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Jan ČERNOCKÝ
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Rennes / directeur de thèse
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Chapter 1

Resumé en français

1.1 Motivation

Dans de nombreuses applications, il est utile de résumer un contenu afin d’en per-

mettre une apprehension rapide. Ainsi, pour les textes, on a généralement recours à

quelques mots ou phrases clés tandis qu’en vidéo, on utilise des images clés présentées

sous forme d’icônes. En revanche, appréhender un contenu audio directement à par-

tir du signal reste problématique. Dans le cas de contenus oraux, il est évidemment

possible d’utiliser une transcription automatique pour se ramener au cas du texte.

Mais le processus de transcription automatique est coéteux et parfois peu fiable. La

détection de mots clés, ou word spotting , présente une alternative intéressante mais

limitée à une liste de mots prédéfinis.

Nous étudions ici une approche radicalement différente basée sur la découverte

de motifs dans le signal pour faire émerger des icônes sonores correspondant à des

mots ou des locutions caractéristiques d’un contenu. La découverte de motifs sonores

consiste à détecter à partir du signal des éléments acoustiques récurrents présentant

éventuellement un certain degré de variabilité, sans aucune forme de connaissance

a priori , tant sur le plan acoustique que linguistique. Par exemple, dans le cas de

la parole, les mots ou locutions qui se répétent sont des motifs typiques que nous

souhaitons voir émerger.

Il convient de bien distinguer la découverte de motifs de la recherche de motifs.

Dans le premier cas, les motifs ne sont pas définis a priori tandis que dans le deuxième

cas, il s’agira de retrouver un motif connu et défini à l’avance, par exemple par une

occurence de référence. Par ailleurs, il est également important de noter que nous

1



1.2 Formalisation du problème

amorcemémoire tampon

amorce dans
la librairie ?

amorce dans
la mémoire ?

étendre
l’amorce à la librairie

ajouterouinon

oui

répétition
valide ?

oui

Figure 1.1: Schéma de principe de la segmentation du flux et de la recherche pour

une amorce donnée.

souhaitons développer des approches non supervisées dans lesquelles aucune forme

d’apprentissage n’intervient. En particulier, nous ne souhaitons utiliser ni modéle de

langage, ni modéle acoustique prédéfinis.

Dans le domaine audio, quelques travaux récents s’intéressent au problème de la

découverte de motifs. En particulier, Herley propose un algorithme de découverte de

motifs sonores quasi invariants pour la découverte d’éléments récurrents (génériques,

publicités, etc.) dans un flux télévisé Herley (2006). De récents travaux sur la

découverte de mots dans le signal de parole relève le défi de la variabilité des mo-

tifs Muscariello et al. (2009b); Park & Glass (2008); ten Bosch & Cranen (2007).

Les approches proposées dans ten Bosch & Cranen (2007) et Park & Glass (2008)

s’appuient sur un algorithme en deux passes : une première passe vise à détecter

des fragments similaires qui sont regroupés dans une passe suivante. Dans Mus-

cariello et al. (2009a), nous proposons une approche combinant la stratégie en une

passe de Herley (2006) avec les méthodes de comparaison de séquences basées sur

l’alignement temporel dynamique (DTW). Dans cet article, nous étendons l’approche

présentée dans Muscariello et al. (2009a) afin d’accrôıtre la robustesse de l’algorithme

à la grande variabilité du signal de parole.

Nous formalisons tout d’abord le problème de la découverte de motif avant de

détailler l’architecture générale de l’approche proposée. Nous détaillons à la sec-

tion 1.4 différentes méthodes pour la comparaison de deux séquences sonores. Les

résultats expérimentaux sont rassemblés dans la section 1.5.

2



1.2 Formalisation du problème

1.2 Formalisation du problème

De manière tout à fait générique, la découverte de motifs consiste à trouver dans un

ensemble de données φ toutes les paires de segments disjointes, de longueur minimal

Lmin, suffisamment proches. Formellement, on cherche les paires φb
a, φ

d
c telles que

H(φb
a, φ

d
c) < ǫ , (1.1)

où H est une mesure de la distance entre les deux segments, sous les contraintes

b − a > Lmin et a < b < c < d.

Ainsi formulée, la découverte de motifs a pour but de trouver des paires de seg-

ments similaires, regroupant ainsi deux occurences d’un même motif. Une étape

supplémentaire de clustering est ensuite nécessaire pour grouper l’ensemble des oc-

curences d’un motif. Une telle considération nous améne è envisager le problème de

découverte de motifs comme un problème de clustering se limitant aux portions de

signal qui se répètent au moins une fois. Une telle approche s’applique aussi bien

lors d’un traitement a posteriori , par exemple avec une stratégie multipasse lorsque

l’ensemble des données est accessible ten Bosch & Cranen (2007); ?, que pour un

traitement en flux Herley (2006); Muscariello et al. (2009a)

Du point de vue conceptuel, nous pouvons décomposer la découverte de motifs

en quatre tâches élémentaires : représentation, segmentation, détection et validation.

La représentation consiste à choisir les descripteurs utilisés pour représenter le signal.

La segmentation recouvre l’organisation du processus en terme de segmentation des

données et d’organisation de la recherche. En effet, une recherche exhaustive de toutes

les paires vérifiant (1.1) n’est bien évidemment pas possible et le recours à une forme

de segmentation s’avère indispensable. En particulier, le premier choix à effectuer

est celui de la stratégie en une ou plusieurs passes. Enfin, les deux dernières tâches

sont directement liées à la comparaison de segments et à la découverte des motifs. La

détection consiste à identifier les répétitions φb
a, φ

d
c susceptibles de correspondre à deux

occurences d’un motif. La validation permet par la suite de décider si deux répétitions

correspondent en effet à un motif. Cette dernière tâche revient à vérifier (1.1). Bien

que conceptuellement différentes, les tâches de détection et de validation peuvent se

résumer en une seule si la même métrique H est utilisée pour les deux.

3



1.3 Architecture générale

1.3 Architecture générale

Nous proposons une approche permettant un traitement en flux des données, dérivée

de l’approche ARGOS Herley (2006) pour la segmentation. L’idée générale consiste à

construire séquentiellement, de manière incrémentale, un catalogue de motifs à partir

des données vues comme un flux. Dès lors qu’une nouvelle répétition est trouvée et

validée, une nouvelle entrée est créée dans le catalogue, permettant ainsi de retrouver

ultérieurement d’autres occurences de ce motif.

La détection des répétitions exploite la notion d’amorce, une amorce correspon-

dant à un segment court, de taille fixé, dans le flux. Une amorce est vue comme un

fragment de motif potentiel dont on cherche, dans la phase de détection, à trouver

une répétition. Si une répétition de l’amorce est trouvée, on étend alors les segments

répétés pour déterminer la répétition la plus longue possible. Cette répétition est

ensuite validée comme occurence d’un motif dés lors que les deux segments sont suff-

isamment proches et insérée dans le catalogue. Afin de limiter le coét calculatoire et

de permettre un traitement en flux, la recherche d’une répétition d’une amorce φt+δ
t

est limité au passé immédiat φt
t−∆ conservé dans une mémoire tampon. La taille de

l’amorce est étroitement liée à la taille minimum des motifs. En effet, l’amorce cor-

respond à un hypothétique fragment de motif et, dans la mesure oé l’on cherche une

répétition de l’amorce compléte, il est important qu’elle ne contienne pas de signal

n’appartenant pas au motif lorsque l’amorce est effectivement un fragment de motif.

Pour garantir cette propriété, on fixe δ = Lmin/2.

Les étapes de l’algorithme sont illustrées par la figure ??. Pour une amorce

donnée φt+δ
t , on cherche dans un premier temps si cette amorce fait parti d’un motif

connu, référencé dans le catalogue, ce dernier étant initialement vide. Si oui, on étend

alors l’amorce pour vérifier qu’elle correspond au motif référencé dans le catalogue,

remettant à jour le modéle du motif dans le catalogue le cas échéant. Dans nos

travaux, le modèle de chaque motif est obtenu par moyennage des occurences trouvées.

Si aucun motif du catalogue ne correspond, on cherche dans la mémoire tampon si

il existe une répétition de l’amorce de manière à trouver deux occurences candidates

pour un nouveau motif par extension de l’amorce. Si un nouveau motif est ainsi

découvert, il est ajouté au catalogue après validation. L’algorithme se poursuit ensuite

à partir d’une nouvelle amorce localisée soit juste après l’amorce courante si aucun

motif n’a été trouvé, soit juste après l’occurence de motif trouvé.
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1.4 Détection et validation

Dans le cadre de segmentation que nous venons de présenter, les tâches de détection

et de validation interviennent à deux niveaux, lors de la comparaison avec les entrées

du catalogue et lors de la recherche d’une répétition dans la mémoire tampon. Nous

décrivons tout d’abord une technique de détection de motifs candidats utilisant une

variante segmentale de la technique d’alignement temporel dynamique (DTW) avant

de discuter de la validation des répétitions comme occurences d’un motif.

1.4.1 Détection par DTW segmentale

Rappelons tout d’abord que la phase de détection d’une répétition é partir d’une

amorce est un processus en deux étapes. On cherche une répétition de l’amorce –

dans le catalogue ou dans la mémoire tampon – avant d’étendre la correspondance

de manière à trouver le fragment répété le plus long possible. Nous rappelons ici le

principe général de ces deux étapes décrites en détail dans Muscariello et al. (2009a).

Considérons une amorce φt+δ
t à rechercher dans un segment χ de longueur l ≫ δ.

Cette recherche se fait par un algorithme de DTW dans lequel les contraintes de début

et fin d’appariement sont relachées, de manière à trouver le fragment de χ apparié au

mieux avec l’amorce. Le résultat est un segment χe
s tel que sa distance à l’amorce,

normalisée par la longueur du chemin d’appariement, notée DDTW(φt+δ
t , χe

s), est min-

imum. Les deux segments sont considérés comme une répétition si DDTW(φt+δ
t , χe

s) <

ǫ1.

La deuxième étape vise à étendre au maximum à gauche et à droite l’appariement

existant en s’appuyant sur les points extrêmes. Si l’on prend pour exemple le cas de

l’extension à droite (i.e., vers le futur) à partir des deux points (χe, φt+δ), on cherche

par DTW la meilleure extension vers (χe+1, φt+δ+1), (χe+1, φt+δ) et (χe, φt+δ+1). Le

processus d’extension se poursuit tant que DDTW le long du nouvel appariement est

inférieure é ǫ1. Le résultat est une paire de segments, φt+δ+αa

t−βa
et χe+αb

s−βb
telle que

DDTW(φt+δ+αa

t−βa
, χe+αb

s−βb
) < ǫ1, correspondant à une hypothése de motif qu’il convient

de valider.

L’étape de validation consiste à évaluer (1.1). La distance DDTW peut étre directe-

ment utilisée comme métrique H. Cependant, afin d’éviter de valider deux segments

différents, cette stratégie requiert un seuil ǫ1 très petit, limitant ainsi la variabilité

tolérée entre occurences d’un motif. En particulier, nous avons observé que cette
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Figure 1.2: Exemple de matrices d’autosimilarité d’un motif pour deux locuteurs

(masculin en haut, féminin en bas).

approche ne permet pas de retrouver des occurences d’un motif par différents locu-

teurs. Utiliser un seuil ǫ1 plus élevé autorise une plus grande variabilité au prix d’un

nombre plus élevé de fausses détections, c’est-é-dire de détection de répétitions ne

correspondant pas à deux occurences d’un motif.

1.4.2 Validation par matrices d’autosimilarité

Pour pallier au problème précédent, nous proposons une étape de validation ex-

ploitant la comparaison de matrices d’autosimilarité. La matrice d’autosimilarité

d’une séquence χb
a est la matrice carrée Φ(χb

a) des distances entre points χi et χj .

Clairement, les matrices d’autosimilarité de différentes occurences d’un motif présentent

une forte ressemblance visuelle comme illustré par la figure ??. C’est cette ressem-

blance – interprétable comme une distance entre les autocorrélations plutét qu’entre

les séquences elles-mêmes – que nous souhaitons mesurer et utiliser pour la validation.

La comparaison des matrices d’autosimilarité requiert une normalisation de la

longueur des séquences χb
a et χd

c é comparer, normalisation s’appuyant sur la fonction
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optimale d’appariement des deux séquences. étant données les deux séquences nor-

malisées de longueur l, χ̃b
a et χ̃d

c , plusieurs métriques sont possibles. La plus simple

consiste à prendre la norme l1 normalisée, soit DSSM(χb
a, χ

d
c) = |Φ(χ̃b

a) − Φ(χ̃d
c)|/l2.

Cette distance reste cependant très dépendante des valeurs absolues des éléments des

matrices et ne refléte que peu la similarité visuelle. Afin de prendre en compte la

structure spatiale des matrices d’autosimilarité, nous avons recours à une technique

basée sur les histogrammes de gradients orientés Junejo et al. (2008)1. L’idée générale

d’une telle approche est que l’apparence locale d’une matrice d’autosimilarité se car-

actérise bien par la distribution des gradients d’intensité locaux. Chaque matrice est

ainsi transformée en un vecteur de caractéristiques locales, composé des histogrammes

des gradients d’intensités pris localement en divers points. La distance entre deux

matrices est alors définie comme la norme l1 entre leurs vecteurs de caractéristiques

et notée D′
SSM.

Les deux métriques DSSM et D′
SSM apportent des informations complémentaires

sur la structure des matrices d’autosimilarité. La premiére mesure directement la

différence d’intensité entre les entrées de la matrice. En revanche, la seconde est

invariante é l’ajout d’une constante à chaque entrée de la matrice. De plus, en ne

se limitant pas à des informations ponctuelles, elle permet de prendre en compte

une information plus complexe. En pratique, on utilisera donc en paralléle les deux

métriques pour valider une répétition comme occurence d’un motif si DSSM(χb
a, χ

d
c) <

ǫ2 et D′
SSM(χb

a, χ
d
c) < ǫ3.

1.5 Résultats

Nous évaluons tout d’abord l’approche par DTW segmentale pour la découverte de

mots dans un flux de parole avant de présenter des résultats préliminaires sur les

distances DSSM et D′
SSM.

1.5.1 Découverte de mots dans un flux

Nous avons artificiellement créé un flux de 10 h de signal par concaténation de dix

enregistrements d’une heure chacun, dans l’ordre chronologique. Les six premiéres

heures (2 h x 3 chaénes) ont été enregistrées sur une période de 15 jours, les quatre

premiéres correspondant au même jour. Les quatre derniéres heures, provenant de

1Nous tenons à remercier émilie Dexter et Patrick Pérez qui ont aimablement mis leurs pro-

grammes à notre disposition.
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4 chaénes différentes, correspondent à une période de 2 jours, éloignée de 18 mois

de la premiére période. Le choix des données répond à deux considérations ma-

jeures. D’une part, on trouve de nombreux mots ou séquences de mots présentant à

la fois des répétitions à court terme (au sein d’un reportage par exemple) et é long

terme (reportage sur le même sujet mais sur une autre station le même jour ou le

lendemain). D’autre part, nous disposons sur ces données d’alignements phonétiques

permettant de faire correspondre les motifs découverts au niveau acoustique avec une

transcription phonétique.

Dans toutes les expériences, le signal est représenté par des vecteurs de 12 MFCC,

plus l’énergie, extraits à une fréquence de 100 trames par seconde.

La qualité des motifs découverts est évaluée au niveau phonétique. Rappelons

que le résultat du processus de découverte de motifs est un catalogue de motifs, Ci,

chacun caractérisé par ses occurences. La transcription phonétique permet d’associer

à chaque occurence j de Ci sa transcription phonétique Cp(i, j). Le motif Ci peut

alors étre représenté au niveau phonétique par son centroéde, défini comme l’élément

Cp(i, j) le plus proche de toutes les occurences du motif. La précision d’un mo-

tif correspond alors à la proportion d’occurences suffisamment proche du centroéde.

Le rappel est défini par rapport à l’ensemble des chaénes phonétiques suffisamment

proches du centroéde de Ci dans la transcription phonétique du flux.

Pour découvrir des motifs correspondant à des mots ou séquences de mots, nous

avons fixé la taille de l’amorce à 0,3 s et celle de la mémoire tampon à 120 s. Le seuil

ǫ1 a été réglé empiriquement de manière à obtenir un bon compromis entre rappel,

précision et temps de calcul. Sur les 10h de signal, nous avons trouvé environ 3000

motifs, avec une précision de 85 % et un rappel de 25 %. Les motifs trouvés sont

donc peu entâchés d’erreurs mais la DTW permet difficilement de grouper des oc-

curences d’un motif qui présente une trop grande variabilité, expliquant ainsi le faible

rappel. En particulier, la DTW est très dépendante du locuteur et les occurences

d’un même motif par différents locuteurs ne sont pas détectées comme un unique

motif mais plutét comme autant de motifs séparés. Augmenter le seuil ǫ1 permettrait

d’augmenter le rappel au prix d’une forte baisse de la précision. En effet, les mo-

tifs dans le catalogue sont représentés par la forme moyenne des occurences trouvées

pour ce motif. Augmenter ǫ1 engendre alors un nombre accru de fausses détections

qui viennent déteriorer la représentation des motifs dans le catalogue.

De manière qualitative, les motifs trouvés correspondent principalement à des

mots ou des courtes séquences de mots. Par ailleurs, plusieurs motifs sans contenu
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Table 1.1: Précision/Rappel (en %) pour la détection de locutions clés dans un flux

de 20 minutes

locution DDTW +DSSM +D′
SSM

Jean Marie Le Pen 33 / 59 40 / 59 56 / 59

vingt-et-un avril 18 / 71 22 / 71 43 / 71

extrême droite 17 / 57 25 / 57 67 / 57

France 11 / 43 18 / 39 22 / 35

linguistique sont également trouvés. C’est notamment le cas des inspirations et des

jingles.

Finalement, il convient de souligner que le temps de calcul pour le traitement

des 10h de signal a été d’environ 13h. Méme si des optimisations permettrait de

décroétre de manière significative le temps de calcul, ces chiffres mettent en évidence

la difficulté du passage à l’echelle de notre algorithme dans le cas de la découverte

de mots. En effet, la taille du catalogue de motifs croét rapidement pour ce type de

données, ralentissant ainsi l’algorithme. Ainsi, nous avons mesurè que le temps de

traitement en fonction du temps dans le flux est une fonction exponentielle (de la

taille du catalogue).

1.5.2 Utilisation des matrices d’autosimilarité

Avant d’utiliser les métriques DSSM et D′
SSM pour la découverte de motifs, nous les

avons tout d’abord validées dans un cadre de recherche de motifs connus. Nous avons

artificiellement construit un signal de 20 minutes par concaténation de six reportages

sur le théme du 21 avril 2002, provenant de radios (et donc de locuteurs) différentes.

Quatre locutions clés – Jean-Marie Le Pen, vingt-et-un avril, extrême droite, France –

, caractérisées par une occurence de référence chacune, sont recherchées dans les 20

minutes de signal.

Les résultats, en terme de rappel et précision des occurences retrouvées, sont

présentés dans le tableau 6.3. L’algorithme de DTW segmental présenté à la sec-

tion 1.4.1 peut étre utilisé pour cette recherche (colonne 2), l’occurence de référence

du motif à rechercher jouant le réle d’amorce. Les occurences trouvées pour chaque

motif sont ensuite validées en utilisant la distance DSSM (colonne 3), éventuellement

complétée par D′
SSM (colonne 4). Ces résultats mettent clairement en évidence l’intérét
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d’une mesure entre matrices d’autosimilarité pour la validation des motifs, permet-

tant ainsi une amélioration substantielle de la précision pour un rappel constant (é

l’exception du motif France, très court). Les occurences trouvées correspondent bien

à différents locuteurs, tant masculin que féminin.

Des premiéres expériences sur l’utilisation des distances entre matrices d’autosimilarité

pour la tâche de découverte de motif sur un autre extrait de 20 minutes confirment

l’intérét de ces distances. En utilisant conjointement les deux distances, la précision

augmente de 52 % à 66 % et le rappel de 42% à 51% par rapport à la seule DTW seg-

mentale. Par ailleurs, l’analyse qualitative des résultats montre que des occurences du

motif par différents locuteurs sont retrouvées pour certains motifs, comme élevage ou

poisson .

1.6 Conclusion

Nous avons proposé une approche pour la découverte non supervisée de motifs sonores

dans le signal de parole. La plupart des motifs retrouvés correspondent à des mots

ou des séquences courtes de mots qui peuvent étre utilisés comme mots clés sonores

pour caractériser ou indexer un signal. La méthode utilisant l’alignement temporel

dynamique permet de detecter des mots clés avec une bonne précision mais présentent

un rappel faible. La combinaison de l’alignement temporel dynamique avec la com-

paraison des matrices d’autosimilarité permet d’améliorer la découverte de motif au

prix d’un effort calculatoire supplémentaire. Ce travail ouvre de nombreuses perspec-

tives, tant pour améliorer la méthode que pour intégrer la découverte de motifs dans

des applications d’indexation de documents oraux. En particulier, deux problèmes

nous semblent cruciaux. D’une part, le passage à l’échelle reste problématique. Par

ailleurs, afin d’utiliser efficacement les motifs découverts, il convient de les caractériser

afin de ne conserver que ceux qui décrivent effectivement un contenu linguistique.
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Chapter 2

Introduction

2.1 Motivation

Nowadays, multimedia data sets of massive size are available to a large audience of

consumers worldwide. This results from multiple factors: affordable data generation

devices, efficient compression techniques, high capacity storage devices and the perva-

siveness of the Internet for sharing and spreading such information. Data (or signals)

users can access, come in different forms: video, audio, image, text.

Extracting information from signals. When dealing with large collections of

data, a popular issue concerns the extraction of documents pertaining to a user query.

The query is usually expressed by a keyword in written form and the identification is

done by matching it with a list of video or image tags, text documents, or transcribed

speech data. Thus, regardless of the nature of the data set, the problem is merely

reduced to a string matching issue. Not always, however, the document of interest can

be concisely summarized by a specific word or a list of words: for example, suppose

to search for a piece of music into a database of songs. Imagine the same scenario

when searching for a visual pattern in a database of images, or a still shot into a

collection of videos. On a related note, one might wonder how to cope with the

possible absence of annotation, tags, speech transcriptions. Accurate annotation and

tagging often require human intervention. When handling large data sets, this can be

tedious, time-consuming and error-prone. Furthermore, transcribing speech into text

requires the use of automatic speech recognition (ASR) systems: these systems are

language dependent, imply a relevant computational effort to perform transcription,
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and require collecting and annotating corpora on specific languages or topics in order

to train acoustic and language models.

The need for effective ways to access and browse through these documents, has

sparked intensive research in domains such as content-based multimedia indexing and

retrieval. Two main issues lie at the core of these research efforts:

1. how to search a piece of signal in a collection of signals (databases or data

streams), directly at the signal level (query by content).

2. how to extract useful information from the collection, at the signal level and in

the absence of a specific user query.

The second problem is not trivial to characterize, if a precise definition of useful infor-

mation is not provided as well. When browsing large data collections, one might want

to skip redundant parts, focus onto specific parts, rapidly get a coarse understanding

of the content, visualize data in a convenient way. Examples of tasks targeting such

applications are several. Automatic text summarization aims at producing a non

redundant extract of a text to be employed in several applicative contexts: in search

engines, to present compressed descriptions of the search result, or in keyword di-

rected subscription of news, which are summarized and pushed to the user (e.g.: Web

feeds). In video processing, key frames are extracted with the aim of summarizing

a video sequence by presenting a user, a selection of a few representative still shots;

moreover, under the condition of heavy video data but limited storage capability, stor-

ing key frames merely, can be a comprehensible solution for data compression. Much

like annotations and tags, key frames and text summaries provide useful information

in the form of semantic cues on specific parts of the data set.

Problem definition. These issues and the underlying theoretical problems, are

the main source of inspiration for the investigations detailed in this thesis. Here we

tackle the problem of discovering occurrences of repeating audio segments in streams

by unsupervised learning. As a matter of example, consider the picture in Fig 2.1,

where the speech signal and respective spectrogram are reported for the French spo-

ken expression: la gauche est mal en point, le recul de la gauche est international.

What is demanded from the task is to automatically recognize, without any additional

modality of information or a priori knowledge, the similarity of those two fragments

marked by red rectangles, corresponding to occurrences of the word group la gauche.
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Figure 2.1: Speech signal and spectrogram for the expression: la gauche est mal en

point, le recul de la gauche est international. The segments marked by red rectangles

refer to occurrences of la gauche.

Automatic recognition of such similarities at the signal level is not a straightforward

operation; and the task is even more difficult when minimal knowledge is available to

be exploited for the recognition. Knowledge come in different forms: being aware of

the presence of a repetition, knowing that the repetition concerns the word la gauche,

disposing of explicit audio templates of that word, are all forms of knowledge that

guide the recognition process, whenever they are available in advance. In our context,

we assume that such knowledge is not available a priori for discovering similarities in

audio.

In general, the underlying class to which similar occurrences belong to, is referred

to as a motif. The term is borrowed from comparative genomics, where it designates

a family of symbol sequences (each symbol representing a nucleotide or amino-acid).

As biological motifs are allowed wild cards, similarly we do not focus only on identical

audio segments, but rather on similar acoustical patterns for which a certain amount

of variability is admitted. Speech signal is intrinsically variable, occurrences of a
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word may differ significantly across different channels, speakers, speaking rates and

environmental conditions. We do not impose any specific length constraint on the

admissible audio motifs, if not for a lower bound, introduced to avoid motifs as short

as a few samples of signal: we are therefore equally interested in repeating words,

small multi-words phrases in speech data, or jingles, station call signs and signatures,

songs, even entire movies or shows, in broadcast data. Motifs can repeat in a regular

fashion or with no apparent regularity at all. Repetitiveness of audio patterns often

reflects their semantic relevance within the data set: topic specific terms are likely

to occur frequently. From this angle, audio motif discovery can be regarded as a

potential counterpart task of textual keyword detection and key frame extraction.

Fundamental methodology. As far as the methodology is concerned, we ap-

proach audio motif discovery departing from the prevailing train and test paradigms

for recognition. These methods model a priori the targeted patterns and learn param-

eters in a preliminary training stage, relying on an abundance of annotated training

data. While this supervised approach has proven successful, the drawbacks that limit

their attractiveness are also several: first, collecting and annotating large amounts of

training data is often done single-handedly by human experts; next, a priori modeling

implies to know beforehand the target of the discovery, a knowledge that often is not

available and requires to be preliminarily acquired; third, training of models depends

heavily on the quality of the training material, and might generate mismatch issues

rising from the differences between the acoustics observed in the training and in the

testing data.

While overcoming this limits might justify alone the need for a different approach,

the motivation behind unsupervision is also more philosophical: it tries to determine

to what extent a machine alone can learn from raw data, in the absence of any

prior or side knowledge (in the audio field, acoustic and linguistic knowledge). It

can be regarded as a sort of lower bounding methodology to machine learning and

understanding of audio.

Audio motif discovery is therefore based on the following principles:

• no training data is used

• no additional source of information (text, video, image, external acoustic data)

aids the discovery task
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• language models are not used, while the acoustic ones are learnt and refined as

motifs are discovered

In the proposed framework, this general philosophy translates practically into an

incremental learning framework where everything can be learnt on the fly, as the

incoming audio stream is received and processed.

2.2 Related work

The adoption of unsupervised strategies is an emerging trend in audio information

retrieval tasks; that explains why most related work in audio motif discovery dates

back to this last decade.

It is possible to roughly characterize existing work based on the nature of the

targeted motifs: in word discovery, the goal is to find occurrences of repeating words

in speech data (Park (2006); ten Bosch & Cranen (2007)); the complementary task,

on the other hand, aims at discovering signalling patterns in multimedia streams

from audio, like repetitions of jingles, advertisements, songs, that will be referred to,

throughout the manuscript, as near-duplicate patterns.

While it is easy to recognize that the underlying task is the same, various ap-

proaches have been proposed, mainly to deal with the very different degree of vari-

ability and length of the sought patterns: words are short and variable, near-duplicate

patterns are longer and (almost) identical. In a similar way, researchers dedicated to

these two tasks have often come from different domains: the speech community in

the word discovery case, and the multimedia community in the other one.

We provide in the following an overview of existing work in both tasks.

2.2.1 Word discovery

Park: Unsupervised word discovery in speech. A pioneering study in word

discovery is represented by the doctoral work of Park (Park (2006)) and related

publications (Park & Glass (2005, 2006, 2008)). Park employs a batch processing

of a speech file that involves four different steps to perform the complete task: a)

segmentation of speech data into smaller fragments separated by silent intervals, b)

identification of similarities between fragments by a pairwise comparison based on a

segmental version of Dynamic Time Warping (SDTW), 3) production of an adjacency

graph, with pairs of matching segments as nodes connected by weighted edges, the
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weight being the respective DTW score and d) clustering of nodes to group motif

occurrences.

The architecture is depicted in figure 2.2: the segmented utterances (indicated by

an integer index) undergo a pairwise comparison, generating a set of triples. Each

triple comprises the endpoints location of the two matching audio segments within

each utterance, and the distortion score of the respective alignment path. The node

extraction procedure serves to label with a unique discrete time index, audio segments

among different triples that overlap in time (and are indeed recognized as referring

to the same pattern). For the sake of clarity, consider the step b) and c) in figure 2.2:

matching subsegments in fragment 1 and 3 resulting from the three comparisons are

strongly overlapping and belong indeed to the same occurrence, hence labeled by the

same time index; the two subsegments of fragment 2 do not significantly overlap, and

refer to different patterns, hence labeled differently. Once the time indexes and edge

weights are available, each edge being the distortion score wi,j in figure 2.2, indexes

and respective patterns are further grouped into clusters. The clustering procedure,

borrowed from Newman (2004), permits to include the edge weight information and

groups occurrences in a greedy fashion, privileging more densely connected nodes as

cluster members.

Very recently, the follow-up paper (Zhang & Glass (2010)) explicitly addresses

speaker dependency issues deriving from the adoption of acoustic features like MFCC.

To handle inter-speaker variations in speech, the use of Gaussian posteriorgrams is

proposed, obtained from models trained on a large corpus of multi-talker data. Our

approach to the problem is to avoid, as much as possible, resorting to external data

and training tasks before the actual discovery.

ten Bosch: A computational model for word discovery. Conceptually similar

to Park’s work is the computational model proposed in ten Bosch & Cranen (2007),

in that the discovery is achieved by a combination of speech segmentation, clustering,

and temporal sequence learning; precisely, in the experiments described, the acoustic

sequences of a digit-string database are segmented into phone-like fragments (that is

spectral-homogeneous sequences of acoustic vectors). These fragments are grouped

into clusters according to a DTW distance-based k-means procedure. Thanks to this

quantization of phone-sized sequences, the original digit-strings are converted into

sequences of integers. The likelihood of these sequences sharing a common word is

determined by a pairwise comparison based on local alignments by modified DTW
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Figure 2.2: Main steps comprising Park word discovery system.

(much like stage two of Park’s framework, but over sequences of integers in this case).

In a final stage the detection of matches is assisted by the use of tags that indicate

the presence of a specific word (in fact, a number) within the utterance, but not

its exact location nor its acoustic realization. This additional information roughly
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reflects the role played by the visual modality in language learning. In fact, visual

and spoken co-occurrences of patterns assist the young infant in acquiring the units

of language. For example, the tag yes associated to the utterance look at this nice

ball, flags the presence of the word ball, though the machine is unaware of the explicit

relation between the tag and the word. In this context, the tag mimics the visual

appearance of a ball when the utterance look at this nice ball is effectively spoken,

while the language learner is unaware of the association between the object and the

corresponding spoken word. Even though acoustic repetitions are unknown as in

our assumption, here discovery is explicitly assisted by an additional modality of

information, and is not performed over a continuous stream of data, but rather on

isolated spoken sentences.

Stouten: Automatically learning the units of speech. Somewhat related with

our task is the work in Stouten et al. (2007). Rather than words, (word-sized) phone

patterns are discovered that are present in speech utterances. Discovery is performed

by applying Non-negative Matrix Factorization (NMF) to a high dimensional repre-

sentation of speech utterances derived from a set of phone lattices, and by identifying

the basis vectors of the decomposition as the structural units of the spoken sentences.

More precisely, a database of t digit strings is represented by a matrix V of size n× t

each column i being a sequence of weighted co-occurrence counts of phone pairs in

the i-th sentence (thus n is the square of the number of phones in the database). An

approximate factorization of V is computed by NMF under the (fulfilled) constraint

that all entries are non-negative, in the form:

V ≈ WH (2.1)

where W has size n × r and H has size r × t. Usually the value of r is chosen so

that r(n + t) < nt, so that the reconstructed matrix has a reduced dimensionality.

H and W are computed by iteratively updating rules that seek to maximize an

appropriate objective function. What equation (2.1) tells is that each column V:j

(each data vector) can be expressed as a linear combination of the columns W:k (the

fundamental speech units) weighted by the coefficient of H:j . The authors perform

an experiment where r is set equal to 11 (the number of different words comprising

the sentences: the integers from zero to nine plus a silence) and show a high quality of

approximation of the matrix V, which dramatically plummets for r < 11 and slightly

increases for r > 11. Moreover, they show how the columns of W are sparse vectors
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whose dominant values correspond to those phone pairs that actually occur in the

digits. This provides empirical proof that the input data can be roughly described as

a combination of a few words (or sequences of phone pairs occurring in those words)

that are the ones effectively repeating.

This work is related to ours in the sense that the actual discovery is done by

unsupervised learning (through NMF) and the patterns found are effectively repeat-

ing. However, the representation of speech utterances is generated using an acoustic

model and a bigram model that are preliminarily estimated on training data (the Wall

Street Journal database); the presence of a training stage already differentiates this

work from our approach (even if it involves the feature extraction process rather than

the learning paradigm). In addition, the patterns found are rather phone pairs oc-

curring in words rather than words. Moreover, the knowledge of the phone identities

and their numbers are required, and the discovery is performed on isolated sentences

rather than on a continuous data.

Jansen: towards efficient discovery of long words. Very recently, a novel

technique for discovering repetitions in speech has been proposed in (Jansen et al.

(2010)). Here the length constraint on the targeted patterns is more stringent, as

discovery is limited to speech segment of at least one second of duration, under the

assumption that longer terms are somehow more contentful and relevant. The search

for repetitions is performed by a) representing the search space as the self-distance

matrix of the speech file and b) adopting basic image processing procedures to identify

diagonal lines (the patterns induced by two matching segments) within an image (the

distance matrix). Since the complexity is quadratic with the file length, to achieve

a significant speed-up in distance matrix computation, the use of language-specific

posteriorgrams is exploited to map acoustic features (MFCC) into sparser vectors.

Pattern discovery is further refined by applying Park’s SDTW to the hypothesized

matches, to account for deviations from the straight line, likely due to natural prosodic

variations in speech.

Anguera: subsequence template matching in speech In Anguera et al. (2010)

a modified DTW algorithm (U-DTW) has been described to enable the detection of

matching speech feature subsequences in a pairwise comparison. The approach does

not differ in principle from the similarity detection subtasks in Jansen et al. (2010)

and Park (2006): a distance matrix is built from the pair of feature sequences, and
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the search for the matching area is conducted by identifying a low-scored alignment

path within the matrix. The main difference with the aforementioned procedures

resides in the practical strategy implemented for performing the detection: a division

of the matrix in uniform regions (either horizontal or diagonal) is carried out, whose

size is related to the minimum length of a possible word occurrence. According to

such division, alignment path are computed from starting points and confined within

the respective matrix subregion. A path extension heuristic is then applied to allow

for paths to grow in an unbounded fashion and reconstruct a matching path in its

entirety. This specific technique will be shown to exhibit notable similarities with our

own modified DTW procedure, in the more technical part of the manuscript.

2.2.2 Near duplicate discovery

Concerning the discovery of signalling patterns in composite broadcast audio, two

main works are mentioned as particularly representative, respectively Herley (2006)

and Lu & Hanjalic (2009).

Herley: identifying repeating objects in multimedia streams In Herley

(2006) repeating objects are discovered in multimedia streams by relying on the sole

analysis of the audio signal. The system proposes the use of sequential processing and

low-dimension fingerprints of the signal to accomplish the task. Sequential process-

ing is adopted as a requirement for handling (possibly infinite) streams of data. This

implies that the search for repetition is performed by relying only on the received

and available portion of the data. In practice, the discovery is organized by searching

a fixed length fragment of audio either into a collection of repetitions already found

(an incrementally built and updated catalog of repetitions), or, if not there, in the

past data stream already processed. As far as pattern recognition is concerned, the

time correlation of audio fingerprints is computed as indicative of the (dis)similarity

of compared patterns. The fingerprint is obtained by only retaining the sixth of the

25 Bark bands the audio signal can be splitted into. These are frequency selective

channels that can be sampled at a much lower frequency than the overall audio signal.

In the described experiments, Herley reports good results in discovering patterns of

the duration of several minutes by using a distorted version of the signal sampled at a

rate of 11 samples per seconds (thus obtaining a 4000-fold reduction in dimensionality

with respect to the original signal, sampled at 44KHz). We will come back later on

to this system, that will be shown to have important implications on our work.
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Lu: Audio content discovery In Lu & Hanjalic (2009) the goal is not that

of discovering repetitions in multimedia streams, bur rather of extracting a set of

semantically meaningful audio elements to describe the content of the composite audio

stream. Composite audio implies that the stream is populated by a multiplicity of

audio modalities: speech, music, laughter, applauses, various sounds either mixed or

following each other in a sequence. We can roughly attempt to summarize this work

by listing its three main steps:

1. stream segmentation into pieces of audio and their clustering into respective

sound classes (speech, music, etc...), called audio elements. This step is prac-

tically performed by appling spectral clustering to a representation of the data

made of temporal features (short time energy, zero crossing rate) and spectral

features (sub-band energy ratios, brightness, bandwidth, 8-order MFCCs). This

step comprises already a discovery system, as it groups in an unsupervised way

audio segments according to cluster membership (the cluster being a semantic

class of sound, rather than a motif).

2. among these audio elements, key segments are spotted in terms of semantic

relevance, according to a score that accounts for element duration, frequency

of occurrence, average length and average length variation. This is because,

depending on the sound, semantic importance might be defined by different

values of these factors: for examples, unusual sounds in surveillance videos do

not occur frequently and are short in duration, however constitute a key target

sound in that context. Applauses in a tennis game, or laughters in a situation

comedies are expected to be also frequent, and have roughly similar length in

each of their occurrences.

3. Scene categorization by information-theoretic co-clustering, which is achieved

by exploring co-occurrences of key segments of different audio elements that

occur simultaneously in a common auditory scene. For example, gun shots and

explosions belong to different sound classes, but their co-occurence in a war

scene may help discovering the higher-level semantic class they share.

As evidenced by this summary, Lu’s work is not specifically intended to cluster repe-

titions of similar patterns, but rather to cluster patterns in classes (according to the

nature of the acoustic realization, or to a high level semantic concept). On the other
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hand, it shares with our framework, the fundamental methodology that seeks to ex-

tract information in a completely unsupervised fashion, without relying on training

data or a priori knowledge.

2.3 Potential applications of audio motif discovery

Audio motif discovery, in particular the word discovery case, is an emerging topic,

based on novel paradigms, within the speech and audio community. Being in the

early stage of its research history, most applicative tasks targeted by the theoretical

issue are rather hypothesized and suggested, than explicitly shown in practical sce-

narios. We attempt to briefly present such applicative frameworks before proposing

additional ones in chapter 9.

In the introductory part of the chapter, the possible analogy has been drawn be-

tween audio motif discovery and keyword extraction in text documents or key frames

in video sequences. The underlying idea is that repetitive sound patterns tend to

convey semantically relevant information on the data content. While we do not claim

that this is actually true for all the motifs in a data set, these patterns can be used at

least as an input to some strategy aimed at selecting them according to a specific score

of semantic relevance. Indeed this is proposed in the described work of Lu & Hanjalic

(2009), where a score is appropriately defined for spotting key occurrences within

clusters of audio elements. In regard to word level key occurrences, a recent work

explicitly addressing this issue is Zhu et al. (2009). Here multiple spoken-document

summarization is performed by first discovering acoustic re-occurrences by Park seg-

mental DTW, then by progressively extracting keywords from this set of utterances,

according to a maximum marginal relevance criterion, that seeks to maximize the

balance between salience and redundancy.

In Park & Glass (2005); ten Bosch & Cranen (2007) supervision and independence

from training data are seen as the possible novel paradigm for liberating speech pro-

cessing by the mismatches occurring between the acoustics in training data and in the

test data, within the traditional supervised learning paradigm. The out of vocabulary

problem (OOV) is one example of such mismatch, in this case between the employed

lexicon of word units and the actual words in the data. Audio motif discovery does

not suffer such problem, as a lexicon of units is inferred directly from the test data,
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and, for example, might somehow be integrated as a recovery mechanism of OOV

words in a modern ASR systems.

On a different note, in the last few years, work carried out within the project

ACORNS1 has studied unsupervised methods for learning co-occurrences of spoken

patterns, in the attempt to mimic the mechanisms that allow young infants to acquire

the units of a language, in the absence of a priory knowledge. This investigations take

inspiration by advances in developmental psychology that suggest the crucial role of

recurrence of patterns in the early stages of language acquisition. In (Saffran (2002);

Saffran et al. (1996)) an experiment is described where 8 months old infants were

exposed to a continuous stream of speech, generated by concatenating repetitions

of four three-syllables word entities and random sequences of syllables. After only

two minutes, infants showed a remarkable capability of discerning the repeating word

entities from the random ones, in the absence of prosodic or acoustic cues for boundary

detection.

Concerning the discovery of long signalling patterns in multimedia streams, Herley

enumerates several attractive applications of the technique in Herley (2006):

• broadcast monitoring: by detecting repeating objects and their locations, it

is possible to verify that a pattern (for example, an advertisement) has been

played when expected.

• commercial skipping and stream customization: the construction of a library of

repetitions might enable to remove all the occurrences of the unwanted items

(like commercials within a movie) to be replaced with alternative material.

• statistics gathering on broadcast data: the collections of such repeating patterns

allows to track the distributions of play frequencies of patterns in real streams

and other related statistics.

Besides the ones listed in this paragraph, in Chapter 9 new ideas will be proposed on

the possible employment of audio motif discovery in applicative scenarios.

1http://www.acorns-project.org/
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2.4 Motif discovery in other domains

While the theoretical problem and the associated methodology represents essentially

a novelty within the audio and speech community, in other domains, unsupervised

discovery of patterns is indeed a well established research topic since many years.

Computational biology In comparative genomics, among others, the discovery

of recurrent subsequences, hidden inside large sequences (of DNA or proteins), serves

to identify regions that are believed to play key roles in biological functionalities.

Since the extremely high number of work in this field, we remind a couple of tutorial

papers in (Brazma et al. (1998); Sandve & Drabløs (2006)). Curiously, while our

work insists on the passage to unsupervision in discovery, the trend seems inverted in

biological sequence analysis, as knowledge on data is becoming more and more avail-

able. By taking advantage of the immense amount of data produced by large-scale

DNA sequencing efforts (such as the Human Genome Project), the current approach

mainly relies on probabilistic modelling of sequences and statistical estimation of

model parameters (see Durbin et al. (1998)).

Data mining In the last decade, the topic has received increasing attention also

within the data mining community. In Lin et al. (2002) the discovery is performed

on a symbolic representation of the data, obtained by dimensionality reduction and

discretization. In Minnen et al. (2007) discretization is not used. Instead each motif

is initialized online by estimating parameters of a hidden Markov model (HMM) from

subsequences located near the density modes (local maxima) of the distribution of the

data in the feature space. The model is then used for detection of further occurrences,

similarly to what is done in a HMM-based ASR system (see Rabiner & Juang (1993)).

Pattern extraction in music information retrieval Another related line of re-

search comprises what, in the music analysis community, is often called audio thumb-

nailing or snippet extraction (Burges et al. (2005); Chai & Vercoe (2003); Dannenberg

& Hu (2002); Goto (2003); Logan & Chu. (2000); Peeters et al. (2002)). Often the

common framework consists in converting a piece of music into a feature sequence

used to build a self distance matrix. This matrix is then processed to infer music

structure, summarize music files, detect duplicate music files, etc. The use of the

distance matrix will also be exploited in the pattern matching techniques detailed

later in the thesis.
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Robotics An example of application in robotics is provided by the work in Lattner

& Herzog (2004). A learning approach is described that learns temporal patterns

in a sequence of predicates within a top down induction framework. It targets the

goals of making agents more flexible to adapt their behaviour to the surrounding

environment. This is necessary as agents take decisions and perform actions according

to an interpretation of scenes and situations that match with their current belief of

the world. Much like the OOV problem in speech recognition, contexts outside the

defined set of actions and decisions impair the capability of the agent to handle

properly the encountered situation. In this case, pattern acquisition by discovery, is

seen as a countermeasure to allow the agent to autonomously deal with unexpected

situations.

Association rules mining In Hoppner (2001) pattern discovery is used rather as a

subroutine to infer temporal rules, in the spirit of association rules mining. Basically,

a series of labeled intervals is processed to find recurrent temporal patterns, defined

as sets of states and respective interval relationships, such as A before B, A overlaps

C, C overlaps B. As an applicative case, a relationship is shown between air-pressure

curve and wind strength, based on the inferred local weather forecasting rules.

Multimedia Finally, Xie (2005) proposed pattern discovery to induce high-level

semantic concepts as break or play segments in sports matches in multimedia streams

using a graphical modeling approach. Here, the discovery task amounts to estimating

the optimal parameters of a hierarchical HMM, where the recurring patterns are

modeled as HMMs linked to each other via transitions in a higher-level Markov chain.

The experiments were conducted on broadcast data using features such as dominant

color intensity and motion intensity for video, and volume, zero crossing rate, and

spectral roll-off for audio.

2.5 Claims and Contributions

The primary achievement of this doctoral work has consisted in the construction of a

computational architecture that discovers and collect occurrences of repeating acous-

tical patterns in an unsupervised fashion. The result is a framework that processes

data in a sequential manner to deal with streams. The system is, at least partially,

successful in dealing with the high variability of speech for finding repeating words,
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and is able to deal with large streams of broadcasted data for finding repetitions of

songs or advertisements. One major feature that we claim as distinctive of our system,

resides indeed in its broad applicability to these related, yet significantly different,

discovery tasks.

Beside the complete system, single propositions that we claim as original contri-

butions of our work are summarized by the following items:

• we propose a formulation of the general discovery problem, and suggest a de-

composition in subtasks that help understanding and solving the global task.

Previously proposed systems are also shown to fit this modular structure, and

their elementary components are identified.

• A general framework, that we call seeded discovery, is introduced that permits to

discover and retrieve motif occurrences, regardless of their length and specific

location in the data stream. This basically consists in detecting first a fixed

length fragment of a motif from which the final occurrences are grown by their

entire length through a match extension procedure.

• A template matching technique is introduced in the explicit attempt of improv-

ing robustness to variability with respect to DTW-based sequence comparison.

This pattern matching technique is based on the comparison of self similarity

matrices of speech sequences. A practical method is described for comparing

and quantifying the degree of similarity of these matrices, adapting an image

processing technique, widely employed in object classification tasks in computer

vision. The benefit of the technique is evaluated in word spotting and word dis-

covery experiments.

• An evaluation framework at the phonetic level is proposed, in order to assess

rigorously the performance of the algorithm. The main contribution is the

definition of novel measures of precision and recall for assessing the results of

word discovery experiments.

• Variations of the popular DTW procedure are described that enable subse-

quence matching of speech sequences, by relaxing the boundary constraint of

the classical algorithm.

• The concept of audio icon is introduced, and defined as an instance of a recur-

rent pattern in audio data. In general, recurrence of states is a fundamental
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property of many natural processes and dynamical systems, and describes struc-

tural properties of the underlying process. Similarly in audio data, while repet-

itiveness does not necessarily implies relevance in terms of semantic content, it

conveys information on how data is structured and organized.

2.6 Outline of the manuscript

The manuscript is organized and structured in the following manner: in Chapter 2 a

formal definition of the problem is provided, and a decomposition in subtasks is pro-

posed. Next, a number of basic concepts will be introduced that form the background

for the presentation of a first motif discovery system. Such system will be illustrated

in chapter 3, together with novel variations of the well known dynamic time warping

algorithm, to find matching subsequences between pairs of spoken utterances and deal

with the absence of an a priori segmentation of the stream into word units. Building

upon this system, a more definitive architecture, seeded discovery indeed, is presented

in Chapter 4, that will form the basis for the experimental evaluation detailed in the

next two chapters. The word discovery case will be first considered, in Chapter 5, and

additional template matching technique operating on the self similarity matrices of

speech sequences will be also introduced, to improve robustness to speech variability.

Next, seeded discovery will be used to address the task of retrieving longer and less

variable repetitions, like songs, in radio broadcast data, by incorporating a number

of additional features, mainly directed at properly handling large-scale issues. On a

different note, in Chapter 7, we will insist on the applicability of motif discovery in

audio mining tasks, defining the concept of audio icon, and highlighting its potential

role in novel, more complex mining applications. The manuscript ends by presenting

a summary of the work, as well as a number of hints for future development of the

work.
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Chapter 3

Problem statement and basic

concepts

This chapter first introduces the task of motif discovery in a formal way. Next a

decomposition into autonomous and separated subtasks is proposed as a way of ap-

proaching the global task in a systematic manner. Four subtasks are identified and

carefully illustrated as a) segmentation b) feature extraction c) similarity detection

and d) similarity score. Discovery systems previously proposed, are shown to fit this

modular structure and the different elementary components are identified according

to this paradigm.

Following the local progression implied by this decomposition, we deal with each

subtask independently, in our pursuit of a computational system for motif discovery.

Motivated by the goal of designing a streaming algorithm, the ARGOS framework

(Herley (2006)) is reviewed in detail, with regard to the segmentation subtask. As

a feature extraction technique, we resort to the classic representation of audio by

mel frequency cepstral coefficients (MFCCs), widely employed for the description of

sounds of various nature. The last two subtasks, similarity detection and score, are

introduced by detailing the well known dynamic time warping (DTW) procedure for

time aligning speech sequences and deeming their similarity. The presentation of such

a popular technique is instrumental in introducing three variations of DTW, aimed at

overcoming some drawbacks deriving from the boundary constraint and normalization

strategies of the classical algorithm. Since this is where the most novel part of the

initial system resides, the next chapter is entirely devoted to the presentation of such

techniques and their integration into a discovery system.
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3.1 Problem formulation

3.1 Problem formulation

Motif discovery can be cast as the problem of finding all pairs [a, b] and [c, d] in the

stream χ subject to the following three constraints:

H(χb
a, χ

d
c) < ǫ (3.1)

|b − a| > Lmin (3.2)

a < b < c < d (3.3)

Condition (3.1) represents the similarity condition; it formally states that two

sequences are similar if their distance, measured by the metric H, is sufficiently small,

i.e., below an appropriate threshold ǫ. Condition (3.2) imposes a constraint on the

motif minimum length. It is reasonable, if not necessary, to restrict the discovery to

sufficiently long patterns, discarding matches as short as a few samples of signal. The

third condition prevents considering overlapping segments as occurrences of a same

motif (obviously, the two segments obtained by slightly shifting one of them are very

similar, but refer indeed to the same portion of data).

According to this formulation, the problem is reduced to that of separating the

repetitive part of the data from the non-repetitive one, by grouping similar segments

in a pairwise fashion. A subsequent post processing stage is then needed to merge

clusters belonging to the same motif. This suggests to effectively view motif discovery

as a clustering technique that operates only on that part of the data that effectively

repeats. The scope of this problem statement is rather general: it applies for any kind

of temporally ordered set of events, be it continuous or discrete, scalar or vectorial,

regardless of the specific strategy adopted to solve the task.

Building from these considerations, we approach the problem by identifying the

basic complementary subtasks, and dealing separately with each, in a modular fash-

ion. The fundamental concept is that the appropriate decomposition help better

understanding the problem itself, easing the proposition of a solution or the integra-

tion of different features into the same general framework.

3.2 Decomposition in subtasks

Audio motif discovery can be conceptually decomposed into four main elementary

components:
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3.2 Decomposition in subtasks

Segmentation. The term segmentation here refers to the general strategy used to

scan and process the data, according to some desired requirements. For instance,

the choice between batch or sequential processing is a key element of this subtask.

This choice has important implications on the performance and the computational

resources demanded by the system. The term segmentation is employed as the pro-

cessing strategy determines how the data is broken into segments to allow the search

for repetitions.

For example, in (Park (2006)), this subtask can be identified in the macro-

segmentation of speech fragments separated by silent intervals. These fragments

are the acoustic units fed to the pattern matching procedure in a pairwise fashion,

each against all the other ones. Here the segmentation subtask includes both the

silence-based segmentation and the strategic choice to compare them all, implying a

quadratic complexity with respect to the number of produced segments.

In Herley (2006) the segmentation is performed by breaking the data stream into

a pair of adjacent audio segments, a current query and its recent past, in an iterative

scheme that enables sequential data processing and avoids the quadratic complexity

of naive approaches.

Feature extraction. It refers to the parametrization used to represent the data

in a specific domain, suited to perform the discovery. It strictly depends on the

nature of the data and on the targeted motifs. Hence, a solution is specific to a

particular domain and task. In data mining, though, the common approach is to

design algorithms and representations valid for a variety of data types, as long as they

can be modeled as a time series of real-valued variables. According to this approach,

the original data set is converted by an appropriate procedure in a discrete, symbolic

representation where the task is performed. Usually this alternative representation

is achieved by direct quantization, or by dimensionality reduction techniques. For

instance, vector quantization of speech spectral vectors is adopted in Rasanen et al.

(2009a,b); ten Bosch & Cranen (2007).

Various dimensionality reduction techniques are used in data mining work on

time series: for example, in (Lin et al. (2002, 2003); Minnen et al. (2006)) a data

representation called Piecewise Aggregation Approximation is used (Keogh et al.; Yi

& Faloutsos (2000)) that consists in dividing the data set in equal sized frames,

where the mean value is computed and then quantized; in (Tanaka & Uehara (2003))

reduction is achieved by principal component analysis.
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In closely related work, like that of (Park (2006)), word discovery task is performed

directly on the spectral vector sequences. We will follow the same choice throughout

all our experiments. This choice will be later justified in Section 3.4.

Similarity detection. This task can be identified with the actual techniques em-

ployed to detect similarities in data. It explicitly refers to the pattern matching

methods for selecting the segments most likely to be occurrences of a same motif

(motif candidates). For instance, in Herley (2006) it corresponds to calculating the

time correlation between fingerprints of audio segments; in Park (2006) it amounts

to time aligning speech sequences by SDTW.

Similarity score. It is indeed equivalent to the computation of the metric H in

(3.1). It is the score used to deem whether two segments (previously identified as

motif candidates) are similar or not.

In Park (2006) this score is given by the cumulated distance of the minimum-

weighted alignment path (it is, indeed, the DTW dissimilarity measure). The align-

ment paths found by the same Park’s SDTW are scored differently in Zhu et al.

(2009), by keeping into account also the length of the path and its degree of warp-

ing. In Herley (2006) this score is represented by the minimum value of the time

correlation between audio segments.

Note that these last two tasks (i.e. similarity detection and score) can be easily

integrated into the same one, depending on the specific solution proposed as the

value of H may directly relate to the pattern matching technique used for similarity

detection. However, the two tasks remain conceptually different. Indeed, one can

imagine to employ an approximate pattern recognition technique to rapidly identify

likely repetitions and then validate the hypothesized occurrences by performing a

more accurate comparison. We also will see an example of this when the comparison

of self similarity matrices will be introduced in section 6.4, as well as the use of a low

and full resolution comparison in chapter 7.

We start the description of our (preliminary) motif discovery system by consid-

ering in detail each of these subtasks, motivating our choices with respect to our

assumptions and objectives.
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Figure 3.1: Algorithmic view of the ARGOS segmentation framework.

3.3 The ARGOS segmentation framework

A naive approach for finding repetitions, consists in considering all possible segments

of admissible length (queries) and search each of them exhaustively in the data set.

This strategy is unfeasible even for a small data set, as it implies a combinatorial ex-

plosion of search operations. Moreover, it requires all data to be stored and accessible,

as each possible query is searched for in the entire file.

To overcome some of these drawbacks, we have resorted to the ARGOS segmenta-

tion framework proposed in Herley (2006). It is an approach that allows a sequential

processing of the data, thus suited to process streams, and that exploits statistical

properties of real audio streams to smartly reduce the search space. The discovery

is performed by iteratively searching a sliding query of fixed length either into an

incrementally updated collection of motifs (library) or over the past received portion

of stream.

The algorithmic process can be illustrated in more details with the help of the

diagram in Fig 3.1, where a single iteration is depicted. To improve clarity, we

decompose the system into objects, actions operating on these objects, and hypothesis:

Objects

• query: it is the portion of the data stream indicated by the endpoints [t0, t0+∆]

in Fig 3.1. In streaming modality where data is progressively received, it is (part
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3.3 The ARGOS segmentation framework

of) the current input data received. The query is the segment to be searched at

each iteration, assuming to be a repeating pattern itself or to include a repeating

pattern as a portion. The search space where the presence of a repetition is

determined is represented by a library of motifs and the past stream already

received.

• library of motifs: it is the catalog where motif occurrences are collected when-

ever they are discovered. It represents the long term memory of the repetitive

part of the past stream. It serves a double purpose: it is a way of storing

the results of the discovery for each motif. But most importantly, it serves for

the recognition of subsequent occurrences of the same motif, whether a specific

modelling strategy is adopted or the complest list of current occurrences is used

for the recognition.

• past stream: it is the portion of data stream already received and processed,

marked by the endpoints [0, t0].

Actions

• library search: each query extracted from the stream is first searched into

the library, by comparison with each motif therein. Library scan is stopped as

soon as a match is found; in this case the library is updated by signalling the

presence of a new occurrence for that motif (the motif M in Figure 3.1).

• past stream search: if a repetition of the current query is not found in the

library, the search for a possible match is then performed in the entire past data

already received and processed. Since it represents the search space where we

attempt to find a repetition of the query, it will be often referred to as search

buffer. If a repetition is detected a new motif is discovered, and an apposite

entry is created in the library (the motif K + 1 in Figure 3.1).

• query shifting and iteration: whether or not a repetition is detected (in the

library or in the past stream), a new query is extracted from the stream and the

search operation is iterated. As shown in Figure 3.1, the new query is adjacent

to the preceding ones, defined by the endpoints [t0+∆, t0 + 2∆].
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3.3 The ARGOS segmentation framework

Hypothesis

• local repetitiveness: in real streams repetitions of objects occur within a

limited time span, that can be reasonably predicted according to the specific

task and targeted motif. For instance, repetitions of topic specific terms in a

news show are expected to occur frequently within a few seconds or minutes; a

song might be played a second time after several hours, in the broadcast schedule

of a radio channel. Based on this assumption a speed up can be achieved by

limiting the search in the stream to the most recent part of the received data.

The local repetitiveness condition needs only to be satisfied once for a motif to

be discovered. The discovery occurs indeed whenever two instances of a motif

are detected for the first time; the subsequent occurrences are then identified

by comparison with the respective motif in library search.

The restriction of the search space implied by the local repetitiveness assumption,

rises two main considerations:

• the assumption that motifs are local (at least, once) can impair the recall per-

formance of the system (that is its capability of collecting as many occurrences

as possible for each motif). A motif can be discovered whenever two of its oc-

currences are reasonably close in time (no more distant than the recent past

length); hence, the past occurrences that are not locally repetitive are definitely

lost.

• setting an appropriate length for the recent past is reasonable, given the task;

however it might be seen as a violation of the unsupervised paradigm, as it effec-

tively amounts to estimating a priori the motif average frequency of occurrence

for the given task.

In Fig 3.2 a comparison between the naive approach and ARGOS segmentation

is illustrated: in the first scenario, the search space is represented by a self-distance

matrix of the acoustic file. This representation emphasizes the quadratic dependency

by the file length implied by this procedure; in ARGOS, a query (the current input)

is searched in the library of motifs and in its recent past: the complexity of the search

linearly depends on the library size and the recent past length. Besides, the sequential

processing allows for a streaming algorithm, contrary to the naive method.

A crucial aspect concerns the choice of the query length and the relative position of

subsequent queries: as mentioned, a naive but optimal method consists in considering
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Figure 3.2: A visual comparison of the naive and ARGOS approach.

as a queries all possible audio segments of admissible length. This guarantees that a

repeating pattern is extracted and searched, whatever its length and its location. As

pointed out, this approach is not feasible because of its combinatorial complexity and

the unavailability of the future data in a streaming mode framework, that prevents

considering queries stretching in the future. Since the choice of the query length

is also related to the particular pattern matching technique employed, we postpone

to elaborate on this aspect to the similarity detection subtask. Before that, the

parametrization of the audio signal will be discussed in the next section.

3.4 Feature extraction

The type of parametrization of the audio signal has been decided according to our

ultimate goal of designing a system capable of dealing with different motif discovery

tasks. Features should be sufficiently powerful and accurate to discriminate audio

segments at the word level, but also suited to describe composite audio (speech,

music, various sound effects that are mixed or follow each other in a sequence).

These requirements led us to resort to the classic mel frequency cepstral coeffi-

cient (MFCC) representation of the speech signal. The mel-frequency cepstrum is a
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3.5 Similarity detection and score

representation of the short-term power spectrum of a sound: it is based on a linear

cosine transform of a log power spectrum on a nonlinear mel scale frequency.

MFCCs, however, are not limited exclusively to speech problems. They are nowa-

days frequently employed in tasks such as genre classification in music information

retrieval (Muller (2007)) and music similarity measures (Jensen et al. (2006)).In Bia-

tov et al. (2008) MFFCs are used jointly with energy and delta coefficients as features

in retrieval experiments involving 15 environmental audio events such as: airplanes,

applause, car motors, car accidents, bar/restaurants, laughter, traffic, car races, town,

casino, horses, weather, steps, crowds and explosions. In the already cited work of

Lu & Hanjalic (2009), MFCCs are used in conjunction with other spectral features

(sub-band energy ratios, brightness, bandwidth) and temporal features (short time

energy, zero crossing rate), for describing the content of a composite audio stream,

thus including a set of sounds of various nature.

Throughout all our experiments, then, the parametrization of the audio signal,

whatever the task and the audio source, is achieved by using MFCCs and the energy

coefficient for each frame of signal. First and second order derivative features were

not used as in apposite experiments they were shown to bring negligible improvement

in the recognition capability of the system, while significantly slowing down critical

parts of the computation.

3.5 Similarity detection and score

The similarity detection and score subtasks amount to identifying and quantifying the

similarity of portions of audio segments. More explicitly, in our context, it consists

in determining whether a repetition of a query occurs somewhere in its recent past.

The library search aspect will be described later on but it can be anticipated that the

problem can be reduced to that of searching in the past.

If the concept of distance is more straightforward when comparing strings or se-

quences of symbols, the idea of similarity or distance is less intuitive for acoustic se-

quences (at least from the point of a view of a machine). This stems from the fact that

different occurrences of strings are exactly identical, and confusion matrices might be

used to define distances between the elementary components of a string (symbols).

Moreover, segmentation of strings into symbols is straightforward. Segmentation of

a continuous audio stream into elementary units (phones, words, phrases) is a more

challenging task; in addition, different instances of a word exhibit great variation that
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3.5 Similarity detection and score

make more difficult the task of recognizing their common belonging to same linguistic

class.

Consider the following example, detailed by Fig 3.3. The spectrogram of three

spoken sentences (see caption to know about the text) are reported. The similarity

detection and score subtasks have the primary end goal of recognizing that:

• the first and second sentence shares a word in common, the word being ambas-

sadeurs.

• the first two sentences do not share any word in common with the third one (at

least disregarding article and prepositions, which are anyway too short to even

meet the minimum length condition of our targeted motifs).

The objective is to recognize detections and their exact location within the utterances

analyzed, at the signal level. This has to be accomplished in the absence of:

1. any prior knowledge on the presence of repetitions within the acoustic segments.

2. any labeled occurrence of speech units like words and phones.

One could think of reducing the problem to a string matching one, by properly

mapping a sequence of acoustical features into a sequence of symbols. But that

would make the recognition performance dependent on the transformation function,

and likely require some training data to find the proper mapping function.

Given the assumptions of our framework, we have instead resorted to the scoring

of the alignment of speech sequences. The technique that we will present in the

following is the well-known dynamic time warping, extensively used for aligning speech

sequences to account for differences in speaking rate and to provide a (dis)similarity

score of those patterns.

3.5.1 Dynamic Time Warping

Dynamic time warping (DTW) is a well-known template matching technique for align-

ing two sequences in an optimal sense (according to some metric) and for scoring their

similarity. It consists in finding the best mapping between them by warping one or

both and by using dynamic programming (DP) relations.

Besides speech processing, it has been successfully applied to a number of different

domains and applicative contexts, like data mining Keogh & Pazzani (2000) and hand

writing recognition Munich & Perona (1999).
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Figure 3.3: Spectrogram for the expressions (from top to bottom): d’abord il y a eu

une reunion des ambassadeurs du G8 ; oui, les ambassadeurs sont dans le starting

block, mais; il venait de recevoir les derniers directives de Pekin. The red rectangles

mark occurrences of the word ambassadeurs.
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3.5 Similarity detection and score

Formally, let consider two sequences of vectors:

U = u1, u2, . . . , uM (3.4)

V = v1, v2, . . . , vN (3.5)

A warping path P is a set of pairs (i, j) that defines a mapping between U and V

while satisfying a set of constraints. Formally:

P = {(i1, j1), . . . , (iL(P ), jL(P ))} = {(ik, jk)}
L(P )
k=1 max(M,N) ≤ L(P ) < M +N−1

(3.6)

A warping path is characterized by

• a length L(P ), which is the number of path entries.

• a cumulated distortion D(P ) =
∑L(P )

k=1 d(ik, jk), where d measures the distance

between two vectors, according to some metric (Euclidean, Mahalanobis, cosine,

etc.).

• an average cumulated distortion, or normalized path weight W (P ) = D(P )/L(P ).

The conditions that a warping path is required to fulfill are the following:

• Boundary conditions: P1 = (1, 1) and PL = (M,N). That means each path

starts and ends at diagonally opposite corner cells of the matrix. The boundary

constraint results from the assumption that the endpoints of the speech patterns

are given a priori, after some speech-detection operation (Rabiner & Juang

(1993)).

• Continuity: Given Pk = (ik, jk) and Pk−1 = (ik−1, jk−1), then ik − ik−1 ≤ 1

and jk − jk−1 ≤ 1. This restricts the admissible steps in the warping path to

adjacent cells. The continuity requirement is enforced in order to prevent the

loss of any information in the time alignment.

• Monotonicity: Given Pk = (ik, jk) then Pk−1 = (ik−1, jk−1) where ik − ik−1 ≥

0 and jk−jk−1 ≥ 0. This requires all the path entries to be monotonically spaced

in time. Monotonicity is needed to preserve the temporal order of the spectral

sequence, which is crucial for the linguistic meaning of time normalization.
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3.5 Similarity detection and score

In fact, a large number of constraint types have been proposed in speech recog-

nition to specify the path properties (local continuity constraints, global path con-

straints, slope weightings) to model speaking rates and temporal variations in speech

utterances; a comprehensive tutorial can be found in Rabiner & Juang (1993).

The main questions in time-aligning two speech patterns and deeming their sim-

ilarity are:

1. how to score a given path?

2. which path is to be chosen for providing a unique dissimilarity measure?

3. how to efficiently compute this path?

Path scoring. A global pattern dissimilarity measure for a given path can be de-

fined as:

dP (U, V ) =

L(P )
∑

k=1

d(ik, jk)m(k)/ΦP (3.7)

where d the local distance previously defined, m(k) is a nonnegative weighting co-

efficient and ΦP is a normalizing factor, defined as ΦP =
∑L(P )

k=1 m(k), which serves

to have an average path distortion independent of the length of the patterns being

compared.

Best path definition. Among the admissible paths, the natural choice for the best

path is the one that minimizes this measure:

P̂ = arg min
P

dP (U, V ) (3.8)

and the respective score is the dissimilarity measure of the two patterns. This choice

has an obvious meaning if we think of two utterances of a same word being compared:

the dissimilarity is measured on the best path since is the one that accounts for

nonlinear differences in speaking rate between the two occurrences of the same word.

Finding the best path through DTW. Dynamic Time Warping provides a so-

lution to efficiently compute the minimization in (3.8), based on the use of dynamic

programming (Bellman (1957)), which is a tool for solving sequential decision prob-

lems. Following the local optimality principle, expression 3.8 can be solved by noting

that:
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if C = {(1, 1) · · · (i, j)} is the optimal path joining (1, 1) to (i, j), then for any

(i′, j′) ∈ C, the optimal path leading from (i′, j′) to (i, j) is included in C.

Then, the accumulated distortion at each cell (i, j) can be computed as:

D(i, j) = arg min
(i′,j′)∈V (i,j)

D(i′, j′) + dW ((i′, j′), (i, j)) (3.9)

where (i′, j′) belongs to the neighborhood of (i, j) defined by the local constraints,

and dw is a weighted d(i, j) according to the local path from (i′, j′) to (i, j).

3.6 Summary

In this chapter we have first formally defined the task at stake, then proposed to ap-

proach motif discovery in a modular fashion, according to a division into elementary

subtasks. Based on this paradigm, we have defined each subtask, proposing appro-

priate solutions, drawing from well-known state of the art techniques. In the next

chapter we will see how these subtasks can be integrated together to design a (pre-

liminary) discovery system. In particular, we will show how appropriate variations of

DTW can be proficiently used to perform the similarity detection and score subtask.
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Chapter 4

Initial steps towards efficient

motif discovery

This chapter focuses on our initial approach to motif discovery, detailing various

options for the similarity detection and score subtasks. More specifically, three vari-

ations of DTW are described that enable partial sequence alignment of speech se-

quences, namely a) segmental locally normalized dynamic time warping (SLNDTW)

b) band relaxed SLNDTW and c) fragmental SLNDTW.

The need for subsequence alignment techniques originates by the unknown end-

points locations of word units within the continuous audio stream. Therefore, the

proposed modifications accomplish two main tasks: a) they identify the endpoints

of likely repetitions, and b) provide a dissimilarity score to qualify them or not as

motif occurrences. Besides, the integration of each of these procedures into the dis-

covery architecture is described, before concluding by highlighting the limit of the

initial system proposed. This will be instrumental in introducing the more definitive

architecture based on seeded discovery in the next chapter.

While part of the similarity detection and score subtasks, the discussion on the

library search aspect will be postponed to the subsequent chapter, since it presents

specificities that deserves a special attention. It can be anticipated, however, that

the pattern matching techniques employed in library search will be the same as the

ones introduced in this chapter.
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4.1 Dealing with unknown word endpoints: the need for local alignments

4.1 Dealing with unknown word endpoints: the need for

local alignments

The boundary constraints of global alignment methods result from the assumption

that the endpoints of speech units are well known a priori. Whether these units are

phones, words, phrases, once the information about their exact endpoints is available,

the direct comparison by global alignment and path scoring can be performed, to

decide if they are similar or not. This is what DTW accomplishes, in the classical

version detailed in the previous chapter.

However, endpoints location of speech units is a source of knowledge that is pre-

cluded to us, according to the basic assumptions of the motif discovery problem.

Therefore, repeating patterns have to be automatically extracted from the unseg-

mented stream. Referring to the ARGOS framework, the problem translates into

that of finding repetitions of the query in its search buffer or in a motif in the library.

To this end, we ask how to adapt DTW so as to exploit its attractive capability of

quantifying similarity of audio sequences while removing the limiting assumption of

knowing patterns’ endpoints. We provide an answer to this question, and propose a

solution for similarity detection, that consists in enabling local alignment by relax-

ing the canonical boundary constraint, and by properly normalizing local alignment

paths. The strategy basically works by identifying some likely matching pairs of seg-

ments, and by using dynamic programming relations and path distortion measures

to compute and score the corresponding alignment path.

Optimality principle for boundary relaxed alignment. To enable the com-

putation of local alignments while still resorting to dynamic programming, the op-

timality principle must be redefined to account for the relaxation of the boundary

constraints.

In (di Martino (1985)), it was proposed a generalisation of the optimality principle

to account for the relaxation of the boundary condition, when endpoints detection in

speech is corrupted by noisy environment. It can be restated as:

If C = {s(i, j), . . . , (i, j)} is the optimal path starting from s(i, j) and reaching (i, j),

then for any (i′, j′) ∈ C, s(i′, j′) = s(i, j) and the optimal path from s(i′, j′) to (i′, j′)

is included in C.

According to this new formulation, to evaluate recursively the cumulated dis-

tortion D(i, j), the different lengths of the warping paths ending in (i, j) are to be

43



4.2 Segmental locally normalized DTW

considered and properly normalized; this is slightly different from DTW, where local

path computation is influenced only by the local distance d of the entry (i, j) and

by the cumulated distortion D of the partial paths merging into (i, j). The following

set of equations (local normalization) is obtained by accounting for length normaliza-

tion; they explicitely tell how the local path, the distortion, the starting point and

the length of the path passing to (i, j) are obtained. By indicating with (̂i′, ĵ′) the

winning entry of the neighbourhood of (i, j):

(̂i′, ĵ′) = arg min
(i′,j′)∈V (i,j)

D(i′, j′) + dW ((i′, j′), (i, j))

L({s(i′, j′) . . . (i′, j′)}) + L({(i′, j′) . . . (i, j)})
(4.1)

D(i, j) = D(̂i′, ĵ′) + dW ((̂i′, ĵ′), (i, j)) (4.2)

s(i, j) = s(̂i′, ĵ′) (4.3)

L({s(i, j) . . . (i, j)}) = L({s(̂i′, ĵ′) . . . (̂i′, ĵ′)}) + L({(̂i′, ĵ′), (i, j)}) (4.4)

Building from this new set of relations, we can then start illustrating our solution

to enable partial sequence matching by dynamic programming.

4.2 Segmental locally normalized DTW

The end goal of local alignment is to find two matching subsequences uis . . . uie of

a query U and vjs
. . . vje

of the search buffer V , and the respective matching path

P̂ = {(is, js),. . . , (ie, je)} with 1 ≤ is ≤ ie ≤ M, 1 ≤ js ≤ je ≤ N . More specifically,

we define a path P as matching when its score W (P ) < ǫ, being ǫ a proper similarity

threshold (it plays indeed the role of the threshold in the relation 3.1).

It is first considered the case is = 1 and ie = M , that is a whole repetition of the

query is searched in the search buffer. This is achieved by:

1. Identifying the starting point of likely matching paths among the (1, j) entries.

2. Computing each path, using the set of local normalization relations introduced

in the previous section.

3. Reconstructing the matching paths, if any, by backtracking from the respective

ending points.

The algorithm is termed segmental locally normalized dynamic time warping

(SLNDTW), since:
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4.2 Segmental locally normalized DTW

• it enables the alignment of the query with multiple subsegments of the search

buffer (hence segmental).

• it performs path computation by local normalization (hence locally normalized).

4.2.1 Algorithmic description

As a potential match can occur anywhere in v, a strategy is needed that allows

js 6= 1, je 6= N .

Starting point selection. The starting point of a path is determined by hypoth-

esizing the presence of the start of a matching path, whenever a sufficiently small

value of local distance d(1, j) is observed. The value of d(1, j) is compared with

the average weight W of P = {(1, js), . . . , (1, j − 1), (1, j)}, where (1, js) is a generic

starting point previously selected. This path results from the addition of (1, j) to the

already existing path passing through its left neighbour. The underlying assumption

is that if d(1, j) is smaller, then a matching path is more likely to start from (1, j)

than P = {(1, js), . . . , (1, j − 1), (1, j)} being a matching path itself.

The procedure is formally described by the following expression: ∀j, 1 ≤ j ≤ N ,























D(1, j) = d(1, j)
L(1, j) = 1

D(1, j) = D(1, j − 1) + d(1, j)
L(1, j) = L(1, j − 1) + 1

, if d(1, j) < D(1,j−1)+d(1,j)
L(1,j−1)+1

, otherwise

(4.5)

Path computation. Except for i = 1, each path is computed by iteratively ap-

plying the local normalization recursion, which consists in minimizing, at each point

(i, j) of the computational grid [1, · · · ,M ] × [1, · · · , N ], the weight W (i, j), that is

the quotient between the accumulated distance D(i, j) and the path length L(i, j).

Formally:

W (i, j) = min

[

d(i, j) + D(i − 1, j)

L(i − 1, j) + 1
,
d(i, j) + D(i − 1, j − 1)

L(i − 1, j − 1) + 1
,
d(i, j) + D(i, j − 1)

L(i, j − 1) + 1

]

(4.6)

Note that relation (4.6) is formally identical to (4.1), when the neighbourhood of cell

(i, j) is composed of the adjacent cells (i−1, j), (i−1, j−1), (i, j−1) and no weighting

slope is applied 1.

1local conditions and path constraints will be properly specified in the experiments
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4.2 Segmental locally normalized DTW

Match identification After path computation, the weight of all computed paths

is stored in the entries W (M, j), 1 ≤ j ≤ N .

Every subsequence vjs
, . . . , vje

for which a path P = {(1, js), . . . , (M, je)} exists

such that W (P ) < ǫ, is a repetition of the query U . Note that, since speech is

a monotonous signal, there are no big changes between adjacent distances, so the

cells (M, j) close to a matching ending point (M, je) might also be matching ending

points, although related to strongly overlapping subsequences of vjs
, . . . , vje

. We

consider then the minimum weighted path as the privileged matching path, assuming

we are interested in only one possible repetition (we will see how this will be indeed

the case within the motif discovery system). In alternative, all possible matching

subsequences can be retained, as long as they do not significantly overlap in time (in

this case, they would refer indeed to the same repetition).

4.2.2 Example Output

A specific example of the application of SLNDTW is shown in Fig. 4.1, where an

instance of the word ambassadeurs is searched within the phrase d’abord il y a eu une

reunion des ambassadeurs du G8, spoken by the same male speaker. The top half of

the picture shows the spectrograms of the two utterances and the respective distance

matrix.

After SLNDTW computation, the entry (M, j), 1 ≤ j ≤ N that minimizes the

average path distortion W (M, j) is selected as the ending point of the best path (as

can be observed in the bottom half of the figure). The continuous red line superim-

posed to the low distortion diagonal region, indicates the successful reconstruction of

the alignment between the two occurrences of ambassadeurs.

Moreover, is interesting to observe the distortion profile of the matching path,

that is the sequence {d(ik, jk)}
L(P )
k=1 , depicted in Figure 4.2. Far from being a flat

curve, the profile exhibits a very irregular pattern, showing several peaks and valleys.

4.2.3 Integrating SLNDTW in motif discovery

The integration of the technique in the motif discovery system is straightforward.

In Fig 4.3 the search for a repetition of the query in its search buffer by SLNDTW

is depicted. The paths satisfying the similarity condition (W (P ) < ǫ) are sorted in

ascending order according to the dissimilarity score, and evaluated until a match is
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Figure 4.1: Application of SLNDTW to the retrieval of the word ambassadeurs within

the phrase d’abord, il y a eu une reunion des ambassadeurs du G8. The procedure

correctly identifies the two repetitions and tracks the corresponding alignment path

from the ending point in the last row of the distance matrix. It can be observed as the

ending matching point corresponds to the minimum of the average distortion among

the paths ending in (M, j).

47



4.2 Segmental locally normalized DTW

0 10 20 30 40 50 60 70
5

10

15

20

25

30

35

index of matching path pairs

lo
ca

l d
is

ta
nc

e 
(E

uc
lid

ea
n)

 b
et

w
ee

n 
fra

m
es

Figure 4.2: Distortion profile of the matching path (Euclidean distance used).
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Figure 4.3: Integration of SLNDTW in the query-search buffer search for a repetition.

found. We call these paths (or equivalently, the subsequences they map) as candidate

motifs (they are indicated by the N paths in Fig 4.3). The presence of a match is

determined by evaluating the length of the two occurrences found; if they obey the

minimum length requirement a motif is discovered. Actually, as one of the occurrences

is the query itself, which must necessarily meet the minimum length constraint, the

fulfillment of this condition is verified only for the occurrence in the search buffer.

In fact, because of spurious mappings, a query might be mapped into a shorter
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4.2 Segmental locally normalized DTW

subsegment of the search buffer, possibly violating the length constraint.

One noteworthy observation is that, by retaining just one matching path, we

collect, at most, one repetition of the query in its search buffer, regardless of the

possible presence of multiple occurrences. This strategy comes from the assumption

that two instances of a same motif cannot simultaneously occur in the same search

buffer; they should have already been detected in a previous step of the algorithm,

when the second occurrence was taken as a query; hence the current occurrence, the

third one in temporal order, should have been already identified as a repetition by a

previous library search. However, missed detection of occurrences might always occur,

because of possible deficiencies in pattern comparison or in the segmentation strategy

(we will discuss next an example of those); therefore, a solution might be convenient

that envisions the possibility of detecting several repetitions of the currenty query.

The integration of SLNDTW in the ARGOS framework rises several issues, mainly

concerning the choice of the query length and the selection of subsequent queries.

The choice of the query length. The framework described is satisfying only if

all motifs and motif occurrences are equally long, as the query length is fixed. The

only variability admitted is in the mappings performed by alignment, that can map

a segment into another of different (but usually similar) length. Allowing only the

detection of repetitions of a fixed length query, is a very limiting requirement for a

system supposed to be applicable to a variety of discovery tasks and motifs.

One possible solution is to consider the motif length as a user specified parameter

(see Lin et al. (2002) and Minnen et al. (2007)). This is impractical because implies

the algorithm to be run several times while varying the query length. Moreover, giving

this information as input clearly contrasts with the unsupervised learning paradigm.

Extraction of a subsequent query. A subsequent query can be chosen so as to

partially overlap with the preceding one, to deal with the possibility of a motif oc-

currence in between. If the current query is defined by time endpoints [t0, t0 + ∆],

the next query extends from t0 + ∆ − Loverlap to t0 + 2∆ − Loverlap, where Loverlap

quantifies the degree of overlap between adjacent queries. However, the only opti-

mal choice to guarantee that a repetition does not get stuck in between two queries is

Loverlap = Lquery−1 (of course under the assumption that a motif occurrence is exactly

Lquery long). That means each query is just shifted of one frame and then searched.

Such solution implies an explosion of the number of queries and search operations.
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4.3 Band Relaxed SLNDTW

Alternative values of Loverlap would speed up the algorithm at the cost of being subop-

timal. In fact, even slight misshifts between a query and a motif occurrence can result

in a high distortion alignment path that prevents the detection of a repetition. This

is in fact an example of a deficiency in pattern matching (but also in segmentation

strategy) that can lead to miss repetitions.

We will see in the following alternative solutions to (partially) overcome this

problem.

4.3 Band Relaxed SLNDTW

SLNDTW aims at finding repetitions of the query in the search buffer. This approach

would be effective only if motifs were of fixed length and exactly coincident with the

query extracted from the stream. But in practical scenarios that would strongly limit

the successful application of the system. For example, one might wonder how to

handle the discovery of jingles of a few seconds and songs of several minutes within

the same framework, given the different duration of those sound patterns.

If the assumption on the length restricts the number of retrievable motifs, time

synchronization mismatch between a repeating segment and the query impacts the

recognition capabilities of the algorithm. Since the endpoints of sound patterns are

not known, a pattern recognition technique that strongly depends on the synchro-

nization of query and motif, is clearly unsatisfying.

The idea is to generalize the segmental property of SLNDTW to relax boundary

constraints also on the query. We propose a variation of SLNDTW called band relaxed

SLNDTW that relaxes the constraints that forces a path to start in (1, js) and end in

(M, je). This is accomplished by permitting the selection of starting and ending points

within a group of rows (a band, indeed) in the distance matrix, instead of a single

row, while constraining the paths to cross a central band. This heuristic allows the

retrieval of variable length motifs, as possible matches can be as short as the central

band, or as long as the entire query length. Besides admitting a certain variability

in the length of repetitions, it also partially mitigates synchronization issues between

a motif and a query, since they are required not to coincide but at least to match in

the central band.

We detail in the following the basic idea and the practical implementation of the

procedure.
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Figure 4.4: Band relaxed SLNDTW: the motif completely includes the central band.

After path reconstruction, boundaries are refined in the starting and ending band

(blue lines).

4.3.1 Algorithmic description

The computational lattice [1, · · · ,M ]×[1, · · · , N ] is divided in three horizontal bands:

• the starting band, including the entries (i, j)|i ∈ [1, Ls]. Each entry in this band

is a potential starting point of an alignment path.

• the central band, including the entries (i, j)|i ∈]Ls, Ls + Lc] that all paths are

constrained to cross.

• the ending band, where paths end, includes all points (i, j)|i ∈]Ls + Lc,M ].

Each entry of the ending band is a potential ending point of an alignment path.

Since paths are forced to pass through the central band, and can start and end

anywhere in the starting and ending band, the length of the segments mapped can

vary in the range [Lc,M ].

The algorithm comprises the following steps:

1. ∀(i, j)|i ∈ [1, Ls]:

if d(i, j) <

[

d(i, j) + D(i − 1, j)

L(i − 1, j) + 1
,
d(i, j) + D(i − 1, j − 1)

L(i − 1, j − 1) + 1
,
d(i, j) + D(i, j − 1)

L(i, j − 1) + 1

]

then (i, j) is the starting point of a new path, otherwise it is added to the path

that minimizes W (i, j). Note that this is a generalization of equation (4.5),
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4.3 Band Relaxed SLNDTW

as the same condition is expressed by considering the whole neighbourhood of

(i, j) rather than the single cell at its left (i, j − 1).

2. ∀(i, j)|i ∈]Ls,M ] compute path as in (4.6).

3. ∀(i, j)|i ∈ [Lc+Ls,M ] select the ending point of a match, if any, as in SLNDTW,

and reconstruct the corresponding path.

4.3.2 Path boundary refinement

In addition, a boundary refinement strategy is adopted that seeks to possibly extend

the matching path by appending new pairs from the starting and ending points. The

reason for such a strategy is twofold:

1. to mitigate the effect of possible imperfections in the endpoints detection.

To better understand where these imperfections originate, consider how the

ending points are selected. For each path, the corresponding ending point is

identified as the minimum-valued point (a valley) of the path average distortion

in the ending band. The underlying assumption is that the valley indicates the

end of the match while other points, where the distortion increases, indicate

a mapping between non-matching frames of signal, hence discarded. This as-

sumption not always holds true, as the distortion profile of a matching path

can be quite irregular and can exhibit a variety of peaks and valleys, as can

be observed from Fig 4.2. Therefore, while left out from the matching path,

those additional points might effectively be part of the true match. Similar

observations can be drawn for the starting point selection heuristic.

2. To favour the detection of sufficiently long matches. Depending on the spe-

cific parameter setting, the size of the central band might be shorter than Lmin.

Without refinement by path extension, several matching paths were noted to

be truncated (because of the imperfections described) generating matching seg-

ments too short to even be evaluated as motif occurrences. In this case, not

only the endpoints are not exactly retrieved, but the motifs themselves are

erroneously skipped.

Practically, refinement by path extension carries over as long as the average weight

of the extended path does not increase too much. The steps of the procedure are sum-

marized in the following (concerning the forward extension from the ending point):
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4.3 Band Relaxed SLNDTW

1. Consider the path P with W (P ) = Wo ending in (ie, je).

2. Select in the neighbourhood of (ie, je) (composed of (ie+1, je+1), (ie+1, je), (ie, je+

1)) the point that, added to P , minimizes W (P ), and add it to P as its new

ending point.

3. If W (P ) < Wo + kWo, then repeat the procedure from 1, otherwise remove the

new ending point from P and stop the procedure.

4. Compute the new averaged weight W of the extendend path.

The same procedure applies when extending the path backward from its starting point

(is, js). The term Wo + kWo is an adaptive similarity threshold used in place of the

spectral threshold ǫ. It is used to limit the addition of garbage (that is, non matching

frames of signal) to the matching segments; indeed, in case Wo << ǫ, a significant

number of high distortion d (non matching frames) would be added if W (P ) < ǫ

was to be used as a stopping condition. In practical experiments, the value of k has

been set to 0.1 or 0.2. Using a threshold slightly greater than Wo ensures that the

extended path yields a distortion profile similar to the original matching path, while

allowing for a certain margin to compensate for local distortion peaks that might stop

prematurely the extension.

4.3.3 Integrating Band Relaxed SLNDTW in motif discovery

The integration of band relaxed SLNDTW in the motif discovery system is straight-

forward and follows observations made in paragraph 4.2.3.

We insist in emphasizing that the main issues implied by the use of SLNDTW,

are not entirely solved by this modified technique. Band relaxed alleviates the impact

of time mis-shifting between a query and a repeating segment, and allows a certain

variability in motif length. However, repetitions are forced to occur in the central

part of a query, to permit the correct computation and score of the matching path. In

general, imposing a constraint on the relative position of a repeating pattern within a

query, is arbitrary since no assumption can be made on the location of those patterns

anywhere in the data stream.
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4.4 Fragmental SLNDTW

Herley (2006) explicitly derives a condition for successful pattern matching that

relates the length of a repetition and the length of the query (assuming that a repe-

tition is always included in a query). One might wonder if a solution can be thought

that avoids these arbitrary assumptions.

Furthermore, motifs are still hypothesized to be no longer than the query length,

and the problem of occurrences stuck in between queries still stands.

4.4 Fragmental SLNDTW

Band relaxed SNLDTW does not constrain a motif to coincide with a query, but it

still assumes the motif to be located in the central part of the query to completely

include its central band.

A simple generalization of the previous algorithms, called fragmental SLNDTW,

allows the retrieval of a match regardless of its position in the query and opens the

door for seeded discovery. The term fragmental is adopted as detection is accom-

plished by first retrieving a portion of a repeating segment, e.g. a fragment.

4.4.1 Algorithmic description

SLNDTW detects a match whenever a query coincide with a motif. By using queries

sufficiently small to be included in a repeating pattern, at least one motif fragment

is guaranteed to coincide with a query. Suppose to fix an upper bound Lmax for a

motif length. If Lmin ≤ Lmotif ≤ Lmax, splitting a Lmax long query into Lmin/2 long

subqueries ensures that at least one fragment coincides with one of the subqueries.

This fragment can be then retrieved by conventional SLNDTW; afterwards, the entire

match can be recovered by path extension as in the boundary refinement stage of the

band relaxed SLNDTW algorithm.

Formally:

1. Partition the grid [1, · · · ,M ]× [1, · · · , N ] in horizontal bands of vertical length

Lmin/2, such as the i-th band includes all point (i, j)|(i − 1) · Lmin/2 + 1 ≤ i ≤

i · Lmin/2.

2. Perform a conventional SNLDTW in each band and reconstruct the matching

path, if any.
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Figure 4.5: Fragmental SLNDTW: partitiong the query in Lmin/2 long subqueries

ensures that a least a fragment of the motif coincide with a subquery. The entire

match can be then recovered by extending the fragmental match.

3. Extend the matching path as in the boundary refinement strategy in Band

SLNDTW.

This implementation has the advantage of enabling the retrieval of a match whichever

its position in the considered query, hence it shows higher flexibility than the previous

variations of DTW proposed.

Similar in principle is the DTW-based algorithm for partial sequence matching

proposed in (Anguera et al. (2010)): while the starting point selection strategy and

local constraints are slightly different, matching paths are similarly retrieved by local

normalization and a subsequent path extension technique.

4.4.2 Integrating fragmental SLNDTW in motif discovery

Fragmental SLNDTW exploits the conditions on motif minimum and maximum

length to recognize repetitions of a query subsegment in a part of an arbitrarily

long search buffer. With respect to the previous methods, it does not constrain the

relative location of the targeted repetition within the query.

Integrating these pattern matching techniques in ARGOS, two important issues

were observed concerning:

1. the choice of the query length.
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4.4 Fragmental SLNDTW

2. The position of subsequent queries, and the possible presence of repetitions in

between.

While integrating fragmental SLNDTW in the discovery system, the following

choices are made in relation to these aspects:

1. Lquery = Lmax.

2. Loverlap = Lmax/2.

By operating these choices, it is guaranteed that each repetition, wherever occur-

ring, is completely included in one of the queries extracted from the stream. And, as

noted already, fragmental SLNDTW does not impose any condition on the specific

location of a motif within a query, but only its inclusion in the query itself.

However, this framework still does not prove completely satisfying if one thinks of

the possible implications of its applicability in motif discovery tasks. We list possible

issues arising from this approach:

1. imposing a motif maximum length might be seen as a violation of the unsu-

pervised learning paradigm. Besides a minimum length condition, which is

reasonable to assume, one might want the algorithm to learn itself about any

motif, of any possible length.

2. The 50% overlap between queries leads to inefficient computation since half

the distance matrix between a query and the search buffer is computed a sec-

ond time, when the query is shifted; and, even if library search has not been

yet described, it easy to imagine that such information is computed a second

time for each of the motifs in the library also. One obvious solution consists in

just storing this information for reuse in the subsequent step, computing only

the information coming from the novel portion of query (the right half of the

segment). However, this could well turn impractical because of memory oc-

cupation issues: the quantity of information to be stored grows as new motifs

are discovered, and the strategy could reveal unfeasibile even for small-sized

libraries.

A solution is needed where neither a maximum length is imposed nor the use

of overlap is needed, while ensuring for any possible repetitions to be detected. We

will see an example of such a solution in the next chapter, where seeded discovery is

presented.
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4.5 Summary

In this chapter the initial step towards an efficient motif discovery architecture has

been presented. This was attained by incorporating in the system three variations of

DTW, with the aim of allowing partial sequence alignment of speech sequences. The

limit implied by the use of these techniques has also been highlighted, consisting in too

stringent constraints on the motif location, on their maximum admissible length, and

in the use of overlapping queries. We will see in the next chapter how a straightfor-

ward modification of this system can naturally lead to overcome the aforementioned

problems.
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Chapter 5

Seeded motif discovery

In the two previous chapters, the different modules of an architecture for motif dis-

covery were described. This architecture results from dealing with each subtask com-

prising the global motif discovery task. However, some undesirable properties were

noted in the pattern recognition techniques proposed to detect similarities in audio.

In particular, two main issues arise from the use of the so called fragmental SLNDTW

that push for further improvement:

1. The a priori estimate of a motif maximum length.

2. The need for overlapping queries to deal with the possibility of repetitions oc-

curring at the intersection of adjacent queries.

Motivated by the necessity of removing these constraints, a slightly different strat-

egy is illustrated that can be straightforwardly applied to various motif discovery

tasks. Moreover, we elaborate on the library search aspect, before presenting an

algorithmic view of the final system and its different modules.

5.1 Seeded discovery

The proposed strategy, that represents our definitive proposition for motif discovery, is

based on a matching technique that results from a slight variation of fragmental DTW.

The end goal is to overcome the limits shown by the initial framework. The illustration

of the system will be performed by presenting the underlying idea, the algorithmic

implementation of the technique and its incorporation in the global architecture. The
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5.1 Seeded discovery

system is named seeded discovery; the reason for such designation will be clear after

its description.

5.1.1 From fragmental SLNDTW to seeded discovery

Fragmental SLNDTW was introduced to enable the detection of matches, indepen-

dent of their relative position within a query. However, it was still assumed that each

repetition is entirely included in the current query. This condition implied the need

for overlapping queries to prevent the possibility of motif occurrences stuck between

subsequent queries.

From fragmental SLNDTW... In fragmental SLNDTW, path computation in

each sub-band is performed independently; it consists in performing a conventional

SLNDTW, followed by a path extension stage from the endpoints of the best path

selected. In path extension, the local distances in the neighborhood of the endpoints

(belonging to different sub-bands), are evaluated to compute the local path according

to the dynamic programming recursion. The extension is limited by two factors:

1. the stopping condition on the average distortion of the extended path.

2. the boundaries of the query, beyond which the path cannot be further length-

ened. Therefore, matching segments stretching outside a query’s endpoints are

not retrievable in their entire duration (this is why, to guarantee the total in-

clusion of a repetition in the query, the Lmax query length and the 50% overlap

condition are used).

...to seeded discovery. The simple trick to overcome the boundary limitation con-

sists in just removing this constraint to allow for the recovery of the whole match,

whatever its length. Each of the Lmin/2 long subqueries is considered as an indepen-

dent query to search for. If a match is found by SLNDTW, the extension is performed

without any boundary constraint, reconstructing the motif occurrences in their entire

length.

The discovery process, thus, amounts to identifying two (potential) fragments of two

motif occurrences and their subsequent, unbounded extension: we call the potential

motif fragment searched in its past as the seed block and the identification of a rep-

etition by a matching path as a seed match. The term seed is metaphorically used,
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Figure 5.1: Seeded discovery.

as the seed block plays the role of an embryonic entity from which the final motif is

grown. Since discovery is triggered by the detection of a seed match, the process is

called seeded discovery.

A detailed description of its incorporation in the motif discovery framework is

provided in the remainder of this chapter.

5.1.2 Algorithmic description

Consider a query of length ∆ = Lmin/2 defined by the endpoints [t0, t0 + ∆], and a

search buffer defined by the endpoints [t1, t0 − 1].

The search for a repetition is performed by computing a conventional SLNDTW

between the two segments and reconstructing the best path P . From Figure 5.1, P

identifies two matching segments, the query itself and the subsegment with endpoints

[ta, tb] in the search buffer. In order to retrieve the matching occurrences in their

entire length, the path extension is performed by recovering the neighboring frames

of the segments’ endpoints directly from the stream.

In the following, the global framework will be illustrated: it will be explained how

it implies the overcoming of the main issues noted for the initial system.
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5.1 Seeded discovery

5.1.3 Integrating seeded discovery in motif discovery

Let us consider in the stream χ a time window [t0, t0 +∆] with ∆ = Lmin

2 and its past

[t1, t0 − 1]. Indeed χt0
t0+∆ is the seed.

A seed match is found if there exists a segment χd
c with t1 < c < d < t0 such

that H(χt0+∆
t0

, χd
c) < ǫ. In order to check for the existence of a motif, the seed match

is extended using [t0, t0 + ∆] and [c, d] as anchor points. If there exist the pairs

a′ < t0, b
′ > t0 + ∆ and c′ < c, d′ > d such that:

H(χb′

a′ , χd′

c′ ) < ǫ (5.1)

H(χb′′

a′′ , χd′′

c′′ ) > ǫ, ∀a′′ < a′, b′′ > b′, c′′ < c′, d′′ > d′ (5.2)

|b′ − a′| ≥ Lmin (5.3)

then a motif is found with occurrences χb′

a′ and χd′

c′ .

Conditions (5.1) and (5.3) are the same as relations (3.1) and (3.3), applied to

the pairs (a′, b′) and (c′, d′). They imply that χb′

a′ and χd′

c′ are sufficiently similar and

long to be motif occurrences.

Condition (5.2) states that the match cannot be further extended beyond [a′, b′]

and [c′, d′] without infringing the similarity condition in (3.1).

Much like in the initial system, seed matches are sorted in ascending order accord-

ing to the similarity score. Each seed match is analyzed and undergoes the extension

procedure until a match is found, that is the lengths of the matching segments obey

the minimum length condition.

Once a comparison is performed, the pair seed-search buffer is shifted appropri-

ately along the stream, that is either the new query is adjacent to the repetition

found (if any), or adjacent to the preceding query. Basically: if a motif was previ-

ously found with endpoints [a′, b′], the new seed endpoints are [b′, b′ + ∆], otherwise

[t0 + ∆, t0 + 2∆].

We remark the two main advantages of adopting this strategy:

1. there is no need for guaranteeing the inclusion of a repetition within a query and

of setting an upper bound for a motif length. Since each query is Lmin/2 long, it

is guaranteed that a repeating segment, whatever its length and position in the

stream, includes a query as a fragment, thus retrievable by seeded discovery.
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2. The use of overlapping queries is useless. After a motif is discovered, it is suffi-

cient to consider as a query the Lmin/2 long segment adjacent to the repetition

found.

This framework is straightforwardly applicable to a variety of discovery task. It

does not constrain repetitions to occur in specific part of the stream, nor to have a

limited length. There is no contraindication in using it for discovering words, jingles,

songs (beside setting an appropriate similarity threshold or search buffer length, given

the specific task). This will be clear when the result of the experimental evaluation

on these different tasks will be reported in the subsequent chapters.

5.2 Library search

To complete the illustration of the motif discovery architecture, we turn to the the

library search component of the system. The core of the problem revolves around

two main aspects:

1. How to perform the comparison between a seed and a motif in the library.

2. How to represent (or model) a motif in the library.

The two aspects are strictly intertwined; in fact, the way a motif is represented

strongly influences the choice of the pattern matching technique; vice versa, given

the pattern matching technique, the representation of a motif is chosen to fit the

mechanisms of the algorithm.

One natural solution is to let each motif be represented by the sequence of all

its current occurrences, without any modelling. If N occurrences of a motif have

been collected at a given point of the computation, then the current seed block is

compared with all of them to determine whether a seed match has occurred or not.

This comparison can be performed in different ways. We mainly focus on two common

strategies:

1. generalize the pairwise dynamic programming alignments described to the align-

ment of N sequences. This turns impractical for more than a few sequences. In

fact, this strategy implies the construction of an N -dimensional distance ma-

trix, as well as the evaluation of 2N − 1 neighboring frames each time a local

path is computed (both in SLNDTW and path extension).
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2. Compare independently each seed with all N occurrences. This poses two prob-

lems, in turn: a) how to fuse the independent N scores and b)how to perform

the path extension, since N different alignments have been produced.

While providing an answer to these questions is worthwhile, we have decided to

apply to the search library problem, the seeded discovery described for the seed-

search buffer search for a repetition. This is a case of choosing the pattern matching

technique first, and adapting accordingly the motif representation. The reason for

this choice is twofold:

1. it exploits the use of seeded discovery, which has proven successful in detecting

repetitions in the seed-search buffer framework.

2. it forces the use of one template or model for a motif, which is computationally

attractive, and straightforward in the application (in fact, it simply consists in

searching a seed in a motif model, which plays the role of the search buffer).

Once the decision is made, the problem is that of appropriately modelling a motif

from the set of its occurrences, so as to faithfully represent the underlying pattern.

Three main modelling strategies are discussed in the following:

1. average of occurrences

2. median of occurrences

3. random occurrence

5.2.1 Average of occurrences

Given two sequences of vectors U = u1, . . . , uM and V = v1, . . . , vN and their align-

ment path P = {(ik, jk)}
L
k=1, the average occurrence A = ai, . . . aL is defined as:

ak = (uik + vjk
) /2 (5.4)

Accordingly, a model is built by simply averaging the contributions of each occurrence.

Each time a new occurrence is collected, the model is updated by averaging the newly

detected sequence. If a new occurrence V is averaged with a model representing N

sequences, the model is weighted by a factor N in average computation, to account

for the N occurrences; then the new model M is obtained from the old one A and V

as:

mk = (N ∗ aik + vjk
) /(N + 1) (5.5)
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This modelling strategy was already used in (Cheng et al. (2005)) to model speech

sequences aligned by DTW.

5.2.2 Median occurrence

The median occurrence M of a set of N occurrences mi, i = 1, . . . , N is defined as the

occurrence closest to all the other ones, in average, according to a given dissimilarity

score d:

M = mi where i = arg min
1≤j≤N

N
∑

k=1

d(mj ,mk) (5.6)

The reason for using this modelling strategy in place of the average is that median

occurrence is less prone to degradation due to the detection of false hits. When this

happens, the model resulting from averaging a false hit, is inevitably corrupted, in

the sense that its representativeness of the underlying motif is decreased. On the

other hand, in median modelling, if the new model is one of the true occurrences

already collected, the quality of the model is not altered in any way by the collection

of a false hit.

In the word discovery experiments presented in the next chapter an in-depth

comparison of the performance of the two modelling strategies will be described.

5.2.3 Random occurrence

This type of modelling consists in randomly choosing one of the occurrences as repre-

sentative of the underlying motif. This modelling strategy is used in discovery tasks

where the targeted motifs are supposed to carry a limited variability, so that any

occurrence is indeed extremely similar to all the other ones and can be assumed as

representative. This is the model that will be used in the near duplicate discovery

experiments, and the one employed in the original work (Herley (2006)), where the

ARGOS segmentation was introduced.

5.3 Seeded discovery: algorithmic view and glossary of

terms

The final architecture for motif discovery is depicted in Fig 5.2, where the single step

of the iterative procedure is represented. Two main differences can be noted with

respect to the previously proposed systems:
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Figure 5.2: Motif discovery architecture based on seeded discovery.

1. the query is replaced by the seed.

2. the library search and the seed-search buffer comparison are explicitly shown

to share the same pattern matching technique, based on SLNDTW + path

extension.

Glossary of terms. For the sake of clarity, given the density of new concepts

introduced in the last two chapters, we briefly summarize some important terms

that will occur frequently in the remainder of the manuscript. Since some of these

concepts are effectively similar and might generate ambiguities, we provide a more

detailed explanation:

• Match: a match occurs whenever two segments are deemed as similar, ac-

cording to the pattern matching techniques used and to the respective scores

computed. This does not necessarily imply that they are also motif occurrences,

as motifs are required to fulfill all conditions expressed in Section 3.1 (not just

the similarity condition).

• Matching path: it is the alignment path mapping a pair of matching segments,

as found by a DTW procedure.

• Candidate motif: in general, it might be used indifferently to indicate a match

(hence, the pair of matching segments), or the respective matching path. With

regard to the explicit seeded discovery framework, it indicates the N matching

paths as computed by the SLNDTW algorithm (and the corresponding pair
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5.4 Summary

of subsequences). The term candidate implies that these segments are to be

validated as motifs in a subsequent stage. This stage might be represented by

the sole path extension, or by further similarity score techniques. An example

of these techniques will be seen when introducing the self-similarity comparison

of speech templates in Chapter 6, and the downsampling of sequence in Chapter

7.

5.4 Summary

In this chapter we have introduced the concept of seeded discovery and we have il-

lustrated its integration into a motif discovery architecture. In addition, the library

search problem has been explicitly addressed, and a modelling of motifs is employed

that permit to adopt the same pattern matching used in the search buffer comparison.

The described architecture represents the definitive system that we propose for motif

discovery tasks. In subsequent chapters we will see how additional modifications of

this baseline framework can benefit its applicability to word and near-duplicate dis-

covery tasks. We will describe in the next chapter the application of seeded discovery

to word discovery experiments.
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Chapter 6

Application to word discovery

In this chapter a first application of seeded discovery is presented in the form of word

discovery in speech. We briefly define the task and underline the main challenges

implied. The experimental evaluation is carried out on speech data by applying

seeded discovery, first in the baseline form as described in the previous chapter, then

in an improved version, aimed at dealing with variability issues. Conclusions are

drawn both at quantitative and qualitative level to illustrate the capability of the

algorithm to extract repeating patterns in speech data, as well as its limits.

6.1 Word discovery: definition and specificities

In this section, the task of word discovery in speech is defined and its peculiar aspects

are described. We specify the type of motifs targeted, the different end goals with

respect to ASR applications, and some typical properties, like the expected occurrence

period of repetitions in speech.

The main challenge in discovering words is represented by the high variability of

speech signal. In this regard, we enumerate the main factors responsible for such

variability and their sources.

6.1.1 Definition of the task

The end goal of word discovery consists in identifying repetitions of acoustic patterns

at the word level. The type of motifs targeted by this task is then a single word, or

a short multi-word phrase, that repeats in spoken contents.
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6.1 Word discovery: definition and specificities

In human communications, word is the primary, semantically meaningful, acous-

tic unit a discourse is made of. Hence, any attempt of inferring evidence from spoken

documents by repeating items, has necessarily to focus on the retrieval of word-like

entities.

As we approach word discovery as a specific application of seeded discovery, gen-

eral remarks hold true concerning the differences in goals and methodology with

traditional approaches in speech recognition. In ASR, a lexicon of word models is

used jointly with language models for transcribing speech in a statistical framework,

relying heavily on labeled training data and supervised learning methods. In word

discovery, the objective, as opposite to speech recognition, is to build a similar inven-

tory of word units, the repeating ones, as the final output of the system, without any a

priori knowledge, modelling or training. The goal is not that of real-time recognition

of speech, but rather of extracting salient segments in the form of repeating words.

Very much related to the specific task, is also the time interval a repetitive pattern

can be reasonably expected to repeat. In real spoken contents, grammatical entities

like articles, or prepositions occur very frequently, even within the same phrase; but

also more semantically significant patterns, like terms linked to a specific topic dis-

cussed, are expected to locally repeat, where locally might be reasonably quantified

in the order of minutes. This is notably different from what can be expected when

grossly estimating the average frequency of occurrence of a song in the broadcast

schedule of a radio channel.

Specific to word discovery is also the need for appropriate strategies to properly

handle the intrinsic variability of speech signal. This high variability makes the task

more challenging with respect to other retrieval tasks, like near duplicate discovery. In

the following, we enumerate the main sources of variability that are to be considered.

6.1.2 Sources of speech variability

Speech variability represents the main obstacle towards building a robust word discov-

ery system: the algorithm is required to automatically recognize the same linguistic

identity in segments possibly being quite dissimilar at the signal level.

Main types of speech variability can be roughly characterized in three categories:

• Intra-speaker variability: the acoustic waveforms produced by the same speaker

uttering twice the same word are not identical. This is mainly due to speaking
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6.1 Word discovery: definition and specificities

styles, degrees of co-articulation, health and emotional states of the speaker.

These are all factors that might cause acoustic variations in the signal generated.

In addition, the type of context might influence the pronunciation: think of

different articulation between conversational and reading speech, for instance.

• Inter-speaker variability: simply put, different speakers utter differently. Of

course, factors influencing intra-speaker variability might also explains acoustic

variations in speech produced by different speakers. In addition, physiological

differences between speakers, like vocal tract length are causes of speech vari-

ations. Speech uttered by males or females, childs or adults, presents great

variation. Notable differences are also noted between native speech and speech

coming from foreigners, as well as local accents and speaking styles.

• Environmental conditions: the signal undergoing different channels or subject

to different environmental conditions is transformed differently. Ambient noise,

characteristics of the room where the speech is produced, like wall thickness and

materials, are among the sources of such variability. Furthermore, equipments

with which the sound is recorded, and channels where it is transmitted, are also

to be kept into account while dealing with speech variability.

In ASR systems different techniques have been proposed to improve the robustness

to speech variations. These include:

• the use of larger training databases for better acoustic modelling (see Lamel &

Gauvain (2005)).

• front-end techniques for feature normalization: cepstral mean subtraction (Fu-

rui (2008)), RASTA filtering (Hermansky & Morgan (1994)) or vocal tract

length normalization (VTLN) (Welling et al. (2002)).

• adaptation techniques for acoustic models (see Zavaliagkos et al. (1995)), but

also language models (Seneff & Wang (2005), Huet (2007); Lecorvé et al. (2008)).

It should be evident by now that achieving a comparable level of tolerance to

variability is even more difficult in unsupervised word discovery, as ASR methods

are not applicable, or not straightforwardly applicable, given the assumptions and

objectives of our task.

In the following, we start by illustrating the experimental protocol and respective

results in a word discovery task by seeded discovery. Later on, extensions on this
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6.2 Experimental set up

baseline system will be presented, specifically intended to cope with variability issues

to further improve robustness.

6.2 Experimental set up

The experimental set up is illustrated by detailing three main aspects: a) the data set

used for the experiments, the values set for the main parameters, and the performance

indicators to rigorously assess the behavior of the system.

6.2.1 Data and main parameters

Test data. Throughout the thesis, the data used for word discovery experiments

comprises a subset of the corpus developed for the ESTER evaluation campaign for

the rich transcription of French broadcast news (Galliano et al. (2005)). Each file

has been recorded in wave format 16kHz 16-bits from a standard audio card on

a PC without any compression. The advantage in using such data is that useful

annotations are available, in the form of automatically derived phonetic alignments

and various information on speakers: speaker identity (when available), their gender,

whether or not they are native French speakers, speaker turns and durations. The

availability of phonetic alignments permits to associate an audio segment with the

respective string of phonemes; at the evaluation level, this allows to check whether

two acoustic repetitions are effectively similar by comparing the corresponding strings,

where quantifying similarities is indeed much easier and less ambiguous. In Section

6.2.2, it will be explicitly reported on the use of these phonetic alignments to extract

precision and recall measurements for the repetitions found.

For the transcribed part of this corpus, speech is said to account for 97% of the

signal, music for 2.3%, the rest being pauses. Thus, this data set is particularly

suited for a discovery task focused on the retrieval of words. Moreover, the presence

of different speakers, and respective annotations are helpful in assessing speaker de-

pendency. In addition, data includes, at times, telephonic conversations as well as

speech mixed with background sounds like jingles, that might enable at least some

qualitative remarks on the sensitivity to this type of variability.

In this section word discovery experiments are performed on a 2h speech recording.

The first hour is a recording of a radio news show from the French radio channel France

Inter, broadcasted on April, 18, 2003 from 7 to 8 p.m. The second one is recorded

from the same channel, from 8 to 9 p.m.. The size of the test data is competitive
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with that of related work in word discovery: in Park (2006), the largest test data

is a 1h and a half long recording of an academic lecture. Coming from the same

day, news reports in the two recordings mostly refer to similar topics, thus presenting

several repetitions of topic-specific terms; this is an attractive property for evaluating

the capability of the algorithm in discovering and collecting motif occurrences at the

word level.

Main parameters. Main parameters to set in seeded discovery are the length

of the seed and respective search buffer, and the value of the spectral threshold ǫ

(occasionally called ǫDTW hereafter) for similarity detection. The length of the seed

is set to 0.25 seconds. Accordingly, the motif minimum length is set to 0.5 seconds:

we have empirically found that this value represents a good trade off between two

distinct requirements: a good word coverage, that pushes toward using a seed as small

as possible, and the need to avoid trivial matches, like repetitions at the subword level,

that one may encounter while searching for shorter patterns.

The length of the search buffer has been set to 90 seconds; this is assumed to be

a reasonable length for the average duration of a news report, where most of topic-

related terms are expected to occur. As far as the threshold is concerned, several miss

and trial experiments were conducted to tune this parameter by directly comparing

different occurrences of the same word, and different words. Nonetheless, experiments

are performed while varying the threshold in a range of reasonable values, to study

the sensitivity of the algorithm to this critical parameter.

Before describing the actual experiments, performance measures are described,

including definitions of precision and recall.

6.2.2 Performance measure.

Assessing quantitatively the performance of the algorithm permits to provide a mea-

sure of goodness of the algorithm and to compare objectively different systems, or

the impact of the various parameters and features within the same architecture.

Evaluating a motif discovery system amounts to evaluate its output, that is the

set of all the acoustic occurrences collected for each motif discovered. One possible

way to carry out the evaluation consists in directly listening to all acoustic excerpts

and verify that they are effectively occurrences of a same motif. However, human
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6.2 Experimental set up

evaluation is tedious, error prone, and time consuming. A tool is then needed for

automatically deriving the required measures.

Phonetic alignments. This goal can be achieved by relying on the annotations

included in the ESTER corpus, in the form of word transcriptions and phonetic align-

ments. This permits to associate the acoustic patterns found with the corresponding

words and phonetic strings. While evaluation at the word level is desirable, it is also

difficult to perform in practice; this stems from the fact that the algorithm, deal-

ing with an unsegmented stream, rather than extracting word patterns defined by

their exact endpoints, may detect short multi-word phrases, subword patterns, or

words preceded and followed by neighboring phones, but also non linguistic patterns

(silences, breathings). In alternative to word level evaluation, performance can be

carried out at the phonetic level, by comparing the respective phonetic strings. This

can be accomplished by using popular string matching techniques and edit distance

measures, where quantifying similarity, for a machine, is definitely easier and less

ambiguous than in the acoustic domain.

We remark that the use of phonetic information is solely instrumental to an au-

tomatic evaluation of the system, which, in practice, is required to operate uniquely

on the audio signal for discovering motifs.

Precision-recall. In many retrieval and recognition tasks, performance are often

measured in terms of precision and recall: translated into our specific context, preci-

sion (or purity) has to quantify the capability of the system of detecting true instances

of a motif and discarding false ones; recall quantifies the capability of collecting, for

each motif, as many true hits as possible. In word discovery, such measures are not

defined in a standard way; in alternative, by relying on the phonetic alignments in

the ESTER corpus, apposite precision and recall measures have been defined at the

phonetic level.

Once the passage at the phonetic domain is justified, precision and recall are to

be defined from the set of phonetic strings associated to the acoustic occurrences of

a motif. Suppose to be able to score the dissimilarity of a pair of such sequences by

some string matching technique. Different strategies are then possible for fusing the

pairwise scores and defining a unique measure of purity.

Among these possibilities, we opted to mimic the median modelling solution used

by the algorithm at the acoustic level, by identifying a median occurrence (or motif
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PHONETIC TRANSCRIPTIONS

MOTIF i

OCCURRENCES

EDIT DISTANCES

P A P A A P A P A P U P A T A T AP A P A

Then: 

                 Precision of motif i = 4/5

 P A P A is the centroid of MOTIF i because is the sequence closest
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FROM CENTROID:           0    1 0 1 2

Figure 6.1: Example picturing the selection of the phonetic median occurrence and

the computation of precision, according to the edit distance.

centroid) at the phonetic level. This string is defined as the closest, in average, to

all the other strings, according to some phonetic distance. The precision for a given

motif is then the fraction of the phonetic sequences sufficiently close to the centroid

(that is, whose distance from the centroid lies within a specified value, see example in

Fig. 6.1). The set of these sequences is a subset of the set of all strings in the corpus

that are close to the centroid: the ratio of their cardinality defines the recall for the

given motif.

Precision-recall: formal definition. We define these quantities more formally

by introducing the following notation:

• LBi: i-th motif of the library LB.

• LBi,j : phonetic transcription of j-th occurrence for the motif LBi.

• mi: cardinality of LBi (the number of occurrences detected for the i-th motif).

• d(LBi,j , LBi,k): distance between LBi,j and LBi,k. The distance adopted for

scoring similarity of strings is the normalized edit distance as defined in (Marzal

& Vidal (1993)) and implemented in (Vidal et al. (1995)), that guarantees a

score independent of the length of the strings compared.

• ci: centroid of LBi
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6.3 Results and discussion

The centroid ci of LBi is defined as:

ci = LBi,p where p = arg min
1≤j≤mi

mi
∑

k=1

d(LBi,j , LBi,k) (6.1)

The precision of the i-th motif is thus computed as:

Pi(θ) =

(

∑

j δ (d (LBi,j , LBi,p) < θ)
)

mi
=

m′
i

mi
(6.2)

where δ = 1 if its argument is true, and 0 otherwise. It represents the fraction of

instances LBi,j included in a sphere of center ci and radius θ.

Let m′′
i be the number of strings M over the entire phonetic alignment corpus

such as d (M,LBi,j) < θ. The recall of the i-th cluster is the ratio:

Ri(θ) =
m′

i

m′′
i

(6.3)

The global precision P (θ) and recall R(θ) are computed by averaging Pi and Ri

over all motifs in the library. In practice, though, recall is computed only over the

sufficiently pure motifs (bearing a precision greater than or equal to 0.5), while the

others are simply discarded. The idea is that computing a recall for a motif makes

sense if the identity of a motif can be clearly determined from the set of occurrences

collected (hence, the condition on the minimum precision required).

Upper bound of the true recall It is worth noting that the definition of recall

in Eq. (6.3) accounts only for the motifs discovered by the algorithm at the acoustic

level; this measure does not consider those repeating patterns that have not been

discovered at all, that should each contribute with a recall Ri = 0. Not only, because

of convenience in the implementation, we have actually computed the term m′′
i by

collecting the occurrences of those LBi,j such that d (LBi,j , ci) < θ. This set repre-

sents a subset of the strings obeying to d (M,LBi,j) < θ, which makes the respective

Ri an upper bound of the true one. The recall measures that will be provided are

then too optimistic in this regard.

6.3 Results and discussion

Several experiments were conducted on the 2h test data for different setting condi-

tions. The algorithm has been tested for five different values of the spectral threshold
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ǫDTW = [1.2, 1.4, 1.6, 1.8, 2.0] This range of values has been tuned by comparing sev-

eral occurrences of the same word, for several different words; in principle, tuning or

adjusting parameters prior to the discovery violates the unsupervised paradigm of the

framework. It might be argued that the algorithm should be capable of automatically

tuning and refining on fly these parameters.

In addition to different threshold values, the average and median modelling were

each tested to evaluate representativeness and robustness of motif models in different

settings.

6.3.1 Quantitative results and impact of modelling

Besides precision and recall, the evaluation is carried out also by providing a number

of complementary information, summarized in a series of tables and figures.

Precision and recall measures are reported in Fig. 6.3 where the curves referring

to median and average modelling are superimposed on the same plot, for a better

visualization. The explicit numbers can be found in Tables 6.1 and 6.2 respectively

for the median and average modelling case. In this same tables, additional information

is shown by the following statistics (the corresponding abbreviations in Tables 6.1 and

6.2 are also reported):

• Number of motifs discovered (Nm).

• Number of motifs discovered for which a phonetic transcription is available

(Nmt).

• Number of motifs yielding a precision greater than or equal than 0.5 (Nocc).

• Average number of occurrences per motif (Nocc/m).

• Number of speakers per motif (Nsp/m).

• Computation time required to complete the task (CPU).

Number of motifs found. The number of different motifs discovered, obviously

increases for progressively larger thresholds: for the median case this number goes

from 278 up to 5,177; similarly for the average, it goes from 296 up to 5,847. These

numbers are also plotted in Fig. 6.2, where it can clearly be observed that the

increased number of discovered motifs is not linearly proportional with the increase

of the threshold value.
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In the third column of both tables, it is specified the number of motifs for which a

phonetic transcription can be retrieved from the corpus. The presence of occurrences

not retrieved in the phonetic transcriptions, indicates that non-linguistic motifs have

also been found: these are mostly short excerpts of jingles, station signatures, news

show theme music that are played in the beginning when a news summary is read.

It does not come as a surprise that the percentage of this class of motifs is more

significant at low values of threshold (in particular, it goes from 74% up to 93% of

motifs found for the median modelling and from 69% up to 92% for the average one).

These acoustic patterns have a limited variability with respect to speech patterns,

and increasing the threshold has the obvious effect of allowing the detection of the

more variable repetitions.

Precision and recall Precision and recall measures are reported in the form of red

and green curves (respectively for the average and median modelling) in the plot of

Fig. 6.3, and the precise values are also readable in the fourth and fifth columns of

the two tables.

An immediate glance at the behavior of the curves confirms the expectation that

recall and precision respectively increase and decrease while augmenting the similarity

threshold. A close look at the single values shows that, while the performance of the

two models do not significantly differ, median modelling performs slightly better. As

far as precision is concerned, it can be observed that:

• average modelling reports slightly better results at low values of threshold with

respect to median modelling: at ǫDTW = 1.2 and 1.4 these values are equal to

0.65 and 0.51 for average modelling, they are equal to 0.63 and 0.5 for median

modelling.

• At the highest values of ǫDTW, this behavior is inverted: at ǫDTW = 1.8 and 2.0,

precision is 0.26 and 0.16 for average modelling, while is slightly better for the

median modelling, respectively 0.27 and 0.17.

While these numbers are still similar, it does not come as a surprise that average

modelling is more sensitive to a variation of ǫDTW than median one. At the highest

values of ǫDTW detection of false hits is more likely; whenever occurring, the model

resulting from vector averaging is corrupted, in the sense that its representativeness

of the initial motif is diminished. This may produce subsequent errors in similarity
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Figure 6.2: Number of motifs found by seeded discovery on the 2h France Inter speech

file, for average and median modelling and five different values of spectral threshold.
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Figure 6.3: Precision and recall measures for seeded discovery on the 2h France Inter

speech file. The red and green curve represents respectively the average and median

modelling case, for five different values of spectral threshold.

detection in the library search stage, leading to poor results in both precision and

recall.
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Table 6.1: Number of motifs (Nm), Number of transcribed motifs (Nmt), Number

of motifs yielding an acceptable precision (Nocc), average number of occurrences

per motifs (Nocc/m), average number of speakers per motifs (Nsp/m) (these last

two computed over the Nocc motifs) and CPU time for different values of spectral

threshold on the 2h speech stream. Median modelling.

threshold Nm Nmt Prec Recall Nocc Nocc/m Nsp/m CPU

ǫDTW=1.2 278 207 0.627 0.451 117 2.051 1.051 44mins

ǫDTW=1.4 913 777 0.498 0.472 363 2.057 1.036 1h23mins

ǫDTW=1.6 2169 1948 0.394 0.481 728 2.125 1.115 2h38mins

ǫDTW=1.8 4187 3866 0.275 0.554 952 2.201 1.259 3h38mins

ǫDTW=2.0 5177 4808 0.173 0.594 857 2.222 1.6 4h18mins

Table 6.2: Number of motifs (Nm), Number of transcribed motifs (Nmt), Number

of motifs yielding an acceptable precision (Nocc), average number of occurrences

per motifs (Nocc/m), average number of speakers per motifs (Nsp/m) (these last

two computed over the Nocc motifs) and CPU time for different values of spectral

threshold on the 2h speech stream. Average modelling.

threshold Nm Nmt Prec Recall Nocc Nocc/m Nsp/m CPU

ǫDTW=1.2 296 204 0.649 0.416 120 2.05 1.033 43mins

ǫDTW=1.4 915 747 0.508 0.455 359 2.11 1.06 1h24mins

ǫDTW=1.6 2146 1882 0.390 0.492 723 2.123 1.15 2h42mins

ǫDTW=1.8 3897 3540 0.262 0.529 981 2.15 1.27 4h18mins

ǫDTW=2.0 5847 5391 0.166 0.549 1061 2.14 1.48 5h49mins

Median modelling, instead, is less prone to model degradation: if a false instance

is collected but the motif median occurrence is still a correct one, then false detec-

tion has no impact on model quality. This phenomenon might also be brought up to

explain other statistics, as will be shown for recall, number of motifs and number of

occurrences and speakers per motif.

Besides precision and recall, a measure of goodness is provided by the percent-

age of sufficiently precise motifs with respect to the total number of motifs found.
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It quantifies the retainable portion of motifs detected, those for which a clear un-

derstanding of the underlying linguistic identity can be gathered, the useful output

that can be rightfully used in further applications. From the upper to lower end of

the threshold range, this percentage declines from 57% to 18% for median modelling,

from 58% to 20% for average modelling. In fairness, these values should be higher

if one keeps into account the non linguistic patterns that are untranscribed, and not

evaluated. For these patterns, precision rate looks extremely high by a gross estimate

based on a direct listening; this is likely due to the limited variability of these acoustic

segments, that are, for the most, very short pieces of music and jingles, that are easy

to recognize as similar by a DTW-based algorithm. This suggests that the algorithm

can produce a valuable output for occurrences with limited variability, as increasing

the threshold unacceptably damages the purity of the results.

Very much alike, recall rates are affected by the value of the spectral threshold,

and thus by the degree of intra-motif variability admitted. As can be observed, in

the recall column of tables 6.1 and 6.2, median modelling shows better performance:

• for median modelling, recall goes from 0.45 to 0.59 from ǫDTW = 1.2 to ǫDTW =

2.0.

• for average modelling, recall goes from 0.41 to 0.55 from the upper to the lower

end of the threshold range.

That means that, in average, for high values of similarity threshold, each motif

collects the majority of its occurrences in the data (even though, as mentioned, our

implementation of recall upper bounds the true one). This improvement, however, is

highly detrimental to precision.

The superior performance shown by median modelling is likely to relate to the

model degradation issue that impacts also precision values. This same argument

can be advocated when explaining the difference in the number of motifs discovered

and in the average number of occurrences per motif: model degradation may spread

motif occurrences over different motifs, resulting in more motifs, each yielding less

occurrences.

Motif length. Not surprisingly, motifs tend to be at the lower end of the length

spectrum, in particular in the range [0.5 − 0.6] seconds, where about 80% of the

occurrences found fall. This can be concluded by observing Fig. 6.4, where the
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distribution of motifs found according to their length is represented. This is expected

as in speech data, most repetitions come from words or short multi-word phrases.

Number of occurrences and speakers per motif In the seventh and eight

columns of Tables 6.1 and 6.2 the average number of occurrences and speakers per

motif is also reported. The numbers, understandably, tend to increase for increasing

values of ǫDTW, and are quite similar for both modelling strategies (the slight difference

being likely generated by model degradation issues, as already mentioned).

The intra-motif variability allowed by this range of ǫDTW is quite limited, as shown

by the average number of speakers per motif, always closer to 1 than 2, except at

ǫDTW = 2.0 for median modelling. As a consequence, the motif discovery system

results mostly speaker dependent.

This limited variability influences, in turn, the number of occurrences collected

for each motif, the average value being slightly greater than 2 (which is, of course, the

minimum number of times a pattern has to occur to be a motif). In fact, the more

variable occurrences of a motif (like the inter-speaker ones) tend to be distributed

over different motifs.

Further increasing ǫDTW to account for more variability is not a proper solution,

as precision drops steadily making the task unsuccessful.

Computation time Last, the computation time required to complete the task is

reported for all the runs of the algorithm, in the last columns of Tables 6.1 and

6.2. There are various factors that impact the computation time, summarized in the

following list:

• the length of the search buffer,

• the size of the library,

• the number of candidate matching paths to evaluate by trace back and path

extension.

The length of the search buffer is fixed for all the experiments, while the size of the

library and the number of candidate motifs are strongly influenced by the value of

spectral threshold and modelling strategy adopted. What can be observed from the

statistics is that:
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Figure 6.4: Distribution of motif occurrences according to their length for five different

values of spectral threshold. Left bar plot: median case. Right bar plot: average case.

1. the computation time grows when increasing the threshold. This is an obvious

outcome of the increased number of motifs that are discovered, that implies a

more demanding library search.

For median modelling, the 2h test data is processed in 44 minutes at ǫDTW = 1.2,

and goes up to about 4 hours at ǫDTW = 2.0. For average modelling, computation

time ranges from 43 minutes to almost 6 hours.

2. Average modelling requires more time to complete the task with respect to

median modelling. This is due to the different library size, as noted already,

especially at high values of threshold. In fact, at ǫDTW = 1.2, 1.4, 1.6, where the

library size is very similar, the computation time does not differ notably.

6.3.2 A qualitative comparison with Park’s system

In Fig. 6.5 an example is featured that helps understanding one of the main issues

arising from our framework. In this picture an undirected graph is illustrated whose

nodes are words and the connecting edges represent the similarity among them.

A false detection occurs as an instance of France is erroneously linked to the word

defense. The other connections are correct and indicate the common belonging to the
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en France

France

defence
   France

Figure 6.5: Graph representing connections between words deemed as similar.

same motif for the three France occurrences (one of them preceded by the preposition

en). Imagine a situation where the France occurrence linked to defense is taken as

a seed and matched with defense rather than with a nearby French occurrence. A

motif is initialized and modeled by the corresponding average sequence of vector (if,

for instance, average modelling is used). Resulting by the average of two different

words, the model is not sufficiently representative of the word France to match with

the two subsequent occurrences, which, in turn, are too distant in time to even be

compared.

In such unfortunate situation, the final outcome is a motif comprising two different

words, and a potential motif of three occurrences definitely lost. In this case, failure

is to be credited to:

1. The insufficient size of the search buffer.

2. The corruption of a model generated by a false hit.

3. The absence of a recovery mechanism to detect and correct the error.

4. The pattern matching technique (for recognizing as similar two different words).

It is interesting to think of how the framework designed in (Park (2006)) word dis-

covery system might operate in the same scenario. In that system, all speech segments

are subject to a pairwise comparison, therefore all the connections are retrieved as in

Fig 6.5 (as in our case, similarity score is provided by a DTW distance). In a sub-

sequent stage, clusters are formed by merging densely connected nodes: that might
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well permit to group together the three France occurrences, each of them connected

to the others, and cut the edge between the one France occurrence and defense, thus

allowing for a perfect motif discovery. In this framework, the problem of insufficient

search buffer size does not hold, because every speech segment is preliminarily com-

pared with all the other ones; next, model representativeness is not an issue, as no

model is created, but all fragments found and the reciprocal similarity are used for

clustering; the clustering itself, beside grouping similar occurrences (thus benefitting

recall), acts also a secondary pruning mechanism, benefitting precision.

This property makes Park’s framework very attractive, but also highlights the dif-

ferent spirit lying at the core of these two contrasting systems. In one case, the batch

framework takes advantage of the availability of the whole data for performing pair-

wise comparison and the subsequent clustering. In the other, sequential processing

is assumed as a mandatory requirement for a streaming algorithm that aims at be-

ing easily applicable on different tasks, like near duplicate discovery in large streams

of composite audio (as it will be illustrated in the next chapter). Besides, Park’s

computation system implies a quadratic complexity with respect to the number of

fragments the data has been segmented into. In fact, it could be considered as an

instance of those naive methods depicted by Figure 3.2.

The evaluation of the experiments will be completed in the next section by de-

scribing the output of the system from a more qualitative point of view.

6.3.3 Qualitative remarks on the motifs found

The qualitative analysis of the motifs found serves the purpose of providing the reader

a more concrete indication of the type of repetitions found and the most common

errors encountered.

To this end, we attempt to broadly classify these motifs in:

1. non-speech patterns.

2. speech patterns.

Moreover, while we do not claim that our method selects repetitions according to

semantic relevance, we also provide a distinction in semantically meaningful motifs,

as to better highlight its potential usefulness in summarization tasks. In fact, the

following observations are made by simply scanning the library of motifs and listening

to the excerpts found, without any prior knowledge on the content of the file.
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Non speech patterns. One class of motifs found, as already mentioned, is rep-

resented by non linguistic patterns exhibiting a limited variability. These are short

pieces of music, jingles or part of advertisements, whose duration is comparable to

that of single words, or short multi-word phrases. As mentioned, these sounds are

not transcribed and thus are not accounted for evaluation purposes.

Speech patterns: non linguistic motifs. One type of extremely frequent pat-

tern is represented by the short breathing in between consecutive words. This type

of sound is recognized and transcribed by a speech recognizer, thus part of the for-

mal evaluation process. These patterns are noted to be less variable among different

speakers: inter-speaker occurrences happen to be detected also at low spectral thresh-

olds.

Speech patterns: semantically relevant words. The algorithm shows the ca-

pability of discovering and collecting occurrences of words. Because of the minimum

length requirement, these patterns are mostly words comprising several syllables;

thus, grammatical entities, like prepositions or articles, which are usually very repet-

itive but extremely short, do not appear but associated with a following word.

Among those words that help identifying the content of a spoken document, we

report the name of the characters involved in a certain news: so the fragments corre-

sponding to French politicians Nicolas Sarkozy, Jean Marie Le Pen, Francois Hollande

as well as their location in the data, are indicative that political chronicle is the main

subject in that part of the audio recording. The impression is further confirmed when

listening to occurrences of la gauche, le partie socialiste, front national (respectively

meaning the left, the socialist party, national front, the latter being the name of the

party led by Jean-Marie Le Pen). If among those repetitions, also temporal cues are

present, like occurrences of the date vingt et un avril deux mille deux, French listeners

might get a reliable feeling that the news is specifically addressing the presidential

elections, held in France on April 21, 2002.

Repetitions of the word group crise en Irak, Amerique or americain (respectively

crisis in Iraq, America, American) as well as the name Saddam Hussein al-Tikriti

might also hint to some news concerning the american military intervention in Iraq

against Saddam Hussein.
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Speech patterns: semantically irrelevant words Of course, also repetitive

patterns that do not bear semantic significance are found, like, for example, parti-

culierment, cet apres-midi, la temperature, super (respectively meaning particularly,

this afternoon, the temperature and super).

As far as the most typical errors encountered, we can grossly attempt to classify

them in three main categories:

1. motifs sharing a common subword: this kind of error occurs whenever

different words that share a common subunit are recognized as similar. As

characteristic example, we can mention the several occurrences of words ending

in ation, like application, mobilisation, nation, segregation etc. It is likely that

this type of error originates when the matching subsegments are retrieved in

the seed match procedure and the partial occurrences are extended from the

respective endpoints, adding non matching frames of signal as a prefix and suffix.

This may possibly lead to finally collect two sequences that are sufficiently long

to meet the minimum length requirement, while only partially matching.

In the future, we may be able of mitigating these errors by evaluating the

distortion profile of the extended path to note the discontinuities generated by

the false matches at the boundaries.

2. acoustically similar but lexically different motifs: some acoustic se-

quences are composed by different phonemes, hence bearing a different lexical

identity, but their acoustic realization might be quite similar. This strongly de-

pends on pronunciation, and thus speaking style and language. This might be

the case of the similarity between the words poisson and pour cent (effectively

found in one experiment), that pronounced by French speakers might present

a significant degree of resemblance. The speech recognizer that has produced

the phonetic alignment correctly reconstructs the different phonetic composi-

tion of the utterances, which reveals how the performance of the our similarity

detection technique are not as good as those of a state of the art recognizer, as

expected.

3. completely unrelated sequences: this happens when different sequences,

both at the acoustic and phonetic level, are recognized as occurrences of a

same motif. Understandably, this is an error frequently encountered at the
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highest values of spectral threshold, and the main reason that prevented a

further increase of the similarity threshold in the described experiments.

6.4 Comparison of self similarity matrices and applica-

tion to word discovery

Experiments in the previous section highlighted that an acceptable level of purity

of the motifs found can be reasonably guaranteed by admitting a limited amount of

intra-motif variability. This, in turn, impacts negatively recall rates and, in general,

the capability of the system to recognize the more variable occurrences of a motif.

Increasing the DTW threshold exposes the system to unacceptable false detection

rates that determine the failure of the task.

In this section a template matching technique is introduced that aims at im-

proving robustness to speech variability. The core idea is to determine whether two

speech sequences are occurrences of a same motif according to the similarity of their

self similarity matrices (SSMs). The fundamental assumption is that these matrices

carry meaningful information on the acoustic-phonetic structure of the underlying se-

quences; such information is exploited for recognizing whether the compared acoustic

segments share the same lexical identity (hence belonging to the same motif).

While such technique could be directly applied for comparing acoustic sequences,

it fully delivers a beneficial impact on performance when used in conjunction with

DTW in a two-stage cascade system. SSM comparison is mainly used as a secondary

pruning mechanism that selects motif occurrences from a set of motif candidates

outputted by the DTW-based stage.

The illustration of the technique and its integration in the system comprises sev-

eral different steps, namely:

• the description of the basic concepts.

• The practical implementation of the techniques and the definition of dissimilar-

ity measures of SSMs.

• A validation of the method in practical scenarios, respectively in word spotting

and word discovery experiments.
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6.4.1 Basic concepts

The self similarity matrix (SSM) of a sequence χb
a is the square symmetric matrix

Φ(χb
a) defined as Φ (i, j) = d

(

χb
a(i), χ

b
a(j)

)

. It follows the it has a zero diagonal, that

is Φ (i, i) = 0. In agreement with our choice of using Euclidean distance in DTW, d

is defined by this same distance also in SSM computation.

Suppose to decompose a frame χi of a sequence χ as:

χi = Si + N (6.4)

where Si carries the linguistic information on the frame, and N is the component that

accounts for all non linguistic factors (speaking styles, channel, background sounds,

etc...), that are to be considered as noise for our purpose.

If such an additive noise model were valid, then SSMs would only depend on

the linguistic identity of the original sequences, as all the noisy components would

cancel each other out in computing Φ(i, j). For instance, in Cepstral Mean Subtrac-

tion (CMS), mean removal follows the belief that a constant additive factor (the DC

component) is responsible for channel distortion. However, with regard to the other

noisy factors, this property does not strictly hold true if speech is represented by se-

quences of MFCCs. Moreover, even assuming a perfect accuracy of the additive model

in (6.4), comparing the CMS normalized sequences would be more straightforward,

rather than comparing the respective SSMs.

The advantage of using SSMs is that the distances among mutual parts of a se-

quence, generate a two-dimensional pattern that is peculiar of the underlying acoustic-

phonetic structure. By comparing SSMs we intend to recognize the recurrence of such

patterns among speech sequences to reveal their common belonging to the same motif.

Example Outputs. It is possible to observe consistent similarities of SSMs across

several different conditions, that is when instances of a same word are uttered by dif-

ferent speakers, or undergo different channels or are imposed on a noisy background.

As a matter of example, two figures are included showing the self similarity of

different utterances of the same word. In Fi. 6.6 the SSMs of four occurrences of

Jean-Marie Le Pen (a French politician frequently cited in the recording) are shown,

the top two from two different male speakers, the bottom two from two different

female speakers. Those matrices differ in size (because of different speaking rate),
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and in intensity values of single entries (or pixels, following a usual image processing

nomenclature). However, a clear resemblance can be observed by local edges and

shape patterns that ultimately depends on the phonetic identity of the underlying

word.

In Figure 6.7, four similarity matrices are shown for different renditions of vingt-

et-un-avril (April 21th, in English, the day where the French presidential elections

were held). The top two are from two different male speakers, the second two from the

same female speakers, the second one being superimposed on a musical background

(a short jingle). The presence of these noisy patterns makes significantly high the

spectral distance between the two sequences, as measured by a DTW dissimilarity

measure. However, visual resemblance of the respective self similarity matrices looks

striking.

SSMs are thus interesting candidates for robust pattern matching and a distance

between SSMs is therefore required.

6.4.2 Definition and implementation

In order to define a distance between SSMs, two main issues are to be accounted for:

• different motifs may also have similar SSMs.

• motif occurrences may have a different length, and the respective SSMs a dif-

ferent size.

SSM-DTW cascade The first issue stems from the fact that similarity of SSMs

is a necessary but not a sufficient condition for speech sequences to be deemed as

similar. Indeed it may be possible to generate similar SSMs from different words. SSM

comparison is an indirect way of quantifying how sequences are related; differently

from DTW methods, the comparison is not directly performed over the sequences

themselves, but on the self-distance patterns they generate.

To cope with this problem, we propose using SSM-based and DTW-based match-

ing techniques in conjunction. Practically, this is accomplished by allowing more

variability in the DTW-based comparison, by setting a higher ǫDTW. In a subsequent

stage, motif candidates determined from the previous stage, are subject to an SSM-

based validation; the end goal is to properly filter the false hits that the increased

amount of variability admitted is likely to have determined.
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Figure 6.6: SSMs of four occurrences of Jean Marie Le Pen. The top two are from

different male speakers, the bottom two from different female speakers.

According to this operative framework, two sequences χ1 and χ2 are deemed as

similar if DDTW < ǫDTW and DSSM < ǫSSM (as illustrated in Fig 6.8).

Size normalization To account for the difference in size, the sequences χ1 and χ2

are rewarped according to the matching path P = {(ik, jk)}
L(P )
k=1 found by DTW, to

obtain two sequences of the same length L(P ).

Formally χ̃1 = {χ1 (ik)}
L(P )
k=1 and χ̃2 = {χ2 (jk)}

L(P )
k=1 .
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Figure 6.7: SSMs of four occurrences of Vingt-et-un avril. The top two are from two

different male speakers, the second two from the same female speakers, the second

one being superimposed on a musical background (a short jingle).

SSM dissimilarity measures Different metrics are then possible: a simple one is

the L1 norm of the matrix difference normalized by its size, that is DDTW = ‖Φ(χ̃1)−

Φ(χ̃2)‖1/L(P )2. This distance strictly depends on the absolute values of the matrix

entries and does not encode well the implicit spatial pattern.

Therefore, we propose an additional distance based on the computation of local

histograms of oriented gradients from the SSMs (see Dalal & Triggs (2005)), effectively
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DDTW < ǫDTW DSSM < ǫSSM
χ1, χ2DTW SSM

SIMILAR

Figure 6.8: Cascade of DTW and SSM comparisons to recognize similarities between

segments.

regarded as gray scale images. The underlying assumption is that local objects’

appearances and shapes can be well characterized by the distribution of local intensity

gradients and edge orientations.

The practical implementation is performed by dividing the matrix into a dense,

uniform grid of overlapping square regions (blocks), divided in turn into smaller square

regions (cells). For each cell, we compute a local 1-D histogram of gradient directions

over the entries (or pixels) of the cell, weighted by the gradient magnitudes. The final

descriptor is the concatenation of the normalized histograms over all the cells. The

distance between descriptors extracted from SSMs is the normalized norm L1 of the

vector difference, indicated as D
′

SSM. Following recommendations in Dalal & Triggs

(2005), we opt for the following parameters (see also Fig 6.9):

• 3 × 3 blocks of 12 × 12 pixels as a local patches for histogram computation.

• 0.5 overlap between block in both horizontal and vertical direction.

• uniform histogram with 18 bins in the [0 ◦ − 360 ◦] range.

• [−1, 0, 1] gradient filter with no smoothing for the computation of the 1-st order

derivatives in the horizontal and vertical direction.

Note that these two distances provide complementary information on the structure

of the SSM.

The first one measures directly the difference in the intensities of the entries,

assuming that, across different conditions, occurrences of a same motif should preserve

the mutual distances of their parts (this is true if the additive noise model were exact).

The second one relaxes that condition, since descriptors do not depend on pixels’

magnitudes but rather on local gradients’ magnitudes (i.e. they measure the strength

and directions of local edges). Moreover, they do not provide just a punctual infor-

mation (i.e. confined to each single pixel) but are computed over dense, overlapping
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Figure 6.9: Practical implementation of the histogram of oriented gradients techniques

grids of pixels, encoding a richer and more complex information on the self-similarity

visual patterns.

It can be then concluded that two sequences χ1 and χ2 for which the relation

DDTW = (χ1, χ2) < ǫDTW stands, are validated as similar if satisfy the two conditions

DSSM(χ1, χ2) < ǫSSM and D
′

SSM(χ1, χ2) < ǫ
′

SSM .

6.4.3 Application to word spotting

We consider as a data set an audio file of about 20 minutes built by concatenating six

short excerpts of various broadcast news shows from the ESTER corpus. The news

shows all focus on the upset behind the success of French politician Jean Marie Le

Pen, at the first round of the presidential elections held on April 21st, 2002. Thus,

the presence of different speakers of different gender talking on the same topic, makes

this data set particularly suited for experiments aimed at assessing the impact of the

SSM comparison stage.

We have chosen four different words (or small multi-words expressions) repeating

several times and bearing also significant semantic relevance in relation to the topic

discussed: Jean Marie Le Pen, vingt-et-un avril, extreme droite, France.

In particular, we have randomly extracted one occurrence of each keyword and

searched for all possible repetitions in the speech recording. The search is conducted

by relying on the SLNDTW algorithm to select candidate motifs. Each pair of seg-

ments (the keyword template and its hypothesized repetition), undergo subsequently
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Table 6.3: Precision-Recall values for keyword spotting experiment with DTW and

SSM combined

keyword DDTW +DSSM +D′
SSM

Jean Marie

Le Pen

P=10/30, R=10/17 P=10/25, R=10/17 P=10/18, R=10/17

Vingt-et-un

Avril

P=12/68, R=12/17 P=12/55, R=12/17 P=12/28, R=12/17

Extreme

Droite

P=4/23, R =4/7 P=4/16, R=4/7 P=4/6, R=4/7

France P=10/91, R=10/23 P=9/51, R=9/23, P=8/36, R=8/23

an SSM-based comparison, based either on the sole ǫSSM threshold or on both thresh-

olds, ǫSSM and ǫ′SSM. The goal is to evaluate the effect of adding the SSM validation to

precision and recall; it is clear that, by using SSM as a validation stage operating only

on the output of the preceding DTW-based comparison, recall rate cannot improve,

as no additional true occurrences can be detected. The hope in using SSM is then to

improve precision, by recognizing and discarding the false hits collected, while leaving

recall unchanged, by rightly retaining the true hits detected by SLNDTW. Results in

terms of precision and recall are reported in Table 6.3 when only DTW is used, and

when the two SSM techniques are then added. The numbers are to be read in the fol-

lowing manner: each precision-recall value is reported as the ratio of two values. The

numerator, for both precision P and recall R, indicates the number of true repetitions

of the keyword found with the specified technique. The denominator indicates, for the

precision, the total number of occurrences collected, and for the recall, the number

of true occurrences of the keyword in the audio data. We have used on purpose a

DTW threshold ǫDTW = 3.0 very high in order to allow for more variability among

motif occurrences. As a matter of fact, the precision is very poor when only DTW is

used for similarity detection, while the combined use of the SSM techniques leads to a

substantial improvement in the precision rate while keeping the recall untouched for

all but the shortest keyword France (where also two correct occurrences have been

erroneously discarded). Using a high spectral threshold, besides, has allowed to find

several inter-speaker occurrences, up to six different speakers, both male and female.

We will see similar results when applying the technique to the more challenging word
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Figure 6.10: Modified architecture of seeded discovery: the validation stage comprises

the SSM comparison. If occurrences resulting from seed match extension are further

deemed as similar by SSM comparison, a pair of matching segments is detected.

discovery task, on a larger data set.

6.4.4 Application to word discovery

Results on the use of self similarities in a word spotting encourage their application in

a more challenging context. In this section the baseline architecture of seeded discov-

ery is modified to include the self similarity comparison as an additional validation

stage (a visual illustration is presented in Fig. 6.10).The validation stage can be

viewed as the similarity score subtask, as candidate motifs undergo a further compar-

ison after the preliminary selection operated in the DTW stage (which corresponds

to the similarity detection subtask).

6.4.4.1 Data and main parameters

Test data. The test data is represented by a 4h speech file. The first 2h are the

same of the experiment detailed in paragraph 6.2.1, two France Inter news shows

recorded on the same day. The last 2h are two additional news shows, each of the

duration of 1h, recorded from the channel France Info the same exact day of the first

two.

Testing the algorithm on such data is particularly challenging because of two main

reasons:

• many topic-related terms occur, since news shows aired the same day, thus likely

covering similar subjects.

• coming from different hours of the day and two different channels, those terms

are uttered by multiple speakers. This is useful for testing the sensitivity to
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the speaker dependency issue and the capability of the system of dealing with

a high degree of variability.

Main parameters. The seed and search buffer lengths are left unchanged with

respect to the configuration of the experiments in Section 6.2.1: the seed length is

0.25 seconds and the search buffer length is 90 seconds.

The algorithm is run for six different values of spectral threshold, precisely ǫDTW =

[1.7, 1.9, 2.1, 2.3, 2.5, 2.7]. These values are higher than those employed in the previous

experiment, as we explicitly intend to check the performance when more spectral

variability is admitted.

Moreover, with respect to the previous set up, we have opted for a slightly different

weight of the diagonal move. If kh,v indicates the weight for the horizontal and vertical

moves, and kd for the diagonal one, we set kh,v = 1 and kd = 0.7, instead of 0.5 as

previously done. This weight favours less the diagonal move as it was noted to better

model the differences in speaking rates when the same word is uttered by different

speakers. This is of utmost importance because the end goal is to be also able of

correctly identifying inter-speaker occurrences of a motif.

Concerning the values of ǫSSM and ǫ′SSM, we have fixed a unique value for all the

runs of the algorithm, tuned by apposite miss and trials experiments.

6.4.4.2 Results and discussion

The quantitative results are summarized in a series of figures and tables. In Fig 6.11

and 6.12, precision-recall curves for the SSM provided system are shown together

with those obtained by the DTW based system, for direct comparison. The first

figure refers to performance obtained by median modelling, the second one refers to

the average modelling case.

The single values of each performance indicator are reported in the four tables

6.4, 6.5, 6.6 and 6.7. The first two report statistics for the median modelling case,

respectively for the DTW+SSM system and the DTW-based system alone. The last

two tables report these same statistics for the average case, for the DTW+SSM system

and the DTW-based system alone.

Precision and recall. The curves in Fig. 6.11 and 6.12 clearly show the benefit

of the joint use of DTW and SSM-based pattern matching technique.
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This can be observed by comparing precision and recall values for the two sys-

tems, for a given modelling strategy and degree of spectral variability admitted. For

instance, in the median modelling case, precision of the SSM-provided system con-

stantly outperforms of about 10% the DTW based one, at an almost constant recall

rate (specific numbers are reported in the fourth and fifth columns, respectively for

precision and recall, of Table 6.4 and 6.5). A similar case can be made concerning

precision-recall performance when average modelling is employed. Here the improve-

ment in precision amounts to about 10−15%, with respect to the DTW based system,

at an almost (or even slightly better) recall rate (see specific numbers in respective

columns in Table 6.6 and 6.7).

As already explained in the word spotting experiment, such improvement is due

to the smart pruning action performed by the SSM-based validation stage. Improving

precision while leaving recall basically unchanged, amounts to admitting that SSM

is successful in discriminating true and false hits from the set of motif candidates

hypothesized by the preceding DTW-based detection stage.

This same trend, and for this same reason, can be noted by observing the portion

of sufficiently precise motifs: it is the ratio between the number of motifs yielding a

precision greater than or equal to 0.5 (Nocc in the sixth column of all tables) and the

number of motifs found for which a phonetic transcription is available (Nmt in the

third column of all tables). This percentage goes from 61% for the SSM case against

49% for the DTW one at ǫDTW = 1.7, down to 26% against 16% at ǫDTW = 2.7.

Similarly for the average modelling, it goes from 63% for the SSM provided system

against 46.7% for the DTW-based system at ǫDTW = 1.7, down to 26.6% and 15.1%

at ǫDTW = 2.7.

Number of occurrences and speakers per motif We can further comment on

the behavior of the two different systems by observing two additional performance

indicators, and namely: average number of occurrences and speakers per motifs,

reported in the seventh and eight columns of the tables.

For a given modelling, at the same value of ǫDTW, the value computed for both

parameters is always slightly higher for the SSM-supplied system with respect to the

DTW-based system. This slight difference is hardly surprising, as reflected also by

the negligible difference in recall, that is tightly related with these two performance

measures. In fact, the primary merit of the joint use of DTW and SSM is to allow

for a superior purity of the results, for a given amount of intra-motif variability

96



6.5 Summary

admitted by ǫDTW. The slightly greater values of recall, and number of speakers and

occurrences per motif are likely due to model degradation issues, that are related, in

turn, to purity. In fact, as we have already noticed in the previous section, the purity

of the result allows to preserve the quality of the model in terms of representativeness

of the underlying motif, which is essential for correctly recognizing additional motif

occurrences.

Computation time In the last column of Tables 6.4, 6.5, 6.6 and 6.7, the compu-

tation time required to accomplish the task for the different systems and modelling

strategies is reported.

The numbers are quite similar, for a given modelling strategy and ǫDTW value,

even when moving from the DTW-based system to the SSM-based one. For instance,

from Table 6.4 and 6.5, it can be observed the similarity of the computation times at

ǫDTW = 1.7, 2.1, 2.5 for the two system, in the median modelling case. At ǫDTW = 2.7

the SSM-based system is three hours slower than the DTW-based one, while, on the

other hand, it performs the computation three hours faster at ǫDTW = 2.3.

Similar observations can be made by considering the value of this same perfor-

mance indicator for the average modelling case. Here computation times looks very

similar for all threshold values but epsdtw = 2.5 where the SSM based one is almost

four hours slower.

The justification of this result is straightforward: while the use of the SSM vali-

dation stage adds a further computational burden in the system, the reduced library

size (as determined by the pruning action of SSM) results in a less demanding library

stage.

This further highlights the attractiveness of this additional feature, as computa-

tion time does not look significantly affected.

6.5 Summary

In this chapter, we have then shown the applicability of seeded discovery to a word

discovery task. We have preliminarily introduced novel precision-recall measures at

the phonetic level to assess results from a quantitative point of view. Afterwards,

through a series of experiment, we have shown that DTW-based seeded discovery

is capable of extracting repetitions of words and word-like patterns when a limited

degree of variability is enforced, resulting in a substantial speaker-dependent system.
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Figure 6.11: Precision and recall measures for seeded discovery on the 4h France

Inter speech file. The red and green curve represents respectively the DTW+SSM

and DTW alone system, for median modelling and six different values of spectral

threshold.

To partially mitigate these issues, we have introduced a template matching tech-

nique based on the comparison of the self similarity matrices of speech sequences.

The idea is to investigate the spatial structure of these matrices, effectively seen as

gray scale images, to recognize a two dimensional pattern dependent on the acoustic

phonetic identity of the underlying sequences. We have shown, in word spotting and

word discovery experiments, that the joint use of DTW and SSM based comparison,

is beneficial for improving robustness of the system to speech variability. The benefit

consists in the possibility of admitting an increased amount of spectral intra-motif

variability, to allow for the detection of the more variable occurrences of a speech

motif (like the inter-speaker ones), while ensuring an acceptable level of purity of the

repetitions detected, at an almost constant recall rate.

In the following chapter, we extend the applicability of seeded discovery while

describing its usage in a near-duplicate discovery task, and more specifically, in song

discovery experiments.
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Figure 6.12: Precision and recall measures for seeded discovery on the 4h France

Inter speech file. The red and green curve represents respectively the DTW+SSM

and DTW alone system, for average modelling and six different values of spectral

threshold.

Table 6.4: Number of motifs (Nm), Number of transcribed motifs (Nmt), Number

of motifs yielding an acceptable precision (Nocc), average number of occurrences

per motifs (Nocc/m), average number of speakers per motifs (Nsp/m) (these last

two computed over the Nocc motifs) and CPU time for different values of spectral

threshold on the 4h speech stream. Median modelling.

threshold Nm Nmt Prec Recall Nocc Nocc/m Nsp/m CPU

ǫDTW=1.7 600 447 0.637 0.336 275 2.127 1.106 2h32mins

ǫDTW=1.9 1222 1013 0.558 0.427 551 2.290 1.136 6h40mins

ǫDTW=2.1 2120 1860 0.476 0.452 878 2.309 1.215 8h00mins

ǫDTW=2.3 3163 2851 0.375 0.518 1072 2.375 1.37 12h24mins

ǫDTW=2.5 4113 3763 0.302 0.561 1177 2.398 1.52 17h57mins

ǫDTW=2.7 4896 4517 0.249 0.622 1183 2.43 1.68 23h2mins
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Table 6.5: Number of motifs (Nm), Number of transcribed motifs (Nmt), Number

of motifs yielding an acceptable precision (Nocc), average number of occurrences

per motifs (Nocc/m), average number of speakers per motifs (Nsp/m) (these last

two computed over the Nocc motifs) and CPU time for different values of spectral

threshold on the 4h speech stream. Median modelling.

threshold Nm Nmt Prec Recall Nocc Nocc/m Nsp/m CPU

ǫDTW=1.7 860 651 0.514 0.326 319 2.138 1.106 2h40mins

ǫDTW=1.9 1818 1551 0.458 0.401 706 2.198 1.136 5h23mins

ǫDTW=2.1 3244 2922 0.367 0.455 1049 2.261 1.166 7h59mins

ǫDTW=2.3 4985 4593 0.279 0.500 1306 2.336 1.251 15h36mins

ǫDTW=2.5 6488 6037 0.210 0.564 1341 2.310 1.357 18h26mins

ǫDTW=2.7 7036 6562 0.147 0.63 1383 2.26 1.480 20h18mins

Table 6.6: Number of motifs (Nm), Number of transcribed motifs (Nmt), Number

of motifs yielding an acceptable precision (Nocc), average number of occurrences

per motifs (Nocc/m), average number of speakers per motifs (Nsp/m) (these last

two computed over the Nocc motifs) and CPU time for different values of spectral

threshold on the 4h speech stream. Average modelling.

threshold Nm Nmt Prec Recall Nocc Nocc/m Nsp/m CPU

ǫDTW=1.7 655 455 0.647 0.334 287 2.132 1.105 4h55mins

ǫDTW=1.9 1302 1040 0.542 0.382 562 2.153 1.168 7h38mins

ǫDTW=2.1 2256 1916 0.477 0.439 909 2.172 1.236 14h13mins

ǫDTW=2.3 3366 2967 0.381 0.483 1170 2.182 1.312 15h04mins

ǫDTW=2.5 4519 4058 0.288 0.525 1268 2.187 1.426 22h36mins

ǫDTW=2.7 5493 4944 0.236 0.520 1314 2.182 1.470 27h50mins
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Table 6.7: Number of motifs (Nm), Number of transcribed motifs (Nmt), Number

of motifs yielding an acceptable precision (Nocc), average number of occurrences

per motifs (Nocc/m), average number of speakers per motifs (Nsp/m) (these last

two computed over the Nocc motifs) and CPU time for different values of spectral

threshold on the 4h speech stream. Average modelling.

threshold Nm Nmt Prec Recall Nocc Nocc/m Nsp/m CPU

ǫDTW=1.7 1009 700 0.497 0.318 327 2.165 1.084 4h34mins

ǫDTW=1.9 2100 1666 0.422 0.362 692 2.193 1.102 8h22mins

ǫDTW=2.1 3632 3119 0.336 0.409 1071 2.210 1.166 14h14mins

ǫDTW=2.3 5560 5064 0.263 0.459 1428 2.208 1.215 15h38mins

ǫDTW=2.5 7996 7408 0.175 0.497 1501 2.175 1.305 18h52mins

ǫDTW=2.7 10457 9724 0.122 0.499 1473 2.143 1.383 27h40mins
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Chapter 7

Application to near-duplicate

discovery

This chapter focuses on the application of seeded discovery to the so-called near-

duplicate discovery task. While similar in principle to word discovery, this task

presents specificities and challenges that deserve a special care. Not by accident,

the two tasks have often been approached by different research communities (speech

and multimedia), because of different sought patterns and targeted applications.

As in the previous chapter, we start by formally defining the problem at stake,

before introducing necessary information, like the data set used and the performance

measures adopted to provide a quantitative assessment of experimental results.

Next, a number of modifications of the baseline architecture will be presented to

deal with additional issues, deriving from large-scale and match extension problems.

Given the large size of the streams and the large period of occurrence of motifs, issues

arise forcing the adoption of strategies to speed up the computation. Namely:

• To cope with the increased search buffer length, a fast, approximate matching

technique based on downsampling of features sequences is employed.

• two faster library search strategies, Nearest Neighbor path and Nearest Neigh-

bor model, will be introduced to deal with the growing size of the library at run

time.

In addition, we describe a method to recover motif occurrences in their length by

merging overlapping occurrences, to deal with fragmentation of motifs into submotifs,

as a consequence of path extension failure.
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7.1 Definition of the task

In the following the experimental part is illustrated according to the evaluation

protocol, as well as a thorough discussion on the type of motifs discovered.

7.1 Definition of the task

Near-duplicate discovery is the task of discovering and collecting in audio streams

occurrences of patterns yielding a limited variability. The term near-duplicate is fre-

quently used in video processing domains, where it designates video frames that are

similar or nearly duplicate of each other, but appear differently due to variations in-

troduced during acquisition time, lens setting, lighting condition or editing operation.

This nomenclature is employed in our context, to highlight the difference with word

discovery which mainly resides in the low amount of intra motif variability admitted.

Within this class of motifs are included, for instance, several types of sound patterns:

signalling patterns that repeat in radio or TV streams, like station call signs and

signatures or applauses in TV shows and situation comedies, then advertisements,

songs, even entire movies or shows, as long as they repeat. This type of audio data is

often referred to as composite, as it presents a sequence of sounds of different nature

that are mixed or follow each other (speech, music, applauses, environmental sounds

ecc...).

Variability. Sources of variability can be identified in the different signal-to-noise

ratio (SNR) the signal can experience during broadcast at different times of the day

(or the week), or variations introduced during acquisition at the receiver. These

factors do not impact signal variation so strongly as those factors responsible for the

variability of the speech signal.

Motif length. Besides their limited variability, these patterns are longer than words

(or small multi-word phrases) in speech. In fact their duration may vary within a

wide range of values, from a few seconds, in the case of applauses or short jingles

and station call signs, up to several minutes (songs), and even hours (movies, shows).

It should be clear that, given the increased length and reduced variability of the

sought patterns, the task of recognizing similarities is greatly simplified than in word

discovery, where indeed represents the main obstacle towards building an operative

computational framework.
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7.2 Test data

Occurrence period. On the other hand, while the average occurrence period of

repeating words is of the order of seconds or minutes in many realistic scenarios

(news shows, academic lectures, conversational meetings), near duplicate patterns

are expected to repeat in the span of hours (think of songs frequency of play in the

broadcast schedule of a radio channel, for example). While limited variability makes

similarity detection easier, the increased search space related to motif repetitiveness

makes it necessary to adopt strategies to efficiently deal with large scale issues.

Main challenges posed by the task will be more clear when the test data will be

illustrated and the results of the experiments presented.

7.2 Test data

The test data where experiments have been performed, comprises six 24h radio

streams, sampled at 11,025 kHz and recorded from three French radio channels on

March 15 and 16, 2010. The data has been provided by Yacast1, partner within the

Quaero project2. Together with the audio, annotations on the content are provided

by enumerating the songs played that day. For each song, the following properties

are specified:

• a numerical identifier

• the title of the song

• the name of the artist (or musical band)

• the record label

• the musical genre

• the day of broadcast

• starting time in hour-minute-second

• ending time in hour-minute-second

There are 1,742 songs annotated, yielding an average duration of 189 seconds.

The distribution of songs’ durations is reported in the histogram of Figure 7.1, from

1http://www.yacast.fr/fr/index.html
2http://www.quaero.org
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Figure 7.1: Histogram of songs’ durations (in seconds) in the six 24h radio stream

which it can be observed that the most populated bin, with lengths in the range

[145, 210] seconds, counts 571 occurrences. The shortest song has a duration of 59

seconds, the longest one of 396 seconds. Among these songs, 208 are repeating, which

means they occur twice at least. The number of occurrences for each motif is detailed

by the bar plot of Figure 7.3: the most repeating song (Replay by Iyaz ) occur 14

times in a day, the average number of repetitions for each repeating song being 3.36.

A crucial parameter in a motif discovery task, and even more in our computational

system, concerns the occurrence period of a motif, that is the average time separation

between consecutive occurrences. This value is of great relevance as it impacts our

choice of the search buffer length, that is the search space assumed to include at

least two occurrences of each motif. In Fig. 7.2 it is shown the histogram of the

time intervals occurring between consecutive instances of each repeating song. The

average value of this parameter, computed over all occurrences of all repeating songs,

amounts to 5 hours and 41 minutes. From Fig. 7.2 it can be observed that repetitions

may occur as soon as about 1 hour (35 minutes) and as late as almost 23 hours. It

follows that to at least guarantee the possibility of retrieving all repeating songs, a

search buffer must be set equal or longer than the largest time separation observed,

which corresponds to almost a day of radio stream.
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Figure 7.2: Time separation between consecutive occurrences (in hours) for all re-

peating songs annotated.
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Figure 7.3: Number of repetitions for each repeating song annotated.
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7.3 Performance measures

As done for word discovery, the quantitative evaluation of experiments for song dis-

covery is accomplished by defining appropriate measures of precision and recall. The

end goal is to quantify the capability of discovering real repetitions of audio seg-

ments (measured by precision) and, for each motif, as many occurrences as possible

(as measured by recall). Much like in word discovery where we relied on phonetic

alignments included in the ESTER corpus, we use the annotations described in the

previous section to gather these statistics.

These numbers are necessarily computed over segments belonging to annotated

regions of the stream, for which the evaluation process can be automatized. The

remaining occurrences should be evaluated single-handidly by listening to each of

them, to check whether or not they are effectively occurrences of a same motif. Being a

tedious and time-consuming operation, we limit the evaluation to annotated segments,

occasionally sampling the non-annotated ones to check if the algorithm has discovered

other correct repetitions.

In the annotations provided, for each song only time endpoints are provided,

but no information on the internal structure of the piece, i.e. indication of the

instrumental part only, parts with speech and music mixed together, location of the

refrains, chorus, etc. If two segments are recognized as belonging to the same song

(whether it is the very same occurrence, or different plays of the same song), it is not

possible to determine, based on the annotations only, if they also refer to the same

portion of song or not. Again, since the rigorous evaluation by direct listening is

not feasible, we decide to deem similarity of occurrences according to the numerical

identifiers of the song they belong to: if matching, they are considered true hits.

Then, for a motif i, a precision Pi is computed by a) collecting the identifiers of each

occurrence b) detecting the most frequent one and c) computing the ratio between

its occurrence count and the number of occurrences found for that motif.

For clarity, if idmax indicates the occurrence count of the most frequent identifier

for a motif of cardinality Ni, then:

Pi =
idmax

Ni
(7.1)

and the global precision is then obtained by averaging this measure over all motifs

discovered. It should be clear that the song labeled by the idmax identifier plays the
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same role as the median occurrence defined in the word discovery evaluation proto-

col. It is also worth specifying that, whenever disjoint segments of the same songs are

collected as occurrences, they are only counted as one for precision (and recall) com-

putation. This is because, even though they are motifs themselves (submotifs indeed),

we aim at evaluating motifs at the song level, according to the given annotations.

As far as recall is concerned, the most frequent song is used as representative of a

given motif. We then compute the ratio between the number of occurrences collected

and the number of occurrences Mi in the data, retrievable from the annotations. In

short,

Ri =
idmax

Mi
(7.2)

and the total recall R is the average of the single recall over all motifs. Differently

from the word discovery case, the repeating songs are known in advance thanks to

the annotations, so that we can include the undiscovered songs in the total recall

computation, each contributing with a zero recall.

Besides precision and recall, an additional measure of the performance will be

given by the motif fragmentation value, which provides an indication of how much

fragmented a motif discovered is, that is whether or not a song is retrieved by its entire

length, or by portions of it. Depending on the application, it might be sufficient to

discover repetitions of songs from simple excerpts, or, by contrast, from the pieces of

music in their entire duration.

Before presenting the results of the actual experiments, some approximate meth-

ods will be introduced, necessary to speed up the algorithm and deal with large scale

issues.

7.4 Modifications of the baseline architecture

In this section, we describe the integration of additional features into the baseline

computation architecture as introduced in Chapter 5. The nature of the targeted

patterns (i.e. songs of several minutes), the size of the data sets (a 24h continuous

stream), the way the repetitions occur (after several hours), are all factors that in-

fluence performance, both in terms of computation time, and quality of repetitions

found.

The need for setting a large search buffer, due to large repetition intervals, impact

significantly the number of operations, and thus the computation time, required to
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process the data.

Concerning the quality of motifs found, a fragmentation into submotifs will be ob-

served, related to path extension failure during song discovery and reconstruction.

The section is then structured in two subsections. In the first subsection, we

analyze large scale problems deriving from the processing of days of broadcast data.

This problem can be categorized, in turn, in two main subproblems, to relate re-

spectively to the search buffer comparison and library search modules. As far as the

first subproblem is concerned, computation speed up is achieved through the use of

low resolution versions of acoustic patterns based on downsampling, to enable a fast

SLNDTW followed by a similar validation in the full resolution domain. With regard

to library search, two strategies for searching possible repetitions will be illustrated,

respectively called Nearest Neighbor Path and Nearest Neighbor Model, both taking

advantage of the relevant speed up achievable by downsampling. The second subsec-

tion is instead dedicated to illustrating the problem of the fragmentation of motifs

into shorter submotifs; a partial countermeasure will be proposed consisting in the

simple merging of occurrences that overlap in time.

7.4.1 Techniques for handling large data sets

Factors influencing the processing time for each seed block are several:

• The length of the seed block.

• The length of the search buffer.

• The size of the library.

• The value of the threshold: increasing the threshold, increases the number of

paths to evaluate (the candidate motifs).

The search buffer length becomes a critical parameter when set to several hours, or

even an entire day, to account for occurrences distant in time. To give an idea of how

impactful can be such factor, we report on a demonstrative experiment on a day of

broadcast radio data.

Using a seed block of 10 seconds and a search buffer as long as the entire file, ten

iterations of the algorithm were computed (that is, ten seed block were searched in

a 24h search buffer, the library being empty). In average, the time required for each
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seed block was 100 times the seed length. This amounts to saying that the entire file

would need more than three months to be processed (disregarding additional issues

deriving by the growing size of the library at run time).

An attempt to partially overcome the problem was done by resorting to vector

quantization techniques, in order to reduce the burden of computing the local dis-

tances between all frames of seed block and search buffer. In vector quantization,

each spectral vector is mapped into a codebook of finite size, trained properly before

run time. Since the distances between codebook’s centroids are pre-computed and

stored into a look-up table, computing local distances reduces to accessing the right

look-up table entry. Despite a non-negligible gain earned by applying this method,

the performance were still observed to be too slow.

The key idea for successfully coping with such a long search buffer, is performing

the computation on a coarse version of the audio segments, rather than in speeding

up the computations in the full dimension domain. We will see in the following a

practical example of this approach by sequence downsampling.

7.4.1.1 Dealing with large search buffers: Downsampling

Sequence downsampling is a simple technique for producing a low resolution repre-

sentation of a time series by sampling the original sequence every k frames, k being

the downsampling factor. Formally, the low resolution sequence Ŝ is computed from

the full resolution sequence S as Ŝ(x) = S(k · x).

The speedup in computing the distance matrix in DTW, is quadratic in the down-

sampling factor, if both the compared sequences are downsampled. That means

k = 10, 20, 30 provides a 100, 400, 900-fold gain in computation time with respect

to the distance matrix computation in the full resolution domain. Thinking of the

number reported in the previous section (a seed block processed in a time span 100

times its duration), the use of this approximate technique would be extremely ad-

vantageous, if performance would be demonstrated sufficiently accurate. In general,

accuracy strongly depends on the task and targeted pattern, and the appropriate

downsampling factor (if any), is to be determined empirically from experimental

evaluation.

To this end a small scale experiment of audio segment spotting was conducted,

consisting in searching by SLNDTW a fragment of a song into a search buffer of

about 1 hour, where a repetition occurs. The experiment was performed by varying
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Table 7.1: Repetition spotting: for each downsampling factor k and query length Lq,

the rank of the correct path and the ratio between CPU time and query length is

indicated.
k=2 k=4 k=5 k=10 k=20

rank CPU

Lq
rank CPU

Lq
rank CPU

Lq
rank CPU

Lq
rank CPU

Lq

Lq=2s 1st 2.39 1st 0.63 1st 0.42 2nd 0.12 6th 0.03

Lq=4s 1st 2.35 1st 0.59 1st 0.39 8th 0.10 6th 0.03

Lq =10s 1st 2.45 1st 0.6 1st 0.38 1st 0.10 1st 0.03

the fragment duration (2,4 and 10 seconds) and the downsampling factor k (2, 4, 5,

10 and 20).

After SLNDTW computation, the paths computed are ranked according to the

respective DTW score. We define the N-best ranked paths as the N-best paths, re-

gardless of any similarity threshold. The goal of the experiment is to determine

whether the true matching path, that is the path mapping the query and its repeti-

tion, is present among the N-bests, and its rank among them (if present). The hope is

that of achieving a significant speedup by means of downsampling, while keeping the

matching path highly ranked among the computed paths. The reason for considering

only the N-best paths as well as the rank of the matching path will be explained in

the next paragraph, when describing the integration of the technique in the motif

discovery system.

The results of the experiment are summarized in Table 7.1. For each downsam-

pling factor k and query length Lq, two kinds of output are indicated: the rank of

the correct path among the N-bests computed (N=20) and the ratio CPU

Lq
between the

time needed to perform the computation and the query length. The first measures

accuracy, the second quantifies the speedup achieved. With the exception of k = 2,

it can be observed that CPU

Lq
< 1, that is the time required to accomplish the task is

lower than the query length. On the other hand, the correct matching path is always

present among the 20 highest ranked. For k = 2, 4, 5 the correct path is ranked first,

for all query lengths, the lowest rank being the eighth position for Lq = 4 seconds

and k = 10. The results of this small scale experiment encourages the application of

the method to motif discovery, as acceptable accuracy is obtained for a fragment as

short as 2 seconds, and a downsampling factor as large as 20.
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7.4.1.2 Integration of downsampling in seeded discovery

Rather than performing the complete discovery in the low resolution domain, com-

parison of downsampled sequences is used as a fast, approximate pattern matching

technique for selecting motif candidates to be validated in the full resolution domain.

Pattern matching in the low and full resolution space can be regarded respectively

as the similarity detection and similarity score subtasks, according to the modular

decomposition proposed in Chapter 3. This decomposition is highlighted in Fig. 7.4,

where the modules comprising the two different stages are detailed. More specifically:

1. two sequences enter the similarity detection module where they are downsam-

pled and compared by SLNDTW (possibly using a different value of spectral

threshold to account for feature coarsening).

2. Among all computed paths, we consider only the N-best candidate motifs. That

means if there are M candidate motifs (M paths yielding a score below the

spectral threshold set for the low resolution comparison), only N of them are

evaluated, assuming N<M. Of course, if M>N, all M paths are retained and

evaluated until a match is found. The presence of a match is determined in the

full resolution domain, as audio segment representation is more accurate here.

More specifically, the candidate motifs outputted by the previous comparison,

are projected into the full resolution space. The corresponding occurrences

undergo the SLNDTW + path extension procedure, as for the baseline system.

It is interesting to note that SLNDTW in the full resolution domain also generates

a set of candidate motif paths. Here, we do not pose any limit on the number of

candidate motifs to evaluate, that is we do not just consider the N-bests. The reason

is that, in practice, the segments undergoing the full resolution comparison (the ones

entering the similarity score box in Fig. 7.4) are of comparable length, unlike in the

low resolution domain, where the whole search buffer is analyzed. The gain is indeed

attained by only reserving the computationally heavy full-resolution comparison to

short segments identified by low-resolution comparison, to which is left the demanding

task of dealing with the (very long) search buffer.

It is worth remarking that the speedup is achieved not only by dimensionality

reduction in the search buffer comparison, but also by limiting the validation to the

short list of the N-bests. If all low-resolution candidate motifs are to be evaluated
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Figure 7.4: Diagram depicting the comparison in the downsampled and full domain,

representing respectively the similarity detection and score subtask. The seed-search

buffer comparison is performed only in the low resolution domain. In the full resolu-

tion domain only a handful of patterns (at most N pairs of candidate motifs) undergo

SLNDTW and path extension procedure.

in the full resolution domain, the advantage of using fast pattern matching may be

easily nullified.

We will see next an additional trick to further speed up the computation in the

library.

7.4.1.3 Speeding up library search

Using a coarse audio representation and limiting the evaluation to the N-best paths,

is greatly beneficial to performance in terms of computation. However the speedup

concerns mainly the search buffer stage, as issues arising from the growing size of

the library are still unsolved. Not only, if the comparison between a seed and a

motif in library triggers (possibly) N comparisons in both resolution domains, the

computation becomes even more demanding than in the baseline system (at least, in

the library search). To this end, we propose two straightforward modifications of the

library search procedure that we describe here:

• for each SLNDTW-based comparison between a seed and a model in the low

resolution domain, the N best paths list is reduced to just the nearest neighbor

path, that is N=1. Accordingly, each approximate comparison triggers at most

113



7.4 Modifications of the baseline architecture

one full resolution comparison. It can be argued that, while scanning the library,

each motif model can generate both a low and full resolution computation,

while in the baseline system only a full resolution comparison is performed.

But a) for certain values of downsampling factor, low resolution computations

are extremely faster than the full resolution ones, thus almost negligible and

b) in realistic situations, most low resolution comparisons do not trigger a full

resolution comparison, as their DTW score is above the fixed threshold.

• each seed block is compared in the coarse domain with all motifs in the library,

regardless of the presence of a possible match. Afterwards, the comparison

in the full domain is performed only between the seed block and the nearest

neighbor model, if matching. As a consequence, only a full resolution comparison

for each library scan is performed at most. While this strategy forces a complete

library scan for each seed, it limits the full resolution comparison to just one

pair of candidate motifs. This second strategy is therefore expected to be much

faster than the first one proposed.

These strategies are implemented and will be shown to be successful in allowing

the algorithm to deal with large scale issues in reasonable time. Before, a practical

solution to limit motif fragmentation into separated portions will be reported.

7.4.2 Recovery of motifs from overlapping segments

Several experiments have shown a recurrent failure of the path extension procedure

when comparing occurrences of a same song. The failure happens as the extended

path is trapped in a local minimum of the path average distortion in the space of

all possible extended paths. Because of local constraints on path computation, the

deviation from the true matching path might be unrecoverable, as no admissible se-

quence of moves can permit to subsequently rejoin the matching path (see Figure 7.5,

where a visual illustration is provided). Once the matching path is out of reach, the

extended path usually stops shortly after, likely to encounter some higher distortion

region. This issue has been frequently observed in song retrieval, while much more

rare in word discovery, probably because a) songs are much longer, and so is the path

extension procedure, which is more likely to incur in local minima and b) MFCC

features might be more suited to represent speech patterns, generating more distinct

low-distortion regions that confine properly the extended path. The effect of path

extension failure is twofold:
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Figure 7.5: Path extension failure: the extended path is trapped in a local minimum

of the path average distortion and deviates from the true matching path.

• if the occurrences identified by the prematurely stopped path, are shorter than

Lmin, no match is detected at all.

• if those occurrences are instead sufficiently long, two portions of motif occur-

rences (submotifs indeed) are retrieved.

In this second case, a countermeasure can be adopted to recover the full motif

occurrences and prevent motif fragmentation into submotifs. Whenever the seed

following a submotif detection is matched with the subsequent portion of motif, the

entire motif can be reconstructed by joining the submotifs, whenever they overlap in

time (see Figure 7.6). For that to happen:

• the subsequent seed block must be deemed similar to the portion adjacent to

the previous submotif occurrence.

• Path extension has to retrieve two sufficiently long submotif occurrences that

stretch over the preceding ones. In this case the overlap is recognized and the

merging procedure is triggered.

This countermeasure has been necessary, as our end goal is not only to correctly

retrieve matching audio segments, but to reconstruct the longest possible match,

which is the motif in its entire duration.
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Figure 7.6: Whenever two adjacent overlapping submotifs are identified, they can be

merged to overcome motif fragmentation into submotifs.

7.5 Experiments and results

After describing the additional merging feature and the various speed up techniques

implemented, we are then ready to detail the experimental evaluation carried out.

After a brief overview of the main parameters involved, we focus on the quantitative

assessment of the performance.

7.5.1 Parameter setting

The two critical parameters in motif discovery experiments are respectively the seed

and search buffer length. Their values are strictly related to the type of targeted

motifs in a given task: the first is linked to the size of the sought patterns, the second

to their repetitiveness. The seed block length has been set to 10 seconds, as we are

mainly searching for songs of several minutes but without discarding the possibility

of finding shorter repetitions like jingles or advertisements. The search buffer length

has been set to at most 24 hours, basically a seed block can be searched in the entire

stream. As explained before, this choice accounts for those songs observed to repeat

after almost a day.

Downsampling factor. The system has been tested for different values of down-

sampling factor, different library search strategies, with and without merging over-

lapping occurrences. More specifically, two values of downsampling factor were used,

namely k = 10, 20, as a result of the compromise between speedup and accuracy, as

evidenced in the segment spotting experiment detailed previously. For both values

of k the same spectral threshold has been used, higher than the threshold in the full
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resolution domain (to account for desynchronization introduced by downsampling):

respectively ǫDTW = 2.5 in the downsampled space, and ǫDTW = 1.5 in the full resolu-

tion domain.

Library search strategies. For each k, the system has been run for the two

library search strategies: the one where only the nearest neighbor path generates

a full resolution SLNDTW in each seed-model comparison, and the one where only

the nearest neighbor motif model is considered for full resolution comparison. As for

the search buffer, the list of N best paths has been set to 15 all the experiments.

Merging of overlapping occurrences. In addition, the algorithm has been run

with and without merging of overlapping motif occurrences. Thus, for each 24h

stream, 8 different libraries of motifs are produced.

As far as modelling is concerned, we have retained the first discovered motif oc-

currence as sufficiently representative of the whole class. The underlying assumption

is that, being the targeted motif of limited variability, each occurrence can be indif-

ferently assumed as representative of the motif. This was the same choice adopted

by Herley in a similar task in (Herley (2006)).

7.5.2 Quantitative remarks

The results of the experiments are summarized by the statistics provided in Table 7.2.

Some of these quantities have been already introduced in Section 7.3, like precision

and recall, the other ones will be defined and the corresponding values commented

here. Although many of these parameters tightly depend on each other, for the sake of

clarity, we will account for each of them in a specific paragraph. The table can be read

by rows, to compare different values of the same parameter in different configurations,

or by columns, to analyze the statistics for a specific run of the algorithm. Both ways

of scanning the table will be adopted, when more suited to understand the numbers.

Precision and recall. Global values of precision and recall for the six streams

processed, are obtained by simply averaging the respective values computed indepen-

dently for each stream.

One outstanding result that can be immediately inferred from Table 7.2 is the

perfect precision gathered, equal to 1 for all runs of the algorithm. That means the
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use of downsampling, even for large k, maintains a significant discrimination capa-

bility, as no false hit has even been found, despite the large size of the search space,

as long as 24h of audio. As mentioned, similarity is evaluated by only comparing the

numerical identifiers of the songs the collected segments belong to, without check-

ing whether they refer indeed to the same portion of song. Every direct listening,

however, has always confirmed a perfect matching; furthermore, in several cases, the

matches outputted by the system have been even more precise than the annotations

in detecting songs’ endpoints.

Values of recall range from a minimum value of 0.67 to a maximum value of 0.83.

For k = 10, performance are better than k = 20 as a result of the more accurate

processing in the low resolution domain. However, recall performance do not drop

significantly while doubling the downsampling factor from 10 to 20. For example, in

the case of merging, recall slightly decreases from 0.7 for k = 10 to 0.67 for k = 20,

both for Nearest Neighbor Model and Nearest Neighbor Path. The decrease is slightly

more relevant in the no merging case, as recall drops from 0.82 to 0.70 for Nearest

Neighbor Model and from 0.83 to 0.71 for Nearest Neighbor Path. One interesting

observation that can be drawn is indeed the substantial identity of recall values for

the two library search procedures, for a given k and merging strategy.

In general, we can conclude that recall and precision do not look greatly affected by

the difference in downsampling factor between k = 10 and k = 20, when the targeted

repetition is a song. This result is very attractive as it allows to achieve a significant

speedup in computation time while keeping performance almost unchanged, when

moving from k = 10 and k = 20. Reasons why perfect recall is not achieved are

several:

1. A motif might not be discovered at all, simply because the fixed threshold has

not accounted for the variability exhibited by those motif occurrences. Knowing

that the repeating songs are 208 in total, it can be concluded that the algorithm

has always missed one song. This can be observed in the eighth row of Table

7.2, marked by Disc. song, which indicates the number of discovered songs,

that is the songs for which at least two occurrences (or subsegments of them)

have been collected.

2. Another source of error is the path extension failure. Following a premature

stop of the path extension, if the matching segments result too short to obey

the minimum length condition, they are erroneously discarded.
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3. A further issue is encountered when a motif occurrence is erroneously missed in

the library search where the corresponding motif exists, but is then successfully

found in its respective search buffer. If that happens, a new motif is added in

the library, for which recall cannot be unitary, as the past occurrences, collected

in the skipped motif, cannot be anymore detected (since the algorithm processes

the stream in a sequential manner).

Fragmentation, motif dispersion, number of motifs found. Fragmentation

measures motif segmentation into submotifs. The source of this fragmentation is

due to path extension failure and has been described when merging of overlapping

submotifs has been introduced. Fragmentation is measured by computing, in average,

the ratio between the duration of an occurrence found and the duration of the song

it belongs to (and it is reported in percentage). The third row in Table 7.2 details

the value of the parameter for the different configurations.

One marked difference is visible between the systems that use merging and the

ones that do not use it. For k = 10, fragmentation goes from 31.59 and 31.43 (for

Nearest Neighbor Model and Nearest Neighbor Path respectively) to 15.3 and 15.62.

For k = 20, it amounts to 25.7 and 25.6 with merging (for Nearest Neighbor Model

and Nearest Neighbor Path respectively) against 13.8 and 15.38 without merging.

This practically amounts to saying that, if a repeating song has an average duration

of 3 minutes, each repetition found is fragmented in average into segments of about

45-55 seconds (respectively for k = 10 and k = 20), when merging is used, and of

about 25 seconds when it is not.

Related to motif fragmentation, is also motif dispersion: it measures, in average,

how many different motifs in library refer to the same repeating song. Motif dispersion

into different motifs is again due to the path extension failure. For example, referring

to Figure 7.6, if no merging is used, the repetitions marked in black are fragmented

in two different motifs (the blue and red ones). If merging is used, on the other

hand, they are joined into the same motif, the one indicated in green. Ideally, the

desired situation is to have each motif in a library referring to a different pattern,

hence the targeted value of dispersion is 1. The reported value in the implemented

systems range from 2.6-3.5 when merging is used to 9-12 when not. This means that

in average motif occurrences are spread into 3-4 or 9-11 different motifs, depending

on the use of merging or not. This trend is clearly confirmed by the number of motifs

stored in library for the different systems. By looking at the fifth row in Table 7.2,
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it can be seen how the deciding factor that determines the value for this parameter

is indeed the merging parameter, while remaining basically constant when varying

downsampling factor or library search strategy. This parameter varies in the range

[1227,1352] when merging is used and in the range [3095-3337] when it is not. Of

course these numbers are obtained by summing the number of motifs independently

found for each of the six streams processed.

The average number of occurrences per motif is instead quite similar for all system

configurations, and amounts to about 3-4 occurrences for each motif.

Alternative definition of recall. The parameter we comment on in this para-

graph is the one reported in the seventh row of Table 7.2, marked as all occ, which

tells how many of the repeating songs annotated have been retrieved in all of their

occurrences, in at least one motif in library.

This additional performance indicator can be used as a recall measure alternative

to that introduced in Section 7.3 and computed for all experiments.

For clarity, suppose that a repeating song appears multiple times in different

motifs; then what matters (according to this new evaluation measure) is that, in at

least one of these appearances, all its occurrences are collected (even if just single

excerpts for each occurrence). If that happens the discovery for that repeating song

is to be considered successful and the recall unitary. In this case, other motifs where

it appears can be disregarded for evaluation purposes.

According to the definition of recall we have used so far, instead, all appearances

of that motif, even the ones bearing just a few of their occurrences, are accounted

for evaluation purposes (which usually leads to decrease the final value, see the third

source of recall degradation reported in the recall paragraph). From row 7 of Table

7.2, it can be seen that out of 208 repeating songs annotated, in the worst case 170

songs are retrieved in all of their occurrences, in the best case 197 out of 208 are

detected (the best performance are observed for k = 10). Then, if we would measure

recall by simply computing the fraction of songs for which all occurrences are found

at least once, recall would be at worst 0.82 (170/208) and at best 0.95 (197/208) for

the experiments performed.

This different way to measure recall has been discussed also to account for other

evaluation protocols adopted in related works, so that our results can be more easily

compared to them. For example, in the work of Ogle & Ellis (2007) the aim of

the task is that of identifying repeated sound events in long duration personal audio
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archives, including songs. Since the end goal is to facilitate browsing of massive audio

collections, the user is just interested in discovering the approximate location of a

song in the stream, for which retrieving single excerpts, rather than exact endpoints,

is sufficient. Then a repeating song has a perfect recall if some excerpts of all its

repetitions are found and grouped together (at least once).

Computation time. One very important feature for which the system is to be

evaluated is the computation time required to complete the task. That is also the

main reason that triggered the implementation of the different fast, approximate

techniques for achieving speedup. The value of the CPU time is reported for all runs

of the algorithm in the last row of the table. This is the one parameter where the

difference between using k = 10 or 20 is most visible. For k = 10 the system needed at

most a day exact (the stream duration indeed), and at best 17 hours, while for k = 20

the CPU time required ranges from about 6 hours to 12 hours. It is interesting to note

that, for a fixed k, a relevant impact on computation time is implied by the specific

library search strategy employed: not surprisingly the best result is achieved by using

the nearest neighbor model method, as the library is completely scanned for each seed

block, but only in the downsampled domain, implying at most only one comparison

in the full resolution space. What is equally interesting is that the different library

search strategies, while impacting the computation time, do not significantly influence

the other performance indicators. It can be observed by scanning, for a fixed k and

merging strategy, the columns referring to both library search methods, and noticing

how similar are the corresponding values, besides CPU time.

Finally, a certain influence in computation time is due to the merging strategy, and

specifically the use of online merging of overlapping occurrences is noted to impact

negatively the computation time required. This is surprising as merging has the effect

of reducing motif dispersion and thus the library size, which in turn should allow for a

faster library scan. We argue that the source is likely to be identified in a suboptimal

software implementation of the strategy. But since for all the runs of the algorithm

the system has been able to accomplish the task within a day of audio at most, we

can be reasonably satisfied of the speedup achieved.
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Table 7.2: Statistics for the different runs of the algorithm on the 24h radio stream

(see the text for detailed comment).

k=10 k=20

NN model NN path NN model NN path

m.ge no m.ge m.ge no m.ge m.ge no merge m.ge no m.ge

P 1 1 1 1 1 1 1 1

R 0.70 0.82 0.70 0.83 0.67 0.70 0.67 0.71

Frag (%) 31.59 15.3 31.43 15.62 25.7 13.8 25.64 15.38

Disp 2.6 9.0 2.75 8.99 3.4 10.49 3.5 12.03

Nmotifs 1227 3095 1237 3101 1352 3322 1345 3337

Nocc/motif 3.24 3.3 3.3 3.2 3.2 3.3 3.2 3.0

all occ 182 190 191 197 170 172 172 172

Disc. songs 193 207 200 207 194 197 184 201

CPU time 19h 17.5h 23.6h 22.5h 8.6h 6.2h 12h 11h

7.6 Summary

This chapter has shown the applicability of seeded discovery to near-duplicate dis-

covery tasks, and more specifically, to the discovery of songs within days of broadcast

radio data. We have introduced some modifications of the baseline seeded discovery

architecture, aiming at solving a number of large-scale issues deriving from the use

of large search buffers, as imposed by the long repetition intervals of the targeted

motifs. We have provided an experimental evaluation on six 24h radio streams that

have clearly shown a remarkable success in retrieving most of the repeating songs,

while mostly fragmented in single excerpts, rather than reconstructed in their entire

duration, observing, furthermore, an excellent precision rate.
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Chapter 8

Representing and accessing

spoken documents: the concept

of Audio Icon

This chapter focuses on illustrating the potential role played by audio motif discov-

ery in novel information retrieval paradigms in audio data. First the problem of

representing and accessing documents at the signal level is introduced, as required

to properly handle massive collections of data that are available in different forms.

A parallel is drawn between text mining, key frame extraction in video shot, audio

summarization and audio motif discovery; we build upon these observations to finally

introduce the notion of audio icon, as a instance of a recurrent pattern that, similarly

to the small pictograms in displays, mark the presence of an event of interest.

We further elaborate on this aspect, highlighting the connection between a motif

and a more specific acoustic pattern that yields high quality information on the audio

content, as well as the utility of audio motifs for novel transcript-free mining tasks in

audio.

We conclude by presenting a short demonstration on the usage of motif discovery

for providing information on audio content.
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8.1 The problem of representing and accessing spoken

documents

The main issues underlying the efforts detailed in the thesis, revolve around a more

general pair of questions that are common to a multiplicity of different fields, namely:

• How to represent a document (or a data set) in an informative way?

• How to allow for a convenient way of accessing and browsing through a docu-

ment (or a data set)?

In the Internet era, given the availability of extremely massive quantity of data, in

different modalities, it does not come as a surprise that a relevant effort is spent in

understanding how to decode such information, to allow for a proper storing, indexing

and browsing.

In content based multimedia indexing and retrieval, examples of tasks that focus

on such problem are several:

Text mining. Text mining is the process devoted to the extraction of high qual-

ity information from text documents, in the sense that the targeted information is

selected according to some measure of novelty, relevance and interestingness. Since

the complexity of meanings, concepts and semantic relations that populate text doc-

uments, text mining is branched in many subtasks. For instance:

• text categorization: the task of assigning a document to one or more categories,

according to its content. Both supervised and unsupervised methods have been

proposed to deal with the task (see Joachims (1998), Sebastiani (2002)).

• text clustering: it is closely related to text categorization, and refers more

specifically to the application of clustering methods for attaining automatic

topic extraction, document organization, or fast information retrieval and fil-

tering. These techniques may be used for grouping into a list of meaningful

categories the thousands of search results returned by a Web search engine (an

example of such software is the open source Carrot2 1).

• text summarization: the task of reducing a text to a short version still containing

all its important points.

1http://project.carrot2.org/
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Key-frame extraction. Key-frame extraction is the task of abstracting a long

video sequence by selection of a subset of frames, capable of retaining the visual

saliency of the original shot. The targeted goals are mainly that of:

• allowing the storage of a reduced, yet relevant, version of the original sequence

(possibly in the presence of limited storage capability).

• Providing a user with a summary in terms of representative still images.

Spoken document summarization. It is in fact the audio counterpart of text

summarization, and it is still in its early stages, at least with respect to the well

studied text summarization task. A straightforward approach, in fact, consists in

resorting to ASR technologies for performing text summarization on its transcribed

version. However, the possibility of performing the task directly over acoustic input,

is not a far-fetched idea, and the already presented work of Zhu et al. (2009) is an

example of such approach. We will come back later on on this work in the next section.

While our work does not primarily addresses spoken document summarization, the

relation is evident, as we highlight in the following.

8.2 Motif discovery and Audio Icon

A parallelism can then be drawn among the aforementioned tasks and the research

subject we have studied in this thesis. The underlying end goals are very much

related:

• provide, if not a summary, at least a tool to get a coarse and rapid understanding

on audio/speech content.

• identify the location of coherent parts (in the sense of the acoustic similarity)

to ease the access and browse through the data set.

One distinctive feature of our approach is that, to achieve this objective, no as-

sumption is made on the semantic relevance of the targeted patterns. Then, the idea

of deriving information from audio by discovery of repetitions is mainly justified by

two reasons:

• recurrent patterns are informative, whether or not they convey meaningful se-

mantic cues on data content. The words underlying the discovered excerpts may
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refer to places, dates, characters, objects, actions. By direct listening, the user

may gather different degrees of information: a) language employed, b) speakers

involved c) type of data (conversational meeting, academic lecture, news show,

etc...), d) the topic(s) discussed, and so on.

But even if motifs do not carry such knowledge, the identification of repetition,

combined with the determination of their location, provides information on how

audio content is structured and organized throughout its duration.

• finding motifs does not necessarily require a priori knowledge on the content

to be performed. It is based on the recognition of similarities, and thus recur-

rencies, at the signal level. Assigning a score of semantic relevance to acoustic

patterns require knowledge on their lexical identity that does not fit our unsu-

pervised learning paradigm. Moreover, other than linguistic knowledge, tf-idf

weights needs to be estimated for scoring and ranking the importance of words

in a document.

For all these reasons, we believe that motif discovery is an interesting, preliminary

tool for performing audio mining under the unsupervised learning framework. The

term audio mining is used as explicit reference to text mining to indicate how it

addresses, at least partially, the problem of extracting evidence and meaning from

raw, untranscribed audio. According to these observations, we introduce the notion

of audio icon to specifically indicate an occurrence of a motif and its use to mark

parts of the data, as an audio counterpart of the pictograms in computer displays.

We will see a more concrete example on the use of audio icon in a demonstrative

example in Section 8.3.

From motifs to high quality audio patterns. While motifs themselves can

account for audio content to a certain extent, their practical utility cannot be fully

delivered if they are seen as the ultimate solution, rather than an intermediate step

in audio mining tasks. As seen in the text mining case, information extraction builds

upon single patterns to infer properties, meanings and structure by machine learning

or clustering methods.

In the spirit of natural language processing, the natural development of our inves-

tigation consists in exploring strategies to design information retrieval (IR) systems at

the acoustic level, completing the passage from transcript-based to completely audio-

driven IR technologies. The ultimate goal is that of extracting automatically high
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quality information from spoken documents, according to some criteria of saliency,

redundancy, interestingness etc...(which is in fact the same role played by linguistic

patterns targeted by text mining tasks)

The relation between audio motifs and these entities has not been investigated

in the present work (and might very well depend on the given task and definition of

high quality acoustic information), but we do believe that motif discovery can play

an instrumental role towards this goal. From this regard, we can suggest ideas and

cite very recent efforts that attempts to address these problems:

• topic clustering from motifs: this can be considered as the equivalent task

of text clustering in the context of transcript-free audio mining. Convention-

ally, a text document is turned into a bag of words representation subject to

topic-based clustering of linguistic patterns. In the bag of words model, a text

is represented as a vector whose elements are frequency-based weights of the

words in the text. The same model can apply in audio mining, considering a

bag of motifs representations of the audio, each motif characterized by a specific

tf-idf, estimated by discovering its occurrences in the same spoken document,

and in the collection it belongs to. This is the idea at the core of the inves-

tigations detailed in (Dredze et al. (2010)), where preliminary experiments on

topic clustering from motifs are presented. By comparison with transcript-based

approaches, the authors show promising performance that encourages further

study on the subject.

• audio summarization from motifs: in the already cited work of Zhu et al.

(2009), audio summarization of untranscribed audio is achieved by concatena-

tion of utterances whose importance is estimated directly at the acoustic level.

Similarities at the frame and utterance level are detected relying on a slight

modifications of Park’s SDTW. The similarity information is used for selecting

sentences that are believed to be important, in the sense that they are represen-

tative because frequent (show high degree of similarity with other utterances in

the document), but different from other utterances already put in the summary.

• motif importance from prosodic cues: the idea is to exploit prosodic cues to

improve semantic interpretion of acoustic patterns, which can help in assessing

importance of motifs at a semantic level. There is a common agreement that

features like intonation, rhythm, intensity, pausing, stress help the listeners at
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different levels of speech understanding. These features have been integrated

in some ASR systems to assist speech decoding. It would be interesting to see

if and how they can play a useful and complementary role to infer semantic

properties of motifs.

• sentence boundary detection from motifs: listening to the single patterns

discovered may prove rather confusing in trying to understand the content of the

corresponding portion of audio. These patterns are very short and outside the

specific context where they appear may result rather uninformative. A simple

improvement to better contextualize motifs consists in extracting, together with

the repetition, the entire sentence it belongs to. Starting from the location of

the pattern found, boundary sentence detection techniques can be applied and

the sentence extracted may be used for a more meaningful presentation of the

results.

These ideas and techniques essentially define a shift from text-based information

retrieval to pure audio-driven mining approaches. It should be clear by now that the

technical difficulty in discovering audio motifs, still an emerging topic in audio-speech

research, is a serious drawback for the passage to audio icon and the definition of au-

dio mining tasks. In text mining, where word transcripts are used, the document is

already segmented in words, whose occurrences can be easily retrieved as the tran-

scription of a word is unique and well defined. Conversely, in audio motif discovery,

motifs are to be extracted from unsegmented, continuous data and the various in-

stances of each motif exhibit the typical variations of speech signals. It is obvious

that results approaching that of traditional NLP techniques rely on the possibility

of retrieving reliable motif clusters, that is yielding high precision and recall (for ex-

ample, allowing for a reliable estimation, only from the occurrences collected, of the

tf-idf weights of the underlying words).

We believe, for these reasons, that our work provides also a contribution in light

of this novel research areas, that are currently being explored for the first time.

8.3 Audio Icon: applicative example

A practical demonstration of audio content representation by iconic sounds is given as

a result of a motif discovery task performed on a series of audio clips. These clips are
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thematically coherent portions of data, of the duration of a few minutes, extracted

from the France Inter news show, broadcast on April 18th, 2003, and already used

for previous experiments in word discovery.

We provide a demo by reporting in the Table 8.1 the duration of each clip, the

main subject involved, a list of audio icons, as the word patterns corresponding to

the audio motifs found by the algorithm, and a list of keywords extracted from the

transcript by NLP methods.

8.4 Summary

In this chapter, we have discussed the role of audio motifs among more traditional

techniques to access and represent collections of documents. We have drawn a parallel

between tasks such as text mining and key frame extraction in videos and audio motif

discovery. In this regard, we have introduced the concept of audio icon to highlight

the usefulness of motif in providing informative cues on the content of audio data. We

have further discussed on the link between motifs and high quality acoustic patterns,

and suggested novel audio mining tasks where motif discovery can play a crucial role.
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Table 8.1: Example of audio icons as found by motif discovery. For each clip, the

topic, the list of keywords, and the icons found at the acoustic level are shown.

Duration Topic Keywords Audio Icons

1:58 sport news on

Olimpique Marseille

football club

tapie, effacé, com-

missaire, gaza, va-

lence, thibaud, pho-

tos, bernard, tl, sup-

porters

photos (2)

Tapie (2)

tele (2)

2:22 report on presidential

elections (held on april

21st, 2002)

mathevon, réalisé,

espace, barzane,

cité, heures, fran-

cois, tikriti, sarkozy,

hollande

la cité de l’espace a

Toulouse (2)

poserons (2)

questions (2)

gauche (2)

front nationale (2)

vingt-et-un avril

deux-mille-deux (4)

2:44 Review of drama

Déjeuner chez Wittgen-

stein

dévoué, bern-

hard, théatre,

soeur, caché, cloos,

athénée, folie, rich,

méchant

Hans Peter Cloos (2)

Bernard (2)

fou (2)

famille (2)

société (2)

2:40 Psychological help for

people affected by can-

cer

cancer, oncologie,

malades, atteints,

ex aequo, oc-

cupé, menacées,

psychopatholo-

gie, cancérologue,

maladie

cancer(3)

psicohoncologies (4)

jscforum (2)

Nicolas Albi (2)

psicologue (2)

malades (2)

2:54 Easter Holidays and

touristic destinations

touristique, week-

end, paques,

tourisme, emi-

rats, américains,

réservations, en-

richir, guerre,

amarrage

americains (3)

touristique (3)

reservation (2)

hotel (3)

week-end de Paque

(3)
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Chapter 9

Conclusions and Future work

This chapter attempts at summarizing the main contributions of the investigations

detailed in the manuscript, before suggesting a number of potential future develop-

ments triggered by this work.

9.1 Summary and contributions

The doctoral work described in this manuscript has focused on the construction of a

computational system for discovering repetitions of audio patterns directly from the

signal and in an unsupervised manner. Such patterns, referred to as motifs, include

any type of audio entities that occur in audio documents: words and short multi-word

phrases in speech; jingles, advertisements, applauses or songs in composite audio. A

primary merit of this work has consisted in the proposition and implementation of a

unique architecture capable of dealing with different discovery tasks, like word and

near duplicate discovery, characterized by a very different degree of variability and

length of the targeted repetitions.

Besides the ultimate end goal of discovering motifs, a central aspect in our work re-

sides in the unsupervised methodology at the core of our research approach. This rep-

resents a departure from traditional supervised or semi-supervised learning paradigms

at the foundation of ASR technologies. While these approaches have achieved a no-

table success in speech and audio technologies, unsupervision offers attractive ad-

vantages, as it does not require sources of acoustic and linguistic knowledge, and it

is domain and language independent. Moreover, it tries to determine to what ex-
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tent a machine is able to learn and understand from audio in the absence of a priori

knowledge.

In practice, the final system results from a series of single contributions that we

summarize here.

First, we have proposed a division of the task into separated and autonomous

subtasks, namely: segmentation, feature extraction, similarity detection and score.

At this regard, we have shown how alternative systems proposed fit this modular

structure. Following the logical progression implied by this modularity, we have

addressed each single problem to design an initial system based on:

• a sequential stream processing based on ARGOS, that exploits statistical prop-

erties of real streams to smartly reduce the search space and avoids the combi-

natorial complexity of naive methods.

• the use of classic MFCC features for representing speech and a variety of dif-

ferent sound patterns.

• several modifications of the well known dynamic time warping algorithm, with

the aim of enabling the alignment of subsequences of speech patterns, to deal

with the unknown word endpoints within a continuous data stream.

This system has then evolved into a baseline architecture by proposing a simple mod-

ifications of the DTW-based pattern matching technique, so as to design a general

discovery paradigm, called seeded discovery. It consists in discovering motifs by first

detecting repetitions of fragments that are then extended, through a match extension

technique, to retrieve the final motifs in their entire length.

From a more practical point of view, we have then shown the applicability of

such an architecture to real discovery tasks. The word discovery case has been ini-

tially studied and, for evaluation purposes, novel precision-recall measures have been

defined at the phonetic level. Through a series of experiment, we have shown that

DTW-based seeded discovery is capable of extracting repetitions of words and word-

like patterns when a limited degree of variability is enforced, resulting in a substantial

speaker-dependent system.

To partially mitigate these issues, we have introduced a template matching tech-

nique based on the comparison of the self similarity matrices of speech sequences.
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The idea is to investigate the spatial structure of these matrices, effectively seen as

gray scale images, to recognize a two dimensional pattern dependent on the acoustic

phonetic identity of the underlying sequences. We have shown, in word spotting and

word discovery experiment, that the joint use of DTW and SSM based comparison,

is beneficial for improving robustness of the system to speech variability. The benefit

consists in the possibility of admitting an increased amount of spectral intra-motif

variability, to allow for the detection of the more variable occurrences of a speech

motif (like the inter-speaker ones), while ensuring an acceptable level of purity of the

repetitions detected.

The usefulness of the system has also been demonstrated in a near-duplicate

discovery task in broadcast radio, where the end goal is to discover repetitions of

songs in a series of 24h radio streams. The success of the system has been achieved

by applying a number of tricks for dealing with large scale issues, allowing to perform

the task in a reasonable time. The evaluation showed the capability of the algorithm of

recognizing, in the absence of any false hit, almost every occurrence of those repeating

songs. The found songs have, for the most, retrieved by short excerpts rather than

by their entire length.

9.2 Future work

In this section, a brief overview is provided that enumerates and describes some

preliminary ideas for future developments triggered by this work.

9.2.1 Speeding up library search in word discovery

The word discovery experiments detailed, have shown the relevant impact of library

search on the computation time required to perform the task. For a critical size of the

library, computation can be unacceptably slowed down as each seed can be potentially

compared with each of the models in library. This notably limits the utility of the

system in those situations that may cause the library size to grow in excess. For

instance:

• to higher ǫDTW values correspond increasing values of computation time, as

shown previously. While we would like to set a value of ǫDTW to allow for a

specific degree of intra-motif variability (possibly determined by a desired level
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of precision-recall), computation time issues may force an upper bound to ǫDTW,

limiting our freedom of choice in parameter setting.

• at a fixed value of ǫDTW, the size of the library directly depends on the size of the

data set. Beyond a certain, critical size of the data set, computation time might

grow uncontrolled. At the present time, scalability issues strongly constrain the

size of the spoken documents that can be processed in a reasonable time.

Speeding up the library search procedure is thus a crucial problem that needs to be

addressed. Two possible research directions are illustrated:

• the use of the triangular inequality for reducing the number of comparisons

in library (disregarding, for the moment, that this assumption is not generally

true).

• The use of fingerprints of speech templates to speed up each comparison in

library.

Triangular inequality for reducing the number of comparisons. The basic

idea is to exploit the triangular inequality to eliminate the need for computing all

DTW-distances between a seed and the motif models in library. We can introduce

the idea by referring to a DTW-based isolated word recognition scenario, which is the

task of recognizing a word in a vocabulary of speech templates by DTW comparison

(in fact, the library search procedure in seeded discovery can easily be regarded as

an instance of such task). Consider a test word x to search in a given vocabulary V .

If we assume that DTW induces a metric-space structure in the set of all possible

parametric representations of words, for every y, z ∈ V we can write that:

DDTW(x, y) + DDTW(y, z) ≥ DDTW(x, z) (9.1)

which is indeed the triangular inequality. From (9.1) we can write:

DDTW(x, y) ≥ DDTW(y, z) − DDTW(x, z) (9.2)

This means that the right side of the inequality lower bounds DDTW(x, y). Suppose

we are interested in knowing whether x and y match, that is DDTW(x, y) < ǫDTW. If

DDTW(y, z) − DDTW(x, z) > ǫDTW, from (9.2), we can infer that DDTW(x, y) < ǫDTW

without directly computing DDTW(x, y). If all distances DDTW(y, z) are precom-

puted, we can avoid computations of DDTW(x, y) for all those y ∈ V such that
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DDTW(y, z) − DDTW(x, z) > ǫDTW, for which only the computation of DDTW(x, z)

is required. According to this procedure, a certain number of comparisons can be

avoided, without any risk of skipping possible matches (according to a DTW score).

There are two main issues that prevent the straightforward application of this

technique:

1. dynamic time warping dissimilarity measures cannot be assumed to be a metric

as they not fulfill all the required properties (and, in particular the triangular

inequality).

2. in our specific library search procedure, comparisons are performed by SLNDTW.

Therefore the DTW score computed, involves the seed s and a subsegment fs(m)

of a motif model m, induced by the seed. Since each subsegment depends on

the given seed, is not possible to precompute the distances among the various

motif models.

A positive answer to the first problem can be provided, while a solution to the second

is still under investigation and might be subject to future work.

Concerning the metric properties of DTW, the most comprehensive work aiming

at checking the degree of satisfaction of the triangle inequality by DTW algorithms

has been published in a series of papers by Vidal and his colleagues (Casacuberta et al.

(1987); Vidal et al. (1985, 1988)). In this papers they proved empirical evidence of

loose satisfaction of the inequality by DTW in real speech. This evidence led them to

propose an algorithm to reduce the number of DTW computations between the test

word and the prototypes in library, to finally achieve a 70% reduction of computations

with many vocabularies of different characteristics.

When adapting this strategy to our specific context, the main issues rises from

the use of SLNDTW. In fact, given a seed s and two motif models m1 and m2, the

triangle inequality can be applied so as to obtain:

DDTW(s, fs(m2)) ≥ DDTW(s, fs(m1)) − DDTW(fs(m1), fs(m2)) (9.3)

Suppose that DDTW(s, fs(m1)) has been already computed and we would like to pos-

sibly avoid the computation DDTW(s, fs(m2)). In this case, we should be able to prove

that DDTW(s, fs(m1)) − DDTW(fs(m1), fs(m2)) ≥ ǫDTW. As mentioned already, both

fs(m1) and fs(m2) depends on the specific seed, hence DDTW(fs(m1), fs(m2)) cannot

be precomputed and used indifferently for all seeds.
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The possible countermeasure consists in finding an upper bound, as tight as pos-

sible, of DDTW(fs(m1), fs(m2)) that is independent of the seed. An example of such

upper bound is provided by:

UB (DDTW(fs(m1), fs(m2)) = arg max
f(m1),f(m2)

(DDTW(f(m1), f(m2))) (9.4)

In this expression f(m1) and f(m2) are subsegments of m1 and m2 that maximize the

respective DTW scores. This term is an upper bound, but not tight enough. A way

of improving the selection of f(m1) and f(m2) to obtain a tighter bound is to restrict

the search over those subsegments of length comparable to the seed length. This is

because fs(m1) and fs(m2) are likely to have a length comparable to the seed length,

as a consequence of the local constraints in DTW that push toward diagonality of

the alignment paths.

We have not comprehensive results on this, but informal experiments seem quite

encouraging in revealing the tightness of this last upper bound.

Speech fingerprints to speed up computation. A related line of research that

aims at speeding up the library search operation, consists in designing and imple-

menting fingerprints of motif models to make a single comparison faster.

The technique used in Shazam is specifically designed for identification of mu-

sic patterns and previous efforts have demonstrated the inapplicability to retrieval

tasks in speech (Ogle & Ellis (2007)). Among alternative techniques, it might be

considered the audio fingerprinting system designed in (Haitsma & Kalker (2002)).

This fingerprint is constructed by concatenating the signs of the energy differences

(simultaneously along the time and frequency axes) of overlapping frames containing

the spectral information of the signal.

Alternative systems might be examined from the specific literature or novel de-

signed for our specific purpose.

9.2.2 Probabilistic modelling of motifs

A fundamental aspect impacting the recognition capability of the system is repre-

sented by the type of motif modelling. This is because, rather than comparing a

speech fragment to all collected instances of a motif, we only perform pattern match-

ing with a unique template, which is hence hoped to well represent the underlying

word despite the possible variations in speech. In this thesis we have investigated
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the use of three modelling strategies, namely: average, median, and random occur-

rence. We would like to explore alternative strategies to approach performance of

those naive systems that do not model motifs but compare all speech fragments with

another one, combining the resulting scores to identify and cluster motif occurrences.

These systems are clearly more performant in collecting motif occurrences, but their

complexity is also quadratic with respect to the size of the data set.

The use of a model in a lexicon of speech units is at the base of ASR systems,

where those models are trained on large, labeled corpora, with the aim of producing

a model that can properly handle speech variations. Producing more representative

and robust models is a great challenge within our framework, because we do not

rely (and we do not want to) on such training material. On the other hand, the

power and flexibility of hidden markov models (HMM) for acoustic modelling have

proven the main responsible of major advances in speech recognition over the past

two decades. Can we take advantage of all the research efforts devoted to HMM to

improve motif modelling? A similar approach was taken in (Minnen et al. (2007))

where seed motifs are identified by extracting the subsequences located near density

modes in the distribution of data in the feature space. The detected segments are then

used for training HMMs. Applied to the specific case of speech sequences, natural

questions arising are:

• how to select the initial seed motifs?

• how many of them do we need to obtain reliable models?

• what kind of HMM topology is to be used?

• how to adapt the seed-match extension framework when using HMM? This

basically corresponds to properly modifying the classical Viterbi algorithm as

we have done with DTW.

• how to update a HMM as a new occurrence is found?

These questions could be potentially answered in future work explicitly addressing

the modelling issue.
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9.2.3 Performance measure

An issue of utmost importance concerns the standardization of performance indica-

tors and data set for audio motif discovery. The lack of a common, accepted eval-

uation framework makes interpretation and quantitative comparison of performance

extremely difficult among different systems. Usually, some form of precision-recall

measure can be identified in the various work, but no benchmark currently exists.

There are several open questions that need to be addressed:

• What kind of data set is the most suitable as a benchmark data set? We have

relied on broadcast news shows from different channels airing the same day.

The idea was to take advantage of the presence of repeating topic-specific terms

uttered by different talkers. In (Park (2006)) academic lectures are used that

focus on certain topics (hence characterized by many repetitions), but those are

mostly speaker-specific. In other work, like (Jansen et al. (2010); Minnen et al.

(2007); ten Bosch & Cranen (2007); Zhang & Glass (2010)) discovery is mostly

performed on sentences of a few seconds like those in the TIMIT corpus (as in

Minnen et al. (2007); Zhang & Glass (2010)) or a few minutes, like the single-

speaker conversation sides from the Switchboard corpus used in (Jansen et al.

(2010)). Performing discovery on a unique stream or separately over multiple

utterances has a different outcome on performance and computation time.

In general, the type of speech data (academic lecture, conversational meeting,

broadcast news show), the size of the data set, the presence of a single or

several talkers have a relevant impact on performance, that might results in

very different results, even when the same type of performance measure are

adopted.

• What kind of annotations are to be used for evaluation purposes? We have

described a phonetic-level evaluation based on the availability of phonetic align-

ments included in the ESTER corpus. However, by only using phonetic align-

ments, we cannot precisely discover how many words in the corpus are effectively

repeating, an information that is crucial to measure recall rates. Appropriately

combining word and phonetic level evaluation might allow for a more exhaustive

interpretation of the results.

• How to define proper performance indicators? Obviously, the definition of a

appropriate performance measures is also related to the availability of a certain
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type of annotations. Besides precision-recall, measures that quantify sensitivity

to certain sources of variability (like intra and inter-speaker variability) are

useful, as well as more rigorous assessment of the scalability issues arising from

a given computational system.

We believe some efforts need to be done for proposing evaluation strategies that

are clear and comprehensive of all aspects of a discovery system.

9.2.4 Possible Applications

We enumerate in the following a number of novel possible application where motif

discovery, or the pattern matching technique we have introduced, can be potentially

useful.

Consistency checking in ASR. Motif discovery can be incorporated in ASR

systems as a tool for checking consistency in the output of speech recognizers. For

example, a recognizer can produce different transcripts for segments that a motif

discovery system has labeled as occurrences of a same motif. We might use this

information as an additional source of knowledge to be integrated in the ASR system.

If the output of the discovery system is sufficiently reliable, we might want to train the

recognition system such that it also deems acoustic motif occurrences as characterized

by the same lexical identity.

Template based speech recognition. Recent advances in speech recognition

has seen a revival of the so-called template-based speech recognition (Wachter et al.

(2007)). As in the HMM framework, the recognition problem is formulated according

to a Bayesian paradigm, but instead of modelling speech, actual segments of speech

underlining a given word (or subword unit) are matched against a test utterance.

While different sources of knowledge are fused in the recognition framework, the

pattern matching technique relies on the well-known DTW algorithm. Somehow a

parallel can be drawn between template-based continuous speech recognition and mo-

tif discovery, and it would be interesting to see if unsupervised matching technique,

as those we have introduced, can complement and thus help the recognition within

such novel ASR systems.
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From text independent to text dependent speaker verification. Speaker

verification is the task of checking whether two speech utterances are spoken by the

same talker or not. It is used to verify if a user, claiming a certain identity, is lying or

not, according to his voice. Speaker verification systems fall into two main categories:

text dependent and text independent. In the first case, the text pronounced by the

speaker is the same, in the second case there is no assumption on what has being

said. Text-dependent systems are known to outperform the other ones, as there is no

lexical variation that can generate ambiguities in the authentication. Now, suppose

we are able to determine, without any a priori knowledge, whether the two speech

utterances share a common pattern (a word, a group of words, or the entire sentence).

If we are able to directly recognize the presence of such occurrences, a text-dependent

task can be performed on them, thus approaching performance of a text-dependent

system.
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