=a[J] with
a∈π and roots(tu) > roots(ti)

c.4 TreeMerge(ti | tu) ◦ OlbMerge(fi | fu) if a∈π, σti(roots(ti))=a[J], and roots(ti)=roots(tu)

c.5 ti ◦ OlbMerge(fi | fu) if a6∈π and σti(roots(ti))=a[J]

Figure 4.15: The function OlbMerge

Fu@1.2, where Fi@1.2 is labelled by d∈πolb. This time, since the ranks are equal,

NoMerge applies line 4. Mainly it builds a tree tr having the root Fu@1.2 (see fig.

4.14-3). Because lab(roots(Fi@1.2))∈πolb the sub-forest of tr is defined by OlbMerge.

For our example, we assume that the synchronization has been done and Merge

process nodes Fi@1.3 and Fu@1.3, once again, specified by line 4. After that, it

examines nodes Fi@1.4 and Fu@1.4 specified by line 4, thus it selects Fu@1.4. 2

4.3.2 Procedure OlbMerge

Recall that the function OlbMerge, specified in Figure 4.15 is built assuming that

(††) the node n is of category "one level below" which implies that each node in

roots(Fi) has been projected and that roots(Fu) are exactly the top level nodes of

Fu that have to be output by OlbMerge. Parsing Fi and Fu in parallel is essentially

guided by Fu, as opposed to NoMerge.

Similarly to the procedure NoMerge, we provide examples in order to illustrate each

line of the formalization of OlbMerge.

Line c.2 Line c.2 deals with the case where the current parsed tree tu of Fu is

either of type String or a newly inserted element. This latter case is identified by

checking whether the identifier roots(tu) is new (/∈dom(t)). Hence, the tree tu is

output. The reader may notice that no move on Fi is performed.

76 Chapter 4. Enabling XML Update Optimization ...

a
[1]

f
[1.1]

g
[1.2]

(1) sub-forest Fi

a
[1]

”uz”
e
[i]

f
[1.1]

g
[1.2]

(2) sub-forest Fu

a
[1]

”uz”
e
[i]

f
[1.1]

g
[1.2]

(3) result Fr

Figure 4.16: Example for the procedure OlbMerge, line c.2

Example 4.3.6. Let us consider the update u6 illustrated in Figure 4.16 specified

by for $x in /a return insert nodes ("uz"<e/>) as first into $x.

projector - The update u6 involves an "insert" operation, hence the type projector

π derived from it contains the component πolb={a}.

update - Figure 4.16-2 illustrates the changes made by the updated. The node Fu@1

has a newly inserted child of type String and a new node Fu@i. It is worth noticing

that Fu contains as well nodes Fu@1.1 and Fu@1.2 which have been projected based

on the assumption ††, even if they are labelled by f /∈π and g/∈π.

merge - We have that the parent node Fi@1 of Fi (see fig. 4.16-1) is labelled by

a∈πolb, thus the first level nodes of Fi and Fu must be synchronized following the

procedure OlbMerge. First OlbMerge processes nodes Fi@1.1 and tu of type String

and since the condition σti(roots(ti))=text[st] is true OlbMerge executes line c.2.

Hence, OlbMerge selects tree tu as the first tree of the forest Fr and recalls OlbMerge

parsing only Fu. Next OlbMerge examines nodes Fi@1.1 and Fu@i. Because the

condition new(roots(Fu@i))=true is satisfied, once again, the output is specified by

line c.2: OlbMerge outputs a tree with root Fu@i and moves on Fu. Finally, OlbMerge

examines nodes Fi@1.1 and Fu@1.1, then Fi@1.2 and Fu@1.2 specified by line c.5,

the behavior of which is explained in the paragraph devoted to that line. The rest

of merging Fi and Fu is explained latter, because it uses other cases. 2

Line c.3 Line c.3 is similar to line 3, although it should be paid attention to

the sub-case where the root of ti is of type String: ti is then ignored because the

corresponding String element in Fu (updated or not by u) has, eventually, already

been output by a previous application of line c.2.

Example 4.3.7. Let us consider the update u7 specified by for $x in /a return

replace node $x/f with <e/> illustrated in Figure 4.17.

projector - Recall that the update operation "replace" is considered as "delete"

followed by an "insert". Thus the projector contains the component πolb={a}.

Note that, the update u7 replaces only the nodes having the child labelled by f ,

thus the second component of the projector is πno={f}.

update - Figure 4.17-2 illustrates the result of the evaluation of the update u7: the

tree rooted at Fi@1.1 of the forest Fi has been replaced by a new tree with root

Fu@i.

4.3. Merge for enabling XML Update Optimization... 77

a
[1]

”uz” f
[1.1]

g
[1.2]

(1) sub-forest Fi

a
[1]

”uz”
e
[i]

g
[1.2]

(2) sub-forest Fu

a
[1]

”uz”
e
[i]

g
[1.2]

(3) result Fr

Figure 4.17: Example for the procedure OlbMerge, line c.3

merge - The parent node of Fi is labelled by a∈πolb (see fig. 4.17-1), thus merging

its children is specified by OlbMerge. First OlbMerge parses the trees ti and tu of type

String. The action is specified by line c.2, since tu is a type of String. Therefore,

OlbMerge outputs the tree tu as a first tree of the forest Fr and moves on Fu only.

After that OlbMerge is executed with input: ti of type String and Fu@i. Because

we have that new(roots(Fu@i))=true, OlbMerge, once again, executes line c.2 and

outputs the tree rooted at Fu@i. After that, OlbMerge examines ti this time with

node Fu@1.2. Because ti is of a type String the action is line c.3. Mainly, OlbMerge

skips ti and moves on Fi examining this time nodes Fi@1.1 and Fu@1.2. The rank

2 of Fu@1.2 is strictly greater than the rank 1 of Fi@1.1 and Fi@1.1 is labelled by

f∈πno, thus the execution specified by line c.3. According to it, OlbMerge skips the

tree with the root Fi@1.1 (this tree has been replaced) and moves on Fi. Finally it

synchronizes Fi@1.2 and Fu@1.2 (line c.4), which is dual to line 4 of the procedure

NoMerge and OlbMerge outputs the tree with the root Fu@1.2 into Fr. 2

Lines c.4, c.5 are the dual of lines 4,5 of the NoMerge definition. The

reader should pay attention to line c.5 where, although implicit, the equality

roots(ti)=roots(tu) holds (as opposed to the case line 5 of NoMerge): even if a/∈π,

because of (††), the node identified by roots(ti)=roots(tu) is in both forests Fi and

Fu.

Example 4.3.8. For example, let us consider the example illustrated in Figure

4.18. The update u8 is specified by for $x in /a where $x/d return insert node

<e/> as first into $x.

projector - The update u8 involves an "insert" operation thus the type projector

π8 derived from it contains the components πolb={a} and πno={d}.

update - Because the parent node of the forest Fi has child labelled by d, a new node

Fu@i labelled by e is inserted as its first child, after the update query evaluation.

merge - The parent node of Fi is labelled by a∈πolb (see fig. 4.18-1) thus merging

top level nodes is specified by OlbMerge. While processing nodes Fi@1.1 and

Fu@i Merge executes line c.2. Next, The nodes Fi@1.1 and Fi@1.1 are processed

according to line c.4, since the ranks are equal and Fi@1.1 is labelled by d∈πno,

while nodes Fi@1.2 and Fu@1.2 are merged according to line c.5, because Fi@1.2

78 Chapter 4. Enabling XML Update Optimization ...

a
[1]

d
[1.1]

g
[1.2]

(1) sub-forest Fi

a
[1]

e
[i]

d
[1.1]

g
[1.2]

(2) sub-forest Fu

a
[1]

e
[i]

d
[1.1]

g
[1.2]

(3) result Fr

Figure 4.18: Example for the procedure OlbMerge, Lines c.4 and c.5

is labelled by g/∈π. 2

The following paragraph explains the behavior of OlbMerge for the case where

lab(roots(ti)∈πeb):

Example 4.3.9. Let us consider the update u7 specified by for $x in /a return

replace node $x/b with $x/c illustrated in Figure 4.19.

projector - The update involves the "replace" operation and it replace a sub-tree

having root node labelled by b with another sub-tree having root labelled by d.

Recall that replace has the same behaviour as "delete" followed by "insert" hence the

first component of the projector πolb={a}. The second one: πeb={c} is necessary

to extract the sub-tree whose root is labelled by c.

update - Figure 4.19-2 illustrates the partially updated forest Fu, where node Fu@i

is the result of the deletion Fi@1.2 and the insertion of a new tree being the copy

of the tree rooted at Fi@1.1. Note that, the identifier of Fu@i is not the same as

Fi@1.1.

merge - Because the parent node of the Fi is labelled by a∈ πolb, its children are

processed by OlbMerge. While parsing them OlbMerge proceeds in the following

way. First it examines nodes Fi@1.1 and Fu@1.1. Because the ranks are equal

and Fi@1.1 is labelled by c∈πeb (see fig. 4.19-1,2) the action is specified by line c.4.

Thus OlbMerge selects Fu@1.1 as the first tree of Fu and calls TreeMerge to determine

which procedure to apply on its sub-forests. Because we have that Fi@1.1 is labelled

by c∈πeb all its descendants are output into into Fr (see fig. 4.19-3) and OlbMerge

moves both on Fi and Fu. This time nodes Fi@1.2 and Fu@i are processed according

to line c.2: it outputs the tree rooted at tu@i and moves on Fu. Finally, according

to line c.1′, OlbMerge skips Fi. 2

The next example illustrated in Figure 4.20 explains the behavior of OlbMerge

for an update mixing all previous cases.

Example 4.3.10. Let us consider the update u8 specified by

for $x in /a

return

{

4.3. Merge for enabling XML Update Optimization... 79

a
[1]

c
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

(1) sub-forest Fi

a
[1]

c
[1.1]

f
[1.1.1]

g
[1.1.2]

c
[i]

f
[i1]

g
[i2]

(2) sub-forest Fu

a
[1]

c
[1.1]

f
[1.3.1]

g
[1.1.2]

c
[i]

f
[i1]

g
[i2]

(3) result Fr

Figure 4.19: Example for the case lab(roots(ti))∈πeb

insert nodes ("uz"<e/>) as first into $x,

insert node <p/> as last into $x,

rename node $x/d with "h",

replace node $x/f with <e/>,

replace node $x/b with $x/c,

}

As it has been explained in Chapter 2, the update primitives are held in the

pending update list and are applied in restricted order. For our example, first re-
name, next insert as first, then insert as last operations and finally, replace
operations are applied.

projector - The projector π9 derived from this update contains three components

πolb={a, f, b}, πno={d} and πeb={c}.

update - Figure 4.20-2 illustrates the result of the evaluation of the update u8. The

first tree of the forest Fu is a tree of type String, followed by newly inserted node

Fu@i. Next, the label d of the node Fi@1.1 is renamed to h. The node Fu@1.2

labelled f is replaced by a new node Fu@i1 labelled by e. The node Fi@1.3 labelled

b is replaced by the subtree having root node Fi@1.5. Note that, the identifiers are

not the same. The nodes Fi@1.4 and Fi@1.5 are not changed. Finally a new node

labelled by p is inserted as the last child of the parent node Fu@1.

merge - The parent node of the forest Fi is labelled by a∈πolb, thus the action is

specified by OlbMerge. First, OlbMerge processes nodes Fi@1.1 and the first tree tu of

type String of Fu as specified by line c.2, since the condition σtu(roots(tu))=text[st] is

true. OlbMerge outputs the tree tu as the first tree of the forest Fr (see fig. 4.20-3) and

moves on Fu only: processing the nodes ti@1.1 and tu@i. Once again, the action is

specified by line c.2, since this time we have that the condition new(roots(tu))=true

is satisfied. Therefore, OlbMerge selects the tree with the root Fu@i and continues

with parsing Fu. This time, OlbMerge examines nodes Fi@1.1 and Fu@1.1 and be-

cause their ranks are equal and Fi@1.1 is labelled by d∈πno the action is specified by

line c.4. Thus, it outputs Fu@1.1 and calls TreeMerge to determine which procedure

among NoMerge and OlbMerge has to be applied on the sub-forest. Because Fi@1.1

is labelled by d∈πno, NoMerge must be applied. OlbMerge moves on both Fi and Fu.

This time, nodes Fi@1.2 and Fu@i1 are processed as specified by line c.2 (tree rooted

at Fi@1.2 has been replaced by Fu@i1). OlbMerge selects tree rooted at Fu@i1 and

80 Chapter 4. Enabling XML Update Optimization ...

a
[1]

d
[1.1]

f
[1.2]

b
[1.3]

g
[1.4]

c
[1.5]

k
[1.4.1]

z
[1.4.2]

(1) sub-forest Fi

a
[1]

′uz′
e
[i]

h
[1.1]

e
[i1]

c
[i2]

k
[i3]

z
[i4]

g
[1.4]

c
[1.5]

k
[1.4.1]

z
[1.4.2]

p
[i5]

(2) sub-forest Fu

d
[1]

′uz′
e
[i]

h
[1.1]

e
[i1]

c
[i2]

k
[i3]

z
[i4]

g
[1.4]

c
[1.5]

k
[1.4.1]

z
[1.4.2]

p
[i5]

(3) result Fr

Figure 4.20: Example for Mixing Cases

moves on Fu, parsing nodes Fi@1.2 and Fu@i2. Once again, the action is that of

line c.2, hence OlbMerge outputs the tree rooted at Fu@i2 and moves on Fu. Now

the nodes Fi@1.2 and Fu@1.4 are processed specified by line c.3, since the rank 4 of

Fu@1.4 is strictly greater then the rank 2 of Fi@1.2 labelled by f∈πno. According

to line c.3, OlbMerge skips the tree rooted at Fi@1.2 and processes nodes Fi@1.3 and

Fu@1.4 as specified by line c.3. After skipping the tree rooted at Fi@1.3, OlbMerge

is applied on nodes Fi@1.4 and Fu@1.4 , this time processing them according to line

c.4. It executes TreeMerge to determine procedure used to build the sub-forest of the

tree rooted at Fu@1.4. None of the trees rooted at Fi@1.4 and Fu@1.4 has children,

hence OlbMerge examines nodes Fi@1.5 and Fu@1.5. They have equal ranks, but

because node Fi@1.5 is labelled by c∈πeb Merge outputs the tree rooted at Fu@1.5

into Fr, and moves both on Fi and Fu. Finally, OlbMerge outputs node Fu@i5, ac-

cording to line c.1.

Theorem 4.3.11. Let u be an update over D and π be the inferred type projector

for u. Then for each p-tree t∈D, we have: Merge(t | u(π(t))) ∼ u(t).

Above, value equivalence ∼ captures the idea that the two processes return the

same document up to node identifiers.

4.4 Implementation and Experiments

This Section is not complete for the moment.

4.4.1 Implementation issues

In order to validate the effectiveness of our method, we have implemented both pro-

jection and merge algorithms in Java. The only technical gap between the formal

method and its implementation concerns node identifiers or positions. Although

made explicit in the formal scenario, the implementation does not materialize po-

sitions in the input document t: it is not necessary. Positions are generated on

the fly while parsing t, during projection and during Merge. Indeed, for each node,

the implementation generates its rank among its siblings: full node position is not

necessary. In π(t), this rank is stored by means of a special new attribute for node

only/one level below nodes and by means of another new attribute for ∀ below node.

4.4. Implementation and Experiments 81

The potential overhead due to these special attributes is mitigated by the size re-

duction ensured by projection. The use of two distinct attributes is required for

technical reason related to insertion and replace updates and also to the way source

elements are copied during their execution.

The algorithm Merge is implemented by means of two threads, parsing resp. t

and π(t). These threads are defined in terms of classes obtained by extending ex-

isting SAX parser classes [6]. While processing the XML document the SAXParser

calls methods in the DefaultHandler subclass instance corresponding to what

the parser finds in the XML file. To react to these method calls we override the

corresponding methods in the DefaultHandler subclass.

The two threads interact with each other according to the Producer-Consumer

pattern.

According to this pattern the Producer generates a piece of data, puts it into the

buffer and starts again. At the same time the Consumer thread is consuming

the data, removing it from the buffer one piece at a time. The issue here is to

make sure that the producer will not try to add data into the buffer if it’s full and

that the consumer will not try to remove data from an empty buffer. We use this

pattern to send the horizontal position (the rank values) of each node being parsed

to the next thread, besides this we pass as well the current Merging mode (i.e.,

NoMerge, OlbMerge, etc.).

The solution for Producer used in our implementation is the following: Producer

waits if the buffer is full, while Consumer removes an item from the buffer and

notifies Producer who starts to fill the buffer again.

Class Diagram Figure 4.21 illustrates the Class Diagram which "encapsulates"

our implementation. As the reader can observe, we have the following classes:

OriginalDocHadler - This class is a subclass of the DefaultHandler class and

overrides certain inherited methods, like startDocument(), startElement(),

characters() and etc. This class parses the Original XML document, which

has not been updated. OriginalDocHadler uses the methods of SmartQueue

class.

UpdatedDocHadler - This class, similarly to the previous one, extends the

DefaultHandler class, but parses the Updated XML Document.

Producer - This class extends the Thread class and overrides the run() method.

In this method we create an instance of the OriginalDocHadler class and call

its parse() method to parse the Original XML document.

Consumer - This class extends the Thread class and overrides the run() method.

In this method we create an instance of the UpdatedDocSaxHadler class and

call its parse() method to parse the Updated XML document.

82 Chapter 4. Enabling XML Update Optimization ...

SmartQueue

merge_Mode : String

what_to_Do_Open_Tag_Orig : String

what_to_Do_Str_Orig : String

what_to_Do_Close_Tag_Orig : String

what_to_Do_Open_Tag_UP : String

what_to_Do_Str_UP : String

what_to_Do_Close_Tag_UP : String

mustDelete : boolean

mustEvb : boolean

lastElementChilds : StringBuffer

take() : Object

put(data : Vector)

notifyToOtherThread()

end()

onEnd() : boolean

appendElement(element : String)

delString()

SmartQueue(outStream : OutputStream)

outputBuffer(element : StringBuffer)

DefaultHandler

DefaultHandler()

startDocument()

startElement(uri : String,localName : String,qName : String,attributes : Attributes)

characters(ch : char[],start : int,length : int)

endElement(uri : String,localName : String,qName : String)

endDocument()

OriginalDocHandler

stackOrig : Stack

horCounter : long

curTau : String

pos_Up : long

evb_pos_Up : long

critFlag_OneLevel_Below : boolean

critFlag_Everythig_Below : boolean

critTau_onelevel_below_Set : long

critTau_Everything_below_Set : long

isClosed_UP : long

...

OriginalDocSaxHandler()

parse()

startDocument()

startElement(uri : String,localName : String,qName : String,attr : A...)

characters(ch : char[],start : int,length : int)

endElement(uri : String,localName : String,qName : String)

endDocument()

UpdatedDocHandler

stackUP : Stack

new_elem_Counter : long

evb_elem_Counter : long

...

OriginalDocSaxHandler()

parse()

startDocument()

startElement(uri : String,localName : String,qName : String,attr : A...)

characters(ch : char[],start : int,length : int)

endElement(uri : String,localName : String,qName : String)

endDocument()

ProducerThread

queue : SmartQueue

ProducerThread(queue : SmartQueue)

run()

ConsumerThread

queue : SmartQueue

ConsumerThread(queue : SmartQueue)

run()

 uses usesruns

runs

Figure 4.21: Class Diagram

SmartQueue - this class implements the Producer-Consumer pattern. To sup-

port this pattern, this class has three methods: put(Object) and take() and

notifyToOtherThread().

4.4. Implementation and Experiments 83

SmartQueue, deals with the output result of Merge. For example, the

appendElement() method appends Open and Close tags, together with at-

tributes and string values of a parsed nodes. delString() deletes the con-

tent of lastElementChild variable. outputBuffer() writes the content of the

StringBuffer to the resulting XML document.

It is worth noticing, that the variable mergeMode preserves the name of the

Merge procedure according to which the current two nodes must be exam-

ined. For example, NoMerge or OlbMerge. We have the third mergeMode case

EvbMerge which is explained in the next paragraph.

Implementation issue for "everything below" component As it has been

explained in Chapter 4 during projection phase we assign unique identifiers to

each node, which are used while Merging two documents. Therefore, in the

implementation of the projection, when we parse the XML document, to each node

we assign a label attribute (e.g. we have < name label="2">, for the node having

identifier 1.2.1.2) to store the horizontal position of the identifier. During the Merge

process we use this attribute to compare the child ranks. The same is true for the

case where the projector contains "everything below" component.

Let us recall the example 4.2.6 from Section 4.2. Figure 4.22-4 illustrates the

projected tree t1 with label attributes, which preserve the horizontal positions.

Figure 4.22-5 illustrates the partial result t′, where the "in place of" inserted

element labelled by d has new i identifier. The issue here is that this node contains,

as well, the label attribute, which has been assigned during projection phase.

According to the formalization given in Section 4.3, when the parent node of a

forest Fi is labeled by a∈πolb, Merge executes the OlbMerge procedure on the first

level children of this forest. Recall that the comparisons of the identifiers is essential

during the Merge process. Therefore, in the implementation, for each node in t′

the label values are retrieved and compared with the calculated on fly horizontal

positions of nodes from t. An issue arises while processing the children t@1.2 and

t′@i2, because t′@i2 contains the attribute label=1, which belongs to the "in place

of" inserted node t@2.1. As a consequence, while comparing the labels 2 and 1 we

fall into a case out of the formalazation.

An other, special case, not illustrated here, arises when the label value of a node

from t′ is greater than the one of t. For example, if the "in place of" inserted

node t′@i has label=3, and we compare the nodes t@1.2 and t′@i. In this case,

according to OlbMerge, because the label value of t′@i is greater than the one of

t@1.2 , we should skip the tree rooted at t@1.2, although this is incorrect in this case.

To deal with this problem we proposed the following solution illustrated in Figure

4.23. As the reader can observe, in Figure 4.23-4, during projection we do not assign

the label attribute to the node labelled by d∈πeb, instead we assign the evb attribute.

For our example we have that the nodes t@2.1 is assigned to a evb=1. It is worth

84 Chapter 4. Enabling XML Update Optimization ...

for $x in /doc/a
return replace node $x/b
with $x/d

(1) The update u6

πno={doc}
πolb={a}
πeb={d}

(2) The three level type projector π6

doc

[ε]

a
[label=1]

b
[label=1]

b
[label=2]

c
[label=3]

c
[label=4]

a
[label=2]

d
[label=1]

f
[label=1]

(4) The projection t1 of t wrt π6

doc

[ε]

a
[1]

b
[1.1]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

f
[2.1.1]

(3) The XML document t

doc

[ε]

a
[label=1]

d
[i label=1]

f
[i1 label=1]

d
[i2 label=1]

f
[i3 label=1]

c
[label=3]

c
[label=4]

a
[label=2]

d
[label=1]

f
[label=1]

(5) The partial result t′

Figure 4.22: The projector component πeb and label attribute

for $x in /doc/a
return replace node $x/b
with $x/d

(1) The update u6

πno={doc, b}
πolb={a}
πeb={d}

(2) The three level type projector π6

doc

[ε]

a
[label=1]

b
[label=1]

b
[label=2]

c
[label=3]

c
[label=4]

a
[label=2]

d
[evb=1]

f
[]

(4) The projection t1 of t wrt π6

doc

[ε]

a
[1]

b
[1.1]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

f
[2.1.1]

(3) The XML document t

doc

[ε]

a
[label=1]

d
[i evb=1]

f
[i1]

d
[i2 evb=1]

f
[i3]

c
[label=3]

c
[label=4]

a
[label=2]

d
[evb=1]

f
[]

(5) The partial result t′

Figure 4.23: The projector component πeb and evb attribute

4.4. Implementation and Experiments 85

noticing that we do not assign evb attributes to descendants. This time, during

Merge process, we do the following steps. First we process the nodes t@1.1 and t′@i

and because its label value is null we output the tree rooted at t@′i. Next for the

same reason we output the tree rooted at t′@i2. After that, we skip the trees rooted

at t@1.1 and t@1.2, since they have been replaced. Note, that for the nodes t@2.1

and t′@2.1 we compare the values of evb attribute, to skip the deleted trees if it is

the case.

Sequence Diagram Figure 4.37 illustrates the sequence diagram of the Merge

algorithm implementation.

First, the Producer thread starts parsing the Original document. Producer

calls the startElement() method (see 1) of OriginalDocHandler. Note that, in

this diagram we do not consider startDocument() and endDocument() methods.

Here we have two possible scenarios: 1.1 and 1.2. If the type of the node does not

belong to one of the projector components, then the appendElement() (see 1.1)

method of SmartQueue is executed to append to StringBuffer the Open tag of

the parsed element, with its attributes (e.g., <item id="item0">).

Otherwise, the horizontal position of the parsed node and the current merging mode

curTau are stored in vector_Producer and the put(vector_Producer) method

(see 1.2) of SmartQueue is executed. This method calls notify() to start the

Consumer thread, while Producer is set to waiting state. It is worth noticing, that

the curTau variable can be equal to one of the followings: "NoMerge", "OlbMerge",

"EvbMerge". This value depends on the type of the parsed node. For instance, if

it belongs to the πno component, then it is set to "NoMerge".

First, we follow the scenario of 1.1, which corresponds to the lines 2 and 5 of the

NoMerge formalization given in Section 4.3. In this case, in the next step, Producer

calls the characters() method (see 1.2.5.1.2) and outputs the string value of the

parsed node. After that, the endElement() method (see 1.2.5.1.4) is executed and

the Close tag is output (e.g., </item>). It is worth noticing that, if a node has

descendants, startElement() is called instead of characters().

According to the scenario 1.2, Consumer starts parsing the Updated document

and calls the startElement() method (see 1.2.2). In this method we first, retrieve

the curTau and horizontal position values from the buffer. To achieve this we call

the take() method (see 1.2.3) of SmartQueue. After consuming these values, first

we output the Open tag (see 1.2.4), then we set the mergeMode, which corresponds

to the procedure of Merge, according to which the processing continues.

If curTau="NoMerge", then it means that the parsed node in Producer thread

was labelled by type that belongs to the πno component. Thus, we set the

mergeMode="NoMerge" and the further processing is specified by NoMerge proce-

dure. Here we have the following two possible cases, either the retrieved horizontal

86 Chapter 4. Enabling XML Update Optimization ...

position of the identifiers is equal to the one of the parsed node, or the current

horizontal position is greater than the one retrieved from the buffer.

The first case corresponds to line 4 of the NoMerge formalization given in Section

4.3. In this case, we simply set the value of what_to_Do_Str_Orig=”write” and

call the notifyToOtherTread() (see 1.2.5.0) method, without putting any data to

the buffer. After that, Producer calls the characters() method (see 1.2.5.1.2) to

output the string value of the parsed node. If what_to_Do_Str_Orig=”write”

the appendElement() method (see 1.2.5.1.3) is executed. Finally, Producer calls

the endElement() method (see 1.2.5.1.3) and because the mergeMode="NoMerge"

the notifyToOtherThread() (see 1.2.5.1.4.2) method is called to output the Close

tag from Consumer.

For the second case (which corresponds to line 3 of the NoMerge formalization) we

add to the buffer the horizontal position of the parsed node together with the local

stack size (stack.size), which we need to re-calculate the vertical position of a node.

After that, we call the put(vector_Producer) method (see 1.2.5.1) of SmartQueue,

which in its turn notifies the Producer thread (see 1.2.5.1.1). Note, that before

notifying the other thread we set the mustDelete variable of SmartQueque to

true. This aims at skipping outputting the descendants of a deleted node. Once

the parsed node in Producer thread has the horizontal and vertical positions equal

to the ones of the node kept in the buffer, the mustDelete is set to false.

If curTau="OlbMerge", similarly to the above case, we have two possible cases:

either the horizontal positions are equal, or the position of the node parsed by the

Consumer thread is greater. First case corresponds to line c.4 of the OlbMerge for-

malization, while the second one maps line c.3. It is worth noticing that in this case

we set the what_to_Do_Str_Orig="skip" and what_to_Do_Str_Up="write"

to output the string value of a node, which corresponds to line c.2 of OlbMerge

formalazation.

If curTau="EvbMerge", then the mergeMode variable is set to "EvbMerge"

and instead of calling the put() or notifyToOtherThread() methods, Consumer

calls first, the characters() (see 1.2.5.2) then endElement() methods to output the

string value and the close tag of the parsed node. At the end of the endElement()

method the synchronization is passed back to Producer (see 1.2.5.2.4).

If mergeMode="OlbMerge" and the parsed node in the Consumer thread contain

neither label nor evb attributes the merge mode is set to mergeMode="New".

This case corresponds to line c.2 of OlbMerge procedure formalization. In this case,

the Producer thread stays in waiting state, while Consumer continues parsing

descendants until it outputs the close tag of the parent node.

The last value of mergeMode is "OlbChild" and is set while parsing the first level

children of nodes typed by πolb, if the types of these nodes are not in any projector

component. The behavior in this case is the same as "NoMerge". Note, that this

case corresponds to to line c.5 of the OlbMerge formalization.

It is worth noticing that, when any node has been deleted during the execution of

an update query, it can happen that the startElement() method of Producer calls

4.4. Implementation and Experiments 87

site

regions

Africa,...

Item

categories catgraph people open_auctions

open_auction

initial

closed_auctions

closed_auction

price

Figure 4.24: Structure of XMark documents

the endElement() method of Consumer (line c.1’ of the OlbMerge formalization).

This can happen when the child node has been deleted and Consumer must close

the tag of the parent node. In this case, our solution is to set the mustDelete to

true, add the horizontal position value -1 to the buffer and send it to Producer.

When Producer reads the Close tag of the parent the value of mustDelete is set

back to false.

4.4.2 Experiments

Several tests have been performed using our Java implementation and 20 updates on

XMark documents [35] of growing size. Figure 4.24 illustrates a part of the structure

of all XMark documents. As reader can observe all child nodes of the site element

contain date elements on their descendant axis, except of the category, people and

catgraph elements.

These updates, together with their associated projectors, are reported in the

The updates and the corresponding projectors paragraph, and cover the main

update operations made available by XQuery Update Facility (insert, rename,

replace and delete). All experiments were performed on a 2.53 Ghz Intel Core 2

Duo machine (2 GB main memory) running Mac OSX 10.6.4.

The updates used are classified into five categories: insert (U1, U6, U7, U11, U12,

U13, U17), delete (U4, U8, U10, U14, U16), replace (U2, U9, U15, U18, U19, U20),

replace value of (U3) and rename (U5).

Three-level type projectors extracted from these updates are illustrated in Table

4.4. The first and the third categories aim at testing the OlbMerge procedure,

while the second and the fourth ones aim at testing the NoMerge procedure. The

updates U15, U19 and U20 aim at testing the correctness of our technique using

88 Chapter 4. Enabling XML Update Optimization ...

Saxonee Qizx F-E eXist MXQuery

MB 128 580 148 52

Figure 4.25: Maximal input sizes

the documents that contain recursive nodes. The updates U5, U9, U15, U19 and

U20 test the correctness of our technique when the projector contains "everything

below" component. We use the updates U8 and U16 to show the effectiveness of

our method while applying a very selective projector.

To perform our tests, documents having sizes 128MB, 1GB, 1-5GB and 2GB

have been generated using XMark generator. with scaling factors of 0.001, 0.01, 0.1

and 1.0 .

The first kind of tests aims at detecting memory limitations of four popular

query processors implemented in Java: Saxon EE 9.2.0.2 [7], Qizx Free-Engine-3.2.0

[4] and eXist 1.2.5 [2]. We set to 512 MB the Java virtual machine memory, while

the size of XMark documents considered goes from 50 MB to 2 GB. The sizes of

largest documents these processors could update without projection are reported in

fig. 4.25. For this test, we used the less memory consuming update U4. Three out

of four systems cannot deal with documents whose size is greater than 150 MB,

while Qizx is able to process documents whose size is slightly higher than the Java

virtual memory size (this is due to some efficient techniques adopted by Qizx for

compacting internal document representation).

The second kind of tests evaluates our projection based technique. We focused

on two systems Saxon, Qizx and BaseX, and used the whole set of 20 updates. In

both cases, tests show that our technique can ensure great improvements.

As it has been explained at the beginning of in this Chapter, the projection

technique is divided into three steps: Projection, Update and Merge.

Each of this steps is divided into intermediate phases, and it is important to

consider the execution time of each phase. Figures 4.26, 4.28 and 4.30 illustrate

the phases which are processed while updating the projected document using Qizx,

Saxon and BaseX, respectively.

First, we execute the projection. The total execution time of the projection is

divided into three phases: t_proj1, reading the input document, t_proj2, project-

ing and storing the projected data in a buffer and t_proj3 (writing the stored data

to a file once the buffer is full).

The intermediate phases of updating the projected documents and storing the

update result are different for Saxon compared to Qizx and BaseX.

The update execution in Qizx (or BaseX) process as follows. First, a document

4.4. Implementation and Experiments 89

2. projection

1. read

t_proj2

4. importing 5 execution 6. exporting

t_qizx2 t_qizx3

8. merge

9. write

Updated doc.

t_merg3

Original doc.

t_proj1

t_qizx1

t_merg1

3. write
7. read

t_proj3 t_merg2

Figure 4.26: Execution with Projection using Qizx

2. projection

1. read

t_proj2

4. importing 5 execution 6. exporting

t_qizx2 t_qizx3

7. merge

8. write

Updated doc.

t_merg2

Original doc.

t_proj1

t_qizx1

t_merg1

Figure 4.27: Execution with Projection using Qizx Optimization

90 Chapter 4. Enabling XML Update Optimization ...

2. projection

1. read

t_proj2

4. query analysis 5 tree built 6. execution

t_saxon2 t_saxon3

8. merge

9. write

Updated doc.

t_merg2

Original doc.

t_proj1
result

t_saxon1

t_merge1

3. write
7. read

t_proj 3 t_merg2

Figure 4.28: Execution with Projection using Saxon

2. projection

1. read

t_proj2

3. query analysis 4. tree built 5. execution

t_saxon2 t_saxon3

6. merge

7. write

Updated doc.

t_merg2

Original doc.

t_proj1
result

t_saxon1

t_merge1

Figure 4.29: Execution using Projection using Saxon, Optimization

4.4. Implementation and Experiments 91

2. projection

1. read

t_proj2

4. importing 5 execution 6. exporting

t_qizx2 t_qizx3

8. merge

9. write

Updated doc.

t_merg3

Original doc.

t_proj1

t_qizx1

t_merg1

3. write
7. read

t_proj3 t_merg2

Figure 4.30: Execution with Projection using BaseX

is imported: t_qizx1. While importing the document Qizx creates indexes and

stores nodes, attributes and text values on the disk. After that, the update query is

executed on the stored document, where t_qizx2 is the execution time of the update.

Note that, Qizx applies the resulting changes directly on the stored data, thus in

order to get the updated document we need to export it (to serialize): t_qizx3.

It is worth noticing, that for Qizx the exporting time is very small for the documents

with small sizes and we do not consider this time during our test. Therefore as it is

reported in Table 4.6 the total update execution time for the projected document

using Qizx is the following: importing + query execution (t_qizx1+ t_qizx2).

On the contrary, for BaseX the exporting time is considerable, therefore as it is

reported in Table 4.10 the total update execution time for the projected document

using BaseX is the following: importing + query execution + exporting (t_qizx1+

t_qizx2 + t_qizx3).

The update execution using Saxon process as follows. First, the update query is

analyzed: t_saxon1. Next, the tree mapping XML document is built: t_saxon2.

Finally, the update is executed on that tree: t_saxon3. Note that, the time spent

on writing (serializing) the updated document is included in the query execution

time. Therefore, as it is illustrated in Table 4.7 the total execution time on the

projected document is equal to: analysis + tree built + execution (t_saxon1 +

t_saxon2 + t_saxon3).

The Merge step is the same for the both systems. First, we read the original

92 Chapter 4. Enabling XML Update Optimization ...

and the updated documents: t_merg1. Next, we process Merge: t_merg2, storing

the intermediate results in a buffer and finally writing the result of Merge to a file:

t_merg3.

It is worth noticing that the intermediate steps like writing the pruned document

then importing it to execute an update, or writing the updated document then

reading it to execute Merge, can be optimized, as it is illustrated in Figures 4.27

and 4.29. To achieve this, during the projection, we need to store the projected

nodes directly on the disk for Qizx (without writing to a file) and to create a node

Object for each projected node for Saxon. This is considered as one of the future

optimizations of our technique.

Figure 4.31: Documents size reduction after pruning

4.4. Implementation and Experiments 93

Figure 4.32: Execution time of Projection

4.4.2.1 Projection

The document size reduction of projected documents are reported in Figure 4.31

and Table 4.1. The execution time of projection is illustrated in Figure 4.32.

As the reader can observe, the best results, 4KB for 2GB, are reported for the

updates U8 and U16. The worst result is reported for the update U9, 535.6 MB

for 2GB, due to the low selectivity of the "one level" component (941 850 nodes)

and the considerable number of descendants (3 200 564 nodes) of the "everything

94 Chapter 4. Enabling XML Update Optimization ...

below" component, which, as well, selects the text values.

The similar results are reported for the execution time of projection time. The

best results are reported for the updates U8 (42.792 sec.) and U16 (44.121 sec. for

2GB), while the worst one is for the update U9 (115.86 sec. for 2GB). The execution

time is long for this update, because there is more I/O calls between a buffer and a

result file.

4.4.2.2 Merge

The execution time of the Merge process is reported in Figure 4.33. As the reader

can observe, once again, the best results are reported for the updates U8 and U16 (

122.516 and 129.893 sec. for 2GB respectively). On the contrary to the projection,

the worst result is reported for the update U5 (359.423 sec. for 1-5GB). While for

the update U9 the execution time is 189.66 sec. for 1-5GB. This kind of result is

due to the number of thread notifications while the Merge process.

4.4.2.3 Update

Figures 4.34, 4.35 and 4.36 illustrate results of the tests performed on Saxon, Qizx

and BaseX, respectively. In all figures, missing value for time means memory failure.

Tables 4.6 and 4.7 reports both the Qizx and Saxon update execution times for our

20 updates without projection and update execution times on the projection. It is

worth noticing that for the case without projection we are illustrating the execution

time only for 128MB, since Saxon is not able to execute the updates on bigger

documents due to memory limitations. Table 4.9 reports the total update execution

times on the projection using Saxon and Qizx respectively.

Or. Size MB U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

128MB 2.1 5 1.2 1.5 7.5 3.9 4.6 0.00391 33.5 0.543

1GB 19.1 46.6 11.1 14 69.6 36.6 43.1 0.00391 311 5.2

1,5GB 25.8 63 15 18.9 93.9 49.4 58.2 0.00391 418.2 7.1

2GB 33 80.5 19.2 24.2 120.2 63.2 74.4 0.00391 535.6 9.1

nodes for 128MB 75 899 170 952 37 634 55 767 261 233 132 585 159 783 3 296 794 15 606

πolb descendants 59 031 99 535 0 0 0 77 300 55 318 0 59 031 0

πeb descendants 0 0 0 0 0 0 49 358 0 200 134 0

nodes for 2GB 1 210 952 2 726 240 600 308 887 185 4 169 353 2 112 414 2 549 102 3 4 742 717 249 306

πolb descendants 941 850 1 585 004 0 0 0 1 231 928 880 458 0 941 850 0

πeb descendants 0 0 0 0 0 0 789 334 0 3 200 564 0

Or. Size MB U11 U12 U13 U14 U15 U16 U17 U18 U19 U20

128MB 6.2 7.4 6.3 7.5 1.7 0.00391 0.332 0.132 1.7 7.3

1GB 57.2 68.7 59.2 69.3 16.1 0.00391 3.1 1.2 16.1 67.3

1,5GB 77.2 92.7 79.9 93.6 21.7 0.00391 4.2 1.7 21.6 90.8

2GB 98.7 118.5 102.1 119.8 27.4 0.00391 5.4 2.1 27.3 116.1

nodes for 128MB 207 524 257 939 52 253 259 884 7 118 2 8 435 4 439 6 514 292 839

πolb descendants 83 046 184 039 0 0 604 0 8 433 1 065 0 23 167

πeb descendants 0 0 0 0 4 521 0 0 0 3 765 207 432

nodes for 2GB 3 309 669 4 114 232 839 814 4 150 967 112 992 2 134 552 70 166 103 432 4 667 385

πolb descendants 1 325 161 2 940 170 0 0 9 560 0 134 550 16 746 0 368 518

πeb descendants 0 0 0 0 71 590 0 0 0 59 370 3 306 612

Table 4.1: Size reduction by projection

4.4. Implementation and Experiments 95

Figure 4.33: Merge process execution time

Saxon Concerning Saxon, tests results are synthesized in Figures. 4.34.1 and

4.34.2, reporting, respectively, total execution time by not using and by using pro-

jection. They clearly show that our technique succeeds in its primarily purpose:

making possible to update very large documents with in-memory systems, in the

presence of memory limitations. Note that, the total time in the case of projected

documents (see fig. 4.34.2) includes time for i) projecting the input, ii) storing the

projection, iii) updating the projection and storing it, and iv) performing the final

merge.

As it is reported in Figure 4.34.1 our technique succeeds, as well, to optimize the up-

date execution time for several updates. Mainly, for the 128MB document, we have

the following reductions of execution times, expressed in percentages: U3 (5.20%),

96 Chapter 4. Enabling XML Update Optimization ...

(1)Updating without projection (2)Updating on the projection

Figure 4.34: Results of the tests performed on Saxon

4.4. Implementation and Experiments 97

U4(7.40%), U6(2.90%), U8(38.50%), U10(32.90%), U14(7.20%), U15(31.40%),

U16(38.40%), U17(30.70%), U18(26.10%), U19(31.10%) and U20(13.40%). This

is because the time spent for projection, merging and reading/writing documents

is recovered by a faster update process thanks to a significantly smaller size of the

projected document (fig. 4.31). Nevertheless, for the following updates execution

without projection is lower: U1(-28.50%), U2(-2.80%), U5(-70.80%), U7(-34.40%),

U9(-54.60%), U11(-27.60%), U12(-58.20%) and U13(-10.40%).

As the reader can observe the updates U5, U12 and U9 report more than 50% of

penalization while executing updates using projection. There are several reasons

why projection is more time consuming for these updates.

The first reason is that the Merge processing is very expensive for these updates,

which is due to the number of nodes being synchronized (many thread notifications

are called during the processing). For instance, as it is reported in Table 4.1 for the

update U9 the number of the projected nodes for the document having size 128MB

is the greatest: 296 794. Then in the second place we have the update U5: 261 233.

Finally the update U12: 257 939.

Here it is worth noticing that, even the number of nodes being projected for U9 is

greater than the number of nodes for U5, the execution time for Merge is less expen-

sive for U9. The reason is that for U9 we have 200 134 nodes which have been pro-

jected because of being the decedents of the annotation- node (πeb={annotation}),

thus are not synchronized.

Also observe that in Figure 4.34-(2) for U5, U9, U11, U12, U14 and U20 Saxon

was not able to update documents having size greater than 1 GB (due to memory

failure). The projector of this update reveals that this is due to its low selectivity.

It is worth noticing that for the update U2 the memory failure reports the memory

limitations related to the attributes storing, which proves the effectiveness of the

projection technique, since we do not project the attributes which are not used by

an update.

Percentage of gain using projection

Or. Size MB U1 U2 U3 U4 U5 U6 U7 U8 U9

128MB 28.65 31.56 36.49 27.74 -49.25 83.87 -64.74 55.25 -17.38

1GB 46.14 - 48.48 - -17.83 - 33.85 65.16 1.93

1,5GB 47.11 - 50.14 - -11.78 - 29.06 63.73 0.31

2GB 49.53 - 50.14 - -10.73 - 34.07 64.34 4.6

Or. Size MB U10 U11 U12 U13 U14 U16 U17 U18 U20

128MB 80.85 21.12 -10.17 23.22 82.66 55.84 52.23 49.05 30.02

1GB 92.5 - 2.19 30.46 - 59.1 58.28 57.85 -

1,5GB - - 9.82 40.26 - 61.17 60.95 59.7 -

2GB - - 15 35.51 - 62.58 63.4 78.37 -

Table 4.2: Gain in terms of the execution time with projection using BaseX

98 Chapter 4. Enabling XML Update Optimization ...

(1)Updating without projection (2)Updating on the projection

Figure 4.35: Results of the tests performed on Qizx

4.4. Implementation and Experiments 99

(1)Updating without projection (2)Updating on the projection

Figure 4.36: Results of the tests performed on BaseX

100 Chapter 4. Enabling XML Update Optimization ...

Qizx Qizx shows less severe memory limitations. Total execution times are

reported in fig. 4.35-1 and 4.35-2. We still have great improvements in terms of

memory: with projection, we can update up to 2GB for all updates except U9, while

without projection the limit is 520 MB. However, for Qizx, projection also ensures

sensible total execution time reduction. This is in part due to the fact that Qizx

needs a significant time to build auxiliary indexes at loading time. This improvement

in terms of execution time also testifies the effectiveness of our design choices at the

projector, and Merge function level. For the 128MB document, we have the following

reductions of execution times, expressed in percentages: U1(54.10%), U2(68.10%),

U3(73.30%), U4(75.70%), U5(46.80%), U6(53.10%), U7(39.80%), U8(85.30%),

U9(41.70%), U10(80.40%), U11(51.70%), U12(56.40%), U13(72.40%), U14(53.40%),

U15(84.10%), U16(84.80%), U17(83.30%), U18(82.70%), U19(83.30%) and

U20(70%).

BaseX Update execution times for updates performed on BaseX, without and

with using the projection, are reported in Table 4.8. Total execution times,

including the projection, update evaluation and Merge process are reported in

Table 4.10. In the tables the empty columns indicate that the execution time was

more than 25 minutes. (Note that we did not report any execution time for the

updates U15 and U19, because a "duplicate attributes" error was raised during the

updates evaluation.) As the reader can observe BaseX shows the best results for

the update execution without projection from the point of view of memory usage,

nevertheless the update execution time is very long. For instance, the execution

time of the update U10 performed on the document having size of 1-5GB is 1.9

hour. On the contrary, using projection optimizes the execution time for the same

update. As it is reported in Table 4.2 for the update U10 we have 80.85% and

92.5% of gain for documents having sizes 128MB and 1GB respectively.

This considerable gain of the execution time while using projection is due to

a significant decrease of shifts to be performed on the pages after an update

execution, as it has been explained in Chapter 3.

A last kind of tests we made concerns the computation of a unique projection

(using a global projector π_gb) for the following updates executed in the following

order: U5, U3, U6, U18 and U8. The document has been projected once, then all

the updates have been evaluated on the projection, and finally Merge has been

executed once to obtain the final document. The obtained results are reported

in Table 4.3. As the reader can observe with Saxon, Qizx and BaseX this took,

respectively, 87.869, 93.581 and 326.476 seconds on the 128MB document. For

this document, the sum of total times needed to projecting, updating and merging

for each single update was much higher, respectively 115.055, 442.965 and 442.507

seconds for Saxon, Qizx and BaseX.

4.4. Implementation and Experiments 101

The updates and the corresponding projectors

U1. for $x in $doc/site/closed_auctions/closed_auction

where not ($x/annotation) return

insert node <annotation>Empty Annotation</annotation>

as last into $x

U2.for $x in $doc/site/people/person/address

where $x/country/text()="United States" return

(replace node $x with

<address>

<street>{$x/street/text()}</street>

<city>"NewYork"</city>

<country>"USA"</country>

<province>{$x/province/text()}</province>

<zipcode>{$x/zipcode/text()}</zipcode>

</address>)

U3.for $x in $doc/site/regions//item/location

where $x/text()="United States"

return (replace value of node $x with "USA")

U4.delete nodes $doc/site/regions//item/mailbox/mail

U5.for $x in $doc/site//text/bold return

rename node $x as "emph"

U6.for $x in $doc/site/people/person

where not($x/homepage)

return insert node

<homepage>www.{$x/name/text()}Page.com</homepage>

after $x/emailaddress

U7.for $x in $doc/site/people/person,

for $y in $doc/site/people/person

where $x/name = $y/name

and not ($y/address) and $x/address/country=’Malaysia’

return insert node $x/address

after $y/emailaddress

Workload evaluation
using a global projector

Saxon Qizx BaseX

π_gb

projection 9.903 9.903 9.903

update 33.858 39.57 272.465

merge 44.108 44.108 44.108

total 87.869 93.581 326.476

Update execution
without the projection

Saxon Qizx BaseX

- - -

115.055 442.965 442.507

- - -

115.055 442.965 442.507

Table 4.3: Workload evaluation

102 Chapter 4. Enabling XML Update Optimization ...

πno πolb πeb
U1 site, closed_auctions, annotation closed_auction ∅

U2 site, people, address person, country,

street, province,

zipcode

∅

U3 site, regions, africa, asia, australia,

europe, namerica, samerica, item

location ∅

U4 site, regions, africa, asia, australia,

europe, namerica, samerica, item,

mailbox, mail

∅ ∅

U5 site, regions, africa, asia, australia,

europe, namerica, samerica, lis-

titem, bold, mailbox, mail, item,

description, text, open_auctions,

open_auction, closed_auctions,

closed_auction, annotation, parlist

∅ ∅

U6 site, people, homepage, emailad-

dress

person, name ∅

U7 site, people,emailaddress person, name, country address

U8 site, regions, australia ∅ ∅

U9 site, open_auctions, open_auction,

closed_auctions

closed_auction annotation

U10 site, open_auctions, open_auction privacy ∅

U11 site, open_auctions, bidder, initial open_auction,increase ∅

U12 site, regions, africa, asia, australia,

europe, namerica, samerica, mail-

box, mail

item,date ∅

U13 site, open_auctions,open_auction,

annotation, description, key-

word,bold

text,emph ∅

U14 site, regions, africa, asia, aus-

tralia, europe, namerica, samerica,

item, description, parlist, listitem,

mailbox, mail, closed_auctions,

closed_auction, annotation,

open_auctions, open_aucton,

text, emph

∅ ∅

U15 site, categories, category, listitem description parlist

U16 site, closed_auctions ∅ ∅

U17 site closed_auctions ∅

U18 site, categories, category, descrip-

tion, parlist

listitem ∅

U19 site, categories, category, descrip-

tion

parlist listitem

U20 site, open_auctions, increase open_auction bidder

Table 4.4: Three-level type projector for updates

4.4. Implementation and Experiments 103

πno πolb πeb
U_gb site, regions, africa, asia, aus-

tralia, europe, namerica, samerica,

bold, mailbox, mail, item, de-

scription, text, open_auctions,

open_auction, closed_auctions,

closed_auction, annotation, parlist,

people, homepage, categories,

category, description

location, person,

name, parlist, listitem

∅

Table 4.5: Three-level type projector for workload

U8. delete nodes $doc/site/regions/australia

U9. let $k := $doc/site/closed_auctions/closed_auction[last()]

for $b in $doc/site/open_auctions/open_auction[last()]

return replace node $k/annotation with $b/annotation

U10. for $x in $doc/site/open_auctions/open_auction

where ($x/privacy="Yes")

return delete node $x

U11. for $x in $doc/site/open_auctions/open_auction

where $x/bidder/increase < 20

return insert node

<bidder>

<date>08/17/2000</date>

<time>15:15:15</time>

<personref/>

<increase>1.50</increase>

</bidder>

after $x/initial

U12. for $x in $doc/site/regions//item

where ($x/mailbox/mail/date/text()="07/04/1998")

return insert node <incategory/> before $x/mailbox

U13. for $x in $doc/site/open_auctions/open_auction/annotation/description/text

where ($x/keyword/emph/text()="unique") and ($x/bold)

return insert node <emph>newTexT</emph> before $x/bold

U14. for $x in $doc/site//text/emph

return delete node $x

U15. for $x in $doc/site/categories/category/description/parlist

where ($x/listitem/parlist) return

replace node $x with $x/listitem/parlist[1]

104 Chapter 4. Enabling XML Update Optimization ...

U16. for $x in $doc/site/closed_auctions

return delete node $x

U17. for $x in $doc/site/closed_auctions

return insert node

<closed_auction>

<seller/>

<buyer/>

<itemref/>

<price>39.58</price>

<date>02/15/1998</date>

<quantity>1</quantity>

<type>Regular_new</type>

<annotation/>

</closed_auction> as last into $x

U18. for $x in $doc/site/categories/category/description/parlist/listitem

where ($x/parlist) return

replace node $x/parlist with <text>newText</text>

U19. for $x in $doc/site/categories/category/description/parlist/listitem

return replace node $x with $x/parlist/listitem[1]

U20. for $x in $doc/site/categories/category/description/parlist/listitem

return replace node $x with $x/parlist/listitem

4.5 Conclusion

In this Chapter we have presented the experiments performed with the propose to

prove the effectiveness of our method. Our goal was to illustrate that our technique

optimizes the memory limitations of the existing native XML update engines. We

have tested XML documents having sizes of 128MB, 1GB, 1-5GB and 2GB. The

results of these experiments demonstrate that the updates execution with using pro-

jection can process documents having sizes up to 2GB. While executing the same

updates without projection fails to evaluate updates on the documents with sizes

staring from 1GB for Saxon and Qizx.

On the contrary, the experiments report the effectiveness of BaseX for the mem-

ory usage, some of the updates have been executed up to 2GB. Nevertheless, that

executing updates using BaseX is more expensive from the execution time point of

4.5. Conclusion 105

view. The experiments demonstrate that using projection results in time improve-

ments for the most of the cases.

These improvements are explained by the fact that in BaseX for some of the updates

performing an insertions or deletions of nodes results in new page insertions or tuple

shifts. Therefore, the time improvements while executing for some of the updates

using projection is because no shifts are required.

As the reader can observe the execution of the updates U5, U9, U11, U12, U14 and

U20 on Saxon reports not very satisfactory results. This is due to low selectivity of

the three-level type projector for these updates. In the next Chapter we present the

extension of our method, mainly the extension of three-level type projector which

optimizes memory savings.

106 Chapter 4. Enabling XML Update Optimization ...

Qizx update execution
without projection

Update query 128MB

U1

importing time 43.969

query exec. time 0.046

total exec. time 44.015

U2

importing time 43.888

query exec. time 45.597

total exec. time 89.485

U3

importing time 43.854

query exec. time 45.098

total exec. time 88.952

U4

importing time 43.859

query exec. time 38.251

total exec. time 82.11

U5

importing time 43.317

query exec. time 46.235

total exec. time 89.552

U6

importing time 43.817

query exec. time 46.001

total exec. time 89.818

U7

importing time 43.811

query exec. time 0.958

total exec. time 44.769

U8

importing time 43.82

query exec. time 42.011

total exec. time 85.831

U9

importing time 43.725

query exec. time 45.187

total exec. time 88.912

U10

importing time 44.368

query exec. time 41.282

total exec. time 85.65

Qizx update execution
on the projection

128MB 1GB 1.50GB 2GB

1.112 5.947 8.557 10.3

0.039 0.041 0.048 0.054

1.151 5.988 8.605 10.354

2.147 20.455 27.36 38.263

2.783 24.901 34.825 45.887

4.93 45.356 62.185 84.15

0.595 5.065 6.634 8.825

0.717 7.081 9.532 11.597

1.312 12.146 16.166 20.422

1.125 6.485 9.029 11.186

0.805 7.296 10.035 9.558

1.93 13.781 19.064 20.744

2.885 32.858 44.801 57.091

3.07 35.505 46.132 61.142

5.955 68.363 90.933 118.233

2.445 20.81 27.539 33.574

2.808 24.958 33.157 42.062

5.253 45.768 60.696 75.636

2.816 23.25 30.242 38.335

0.623 62.834 107.09 159.086

3.439 86.084 137.332 197.421

0.116 0.92 0.114 0.111

0.034 0.043 0.037 0.044

0.15 0.963 0.151 0.155

11.75 104.839 151.426 193.123

12.64 121.378 170.81 -

24.39 226.217 322.236 -

0.529 2.582 3.302 4.224

0.247 1.541 2.067 2.931

0.776 4.123 5.369 7.155

4.5. Conclusion 107

Qizx update execution
without projection

Update query 128MB

U11

importing time 44.116

query exec. time 47.31

total exec. time 91.426

U12

importing time 43.899

query exec. time 44.725

total exec. time 88.624

U13

importing time 43.707

query exec. time 45.588

total exec. time 89.295

U14

importing time 43.865

query exec. time 43.655

total exec. time 87.52

U15

importing time 43.982

query exec. time 45.241

total exec. time 89.223

U16

importing time 43.974

query exec. time 38.74

total exec. time 82.714

U17

importing time 43.872

query exec. time 44.095

total exec. time 87.967

U18

importing time 44.001

query exec. time 44.811

total exec. time 88.812

U19

importing time 43.994

query exec. time 45.107

total exec. time 89.101

U20

importing time 43.7

query exec. time 46.827

total exec. time 90.527

Qizx update execution
on the projection

128MB 1GB 1.50GB 2GB

2.945 26.723 40.745 51.514

3.551 33.604 46.519 60.187

6.496 60.327 87.264 111.701

3.71 32.36 45.541 58.662

3.226 30.472 43.54 55.726

6.936 62.832 89.081 114.388

1.77 15.751 20.966 26.552

1.586 15.725 21.284 26.608

3.356 31.476 42.25 53.16

3.331 32.006 42.712 52.774

3.221 28.578 42.51 51.066

6.552 60.584 85.222 103.84

0.895 4.632 6.026 8.129

0.494 4.305 5.394 7.188

1.389 8.937 11.42 15.317

0.127 0.123 0.127 0.118

0.04 0.05 0.04 0.04

0.167 0.173 0.167 0.158

0.655 0.844 1.321 1.821

0.138 0.763 1.273 1.367

0.793 1.607 2.594 3.188

0.372 0.573 0.758 1.435

0.12 0.521 0.652 1.017

0.492 1.094 1.41 2.452

0.876 4.685 5.945 8.136

0.347 2.498 3.583 4.124

1.223 7.183 9.528 12.26

3.568 30.951 42.629 52.466

4.099 36.927 49.317 61.265

7.667 67.878 91.946 113.731

Table 4.6: Qizx update execution without projection and on the projection

108 Chapter 4. Enabling XML Update Optimization ...

Saxon update execution
without projection

Update query 128MB

U1

analysis time 0.169

tree built time 7.933

execution time 8.176

total 16.278

memory used 498281944

U2

analysis time 0.181

tree built time 7.933

execution time 17.576

total 25.69

memory used 512195048

U3

analysis time 0.172

tree built time 8.004

execution time 12.847

total 21.023

memory used 504621904

U4

analysis time 0.156

tree built time 8.092

execution time 12.363

total 20.611

memory used 501430264

U5

analysis time 0.16

tree built time 8.078

execution time 18.398

total 26.636

memory used 530171776

U6

analysis time 0.175

tree built time 8.26

execution time 17.522

total 25.957

memory used 516794712

U7

analysis time 0.178

tree built time 8.035

execution time 11.002

total 19.215

memory used 516562888

U8

analysis time 0.153

tree built time 8.157

execution time 12.398

total 20.708

memory used 497630640

U9

analysis time 0.166

tree built time 7.982

execution time 12.427

total 20.575

memory used 498249800

U10

analysis time 0.166

tree built time 7.968

execution time 18.778

total 26.912

memory used 511625264

Saxon update execution
on the projection

128MB 1GB 1.50GB 2GB

0.173 0.17 0.172 0.171

0.432 3.62 4.879 6.238

0.546 3.881 5.201 6.716

1.151 7.671 10.252 13.125

23075200 176037616 241334912 302249312

0.178 0.18 - -

0.906 8.297 - -

1.693 13.127 - -

2.777 21.604 - -

53457896 475446888 Attr. Problem -

0.193 0.169 0.17 0.169

0.223 1.896 2.577 3.18

0.633 3.241 4.263 5.359

1.049 5.306 7.01 8.708

21211328 115835288 156182640 206032488

0.152 0.153 0.154 0.152

0.314 2.743 3.757 4.751

0.631 4.398 5.82 7.312

1.097 7.294 9.731 12.215

23681936 187571320 254896728 318573656

0.157 - - -

1.358 - - -

2.228 - - -

3.743 - - -

101053248 - - -

0.199 0.171 0.173 -

0.711 6.115 8.517 -

1.457 9.91 13.935 -

2.367 16.196 22.625 -

40840608 362230008 485650528 -

0.172 0.172 0.173 -

0.753 6.901 9.419 -

1.411 33.043 55.437 -

2.336 40.116 65.029 -

47116112 365147848 482577720 -

0.151 0.178 0.151 0.151

0.008 0.008 0.01 0.008

0.102 0.103 0.116 0.107

0.261 0.289 0.277 0.266

11396000 11395960 11401720 11396216

0.162 - - -

1.589 - - -

2.757 - - -

4.508 - - -

115656128 - - -

0.164 0.165 0.166 0.166

0.152 0.768 1.065 1.422

1.779 234.411 448.873 724.206

2.095 235.344 450.104 725.794

18784608 57282744 164462968 218551088

4.5. Conclusion 109

Update query 128MB

U11

analysis time 0.213

tree built time 8.215

execution time 17.936

total 26.364

memory used 499555496

U12

analysis time 0.179

tree built time 8.491

execution time 13.457

total 22.127

memory used 500551456

U13

analysis time 0.18

tree built time 7.917

execution time 12.421

total 20.518

memory used 501115400

U14

analysis time 0.158

tree built time 8.495

execution time 32.182

total 40.835

memory used 512383104

U15

analysis time 0.167

tree built time 7.976

execution time 12.657

total 20.8

memory used 498525408

U16

analysis time 0.158

tree built time 8.132

execution time 12.282

total 20.572

memory used 497654568

U17

analysis time 0.166

tree built time 7.975

execution time 12.552

total 20.693

memory used 498076432

U18

analysis time 0.175

tree built time 8.014

execution time 12.542

total 20.731

memory used 499037944

U19

analysis time 0.159

tree built time 8.079

execution time 12.516

total 20.754

memory used 499020608

U20

analysis time 0.18

tree built time 8.122

execution time 44.695

total 52.997

memory used 511534016

128MB 1GB 1.50GB 2GB

0.184 - - -

1.064 - - -

2.076 - - -

3.324 - - -

70784272 - - -

0.176 - - -

1.306 - - -

1.836 - - -

3.318 - - -

69188488 Cannot build tree - -

0.179 0.179 0.179 0.178

0.422 3.247 4.038 5.104

0.795 5.423 7.574 8.985

1.396 8.849 11.791 14.267

30979736 239002832 310447312 402909512

0.158 - - -

1.36 - - -

2.196 - - -

3.714 - - -

85633200 - - -

0.165 0.163 0.165 0.164

0.129 0.561 0.723 0.899

0.3 1.261 1.71 1.975

0.594 1.985 2.598 3.038

8926616 53135120 64903808 85213224

0.156 0.154 0.154 0.153

0.01 0.011 0.008 0.008

0.119 0.125 0.128 0.103

0.285 0.29 0.29 0.264

11352760 11441688 11353184 11358624

0.163 0.163 0.164 0.164

0.102 0.443 0.581 0.738

0.256 0.64 0.878 1.018

0.521 1.246 1.623 1.92

15679328 24466160 32162144 39068760

0.174 0.174 0.172 0.174

0.081 0.275 0.316 0.412

0.234 0.522 0.644 0.751

0.489 0.971 1.132 1.337

15035272 23899600 24514856 26556376

0.157 0.158 0.157 0.158

0.126 0.578 0.734 0.897

0.334 1.016 1.416 1.67

0.617 1.752 2.307 2.725

9247736 47510304 68573672 79626760

0.177 - - -

1.147 - - -

25.076 - - -

26.4 - - -

66656024 Cannot build tree - -

Table 4.7: Saxon update execution without projection and on the projection

110 Chapter 4. Enabling XML Update Optimization ...

BaseX update execution
without the projection

Update query 128MB 1GB 1.50GB 2GB

U1

importing time 18.353 165.771 230.271 308.032

update 0.131 0.259 0.432 0.543

exporting time 11.353 106.384 146.404 192.34

total 29.837 272.414 377.107 500.915

U2

importing time 18.858

update 354.073

exporting time 11.95

total 384.881

U3

importing time 18.361 165.684 234.93 298.201

update 1.027 7.609 8.741 12.343

exporting time 11.63 117.677 159.593 200.932

total 31.018 290.97 403.264 511.476

U4

importing time 17.489

update 185.246

exporting time 9.532

total 212.267

U5

importing time 17.084 165.661 230.358 298.495

update 1.543 12.136 19.563 26.037

exporting time 11.281 111.277 159.86 205.568

total 29.908 289.074 409.781 530.1

U6

importing time 18.882

update 291.624

exporting time 11.356

total 321.862

U7

importing time 18.072 171.486 222.32 290.087

update 2.33 219.07 385.634 648.409

exporting time 11.762 149.056 170.388 213.134

total 32.164 539.612 778.342 1151.63

U8

importing time 18.932 170.856 223.748 290.087

update 0.028 0.045 0.137 0.137

exporting time 10.831 106.988 137.916 175.649

total 29.791 277.889 361.801 465.873

U9

importing time 18.008 172.562 223.386 290.481

update 0.093 0.48 0.747 0.945

exporting time 11.817 111.739 150.664 200.206

total 29.918 284.781 374.797 491.632

U10

importing time 18.55 159.103

update 75.543 6900.808

exporting time 11.411 108.157

total 105.504 7168.068

BaseX update execution
on the projection

128MB 1GB 1.50GB 2GB

0.976 3.455 4.502 6.74

0.115 0.288 0.399 0.456

0.425 0.824 1.241 0.764

1.516 4.567 6.142 7.96

1.434

238.107

0.256

239.797

0.52 2.588 3.347 3.976

0.208 1.274 2.078 2.27

0.08 0.762 0.908 1.159

0.808 4.624 6.333 7.405

0.628

134.155

0.6

135.383

1.346 14.753 18.802 24.088

0.926 6.78 10.378 12.914

0.608 4.958 6.954 8.554

2.88 26.491 36.134 45.556

1.228

27.511

0.336

29.075

1.623 9.534 12.475 15.074

27.511 171.325 301.718 438.707

0.336 3.432 4.859 6.243

29.47 184.291 319.052 460.024

0.83 0.81 0.87 0.82

0.006 0.015 0.017 0.015

0.001 0.001 0.001 0.001

0.837 0.826 0.888 0.836

4.411 36.317 48.755 63.395

0.068 0.316 0.397 0.509

3.328 31.576 44.059 56.844

7.807 68.209 93.211 120.748

0.338 1.357 1.596 1.996

3.865 418.669 783.36 1276.555

0.019 0.168 0.3 0.265

4.222 420.194 785.256 1278.816

4.5. Conclusion 111

BaseX update execution
without the projection

Update query 128MB 1GB 1.50GB 2GB

U11

importing time 18.59

update 323.009

exporting time 12.169

total 353.768

U12

importing time 18.565 159.556 222.67 293.134

update 0.58 18.114 35.492 60.31

exporting time 11.807 106.304 157.704 212.259

total 30.952 283.974 415.866 565.703

U13

importing time 17.814 160.613 229.253 294.838

update 0.206 8.663 2.578 6.399

exporting time 12.262 110.049 159.793 211.907

total 30.282 279.325 391.624 513.144

U14

importing time 18.094

update 1441.761

exporting time 11.801

total 1471.656

U16

importing time 18.661 160.249 225.684 299.406

update 0.026 0.106 0.196 0.185

exporting time 10.077 92.492 125.768 166.269

total 28.764 252.847 351.648 465.86

U17

importing time 18.435 159.541 224.741 298.024

update 0.022 0.032 0.041 0.51

exporting time 11.417 110.229 153.81 234.228

total 29.874 269.802 378.592 532.762

U18

importing time 18.149 159.572 221.512 298.273

update 0.386 18.004 31.157 509.81

exporting time 11.393 113.571 168.699 218.194

total 29.928 291.147 421.368 1026.277

U20

importing time 17.84

update 155.698

exporting time 11.64

total 185.178

BaseX update execution
on the projection

128MB 1GB 1.50GB 2GB

1.577

246.341

0.814

248.732

1.693 12.866 17.066 21.672

0.331 10.627 18.298 30.4

0.384 3.626 6.396 8.002

2.408 27.119 41.76 60.074

1.178 7.784 10.432 13.388

0.102 0.576 0.701 1.059

0.703 5.819 8.813 10.323

1.983 14.179 19.946 24.77

1.922

218.582

0.417

220.921

0.275 0.29 0.275 0.3

0.015 0.015 0.015 0.015

0.001 0.001 0.001 0.001

0.291 0.306 0.291 0.316

0.402 0,885 1.07 1.327

0.02 0.02 0.021 0.022

0.013 0.114 0.123 0.142

0.435 0.134 1.214 1.491

0.205 0.585 0.632 0.797

0.189 10.397 18.64 30.603

0.007 0.059 0.08 0.093

0.401 11.041 19.352 31.493

1.874

107.675

0.502

110.051

Table 4.8: BaseX update execution without projection and on the projection

112 Chapter 4. Enabling XML Update Optimization ...

Saxon total update execution
on the projection

Update query 128MB 1GB 1.50GB 2GB

U1

projection 5.066 31.255 38.917 51.719

merge 14.706 110.897 154.434 193.142

update 1.151 7.671 10.252 13.125

total 20.923 149.823 203.603 257.986

U2

projection 5.782 40.905 50.905 67.795

merge 17.857 142.671 194.75 240.482

update 2.777 21.604 - -

total 26.416 205.18 - -

U3

projection 4.877 32.233 40.37 53.469

merge 14.014 113.041 154.366 194.162

update 1.049 5.306 7.01 8.708

total 19.94 150.58 201.746 256.339

U4

projection 4.967 34.914 41.37 57.199

merge 13.042 96.83 130.459 183.603

update 1.097 7.294 9.731 12.215

total 19.106 139.038 181.56 253.017

U5

projection 6.374 47.151 62.509 78.131

merge 35.385 266.975 359.423 463.308

update 3.743 - - -

total 45.502 - - -

U6

projection 5.435 37.793 47.72 63.363

merge 17.419 140.027 181.971 230.477

update 2.367 16.196 22.625 -

total 25.221 194.016 252.316 -

U7

projection 6.089 38.866 49.332 65.945

merge 17.416 133.789 183.736 233.264

update 2.336 40.116 65.029 -

total 25.841 212.771 298.097 -

U8

projection 3.635 26.282 31.566 42.792

merge 8.854 69.706 98.752 122.516

update 0.261 0.289 0.277 0.266

total 12.75 96.277 130.595 165.574

U9

projection 9.704 68.682 90.789 115.86

merge 17.611 142.394 189.66 -

update 4.508 - - -

total 31.823 - - -

U10

projection 4.537 29.875 36.898 48.951

merge 11.443 87.942 122.064 152.708

update 2.095 235.344 450.104 725.794

total 18.075 353.161 609.066 927.453

Qizx total update execution
on the projection

128MB 1GB 1.50GB 2GB

5.066 31.255 38.917 51.719

14.706 110.897 154.434 193.142

1.151 5.988 8.605 10.354

20.923 148.14 201.956 255.215

5.782 40.905 50.905 67.795

17.857 142.671 194.75 240.482

4.93 45.356 62.185 84.15

28.569 228.932 307.84 392.427

4.877 32.233 40.37 53.469

14.014 113.041 154.366 194.162

1.312 12.146 16.166 20.422

20.203 157.42 210.902 268.053

4.967 34.914 41.37 57.199

13.042 96.83 130.459 183.603

1.93 13.781 19.064 20.744

19.939 145.525 190.893 261.546

6.374 47.151 62.509 78.131

35.385 266.975 359.423 463.308

5.955 68.363 90.933 118.233

47.714 382.489 512.865 659.672

5.435 37.793 47.72 63.363

17.419 140.027 181.971 230.477

5.253 45.768 60.696 75.636

28.107 223.588 290.387 369.476

6.089 38.866 49.332 65.945

17.416 133.789 183.736 233.264

3.439 86.084 137.332 197.421

26.944 258.739 370.4 496.63

3.635 26.282 31.566 42.792

8.854 69.706 98.752 122.516

0.15 0.963 0.151 0.155

12.639 96.951 130.469 165.463

9.704 68.682 90.789 115.86

17.611 142.394 189.66 -

24.39 226.217 322.236 -

51.705 437.293 602.685 -

4.537 29.875 36.898 48.951

11.443 87.942 122.064 152.708

0.776 4.123 5.369 7.155

16.756 121.94 164.331 208.814

4.5. Conclusion 113

Saxon total update execution
on the projection

Update query 128MB 1GB 1.50GB 2GB

U11

projection 6.378 44.919 56.042 74.53

merge 23.938 213.411 280.634 345.573

update 3.324 - - -

total 33.64 - - -

U12

projection 7.357 47.042 59.944 77.221

merge 24.332 203.574 273.321 345.553

update 3.318 - - -

total 35.007 - - -

U13

projection 4.892 56.814 49.4 99.319

merge 16.379 128.597 172.78 217.321

update 1.396 8.849 11.791 14.267

total 22.667 194.26 233.971 330.907

U14

projection 6.562 46.596 62.371 80.73

merge 27.657 247.696 333.826 415.218

update 3.714 - - -

total 37.933 - - -

U15

projection 3.963 28.035 35.035 47.39

merge 9.719 83.937 112.008 145.334

update 0.594 1.985 2.598 3.038

total 14.276 113.957 149.641 195.762

U16

projection 3.515 25.367 31.474 44.121

merge 8.891 77.743 104.796 129.893

update 0.285 0.29 0.29 0.264

total 12.691 103.4 136.56 174.278

U17

projection 4.062 27.807 34.688 47.059

merge 9.773 84.616 111.96 146.452

update 0.521 1.246 1.623 1.92

total 14.356 113.669 148.271 195.431

U18

projection 3.708 25.701 32.397 44.169

merge 11.141 85.986 118.054 146.325

update 0.489 0.971 1.132 1.337

total 15.338 112.658 151.583 191.831

U19

projection 4.023 28.298 34.63 48.145

merge 9.663 79.959 109.35 136.654

update 0.617 1.752 2.307 2.725

total 14.303 110.009 146.287 187.524

U20

projection 6.586 44.538 55.773 75.88

merge 12.946 106.932 144.72 188.678

update 26.4 - - -

total 45.932 - - -

Qizx total update execution
on the projection

128MB 1GB 1.50GB 2GB

6.378 44.919 56.042 74.53

23.938 213.411 280.634 345.573

6.496 60.327 87.264 111.701

36.812 318.657 423.94 531.804

7.357 47.042 59.944 77.221

24.332 203.574 273.321 345.553

6.936 62.832 89.08 114.388

38.625 313.448 422.345 537.162

4.892 56.814 49.4 99.319

16.379 128.597 172.78 217.321

3.356 31.476 42.25 53.16

24.627 216.887 264.43 369.8

6.562 46.596 62.371 80.73

27.657 247.696 333.826 415.218

6.552 60.584 85.222 103.84

40.771 354.876 481.419 599.788

3.963 28.035 35.035 47.39

9.719 83.937 112.008 145.334

1.389 8.937 11.42 15.317

15.071 120.909 158.463 208.041

3.515 25.367 31.474 44.121

8.891 77.743 104.796 129.893

0.167 0.173 0.167 0.158

12.573 103.283 136.437 174.172

4.062 27.807 34.688 47.059

9.773 84.616 111.96 146.452

0.793 1.607 2.594 3.188

14.628 114.03 149.242 196.699

3.708 25.701 32.397 44.169

11.141 85.986 118.054 146.325

0.492 1.094 1.41 2.452

15.341 112.781 151.861 192.946

4.023 28.298 34.63 48.145

9.663 79.959 109.35 136.654

1.223 7.183 9.528 12.26

14.909 115.44 153.508 197.059

6.586 44.538 55.773 75.88

12.946 106.932 144.72 188.678

7.667 67.878 91.946 113.731

27.199 219.348 292.439 378.289

Table 4.9: Saxon and Qizx total update execution on the projection

114 Chapter 4. Enabling XML Update Optimization ...

BaseX update execution
without the projection

Update query 128MB 1GB 1.50GB 2GB

U1

projection - - - -

merge - - - -

update - - - -

total 29.837 272.414 377.107 500.915

U2

projection -

merge -

update -

total 384.881

U3

projection - - - -

merge - - - -

update - - - -

total 31.018 290.97 403.264 511.476

U4

projection -

merge -

update -

total 212.267

U5

projection - - - -

merge - - - -

update - - - -

total 29.908 289.074 409.781 530.1

U6

projection -

merge -

update -

total 321.862

U7

projection - - - -

merge - - - -

update - - - -

total 32.164 539.612 778.342 1151.63

U8

projection - - - -

merge - - - -

update - - - -

total 29.791 277.889 361.801 465.873

U9

projection - - - -

merge - - - -

update - - - -

total 29.918 284.781 374.797 491.632

U10

projection - -

merge - -

update - -

total 105.504 7168.068

BaseX total update execution
on the projection

128MB 1GB 1.50GB 2GB

5.066 31.255 38.917 51.719

14.706 110.897 154.434 193.142

1.516 4.567 6.142 7.96

21.288 146.719 199.493 252.821

5.782

17.857

239.797

263.436

4.877 32.233 40.37 53.469

14.014 113.041 154.366 194.162

0.808 4.624 6.333 7.405

19.699 149.898 201.069 255.036

4.967

13.042

135.383

153.392

6.374 47.151 62.509 78.131

35.385 266.975 359.423 463.308

2.88 26.491 36.134 45.556

44.639 340.617 458.066 586.995

5.435

17.419

29.075

51.929

6.089 38.866 49.332 65.945

17.416 133.789 183.736 233.264

29.47 184.291 319.052 460.024

52.975 356.946 552.12 759.233

3.635 26.282 31.566 42.792

8.854 69.706 98.752 122.516

0.837 0.826 0.888 0.836

13.326 96.814 131.206 166.144

9.704 68.682 90.789 115.86

17.611 142.394 189.66 232.427

7.807 68.209 93.211 120.748

35.122 279.285 373.66 469.035

4.537 29.875 36.898 48.951

11.443 87.942 122.064 152.708

4.222 420.194 785.256 1278.816

20.202 538.011 944.218 1480.475

4.5. Conclusion 115

BaseX update execution
without the projection

Update query 128MB 1GB 1.50GB 2GB

U11

projection -

merge -

update -

total 353.768

U12

projection - - - -

merge - - - -

update - - - -

total 30.952 283.974 415.866 565.703

U13

projection - - - -

merge - - - -

update - - - -

total 30.282 279.325 391.624 513.144

U14

projection -

merge -

update -

total 1471.656

U16

projection - - - -

merge - - - -

update - - - -

total 28.764 252.847 351.648 465.86

U17

projection - - - -

merge - - - -

update - - - -

total 29.874 269.802 378.592 532.762

U18

projection - - - -

merge - - - -

update - - - -

total 29.928 291.147 421.368 1026.277

U20

projection -

merge -

update -

total 185.178

BaseX total update execution
on the projection

128MB 1GB 1.50GB 2GB

6.378

23.938

248.732

279.048

7.357 47.042 59.944 77.221

24.332 203.574 273.321 345.553

2.408 27.119 41.76 60.074

34.097 277.735 375.025 482.848

4.892 56.814 49.4 99.319

16.379 128.597 172.78 217.321

1.983 8.849 11.791 14.267

23.254 194.26 233.971 330.907

6.562

27.657

220.921

255.14

3.515 25.367 31.474 44.121

8.891 77.743 104.796 129.893

0.291 0.306 0.291 0.316

12.697 103.416 136.561 174.33

4.062 27.807 34.688 47.059

9.773 84.616 111.96 146.452

0.435 0.134 1.214 1.491

14.27 112.557 147.862 195.002

3.708 25.701 32.397 44.169

11.141 85.986 118.054 146.325

0.401 11.041 19.352 31.493

15.25 122.728 169.803 221.987

6.586

12.946

110.051

129.583

Table 4.10: BaseX update execution without projection and total update on the projection

116 Chapter 4. Enabling XML Update Optimization ...

/Producer

<<thread>> /OriginalDocHandler /SmartQueue /UpdatedDocHandler

1.1 put(vector_Producer)

1. startElement()

1.2 characters()

1.3 endElement()

if (curTau != "one level" and
 "curTau != "everything below" and
id_up != new) then
smartQueue.what_to_Do_Str_Orig = "write"
if (id_horiz_orig < id_horiz_up) then sets
smartQueue.mustDelete = true
smartQueue.mergeMode = "NoMerge"
vector_Producer.add(stack.size());
vector_Producer.add(atts.getValue("e"));
 and calls smartQueue.put(vector_Producer)
else if
(smartQueue.mergeMode = "OlbMerge"
or "EvbMerge" or
 smartQueue.mergeMode = "New")
smartQueue.what_to_Do_Str_Orig = "skip";
smartQueue.what_to_Do_Str_Up = "write"
and if mergeMode != "OlbMerge"calls
 characters() of UpdatedDocHandler

if (!smartQueue.isEmpty()){
 vector_Consumer =
(Vector) smartQueue.take();
}

appendElement()

put(vector_Producer)

take()

notify()

if a label "a" belongs to
one of the 3 components
then
vector_Producer.add(horCounter);
vector_Producer.add(atts);
vector_Producer.add(stack.size());
vector_Producer.add(curTau);

smartQueue.put(vector_Producer);

if a label "a" does not
belong to one of the 3
 projector components
 then
call
smartQueue.appendElement();
to output Open Tag,
e.g <qName>

appendElement()

appendElement()

/Consumer

<<thread>>

appendElement()

notify()

startElement()

characters()

if
smartQueue.
what_to_Do_Str_Orig.
equales("write")

if a node is labelled by type
"a" which does not belongs
neither to
"node only" nor "one level"
 component
then
output CloseTag from
OriginalDocHandler
</qName>

appendElement()

if
node is labelled by type "a"
which belongs either to
"node only" or "one level"
 component
then
notify UpdatedDocHandeler to
output ClosedTag

notifyToOtherThread()

endElement()

 if
(mergeMode=="OlbMerge")
or
(mergeMode=="NoMerge")
or
(mergeMode=="EvbMerge" &&
critCounter == 0)

appendElement()

notifyToOtherThread()

1

1.1

1.2 1.2.1

1.2.3

1.2.2

1.2.4

1.2.5.1

1.2.5.2
1.2.5.2.1

1.2.5.2.2

1.2.5.2.3

1.2.5.2.4

1.2.5.1.1

1.2.5.1.2 1.2.5.1.3

1.2.5.1.4 1.2.5.1.4.1

1.2.5.1.4.2

if
smartQueue.
what_to_Do_Str_Up.
equales("write")

notifyToOtherThread()1.2.5.0

Figure 4.37: Sequence Diagram

Chapter 5

Extending the Type Projection

based evaluation of Updates

Contents

5.1 Introduction . 117

5.2 Extending the Type Projector for Update Optimization . . 120

5.2.1 Case analysis: update operation in isolation 120

5.2.2 Case analysis: mixing update operations of different kinds . . 128

5.3 Definition of the Extended Projection 146

5.3.1 Merge . 148

5.3.2 Function TreeMerge - one projector component at a time - . 149

5.3.3 Function TreeMerge - general case - 159

5.3.4 Conclusion . 164

In this Chapter we present the extension of the type projector for update op-

timization. This extension aims to optimize memory savings. In Section 5.1 we

explain the motivation of this extension. In Section 5.2 we introduce extensions

applied on the type projector. In Section 5.3 we provide the definitions and explain

the usage of new procedures added to the Merge algorithm.

5.1 Introduction

In the previous chapter, we introduced and discussed the update optimization

method based on type projection where the projector used is a three-level type

projector π={πno, πolb, πeb}. In our setting, optimization is essentially space

oriented. The goal is to be able to process very large documents that do not fit in

main memory and which cannot be handled by query engines. Thus, improving the

update optimization method means providing a more precise projector. The aim of

this chapter is to modify the type projector in order to further prune documents.

The starting point is that the "one level below" component of the projector may

lead to projecting nodes that are not necessary for the update execution. In order to

overcome this problem, the type projector is extended based on a careful analysis of

update operations. These operations are classified into seven kinds : "insert as last",

"insert as first", "insert before", "insert after", "replace", "delete" and "rename".

118 Chapter 5. Extending the Type Projection based evaluation...

doc → a*

a → d?, (a | k | b | c | z | c)∗

d → (f | g)∗

z → (f | g)∗

b → String

e → String

Figure 5.1: The DTD D

The analysis made for extracting the projector (extraction of the projector is out

of the scope of this work) is not only based on the paths relevant for evaluating the

update. The analysis also classifies the extracted paths with respect to the kinds of

updates (or other access) they are involved with.

In order to motivate our approach, we propose to start by an example show-

ing that the three level type projector may be improved and how it can be improved.

Example 5.1.1 (Motivating example).
Figure 5.2 provides an example of the application of the projection technique using

the three-level type projector for a given DTD (see fig. 5.1), a document t (see

fig. 5.2-3) and a given update u (see fig. 5.2-1) resulting in the insertion of a new

element labelled by e as the last child of the element labelled by a (see fig. 5.2-9).

projection - The three-level projector for this update query is given in the Figure

5.2-2. The resulting projected tree t1 is depicted in Figure 5.2-4. Note here, that

the projector π selects all children of the nodes labelled by a because a∈πolb. In

section 4.3 we have motivated this by showing that it is necessary for ensuring the

correctness of the Merge phase.

extended projection - The purpose of the extended projector is to avoid projecting

all children of nodes labelled by a. For this example, we propose to use a new

projector given in (see fig. 5.2-6). This type projector has a new component called

πaslast. Its execution is depicted in (see fig. 5.2-7). Notice that this time, the nodes

labelled by a are projected without their children.

new behaviour of merge - The Merge algorithm is changed as follows, taking into

account the new projector component πaslast: when processing t@1 (see fig. 5.2-3)

and text2 @1 (see fig. 5.2-8), because a∈πaslast, Merge will first output in the final

result all subtrees of t@1. Then, because a ∈ πaslast), all the subtrees of text2 @1,

which are the "as last" inserted elements (see fig. 5.2-9). Merging t@2 and text2 @2

is done with the same rules.

The presentation is decomposed in two steps:

• First, we will introduce the new projector for update expressions involving

only one kind of update operation at a time.

5.1. Introduction 119

for $x in /doc/a
return insert node <e/>
as last into $x

(1) The update u

πno={doc}
πolb={a}
πeb=∅

(2) The three level type projector

doc

[ε]

a
[1]

d
[1.1]

b
[1.2]

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

(4) The projection t1 of t wrt π

πno={doc}
πaslast={a}
πeb=∅

(6) The extended projector πext for u

doc

[ε]

a
[1]

e
[i1]

a
[2]

e
[i2]

(8) The partial update u(text1)=text2

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(3) The XML document t

doc

[ε]

a
[1]

d
[1.1]

b
[1.2]

c
[1.3]

c
[1.4]

e
[i1]

a
[2]

d
[2.1]

e
[i2]

(5) The partial update u(t1)

doc

[ε]

a
[1]

a
[2]

(7) The projection text1 of t wrt extended πext

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

e
[i1]

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

e
[i2]

(9) The Final result u(t)

Figure 5.2: Three level type projector versus the extended type projector

120 Chapter 5. Extending the Type Projection based evaluation...

• Next, we will analyze the impact of having several kinds of update operations

involved in the same update expression.

It worth noticing that the extension of the type projector entails several changes

of the Merge algorithm. Recall that, one the one hand, in order to ensure correctness

of the Merge phase, the type projector needs to contain enough "types" and, on the

other hand, the Merge phase uses the type projector to decide which nodes to output

and also to control the synchronized parsing of the initial document and the partial

updated document. The case analysis below focuses on the new type projector and

also provides the intuition on the new behavior of the Merge phase which will be

more formally described in the last section.

5.2 Extending the Type Projector for Update Optimiza-

tion

A careful analysis shows that it is possible to improve the precision of the type pro-

jector, in the way presented by the Example 5.2, for each kind of update operation.

As already said, we start by presenting the case analysis for simple situations where

the updates generate a unique kind of update operations. In the presentation of the

examples the type projectors are specified by their non-empty components.

5.2.1 Case analysis: update operation in isolation

Case "insert as first" .

To explain the application of the extended projector during the projection of a

document, we will consider the example of Figure 5.3.

Example 5.2.1. See Figure 5.3.

The update (see fig. 5.3-1) involves several update operations, each of them being

of the same kind "insert as first". In this case, similarly to the motivating example

(see fig. 5.2) we aim that it is sufficient to project nodes labelled by a without their

children.

projector extraction - The type projector has a new component πasfirst (see fig.

5.3-2) capturing the types of node which are potentially target of "insert as first"

operations.

projection - The projection wrt πext is very simple: first it projects node t@ε la-

belled by doc, then its children t@1 and t@2 labelled by a (see fig. 5.3-4). The

distinction between nodes labelled by doc and nodes labelled by a is needed for the

purpose of the Merge phase.

update - The result of the execution of the update u1 on the document t is given

in the Figure 5.3-5. As the reader can observe, the subtree of the tree t2, rooted

at t2@1 contains "as first" inserted subtrees rooted at t2@i (labelled by e), t2@i2

(labelled by b) and t2@i3 (labelled by c). It is similar for the subtree rooted at t2@2.

5.2. Extending the Type Projector for Update Optimization 121

for $x in /doc/a
return
{ insert nodes (<e>new</e>,,<c/>)
as first into $x }

(1) The update query u1

πno={doc}
πasfirst={a}

(2) The extended projector πext for u1

doc

[ε]

a
[1]

a
[2]

(4) The projection t1 wrt to πext

doc

[ε]

a
[1]

e
[i1]

’new’

b
[i2]

c
[i3]

d
[1.1]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

e
[i1]

’new’

b
[i2]

c
[i3]

d
[2.1]

f
[2.1.1]

(6) Merging t with t2

doc

[ε]

a
[1]

d
[1.1]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

f
[2.1.1]

(3) The XML document t

doc

[ε]

a
[1]

e
[i1]

’new’

b
[i2]

c
[i3]

a
[2]

e
[i4]

’new’

b
[i5]

c
[i6]

(5) The partial update t2

Figure 5.3: Dealing with "insert as first" in isolation

122 Chapter 5. Extending the Type Projection based evaluation...

merge - While processing nodes t@1 of t (see fig. 5.3-3) and t2@1 of the partially

updated tree t2 (see fig. 5.3-5), the information given by the type projector that

t@1 is labelled by a∈πasfirst is used by the Merge phase which consequently gives

priority to output the children of t2@1 whose nodes are identified by i1, i2, i3 (see

fig. 5.3-6). After that Merge continues to output all subtrees of t@1, since none of

their root labels belongs to πext. 2

Case "insert as last" .

This case is similar to the previous one. A πaslast component is introduced in the

projection in order to deal with such case, as already illustrated in the motivation

example.

Case "insert before" .

Example 5.2.2. See Figure 5.4.

The update (see fig. 5.4-1) involves several update operations of the same kind

"insert before" resulting in the insertion of new elements before the elements labelled

by d and c.

projector extraction - To project the document t (see fig. 5.4-3) we introduce a

new projector component πbef (see fig. 5.4-2). Notice here that the πbef component

is a set of pairs of types. This new specification is made to be able to refine the

projector: intuitively, if (x, y) is a pair of labels in πbef , it means that nodes labelled

by x are potentially parents of nodes labelled y which are potential targets of "insert

before" operations; it also allows for avoiding to project nodes labelled by y when

their parent is not labelled by x. The use of pairs to specify the projector component

is also going to be useful when considering the general case and mixing different kinds

of insertion (for instance "before" and "after") as explained in Section 5.2.2.

Next, we use the following notation:

par(πbef)={x|(x, y)∈πbef} and ch(πbef) ={y|(x, y)∈πbef}.

For the example, we have that par(πbef)={a} and ch(πbef)={d, c}.

projection - The projection wrt πext (see fig. 5.4-2) of the document t is depicted in

Figure 5.4-4. Its execution first selects node t@ε labelled doc∈πno of the document

t. Next, because a∈par(πbef), the node t@1 is projected. After that, the children

of t@1 are parsed in order to project the node t@1.1 labelled by d∈ch(πbef) and the

nodes t@1.3 and t@1.4 labelled by c∈ch(πbef). For the subtree t@2, the projection

selects only the node t2@2.1 labelled by d∈ch(πbef). Once again, the distinction

between nodes labelled by doc and nodes labelled by a, d and c is important for the

Merge phase.

update - The result of the execution of the update u2 on the document t1 is given

in Figure 5.4-5. The subtree rooted at t2@1 contains the elements t2@i1 and t2@i2

"inserted before" the target node t2@1.1, the elements t2@i3 and t2@i4 "inserted

before" the target node t2@1.3 and, finally, the elements t2@i5 and t2@i6 "inserted

before" the target node t2@1.4.

5.2. Extending the Type Projector for Update Optimization 123

for $x in /doc/a
return
{
insert nodes (<e>new</e>,<c/>)
before $x/d
insert nodes (<k/>,<k/>)
before $x/c
}

(1) The update query u2

πno={doc}
πbef={(a, d), (a, c)}

(2) The extended projector πext for u2

doc

[ε]

a
[1]

d
[1.1]

f1.1.1 g1.2.1

bbb

’uz’

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

(4) The projection t1 of t wrt πext

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

a
[2]

d
[2.1]

(3) The XML document t

doc

[ε]

a
[1]

e
[i1]

’new’

c
[i2]

d
[1.1]

k
[i3]

k
[i4]

c
[1.3]

k
[i5]

k
[i6]

c
[1.4]

a
[2]

e
[i7]

’new’

c
[i8]

d
[1.1]

(5) The partial update t2

doc

[ε]

a
[1]

e
[i1]

’new’

c
[i2]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

k
[i3]

k
[i4]

c
[1.3]

k
[i5]

k
[i6]

c
[1.4]

a
[2]

e
[i7]

’new’

c
[i8]

d
[2.1]

(6) Merging t with t2

Figure 5.4: Dealing with "insert before" in isolation

merge - Merge starts the synchronized parsing by examining the nodes t@1 of t and

t2@1 of the partially updated tree t2. Because t@1 is labelled by a∈par(πbef), it

outputs node t2@1 (see fig. 5.4-6). Next the children of t@1 and t2@1 are parsed and

processed based on analyzing their labels with respect to πext. If the label of a node

of t does not belong to ch(πbef), the node is output, otherwise, Merge is guided by

t2. For instance, Merge detects that the node t@1.1 is labelled by d∈ch(πbef) thus

it outputs the "inserted before" elements rooted at t2@i1 and t2@i2. When Merge

encounters node t2@1.1 labelled by d it outputs it. After that, Merge is guided by

t. The next subtree rooted at t@1.2 and labelled by b/∈πext is output. Similarly to

the node t@1.1, when Merge detects that t@1.3 is labelled by c∈ch(πbef), it outputs

the "inserted before" elements rooted at t2@i3, t2@i4 from t2, followed by the node

t2@1.3.

The Merge phase continues based on the same principles.

Case "insert after" .

This case is treated in a similar manner. A πaf component is used during the

Projection and Merge phases.

124 Chapter 5. Extending the Type Projection based evaluation...

for $x in /doc/a/b
return
{
replace node $x with (<k/>,<k/>)
}

(1) The update query u3

πno={doc}
πrep={(a, b)}

(2) The extended projector πext without πnext

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

’uz’

c
[1.4]

’ooz’

b
[1.5]

a
[2]

d
[2.1]

(3) The XML document t

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

’uz’

c
[1.4]

’ooz’

b
[1.5]

a
[2]

d
[2.1]

(4) The projection t1

doc

[ε]

a
[1]

k
[i1]

k
[i2]

k
[i3]

k
[i4]

a
[2]

d
[2.1]

(5) The partial updated t2

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

k
[i1]

k
[i2]

k
[i3]

k
[i4]

c
[1.3]

’uz’

c
[1.4]

’ooz’

a
[2]

d
[2.1]

(6) Attempt to Merge t and t2

Figure 5.5: Dealing with "replace" in isolation

Case "replace" .

Here we start by treating a rather simple example involving an update leading to a

single "replace" operation. This first example investigate a simple solution to deal

with "replace" operation which consists in introducing a special new component

πrep in the style of the previous cases. It turns out that this choice fails to provide

a solution.

Example 5.2.3. See Figures 5.5.

The update (see fig. 5.5-1) involves one update operation of a kind "replace".

projector extraction - Following the approach used for the previous cases, let us

consider a type projector enriched by a new component πrep (see fig. 5.5-2), which

is given by pairs of labels.

Next, par(πrep) and ch(πrep) are defined as expected.

projection - The projection of the document t (see fig. 5.5-3) proceeds as fol-

lows: first it projects node t@ε labelled by doc∈πno; then node t@1 labelled by

a∈par(πrep) followed by its children t@1.2 and t@1.5 labelled by b∈ch(πrep) (see

fig. 5.5-4), where πrep={(a, b)}. Note that, the projection prunes out the subtrees

5.2. Extending the Type Projector for Update Optimization 125

rooted at t@1.1, t@1.3 and t@1.4. This is due to the fact that their roots are labelled

by d and c, and that these types do not belong to πext.

update - The result of the execution of the update u3 is given in Figure 5.5-5. The

subtree rooted at t2@1 contains only the "replaced" subtrees rooted at t2@i1, t2@i2,

t2@i3 and t2@i4 labelled by k.

merge - While processing nodes t@1 of t and t2@1 of the partially updated tree t2,

Merge outputs the node t2@1, since t@1 is labelled a∈par(πrep). Then Merge checks

if the first child of t@1 is labelled by a type in πext. As it is not the case, Merge

outputs the subtree rooted at t@1.1 (see fig.5.5-6). The next child t@1.2 is labelled

by b∈ch(πrep), thus Merge outputs the "replaced" elements rooted at t2@i1, t2@i2,

t2@i3 and t2@i4.

As the reader can observe, there is no information enabling Merge to separate t2@i1,

t2@i2 from t2@i3, t2@i4. Therefore this merging process fails to produce the ex-

pected result. 2

The solution proposed to solve the problem outlined in the previous example

(lack of separator between inserted nodes) is to introduce a new projector component

πnext specified by pairs (x, y) of labels. Intuitively, such pairs are used to capture

nodes labelled by y and to specify that they need to be projected together with

their immediate sibling. It is the projection of the immediate sibling which is going

to provide the separators between inserted elements and make our Merge phase

succeeding. The x part of the pair is used as before to make the projector more

precise and to prepare dealing with mixed update operations.

Example 5.2.4. See Figure 5.6

projector extraction - This time, the type projector for the update u4 has a new

component πnext which replaces πrep (see fig. 5.6-2).

Next, par(πnext) and ch(πnext) are defined as expected.

projection - The new component πnext={(a, b), (a, e)} (see fig. 5.6-2) indicates that

the projection must project not only b- and e-nodes, but also the immediate siblings

of these nodes. For our example the projected sibling is t@1.3 labelled by c (see fig.

5.6-4). It is worth noticing that these nodes will play the role of separators during

the Merge phase.

update - The result of the execution of the update u4 is given in Figure 5.6-5. The

elements rooted at t2@1, besides the "replaced" elements rooted at t2@i1, t2@i2

labelled by k and t2@i3 labelled by f , contain the node t@1.3, the next sibling of

t@1.2.

merge - While merging the children of t@1 and t2@1, Merge first outputs the tree

rooted at t@1.1, because it is labelled by d/∈π (see fig. 5.6-3). Next Merge examines

nodes t@1.2 and t2@i1. Because t@1.2 is labelled by b∈ch(πnext) merging is guided

by t2, thus the element rooted at t2@i1 is output. Next, Merge examines t@1.2 and

t2@i2 and, for the same reason, outputs the element rooted at t2@i2. After that,

nodes t@1.2 and t2@1.3 are processed and because t@1.2 is labelled by b∈ch(πnext)

126 Chapter 5. Extending the Type Projection based evaluation...

for $x in /doc/a
return
{
replace node $x/b with (<k/>,<k/>)
replace node $x/e with <f/>
}

(1) The update query u4

πno={doc}
πnext={(a, b), (a, e)}

(2) The extended projector πext

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

’uz’

c
[1.4]

’ooz’

e
[1.5]

a
[2]

d
[2.1]

(3) The XML document t

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

’uz’

c
[1.4]

’ooz’

e
[1.5]

a
[2]

d
[2.1]

(4) The projection t1 with πnext

doc

[ε]

a
[1]

k
[i1]

k
[i2]

c
[1.3]

f
[i3]

a
[2]

d
[2.1]

(5) The partial result t2

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

k
[i1]

k
[i2]

c
[1.3]

’uz’

c
[1.4]

’ooz’

f
[i3]

a
[2]

d
[2.1]

(6) Merging t and t2

Figure 5.6: Dealing with "replace" in isolation

(witness of a "replace") and position 1.2 preceeds position 1.3, Merge skips the tree

rooted at t@1.2 and merges node t@1.3 and t2@1.3 and outputs the element rooted

at t@1.3. As the reader can see here, the node t2@1.3 plays the role of separator

enabling to separate nodes t2@i1, t2@i2 from t2@i3. 2

Case "delete" .

Example 5.2.5. See Figure 5.7

The update u5 (see fig. 5.7-1) involves several update operations of the kind "delete".

It is treated in a way similar to the "insert before" and "insert after" cases.

projector extraction - The type projector is enriched with a new component πdel
(see fig. 5.7-2). As for the previous cases, the projector component πdel is specified

by pairs of labels.

Next, par(πdel) and ch(πdel) are defined as expected.

projection - The projection first outputs the node t@ε labelled by doc∈πno. After

that it projects the node t@1, since it is labelled by a∈par(πdel), followed by the

nodes t@1.3, t@1.4 labelled by c∈ch(πdel) and the node t@1.5 labelled by e∈ch(πdel)

(see fig. 5.7-4). Finally the a-node of t@2 is projected. Note that, the remaining

nodes of t have been pruned out since none of them is labelled by types in πext.

5.2. Extending the Type Projector for Update Optimization 127

for $x in /doc/a
return
{
delete node $x/c
delete node $x/e
}

(1) The update query u5

πno={doc, }
πdel={(a, c), (a, e)}

(2) The extended projector πext for u5

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

c
[1.4]

e
[1.5]

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(3) The XML document t

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

’uz’

c
[1.4]

’ooz’

e
[1.5]

a
[2]

d
[2.1]

(4) The projection t1 of t

doc

[ε]

a
[1]

a
[2]

(5) The partial update result t2

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(6) Merging t and t2

Figure 5.7: Dealing with "delete" in isolation

128 Chapter 5. Extending the Type Projection based evaluation...

update - The result of the execution of the update u5 is given in Figure 5.7-5. The

nodes t1@1.3, t1@1.4 labelled by c and t1@1.5 labelled by e have been deleted.

merge - Merge parses the two subtrees rooted at t@1 (see fig. 5.7-3) and t2@1 (see

fig. 5.7-5). Because the types of the nodes t@1.1 and t@1.2 are not in ch(πdel)

Merge outputs the trees rooted at t@1.1 and t@1.2 (see fig. 5.7 -6). After that,

Merge skips the trees rooted at t@1.3, t@1.4 and t@1.5, since they are labelled by

c∈ch(πdel) and e∈ch(πdel) and have been deleted from the tree t2. 2

5.2.2 Case analysis: mixing update operations of different kinds

In this Section, we build on the previous case analysis, updates involving more than

one kind of update operation. These cases, as it will be illustrated, need a special

treatment, because they may imply position conflict during the Merge phase.

The presentation is based on examples, as before. We consider mixing update

operations two by two. Dealing with the general case (mixing more than two kinds

of updates) is directly inferred from this analysis. In the presentation of the examples

the type projectors are specified by giving their non-empty components.

Mixing insertion "as first" with insertion "as last" .

Let us consider the example illustrated by Figure 5.8. This example involves an

update operation of the kind "insert as first" and an update operation of the kind

"insert as last" (see fig. 5.8-1). We start by investigating a solution provided by

the case analysis for update operation in isolation and show that such an approach

does work here.

Example 5.2.6. See Figure 5.8

projector extraction - The type projector components πasfirst and πaslast for this

update are given in Figure 5.8-2.

projection - The projection selects the root t@ε labelled doc, then the nodes t@1

and t@2 both labelled by a∈πasfirst and a∈πaslast (see fig. 5.8-4).

update - The result t2 of the execution of the update u6 on t1 is given in Figure

5.8-5. The tree rooted at t2@1 contains elements t2@i1, t2@i2 labelled by b (inserted

"as first") and elements t2@i3, t2@i4 labelled by e (inserted "as last"). The tree

rooted at t2@2 contains as well the new elements rooted at t2@i5 , t2@i6 (inserted

"as first") and t2@i7, t2@i8 (inserted "as last").

merge - While merging the children of t@1 (see fig. 5.8-3) and t2@1 (see fig. 5.8-5)

since t@1 is labelled by a∈πasfirst Merge gives the priority to outputting the new

inserted elements having identifiers i1, i2, i3, i4 (see fig. 5.8 -6). Here, the issue is

that there is no information enabling Merge to separate t2@i1, t2@i2 from t2@i3,

t2@i4. Therefore, the Merge process fails to produce the expected result (see fig.

5.8-6). 2

5.2. Extending the Type Projector for Update Optimization 129

for $x in /doc
return
{ insert nodes (,)
as first into $x/a
insert nodes (<e/>, <e/>,)
as last into $x/a }

(1) The update query u6

πno={doc}
πasfirst={a}
πaslast={a}

(2) The extended projector πext for u6

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

f
[2.1.1]

(3) The XML document t

doc

[ε]

a
[1]

a
[2]

(4) The projection t1 of t wrt extended πext

doc

[ε]

a
[1]

b
[i1]

b
[i2]

e
[i3]

e
[i4]

a
[2]

b
[i5]

b
[i6]

e
[i7]

e
[i8]

(5) The partial update t2

doc

[ε]

a
[1]

b
[i1]

b
[i2]

e
[i3]

e
[i4]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

b
[i5]

b
[i6]

e
[i7]

e
[i8]

d
[2.1]

f
[2.1.1]

(6) Attempt to merge t and t2

Figure 5.8: Mixing "insert as first" and "insert as last"

In order to solve the problem outlined in the previous example (separation of inserted

"as first" elements and inserted "as last" elements), a new projector component

πfirst is introduced. Intuitively, if the label of a node belongs to πfirst, it is projected

together with its first child. The projection of the first child is going to play the role

of separator (when necessary) during the Merge phase.

Example 5.2.7. See Figure 5.9

projector extraction - The additional component πfirst={a} (see fig. 5.9-2) is

obtained as the intersection of par(πasfirst) and par(πaslast). Note that, the type a

is removed from the component πasfirst.

projection - This time the projection selects the nodes t@1 and t@2 together with

the first child of each one: t@1.1 labelled by d and t@2.1 labelled by d.

update - The trees rooted at t2@1 contains "as first" inserted elements t2@i1, t2@i2

and "as last" inserted elements t2@i3, t2@i4. As the reader can observe these nodes

are separated by t@1.1 and t@2.1 (see fig. 5.9-4).

merge - Because the node t@1 is labelled by a∈πasfirst, while processing the nodes

t@1 (see fig. 5.9-1) and t2@1 (see fig. 5.9-4), Merge outputs t2@1. While merging

the children of t@1 and t2@1, Merge first examines nodes t@1.1 and t2@i1. Because

the node t@1.1 is the first child of t@1 and the node t2@i1 is the result of "insert as

first" operation Merge outputs t2@i1. Next merging is processed on t@1.1 and t2@i2

and, for the same reason, t2@i2 is output. After that, Merge examines the nodes

130 Chapter 5. Extending the Type Projection based evaluation...

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

f
[2.1.1]

(1) The XML document t

πno={doc}
πaslast={a}
πfirst = {a}

(2) The extended projector π for u6

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

f
[2.1.1]

(3) The projection t1 with πfirst

doc

[ε]

a
[1]

b
[i1]

b
[i2]

d
[1.1]

e
[i3]

e
[i4]

a
[2]

b
[i5]

b
[i6]

d
[2.1]

e
[i7]

e
[i8]

(4) The partial update result t2

doc

[ε]

a
[1]

b
[i1]

b
[i2]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

e
[i3]

e
[i4]

a
[2]

b
[i5]

b
[i6]

d
[2.1]

f
[2.1.1]

e
[i7]

e
[i8]

(5) Merging t and t2

Figure 5.9: Mixing "insert as first" and "insert as last"

t@1.1 and t2@1.1 and because t@1.1 is labelled by d/∈πext Merge outputs the tree

rooted at t@1.1. After that, Merge is guided by t. When t is empty Merge outputs

the elements t2@i3, t2@i4. It is important to note that the node t@1.1 separates

the new nodes t2@i1, t2@i2 from t2@i3, t2@i4. The Merge process continues in a

similar manner for the trees rooted at t@2 and t2@2. 2

Mixing insertion "before" with insertion "after" .

Let us consider the example illustrated by Figure 5.10. This example involves an

update operation of the kind "insert before" and an update operation of the kind

"insert after" (see fig. 5.10-1). As for the previous case, we start by investigating

a solution provided by the case analysis for update operation in isolation and show

that such an approach does not work here.

Example 5.2.8. See Figure 5.10.

projector extraction - The projector extracted for the update u7 is given in Figure

5.10-2.

projection - The projection first selects the nodes t@ε labelled by doc∈πno. After

that it projects the nodes t@1 labelled by a∈par(πbef) followed by its children t@1.2

and t2@1.4 labelled by b∈ch(πaf) and c∈ch(πbef) resp. (see fig. 5.10-4). Finally

it projects node t@2, since it is labelled by a∈par(πbef). The remaining nodes are

pruned out, since none of them belongs to πext.

5.2. Extending the Type Projector for Update Optimization 131

for $x in /doc/a
return
{
insert nodes (<k/>, <k/>)
after $x/b
insert nodes (<z/>, <z/>)
before $x/c
}

(1) The update query u7

πno={doc}
πaf={(a, b)}
πbef={(a, c)}

(2) The extended projector πext for u7

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

e
[1.3]

c
[1.4]

’zuu’

a
[2]

d
[2.1]

(3) The XML document t

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

e
[1.3]

c
[1.4]

’zuu’

a
[2]

d
[2.1]

(4) The projection t2 of t

doc

[ε]

a
[1]

b
[1.2]

k
[i1]

k
[i2]

z
[i3]

z
[i4]

c
[1.4]

a
[2]

d
[2.1]

(5) The partial update result t2

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

k
[i1]

k
[i2]

z
[i3]

z
[i4]

e
[1.3]

c
[1.4]

’zuu’

a
[2]

d
[2.1]

(6) Attempt to merge t and t2

Figure 5.10: Mixing "insert before" and "insert after"

132 Chapter 5. Extending the Type Projection based evaluation...

update - The result t2 of the execution of the update u7 on t1 is given in Figure

5.10-5. The tree rooted at t2@1 contains the new elements t2@i1, t2@i2 labelled

by k (inserted "after") and the new elements t2@i3, t2@i4 labelled by z (inserted

"before").

merge - Merge processes as follows: first it examines the node t@1 and t2@1 and

because t@1 is labelled by a∈par(πbef), the node t2@1 is output (see fig.5.10-6).

After that, Merge examines the nodes t@1.1 and t2@1.2. Because t@1.1 is labelled

by d/∈π, the tree rooted at t@1.1 is output. Next Merge continues with the nodes

t@1.2 and t2@1.2. The node t@1.2 is labelled by b∈ch(πaf), thus the node t2@1.2

is output followed by the new inserted elements having identifiers i1, i2, i3, i4. Her

once again, Merge is unable to separate the nodes t2@i1, t2@i2 (inserted "after")

from the nodes t2@i3, t2@i4 (inserted "before"). Thus the Merge phase fails to

produce the expected result. 2.

In order to solve the problem outlined in the previous example (separation of inserted

"after" elements and inserted "before" elements), we are going to make use of the

projector component πnext instead of πbef and πaf . Recall that, when a pair of

types (x, y) belongs to πnext, the nodes labelled by y are projected together with

their immediate sibling. It is the projection of the immediate sibling which is going

to provide the separator between inserted elements.

Example 5.2.9. See Figure 5.11.

projector extraction - The contents of πnext (see fig. 5.11-2) is deduced from

par(πaf)∩par(πbef). Here, we have that par(πaf)∩par(πbef)={a} which gives the

information that at the children level of nodes labelled by a there may be some con-

flict between "insert after" and "insert before" operations. Therefore πnext contains

both pairs (a, b) and (a, c). Indeed, the pairs (a, b) and (a, c) may be deleted from

πbef and πaf respectively.

projection - The projected tree t1 (see fig. 5.11-3) contains not only nodes having

types in πext, but contains node labelled by e/∈πext, which is the immediate sibling

of the node t@1.2 labelled by b∈ch(πnext) .

update - (see fig. 5.11-4) The tree rooted at t2@1 besides the "after" inserted

elements t2@i1, t2@i2 and the "before" inserted elements t2@i3, t2@i4, contains the

separator node t2@1.3.

merge - While merging the nodes t@1 (see fig. 5.11-1) and t2@1 (see fig. 5.11-

4), because t@1 is labelled by a∈par(πnext), Merge outputs t2@1. Then, Merge

examines the node t@1.1 and t2@1.2 and since the first one is labelled by d/∈πnext,

Merge outputs the tree rooted at it. The next pair of nodes being merged are

t@1.2 labelled by b∈ch(πnext) and t2@1.2. Merge selects the tree rooted at t2@1.2.

Merge continues processing the nodes t@1.3 and t2@i1. Because t@1.3 is labelled by

e/∈ch(πnext) and t2@i1 is a new node, Merge outputs t2@i1. Next Merge examines

the nodes t@1.3 and t2@i2, following the same reasoning, the node t2@i1 is output.

Then Merge examines the nodes t@1.3 and t2@1.3 and outputs the trees rooted at

5.2. Extending the Type Projector for Update Optimization 133

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

e
[1.3]

c
[1.4]

’zuu’

a
[2]

d
[2.1]

(1) The XML document t

πno={doc}
πnext = {(a, b), (a, c)}

(2) The extended projector π for u7

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

e
[1.3]

c
[1.4]

’zuu’

a
[2]

d
[2.1]

(3) The projection t1 of t with πnext

doc

[ε]

a
[1]

b
[1.2]

k
[i1]

k
[i2]

e
[1.3]

z
[i3]

z
[i4]

c
[1.4]

a
[2]

d
[2.1]

(4) The partial update result t2

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

k
[i1]

k
[i2]

e
[1.3]

z
[i3]

z
[i4]

c
[1.4]

’zuu’

a
[2]

d
[2.1]

(5) Merging t and t2

Figure 5.11: Mixing "insert before" and "insert after"

t@1.3. As the reader can observe, the node t@1.3 separates t2@i1, t2@i2 (inserted

"after") from t2@i3, t2@i4 (inserted "before"). 2

Mixing insertion "as first" with insertion "before" .

The following example involves an update operation of the kind "insert as first"

and an update operation of the kind "insert before" (see fig. 5.12-1). As for the

previous case, we start by investigating a solution provided by the case analysis for

update operation in isolation and show that such an approach does not work here.

Example 5.2.10. See Figure Figure 5.12.

projector extraction - Following the solution given for the case analysis of update

operations in isolation, the projector has components πasfirst and πbef (see fig. 5.12-

2).

projection - The projection first outputs the root node t@ε labelled by doc∈πno.

Then it projects t@1, since it is labelled by a∈πasfirst. Note that a∈par(πbef), thus

the projection continues to parse the children of t@1. It selects the child t@1.2 since,

b∈ch(πbef) (see fig. 5.12-4). Finally it parses the subtree rooted at t@2, but prunes

its children since their type do not belong to πext.

134 Chapter 5. Extending the Type Projection based evaluation...

for $x in /doc/a
return
{
insert nodes (<e/>, </e>)
as first into $x
insert nodes (<k/>, <k/>)
before $x/b
}

(1) The update query u9

πno={doc}
πasfirst={a}
πbef={(a, b)}

(2) The extended projector π for u8

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(3) The XML document t

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(4) The projection t1 of t

doc

[ε]

a
[1]

e
[i1]

e
[i2]

k
[i3]

k
[i4]

b
[1.2]

a
[2]

e
[i5]

e
[i6]

(5) The partial update result t2

doc

[ε]

a
[1]

e
[i1]

e
[i2]

k
[i3]

k
[i4]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

e
[i5]

e
[i6]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(6) Attempt to merge t and t2

Figure 5.12: Mixing "insert as first" and "insert before"

5.2. Extending the Type Projector for Update Optimization 135

update - The result of the execution of the update u8 is given in Figure 5.12-5. The

tree rooted at t2@1 contains the "as first" inserted elements t2@i1, t2@i2 labelled

by e and the "before" inserted elements t2@i3, t2@i4 labelled by k.

merge - While merging children of t@1 (see fig. 5.12-3) and t2@1 (see fig. 5.12-5)

since t@1 is labelled by a∈πasfirst Merge gives the priority to output the new inserted

elements having identifiers i1, i2, i3, i4 (see fig. 5.12-6). The issue is that there is no

information enabling to separate t2@i1, t2@i2 ("as first" inserted elements) from

("before" inserted elements) t2@i3, t2@i4. Therefore, this merging process fails to

produce the expected result. 2

In oder to solve the problem outlined by the previous example (separation of

inserted "as first" elements from inserted "before" elements), we use the projector

component πfirst in order to generate separators. As already explained, if a node

type belongs to πfirst, the node is projected together with its first child.

Example 5.2.11. See Figure 5.13.

projector extraction - The intersection of par(πasfirst) and par(πbef) (see fig.

5.13-1) leads to the specification πfirst={a}. Note that, the type a is removed

from the component πasfirst.

projection - Note that this time the projection not only outputs the node t@1.2

labelled by b∈ch(πbef), but also the first child of t@1 the node t@1.1 and the first

child of t@2 labelled d (see fig. 5.13-3).

update - The tree rooted at t2@1 besides the "as first" inserted elements t2@i1,

t2@i2 and the "before" inserted elements t2@i3, t2@i4, contains the separator node

t2@1.1 (see fig. 5.13-4).

merge - Because the node t@1 is labelled by a∈πfirst, while processing the nodes

t@1 (see fig. 5.13-1) and t2@1 (see fig. 5.13-4), Merge outputs t2@1. While merging

the children of t@1 and t2@1, Merge first examines nodes t@1.1 and t2@i1. Because

the node t@1.1 is the first child of t@1 and the node t2@i1 is the result of "insert as

first" operation, Merge outputs t2@i1. Next Merge considers the nodes t@1.1 and

t2@i2 and for the same reason t2@i2 is output. Then, Merge examines the nodes

t@1.1 and t2@1.1 and because t@1.1 is labelled by d/∈πext Merge outputs t@1.1.

The next nodes being merged are t@1.2 and t2@i3. Because t@1.2 is labelled by

b∈ch(πbef) Merge outputs the "inserted before" node t2@i3. The same is true when

merging t@1.2 and t2@i4. Finally, Merge examines the nodes t@1.2 and t2@1.2 and

because t@1.2 is labelled by b∈ch(πbef) outputs the node t2@1.3. Therefore the

first child t@1.1 of t@1 separates the nodes t2@i1, t2@i2 from t2@i3, t2@i4. 2

Mixing insertion "as first" with insertion "after" .

The next example involves an update generating operations of the kind "insert as

first" and operations of the kind "insert after". As opposed, to the previous cases,

mixing these two kinds of operation can be dealt with using the solution provided

by the analysis of update operations in isolation.

136 Chapter 5. Extending the Type Projection based evaluation...

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(1) The XML document t

πno={doc}
πbef={(a, b)}
πfirst={a}

(2) The extended projector π for u9

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(3) The projection t1 of t with πfirst

doc

[ε]

a
[1]

e
[i1]

e
[i2]

d
[1.1]

k
[i3]

k
[i4]

b
[1.2]

a
[2]

e
[i5]

e
[i6]

d
[2.1]

(4) The Partial Update result t2
doc

[ε]

a
[1]

e
[i1]

e
[i2]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

k
[i3]

k
[i4]

b
[1.2]

’uz’

a
[2]

e
[i5]

e
[i6]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(5) Merging t and t2

Figure 5.13: Mixing "insert as first" and "insert before"

5.2. Extending the Type Projector for Update Optimization 137

for $x in /doc/a
return
{
insert nodes (<e/>, <e/>)
as first into $x
insert nodes (</k>, <k/>)
after $x/b
}

(1) The update query u10

πno={doc}
πasfirst={a}
πaf={(a, b)}

(2) The extended projector π for u10

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(3) The XML document t

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(4) The projection t1 of t

doc

[ε]

a
[1]

e
[i1]

e
[i2]

b
[1.2]

k
[i3]

k
[i4]

a
[2]

e
[i5]

e
[i6]

(5) The partial update result t2

doc

[ε]

a
[1]

e
[i1]

e
[i2]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

k
[i3]

k
[i4]

a
[2]

e
[i5]

e
[i6]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(6) Merging t and t2

Figure 5.14: Mixing "insert as first" and "insert after"

Example 5.2.12. See Figure 5.14.

projector extraction - The projector contains components πasfirst and πaf (see fig.

5.14-2).

projection - The projection first outputs the root node t@ε labelled by doc∈πno.

Then it projects t@1, since it is labelled by a∈πasfirst. Note that a∈par(πaf), thus

the projection continues to parse the children of t@1. It projects the child t@1.2,

since b∈ch(πaf) (see fig. 5.14-4). Finally it parses the subtree rooted at t@2, but

prunes out its children, because their types do not belong to πext.

update - The result of the execution of the update u10 is given in Figure 5.14-5.

The tree rooted at t2@1 contains the elements t2@i1, t2@i2 labelled by e (inserted

"as first") and the elements t2@i3, t2@i4 labelled by k (inserted "as after").

merge - Merge processes as follows (see fig.5.14-5): first it examines the node t@1

and t2@1 and because t@1 is labelled by a∈πasfirst Merge outputs t2@1 followed

by the nodes t2@i1 and t2@i2 (inserted "as first"). Then, Merge outputs the tree

rooted by t@1.1, since it is labelled by d/∈πext. The nodes t@1.2 and t2@1.2 are

merged as follows: because t@1.2 is labelled by b∈ch(πaf), Merge outputs the node

t2@1.2. Finally, the nodes t2@i3 and t2@i4 (inserted "as after") are output. As

138 Chapter 5. Extending the Type Projection based evaluation...

the reader can see, the final result is correct. There is no need to use a separator

mechanism here as, intuitively, the projector component πaf is sufficient to separate

the nodes t2@i1, t2@i2 from t2@i3, t2@i4 . 2

Mixing insertion "as last" with insertion "after" .

This case is the dual of the one dealing with mixing insertion "as first" with inser-

tion "before". Thus, in order to ensure the correctness of the Merge process, we

introduce a new projector component πlast (the dual of the projector component

πfirst). Intuitivly, if a node type belongs to πlast, the node is projected together

with its last child.

Example 5.2.13. See Figure 5.15.

projector extraction - The projector is first generated as for the update operations

in isolation. This leads to the following components: πno={doc}, πaf={(a, d)} and

πaslast={a}. Then, noticing that πaslast∩par(πaf)={a}, the new component πlast
is set to {a} and a is removed from πaslast (see Fig. 5.15-2).

projection - The projection outputs not only the node t@1.1, since it is labelled by

d∈ch(πaf), but also the last child of t@1, that is the node t@1.2 labelled b (see fig.

5.15-3).

update - The result of the execution of the update u11 on the projected document

t1 is given in Figure 5.15-5. The tree rooted at t2@1 contains the elements t2@i1,

t2@i2 labelled by k (inserted "after") and the elements t2@i3, t2@i4 labelled by c

(inserted "as last").

merge - Because the node t@1 is labelled by a∈par(πaf), while parsing the nodes

t@1 and t2@1, Merge outputs t2@1 (see fig. 5.15-6). Then, Merge examines the

nodes t@1.1 and t2@1.1. Because t@1.1 is labelled by d∈ch(πaf), the node t2@1.1

is output. The next nodes parsed are t@1.2 and t2@i1 and Merge gives priority to

outputting t2@i1 since it is a new element. While processing t@1.2 and t2@i2, for

the same reason Merge outputs t2@i2. The next step processes the nodes t@1.2 and

t2@1.2. Because t@1.2 is the last child of t@1 and because it is labelled by b/∈πext,

Merge outputs the node t@1.2. Finally, the nodes t2@i3 and t2@i4 (inserted "as

last") are output. Thus the expected result of the update u11 is obtained. The main

point here is the projection of the node t@1.2 to separate the nodes t2@i1 and t2@i2

(inserted "after") from the nodes t2@i3 and t2@i4 (inserted "as last"). 2

Mixing insertion "as last" with insertion "before" .

This case is dual to mixing "insert as first" and "insert after". It does not require

any additional mechanism for the projector.

Mixing "replace" with insertion "before" .

As it has been discussed in the subsection analyzing the update operation in iso-

lation, when the update expression involves some "replace" operation, the type

5.2. Extending the Type Projector for Update Optimization 139

for $x in /doc/a
return
{
insert nodes (<c/>, <c/>)
as last into $x
insert nodes (<k/>, <k/>)
after $x/d
}

(1) The update query u11

πno={doc}
πaf={(a, d)}
πlast={a}

(2) The extended projector π for u11

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(4) The projection t1 of t with πlast

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

(3) The XML document t

doc

[ε]

a
[1]

d
[1.1]

k
[i1]

k
[i2]

b
[1.2]

c
[i3]

c
[i4]

a
[2]

d
[2.1]

k
[i5]

k
[i6]

c
[i7]

c
[i8]

(5) The partial update result t2
doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

k
[i1]

k
[i2]

b
[1.2]

’uz’

c
[i3]

c
[i4]

a
[2]

d
[2.1]

k
[i5]

k
[i6]

c
[i7]

c
[i8]

(6) Merging t and t2

Figure 5.15: Mixing "insert as last" and "insert after"

140 Chapter 5. Extending the Type Projection based evaluation...

for $x in /doc/a
return
{
replace node $x/d with (<k/>,<k/>)
insert node (<z/>) before $x/e
}

(1) The update query u12

πno={doc}
πnext = {(a, d), (a, e)}

(2) The extended projector πext with πnext

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

’uz’

c
[1.4]

’ooz’

e
[1.5]

a
[2]

d
[2.1]

(3) The XML document t

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

’uz’

c
[1.4]

’ooz’

e
[1.5]

a
[2]

d
[2.1]

(4) The projection t1

doc

[ε]

a
[1]

k
[i1]

k
[i2]

b
[1.2]

z
[i3]

e
[1.6]

a
[2]

k
[i4]

k
[i5]

(5) The partial result t2

doc

[ε]

a
[1]

k
[i1]

k
[i2]

b
[1.2]

c
[1.3]

’uz’

c
[1.4]

’ooz’

z
[i3]

e
[1.6]

a
[2]

k
[i4]

k
[i5]

(6) Merging t and t2

Figure 5.16: Mixing "replace" and "insert before"

projector requires the use of the (separator) projector πnext. When mixing "re-

place" operations with other kinds of operation, the use of the component πnext is

going to be sufficient to ensure the correct behavior of the Merge process most of

the time (Mixing "replace" and "insert as first" is going to require an additional

mechanism).

Example 5.2.14. See Figure 5.16.

projector extractor - A first analysis of the update expression leads

to derive πno={doc}, πbef={a, e} and πnext={a, d}. Then, because

par(πbef)∩par(πnext)={a}, the pair of types (a, e) is removed from πbef and

added to πnext. Thus finally, πnext={(a, d), (a, e)}.

projection - The projection outputs nodes t@ε, t@1 together with its children t@1.1

labelled by d∈ch(πnext), t@1.2, because it is the next sibling of t@1.1 and t@1.5

labelled by e∈ch(πnext). It projects as well nodes t@2 and t@2.1 (see fig.5.16-4).

update - The result of the execution of the update u12 on the projected document

t1 is given in Figure 5.16-5. The tree rooted at t2@1 contains the elements t2@i1,

t2@i2 labelled by k (inserted "in place of") and the elements t2@i3 labelled by z (

5.2. Extending the Type Projector for Update Optimization 141

inserted "before").

merge - While merging the nodes t@1 (see fig.5.16-3) and t2@1 (see fig.5.16-5),

because t@1 is labelled by a∈par(πnext), Merge outputs t2@1 (see fig.5.16-6). Then,

Merge examines the node t@1.1 and t2@i1. Because the first one is labelled by

d∈ch(πnext) and the identifier i1 of the second one indicates that it is a new node,

Merge outputs t2@i1. The next pair of the nodes being merged are t@1.1 and t2@i2.

For the same reason, Merge outputs t2@i2. After that Merge examines the nodes

t@1.1 and t2@1.2 and Merge skips the tree rooted at t@1.1 (it has been replaced)

and examines the nodes t@1.2 and t2@1.2. While merging the nodes t@1.2 and

t2@1.2, Merge outputs t2@1.2. Next, Merge processes the nodes t@1.3 and t2@i3

labelled by z and because the first one is labelled by c/∈πext Merge outputs t@1.3.

The same is true for the pairs t@1.4 and t2@i3. The next two nodes to be merged

are t@1.5 and t2@i3. Because t@1.5 is labelled by e∈ch(πnext) Merge outputs t2@i3.

Finally, Merge process the nodes t@1.5 and t2@1.5 and outputs t2@1.5. 2

Mixing "replace" with insertion "after" .

This case is of course similar to the previous one and the use of the projector

component πnext is developed in the same manner.

Mixing "replace" with insertion "as first" .

Dealing with this case requires more than the projector component πnext as the

following example shows.

Example 5.2.15. See Figure 5.17.

projector extraction - Let us apply the same technique as for the analysis for the

update operation in isolation. The projector generated contains three components

πno={doc}, πasfirst={a} and πnext={(a, b)} (see fig. 5.17-2).

projection - The projection first selects the node t@ε, followed by t@1 labelled by

a∈πasfirst. The child t@1.2 of t@1 is projected since it is labelled by b∈ch(πnext).

Finally, the node t@2 labelled by a∈πasfirst is projected (see fig. 5.17-4).

update - The result of the execution of the update u13 on the projected document t1
is given in Figure 5.17-5. The tree rooted at t2@1 contains the elements t2@i1, t2@i2

labelled by d (inserted "as first") and the element t2@i3 labelled by z (inserted "in

place of").

merge - Merge processes as follows (see fig.5.17-6): first it examines the node t@1

and t2@1 and because t@1 is labelled by a∈πasfirst it outputs t2@1. Then, Merge

outputs the nodes t2@i1, t2@i2 (inserted "as first") and the node t2@i3 (inserted

"in place of"). Once again, the issue here is that there is no information enabling

to separate the t2@i1, t2@i2 (inserted "as first") from the node t2@i3 (inserted "in

place of"). Thus, Merge fails to produce the expected result. 2

142 Chapter 5. Extending the Type Projection based evaluation...

for $x in /doc/a
return
{
insert nodes (<d/>,<d/>) as first into $x
replace node $x/b with (<k/>)
}

(1) The update query u13

πno={doc}
πasfirst = {a}
πnext = {(a, b)}

(2) The extended projector πext

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

(3) The XML document t

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

(4) The projection t1

doc

[ε]

a
[1]

d
[i1]

d
[i2]

k
[i3]

a
[2]

d
[i4]

d
[i5]

(5) The partial result t2

doc

[ε]

a
[1]

d
[i1]

d
[i2]

k
[i3]

d
[1.1]

a
[2]

d
[i4]

d
[i5]

d
[2.1]

(6)Attempt to merge t and t2

Figure 5.17: Mixing "replace" and "insert as first"

5.2. Extending the Type Projector for Update Optimization 143

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

(1) Verification of πfirst

πno={doc}
πnext={(a, b)}
πfirst={a}

(2) The extended projector πext

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

(3) The XML document t

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

a
[2]

d
[2.1]

(4) The projection t1

doc

[ε]

a
[1]

d
[i1]

d
[i2]

d
[1.1]

k
[i3]

a
[2]

d
[i4]

d
[i5]

d
[2.1]

(5) The partial result t2

doc

[ε]

a
[1]

d
[i1]

d
[i2]

d
[1.1]

k
[i3]

a
[2]

d
[i4]

d
[i5]

d
[2.1]

(6) Merging t and t2

Figure 5.18: Mixing "replace" and "insert as first"

To the problem outlined in the previous example, the solution is the same as for

mixing "insert as fisrt" and "insert before" and uses the separator projector πfirst.

Example 5.2.16. See Figure 5.18

projection extraction - The value of πfirst is deduced from the intersection

πasfirst∩ par(πnext)={a}. Therefore, πfirst={a}.

projection - This time, the projection of the initial document t includes the first

children t@1.1 and t@2.1 of the nodes t@1 and t@2 respectively (see fig. 5.18-3).

update - The tree rooted at t2@1 contains the new elements t2@i1, t2@i2 labelled

by d (inserted "as first"), the node t2@1.1 and the new element t2@i3 labelled by k

(inserted "in place of").

merge - Because the node t@1 is labelled by a∈par(πnext), while processing the

nodes t@1 (see fig. 5.18-1) and t2@1 (see fig. 5.18-4), Merge outputs t2@1 (see fig.

5.18-5). While parsing the children of t@1 and t2@1, Merge first examines the nodes

t@1.1 and t2@i1. Because the node t@1.1 is the first child of t@1 and the node t2@i1

is the result of the "insert as first" operation, Merge outputs t2@i1. For the same

reason, the next node output is t2@i2. Then, Merge examines the nodes t@1.1 and

t2@1.1 and because t@1.1 is labelled by d/∈πext, Merge outputs t@1.1. The next

144 Chapter 5. Extending the Type Projection based evaluation...

nodes to be merged are t@1.2 and t2@i3. Because t@1.2 is labelled by b∈ch(πnext),

Merge outputs the new node t2@i3 and skips t@1.2 which has been replaced. The

result of the Merge phase is the expected result. 2

Mixing "replace" with insertion "as last" .

This case is similar to mixing "replace" with insertion "before" and is treated by

using the projector component πnext as the separator.

Mixing "delete" with other kinds of update operation

This case is somehow sligthly more intricate and we decided to solve it by using the

projector component πolb introduced for the three-level projector. The following

example shows the problem encountered by following the approach developed until

now.

Example 5.2.17. See Figure 5.19.

projection extraction - For the update expression u14 given in Figure 5.19-1, the

first projector generated is composed of the non empty components πno={doc},

πaf={(a, d)}, πbef={(a, e)} and πdel={(a, b)}.

Based on the observation that par(πaf)∩par(πbef)={a}, the projector is modified

to πno={doc}, πnext={(a, d), (a, e)} and πdel={(a, b)}.

projection - (See Fig. 5.19-4) The projection outputs the nodes t@ε labelled by

doc∈πno, t@1 labelled by a∈par(πnext) (note also that a∈par(πdel)) and the children

of t@1: t@1.1 labelled by d∈ch(πnext), t@1.2 labelled by b∈ch(πdel) and t@1.4

labelled by e∈ch(πnext). Indeed, the node t@1.2 is projected not only because its

label belong to ch(πdel) but also because it is the next sibling of t@1.1 and the label

of t@1.1 belongs to ch(πnext).

update - The partially updated tree t2 (see fig. 5.19-5) is the result of applying

the update u14 on the projected document t1. Mainly, the nodes t2@i1, t2@i2 have

been inserted after the node t2@1.1, the node t@1.2 has been deleted and, finally,

the nodes t2@i3 and t2@i4 have been inserted before the node t2@1.4.

The reader should pay attention to the fact that the node t@1.2 which has been

projected with the intention to separate the elements inserted "after" from those

inserted "before", has bee deleted.

merge - While merging the children of t@1 and t2@1, Merge first processes the nodes

t@1.1 and t2@1.1. Because t@1.1 is labelled by d∈ch(πnext), Merge outputs t2@1.1.

Then, the nodes t@1.2 and t2@i1 are parsed. Because t@1.2 labelled by b∈ch(πdel),

Merge outputs t2@i1. Next, Merge examines the nodes t@1.2 and t2@i2 and outputs

t2@i2, for the same reason. Finally, while examining the nodes t@1.2 and t2@i3,

Merge outputs t2@i3 and thus fails to produce expected result. The issue is that

the separator t@1.2 has been deleted. 2.

5.2. Extending the Type Projector for Update Optimization 145

for $x in /doc/a
return
{
insert nodes (<z/>, <z/>)
after $x/d
insert nodes (<h/>, <h/>)
before $x/e
delete node $x/b
}

(1) The update query u14

πno={doc}
πdel={(a, b)}
πnext={(a, d), (a, e)}

(2) The extended projector πext for uext

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

’zuu’

e
[1.4]

a
[2]

d
[2.1]

(3) The XML document t

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

’uz’

c
[1.3]

’zuu’

e
[1.4]

a
[2]

d
[2.1]

(4) The projection t1 of t

doc

[ε]

a
[1]

d
[1.1]

z
[i1]

z
[i2]

h
[i3]

h
[i4]

e
[1.4]

a
[2]

d
[2.1]

z
[i5]

z
[i7]

(5) The partial update result t2

doc

[ε]

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

z
[i1]

z
[i2]

h
[i3]

h
[i4]

c
[1.3]

e
[1.4]

’zuu’

a
[2]

d
[2.1]

z
[i5]

z
[i6]

(6) Attempt to merge t and t2

Figure 5.19: Mixing "delete" with other kinds

146 Chapter 5. Extending the Type Projection based evaluation...

As explained before the example, we choose to solve this case by going back to

the three-level projector and by using the πolb component. The precise solution is

given in table 5.20.

5.3 Definition of the Extended Projection

This section is devoted to the formal presention of the extended projector together

with its semantic. We do not provide a formal presentation of the extraction of the

extended projector from an update expression u and a DTD D. We expect that the

examples provided in the case analysis are sufficiently clear.

An extended projector is going to be specified by a bunch of projector compo-

nents πα where some of these components are sets of types (α∈un) and the others

components (α∈bin) are sets of pairs of types. More precisely:

bin={af, bef, del, next} and for α∈bin, πα⊆Σ×Σ

un = {no, olb, eb, aslast, asfirst, f irst, last}, and for α∈un πα⊆Σ.

The following notations are used in the rest of the presentation:

− for α∈bin, x∈par(πα) iff (x, y)∈πα for some y,

− for α∈bin and for x∈Σ, πα(x)={y|(x, y)∈πα}

− for α∈bin, y∈ch(πα) iff (x, y)∈πα for some x,

− π∗=
⋃

α∈un πα
⋃

α∈bin(par(πα) ∪ ch(πα)), and

− πseed=
⋃

α∈un−{first,last} πα
⋃

α∈bin par(πα).

The definition below uses Table 5.20 to specify constraints. Let us explain how to

read this table which indeed corresponds to the analysis of mixing update operations

of different kinds. For instance, the intersection of the row ∈πaf with the column

πbef corresponds to the constraint:

if (x, y)∈πaf and (x, z)∈πbef then (x, y) and (x, z) should belong to πnext.

Note that the intersection of the row πaf with the column πasfirst is marked with _

which means that this case raises no additional element in the projector components.

Définition 3 (Extended Type Projector). Given a dtd (D, sD) over the alphabet

Σ, an extended type projector π is defined by π =
⋃

α∈bin∪un πα such that:

• the constraints summarized in Table 5.20 are satisfied (see below how to read

the constraints from the Table), and

• for each b∈π∗ there exists a∈πseed such that D(a)=r and b occurs in r

The second condition of Definition 3 expresses, like for the three level projector,

a closure property wrt to the DTD D: a projected type b cannot be deconnected

from the root label sD although it does not need to be connected in all possible

manners. Notice that this closure property requires that the producer type of b

be in πseed. Notice here that we do not require disjointess of pairs of projector

components.

5.3. Definition of the Extended Projection 147

(x, z)
(x, y)

πaf πbef πdel πnext πasfirst πaslast

πaf (x, z)
(x, y)∈πnext

(x, z)∈πnext

x∈πolb (x, y)∈πnext

(x, z)∈πnext
_

x∈πlast

πbef (x, z)
x∈πolb (x, y)∈πnext

(x, z)∈πnext

x∈πfirst _

πdel (x, z)
x∈πolb _ _

πnext (x, z)
x∈πfirst _

πasfirst (x, z)
x∈πfirst

Figure 5.20: Constraints for the extended projector

The behavior of the extended projector is given below. This definition is writ-

ten in a declarative style and does not provide a direct manner to implement the

extended projector.

Définition 4 (Extended Type Projector Semantic).
Let π be a type projector for (D, sD), and t∈D be a tree with roots(t)={rt} and

F=subfor(t). The π-projection of t, denoted π(t), is the tree ΠK(t,π)(t) where K(t, π)

is recursively defined by:

− if lab(rt) /∈ π∗ then K(t, π)=∅ otherwise

− K(t, π)={rt}
⋃

α∈πseed
Kα(lab(rt), F) where Kα(a, F) is defined below for a label

a and a forest F .

if F=() then Kα(a, F)=∅ otherwise let us assume that F=t′◦F ′

A. if α is no or asfirst or aslast and a∈πα then

A.1 Kα(a, F)=K(t′, π)∪Kα(a, F
′) if lab(rt′)∈πseed

A.2 Kα(a, F)=Kα(a, F
′) otherwise

B. if α is olb and a∈πolb then

B.1 Kolb(a, F)=K(t′, π)∪Kolb(a, F
′), if lab(rt′)∈πseed

B.2 Kolb(a, F)={rt′}∪Kolb(a, F
′), otherwise

C. if α is eb and a∈πeb then Keb(a, F)=dom(F)

D. if α is bef or after or del and a∈par(πα) then

D.1 Kα(a, F)=K(t′, π)∪Kα(a, F
′) if lab(rt′)∈πseed

D.2 Kα(a, F)={rt′}∪Kα(a, F
′), if (a, lab(rt′))∈πα

D.3 Kα(a, F)=Kα(a, F
′) otherwise

E. if α is next and a∈par(πnext) then

E.1 Knext(a, F)=K(t′, π)∪Knext(a, F
′) if lab(rt′)∈πseed

E.2 Knext(a, F)={rt′}∪Knext(a, F
′)∪Next(F ′), if (a, labrt′)∈πnext where

Next(F)=K(t′, π) if lab(rt′))∈πseed and

Next(F)={rt′} otherwise.

E.3 Knext(a, F)=Knext(a, F
′), otherwise

148 Chapter 5. Extending the Type Projection based evaluation...

F. if α is first and a∈πfirst then

Kfirst(a, F)=K(t′, π), if lab(rt′)∈πseed

G. if α is last and a∈πlast then (recall that F=t′◦F ′ and F 6= ())

Klast(a, F)=Klast(a, F
′) if F ′ 6= () otherwise - that is if F ′ = ()-

Klast(a, F)={rt′}

It is important, when reading this definition to pay attention to the fact that

one type b may belong to several components. In such a case, several sub-items may

apply and should be applied. For instance, assume that (a, b)∈πaf and moreover

that b∈πolb. Then, at some point when using item D, because a∈par(πaf), the

item D.1 and D.2 will be applied because b∈πolb and thus b∈πseed and because

b∈ch(πaf).

5.3.1 Merge

This section formalizes the changes of the Merge phase to support the extension

of the projection technique (see Sections 5.2.1 and 5.2.2). We proceed as for the

presentation of the revised projection: a case analysis is developed. Let us first recall

the global structure of the Merge process and the main elements that are useful for

defining it.

We assume that:

1. The input XML document t is valid with respect to the DTD D. For the

purpose of the formal presentation, we assume that the tree t is a p-store: the

identifiers are the node positions (in document order).

2. The extended projector π has been derived from the update u.

3. The document t′ is the partial update u(π(t)). We assume that the execution

of the update u has produced new identifiers for the purpose of node creation

induced by replace and insert operations.

The goal of merging the input document t and the partial update t′ is to construct

the update u(t). Merging processes by parsing both trees t and t′. The merge

algorithm is decomposed as follows:

• The procedure TreeMerge takes as input two subtrees τi and τ ′. The first one

(τi) is a subtree of t. The second one (τ ′) is a subtree of t′ (see Figure 5.21).

Next, we assume that:

roots(τi)=n roots(τ ′)=m

lab(roots(τi))=ai lab(roots(τ ′))=bi
subfor(τi)=Fi subfor(τ ′)=Fu

The procedure takes care of the synchronized parsing of the trees τi and τ ′. The

fact that the trees τi and τ ′ are synchronized implies that we assume that the

trees τi and τ ′ have identical root identifier, that is roots(τi)=n=roots(τ ′)=m.

5.3. Definition of the Extended Projection 149

ai

ti
fi

Fi

bi

tu
fu

Fu

TreeMerge

bi

tr
fr

Fr

Figure 5.21: TreeMerge processing

Their roots may have different labels if the update u has renamed the label of

the node n. The procedure TreeMerge is quite simple: it builds a tree whose

root is τ ′ root; it checks the label ai of n with respect to π in order to decide

how to merge the sub-forests Fi and Fu. A first version of the procedure

TreeMerge is formally presented in the next section.

• A bunch of procedures xxMerge are then defined to take care of merging the

two forests Fi and Fu, whose parent nodes n and m are synchronized. The

specific procedure used to merge Fi and Fu is determined by TreeMerge and

depends on the label ai of the parent node n of Fi. For instance, if ai∈πno,

then merging Fi and Fu is done by calling NoMerge.

Each procedure takes advantage of the information obtained by identifying in

which projector component ai belongs to.

Next, we will always assume that the forest Fi is of the form ti◦ fi and the

forest Fu of the form tu◦ fu, when they are not empty (see fig. 5.21).

The case analysis starts by examining simple cases where the label ai of the

parent node of Fi belongs to only one component of the projector. We will then

examine the general case when ai may belong to more than one component.

For the sake of simplicity and in order to avoid presenting redundant defini-

tions, we make the choice here not to consider the cases where ai∈πolb or where

ai∈πeb; these cases subsumes all cases introduced in this section (ai∈par(πbef),

ai∈par(πaf), ..., ai∈par(πnext)) and the procedure OlbMerge introduced in Chapter

4.3 applies directly for these cases.

5.3.2 Function TreeMerge - one projector component at a time -

The procedure TreeMerge has already been introduced. Given two synchronized

subtrees τi and τ ′, it produces a subtree τr such that:

• roots(τr)=n=m,

• lab(roots(τr))=lab(roots(τ ′))=bi, and

• subfor(τr) =

150 Chapter 5. Extending the Type Projection based evaluation...

NoMerge(Fi | Fu) if ai∈πno
AsFirstMerge(Fi | Fu) if ai∈πasfirst
AsLastMerge(Fi | Fu) if ai∈πaslast
DelMerge(Fi | Fu | ai) if ai∈par(πdel)

BeforeMerge(Fi | Fu | ai) if ai∈par(πbef)

AfterMerge(Fi | Fu | ai) if ai∈par(πaf)

NextMerge(Fi | Fu | ai) if ai∈par(πnext)

Recall here that we develop our analysis based on the assumption that the label

ai of the parent node of Fi belongs to only one projector component.

We make the assumption that the types of the first level nodes of the forest Fi also

belong to only one projector component, but not necessarily the same component

as ai.

5.3.2.1 The procedure NoMerge

This procedure is meant to merge two forests Fi and Fu whose parent nodes n and

m respectively are "synchronized" (n=m) and such that the label ai of the parent

node of Fi only belongs to πno. It produces a sub-forest Fr of the final result u(t).

First let us comment on the properties induced by the condition ai∈πno. Indeed,

this condition ensures that the children of Fi could not be the target of update

operation other than renaming. This implies that (†1) the first level nodes of Fu are

the first level nodes of Fi projected by π up to some renaming of labels.

Building the forest Fr is then very simple: trees ti of Fi that were not projected

are re-introduced and synchronized pairs of trees ti, tu of the forests Fi and Fu

are processed by calling TreeMerge. Note that the fact that a tree ti has not been

projected is identified by checking if the type of its root belong to πseed because we

assume that ai belongs to πno only.

Example 5.3.1. Illustrating the behavior of NoMerge: see Figure 5.23.

Let us consider the update u1 specified by:

for $x in /a return rename node $x/b with "d" .

projector - The extended projector πext derived for the update u1 contains one component

πno={a, b}.

update - Figure 5.23-2 illustrates the changes applied by the update u1. The parent node

of Fu labelled by a has one child Fu@1.2 labelled by d (the node Fi@1.2 labelled by b has

been renamed by d).

merge - (see fig. 5.23-3). Because the parent node of Fi is labelled by a∈πno (see fig.

5.23-1), the forests Fi and Fu are merged by NoMerge.

First, NoMerge examines the nodes Fi@1.1 and Fu@1.2. Because Fi@1.1 is labelled by

d/∈πseed, NoMerge executes line 2 and accordingly, it outputs the tree rooted at Fi@1.1.

The next two nodes processed are Fi@1.2 and Fu@1.2. The node Fi@1.2 is labelled by

b∈πno leading to the execution of line 3: TreeMerge is going to choose how to merge the

trees rooted at Fi@1.2 and Fu@1.2 based on the type of the node Fi@1.2. After that

step, since all subtrees of Fu have been processed, line 1 is executed leading to output the

remaining sub-trees from Fi. 2

5.3. Definition of the Extended Projection 151

1 NoMerge(Fi | Fu) = Fi if roots(Fu)=∅
otherwise(neither Fi nor Fu are empty)

2 ti◦NoMerge(fi | Fu) if lab(roots(ti)) /∈ πseed

otherwise

3 TreeMerge(ti | tu)◦NoMerge(fi | fu)

Figure 5.22: The procedure NoMerge

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

e
[1.3]

c
[1.4]

e
[1.5]

(1) sub-forest Fi

a
[1]

d
[1.2]

(2) sub-forest Fu

a

d

f g

d e c e

(3) final result Fr

Figure 5.23: Illustration of the behavior of NoMerge

5.3.2.2 The procedure AsFirstMerge

This procedure is meant to merge two forests Fi and Fu whose parent nodes n and m

are "synchronized" (n=m) and such that ai∈πasfirst only. It produces a sub-forest

Fr of the final result u(t).

The properties induced by the condition ai∈πasfirst are following: (†2) the first level

nodes of Fu are either new nodes (having fresh identifiers ix) or nodes whose types

are in πseed and thus have been projected. Moreover, knowing that ai∈πasfirst
implies that Fu potentially starts with new trees corresponding to the "as first"

insertion.

The procedure AsFirstMerge is formally presented in Figure 5.24: line 2 outputs new

inserted "as first" elements (indeed, AsFirstMerge gives priority to outputting new

elements); line 3 outputs subtrees of Fi projected out; line 4 treats synchronized

subtrees of Fi and Fu.

Example 5.3.2. Illustrating the behavior of AsFirstMerge: see Figure 5.25.

1 AsFirstMerge(Fi | Fu) = Fi if roots(Fu)=∅
otherwise (neither Fi nor Fu are empty)

2 tu◦AsFirstMerge(Fi | fu) if new(roots(tu))=true

otherwise

3 ti◦AsFirstMerge(fi | Fu) if lab(roots(ti))/∈πseed

otherwise

4 TreeMerge(ti | tu)◦AsFirstMerge(fi | fu)

Figure 5.24: The procedure AsFirstMerge

152 Chapter 5. Extending the Type Projection based evaluation...

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

e
[1.3]

c
[1.4]

e
[1.5]

(1) sub-forest Fi

a
[1]

k
[i1]

k
[i2]

(2) sub-forest Fu

a

k k d

f g

d e c e

(3) final result Fr

Figure 5.25: Illustration of the behavior of AsFirstMerge

Let us consider the update u2 specified by:

for $x in /a return insert nodes {<k/>,<k/>} as first into $x

projector - The extended projector πext derived for this update u2 has one compo-

nent πasfirst={a}.

update - Figure 5.25-2 illustrates the changes applied by the update u2. The forest

Fu has two "as first" inserted elements Fu@i1 and Fu@i2 labelled by k.

merge - (see fig. 5.25-3). Because the parent node of Fi is labelled by a∈πasfirst,

the forests Fi and Fu are merged by AsFirstMerge (see fig. 5.24).

First, AsFirstMerge parses the nodes Fi@1.1 and Fu@i1. Because the identi-

fier of Fu@i1 indicates that it is a new inserted node (new(roots(Fu@i1))=true),

AsFirstMerge executes line 2 and outputs the tree rooted at Fu@i1. Next,

AsFirstMerge examines the nodes Fi@1.1 and Fu@i2 and, for the same reasons as

before, AsFirstMerge executes line 2 and outputs the tree rooted at Fu@i2. After

that step, since the forest Fu has been totally parsed, line 1 is executed leading to

output the remaining subtrees of Fi. 2

5.3.2.3 The procedure AsLastMerge

This case is similar to the previous one. This time the assumption that ai belongs

to πaslast only, entails that Fu potentially ends with new trees corresponding to the

"as last" insertion.

The properties induced by this condition are following: (†3) the first level nodes

of Fu are either new nodes (having fresh identifiers ix) or nodes whose types are

in πseed and thus have been projected. Moreover, knowing that ai∈πaslast implies

that Fu potentially ends with the new trees corresponding to the "as last" insertion.

The procedure AsLastMerge is formally presented in Figure 5.26: lines 3 and 4 gives

priority to outputting trees of Fi which have been projected out or to merging

synchronized subtrees ti and tu; line 2 takes care of outputting potentially new

elements inserted "as last".

Example 5.3.3. Illustrating the behavior of AsLastMerge: see Figure 5.27.

Let us consider the update u2 specified by:

for $x in /a return insert nodes {<k/>,<k/>} as last into $x.

5.3. Definition of the Extended Projection 153

1 AsLastMerge(Fi | Fu) = Fi if roots(Fu)=∅
2 Fu if roots(Fi)=∅

otherwise (neither Fi nor Fu are empty)

3 ti◦AsLastMerge(fi | Fu) if lab(roots(ti))/∈πseed

otherwise

4 TreeMerge(ti | tu)◦AsLastMerge(fi | fu)

Figure 5.26: The procedure AsLastMerge

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

e
[1.3]

c
[1.4]

e
[1.5]

(1) sub-forest Fi

a
[1]

k
[i1]

k
[i2]

(2) sub-forest Fu

a

d

f g

d e c e k k

(3) final result Fr

Figure 5.27: Illustration of the behavior of AsLastMerge

projector - The extended projector πext derived from the update u3 has one com-

ponent πaslast={a}.

update - Figure 5.27-2 illustrates the changes applied by the update u3. The parent

node of Fu labelled by a has two "as last" inserted elements Fu@i1 and Fu@i2

labelled by k.

merge - (see fig. 5.27-3). Because the parent node of Fi is labelled by a∈πaslast, the

forests Fi and Fu merged by AsLastMerge (see fig. 5.26).

First, AsLastMerge examines the nodes Fi@1.1 and Fu@i1. Because Fi@1.1 is labelled

by d/∈πseed, line 3 is executed and AsLastMerge outputs the tree rooted at Fi@1.1.

Next the nodes Fi@1.2 and Fu@i1 are parsed and, for the same reason as before,

line 3 is executed and outputs the tree rooted at Fi@1.2. The remaining subtrees

of Fi are processed in the same manner. Finally, when Fi has been totally parsed,

AsLastMerge executes line 2 and outputs the forest Fu containing the new trees

rooted at Fu@i1 and Fu@i2. 2

5.3.2.4 The procedure BeforeMerge

This procedure is meant to merge two forests Fi and Fu whose parent nodes n and

m are "synchronized" n=m and such that ai belongs only to par(πbef). It produces

a sub-forest Fr of the final result u(t).

The properties induced by the condition ai∈par(πbef) are the following: (†4)

the first level nodes of Fu are either new nodes (having fresh identifiers ix) or nodes

whose types are in πseed and thus have been projected, or nodes whose types are in

πbef (ai) and have been projected for the purpose of potential insertions "before".

The condition ensures that no delete or replace operation could be performed by the

154 Chapter 5. Extending the Type Projection based evaluation...

BeforeMerge(Fi | Fu | x) =
1 Fi if roots(Fu)=∅

otherwise (neither Fi nor Fu are empty)

2 ti◦BeforeMerge(fi | Fu | x) if lab(roots(ti)) /∈ πbef (x)∪πseed

3 TreeMerge(ti | tu)◦BeforeMerge(fi | fu | x) if roots(ti)=roots(tu)

4 tu◦BeforeMerge(Fi | fu | x) if new(roots(tu))=true

Figure 5.28: The procedure BeforeMerge

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

e
[1.3]

z
[1.3.1]

c
[1.4]

e
[1.5]

(1) sub-forest Fi

a
[1]

k
[i1]

k
[i2]

e
[1.3]

z
[1.3.1]

e
[1.5]

(2) sub-forest Fu

a

d

f g

b k k e

z

c e

(3) final result Fr

Figure 5.29: Illustration of the behavior of BeforeMerge

update u over the first level nodes of Fi and that the only possible insert operation

is "insert before".

The procedure BeforeMerge is formally specified in Figure 5.28. Note that this

procedure has an extra parameter x which is the type of the parent node of Fi. This

parameter is required for identifying the first level nodes of Fi whose types belong

to πbef (x) (with x=ai in the current presentation). Line 2 takes care of the subtrees

of Fi that were projected out. Line 3 takes care of synchronized subtrees ti and tu
of Fi and Fu, and finally line 4 takes care of the inserted before subtrees tu of Fu.

Example 5.3.4. Illustrating the behavior of BeforeMerge: see Figure 5.29.

Let us consider the update u4 specified by:

for $x in /a/e where $x/e/z return insert nodes {<k/>,<k/>} before

$x.

projector - The extended projector πext derived for the update u4 contains one

component πbef={(a, e)}.

update - Figure 5.29-2 illustrates the changes applied by the update u4. The parent

node of Fu labelled by a has two "before" inserted elements Fu@i1 and Fu@i2

labelled by k and the elements Fu@1.3 and Fu@1.5 obtained by the projection.

Note that the element Fu@1.3 is followed by its child Fu@1.3.1.

merge - (see fig. 5.29-3). Because the parent node of Fi is labelled by a∈par(πbef),

the forests Fi and Fu are merged by BeforeMerge (see fig. 5.28).

First, BeforeMerge examines the nodes Fi@1.1 and Fu@i1. Because Fi@1.1 is labelled

by d/∈πbef (a)∪πseed, BeforeMerge executes line 2 and accordingly, it outputs the tree

rooted at Fi@1.1. The next two nodes processed are Fi@1.2 and Fu@i1 and, for the

5.3. Definition of the Extended Projection 155

AfterMerge(Fi | Fu | x) =
1 Fi if roots(Fu)=∅
2 Fu if roots(Fi)=∅

otherwise (neither Fi nor Fu are empty)

3 ti◦AfterMerge(fi | Fu | x) if lab(roots(ti)) /∈ πaf (x)∪πseed and

new(roots(tu))=false

4 TreeMerge(ti | tu)◦AfterMerge(fi | fu | x) if roots(ti)=roots(tu)

5 tu◦AfterMerge(Fi | fu | x) if new(roots(tu))=true

Figure 5.30: The procedure AfterMerge

same reason as before, line 2 is executed and BeforeMerge outputs the tree rooted at

Fi@1.2. Next, BeforeMerge examines the nodes Fi@1.3 and Fu@i1. Because Fi@1.3

is labelled by e∈ch(πbef) and the identifier of Fu@i1 indicates that it is a new

inserted node (new(roots(Fu@i1))=true), BeforeMerge executes line 4 and outputs

the tree rooted at Fu@i1. Next, the nodes Fi@1.3 and Fu@i2 are parsed and, for the

same reason as before, line 4 is executed and BeforeMerge outputs the tree rooted at

Fu@i2. After that step, the next two nodes processed are Fi@1.3 and Fu@1.3. The

identifiers of the two nodes are equal (roots(Fi@1.3)=roots(Fu@1.3)), leading to the

execution of line 3: TreeMerge is going to choose how to merge the trees rooted at

Fi@1.3 and Fu@1.3 based on the type of the node Fi@1.3. The next two nodes

processed are Fi@1.4 and Fu@1.5. Because Fi@1.4 is labelled by c/∈πbef (a)∪πseed,

BeforeMerge executes line 2 and outputs the tree rooted at Fi@1.4. Finally the nodes

Fi@1.5 and Fu@1.5 are examined. Because the identifiers of the two nodes are equal

(roots(Fi@1.5)=roots(Fu@1.5)), BeforeMerge executes line 3: TreeMerge is going to

choose how to merge the trees rooted at Fi@1.5 and Fu@1.5. 2

5.3.2.5 The procedure AfterMerge

This procedure is meant to merge two forests Fi and Fu whose parent nodes n and

m are "synchronized" (n=m) and such that ai belongs only to par(πaf). It produces

a sub-forest Fr of the final result u(t).

The properties induced by the condition ai∈par(πaf) are the same as for (†4)

except that this time, the new elements are inserted "after".

The procedure AfterMerge is formally defined in Figure 5.30 and do not present

any new difficulties.

Example 5.3.5. Illustrating the behavior of AfterMerge: see Figure 5.31. Let us

consider the update u5 specified by :

for $x in /a return insert nodes {<k/>, <k/>} after $x/e.

projector - The extended projector πext derived from the update u4 contains one

component πaf={(a, e)}.

update - Figure 5.31-2 illustrates the changes applied by the update u5. The parent

node of Fu labelled by a has four "after" inserted elements Fu@i1, Fu@i2, Fu@i3

156 Chapter 5. Extending the Type Projection based evaluation...

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

e
[1.3]

z
[1.1.2]

c
[1.4]

e
[1.5]

(1) sub-forest Fi

a
[1]

e
[1.3]

k
[i1]

k
[i2]

e
[1.5]

k
[i3]

k
[i4]

(2) sub-forest Fu

a

d

f g

b e

z

k k c e k k

(3) final result Fr

Figure 5.31: Illustration of the behavior of AfterMerge

and Fu@i4 labelled by k, and the elements Fu@1.3 and Fu@1.5 obtained by the

projection.

merge - (see fig. 5.31-3). Because the parent node of Fi is labelled by a∈par(πaf),

the forests Fi and Fu are merged by AfterMerge (see fig. 5.30).

First, AfterMerge examines the nodes Fi@1.1 and Fu@1.3. Because Fi@1.1 is labelled

by d/∈πbef (a)∪πseed and the identifier of Fu@1.3 indicates that it is not a new in-

serted node (new(roots(Fu@1.3))=false), line 3 is executed and AfterMerge outputs

the tree rooted at Fi@1.1. The next two nodes processed are Fi@1.2 and Fu@1.3

and, for the same reason as before, line 3 is executed and AfterMerge outputs the

tree rooted at Fi@1.2. After that step, the next two nodes processed are Fi@1.3 and

Fu@1.3. The identifiers of the two nodes are equal (roots(Fi@1.3)=roots(Fu@1.3)),

leading to the execution of line 4: TreeMerge is going to choose how to merge the trees

rooted at Fi@1.3 and Fu@1.3 based on the type of the node Fi@1.3. Next,AfterMerge

examines the nodes Fi@1.4 and Fu@i1. Because the identifier of Fu@i1 indicates

that it is a new inserted node (new(roots(Fu@i1))=true), AfterMerge executes line 5

and outputs the tree rooted at Fu@i1. The next two nodes processed are Fi@1.4 and

Fu@i2 and, for the same reason as before, line 5 is executed and AfterMerge outputs

the tree rooted at Fu@i2. After that step, AfterMerge examines the nodes Fi@1.4

and Fu@1.5. Because the two nodes are equal (roots(Fi@1.5)=roots(Fu@1.5)),

AfterMerge executes line 4. Finally, AfterMerge executes line 2 and outputs the forest

Fu containing the new trees rooted at Fu@i3 and Fu@i4. 2

5.3.2.6 The procedure DelMerge

This procedure is meant to merge two forests Fi and Fu whose parent nodes n and m

are "synchronized" (n=m) and such that ai belongs only to par(πnext). It produces

a sub-forest Fr of the final result t(u).

The procedure DelMerge is formally presented in Figure 5.32. Roughly, it behaves

like the procedure NoMerge specified in the context of the three-level projector.

5.3.2.7 The procedure NextMerge

This procedure is meant to merge two forests Fi and Fu whose parent nodes n and m

are "synchronized " (n=m) and such that ai belongs only to par(πnext). It produces

a sub-forest Fr of the final result t(u).

5.3. Definition of the Extended Projection 157

1 DelMerge(Fi | Fu | x) = Fu if roots(Fi)=∅

otherwise(Fi is not empty)

2 ti◦DelMerge(fi | Fu | x) if lab(roots(ti))/∈πdel(x)∪πseed

otherwise, assuming roots(Fu)6=∅ then

3 TreeMerge(ti | tu)◦DelMerge(fi | fu | x) if roots(ti)=roots(tu)

4 DelMerge(fi | Fu | x) if roots(ti)<roots(tu)

otherwise, assuming roots(Fu)=∅ then

5 DelMerge(fi | Fu | x)

Figure 5.32: The procedure DelMerge

NextMerge(Fi | Fu | x) =
1 Fu if roots(Fi)=∅

otherwise (Fi is not empty),

assuming roots(Fu)6=∅ and lab(roots(ti))/∈πnext(x)∪πseed

2 ti◦NextMerge(fi | fu | x) if roots(ti)=roots(tu)

3 ti◦NextMerge(fi | Fu | x) if roots(ti)<roots(tu)

or (new(roots(tu))=true)

otherwise still assuming roots(Fu)6=∅
4 tu◦NextMerge(Fi | fu | x) if new(roots(tu))=true

5 NextMerge(fi | Fu | x) if roots(ti)<roots(tu)

6 TreeMerge(ti | tu)◦NextMerge(fi | fu | x) if roots(ti)=roots(tu)

otherwise (roots(Fu)=∅)
7 Fi if lab(roots(ti)) /∈ π

8 () if lab(roots(ti))∈πnext(x)

Figure 5.33: The procedure NextMerge

The properties induced by the condition ai∈par(πnext) are the following: (†5)

the first level nodes of Fu are either nodes whose types are in πseed and thus have

been projected or nodes whose types belong to πnext(ai) and have not been replaced,

followed by nodes that have been projected because they are the next siblings of

nodes whose types belong to πnext(ai) or finally new nodes which are roots of

inserted elements "in place of".

The procedure NextMerge is formally presented in Figure 5.33. The reader should

pay attention to line 2: it takes care of the case where ti has been projected as a

separator and no other reason (thus its root type does not belong to πseed). Line

3 takes care of the subtrees of Fi that were projected out. Lines 4 and 5 takes

care of the case where the subtree ti has been replaced and line 6 takes care of

synchronized subtrees ti and tu of Fi and Fu. Finally, lines 7 and 8 are dealing with

parsing termination.

Example 5.3.6. Illustrating the behavior of NextMerge: see Figure 5.34.

158 Chapter 5. Extending the Type Projection based evaluation...

a
[1]

d
[1.1]

f
[1.1.1]

g
[1.1.2]

b
[1.2]

e
[1.3]

z
[1.1.2]

c
[1.4]

e
[1.5]

(1) sub-forest Fi

a
[1]

k
[i1]

k
[i2]

c
[1.4]

k
[i3]

k
[i4]

(2) sub-forest Fu

a

d

f g

b k k c k k

(3) final result Fr

Figure 5.34: Illustration of the behavior of NextMerge

Let us consider the update u6 specified by:

for $x in /a return replace node $x/e with {<k/>,<k/>}.

projector - The extended projector πext derived from the update u6 has one com-

ponents πnext={(a, e)}.

update - Figure 5.34-2 illustrates the changes applied by the update u6. The parent

node of Fu labelled by a has four "in place of" inserted elements Fu@i1, Fu@i2,

Fu@i3 and Fu@i4 labelled by k, and the separator element Fu@1.4 obtained by the

projection.

merge - (see fig. 5.34-3). Because the parent node of Fi is labelled by a∈par(πnext),

the forests Fi and Fu are merged by NextMerge (see fig. 5.33).

First, NextMerge examines the nodes Fi@1.1 and Fu@i1. Because Fi@1.1 is labelled

by d/∈πbef (a)∪πseed and the identifier of Fu@i1 indicates that it is a new inserted

node (new(roots(Fu@i1))=true), line 3 is executed and NextMerge outputs the tree

rooted at Fi@1.1. The next two nodes processed are Fi@1.2 and Fu@i1 and, for

the same reason as before, line 3 is executed and NextMerge outputs the tree rooted

at Fi@1.2. After that step, the next two nodes processed are Fi@1.3 and Fu@i1.

Because Fi@1.3 is labelled by e∈ch(πnext) and the identifier of Fu@i1 indicates that

it is a new inserted node (new(roots(Fu@i1))=true), NextMerge executes line 4 and

outputs the tree rooted at Fu@i1. Next, NextMerge examines the nodes Fi@1.3 and

Fu@i2 and, for the same reason as before, line 4 is executed and NextMerge outputs

the tree rooted at Fu@i2. The next two nodes processed are Fi@1.3 and Fu@1.4.

Because the identifier of Fi@1.3 is less than the one of Fu@1.4 line 5 is executed and

NextMerge skips the tree rooted at Fi@1.3. After that step, the nodes Fi@1.4 and

Fu@1.4 are examined. Because Fi@1.4 is labelled by c/∈πbef (a)∪πseed and the iden-

tifiers of Fi@1.4 and Fu@1.4 are equal (roots(Fu@1.4)=roots(Fu@1.4)) NextMerge

executes line 2 and outputs the tree rooted at Fi@1.4. Next, NextMerge parses the

nodes Fi@1.5 and Fu@i3. Because Fi@1.5 is labelled by e∈ch(πnext) and the iden-

tifier of Fu@i3 indicates that it is a new inserted node (new(roots(Fu@i3))=true),

NextMerge executes line 4 and outputs the tree rooted at Fu@i3. Next, NextMerge

examines the nodes Fi@1.5 and Fu@i4 and, for the same reason as before, line 4 is

executed and NextMerge outputs the tree rooted at Fu@i4. Finally, since the forest

Fu has been totally parsed and Fi@1.5 is labelled by e∈ch(πnext) NextMerge executes

line 8 and skips the tree rooted at Fi@1.5. 2

5.3. Definition of the Extended Projection 159

5.3.3 Function TreeMerge - general case -

This section is devoted to the general case which means that now the label ai of

the parent node of Fi may belong to several projector components. The section

starts by revising the core of the TreeMerge procedure. Then, we revise some of the

xxMerge procedures that have been introduced already.

The procedure TreeMerge of Section 5.3.2 is extended to take into account the

cases where ai belongs to more than one projector component. It is of course not

necessary to consider all cases as some of them cannot happend. For instance, with

respect to our analysis (See Table 5.20 for a synthesis), it is not possible that the

label ai belongs to par(πbef) and par(πaf) only because in that case ai should belong

to par(πnext) and has been deleted from par(πbef) and par(πaf).

Below, in the presentation of the procedure TreeMerge,

1. as for the definition of TreeMerge in Section 5.3.2, we do not consider the cases

where ai∈πolb or where ai∈πeb; these cases subsumes all cases introduced in this

section and the procedure OlbMerge introduced in Section 4.3 applies directly.

2. we do not reintroduce the cases where ai belongs to only one projector

component for the sake of simplicity, and thus the code below should be viewed as

additional code.

3. for the sake of simplicity, we also make the following convention: in the

conditional parts of the procedure, writing that ai∈A and ai∈B, we intend that

ai∈A and ai∈B only or ai∈A and ai∈B and ai∈πno; for instance, ai∈par(πbef)

and ai∈πaslast means that the label ai belongs to par(πbef) and to πaslast and may

be also to πno.

A similar convention is made for ai∈A and ai∈B and ai∈C.

Given two synchronized subtrees τi and τ ′, TreeMerge produces a subtree τr such

that:

• roots(τr)=n=m,

• lab(roots(τr))=lab(roots(τ ′))=bi, and

• subfor(τr) =

AsFirstDelMerge(Fi | Fu | ai) if ai∈par(πdel) and ai∈πasfirst
AsLastDelMerge(Fi | Fu | ai) if ai∈par(πdel) and ai∈πaslast
BeforeMerge(Fi | Fu | ai) if ai∈par(πbef) and ai∈πaslast
AfterMerge(Fi | Fu | ai) if ai∈par(πaf) and ai∈πasfirst or

if ai∈par(πaf) and ai∈πlast or

if ai∈par(πaf) and ai∈πasfirst and ai∈πlast
NextMerge(Fi | Fu | ai) if ai∈par(πnext) and ai∈πaslast or

if ai∈par(πnext) and ai∈πfirst or

if ai∈par(πnext) and ai∈πaslast and ai∈πfirst
FirstMerge(Fi | Fu | ai) if ai∈par(πbef) and ai∈πfirst or

if ai∈πaslast, and ai∈πfirst or

if ai∈par(πbef), and ai∈πaslast, and ai∈πfirst

160 Chapter 5. Extending the Type Projection based evaluation...

1 AsFirstDelMerge(Fi | Fu | x) = Fu if roots(Fi)=∅

otherwise(Fi is not empty),

2 ti◦AsFirstDelMerge(fi | Fu | x) if lab(roots(ti))/∈πdel(x)∪πseed and

[roots(Fu)=∅ or new(roots(tu))=false]

otherwise, assuming roots(Fu)6=∅ then

3 TreeMerge(ti | tu)◦AsFirstDelMerge(fi | fu | x) if roots(ti)=roots(tu)

4 AsFirstDelMerge(fi | Fu | x) if roots(ti)<roots(tu)

5 tu◦AsFirstDelMerge(Fi | fu | x) if new(roots(tu))=true

otherwise, assuming roots(Fu)=∅ then

6 AsFirstDelMerge(fi | Fu | x)

Figure 5.35: The procedure AsFirstDelMerge -general case -

5.3.3.1 The procedure AsFirstDelMerge - general case -

The procedure DelMerge (see fig. 5.32) is extended to support the case where the

type ai of the parent node of Fi belongs to par(πdel) and πasfirst (and may be to

πno also).

The extended procedure AsFirstDelMerge is formally presented in Figure 5.35.

Line 2 takes care of the subtrees of Fi that were projected out. The condition on

the forest Fu checks that all "inserted as first" subtrees have bee treated (by line

5). Line 3 takes care of synchronized subtrees ti and tu of Fi and Fu. Finally, lines

4 and 6 deal with the "deleted" subtrees ti of Fi.And, as already mentioned, line 5

takes care of the inserted "as first" subtrees tu of Fu.

5.3.3.2 The procedure AsLastDelMerge - general case -

The procedure DelMerge (see fig. 5.32) is extended to support the general case, when

the type ai of the parent node of Fi belongs to par(πdel) and πaslast (and may be

to πno also).

The extended procedure AsLastDelMerge is formally presented in Figure 5.36.

Line 1 deals with "inserted as last" subtrees tu of Fu. Line 2 takes care of the

subtrees of Fi that were projected out. Note that this line does not make any

assumption on the emptiness of the partially updated subforest Fu. Line 3 takes

care of synchronized subtrees ti and tu of Fi and Fu. Finally, lines 4, 5 and 6 deal

with the "deleted" subtrees ti of Fi.

5.3.3.3 The procedure BeforeMerge - general case -

The procedure BeforeMerge (see fig. 5.28) is extended to support the case where the

type ai of the parent node of Fi belongs to par(πbef) and πaslast (and may be to

πno also).

The properties induced by the condition ai∈par(πbef) and πaslast are the following:

(†6) the first level nodes of Fi are either new nodes (having fresh identifiers ix) or

5.3. Definition of the Extended Projection 161

1 AsLastDelMerge(Fi | Fu | x) = Fu if roots(Fi)=∅

otherwise(Fi is not empty),

2 ti◦AsLastDelMerge(fi | Fu | x) if lab(roots(ti))/∈πdel(x)∪πseed

otherwise, assuming roots(Fu)6=∅ then

3 TreeMerge(ti | tu)◦AsLastDelMerge(fi | fu | x) if roots(ti)=roots(tu)

4 AsLastDelMerge(fi | Fu | x) if roots(ti)<roots(tu)

5 AsLastDelMerge(fi | Fu | x) if new(roots(tu))=true

otherwise, assuming roots(Fu)=∅ then

6 AsLastDelMerge(fi | Fu | x)

Figure 5.36: The procedure AsLastDelMerge -general case -

BeforeMerge(Fi | Fu | x) =
1 Fi if roots(Fu)=∅
2 Fu if roots(Fi)=∅

otherwise (neither Fi nor Fu are empty)

3 ti◦BeforeMerge(fi | Fu | x) if lab(roots(ti))/∈πbef (x)∪πseed

4 TreeMerge(ti | tu)◦BeforeMerge(fi | fu | x) if roots(ti)=roots(tu)

5 tu◦BeforeMerge(Fi | fu | x) if new(roots(tu))=true

Figure 5.37: The procedure BeforeMerge -general case -

nodes whose types are in πseed and thus have been projected, or nodes whose types

are in πbef (ai) and have been projected for the purpose of potential insertions

"before".

The condition ensures that no delete or replace operation could be performed

by the update u over the first level nodes of Fi and that the only possible insert

operations are "insert before" and "insert as last".

The procedure BeforeMerge is formally specified in Figure 5.37. Line 2 takes

care of outputting potentially new elements inserted "as last". Indeed, it is the only

change made on the former BeforeMerge givrn in Figure 5.28. Line 3 takes care of the

subtrees of Fi that were projected out. Line 4 takes care of synchronized subtrees

ti and tu of Fi and Fu, and finally line 5 takes care of the inserted "before" subtrees

tu of Fu.

5.3.3.4 The procedure AfterMerge - general case -

The procedure AfterMerge (see fig. 5.30) is extended to support the general case,

when the type ai of the parent node of Fi belongs either to (par(πaf) and πasfirst)

or (par(πaf) and πlast) or (par(πaf) and πasfirst and πlast).

162 Chapter 5. Extending the Type Projection based evaluation...

AfterMerge(Fi | Fu | x) =
1 Fi if roots(Fu)=∅

otherwise (Fu is not empty),

assuming roots(Fi)6=∅ and lab(roots(ti))/∈πaf (x)∪πseed

2 ti◦AfterMerge(fi | Fu | x) if new(roots(tu))=false

3 tu◦AfterMerge(Fi | fu | x) if new(roots(tu))=true

otherwise still assuming roots(Fi)6=∅
4 TreeMerge(ti | tu)◦AfterMerge(fi | fu | x) if roots(ti)=roots(tu)

otherwise (roots(Fi)=∅)
5 AfterMerge(Fi | fu | x) if new(roots(tu)=false

6 Fu if new(roots(tu))=true

Figure 5.38: The procedure AfterMerge - general case -

The properties induced by the conditions given above are the following: (†7) the

first level nodes of Fu are either new nodes (having fresh identifiers ix) or nodes

whose types are in πseed and thus have been projected, or nodes whose types are in

πaf (ai) and have been projected for the purpose of potential insertions "after", or

the last node of Fi projected as a separator when ai belongs to πlast.

This ensures that no delete or replace operation could be performed by the update

u over the first level nodes of Fi and that the only possible insert operations are

"insert after", "insert as first" and "insert as last".

The procedure AfterMerge is formally specified in Figure 5.38.

Line 2 takes care of the subtrees of Fi that were projected out. Line 3 takes

care of the inserted "as first" or "after" subtrees tu of Fu. Line 4 takes care of

synchronized subtrees ti and tu of Fi and Fu. Finally, lines 5 and 6 are dealing

with parsing termination. The reader should pay attention to line 5: it takes care

of the case where tu has been projected as a separator that is tu is the last child of

the parent node ai which belong to πlast and its label does not necessarily belong

to the projector; in that case this node has already been output by line 2 and thus

it has to be skipped by AfterMerge. Line 6 takes care of outputting potentially new

elements inserted "as last".

5.3.3.5 The procedure NextMerge - general case -

The procedure NextMerge (see fig. 5.33) is extended to support the case where

the type ai of the parent node of Fi belongs either to (par(πnext) and πaslast) or

(par(πnext) and πfirst) or (par(πnext) and πaslast and πfirst).

The properties induced by the conditions given above are the following: (†8) the

first level nodes of Fu are either nodes whose types are in πseed and thus have been

projected or nodes whose types belong to πnext(ai) and have not been replaced,

5.3. Definition of the Extended Projection 163

NextMerge(Fi | Fu | x) =
1 Fu if roots(Fi)=∅

otherwise (Fi is not empty),

assuming roots(Fu)6=∅ and lab(roots(ti))/∈πnext(x)∪πseed

2 ti◦NextMerge(fi | fu | x) if roots(ti)=roots(tu)

3 ti◦NextMerge(fi | Fu | x) if roots(ti)<roots(tu)

or (new(roots(tu))=true and first(roots(ti))=false)

4 tu◦NextMerge(Fi | fu | a) if first(roots(ti)) = true and new(roots(tu))=true

otherwise still assuming roots(Fu)6=∅
5 tu◦NextMerge(Fi | fu | x) if new(roots(tu))=true

6 NextMerge(fi | Fu | x) if roots(ti)<roots(tu)

7 TreeMerge(ti | tu)◦NextMerge(fi | fu | x) if roots(ti)=roots(tu)

otherwise (roots(Fu)=∅)
8 Fi if lab(roots(ti)) /∈ π

9 () if lab(roots(ti))∈πnext(x)

Figure 5.39: The procedure NextMerge - general case -

followed by nodes that have been projected because they are the next siblings of

nodes whose types belong to πnext(ai), or new nodes which are roots of inserted

elements "in place of", "as first" or "as last". Finally, the first child of ai may have

been projected, because ai belongs to πfirst.

This condition ensures that no delete operation could be performed by the update

u over the first level nodes of Fi.

The procedure NextMerge is formally presented in Figure 5.39. It uses the func-

tion first that simply returns true when the subtree ti is the first child of the parent

node of Fi (it has an identifier x.1).

Line 2 takes care of the case where ti has been projected as a separator. Line 3

takes care of the subtrees of Fi that were projected out. Note that the condition:

new(roots(tu))=true and first(roots(ti))=false verifies that the subtree tu of Fu is

not inserted "as first". Line 4 takes care of the inserted "as first" subtrees tu of Fu.

Lines 5 and 6 take care of the case where the subtree ti has been replaced and line

7 takes care of synchronized subtrees ti and tu of Fi and Fu. Finally, lines 8 and 9

are dealing with parsing termination.

5.3.3.6 The procedure FirstMerge - general case -

This procedure is meant to merge two forests Fi and Fu whose parent nodes n and

m are "synchronized " (n=m) and such that ai belongs either to (par(πbef) and

πfirst) or to (par(πbef) and πaslast and πfirst) or to (πaslast and πfirst).

The properties induced by the conditions given above are the following: (†9) the

first level nodes of Fu are either new nodes (having fresh identifiers ix) or nodes

whose types are in πseed, or nodes whose types are in πbef (ai) and have been

164 Chapter 5. Extending the Type Projection based evaluation...

1 FirstMerge(Fi | Fu | x) = Fi if roots(Fu)=∅

2 Fu if roots(Fi)=∅

otherwise (neither Fi nor Fu are empty)

assuming lab(roots(ti))∈πnext(x)∪πseed

3 TreeMerge(ti | tu)◦FirstMerge(fi | fu | x) if roots(ti)=roots(tu)

4 tu◦FirstMerge(Fi | fu | x) if new(roots(tu))=true

otherwise

5 ti◦FirstMerge(fi | Fu | x) if first(roots(ti))=false

6 tu◦FirstMerge(Fi | fu | x) if first(roots(ti))=true and

new(roots(ti))=true

7 ti◦FirstMerge(fi | fu | x) if first(roots(ti))=true and

roots(ti)=roots(tu)

Figure 5.40: The procedure FirstMerge - general case -

projected for the purpose of potential insertions "before" or the first child node

of n because ai belongs to πfirst. The condition ensures that no delete or replace

operation could be performed by the update u over the first level nodes of Fi and

that the only possible insert operation is "insert before", "insert as last" and "insert

as first".

The procedure FirstMerge is formally presented in Figure 5.40. Line 2 takes care

of the inserted "as last" subtrees tu of Fu. Line 3 takes care of synchronized subtrees

ti and tu of Fi and Fu. Line 4 takes care of the inserted "before" subtrees tu of Fu.

Line 5 takes care of the subtrees of Fi that were projected out. Line 6 takes care of

the inserted "as first" subtrees tu of Fu. The reader should pay attention to line 7:

it takes care of the case where ti has been projected as a separator.

5.3.4 Conclusion

As stated at the beginning of this Chapter, extending the three−level projection

based evaluation of updates is memory oriented: the goal was to decrease the size

of the projected document. For example, we have showed that while executing

an update query u that performs insertion "as first", using the extended projector

vs. the three−level one, requires less memory usage. As the reader can observe,

the proposed optimization leads to a more complex type projector. Execution of

the extended projector requires performing additional tests. Intuitively, this may

have an impact on the execution time, increasing it compared to three−level type

projector. On the other hand, the Merge phase reflects the changes done on the

type projector and is composed of a larger set of procedures. Compared to the

Merge supporting three−level projector, this set of procedures is more complex to

implement, since there are more cases to verify.

Therefore, it remains to analyse whether using method based the extended pro-

5.3. Definition of the Extended Projection 165

jection is always better than using the one based on the three−level type projector

and in which cases the method based on the three−level type projector should be

prefered for the purpose of saving execution time when space is not the priority.

The implementation of the extended optimization has not yet been developed,

thus we cannot provide such an analysis and results concerning the changes in the

execution time neither for the projection nor for the Merge phases.

Chapter 6

Conclusion

In this Thesis, we have studied the update optimization techniques for main-memory

systems. To this end we have adopted techniques based on XML projection.

We have first examined internal data representation and evaluation strategies

of main XQuery engines, namely: MonetDB/XQuery, BaseX, eXist and Saxon.

For the experiments in the Thesis, we also used Qizx, but we did not discuss the

implementation details, because there is no documentation available.

Even if the systems are efficient for memory management, as we have seen

projection improves a memory usage for all systems.

We have first developed a projection based optimization method for updates

using a three−level projection. My contribution was the specification of the Merge

phase, developing a prototype and running tests.

The results of the experiments demonstrate that our technique is very efficient for

memory savings: using our technique we can execute updates on documents having

sizes up to 2GB. We have, as well, sensible improvements in terms of time, which is

due to reducing the number of elements to be indexed while importing a document

to the database.

It is important to note that our approach allows, as well, to evaluate a

workload (n updates) by processing our method just once. The scenario is then

the following. A global projector is inferred in a straightforward manner (it is

the union of the update projectors inferred for each update). Next the document

on which workload has to be applied is projected, the updates are evaluated

and finally the Merge algorithm is executed without any change required. Some

preliminary tests have been done ([11]), which shows that the projection is efficient

for workload. Further test are needed to understand the limitations of the approach.

For Saxon we still have memory limitation using projection, due to the low

selectivity of the πolb component in some cases. This was the starting point of my

second contribution.

An extension of the projector extracted from the update and schema has been

proposed as well as the extension of the Merge phase compatible with this

projection.

The extension does not cover the case of mixed content element. Further analysis

is required for dealing with text in a more precise manner than the πolb component

does.

168 Chapter 6. Conclusion

We are currently working on the implementation and the experiments of the

extension of the method explained in Chapter 5. It is worth noticing that this

extension has a bigger set of projector components and many cases to deal with,

thus more complex projection and Merge process. Therefore, one of our future

work is to make an analysis of both Merge and its extension, in order to determine

the cases when using the extension is less effective than using the core method

based on a three−level projection.

One of the future improvements of our technique is the reduction of the execution

time. In order to do that, as it has been explained in Chapter 4 we plan to eliminate:

(i) storing the pruned document on the disk, and (ii) storing and re-reading the

partial update pruned document. This requires some strong interaction with the

update processor, and hence further implementation efforts.

References

[1] Dom. http://www.w3.org/DOM/. 34

[2] eXist. http://exist.sourceforge.net/. 4, 22, 88

[3] Galax. http://www.galaxquery.org. 4, 22

[4] QizX Free-Engine-3.0. http://www.xmlmind.com/qizx/free_engine.html. 4,

22, 88

[5] QizX/open. http://www.xmlmind.com/qizx/qizxopen.shtml. 4, 22

[6] SAX. http://www.saxproject.org/. 34, 81

[7] Saxon-ee. http://www.saxonica.com/. 4, 22, 88

[8] W3C. http://www.w3.org/. 9

[9] XUF. http://www.w3.org/TR/xquery-update-10/. 18

[10] Edbt 2011, 14th international conference on extending database technology,

uppsala, sweden, march 21-24, 2011, proceedings. In A. Ailamaki, S. Amer-

Yahia, J. M. Patel, T. Risch, P. Senellart, and J. Stoyanovich, editors, EDBT.

ACM, 2011. 169, 170

[11] M. A. Baazizi, N. Bidoit, D. Colazzo, N. Malla, and M. Sahakyan. Projection

for xml update optimization. In Ailamaki et al. [10], pages 307–318. 56, 167

[12] M. Benedikt, A. Bonifati, S. Flesca, and A. Vyas. Verification of tree updates

for optimization. In CAV, 2005. 6

[13] M. Benedikt and J. Cheney. Schema-based independence analysis for XML

updates. VLDB, 2009. 6

[14] M. Benedikt and J. Cheney. Semantics, types and effects for XML updates. In

DBPL. Springer, 2009. 10, 14

[15] V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyen. Type-based XML

projection. In VLDB, 2006. 3, 4, 6

[16] N. Bidoit, D. Colazzo, N. Malla, and M. Sahakyan. Projection based optimiza-

tion for xml updates. ADBIS - Local proceeding, -:315–322, September 2009.

56

[17] M. N. Bidoit Tollu N., Colazzo D. and S. M. Optimisation de mises a jour

xml par typage et projection. In 25emes journees Bases de Donnees Avancees

(BDA), Octobre 2009. 56

170 References

[18] T. Bohme and E. Rahm. Supporting efficient streaming and insertion of xml

data in rdbms. In PROC. 3RD INT. WORKSHOP DATA INTEGRATION

OVER THE WEB (DIWEB), 2004, pages 70–81, 2004. 42

[19] P. Boncz, T. Grust, M. Keulen, S. Manegold, J. Rittinger, and J. Teubner.

MonetDB/XQuery: a fast XQuery processor powered by a relational engine.

In SIGMOD, pages 479–490, 2006. 22, 23

[20] P. Boncz, S. Manegold, and J. Rittinger. Updating the Pre/Post Plane in

MonetDB/XQuery, 2005. 22, 23, 26

[21] S. Bressan, B. Catania, Z. Lacroix, Y.-G. Li, and A. Maddalena. Accelerating

queries by pruning XML documents. Data Knowl. Eng., 54(2), 2005. 3

[22] F. Cavalieri, G. Guerrini, and M. Mesiti. Dynamic reasoning on xml updates.

In Ailamaki et al. [10], pages 165–176. 6

[23] A. Deutsch and V. Tannen. MARS: A System for Publishing XML from Mixed

and Redundant) Storage. In In VLDB, pages 201–212, 2003. 23

[24] W. Fan, G. Cong, and P. Bohannon. Querying XML with update syntax. In

SIGMOD Conference, 2007. 6

[25] L. Fegaras. A schema-based translation of XQuery updates. In XSym, 2010. 6

[26] W. Gelade, W. Martens, and F. Neven. Optimizing schema languages for XML:

Numerical constraints and interleaving. In ICDT, 2007. 13

[27] G. Ghelli, K. H. Rose, and J. Siméon. Commutativity analysis in XML update

languages. In ICDT, 2007. 6

[28] G. Ghelli, K. H. Rose, and J. Siméon. Commutativity analysis for XML up-

dates. ACM Trans. Database Syst., 33(4), 2008. 6

[29] C. Grun, S. Gath, A. Holupirek, and M. H. Scholl. XQuery Full Text Imple-

mentation in BaseX. 4, 22, 34

[30] C. Grun, A. Holupirek, M. Kramis, M. H. Scholl, and M. Waldvogel. Pushing

XPath Accelerator to its Limits, 2006. 4, 22, 34

[31] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In VLDB, pages

252–263, 2004. 23

[32] T. Grust and J. Teubner. Relational algebra: Mother tongue-XQuery: Fluent.

25

[33] A. Marian and J. Siméon. Projecting XML documents. In VLDB, 2003. 3, 6

[34] W. Meier. eXist: An Open Source Native XML Database. In Web-Services, and

Database Systems, NODe 2002 Web and Database-Related Workshops, pages

169–183. Springer, 2002. 22

References 171

[35] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse.

XMark: A benchmark for XML data management. In VLDB, 2002. 87

[36] M. Schmidt, S. Scherzinger, and C. Koch. Combined static and dynamic analy-

sis for effective buffer minimization in streaming XQuery evaluation. In ICDE,

2007. 3

[37] J. T. Teubner. Pathfinder: XQuery compilation techniques for relational

database targets, 2006. 23

172 References

