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Notations

General
En : N-dimensional Euclidian space
Cn : Space of functions that are n times continuously derivable
C∞ : Space of functions that are indefinitely derivable

Card (S) : Cardinal of set S
L(R) : Set of integrable (or Lebesque-measurable) functions
L2(R) : Set of square-integrable (or Lebesque-measurable) functions

(x, y, z) : Coordinates whose components are x , y and z
[x, y, z]T : Vector whose components are x , y and z
〈−→u ,−→v 〉 : Inner product (generalization of the dot product) of vectors −→u and −→v

A : Matrix A
AT : Transpose of matrix A

Tr (A) : Trace of matrix A
det (A) : Determinant of matrix A

aij : Coefficient of matrix A at row i and column j

∇f : Gradient of function f
∆f =∇2f : Laplacian of function f
−→∇ · −→a : Divergence of vector −→a

rot
(−→a ) : Curl of vector −→a

Image processing

It : Image at time instant t in a sequence
It (x, y) : Luminance value at position (x, y) in It
SI : A sequence of images

Ω : Support of an image
−→
∇I : Spatial gradient of image I

Pt (x, y) : A point from image It located at coordinates (x, y)
Pt (x, y) : Pixel colour intensity at coordinates (x, y) in It

O : An object contained by an image or a scene
R : A region of an image
B : A block of an image

Q : Quantization operator

xxi



xxii NOTATIONS

Motion estimation
It : Synthesized image at time instant t
Ît : Motion compensated image at time instant t
Ĩt : Decoded image at time instant t
−→
d : Displacement vector of the motion field
−→v : Speed vector of the optical flow
τs : Temporal sampling period

Mt : A meshing of the image It
wi→j : Warping operation from time instant ti to time instant tj

V : The motion field
V(x, y) : The value of the motion field at position (x, y)

Motion tubes
MT : A motion tube
T : Textural information of a motion tube
L : Lifespan of a motion tube
W : Motion information of a motion tube

ΩMT (t) : Support of a motion tube at time instant t
GMT (t) : Center of gravity of the support ΩMT (t) at time instant t
TMT (t) : Trajectory of a motion tube

CMT : Motion tubes coding operator
CT : Motion tubes texture coding operator
CL : Motion tubes lifespan coding operator
CW : Motion tubes deformation coding operator
RMT : Motion tubes rendering operator

FMT (tref) : A family of motion tubes referenced at time instant tref
NFMT

(
ti, . . . , tj

)
: A bi-family of motion tubes

{
FMT (ti) , . . . ,FMT

(
tj
)}

at temporal level N⋃
: Motion tube composition operator

F ⋃ : Motion tubes family composition operator



Introduction

Digital signal transmission has been first introduced to secure highest-level allied communications during World
War II. The underlying secure system, known as SIGSALY, mainly relied on a modulation technique introduced by
Ralph Miller and Bob Badgley: the Pulse Code Modulation (PCM). By regularly sampling an analogue signal

and quantizing resulting samples to a series of symbols into a numeric code, the PCM turned out to be a pioneering
technique in digital signal processing field. Later, C. E. Shannon would laid the foundation stone of modern information
theory, with the introduction of his famous Nyquist-Shannon theorem, providing the minimum sampling rate which should
be used to achieve perfect reconstruction of a signal. From there, considerable efforts have been put into finding ways
to reduce the bandwidth required to properly transmit a signal, and the field of its application considerably broadened
throughout the years.
Nowadays, digital communications have become essential in numerous domains, including Internet Protocol (IP) traffic,
mobile communications - Global System for Mobile communications (GSM), Universal Mobile Telecommunications System
(UMTS) and Long Term Evolution (LTE) standards -, Digital Radio Broadcast (DRB) and Digital Video Broadcast (DVB),
etc. Amongst ever increasing amounts of information being transmitted across these various communication channels, a
large part of the traffic consists of video information. By 2014, it is expected that the global IP traffic will quadruple, and
the sum of all forms of video information - IP Television (IPTV), Video On Demand (VOD), Internet, Peer To Peer (P2P)
- will represent 91% of this traffic [CIS10]. In mobiles, during the same period, the video traffic is expected to increase by
6000% [CIS10]. In both cases, the increase in bandwidth provided by future optical networks and mobile communication
standards will not be able to compensate for such an increase.
Henceforth, the need for increased compression abilities is more than ever critical for the establishment of future
communication systems. Despite the current efficiency of state of the art video compression schemes, it is crucial for
research to focus on ways to further improve video compression mechanisms. In this connection, forthcoming video
compression standard, namely High Efficiency Video Coding (HEVC), has been required to provide 50% in bitrate savings
compared to the actual standard ITU-T H.264/AVC.

Problem statement

During the last 30 years, researches have been actively focusing on ways to compact the spatio-temporal information hold
by image sequences. As a result, numerous video compression schemes have been provided, with increasing compression
abilities. Typically, the compression is carried out by several decorrelation mechanisms in charge of detecting and
capturing the different forms of redundancies an image sequence may hold.
Three main approaches have been proposed throughout the years. On one hand, predictive decorrelation techniques rely
on a prediction model to guess future values of a signal. Assuming that the prediction model is appropriate, it may be
expected that most of the images contents can be blindly retrieved from already available samples. On the other hand,
transform-based techniques can also be used to describe the images in alternative spaces which may naturally provide a
compact representation. Finally, synthetic techniques can also be used whenever the signal contents can be specifically
modelled.
In image sequences, however, the decorrelation along the temporal axis is drastically improved when motion compensation
is used. Indeed, successive images from a sequence can generally be interpreted as successive projections of an original 3D
scene onto the image plane at different time instants. In that capacity, modelling and estimating the motion information
is a central problem in video compression. This gave birth to numerous motion compensation schemes, in particular
those providing an optimal trade-off between motion representation abilities and amount of motion information have been
extensively used in video compression.

1
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In the end, the combination of multiple decorrelation techniques, along with an efficient motion compensation, led to
numerous video compression schemes. Classically, the standard approach to video compression locally process both
temporal and spatial dimensions. Images are partitioned into blocks, typically called macroblocks; each of which may
then be decorrelated from either a spatial approach (also known as intra coding) or a temporal approach (also known as
inter coding). As for the temporal axis, it is processed on a frame by frame basis. Locally describing the images contents
is an attractive attribute, however standard approaches may suffer from their inability to provide a continuous temporal
representation. As a consequence, this may penalize their abilities to extract the redundancies along the temporal axis.
Besides standardized video compression schemes, numerous disruptive approaches have also been provided throughout
the years. In particular, 3D Wavelets have been extensively investigated as they provide a continuous representation of
both spatial and temporal domains. They later inspired analysis-synthesis schemes which generally provide a continuous
representation of the textural information across time. Despite all their attractive features however, they were a limited
success with normalization committees which mostly advocate the classic low-computational block-based approach. In
particular, the inability of analysis-synthesis techniques to provide a perfect representation was highly criticized.

An original approach to video compression: the motion tubes

From the above discussion, it appears that an ideal compression system might be obtained by locally decorrelating the
spatial contents, and globally processing the information along the temporal axis. In practice, this can be obtained by
continuously tracking local areas of an image sequence across time.
Putting aside the traditional frame-macroblock paradigm, it is proposed to construe image sequences as a collection of
spatio-temporal units which deform and move across time and space. These structures are called motion tubes, and rely
on three types of information:

• a textural information accounting for the textural contents of the area being tracked;
• a lifespan information controlling the time interval during which the patch can be tracked;
• a set of motion descriptors modelling the deformation of the patch across time and space.

Problem raised

From such a spatio-temporal structure, the resulting representation exhibits the temporal persistence of the textural
information. However, this raises several problems:

• how can various deformations that a patch of texture undergoes can be modelled in a simple way?
• unlike other approaches to video compression, motion tubes cannot guarantee the images to be perfectly and/or

completely reconstructed: which additional mechanisms need to be used to address these issues?
• it is expected that an image area may be accounted by several motion tubes: which life and death mechanisms

should be used to limit these redundancies, and remove or shorten unneeded motion tubes?

Proposed solutions: key contributions

Once the notion of motion tube has been further introduced, their motion, textural and lifespan parameters, along with
their effects on the provided representation, will be investigated within this thesis. Key contributions brought by this
manuscript include:

• a simple and effective motion model which allies both the advantages of disruptive approaches and the relative
simplicity of the standardized approach;

• several mechanisms in charge of improving the synthesized textures will address a critical problem: motion tubes
may fail at accounting for the whole textural information of an image sequence. As a consequence, it is essential
for unregistered areas to be handled through additional mechanisms;

• a life and death mechanism in charge of detecting, shortening and/or removing redundant or inneficient motion
tubes in regards to representation and compression.
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Organization of the thesis

This manuscript is organized into three main parts.

• At first, chapters 1, 2 and 3 will dwell upon a large range of antecedent signal and image processing techniques
commonly used in video compression. In particular, decorrelation techniques, motion compensation techniques,
and existing video compression schemes will be reviewed.

• Then, chapter 4 will introduce a spatio-temporal structure that can be used to compactly describe the spatio-
temporal contents of an image sequence, by exhibiting the temporal persistence of the textural information. This
structure will be called a motion tube .

• Finally, chapters 5, 6 and 7 will respectively focus on the motion information, the textural information and the
lifespan of the motion tubes: three types of parameters driving their behaviour across time and space.

Antecedent approaches dedicated to the representation and the compression of signals
Chapter 1 will focus on a wide range of techniques aiming at capturing the correlation hold by image sequences.

Typically, they fall into three categories: predictive, synthetic and transform decorrelation techniques. In image
sequences, these techniques often focus either on the spatial domain or on the temporal domain. In the spatial
domain, on one hand, transform techniques have been extensively used to describe the spatial features hold by an
image. Some of them locally model the geometry, thus adapt to the geometrical contents. On the other hand, in
the temporal domain, direct applications of classical decorrelation techniques often fail at efficiently capturing the
redundancies. As a consequence, they generally rely on the motion information to further decorrelate the images
along the temporal axis.

Chapter 2 will be dedicated to motion compensation, and its underlying problems: the representation and the estimation
of the motion information which links successive images from a sequence. Typically, image sequences can be
interpreted as the projection of a 3D scene onto the image plane. Under this assumption, the real 3D motion
is projected onto the image plane as well; it can then be measured from the optical flow corresponding to the
displacement of the pixellic intensities. From this optical flow, the motion can be conceptualized in various ways,
and numerous motion models have been provided throughout the years including dense motion fields, parametric
motion models and models based on the deformation of geometrical shapes. Besides the problem of representation,
a large number of estimation techniques have been provided to fit the parameters of these models to the actual
motion information. In an eye to compression, chapter 2 will highlight two motion models which have been
extensively used in video compression: blocks and meshes. Dedicated motion estimation techniques will also be
investigated.

Chapter 3 will focus on video compression schemes. Typically, they combine a set of decorrelation techniques; in particu-
lar, spatial decorrelation techniques are called intra coding techniques, while temporal decorrelation techniques are
called inter coding techniques. At first, chapter 3 will review several processing tools on which most compression
schemes rely. Then, state of the art ITU-T H.264/AVC video compression standard will be briefly reviewed. Finally,
disruptive approaches will also be investigated, whether they rely on Wavelets or analysis-synthesis paradigms.

Introducing the notion of motion tube
Chapter 4 will introduce the concept of motion tubes: the ability to track a patch of texture across time and space.

Indeed, the key feature of a motion tube is its ability to exhibit the temporal persistence of a local patch of texture.
This spatio-temporal structure will be driven from three sets of parameters: its motion parameters, its textural
information, and its lifespan.

Investigating the threefold nature of the motion tubes: motion, texture and lifespan
Chapter 5 will propose a motion model able to describe the deformation of a set of motion tubes. Inspired from

both standard approaches and analysis-synthesis approaches, the proposed model is able to describe various
deformations, while sticking to a low-computational block-based representation. In between block-based and
mesh-based motion compensation techniques, it will be provided with a set of additional features, including a
spatio-temporal regularization of the motion, the ability to connect or disconnect adjacent motion tubes, and a
local adaptation of the dimensions of the motion tubes to the images contents.
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Chapter 6 will focus on the the textural information of the motion tubes and the images they are able to synthesize.
Any change in the textural information of a patch being tracked should ideally be accounted for. In addition,
synthesized images may not be completely reconstructed Several mechanisms will be provided to improve the
quality of synthesized textures. At first, a relatively crude mechanism will be in charge of accounting for the
textural changes across the temporal dimension: even though the textural information is persistent, it may be
still be affected by various phenomena (illumination changes, resolution losses). Then, a second mechanism will
be in charge of registering as much textural information as possible, such that synthesized images do not show
unpredicted areas. Finally, as a last resort, an inpainting mechanism will be provided to complete the synthesized
images.

Chapter 7 will investigate several life and death mechanisms in charge of discarding motion tubes which provide poor
contributions to the reconstruction of images, including those which are redundant. As a first step towards a
motion tube quality/efficiency measurement, it will be proposed to compare the performances of the motion tubes
with those of the state of the art ITU-T H.264/AVC compression standard. From this competition, H.264/AVC’s
decisions will be used to discard and/or shorten any motion tube whose use is not significant enough.

Conclusion and perspectives

Finally, the conclusion will highlight and discuss key contributions the motion tubes bring to the field of video represen-
tation and compression. In addition, various perspectives regarding further enhancements and additional functionalities
of motion tubes will also be provided.



Chapter 1

Capturing the correlation within image
sequences

With increasing needs to send data over ever evolving transmission channels, numerous challenges emerged.
Among them, the need for fast and accurate ways to transmit an information has been widely considered. In
particular, compression aims at finding the most compact way to express a signal, thus requiring less bandwidth

and time for it to be transmitted.

Prior to the compacting operation, the representation used to model the signal takes an essential part into the compression
process. Indeed, signals typically hold a significant amount of redundancies which can be removed through decorrelation
techniques: the signal correlation level is closely related to the amount of redundancies it contains.

The natures of the redundancies which can be found into a signal are extremely various: no decorrelation techniques
is able to detect them all. Consequently, numerous decorrelation techniques have been proposed throughout the years,
and target a large range of redundancies. Compression and transmission schemes now unveil different processes, each of
which processing a specific type of correlation. As an illustration, figure 1 represents a generic video coding system:

• the input signal is likely to hold distinctive geometrical and/or temporal features which, once they have been
detected, can be advantageously used to drive a set of decorrelation tools;

• the transform operation processes the signal through a set any analysis functions: resulting coefficients express
whether or not the signal contains any of the corresponding patterns. Periodic variations, for instance, can be
exhibited by transforming the original signal into a frequency or a time-frequency domain;

• the prediction operation is used to compensate for local spatio-temporal correlations;
• the quantization operation is generally a lossy operation which reduces the dynamic of input coefficients, hence

requiring a smaller amount of information to be transmitted;
• finally, the entropy coding operation takes advantage from the statistical correlations of resulting coefficients and

further compacts the overall information.

Transform

Prediction
Entropy
coding

QuantizationInput signal

Source coding

Channel coding

((   ))

Figure 1: A traditional transmission scheme
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Typically, decorrelation techniques can be categorized into three families, according to the nature of the targeted
redundancies. The three of them are listed below.

Predictive techniques build a prediction of the current sample from its available neighbourhood. The prediction model
is designed from spatial and/or temporal correlation patterns.

Synthetic techniques propose to describe the signal from dedicated synthesis models. Synthetic representations are not
sample-based, and generally do not provide a perfect reconstruction of the signal. In images, for instance, the
textures may be synthesized from polynomial or fractal (self-similar) descriptions.

Transform techniques describe the signal into another space within which its representation is naturally more compact.
For instance, any signal may be described from a smaller amount of significant coefficients in an appropriate
transformed space, in comparison to its original formulation. The compactness, however, has been subject to
numerous discussions throughout the years, and may be interpreted in various ways (it is not exclusively related
to the amount of significant coefficients).

In image and video compression, each of these techniques have been considered. Predictive and synthetic approaches have
been used to decorrelate the signals across both space and/or time. Both these approaches will be briefly reviewed in
section 1.1, which will also explain why statistical coding techniques have not been included within this review. Transform
decorrelation techniques, in image compression, have been mostly dedicated to the representation of geometrical patterns,
hence focusing on the spatial dimension. Section 1.2 will review a large number of transforms which are commonly used
in still image compression. Then, section 1.3 will raise the problem of the decorrelation along the temporal axis, and how
essential is the role played by the motion information. Finally, section 1.4 will conclude the chapter.

1.1 Predictive, synthetic, and statistical techniques: a brief overview

1.1.1 A glimpse at predictive decorrelation techniques

Predictive decorrelation techniques aim at extracting the most obvious redundancies of a signal from its original expression:
a series of samples. Indeed, successive samples of a signal are very likely to be strongly correlated, especially near-
stationary signals. From a prediction model and previously processed samples, predictive decorrelation techniques are
used to predict future samples. Synchronizing the prediction model between the transmitter and the receiver, only the
prediction residues (i.e. the difference between the actual value of the current sample and its prediction) need to be
transmitted. Taking advantage from the Pulse Code Modulation (PCM), this is known as Differential PCM (DPCM).
A basic approach, for instance, predicts the current sample by its predecessor. This technique has been introduced by
Cassius Chaplin Cutler [Cut52] in 1952, then improved by E. Cummiskey in 1973 through the Adaptive DPCM (ADPCM)
[CJF73]. Since then, numerous alternatives have been proposed and further improve the prediction model. Most of
them consider a finite set of previous samples as parameters for their prediction model; this set is known as the causal
neighbourhood. In images, for instance, the causal neighbourhood is typically a set of pixels located on top and left of
the current pixel (provided that images are raster scanned from left to right and top to bottom). Figure 1.1.1 shows a
typical causal neighbourhood.

Causal neighborhood

Current pixel

Figure 1.1.1: A classic causal neighbourhood used for image pixel prediction

From a set of past samples, Autoregressive (AR) models have been widely proposed as a way to model the signal future
behaviour [PW83, Li07]. An auto-regressive model of order p is defined as

s[t] = c +
p∑
i=1

φis[t − i] + εt (1.1)

where φ1, . . . , φp are the parameters of the AR model, c is a constant offset and εt is white noise. Omitting the constant
c, such a model can be seen as the output of an all-pole Infinite Impulse Response (IIR) filter. The Moving Average (MA)
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extension of the latter model leads to the Autoregressive Moving Average (ARMA) model, which also takes into account its
previous predictions to build the current one. ARMA models are generally fitted to the reference data from a least-square
regression: MA parameters are optimized in order to minimize the prediction errors/residues. Non-linear versions of
these models have also been proposed to catch up with non-linear stationarities: Non-linear AR (NAR) and Non-linear
ARMA (NARMA) models.
Alternatively, probabilistic approaches were also proposed to predict the value of a signal. Markov chains provide a
powerful tool to model the behaviour of a random variable. Naturally, they have been extended to two-dimensional
random variables: Markov fields, Bayesian networks and Gibbs fields have been used to model the spatial behaviour of
such a random process [KS80]. In such case, images are considered to be a two-dimensional set of random events.
However, both AR and probabilistic models may end up into very computationally demanding prediction structures. In
practice, simpler predictors are rather used in image processing. The median predictor, for instance, is one of the most
popular prediction structure: it predicts the current sample by the median sample from the considered neighbourhood.
Some other advanced prediction schemes have been dedicated to images. X. Wu’s predictor [Wu97] builds a prediction
from several steps which successively enrich the considered neighbourhood. The final step, in particular, benefits from
both causal and anti-causal prediction samples. Along with hierarchical decorrelation approaches such as Gaussian and
Laplacian pyramids [AAB+84], X. Wu’s predictor has been shown to be particularly efficient [BDR05].
More recently, texture and structure synthesis approaches have been proposed to predict whole image areas. Using
advanced interpolation mechanisms, inpainting [CS02, LSW07a] and template matching [TBS06, GWL08], in particular,
are able to provide an accurate prediction of both the textural and the structural information of unknown areas. The
latter are interpolated from available textural and structural patterns of neighbouring areas.
In general, lossless still images representation and compression schemes mostly rely on a set of several consecutive
predictive decorrelation techniques. Lossy representations, on the other hand, typically hybridize predictive techniques
with alternative techniques to provide further decorrelation abilities. Among them, transform approaches are very popular;
they will be tackled in section 1.2.

1.1.2 A brief overview of synthetic decorrelation techniques

Synthetic decorrelation techniques are based on a synthetic model which is fit to the image from an appropriate
parametrization. Fractals, in particular, rely on a self-similar parametrization of the images In any case, synthetic
approaches do not consider the image as a set of pixels, but directly focus on its contents. Consequently, they are
generally unable to provide a perfect representation of the signal, and simply provide a good approximation.

1.1.2.1 Model based techniques

Most of the time, the contents of an image can be described through the parametrization of a specific model. Due to
the potential complexity of these contents, images are often partitioned into appropriate blocks or regions; each of these
are then parametrized by a particular model. In [KaMK85], regions are synthesized by appropriate two-dimensional
polynomial functions. In [Car88], images are represented by the shapes and the average intensities of segmented regions.
In [DR99, DBBR07, BD09], blocks of pixels are seen as the combination of a uniform function and a textural residue.

1.1.2.2 Fractal-based techniques

One can easily observe that parts of an image often resemble to other parts of the same image. This is known as
self-similarity and can be favourably exploited to represent an image in a compact manner. Indeed, fractal-based
representations only require fractal-codes to represent an image, such that it can be synthesized at any scale without
suffering from any loss of sharpness, which usually occurs when images are upsampled. However, it is generally impossible
to provide an exact representation of the original image.
The research on fractal image representation are consequences of works on chaos and fractals in the years 1978-1985.
A common metaphor to fractal representation is the following [Gal03]: consider a special type of photocopying machine
which reduces the image to be copied by half and reproduces it three times on the copy according to a given pattern.
The output of the machine is then iteratively taken back as an input. What is to be observed ? Whichever the original
image, assuming that the exact same reproducing pattern is used for each iteration, one can observe that the system
converges towards the same final image. This reproducing pattern thus fully determines what the final image will look
like.
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As a consequence, any image can be considered as the output of such a system, and may be fully characterized by an
appropriate set of reproducing patterns. Indeed, it has been shown that complex images could be obtained in only a few
iterations using simple transformations as reproducing patterns: this has been motivating the hypothesis that any image
could be represented by a relatively small set of transformations, thus offering a compact representation. Any contractive
transformation may be employed: W is said to be contractive if, for any two points P1 and P2,

d (W(P1),W(P2)) < d(P1, P2) , (1.2)

where d(P1, P2) is the distance between points P1 and P2. In other words, this simply indicates that, by repeatedly
applying this transform on P1 and P2, their projections converge towards the same point. Otherwise, this would lead to
images whose size is infinite. In practice, affine transforms able to skew, stretch, rotate, scale and translate have proved
to be sufficient enough to generate complex images.
Mathematically, the decomposition of an image into a set of transformations is described as an Iterated Function
System (IFS) [BJM+88, BS90]. An IFS is a set of N contractive transformations {W1 . . .WN |Wi : Ω→ Ω} (also
called mapping functions). Ω ⊂ R2 is the support of the image. According to the set of mapping functions, the IFS
describes a set A∞ known as the fixed point of the Hutchinson operator H [Hut81], which is defined as

H(A) =
N⋃
i=1
Wi(A), A ⊂ Ω. (1.3)

Thus, taking I = A∞ as the input image, successive iterations of Ak+1 = H(Ak ) will converge towards I for any non-empty
initial set A0: I is a union of mapped copies of itself. In other words, it is possible to reconstruct the image I from any
initial image using the appropriate transformation H. A practical approach to fractal representation is given in [Fis92]:

1. the input image (or range image) is partitioned into blocks B range,i of size s× s;
2. the image is down-sampled by a factor 2 and low-pass filtered; this new image is called the domain image;
3. for each B range,i of the range image, a similar block B domain,i is searched within the down-sampled domain image;
4. a mapping (or transform) function Wi is chosen such that ∀i, B domain,i = B range,i .

However, such an approach is very computationally demanding of the encoder side; and practical implementations failed
at providing a reasonable computing speed. Further improvements to fractal representations yet proposed faster ways to
find appropriate transformations to represent an image using fractals [Kom97, HKFT00, WJC05, RKDM06, WJH07].

1.1.3 Why statistical coding techniques should not be considered as decorrelation techniques

In parallel, statistical coding techniques (also known as source coding or entropy coding techniques) have been derived
from the information theory introduced by C. E. Shannon as a way to detect and remove the statistical correlations of
the signals. C. E. Shannon’s source coding theorem establishes the limits to possible data compression as the entropy of
the signal [Sha48]. Since then, numerous source coding techniques have been proposed: recent source coding techniques
now practically reach the entropy limit. Among entropy coding algorithms, one could mention in particular Huffman codes
[Huf52] which build a binary tree of symbols, Golomb-Rice run-length encoders [Gol66] which use symbols whose length
is a function of the value to encode, Elias gamma codes [Eli75], and arithmetic codes [Jel68, Ris76, RLJ79, LJ84] which
use floating point intervals to describe a sequence of symbols.
Whichever the technique considered, decorrelating a signal changes its intrinsic nature into a representation which
exhibits a specific type of redundancies. On that account, statistical coding (also known as entropy coding) will not
be classified as a pure decorrelation technique. Indeed, statistical coding (or statistical decorrelation) does not change
the nature of the signal: it simply restructures the symbols to be transmitted in order to minimize their entropy. As
a consequence, statistical coding will not be further reviewed in this chapter, which only focuses on pure decorrelation
techniques.

1.2 Spatial correlations: a focus on transform techniques

Previous section has introduced the notion of decorrelation and has provided a brief overview of predictive and synthetic
approaches. Predictive techniques, on one hand, provide an efficient mechanism which locally models the signal, but fail



1.2. SPATIAL CORRELATIONS: A FOCUS ON TRANSFORM TECHNIQUES 9

at detecting global redundancies which require the signal to be considered in its entirety. Synthetic techniques, on the
other hand, consider the signal its entirety, but fail at providing an accurate representation of the signal.

In between those two approaches, transform-based techniques provide a global approach to the decorrelation, while
providing an accurate representation. From a set of analysis functions, they enable the signals to be processed in
alternative domains, wherein the correlations are much more obvious. Ideally, resulting transform coefficients form a
more compact description of the original signal. For these reasons, transforms have been extensively used to decorrelate
images. In an eye to compression, an idealistic transform should:

1. fit the correlation patterns of the signal;
2. lead to a compact representation, with respect to the way compactness has been defined (repartition of the energy

throughout the spectrum, variance of the transform coefficients, etc);
3. be near-lossless or lossless invertible to guarantee the ability to retrieve the original signal expression into

temporal or spatio-temporal series of samples;
4. finally, be as low-computational as possible.

Historically, transforms have been introduced through the frequency analysis, whose foundation stone was laid by the
Fourier Transform (FT). The latter will be briefly reviewed in section 1.2.1. Numerous other transforms have then been
built after the FT, and have been extensively reviewed throughout the years. At first, numerous transforms employing a
fixed set of basis functions were proposed; some of them will be reviewed in section 1.2.2. Then, a second generation of
transforms were designed to take into account the image geometry; they will be reviewed in section 1.2.3.

1.2.1 The emergence of the frequency analysis through the Fourier Transform

The FT [Bra00] laid the foundation stone of the frequency analysis, also known as the Fourier analysis. FT was later
linked to similar transforms such as Laplace Transform and its discrete version, the Z-transform [RZ52]. Since then, FT
became very popular as a way to identify the harmonics of a periodic signal. The Fourier Transform of an integrable
function f(t) ∈ L(R) is given by

F [f(t)](ω) =
∫ +∞

−∞
f(t)e−iωt dt (1.4)

where ω is the angular frequency of the harmonic on which the signal is projected. L(R) is the set of integrable (or
Lebesque-measurable) functions. For two-dimensional signals, the FT basis functions e−i(ωx x+ωyy) = eiρ(xcosθ+ycosθ)
correspond to plane waves which propagate in direction θ and oscillate at frequency ρ (see figure 1.2.1). In order to
handle discrete signals (of limited duration), FT has been discretized into the Discrete FT (DFT) and expresses the
spectrum of a signal by a finite number of harmonics. In practice, the DFT is generally implemented with fast algorithms
such as the Fast FT (FFT) [CLW69]. However, the FT suffers from the complexity of its basis functions and does not
provide a very compact representation.

(a) Horizontal, θ = 0 (b) Diagonal, θ = π/4 (c) Vertical, θ = π/2

Figure 1.2.1: Real part of the Fourier Kernel for three different directions
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1.2.2 First generation transforms: no adaptation to the image geometry

Originally, transforms were applied to blocks of pixels: similarly to the predictive approach to decorrelation, they only
provided a local representation of the signal. However, splitting the signal into disjoint blocks would introduce some
blocking artefacts; as a workaround, some lapped transforms were designed to be applied to overlapping blocks, which
drastically reduced blocking artefacts. Besides frequency transforms built after the FT, the time-frequency transform
domain was also investigated through the Wavelet transform, which can be applied on entire signals at once, thus removing
blocking effects, but introducing some ringing artefacts.
Alternatively, an optimal transform known as the Karhunen-Loève Transform (KLT) [Kar47, Loè78] is used to express a
signal in the space of its principal components. In other words, the basis functions used to model the signal are given
by the eigenvectors of its covariance matrix. In other fields, it is also known as Principal Component Analysis (PCA)
[Pea01], Hotelling transform, or even Proper Orthogonal Decomposition (POD). It has been shown to be, so far, the most
efficient transform in terms of compaction. However, the KLT is very computationally demanding and was not used in
practice until recently. Until then, it was considered as a compaction reference, that other transforms could be compared
to. For these reasons, the KLT will not be further reviewed.
Whichever way, all these transforms share a common limitation: they cannot take into account the image geometry. In
particular, they are blind to the directionality of geometrical patterns hold by the images. In practice, however, these
transforms still provide great decorrelation abilities to numerous compression schemes. Section 1.2.2.1 will review the
most popular block-based transform: the Discrete Cosine Transform (DCT). Then, lapped transforms will be reviewed in
section 1.2.2.2. Finally, the Wavelet transform will be reviewed in section 1.2.2.3.

1.2.2.1 The block-based Discrete Cosine Transform

Both the DCT [ANR74, RY90, Str99] and the Discrete Sine Transform (DST) were introduced as simplified versions of
the FT. The DCT uses cosine basis functions, while the DST uses sine basis functions. The DCT, in particular, was first
introduced by Ahmed et al. in [ANR74]. Its requires the signal to be symmetrical, thus cancelling the imaginary part of
the FT: this artificially compacts the transform spectrum. In other words, the DCT basis functions are equal to the real
part of the Fourier kernel (see figure 1.2.1). In addition, symmetrizing the signal removes the discontinuity problem at
the signal boundaries.
Consequently, the DCT has become a very popular transform: its two-dimensional version has been extensively used in
many still images coders (JPEG [ISO94a]) and video coders (MPEG-x [ISO93, ISO94b, ISO00a], H.26x [ITU90, ITU94,
ITU95]). Usually, the DCT is applied on 8×8 blocks, i.e. an 8×8 matrix of pixel intensities. Under these circumstances,
it returns an 8× 8 matrix C whose DCT coefficients cm,n are given by

cm,n = α(m)β(n)
7∑
i=0

7∑
j=0
B i,j cos

(
π(2i + 1)m

16

)
cos
(
π(2j + 1)m

16

)
(1.5)

where B i,j is the pixel (i, j ) of the original block, and α(m) and β(n) are scaling coefficients. Its original formulation
given in equation (1.5) induces an important amount of computations. Furthermore, floating points computations may
suffer from a lack of standardization homogenization, and successive rounding operations lead to a divergence between
the coder and the decoder.
Consequently, integer approximations of the DCT, Integer DCT (IntDCT), were proposed to reduce its complexity and
eliminate floating points computations. They rely on various factorizations of the floating point DCT matrix, and lead to
integer approximations of the DCT:

• direct approaches factorize the DCT matrix into a product of sparse matrices, which enables the DCT [CSF77];
• indirect approaches ease the factorization process through the Walsh-Hadamard Transform (WHT) [CON00];
• Alternative approaches iteratively apply the indirect factorization: the coefficients of a N × N IntDCT are

recursively computed from those of a N/2× N/2 IntDCT [CXL01, ZCBK01, WHS01, Abh02, COT+02, Abh03, HM03,
PT03a, PT03b].

The IntDCT, for instance, introduces a lifting [Swe96] decomposition of the 8 × 8 DCT. Alternatively, the Binary
DCT (BinDCT) [Tra99, LT00, Tra00, LT01] only requires binary operations to be performed . Both BinDCT and IntDCT
proved to be as efficient as the standard DCT from a rate-distortion perspective. Alternatively, ITU-T H.264/AVC video
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compression standard [JVT03, Ric03] applies an integer approximation of the floating point DCT on 4 × 4 blocks. Its
matrix formulation is given by

C = H .B.HT with H =


1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

 (1.6)

where B is the matrix representation of the input block B , and H is the transform matrix. This approximation of the DCT
proved to be very efficient and low computational. Later, a simplified 8 × 8 integer matrix transform was introduced by
H.264/AVC first amendment through the Fidelity Range EXTensions (FREXT) [STL04, JVT05].

1.2.2.2 Extension of the DCT to lapped transforms

Usual block-based transforms do not have any knowledge about the neighbourhood of the current block. Consequently,
they introduce some blocking artefacts stemming from the block boundaries. As a solution, it was proposed to take the
local neighbourhood of the current block into account to perform the transform (e.g. the Windowed FT (WFT) [HBS84]). In
particular, lapped transforms use overlapping blocks as support for the transform, which reduces potential representation
mismatches at the boundaries of the blocks. Enlarging the support of the transform requires an extended transform matrix
to be designed. However, the extension should not introduce any redundancies in the representation.
The family of lapped transforms was first introduced by P. M. Cassereau et al. in [Cas85, CSJ88]. Later, J. P. Princen
introduced the Modified DCT (MDCT) as a consequence of its work on Time-Domain Aliasing Cancellation (TDAC) in
[PJB87]. The MDCT has been used in audio coding MPEG-1/2 Audio Layer 3 standards [ISO93, ISO94b]. There also
exists an analogous transform, the Modified DST (MDST).
Later, Henrique S. Malvar and David H. Staelin finally provided in [MS89] a rigorous definition of lapped transforms as
lapped extensions of the DCT: the Lapped Orthogonal Transform (LOT). Instead of using N × N blocks, the LOT uses
L × L overlapping blocks, where N < L ≤ 2N . In particular, when L = 2N , the maximum overlapping ratio is obtained
and any pixel from the image plane belongs to up to 4 LOT blocks. Henrique S. Malvar later introduced the Modulated
Lapped Transform (MLT) in which the basis functions are built from a modulated filter bank structure [Mal90].
However, such transforms do not provide a great increase in a rate-distortion context, while being very computationally
demanding. As a consequence, they were never really considered as a potential alternative for a while. The breakthrough
came from the Lapped Biorthogonal Transform (LBT) [Mal98] which is less complex than previous lapped transforms.
Derived versions of the LBT have also been proposed: the Hierarchical LBT (HLBT) for the images, the Modulated
LBT (MLBT) and the Nonuniform LBT (NLBT) for the audio [Mal98]. The LBT has been subject to numerous optimizations
which proposed fast, integer and lifting version of this transform [Tra00, ZCC01, CZL02]. Lapped transforms have also been
studied by Trac D. Tran and T. Nguyen who proposed the Generalized linear-phase LOT (GenLOT) and the Generalized
LBT (GenLBT) [Tra00, ITN02].
Lapped transforms have later been conceptualized as a DCT transform coupled with a post-processing filter. However,
such consideration implies that the post-processing is entirely dependent on the form of the DCT. This approach was
later reversed and described as a pre-processing filter followed by a DCT transform. In such case, the pre-processing
filters are independent from the transform [TT01, LTT01, TLT03, DT03]; this allowed to further optimize lapped transforms.
Such an implementation of a lapped transform has been recently used in the JPEG eXtended Range (JPEG-XR) standard
[ITU09].

1.2.2.3 Time-frequency representation: the Wavelet transform

The frequency representation describes a signal from a set of periodic waves which last over the whole signal domain.
Non-stationary signals, however, generally do not hold such kind of harmonics; they are much more likely to hold
local harmonics specifically located in time (or space) and frequency. The frequency representation will spread their
discontinuities over a large number of harmonics, which will not end up in a compact representation. This is why, among
other reasons, frequency transforms such as the DCT are applied to tiny blocks of pixels. Besides, harmonics that
are neglected in the representation introduce some oscillations around the discontinuities, known as Gibbs phenomena
[Wib48].
To address these issues, an idealistic transform should be able to account for both global and local spatio-temporal
characteristics of a signal. In other words, it should be able to detect signal characteristic specifically located in time
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(or space) and frequency. As a first step towards time-frequency representation, the WFT employs basis functions both
localized in time and frequency. Its basis functions are given by the product of the Fourier basis function eıωt by a
sliding window g(t − tc) successively centred around time instants tc . In other words, the WFT is given by the Fourier
Transform of the windowed function f(t)g(t − tc)

F [f(t)](ω) =
∫ +∞

−∞
f(t)g(t − tc)e−iωt dt (1.7)

where g(t − m) may be, as proposed by Gabor in the 50’s, a Gaussian window which only keeps the original signal in
the neighbourhood of time instant tc . Typically, the shape of the window g(t − tc) is fixed, which does not allow the
WFT to grasp the characteristics of the signal at different scales.
Later, Wavelets were introduced as a way to perform a multi-scale time-frequency signal analysis. They were first
introduced by J. Morlet and A. Grossmann in early 80’s [GM84]. Rather than using a fixed window f(t)g(t − tc),
Wavelets rely on a set of translated and dilated versions of an elementary function ψ(t), known as the mother Wavelet

ψa,b(t) = a−1/2ψ
(
t − b
a

)
(1.8)

where a > 0 is the dilatation (scale) coefficient and b is the translation (shift) coefficient, and ψ ∈ L2(R). Low frequency
patterns, on one hand, are easily captured using large windows. High frequency patterns, on the other hand, are easily
captured using narrow windows. As a consequence, it is naturally proposed to partition the time-frequency domain into
bands whose duration is inversely proportional to the targeted frequency range. Similarly to the FT, the Continuous
Wavelet Transform (CWT) is then defined as

W[f(t)](a, b) = 1√
a

∫ +∞

−∞
f(t)ψa,b(t) dt =< ψa,b, f > (1.9)

where f ∈ L2(R) is a square-integrable function. The CWT has been later discretized into the Discrete Wavelet
Transform (DWT).
Location and regularity order are the main characteristics to be considered when designing a set of Wavelets [Pey05].
The regularity order limits the set of regularities which can be modelled by the Wavelets. The time-frequency location
enables the representation to capture specific oscillating phenomena located inside the considered window. Numerous
Wavelet basis have been proposed through the years, both for the CWT (hermitian Wavelet, Mexican Hat Wavelet,
Shannon Wavelet, etc) and the DWT (Daubechies Wavelets [Dau88], Haar Wavelets, Meyer Wavelets [Mey88], etc)
versions of the transform.
Later, Daubechies [Dau88], Mallat [Mal89a, Mal00], Meyer [Mey90] and Sweldens [JS94] expressed the CWT as a form
of Multi-Resolution Analysis (MRA). They split the time-frequency plane into a dyadic partition and introduce a scaling
function φ(t) known as the scaling function to access the different resolution levels. For each resolution level j , the
provided representation is refined from the information of resolution level j − 1: the Wavelet shows intrinsic scalability
features.
Finally, Wavelets have also been expressed in terms of filter banks [Mal89a, Mal89b, Mey90]. The transform is then
simply performed through an iteration of two filtering operations. At resolution level j :

1. a low-pass filter Lj , defined as the quadrature mirror filter of the scaling function φ(t), outputs the approximation
coefficients, which will be further filtered at next resolution level j + 1

2. a high-pass filter Hj , defined as the quadrature mirror filter of the mother Wavelet ψ(t), outputs the detail
coefficients.

Figure 1.2.2 illustrates this iterative process applied to image Lena; LLn, HLn, LHn and HHn refer to the output of a pair of
low-pass (L) and high-pass (H) filtering operations. Later, Biorthogonal Wavelets have been proposed to use linear-phase
filters whose design is much more simple [CDF92]. Finally, the lifting was introduced to further facilitate the design of
mirror filters, and factorize them into simple filters. It was first introduced by W. Sweldens in [Swe96, Swe97a, Swe97b].
The main interest of the Wavelets lies in their scalability features, which model a fundamental characteristic of the human
vision: the masking phenomenon [Fie93] which organizes the visual stimuli into a hierarchy. What is more, it is essential
to any scalable coder to dispose of such features; for this reason, the popularity of the Wavelets grew strongly over the
years. In particular, it strongly inspired the design of JPEG 2000 standard [ISO00b].
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Figure 1.2.2: Wavelet decomposition of image Lena on three levels using a Daubechies 9/7 [Dau88] filter

Despite all the additional functionalities provided by the Wavelets, they do not provide any kind of directional variety.
In two dimensions, the horizontal and vertical atoms only capture horizontal, vertical and diagonal characteristics.
Furthermore, the ratio of the support of the mother Wavelet ψ and the scaling function φ being fixed, the number of
coefficients used to represent an edge will be proportional to its length. In the end, the Wavelet transform, similarly to
the Fourier transform and its derivatives, is blind to the orientation and the size of the image contents.

1.2.3 Second generation transforms: towards geometry adaptive transforms

Classic frequency and time-frequency representations have proved to be limited regarding their content adaptation
abilities. As a step towards fully-adaptive transforms, directional transforms have been proposed to account for the
orientation and the dimension of the image patterns. Both frequency and space-frequency representations inspired a wide
variety of adaptive transforms and representations. A detailed review of such transforms can be found in [Rob08, LG08].
Directional frequency transforms have been proposed through modified versions of the DCTs. They will be further reviewed
in section 1.2.3.1. As for space-frequency representations, they also inspired numerous directional transforms known as
Second Generation (2G) Wavelets. Some of them intrinsically model the geometry of images, including Ridgelets,
Curvelets and Contourlets, and use a fixed set of basis functions to model various regularity patterns. They will be
investigated in section 1.2.3.2. Alternatively, Bandelets, Directionlets and Wedgelets explicitly model the geometry of
images, thus providing an adaptive set of basis functions which consists of a dictionary of geometrical patterns. They will
be further reviewed in section 1.2.3.3. Finally, sparse representations provide a more general approach to the adaptive
description of a signal according to its contents. They will be investigated in section 1.2.3.4.

1.2.3.1 Directional Discrete Cosine Transforms

While most directional transforms have been built after the Wavelet transform, a few of them have been derived from the
DCT. The Directional DCT (DDCT) was first introduced by Fu and Zeng in [ZF06, BZ07a, BZ07b]. They took inspiration
from the Shape-Adaptive DCT (SA-DCT), an object-based DCT transform [SM95, KS98, FKE07] used in MPEG-4 Part
2 standard [ISO00a]. Whatever the chosen orientation, the DDCT follows the exact same four steps (see figure 1.2.3):

1. the coefficients of the input block are transformed by a set of one-dimensional DCT along the chosen direction;
2. transformed coefficients are then organized into columns;
3. each line is then further transformed by a one-dimensional DCT;
4. coefficients are aligned from the left, then quantized and scanned by a modified zig-zag scan.

Directional
DCT

Horizontal
DCT

1

2 3

4

Figure 1.2.3: DDCT decomposition for a bottom-diagonal direction (θ = −3π/4)
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Both transforms suffer from the "mean weighted defect" [KS98]: the DC value is spread over several coefficients, and
quantization may have a disastrous effect on the representation. Consequently, it has been proposed to apply these
transforms on zero-mean blocks, and to separately send the DC value.

1.2.3.2 Establishing implicit geometry models: Ridgelets, Curvelets and Contourlets

a Detecting the orientation of the singularities: the Radon transform

The Radon transform [Rad17] extracts the singularities from a two-dimensional signal according to their orientation θ .
For any two-dimensional function I(x, y), it projects the signal into a direction given by an angle θ ∈ [0, 2π[, so that

Rad[I ](θ, t) =
∫∫ +∞

−∞
I(x, y)δ(x cos θ + y sin θ − t) dx dy (1.10)

where t runs through all the lines of orientation θ , and δ(x) is the Dirac delta function (see figure 1.2.4). Rad[I ](θ, t)
corresponds to a radial section of the spectrum of I . Assuming that I is crossed by a one-dimensional singularity whose
orientation is θ , the Radon projection of I(x, y) in this direction transforms the singularity into a point.

(a) A Radon section (b) A radial cut in I ’s spectrum

Figure 1.2.4: A line singularity oriented along direction θ is transformed into a single point in the Radon projection; its Fourier
coefficient are given by the corresponding radial section in I(x, y)’s spectrum

Thus, an image transform based on the Radon transform will be able to capture the orientations of the contents in images
(see figure 1.2.5). A discrete and exact implementation of the Radon transform has been provided through the Mojette
transform [Gué09]. From the Radon transform, Ridgelets, Curvelets and Contourlets were proposed as oriented transforms;
they ally the advantages of both Radon and Wavelet transforms.

b The Ridgelets: towards a multi-resolution analysis of directed singularities

The Ridgelet transform [Can98, CD99b, CD99a] cascades Radon and Wavelet transforms:

Rid[I ](a, b, θ) =
∫ +∞

−∞
ψa,b(t) · Rad[I ](θ, t) dt =

∫ +∞

−∞
ψa,b,θ (x, y)I(x, y) dx dy (1.11)

where ψa,b(t) is a mother Wavelet whose scale and translation factors are respectively a and b -see equation (1.8)-. The
new atom for the representation ψa,b,θ (x, y) = a−1/2ψ

(
(x cos θ + y sin θ − b)/a

)
is called a Ridgelet. Its orientation θ

enables the Ridgelets to efficiently represent straight contours. As for curved contours (especially C2 curvatures), they
can be easily represented as a succession of small straight pieces of contours.

Ridgelets, however, are only parametrized from their position along their direction axis θ: they cannot be be precisely
localized within the image plane. To address this issue, Donoho [Don00] proposed the construction of Orthonormal
Ridgelets as a windowed version of the Ridgelet transform. In practice, however, this family of Ridgelets are discretized
with difficulty.



1.2. SPATIAL CORRELATIONS: A FOCUS ON TRANSFORM TECHNIQUES 15

c Curvelets and Contourlets: discrete and practical directional transforms

Later, Candès and Donoho provided the Curvelets [CD99b, DV03] as a multi-scale transform which partitions the
frequency domain into ring-shaped sub-bands, which implicitly discretizes the direction θ . Each of these sub-bands are
split into blocks with a set of smoothing windows whose size depends on the resolution level. Finally, the transform is
applied to each of these blocks.

As an alternative, Do and Vetterli made a connection between the Curvelets and directional filter banks [DV01], thus
introducing the Contourlets [DV05]. In opposition to the Curvelets, Contourlets are intrinsically discrete. The sub-band
decomposition is partially performed by a Laplacian pyramid [BA83] which generates, for each resolution level, a low-
pass sub-sampled version of the input signal. Finally, the band-pass output is further input to a Directional Filter
Bank (DFB) [BS92], which gets rid of the intrinsic redundancy brought by the pyramidal representation. However,
their discrete implementations are currently highly redundant, thus fail at efficiently compacting the images, despite the
accurate local adaptation to the geometry which is provided.

(a) Wavelets: non-oriented (b) Curvelets and Contourlets: oriented

Figure 1.2.5: Analysis patterns of Wavelet and Contourlets transforms [DV05]

d Brushlets: adaptive tiling of the frequency plane

Brushlets were introduced by Meyer et al. in [MC97] as an alternative way to account for images contents in an adaptive
fashion. Instead of focusing on the spatial contents, Brushlets directly process the frequency plane, which is adaptively
partitioned into tiles of variable sizes. Where pure geometrical approaches may fail (e.g. locally periodic textures),
Brushlets proved to be an valuable alternative. However, they cannot handle piecewise smooth images.

1.2.3.3 Establishing explicit geometry models: Bandelets, Wedgelets and Directionlets

While the transforms designed after the Radon transform use a fixed set of basis functions, some other approaches
explicitly describe the images geometry. In particular, Bandelets, Directionlets and Wedgelets provide three different
representations of the geometry hold by a block of pixels.

a The Wedgelets: simple discontinuities

Donoho, Romberg and Wakin proposed to model the geometric structure of a block B from two uniform regions separated
by a straight discontinuity: the Wedgelet [Don99, RWB02, WRCB02]. The discontinuity splits B into two regions Ra
and Rb (see figure 1.2.6a). The Wedgelet is parametrized by:

1. the coordinates of the two points v1 and v1 where the discontinuity intersects with B ’s boundaries;
2. and the average intensities ca and cb of regions Ra and Rb.

Very efficient on images made of uniform regions (e.g. cartoon pictures), they are not a good match for natural images.
As a consequence, Wakin et al. hybridized the Wedgelets and the classic Wavelet transform in [WRCB02]: both
representations are competing to describe the current block.
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(a) Wedgelets: a simple discontinuity (b) Bandelets: geometric flow

d1

d2

Co-lines

(c) Directionlets: co-lines, integer lattice

Figure 1.2.6: Three ways to establish a model of the images geometry

b Modelling the geometric flow: the Bandelets

In images, the geometric flow corresponds to the field of spatial gradients of the pixels intensities. The geometry flow is
constant along isophotes (contours of equal intensity), hence along images contours. As a consequence, bandelets were
introduced by Mallat et al. and describe the structure of a block [PM05a, PM05b] through the directions of constant
geometry flow. The image is partitioned into a quadtree according to its geometric flow (see figure 1.2.6b). Two versions
of these Bandelets have been developed: 1G Bandelets and 2G Bandelets.
The 1G Bandelet transform performs, on each block of pixels, the following operations:

1. it re-samples the intensities of the pixels along the geometric flow;
2. it applies a deformed Wavelet transform to these intensities, folowing the geometric flow ;
3. finally, the bandeletisation further compacts the the Wavelet coefficients into Bandelets, according to their corre-

lation along the geometric flow.

Yet, First Generation (1G) Bandelets are not intrinsically discrete, and do not provide any scalability features. 2G
Bandelets [Pey05, PM05b, PM05c] were consequently proposed as a workaround. They directly apply the Wavelet
transform on the original image. Then, space-frequency coefficients from each sub-band are projected along the direction
of the geometrical structures of the considered sub-band. Finally, a one-dimensional Wavelet transform is applied to the
projected coefficients, which results in Bandelets coefficients.
From the provided geometry model, Bandelets are more efficient than Curvelets or Contourlets in terms of compression.
However, they are very computationally intensive. Also, they suffer from the problem of optimization of bitrate allocation
between the geometry description and the Wavelet coefficients.

c A lattice-based geometry model: the Directionlets

Even more recently, Vetterli et al. proposed another directional transform: the Directionlets [VBLVD05, VBLVD06,
VBLVD07, VBLV07]. The Directionlet transform is a separable, integer and multi-directional transform. To this end,
Directionlets are defined on an integer lattice Λ. Λ is defined as a linear combination of two vectors

−→
d1 and

−→
d2 ;
−→
d1 is

the direction of the transform and corresponds to the orientation of the regularity which needs to be represented,
−→
d2 is

the alignment direction. Each of these directions are partitioned into co-lines, defined as the intersections of the integer
lattice Z2 with Λ’s subsets (see figure 1.2.6c).
The image is then decomposed into anisotropic Wavelets; this is known as Anisotropic Wavelet Transform and written
AWT(n1, n2). The Anisotropic Wavelet Transform (AWT), originally dedicated to horizontal and vertical directions only,
performs n1 transforms along the first direction and n2 transforms along the second direction. An oblique version of the
AWT is applied to each of these co-lines, thus following directions

−→
d1 and

−→
d2 . This oblique version of the AWT is called

the Directionlet transform and written S-AWT(MΛ, n1, n2), where MΛ is the generating matrix of Λ.
In practice, the Directionlet transform is performs as follows:
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1. it first decomposes the integer lattice Z2 into sub-lattices Λ;
2. it then rotates the pixels using the lattice generating matrix MΛ: the rotated singularity is now oriented horizontally;
3. it finally applies the AWT transform along the horizontal direction (lifting versions of this transform have been

proposed [CGM04, DWL04, WZVS06, DWW+07]).

Even though Directionlets outperform the traditional Set Partitioning In Hierarchical Trees (SPIHT) Wavelet coder
[KXP97], they do not provide an embedded bitstream, i.e. rate scalability, which is now strongly required from modern
coding schemes. Furthermore, they are much more computationally demanding than fixed transforms: the computation of
the geometry is quite costly.

1.2.3.4 Sparse representations

Besides geometry-based transforms, sparse representations can be seen as a generic transform whose basis functions
(or atoms) are optimized in regards to the currently processed signal. While previous adaptive representations explicitly
exhibit the images geometry, sparse representations use optimal dictionaries of atoms which implicitly account for any
kind of image features: they are not limited to the geometry information.

Sparse representations are representations that account for most or all information of a signal with a linear combination
of a small number of elementary signals called atoms. They are also called parsimonious representations. Often, the
atoms are chosen from a so-called over-complete dictionary. Formally, an over-complete dictionary is a collection of
atoms whose cardinality exceeds the dimension of the original space which is used to describe the signal. Hence, any
signal can be represented by more than one combinations of different atoms. Numerous over-complete dictionaries have
been proposed, including stationary Wavelets, Wavelet packets, Cosine packets, Chirplets and Warplets.

Sparse coding refers to techniques that aim at finding a representation of a signal which uses a small number of significant
coefficients. Decoding merely consists of the appropriate weighted summation of the relevant atoms. However, finding
an over-complete dictionary is a non-trivial problem. In particular, finding a representation with the smallest number of
atoms from an arbitrary dictionary has been shown to be a NP-hard problem.

As a consequence, considerable efforts are being put into the development of many sub-optimal schemes. Some algorithms
iteratively build up an approximation of the signal one coefficient at a time (Matching Pursuit (MP) [MZ93], Optimized
Orthogonal Matching Pursuit (OOMP) [DMA97]) while some others process all the coefficients simultaneously (Basis
Pursuit (BP) and Basis Pursuit De-Noising (BPDN) [CDMS98], FOcal Underdetermined System Solver (FOCUSS)
family of algorithms [GGR95, Rao97], Global Matched Filters (GMFs) [MF06]).

Sparse representations have been introduced as candidates to represent still and moving images by R. Neff and A. Zakhor
in [NZ97]. Among recent works, over-complete dictionaries made after the DCT [MFGT07] and the DDCT [DHGF10]
have been proposed. Very encouraging results have been obtained; still, practical solutions are often computationally
intensive. Also, basis functions (or atoms) may not be known in advance, which prevents the transform from being
thoroughly optimized.

1.3 A focus on the temporal correlation of image sequences: the importance of
the motion

Previous sections introduced various techniques to decorrelate a signal along its temporal (for one-dimensional signals)
or spatial (for two-dimensional signals) axis. In image sequences, however, the correlation is spread over both spatial
and temporal dimensions. Classical correlation techniques could be blindly applied to decorrelate the sequences along
the temporal axis. This is known as blind decorrelation; such approaches will be brought up in section 1.3.1.

However, it is easily observed that successive images are highly correlated as they often correspond to successive states
of a scene. The difference between successive images is then mostly characterized by the evolution of the scene: moving
object, camera motion, illumination changes, etc. Assuming that this evolution can be modelled, it can drastically improve
the temporal decorrelation. Section 1.3.2 will very briefly introduce the concept of motion compensation (chapter 2 will
be dedicated to motion compensation). Finally, section 1.3.3 will briefly review a family of transforms which decorrelate
spatio-temporal signal along the motion trajectory.
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1.3.1 Blind decorrelation

Direct approaches to the problem of decorrelation do not make any hypothesis on the nature of the correlations. They are
known as blind decorrelation techniques, and are well-suited to signals whose correlations are of heterogeneous nature.
Predictive, transform and even self-similar techniques were proposed, among other things, to extract the redundancies
of images. The same techniques can be used in a similar way to decorrelate an image sequence along its temporal
dimension.
Predictive approaches have been introduced through conditional replenishment [Kor67, CH73, Jon77, HJJ79]: they detect
and skip the images areas which remain still, and only send the changes in remaining areas. Both predictive and
transform techniques have been proposed to represent the changes (e.g. predictive interpolation in [Kor67, CH73], WHT
intra-coding in [HJJ79], etc). Later, it was also proposed to directly apply the Wavelet transform along the temporal
dimension [KV88, PJF95, KXP97] (see figure 1.3.1). Each dimension of the image sequence was thus equally processed;
due to the multi-resolution analysis performed by the Wavelets, fully scalable coders were obtained.
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Figure 1.3.1: 2D and 3D Wavelet decompositions of order 2

However, these approaches did not proved to be efficient in terms of compression, for image sequences which undergo
complex changes. In addition, the nature of the temporal correlations is different from the nature of the spatial correlations.
Indeed, a sequence of natural images often represents the same scene at different instants; as a consequence, successive
images will be highly redundant. Their differences are most often the consequences of textures displacements and
deformations, both consequences of object or camera motion. Hence, it was naturally proposed to apply predictive and/or
transform techniques along the trajectory of the motion.

1.3.2 A predictive approach to the temporal decorrelation of image sequences: texture alignement
and motion compensation

It was soon identified that, for natural image sequences, motion compensation is an essential step towards an efficient
spatio-temporal decorrelation scheme [Gir87]. Motion compensation describes an image in terms of relative deformations
with respect to a reference image, and assumes that

It (x, y) ≈ It+1(x + dx, y+ dy) (1.12)

where
−→
d = [dx, dy]T is the displacement vector which describes the displacement undergone by the current pixel from

instant t to instant t + 1. In order to perform an efficient motion compensation, an appropriate motion model and an
efficient motion estimation technique are both required.
When the motion is computed over a Group Of Pictures, depending on the motion model, one may be able to deduce the
trajectory of any pixel. By performing a global motion compensation on several successive images onto a reference grid,
one may then apply classic predictive or transform techniques to remove the redundancies along the motion trajectory.
This is known as texture alignement [TZ94].

1.3.3 Applying transforms along the motion trajectory

More recently, a large number of pioneering works proposed to incorporate a motion compensation step within the temporal
transform [Ohm94, TZ94]. This led to the class of transforms known as Motion Compensated Temporal Filtering (MCTF);
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they use short-kernel filter banks and provide a compact representation of image sequences. They also decouple the
transform step from the coding step: both of them may then be independently optimized.
The Wavelet transform and its lifting optimization have been identified as a very handy way to perform a three-dimensional
transform on the aligned coefficients output by the MCTF (see figure 1.3.1). The lifting framework provided a way to
handle arbitrary sub-pixel accuracy, while guaranteeing perfect reconstruction [PPB01, ST01]. Finally, the motion is
decorrelated from the texture, which enables the Wavelet transform to provide a fully scalable representation: spatial
and temporal scalability.
The MCTF can be performed either in the spatial domain, or in the transform domain:

t + 2D lifting refers to early techniques that apply the MCTF prior to the three-dimensional DWT [Ohm94, TZ94,
CW99, CW04, CP03, LG08]. In such approaches, also known as Spatial Domain MCTF (SDMCTF),the MCTF is
performed in the spatial domain.

2D + t lifting refers to late approaches that apply the MCTF after the spatial DWT decomposition [AMB+04]. In
such approaches, also known as Inband MCTF (IBMCTF), the MCTF is performed in the time-frequency domain.
IBMCTF improves the performances with spatial scalability by using a leaky motion compensation. In this particular
case, the motion compensation is performed using either low or high quality reference images, as a way to introduce
a trade-off between the precision of the motion and the coding efficiency.

Later, motion thread [XXLZ01], then Barbell lifting [XWX+04] were proposed as a way to deal with non-connected
and multi-connected pixel which are often problematic for the representation of the motion (see 3.4.1.2). Finally, the
Unconstrained MCTF (UMCTF) modifies the lifting process and deactivates its update step [TvdS02, TvdSA+05] in order
to remove the artefacts of the Wavelet representation at low bit-rates (e.g. ringing effects).

Direction of the motion
Direction of the transform

(a) Temporal filtering along the motion trajectory
(section view)

(b) MCTF [TvdSA+05]

Figure 1.3.2: How the MCTF filters the image sequence along the trajectory of its motion

Even though MCTF’s main advantage surely is its ability to provide a fully-scalable representation, it provides an open-
loop prediction structure whose use is much more convenient that closed-loop structures. Also, it provides a continuous
representation of the information across the temporal axis. However, MCTF cannot efficiently represent areas where
motion estimation has failed.
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1.4 Conclusion

This chapter reviewed many approaches which can be used to decorrelate a signal. They were categorized into three
main families: predictive, synthetic and transform techniques. Predictive and transform techniques are especially popular
in image and video compression: most recent compression schemes now rely on the combination of several predictive
and transform techniques. In particular, frequency and time-frequency representations proved to be very efficient as
ways to describe the image singularities. Last developments notably led to a large variety of image-adaptive transforms
which implicitly or explicitly exhibit the images geometry. As for synthetic decorrelation techniques, they are most often
dedicated to specific signals: their use is generally restricted to corresponding applications.
In image sequences, however, classical decorrelation techniques fail at capturing the correlation along the temporal axis.
Indeed, the changes that occur between successive instants of a sequence of natural images are the consequences of the
evolution of the scene across time (moving objects, illumination changes, etc) and the evolution of the camera parameters.
Motion compensation was then naturally introduced as a way to describe the current image as a deformed version of one
or more reference images. This allows the textures to be aligned; temporal correlations are then exhibited and easily
captured from additional decorrelation techniques.
From their use, decorrelation techniques can alternatively be classified into two categories: local and global approaches.
On one hand, local approaches (predictive techniques, image-adaptive transforms) provide an accurate information about
the characteristics a signal locally holds. These characteristics may even be processed at different scales, provided that
the analysis method shows scalability features. On the other hand, global approaches (non-adaptive transforms, synthetic
techniques) process the signal in its entirety and provide valuable information regarding the overall correlations it holds.
Amongst the ever increasing number of image sequences processing schemes, both global and local approaches have been
employed:

• in the spatial domain, for instance, individual images can be analysed either locally (e.g. block-based transforms)
or globally (this generally implies the use of the Wavelet transform). Yet, local approaches are generally favoured
as they are a better match to the non-stationary nature of the spatial information;

• as for the temporal domain, all modern image sequences processing schemes now employ motion compensation.
From then, the temporal decorrelation is generally performed on a frame-by-frame basis, i.e. through a local
approach.

In conclusion, one may remember that individual images should be locally decorrelated as they hold a non-stationary
information. On the contrary, the temporal information, despite the displacements and the deformations undergone by the
textures, is highly persistent across time: a global decorrelation approach is very suitable. Most compression schemes
(they will be further reviewed in chapter 3):

• either they perform a local spatial analysis and a local temporal analysis (the classical approach);
• or, they perform a global spatial analysis and a global temporal analysis (MCTF-based compression schemes).

Instead, we propose to combine the advantages from both local and global representations. In our opinion, an idealistic
representation should account for the local geometrical patterns hold by individual images, while processing the temporal
axis as continuously as possible. However, as continuous the information may be along the temporal axis, it is essential for
the representation to be able to detect when and where discontinuities occur, in order to employ more suited decorrelation
techniques. This thesis focuses on this problem, and will most exclusively focus on ways to detect, assess, and represent
the temporal persistence of the information along the temporal axis. As the motion prediction plays an essential role into
the proposed representation, next chapter will be entirely dedicated to motion compensation.



Chapter 2

Motion compensation: models and estimation
techniques

As a predictive temporal decorrelation technique, the motion compensation has been identified, in previous chapter,
as a crucial step in a eye to video compression. Indeed, it is particularly efficient when it comes to a sequence
of images describing the successive contents of the same scene at several time instants. Motion compensation

describes the current image in terms of deformations with respect to a reference image. Motion compensation aims at
minimizing the energy hold by the Displaced Frame Difference (DFD) (the difference between the current image and its
motion compensated prediction). In order to perform motion compensation, one has to define what exactly the motion
is regarding image sequences, and how it can be computed. Indeed, the paradigm of motion compensation lies on two
concepts: the motion representation and the motion estimation.
But, first and foremost, what is motion exactly ?

• From a perceptual perspective, neurophysiologists, psychophysicists and physicians showed that, in animals [HW65]
and humans [MA88], specialized structures are in charge of the motion perception. These structures put in place
two processes, according to the importance of the information. In eye-attracting areas, a focalised vision perceives
an acute representation of the motion. Elsewhere, a peripheral vision settles for a rough detection of the motion.

• From an engineering perspective, the motion of a scene can then be seen as the combination of two components:
a global motion (camera or background displacements), and a set of specific local motions (moving objects).

• From a signal processing perspective, finally, the images colour intensities are the only reminiscences of the real
3D motion. Assuming that the colour of a moving object invariant across time, the motion can be estimated from
the variations of the colour information across time. Thus, most approaches aim at minimizing an energy functional
which measures the distance between the original current image and its motion-compensated prediction.

Typically, the temporal variations of an image sequence result from several processes, including:

• the projection of the real 3D motion into the image plane;
• the illumination changes and corresponding transparency and shadowing effects;
• the occlusions which hide some parts of the scene;
• the camera parameters changes;
• and the noise.

In practice, an exhaustive model of all the aforementioned phenomena would result in a huge amount of complexity: the
model needs to be simplified. Various motion models have been designed and conceptualize the nature of motion in
different ways. In any case, they all define how the real 3D motion of a scene is linked to the temporal variations of
resulting image sequence. Finally, an appropriate motion estimation technique is used to evaluate the motion parameters.
In the last thirty years or so, the interest in motion representation and estimation has been widely growing, and many
studies have been focusing on these matters. According to the targeted applications, a wide range of motion models have
been provided to fit the corresponding requirements. Nowadays, numerous models and corresponding estimation techniques

21
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are available. This chapter will review key contributions to motion compensation, including motion representations and
motion estimation techniques.
Section 2.1 will explain how the motion is captured throughout the shooting system, and introduce the optical flow as a
projection of the motion field in the image plane. Section 2.2 will then review classic motion representations which have
been provided throughout the years. Then, section 2.3 will provide an insight into estimation algorithms.Section 2.4 will
focus to models widely used in video compression: blocks and meshes. Finally, section 2.5 will conclude the chapter.

2.1 From the real three-dimensional motion to the optical flow

Most often, the contents of an image sequence is a real life scene which has been captured by a shooting system. Thus,
two-dimensional images from such a sequence are the successive projections of the three-dimensional real-life scene onto
the camera plane (or image plane). Obviously, the motion information will not have the same nature whether we consider
the real-life scene or the camera plane. This section will explain how exactly the motion is captured throughout the
shooting system. It will also mention several issues which alter the motion information and interfere with its evaluation
in the camera plane.

2.1.1 Motion throughout the shooting system

The real 3D motion is the motion that animates the real scene, in the 3D real space. It can only be captured by an
optical system such as the eyes or a camera. Once the scene has been seen or shot, the real 3D motion is not available
anymore; one can only perceive its 2-dimensional projection onto the retina or the camera plane. This 2-dimensional
projection is know as the apparent motion. Motion estimation techniques mostly aim at measuring the apparent motion;
yet, some of them, including the homographies, may aim at measuring the real 3D motion.

2.1.1.1 Real and apparent motion

When considering a shooting system, the apparent motion is considered to be either the orthographic projection (also
called parallel projection), or the perspective projection (considering the pinhole camera model) of the real 3D motion
onto the image plane. Figure 2.1.1 illustrates the perspective projection of a point belonging to an object in motion. Let
Pt be a point of the real 3D scene which belongs to an object O at time instant t . Let Pt+1 be its collocated point at
instant t + 1. Finally, let P ′t and P ′t+1 be their projections on the image plane:

• in the 3D scene,
−−−−→
PtPt+1 is the real motion vector;

• on the image plane,
−−−−→
P ′tP ′t+1 is the apparent motion vector.
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Figure 2.1.1: Real and apparent motions in an optical shooting system [Gra03]
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2.1.1.2 Occlusions and disocclusions

Assuming that the shooting system provides a single angle of view, parts of the scene may be hidden or unhidden to
the observer: they are respectively known as occlusion and disocclusion phenomena. In that event, the projected motion
does not include anymore the motion information of hidden areas. This problem is shown in figure 2.1.2. While most
approaches do not handle occlusions, some region-based and boundary-based approaches [Tzi92, Kim94, Pet99] track
moving objects and their boundaries across time.

t-1
t

t+1 time

Area covered by
the moving object

Area uncovered by
the moving object

Figure 2.1.2: Occlusion phenomenon: object § is temporarily hidden behind object ©.

2.1.1.3 Global and local motion

The apparent motion results from two processes: the real 3D motion of the scene itself, and the parallax component. The
parallax component corresponds to the evolution of the shooting system parameters (camera motion, zooming operations,
etc): a motionless scene captured by a camera in motion will still show an apparent motion. Some motion compensation
techniques exhibit both scene and parallax motion components.
In [SA96], the global motion (referred to as dominant motion) is coupled with a set of local motions (referred to as
multiple motions). In [HFB04], both local and global motion components are concurrently estimated. In general, however,
most techniques do not differentiate the local motion from the global motion. Whichever, being able to separate global
and local motions provide invaluable information regarding the images contents, especially helping with the identification
of the different elements of the scene.

2.1.2 Motion field, displacement vector

Once the shooting process has been performed, the image sequence is hold onto the camera plane (or image plane). The
motion field is an ideal representation of the real motion as it is projected onto the image plane. It is formally defined
as the time derivative of the positions of the original 3D real points projections onto the image plane. In the end, the
motion field function maps the image coordinates into a 2D velocity.
Let us consider a point P from the image plane. Its instantaneous velocities are given by the successive time derivatives of
its trajectory across time within the image plane. Hence, P ’s velocity is tangent to its temporal trajectory. In the context
of motion compensation, though, the displacement vector

−→
d = [dx, dy]T is often preferred to the velocity −→v = [vx, vy]T

to describe the compensation processus. The displacement vector expresses the displacement undergone by a point of the
image plane between two time instants. Figure 2.1.3 illustrates the difference between velocity and displacement vector.

Pt+1 Velocity vector
Pt Displacement vector

Trajectory of point P

Figure 2.1.3: Velocity and displacement vector: two different notions

In practice, however, both vectors are often confused as they are related by the temporal sampling period. Assuming that
the sampling frequency approaches infinity (hence the sampling period approaches 0), velocity and displacement vectors
are linked:

−→v = lim
τs→0

−→
d
τs

(2.1)
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2.1.3 Optical flow

2.1.3.1 From the motion field to the optical flow

Due to the apparent motion, objects, surfaces and edges may be displaced across time in a sequence of images. In
practice, one can only measure the variations of the intensities of the pixels. The displacement of the pixel intensities
observed by the motion field is known as the optical flow. In other words, the optical flow is the projection of the motion
field into the space of pixel intensities. Provided that objects, surfaces, and edges hold the same colour information
throughout time, the apparent motion field is more or less given by the displacement of the pixel intensities. This is
known as the luminance invariance hypothesis (in practice, both luminance and chrominance colour components may be
considered), and laids the foundation stone of the motion compensation paradigm. This can be expressed as

It+τs (x + vx, y+ vy) = It (x, y) (2.2)

where −→v = [vx, vy]T is the velocity of the optical flow at position (x, y). From now on, the notation V will designate
both the optical flow and the motion field. However, mapping the motion field into the optical flow is a not bijective
operation: one cannot retrieve the exact apparent motion field from the optical flow. For instance, a uniformly coloured
sphere rotating around its centre will not result in any pixel intensity displacement. As a consequence, resulting optical
flow is null, even though the apparent motion is not. This phenomenon is known as the aperture problem.

2.1.3.2 The aperture problem

In 1911, psychologist Pleikart Stumpf made the observation that each neuron dedicated to motion perception was only
sensitive to a small part of the visual field. Later on, it was shown that the human brain perceives the motion with two
kinds of structures. At first, Reichardt detectors perform a first-order analysis of the motion. Then, the visual cortex
performs a second-order analysis to disambiguate true global motion detection. Pleikart Stumpf’s work anticipated the
existence of the Reichardt detectors, and provided an early description of what is now known as the aperture problem
[Tod96]. Indeed, Stumpf’s observation can be formulated as follows: each neuron is looking at the visual field through
a small window, or aperture [Hil84]. First-order motion detectors are then only sensitive to a single component of the
apparent motion, whose orientation is perpendicular to local contours in motion. This is known as the aperture problem.

P2

P3

Apparent motion vector

Evaluated motion vectorP1 Spatial gradient direction(s)

Object contour at instant t+1
Object contour at instant t

θ1

θ1

θ2

Local aperture window

Figure 2.1.4: The aperture problem

The estimation of the motion field through the optical flow suffers from the same problem. Indeed, first-order motion
estimators are only able to detect the amplitude of the apparent motion along the direction of the images spatial gradient
−→
∇I(x, y) [HS81, BL02]. In other words, the system to be solved is under-determined. Figure 2.1.4 shows the corner of
a uniform object in vertical motion:

1. in P1, the spatial gradient is locally null as the aperture window holds a uniform information:
−→
∇I(P1) =

−→
0 . The

apparent motion is not observable;
2. in P2, a single gradient is observable along a specific direction θ1: only θ1’s component of the apparent motion

is measurable, and
〈−→
∇I(P2),

−→
θ1

〉
= 0;

3. in P3, multiple local gradients
−→
∇I(P3) can be observed along at least two orientations θ1 and θ2: the apparent

motion can be fully evaluated.
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2.1.4 Backward and forward motion compensation

Equation (2.2) showed that successive images from an image sequence are linked by the optical flow. Let Iref and Icur be
two images respectively captured at reference instant tref and current instant tcur. Let us apply equation (2.2) to time
instants (resp.) tref and tcur and corresponding images (resp.) Iref and Icur. The compensation can then be performed in
two different fashions{

Îcur(x, y) = Iref(x + dx, y+ dy) backward motion compensation
Îcur(x − dx, y− dy) = Iref(x, y) forward motion compensation

(2.3)

In the first case, backward motion compensation predicts any position of Icur by shifting its collocated position in Iref. To
ensure a complete reconstruction of Icur, one simply requires an injective motion field. In the second case, forward motion
compensation projects any position of Iref in the domain Ωcur of the current image Icur. As the optical flow may not be
surjective, this last approach cannot guarantee a complete reconstruction of Icur. Furthermore, several positions of Iref
may be projected onto the exact same position of Icur, which further complicates the compensation process. Consequently,
backward motion compensation is generally preferred to forward motion compensation. In particular, standardized video
coders such as MPEG-x [ISO93, ISO94b, ISO00a] and H.26x [ITU90, ITU94, ITU95, Ric03] use a backward approach.
Often, yet, the reference instant tref is prior to the current instant tcur. This misled the original definitions: time-backwards
and time-forwards designations sometimes inappropriately overtake the original definitions:

1. backward motion compensation corresponds to situations where tref < tcur;
2. forward motion compensation corresponds to situations where tref > tcur.

May backward or forward compensation fashions be mentioned in this document, they will refer to their original definitions.

2.1.5 Frame by frame versus trajectory representations

Local motions, on one hand, result from the displacement of an object moving across the scene. Global motion, on the
other hand, results from a change in the camera parameters. In both cases, either the object or the cameras focus are
following a given 3D trajectory in the real 3D space. From the projection of the real 3D space into the 2D image plane,
original 3D trajectories are projected into 2D trajectories. As a consequence, the motion can be intuitively conceptualized
as a set of trajectories across space and time.
As seen in section 1.3.3 from chapter 1, MCTF, for instance, relies on this concept as it transforms the spatio-temporal
information along the motion trajectories (the motion information does not necessarily needs to be locally described:
MCTF simply requires the ability to extract a set of complying trajectories). Provided that the current image can be
projected onto a reference grid, known as the textural domain, any representation modelling the motion as a trajectory
will be able to continuously process the temporal correlations. However, it proved to be difficult to rely on such a
representation, despite all the efforts which have been made [XWX+04, Cam04, LG08] in this direction, including in
particular the Barbell lifting [XXLZ01].
Most approaches, though, avoid this problem by representing the motion as a set of successive displacements. As a
consequence, they define a reference grid for each image, which guarantees the prediction of the current image to be
complete. Yet, the lack of explicit information regarding the successive positions of a specific pixel across time makes
impossible to guarantee any kind of temporal coherence. Resulting representations may then be affected by temporal
discrepancies, which reduces the overall quality of the temporal decorrelation.

2.2 Modelling the motion

Previous section investigated the nature of the motion information hold by an image sequence and its relationship with
the original 3D real motion. In particular, the apparent motion was proved to be somehow measurable through the optical
flow. Whichever way, it is first required for the motion information to be parametrized through an appropriate model. The
motion information is generally processed in terms of displacements rather than velocities. From now, may this chapter
mention the motion field, this will refer to the displacement field rather than to the original motion field definition.
In order to describe the motion field of an image, the most straightforward solution probably consists of providing a
displacement vector for each observable position, i.e. each pixel. This representation is known as dense motion field and
has been extensively used in video analysis applications.
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2.2.1 From dense motion fields towards practical representations of the motion

Dense motion fields define a displacement vector (more simply, a motion vector) for each position of the image plane.
Typically, this ends up in a large amount of motion information. As a straightforward solution, it was proposed in [HS81]
to subsample the motion field V, down to an accurate enough resolution. Typically, images are subsampled into a grid
of pixels or sub-pixels: a motion vector is then associated to each of these pixels and/or sub-pixels. The resulting
motion field is typically highly redundant, and can be decorrelated from classical predictive or transform techniques.
Nevertheless, compression approaches based on dense motion field generally failed at compacting the dense motion
information down to a reasonable bit-rate [Sti94, MKW97, DH98, SP98, LG99, HP01].
For this reason, numerous simplified motion models have been proposed. Not only they describe the motion field from
a reduced number of parameters, but they may also implicitly include some additional coherence or regularity features,
addressing some of the problems that have been raised in previous sections (e.g. occlusions and aperture issues) Most
of the time, the motion is represented through a parametric, a geometrical, a frequency or a model-based approach.

1. Parametric models are inspired from the way the shooting process projects the 3D scene onto the image plane.
Going by a specific camera model, they analyse and model the motion information through parametric polynomials.
These functions, also known as parametric transforms, correspond to the projection of 3D geometrical transformations
onto the image plane. Parametric models will be reviewed in section 2.2.2.

2. Geometrical models locally analyse the images deformations. Various patterns have been proposed to partition
the image plane into locally deforming areas, including blocks, meshes and regions. Block and meshes will be
respectively reviewed in sections 2.2.3.1 and 2.2.3.2.
Region-shaped patterns are fit to the contours of the sequence elements. In other words, they directly describe
the displacements and the deformations of the objects in the scene [Nic92, Gam92, San95, RM04]. Region-based
models require the images to be spatio-temporally segmented.
As both segmentations and deformation representations and estimations are difficult tasks, these models are seldom
used in video compression [SGPK94, SM99, AFBD06]. Besides, deformation model of each region is itself generally
handled through simpler models (e.g. parametric). For both these reasons, region-based models will not be further
reviewed in this chapter.

3. Frequency and time-frequency models describe the motion field through classical Fourier Transforms [Bru01] or
Wavelet Transforms [WKcLC00, Bru01]. Such models will not be reviewed in this chapter as they are seldom used
in practice, and will not be of any help regarding our work.

4. Model-based representations are employed when the motion is known to behave in a specific manner. In such
case, a model of the behaviour is parametrized and matched with the actual motion information [NH87, HW88,
HBH+89, Car89, Hee90, BAHH92]. As frequency and time-frequency models, model-based representations will
not be reviewed in this chapter.

Both frequency and model-based representations are seldom used in practice, and will not be subject to further review.
On the other hand, parametric and geometric models are commonly used in video compression and will be further detailed.

2.2.2 Parametric models

2.2.2.1 From a 3D motion model to its projection into a 2D motion model

The real 3D scene is included within the 3D Cartesian space R3. As a consequence, the deformation and the displacements
of a rigid object O can be parametrized from the evolution of the 3D coordinates of its points. Let G be the gravity
centre of O, and P an arbitrary point belonging to O’s support ΩO. From time instant tref to tcur, P ’s displacement
vector

−→
d (P) =

−−−−→
Pref Pcur can be interpreted as the result of two distinct processes:

1. O’s translation
−→
T =

−−−−→
Gcur Gref = [tx , ty, tz ]T with respect to its gravity centre;

2. O’s rotation R = Rz · Ry · Rx around its gravity centre, which affects the relative position of P with respect to G.

In the end, the coordinates of P at time instant tref are given by

Pcur = Gref +
−→
T + R ·

−−−−→
Gref Pref (2.4)
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where R = Rz · Ry · Rx is given by the product of three matrices expressing individual rotations around axis z , y and x :

Rz =

cos θz − sin θz 0
sin θz cos θz 0

0 0 1

 , Ry =

cos θy 0 − sin θy
0 1 0

sin θy 0 cos θy

 , Rx =

1 0 0
0 cos θx − sin θx
0 sin θx cos θx

 (2.5)

Section 2.1.1 showed that the apparent motion can be interpreted as the projection of the real 3D motion onto the camera
plane R2. Similarly, the motion parametrization can be obtained from the projection of the 3D motion parametrization
provided in equation (2.4) onto the image plane. To this end, several hypothesis need to be done:

• from the pinhole camera model, a perspective projection is used to map the motion parameters from the Euclidian
space R3 onto the image plane R2;

• the shooting is supposed to be performed along axis z;
• O’s depth is supposed to be constant (∀P ∈ ΩO, zP = zO, constant).

Through various simplifications of the projection of the 3D parametrization onto the image plane, a large number of
parametric motion models have been provided. In such case, the motion is analysed through polynomials describing
various geometrical transforms (e.g. translations, rotations, stretches, . . . ). Available models can be categorized into two
families:

1. 3D parametric motion models project the apparent motion from the image plane R2 back into the original space
R3, through homogeneous coordinates. They are extensively used in computer vision to track the deformation of
3D objects [SFZ00, SB02, PXC02, Pre06] or in vision-based control (visual servoing) [VM05, MV07].

2. 2D parametric motion models [BL02] stick to the image plane and rely on 2D projections of 3D transformations onto
the image plane, including linear, non-linear, and homographic models (further reviewed in forthcoming sections).

2.2.2.2 Rigid objects in motion: linear models

Typically, the rotation matrix R is simplified in two steps:

1. rotation angles (resp.) θx , θy and θz around axis (resp.) x , y and z are small: sine and cosine functions can be
approximated by the first two terms of their Taylor expansions; resulting quadratics terms are then be neglected;

2. only rotations around optical axis z are taken into account: those around axis x and y are consequently neglected.

R ≈

 1 −θz −θy
θz 1 −θx
θy θx 1


︸ ︷︷ ︸

Simplification 1

≈

 1 −θz 0
θz 1 0
0 0 1


︸ ︷︷ ︸

Simplification 2

(2.6)

a The affine motion model

A generic 2D affine motion model Θ(t ′x , t ′y, k1, k2, θ1, θ2)T can then be interpreted as the projection of a 3D motion
parametrization (see equation (2.4)) onto the image plane[BL02]. It provides a good trade-off between complexity and
representativeness, as its six parameters can handle translations, rotations, scaling and linear deformations (see figure
2.2.1b). It is given by

P ′cur = G′ref +
[
t ′x
t ′y

]
︸︷︷︸
−→
T ′

+
[
k1 θ1
θ2 k2

]
︸ ︷︷ ︸

R ′

·
−−−−→
G′ref P ′ref (2.7)

where P ′ref, P ′cur, G′ref and G′cur are the respective projections of Pref, Pcur, Gref and Gcur from the real space R3 onto the
image plane R2. Similarly,

−→
T ′ and R ′ are the respective projections of ,

−→
T and R .

b Alternative linear models

By restraining the the affine model, various simplified models can be derived. Some of them, along with their parameters
and abilities, are listed in table 2.2.1.
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Model parameters Displacement and deformation abilities
Models # Translation

−→
T ′ Rotation R ′ Translations Rotations Scaling Deformations

Translational 2
[
t ′x
t ′y

] [
0 0
0 0

]
X × × ×

Rotational 3
[
t ′x
t ′y

] [
0 θ
−θ 0

]
X X × ×

Divergence 3
[
t ′x
t ′y

] [
k 0
0 k

]
X × X ×

Shearing 3
[
t ′x
t ′y

] [
0 θ
0 0

]
or
[
0 0
θ 0

]
X × × ∼

Simplified affine 4
[
t ′x
t ′y

] [
k θ
θ k

]
X × X ∼

Affine 6
[
t ′x
t ′y

] [
k1 θ1
θ2 k2

]
X X X X

Table 2.2.1: Various linear parametric motion models: parameter set and motion abilities

2.2.2.3 Moving and deforming non-rigid objects: non-linear models

Previous section showed that linear parametric models are able to model a wide range of deformations. However, it was
assumed for the deforming object O to be rigid: its shape was constant across time. This is not always the case, and
non-linear parametric models [OB94, OB95] have been introduced to model the deformations of non-rigid objects. Figure
2.2.1c) illustrates a typical case of non-rigid deformation.

(a) Divergence model (b) Affine model (c) Quadratic model

Figure 2.2.1: Several deformations handled by various parametric models

A N order non-linear model is obtained from the N first terms of the Taylor expansion of the displacement vector in the
image plane. For instance, quadratic models are obtained for N = 2, and given by

P ′cur = Gref +
[
t ′x
t ′y

]
+
[
k1 θ1
θ2 k2

]
·
−−−−→
G′ref P ′ref +

[
k3 θ3
θ4 k4

]
·
−−−−→
G′ref P ′ref ◦

−−−−→
G′ref P ′ref +

[
λx
λy

]
·
−−−−→
G′ref P ′ref :

−−−−→
G′ref P ′ref (2.8)

where −→a ◦
−→
b is the matrix Hadamart product of −→a by

−→
b , and −→a :

−→
b the matrix Frobenius inner product of −→a by b.

Again, various models can be derived from equation (2.8); in particular, cancelling parameters k3, k4, θ3 and θ4 result in
a model whose individual deformations along each axis x and y are both linear. This is known as a bilinear deformation,
which might be the most popular quadratic model due to its interesting geometric and algebraic properties, and section
2.2.3.2 will explain how it is used in mesh-based motion representations. Generally, however, quadratics terms are very
small ahead of linear terms: non-linear models are seldom used.
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2.2.2.4 The homographic model

Homography is a 2D projective transformation implicitly relying on the camera parameters and corresponding perspective
projection of the scene [FL88, HZ00]. They are typically used to address changes of camera parameters across time.

P

P

O

d    (t   )
cam

n

P'ref

P'cur

Ω    (t   )cam ref

Ω    (t   )cam

R     , Tcam cam

ref

cur

Figure 2.2.2: Homography of a plane structure shot from different view angles

• Let P be a point belonging to a fixed and flat 3D object O. Let P be the plane which holds O’s surface.
• Let P ′ref be P ’s projection at time instant tref in the current camera reference plane Ωcam(tref).
• Similarly, let P ′cur be P ’s projection at time instant tcur onto the new camera reference plane Ωcam(tcur).

In this context, an homography H models the relative displacement of P ′ within the camera reference plane [Pre06]:

H : Ωcam(t) −→ ΩCam(t + 1)

P ′ref 7−→ P ′cur ∝

Rcam +

〈−−→
Tcam,−→n

〉
dcam(t)

 · P ′ref (2.9)

where Rcam and
−−→
Tcam are respectively the rotation and the translation of the camera from instant tref to instant tcur. −→n is a

vector normal to O’s plane surface, and dcam(tcur) the distance between P and the focus of the camera at instant tcur. This
situation is illustrated in figure 2.2.2. Non-planar structures can also be handled through more complex homographies
(see [Pre06] for further information on the matter). Besides, homographies avoid ill-conditioned problems brought by the
parametrization of a 3D transform. For all these reasons, they are commonly used in computer vision applications.

2.2.3 Motion models based on geometrical patterns

While parametric models are able to represent a wide range of deformations, they are often limited to global motion
analysis and compensation, as they cannot locally adapt their parameters to the local displacements and deformations.
As a solution, it has been proposed to partition the image domain into patterns whose deformations will locally adapt to
the motion field variations. In each pattern, the motion field is interpolated from pattern’s motion parameters.

• Blocks in translation describe the motion field through uniformly moving blocks of pixels; they will be reviewed in
section 2.2.3.1.

• Active meshes describe local deformations through a set of warping operations; they will be reviewed in section
2.2.3.2;

• Deforming regions adapt their shape to the images contents and describe the deformation of semantic or pseudo-
semantic elements. They will not be further reviewed in this chapter as they mostly rely on local parametric models
to track the displacements and the deformations of each region. They may rely on active contours [KWT88] and/or
Kalman filtering [Kal60] to interpolate hidden objects boundaries, thus handling occlusions.
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2.2.3.1 The translational block-based model

The translational block-based model partitions the image plane into blocks. To each of these blocks is granted a single
displacement vector

−→
d which uniformly describes the motion of its pixels: the deformation of the reference image Iref into

the current image Icur is described as a set of translations applied to each bock of the partition.

Bcur
Bref

Pcur
Pref

t

t
time

d

ref

cur

Figure 2.2.3: Translational motion representation

Figure 2.2.3 illustrates this translational block-based model, often referred to as Block Motion Compensation (BMC).
Here, the reference block B ref is centred on pixel Pref(x, y), at time instant tref. At time instant tcur, B ref is matched with
target block B cur, centred on pixel Pcur(x + dx, y+ dy). Thus, ∀(x, y) ∈ B ref

B ref(x, y) = B cur(x + dx, y+ dy) (2.10)

where
−→
d = [dx, dy]T is the displacement vector. Its accuracy proved to be essential to the compensation process:

sub-pixellic motion vectors are now commonly used [BDH99].

a Fixed and variable-size Block Motion Compensation

Various partitions of the image plane have been proposed; some of them may provide adaptive features by adapting the
block sizes according to the image contents. Basic approaches, known as Fixed Size BMC (FSBMC), simply partition
the image plane into regular blocks of fixed size (see figure 2.2.4a), thus do not provide any adaptation to the image
content [JJ81, RCN97]. Conversely, alternative approaches have been proposed to optimize the locations of the motion
vectors: uniformly moving regions are partitioned into large blocks, while non-uniformly moving areas are partitioned
into small blocks. They are known as Variable Size BMC (VSBMC) [CYC90, SB94, GMR96, Mar97] (figure 2.2.4b).

Consequently, the translational block-based model can be locally adapted to the non-stationary nature of the motion
information held by an image. At the block boundaries, yet, the influence zone of the current block abruptly ends,
substituted by the influence zone of one of its neighbours. This generally result in blocking effects in motion compensated
images: the block boundaries are much too obvious. In other words, block-based models may be very handy when it
comes to represent local motion discontinuities, but cannot provide a smooth and continuous motion field.

b Reducing the blocking artefacts

Typically, a deblocking filter [KYKR99, LP01, Ric03, RM06] is used to reduce the blocking effects. As a post-processing
technique, it simply smoothes the images along the blocks boundaries. Alternatively, intrinsically blocking-free repre-
sentations have been provided and get rid of the block boundaries problem.

It was shown in section 1.2.2.2 that blocking artefacts, in block-based transforms (e.g. LOT, LBT, etc), can be reduced
through lapped transforms. Similarly, it has also been proposed to partition the image plane into overlapping blocks in
translation [NO92, AKOK92, OS94, CHJ+06]. Such techniques are known as Overlapped BMC (OBMC): any motion
compensated pixel is a weighted combination of several contributions provided by a set of overlapping blocks. Appropriate
weighting windows are centred on each block centre and play down the pixels located near the block boundaries (see
figure 2.2.4c). Besides, overlapping blocks are also able to represent slight deformations and provide an interesting
trade-off between translational and affine motions.
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(a) FSBMC: fixed block partitioning (b) VSBMC: Adaptive block partitioning (c) OBMC: weighting window

Figure 2.2.4: Various kinds of partitions of the image plane into blocks

2.2.3.2 Active meshes and control grid interpolation

While block based representation models the motion as a set of local displacements, it can barely model any kind of
deformation. Consequently, control grids have been proposed as a way to model both local displacements and local
deformations. Control grids emerged from the theory of finite elements, first introduced by Argyris [Arg60] and Clough
[Clo60]. Later, Zienkiewicz provided in [ZT67] a comprehensive summary of finite elements. Peculiar to this theory, control
grids have been used to model the behaviour of complex structures by splitting them into small connected independent
cliques known as meshes.

(a) Triangular mesh

Edges

Control
points

(b) Quadrangular meshing

Figure 2.2.5: Triangular and quadrangular meshing

In terms of topology, a control grid partitions a plane into polygonal elements [Lec99]. Each of these elements is called
a mesh; its vertices are called nodes or control points. Any polygon can be used to partition the plane; triangular and
quadrangular meshes, however, are commonly used. Both kinds of meshes are illustrated in figure 2.2.5.

Naturally, it has been proposed to partition the image plane into meshes. Deformable control grid, also known as
active meshes [Lec99, Mar00] can then model local displacements and deformations by displacing their control points
accordingly. Control grids are ruled by the non-superposition constraint: the equivalent graph needs to be planar [Lec99].
In particular, any displacement leading to overlapping meshes is forbidden.

Various partitions of the image plane have been proposed. Regular meshes initially partition the image into fixed size
meshes, while irregular meshes may adapt the size of the meshes to the contents of the image [YW94, AT97a]. In addition,
hierarchical control grids have been proposed to provide a robust representation of the deformation [HH94, TEST96,
BTZ+99, HMCP01, ARAM03, MJZ06]

a Parametrization of a deformable control grid

Let (resp.) Iref and Icur be two images captured at (resp.) time instants tref and tcur, defined over (resp.) domains Ωref and
Ωcur. Let M(t) be a deformable control grid partitioning the image It , and C (t) = { Ci(t)}i=1...N its N control points.
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According to the motion information which links images Iref and Icur, M(tcur) is a deformed version of M(tref) given by

M(tcur) = wref→cur

(
M(tref)

)
(2.11)

where wref→cur is a deformation operator, known as warping. Provided that meshes are not overturned, this transformation
is non-ambiguous, total and symmetric: to any point Pref ∈ Ωref corresponds a unique match Pcur ∈ Ωcur (see figure
2.2.6). Reciprocally:

∃wcur→ref = w−1
ref→cur such that M(tref) = wcur→ref (M(tcur)) = w−1

ref→cur (M(tcur)) (2.12)

Pref

(a) Initial control grid at instant tref

Pcur

(b) Deformed control grid at instant tcur

Influence
zone

Current
node

(c) TBCGI’s meshes influence zone

Figure 2.2.6: Deformable meshing: interpolation of the motion

In each control point Ci(t), the motion vector is given by the displacement it undergoes. Elsewhere, the displacement is
interpolated from neighbouring control points by an inner-mesh interpolation process. The displacement

−−−−→
dref→cur(P) =

−−−−→
Pref Pcur of an arbitrary point P is then given by

−−−−→
dref→cur(P) =


−−−−→
dref→cur(Ci) if P = Ci ∈ C
N∑
j=1

φj
(
P − Cj (tref)

)
·
−−−−→
dref→cur(Cj ) elsewhere

(2.13)

where
{
Cj (t)

}
j=1...N is the set of control points whose influence zone contains P , and

−−−−→
dref→cur(Cj ) is the displacement

vector of control point Cj . Finally, φ(P − Cj (t)) is the inner-mesh interpolation function of Cj : it outputs the relative
weight of Cj ’s contribution to P ’s displacement. This is known as Control Grid Interpolation (CGI).
For instance, in [SB91a], Sullivan and Baker partition the image plane into rectangular meshes with their Tri-Bilinear
CGI (TBCGI). The influence zone of each control point is limited to adjacent meshes: here, N = 4 (figure 2.2.6c). A
bilinear function (see section 2.2.2.3) is used to perform the inner-mesh interpolation. Their approach will be further
reviewed in section 2.4.2.1.

b Handling both continuities and discontinuities of the motion field

The ability to project the entire image domain into itself, in control grids, is an essential feature. Indeed, successive
deformation can be applied to the same deformable control grid M, enabling the motion information of a whole group
of pictures to be continuously described from the M’s successive warping. In particular, deformable control grids can
continuously track the deformation of a patch of texture on the long run, this exhibiting the notion of motion trajectory.
From the inner-mesh interpolation process, control grids naturally provide a continuous representation of the motion field
over the whole image domain, while accounting for its local variations. Unlike the block-based model, they are not limited
to translations, but model a larger set of transformations: translations, rotations of small angles, divergences (stretching
and contraction).
However, control grids are not able to properly capture the discontinuities of the motion field. To address this issue,
hybrid approaches allowed meshes to be disconnected when needed [IM00]; alternatively, solutions that use rupture lines
have also been proposed [Cam04, CPW+09]. In the end, yet, these solutions are not as good as the block-based model
regarding their ability to represent motion discontinuities.
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2.3 Tools and techniques for motion estimation

Previous section introduced a large range of motion models. No clue, however, was provided regarding the way their
parameters Θ can be estimated. Numerous estimation algorithms have been propose, and generally carry out a combination
of several basic steps. This section will review common tools and techniques likely to be used in motion estimation
algorithms. Once again, let Iref and Icur be two images respectively captured at reference instant tref and current instant tcur.
Section 2.1.4 showed that motion compensation can be performed in both forward and backward directions. Consequently,
motion estimation provides a set of optimal motion parameters ΘV with respect to the considered compensation direction:

1. either ΘV optimizes Îcur, the backward motion compensated prediction of Icur from Iref;

2. or ΘV optimizes Îref, the forward motion compensated prediction of Iref from Icur.

Video compression schemes, however, build the temporal prediction of Icur from Iref, through a backward motion compensation
step. In this case, solution 2 requires for the motion field to be inverted in order to retrieve the backward compensation
parameters. As this operation is ambiguous (few models provide a bijective representation of the motion), most estimation
techniques directly optimize the backward motion compensated prediction Îcur (solution 1). Furthermore, it was shown in
[Mar00] that, in active meshes, backward approaches generally provide better results than forward ones.
Generally, the optimization is done through the minimization of an energy measured between Iref and Icur. This search
for optimal parameters can be performed in numerous ways.

1. Gradient-driven techniques directly minimize the Displaced Frame Difference (DFD). They will be briefly reviewed
in section 2.3.1.

2. Matching criteria are used to evaluate the distance between two pixellic information which are matched by the
motion estimation. They will be reviewed in section 2.3.2.

3. Regularization techniques aim at limiting the incoherences of estimated motion fields. Not only do they prevent
the estimation problem from being ill-conditioned, but they also robustify the estimation. They will be further
investigated in section 2.3.3.

4. Probabilistic approaches model the pixellic intensity error by a white noise, and the optical flow by a random
field (Markov Random Fields (MRFs), Gibbs Random Fields (GRFs), Conditional Random Fields (CRFs), Gaussian
random fields, . . . ) which is then regularized [BA91, HB93]. Alternatively, it was proposed in [Li07] to use an AR
model to estimate the motion field. Probabilistic techniques usually require a large number of computations.

5. Frequency approaches rely on the fact that translations, in the spatial domain, correspond to phase-shifts in the
frequency domain [DCM87, Tho87]. They are highly resilient to noise and provide an accurate estimation of the
motion. However, they do not provide any information regarding the positions in which detected displacements
occur. Consequently, they are generally followed by a classic matching technique. They also require a large
number of computations, including a transform and its inverse.

2.3.1 Gradient-driven search strategies

As seen in section 2.1.3.1, pixel-based motion estimation techniques venture the pixellic intensity invariance hypothesis
-see equation (2.2)- [HS81, BL02]. Both luminance and chrominance information can be used to drive the estimation.
Whichever the motion model is, this hypothesis may be expressed as the minimization of the DFD

εDFD =arg min
ΘV

∥∥∥DFD(x, y,
−→
d )
∥∥∥

=arg min
ΘV

∥∥Iref(x + dxΘV , y+ dyΘV )− Icur(x, y)
∥∥ (2.14)

where εDFD is the minimized DFD residue. [dxΘV , dyΘV ]T is the displacement vector provided by the motion parameters
ΘV . Several strategies may be used to address this problem:

1. global approaches minimize the DFD of all pixel at the same time;
2. local approaches iteratively minimize the DFD on a pixel-by-pixel basis, or on a parameter-by-parameter basis;
3. semi-global approaches lie in between global and local approaches, and globally minimize the DFD of local areas

of the image domain Ω [AT97a, Lec99].
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2.3.1.1 Global minimization

Global approaches minimize an error functionals defined on ΩI . Several iterations are successively performed to reach an
optimal solution. Each iteration aims at reducing the norm of the DFD of all pixels from the image domain ΩI . Though
many error functional have been provided throughout the years, most of them are built after the apparent motion gradient
constraint equation.

a The apparent motion gradient constraint equation

From the pixellic intensity invariance hypothesis, it naturally follows that the material derivative D ID t of an image I(x, y)
is null. This results in the apparent motion gradient constraint equation

D I
D t = ∂I

∂t +−→v ·
−→
∇I , 0 (2.15)

where −→v is the velocity vector, which can be easily linked to the displacement vector from equation (2.1). In practice,
equation (2.15) is generally not verified due to occlusions, aperture issues, and noise. Instead, the estimation aims at
minimizing the residual prediction error ξ

min
ΘV

ξ = ∂I
∂t +

−→
∇I · −→v (2.16)

b Minimization of the error functional

Classic minimization techniques can be used, including differential approaches (e.g. Gauss-Seidel), exhaustive or sub-
optimal searches, . . . . The differential approach, in particular, cancels ξ ’s partial derivatives with respect to vx and vy,
the horizontal and vertical components of the optical flow. The corresponding matrix system is iteratively solved until it
converges to an acceptable solution.

2.3.1.2 Local minimization

Among gradient-driven search strategies, local minimization techniques consider each pixel independently and optimize
corresponding motion parameters accordingly. Such techniques are called pel-recursive and directly minimize the energy
hold by the DFD by locally tuning the motion parameters. They successively build a prediction of the displacement vector
−→
d . At k th iteration,

−→
d k =

[
dxk , dyk

]T is predicted from its value at previous iteration
−→
d k−1 =

[
dxk−1, dyk−1]T .

a A recursive scheme performed on a pixel-by-pixel basis

Traditionnaly, pel-recursive techniques are derived from the first order Taylor serie expansion of DFD(x, y,
−→
dk ) around

−−→
dk−1. Such an approach naturally leads to the formulation of a local gradient descent on

−→
d :

DFD(x, y,
−→
d k ) = DFD(x, y,

−→
d k−1)−

(−→
d k−1 −

−→
d k
)
·
−→
∇I(x + dk−1

x , y+ dk−1
y ) (2.17)

Alternatively, this directly formulated as a function of
−→
d k and

−→
d k−1, and

−→
dk =

−→
d k−1 − ε · DFD(x, y,

−→
d k−1) ·

−→
∇It (x + dxk−1, y+ dyk−1)︸ ︷︷ ︸

correction term

(2.18)

where ε is a gain term which controls the convergence of the method. This approach is used by Netravali and Robbins
in [NR84]. It is later modified in [Sab84] by Sabri into a simplified algorithm where the prediction step is fixed (the
correction term is replaced by its -1 or +1 according to its sign).
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b Adaptive pel-recursive techniques

Classic pel-recursive techniques usually suffer from their inability to adjust the value of the prediction step according to
the image contents. Consequently, adaptive gains ε were proposed to overcome this particular issue. In [WR84], Walker
and Rao advised that ε should be low in areas whose spatial activity is high, and high in areas whose spatial activity is
low: ε is then inversely proportional to the norm of the image spatial gradient. In [CR83], Cafforio and Rocca further
modify ε and add a correction term σ which stabilizes the algorithm whenever the spatial gradient vanishes:

ε = 1

σ 2 +
∥∥∥−→∇It (x + dxk , y+ dyk )

∥∥∥2 (2.19)

Nevertheless, the initialization of such algorithms strongly influences their outcome; error functionals are seldom convex
and there is a great risk of reaching a local minimum. As a consequence, the strategy used to initialize the gradient
descent is crucial. Pel-recursive techniques often rely on temporal or hierarchical predictions.

2.3.2 Matching criteria

As motion estimation techniques aim at providing a prediction as accurate as possible, they need to assess the distance
between the provided motion compensated image Î and the original image I (see equation (2.16)). This distance ξ is
generally expressed as a function of the difference between Î and I . According to the provided motion representation, ξ
may be computed over a single pixel, or over a group of pixels. Let R be a region from I ; R is an arbitrary set of pixels
defined over the domain ΩR, and may only consist of a single pixel.

2.3.2.1 Absolute and quadratic errors

Absolute and quadratic errors are respectively based on the absolute value and the squared values of the difference
between the intensity of an original pixel and the intensity of its motion compensated prediction. Consequently, the
distance between a region R and its prediction R̂ may be measured by the Mean Absolute Errors (MAE) or the Mean
Squared Errors (MSE) 

ξMAE(R, R̂) = ξSAE
|ΩR|

= 1
|ΩR|

∑
(x,y)∈ΩR

∣∣∣R(x, y)− R̂(x, y)
∣∣∣

ξMSE(R, R̂) = ξSSE
|ΩR|

= 1
|ΩR|

∑
(x,y)∈ΩR

(
R(x, y)− R̂(x, y)

)2 (2.20)

where |ΩR| is the cardinal of R’s support, i.e. the number of pixels it holds. Often, |ΩR| is fixed, such that distances
do not need to be normalized. Sum of Absolute Errors (SAE) and Sum of Squared Errors (SSE) (also known as Sum of
Absolute Differences (SAD) and Sum of Squared Differences (SSD)) simply sum individual errors instead of computing
their mean over ΩR. The SAE, in particular, is often preferred to the SSE in image and video compression as it is is
well suited to signal coding and requires fewer computations than the SSE.
Numerous variants have been proposed. In [CCCL95], the distance corresponds to the maximum difference between a
pixel from R and its match into R̂. Its minimization is called minimax. In [FS98], the sMAE is designed such that if
offers a criterion whose characteristics lie in between the MSE and the MAE. It is obtained by multiplying the MAE by
its mean deviation s.

2.3.2.2 Sum of Absolute Transformed Differences

The Sum of Absolute Transformed Differences (SATD) takes the frequency transforms of the original block of pixels R
and of its prediction R̂. It then computes the sum of the absolute differences between both sets of transforms coefficients.
Usually, the Hadamard transform H is used, and

ξSATD(R, R̂) =
∑

(ωx ,ωy)∈(ΩR)

∣∣∣H(R̂)(ωx , ωy)−H(R)(ωx , ωy)
∣∣∣ (2.21)
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2.3.2.3 Cross-correlation coefficient

The cross-correlation usually measures the similarity between two waveforms. It is especially used to search for a pattern
within a signal of long-duration. Its expression is close to a convolution, and writes as

ξCC(R, R̂) =
∑

(x,y)∈ΩR

[
R(x, y)− µR

]
·
[
R̂(x, y)− µR̂

]
(2.22)

where µR and µR̂ are respectively the average pixellic intensities of regions R and R̂. The cross-correlation coefficient
usually provides good results, but suffers from its computational complexity.

2.3.2.4 Pel difference classification

The Pel Distortion Classification (PDC) counts the number of pixels of R whose absolute difference between its original
and motion compensated intensities are inferior or equal to a given threshold T . Such criterion may be used in signature
based Block Matching Algorithms (see section 2.3.3.2), by successively reducing the threshold T [CRGP94].

ξPDC =
∑

(x,y)∈ΩR

δ
(
R(x, y)− R̂(x, y)

)
where δ

(
R(x, y)− R̂(x, y)

)
=
{

1 if
∣∣∣R(x, y)− R̂(x, y)

∣∣∣ ≤ T
0 otherwise

(2.23)

2.3.2.5 Histogram and integral projection

Alternatively, one may rely on statistical features to compute the distance between R and its prediction R̂. Their
histograms, for instance, can be compared [HBL+02]. Similarly, integral projections [SS96] can be used, in blocks, to
process complete rows or columns of pixels at once. In this case, horizontal and vertical measurements can be performed
separately: horizontal and vertical displacement searches can be performed concurrently.

2.3.2.6 Robust estimators

Previous criteria are, for most of them, very sensitive to noise. Consequently, robust criteria have been proposed; some
of them are reviewed in [OB94]. Generally, they are much more computationally demanding. The Least-Median-of-
Squares (LMedS), for instance, measures the median value of the squared difference on ΩR. It allows the search to filter
out up to 50% of the outliers.

M-estimators have also been proposed as a way to provide a robust measure of the distance between two sets of data.
They minimize the influence of the observations whose probabilities are low. For instance, Geman and McLure’s estimator
is used by Black and Anandan in [BA91]. Alternatively, Tukey’s bi-weight estimator is used by Odobez and Bouthémy
in [OB94]. Both of them use a bounded influence function, such that outliers do not have a strong impact on the measure

2.3.3 Encouraging and exploiting the regularity of the motion field

Minimization techniques are often hybridized with additional regularization techniques. Indeed, several motion estimation
specific issues (including aperture and occlusions problems) requires the motion field to be regularized. This prevents
the problem from being ill-determined, and forces the motion field to behave under specific regularity constraints. The
regularization can be performed in various manners:

• the motion representation itself, as mentioned in the introduction of section 2.2, may implicitly regularize the
motion field from its ability to represent coherent motions only;

• at the estimation, the error functional ξ being minimized can be modified to include a regularity penalty ξR. This
approach will be investigated in section 2.3.3.1;
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• the estimation process can be locally modified to avoid incoherent motion parameters. Conversely, the estimation
process can benefit from the assumption that the motion field is regular. In particular, the estimation process may
be drastically simplified by only evaluating a subset of the possible deformations. Sub-optimal search strategies,
for instance, sparsely parse the search area A to find an appropriate motion vector. They will be reviewed in
section 2.3.3.2.

• finally, the overall minimization process can be globally modified to encourage the regularity through hierarchical
approaches. These will be reviewed in section 2.3.3.3.

2.3.3.1 Including explicit regularization terms into the error functional

In [HS81], Horn and Schunck, add penalize incoherent motions by including a smoothing term ξC to the error functional:
this tends to minimize the amplitude of the optical flow gradient.
The minimization of the pixellic error ξL is now subject to the constraint ξC. Numerous techniques have been provided
to solve such problems; Lagrange multipliers, in particular, are commonly used. However, they are highly sensitive to
noise; iterative techniques such as gradient descents and other numerical optimization techniques are often preferred. In
this case, the error functional is a weighted sum of the pixellic error ξL and the regularity constraint ξC

ξ2 =
∑

(x,y)∈Ω
ξ2

L + α2ξ2
c (2.24)

where α is a weighting coefficient which sets the relative importance of the regularity term ξ2
C with respect to the

prediction error ξ2
L , and ξL the matching error. Horn and Schunck applied this constraint in an isotropic fashion, which

generally provides a poor estimation of motion discontinuities.
Later approaches proposed the use of explicit anisotropic constraints. In [WSD81], Wu et al. propagate the optical
flow along the contours of the motion. Similarly, Nagel minimizes the optical flow in a direction perpendicular to the
spatial gradient in [Nag83]. In [Hil86], Hildreth applies Horn & Schunck smoothing term along the images contours. In
[Enk88], Enkelmann penalizes the variations of the motion field according to those of the luminance. In [Fog91], Fogel
use a directed smoothness constraint and locally weight the optical flow, thus introducing an additional adaptivity to its
estimation.
Alternatively, implicit constraints were also proposed and pre-filter either the images or the optical flow, In [LK81], Lucas
and Kanade apply Horn and Schunck’s isotropic constraint to a local neighbourhood only. In [Bru01], Bruno filters the
partial derivatives of the optical flow with a Gabor filters bench.

2.3.3.2 Heuristic-based search strategies

Section 2.2.3 showed that the motion field can be described through individual deformations of patterns in motion. In
such cases, heuristics can be used to search the best motion parameters within a list of parameters candidates. Optimal
Full Search (FS) strategies exhaustively evaluate all the candidates from the considered search area A, thus requiring
a large amount of computations to perform.
Consequently, numerous suboptimal search strategies have been proposed and perform a non-exhaustive parameter
search: they provide a trade-off between the appropriateness of the estimated parameters and the search speed. Unlike
FS strategies, they may end up in local minima. They generally fall into four categories:

1. Signature-based algorithms [Kha89, AFJ90, CRGP94, ZK96, KDST05] aim at reducing the search complexity, while
preserving most advantages from the FS. The search is generally performed in several stages. During the first stage,
every position from the search area A is evaluated via a computationally simple matching criterion. Only most
promising positions are further evaluated in the next stages using progressively more selective matching criteria. The
Successive Elimination Algorithm (SEA) [LS95, GDZ00], for instance, successively eliminates remaining candidates
according to the sum of their pixels.

2. Distance-diluted algorithms [Gil88, PM96] are inspired from the fact that humans cannot accurately perceive fast
moving objects. Consequently, slow moving areas may need to be accurately processed, while fast moving are can
be more crudely processed. Distance-diluted algorithms evaluate fewer and fewer candidates as they get farther
away from the center of the search area: the search step is a monotonically increasing function of the distance to
A’s center.
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3. Locality-based algorithms [Gil88, JRG92, NKPS95] are based on the principle of locality which suggests that
very good matches are likely to be found in the neighborhood of other good matches. They initially examine a
number of sparsely spaced positions within the search area, then narrow the search on promising areas (e.g.: the
binary search divides the search area into four quadrants and performs a FS within a single promising quadrant).

4. Quadrant-monotonic algorithms [JJ81, KIH+81, PHS87, ZK96, ZM97] are special cases of locality-based algo-
rithms and consider the image to fit the quadrant monotonic model. This model assumes that the value of the
distortion function increases with the distance to the minimum distortion position. This paradigm has grown very
popular, and was used to derive numerous search algorithms. They parse the search areas from specific patterns;
they are very popular in Block Matching Algorithms. They will be further reviewed in section 2.4.1 .

2.3.3.3 Hierarchical minimization

Whichever the numerical algorithm used to optimize the motion parameters Θ, it may get stuck onto a local minimum. On
top of previously mentioned regularization techniques, hierarchical approaches have been provided as ways to robustify
and speed up the estimation. They optimize the parameters at different levels of precision; either using different version
of the input signal, or using different versions of the motion model. Hence, two main families of hierarchical search
strategies are available.

1. Multiresolution techniques subsample the original images at different resolutions [Fog91, BL91]. Pyramids of
images (Gaussian, Laplacian), for instance, are commonly used [AAB+84]. For each resolution level, the motion
parameters are first predicted from their values at previous level, then refined by another estimation stage performed
on subsampled images from the current level.

2. Multigrid techniques define a set of motion models of various accuracy [Duf94]. For instance, pattern-based
models may use hierarchical patterns. For each description level, the motion parameters are first predicted from
their values at previous level. At next level, the corresponding motion model is initialized from the current motion
model.

In both cases, moving up into the hierarchy tends to smooth the error curve, thus reducing the risk of falling into a local
minimum. Several strategies have been proposed to run the different resolution or description levels, including

• coarse-to-fine strategies [Fog91]: they start by estimating the motion parameters of the hierarchy top-level, then
progressively climb down the hierarchy;

• fine-to-coarse-to-fine strategies [Duf94]: they start by estimating the motion parameters at the bottom of the
hierarchy, then progressively climb up to its top, and finally back to its bottom.

2.4 A focus on block-based and mesh-based techniques

In an eye to compression, it is crucial for the motion estimation to rely on a model which is described through as few
parameters as possible, since they have to be transmitted. However, the model still needs to be able to represent as
many deformations as possible. In this connection, both block-based and mesh-based models have been identified as
appropriate models, and have been largely used in video compression schemes.

1. Blocks (see section 2.2.3.1) proved to be very handy regarding the representation of section 2.4.3 motion fields.
In addition, they describe the motion field through a small number of parameters: their estimation is particularly
simple, and the resulting motion information is compact. However, they cannot represent any deformation besides
simple translation (and barely slight deformation through overlapping blocks).

2. Meshes, (see section 2.2.3.2) are able to represent a large variety of deformations, and naturally provide a
continuous motion field, but often fail at representing motion discontinuities. In addition, deformable meshes also
provide a continuous representation of the motion along the temporal axis, as several successive warping operation
can be applied to the same control grid. They also describe the motion field in a compact manner.

This section will explain how their parameters are estimated. Sections 2.4.1 and 2.4.2 will respectively focus on Block
Matching Algorithms (BMAs) and CGIs. Section 2.4.3 will then review a few models which hybridize blocks and meshes.



2.4. A FOCUS ON BLOCK-BASED AND MESH-BASED TECHNIQUES 39

2.4.1 Block matching algorithms

Block Matching Algorithms are motion compensating techniques which rely on the translational block based model seen
in section 2.2.3.1. For each block B cur of the current image partition, its best match B̂ cur = B ref is searched into the
reference image, within a search area A. B ’s motion vector is then given by the displacement pulling apart the positions
of B and B̂ in the image plane (see figure 2.4.1). A BMA is thus characterized by:

• its partition of the image plane into blocks (see 2.2.3.1);
• its search area A which defines the domain within which matching candidates may be found; the maximum

displacementsdxmax dymax along directions x and yare given by A’s dimensions;
• its search strategy which drives the way candidates from the search area A are successively evaluated;
• its matching criterion ξ (see 2.3.2) which computes the matching (or distortion) error over the whole domain of B .

Bcur
Bref

Pcur
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t
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time

d

ref

cur
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m
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Figure 2.4.1: BMA: search area and motion vector

2.4.1.1 Traditional Block Matching Algorithms

a Matching criterion

Traditionally, BMAs partition the image plane into disjoints blocks, thus enabling the estimation to process each block
individually. Hence, the motion vector of each block B cur is obtained by minimizing its matching error ξ with respect to
a candidate from the reference image B̃ ref.

−→
d = arg min

−→
d ∈A

ξ
(x,y)∈ΩB

(
B cur(x, y)− B̂ ref(x + dx, y+ dy)

)
(2.25)

where
−→
d = [dx, dy]T is a displacement vector, such that −dxmax ≤ dx ≤ dxmax and −dymax ≤ dy ≤ dymax. Finally,

ΩB cur is the support of B cur. Among matching criteria reviewed in 2.3.2), the SAD is very popular for BMAs. Alternatively,
SSE and SATD are also employed.

b Search strategies

According to the dimensions of the search area A, the number of candidates to evaluate may be very high, especially if
sub-pixellic positions are also considered. Computationally demanding Full Search (FS) evaluates every candidate from
A; they are seldom if ever used in practice. Instead, sub-optimal search strategies are typically employed. These have
been briefly reviewed in section 2.3.3.2; BMAs, however, have been mostly relying on quadrant-monotonic approaches.
The first quadrant monotonic algorithm was proposed by Jain and Jain in [JJ81], within which they introduce the 2-
Dimensional Logarithmic (TDL) search which recursively examines the candidates following a cross pattern. Since then,
a wide variety of search patterns have been proposed, including:

• crosses: TDL search [JJ81] and its variants [Gha90];
• squares: n-step searches (Three-Step Search (TSS) [KIH+81], Four-Step Search (FSS) [PM96]);
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• horizontal/vertical directions: One at a Time Search (OTS), Orthogonal Search Algorithm (OSA) [PHS87];
• diamonds: Diamond Search (DS) [ZM97] and its variants [HM99, ZM00, TAL02, CJJ03, UPND07];
• spirals: spiral search [ZK96, KDST05].

Currently, state of the art video compression schemes mostly rely on the Enhanced Predictive Zonal Search (EPZS),
which is an improvement of the Predictive MVFAST (PMVFAST), itself being a modified version of the Motion Vector
Field Adaptive Search Technique (MVFAST). The MVFAST [HM99] initially predicts the motion vector either from a
set of predictors including [0, 0]T and available motion vector of spatially adjacent blocks. Then, it performs a modified
diamond search using either a small and/or a large diamond. With the PMVFAST [OAL01], an additional set of motion
predictors was introduced, including median and temporal predictors. In addition, adaptive early-stopping criteria may
further shorten the search. Finally, EPZS [Tou02] further enlarged the set of motion predictors from additional spatio-
temporal predictors and acceleration-based predictors. Typically, the EPZS computes the motion vector from 100 times
to 5000 times faster than the Full Search.

prediction

(a) Predicted vector and 1st

DS step
(b) DS 2nd step (c) DS 3rd step (d) DS 4th step (e) DS final step: a small

diamond is used

Figure 2.4.2: MVFAST: motion prediction mechanism and modified Diamond Search (DS)

2.4.1.2 Overlapped Block Motion Compensation

Section 2.2.3.1 mentioned that block-based motion representation suffer from blocking effects. As a solution, the OBMC
would split the image plane into overlapping blocks, thus removing the blocks boundaries issues.

a Multi-Hypothesis Expectation

In [Sul93, OS94], the OBMC has been formalized as a special case of weighted block motion estimation. Underlying is
the Multi-Hypothesis Expectation (MHE) paradigm: it stipulates that a single motion vector cannot fit the motion field
of a whole block of pixels.
From a stochastic perspective, the greater the prediction error is, the less accurate the motion vector is likely to be.
In [Sul93], Sullivan uses a conditional distribution to model the the displacement error, as an a posteriori probability
density function p(x, y; dx, dy|ξ) of the position (x, y), the displacement

−→
d = [dx, dy]T , and the residual error ξ on

the considered pixel. As a consequence, the motion compensated image Îcur can be expressed as

Îcur(x, y) =
∫
dx

∫
dy
p(x, y; dx, dy|ξ)Iref(x + dx, y+ dy)d(dx)d(dy) (2.26)

The difference Îcur− Icur is known as the Multi-Hypothesis DFD (MHDFD). Alternatively, the probability density function
p(x, y; dx, dy|ξ) can be interpreted as a regularization term. What is more, it eases the motion coding process which
outputs a more compact motion information.
In OBMC, the probability density function p(x, y; dx, dy|ξ) = p(dx, dy) of the displacement error is simply defined as
a function of the motion vectors of neighbouring blocks. It does not depend neither on the position (x, y) nor on the
residual error ξ . Consequently, the contribution provided by each block depends on its neighbours. OBMC has been
notably used in ITU-T H.263 ([ITU04], see annex F), wherein top, bottom, left and right neighbouring blocks influence
the current macroblock : this corresponds to cross-shaped overlapping patterns.
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b Estimation techniques which process the blocks independently from each other

In [NO92], Nogaki and Ohta propose an Overlapped BME (OBME) algorithm which does not take the blocks inter-
dependency into account. Similarly to traditional BMAs, they simply look for the motion vector which minimizes the
matching error for the current block B cur. Yet, the matching criterion ξW, SAD is modified to take into consideration the
OBMC weighting window, and

ξw = min−→
d ∈A

∑
(x,y)∈ΩB cur

∣∣∣B cur(x, y)− B̂ ref(x + dx, y+ dy)
∣∣∣ ·W (x, y) (2.27)

where W (x, y) is the weighting window (see figure 2.2.4c).

c Estimation techniques which account for the blocks interdependency

In [OS94], Orchard and Sullivan introduce an estimation algorithm that takes into account the block overlapping features.
The estimation is performed in two steps:

1. the motion field is initialized using Nogaki and Ohta algorithm [NO92]: each block is considered independently
from the others;

2. each motion vector is then refined according to its neighbours; this refinement may be iterated. The matching
criterion is here given by

ξ ′w,SAD = min−→
d ∈A

∑
(x,y)∈ΩB cur

∣∣∣∣∣∣B cur(x, y)−
∑

1≤i≤N

Wi(x, y) · B̂ cur(x + dxi, y+ dyi)

∣∣∣∣∣∣ (2.28)

where
{−→
d0 , . . . ,

−→
dN
}

are the motion vectors of B cur’s N nearest neighbours {B 0, . . . , BN}, and {W0, . . . , WN}
their weighting windows.

Such algorithm guarantees that both estimation and compensation are in phase. In addition, it was proposed to optimize
the weighting window along with the motion vectors. Again, this can be interpreted as optimizing the regularization term
p(dx, dy).

2.4.2 Control Grid Interpolation

In section 2.2.3.2, control grids were introduced as a way to provide a continuous representation of the motion field, at
the expense of a poor representation of discontinuous areas of the motion field. In a block-based model, the influence
zone of a motion vector is the block carried by this vector. In control grids, on the contrary, the control points influence
zone is spread over all adjacent meshes; influence zones of neighbouring control points are thus overlapping. In the end,
the displacement vector of a given control point cannot be estimated without taking into account its neighbours. Two
families of algorithms have been dedicated to their estimation:

1. local approaches [SB91a, NH91] iteratively estimate the displacement of each control point one after another;
2. global approaches [Lec99, Cam04] optimize all the parameters of the control grid at the same time;
3. semi-global approaches [AT97a, AT97b, Lec99] consider successive meshes or local sets of meshes and globally

optimize their parameters, thus adding a continuity/regularization constraint to the local approach.

In control grids, hierarchical motion estimation techniques have also been proposed [BTZ+99, ARAM03, MJZ06], and
robustify the estimation. In any case, several iterations are performed over the whole image plane, until the parameters
of the control grid converge to a solution which minimizes the DFD.

2.4.2.1 Local approaches

This iterative approach was first introduced in [SB91a] by Sullivan and Baker. Each control point is processed inde-
pendently from each other. However, the error functional is minimized over the whole influence zone of the current node,
which calls upon neighbouring control points. As a consequence, several iterations are successively performed, during
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which the control points are displaced one after the other so that they minimize the error functional with respect to the
current positions of neighbouring motion vectors. After several iterations, it is expected that the positions of the control
points converge to an optimal solution.
At time instant tcur, the position of the control points C (tcur) are initialized from their position at instant tref. Each control
point Ci(tcur) ∈ C (tcur) is provided with a flag, local_flag, which indicates if the node has reached its local optimum.
The algorithm then carries out the following steps:

1. local_flag is set to false for all nodes.
2. for each node Ci(tcur) ∈ C (tcur) whose tag local_flag equals false:

(a) the algorithm searches for the optimal position of Ci(t + 1) within a local neighbourhood, with respect to
the current positions of neighbouring control points;

(b) if the position of Ci(tcur) is unchanged and keeps the position estimated at previous estimation, Ci(tcur)’s tag
local_flag is set to true

3. iterate step 2 until all nodes have converged, i.e. local_flag = true ∀Ci(tcur) ∈ C (tcur).

In order to transform the meshes according to the displacement of their control points, an interpolation function is
required. In [SB91a], Sullivan and Baker perform two bilinear interpolations to obtain the horizontal and the vertical
components of the motion vector. Interpolations may end up into sub-pixellic positions; in such cases, the pixellic intensity
is interpolated from a third bilinear interpolation of neighbouring pixels. This algorithm has been baptised TBCGI, after
the three successive bilinear interpolations.

2.4.2.2 Global approaches

In [Bru90], Brusewitz introduces a global approach to the estimation of the parameters of a deformable control gridM.
Inspired by the field of finite elements, global approaches estimate the displacement of all the control points at once.
Let
{−−−−→
dref→cur(C0), . . . ,

−−−−→
dref→cur(CN−1)

}
be the displacement vectors they undergone between time instants tcur and tref.

Generally, they perform a gradient descent onto the parameters of the control grid, such that they minimize the DFD
error functional ξ , now written as

ξ
(−−−−→
dref→cur(C0), . . . ,

−−−−→
dref→cur(CN−1)

)
=
∑
P∈Ωcur

Icur(P)− Îcur

P +
N∑
j=1

φj
(
P − Cj (tref)

)
·
−−−−→
dref→cur(Cj )

 (2.29)

where φj is the inner-mesh interpolation function,{C0, . . . , CN} the N control points ofM, and N the number of those
whose influence zone contains point P(x, y).

a A matrix formulation of the control grid parameters and its derivation

Typically, numerical optimization algorithms arranges the control grid parameter set into a 2 × N-dimensional vector
ΘM which concatenates x and y parameters. Similarly, the derivative operator −−→∇M with respect to these parameters is
also a 2× N-dimensional vector:

−→
ΘM =



dxref→cur(C0)
...

dxref→cur(CN )
dyref→cur(C0)

...
dyref→cur(CN )


, −−→∇M =



∂/∂dxref→cur(C0)
...

∂/∂dxref→cur(CN )
∂/∂dyref→cur(C0)

...
∂/∂dyref→cur(CN )


(2.30)

b First and second order control grid optimization algorithms

Numerous numerical optimization algorithms [BGLS06] can be used to minimize the error functional ξ
(−→
ΘM
)

. At each

iteration n, they refine the parameters
−−−→
Θ(n−1)
M output by the previous iteration n− 1.
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• First order gradient descents - ξ
(−→

Θ(n)
M

)
= ξ

(−−−→
Θ(n−1)
M

)
−λ ·−−→∇Mξ

(−−−→
Θ(n−1)
M

)
- often approximate the functional

ξ by its first order Taylor series Brusewitz. They are seldom if ever used as their convergence is very slow.
• Second order gradient descents, including Newton and quasi Newton techniques, converge much more fast.

However, they suffer from the instability of the computation of the second derivatives.
• The Gauss-Newton method, finally, is as efficient as second order methods, but avoid the computation of the

second order derivatives [LRS98, Lec99]. However, it is highly computationnaly demanding. At each iteration, it
needs to invert the Jacobian, which, in this case, is a 2N × 2N positive semi-definite, sparse, and diagonally
dominant matrix. It can be performed through classical inversion tools, including Cholesky decomposition [Lec99],
QR decomposition, conjugate gradient [Cam04], or Gauss-Seidel.

These approaches provide a better estimation of the control grid deformation in comparison to local approaches, which
we reviewed in section 2.4.2.1. Yet, they may end up in solutions which do not respect the non-superposition constraint:
some meshes may be overturned.

c A Levenberg-Marquardt regularization to limit meshes overturning

In order to avoid problematic situations like overturned meshes, it was propozed to regularize the estimation through
a Levenberg-Marquardt (LM) augmentation. It is motivated by a simple observation: images whose spatial gradient is
small will end up into a Jacobian matrix whose diagonal coefficient are small as well (� 1). Consequently, their inversion
may generate large displacements, far from the true motion.
The LM augmentation is an efficient way to regularize an ill-conditioned matrix: it simply adds an offset to the eigenvalues
of A, to avoid small values. Even better results are obtained with adaptive LM augmentation, which adapts its orientation
to the content of the images [Lec99]: it only slows down the deformation of the meshes in the direction whose spatial
gradient is the smallest. Figure 2.4.3 shows the effect of the LM augmentation on the resulting deformable control grid.

(a) Without LM augmentation (b) With LM augmentation

Figure 2.4.3: Effect of the LM augmentation on the estimation of a deformable control grid [Lec99]

2.4.3 Hybridizing block-based and mesh-based representations

In the introduction of section 2.4, pros and cons of both blocks and meshes were briefly summarized. In particular, their
respective abilities to model the motion field in a continuous or a discontinuous fashion was highlighted. Blocks, on one
hand, provide a discontinuous representation of the motion, but are limited to the description of translations. However,
overlapping the blocks through the OBMC does improve the initial block-based representation. Meshes, on the other
hand, provide a continuous representation of the motion, and are able to handle various transformations. However, they
can barely represent the ruptures of the motion field.
To overcome these limitations, it was naturally proposed to hybridize both blocks and meshes to benefit from all their
respective advantages. Section 2.4.3.1 focuses on the Switched CGI (SCGI), an hybridization of the BMC and the CGI.
Then, section 2.4.3.2 focuses on the Switched OBMC (SOBMC), an hybridization of the BMC and the OBMC. Finally,
section 2.4.3.3 reviews even more advanced hybrid approaches.
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2.4.3.1 Switched Control Grid Interpolation

Ishwar and Moulin introduced in in [IM97, IM00] a variant of the CGI. At first, the image is partitioned into blocks; each
of these may then be motion compensated using either BMC or CGI. To this end, the motion vectors are set up at the
corners of the blocks, which also play the role of control points. For each of these control points, a label local_motion
controls the nature of the motion in the corresponding neighbourhood:

1. if local_motion(Bi) = false, the motion field is described through a translating block, similarly to BMC;
2. if local_motion(Bi) = true, the motion field is interpolated through CGI.

(a) BMC (b) CGI (c) SCGI

Figure 2.4.4: Shapes of different interpolation functions used for motion vector interpolation [IM97]

This hybrid motion model is illustrated in figure 2.4.4 in the one-dimensional case. As or the estimation algorithm, it
is inspired from the local CGI algorithm [SB91a]: all controls point are successively optimized one by one. The optimal
parameters of the current control point Ci are given by the pair

(
local_motion(Ci),

−→
d (Ci)

)
that minimizes the error

criterion on the reconstructed area. The whole process is iterated several time to ensure convergence.

2.4.3.2 Switched Overlapped Block Motion Compensation

Despite the significant reduction in blocking artefacts brought by the OBMC (see section 2.4.1.2), areas whose motion
information quickly varies are blurred. To address this issue, Ishwar and Moulin propose in [IM00] an hybrid technique
combining OBMC and BMC: the SOBMC. Similarly to the SCGI, a label local_motion controls, for each control
point, the nature of the motion in the corresponding neighbourhood:

1. if local_motion(Bi) = false, the motion field is described through a translating block, similarly to BMC;
2. if local_motion(Bi) = true, the motion field is interpolated through OBMC.

As for its estimation algorithm, it is, again, inspired from the local CGI algorithm [SB91a]. The optimal parameters
of the current block B i are given by the pair

(
local_motion(B i),

−→
d (B i)

)
that minimizes the error criterion on the

reconstructed area.
The SOBMC can be seen as a simplified version of the SCGI. In average, though, Ishwar and Moulin show that
SCGI provides a better motion field than the OBMC [IM00]. OBMC, however, generally provide a more compact motion
information. In the end, SCGI remains worth of interest, since its excellent motion compensation makes up for the
transmitted data increase. SOBMC may still be considered as it is less computationally demanding than the SCGI.

2.4.3.3 Advanced hybrid techniques

In further works, it has been proposed to combine OBMC and CGI. In [HMCP01], Helsing and Marpe hybridize those
motions models in a similar manner than the SCGI [IM97]: a local_motion flag is sent to signal whether to use
OBMC or CGI.
In [CHJ+06], Choi et al. free themselves from the supplementary labels which were transmitted along with the motion field
in previous techniques. In areas whose activity is strong, the motion field is subsampled, by an interpolation function
(e.g. bilinear), based on neighbouring motion vectors. This boils down to a CGI motion field interpolation. Finally,
each sub-block carried by the interpolated motion vectors is then compensated using a local OBMC (see figure 2.4.5).
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Choi et al. baptized their technique Irregular Grid OBMC (IG-OBMC). Figure 2.4.5 illustrates its principle in the
one-dimensional case.

Magnitude of
motion vector

Control points 
motion vectors

Interpolated
motion vectors

Local OBMC
weighting window

Sampling points
on irregular grid

Pixel position

OBMC weighting
windows

Bilinear interpolation

Figure 2.4.5: IG-OBMC: Sub-sampling and interpolation of the motion field [CHJ+06]

2.5 Conclusion

In video compression, the ability to motion compensate successive images of an image sequence is crucial. This chapter
first described the nature of the motion information, from the real scene being shot, to the image plane on which motion
is measured from the optical flow. In order to motion compensate a reference image Iref into the current image Icur, a
motion model is used to parametrize the apparent motion. Then, a motion estimation technique is used to evaluate the
parameters of the provided model.
From section 2.2, it is easily seen that a large number of motion models are now available, including:

• dense motion fields, which provide an exhaustive representation of the motion, and are generally dedicated to
video analysis applications, wherein the amount of motion information is not limited;

• parametric models employ a smaller set of parameters, but are often limited to the estimation of the parallax
component of the motion: they are not suited to the representation of local deformation;

• models based on a set of deforming geometrical patterns, which also represent the motion information from a
rather small number of parameters. What is more, they are able to locally describe the motion information. For
both these reasons, such models are naturally fit to the context of video compression. In particular, blocks and
meshes, respectively reviewed in sections 2.2.3.1 and 2.2.3.2, are very popular.

The block-based translational model, on one hand, is particularly simple and still provides a valuable motion compensated
prediction. In particular, its ability to represent the discontinuities of the motion field may be its key feature. However,
it is less efficient in areas where the motion is continuously varying, and introduce blocking artefacts into the motion
compensated prediction. Relying on overlapping blocks, the OBMC proved to be a crude but simple way to avoid these
problems, at the expense of a loss in its ability to represent motion discontinuities. It has been extensively used, notably
by standardized video coders such as MPEG-x [ISO93, ISO94b, ISO00a] and H.26x [ITU90, ITU94, ITU95, Ric03].
Meshes, on the other hand, are much more complex, but handle a large set of deformations. In addition, they naturally
provide a continuous representation of the motion, both in space and time domains. Along the temporal axis, in particular,
meshes can be used to exhibit the trajectory of an area: unlike blocks, the mesh-based motion model is not reset at each
instant. However, meshes are not able to efficiently represent the ruptures of the motion field.
Naturally, hybrid solutions have been introduced to ally their abilities into switched models; they have been reviewed
in section 2.4.3. The corresponding increase in complexity is fairly reasonable, and output motion information is still
compact. These models appear to be particularly interesting in regards to our work: an idealistic model should be able
to represent both continuities and discontinuities of the motion field, and handle as many deformations as possible, while
providing a coherent motion information both in space and time.
Prior to the introduction of our contributions, next chapter will focus on existing video compression schemes. It will explain
how decorrelation tools seen in chapter 1 and motion compensation are combined into practical compression schemes.





Chapter 3

Coding image sequences

Correlation, in image sequences, is found under many different forms; most of which were reviewed in chapter 1.
Video compression relies on these correlations to extract and remove the redundancies hold by an image sequence,
thus reducing the amount of information needed to be transmitted. Most decorrelation techniques introduced in

chapter 1 inspired numerous coding designs, with more or less success. Since videos are a succession of images sampled
at various instants, correlations are usually considered to be either spatial (within an image) or temporal (between several
images). Corresponding terminologies peculiar to video coding are intra (spatial) and inter (temporal) coding techniques.
As for images, they are often referred to as frames.
It was soon identified that motion compensation, was essential to an efficient decorrelation along the temporal axis. In
other words, it allows the video coder to decorrelate motion and textural information, thus simplifying their processing.
In particular, inter coding techniques mostly rely on the efficiency of the motion compensation. However, some specific
coders such as the Motion JPEG (M-JPEG) and the M-JPEG-2000 (mainly used in Non-Linear Video Editing (NLVE)
systems for television and movies post-production) do not use motion compensation, in order to provide a complete random
access to the image sequence. However, this comes with a significant reduction in coding efficiency.
As motion plays a key role into our work, this chapter will focus on approaches using motion compensation. As different
as they may be, they all consider the video information to be a set of basic spatial, temporal, or spatio-temporal units:
pixels, blocks, regions, sub-bands, motion threads. . . While these units will drive the overall coding process, they may
also hold a semantic information; for instance, video objects may be described through region units.
Section 3.1 will give a general overview on different approaches to video coding. Then, section 3.2 will focus on
a few widespread coding tools, thus introducing section 3.3 which will give an overview of a state-of-the-art video
compression standard: ITU-T H.264/AVC. Finally, section 3.4 will introduce alternative approaches including 3D Wavelet
and Analysis-Synthesis (AS) coding schemes, whose disruptive technologies offer additional features and functionalities.

3.1 Introduction to video coders

3.1.1 Image sequences as input data

Spatial and temporal resolutions have a great influence on the quantity of information hold by an image sequence. The
sampling rate is typically given as a number of images to be displayed per second, usually around 25 fps (frames per
second), though greater sampling rates may also be used (30, 50, 60 fps). The spatial resolution, on the other hand,
may greatly vary according to the targeted display. Table 3.1.1a lists several commonly used resolutions. In addition, a
video can be sent either in a progressive (frame by frame) format, or in an interlaced (field by field) format.
The nature of the color information has also an influence on the amount of information needed to be transmitted. Though
Red Green Blue (RGB) color space is best known, images are usually converted into the YUV (previously YCbCr) as it
better matches the human color perception. Indeed, the human eye is more sensitive to luminance (Y) variations than
chrominance (U/Cb - V/Cr) variations. Consequently, it has been proposed to subsample the chrominances, as can be
seen in table 3.1.1b. Subsampling modes are denoted J : a : b, where J is the horizontal sampling reference (usually 4),
a and b respectively indicate the number of chrominance samples kept on the first and the second line of a J × 2 block
of original samples.
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Format Width × Height Aspect ratio
QCIF 176 × 144 11:9
CIF 352 × 288 11:9
4CIF 704 × 576 11:9
SD 768 × 576 4:3
VGA 640 × 480 4:3
HD 720 1280 × 720 16:9
HD 1080 1920 × 1080 16:9

(a) Commonly used resolutions in displaying devices

Subsampling BandwidthMode Horizontal Vertical reduction
4 : 4 : 4 none none none
4 : 2 : 2 ↓ 2 none 33%
4 : 2 : 0 ↓ 2 ↓ 2 50%
4 : 1 : 1 ↓ 4 ↓ 4 62.5%

(b) Several YUV sampling modes and corresponding subsampling
rates

Table 3.1.1: Image sequences: common displaying formats and color modes

While recent displays generally support High-Definition (HD) resolutions, classic displays usually stick to Standard
Definition (SD) resolution. As for color information, most video streams are now using either 4 : 2 : 0 YUV mode for low
resolutions, and 4 : 2 : 2 mode for higher resolutions requiring a high chroma quality.

3.1.2 Several approaches to video coding

As mentioned earlier, image sequences may be interpreted in various ways. Being a spatio-temporal set of pixels, they
can be interpreted and processed as such. On the other hand, they generally result from a real or an artificial shooting
process (as described in section 2.1.1 from previous chapter), and can be interpreted as the projection of a scene onto
the camera plane, which itself can be in motion. Consequently, various approaches to video coding have been provided,
and derive from an interpretation which lies in between a photometric and a semantic understanding. However, they all
partition image sequences into basic units (photometric or semantic) which are often processed via similar techniques.

3.1.2.1 A generic approach to video coding

A typical video coding system can be represented as depicted in figure 3.1.1. Besides the partitioning step which is
highly dependent on the chosen approach, any video coding scheme often performs a few common operations.

• The motion estimation/compensation step aims at aligning the video basic units along the temporal axis.
• The transform step aims at compacting the information hold by each of these units (transform is to be understood

in a broad sense: either a mathematical transform or any compacting description technique).
• The quantification step aims at reducing the dynamic of the coefficients to transmit. As this is a non-reversible

operation, it is a source for losses and distortions, but controls the output bit-rate.
• The entropy coding step further compacts the binary information according to its statistical properties.

Partitioning Quantification
Ouput

bitstream
Input
sequence 

Entropy
CodingTransform

Motion
Estimation

Figure 3.1.1: A typical video coding system

3.1.2.2 From photometric to semantic partitions of image sequences

a Photometric coders

Photometric video coding schemes consider image sequences to be a spatio-temporal set of pixels, without any further
meaning. Consequently, the partitioning process is adapted to the chosen motion model and transforms, and may
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partition each frame into blocks, regions [PL99], . . . . For instance, the classical approach to video coding partitions an
image sequence into Groups Of Pictures (GOPs) and frames. Each frame is then further partitioned into blocks, whose
dimensions may be fixed or variable. In any case, the partitioning process is only driven by rate-distortion constraints.

b Semantic coders

On the other hand, semantic video coding schemes consider image sequences to be the projection onto the camera
plane of a set of objects in motion inside the scene. From then, image sequences are partitioned into objects whose
position and shape is tracked across time. Typically, such schemes are known as object-based and model-based video
coders [YW94, SGPK94, SMP+97, SM99, XLLZ01]. Some of them are provided as an overlay coding layer, and may be
hybridized with a photometric coder (e.g. Motion Picture Expert Group (MPEG)-4 Part 2 [ISO00a]).
The objects being hold by one or several regions, the coder can process each of them individually. Information relative to
both the background and the objects are then transmitted to the decoder which recomposes the scene from the received
video elements. Both regions and/or 2D/3D models may be used to model the video objects. In practice, however,
standardized video compression schemes do not consider this approach, because of two major drawbacks:

• model or shape parametrizations induce an overhead whose cost may be prohibitive, especially at low bitrates;
• both model-based and region-based coders often require the use of a segmentation process, whose computational

cost generally prevents from getting real-time implementations.

c Pseudo-semantic coders

In between photometric and semantic approaches lie pseudo-semantic approaches. Though the coding process may still
be focused on pixels (hence, photometric), these may be rearranged into semantic sets as it may ease their decorrelation.
Indeed, being able to match successive pixels from an object should lead to a highly correlated sequence of pixels.
Like semantic approaches, pseudo-semantic video coding schemes generally do not guarantee a perfect reconstruction of
image sequences. Their objective is to provide a reconstruction of the images which is visually acceptable. In particular,
Analysis-Synthesis (AS) schemes (see section 3.4) are a typical example of pseudo-semantic coders. In addition, some
region-based coders may also be classified into pseudo-semantic approaches; some of them partition the images into
regions which may not correspond to video objects [PL99, DBBR07].

3.1.3 Quality assessment

As video information goes through capture, coding and transmission devices, it is subject to various distortions which tend
to reduce the perceived video quality. In capture and transmission systems, these distortions result from a processing
noise which cannot be controlled. In coding systems, however, lossy compression techniques often reduce the amount of
information to be transmitted to such an extent that the quality of the videos is further reduced. Consequently, it is
essential for video coders to be able to assess the quality of an image sequence. According to the availability of the
original signal, quality metrics are generally classified into:

• Full Reference (FR) methods: the original signal is fully available and can be exhaustively compared to the
distorted signal;

• Reduced Reference (RR) methods: only a set of features from the original signal is available: these features are
compared with corresponding ones from the distorted signal [WJP+93];

• No-Reference (NR) methods: the original signal is not available at all, forcing the quality measurement to be
performed blindly; in such case, it is essential to known which coding artefacts are liable to be found.

In video coding, original images are available, thus FR methods are most often used. Ideally, a good quality metric
should match the user-perceived quality, i.e. the subjective quality. In subjective tests, users are asked to grade (usually
from 0 to 10) the quality of a broadcast video. The Mean Opinion Score (MOS) is then given by the average score.
Deblocking filters, though, can be interpreted as NR methods: they are able to blindly identify blocking effects.
A wide variety of objective metrics have been proposed to evaluate the quality. Mathematically convenient metrics such
as the Signal-to-Noise Ratio (SNR), and especially the very popular Peak Signal to Noise Ratio (PSNR), ruled the
field of quality measurements for a while. However, they proved to be relatively poor matches to subjective measurements.
Later, pseudo-subjective metrics were provided as better matches to the subjective quality.
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3.1.3.1 Objective metrics

SNR is a metric which measures the power ratio between a signal (the information) and the background noise. Alter-
natively, it corresponds to the squared ratio of the signal’s Root Mean Square (RMS) amplitude to the noise’s RMS
amplitude. In images, a similar metric is known as the PSNR; it uses the image peak amplitude max(I) (usually 255 for
8-bits images) instead of the RMS amplitude. As for the amplitude of the noise, it is given by the MSE (see equation
(2.20), in section 2.3.2 from previous chapter) between the original image Iorig and the distorted image Idist.

PSNRdB = 10 · log10

[
max(I)2

ξMSE(Iorig, Idist)

]
(3.1)

However, the Human Visual System (HVS) evaluates visual stimuli based on specific features (edges, textures, smooth
regions, . . . ); consequently, the PSNR is not a good match to subjective scores.

3.1.3.2 Perceptual or pseudo-subjective metrics

In humans, the visual system is, among other things, in charge of assessing the quality of perceived images. Among the
numerous psychophysic mechanisms of the HVS, a few are essential to visual perception:

• a trichromate color perception: due to the response spectra of the three types of cones -S(hort), M(edium),
L(ong)- the eyes are more sensitive to certain wavelengths (i.e. colours) than others;

• the contrast sensitivity and the visual masking effect of the low-level HVS: they determine how sensitive we are
to the various frequencies of visual stimuli;

• the global precedence of the mid-level HVS: the structural perception is done by integrating edges in a coarse-
to-fine scale fashion.

Pseudo-subjective metrics were provided to take into account some of these mechanisms. They are generally compared to
subjective evaluations through correlation indexes such as Spearman or Pearson rank correlation factors. The visual acuity,
i.e. the contrast sensitivity and the masking effect, is generally modelled by a Contrast Sensitivity Function (CSF) [MS74].
Hence, derived metrics generally rely on frequency-based decompositions: [LK97], [Win99], Digital Video Quality (DVQ)
[Wat98], JPEG2000’s Weighted MSE (WMSE) [TM01], PSNR-HVS and PSNR-HVS-M [EJN+06].
Alternatively, metrics assessing overarching principles such as structural or information extraction have also been proposed:
Universal Image Quality (UIQ) index [WB02], Structural Similarity Image Metric (SSIM) [WBSS04], Multi-Scale SSIM
(MS-SSIM) [WSB03], Multiscale Modular Similarity (M2S) and Multiscale Modular Maxima Similarity (M3S) [ZZYX05],
Three-Component PSNR (3-PSNR) and Three-Component SSIM (3-SSIM) [LB10]. Also, some metrics are combining
both visual acuity and structural approaches: Threshold vs Contrast (TvC) [TH94], Visual SNR (VSNR) [CH07]. Finally,
degradation-based approaches use a degradation model to represent the distortion and evaluate the difference between
the model and the distorted image: Weighted SNR (WSNR) and Noise Quality Measure (NQM) [DVKG+00], Visual
Information Fidelity (VIF) [SBdV05, SB06].
In image sequences, quality loss may also appear along the temporal axis. Some metrics have been provided to take
this aspect into account, and are dedicated to video quality assessment: Perceptual Video Quality Measure (PVQM)
[HBL+02], SSIM [WLB04], Video Quality Metric (VQM) [PW04], Perceptual Evaluation of Video Quality (PEVQ) [OPT08].
They may evaluate the video impairments, including: blurring, jerky motion, global noise, block distortion, chrominance
distortion, . . . Finally, motion tubes were also proposed to assess the video quality, and focus on the temporal stability
of images [PBC07, Péc08].
Facing such a plethora of pseudo-subjective metrics, it is difficult to identify one of them as a universal metric. Indeed,
none of them, so far, proved to be efficient at assessing all kinds of distortions. Consequently, normalization committees
still advocate the combined use of PSNR and MOS, though VQM has also been seriously considered.

3.1.4 Coder functionalities

Besides compression abilities, video coders are often required to provide additional functions such as content description
(e.g. MPEG-4 part 11 ), subtitling (e.g. MPEG-4 part 17 ), . . . and notably scalability and multiple view coding. Both
of them are considered to be critical in the development of new video coders. Scalability allows the exact same video
stream to be played on a wide variety of terminals. Multiple view coding is essential to the next broadcast generation:
Three-Dimensional TV (3DTV).
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3.1.4.1 Multiview coding

With growing interest in 3DTV and Free viewpoint TV (FTV), the problem of multiview coding [HO07] has become crucial.
Multiview videos are sequences which provide several views of the same scene for each time instant. In 3DTV, two views
are required to generate a stereoscopic effect. In FTV, on the other hand, a larger number of views is required to offer
to the end-user the possibility to navigate into the scene.

While some coders make do with a separate encoding of each view, thus providing as many video streams as there are
angle of views, some more advanced coders use inter-view correlations to reduce the amount of information needed to be
transmitted. Among the latter’s, some of them may model the scene using a depth map [ZKU+04] or even a global 3D
model along with its corresponding textures [GM01, EDM+08, CPML10].

3.1.4.2 Scalability

Throughout the years, more and more transmission channels and devices have been used to distribute and display video
information. Nowadays, targeted applications may present strong variations in their abilities to receive, process and
display this information. As a consequence, video content providers have to adapt to this heterogeneity. Obviously,
it might become unrealistic to propose as many versions of the same video as there are targeted applications. Hence,
scalability was proposed as a workaround, and provide a hierarchical video information, enabling each transmission
channel and/or device to adapt transmission, reception, decoding or displaying to its maximum capabilities. As this
information is hierarchical, the content is viewable whichever the amount of information kept.

Hierarchical coding techniques (e.g. the Wavelet transform) were proposed as ways to provide scalability [Sha93, SP96,
Tau99]. In terms of generated bitstream, these coding techniques organize the information into layers. Typically, scalable
bitstreams provide a base layer whose binary information can be transmitted, received, decoded and displayed by any of
the targeted devices. In addition, a set of successive enhancement layers is available for devices of greater capabilities.
These enhancements may improve the Quality of Experience (QoE) of the end user in several ways:

• SNR or quality scalability successively improves the quality of the received video stream in terms of SNR (typically,
PSNR). Each enhancement layer thus provides residual information which reduces the distortion between received
and original images;

• Spatial or resolution scalability addresses the problem of multiple-sized terminal displays. The base layer
provides video information at a low resolution. Each enhancement layer provides additional information enabling
the decoder to synthesize the video images at successive higher definitions;

• Temporal scalability provides a scalable stream whose temporal frequency adapts to the various refresh rates of
terminal displays. Each enhancement layer increases the temporal frequency of the transmitted signal;

• Motion scalability provides a representation which successively refines the motion information with each enhance-
ment layer [Cam04]; Indeed, motion information represents a large part of the overall video information

• View scalability, in multiview video compression systems, controls the number of views to be transmitted. Each
enhancement layer may provide additional views to adapt to the terminal displaying capabilities;

• Complexity scalability is also provided as a way to adjust the decoding complexity to the available computational
resources of the terminal.

Any of them may also be used to adjust the transmitted signal to the available bandwidth, thus providing a better Quality
of Service (QoS). Indeed, transmitting the base layer only, for instance, requires a lot less bandwidth than transmitting
all the enhancement layers.

3.2 Classic coding tools

Video coding schemes greatly vary according to their nature and goals. However, some tools are now very popular and
spread among a large number of video coders, including Groups Of Pictures (GOPs), macroblocks and Rate-Distortion
Optimization (RDO).
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3.2.1 Groups Of Pictures

Both intra and inter coding techniques can be used: coding a frame may require previously processed images:

1. Intra-coded frames (I-frames) are exclusively coded using spatial decorrelation techniques and do not depend on
any other frame. Consequently, they can be decoded independently from any other frame, thus providing random
access and limiting the error propagation of alternative coding schemes;

2. Predicted-frames (P-frames) are (partially) predicted from a previously coded/decoded frame, thus allowing the
use of temporal decorrelation techniques (in particular, motion compensation);

3. Bidirectional frames (B-frames) are similar to P-frames, except that they are predicted from two previously
coded/decoded frames.

As both P-frames and B-frames rely on inter coding techniques, they are more generally referred to as inter-frames.
Since they can use both intra and inter coding techniques, they generally achieve further compression than I-frames.
The reference frames from which they are predicted may be located both in the past and/or the future. This prevents
both coder and decoder to process frames in the displaying order, but forces them to follow a coding sequence.
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Figure 3.2.1: Several GOP structures

In MPEG-1 and MPEG-2 video compression standards [ISO93, ISO94b], Groups Of Pictures (GOPs) start by an I-frame
so that they can be randomly accessed. Their structure consists of a fixed sequence of P-frames and B-frames and their cor-
responding anchor instants. GOPs are often referred to by two numbers: M tells the distance between two anchor frames,
and N tells the distance between two I-frames. For instance, the GOP structure I0b2b3 P1b5b6 P4b8b9 P7b11b12 I10
corresponds to M = 3 and N = 12. Subscript numbers denote coding order indices; uppercase letters denote anchor
images and lowercase letters non-anchor images. Some GOP structures are widely used (figure 3.2.1):

• predictive structures I0P1P2P3P4..., for which each P-frame is predicted from previous frame;
• hybrid structures I0b2P1b4P3... which incorporate B-frames into a predictive structure. B-frames are predicted

from past and future neighbouring P-frames;

Later, H.264/AVC [JVT05] got rid of the notion of GOP and allowed for arbitrary sequences of I, P and B frames to be used,
and even changed during the coding process. In particular, dyadic hierarchical B structures I0b4B3b5B2b7B6b8P1...
rely on several temporal levels of B-frames. This partition of the temporal axis is equivalent to the one provided by the
MCTF (see 1.3.3). To be exact, this approach is equivalent to the UMCTF.
In practice, the length and the structure of the GOP mainly depend on the targeted application. Broadcast applications,
for instance, require a key frame (an I-frame) at least every second or so. In addition, hardware or software memory
limitations may force the coder to use a restricted set of anchor frames.
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3.2.2 Block partitioning

From early video coders such as H.120 [ITU88], it was quickly realized that coding techniques should be adapted according
to the local content of the sequence images. Indeed, areas whose temporal correlation is high should be encoded using
inter-coding techniques, otherwise intra-coding techniques should be preferred. Hence, it was proposed to partition the
images into regions whose coding process is adapted to the nature of their correlations. While a few coders rely on
arbitrary shaped regions [SGPK94, SM99, RM04], most of them partition the images into blocks.
Standardized coders, since H.261 [ITU90], then MPEG-1&2 [ISO93, ISO94b] partitioned the images into fixed-size blocks
(16×16 pixels), known as macroblocks. Later, H.264 [JVT03] introduced variable block size: overarching macroblock-size
is still 16× 16, but each macroblock may be further split into smaller macroblocks (16× 8, 8× 16, and 8× 8 pixels).
Similarly, the Locally Adaptive Resolution (LAR)-Video codec uses adaptive block size based on a quadtree decomposition
[FBDC07].
Using blocks, it is then possible to locally adapt the coding technique to be used. Hence, in standardized coders,
macroblocks are characterized by a coding mode (inter, intra, skip . . . see 3.3.1.2 for further information on H.264 modes).
Figure 3.2.2 shows the different modes used to code fixed-size macroblocks in a standardized coder for several images.

(a) I-frame (b) P-frame (c) B-frame

Intra macroblocks
Inter macroblocks
Skipped macroblocks

Figure 3.2.2: Mode use on different types of frames on sequence Foreman

3.2.3 Rate-Distortion Optimization

According to the targeted application, video coders may have to provide compressed image sequences at given quality
(in practice, distortion) or bitrate. In any case, the coder should find the optimal trade-off between output bitrate R and
provided signal distortion D); this is known as Rate-Distortion Optimization (RDO). Let us assume that the targeted
application requires the image sequence to be encoded at bitrate Rtarget. In such case, the optimal rate-distortion tradeoff
is obtained by minimizing D under the constraint R ≈ Rtarget. As both R and D are functions of the encoding parameters
Θc , the problem writes as:

Θ∗c = arg min
Θ

D(Θc)

subject to R (Θc) ≈ Rtarget (3.2)

where Θ∗c are the coder optimal parameters for considered sequence and targeted bitrate. Many constrained optimization
techniques are available and can be used to solve such a problem. Usually, however, Lagrangian optimization is used as
it provides a relatively easy way to perform such optimization. Using Lagrange multipliers, both the distortion D(Θc) and
the bitrate R (Θc) are combined into a Lagrange function J(Θ, λ). The optimal encoding parameters Θ∗c are now given by
the following unconstrained problem:

Θ∗c = arg min
Θc

J(Θc, λ)

= arg min
Θc

D(Θc) + λR (Θc)

such that R (Θc) ≈ Rtarget (3.3)

where λ > 0 is the Lagrange multiplier controlling the relative importance of D and R throughout the optimization process.
In the rate-distortion space, the set of reachable (R ,D) positions are located on the operational curve D = foc(R ) (see
figure 3.2.3). The optimal Lagrange multiplier λ∗ is given by the slope of foc at the closest operational point (R ,D) from
targeted bitrate Rtarget.
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Figure 3.2.3: Typical rate-distortion curve of a compression system

3.2.3.1 Identifying optimal λ∗

The value of λ∗ may not be a priori known; however, numerous works have been trying to provide models for the
operational R-D curve. Several interpretations of this problem can be done [LT08], though source coding perspective is
the most common one. In particular, a widely accepted model is given by [SW98]:

R = f−1
oc (D) = α ln

(
σ 2

D

)
⇐⇒ D = foc(R ) = σ 2e−R/α (3.4)

As the derivative of foc function with respect to D is equal to the optimal Lagrange multiplier λ∗, the latter is given by

λ∗ = ∂foc
∂R = D

α . (3.5)

In standardized coders, it was shown that the distortion D is linked to the quantization step Q. In H.264/AVC, the
quantization step is obtained from the input Quantization Parameter (QP). Finally, λ∗ itself is expressed as a function
of Q (λ∗ ∝ Q2) [SW98].

3.2.3.2 RDO and block partitioning

As seen in 3.2.2, video compression systems often partition the images into blocks. Assuming that each block B i is coded
independently from the others, a local Lagrangian RDO can be individually performed on each of them. In each block
B i , a local set of parameters ΘB i is optimized such that they minimize the block distortion DB i , while allocating an
appropriate bitrate RB i .
In standardized coders, the local RDO process selects the optimal coding mode and its associated parameters. Conse-
quently, λ∗ is often referred to as λmode. This just leaves DB i and RB i to be evaluated for each coding configuration to
be tested. As RB i ’s exact evaluation may be computationally demanding, relations between encoder parameters ΘB i and
required bitrate RB i have been provided (i.e. the ρ-domain [HM01]), which spares the encoder from many computations.
In the end, the overall distortion and bitrate are given by their sum over all blocks B i:

D(Θ) =
∑
i

DB i (Θi)

R (Θ) =
∑
i

RB i (Θi)
(3.6)

3.2.3.3 Optimal motion estimation from a rate-distortion perspective

As motion compensation is a very efficient technique when it comes to decorrelate textures and motion, it still requires
the motion information to be sent along with other transmitted data. In recent video compression systems, encoded motion
parameters often represent the largest part of the information carried by the encoded bitstream. Hence, it is essential
for the motion information to be as compact as possible. In consequence, it was proposed to apply the rate-distortion
theory to motion estimation as well.
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Motion estimation should find the optimal trade-off between the quality of motion prediction and its coding cost. In
particular, it has been proposed to replace the distortion measure of matching criteria reviewed in section 2.3.2 by a
rate-distortion Lagrangian [SB91b, Lee95, CKS96, SW98, CW98]. Considering a block-based motion model (see 2.2.3.1)
using a single motion vector

−→
dB i to represent the motion field of block B i , the Lagrangian matching criterion is given by

ζRDO(R, R̂) = DB i + λmotionRB i
=ζ(B i, B̂ i) + λmotionR (

−→
dB i ) , (3.7)

where B̂ i is the motion prediction of B i , and ζ(B i, B̂ i) is the distortion measured between B i and B̂ i . Empirical value
λmotion =

√
λmode has been advocated for a while. In [LT08], Tourapis et al. provide a Bayesian interpretation of the

RDO, and show that previous empirical value results from several simplifications of a more complex model.

3.2.4 Bitstream generation: signalling flags and entropy coding

In the end, the different coding mechanisms output a large variety of information which need to be transmitted to the
decoder. These information are protean, and (notably) include:

• image partitioning parameters (GOP structure, type of frame, block size, regions shape, . . . )
• motion compensation parameters (motion predictors, motion vectors)
• transform parameters (pixel residues)
• quantization parameters (quantization step, rate-distortion Lagrangian)

All these information need to be arranged into a binary information and entropy coded to achieve further compression.
From the different natures of the information, the statistical properties may greatly vary from one type of data to the
other. As a consequence, the entropy coding shall consider each of these information individually. In H.264/AVC, for
instance, several statistical contexts are used concurrently to match individual distributions of the different parameters.
To prevent from transmission errors, it is important for the encoded information to be error resilient. To this end,
synchronizing markers can be inserted at specific locations of the resulting bitstream. May an error interfere with the
decoding process, these markers can be used to check whether the decoding process needs to be interrupted, and started
again from another location of the bitstream.
Finally, to each type of information corresponds an order of importance. The image partitioning parameters, for instance,
are critical for the decoding process, which will not be able to decode anything if these information are not or badly
transmitted. On the contrary, residual informations are less important: any wrong residual information will simply end
up in unwanted distortions within the reconstructed images. The overall decoding process, however, is not affected from
this malfunction. As a consequence, some information need to be more securely transmitted than others.

3.3 A classic approach to video compression: ITU-T H.264/AVC

Previous sections provided an overview on video compression systems, and focused on a few concepts commonly used
in past and modern video coders. Yet, how are they used in practice? This will be explained through a general
overlook on last standardized video compression standard: ITU-T H.264/AVC. For further information on H.264/AVC,
one may refer to the plethora of publications discussing the standard [Ric03, WS03], and of course the official norm
[JVT05, JVT07a, JVT07b, JVT09].
H.264/AVC has been designed by the Joint Video Team (JVT), a group of video coding experts from the International
Telecommunication Union (ITU), the International Organization for Standardization (ISO) and the International Elec-
trotechnical Commission (IEC). As both ITU and ISO organizations were engaged in H.264/AVC development, the latter
is also known as ISO/IEC 14496-10 MPEG-4 Part 10 Advanced Video Coding (AVC). The JVT was created in 2001 and
brings together the:

• Video Coding Expert Group (VCEG): ITU Telecommunication Standardization Sector (ITU-T) Study Group 16;
• Motion Picture Expert Group (MPEG): ISO/IEC Joint Technical Committee (JTC) 1, Subcommittee (SC) 29,

Working Group (WG) 11.
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As a result of this collaboration, the compression standard H.264/AVC was first issued in 2003 and provides a detailed
description of a macroblock-based hybrid photometric decoder. Hence, it performs block motion compensation, block
transform, quantization and entropy coding to compact an image sequence (figure 3.3.1). Its compression capabilities are
more or less about twice as efficient as those of MPEG-2. It has been designed for a large set of technical applications,
including broadcast (over cable, satellite, DSL, terrestrial, . . . ), storage (Digital Versatile Discs (DVDs), . . . ), video-
conferencing, VOD and multimedia streaming. Its design decouples the compression process from the transmission process,
and it is split into two main layers:

1. the Video Coding Layer (VCL) is in charge of compacting the image sequence using decorrelation techniques
introduced in chapters 1 and 2, along with appropriate binarization and entropy coding;

2. the Network Abstraction Layer (NAL) [WS03] facilitates the transmission of H.264/AVC compressed data on various
transport layers -Real Time Protocol (RTP), IP-, MPEG-4 file format MP4, MPEG-2 broadcasting protocol, . . . )
by packetizing the video information into small units of information known as NAL units.
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sequence Entropy codingTransform
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prediction

Inverse
transform
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Quantization

Inverse
quantization++ +

Coded pictures
buffer

Figure 3.3.1: H.264/AVC’s overall closed-loop scheme

A NAL unit is a packet which contains an integer number of bytes, including a header indicating the nature of the
carried information, and a payload which contains the actual information. They may carry two types of information: VCL
units contain compressed video information, while non-VCL units provide side information, such as parameter sets.
Decoding parameters are not likely to change very often throughout the sequence. Consequently, parameter sets provide
control information relative to a large number of VCL units: sequence parameter sets apply to a series of consecutive
coded pictures, while picture parameter sets only apply to the decoding of a single picture.
As several NAL units may be needed to transmit a single image (a primary coded picture), they are grouped into access
units. These are eventually prefixed with an access unit delimiter and may also carry additional data such as picture
timing information. In addition, the NAL mostly contributes to the error resilience abilities of H.264/AVC compression
standard [Wen03, SHW03].

3.3.1 Data partitioning and coding modes

In order to adapt the coding technique to the content of the video, H.264/AVC standard partitions the frames into specific
areas: slices and macroblocks. According to the type of frame (I-frame, P-frame, B-frame), intra or inter coding techniques
may be used in each of these areas. Section 3.3.1.1 will discuss H.264/AVC’s partitioning process, and section 3.3.1.2
will discuss the available coding modes.

3.3.1.1 GOPs, frames, fields, slices and macroblocks

Though H.264/AVC does not split image sequences into fixed GOPs, but may use ever-changing GOP structures, it still
encodes the sequence on a frame-by-frame basis. Both progressive and interlaced frames can be handled through fields.
Images are split into a top-field and a bottom-field ; the first contains even-numbered rows, while the second contains
odd-numbered rows (see figure 3.3.2a). A frame is said to be progressive when both fields are sampled at the same time
instant, interlaced when they are not.
In any case, each frame is partitioned into 16× 16 macroblocks. Each of them are coded using available intra or inter
modes. While the overarching macroblock-size is fixed, each macroblock may be further split (depending on the coding
mode) into 16× 8, 8× 16 or 8× 8 sub-blocks, whenever this may increase the compression efficiency.
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Slices have been provided as a way to process independently a given set of macroblocks from other macroblocks.
Consequently, a slice is a sequence of macroblocks (see figure 3.3.2b); using Flexible Macroblock Ordering (FMO), an
image may be split into arbitrary-shaped slices (see figure 3.3.2c). This may allow the coder/decoder to independently
encode/decode each of these slices. Region Of Interests (ROIs), for instance, can be handled by a set of appropriate
slices. In addition, slices may be grouped into slice groups, thus providing a hierarchical partitioning of the image.

Fra
m

e

Bot
to

m
 fie

ld

Top
 fie

ld

(a) Top and bottom fields

Slice A

Slice B

Slice C
(b) Slice partitioning

Slice A

Slice B

Slice C

A macroblock

(c) Arbitrary-shaped slice

Figure 3.3.2: Fields, slices and macroblocks

3.3.1.2 Intra and inter coding modes

Depending on the type of frame (I-frame, P-frame, B-frame), a set of coding modes is evaluated for each macroblock .
In I-frames, only intra coding modes are enabled; while P-frames and B-frames also enable inter coding modes. In
particular, B-frames may use a combination of two motion-compensated predictions. To remove the blocking effects at
the macroblocks boundaries, a loop-filter is used to smooth the images in those areas.

a Intra-frame prediction

In I-frames, macroblock can be compressed using one of the following modes:

1. Intra 4×4: the macroblock is split into sixteen independent 4×4 sub-blocks. Each of them are spatially predicted,
then transformed using an IntDCT (see 1.2.2.1), and finally quantized.

2. Intra 8×8: the macroblock is split into four 8×8 sub-blocks. Each of them are predicted, transformed using an
8 × 8 IntDCT (again, see 1.2.2.1) and quantized independently from each other. This mode is available since
H.264/AVC’s FREXT amendment [JVT05].

3. Intra 16×16 mode is very similar to intra 4×4 mode. The prediction pattern, however, is applied to the whole
macroblock . What is more, resulting DC coefficients are further transformed using another 4×4 IntDCT transform.

4. Intra Pulse Code Modulation (PCM) mode bypasses the prediction and transform steps, providing a precise way
to encode the macroblock , and sets a hard limit to the bit-rate which can be allocated to a macroblock .

The spatial prediction is based on previously decoded macroblocks. Directional predictions propagate neighbouring luma
and chroma samples along the chosen direction in the current macroblock . While 8 directions are available for the intra
4×4 mode, only vertical and horizontal directions are available in the intra 16×16 mode. Finally, a DC prediction uses
the average of adjacent samples and uniformly predict the current macroblock with this single value.

b Inter-frame prediction

Besides intra coding modes previously introduced, motion compensation and associated inter coding modes may also be
used to code macroblocks from P-frames and B-frames. Using inter coding modes, macroblocks may be further partitioned,
down to 4× 8, 8× 4 and 4× 4 luma samples.
BMC (see 2.4.1) is then performed on each of the sub-blocks, requiring up to 16 motion vectors (for P-frames) and 32
motion vectors (for B-frames) to be transmitted for a single macroblock . The motion compensation is accurate and outputs
motion vectors in units of one quarter of the distance between two luma samples. They are differentially coded from a
median prediction of neighbouring macroblocks. Finally, the difference between the motion compensated prediction and
the original macroblock is transformed, quantized, and transmitted along with the motion vector.
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As inter prediction requires both the coder and the decoder to synchronize their lists of reference pictures, Memory
Management Operation (MMO) commands are used to control the content of two reference lists: list 0 and list 1. In
P-frames, macroblocks are motion compensated from a single reference texture: only list 0 is used as a source of reference
images. In B-frames, macroblocks are motion compensated from two reference textures: the first one is sourced from an
image of list 0, while the second is sourced from an image of list 1.
In addition, (resp.) skip and direct modes are provided for (resp.) P-frames and B-frames. In such cases, motion vectors
are simply predicted from neighbouring macroblocks; no residual information is sent. Hence, both skip and direct modes
provide very compact representations of a macroblock .

3.3.2 Entropy coding

Once video information has been compacted using either intra or inter coding techniques, it is further compressed via
entropy coding. Video information is first binarized into a stream of symbols; in macroblocks, for instance, transform and
residual coefficients are ordered following a zig-zag scan. Either way, resulting bitstreams are entropy coded according to
the statistics of their symbols. While most syntax elements are coded by an exponential Golomb-Rice dictionary [Gol66],
residual and transform coefficients are coded using context-adaptive dictionaries: either Context Adaptive Variable Length
Coding (CAVLC) or Context Adaptive Binary Arithmetic Coding (CABAC).

3.3.2.1 Context Adaptive Variable Length Coding

CAVLC is a relatively simple entropy coding technique whose use is suitable when a limited complexity is required. As
the zig-zag ordered output of the transform/quantization step generally ends by trailing ones and sequences of zeros,
CAVLC has been optimized for such signals.
A codeword table is used to map symbols into a compact low-entropy binary signal. A set of customized codeword tables
is available, and adaptivity to the context is provided by a switching mechanism which selects the best codeword table
according to previously processed symbols.

3.3.2.2 Context Adaptive Binary Arithmetic Coding

Alternatively, CABAC [MHW03] relies on a more complex approach and usually leads to 10 to 20% in bitrate saving,
compared to CAVLC. The information is first binarized according to a codeword table (e.g. exponential Golomb-Rice). It
is then further compressed by a binary arithmetic coder [Jel68, Ris76, RLJ79, LJ84].
The coding process adapts to the signal statistics by selecting one out of 128 context models provided along with the
CABAC. These context models consist of a set of probability states. A state machine is in charge of updating the
probability state of the current context according to previously processed bits. Furthermore, as each type of information
may be distributed following specific statistics, several contexts are concurrently used by the CABAC, which switches the
context according to the type of information to encode.

3.3.3 Extensions

Among amendments to H.264/AVC compression standards, scalable video coding capabilities and multiview coding ca-
pabilities have been provided. In 2007, amendment 3 provided the Scalable Video Coding (SVC) extension as annex G
[JVT07b]. More recently, amendment 4 provided an Multiview Video Coding (MVC) extension as annex H [JVT09].

3.3.3.1 Annex G: SVC

In SVC extension [JVT07b, SMW07], three types of scalability are provided: spatial, temporal and quality scalabilities
(see 3.1.4.2). They may be combined and used altogether (see figure 3.3.3): each enhancement layer, for instance, may
then provide both higher resolution and better quality.
In any case, the scalable structure leads to a reduced compression efficiency, compared to a standard single-layered
compression. However, inter-layer prediction mechanisms keep the loss of performance fairly reasonable. In particular,
they predict the enhancement information of the current layer from previously decoded layers; this includes motion vector
prediction, and residue prediction.
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Figure 3.3.3: SVC and combined scalability: base layer (BL) and enhancement layers (EL)

a Spatial scalability

SVC provides two types of spatial scalability: dyadic and extended, each of which providing a pyramid of increasing
resolutions, from the base resolution of the base layer to the maximum resolution of the last enhancement layer. With
dyadic scalability, each enhancement layer multiplies both width and height of the previous layer’s resolution by two.

A more flexible approach is provided through the Extended Spatial Scalability (ESS) which enables arbitrary ratios
between successive layers resolutions. Alternatively, it is also capable of successive enlargements of the image support
provided by the base layer. Either way, the spatial scalability introduces at least 10% of bit-rate increase compared to
classic single-layered H.264/AVC performances.

b Temporal scalability

Temporal scalability is provided via the use of hierarchical GOP structures. As seen in section 3.2.1, dyadic hierarchical
B GOPs (figure 3.2.1c) exhibit several temporal layers. It was naturally proposed to split the bitstream such that the base
layer and the enhancement layers carry, each of them, the information relative to a given temporal layer. Consequently,
temporal scalability can be achieved without any loss in terms of rate-distortion efficiency.

c Quality scalability

With quality scalability, each enhancement layer increases the quality of the decoded sequence. SVC provides a relatively
flexible control on the increment in quality, through three different approaches:

1. Coarse Grain Scalability (CGS) refines the quality by the transmission of successive packets. Using such an
approach, the number of quality levels is fixed by the encoder;

2. Medium Grain Scalability (MGS) lies in between CGS and Fine Grain Scalability (FGS) and provides a finer
control on the quality than CGS, while keeping the complexity reasonable.

This type of scalability is especially suited for simulcast applications. When providing a scalable bitstream whose overall
bitrate reaches up to twice or three times the bitrate of the base layer, rate-distortion performances are typically within
10% in regards to a single layered bitstream.

3.3.3.2 Annex H: MVC

The MVC extension [JVT09] applies H.264/AVC classic temporal decorrelation and coding techniques to the inter-view
dimension. Consequently, images corresponding to successive views of the same time instant are arranged into a GOP
structure as can be done along the temporal dimension (figure 3.3.4). A view may then be predicted from both neighbouring
views of the same instant and neighbouring instants of the same view.

Compared to simulcast (transmission of as many bitstreams as there are views), MVC is 20 to 30% more efficient for
stereoscopic sequences. It is even more efficient with increasing number of views, up to 50% of gain when the number of
views is greater then eight. With the recent arrival of High Definition Multimedia Interface (HDMI) 1.4 norm, providing
a displaying interface for stereo video signals, MVC has recently been made available in commercial applications (e.g.
Blu-Ray Disc).
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3.3.4 Profiles

As can be seen from previous section, H.264/AVC provides a large set of coding tools, most of which can be activated or
deactivated if required. In order to facilitate their choices, coding profiles have been provided and standardize the use
of H.264/AVC compression norm:

• the Baseline Profile (BP): the simplest profile, it targets applications of limited computational power. In particular,
B-frames and CABAC are disabled;

• the Main Profile (MP): enables nearly all H.264/AVC’s coding tools, with the exception of slice partitioning;
• the Extended Profile (XP): provides additional error resilience capabilities and enables all coding tools;
• the High Profiles (HiP): they are used for high definition applications -HD Television (HDTV), High Definition

DVD (HD-DVD), Blu-Ray, DVB- and support high definitions and 10 bits pixel representation.
• SVC profiles: (resp.) scalable baseline, high and high intra profiles respectively target different types of applica-

tions: (resp). conversational and mobile applications, streaming/storage and video-conferencing applications, and
finally professional applications.

• MVC profiles: stereo high profile and multi-view high profile.

3.4 Disruptive approaches to video coding

Besides standardized video coders such as H.264/AVC and its predecessors, various alternative approaches to video
coding have been proposed. Ten years ago or so, with growing popularity of the Wavelet transform, the latter was applied
along both spatial and temporal dimensions, thus requiring the coder to efficiently decorrelate the motion information
from the textural information. Later, it was proposed to adapt the representation of the texture to the nature of the
motion, which led to Analysis-Synthesis (AS) video coding schemes. Even more recently, with last progresses in the field
of texture synthesis and inpainting, it was also proposed to use these as ways to partially synthesize videos.

3.4.1 Hybrid coding based on 3D-Wavelets and MCTF

As mentioned in section 2.1.5, the motion in an image sequence may be interpreted as a set of trajectories, or threads,
across time and space. Consequently, alternative video coders based on a transform along these threads were proposed.
As can be seen from section 1.3.3, MCTF is a straightforward candidate to the compression of image sequences whose
motion trajectories are known. Such open-loop coding schemes (see figure 3.4.1) completely decorrelate the motion
information frlom the textural information.
In particular, t + 2D transforms have been relatively popular: a temporal Wavelet is first applied along the motion
trajectories, then each temporal subband (i.e. filtered images) is then further decomposed with a classic 2D Wavelet.
Another interest of such representations lies in the multi-resolution features of the Wavelet transform which naturally
provides a scalable framework.
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Figure 3.4.1: Overall open-loop scheme of a video coder based on MCTF and 3D Wavelets

3.4.1.1 Towards a continuous processing of the motion

Applying a Wavelet transform along a motion trajectory brings several issues to light. In particular, the fact that the
motion field is not bijective is a source for serious problems. Assuming that the motion estimation is performed between
each image Icur and its predecessor, any pixel P from the latter may be:

• single-connected: it has a single colocated pixel in Icur. This is the most convenient case, as P belongs to a
single motion thread on which the temporal Wavelet transform may be applied;

• multi-connected: it has several colocated pixels in Icur. In this case, P belongs to several motion threads, which
is a source for redundancies;

• non-connected: it has no colocated pixel in Icur, thus does not belong to any motion thread, though its incorporation
into the temporal Wavelet is necessary.

In addition, the problem is even more complex when performing a sub-pixellic motion compensation. Indeed, P may be
predicted by a weighted combination of several reference pixels, such that these reference pixels belong to the same
motion trajectory. Above all, the lack of continuity in the processing of the motion prevents from performing an efficient
temporal decorrelation.
First attempts at 3D Wavelet coding of image sequences were proposed by Ohm [Ohm94] and Choi [CW99]. As
both implementations were prior to practical lifting-based implementations of the Wavelet transform [Swe96], they use
Quadrature Mirror Filters (QMFs) to perform the 3D decomposition. In [Ohm94], Ohm decomposes the 2D temporal
subbands using a TDAC decomposition [PJB87, Ohm93], then applies an adaptive lattice Vector Quantization (VQ) as
an entropy coder. In [CW99], the temporal decomposition is done via a Haar Wavelet, while a separable 9/7 Daubechies
Wavelet is used to perform the 2D decomposition; entropy coding is done by a 3D extension of a Subband-Finite State
Scalar Quantizer (SB-FSSQ) [NW96]. Both schemes employ a hierarchical VSBMC to motion compensate the images.
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Figure 3.4.2: Lifting based MCTF

With the introduction of the lifting scheme into 3D Wavelet video coding [PPB01, ST01, LLL+01], several of the previously
mentioned issues were solved. The temporal lifting splits the image sequence into a polyphase signal (odd and even
frames, see figure 3.4.2):

• each odd frame is first predicted from motion compensated neighbouring even frames,
• then each even frame is updated using the prediction residues of neighbouring odd frames.

In [ST01], non-connected pixels are avoided by the use of bi-directional motion fields; however, this increases the side-
information needed to be transmitted as twice as much motion information is required than in previous schemes. In
[PPB01], the scheme initially proposed in [CW99] is modified into a lifting implementation; what is more, multi-connected
pixels are adaptively connected to their best colocated predecessor.
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3.4.1.2 Motion threads and Barbell lifting

In [XXLZ01], Xu et al. introduce the 3D-Embedded Subband Coding with Optimized Truncation (ESCOT) coding scheme,
as a 3D extension of JPEG-2000 Embedded Block Coding with Optimal Truncation (EBCOT) coder. As first 3D Wavelet
coding schemes failed at processing and coding the motion efficiently enough, Xu et al. used motion threads to a
continuously process the motion across several time instants. To be more precise, a motion thread is a motion trajectory
which starts and end with objects appearance and disappearance; they are obtained from the computed motion field.
Using such an approach, multi-connected and non-connected pixels are easily handled (see figure 3.4.3):

• multi-connected pixels are pixels on which several motion threads are merging; in such case, a single motion
thread is continued, the remaining being terminated;

• non-connected pixels are pixels which do not belong to any motion thread, and correspond to the beginning of
new motion threads.

Pixels / Motion threads

terminated pixel /
thread
multi-connected /
merging threads
non-connected /
thread start

It It+1 ... It+N

Figure 3.4.3: Several motion threads running through a GOP

However, motion-threads require motion fields to be pixel-accurate, thus preventing the coding scheme the advantages of
sub-pixellic motion compensation. In addition, as motion threads cannot be merged, the number of terminating or starting
motion thread may dramatically increase with complex motions. The latter phenomena introduce boundary effects which
penalize the coding efficiency.

In [LLL+01, LFWLZ03], motion threads are incorporated into a lifting scheme, and further improved by enabling pixels
which were previously terminated to be predicted by both backward and forward matching pixels. As a consequence,
motion threads can be merged, thus reducing boundary effects; furthermore, as the lifting scheme guarantees a perfect
reconstruction, it is now possible to perform sub-pixel motion compensation. Later, Barbell lifting [XWX+04] was
provided as a way to predict and update multi-connected pixels using a weighted sum of all its matches. Finally, as was
mentioned in section 1.3.3, improved performances may be obtained via UMCTF which deactivates the lifting update step
[TvdS02, VGP02, TvdSA+05, Pau06, And07].

3.4.2 Analysis-Synthesis approaches

As seen in previous section, 3D Wavelet coding schemes rely on the motion field to perform the temporal filtering. In other
words, the transform is adapted to the temporal geometry of the image sequence. However, both motion and textures are
intrinsically related, and a losing motion information may have critical repercussions on the textural content of decoded
images.

Analysis-Synthesis (AS) approaches break the interdependency between motion and textures. Analysis refers to pre-
processing operations which aims at building a compact representation of a signal, while synthesis refers to post-processing
operation which reconstructs decoded images. Several AS approaches have been provided in recent years:

• techniques using global motion compensation: they project all the images of a GOP onto a single reference
instant, thus providing a set of reference textures;

• techniques using analysis-synthesis of textures or inpainting: textures are generated using dedicated algorithms;
• techniques using 3D models: they compute and transmit a 3D model of the scene, along with corresponding

textures [GM01, GM02, BGM06]; such an approach may be used for multiview coding schemes. They will not be
further discussed in this document.
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3.4.2.1 Global motion compensation

Coding schemes performing a global motion compensation projecting each image of the GOP into a single system of
coordinates (figure 3.4.4). In other words, such an approach generates a motionless GOP whose temporal correlation is
obvious and can be easily used to provide a compact representation of the texture across the GOP. As this corresponds
to a 2D + t approach, there is no need to adapt the decorrelation technique to the motion.

x

y

sprite

Figure 3.4.4: Global motion compensation of several images into a single coordinates system and corresponding sprite

a A generic approach to video coding
In [TZ94], GOPs are motion compensated by BMC, then encoded and transmitted independently from the estimated
motion. As translational motion did not prove to be efficient enough to perform a global compensation across a whole
GOP, it was proposed in [WXCM99] to use a control grid. Due to scaling motions (zooms, objects getting closer or
farther, . . . ), projecting all the images onto the same reference instant may lead to resolution losses. Consequently, it
was proposed, still in [WXCM99], to choose the instant of projection so that it minimizes such effects.
In [Cam04], a t + 2D alternative to global motion compensation is provided. In each GOP, first and last images are
used as key images for the base layer, and are encoded using EBCOT. Remaining images, respectively GOP’s first half
and second half, are projected on first and last key images using active meshes. Each motion compensated image is also
linearly interpolated from both key images, and prediction residues are further decomposed into spatio-temporal subbands.
Compared to a classic 3D Wavelet coder, this technique requires a lot less motion information to be transmitted. In
[LG08], finally, the coding scheme is further modified by adapting the geometry of the motion compensated images into
vertical and horizontal features to facilitate the Wavelet decomposition.

b Application to static scenes: sprites
As a special case of global motion compensation, sprites may be used to provide a mosaic representation of the scene
(figure 3.4.4). It is particularly efficient when the camera is paning and/or zooming, while shooting a static scene. Again,
each image from the sequence is projected onto a single system of coordinates. Motion compensated images are then
combined into a single image: the mosaic, also known as sprite. This sprite can then be encoded and transmitted along
with estimated camera parameters. Later, it was proposed to represent only the background as a sprite, and to process
independently moving objects [WA94, PMCM01, LCL+97]. Sprite-coding is provided in MPEG-4 standard [WJ01].

3.4.2.2 Texture and structure synthesis

While approaches previously reviewed mostly rely on the motion information to compress image sequences, some other
attempts at video compression have been focusing on textures and structures hold by successive images. Techniques
aiming at synthesizing textures or structures have been studied for a while; recent progresses even led to techniques
whose use may further improve image and video compression schemes.

a Synthesizing regions
Originally, texture and structure synthesis have been mostly used in image compression techniques, either for error
resilience [RSB03] or compression [WSWX06, SWL06, LSW07a, LSW+07b] purposes. Typically, textures can be synthe-
sized using parametric approaches [PS00] or template matching algorithms [Ash01, EF05]; while structures are commonly
synthesized using inpainting techniques [BSCB00, CS01, CS02, Mas02, DCOY03]. More recently, approaches hybridizing
structure and texture synthesis have also been proposed [BVSO02, ESQD05].
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b Extension to video compression

As both texture and structure synthesis techniques proved to be quite efficient at compacting images, it was naturally
proposed to extend their use to sequences of images. In [DH04], for instance, the provided compression scheme models
the texture of the background via a parametric approach. Images are first segmented into uniformly-textured regions;
each of them is parametrized using a steerable pyramid [PS00], then removed from the background, now reduced to a
a set of color-uniform regions. Both simplified background and texture parameters are encoded and transmitted to the
decoder, which regenerates the segmentation from the received background and synthesizes back the textures.
More recently, a few works have been attempting at embedding texture synthesis into H.264/AVC scheme. In [NNSHW05,
NNHSW06, NNHW07], regions which do not hold detailed spatial information (structures, contours, . . . ) are called
detail irrelevant textures. Corresponding macroblocks may then be encoded using rigid or non-rigid texture synthesis. In
[GWL08, MADB10], finally, additional intra coding modes based on a set of template matching predictors are provided.
As for inpainting, it has also been used in modified H.264/AVC scheme. In [LSW07a, LSW+07b, ZSWL07a, ZSWL07b],
macroblocks are classified into reference and non-reference blocks; the latter are removed and synthesized at the decoder
via structure-aware (edge-based) inpainting. Motion threads are used to ensure that synthesized textures are stable
across time. A similar approach is proposed in [BW07], wherein a pixel-based inpainting/texture synthesis algorithm is
used to synthesize intra macroblocks.

3.5 Conclusion

This chapter provided a brief review dedicated to existing video coding schemes. From photometric to semantic approaches,
it was seen that the video information can be considered in many different ways. Either way, image sequences are split
in basic elements, including blocks, region, spatio-temporal objects, . . . , each of which being encoded using decorrelation
techniques such as the ones reviewed in chapters 1 and 2.
The classical video coding paradigm provides a closed-loop scheme wherein sequences are split into GOPs, frames, and
macroblocks. Each macroblock may then be encoded using either intra or inter coding techniques. Such an approach
proved to be very efficient at compacting sequences, while providing objectively and subjectively proper contents. Naturally,
this approach has been standardized into various norms, including MPEG-x, and more recently H.264/AVC. Forthcoming
video standard, recently baptised HEVC, will similarly submit to this approach as no disruptive techniques are yet to be
integrated.
Disruptive approaches, on the other hand, have been largely proposed. Contrary to H.264/AVC and its predecessors
wherein motion is processed on a frame by frame basis, numerous approaches have been focusing on a continuous
representation of the motion. Indeed, pixels are moving along specific trajectories (known as threads), along which
temporal correlation is maximal. 3D Wavelet coders, in particular, perform a temporal Wavelet decomposition along motion
threads, and further decompose each temporal subband into spatio-temporal subbands with a 2D Wavelet transform.
Following this idea, analysis-synthesis approaches propose to separate the motion from the texture: both of them can then
be processed fully independently. Such approaches include global motion compensation and texture/structure synthesis
techniques. As they generally do not provide a perfect reconstruction of the images, objective quality metrics fail at
assessing their intrinsic quality: they have not been considered for practical applications.
In the end, the popularity of the classical video coding paradigm results from several key points:

• its high efficiency at compacting image sequences;
• its successive incremental modifications: it did not suffer from any disruptive technology delaying its application;
• objective measures such as the PSNR are relatively fit to its distortions and artifact.

Any disruptive approach willing to take advantage upon H.264/AVC should then take these remarks into account. Ideally,
a disruptive approach to video coding should provide a non-negligible increase in coding efficiency, while providing
the same benefits as 3D Wavelets and analysis-synthesis techniques do. Also, it should naturally handle additional
functionalities such as scalability, multiview coding, or video segmentation. In next chapters, an alternative representation
of image sequences is then proposed through motion tubes, wherein above considerations are taken into account.



Chapter 4

Towards the notion of motion tubes

Here goes a recurrent observation on image sequences: most of their information (semantic, textures, shapes,
contours, . . . ), persist across time. Based on such assumption, we here introduce a structure that represents a
moving patch of texture within an image sequence, used as a basis element to represent an image sequence. We

call this structure a motion tube.

Section 4.1 starts by identifying the assumption on which all the proposed work is based: the temporal persistence of
texture. Then, section 4.2 will define the structure which we call motion tube; its role and parameters will be reviewed.
Following section 4.3 will explain how such a structure can be used to represent and reconstruct an image sequence.
Finally, section 4.4 will tackle the prospects of a representation of image sequences based on motion tubes, and section
4.5 will conclude the chapter.

4.1 Temporal persistence of textures

While looking at a sequence of natural images, one can see that a texture is likely to be found in several consecutive
frames. Indeed, the textural information is carried by the objects of the scene and its the background: both objects and
background are most often persistent through the time. However, due to camera motion and object displacement, any
texture may follow a given trajectory and undergo a certain deformation. Figure 4.1.1 shows the evolution of two patches
of textures. The green patch trajectory is a simple translation: it is not undergoing any deformation. As for the blue
one, its trajectory is a translation as well, but also undergoes a rotation.

tim
e

Figure 4.1.1: Temporal persistence of textures in image sequences
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As a consequence, any sequence of images can generally be considered as a set of moving patches of texture, with
respect to a given set of trajectories and deformations. From that perspective, it is reasonable to represent a sequence of
images as such, assuming that it is possible to get a correct set of patches along with their trajectories and deformations
parameters. Some textures, however, cannot be handled by such an approach: particle objects, liquids and transparencies,
to cite a few of them, present such major changes of texture that it might be impossible to track their evolution over time
without any specific approach. The current work focuses on sequences which do not present such delicate textures, and
aims at finding a set of patches of texture which represent such sequences.
As we can see in figure 4.1.2, the successive shapes of a moving texture patch reminds a tube whose section is deforming.
From now on, moving patches of textures will be referred to as motion tubes. Such motion tubes will be able to track
moving texture across time and space, thus exploiting their temporal persistence. Following sections will attempt at giving
a formal definition of motion tubes, then explain how they can represent a sequence of images.

time

(a) A moving patch of texture

time

(b) A crude representation of a motion tube

Figure 4.1.2: From a moving patch of texture towards the motion tube

4.2 Motion tube: a definition

Let MT be a motion tube. It attempts to describe a patch of texture along with its evolution across time and space,
through a sequence of images. Hence, MT will be characterized by 3 types of information: its texture T , its lifespan
L, and its deformation parameters W:

MT = {T ,L,W} . (4.1)

Following subsections will detail the contents and roles of T , L, and W.

4.2.1 Lifespan of a motion tube

A motion tube starts at an instant tstart and ends at an instant tend. This time interval defines its lifespan L:

L = [tstart, tend] (4.2)

4.2.2 Deformation of a motion tube

In order to cope with texture displacements and deformations, an appropriate deformation model has to be set up. The
deformation of a texture may be described as the result of a transform whose transfer function is a warping operator
w . A set of warping operators W = {wi→i+1}, ti ∈ [tstart, tend[ are provided with MT . The deformation transform is
supposed to be invertible, and

wj→i = w−1
i→j (4.3)
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This hypothesis implies that the shape of the patch of texture is consistent. In particular, it is considered that neither
occlusion nor disocclusion may impact the patch. W describes the deformation of a motion tubes as a succession of
consecutives transforms from t to t + 1. However, the deformation between 2 non adjacent time instants might also be
described. To ease their manipulations, warping operators W can be composed, such that

wi→k ◦ wk→j = wi→j . (4.4)

Let ΩMT (t) be the support of the motion tube MT in the image I(t) at time instant t , tstart ≤ t ≤ tend. MT is a
2D+t volume whose sections are {ΩMT (t) |tstart ≤ t ≤ tend}. The deformation of the shape of a motion tube between
time instants ti and tj is then given by

ΩMT

(
tj
)

= wi→j (ΩMT (ti)) . (4.5)

The notion of trajectory is crucial to the notion of motion tubes. Indeed, the temporal persistence of textures will be
captured only if motion tubes naturally exhibit a deformation along a trajectory T (t). A luminance sample P of the patch
of texture, due to the displacement and the deformation of the texture, will follow a trajectory TP(t). Let GMT (t) be the
center of gravity of the motion tube’s support Ωt (MT ) at time instant t . The trajectory TMT (t) of a motion tube will be
given by the trajectory of the centre of gravity GMT (t) of the patch at each time instant t , such that GMT (t) = TMT (t)
for tstart ≤ t ≤ tend. Figure 4.2.1 illustrates this principle.

time
t+1

t

t-1

t-2

T    (t)MT

G(t)
Ω    (t)MT

wt-1    t

Figure 4.2.1: Trajectory and deformation of a motion tube

4.2.3 Textural information

A motion tube being a moving patch of texture, it obviously needs to incorporate a textural information. This texture will
be able, using an appropriate deformation, to reconstruct the textural information at any instant t (tstart ≤ t ≤ tend).
However, due to resolution losses, illumination changes, noise or any natural change, the texture itself may vary over
time. Thus, the textural information T (t) is defined as a function of time, and reflects the contents and the changes of
the texture across time:

T (t) =
{
T (t) if the texture changes across time
T if the texture is static (4.6)

4.2.4 Coding motion tubes

In the context of video coding, motion tubes will need to be transmitted, hence encoded. T , L and Wthen need to be
encoded. Resulting information is then written as follows:

CMT (MT ) =
{
CL (L) , CT (T ) , CW (W)

}
(4.7)

where CMT is the motion tube encoding operator, CL is the lifespan encoding operator, CT is the textural encoding
operator, and CW is the deformation encoding operator. Obviously, the coding process of a motion tube is not independent
from the coding process of other motion tubes to encode. Consequently, (4.7) can be rewritten as

CMT (MT ) =
{
CL
(
L, {MT i}

)
, CT

(
T , {MT i}

)
, CW

(
W, {MT i}

)}
(4.8)

where {MT i} is a set of motion tubes are transmitted along withMT . {MT i} might be a set of neighbouring motion
tubes, or any other set of motion tubes whose encoding parameters may influence the coding of MT .
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4.3 An image sequence representation based on motion tubes

As explained in the previous sections, a motion tube aims at tracking a moving patch of texture over time. Now that
such a structure has been carefully defined, building a representation for image sequences upon motion tubes is quite
straightforward. It consists in building a set of motion tubes, i.e. a set of moving patch of textures, which will be able
to represent the whole sequence or its largest part. Indeed, section 4.4.2 will explain how motion tubes may not be able
to entirely reconstruct a sequence. Due to the use of motion tubes, this representation naturally exhibits the temporal
persistence of textures, thus optimizes the re-use factor of textures to transmit.

4.3.1 An image sequence as a set of motion tubes

Figure 4.3.1 illustrates a motion tube based representation. Five tubes have been initialized at ttstart = t2, and their
textures have been tracked from t0 to t4. Assuming the motion field is uniform on areas reconstructed by motion tubes 1,
2 and 3, we can see that they are kept together through the whole GOP. Tube 4, on the other hand, behaves differently
to map a discontinuity of the motion field. Tubes 1, 2, 3 and 4 share the same start (ttstart = t0) and end (ttend = t4)
instants, and their lifespan L is [t0, t4]. Finally, tube 5 does not appear at t0 nor t4 because the texture it carries is not
present at those instants: its lifespan is then [t1, t3].

time

1 2
3 4

5

t0

t1

t2
t3 t4

Figure 4.3.1: An image sequence partially reconstructed from a few motion tubes

This being said, the main problematic of this representation comes down to find a right set of motion tubes. Let It be
an image from the sequence SI at time instant t . It is assumed that SI can be represented by a set of motion tubes
S = {MTi} where N = Card (S) is a finite number. The synthesized image It at time instant t is given by

It =
N⋃
i=1
R (MTi , wtref→t ) (4.9)

where R is the rendering operator of the motion tube: it aims at synthesizing the tracked texture according to its
parameters at current time instant. While the existence of a matching set of motion tubes S can be easily assumed,
there is no uniqueness for such a representation.

4.3.2 A concrete approach to motion tubes

A motion tube is driven by a large set of parameters (lifespan, shape, trajectory, texture, . . . ). In practice, its optimization
may prove to be a difficult task. In order to simplify this problem, it is proposed to create groups of motion tubes which,
for now, will share the same temporal parameters. These groups are called families of motion tubes.

4.3.2.1 A family of motion tubes

A family of motion tubes FMT (tref) is a set of N tubes whose members share the same reference instant tref{
FMT (tref) = {MTi} , i ∈ [0, N − 1],
Card (FMT (tref)) = N

(4.10)
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FMT (tref) can be updated according to any received control data: removal or temporary deactivation of a motion tube.
Control data might also modify the properties or the behaviour of any given motion tube from the set. At time instant t ,
It is synthesized by rendering all the tubes from FMT (tref), such that:

It = R
(
FMT (tref) , t

)
=

N⋃
i=1
R (MTi , wtref→t ) (4.11)

where It is the reconstruction of It , and tref the time instant when Ti has been initialized. R(MT ) operator aims at
rendering MT using appropriate weightings.

⋃
operator is the composition operator: it combines all the tubes from

FMT (tref). When one or more motion tubes are available to reconstruct an area,
⋃

will chose which of them should be
used. When no tubes are available,

⋃
might also reconstruct some of the unpredicted areas and may use surroundings

motion tubes. These operators will be tackled in section 4.4.2.

4.3.2.2 Several families to reconstruct the sequence

A sequence of images represents a scene within which, due to camera motion or objects displacements, background may
change and objects may appear or disappear. Likewise, the availability of the textures will also vary across time. A
family of motion tubes sources the textural information from a common reference instant. As a consequence, it will not
be able to register the entire textural information: a single family cannot entirely represent a complex sequence.
Therefore, several families of motion tubes will be required to provide an appropriate representation. These families may
overlap temporally and/or spatially. Figure 4.3.2 illustrates the use of three families of motion tubes. Family FMT (t0)
is referenced at instant t0 and its lifespan is L = [t0; t3]. Family FMT (t2) is referenced at instant t2 and its lifespan
is L = [t0; t4]. Family FMT (t4) is referenced at instant t4 and its lifespan is L = [t2; t4].

time

t0

t1

t
t3 t4

2 F    (t )   family0MT
F    (t )   family2MT
F    (t )   family4MT

Figure 4.3.2: Several families to reconstruct the sequence.

A convenient way to instantiate several motion tube families is to split the sequence into GOPs and create a family for
each of them. Each family is initialized at the GOP start instant. This particular solution is illustrated in figure 4.3.3
using GOPs of 8 time instants. The first GOP is reconstructed with the red family FMT (t0) whose tubes end at t8,
the second GOP by the blue family FMT (t8) whose tubes end at t16, and the third GOP is reconstructed by the green
family FMT (t16) which ends at t24. However, camera motion and objects displacement may force us to create several
families within the same GOP. Chapter 6 will further investigate this possibility.

time

t0

t8

t16

t24

F    (t   ) : GOP (0,8)0MT
F    (t   ) : GOP (8,16)8MT
F    (t   ) : GOP (16,24)16MT

Figure 4.3.3: GOP paradigm in the context of motion tubes
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4.3.3 Motion tubes: an Analysis-Synthesis approach to video coding

The representation of the sequence can be split into two main steps: an analysis step during which the textures are
tracked across time, and a synthesis step where the sequence is reconstructed by a set of tracked textures. Therefore,
a coder based on a motion tube representation of the sequence is an AS-like video coder. Figure 4.3.4 represents the
associated block diagram.

Motion tube
instantiation

Motion tube
motion
estimation

Set of
Motion
tubes

Motion tube
rendering R

Motion tube

combining U

Analysis Synthesis

It

It

1

N

It

It

1

N

Figure 4.3.4: Analysis-Synthesis schematization of a motion tube based coder

From an image sequence coding perspective, motion tubes present two types of data to encode:

1. the textural information T , which can be encoded by any traditional intra coding technique, along with prediction
schemes to code its evolution across time,

2. (resp.) temporal and deformation information (resp. L and W), which will need dedicated coding techniques.

Motion tubes, by their nature, can benefit from the temporal persistence of moving textures: their tracking is simplified.
In particular, the motion estimation of a motion tube, at a given instant, can be guided by its trajectory at previous
or next instants. It will tend to reduce the discrepancies of the motion field, and the motion coding cost. It will also
maximize the tube’s lifespan, due to an enhanced tracking, thus minimizing the amount of textural information to be sent.
Furthermore, motion tubes can start and end at any time instant, hence fit appropriately the instants of apparition and
disappearance of the tracked textures.
They can be either dependent or independent from each other (neighbouring motion tubes undergo the same changes),
connected or disconnected (neighbouring motion tubes may be joint or disjoint). Keeping motion tubes connected will
constraint the motion field to be continuous, while disconnections will be able to represent the ruptures of the motion
field. Again, this will lead to an efficient representation.

4.4 Prospects of the representation

In this chapter, we have introduced the motion tube paradigm and its application to the representation of image sequences.
By tracking patches of texture through time and space, one can exploit the temporal persistence of textures. In image
sequences, this persistence is responsible for most of the redundancy; motion tubes should hence be able to identify then
remove this redundancy.

4.4.1 Features provided by the representation

4.4.1.1 A temporally continuous block-based representation

The popularity of the classical representation, as it is used in ITU-T H.264/AVC standard, is notably due to the use of
blocks of pixels as basis representation units. However, it resets the image partition and the motion grid at each time
instant, thus providing a discontinuous description of the images contents along the temporal axis.
On the other hand, MCTF, Motion threads, and Barbell lifting [XWX+04] showed how much important it is for a
representation to describe the motion information as continuously as possible. Yet, theses representations are much more
complex than the block-based representation, and describe the temporal evolution on a pixel-by-pixel basis.
With motion tubes, the advantages of both approaches are kept as they may be easily used to track blocks of texture in a
continuous fashion. Figure 4.4.1 shows a sectional view of the motion field along several time instants, as it is described
by the classical representation, the motion threads, and the proposed motion tubes.
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Macroblock
Collocated block

t1 t2 t3 t4

(a) Block-based representation

t1 t2 t3 t4

threads

(b) Thread-based representation

t1 t2 t3 t4

A        motion        tube 

(c) Tube-based representation

Figure 4.4.1: Continuous vs discontinuous representations of the motion field: sectional view)

4.4.1.2 The ability to represent both continuous and discontinuous displacements and deformations

The traditional block-based representation easily captures the discontinuities of the motion field, but fail at precisely
describing its smooth variations. Conversely, mesh-based representations [Bru90, Dud96, Lec99, LG08] naturally handle
the continuities of the motion field, but cannot represent its ruptures (or discontinuities). Even advanced techniques that
have introduced solutions to disconnect neighbouring meshes [Mar00, Cam04] failed to provide an efficient workaround.
On the other hand, motion tubes naturally offer the ability to represent both continuities and discontinuities of the
motion field. Indeed, each motion tube can be considered as an individual mesh undergoing specific displacements and
deformations.

4.4.1.3 An invaluable spatio-temporal information

In region-based representations [YW94, SGPK94, SMP+97, SM99, XLLZ01], it is proposed to track the evolution of
regions from an image sequence. However, most of them suffer from the complexity of the deformations objects can
undergo. The displacements and the deformations of the object or the background are often quite complex, and may
require parametric models.
On the other hand, motion tubes focus on smaller patches of texture, hence aim at representing a local motion. Local
motions are far more easy to capture and describe; and more simple motion models may be used (see figure 4.4.2). Even
though motion tubes do not account for the spatio-temporal contents on a semantic level, they still provde a relatively
high level description of the sequences, which can be easily processed to extract semantic informations such as objects
shapes and locations.

wg, t      t1       2

wl, t      t1       2

gw : global deformation
wl : local deformations

Figure 4.4.2: How a complex deformation may be seen as a set of simple local deformations

Motion tubes have already been proposed by Péchard et al. in [PBC07, Péc08] to assess the quality of ITU-T
H.264/AVC HDTV image sequences. Their use is strictly limited to quality assessment, and does not concern the field
of video representation and compression. Still, the provided analysis further confirms the fact that motion tubes may be
very interesting in terms of spatio-temporal representation abilities.
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4.4.2 Problems raised by the representation

As a preliminary example, figure 4.4.3 represents the reconstruction of Foreman sequence from instant 0 to 8. A single
family L0 of motion tubes has been instantiated at t0, and is tracked towards t8. As this point, motion tubes deformation
model has not yet been defined, therefore they undergo simple translations defined by their trajectory T (t).

time

t0

t1

t
t8

2

Multi-connected
areas

Unconnected
areas

Figure 4.4.3: A preliminary example of motion tube based reconstruction of sequence Foreman

4.4.2.1 Which deformation model should be employed?

As mentioned earlier, no deformation model was used to represent Foreman sequence in figure 4.4.3. Designing an
appropriate deformation model will be a major issue: which deformations have to be handled, how can we offer a compact
representation of these deformations?

4.4.2.2 An incomplete reconstruction

As mentioned earlier, sole motion tubes might not be able to entirely represent a sequence of images. In that, they may
be seen as a synthetic representation as they were seen in 1.1.2. In particular, complex scenes on which the tracking of
textures is difficult or even impossible won’t be entirely reconstructed by any reasonable set of motion tubes.
In figure 4.4.3, unconnected areas correspond to areas which are not reconstructed by any motion tube. Dedicated
mechanism will then need to be proposed to handle these areas. The composition

⋃
of the motion tubes should be able

to fill these holes, using surrounding motion tubes (e.g. with inpainting).

4.4.2.3 Inter-tube redundancies

In multi-connected areas, several motion tubes contribute to the reconstruction. Again, the composition
⋃

will be in
charge of dealing with these regions, and avoid as much redundancies as possible, while ensuring the reconstruction to
be accurate enough. The fewer motion tubes, the more compact the representation is likely to be.

4.4.3 Life and death of motion tubes

Another major issue lays in the estimation of the temporal parameters of a motion tube. Indeed, it is necessary to fit its
lifespan to the content of the sequence. Therefore, a quality assessor dedicated to motion tubes will have to be built:
which criteria have to be used? Later on, a decision mechanism has to be designed; it will set the motion tubes lifespan.
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4.4.4 Extension of motion tubes to other applications

Motion tubes offer a very flexible way to represent a sequence, and allow for numerous possibilities. Among them,
multiple description is inherent to the representation. Indeed, multiple description send several different versions of the
same signal; the receiver will reconstruct the signal by using all the contributions he received. This reconstruction may
be, or not, guided by the sender. Motion tubes or families of motion tubes might represent the same part of the sequence
with more than one texture: this is a case of multiple description.
As a special case of multiple description, scalability is indeed naturally handled by this representation. Spatial and
quality scalabilities may be brought through several families of motion tubes of different sizes, resolutions or qualities,
predicting the same area.
The segmentation of image sequences has been always and is still a complex task. Since motion tubes track a given
texture across time, the semantic information it carries is stable across time: a motion tube tracks either a part of an
object, or a part of the background. Hence, they offer a compact representation, while giving crucial information on the
semantic content of the sequence. Due to the inherent temporal coherence of the representation, motion tubes can be
used to efficiently segment an image sequence. Indeed, neighbouring motion tubes sharing the same lifespan and/or
motion parameters may be merged into a semantic region.
Even further, motion tubes can be applied to 3D video: if textures can be tracked across time, they can also be tracked
from a view to another view. One can think of 4-D version of a motion tube which represent the deformation of a patch
of texture across time and also across the different views [CPML10].

4.5 Conclusion

This chapter started with the observation that, in image sequences, textures are found in many successive images, whether
they have been translated or deformed in any way we could think of. This led to a structure called motion tube that
aims at tracking a patch of texture across time. This structure is composed of several information: a temporal information
that indicates when the patch of texture is found, a deformation information that describes its evolution across time, and
finally a textural information which carries the texture itself and its eventual updates.
The motion tube paradigm has been introduced: an image sequence is considered as a set of moving textures, hence as
a set of motion tubes. The main issue of this work will thus be to find an appropriate set of motion tubes to reconstruct
the sequence. To ease this problem’s formulation and resolution, families of motion tubes have been introduced: they
consist in a set of motion tubes initialized at the same reference instant. Since then, an image sequence is seen as
a set of families of motion tubes. Using such families, one could define the concept of GOP in a motion tube based
representation.
Later on, the proposed representation was studied: its major strength would be its ability to capture the redundancies
of image sequences by exploiting the temporal persistence of the texture. From a coding perspective, motion tubes seem
to be good candidates as a basis element to a new video coder. However, the representation might lead to unconnected
and/or multi-connected areas. The latter phenomenons revealed themselves to be critical problems for the representation.
Also, the estimation of the temporal parameters seemed to be far from trivial; in particular, designing a quality measure
dedicated to the motion tubes would consist in a critical step. Finally, the deformation model of motion tubes proved
itself to be another field of investigations.
In the end, motion tubes are made from three types of information: their motion W, their texture T and their lifespan
L. Each of them, and their influence on the synthesized sequences, will be studied in dedicated chapters:

• chapter 5 will provide a relatively simple deformation model which exhibits the notion of trajectory, and allows
for various deformations to be described;

• then, chapter 6 will focus on the synthesized textures and provide mechanisms which guarantee the reconstructed
images to be complete;

• finally, chapter 7 will provide various life and death mechanisms which will be used to adapt the lifespan of the
motion tubes to the images contents, and remove inefficient or redundant ones.

Perspectives of motion tubes seem to be pretty various. Not only they seem to be able to represent and encode 2D
image sequences, they might also help with their spatio-temporal segmentation. Due to their nature, they naturally
handle multiple description, in particular any kind of scalability. Even further, they might also be able to represent 3D
image sequences which propose several views for the same time instant.





Chapter 5

Modelling and transmitting motion tubes
deformations

Coping with the displacements and the deformations of a patch of texture across time is one of the greatest challenges
towards an tube-based image sequence representation. Motion compensation, as seen in chapter 2, provides a
wide variety of techniques dedicated to the representation of the motion, hence the textural deformation between

images. However, it was also seen in chapter 3 that video compression brings additional constraints: the compactness of
the parameters describing the motion information. Moreover, practical applications further limit the choice to models of
limited complexity. Taking these considerations into account, this chapter provides a motion model to the motion tubes.
The proposed model offers a realistic trade-off between reconstruction quality, required bitrate and complexity:

• it is a good match to a large set of common deformations,
• it requires relatively few parameters to be transmitted,
• and it does not require a large amount of computations to be estimated nor applied.

Building on the literature from chapters 2 and 3, section 5.1 will first investigate which features an idealistic motion
model should provide. Then, section 5.2 will provide a global insight on the proposed motion model. Section 5.3 will
detail the chosen hybrid motion model and section 5.4 will investigate the basic features of the motion model. Then,
section 5.5 will incorporate an essential feature to the motion model: the notion of trajectory. Section 5.6 will introduce
a mechanism in charge providing motion tubes of variable sizes. Finally, 5.7 will give a quick overview of the entropy
coding scheme used to compact the motion information into a binary bitstream, while section 5.8 will conclude the chapter.

5.1 Identifying desirable features for an idealistic motion model

5.1.1 Block-based and mesh-based models in the literature: a summary

Chapter 2 highlighted several characteristics an idealistic motion model should grant. At first, it should be able to describe
as many deformations as possible. In practice, translations and slightly more complex warpings are efficient enough in
most cases. In addition, it should be able to represent both continuities and discontinuities of the motion field. In an eye
to compression, finally, models based on geometrical patterns seem to provide a relatively compact representation of the
motion field. In addition, their complexity is fairly reasonable, provided that the geometrical patterns are independent
enough from each other.
Among pattern-based models, block-based and mesh-based models (respectively reviewed in sections 2.2.3.1 and 2.2.3.2)
are very popular in video compression applications. Historically, however, blocks are generally preferred to meshes as
they are used in standardized video compression schemes. Yet, numerous techniques employing blocks and/or meshes
have been provided (see section 2.4). Table 5.1.1 summarizes the ability of several models (including BMC, OBMC, CGI
and a few hybridized variants) to fulfill a set of features which we consider to be critical regarding our work. From
table 5.1.1, it can be seen that hybrid CGI-based approaches generally provide the best abilities regarding motion
representation. However, they do not fulfill our complexity requirements. In the end, SOBMC provides the best trade-off
between modelling abilities and complexity.
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Motion models BMC CGI OBMC SCGI SOBMC CGI-OBMC
Translating motions X X X X X X

Complex motions × X ∼ X ∼ X

Motion continuities × X X X X X
Motion discontinuities X × × X X X

Time-continuous motion representation × X × × × ×
Block-based X × X ∼ X ∼

No blocking effects × X ∼ X ∼ X

Pattern independence X × ∼ × ∼ ×
Computational simplicity X × X × X ×

Table 5.1.1: Comparisons of several features of existing motion models

5.1.2 Naturally exhibiting the spatio-temporal trajectory of the motion tubes

As a motion tube is moving and deforming across several time instants, its motion model W consists of a succession of
warping operations wi→i+1, describing its deformation from an instant to the next one (figure 5.1.1a). However, motion
tubes may need to be temporally processed into different fashions (time-increasing, time-decreasing, hierarchical, etc):
an ideal motion model should then be able to describe the deformation of a motion tube from any arbitrary time instant
to any other arbitrary one. As a consequence, an idealistic motion model should be able to compose operators wi→i+1 in
any thinkable way. Finally, an ideal motion model should clearly exhibit the trajectory TMT (t) of a motion tube (figure
5.1.1b); the latter may even be encouraged to follow a trajectory as regular as possible.

G(t)

(a) Deformations around the gravity centre GMT (t)

G(t)
Ω    (t)MT

T    (t)MT

(b) Overall displacement and deformation

Figure 5.1.1: Sectional view of a motion tube: projection of ΩMT (t) onto a single image plane

5.2 An overall insight on the proposed motion model

In order to establish an appropriate motion model for the motion tubes, previous section identified the SOBMC as a
sound candidate since its abilities match a large number of our requirements. However, the SOBMC has been only
used to model the deformation between a couple of images, and does not provide (unlike active meshes, for instance), an
intrinsic ability to describe the deformation of a whole GOP in a continuous manner. As a consequence, the provided
motion model will extend the abilities of the SOBMC to account for the spatio-temporal nature of the motion tubes. This
section will now outline the proposed motion model, and highlight several improvement axis:

• a motion model describing the spatio-temporal evolution of a family of motion tubes - section 5.2.1;
• an hybrid deformation model capable of describing continuous and discontinuous deformations - section 5.2.2;
• the ability to adapt the dimensions of the motion tubes to the images contents - section 5.2.3;
• several regularization mechanisms limiting the amount of motion discrepancies - section 5.2.4;
• a simple motion estimation process which evaluates motion tubes one-at-a-time - section 5.2.5.
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5.2.1 Describing the spatio-temporal information through a single family of motion tubes

In chapter 4, it was proposed to split image sequences into GOPs of limited duration. In each of them, it was proposed
to use a family (or several families) of motion tubes to exhibit the spatio-temporal textural persistence. In this chapter,
it will be assumed that each GOP {I0, . . . , IG} is described through a single family FMT (t0) of motion tubes.
Among the guidelines listed within the introduction of this chapter, it was mentioned that relying on a block-based partition
of the image plane would greatly simplify the design of a competitive video compression scheme. In addition, this prevents
our tube-based representation to be too much disruptive in regards to the standard block-based representation. Keeping
this in mind, it is proposed to partition the reference image I0 into disjoint and regular square blocks B i . Each of them
are then used to initialize a motion tube MT i whose texture T i is sourced from B i .

∀MTi ∈ FMT (t0)

 Li = [t0, tG]
ΩMT i (t0) = ΩB i

T i = I0 (ΩB i )
(5.1)

where ΩB i is the support of block B i and Iref (ΩB i ) is the patch of texture hold by block B i . In the preliminary illustration
provided by figure 4.4.3 in chapter 4, the first image of sequence Foreman was similarly split into 32× 32 square blocks
which were used to instantiate a family FMT (t0) of motion tubes.

5.2.2 In between blocks and meshes: a modified Switched OBMC motion model

In order to represent a wide enough variety of deformations, the motion of each motion tube MT is described through
four motion vectors. To each corner of the quadrilateral patch of texture being tracked is associated a motion vector
which describes its displacement in regards to its initial position in the reference image. At time instant tn:

1.
−→
dTL(tn) describes the displacement of the top-left corner of ΩMT (tn);

2.
−→
dTR(tn) describes the displacement of the top-right corner of ΩMT (tn);

3.
−→
dBL(tn) describes the displacement of the bottom-left corner of ΩMT (tn);

4.
−→
dBR(tn) describes the displacement of the bottom-right corner of ΩMT (tn);
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(a) Initial block of texture ΩMT (tref)
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(b) Idealistic forward CGI warping
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BTR
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BBL
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(c) OBMC-like warping approximation

Figure 5.2.1: Forward motion compensation of a motion tube: in between OBMC and CGI

The proposed deformation model is illustrated in figure 5.2.1. Figure 5.2.1a shows the initial block of texture sourced
from I0 along with its motion vectors. As each motion vector describes the local displacement of a single corner, the
proposed model can be compared to the CGI, wherein all four corners are behaving as control points: the original square
block can then be seen as a mesh whose deformations motion compensate the corresponding patch of texture. Figure
5.2.1b illustrates such an idealistic deformation.

5.2.2.1 Simplifying the CGI into a modified OBMC

In practice however, the CGI does not match our requirements as corresponding interpolation operations are too much
complex. Instead, it is proposed to approximate the CGI with a variant of the OBMC which simply relies on blocks
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and translations. At any time instant tn, the support ΩMT (tn) of MT is given by the union BMT
TL (tn) ∪ BMT

TR (tn) ∪
BMT

BL (tn) ∪ BMT
BR (tn) of four square blocks:

1. block BMT
TL (tn) is provided with vector

−→
dTL(tn) in its top-left corner;

2. block BMT
TR (tn) is provided with vector

−→
dTR(tn) in its top-right corner;

3. block BMT
BL (tn) is provided with vector

−→
dBL(tn) in its bottom-left corner;

4. block BMT
BR (tn) is provided with vector

−→
dBR(tn) in its bottom-right corner.

According to the directions and the amplitudes of the four motion vectors, these blocks may be disposed in various
ways. A motion tube in translation, for instance, will have four equal motion vectors: all four blocks BMT

TL (tn), BMT
TR (tn),

BMT
BL (tn) and BMT

BR (tn) will be superimposed. Otherwise, they may be partially overlapping, thus crudely describing
various shapes. This is illustrated in figure 5.2.1.

In the end, each pixel may be motion compensated from up to four contributions. In this connection, the provided motion
model is highly inspired from the Barbell lifting [IM97], wherein OBMC weighting windows play the role of the Barbell
weights. The forward motion compensation is illustrated in figure 5.2.1c. This modified version of the OBMC is called
Overlapped Tube Motion Compensation (OTMC).

From the four motion vectors which describe the deformation of the quadrilateral patch of texture being tracked, a
wide variety of deformations and displacements can be handled. In particular, translational and slight warpings were
identified as a minimal set of deformations motion tubes should be able to undergo. In addition, chapter 4 highlighted the
importance of the ability for the motion tubes to be connected or disconnected, such that continuities and discontinuities
of the motion field could be matched. Taking previous considerations into account, following subsections will introduce
two motion models:

1. the Tube Motion Compensation (TMC) model describes translational deformations which require the motion tubes
to be disconnected from their neighbours.

2. the Overlapped Tube Motion Compensation (OTMC) model describes more complex deformations by keeping
neighbouring motion tubes connected to each other.

5.2.2.2 A time-continuous representation of the deformation

As mentioned earlier, one of the most attractive features of deformable control grids is probably their ability to describe
successive deformations undergone by a patch of texture in a continuous fashion (table 5.1.1). On the other hand,
block-based representations, including OBMC, generally reinitialize the motion grid at each time instant.

Motion tubes intrinsically being time-continuous objects, their deformation model should be time-continuous as well. As
a consequence, equations (4.3) and (4.4) respectively require the motion tubes warping operators W = {wi→i+1}i0,...,G
to be invertible and the ability to be composed to each other. To this end, the both deformation modes Tube Motion
Compensation (TMC) and OTMC can be inverted and successively applied to the same patch of texture.

a Inverting the warping operations

Figure 5.2.1 illustrates the forward motion compensation process: an initial block of texture is translated onto four
different locations. In each pixel, the prediction is then given by a weighted sum of the different contributions. This can
be interpreted as a low computational version of the CGI; this particular topic is further investigated in appendix A. To
this end, the inversion of the OBMC is approximated by four translations:

• the forward motion compensation individually translates the blocks BMT
TL (tref), BMT

TR (tref), BMT
BL (tref) and BMT

BR (tref)
by respective displacement vectors

−→
dTL(tcur),

−→
dTR(tcur),

−→
dBL(tcur) and

−→
dBR(tcur).

• conversely, the backward motion compensation is simply obtained by applying opposite translations. Hence,
it individually translates the blocks BMT

TL (tcur), BMT
TR (tcur), BMT

BL (tcur) and BMT
BR (tcur) by respective displacement

vectors −
−→
dTL(tcur), −

−→
dTR(tcur), −

−→
dBL(tcur) and −

−→
dBR(tcur), back onto their initial position. The backward motion

compensation is illustrated in figure 5.2.2.
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Figure 5.2.2: Inversion of the OTMC: backward motion compensation

b Composing the warping operations

In order to provide a time-continuous description of the motion information, warping operations need to be successively
applied to an initial shape. Let ΩMT

(
tprev
)

be the support of a motion tube MT at time instant tprev as shown in figure
5.2.3a. MT ’s support ΩMT (tcur) at instant tcur can be described as a deformation of ΩMT

(
tprev
)
. The deformation

between instants tprev and tcur is then given by the four differences between the motion vectors of tprev and those of tcur:

1. ∆
−→
dTL(tprev, tcur) =

−→
dTL(tcur)−

−→
dTL(tprev) 3. ∆

−→
dBL(tprev, tcur) =

−→
dBL(tcur)−

−→
dBL(tprev)

2. ∆
−→
dTR(tprev, tcur) =

−→
dTR(tcur)−

−→
dTR(tprev) 4. ∆

−→
dBR(tprev, tcur) =

−→
dBR(tcur)−

−→
dBR(tprev)
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Figure 5.2.3: Applying successive deformations to a motion tube: composing the warping operations

Consequently, the motion compensation of MT from tprev to tcur consists of individual translations of blocks BMT
TL (tcur),

BMT
TR (tcur), BMT

BL (tcur) and BMT
BR (tcur) by respective displacement vectors ∆

−→
dTL(tprev, tcur), ∆

−→
dTR(tprev, tcur), ∆

−→
dBL(tprev, tcur)

and ∆
−→
dBR(tprev, tcur). This is illustrated in figures 5.2.3b and 5.2.3c. Thus, motion vectors can be interpreted as the sum of

successive relative displacements ∆
−→
d (ti, tj ), enabling the warping operations to be successively composed. If tcur > tref,

wref→cur = wref→(ref+1) ◦ . . . ◦ w(cur−1)→cur ⇐⇒



−→
dTL =

cur−1∑
i=ref

∆
−→
dTL(ti, ti+1) ,

−→
dTR =

cur−1∑
i=ref

∆
−→
dTR(ti, ti+1)

−→
dBL =

cur−1∑
i=ref

∆
−→
dBL(ti, ti+1) ,

−→
dBR =

cur−1∑
i=ref

∆
−→
dBR(ti, ti+1)

(5.2)
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Conversely, if tcur < tref,

wref→cur = wref→(ref−1) ◦ . . . ◦ w(cur+1)→cur ⇐⇒



−→
dTL =

ref−1∑
i=cur

∆
−→
dTL(ti, ti+1) ,

−→
dTR =

ref−1∑
i=cur

∆
−→
dTR(ti, ti+1)

−→
dBL =

ref−1∑
i=cur

∆
−→
dBL(ti, ti+1) ,

−→
dBR =

ref−1∑
i=cur

∆
−→
dBR(ti, ti+1)

(5.3)

5.2.2.3 OTMC: connected motion tubes undergoing limited deformations

In order to provide a continuous representation of the motion field, it is crucial for the motion tubes to be able to remain
connected to each other, and for their motion model, to handle corresponding deformations (warpings). Let X be the
current motion tube. Let A, B and C be respectively the top-left, top, and left causal neighbours of X (figure 5.2.4); it
is assumed that their deformation has been previously estimated.
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(c) Left-connected OTMC

Figure 5.2.4: Idealistic representation of the deformation for the three connected modes

The proposed OTMC model keeps X’s corners connected to those of its causal neighbours. In practice, however, it has
been chosen to connect X to B and C only: vertical and horizontal connection directions are only considered. Figure
5.2.4 illustrates the OTMC motion model. In order to keep the schematics as simple as possible, the deformations are
represented as idealistic CGI warpings. Three connection modes are provided:

1. a full-connected OTMC mode: X’s top-left corner is connected to the average position between B’s bottom-left
corner and C’s top-right corner, X’s top-right corner is connected to B’s bottom-right corner, X’s bottom-left corner
is connected to C’s bottom-right corner, and X’s bottom-right corner is disconnected (figure 5.2.4a);

2. a top-connected OTMC mode: X’s top corners (respectively top-left and top-right) are connected to B’s bottom
corners (respectively bottom-left and bottom-right), and X’s bottom corners are disconnected. The position of X’s
bottom-left corner is adjusted such that the overall shape of ΩX (t) is a parallelogram (figure 5.2.4b);

3. a left-connected OTMC mode: X’s left corners (respectively top-left and bottom-left) are connected to C’s right
corners (respectively top-right and bottom-right), and X’s right corners are disconnected. The position of X’s
top-right corner is adjusted such that the overall shape of ΩX (t) is a parallelogram (figure 5.2.4c).

Forcing ΩX (t)’s shape to be a parallelogram, whenever a single direction of connection is used, encourages the represen-
tation of slight rotations. Whichever way, a single motion vector needs to be estimated, remaining motion vectors being
retrieved from those of B, and C. From then, a large set of continuous deformations can be described. As the deformation
is approximated by an OBMC-like projection, however, only simple deformations can be effectively represented.

5.2.2.4 TMC: disconnected motion tubes in translation

Despite its crudeness, the translational BMC motion model proved to be quite efficient in classical approaches to motion
compensation, in terms of compression. In particular, its ability to compactly represent the discontinuities of the motion
field have been largely appreciated. Similarly, it is crucial for the motion tubes to be able to simply translate, regardless
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to the deformation of neighbouring patches of textures. In such case, a single motion vector (in practice,
−→
dBR) is used to

describe the translation undergone by the motion tube, and

−→
dTL(tn) =

−→
dTR(tn) =

−→
dBL(tn) =

−→
dBR(tn) . (5.4)

In figure 5.2.5, the current motion tube X is undergoing a simple translation, regardless of the nature of the deformations
of neighbouring patches of texture. As can be seen, X is not connected to any of its causal neighbours A, B, or C. For
now, it is assumed that A, B, and C are also undergoing simple translations. Such a motion model is baptized TMC and
requires a single translational projection to be performed. Consequently, a single motion vector needs to be estimated
and transmitted:

−→
dBR(tn). The TMC motion mode is illustrated in figure 5.2.5.

ddBL

dTL dTR

BR

A B

C X

Figure 5.2.5: A disconnected motion tube in translation

5.2.2.5 Hybridizing TMC and OTMC motion models into a Switched OTMC model

Similarly to the SOBMC and other hybrid block-mesh approaches [IM97, IM00, HMCP01, CHJ+06], the final motion
model hybridizes the different motion modes previously introduced. Four connection modes are now available: full
connection, left connection, right connection and disconnection. Table 5.2.1 summarizes the different connection modes,
along with corresponding motion vectors. The motion vectors of B, and C are respectively written

−−−→
dB

corner(tn), and
−−−→
dC

corner(tn).

Full OTMC Top OTMC Left OTMC TMC
Corner

is/isn’t connected to is/isn’t connected to is/isn’t connected to is/isn’t connected to

Top- ∼ both B and C X B’s BL corner X C’s TR corner × none

Left
−→
dTL =

−→
dB

BL +
−→
dC

TR
2

−→
dTL =

−→
dB

BL
−→
dTL =

−→
dC

TR
−→
dTL =

−→
dBR

Top- X B’s BR corner X B’s BR corner × none × none

Right
−→
dTR =

−→
dB

BR
−→
dTR =

−→
dB

BR
−→
dTR =

−→
dBR +

−→
dTL −

−→
dBL

−→
dTR =

−→
dBR

Bottom X C’s BR corner × none X C’s BR corner × none

Left
−→
dBL =

−→
dC

BR
−→
dBL =

−→
dBR +

−→
dTL −

−→
dTR

−→
dBL =

−→
dC

BR
−→
dBL =

−→
dBR

Bottom- × none × none × none × none

Right
−→
dBR

−→
dBR

−→
dBR

−→
dBR

Table 5.2.1: Available motion modes: corresponding connections and motion vectors
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Whenever the deformation parameters of the current motion tube X are estimated, all four motion modes are competing.
In each case, only the motion vector

−→
dBR is optimized in regards to the considered motion model. From the distortion

ξDist and an eventual regularity criterion ξRegul, the motion mode which minimizes the matching error is kept, such that{
mode∗,

−→
d∗BR

}
=arg min

mode,
−→
dBR

ξTube

(
T X , T X

)
=arg min

mode,
−→
dBR

ξDist

(−−→
dmode

BR , mode
)(
T X , T X

)
subject to ξRegul

(−−→
dmode

BR , mode
)
≥ ξmin

Regul , (5.5)

where mode∗ and
−→
d∗BR are respectively the optimal motion mode and the optimal bottom-right motion vector. T X and T X

are respectively the original patch of texture and its motion compensated prediction. ξmax
Regul is the minimum value of the

regularity criterion under which the motion field is not to considered to be regular enough.
Thus, the different motion modes can be hybrized in various ways to accurately represent the local variations of the motion
field. Figure 5.2.6 illustrates their hybridization with several connection patterns which may appear. The deformations
are symbolized by idealistic CGI warping to increase the schematics readability. Annex B provides additional figures
which further illustrate the possibilities of the proposed motion model.
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Figure 5.2.6: Various hybridizations of the different motion models

5.2.3 Towards content-adaptive variable size motion tubes

While block-based representations were proved to be a simple and efficient way to partition image sequences with an
eye to compression, they often suffer from their inability to adapt to the geometry of the spatial contents. Consequently,
several still image and video compression schemes using variable block size have also been proposed, including the LAR
still image coder [DBBR07] and the ITU-T H.264/AVC video compression standard.
So far, motion tubes were initialized from a regular partition of the reference image into fixed-size blocks. Consequently,
the measured motion field may not be accurate enough with regard to the images contents. It is now proposed to allow
motion tubes to be split into sub-tubes, each of which undergoing specific displacements and deformations. A hierarchical
structure, optimized though a rate-distortion approach, will then be provided, thus ensuring that the size of the motion
tubes are fit to the images contents, while controlling the increase in motion information bit-rate.

5.2.4 A spatio-temporal regularization of the trajectories of the motion tubes

Both the deformation model and the motion estimation process should integrate some regularity constraints to encourage
the motion tubes to undergo spatio-temporal displacements and deformations as smooth as possible. To this end, several
mechanisms may be activated to improve the overall consistency of the provided spatio-temporal representation:

1. a locally adaptive variant of the OTMC can be used to regularize the deformations;
2. a multigrid approach can be used to regularize the motion field along its spatial dimensions;
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3. a rate-distortion matching criterion can be used to evaluate a set of motion parameters. Along with an appropriate
set of motion predictors, this will naturally regularize the spatio-temporal motion information. In addition, the
estimation process will then be able to accurately control the amount of motion information to be transmitted;

4. finally, a trajectory-based prediction mechanism can be used to encourage the motion tubes to undergo spatio-
temporal displacements and deformations as smooth as possible.

Mechanisms 1 and 4 are handled by the motion model and provides a description of the motion information which is
intrinsically regularized. Mechanisms 2 and 3 are performed by the estimation process. In the end, all these mechanisms
contribute to the reduction of motion discrepancies, and significantly improve the quality of the synthesized images.

5.2.5 A low-computational tube-independent motion estimation

5.2.5.1 Optimizing the backward motion compensation

As mentioned in chapter 4, projecting a set of motion tubes across a GOP is very likely to produce multi-connected and
disconnected areas. Both these phenomenons raise critical issues regarding the motion estimation process.

1. How are disconnected areas supposed to be taken into account by the estimation? Should their occurrences be
minimized, or should they simply not be taken into account?

2. In multi-connected areas, how each contribution should be assessed in regards to the other ones? Should the
estimation limit such phenomenons?
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Figure 5.2.7: Backward and forward motion compensation within motion tube paradigm

From these questions, it clearly appears that directly optimizing the synthesized images (i.e. the forward motion
compensated images) is a very delicate task. To overcome this issue, it is naturally proposed to optimize the backward
projection Îref of the current image Icur on the reference image Iref. Indeed, the reference image being split into disjoint
blocks (as explained in section 5.2.1), the motion tubes are not overlapping and do not introduce neither multi-connected
nor disconnected areas. As a consequence, both backward and forward motion compensation steps will be required
(figure 5.2.7):

1. several backward motion compensation steps will be performed by the motion estimation to optimize Îref from Icur;

2. a forward motion compensation step will be performed to generate the final synthesized image Îcur from Iref, by
inverting the estimated backward motion parameters.

5.2.5.2 Processing the motion tubes following a raster scan order

Despite the fact that motion tubes are not overlapping at the reference instant, their optimization shall take into account
the interdependency which results from their ability to be connected. Indeed, it was seen in section 5.2.2.5 that connected
motion tubes inherit some of their motion vectors from their neighbours.
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In order to take this interdependency into account, it is proposed to use a sub-optimal estimation process which simply
processes the motion tubes following a causal raster-scan order illustrated in figure 5.2.8a. This is why, in section
5.2.2.5, it was proposed to connect the current motion tube X to its causal neighbours (in practice, B and C) only: their
deformation is already known when processing X. The causal connection model is illustrated in figure 5.2.8b.
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Figure 5.2.8: Causal and anticausal motion estimation: effect on the connection directions

Such an approach guarantees causal connections to be optimal in regards to the considered neighbourhood (motion tubes
B and C). However, this is not optimal when considering all the conceivable connection scenarios. In order to improve
this sub-optimal approach to motion estimation, it is proposed to perform the estimation in two steps:

1. an anticausal motion estimation step following a reversed raster scan order (figure 5.2.8c);
2. a causal motion estimation step following a raster scan order (figure 5.2.8a);

The anticausal step requires the connection patterns to be put upside-down: the current motion tube X can now be
connected to its anticausal neighbours B’ (bottom) and C’ (right), MTB (bottom) and MTR (right). The modified
connection pattern is shown in figure 5.2.8d. Consequently, the motion estimation process now considers both causal and
anticausal directions of connection to estimate the displacement and the deformations of the motion tubes. In the end,
however, the causal connection model is used to predict and encode the motion information. Though complexity is not our
main concern within the scope of this study, future experiments will show that the increase in complexity is compensated
by a significantly better motion estimation.

5.3 Warping motion tubes across time: in between block-based and mesh-based
model

Previous section introduced four different motion models: the disconnected translational TMC model, and the three
connected deformation models (full, top and left OTMC). This section will detail how forward and backward motion
compensations are performed in each case. In addition, it will compare the respective performances of each motion model
and show that their hybridization ends up into a simple and effective motion model.

5.3.1 Disconnected motion tubes: the translating TMC mode

Let {I0, . . . , IG} be a GOP of G images. Let X be a motion tube belonging to the family FMT (t0) defined in section
5.2.1: each motion tube is initialized from a block of texture sourced in image Iref = I0. Let A, B and C respectively
be its top-left, top and right causal neighbours. With the TMC motion mode, X is simply undergoing a translation
−→
d = [dx, dy]T , such that

−→
dTL(tcur) =

−→
dTR(tcur) =

−→
dBL(tcur) =

−→
dBR(tcur) =

−→
d (5.6)

As a consequence, all four blocks B X
TL(tcur), B X

TR(tcur), B X
BL(tcur) and B X

BR(tcur) are superimposed: a single translation
operation is required to perform both forward and backward motion compensation operations.
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(a) Forward motion compensation
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Figure 5.3.1: TMC motion mode: a disconnected motion tube translating by vector
−→
d

5.3.1.1 Forward motion compensation

At time instant tcur, the forward motion compensation translates the reference texture T onto MT ’s support ΩX (tcur).
ΩX (tcur) is obtained by translating ΩX (tref)

ΩX (tcur) = t−→d (ΩX (tref)) (5.7)

where t−→d is the translation operator by vector
−→
d . As a consequence, the synthesized texture T (tcur) is simply given by

the original patch of texture (figure 5.3.1a). In practice, it comes down to copy the collocated texture from the reference
image Iref, and ∀(x, y) ∈ ΩX (tcur):

T (tcur) = Iref (ΩX (tref)) ⇐⇒ T (tcur)(x, y) = Itref (x + dx, y+ dy) (5.8)

5.3.1.2 Backward motion compensation

Conversely, the backward motion compensation translates the current texture T onto ΩX (tref), support of MT at time
instant tref. ΩX (tref) is obtained by translating ΩX (tcur) by

−→
d ’s opposite vector, and:

ΩX (tref) = t−−→d (ΩX (tcur)) (5.9)

As a consequence, the texture synthesized at instant tref, T (tref), is given by the patch of texture registered by the motion
tube MT at the current instant tcur (figure 5.3.1b). In practice, it comes down to copy the collocated texture from the
current image Icur. ∀(x, y) ∈ ΩX (tref)

T (tref) = Icur (ΩX (tcur)) ⇐⇒ T (tref)(x, y) = Icur (x − dx, y− dy) (5.10)

5.3.1.3 Building the matching criterion

In TMC motion mode, the matching criterion ξDist-TMC of a motion tube is given by the distance between the reference
texture T (tref) and the synthesized version of the reference texture T (tref), predicted from the current image Icur. Both
MAE and MSE have been considered, and ξDist-TMC may write as

ξDist-TMC

(
T (tref) , T (tref)

)
=ξDist-TMC

(
Iref
(
ΩX (tref)

)︸ ︷︷ ︸
original

, Icur
(
ΩX (tcur)

)︸ ︷︷ ︸
synthesized

)

=


1

MN ·
∑

(x,y)∈ΩX (tref)

∣∣∣Iref(x, y)− Icur(x − dx1, y− dy1)
∣∣∣ with the MAE

1
MN ·

∑
(x,y)∈ΩX (tref)

(
Iref(x, y)− Icur(x − dx1, y− dy1)

)2 with the MSE
(5.11)

where M and N are respectively the width and height, in pixels, of the patch of texture at the reference instant tref.
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5.3.2 Towards more complex deformations: OTMC motion mode

The OTMC motion mode accounts for both motion field continuities and geometrical deformations. In particular, it relies
on the overlapping features of the OBMC. In this regard, our motivation is twofold:

• the OBMC acts as a simplified version of the CGI (see appendix A);
• the OBMC significantly reduces the amount of blocking artefacts from which the TMC motion mode may suffer.

5.3.2.1 A preliminary observation: how overlapping the motion can significantly improve the representation

As a preliminary observation, figure 5.3.2 shows how much overlapped motion tubes can improve the representation. In
figure 5.3.2a, the reference image is partitioned into disjoint tubes. In figure 5.3.2a, it is partitioned into overlapping
tubes twice as large as those of the first case. A weighting window is used to smooth the transition between the tubes.
Figure 5.3.2 speak for itself: overlapping the motion tubes increases the coherence of the reconstruction. Blocking
and staircase effects are reduced, at the expense of a notable blurring effect: overlapping should only be used when it
effectively improves the reconstruction.

(a) Non-overlapping motion tubes (b) Overlapping motion tubes

Figure 5.3.2: How overlapping the textures of the motion tubes may improve the synthesized textures

5.3.2.2 Towards a modified OBMC

a Classical conception of the OBMC

Typically, OBMC partitions the image plane into overlapping patterns. A weighting window is used to play down the
importance of the contributions brought by the patterns periphery. This smoothes the motion field and avoids sharp motion
field transitions from one pattern to the next. In ITU-T H.263 video compression standard, for instance, a cross-shaped
pattern is employed (figure 5.3.3). As it performs a backward motion compensation, figure 5.3.3c is projected into figure
5.3.3b. Conversely, motion tubes may perform the inverse operation, and project figure 5.3.3c into figure 5.3.3b.

(a) Cross pattern (b) Initially overlapping crosses (c) Resulting forward motion compensation

Figure 5.3.3: Typical understanding of OBMC: overlapping basis patterns in ITU-T H.263 standard
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b How OTMC can be interpreted as special case of OBMC

Section 5.2.2.1 explained that the proposed motion model relies on the translation of four blocks B X
TL, B X

TR, B X
BL and B X

BR
by respective vectors

−→
dTL,
−→
dTR,
−→
dBL and

−→
dBR. With the OTMC motion mode, it was provided the ability to connect a

motion tube X to its top and left neighbours B and C. By cascading the connections, it is possible to connect as many
motion tubes as required. Let A, B, C, D, X, A’, B’, C’ and D’ be a set of nine adjacent motion tubes which are kept
connected to each other. Figures 5.3.4a and 5.3.4b respectively illustrate such a set of motion tubes and their connected
deformation. A, B, C and X, in particular are respectively connected by their bottom-right, bottom-left, top-right and
top-left corners. Corresponding motion vectors are equal and:

−→
dA

BR =
−→
dB

BL =
−→
dC

TR =
−→
dX

TL =
−→
d1 (5.12)

Corresponding blocks, respectively B A
BR, B B

BL, B C
TR and B X

TL are adjacent and undergoing the same translation
−→
d . The

super-block B 1 = B A
BR ∪ B B

BL ∪ B C
TR ∪ B X

TL can then be considered as a single pattern in translation by vector
−→
d1

(figures 5.3.4c and 5.3.4d). Just like the OBMC, it is now proposed to provide this super-block with a weighting window
W1(x, y) centred around X’s top-left corner (i.e the centre of the super-block). Following the same idea, and under
similar assumptions, three other super-blocks can be extracted:

• from X’s top-right corner, super-block B 2 = B B
BR ∪ BD

BL ∪ B X
TR ∪ B C’

TL is translating by vector
−→
d2 =

−→
dB

BR =
−→
dD

BL =
−→
dX

TR =
−→
dC’

TL; it is provided with a weighting window W2(x, y) centred around X’s top-right corner;

• from X’s bottom-left corner, super-block B 3 = B C
BR ∪ B X

BL ∪ BD’
TR ∪ B B

TL is translating by vector
−→
d3 =

−→
dC

BR =
−→
dX

BL =
−→
dD’

TR =
−→
dB

TL; it is provided with a weighting window W3(x, y) centred around X’s bottom-left corner;

• from X’s top-right corner, super-block B 4 = B X
BR ∪ B C’

BL ∪ B B’
TR ∪ B A’

TL is translating by vector
−→
d4 =

−→
dX

BR =
−→
dC’

BL =
−→
dB’

TR =
−→
dA’

3 ; it is provided with a weighting window W4(x, y) centred around X’s bottom-right corner.

These four super-blocks are overlapping, weighted and undergoing individual translations
−→
d1 ,
−→
d2 ,
−→
d3 and

−→
d4 (figures

5.3.4c and 5.3.4d). Hence, they can be interpreted as classic square OBMC overlapping patterns: OTMC is thus a special
case of OBMC which relies on square overlapping patterns. However, OTMC and TMC motion modes have the additional
ability to control whether to use one, two, three or all four quadrants of the super-blocks to motion compensation the
motion tubes. As such, the proposed motion model uses locally shape-adaptive overlapping patterns.
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A B D

C

D' B'

(a) A set of nine adjacent and
connected motion tubes . . .

X
C'

A'

A
B

D
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D' B'

(b) . . . and their deformation

B3

B1 B2

B4

X

(c) OBMC super-blocks over-
lapped on motion tube X

B3

B1
B2

B4

Xd1
d2

d4d3

(d) Translated super-blocks

Figure 5.3.4: How OTMC can be interpreted as OBMC: equivalent super-blocks

c Building a set of appropriate OBMC weighting windows

The identification of the OTMC to the OBMC led to the construction of four super-blocks overlapping on the current
motion tube X and its adjacent neighbours. Each of these super-blocks were weighted using a window centred on its
centre, playing down the importance of its periphery. Such a weighting window is shown in figure 5.3.5a.
In particular, the four blocks B X

TL, B X
TR, B X

BL and B X
BR respectively correspond to a single quadrant of super-blocks B 1,

B 2, B 3 and B 4. As a consequence, they will be weighted by corresponding quadrants of weighting windows W1(x, y),
W2(x, y), W3(x, y), W4(x, y).
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• B X
TL is B 1’s bottom-right quadrant; it will be weighted by WTL(x, y), W1(x, y)’s bottom-right quadrant.(fig. 5.3.5b)

• B X
TR is B 2’s bottom-left quadrant; it will be weighted by WTR(x, y), W2(x, y)’s bottom-left quadrant. (fig. 5.3.5c)

• B X
BL is B 3’s top-right quadrant; it will be weighted by WBL(x, y), W3(x, y)’s top-right quadrant. (fig. 5.3.5d)

• B X
BR is B 4’s top-left quadrant; it will be weighted by WBR(x, y), W4(x, y)’s top-left quadrant. (fig. 5.3.5e)
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Figure 5.3.5: Partition of the OBMC weighting window into quadrants

Provided that the super-blocks are motion compensated using the same symmetric weighting window W (x, y) (as shown
in figure 5.3.5a), successively centred around each of their centre, the summation of the four weights, in each position
(x, y) from X’s support is constant and can be normalized:

∀(x, y) ∈ ΩX (t) , WTL(x, y) +WTR(x, y) +WBL(x, y) +WBR(x, y) = 1 . (5.13)

5.3.2.3 Forward motion compensation
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Figure 5.3.6: OTMC motion mode: forward motion compensation

With OTMC, X’s top-left, top-right and bottom left corners are kept connected to its top and left causal neighbours B and
C. At time instant tcur, the forward motion compensation translates the reference texture T onto four locations. Indeed,
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ΩX (tcur) is given by the union of the translations of blocks B X
TL (tref), B X

TR (tref), B X
BL (tref), and B X

BR (tref) by respective
vectors

−→
dTL (tcur),

−→
dTR (tcur),

−→
dBL (tcur) and

−→
dBR (tcur). To be more precise,

ΩX (tcur) =B X
TL (tcur) ∪ B X

TL (tcur) ∪ B X
TL (tcur) ∪ B X

TL (tcur)

=t−→dTL(tcur)

(
B X

TL (tref)
)
∪ t−→dTR(tcur)

(
B X

TL (tref)
)
∪ t−→dBL(tcur)

(
B X

TL (tref)
)
∪ t−→dBR(tcur)

(
B X

TL (tref)
)
, (5.14)

where t−→d is the translation operator by vector
−→
d . From OTMC’s connection pattern (see table 5.2.1), three out of the

four motion vectors are sourced from neighbouring motion tubes B and C, and:

• the top-left motion vector
−→
dTL (tcur) is the mean of B’s bottom-left and C’s top-right vectors

−→
dB

BL (tcur) and
−→
dC

TR (tcur);

• the top-right motion vector
−→
dTR (tcur) is given by B’s bottom-right motion vector

−→
dB

BR (tcur);

• the bottom-left motion vector
−→
dBL (tcur) is given by C’s bottom-right motion vector

−→
dC

BR (tcur);

• the bottom-right motion vector
−→
dBR (tcur) is specific to X.


−→
dTL (tcur)= [dxTL, dyTL]T =

−→
dB

BL (tcur) +
−→
dC

TR (tcur)
2 ,

−→
dTR (tcur)= [dxTR, dyTR]T =

−→
dB

BR (tcur)
−→
dBL (tcur)= [dxBL, dyBL]T=

−→
dC

BR (tcur) ,
−→
dBR (tcur)= [dxBR, dyBR]T

(5.15)

As a consequence, the synthesized texture T ∗(tcur) results from a weighted sum of a variable number of contributions
(from one to four). ∀(x, y) ∈ Ω (tcur), T

∗(tcur) is given by

T ∗(tcur)(x, y) = 1B X
TL(tcur) (x, y) · WTL

(
x − xref − dxTL , y− yref − dyTL

)
· Iref

(
x − dxTL , y− dyTL

)
+ 1B X

TR(tcur) (x, y) · WTR
(
x − xref − dxTR , y− yref − dyTR

)
· Iref
(
x − dxTR , y− dyTR

)
+ 1B X

BL(tcur) (x, y) · WBL
(
x − xref − dxBL , y− yref − dyBL

)
· Iref
(
x − dxBL , y− dyBL

)
+ 1B X

BR(tcur) (x, y) · WBR
(
x − xref − dxBR , y− yref − dyBR

)
· Iref
(
x − dxBR , y− dyBR

)
(5.16)

where (xref, yref) are the coordinates of the top-left corner of ΩMT (t0). Hence, (x − xref − dx , y− yref − dy) are the
relative coordinates of position (x, y) into t−→d

(
ΩMT (tref)

)
, translation of ΩMT (tref) by vector

−→
d = [dx, dy]T . 1Ω (x, y)

is the indicator function defined by

1Ω (x, y) =
{

1 if (x, y) ∈ Ω
0 elsewhere

(5.17)

As the weights sum may vary from one position to another, the synthesized texture T ∗(tcur) is not normalized with
respect to the OBMC weighting windows. Consequently, T ∗(tcur) is normalized into T (tcur) by the following computation:
∀(x, y) ∈ ΩMT (t1), it is given by

T (t1)(x, y) = T
∗(t1)(x, y)
N(x, y) (5.18)

where N(x, y) is the normalization factor

N(x, y) = 1B X
TL(tcur) (x, y) · WTL

(
x − xref − dxTL , y− yref − dyTL

)
+ 1B X

TR(tcur) (x, y) · WTR
(
x − xref − dxTR , y− yref − dyTR

)
+ 1B X

BL(tcur) (x, y) · WBL
(
x − xref − dxBL , y− yref − dyBL

)
+ 1B X

BR(tcur) (x, y) · WBR
(
x − xref − dxBR , y− yref − dyBR

)
(5.19)

The normalization is often source for additional complexity; however, it is only required by the forward motion compensa-
tion. Indeed, backward motion compensation will not require any normalization step. In practice, the normalization step
is performed once all the motion tubes have been motion compensated, since several motion tubes may also overlap. In
the end, OTMC motion compensation is rather similar to the simple TMC motion compensation from an implementation
perspective: it simply consists in a series of classic block-based weighted projections.



90 CHAPTER 5. MODELLING AND TRANSMITTING MOTION TUBES DEFORMATIONS

dBL dBR

A B

C

=dBR
B

=dBR
C

X

dTR

d  =  TL

dBL
B dTR

C

2
+
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Figure 5.3.7: OTMC motion mode: backward motion compensation

5.3.2.4 Backward motion compensation

Conversely, the backward motion compensation translates four blocks of texture of the current image Icur - B X
TL (tcur),

B X
TR (tcur), B X

BL (tcur) and B X
BR (tcur) - onto a single location ΩX (tref), by respective vectors −

−→
dTL (tcur), −

−→
dTR (tcur),

−
−→
dBL (tcur) and −

−→
dBR (tcur). At time instant tref, the patch of texture T (tref) synthesized from the original textural

information found in X’s support ΩX (tcur) at instant tcur is then given by

T (tref)(x, y) = WTL (x − xref, y− yref) · Icur(x − dxTL, y− dyTL)
+ WTR (x − xref, y− yref) · Icur(x − dxTR, y− dyTR)
+ WBL (x − xref, y− yref) · Icur(x − dxBL, y− dyBL)
+ WBR (x − xref, y− yref) · Icur(x − dxBR, y− dyBR)

∀(x, y) ∈ ΩMT (t0). Again, (xref, yref) are the coordinates of the top-left corner of ΩX (tref). As weighting coefficients
are normalized - see equation (5.13) -, no normalization step is required, which spares the estimation loop from a large
number of computations.

5.3.2.5 Building the matching criterion

Similarly to the TMC motion mode and its matching criterion introduced in section 5.3.2.5 - see equation (5.11) -, the
OTMC is evaluated by a matching criterion which computes a pixel-based distance between the original reference texture
T (tref) and its reconstruction T (tref). Again, both MAE and MSE can be used. With the MAE, in particular, the matching
criterion ξDist-OTMC can be expressed as

ξOTMC-MAE

(
T (t0) , T (t0)

)
= 1
MN ·

∑
(x,y)∈B X

TL(tcur)

WTL (x − xref, y− yref) ·
∣∣∣Iref(x, y)− I1(x + dxTL, y+ dyTL)

∣∣∣
+ 1

MN ·
∑

(x,y)∈B X
TR(tcur)

WTR (x − xref, y− yref) ·
∣∣∣Iref(x, y)− I1(x + dxTR, y+ dyTR)

∣∣∣
+ 1

MN ·
∑

(x,y)∈B X
BL(tcur)

WBL (x − xref, y− yref) ·
∣∣∣Iref(x, y)− I1(x + dxBL, y+ dyBL)

∣∣∣ (5.20)

1
MN ·

∑
(x,y)∈B X

BR(tcur)

WBR (x − xref, y− yref) ·
∣∣∣Iref(x, y)− I1(x + dxBR, y+ dyBR)

∣∣∣ (5.21)

where M and N are respectively the width and height, in pixels, of the (square or rectangular - see section 5.6 -) patch
of texture at the reference instant tref.
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5.3.3 In between TMC and OTMC: alternative intermediate motion modes

With TMC and OTMC motion modes, neighbouring motion tubes can be either fully connected, or completely disconnected.
At some point, however, it may be interesting to partially connect a motion tube to only one of its neighbours. As a
solution, left OTMC and top OTMC are provided two intermediate motion modes lying in between the disconnected TMC
and the connected OTMC motion modes:

• the Top OTMC motion mode keeps the current motion tube X connected to its top neighbour B;
• the Left OTMC motion mode keeps the current motion tube X connected to its left neighbour C.

5.3.3.1 Connection to the top: Top OTMC

dBR

A B

C

=dBR
B

X

dTRd  =  TL dBL
B

dBL=dBR+dTL -dTR

(a) Idealistic CGI’s warping

dBR
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dTR
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dBL

BTL
X

BTR
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BBL
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BBR
X

X

(b) Simplified block-based projection

Figure 5.3.8: Top OTMC mode: the current motion tube X is connected to its top causal neighbour B

From Top OTMC’s connection pattern (see table 5.2.1), three out of the four motion vectors are sourced from the top
neighbour B of the current motion tube X, and:

• the top-left motion vector
−→
dTL (tcur) is given by B’s bottom-left vector

−→
dB

BL (tcur);

• the top-right motion vector
−→
dTR (tcur) is given by B’s bottom-right motion vector

−→
dB

BR (tcur);

• the bottom-right motion vector
−→
dBR (tcur) is specific to X;

• the bottom-left motion vector
−→
dBL (tcur) is adjusted, in function of the other three motion vectors, to force X’s section

ΩX (tcur) to be in the form of a parallelogram.

{ −→
dTL (tcur)=

−→
dB

BL (tcur) ,
−→
dTR (tcur)=

−→
dB

BR (tcur)
−→
dBL (tcur)=

−→
dC

BR (tcur) +
−→
dTL (tcur)−

−→
dTR (tcur) ,

−→
dBR (tcur)=

−→
d

(5.22)

Both the connection pattern and the deformation abilities are illustrated in figure 5.3.8. Forward and backward motion
compensations are identical to the compensation processes performed by the Full OTMC mode. Consequently, equations
(5.16) and (5.20) respectively describe the Top OTMC forward and backward motion compensation processes as well.

5.3.3.2 Connection to the left: Left OTMC

Similarly, Top OTMC’s connection pattern (see table 5.2.1) sources three out of the four motion vectors from the left
neighbour C of the current motion tube X, and:

• the top-left motion vector
−→
dTL (tcur) is given by C’s top-right vector

−→
dC

TR (tcur);

• the bottom-left motion vector
−→
dBL (tcur) is given by C’s bottom-right motion vector

−→
dC

BR (tcur);
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Figure 5.3.9: Left OTMC mode: the current motion tube X is connected to its left causal neighbour C

• the bottom-right motion vector
−→
dBR (tcur) is specific to X;

• the top-right motion vector
−→
dTR (tcur) is adjusted, in function of the other three motion vectors, to force X’s section

ΩX (tcur) to be in the form of a parallelogram.

{ −→
dTL (tcur)=

−→
dC

TR (tcur) ,
−→
dTR (tcur)=

−→
dBR (tcur) +

−→
dTL (tcur)−

−→
dBL (tcur)

−→
dBL (tcur)=

−→
dC

BR (tcur) ,
−→
dBR (tcur)

−→
d

(5.23)

Both the connection pattern and the deformation abilities are illustrated in figure 5.3.9. Forward and backward motion
compensations are identical to the compensation processes performed by the Full OTMC mode. Consequently, equations
(5.16) and (5.20) respectively describe the Left OTMC forward and backward motion compensation processes as well.

5.3.4 Regularizing the motion discrepancies: Locally-Adaptive OTMC

While OTMC provides the ability to connect neighbouring motion tubes, it represents the deformations in a very crude
way: any geometric shape is reduced to a set of four overlapping blocks B X

TL, B X
TR, B X

BL and B X
BR. This crude representation

may not be appropriate to any kind of deformation Two scenarios can be distinguished:

• either the deformation is relatively small, in which case its OTMC approximation is acceptable. This corresponds
to scenarios where the four motion vectors

−→
dTL,
−→
dTR,
−→
dBL and

−→
dBR are close to each other;

• or the deformation is larger, in which case its OTMC approximation may not be acceptable. This results into
motion discrepancies which could be avoided with a finer motion model.

As a solution, it is proposed to recursively split these four blocks into sub-blocks. Their displacements are interpolated
from the four original motion vectors

−→
dTL,
−→
dTR,
−→
dBL and

−→
dBR. This process is iterated until the representation of the

deformation is accurate enough. Such a motion compensation process is called Locally Adaptive OTMC (LAOTMC), and
is illustrated in figure 5.3.10.

1. Start with the four initial blocks B X
TL, B X

TR, B X
BL and B X

BR.
2. Check whether the four corresponding motion vectors are close enough to each other -see equation (5.24) -.

• If yes: the four (sub-)blocks are translated by their corresponding vectors.
• If no: continue.

3. On each of the four (sub-)blocks:
• partition the (sub-)block into four half-sized (sub-)blocks;
• interpolate the motion vector of each sub-block from available motion vectors;
• recursively iterate step 2 on the four sub-blocks.
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The decision whether to split or not to split a (sub-)block relies on its four displacement difference between consecutive
corners. If all the differences are under a coherence threshold δTh, the partitioning operation is not required, and the
(sub-)block can be directly motion compensated:

∥∥∥−→dTR −
−→
dTL

∥∥∥ < δTh and
∥∥∥−→dBR −

−→
dBL

∥∥∥ < δTh∥∥∥−→dBR −
−→
dTR

∥∥∥ < δTh and
∥∥∥−→dBL −

−→
dTL

∥∥∥ < δTh

(5.24)
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(a) Initial OBMC blocks
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(b) First level partitioning
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(c) Second level partitioning

Figure 5.3.10: LAOTMC motion mode: automatic recursive partitioning of a motion tube

As can be seen from figure 5.3.10, the accuracy of the deformation representation is locally adapted to the nature of the
motion field. In particular, it can be seen from figure 5.3.10c that the shape’s approximation is much more closer to the
idealistic shape (represented by the dashed quadrilateral) than its initial crude approximation was. Using the LAOTMC,
a larger set of deformations can be handled.

All in all, the LAOTMC provides a motion model lying in between the OTMC and the CGI, to the cost of a little extra
computations: the interpolations simply consist in successive averages of two motion vectors. Provided that blocks are
recursively split down to pixels, the LAOTMC can be interpreted as a CGI warping which only projects the images
samples available at the reference instant. Finally, as all additional motion vectors are interpolated from original

−→
dTL,−→

dTR,
−→
dBL and

−→
dBR, no additional information needs to be sent.

5.3.5 TMC, OTMC and LAOTMC motion modes: compared performances

A disconnected motion mode (the TMC) and three (partially or not) connected motion modes (full, left and top OTMC)
can now be applied to motion tubes. This section will now investigate their performances on real life sequences, and
produce both objective and subjective elements to assess their abilities to track the deformation and the displacement of
a set of motion tubes.

5.3.5.1 Hybridizing performances of connected and disconnected motion modes

a Specifications of the experiments

In order to measure and assess the performances of the different motion modes, a set of six Common Intermediate
Format (CIF) sequences have been considered: Bus, Football, Foreman, Mobile, Paris and Tempest. Each of these
sequences have been split into GOPs of eight frames, whom sixteen first (i.e. 128 frames) have been motion estimated
and compensated by motion tubes.

In each GOP, a single family of 396 motion tubes, of 16× 16 reference section, is used to describe its spatio-temporal
content. Relatively crude parameters are used to the motion estimation, including a pixellic motion precision and a limited
search range of 8 × 8 pixels. The LAOTMC mode has been enabled by default, such that 16 × 16 blocks can be split
twice down to 4× 4 blocks. In addition, the motion estimation is performed progressively across the temporal dimension,
from one frame to the next (this can be interpreted as a progressive IPP GOP structure).
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b Objective measurements

Table 5.3.1 shows the PSNRs and the reconstruction rates obtained for several motion hybridization scenarios, from
the crudest (TMC mode only) to the most complex (all TMC and OTMC modes). Both PSNR and reconstruction rates
are averaged over the six sequences and their 128 first frames. Since motion tubes do not provide, at this point, a
complete rendition of the current image, its reconstruction measured from its Synthesis PSNR (SPSNR) (the PSNR
of the reconstructed areas) and its reconstruction rate (the percentage of reconstructed areas). Gains in PSNR and
reconstruction rates, with respect to the first scenario (TMC only), are also indicated.

Motion model
TMC OTMC Left OTMC Top OTMC PSNR Iref SPSNR Icur Rec. rate

X × × × 26.08 dB - dB 26.72 dB - dB 87.32 % - %
× X × × 23.39 dB -2.69 dB 22.94 dB -2.78 dB 93.49 % +6.17 %
× X X X 26.90 dB +0.82 dB 26.88 dB +0.16 dB 90.94 % +3.63 %
X X × × 27.51 dB +1.42 dB 27.99 dB +1.27 dB 88.85 % +1.54 %
X X X X 27.90 dB +1.82 dB 28.32 dB +1.60 dB 89.31 % +2.00 %

Table 5.3.1: Hybridization of the four motion modes: resulting PSNRs and reconstruction rates

c Disconnected TMC versus connected OTMC

Let us focus on the first two scenarios: TMC only, and OTMC only. As can be seen from the results, the TMC motion
mode provides a significantly better PSNR than the OTMC does. On the other hand, the OTMC is able to reconstruct a
larger proportion of the images. This is easily explained by the fact that the OTMC motion mode is not able to represent
the discontinuities of the motion field, and cannot catch up with areas corresponding to moving objects boundaries.
However, forcing the motion tubes to be connected to each other limits the amount of unpredicted areas.

(a) Original frame I2 (b) Reconstruction of I2 with TMC
SPSNR = 32.55 dB, Rec. rate = 91.10%

(c) Reconstruction of I2 with OTMC
SPSNR = 29.80 dB, Rec. rate = 99.03%

(d) Initial partition of I0 (e) Translated motion tubes on Î2 (TMC) (f ) Deformed motion tubes on Î2 (OTMC)

Figure 5.3.11: TMC versus OTMC motion modes: influence on the synthesized images

Figure 5.3.11 shows the motion compensation prediction of the third frame I2 of sequence Foreman whether TMC or
OTMC motion modes are used. This confirms the interpretations of the objective measurements: compared to the TMC,



5.3. WARPING MOTION TUBES ACROSS TIME 95

the OTMC does increase the amount of reconstructed areas, while lowering the overall quality of the compensation (in
particular, distorted edges can be observed-fig. 5.3.11c-). Figures 5.3.11e and 5.3.11f show the displacement and the
deformation of the (idealistic) shapes of the motion tubes, with respect to the initial partition of the first image I0 shown
in figure 5.3.11d. Note that, in figure 5.3.11f, a few motion tubes are still disconnected from their neighbours (thus simply
translated blocks) despite the use of the connected OTMC motion mode: this was purposely done to avoid degenerated
deformations which critically impact the efficiency of the model.

d How hybridizing the different motion model does improve the motion compensation

While the efficiency of the OTMC in regards to the TMC is arguable, their hybridization undoubtedly ends up in an
improved motion compensation. Figure 5.3.12 shows how progressively hybridizing the different motion modes increases
both the PSNRs and the reconstruction rates. They all provide PSNRs higher than the reference score of the TMC.
Hybrid scenarios, however, do not provide a reconstruction rate as high as the sole use of the OTMC does. In the end,
hybridizing all four motion modes respectively increases both PSNR and reconstruction rates by 1.82 dB and 2% in
average. More detailed results can be found in section C.1 of appendix C (table C.1.1 and figure C.1.1).
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Figure 5.3.12: Hybridization of the four motion modes: an increase in both PSNRs and reconstruction rate

Figure 5.3.13 shows the motion compensation prediction of the third frame I2 of sequence Foreman obtained with three
hybrid scenarios. In figures 5.3.13d, 5.3.13e and 5.3.13f, each motion mode is distinguished by its colour: red for TMC,
yellow for full OTMC, blue for left OTMC and green for top OTMC. As can be seen, the full OTMC motion mode is
advantageously used in areas which contain few edges. On the contrary, edgy areas are most often handled by partially
disconnected (top and left OTMC) or disconnected (TMC) modes. If all four motion modes are enabled, the selected
motion models roughly divide up into: 40% of TMC, 30% of full OTMC, 15% of left OTMC and 15% of top OTMC as well.

5.3.5.2 A focus on the Local Adaptive OTMC

a Setting up the experiments

Previous experiments used LAOTMC whenever a connected motion mode was available. Should the case arise, 16× 16
blocks were split twice down to 4× 4 blocks. It might be interesting, as well, to investigate the effects of the LAOTMC
on the synthesized images. To this end, three scenarios have been evaluated, for the same six sequences as before:

1. in the first one, no LAOTMC was performed;
2. in the second one, LAOTMC was used to split original 16× 16 blocks down to 4× 4 blocks;
3. in the third one, finally, LAOTMC was used to split the original blocks down to 2× 2 blocks.

In each case, all three connected motion modes were enabled (i.e. full, top and left OTMC), while disconnected TMC
mode was disabled, as it is not affected by the LAOTMC mechanism. Figure 5.3.14 shows the averaged PSNRs and
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(a) Reconstruction of I2 using full OTMC, left
OTMC and top OTMC modes
SPSNR = 32.93 dB, Rec. rate = 96.91%

(b) Reconstruction of I2 using TMC and full
OTMC modes
SPSNR = 33.47 dB, Rec. rate = 95.78%

(c) Reconstruction of I2 using TMC, full OTMC,
left OTMC and top OTMC modes
SPSNR = 33.96 dB, Rec. rate = 95.44%

(d) Deformed motion tubes on Î2 (full OTMC,
left OTMC and top OTMC)

(e) Deformed motion tubes on Î2 (TMC and full
OTMC)

(f ) Deformed motion tubes on Î2 (TMC, full
OTMC, left OTMC and top OTMC)

Figure 5.3.13: Hybridization of the four motion modes: influence on the synthesized images

reconstruction rates obtained in each case. As can be seen, it has little influence on the PSNR of the reconstructed
reference image Iref. It does have, however, a significant influence on the PSNR of the reconstructed areas of the current
frame Icur. Indeed, an increase of 0.7 dB is observed in the reconstructed areas when the finest LAOTMC mechanism
is activated; this, however, comes to the cost of a significant reduction of nearly 5% in reconstruction rate. In this
connection, the second scenario (4× 4 LAOTMC) appears as a reasonable trade-off between quality, reconstruction rate,
and complexity. Detailed results can be found in section C.2 of appendix C.
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Figure 5.3.14: LAOTMC: a trade-off between quality and percentage of reconstruction



5.4. A SIMPLE AND REGULARIZED MOTION ESTIMATION PROCESS 97

b Reducing the blurring effect due to the overlapped block motion model

Figure 5.3.15 shows the effect of LAOTMC on the fourth image I3 of sequence Foreman. On the left half of Foreman’s
face, the large amplitude of the deformation shows how LAOTMC actually works. In figure 5.3.15a, no LAOTMC has
been performed, and original 16×16 blocks are obvious, and crudely describe the deformation. In figure 5.3.15b, original
blocks are split down to 4× 4 sub-blocks. As can be seen, they are nicely spread over Foreman’s whole cheek and jaw.
In figure 5.3.15c, finally, the splitting operation spreads 2× 2 sub-blocks in a similar way.

(a) Reconstruction of I3 without LAOTMC
SPSNR = 29.55 dB, Rec. rate = 96.88%

(b) Reconstruction of I3 with 4× 4 LAOTMC
SPSNR = 30.98 dB, Rec. rate = 93.15%

(c) Reconstruction of I3 with 2× 2 LAOTMC
SPSNR = 31.81 dB, Rec. rate = 92.30%

Figure 5.3.15: LAOTMC mechanism: influence on the synthesized images

While OBMC is well-known for reducing the blocking effects, it is to the cost of an overall blurring effect. Similarly,
the OTMC compensation mechanism suffers from the same problem. However, by refining the displacement of the blocks
through LAOTMC, it is expected for this blurring effect to be significantly reduced: refining the motion field prevents
from undesirable motion approximations. Focusing on the nose, the mouth and the right half of Foreman’s face in figure
5.3.15, one can see how LAOTMC effectively reduces the overall blurring effect, from which figure 5.3.15a suffers.

5.4 A simple and regularized motion estimation process

Whichever the motion mode, a single motion vector
−→
dX
BR needs to be estimated in order to represent the displacement

and the deformation of the current motion tube X. The matching criterion, as mentioned earlier, optimizes the backward
compensation of the motion tube onto its reference support in Iref. As can be seen from previous section, the PSNR of
Iref reconstruction and the PSNR of the synthesized areas of Icur are very close to each other: the approach, so far, is
consistent. Prior any investigation on specific features of the proposed motion estimation mechanism, section 5.4.1 will
briefly review the search strategy used to localize the optimal motion vector

−→
dX
BR
∗.

5.4.1 Searching for appropriate motion vectors

5.4.1.1 An EPZS-like motion estimation search strategy

While the proposed tube-based representation was designed from coding tools whose intrinsic complexity is fairly
reasonable, the actual complexity of the implementation was not a major concern. For this reason, the motion search
strategy has not been thoroughly optimized and still relies on a full-search mechanism within a limited search-window.
Still, it appears that EPZS [HM99, OAL01, Tou02] and its predecessors are not only fast but also tend to regularize the
estimated motion field. Indeed, prior to the local Diamond Search, the search area is initialized around the best position
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taken from a set of spatio-temporal predictors. Not only does this allow for the search area dimensions to be drastically
reduced, but it also avoids incoherent positions from being evaluated. Consequently, the proposed motion estimation
process is performed in four steps:

1. at first, evaluate the positions obtained from a set of spatio-temporal predictors (see table 5.4.1);
2. then, initialize the search area around the best predicted position;
3. evaluate all pixellic positions within the search area (this step, currently performed through an exhaustive

search, could be greatly optimized from the use of a sub-optimal search strategy);

4. lastly, evalute sub-pixellic positions around the best position found at step 3; keep the best one
−→
dX
BR
∗.

In total, seven spatio-temporal predictors are considered at the first step. Let X be the current motion tube and
respectively A, B and C its top-left, top and left neighbours. Table 5.4.1 lists the different motion predictors available
at time instant t . In all our experiments on 352× 288 CIF sequences, a search area of 9× 9 pixels has been used.

Null predictor Spatial predictors Temporal predictors

Zero: [0, 0]T Top:
−→
dB
BR (t) Previous:

−→
dX
BR (t − 1)

Left:
−→
dC
BR (t) Extrapolation: 2 ·

−→
dX
BR (t − 1)−

−→
dX
BR (t − 2)

Median: med
(−→
dA
BR (t),

−→
dB
BR (t),

−→
dC
BR (t)

)
Peach:

−→
dC
BR (t) +

−→
dB
BR (t)−

−→
dA
BR (t)

Table 5.4.1: Set of spatio-temporal motion predictors used to initialize the search area

5.4.1.2 Search strategy and sub-pixellic motion estimation

Sub-pixellic motion estimation usually provides a better reconstruction quality [BDH99]. Consequently, half-pixellic and
quarter-pixellic positions lying around the best pixellic candidate are also evaluated. State of the art improvements are
observed: the PSNR of synthesized areas, is increased by 1 dB to 2 dB. On sequences showing slow moving textures (e.g.
Mobile), it may even be increased by 4 dB for some images. In addition, the overall sequence looks much better when
playing it, as texture displacements are much more smooth (figures 5.4.1b and 5.4.1c). Table 5.4.1a gives the average
PSNR of synthesized areas (namely, the SPSNR) for the first three GOPs of Mobile and Foreman CIF sequences.

Sequence ME accuracy SPSNR Gain
Full-pixel 29.90 dB -
Half-pixel 30.42 dB +0.52 dBForeman
Quarter-pixel 30.59 dB +0.70 dB
Full-pixel 23.37 dB -
Half-pixel 24.98 dB +1.62 dBMobile
Quarter-pixel 25.48 dB +2.11 dB

(a) Influence of the motion field accuracy on the SPSNR

(b) Mobile: full-pel motion es-
timation/compensation

(c) Mobile: quarter-pixel mo-
tion estimation/compensation

Figure 5.4.1: Sequences Mobile and Foreman: influence of the motion field accuracy

5.4.2 Causal and anti-causal motion estimation steps

Section 5.2.5.2 introduced the concept of causal and anti-causal scans for the motion estimation of spatially-successive
motion tubes. This section will show how considering both directions of connection does increase the quality of the
reconstructed images. To this end, a series of experiments has been performed on the usual set of six sequences, with all
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four motion modes activated. In the first set of experiments, the motion estimation is performed through a single causal
motion estimation step. Then, the second set of experiments successively performs an anti-causal and a causal motion
estimation steps.

(a) Causal: SPSNR = 25.71 dB, Rec. rate = 84.16% (b) Anticausal & causal: SPSNR = 25.85 dB, Rec. rate = 83.60%

Figure 5.4.2: Reconstruction of image I4 from sequence Bus: influence of the direction of the motion estimation

From figure 5.4.2, it appears that performing a motion estimation in both directions contribute to the regularization of the
motion field. Indeed, it uniformly captures the displacement of the background in sequence Bus, while the single-step
motion estimation introduces discrepancies in the very same area of the background. This phenomenon is easily explained:
due to the EPZS-like search strategy, the set of motion predictors, as any predictive filtering system, introduces a delay.
Any discontinuity in the motion field is then spread over several prediction steps, thus across several motion tubes. By
considering the correlation of the motion field into both causal and anti-causal directions, such phenomena are avoided
as the deformation and the displacement of any motion tube is very likely to be highly correlated with either its causal
and/or its anti-causal neighbours.
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Figure 5.4.3: Causal and anti-causal motion estimation steps: influence on the PSNRs and the reconstruction rate

From measurements shown in figure 5.4.3, however, it can be seen that the additional motion estimation step does not
greatly influence the objective quality of the reconstructed images. While the reconstruction rate is barely affected, the
PSNR of the reconstructed areas is still increased, in average, by 0.26 dB. More importantly, it appears that sequences
whose motion is complex, i.e. Bus and Football, are respectively improved by 0.52 dB and 0.59 dB: performing both
anti-causal and causal motion estimation steps is thus advised for such sequences.
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5.4.3 Spatio-temporal regularization of the motion tubes

While the accuracy of the displacements and the deformations of the motion tubes across time and space plays a key
role into the proposed representation, the overall spatio-temporal regularity is even more essential to obtain a coherent
and compact representation. Besides the search strategy which relies on both a predictive and a bi-directional approach,
some additional regularization mechanisms were introduced as well. In this connection, section 5.4.3.1 will briefly describe
a multigrid version of the motion estimation, and section 5.4.3.2 will dwell about the introduction of a rate-distortion
criterion. Both these mechanisms will greatly contribute to remove the discrepancies of the motion field and ease its
compaction. Their actual performances will be compared in section 5.4.3.3.

5.4.3.1 A multigrid approach to the regularization of motion tubes

In order to perform a multigrid motion estimation, motion tubes are organized into a hierarchical structure. Individual
motion tubes are localized at the bottom of this structure. With each additional level, individual motion tubes or available
groups of motion tubes are merged into even larger groups of motion tubes. A coarse-to-fine optimization process is
then applied to the structure. Figure 5.4.4 illustrates how this mechanism is applied to an initial square set of 16× 16
motion tubes. All of them are supposed to undergo simple translations. Eventually, additional relaxation steps can be
required to locally unleash the motion field smoothing constraint.

(a) Initial groups of mo-
tion tubes

v

(b) First level displacement

v

(c) Second level displacement

v

(d) Final motion tubes displacement

Figure 5.4.4: Multigrid estimation of the translation of a group of motion tubes

5.4.3.2 A rate-distortion approach to the regularization of motion tubes

Regularization is not only required to provide a coherent spatio-temporal motion information, but also help the estimation
process to output easy-to-encode motion parameters, hence guaranteeing the representation to be compact. The multigrid
approach, as it will be seen in next section, does improves the overall coherence of the representation. However, it does
not guarantees that estimated motion parameters are effectively easily compacted.
An alternative approach to the regularization would then be to take into account the motion bitrate during the estimation
process. In other words, this corresponds to a rate-distortion optimization of the motion parameters. A Lagrangian
matching criterion -see equation (3.7)- is used to evaluate each motion candidate:

ξRDO

(
T (t0) , T (t0)

)
= ξDist

(
T (t0) , T (t0)

)
+ λmotion

[
·R
(−→
dX
BR
∗
)

+ R (C )
]

(5.25)

where R
(−→
dX
BR
∗
)

is the bitrate associated to motion vector
−→
dX
BR
∗, and R (C ) is the bitrate associated to the motion

mode (top and left connections). As for the Lagrange multiplier λmotion, H.264/AVC’s typical values are being used. In
particular, they depend on the distortion criterion used to evaluate the matching candidates in the motion estimation
step, and

λmotion =
{ √

λmode if using SAE
λmode if using SSE (5.26)

where λmode is obtained from the input Quantization Parameter (QP):

λmode = 0.85× 2QP/3−4 (5.27)



5.4. A SIMPLE AND REGULARIZED MOTION ESTIMATION PROCESS 101

The regularization is achieved through the computation of R
(−→
dX
BR
∗
)

.
−→
dX
BR
∗ is first predicted from a one of the predictors

of table 5.4.1. Then, an entropy coding step is performed to estimate the bitrate R
(−→
dX
BR
∗
)

used to signal the predictor

index and transmit the motion residue
−→
dX
BR
∗ =
−→
dX
BR

pred +
−→
dX
BR

res. From the spatio-temporal nature of the predictors, the
motion parameters are consequently spatio-temporally regularized.

5.4.3.3 Performances of the regularization

a Setting up the experiments

In order to exhibit the regularization abilities of both multigrid and rate-distortion approaches, motion tubes have been
parametrized in such a way that spatio-temporal discrepancies are very likely to happen. In particular, their size have
been reduced from 16×16 down to 4×4 pixels. This will make the block matching motion estimator much more sensitive
to noise, hence much more likely to end up in local minima. In addition, the GOP length has been increased from 8 to
32 frames; the farther from the reference instant (i.e. the first image of the GOP), the less likely good matches are to
be found. To compensate for these settings, the search area has been increased from 9× 9 to 17× 17 pixels.

b Objective measurements

From figure 5.4.5, it clearly appears that both multigrid and rate-distortion regularization mechanisms both significantly
increase the reconstruction percentage. Among other clues, an increase in reconstruction percentage corresponds, in most
cases, to an increase in coherence and regularity. As could be expected, both multigrid and rate-distortion approaches
provide an increase in reconstruction rate to the cost of a reduction in PSNR. In this direction, the rate-distortion
regularization seems to perform a much better job: especially when a low QP (22) is used, the reduction in PSNR is
limited to -0.85 dB, for a increase of nearly 11% in reconstruction rate. The multigrid regularization, on the other hand,
decreases the PSNR by more than 4 dB (-4.16 dB at best), and only increases the reconstruction rate by 2.5%. Both
mechanisms, however, are not contradictory, and may be combined to further improve the regularization; this scenario,
however, has not been evaluated in practice. Further results can be found in section C.3.1 of appendix C.
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Figure 5.4.5: Regularization algorithms: average influence on the PSNR and the reconstruction rate

c Impact of the regularization on the reconstructed images: visual results

Besides its performances in terms of reconstruction rates and PSNR, figure 5.4.6 shows how much visually better images
are when the rate-distortion regularization is activated: nearly all the image is reconstructed, for a fairly nice result. In
particular, one can see how coherent the edges are; this is not the case for the multigrid regularization. Still, multigrid
regularization significantly improves the overall coherence, and outputs a motion field which is, visually, a lot less noisy
than the one produced by an non-regularized estimation.
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(a) Without regularization
SPSNR = 41.94 dB, Rec. rate = 68.12%

(b) Multigrid regularization
SPSNR = 40.63 dB, Rec. rate = 82.78%

(c) Rate-distortion regularization
SPSNR = 39.81 dB, Rec. rate = 93.45%

Figure 5.4.6: Visual impact of the regularization on the second image of sequence Foreman

d A focus on the rate-distortion mechanism and output motion bitrates

Controlling the Quantization Parameter (QP) of the rate-distortion regularization mechanism does not only influence the
overall coherence of the motion information, but also controls the final bitrate which will be allocated to transmit this
information. Figure 5.4.7 shows the evolution of both the PSNR of the reconstructed areas and the reconstruction rate
with several values of QP (0+, 22, 27, 32 and 37). When QP → 0+, no regularization is performed (λmotion = 0).
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Figure 5.4.7: Rate-distortion regularization: relationships between motion bitrate, PSNR and reconstruction rate

Here, the motion bitrates indicate the average amount of information to transmit the motion of the motion tubes per
frame; as could be expected, it is fairly high due to the small 4× 4 dimensions of the motion tubes, hence to their large
number. In figure 5.4.7a, a standard rate-distortion curve profile is observed: the higher the QP, the lower the motion
bitrate. As for figure 5.4.7b, it shows that the reconstruction rate is not generally increasing with the QP: beyond QP
27, the reconstruction rate is stable. Further results can be found in section C.3.2 of appendix C.

For some sequences (e.g.: Foreman), the reconstruction rate is slightly lowered when increasing the QP beyond 27: this
is explained by the fact that high QPs force some motion tubes to remain outside of the image whenever they disappear
(to this point, no mechanism is in charge of detecting such events). In terms of reconstruction, this is semantically better.
Above all, one should remember that, in a very similar way the QP is used to control the output bitrate in H.264/AVC,
one can trust the motion QP to control the overall compacity of the tube-based representation.
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5.5 Exhibiting motion tubes trajectories through appropriate motion predictors

Until now, the successive deformations of a motion tube were progressively estimated on a frame-by-frame basis. In terms
of GOPs, this corresponds to an predictive IPP structure: the current warping wk→0 of a motion tube X was initialized
from its predecessor wk−1→0, thus preventing X from behaving too much incoherently across time. Even so, such an
approach does not guarantee any temporal coherence on the long run; and motion tubes should be even more encouraged
to behave coherently across time. The motion estimation process has been subsequently improved, and:

• a temporally-hierarchical motion estimation process is used to further limit the temporal discrepancies of the
motion tubes (inspired from hierarchical B-frames GOP structures);

• a motion prediction mechanism is used to clearly exhibit the trajectory of the motion tubes.

5.5.1 Hierarchical motion estimation across a GOP

Instead of estimating and describing the successive deformations of a motion tube in a progressive fashion (figure 5.5.1a),
i.e. from one instant to the next, it is proposed to regularize its deformation over a GOP by processing the temporal
axis in a hierarchical fashion (figure 5.5.1b). The current displacement and deformation can now be predicted from two
reference instants tref0 and tref1 surrounding the current instant, such that tref0 < tref < tref1.

5.5.1.1 Hierarchical bi-prediction of the motion vectors

In order to enable the current motion vector
−→
dX
BR (tcur) to be predicted from

−→
dX
BR (tref0) and

−→
dX
BR (tref1), the temporal motion

predictors from table 5.4.1 are modified:

• predictor previous is generalized to a time-backwards prediction, and
−→
dX
BR

pred(tcur) =
−→
dX
BR (tref0);

• predictor next is added and provides a time-forwards prediction, such that
−→
dX
BR

pred(tcur) =
−→
dX
BR (tref1);

• predictor extrapolation is replaced by
−→
dX
BR

pred(tcur) = 1/2·
−→
dX
BR (tref0)+1/2·

−→
dX
BR (tref1): predictor interpolation.

Figure 5.5.1b illustrates the hierarchical prediction on a GOP of nine images. At first, vector
−→
dX
BR

pred(t8) is predicted
from previous predictor. In between t0 and t8, motion vectors are all predicted from interpolation predictor.

t0 t1 t2 t3 t4 t5 t6 t7 t8

te
m

po
ra

l l
ev

el
s

(a) Progressive structure

t0 t1 t2 t3 t4 t5 t6 t7 t8

te
m

po
ra

l l
ev

el
s

(b) Hierarchical structure

Figure 5.5.1: Progressive versus hierarchical motion prediction structures

In practice, the motion w0→8 between the extremities of the GOP is difficult to estimate directly from images I0 and I8.
Both progressive and hierarchical processes can then be combined to overcome this particular issue: the motion is first
crudely estimated through an IPP GOP, then refined through a hierarchical motion estimation step.

5.5.1.2 Progressive versus hierarchical motion estimation

In practice, it turns out that, even preceded by a progressive motion estimation step, the hierarchical motion estimation
handles with difficulty the displacements and the deformations of the motion tubes between non-consecutive time instants.
Compared to an estimation process void of any regularization mechanism, the hierarchical motion estimation still provides
some kind of regularization, but not as efficiently as previous regularization mechanisms do.
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In order to compare temporally-progressive and temporally-hierarchical approaches to motion estimation, the usual set
of six sequences has been processed through GOPs of nine images. The search area has been widened to 17 × 17
pixels to allow for the hierarchical motion estimation to catch larger motion, as it needs to estimate the motion between
temporally-distant images. In addition, both causal and anticausal motion estimation steps have been performed. The
motion QP was set to 22; very similar results were obtained for higher QPs. Finally, only the translational TMC mode
has been enabled for these experiments.
Figure 5.5.2 shows the influence of the GOP structure on the PSNR, the reconstruction rate and the motion cost.
Eventually, the hierarchical estimation worsens the estimation process: in its attempt to regularize the motion between
remote images, it settles for worse matches and slightly lowers the PSNR by 0.1 dB. On the other hand, the reconstruction
rate is slightly improved by 0.15%, which is not significant. Finally, the allocated motion bitrate is even higher when
compared to the progressive estimation and is increased by nearly 10%. In other words, the temporally hierarchical motion
estimation should not be used under such conditions. In an attempt to improve the hierarchical motion estimation, it
was proposed to increase the motion QP with increasing temporal levels, in a very similar way this is performed within
H.264/AVC. In practice, neither did this improve nor did this worsen the quality of the hierarchical motion estimation.
With variable-size motion tubes, however, hierarchical GOP structures proved to be more effective than progressive ones.
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Figure 5.5.2: Progressive versus hierarchical motion estimation along the temporal axis: compared performances

Visually, the hierarchical motion estimation handles the motion discontinuities with more difficulty than the progressive
estimation does. Yet, the global motion is more regularly captured. Unfortunately, both phenomena can only be perceived
when actually playing the reconstructed sequences; for this reason, there will not be any visual result in this section.

5.5.2 Temporal prediction of the motion tube trajectories

Previous regularization mechanisms, whether they were carried out by the estimation process or intrinsically provided by
the motion model, can be divided into two categories: spatial and temporal ones. So far, both directions of regularization
could be combined in a very limited way. However, it is only natural to expect from spatially-neighbouring motion
tubes to undergo similar displacements and deformations, but also for individual motion tubes to undergo a trajectory
as consistent as possible. This section will introduce a temporal prediction mechanism which will exhort motion tubes to
undergo trajectories as coherent as possible, while leaving room for some additional spatial regularity constraints.

5.5.2.1 Towards a motion prediction scheme exhibiting the trajectory of the motion tubes

It is now proposed an alternative prediction structure which takes into account the overall trajectory of the motion tubes.
The motion prediction is now built in two steps:

1. according to the GOP structure, (resp.) progressive or hierarchical, the trajectory of the current motion tube X
first temporally predicted from (resp.) extrapolation or interpolation predictors;

2. the temporal prediction is then refined using any of the available predictors from table 5.4.1.
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Figure 5.5.3 shows this prediction scheme on a hierarchical GOP structure. The overall motion vector is now given by
−→
dX
BR (t) = T̃X(t)︸︷︷︸

predicted trajectory

+
−−−→
∆dX

BR
pred(t)︸ ︷︷ ︸

spatial prediction

+
−→
dX
BR

res(t) (5.28)

where T̃X(t) is the trajectory prediction,
−−−→
∆dX

BR
pred(t) is the prediction refinement, and

−→
dX
BR

res(t) is the motion residue.
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Figure 5.5.3: A motion vector prediction mechanism exhibiting the trajectories of the motion tubes

5.5.2.2 Temporal rate-distortion regularization of the trajectory

In practice, it turns out that exhibiting the trajectory within the prediction process does not improve the representation.
Yet, it does not worsen the estimation quality: in average, neither the PSNRs nor the reconstruction rate are affected.
The motion cost, however, is increased by nearly 8%. The GOP structure does not affect these results. For the record,
the search area was set to 9 × 9 pixels progressive GOPs, and 17 × 17 pixels for hierarchical GOPs, and all motion
modes were enabled. Finally, the motion QP was set to 22; though very similar results were obtained for higher QPs.
Figure 5.5.4 shows how the trajectory prediction impacts the PSNR, the reconstruction rate and the motion cost.
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Figure 5.5.4: Progressive versus hierarchical motion estimation along the temporal axis: compared performances

Visual results, similarly, do not show any significant differences, and are not subject to any particular interpretation. In
conclusion, the trajectory prediction, in its current state, is not especially advised. However, applied on variable size
motion tubes (they are introduced in next section), the temporal prediction proved to be quite efficient when it comes to
predict the hierarchical structure, provided that a hierarchical GOP structure is used.

5.6 Content-adaptive variable size motion tubes

While block-based representations proved to be a simple and efficient way to partition image sequences from a compression
perspective, they often suffer from their inability to adapt to the geometry of the spatial contents. Consequently, several
still image and video compression schemes using variable block size have also been proposed, including the LAR still
image coder [DBBR07] and the ITU-T H.264/AVC video compression standard.
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Until now, motion tubes were initialized from a regular partition of the reference image into fixed-size blocks. However,
areas where the motion field is uniform may be favourably represented by motion tubes of large dimensions. On the
other hand, areas where the motion field is rapidly varying may be much better handle through numerous motion tubes
of small spatial dimensions. As a consequence, it is important to adapt their size and shape (square, rectangular) to the
images contents, in order to reach an optimal tradeoff between partitioning accuracy and amount of motion information.
To this end, it is now proposed to allow the motion tubes to be split into sub-tubes. Each of these will then be able
to undergoing individual displacements and deformations. A hierarchical structure, optimized though a rate-distortion
mechanism, will then be provided; thus ensuring that the size of the motion tubes are fit to the images contents, while
limiting the increase in motion information bitrate.

5.6.1 A hierarchical structure for the motion tubes

5.6.1.1 A set of partitioning operators

In a very similar way motion tubes were processed by the multigrid regularization, a pyramid of motion tubes is built.
Let X0 be a top-level motion tube of dimensions 32 × 32pixels. May this be favourable, X0 can be split into several
sub-tubes, according to three partitioning patterns:

• with N (no) split: X0 is kept still;
• with H (horizontal) split: X0 is split into two 32× 16 rectangular sub-tubes X∗,0 (top) and X∗,1 (bottom);
• with V (vertical) split: X0 is split into two 16× 32 rectangular sub-tubes X0,∗ (left) and X1,∗ (right);
• with HV (horizontal & vertical) split: X0 is split into four 16×16 square sub-tubes X0,0 (top-left), X0,1 (top-right),

X1,0 (bottom-left) and X1,1 (bottom-right).

The process can then be recursively iterated for HV partitions. For instance, X0,0, X0,1, X1,0 and X1,1 can be further split
into 16× 8, 8× 16 and 8× 8 sub-sub-tubes, and so on. . . The partition is then simply described by the corresponding
set of successive splitting operations.

5.6.1.2 A bottom-up hierarchical motion estimation

Numerous approaches can be used to optimize a hierarchical structure. Here, the bottom-up approach is a straightforward
candidate, as it allows for the structure to be parsed in a simple way, with a limited use of dynamic programming techniques.
Instead of splitting the motion tubes into sub-tubes, it starts by evaluating minimum-sized sub-tubes (e.g. 4 × 4 sub-
tubes), and then recursively evaluates higher levels by merging current sub-tubes into larger sub-tubes, following the
available partitioning patterns. The partitioning patterns, and the estimation process are illustrated in figure 5.6.1.

(a) Bottom level sub-tubes

HV

H

V

(b) Second level partition

HV V

H

(c) Third level partition

Figure 5.6.1: Successive steps of the bottom-up hierarchical motion estimation

5.6.2 Rate-distortion optimization of the hierarchical structure of motion tubes

While increasing the number of motion tubes may significantly improve the reconstruction, it also increases the amount
of motion information to be transmitted, as there are as many motion vectors to transmit as there are motion tubes or
sub-tubes. The partitioning information also needs to be transmitted, hence to be taken into account. In an eye to
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compression, it is critical for the hierarchical structure to provide an optimal tradeoff between representation cost and
reconstruction quality. Once again, it is proposed to optimize the structure through a rate-distortion approach.
To this end, the Lagrangian is modified and now incorporates the cost of the partitioning information. Let us now recall the
motion tube X0 and its possible children X∗,0 (top), X∗,1 (bottom), X0,∗ (left), X1,∗ (right), X0,0 (top-left), X0,1 (top-right),
X1,0 (bottom-left) and X1,1 (bottom-right). The optimal partitioning pattern P∗ for X0, from a rate-distortion perspective,
is given by

P∗0 = arg min
P0

J(P0,X0) (5.29)

where J
(
P0,X0

)
is recursively defined as:

J
(
P,X0

)
=



ξRDO
(

X0
)

+ λmotion · R (N) if P = N
1∑
i=0

J
(
N,Xi,∗)+ λmotion · R (H) if P = H

1∑
i=0

J
(
N,X∗,i

)
+ λmotion · R (V) if P = V

1∑
i=0

1∑
j=0

J
(

arg min
Pi,j

J(Pi,j ,Xi,j ),Xi,j

)
+ λmotion · R (HV) if P = HV

(5.30)

where ξRDO (X) is short notation for the classic Lagrangian defined in equation (5.25).

5.6.3 Performances of the variable size motion tubes

5.6.3.1 Setting up the experiments

Once again, the usual set of six sequences have been processed through motion tubes of various dimensions. A first
series of four experiments uses fixed-sized motion tubes; successively 4× 4, 8× 8, 16× 16 and 32× 32. Then, a second
series of experiments employed a hierarchical structure of motion tubes to provide variable-size motion tubes. In each
case, all motion modes were enabled, along with the LAOTMC. The search range was set to 9 by 9 pixels; a progressive
GOP structure was used, and the temporal prediction was disabled.

5.6.3.2 Influence of the size of the motion tubes
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Figure 5.6.2: Influence of the spatial dimensions of the motion tubes: a tradeoff between size and bitrate

How much does the size effectively matters? Preliminary evaluations showed that the spatial dimensions of the motion
tubes has a large impact on the provided quality and reconstruction rate, and especially on the motion bitrate. Indeed,
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the spatial resolution of the motion tubes is highly correlated to the resolution of the motion field. The higher the
resolution, the more accurate the motion information. As can be seen from figure 5.6.2, increasing the motion tubes size
from 4 × 4 dramatically decreases the PSNR by 7.5 dB. In the meantime, however, the motion bitrate drops by more
than 97%. Obviously, both configurations are a quite extreme and should not be considered as practical settings. Still,
they illustrate how much important it is to appropriately select the spatial dimensions of the motion tubes. Note that
the reconstruction rate is far less affected by the dimensions of the motion tubes.

5.6.3.3 How the hierarchical partition provides a tradeoff between spatial resolution and bitrate

Figure 5.6.3 plots both the PSNR of the reconstructed areas and the reconstruction rate against the motion bitrate.
The curve represents the best performances brought by fixed size motion tubes. The square and the triangle marks,
on the other hand, correspond to the performances brought by the hierarchical structure. The square corresponds to a
hierarchical structure which allows for motion tubes whose dimensions range from 8 × 8 to 16 × 16 pixels. As for the
triangle, it corresponds to a hierarchical structure which allows for motion tubes range from 4× 4 to 32× 32 pixels.
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Figure 5.6.3: Variable-size motion tubes: relationships between motion bitrate, PSNR and reconstruction rate

As can be seen, they both provide an increase in terms of PSNR, for a fixed bitrate. Alternatively, they provide a much
more compact motion information for a fixed PSNR. In terms of reconstruction rate, both structures fall onto the curve
of the fixed-sized motion tubes: the hierarchical structure does not improve nor does worsen the reconstruction rate.
Corresponding PSNR, reconstruction rate and motion bitrate values can be found in figure 5.6.2. Further results can be
found in section C.4 of appendix C.

5.6.3.4 Visual impact on the reconstructed images

As can be seen in figure 5.6.4, the hierarchical structure is nicely optimized such that large motion tubes are used to
represent uniformly moving areas. In sequence Foreman, this mainly corresponds to the background. By doing this, it
saves a large part of the motion bitrate to represent more complex motions in a more accurate way. Areas where the
motion is either complex or discontinuous are split into smaller motion tubes; here, these are mainly found on the face
of Foreman, but also on the boundaries of the images wherein the motion field is also discontinuous as it ends. Also,
the ability to identify uniformly moving areas helps with the regularization of their motion.
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(a) Reconstruction of I2 using 8×8 motion tubes
SPSNR = 36.55 dB, Rec. rate = 94.31%

(b) Reconstruction of I2 using a hierarchial
structure of motion tubes (8× 8 to 16× 16)
SPSNR = 36.24 dB, Rec. rate = 94.81%

(c) Reconstruction of I2 using 16 × 16 motion
tubes
SPSNR = 33.96 dB, Rec. rate = 95.44%

(d) Deformed 8× 8 motion tubes on Î2 (e) Deformed variable-size motion tubes on Î2 (f ) Deformed 16× 16 motion tubes on Î2

Figure 5.6.4: Variable size motion tubes: influence on the synthesized images for sequence Foreman

5.7 Transmitting the motion parameters: a focus on coding mechanisms

The interest of a rate-distortion approach to the motion estimation of the motion tubes is twofold: it is a simple and very
effective way to regularize the motion field (both in time and space); in addition, the provided QP allows the user to
control the bitrate of the output motion information. Along with an efficient motion coding scheme, it provides a low-cost
representation of the deformations of the motion tubes. Most of the results showed in previous sections included the
bitrate of the motion information; yet it was not detailed how exactly was the motion information entropy coded.

This section will detail the different natures of the motion information, along with corresponding coding schemes. As
the deformations are described by several types of information, the coding process needs to be adapted to each of its
elements. The whole coding process is strongly inspired from H.264/AVC’s entropy coding scheme which was reviewed
in section 3.3.2: it consists of a CABAC entropy coder (see section 3.3.2.2) several coding contexts, each of which being
associated to a specific motion information.

5.7.1 Overall structure of the motion information and corresponding bitrates

Whichever the motion mode used to describe the deformation of a motion tube, a single motion vector needs to be
transmitted for each time instant. As seen in section 5.5.2.1, this motion vector is signalled through several piece of
information. In the end, the nature of the motion information is fourfold:

1. the partitioning information describing, for each time instant, how motion tubes may be split into sub-tubes;
2. the connection flags indicating which motion tubes are connected to each other; in other words, the motion modes;
3. the prediction mode used to generate the predicted motion vector;
4. and finally, the motion residual information, i.e. the difference between the predicted and the actual motion vectors.
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5.7.1.1 The partitioning information

To each partitioning mode (None, H, V and HV) is associated a binary symbol, following a Variable Length Code (VLC).
Corresponding symbols are expressed by one, two or three bins. The latter are then further entropy coded using CABAC:
to each bin is associated a particular CABAC context (A, B or C), as each of the three bins may follow a specific distribution
law. Figure 5.7.1a shows the binary tree used to binarize the symbols, while table 5.7.1b shows corresponding symbols.
Note that the partition is also temporally predicted: from the partition of the previously processed time instant, it is only
transmitted additional partitioning flags which indicate whether or not to further partition the motion tube.

None

HV

VH

0 1

0 1

0 1

(a) VLC tree

Partitioning mode P None H V HV CABAC context
1st bin 0 1 1 1 A
2nd bin - 0 0 1 B
3rd bin - 0 1 - C
Symbol 0 100 101 11 -

(b) Partitioning symbols input to the CABAC encoder

Figure 5.7.1: Partitioning information: VLC binarization and associated CABAC contexts

5.7.1.2 Motion modes and connection flags

Motion modes are signalled through top and left connection flags (CT and CL). As connection flags already consist in a
series of binary symbols, they are directly entropy coded using appropriate context models. The latter depends on the
value of the connection flags of the motion tube at previous processing instant.

5.7.1.3 Spatial and temporal motion predictors

In the end, only two different motion predictors S̃0 and S̃1 are used to perform the entropy coding operation. For the
TMC motion modes, both top and left predictors are advised. For OTMC motion modes, the temporal predictor is
advised, the other one being respectively the median, the top and the left predictors for full, top and left OTMC
modes. A binary flag is used to signal which of the two predictors needs to be used. Whenever both predictors are equal,
however, no flag needs to be transmitted. In addition, the temporal prediction mode may also weight both contributions,
which, again, avoids the additional prediction binary flag.

5.7.1.4 Residual motion information: an H.264/AVC-like entropy coder

Previous information allowed the motion model to retrieve the motion field from various information, including partitioning
symbols, connection flags and prediction modes. Now remain the motion residues

−→
dres, which also need to be sent so

that the exact motion vectors can be retrieved at the decoder. It is proposed to encode the residual motion information
exactly as it is done by H.264/AVC.

At first, a single binary flag is sent to signal whether the residual motion vector is or is not null. The flag is entropy
coded with CABAC; corresponding coding context depends on the sum of the bottom-right motion vectors of top and
left neighbouring motion tubes B and C (respectively

−→
dB

BR and
−→
dC

BR If null, no more information is transmitted; else,
residual amplitudes along directions x and y are transmitted: the sign of

−→
dres is transmitted as a single bit. Then,

its quarter-pixellic amplitude
−→
dres is first binarized using exponential Golomb-Rice VLCs; output bits are then further

entropy coded using CABAC.

5.7.2 Building the motion binary bitstream

In the end, R (CW (W)), the overall bitrate used by MT ’s motion information, is then obtained by summing individual
bitrates corresponding to each type of information: partitioning, connection, prediction, and residual bitrates. Over a
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whole GOP of GS images, MT ’s overall motion coding cost is then given by

R (CW (W)) =
GS−1∑
i=0

R (CW (wi→i+1))

=
GS−1∑
i=0

[
R (P) + R

(
CT,i
)

+ R
(
CL,i
)

+
(
1− δS̃0,S̃1

)
· R
(
S̃0, S̃1

)
+ R

(−−→
dres,i

)]
(5.31)

where δa,b is the Kronecker delta (δa,b = 1 if a = b; otherwise, δa,b = 0). The motion binary bitstream is simply
obtained by concatenating all these information. Figure 5.7.2 illustrates the repartition of the motion bitrate between
all these information for the first three GOPs of sequence Foreman when QPs 22 and 37 are used. All motion modes
have been enabled, and a hierarchical structure is used to handle motion tubes whose size range from 8× 8 to 16× 16
pixels. As it may be expected, the motion residues represent the largest part of the information. As for the partitioning
information, it does not seem to be much affected by the motion QP; at low bitrates, it is more efficient to preserve the
partition and reduce the amount of information used by the residues, instead of the other way round.

0 kbits  1 kbits  2 kbits  3 kbits  4 kbits  5 kbits  6 kbits  7 kbits  8 kbits  9 kbits  10 kbits 

QP 22 

QP 37  Par55on 

Connec5ons 

Predic5ons 

Residues 

Figure 5.7.2: Repartition of the motion bitrate into the different types of information

As the motion information of neighbouring motion tubes are interdependent, all the motion parameters needs to be sent
to the decoder, even if a single motion tube needs to be decoded. This may prove to be a problem when, as will be seen
in chapter 7, some of the motion tubes will need to be removed as they do not correspond to a spatio-temporal area of
the sequence which cannot be handled through the use of motion tubes. In such cases, the prediction mechanism will be
altered, such that it does not involve the disabled motion tubes anymore.

5.8 Conclusion

This chapter provided an hybrid motion model to the motion tubes, in order to describe their displacements and deformation
across time. From chapters 2 and 3, geometrical models were identified as a simple and effective approach to the
representation of the motion field. From a compression perspective, it was also required for the motion model to be
relatively low-computational, and to involve as few parameters as possible. To match all these requirements, a modified
version of the SOBMC was introduced, and describes the deformation of the motion tubes through following modes:

• a disconnected model (Tube Motion Compensation), describing translational motions;
• a connected model (Overlapped Tube Motion Compensation), whose abilities lie in between OBMC and CGI;
• intermediate left and right OTMC modes, connecting the motion tubes into a single direction.

Hybridizing these four models proved to be quite effective and provided great improvements in comparison to a simple
translational motion model. But, most importantly, a set of regularization mechanisms were provided to guide the
estimation so that it outputs a coherent spatio-temporal motion information and prevents from motion discrepancies to
appear. Most often, though, these mechanisms would improve a given feature, but eventually decrease some other feature.
Until now, five main criteria have been used to assess the objective and subjective quality of the reconstructed images:

1. the PSNR of the reconstructed areas;
2. the reconstruction rate: percentage of the images which have been synthesized;
3. the spatial regularity of the motion information;
4. the temporal regularity of the motion information;
5. and finally, the compactness of the representation (the motion bitrate).
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(a) LAOTMC mechanism

0 

1 

2 

3 

4 

5 

Reconstruc1on 
PSNR 

Reconstruc1on 
rate 

Spa1al 
regularity 

Temporal 
regularity 

Mo1on bitrate 

(b) EPZS-like search strategy
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(c) Rate-distortion optimization
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(d) Causal & anticausal estimation directions
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(e) Temporal prediction mechanisms
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(f ) Variable-size motion tubes

Figure 5.8.1: A shallow representation of the abilities of the different mechanisms introduced within this chapter

Figure 5.8.1 summarizes the impact that provided regularization mechanisms have on each of these for criteria. They are
graded on a scale from 0 to 5, where grade 3 corresponds to no impact at all. Grades shorter than 3 hence correspond
to a worsening impact, while grades higher than 3 correspond to an improving impact. According to the targeted use and
to the sequences, following charts may be used to select which mechanism should or should not be used.
Still, it can be seen from synthesized images that motion tubes are not able to represent the whole images: their
reconstruction is scattered with numerous holes (i.e. unpredicted areas). Also, there is no way to control whether a
motion tube should be used or not, whichever its abilities to represent the corresponding spatio-temporal area. Chapter
6 will provide additional techniques dedicated to the completion of the reconstructed images, while chapter 7 will discuss
the quality assessment of the motion tubes, such that those unable to provide good enough synthesized textures are
removed from their family.



Chapter 6

Improving synthesized textures using motion
tubes

Building on the motion model provided in chapter 5, image sequences can now be partially represented from a set
of motion tubes evolving across time and space. Synthesized images, however, suffer from an obvious phenomenon:
unpredicted areas introduce a large number of holes in the reconstructed images. Two scenarios can be easily

distinguished: small and large unpredicted areas. As capable is the motion model, some complex deformations may not
be appropriately represented, thus introducing a drift in the motion field. As a consequence, it scatters the reconstruction
with relatively small holes, lying in between several reconstructed areas which should have been kept connected. On the
other hand, larger holes are often synonymous with a lack of motion tubes: whenever a piece of texture is unavailable
at the reference instant, it cannot be tracked across the GOP as it is not hold by any motion tube.
Another problem is the crudeness of the current textural model. In chapter 5, the textural information T was only sourced
from the reference image I0, and kept still across the whole GOP. Such a static textural model cannot reflect the changes
undergone by the textural information across time, which include resolution and illumination changes. Not only may this
introduce resolution losses and illumination mismatches, but it may also bias the motion estimation.
Whichever way, all these limitations dramatically reduce the quality of the synthesized images. This chapter will be
dedicated to these issues, and will propose various solutions. Section 6.1 will first precisely identify the artefacts induced
by the representation. Then, section 6.2 will introduce an intra-tube mechanism which enables the textural information to
evolve across time: B-tubes. Next section 6.3 will investigate how the representation can be improved by using several
families of motion tubes, and will define the notion of B-families of motion tubes. Later, section 6.4 will provide a set of
low-computational inpainting algorithms which will be used to fill remaining holes in the reconstructed images. Finally,
section 6.5 will conclude the chapter.

6.1 Limits of the tube-based representation

Despite all the efforts put into the construction of a simple but capable and effective motion model for the motion tubes,
previous chapter highlighted how much synthesized images are scattered with numerous unpredicted areas. Even the
smallest ones critically affect the overall perception of the images: the eye is systematically attracted towards these
regions. Not only does this make difficult to visually assess the quality of the reconstruction, but it also prevents the
motion tubes from being used in practice. Section 6.1.1 will further investigate these issues. The inability to handle
texture changes significantly reduces the fidelity of the representation, and may even prevent motion tubes from being
tracked properly. Section 6.1.2 will further investigate how it actually impacts the images.

6.1.1 Incomplete reconstruction of the image sequences

Let us start with a simple observation: figure 6.1.1 shows how much synthesized images are scattered with numerous
unpredicted areas, or holes. Not only reconstructed images are unusable, but these holes also complicate both objective
and subjective quality assessment. From an objective perspective, this forced us, in previous chapter, to consider both the
PSNR of the reconstructed areas and the reconstruction rate to numerically assess the images quality. From a subjective
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point of view, unpredicted areas have a strong influence on the viewer: the eyes are inevitably attracted towards the
boundaries between synthesized and non-synthesized areas, as the HVS pays great attention to edges. The visual
masking effect, in particular, is mostly responsible for the large importance attached to these boundary areas.
Also, it appears from figure 6.1.1 that the holes dimensions can range from only a few pixels to large image areas.
Following this observation, it is proposed to distinguish two scenarios:

• any patch of texture which is unavailable at the reference instant cannot be registered by any motion tube. May
this happen, it is most likely to be responsible for the largest holes. As a consequence, it is necessary to initialize
additional motion tubes at appropriate time instants and locations to account for the missing spatio-temporal
information;

• whenever the provided motion model describes the displacements or the deformations too crudely, it is very likely
for local mismatches to occur. In particular, this can be responsible for most small holes, lying in between two
patches of textures which have been dragged apart, but should not have. In such case, one can make the assumption
that the missing textural information is highly correlated to the textural information it is surrounded by. Hence,
texture and/or structure synthesis algorithms are very indicated as ways to fill these small holes.

time

t0

t1

t
t8

2

Motion field
mismatches

Missing
motion tubes

Figure 6.1.1: Holes in the synthesized images: missing tubes and deformation mismatches

In order to provide a complete spatio-temporal representation of the image sequences, it is proposed to initialize several
families of motion tubes at different time instants to describe a single GOP. Such a mechanism is introduced in section
6.3. This way, textures which are occulted at a given reference instant will be registered by another family of motion
tubes initialized at another reference instant. Remaining holes will be filled by an inpainting mechanism introduced in
section 6.4.

6.1.2 Time-evolving textural information

Until now, it has been assumed that the textural information is persistent throughout time. Consequently, chapter 5 made
the assumption that motion tubes simply undergo a geometrical deformation in time and space. As a consequence, their
textural information was expected to be static along their whole lifespan L.

∀t ∈ L, T (t) = T (6.1)

In practice, this assumption proves to be inaccurate: due to illumination changes, the overall aspect of a piece of texture
can greatly change. In addition, any deformation requiring the reference patch of texture to be stretched will result in
resolution losses: synthesized textures will be blurred. Figure 6.1.2 illustrates both resolution losses and illumination
changes. In figure 6.1.2a, a static texture is projected in all three instants: provided synthesis quality is rather poor. On
the other hand, figure 6.1.2b shows that whenever the textural information is appropriately evolving throughout time, the
synthesized images are much more accurate.
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Figure 6.1.2: Time-static versus time-evolving textural information

Whereas a large number of motion tubes can be synthesized from static textures, some others will require the textural
information to be changed across time. Which mechanisms should be proposed to provide a time-evolving textural
information? In this connection, it is essential to remember some of our initial requirements: a low amount of information
to transmit, and a low computational complexity. As a first step towards a time-evolving representation of the textural
information of the motion tubes, section 6.2 will introduce a multi-prediction mechanism in charge of computing the
texture T from a weighted sum of several reference textures.

6.2 Towards a time-evolving representation of the textures for the motion tubes

The evolution of a patch of texture across time is not only defined by its displacement and deformation, but also by
its intrinsic textural changes. Numerous ways to represent the textures have been provided throughout the years; in
particular, model-based approaches (see section 1.1.2.1) proved to be quite efficient when it comes to parametrize their
changes, and could easily improve the motion tubes. However, this thesis does not focus on intra-coding mechanisms
and did not thoroughly investigate this potential improvement axis. Still, it is important for the textural changes to be
accounted for, even crudely.
As an intermediate solution towards an accurate time-evolving representation of the textures, it is proposed to source
the textural information from several reference images. In such case, the final texture results from a weighted average of
several temporally-aligned patches of textures. Motion tubes benefiting from several texture reference instants are called
bi-predictive tubes, or shortly, B-tubes. In its simplest version, the mechanism only considers two reference instants,
hence its name.

6.2.1 Bi-predictive motion tubes

Let {I0, . . . , I8} be a GOP of GS = 9 consecutive images. Until now, a single reference image Iref (I0 in chapter 5) was
expected to be available at the decoder side. From now on, it is assumed that two reference images Iref0 and Iref1 are
available. Typically, these can be located at the extremities of the GOP, such that Iref0 = I0 and Iref1 = I8.

6.2.1.1 Sourcing the textural information from two reference images

It is first assumed that the displacement and the deformation wref0→ref1 of a motion tube X between both reference instants
is known. As a consequence, X’s texture T X(t) can be synthesized at any time instant from the GOP by a weighting
average of its textures at both reference instants. Thus, ∀t ∈ [t0, t8],

T X(t) = It (ΩX (t)) =


T X(tref0) = Iref0 (ΩX (tref0)) if t = tref0

T X(tref1) = Iref1 (ΩX (tref1)) if t = tref1
αref0(t) · T X(tref0) + αref1(t) · T X(tref1)

αref0(t) + αref1(t)
elsewhere

(6.2)
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where αref0(t) = 8 − |t − tref0| and αref1(t) = 8 − |t − tref1| weights both textural contributions depending on the
distance between current and reference instants. The farther the reference instant tref is from the current instant t (inside
the GOP), the shorter αref(t) is. Using this linearly interpolated textural information, motion tubes may then be able
to sustain smooth texture changes, thus improving the overall reconstruction quality. This mechanism is similar to the
weighted prediction provided by H.264/AVC video compression standard.

6.2.1.2 A multi-referenced textural information

As explained previously, B-tubes source their textural information from more than one reference instants. In this way,
existing AS video compression schemes similarly use several reference instants to synthesize the images [TZ94, WXCM99,
Cam04, LG08]; they have been briefly reviewed in section 3.4.2.1. In particular, works from Cammas [Cam04] and Le Guen
[LG08] strongly inspired the bi-predictive mechanism provided by the B-tubes.

All these video compression schemes, however, suffer from resolution losses, as they use a single reference instant in
the end: textures from the many different reference instants are first projected on a main reference instant; the different
contributions are then merged and projected into the current instant to obtain the final synthesized image. As textures
undergo two successive motion compensations, projected textures often suffer from resolution losses. Halfway through a
GOP {I0, . . . , I8}, for instance, [Cam04] predicts the texture T (t4) of image I4 from both images I0 and I8. I8’s texture is
first projected in t0 onto w8→0(T (t8)); both I0 and w8→0(T (t8))’s textures are then projected in t4, and

T (t4) = w0→4

(
1/2 · T (t0) + 1/2 · w8→0(T (t8))

)
(6.3)

Motion tubes, however, do not suffer from this problem, as there is no main reference instant. Textures are motion
compensated a single time only, which reduces the risks of resolution losses. Indeed, it was seen in chapter 5 that motion
tubes warping operators could be easily composed and inverted, such that any image from any instant can be directly
motion compensated at any other time instant. From this perspective, our approach is similar to motion compensated
lifting approaches (i.e. MCTF). Using motion tubes, equation (6.3) is now simplified into

T (t4) = 1/2 · w0→4 (T (t0)) + 1/2 · w8→4 (T (t8))

= 1/2 · w0→4

(
I0 (ΩMT (t0))

)
+ 1/2 · w8→4

(
I8 (ΩMT (t8))

)
(6.4)

6.2.2 Hierarchical bi-predictive motion tubes

Until now, it has been assumed that one or two reference images were available on the decoder side. In other words,
an intra-coding mechanism needs to be set up aside from the tube-based motion compensation mechanism. It is now
assumed that this intra-coding mechanism also sends residual information which enables the tube-based representation
to be completed and corrected.

In section 5.5.1 of previous chapter, a hierarchical motion bi-prediction mechanism was provided and relied on a hierarchical
GOP structure. It is proposed to apply the exact same mechanism to the texture synthesis. For each time instant and
corresponding temporal layer, reference textures are sourced from neighbouring instants in the previous temporal layers.
T (t4) is now predicted from T (t0) and T (t8), such that

T (t4) = 1/2 · w0→4 (T (t0)) + 1/2 · w8→4 (T (t8)) (6.5)

Then, (resp.) T (t2) and T (t6) are similarly predicted from (resp.) (T (t0), T (t4)) and (T (t4), T (t8)):{
T (t2) = 1/2 · w0→2 (T (t0)) + 1/2 · w4→2 (T (t4))
T (t6) = 1/2 · w4→6 (T (t4)) + 1/2 · w8→6 (T (t8))

(6.6)

Doing this, the textural information changes are even more precisely accounted by the motion tubes, and one can expect
a significant increase in reconstruction quality. Next section will confirm whether or not both simple and/or hierarchical
B-tubes actually improve synthesized images.
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6.2.3 Tubes versus B-tubes: compared performances

6.2.3.1 Setting up the experiments

In order to evaluate hypothetical improvements B-tubes can bring, three series of experiments have been performed. For
each of them, only the translational TMC motion mode was enabled to describe the displacements of 16 × 16 motion
tubes. A hierarchical GOP structure was used in order to easily put in place B-tubes. In order to guarantee for the
motion information to be regular enough, the search area has been enlarged to 17 by 17 pixels, and both causal and
anticausal motion estimation steps have been performed.

In the first series of experiments, no bi-prediction was used;. In the second series of experiments, then, a simple bi-
prediction mechanism has been activated, such that both reference images are located at the extremities of the GOP:
Iref0 = I0 and Iref1 = I8. Finally, a third series of experiments performed a hierarchical bi-prediction as was earlier
explained in section 6.2.2.

6.2.3.2 Impact on the PSNR, the reconstruction rate and the motion bitrate

As can be seen from figure 6.2.1, B-tubes actually provide a significant increase in PSNR. While the simple bi-prediction
mechanism is responsible for an increase of 1.08 dB, the hierarchical bi-prediction even more increases the PSNR by
3,08 dB. The reconstruction rate and the motion cost are barely affected by the bi-prediction. The reconstruction rate is
decreased, at worst, by 1.22%, while the motion cost is increased by 2.32% with the simple bi-prediction, and decreased
by 2.61% with its hierarchical variant. Provided that the intra-coding mechanism efficiently compacts the extra textural
information, B-tubes seem to be source of great improvements in terms of synthesized quality.
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Figure 6.2.1: B-tubes: a conclusive improvement in reconstruction quality

6.2.3.3 Visual results

Figure 6.2.2 shows how much the bi-prediction improves the quality of reconstruction. Foreman’s eyes, in particular,
are much more precisely rendered when hierarchical B-tubes are being used. More generally, the overall blurring effect
which can be observed on Foreman’s face is drastically reduced, and blocking artefacts as well. This confirms what
objective measurements previously suggested, and further validates the concept of B-tubes. Further results can be found
in section D.1 of appendix D.
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(a) No bi-prediction (b) Bi-prediction (c) Hierarchical bi-prediction

Figure 6.2.2: Tubes versus B-tubes: visual results

6.3 B-families of motion tubes: how to combine several families of motion tubes

At this point, motion tubes mainly suffer from their inability to provide a complete reconstruction of the images. Small
and large holes were previously distinguished; this section will focus on the first ones. Large reconstruction holes are
especially problematic, as they generally correspond to textural areas which are unavailable at the reference instant.
They can be the consequence of occlusions, camera motions, etc. As a solution, it is proposed to include additional
motion tubes to describe these areas. Obviously, these motion tubes need to be instantiated from a frame which actually
contains the textures missing to the spatio-temporal representation. This section will show how additional families of
motion tubes may greatly improve the representation, and introduce the concept of B-families of motion tubes, as an
inter-tube bi-prediction mechanism.

6.3.1 B-families of motion tubes: temporally overlapping the motion tubes

Often, the duration of a GOP (0.26 seconds for a GOP of 8 images at 30 frames per second) is negligible in comparison to
the average lifespan of an object from the scene. Provided that the background itself is not undergoing massive changes
during such a short period of time, it is very likely that the largest part of the textural information can be found either
in the first image or in the last image of the GOP. From a motion tube perspective, this means that describing a GOP
through two families of motion tubes may provide most of the spatio-temporal information needed to fully synthesize the
sequence. A first family is instantiated on the first image of the GOP and tracked forwards towards its end, while a
second family is instantiated on the last image of the GOP and tracked backwards towards its start. While any couple
of frames taken from the GOP could be used to describe its spatio-temporal contents, it is quite intuitive to locate them
as far from each other as possible: in other words, at the extremities of the GOP.

6.3.1.1 Instantiating motion tubes at the extremities of each GOP

As a first step towards an adaptive instantiation mechanism for the motion tubes, it is proposed to describe the spatio-
temporal information with two families of motion tubes. ITU-T H.264/AVC and its predecessors defined the concept of
B-frames: frames whose texture is predicted using two reference instants (in most cases, a previous frame and a future
frame). Following this terminology, we introduce here the concept of B-families of motion tubes: a spatio-temporal
structure that relies on two families of motion tubes to represent a GOP {I0, . . . , I8}. A first family FMT (t0) is
referenced at time instant t0 and tracked from t0 to t8. A second family FMT (t8) is referenced at time instant t8 and
tracked from t8 to t0. The couple 0FMT (t0, t8) = {FMT (t0) ,FMT (t8)} is called a B-family of motion tubes.
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a Synthesing images from two families of motion tubes

Let F
⋃

be an operator used to compose the contributions of several families of motion tubes into a single image. It is
defined as

F
⋃[
Ra, Rb

]
(x, y) =


∅ ifRa(x, y) = ∅ andRb(x, y) = ∅
Ra(x, y) ifRa(x, y) 6= ∅ andRb(x, y) = ∅
Rb(x, y) ifRa(x, y) = ∅ andRb(x, y) 6= ∅
Ra(x, y) +Rb(x, y) ifRa(x, y) 6= ∅ andRb(x, y) 6= ∅

(6.7)

Let
{
Mt0
Ti

}
i=1...N0

and
{
Mt8
Ti

}
i=1...N8

be respectively the members of families FMT (t0) and FMT (t8). At time instant
t , t0 < t < t8, the synthesized image It is now given by

In = F
⋃[

R
(

1/8 · α0(t) · FMT (t0) , t
)

, R
(

1/8 · α8(t) · FMT (t8) , t
) ]

= F
⋃[

1/8 · α0(t) ·
N⋃
i=1
R
(
Mt0
Ti , wt0→tn

)
, 1/8 · α8(t) ·

N⋃
i=1
R
(
Mt8
Ti , wtGS→tn

) ]
(6.8)

where R is the motion tube rendering operator and
⋃

the motion tube composition operator. Coefficients α0(t) = 8− t
and α8(t) = t linearly weight the contributions of FMT (t0) and FMT (t8) according to the current time index inside
the GOP. The closer from its reference instant, the more importantly a motion tube contributes to the reconstruction of
the current image.

Again, the concept of B-family is not limited to the use of two families located at the extremities of the GOP, and any
couple of reference instants can be used, along with appropriate weighting coefficients. Also, it is important to note
that B-tubes and B-families of motion tubes are not in contradiction and can be combined. However, if two motion
tubes Mt0

Ti ∈ FMT (t0) and Mt8
Ti ∈ FMT (t8) are undergoing similar trajectories and deformations, combining their

contributions through B-family 0FMT (t0, t8) will have the same effect as using a single B-tube.

b Bi-directional motion tubes

As image I8(p+1) is both the last image from the pth GOP
{
I8p, . . . , I8(p+1)

}
, and also the first image from the p + 1th

GOP
{
I8(p+1), . . . , I8(p+2)

}
, its textural information is shared by two families of motion tube:

1. the family instantiated at the end of the pth GOP, tracked backwards from t8(p+1) to t8p;
2. the family instantiated at the beginning of the p+ 1th GOP, tracked forwards from t8(p+1) to t8(p+2).

Both families can then be merged into a single family of motion tubes which is initialized at t8(n+1), and tracked both
backwards and forwards in time. By successively concatenating such a temporal construction, one ends up in bi-directional
families of motion tubes as it is showed in figure 6.3.1.

tn-16 tn-8 tn tn+8 tn+16

F    (t   )n-8MT
F    (t    )n+8MT

F    (t  )nMT

time

forwards

backwards

Tracking direction

Family reference instant

Figure 6.3.1: B-families of motion tubes, a structure based on the temporal overlap of two families of motion tubes

6.3.1.2 Hierarchically overlapping the families of motion tubes

B-families of motion tubes rely on the assumption that the entire textural information can actually be sourced from only
two reference instants, which needs for the GOP spatio-temporal content to be quite consistent. At some point, however,
motion tubes will not be able to handle highly non-stationary sequences; in sequence Tempest, for instance, the fast
moving flying leaves. Still, additional families of motion tubes may further complete the reconstruction. This section will
now extend the concept of B-families of motion tubes into a hierarchical inter-tube bi-predictive structure.
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a Hierarchical B-families of motion tubes

Once again, let consider a GOP {I0, . . . , I8} of nine consecutive images, and let it be organized into a set of hierarchical
temporal levels. For each temporal level, it is proposed to build a B-family consisting of the B-family of the previous
temporal level and an additional family instantiated at a new reference instant taken from the current temporal level.
This process is illustrated in figure 6.3.2. Four B-families are successively obtained:

1. 0FMT (t0, t8) = FMT (t0) ∪ FMT (t8) when t0 < t < t8 (first temporal level);
2. 1FMT (t0, t4, t8) = 0FMT (t0, t8) ∪ FMT (t4) when t0 < t < t8 (second temporal level);
3. 2FMT (t0, t2, t4, t8) = 1FMT (t0, t4, t8) ∪ FMT (t2) when t0 < t < t4 (third temporal level);
4. 2FMT (t0, t4, t6, t8) = 1FMT (t0, t4, t8) ∪ FMT (t6) when t4 < t < t8 (third temporal level).
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Figure 6.3.2: Hierarchical B-tubes: overlapping lifespans

Family I0 I1 I2 I3 I4 I5 I6 I7 I8
FMT (t0) × X X X X X X X X
FMT (t8) × X X X X X X X ×
FMT (t4) × X X X × X X X ×
FMT (t2) × X × X × - - - -
FMT (t6) - - - - × X × X ×

Table 6.3.1: Families used to synthesize the images

b How to combine several B-families of motion tubes

While hierarchically increasing the number of families of motion tubes undoubtedly improves the overall representation,
it also drastically increases the amount of multi-registered areas, hence the amount of spatio-temporal redundancies. In
order to control the increase in motion information, essential motion tubes should only be kept in the final representation.
However, building an optimal set of motion tubes is a complex problem which will be tackled in chapter 7.

Still, it is critical for the hierarchical structure of families of motion tubes to require as few motion tubes as possible. As
a first solution towards an optimal hierarchical structure, it is proposed to synthesize the images in a hierarchical fashion
as well. Let us now focus on the reconstruction of an image It , t0 < t < t4, from the usual GOP {I0, . . . , I8}. The
hierarchical set of families contributing to its reconstruction is given by B-family 2FMT (t0, t2, t4, t8). It ’s reconstruction
is progressively built, one temporal level after the other, as follows:

1. It is first reconstructed from B-family 0FMT (t0, t8), into 0It . The contributions of families FMT (t0) and FMT (t0)
are combined with respect to equation (6.8);

2. in areas not yet reconstructed, the reconstruction of family FMT (t4) is used:

1It (x, y) =
{0It (x, y) if 0It 6= ∅
R
(
FMT (t4) , t

)
(x, y) elsewhere

; (6.9)

3. for areas not reconstructed by 1FMT (t0, t4, t8), the reconstruction of family FMT (t2) is used:

2It (x, y) =
{1It (x, y) if 1It 6= ∅
R
(
FMT (t2) , t

)
(x, y) elsewhere

. (6.10)

This progressive reconstruction spares us from an ambiguous operation: how to play the reconstruction from each temporal
level against each other? Provided that useless, inefficient and redundant motion tubes have been removed from each
family, this reconstruction mechanism should be reassessed in order to use all the available textural information, instead of
discarding contributions from higher temporal levels whenever the current level already contributes to the reconstruction.
As no selection mechanism has been designed yet, such an improvement will remain as a perspective.
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6.3.2 Single versus multiple families of motion tubes: compared performances

6.3.2.1 Setting up the experiments

a Reconstructing a GOP from one, two or three families of motion tubes

In order to evaluate the improvements B-families of motion tubes bring in practice, three series of experiments have
been performed on the usual set of six sequences. At first, a single family FMT (t0) of motion tubes have been used
to describe the spatio-temporal contents of each GOP {I0, . . . , I8}. Then, a B-family 0FMT (t0, t8) consisting of two
families of motion tubes has been employed. Finally, a B-family 1FMT (t0, t4, t8) consisting of three families has been
used. In each case, a crude set of parameters have been used to set up motion tubes: only TMC motion mode has been
enabled and fixed-size 16× 16 motion tubes were used. A hierarchical GOP structure, however, was used.

b A focus on reference images: biased results

Whenever a family of motion tubes was instantiated, it has been assumed that the current image was entirely available,
and properly synthesized for it to be used as a reference frame. However, motion tubes do not include an intra-coding
mechanism yet. Corresponding coding costs will not be assessed, and output bitrate will only reflect the evolution of
the motion bitrate. Chapter 7 will provide a fully working compression scheme which, among other topics, handles this
additional information.
Experiments, however, sourced the textural information from the original frames, such that any reference frame could be
perfectly reconstructed from the corresponding family of motion tubes. As experiments results might have a significant
bias by taking these perfectly reconstructed areas into account, it has been decided to not use a family FMT (tref) at its
reference instant tref. Corresponding frame Iref will then be synthesized from other available families, such that provided
results purely assess the reconstruction abilities of the motion tubes. The hypothetical intra-coding mechanism is later
assumed to transmit textural residues to complete Iref’s reconstruction, which is required to instantiate FMT (tref). Table
6.3.1 lists the different families of a B-family 2FMT (t0, t2, t4, t6, t8) and they contribute or do not contribute to the
reconstruction of the current image.

6.3.2.2 Objective performances: influence on the PSNR, the reconstruction rate and the motion bitrate

Figure 6.3.3 shows how the reconstruction rate is significantly improved by the use of a B-family 1FMT (t0, t4, t8) instead
of a single family FMT (t0). In average, using both families FMT (t0) and FMT (t8) increases the reconstruction rate
by 7%. It is further improved by 2% from the third family FMT (t4). The PSNR of the reconstructed areas is barely
affected by the number of families in use: they all provide a similar quality of reconstruction.
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Figure 6.3.3: B-families of motion tubes: a conclusive improvement in reconstruction rate
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However, this comes to the cost of a significant increase in motion bitrate: as unused motion tubes have not been discarded
yet, increasing the number of families linearly increases the motion bitrate (figure 6.3.3b shows that, unsurprisingly, they
all allocate approximately the same bitrate per time instant). Still, the additional families FMT (t4) and FMT (t8) only
contribute to 11% of the reconstruction: the number of their motion tubes actually being used is very likely to be small,
hence requiring a significantly lower motion bitrate to be transmitted in comparison to the bitrate allocated by the whole
families.

6.3.2.3 B-families of motion tubes: visual results

Figure 6.3.4 shows how B-families of motion tubes drastically improve the representation. Top figures show the output
images, while bottom figures indicate which families of motion tubes have contributed to the reconstruction: yellow for
FMT (t0), blue for FMT (t8), green for a weighted average of FMT (t0) and FMT (t8), and finally magenta for FMT (t4).
Let us focus on Foreman’s face: due to its rotation towards the right side of the camera plane, its left half is mostly
visible within the second half of the GOP, while its right half is mostly visible on the first half of the GOP.

(a) FMT (t0)’s reconstruction
SPSNR = 35.79 dB, Rec. rate = 86.81%

(b) 0FMT (t0, t8)’s reconstruction
SPSNR = 36.52 dB, Rec. rate = 96,26%

(c) 1FMT (t0, t4, t8)’s reconstruction
SPSNR = 36.24 dB, Rec. rate = 99.29%

(d) Areas reconstructed by FMT (t0) (e) Areas reconstructed by 0FMT (t0, t8) (f ) Areas reconstructed by 1FMT (t0, t4, t8)

Figure 6.3.4: B-families of motion tubes: influence on the synthesis of the fourth image of sequence Foreman

As could be expected, family FMT (t0) mainly contributes to the reconstruction of the right half of the face, while family
FMT (t8) mainly contributes to the reconstruction of its left half. Both of these families have been able to catch the
deformation of the background, which is mostly synthesized from a weighted average of both contributions. Finally, the
third family FMT (t4) nearly completes the reconstruction, by notably providing a large part of the mouth which was
missing.

6.4 Towards a complete reconstruction of each image

Despite the significantly larger amount of reconstructed areas that can be obtained through B-families of motion tubes,
a small but non-negligible part of the images remains unpredicted. Provided that most textures were available in any of
the reference images, remaining holes are very likely to be quite small, and the consequence of local discrepancies or
mismatches of the motion information. This can be observed in figure 6.3.4c.
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Another problem raised by the use of B-families of motion tubes is the risk of allocating entire motion tubes to fill tiny
holes, which could be properly restored without any additional motion tubes, hence without suffering from an increase
in motion bitrate. This phenomenon can be observed in figures 6.3.4a and 6.3.4b: the background is scattered with
unpredicted segments whose width is mostly limited to a single pixel. Naturally, a second family of motion tubes does
remove these holes; however, this is very likely to require a significant number of additional motion tubes to be transmitted.
In other words, the additional motion tubes, in these areas, can be interpreted as a waste in allocated bitrate.
For both these reasons, and as a last resort mechanism, it is now proposed to handle tiny holes and remaining unpredicted
areas through several image restoration algorithms, capable of synthesing both structure and textures information from
surrounding available reconstructed areas. Such algorithms (see section 3.4.2.2) are often very computationally demanding;
for this reason, provided inpainting mechanisms will be relatively crude and rather simple to perform. Section 6.4.1 will
briefly overview a simple spatial inpainting mechanism based on the popular median filter. Then, section 6.4.2 will
introduce a spatio-temporal template matching algorithm based on the motion tubes.

6.4.1 A spatial inpainting mechanism based on the popular median filter

Many inpainting algorithms [BSCB00, CS01, CS02, Mas02] rely on the diffusion of available areas from the boundaries
of the regions to inpaint towards their center. The diffusion may be isotropic or anisotropic; in the second case, available
structural information (edges, gradients, dots) can be used to drive the diffusion. In [OBMC01], Oliveira showed that the
variational diffusion process could be simplified into a series of simple iterative convolution operations, for a restoration
quality nearly as high as standard diffusion algorithms provide.
The median filter has been widely used in many image processing applications; in particular, is it very appreciated
when it comes to predict a value from its neighbours as it is both simple and very effective. Incomplete images can be
interpreted as noisy signals, and inpainting algorithms as noise reduction mechanisms. To this end, it is proposed to
propagate reconstructed pixels into unpredicted areas through a series of median-based convolution operations.

6.4.1.1 An isotropic median filtering process

The inpainting process is independently performed on each color component (luminance Y, chrominances U and V). Each
unpredicted sample is restored by the median value of the available samples taken from a local neighbourhood. The
neighbourhood is given by the shape and the dimension of the median filtering window: a (2N + 1)× (2N + 1) square
window. N is adjusted according to the color component, and N = NY for the lumiance, N = NU = NV = 1/2 · NY for
chrominances.
The proposed inpainting mechanism is thus isotropic as it does not favour any particular direction. Any missing sample
will be reconstructed provided that its closest available neighbour is not farther than N samples. The larger the filter
size gets, the higher the number of inpainted pixels is (see figures 6.4.1c and 6.4.1d). By locally adapting the shape of
the median windows according to the edges directions, this inpainting mechanism could be easily improved, and turned
into an anisotropic mechanism. Also, a spatio-temporal filtering window could be used to further improve its restoration
abilities. These will remain as minor perspectives, as this thesis does not focus on texture and structure restoration.

6.4.1.2 Iterative diffusion of the restoration

As it has been mentioned in previous sub-section, the number of restored samples depends on the dimension of the
median window. However, it is crucial for the window to be small enough for it to consider a local neighbourhood only.
In order to complete the reconstruction, it is now proposed to iterate the convolution, thus progressively propagating the
restoration towards the centre of the unpredicted areas.
The number of iterations required to complete the reconstruction depends on the dimensions of the unpredicted areas and
the size (2N + 1)× (2N + 1) of the filtering window used. Let ΩS be the set of synthesized samples (their coordinates)
from the image plane Ω. Conversely, let ΩNS be the set of non-synthesized samples from the image plane Ω. ΩS and
ΩNS are complementary in Ω, and ΩS⊕ΩNS = Ω. The number of iterations niter required to complete the reconstruction
is given by

niter = 1
N · max

P1∈ΩNS

[
dist
(
P1, arg min

P2∈ΩS
dist (P1, P2)

)]
(6.11)
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where dist (P1, P2) is the distance between positions P1 and P2. This may require a large number of iterations to be
performed in large holes, at the expense of the overall complexity. Figure 6.4.1b shows the final inpainting restoration
on the eighth image of sequence Foreman. Due to the crudeness of the inpainting algorithm, large inpainted regions
suffer from an obvious blurring effect. As for the reconstruction PSNR, it is drastically reduced by 7dB. Yet, a single
iteration is enough to fill most of the little holes the background is scattered with, for a reduction in PSNR much more
acceptable.

(a) Initially synthesized image
SPSNR = 33.55 dB, Rec. rate = 80.31%

(b) Final inpainted image, N = 3
SPSNR = 26.56 dB, Rec. rate = 100%

(c) Inpainted image after one iteration, N = 3
SPSNR = 32.47 dB, Rec. rate = 85.26%

(d) Inpainted image after one iteration, N = 5
SPSNR = 31.42 dB, Rec. rate = 88.45%

Figure 6.4.1: Median-based inpainting mechanism: a crude way to fill unpredicted areas

6.4.2 A spatio-temporal inpainting algorithm relying on the motion tubes

The provided median-based inpainting suffers, among other things, from its inability to use temporally neighbouring areas
to restore the unpredicted samples. Consequently, only spatial correlations were used to drive the inpainting process.
Motion tubes, on the other hand, provide an accurate spatio-temporal representation of the image sequences. This
knowledge can be advantageously used to improve the inpainting mechanism.

6.4.2.1 Texture and structure synthesis through template matching

In this context, it is proposed to fill unpredicted areas following a template matching approach relying on the spatio-
temporal information provided by the motion tubes. Instead of propagating the inpainted values using a filtering mechanism
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as the median-based inpainting does, this approach reconstructs the unpredicted areas using appropriate patches of
textures (templates) sourced from the spatio-temporal neighbourhood of the areas to be inpainted. In particular, both
textures and structures may be reconstructed.
Template matching algorithm, similarly to other texture and structure synthesis algorithms, are quite computationally
demanding. Both the search for matching templates and their fusion with already available areas (e.g. graph cuts) are
two complex tasks. As motion tubes provide an accurate representation of the spatio-temporal content of the image
sequences, their trajectories can be advantageously used to drive the inpainting mechanism. This spares the inpainting
process from both the search for matching templates, and the fusion step: the whole template matching mechanism is
reduced to a series of simple block-based motion compensations.
The search for matching templates is then avoided by simply using the spatio-temporal motion information provided by
the motion tubes: missing areas located in the neighbourhood of a motion tube MT are very likely to be similar to
collocated areas in the reference frame, given MT ’s trajectory and deformation. Also, the fusion step is intrinsically
performed through the motion compensation of these collocated areas: there will not be any textural discrepancies at the
boundaries between reconstructed and inpainted areas.

6.4.2.2 Using the motion tubes to drive the template matching

a How temporally collocated areas are likely to be a good match for unpredicted ones

A motion tube tracks a patch of texture across several images. Consequently, surrounding pixels are very likely to
undergo the same displacement and deformation. Whenever an unpredicted area is close enough from a projected motion
tube MT , it may be reconstructed from its collocated area in MT ’s reference frame, following MT ’s trajectory and
deformation. Each motion tube can be associated with a matching template consisting of the surrounding area.

b Enlarging the motion tubes into overlapping patterns

LetMT be an M×N motion tube and tref its reference instant. MT ’s motion parameters are supposed to be available.
It is proposed to enlargeMT by e pixels in each direction into a (M + 2e)× (N + 2e) motion tube (see figure 6.4.2a).
The enlarged area, a border of thickness e pixels around ΩMT (tref), plays the part of a matching template ΥMT (tref).

ΥMT (tref) = σe (ΩMT (tref)) ∆ΩMT (tref) (6.12)

where σe(Ω) is a stretching operator which enlarges the domain Ω by e pixels, and ∆ is the symmetric difference operator.
ΥMT is used to inpaint the collocated areas at other time instants, following the trajectory and the deformation of the
corresponding motion tube.

c Towards a spatio-temporal inpainting mechanism

e

e

M

N

(a) Template ΥMT (b) Motion compensated tubes (c) Motion compensated templates (d) Final inpainted image

Figure 6.4.2: Tube-based template matching inpainting: a low computational inpainting algorithm

Whenever and wherever unpredicted areas occur around projected motion tubes, corresponding templates are motion
compensated as well to fill these areas. The motion compensated template Υ̃MT (tcur) is given at time tn by

Υ̃MT (tcur) = wref→cur (ΥMT (tref)) (6.13)
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where wref→cur is the estimation ofMT ’s deformation and displacement between tref and tcur. This is illustrated in figure
6.4.2: the final image combines initially motion compensated motion tubes (figure 6.4.2b) and inpainted areas (figure
6.4.2c) to obtain the final image (figure 6.4.2d).
In the end, the provided template matching mechanism requires a lot less amount of computations, compared to classic
template matching algorithms. However, in large unpredicted areas, some pixels may be located at more than e pixels
from the closest motion tube, hence remain unpredicted. As a last resort, the median-based inpainting can be used to
complete the reconstruction.

6.4.2.3 A focus on specific abilities the proposed inpainting mechanism inherits from the motion tubes

a A motion-adaptive template matching

The assumption that areas neighbouring the motion tubes should hold a textural information highly correlated to these
motion tubes drove us to the proposed template-matching inpainting mechanism. As an extension to this idea, it may be
considered that these neighbouring areas are also undergoing deformations similar to the ones undergone by the motion
tubes. As matching templates are built from the available motion tubes, they also inherit most of their characteristics. As
a consequence, they are also undergoing the deformations of the motion tubes they are build from -see equation (6.13)-.
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(a) OTMC: motion compensated motion tube
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(b) OTMC: motion compensated matching template

Figure 6.4.3: Shape-adaptativity of the template matching inpainting mechanism

In figure 6.4.3: a motion tube MT is deformed through the OTMC motion mode (figure 6.4.3a); the corresponding
matching template is accordingly deformed (figure 6.4.3b). In the end, this operation ensures the matching templates
to be warped according to their corresponding motion tubes, such that the proposed inpainting mechanism takes into
account both spatial and temporal correlations.

b How the textural information of the matching templates may be time-evolving

When performed on B-tubes, the template-based inpainting also benefits from the bi-prediction intra-tube mechanism.
Indeed, as they undergo a similar motion compensation process, the textural information of the matching templates can
be predicted from several time instants, following the GOP structure. In such case, equation (6.13) is modified into the
following one:

Υ̃MT (tcur) = αref0(tcur) · wref0→cur (ΥMT (tref0)) + αref1(tcur) · wref1→cur (ΥMT (tref1))
αref0(tcur) + αref1(tcur)

(6.14)

where αref0(t) and αref1(t) are the weighting coefficients from equation (6.2).

c Towards a shape-adaptive template matching

When variable-size motion tubes are used, corresponding matching templates also have variable dimensions. Variable-size
inpainting has already been proposed in the literature [DCOY03]. The thickness of our templates, yet, is fixed, as showed
in figure 6.4.4b. As a perspective, though, one may adapt the thickness of the templates according to the dimensions of
the motion tubes they are built from. Large motion tubes correspond to regions of uniform motion: surrounding regions
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are also likely to undergo similar displacements and deformations. In these areas, one may use relatively thick templates.
Conversely, small motion tubes correspond to regions where the motion field is much less coherent: surrounding regions
are not very likely to undergo similar displacements or deformations. In these areas, one may use relatively thin templates.
This improvement perspective is illustrated in figure 6.4.4c.

(a) Variable-size motion tubes (b) Variable-size templates (c) An interesting perspective

Figure 6.4.4: Variable-size template matching: shape-adaptivity of the templates

6.4.2.4 Compared performances of median-based and template-based inpainting mechanisms

a Setting up the experiments

Five series of experiments were performed on the usual set of six sequences. In each case, a crude set of parameters
have been used to set up motion tubes: only TMC motion mode has been enabled and fixed-size 16× 16 B-tubes were
tracked across a hierarchical GOP. In the first series of experiments, no inpainting was performed. In the second and
third series of experiments, median (N = 2) and template matching (e = 2) were respectively used to inpaint the images.
The inpainting parameters (N and e) were set such that both inpainting mechanisms restore the same pixels. Finally,
the fourth and the fifth series of experiments respectively used the same inpainting parameters as the second and the
third series did, and performed additional iterations of median-based inpainting to complete the reconstruction.

b How the different inpainting mechanisms impact the PSNR and the reconstruction rate
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Figure 6.4.5: Inpainting: a last resort mechanism to complete the reconstruction
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From figure 6.4.5, it appears that, for a constant reconstruction rate, template-based inpainting provides an increase in
PSNR of 0.3 to 0.4 dB in comparison to the median-based inpainting. Still, these inpainting mechanisms are relatively
crude and significantly decrease the reconstruction PSNR: the restoration of remaining unpredicted areas (here, 14% in
average) diminishes the overall reconstruction PSNR by more than 3 dB.

However, these results need to be considered with caution: the second and the third series of experiments are much
more representative of the true abilities of the inpainting. Indeed, inpainting is mostly dedicated to the restoration of
small unpredicted areas, which have been mostly taken care of within these two experiments. In this case, the reduction
in PSNR is only about 1.62 dB. Further results can be found in section D.2 of appendix D.

6.4.2.5 Inpainting: visual results

Figure 6.4.6 shows how much better the template-based inpainting is better. Restored images are much less blurred in
comparison to the ones obtained by median-based restoration. Also, template-matching is capable, in a limited way, of
synthesizing both the texture and the structure. This is clearly visible in figures 6.4.6c and 6.4.6d : Foreman’s mouth
is much more nicely rendered. Also, the straight edges from the background are better restored by the template-based
inpainting.

(a) Original image (b) Initially synthesized image
SPSNR = 33.55 dB, Rec. rate = 80.31%

(c) Median inpainted image, N = 3
SPSNR = 26.56 dB, Rec. rate = 100%

(d) Hybrid template/median restoration, N = 3
SPSNR = 28.46 dB, Rec. rate = 100%

Figure 6.4.6: Median-based inpainting mechanism: a crude way to fill unpredicted areas
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6.5 Conclusion

This chapter focused on the textural information hold by the motion tubes and provided a set of mechanism which
enhance the quality of the synthesized textures, both in terms of objective/subjective quality and reconstruction rate.
Targeted problems were the inability of the motion tubes to handle texture changes, and the lack of completeness of the
reconstructed images. Three main mechanisms were provided:

1. B-tubes can source their textural information from several reference frames, thus crudely handling textural changes;
2. B-families of motion tubes were introduced to register a larger amount of textural information to be tracked across

each GOP, hence drastically increasing the reconstruction rate;
3. spatial and spatio-temporal inpainting mechanisms were provided to fill remaining holes.

All of these mechanisms abilities are summarized in figure 6.5.1, in regards to five criteria: objective and subjective
synthesis quality, motion and texture bitrate, and reconstruction rate. Score 3 means that the corresponding criterion is
not affected; scores greater than 3 correspond to improving abilities, and scores lesser than 3 correspond to worsening
effects. For the time being, both B-tubes and inpainting mechanisms are clearly advised. B-families, however, should
not be used until the transmission of unused motion tubes can be avoided.
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(a) B-tubes: intra-tube bi-prediction
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(b) B-families: inter-tube bi-prediction

0 

1 

2 

3 

4 

5 

Reconstruc1on 
PSNR 

Reconstruc1on 
rate 

Mo1on 
compacity 

Textural 
compacity 

Visual quality 

(c) Inpainting

Figure 6.5.1: Chapter 6: a summary of the abilities of the provided texture improvement mechanisms

Two problems still need to be raised. With B-tubes and B-families of motion tubes, one made the assumption that
additional textural information would be available at the decoder side. This information overhead was neither dealt with
nor taken into account in provided results; next chapter will propose a fully functional coder which actually handles this
extra textural information. In addition, B-families of motion tubes critically increase the number of motion tubes to be
transmitted, hence the allocated motion bitrate. However, a large part of these tubes are redundant in regards to the
representation and may not even be used at all: a tube selection mechanism needs to be designed in order to remove
redundant or inefficient ones. Next chapter will further investigate this problem.





Chapter 7

A compression-driven mechanism for the life
and death of the motion tubes

Conceptualizing the notion of motion tube led to the construction of a threefold spatio-temporal information. While
previous chapters investigated the deformation model of the motion tubes and the construction of their textural
information, they did not provide any guidance regarding the way motion tubes should be started and terminated.

As a consequence, it was assumed that motion tubes were lasting throughout the whole GOP (except B-families of high
temporal levels which were only defined over a part of the GOP). In other words, this assumption implies that any patch
of texture sourced from the reference instant can actually be matched in any other image from the GOP. Obviously, this
hypothesis generally does not stand, as occlusions and disocclusions frequently happen in most image sequences.

As a first step towards a content-adaptive instantiation mechanism for the motion tubes, it was proposed in section 6.3
to build each GOP from several temporally overlapping families of motion tubes. From the additional motion tubes, the
amount of unregistered textural information was drastically reduced, to the cost of a large increase in motion bit-rate. Be
that as it may, the provided motion tubes instantiation mechanisms did not take into account two critical phenomenons:

• occlusions have a critical impact on the temporal consistency of the spatio-temporal information: motion tubes
should be aware of the appearance and the disappearance of the patch of texture being tracked;

• from a compression perspective, the number of motion tubes should be kept as low as possible in order to transmit
as few motion information as possible, provided that synthesized textures are accurate enough.

For both these reasons, it is critical for each of the motion tubes to be assessed as for their respective abilities to
represent a spatio-temporal area of a GOP. From then, a decision mechanism may control their life and death, only
keeping necessary motion tubes. Ideally, such a mechanism ought to take into account both intra-tube and inter-tube
characteristics:

• intra-tube characteristics reflect the intrinsic abilities of a motion tube to describe a spatio-temporal area;
• inter-tube characteristics reflect the relative efficiency of a motion tube, in regard to its neighbours which may

also synthesize, even partially, the same spatio-temporal area, thus introducing redundancies.

As a consequence, processing the motion tubes temporal information raises two major problematics: how motion tubes
should be evaluated, and how provided metrics should be used to control whether to start, pause or terminate a motion
tube. This chapter focuses on both these questions. Section 7.1 will first summarize the different problems an idealistic
life and death mechanism should handle. As a first step towards an assessment metric, section 7.2 will then explain
how motion tubes have been integrated within H.264/AVC coding scheme, and how its decision mechanism provides
invaluable information regarding the motion tubes coding efficiency. Section 7.3 will further investigate H.264/AVC’s
decisions regarding the motion tubes, and provide a coder-dependent approach to the problem of their life and death.
Later, section 7.4 will introduce an hybrid quality-stability metric for the motion tubes, which relies on H.264/AVC’s
decisions and also takes into account the temporal dimension of the motion tubes. From this metric, a first selection
mechanism will be provided. Finally, section 7.5 will conclude the chapter.
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7.1 An idealistic life and death mechanism for the motion tubes

Whichever way, a selection mechanism mostly relies on an assessment metric which evaluates the ability of a motion
tube or a group of motion tubes to properly represent a spatio-temporal area of an image sequence in a compact manner.
Prior to the establishment of an appropriate assessment metric, it is essential to define the objectives of a life and death
mechanism; in particular, which phenomenons it should be able to detect and handle. Consequently, this first section will
review different scenarios which should be avoided within the representation, and then introduce a high-level description
of our understanding to an ideal selection mechanism for the motion tubes.

The main objective of a selection mechanism is to rule the life and death of each motion tube. It is assumed that a
sufficient number of them are instantiated and tracked across the considered GOP: the decision mechanism does not
aim at deciding when and where a motion tube should be started. Indeed, this problem has already been investigated
through the use of families and B-families of motion tubes. On the other hand, when and where motion tubes should be
terminated is another problem of critical importance, and will thus be addressed by the provided life and death mechanism.

7.1.1 Dealing with occlusions and disocclusions: adaptation of the lifespan

As it was earlier mentioned in the introduction of the current chapter, the proposed spatio-temporal description provided by
the motion tubes may suffer from several issues. Besides deformation mismatches and incompleteness of the reconstructions
(both these issues were partially addressed in chapter 6), the provided scheme is, for now, unable to detect the
disappearance or the occlusion of a patch of texture being tracked. In such case, the corresponding motion tube should
be stopped or at least, temporary disabled until the patch of texture reappears. According to the availability of a patch
of texture throughout a GOP, four main scenarios can be foreseen:

1. the patch of texture is fully available throughout the whole GOP and its deformation is simple enough so that
the corresponding motion tube manages to keep track of its evolutions across time;

2. the patch of texture is unavailable (except at the reference instant) and/or cannot be tracked due to a deformation
much too complex;

3. the patch of texture is available in several successive images, but disappears at some point (occlusion);
4. the patch of texture is unavailable for some time, then re-appears at some point (disocclusion).
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Figure 7.1.1: Appearance and disappearance of several patches of textures

Each of these scenarios is illustrated in figure 7.1.1 by a moving patch of texture captioned with the corresponding
scenario index. The first two scenarios are the most trivial situations: in the first one, the patch of texture is easily
registered by a motion tube across the whole GOP; in the second scenario, on the contrary, it should be avoided to
instantiate a motion tube as it will not be able to provide any faithful spatio-temporal information. Third and fourth
scenarios are much more problematic, as they require the motion tubes to detect occlusions and disocclusions.

Until now, motion tubes were processed regardless to such considerations; whenever a patch of texture was disappearing,
the corresponding motion tube was continued and matched with an erroneous patch of texture. As a consequence,
resulting spatio-temporal representation was biased and may exhibit some undesirable artifact: jerky displacements and
deformations whose associated motion bit-rate may penalize the overall compression efficiency.
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7.1.2 Limiting the amount of spatio-temporal redundancies

No matter how good or bad is the intrinsic quality or efficiency of a motion tube, it needs to be evaluated in regards to its
neighbours. Indeed, it should be very likely for several neighbouring motion tubes to overlap, resulting in a consequent
amount of multi-registered textures:

• from a texture synthesis perspective, while several contributions may increase the quality of the synthesized
textures, too many of them may result in blurring artifact and lower objective and/or subjective synthesis quality;

• from a compression perspective, an increasing number of contributions will introduce a consequent amount of
redundancy, which should be avoided at all costs.

For both these reasons, the amount of multi-registered textures needs to be controlled. Whenever two motion tubes (or
more) are describing approximately the same spatio-temporal area, the final representation should keep as few of them
as possible, providing the best tradeoff between amount of redundancies and quality of synthesis.

7.1.3 Towards an ideal life and death mechanism for the motion tubes

From previous considerations, it is obvious that the lifespan of the motion tubes should be limited to the time intervals
at which the tracked patch of texture is available and can be tracked by the provided motion model. For instance, the
motion tube tracking patch 3 (see figure 7.1.1) should be terminated at time instant t2. As for the motion tube tracking
patch 2, it should not be instantiated at all. Figure 7.1.2a shows the optimal lifespan of four motion tubes tracking the
different patches of textures introduced in figure 7.1.1.
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Figure 7.1.2: An ideal decision mechanism: application to patches of textures from figure 7.1.1

As a consequence, an ideal life and death mechanism should be able to detect when and where such scenarios occur.
From then, it should settle the lifespan of affected motion tubes accordingly. As motion tubes provide an accurate
spatio-temporal information, the occurrence of problematic scenarios is likely to be reflected on their behaviour: jerky
displacements, incoherent deformations, sudden increase in matching error and/or motion coding cost, etc. All in all,
any rupture in the temporal consistency of a motion tube should motivate its deactivation, reactivation or termination.
Anyhow, regardless to the intrinsic quality of a motion tube, its existence should be conditioned by the set of overlapping
motion tubes which contribute to the synthesis of the same spatio-temporal area. An ideal life and death mechanism
may then be organized into two steps:

1. each motion tube is independently assessed by an appropriate metric in charge of detecting spatio-temporal
inconsistencies, which may motivate its deactivation, reactivation or termination, from its parameters and synthesized
texture. In figure 7.1.2b, for instance, motion tubes are kept only when the metric is inferior to a given threshold;

2. redundant motion tubes are identified and removed.

7.2 Assessing the motion tubes through state of the art H.264/AVC compression
scheme

As can be seen from section 7.1, designing an evaluation metric for the motion tube is greatly dependent on the desired
life and death mechanism. Rather than blindly assessing the motion tubes regardless to any encoding reference, it is
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proposed as a first step to evaluate their quality and efficiency in regard to state of the art compression techniques
provided by ITU-T H.264/AVC video compression standard. By making motion tubes competing with both intra and inter
H.264/AVC coding modes, the coder rate-distortion decision mechanism will then be able to identify which areas of the
images can effectively be synthesized by the motion tubes.
In H.264/AVC compression scheme, the motion field is re-initialized for each image, such that both textural and motion
parameters can be optimized one macroblock at a time. With motion tubes, however, the provided representation exhibits
a set of trajectories along successive GOPs. Consequently, they should not be optimized time instant by time instant,
and an appropriate decision mechanism may consider the whole spatio-temporal area being synthesized.
Though H.264/AVC compression scheme does not provide an appropriate decision mechanism, it may still provide valuable
information regarding the synthesis abilities of the motion tubes. Section 7.2.1 will present a crude way to integrate
motion tubes into H.264/AVC. Then, section 7.2.2 will summarize various types of information indicating how motion tubes
are eventually used by H.264/AVC.

7.2.1 Embedding the motion tubes into H.264/AVC coding scheme

In order to compare H.264/AVC coding modes and motion tubes, it is necessary to integrate the motion tube prediction
mechanism within H.264/AVC coding loop. In order to keep the motion tube prediction mechanism as independent as
possible from H.264/AVC structure, it is naturally proposed to provide an additional set of reference images which hold
the motion tube prediction. As H.264/AVC builds images from a set of list of reference images and a set of coding tools,
an existing coding mode is then modified to signal whether to use or not to use the additional reference list.

7.2.1.1 Modifying skip and direct coding modes to signal the use of the motion tubes

Naturally, integrating the motion tube mechanism into H.264/AVC coding scheme should require the addition of an
extra coding mode dedicated to the motion tubes. However, this work focuses on the motion tubes, and not their full
integration within H.264/AVC coding scheme. Instead of adding an extra coding mode, motion tubes are provided to the
coder through already existing modes skip and direct. An additional binary flag is sent to signal whether to use or not
to use the motion tubes. A more appropriate integration may later consist in an interesting perspective, provided that
motion tubes effectively bring improved compression abilities.
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Figure 7.2.1: Original H.264/AVC coding scheme and associated reference lists

As can be seen from figure 7.2.1, both of these modes do not require any side-information to encode and decode the
current macroblock . They simply interpolate the motion vectors from neighbouring macroblocks, and source the collocated
macroblocks from two lists of reference images, list 0 and list 1. Consequently, they can be easily modified to source
the textural information from a third set of reference images synthesized by the motion tubes. In such case, interpolated
motion vectors are set to zero as provided images are already motion compensated by the motion tubes.
Another consequence of the absence of side information needed to be transmitted in skip and direct modes is that required
bit-rate simply consists in the cost of the binary flag signalling the use of these modes. Ideally, resulting Lagrangian
should be modified to account for the cost of the motion tubes. However, the coding cost of a motion tube at a single time
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instant has little if no meaning at all, and should be evaluated across its whole lifespan. In addition, the overlapping
grid of the motion tubes and the macroblock grid do not match, such that any macroblock can be predicted from parts
of a variable number of motion tubes: computing the associated coding cost is problematic. Consequently, no additional
cost will be associated to the modified skip and direct coding modes. The overall bit-rate will then be given by the sum
of the resulting H.264/AVC bit-rate and the motion bit-rate of the motion tubes.

7.2.1.2 A third reference list to provide the motion tube spatio-temporal prediction

According to the chosen coding mode, H.264/AVC may use up to two reference images to encode the macroblocks. In
order to manage the different images from which textures can be sourced to encode each macroblock , H.264/AVC uses two
lists of reference images, namely list 0 and list 1 (see figure 7.2.1). Inter coding modes predict the current macroblock
from (at most) two collocated blocks; the first one is sourced from an image of list 0, while the second is sourced from
an image of list 1 (when bi-prediction is used). Reference lists list 0 and list 1 are efficiently managed such that they
only contain necessary images: as soon as a reference image is not necessary anymore, it is removed from the list.
Motion tubes, however, require all the images to be available in order to estimate their deformation and to synthesize
the reconstructed images. Modifying the state machine which rules the contents of the reference lists, again, may consist
in a complex task. A simpler solution, from an implementation perspective, is to instantiate a third reference list, list 2,
within which images reconstructed by the motion tubes are stored. As list 2 is independent from the other lists, it does
not obey to neither MMO commands nor implicit behavior imposed by the GOP structure.
In consequence, skip and direct modes (see section 3.3.1.2) are further modified to use list 2 as an alternative reference
list. An additional binary flag signals whether to use the original reference lists (list 0 and list 1) or the third reference
list (list 2). Classic intra and inter modes are now competing with the motion tube prediction. This is illustrated in
figure 7.2.2.
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Figure 7.2.2: Modified H.264/AVC coding scheme and additional reference list

7.2.1.3 Motion estimation process

Estimating and compensating the deformation of the motion tubes requires original and encoded images. According to the
GOP structure, the availability of these images may greatly vary, thus limiting the way motion tubes can be processed.
Again, one may modify the way the Joint Scalable Video Model (JSVM) handles these images; yet, it is simpler to
process the motion tubes according to the availability of the original and encoded images.

a Original or encoded images as input data to the motion estimation

Motion estimation can be performed from two different couples of images:
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1. between Iref and Icur: the motion parameters are computed from two original images, then applied to a coded/decoded
image Iref to generate the motion compensated prediction;

2. between Iref and Icur: the motion parameters are computed from the original current image and the coded/decoded
reference image Iref. Eventual impairments between original and decoded images may lower the estimation quality.

Whenever encoded images are too much distorted from the encoding steps, strong divergences can be observed in the
motion field whether original or encoded images are used to perform the estimation. In H.264/AVC’s closed-loop structure,
motion estimation is typically performs following the second scenario. While H.264/AVC’s closed-loop structure typically
performs the estimation between Iref and Icur, one may wonder whether such a scheme still holds with motion tubes.

b IPP and hierarchical B GOP structures

In H.264/AVC’s reference implementation, the JSVM, original images are only partially available during the coding process,
depending on the GOP structure. In predictive structures I0P1P2P3P4..., only the previous image is. In hierarchical
B structures I0b4B3b5B2b7B6b8P1..., not only reference images from the previous temporal level are available, but
also previous images which have not been coded yet. Generally, hierarchical GOP structures provide better compression
performances than progressive structures do.
At the last image of a hierarchical GOP, all its original images are available as they have been loaded into memory
by the JSVM, and yet not coded. This is an ideal place for the motion tubes to be processed. Motion tubes can also
be temporally processed either in a progressive or in a hierarchical fashion. When their motion estimation is exclusively
performed on the original images, both temporal structures can be handled. However, when their motion estimation is
computed from original and coded images, their temporal structure needs to be synchronized with H.264/AVC’s GOP
structure. Both scenarios were evaluated, clearly showing that using the original images is best. Indeed, the distortion
of the encoded images, especially at low bitrates, prevents the motion tubes from accurately seizing the spatio-temporal
coherence on the long run.

7.2.2 Measuring the motion tubes impact on H.264/AVC coding scheme: preliminary results

Motion tubes are now competing with H.264/AVC’s coding modes. This may answer numerous questions on the synthesis
and the compression abilities of the motion tubes. When and where are motion tubes selected? Is their information of
any help to the coder? If so, does the gain in H.264/AVC bit-rate compensates the motion tube coding cost?
In order to validate the competition between motion tubes and H.264/AVC classic coding modes, a set of CIF sequences
(Bus, Football, Foreman, Mobile, Paris and Tempest ) have been encoded with and without the motion tube mode. These
encoding operations led to a large amount of information of various nature (bit-rates, PSNR, coding mode statistics, etc).
Their interpretation will help us assess the abilities of the motion tubes.

7.2.2.1 A first glance at rate-distortion curves: impact of the motion tubes on the overall bit-rate

a Setting up the experiments: a set of default parameters for the motion tubes

Parameter Value Effect on the representation
Motion mode TMC Translational motions only
Tube size 32× 32 −→ 4× 4 Variable-size motion tubes
Motion tube GOP structure I0b4B3b5B2b7B6b8P1... Hierarchical GOP structure
Motion estimation Causal and anticausal Two steps to improve the estimation
Motion precision 1/4 pixel Quarter-pixellic accurate motion estimation
Motion QP QPtube = QPAVC AVC’s QP is used to set the tube motion QP
Matching criterion SAD Default H.264/AVC matching criterion
Template matching inpainting X Best inpainting abilities
Median inpainting X(iterated) Images completely reconstructed
B-tubes × No textural multi-prediction
B-families × A single family of motion tubes per GOP

Table 7.2.1: A set of default parameters for the motion tubes
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As could be seen in previous chapters, motion tubes are driven by a large set of mechanisms, hence numerous parameters.
As a consequence, synthesized images greatly vary according to the provided configuration. In order to perform forthcoming
experiments, it has been decided to configure the motion tubes from a set of parameters which guarantee a proper synthesis
quality. Inpainting, for instance, should absolutely be set such that synthesized images are complete. As for the GOP
structure, both H.264/AVC and motion tubes are set up to use dyadic hierarchical structures of nine images. Table 7.2.1
summarizes the main parameters of the motion tubes along with their default values.

b Resulting rate-distortion curves: mitigated performances

Figure 7.2.3 shows the average gains in H.264 bitrate when motion tubes are enabled. It appears that motion tubes are
effectively chosen by H.264/AVC, which further valids the proposed representation. However, it appears that the gain
in H.264 bitrate (+4.2% in average) cannot compensate the motion bitrate of the motion tubes, by far, since the final
lost in bitrate is about 28%. Still, as all motion tubes are transmitted, this gap may be significantly reduced if unused
motion tubes were discarded prior to their transmission. Be that as it may, the gain in H.264 bitrate does prove that
motion tubes provide, in some areas, a valid representation of the sequence. Gains are highly correlated to the figures
from previous chapters; sequence Football, in particular, is badly handled by the motion tubes.

+3,0% 

‐0,5% 

+12,3% 

+2,2%  +3,3%  +5,0%  +4,2% 

‐35,0% 
‐38,5% 

‐32,7% 

‐16,9% 

‐22,7%  ‐22,0% 

‐28,0% 

‐50% 

‐40% 

‐30% 

‐20% 

‐10% 

0% 

10% 

20% 

  Bu
s 

Fo
ot
ba

ll 

 Fo
re
m
an

 

 M
ob

ile
 

 P
ar
is
 

 T
em

pe
st
 

 A
ve
ra
ge
 

Bi
t‐
ra
te
 g
ai
n 
(%

) 

H.264 + Tubes (no tube cost) 

H.264 + Tubes (with tube cost) 

Figure 7.2.3: Gains in H.264 bitrate obtained by embedding motion tubes to the coder

Figure 7.2.4 shows the rate-distortion profiles of sequences Foreman and Mobile. It appears that motion tubes are much
more efficient for low bitrates. This is easily explained by the fact that motion tubes are solely embedded within modes
skip and direct : there is no way to correct their prediction from textural residues as remaining inter-coding modes do.
At high bitrates, the motion prediction is generally not accurate enough, and H.264/AVC favours classical inter modes.
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Figure 7.2.4: Rate-distortion curves: a comparison between the original and the modified H.264 coder
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7.2.2.2 A focus on motion tubes textural improvement mechanisms and their effect on resulting bit-rates

In chapter 6, several multi-prediction mechanisms were provided to improve the synthesized images. B-tubes and
B-families of motion tubes proved to be quite good improvements. However, they required some additional textural
information to be transmitted. Now that motion tubes are integrated within H.264/AVC, this textural information is
available: it can be sourced from the encoded images. This section compares the rate-distortion performances of the
motion tubes within H.264/AVC coding scheme, when B-tubes or B-families of motion tubes are enabled.

a A significant bitrate saving if the cost of the motion tubes is not taken into account

Figure 7.2.5 shows how B-tubes, and especially B-families of motion tubes impact the coder’s decisions: the average
gain in bitrate is increased from 4.2% to 6.6% with B-tubes, and up to 15% with B-families of motion tubes.
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Figure 7.2.5: B-tubes and B-families: gains in H.264 bitrate (without motion tubes cost)

Figure 7.2.6 shows corresponding rate-distortion curves for sequences Foreman and Mobile. Again, low bitrates are
much more in favour of motion tubes. As could be expected, using several families of motion tubes clearly improves the
representation, as it nearly quadruple the bitrate saving percentage, and provides an improvement for all bitrates.
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Figure 7.2.6: Rate-distortion curves: a comparison between the original and the modified H.264 coder

b Incorporating the motion cost of the motion tubes into the figures

If we now take the motion cost of the motion tubes into account, there is no bitrate saving at all, but quite the contrary.
Still, B-tubes slightly reduce the lost in bitrate by 2% in comparison to standard motion tubes. On the other hand, the
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instantiation of two families of motion tubes through B-families roughly multiplies by two the tubes coding cost. Figure
7.2.7 shows how the overal bitrate is affected by B-tubes and B-families of motion tubes.
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Figure 7.2.7: B-tubes and B-families: gains in H.264 bitrate (with motion tubes cost)

As a consequence, the gap between H.264 bitrate savings and the motion cost of the tubes is significantly increased,
which ends up in very poor compression performances. However, by removing the cost of unused motion tubes, these
dramatic figures may be significantly improved, even though whether to use or not to use a motion tube will need to be
signalled as well. Figure 7.2.8 shows corresponding rate-distortion curves for sequences Foreman and Mobile.
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Figure 7.2.8: Rate-distortion curves: a comparison between the original and the modified H.264 coder

7.3 An insightful investigation on the impact of the motion tubes on H.264/AVC’s
decisions

Previous section only provided a little insight on the impact of the motion tubes on the initial H.264/AVC coding scheme,
and showed encouraging results as for their interest in regard to compression. However, these preliminary results did
not provide any accurate information regarding the way motion tubes were used by the coder. From the experiments, a
lot of questions emerge.

• When and where exactly motion tubes are selected by the coder?
• Which initial coding modes are advantageously replaced by the motion tubes? Which are not? To which extent?



140 CHAPTER 7. A LIFE AND DEATH OF THE MOTION TUBES

• From a subjective perspective, from which artifact do encoded sequences suffer?
• Which influence has the QP on the decisions?

This section will first investigate the decisions made by the modified H.264/AVC compression scheme in a top-down
fashion, first focusing on overall figures, then laying on more specific information describing in details how the motion
tubes are used by H.264/AVC compression scheme. These invaluable information will shed light on the construction
spatio-temporal decision mechanism in charge of the life and death of motion tubes.

7.3.1 A glimpse into the motion tube selection patterns

Before providing any statistics regarding the use of the motion tubes and their impact on other coding modes, let us look
at typical decision examples. Figure 7.3.1 shows several maps describing the use of intra, inter, skip and tube coding
modes on the second image I1 of sequence Bus. As motion tubes are initialized at previous instant from image I0, it is
expected for the motion tubes to provide a prediction of high quality. As a consequence, maps should indicate that a
large amount of macroblocks is predicted from the motion tubes.

(a) Without motion tubes, QP=22 (b) Without motion tubes, QP=37

(c) With motion tubes, QP=22 (d) With motion tubes, QP=37
Intra macroblocks Inter macroblocks Skip/Direct macroblocks motion tube prediction

Figure 7.3.1: Influence of the motion tubes on H.264/AVC’s decisions, sequence bus, I1

Coding mode maps are shown for both QPs 22 and 37. For the record, a QP of 22 is a widely accepted H.264/AVC
quantization parameter for sequences which need to be encoded at a relatively high quality. On the contrary, a QP of
37 generally outputs highly compressed video bitstreams.

What immediately strikes us is how much the number of macroblocks predicted from the motion tubes is dependent on
the QP value. At high bit-rates, the motion tube prediction is often relinquished to the benefit of more accurate inter
coding mechanisms. On the contrary, the motion tube prediction is largely selected at low bit-rates. This can be easily
explained from the fact that inter predictions are further improved from transmitted residual coefficients. At high bit-rates,
these advanced inter coding modes are favoured by H.264/AVC’s Rate-Distortion Optimization (RDO). Looking closely
to the macroblocks coding mode maps, it can be seen that the largest part of the macroblocks predicted from the motion
tubes correspond to macroblocks initially coded with skip or direct modes. However, some of the initial inter macroblocks
are also replaced by the motion tube prediction, which is particularly encouraging.
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7.3.2 An accurate investigation on the selection of the motion tubes

7.3.2.1 Overall coding modes selection rates

By providing the motion tubes prediction to H.264/AVC compression scheme, it was seen in previous section that the
decisions taken by the coder were largely impacted. Let us now observe, for each available coding mode, the percentage
of corresponding macroblocks. Figure 7.3.2a shows the evolution of the selection rate of each coding mode. For each
mode, the left striped bar corresponds to the initial selection rate obtained with the reference H.264/AVC encoder, while
the right solid bar corresponds to the resulting selection rate when motion tubes are embedded into the coder. To obtain
these figures, selection rates from all sequences from the test set have been averaged.
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Figure 7.3.2: Influence of the motion tubes on the selection rates of the different coding modes

Figure 7.3.2b confirms the observation made previously: the selection rate of the motion tubes is highly correlated to the
QP. While only 20% of the macroblocks are encoded via the motion tubes at high bit-rates (QP=22), this selection rates
rises up to 60% for low bit-rates (QP=37). Again, it can be seen (unsurprisingly) that motion tubes have little impact
on the selection rate of intra modes. Indeed, intra macroblocks generally correspond to areas wherein motion estimation
has failed, thus requiring to be spatially encoded. Besides the intra mode, all selection rates are linearly increasing or
decreasing from QP 22 to QP 32, then become relatively stable for higher bitrates. However, the selection rate of inter
modes seems to be less slightly correlated to the QP than the skip mode.
Unlike intra mode, inter and especially skip/direct modes are heavily impacted by the motion tubes. The amount
of macroblocks encoded by any of the available inter modes (which require both motion and textural residues to be
transmitted) is decreased by 25% (w.r.t. to the initial selection rate) which is significant enough to be noticed. As for
skip/direct modes, their selection rate is drastically reduced, from approximately 50% down to 20%.

7.3.2.2 How the evolution of the modes selection rates is correlated to the QP

Skip 
64,1 % 

Inter 
35,3 % 

Intra 
0,4 % 

Figure 7.3.3: Modes being replaced by the motion tubes
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Figure 7.3.3 shows, in average, which mode was previously used to code a macroblock , that is now coded by the motion
tubes. It reads as follows: for all macroblocks now encoded by motion tubes, 35,3% of them were encoded by an inter
coding mode in the initial coder. Here, it appears that the proportion of macroblocks encoded by the motion tubes
originally coded through any classical inter-coding mode is far from negligible, which is very encouraging.

7.3.2.3 Replacement rates of the different coding modes

In order to precisely investigate the effect motion tubes have on classical coding modes, let us consider the problem the
other way round. Instead of focusing on macroblocks which are encoded with the motion tubes, it is now proposed to
measure in which proportions the occurrence of each classic mode is being replaced by motion tubes. Figure 7.3.4 shows
how exactly each of the original decisions have been impacted by the motion tubes. Figure 7.3.4b reads as follows: from
all the macroblocks initially encoded by mode skip, nearly 53% of them have been replaced by the motion tube prediction
once these have been embedded into the coder. It reads as follows: for all macroblocks which were encoded by mode
skip in the initial coder, 52,68% percent of them are now encoded by motion tubes in the modified coder.
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Figure 7.3.4: Proportion of the initial decisions which have been turned into the favour of the motion tubes

Several observation can be made from these figures. The ratio of skip macroblocks being replaced by the motion tubes
prediction seems to reach its maximum when QP=32. This is in accordance with results showed in figure 7.3.2b. This
tends to show that a maximum amount of skip macroblocks are turning in favour of the motion tubes.

As for inter macroblocks, the number of them being replaced by the motion tubes keeps increasing with the QP, which
may be interpreted as a lack of efficiency from the motion tubes in areas typically encoded through inter modes. This
is easily explained by the fact that motion tubes do not have any accurate textural correction mechanism, hence cannot
compete with inter modes. This raises an interesting perspective: either provide the motion tubes with a textural
correction mechanism, or integrate the motion tubes into all inter modes to benefit from their ability to correct the motion
compensated prediction from a textural residue.

Finally, it also appears that, especially at low bitrates, a small proportion of the intra macroblocks are replaced by the
motion tube prediction as well. However, the overall use of intra modes is constant whether motion tubes are used or not
(see figure ) 7.3.2b. This means that a similar amount of macroblocks initially coded by an inter mode, are now encoded
by an intra mode. This might be explained by the lack of proper motion predictors: H.264/AVC predicts each motion
vector from those of neighbouring macroblocks. With motion tubes, however, the skip motion vector is set to zero as
list 2 reference images are already motion compensated. In an attempt to address this issue, it was simply proposed to
propagate through all tubes-macroblocks the motion vector from the last inter macroblock . At the end of a large region
fully synthesized by the motion tubes, the propagated motion prediction is very likely not to be appropriate anymore. In
these regions, as a perspective, one should replace H.264/AVC’s motion predictions by those of the motion tubes.
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7.3.3 Visual results and subjective evaluations

7.3.3.1 Different coding distortions for different coding modes

In transition areas where the coding mechanism has been changed from one macroblock to its neighbour, the encoded
images may suffer from blocking effects. While the classical modes from H.264/AVC do not suffer that much from this
problem, it appears that motion tube compression artefacts are quite different from those of the classical coding modes.
The phenomenon is especially visible when a classical mode is providing a blurry texture, while neighbouring motion
tubes reconstruction is much more faithful (at least, more textured), or vice-versa. This happens quite frequently as
motion tubes may fail at reconstructing the images in some areas, while H.264/AVC will actually be able to provide a
proper reconstruction. Conversely, H.264/AVC may fail where motion tubes might succeed.
Be that as it may, both scenarios are likely to introduce some blocking artefacts. The sudden change in reconstruction
quality is also penalizing the overall perception. Figure 7.3.5 shows such areas on the top-left area of the seventh image
of sequence Bus. Discontinuities are outlined in red on the mode selection map.

(a) Discontinuous selection (b) Discontinuities at macroblock boundaries (showed in red)
Intra macroblocks Inter macroblocks Skip/Direct macroblocks motion tube prediction

Figure 7.3.5: How discontinuities in the selection introduces blocking effects and changes in textural quality

7.3.3.2 A lack of temporal stability

While the selection maps are globally consistent across time, they are locally sporadic on transition regions. The same
areas which were producing some blocking effects are also perturbing the temporal consistency of the sequences when
they are played. Unfortunately, this effect cannot be illustrated on a piece of paper. Anyhow, a significant number of
macroblocks located in these transitional areas are suffering from a succession of changes of coding technique. Both
motion tubes and classical modes may provide the same objective quality, but end up in visually different reconstructions.
As a consequence, blocking artefacts previously mentioned keep appearing and disappearing, making macroblocks bound-
aries flickering, which is especially disturbing from a subjective perspective. This naturally introduces the next section:
how to regularize the selection maps? Two main objectives may then be achieved:

1. from a coding perspective, the modified H.264/AVC coder may be greatly improved through the temporal regular-
ization of its decision mechanism, hence using even more optimally the motion tubes;

2. from a motion tube perspective, above all, these selection maps and their regularization may turn into a huge step
towards a life and death mechanism.

7.4 Accounting for the spatio-temporal nature of the motion tubes to drive their
selection

Previous sections 7.2 and 7.3 provided invaluable information regarding the texture synthesis abilities of the motion tubes.
In comparison to state-of-the-art compression techniques, it was shown that motion tubes can properly reconstruct a
significant proportion of the image sequences, even though compression performances were not in favour of motion tubes.
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However, it was also mentioned that H.264/AVC’s decision mechanism is not suited to motion tubes. Standing back from
previous investigation, it becomes obvious that H.264/AVC is effectively unable to catch the temporal dimension of the
motion tubes. Indeed, the JSVM processes the sequences one frame at a time, and does not consider the whole GOP to
drive its coding mode selection mechanism.
Section 7.4.1 will first provide a metric which measures how much consistent are H.264/AVC’s decisions along the temporal
dimension. Coupled with H.264/AVC’s ability to assess the quality of the motion tube prediction, this additional metric
turns out to be a valid quality-efficiency assessment metric for the motion tubes. Then, section 7.4.2 will propose an
additional mechanism in charge of regularizing the selection of the motion tubes across time, thus encouraging the overall
stability.

7.4.1 Towards an hybrid quality-stability metric for the motion tubes

Section 7.3.3.2 explained that encoded sequences suffer from a flickering effect, resulting from discontinuities of the
selection map of the motion tubes. In order to evaluate the ability of a motion tube to provide a temporally coherent
information, it is now proposed to measure how much consistent are H.264/AVC’s decisions across time. This section
will now introduce the concept of stability in the context of motion tubes. By quantifying the amount of temporal
discontinuities in the mode selection maps, one may extract substantial information regarding the temporal coherence of
the motion tubes, hence whether they should be terminated or not.

7.4.1.1 Preliminary study: a coarse stability measurement

Prior to the establishment of a tube-based temporal stability metric, one may ask how much exactly the selection maps
are unstable across time. The modes selection maps M(x, y, t) are first binarized with respect to the motion tubes:
true indicates that H.264/AVC has been using the motion tubes prediction, and false indicates that H.264/AVC has
been using any of its classical coding modes. The temporal evolution of the modes selection map is categorized into two
scenarios:

X stable: the motion tubes selection state is unchanged (from false to false or true to true);
× unstable: the motion tubes selection state is changed (from false to true or true to false).

A coarse stability index is then given, for each time instant, by the percentage of macroblocks whose selection state has
not been changed (first scenario). As the grid of the macroblocks and the positions and shapes of the motion tubes do
not correspond, this index only provides an overall measurement of the stability of the selection of the motion tubes.
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Figure 7.4.1: Average coarse stability index for various sequences

Figure 7.4.1 shows the average coarse stability for the usual sequences test set. As can be seen, the overall stability
index is fluctuating between 60% and 90%. When the index is close to 100%, this means that the overall selection of
the motion tubes is highly consistent and stable along the temporal axis. Conversely, when the index gets close to 50%,
half of the macroblocks are changing of representation, hence likely to introduce some flickering artifact. In addition, it
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can be seen that the stability index is not correlated to the QP: depending on the sequences, their relationships are
very different. In the end, it appears that a large part of H.264/AVC’s decisions introduce temporal discontinuities into
the hybrid tube-AVC representation. This is responsible for the flickering effect mentioned in section 7.3.3.2. Following
subsections will provide a more accurate stability metric to assess the stability of each motion tube.

7.4.1.2 Projecting the selection maps onto the motion tubes reference instant

Until now, the binarized mode selection mapsM(x, y, tcur) only indicated whether motion tubes were or were not used to
represent each macroblock . However, the grid of the macroblocks and the positions of the motion tubes do not correspond,
preventing us from making a direct connection between the selection maps and the motion tubes. As a solution, it is
proposed to project the selection map, for each time instant, onto the reference instant tref of the motion tubes. The
projected selection map M̃(x, y, tcur) is simply obtained through the backward motion compensation ofM(x, y, tcur), and

M̃(x, y, tcur) = wcur→ref (M(x, y, tcur)) (7.1)

(a) Selection map M(x, y, t4) for image I4 (b) Projected selection map M̃(x, y, t4) for
image I4

Figure 7.4.2: Sequence Foreman: backward motion compensation of the selection map

Provided that they all belong to the same family, motion tubes do not overlap at their reference instant, making possible
to map each motion tube with its pixel-wise selection state. Figure 7.4.2 shows the selection map of the fifth image of
sequence Foreman, and its projection at the motion tubes reference instant (a single family of motion tubes has been
used). For each motion tube, green pixels from figure 7.4.2b are those that are being used by H.264/AVC, while orange
pixels are those which are not used by H.264/AVC. From now on, the selection of each motion tube can be precisely
computed, pixel by pixel, from the corresponding area of the projected selection maps.

7.4.1.3 Spatio-temporal selection rate and tube stability index

In order to quantify the temporal efficiency of each motion tube, two metrics are now introduced:

1. the spatio-temporal selection rate Sel(t) indicates in which proportions each motion tube is selected by H.264/AVC;
2. the spatio-temporal stability index Stab(t) indicates how stable are the selected areas across time.

a The spatio-temporal selection rate

Let X be an M × N motion tube instantiated at time instant tref and tracked across a GOP. For each time instant tcur,
its selection rate sel(tcur) is given by the percentage of pixels from ΩX (tcur) which are selected by H.264/AVC decision
mechanism:

Sel(tcur) =
card

(
UX(tcur)

)
M · N (7.2)

where UX(tcur) =
{

(x, y) ∈ M̃
(
ΩX (tref) , tcur

)
, M̃(x, y, tcur) = true

}
is the set of pixels from X’s reconstruction which

are selected by H.264/AVC. By computing the average value of Sel(tcur) over the whole GOP, an overall spatio-temporal
selection rate is obtained. Both instantaneous and average figures may need to be considered: the average selection
rate may be used to decide whether to keep or not to keep a motion tube, while instantaneous figures may help detecting
when motion tubes need to be deactivated, reactivated, or terminated.
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b The spatio-temporal stability index

In order to quantify how much stable is the selection of each motion tube across time, it is proposed to measure how
close to each other are the successive selection maps. It is proposed to compute for each time instant tcur the number of
pixels which are only selected at tcur or only selected at tcur − 1. The stability index Stab(tcur) writes as

Stab(tcur) =
card

(
Y (tcur)

)
M · N =

card
(
UX(tcur) ∆ UX(tcur − 1)

)
M · N (7.3)

where Y (tcur) is the set of pixels only selected at tcur or only selected at tcur − 1, and ∆ is the symmetric difference.
Numerous other stability metrics could have also been considered; this one was chosen for its simplicity, and as a
preliminary solution, but may be modified in future works to account for more specific evolutions of the selection. Figure
7.4.3 illustrates how Y (tcur) is computed.

wn-1    0 (M(ΩX (tn-1), tn-1)) 
UX (tn-1): area used at instant tn-1 

YX(t) = UX (tn-1) Δ UX (tn) 
pixels selected at tn xor tn-1 UX (tn): area used at instant tn time 

wn    0 (M(ΩX (tn), tn)) 

Figure 7.4.3: Assessing the selection of each motion tube along the temporal axis

7.4.1.4 A selection mechanism for the motion tubes based on the selection rate

As a first step towards a spatio-temporal selection mechanism, we now only keep motion tubes whose selection rate is
higher than a given threshold Th. Figure 7.4.4 shows the proportion of motion tubes whose selection rate Sel(t) is
greater than 60 % and 80 %, at QPs 22 and 37 on sequence Foreman (similar results are observed for other sequences).

a Frame-by-frame versus tube-by-tube selections
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Figure 7.4.4: Percentage of motion tubes whose selection rate is higher than a threshold Th for sequence Foreman

In figure 7.4.4a, motion tubes are selected on a frame by frame basis. The higher the QP, the higher the selection rate.
Arbitrary thresholds have been used for validation purposes: further works should determine the best tradeoff between
selection threshold and amount of synthesized textures.
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In figure 7.4.4b, the selection is performed on a tube by tube basis. Only motion tubes whose average selection rate is
higher than the threshold are kept. As can be seen, the overall selection rate is decreased in comparison to the frame
by frame selection, thus providing a spatio-temporal decision mechanism.

b Frame-by-frame selection: lifespan of selected motion tubes
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Figure 7.4.5: Impact of the selection on the lifespan of the motion tubes

When motion tubes are selected on a frame-by-frame basis, their lifespan is impacted, thus decreasing the number of
time instants they are active (in other words, their lifespan). Figure 7.4.5a shows the lifespan histogram, while figure
7.4.5b shows the average duration of the lifespan once motion tubes have been impacted by the selection. As can be
seen, the lifespans are uniformly spread in between 0 and 8 time instants at high bit-rates (QP 22), while low bit-rates
favour the use of motion tubes of long durations.

(a) QP 22, no selection (b) QP 22, Th = 60% (c) QP 22, Th = 80%

(d) QP 37, no selection (e) QP 37, Th = 60% (f ) QP 37, Th = 80%

Figure 7.4.6: Effect of the selection of the motion tubes on sequence Foreman
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c Visual results

Figure 7.4.6 shows how sequence Foreman is impacted when undesirable motion tubes have been removed from the
representation. As could be expected, the most stable areas are located in the background, in other words, stable areas
from the scene in terms of displacement and deformation. Whichever the QP, the selection is highly correlated to the
location of the different elements from the scene. The higher the selection rate, the more unstable areas (areas undergoing
complex deformation or displacement, areas suffering from occlusions, etc) are removed.

7.4.1.5 Measuring the motion tubes selection stability index: practical results

Figure 7.4.7 shows the histogram of the stability index Stab(t) of the motion tubes for sequence Bus. For each motion
tube, Stab(t) has been averaged over the whole GOP. As can be seen, there are few motion tubes whose selection is not
stable across time. In addition, this observation stands for all QPs. In other words, this means that the spatio-temporal
selection rate may be, at least for now, sufficient enough to drive the selection of the motion tubes. As a perspective,
however, this stability information may be advantageously used to refine the selection mechanism. Similar results are
observed for other sequences from the test set.
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Figure 7.4.7: Histogram of the stability index Stab(t) for sequence Bus at various QPs

7.4.2 Improving the spatial coherence of the selection of the motion tubes

Previous sections introduced several selection mechanisms which may be used to drive the life and death of the motion
tubes. At first, H.264/AVC video compression mechanism is used to assess the spatial quality of the reconstruction of
the motion tubes by making them competing with other state-of-the-art coding mechanisms. The selection was then
temporally processed to produce a spatio-temporal measurement of the quality and the stability of the motion tubes.
Preliminary visual results showed, in section 7.3.3.2, that the provided tube selection mechanism was suffering from the
inability of the JSVM to optimize its decision along the temporal axis. This was later confirmed by the stability metrics
provided in section 7.4.1. As a first step towards a spatio-temporal life and death mechanism, it is now proposed to
regularize the selection maps in order to minimize the amount of discrepancies they hold along the temporal dimension.

7.4.2.1 Regularizing the tubes selection maps along the temporal axis

In order to minimize the amount of discrepancies from the selection maps, it is proposed to filter out inconsistent decisions
detected along the temporal axis. The proposed filtering operation is illustrated in figure7.4.8, which plots the successive
selection states of a motion tube X running across fifteen images. Two scenarios can be observed in figure 7.4.8a:

1. at t3 and t14, X is selected during several time instants, then deselected only for one instant, and reselected at
next time instants

2. from t6 to t11 included, X is not selected, except at t9.

Both these situations should be avoided, hence minimizing the number of selection state changes, while still respecting the
largest part of AVC’s decisions. To this end, such scenarios are detected and corrected to end up in a temporally-coherent
selection map as shown in figure 7.4.8b. In practice, the filtering operation is performed through a set of morphological
operations (here, the structuring elements are unidimensional, and close then open operators were applied).
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Figure 7.4.8: Filtering the selection maps along the temporal axis

7.4.2.2 A significant reduction of unselections and reselections

In order to quantify the increase in temporal regularity, it is proposed to count the number of changes of selection states
(from true to false or vice-versa) before and after the maps have been filtered. This is a very crude way to measure
the gain in regularity, as the occurrence of a change in selection state is not bound to be a temporal discrepancy. As a
perspective, one should input the filtered selection maps to H.264/AVC to further study their impact.
For now, figure 7.4.9 confirms the fact that filtering the selection maps did significantly reduce the number of selection
changes, from 11.3 % to 7.9 % in average. These results have been obtained for sequences Foreman at QP 32. The
original selection maps were computed from H.264/AVC’s decisions: only motion tubes whose instantaneous selection
rate Sel(t) was greater than Th = 80% were activated. Similar results are observed for other QPs and sequences.
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Figure 7.4.9: Percentage of motion tubes which are unselected or reselected in sequence Foreman at QP 32

7.4.2.3 Temporal regularization of the selection: visual results

Even though the increase in stability is much more visible when actually playing the sequences, figure 7.4.10 still shows
that the temporal evolution of the selection is much more stable once it has been filtered. The top row of images show
the reconstructions of four successive images from sequence Foreman where the original tubes selection maps have been
used. The bottom row show the same reconstructed images obtained once the selection maps have been filtered.

7.5 Conclusion

In previous chapters, all motion tubes were systematically tracked during the whole duration of the GOPs, whether the
corresponding patches of textures could be tracked or not. Occlusions, complex deformations, or any other phenomena
preventing an initial patch of texture from being tracked are especially problematic for the motion tubes. It is critical for
the representation to be able to detect their occurrences and, in that event, deactivate or terminate the affected tubes.
In order to further validate the representation in regards to state-of-the-art coding tools, it was first proposed to compare
the reconstruction provided by the motion tubes with the reconstruction provided by H.264/AVC compression standard.
To this end, motion tubes were embedded into the JSVM. The decisions taken by the modified coder provided a large
amount of invaluable informations regarding the motion tubes and their abilities. Several key features were highlighted:
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Figure 7.4.10: Effect of the regularization of the selection map on sequence Foreman, QP 32

• motion tubes were eventually used, in very significant proportions, by the modified coder. This further validates
the concept of motion tubes: they are able to provide a proper representation of a large part of the sequences;

• as could be expected, the more stable and persistent the images contents are across time, the more suited are
motion tubes. Complex areas from the sequences, however, were generally better matched by classical coding tools.

• in terms of pure compression, however, the proposed hybrid compression scheme does not provide any gains; quite
the contrary, actually. Still, the coding cost of the motion tubes can be easily reduced by removing the motion
information of unused tubes: those poor compression performances may be drastically improved;

• the tube-based representation suffers from a major issue: its inability to correct the predicted textures through
textural residues. For this reason, motion tubes were much more efficient at low bit-rates than at high bit-rates.

Besides these key points, embedding the motion tubes into H.264/AVC was also a first attempt at assessing the quality
and the efficiency of the motion tubes. This information is crucial for an eventual decision mechanism in charge of the
life and death of the motion tubes. The second half of this chapter was dedicated to this problem. Defining home made
quality and efficiency metrics is definitely one of the most difficult problem raised by the proposed representation. By
making the motion tubes competing with traditional coding techniques, one could at least know when and where it is
better to use motion tubes instead of a more classical representation. From H.264/AVC’s decisions, one may now be able
to remove unused or inefficient motion tubes from the representation.
However, the decision mechanism of the JSVM is not optimal in regards to motion tubes. Indeed, macroblocks are usually
processed on a frame by frame basis. Conversely, motion tubes need to be processed several time instant at once: the
coding cost of a motion tube is spread over several time instants. In order to take the temporal axis into account, it
was first proposed to measure the temporal coherence of the decisions taken by the JSVM in regards to the motion
tubes, through their spatio-temporal selection rate Sel(t) and the temporal stability of the selection Stab(t). While the
selection rate was clearly identified as a very efficient way to quantify the overall efficiency of a motion tube, the stability
index showed that selected areas were locally stable across time.
Finally, a selection mechanism was designed based on the selection rate. By only keeping motion tubes whose overall or
instantaneous selection rates are greater than an arbitrary threshold, one could discard motion tubes or portions of motion
tubes which are not efficient enough. To further improve the selection mechanism, and clearly exhibiting and encouraging
the temporal persistence of the selection, it was then proposed to regularize the selection maps along the temporal
axis. Preliminary results showed that selection maps were visually much more stable. As an immediate perspective, this
decision mechanism needs to be further assessed, and input to the modified coder in order to transmit required motion
tubes only, hopefully reducing the loss in compression performances.



Conclusion

As a contribution to the field of video compression, this thesis provided a new representation for the image se-
quences. The representation focuses on the temporal axis and mostly aims at exhibiting the persistence of the
textural information across time. Standing back on the literature, this work highlighted several issues specific to

each of the available representations. Motion tubes then naturally emerged as potential candidates for a new represen-
tation which combines the advantages of several of its predecessors. Contributions of this thesis include a simple and
advanced motion model, several mechanisms in charge of optimizing the synthesized images, and finally a first attempt
at a life and death mechanism for the motion tubes.

Available representation and compression approaches: outcomes
Video compression aims at removing as much redundancies as possible from input sequences. Decorrelation techniques
are in charge of identifying these redundancies, through numerous approaches which all focus on a specific type of
redundancies (spatial or temporal, local or global, periodic or geometric, etc). Initially, images are input as a series
of spatio-temporal samples. In order to exhibit the targeted redundancies, decorrelation techniques have introduced
numerous alternatives to this initial representation.

Adressing spatial redundancies

The spatial domain has been extensively studied through still images representations, and numerous solutions have been
provided to account for both local and global geometrical patterns, through the use of transforms. Among these transforms,
the frequency transforms are the most popular ones, as they are both relatively low-computational and efficient. More
recent transforms have been focusing on the space-frequency domain, and can be applied to signals of large dimensions
and provide a continuous description of the image contents. The provided scalability is especially interesting in terms
of representation features, but these representations suffer from their implementation complexity. Even more recently,
space-frequency representations now locally model the geometrical patterns, but yet fail at efficiently compacting the
images, or lack from scalability, and are generally computationally intensive.
Whichever way, the ability to locally describe the geometrical contents appears to be an essential feature. Consequently,
the representation provided by this thesis locally accounts for the spatial contents through blocks of pixels. Not only will
this enable local features to be accurately represented, but it will also guarantee the overall complexity to be reasonable.

How essential it is to efficiently capture the redundancies along the temporal axis

Most of the time, image sequences, account for the evolution of a scene across time. As a consequence, each image
can be interpreted as a deformed version of its predecessor in the sequence. For this reason, the largest part of the
redundancies is located along the temporal axis. Thus, video representations and compression schemes should especially
pay attention to the temporal axis, through motion compensation.
Motion compensation has been extensively used for various purposes, including video analysis and (obviously) video
compression. As a consequence, numerous approaches to motion compensation have been proposed. They all model
the motion information (the motion field) in a specific way, and use various optimization techniques to compute their
parameters. In an eye to compression, it is important for the motion field to be modelled with as few parameters as
possible, while still providing a motion information which is accurate enough. With this in mind, geometrical motion
models appeared as a reasonable tradeoff between motion accuracy and amount of information to transmit.
In particular, blocks and meshes were especially considered. With blocks, one may easily handle motion discontinuities,
as there is not interdependencies between neighbouring blocks. However, they cannot handle continuities nor local
deformations and stick to simple translations. Conversely, meshes naturally provide a continuous representation of the
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motion field, and can model a large range of local deformations However, they handle motion discontinuities with difficulty.
The representation provided by this thesis needs to account for both continuities and discontinuities of the motion field.
Consequently, hybrid blocks/meshes motion representations were naturally advocated.

Available compression schemes: strenghts and weaknesses

More popular than ever, the classical approach to video compression is once again expected to be used in forthcoming
HEVC video standard. Such a success is easily explained: its high compression performances, the relative simplicity of
its implementation, and its ability to provide subjectively and objectively high reconstruction qualities. Also, it was built
from a succession of incremental modifications, thus did not suffer from the addition of a disruptive technology delaying
its application. However, it processes the temporal axis on a frame-by-frame basis, which is not in favour of a long-term
decorrelation.

On the other hand, numerous disruptive approaches have been proposed as well, and address several issues raised by
the classical representation. With MCTF and motion threads, they finally provided a way to process the temporal axis
in a continuous manner. In addition, they often provide fully scalable schemes, which is nowadays considered to be an
essential feature. However, they systematically perform the motion compensation, even though it might not produce a
proper prediction, where an intra coding technique may be much more efficient. To paint a black picture of the situation,
these techniques are often more computationally intensive than classical ones. Finally, they may increase the subjective
quality, but generally lower the objective quality, which is still largely taken into account.

As a consequence, this thesis provided a representation which combines most of the advantages of both the classical
compression scheme and the disruptive approaches as well. It provides a local description of the spatial contents, but
processes the temporal axis in a continuous fashion. Our work most exclusively focused on the temporal axis, as it is our
belief that most compression gains can be obtained by improving the temporal decorrelation.

Provided solution
With motion tubes, image sequences are interpreted as a set of patches of textures undergoing specific displacements
and deformations along a given time interval. Indeed, each motion tube consists of an initial patch of texture, a lifespan
during which the patch is available, and a set of warping operations describing its evolutions across time and space. In
order to make their use easier, motion tubes were grouped into families: a reference image was partitioned into blocks,
each of which initializing a motion tube.

With motion tubes, the motion information now consists of a set of spatio-temporal trajectories along with local deforma-
tions. The temporal persistence of the texture is then naturally exhibited by the representation. Several problems were
raised by the representation, then addressed in dedicated chapters: the design of the motion model, the fact that motion
tubes may not completely reconstruct the sequences, and finally the problem of their life and death.

The motion model: in between blocks and meshes

In order to efficiently track the displacements and deformations of individual patches of textures along the temporal axis,
several features were requested: the ability to handle both continuities and discontinuities of the motion field, and the
ability to represent both simple translations and more complex deformations. It was also strongly advised to entirely
base the motion model on blocks, and avoid more complex geometric patterns such as meshes or even arbitrary regions.
Naturally, the SOBMC appeared to be an appropriate model, as it hybrids a basic translational model (the BMC) and
another model which handles slight deformations through simple translations of overlapped blocks of pixels (the OBMC).
The OBMC, in particular, proved to be a low-computational version of the mesh-based CGI. In the end, the provided
motion model is a variant of the SOBMC. It hybridizes four motion modes:

• a disconnected and translational model: a single motion vector is used to model the displacement of a patch of
texture. As there is no interdependency with neighbouring patches, this disconnected mode naturally handles the
discontinuities of the motion field;

• a fully connected model which handles slight deformations. Here, the motion vectors of neighbouring patches
of textures are used to compute the deformation, such that a deformed patch of texture is kept connected to its
neighbours, thus providing a continuous representation of the motion field;

• two partially connected models which respectively exhibit vertical and horizontal directions of connection, and also
handle slight deformations.



CONCLUSION 153

In order to guarantee that the overall motion information is consistent across space and time, several regularization
mechanisms were included. They notably include a rate-distortion optimization, along with a set of spatio-temporal
motion predictors, in charge of discarding motion candidates which require too much information to be transmitted and
often correspond to inconsistent parameters. Finally, the motion information was entropy coded through a state-of-the-art
coder, the CABAC.

Dealing with textural synthesis issues

No matter how efficient is the motion model, synthesized images systematically suffer from various issues. With illumination
changes, resolution losses, and other phenomena which alter the initial patch of texture, the textural information of a
motion tube needs to be frequently refreshed in order to account for these changes. This thesis provided a crude solution
to this issue through the introduction of B-tubes: instead of using a single textural reference instant, they source the
texture from two reference instants. The final texture is then obtained by a weighted combination of both reference ones,
which allows for textural variations to be crudely accounted for.
Another issue, much more problematic, is the fact that motion tubes are generally unable to entirely reconstruct the
sequences. Two mechanisms were provided to address this problem. At first, B-families of motion tubes were used to
register the textural information of a GOP through several families of motion tubes. A significant proportion of previously
unreconstructed areas are now represented by additional motion tubes. Then, remaining holes were inpainted; the
spatio-temporal information of the motion tubes can be used to drive this process.

Life and death of motion tubes

The last issue raised by the representation lies within its ability to decide when and where motion tubes need to be
terminated. Indeed, there is no guarantee for a patch of texture to be effectively available throughout the whole duration
of a GOP, neither for the provided motion model to be able to catch its displacement and deformation. May this happen,
the corresponding motion tube needs to be terminated to not affect the overall compacity of the representation.
In order to detect any of these problematic scenarios, it was first proposed to assess the motion tubes through their
integration into a state-of-the-art compression scheme: H.264/AVC. Since motion tubes were competing with traditional
coding modes, the decisions of the modified coder could be analysed and showed when and where motion tubes were
favourable. However, H.264/AVC’s decisions are taken on a frame-by-frame basis, which does not correlate with the
temporal nature of the motion tubes. As a first solution, it was proposed to measure the stability of the decisions along
the temporal axis, and then to regularize these.

Discussion on the overall performance of the motion tubes

Representation features

This thesis proved that motion tubes are actually viable candidates to the representation of image sequences. Recon-
structed images showed that, for a large proportion of the image sequences, motion tubes were able to properly synthesize
the textures from a minimal amount of textural information. Their integration to H.264/AVC further proved how much
interesting motion tubes may be in regards to more classic representations.
As expected, they also intrinsically exhibit the temporal persistence. In terms of representation, this turns out to be
an invaluable information regarding the spatio-temporal content of the image sequences, and may greatly facilitate its
analysis. Even though initial patches of textures cannot be interpreted as semantic regions, their evolutions will submit
to those of the objects they belong to. A video object may and its temporal evolution may then be interpreted as an
arbitrary set of motion tubes.

Compression features

The integration of the motion tubes into H.264/AVC showed that a significant amount of the macroblocks could be
favourably coded by the motion tubes. However, the coding cost of the motion tubes was not taken into account in the
mode selection process, as the instantaneous coding cost of a motion tube has little if no meaning. In the end, the gain
in pure H.264/AVC bitrate dit not compensate for the coding of the motion tubes.
However, all motion tubes were transmitted, even though they were only partially or not selected at all by the modified
coder. For this reason, it is essential for unused motion tubes to be discarded from the representation, thus reducing
their coding cost. Hopefully, compression performances may turn in favour of the motion tubes. At the moment, however,
there is no guarantee that their coding cost may be lowered to such an extent that the overall bitrate is decreased.
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A viable representation which calls for numerous improvements
With motion tubes, this thesis provided a radical change to the way image sequences can be interpreted, processed,
and compressed. From the start, they were designed in such a way that the proposed representation is not affected by
problems which are inherent to existing schemes. However, such a disruptive approach comes to a cost: the tube-based
representation is not mature enough yet to be advocated for practical use (e.g. as an answer to calls from normalization
committees). Also, its ability to compact image sequences needs to be significantly increased for it to be seriously
considered as an alternative.
Numerous issues are not yet addressed, or much too crudely (incompleteness of the representation, selection of the
motion tubes). Also, modern compression schemes generally provide a set of additional tools to handle the large range
of systems which can be used to shoot, transmit and display image sequences. Each of these tools, including scalability
and multi-view coding, still require a significant amount of work to be designed. In its state, the proposed tube-based
representation does not include any of these tools, even though a form of temporal scalability can be easily provided
through B-families of motion tubes.
This thesis might have raised more questions than answers, and may be as well considered as a preliminary study which
proved that motion tubes are a viable alternative to the problem of the representation and the compression of image
sequences. However, the proposed representation is highly flexible, and exhibits numerous improvement axis. In terms
of compression, we believe that motion tubes may match up to the traditional representation (H.264/AVC). Above all,
motion tubes are subject to numerous perspectives, which, once completed, may turn the proposed representation into a
valid and practical coding scheme. Next pages will summarize several of these perspectives.



Perspectives

While motion tubes abilities were thoroughly assessed by this thesis, there is still room for numerous improvements.
Indeed, they threw back the whole compression problem into doubt, and forced us to reconsider the basic elements
of a video compression scheme. A large part of our work has been dedicated to the construction of a simple and

effective motion model; we consider it to be quite mature and do not plan any particular improvements worth mentioning
here. The solutions we provided to complete and improve the synthesized images, conversely, are still relatively crude.
Similarly, the life and death mechanism needs to be further evaluated, and most of all improved. Finally, it might also
be very interesting to design additional features we believe motion tubes are capable of.

Towards optimal mechanisms in charge of compacting and transmitting the textures

A coding mechanism to transmit and refresh the textural information

Our work did not focus on the problem of the transmission of the textural information. With the integration of the
motion tubes into H.264/AVC, we benefited from its intra coding mechanisms in charge of transmitting the textures. With
B-tubes, the evolution of the textures was crudely accounted for, but without any guarantee that it actually improves
the synthesized textures. However, for the representation to be completed, it is crucial to develop dedicated mechanisms
which can precisely represent the textures and their evolution.

As an immediate perspective, one may modify the current integration into H.264/AVC to enable all inter coding modes
to use the prediction provided by the motion tubes. Besides skip and direct modes, all other inter coding modes can
refine the motion compensated prediction with a set of textural residues. Not only may this enable motion tubes to
be precisely refreshed, but it also might drastically improve the overall gain in compression performances. In a similar
way most skip and direct macroblocks have already been replaced by the motion tubes prediction, one may expect that
remaining inter coding modes may favour this alternative motion prediction as well. In such case, the modified coder only
needs to transmit the textural residues, and not the motion vectors anymore.

As a long term perspective, one may advocate for a coding scheme solely based on motion tubes to be designed. Their
integration into H.264/AVC introduced numerous constraints which significantly limited the way motion tubes could be
used. A whole new coding scheme will not be subject to these limitations anymore, but will require dedicated texture
coding mechanisms which still need to be designed.

Dealing with multi-connected areas

While the problem of non-connected areas have been addressed through B-families of motion tubes and inpainting,
the problem of multi-connected areas, conversely, was not considered. Wherever several motion tubes contribute to
the reconstruction of the same area, the provided representation simply computed the final reconstruction as being the
average of all contributions. This solution is not optimal, and preliminary tests show that significant gains can be obtained
(approximatively +0.5dB in average) if only the best contribution is used to synthesize these areas.

This calls to mind the problem of multiple description: how can we combine different versions of the same original signal
in an optimal way? The literature, in the past few years, has been increasingly studying this problem. Provided solutions
may be used to design an optimal composition operator for the motion tubes. As for the transmission of the texture and
its evolutions, it may as well take into account the fact that multi-connected areas are areas where several blocks are
overlapping. In such case, overlapped transforms (LOT, LBT) might be fairly interesting.
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Maturing the life and death mechanism

Currently, the representation provided by this thesis mostly suffers from the crudeness of the selection mechanism in
charge of the life and death of the motion tubes. This is especially important as it is responsible for the removal of
all unneeded or inefficient motion tubes. The quality of the reconstructed images is affected by these erroneous motion
tubes. Also, the overall coding cost may be significantly reduced once these tubes have been removed, especially because
erroneous motion tubes are often those which require the most bitrate to be allocated.

Coder-dependent approach: further studies

As a short-term perspective, the provided selection mechanism needs to be completed and fully assessed. So far,
H.264/AVC’s decisions have been used to activate or deactivate each motion tube. More than ever, it is essential to alter
the coding process of the motion tubes, such that discarded ones are not transmitted anymore.
In addition, the regularized selection maps also need to be assessed. So far, it has only been proved that it effectively
reduced the occurrences of temporal discrepancies in the selection. Yet, there is no guarantee that it effectively improves
the encoded sequences and reduces the flickering effect they are suffering from. As a solution, it is proposed to input
the regularized selection maps to H.264/AVC, in order to drive its decision and force or prevent the use of motion tubes
according to the selection state. Also, it may be fairly interesting to compute the impact of the regularization on the
compression performances.

A coder-independent life and death mechanism

Ultimately, it would be very handy to design an home-made metric dedicated to the assessment of the motion tubes.
Parameters which may need to be accounted for include: the distortion, the motion coding cost, the regularity and the
smoothness of the trajectories, their amount of redundancy with respect to other motion tubes, to cite only a few of them.
The coder-dependent selection mechanism can act as a reference selection. One may then progressively build a quality
and efficiency metric purely based on motion tubes, while ensuring that it correlates with the coder-dependent selection.
This is another step towards a compression scheme solely based on motion tubes.

Additional features provided by the representation

Scalability

It is crucial for nowadays video compression schemes to integrate some scalability abilities. To this end, the image
sequences are split into a base layer and several successive enhancement layers: in other words, image sequences are
reconstructed from several contributions. In that, motion tubes are naturally able to provide several contributions for
the same area, hence may naturally be organized into a fully scalable representation. As an immediate approach to
scalability, one may consider that, in B-families of motion tubes, each additional family acts as an enhancement layer.
Alternatively,

• temporal scalability and motion scalability can be provided through successive refinements of the trajectories of
the motion tubes;

• spatial scalability can be provided through motion tubes of different sizes or resolutions;
• quality scalability can be provided through motion tubes of different qualities and/or through additional motion

tubes holding residual textures.

3D video compression

Motion tubes aim at tracking the evolution of a patch of texture across time, as it is very likely to be available in several
successive images. Similarly, in multiple view sequences, a patch of texture is likely to be observed in several successive
views. In [CPML10], Colleu introduced a new representation of multiple view sequences through a polygon soup: the
3D scene is modelled by a set of variable-depth polygons (quads). The temporal axis, however, was not studied during
the course of his study. To further compact his representation, one may instantiate, for each quad or group of quads, a
motion tube in charge of describing the temporal evolution of the considered quads.
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Eased video segmentation and description

Video analysis has been extensively focusing on finding solutions to extract semantic information. In particular, this
information includes the shape, the displacements and the deformations of the elements of the scene. The required
spatio-temporal segmentation still is problematic and often computationally intensive.
With variable-size motion tubes, it was provided a way to adapt the size and shape of the motion tubes according to
the spatial contents and their temporal evolution. By grouping motion tubes into arbitrary sets which all share common
spatio-temporal features, one might be able to identify and locate the different elements of the video in a continuous
fashion.
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Appendix A

How OTMC and CGI motion modes are
related to each other

While designing the motion model of the motion tubes, as was seen in chapter 5, both OBMC and CGI have
been greatly influencing the final design. In practice, the provided motion model is a modifed version of the
SOBMC (see section 2.4.3.2), though the LAOTMC motion mode lies halfway between the OTMC and the CGI

(see section 5.3.4).
Section A.1 will demonstrate that OTMC and CGI are equivalent under certain hypothesis when performing backward
motion compensation. From this, it will be deduced that OTMC is no more than a low-computational version of the
CGI, thus corroborating the fact that the proposed LAOTMC mode is very likely to be close to the CGI. When it
comes to forward motion section, however, section A.2 will show that CGI and OTMC are not equivalent anymore, as
their respective weighting coefficient do not match. Then, it will be proposed to force the OTMC to use CGI weighting
coefficients, which, in practice, does not prove to be efficient.

A.1 Backward motion compensation: identifying the CGI to the OTMC

In order to match the OTMC to the CGI, it is proposed to consider the deformation of a square block B ref (see figure
A.1.1). Its deformation is then described in two different ways:

1. with CGI, a quadrangular mesh is in charge of modeling the deformation;
2. with OTMC, four motion vectors are associated to each corner of the block.

Let MT be a motion tube initialized at tref, such that its support ΩMT (tref) is a square block B ref at the very same
instant. It is now proposed to compare CGI and OTMC compensation processes of ΩMT (tref) into ΩMT (tn). In both
case, the displacements of the corners are given by motion vectors

−→
dTL,
−→
dTR,
−→
dBL (the bottom-right motion vectors of three

motion tubes from the causal neighbourhood) and
−→
dTR (the bottom-right motion vector of ΩMT (tref)).
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Figure A.1.1: A focus on CGI and OTMC approaches to motion compensation

161



162 APPENDIX A. HOW OTMC AND CGI MOTION MODES ARE RELATED TO EACH OTHER

A.1.1 Overlapped Tube Motion Compensation: a reminder

With OTMC, the backward motion compensation consists of the projection and the weighting of four blocks B i,cur, 0 6
i 6 3, onto a single reference block B ref. Let, Pref = Iref(Pref) be a pixel of B ref located at coordinates Pref = [xref, yref]T .
At tref, Pref is predicted from a weighted average of four pixels from Icur, whose locations are given by four displacement
vectors

−→
dTL(tcur),

−→
dTR(tcur),

−→
dBL(tcur) and

−→
dBR(tcur) -see equation (5.20)-. Hence, ∀Pref = [xref, yref]T ∈ ΩMT (tref),

Iref
OTMC(Pref) = W OTMC

TL (Pref) · Icur

(
Pref +

−→
dTL(tcur)

)
+W OTMC

TR (Pref) · Icur

(
Pref +

−→
dTR(tcur)

)
+W OTMC

BL (Pref) · Icur

(
Pref +

−→
dBL(tcur)

)
+W OTMC

BR (Pref) · Icur

(
Pref +

−→
dBR(tcur)

)
(A.1)

where W OTMC
TL (P), W OTMC

TR (P), W OTMC
BL (P) and W OTMC

BR (P) are the values of the four OTMC weighting window (see figure
5.3.5) at location P = [x, y]T . From equation (A.1), it can be seen that the OTMC directly uses the motion vectors
associated to the corners of B ref, and then interpolates the motion compensated intensity from four original pixellic
intensities sourced from Icur. As a single interpolation step is required, such a compensation technique requires a small
amount of computations to be performed.

A.1.2 Working our way through Control Grid Interpolation

Unlike the OTMC, the Control Grid Interpolation directly sources the pixellic intensity from a single motion compensated
location. The latter is obtained through an interpolation of the four motion vectors

−→
dTL(tcur),

−→
dTR(tcur),

−→
dBL(tcur) and

−→
dBR(tcur). At position Pref = [xref, yref]T , the reference image Iref is motion compensated by Icur(Pcur), where Pcur =
[xcur, ycur]T are the collocated coordinates of Pref in Icur(Pcur). Pcur results from a translation of Pref by a displacement vector
−−→
dCGI(tcur) which is interpolated from

−→
dTL(tcur),

−→
dTR(tcur),

−→
dBL(tcur) and

−→
dBR(tcur). In particular, ∀P = [xref, yref]T ∈ ΩMT (tref)

Iref
CGI(Pref) = Icur(Pcur) (A.2)

= Icur
(
Pref +

−−→
dCGI(tcur)

)
= Icur

(
Pref +W CGI

TL (Pref) ·
−→
dTL(tcur) +W CGI

TR (Pref) ·
−→
dTR(tcur) +W CGI

BL (Pref) ·
−→
dBL(tcur) +W CGI

BR (Pref) ·
−→
dBR(tcur)

)
where W CGI

TL (P), W CGI
TR (P), W CGI

BL (P) and W CGI
BR (P) are the inner-mesh interpolation functions of the four control points.

As resulting location may not coincide with an integer pixellic position, a further interpolation step may be required to
obtain the appropriate pixellic intensity from neighbouring pixels. In the end, up to three interpolation steps may be
required to motion compensate each pixel, which, in terms of complexity, is much more computationally demanding than
the OTMC. Since influence functions are normalized, such that WTL(x, y) + WTR(x, y) + WBL(x, y) + WBR(x, y) = 1,
equation (A.2) can be rewritten as:

Iref
CGI (Pref) = Icur

(
W CGI

TL (Pref) ·
[
Pref +

−→
dTL(tcur)

]
+W CGI

TR (Pref) ·
[
Pref +

−→
dTR(tcur)

]
+W CGI

BL (Pref) ·
[
Pref +

−→
dBL(tcur)

]
+W CGI

BR (Pref) ·
[
Pref +

−→
dBR(tcur)

] )
(A.3)

A.1.2.1 Expanding the images into Taylor series

Intuitively, it can be seen that whenever the initial block B ref = ΩMT (tref) is too much distorted, the shape of ΩMT (tn)
will greatly vary whether CGI or OTMC motion models are used. As a consequence, CGI and OTMC cannot be identified
under such circumstances. With small enough deformations, however, the shape of ΩMT (tn) will be similar whichever
the provided motion model.
From this intuition, it is proposed to perform local approximations of the images which will ease the identification
of the CGI to the OTMC. Let first assume that image In(x, y) is infinitely derivable in the neighbourhood of point
Pref +

−→
dTL(tcur) = [xref + dxcur, TL, yref + dycur, TL]T . The Taylor series expansion of In(x, y) around point Pref +

−→
dTL(tcur)

then writes as

ITL
cur

(
Pref +

−→
dTL(tcur) +

−→
dε
)

=Icur

(
Pref +

−→
dTL(tcur)

)
+
∞∑
p=1

1
p! ·

〈−→
dε ,∇

〉p
(Icur)

(
Pref +

−→
dTL(tcur)

)
=Icur

(
Pref +

−→
dTL(tcur)

)
+
[−→
dε T · ∇

]
(Icur)

(
Pref +

−→
dTL(tcur)

)
+ o

(−→
dε
)

(A.4)
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where
−→
dε = [dxε, dyε ]T is a small displacement vector whose amplitude

∥∥∥−→dε∥∥∥ is inferior to RTL, the radius of convergence

of the Taylor series of Icur(x, y) around Pref +
−→
dTL(tcur). Similarly, it is now assumed that

−−→
∇Icur(x, y) is infinitely derivable

around point Pref +
−→
dTL(tcur) +

−→
dε . Consequently, the Taylor expansion of

−−→
∇Icur(x, y) then writes around this point as

−−→
∇Icur

TL
(
Pref +

−→
dTL(tcur)

)
=
−−→
∇Icur

(
Pref +

−→
dTL(tcur) +

−→
dε
)
−
∞∑
p=1

1
p! ·

〈−→
dε ,∇

〉p (−−→
∇Icur

)(
Pref +

−→
dTL(tcur) +

−→
dε
)

=
−−→
∇Icur

(
Pref +

−→
dTL(tcur) +

−→
dε
)
−
[(
∇ ·∇T ) · −→dε] (Icur)

(
Pref +

−→
dTL(tcur) +

−→
dε
)

+ o
(−→
dε
)

(A.5)

where ∇∇T is the Hessian matrix of dimension two. Again, it is assumed that
−→
dε ’s amplitude is inferior to the radius

of convergence R∇TL. Replacing the gradient
−−→
∇Icur in equation (A.4) by its Taylor expansion from equation (A.5), the

value of Icur(Pref +
−→
dTL(tcur) +

−→
dε ) is now given by

ITL
cur

(
Pref +

−→
dTL(tcur) +

−→
dε
)

=Icur

(
Pref +

−→
dTL(tcur)

)
+
[−→
dε T · ∇

]
(Icur)

(
Pref +

−→
dTL(tcur) +

−→
dε
)

−
[−→
dε T · ∇ · ∇T ·

−→
dε
]
(Icur)

(
Pref +

−→
dTL(tcur) +

−→
dε
)

+ o
(−→
dε
)

=Icur

(
Pref +

−→
dTL(tcur)

)
+
[−→
dε T · ∇

]
(Icur)

(
Pref +

−→
dTL(tcur) +

−→
dε
)

+ o
(−→
dε
)

(A.6)

A.1.2.2 Local approximations of the pixel intensities around CGI control points

As it was earlier assumed that the deformation undergone by the initial block B ref = ΩMT (tref) was rather small, it
follows that Pcur (the collocated position of Pref) and Pref +

−→
dTL(tcur) (the translation of Pref by the displacement of the

top-left control point) are likely to be very close. In particular, assuming that∥∥∥−−→dCGI(tcur)−
−→
dTL(tcur)

∥∥∥ < min (RTL, R∇TL) , (A.7)

one may apply equation (A.6) to
−−→
dε,TL =

−−→
dCGI(tcur)−

−→
dTL(tcur), which results in

ITL
cur (Pcur) = Icur

(
Pref +

−→
dTL(tcur)

)
+
[−−→
dε,TL

T · ∇
]
(Icur) (Pcur)−

[−−→
dε,TL

T · ∇ · ∇T ·
−−→
dε,TL

]
(Icur) (Pcur) + o

(−−→
dε,TL

)
(A.8)

Similarly, equivalent expressions for Icur (Pcur) can be obtained from the Taylor expansions of Icur(x, y) around points
Pref +

−→
dTR(tcur), Pref +

−→
dBL(tcur) and Pref +

−→
dBR(tcur); respectively ITR

cur (Pcur), IBL
cur (Pcur) and IBR

cur (Pcur). Their radius of
convergence are respectively written min (RTR, R∇TR), min (RBL, R∇BL) and min (RBR, R∇BR).

ITR
cur (Pcur) = Icur

(
Pref +

−→
dTR(tcur)

)
+

[−−→
dε,TR

T · ∇
]
(Icur) (Pcur) + o

(−−→
dε,TR

)
IBL
cur (Pcur) = Icur

(
Pref +

−→
dBL(tcur)

)
+

[−−→
dε,BL

T · ∇
]
(Icur) (Pcur) + o

(−−→
dε,BL

)
IBR
cur (Pcur) = Icur

(
Pref +

−→
dBR(tcur)

)
+

[−−→
dε,BR

T · ∇
]
(Icur) (Pcur) + o

(−−→
dε,BR

) (A.9)

where (resp.)
−−→
dε,TR =

−−→
dCGI(tcur)−

−→
dTR(tcur),

−−→
dε,BL =

−−→
dCGI(tcur)−

−−−→
dcur, BL and

−−→
dε,BR =

−−→
dCGI(tcur)−

−→
dBR(tcur) are displacement

vectors whose amplitudes are inferior to (resp.) min (RTR, R∇TR), min (RBL, R∇BL) and min (RBR, R∇BR).

A.1.2.3 Towards an OBMC-like formulation of the CGI

Let now re-introduce the CGI inner-mesh interpolation functions. Assuming that W CGI
TL (x, y), W CGI

TR (x, y), W CGI
BL (x, y) and

W CGI
BR (x, y) are normalized over B ref, the following weighted average

W CGI
TL (Pref) · ITL

cur (Pcur) + W CGI
TR (Pref) · ITR

cur (Pcur) + W CGI
BL (Pref) · IBL

cur (Pcur) + W CGI
BR (Pref) · IBR

cur (Pcur) (A.10)
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is equal to Icur (Pcur). Further developing the calculations, the sum (A.10) is expanded into:

Icur (Pcur) = W CGI
TL (Pref) · Icur

(
Pref +

−→
dTL(tcur)

)
+W CGI

TR (Pref) · Icur

(
Pref +

−−−→
dcur, TR

)
+W CGI

BL (Pref) · Icur

(
Pref +

−−−→
dcur, BL

)
+W CGI

BR (Pref) · Icur

(
Pref +

−−−→
dcur, BR

)
+

(W CGI
TL (Pref) ·

−−→
dε,TL

T +W CGI
TR (Pref) ·

−−→
dε,TR

T +W CGI
BL (Pref) ·

−−→
dε,BL

T +W CGI
BR (Pref) ·

−−→
dε,BR

T
)

︸ ︷︷ ︸
κ

·∇

 (Icur) (Pcur)

+o
(−−→
dε,TL

)
+ o

(−−→
dε,TR

)
+ o

(−−→
dε,BL

)
+ o

(−−→
dε,BR

)
(A.11)

The weighted sum κ is then simplified into

κ =
(
W CGI

TL (Pref) + W CGI
TR (Pref) + W CGI

BL (Pref) + W CGI
BR (Pref)

)︸ ︷︷ ︸
1

·
−−→
dCGI

T (tcur)

−W CGI
TL (Pref) ·

−−−→
dcur, TR − W CGI

TR (Pref) ·
−→
dTR(tcur) − W CGI

BL (Pref) ·
−→
dBL(tcur) − W CGI

BR (Pref) ·
−→
dBR(tcur)

=
−−→
dCGI(tcur)−

−−→
dCGI(tcur)

=
−→
0 (A.12)

From this development, equation (A.11) is drastically simplified. Assuming that o
(−−→
dε,TL

)
, o
(−−→
dε,TR

)
, o
(−−→
dε,BL

)
and

o
(−−→
dε,BR

)
are small enough compared to other terms, the CGI prediction ICGI

ref (Pref) is finally approximated to

Iref
CGI(Pref) ≈ W CGI

TL (Pref) · Icur

(
Pref +

−→
dTL(tcur)

)
+W CGI

TR (Pref) · Icur

(
Pref +

−→
dTR(tcur)

)
+W CGI

BL (Pref) · Icur

(
Pref +

−→
dBL(tcur)

)
+W CGI

BR (Pref) · Icur

(
Pref +

−→
dBR(tcur)

)
(A.13)

which is equivalent to the OTMC prediction -see equation (A.1)- assuming that the CGI inner-mesh interpolation functions
are equal to the OBMC weighting windows:

∀(x, y) ∈ B ref ,


W CGI

TL (x, y) = W OTMC
TL (x, y)

W CGI
TR (x, y) = W OTMC

TR (x, y)
W CGI

BL (x, y) = W OTMC
BL (x, y)

W CGI
BR (x, y) = W OTMC

BR (x, y)

(A.14)

A.1.3 Small deformations: equivalence of the CGI and the OBMC

Following previous section, it is now proved that both CGI and OBMC perform equivalent backward motion compensation
under several conditions:

1. ∀(x, y) ∈ Ω, the image domain, Icur(x, y) is infinitely derivable;
2. the deformation undergone by the reference block B ref = ΩMT (tref) is small enough;
3. the second derivatives of Icur(x, y) can be neglected in a local neighbourhood of Pcur.

The second condition requires quadrilateral dΩw (Pref), made of vertices (Pref +
−→
dTL(tcur), (Pref +

−→
dTR(tcur), (Pref +

−→
dBL(tcur)

and (Pref +
−→
dBR(tcur), is fully included in the domain of convergence of the Taylor series of Icur(x, y) around Pcur and

dΩw (Pref)’s vertices (see figure A.1.2). Considering small deformations, it ensues that vectors
−→
dTL(tcur),

−→
dTR(tcur),

−→
dBL(tcur),−→

dBR(tcur) and
−−→
dCGI(tcur) are close to each other, such that polygon dΩw (Pref) is very likely to be small enough to verify

the condition. As for the third condition, it only requires
(
∇∇T ) (Icur) (x, y) to be negligible over dΩw (Pref). In other

words, it consists in approximating Icur(x, y) to an affine facet over dΩw (Pref).
In conclusion, the OTMCcan be seen as a low-computational version of the CGI: instead of performing the interpolation
on a pixel-by-pixel basis, the OTMC computes once and for all the whole weighting coefficients which can then be
systematically employed.
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Figure A.1.2: Motion compensation of Pcur into Pref: quadrangular neighbourhood given by the motion vectors of the control points

A.2 Forward motion compensation: a drift between OTMC and CGI coefficients

OTMC and CGI proved to be equivalent when motion compensating images in the backward direction from small defor-
mations. To this end, the OTMC weighting windows and the influence functions of CGI’s control points were matched over
ΩMT (tref) -see equation (A.14)-. In the forward direction, however, the OTMC does not provide a normalized projection
as weighting windows do not properly overlap anymore. Furthermore, a few preliminary experiments showed that slight
changes in the forward OTMC weighting coefficients may result in non negligible variations in synthesis quality.

A.2.1 Motion compensating CGI’s interpolation functions and OTMC’s weighting windows

Following previous demonstration, it is assumed that CGI’s inner-mesh interpolation functions and OTMC’s weighting
windows are equivalent on the reference block B ref = ΩMT (tref). In our experiments, a set of bilinear weights were used
to balance the influence of each of the four corners of B ref. Figure A.2.1 shows corresponding weighting windows.
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(a) Top-left: W CGI
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(b) Combined backward weighting windows

Figure A.2.1: Backward motion compensation: equal OTMC’s weighting windows and CGI’s inner-mesh interpolation functions

A.2.1.1 Enlarging the reference block: a simple deformation

Let first consider a simple deformation, by which the N × N reference block B ref is enlarged into a 3/2N × 3/2N block
B cur = ΩMT (tcur). The deformation is illustrated in figure A.2.2; it can be seen that ΩMT (tcur) is similar whether
CGI or OTMC motion model is used. It is now proposed to investigate the effects of such a deformation on the motion
compensated weighting windows and inner-mesh interpolation functions.

A.2.1.2 Effects of the enlargement on the weighting coefficients

During the forward motion compensation, both OTMC weighting windows and CGI inner-mesh interpolation function are
modified to account for the current deformation. While CGI accurately warps Iref (B ref) onto Icur (B cur), OTMC simply
translates Iref (B ref) on four different locations. In both cases, each motion compensated pixel from Icur is balanced by the
weighting coefficient of its collocated pixel in Iref.
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Figure A.2.2: Enlargement of a block through CGI and OTMC approaches

In other words, the backward weighting windows is motion compensated following the provided motion model. With CGI,
backward inner-mesh interpolation functions are warped over B cur, such that motion compensated inner-mesh interpolation
functions are smoothly stretched to match the shape of B cur. This is shown in figure A.2.3b. OTMC, on the other hand,
does not deform its weighting windows, but simply translates it following the four motion vectors

−→
dTL(tcur),

−→
dTR(tcur),−→

dBL(tcur),
−→
dBR(tcur). This is illustrated in figure A.2.3c.
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Figure A.2.3: Motion compensation of OTMC and CGI: sectional view of the weighting coefficients

In addition, it was seen in chapter 5 that OTMC may not always synthesize a motion compensated pixel from four
contributions, but only from the translations of B ref available at the current pixel. With a simple enlargement, it can
be seen from figure A.2.2b that Icur (B cur) is synthesized from a variable number of contributions. Consequently, motion
compensated weighting windows are normalized in various ways according to the available contributions.

A.3 Towards an optimal set of weights for the OTMC

It can be seen from chapter 5 that the deformations of the motion tubes were estimated in a backward fashion: the
reconstruction of Iref (B ref) from Icur (B cur) was optimized. To this end, Icur (B cur) was motion compensated backwards into
Iref (B ref). This only guarantee that estimated motion parameters are optimal with respect to provided backward weighting
windows. Consequently, OTMC does not guarantee that a simple translation of each backward weighting window will
provide optimal forward weighting coefficients.

A.3.1 Applying CGI weights to OTMC contributions

As a first attempt towards the construction of an optimal set of forward weighting coefficients for the OTMC, it is now
proposed to weight OTMC’s contributions with CGI-like coefficients. Consequently, it is proposed to spread the OTMC
weighting window over the whole domain of B cur, as illustrated in figure A.2.3d. Hence, for any point Pcur = [xcur, ycur]
of Icur and its collocated position Pref = [xref, yref] in Iref, the forward OTMC coefficients are now given by W OTMC

opt (x, y),
such that

W OTMC
opt (xcur, ycur) = W OTMC

backward

(
N

N + δx (yref)
· xref,

N
N + δy(xref)

· yref

)
(A.15)
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where W OTMC
backward(x, y) is one of the four backward weighting windows. As for δx (y) and δy(x), they are respectively the

horizontal and vertical variations of the dimension of the deforming block (see figure A.3.1). Horizontal and vertical
stretching dimensions are interpolated from those of the block’s edges; an accurate approximation when deformations are
small. They are given for any position (x, y) by

δx (y) = N − y
N · (dxcur, TR − dxcur, TL)︸ ︷︷ ︸

top x variation

+ y
N ·

(dxcur, BR − dxcur, BL)︸ ︷︷ ︸
bottom x variation

δy(x) = N − x
N · (dycur, BL − dycur, TL)︸ ︷︷ ︸

left y variation

+ x
N ·

(dycur, BR − dycur, TR)︸ ︷︷ ︸
right y variation

(A.16)
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Figure A.3.1: Variations in dimensions of the deforming block

In areas synthesized from all four OTMC contributions, we now have W OTMC
opt (x, y) ≈ W CGI

forward(x, y). As a consequence, the
modified OTMC can now be identified to the CGI through an similar approach to what was demonstrated regarding the
backward motion compensation in section A.1: the modified OTMC weights are now near-optimal from a CGI perspective.
However, the compensation complexity is increased as W OTMC

opt needs to be computed for each pixel.

A.3.2 Practical experiments, conclusions, perspectives

In practice, however, the modified OTMC weighting windows do not provide any improvement. On the contrary, they
lower the resulting PSNR on synthesized areas. Table A.3.1 shows the influence of the OTMC weighting windows on
the synthesized images for several sequences. This can be due to numerous factors, including:

• initial hypothesis which allowed us to identify the OTMC to the CGI may not be true (too large deformations, lack
of linearity of the images, . . . );

• the provided modified OTMC weights are too crudely computed from the four motion vectors;

SPSNRSequence with initial OTMC weights with modified OTMC weights Gain

Bus 24.08 dB 23.90 dB -0.18 dB
City 31.60 dB 31.45 dB -0.15 dB
Crew 31.80 dB 31.68 dB -0.12 dB
Foreman 31.92 dB 31.77 dB -0.15 dB
Mobile 25.62 dB 25.40 dB -0.21 dB

Table A.3.1: Influence of the OTMC weights on the PSNR

As a perspective, however, deforming motion tubes may directly be motion compensated using a CGI motion model. CGI
is truly more computationnaly demanding than the OTMC; however, most computations are due to the motion estimation
process which performs a backward motion compensation for each set of motion parameters which needs to be evaluated.
When synthesizing the images, a single motion compensation step is required. Consequently, it may be interesting to
further investigate an non-symmetric scheme which relies on the OTMC at the estimation stage, and on the CGI at the
synthesis stage.





Appendix B

Hybridizing TMC and OTMC motion modes:
different scenarios

Hybridizing the different motion modes provided in chapter 5 (in particular, in section 5.2.2.5), one may build a
large variety of deformation patterns. Considering a simple group of four motion tubes, 4 × 4 × 4 × 4 = 256
different hybridization scenarios are conceivable. While section 5.2.2.5 already illustrated a few of them through

figures 5.2.4, 5.2.5 and 5.2.6, this annex will further illustrate the variety of hybridization scenarios.
Again, the current motion tube is called X; its causal neighbours are respectively written A, B and C (respectively the
top-left, top and left neighbours). Table 1 lists the different scenarios under consideration: forthcoming sections will
illustrate each of them. The scenarios hybridize the four available motion and connection modes (disconnected TMC
mode, and connected OTMC, top OTMC and left OTMC modes) in various ways. Obviously, the list is not exhaustive as
only 16 out of the 64 possible scenarios are considered; however, the chosen scenarios are quite representative of the
overall possibilities of the hybrid motion model.

Scenario Motion tubes deformation and connection modes
index A (top-left) B (top-right) C (bottom-left) X (current)

Disconnected scenarios
1 TMC TMC TMC TMC
2 OTMC OTMC OTMC TMC
3 TMC Left OTMC Top OTMC TMC
4 TMC TMC Left OTMC TMC

Full-connected scenarios
5 TMC TMC TMC OTMC
6 OTMC OTMC OTMC OTMC
7 TMC Left OTMC Top OTMC OTMC
8 TMC TMC Left OTMC OTMC

Top-connected scenarios
9 TMC TMC TMC Top OTMC

10 OTMC OTMC OTMC Top OTMC
11 TMC Left OTMC Top OTMC Top OTMC
12 TMC TMC Left OTMC Top OTMC

Left-connected scenarios
13 TMC TMC TMC Left OTMC
14 OTMC OTMC OTMC Left OTMC
15 TMC Left OTMC Top OTMC Left OTMC
16 TMC TMC Left OTMC Left OTMC

Table 1: A list of representative scenarios wherein the current motion tube X is connected to its neighbours in various ways

169
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B.1 Disconnected TMC scenarios
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Scenario 3
• A and X: TMC
• B: left OTMC
• C: top OTMC
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Scenario 4
• A, B and X: TMC
• C: left OTMC
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B.2 Full-connected scenarios
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Scenario 5
• A, B and C: TMC
• X: OTMC
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OTMC
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Scenario 7
• A: TMC
• B: left OTMC
• C: top OTMC
• X: OTMC
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Scenario 8
• A and B: TMC
• C: left OTMC
• X: OTMC
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B.3 Top-connected scenarios
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Scenario 9
• A, B and C: TMC
• X: top OTMC
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Scenario 10
• A, B and C:
OTMC
• X: top OTMC
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Scenario 11
• A: TMC
• B: left OTMC
• C and X: top OTMC
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Scenario 12
• A and B: TMC
• C: left OTMC
• X: top OTMC
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B.4 Left-connected scenarios
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Scenario 13
• A, B and C: TMC
• X: left OTMC
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Scenario 14
• A, B and C:
OTMC
• X: left OTMC
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Scenario 15
• A: TMC
• C: top OTMC
• B and X: left
OTMC
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Scenario 16
• A and B: TMC
• C and X: left
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Appendix C

Motion model performances: detailed results

C.1 Hybridization of TMC, OTMC, left OTMC and top OTMC motion modes

Motion model dB dB %Sequence TMC OTMC Left OTMC Top OTMC PSNR Iref dB SPSNR Icur dB Rec. rate %
X × × × 23.33 dB 24.43 dB 84.84 %
× X × × 19.30 dB 18.86 dB 89.01 %
× X X X 23.09 dB 23.27 dB 87.57 %
X X × × 24.38 dB 25.49 dB 86.00 %

Bus

X X X X 24.82 dB 25.88 dB 86.24 %
X × × × 24.15 dB 24.86 dB 63.38 %
× X × × 21.38 dB 20.44 dB 81.49 %
× X X X 23.91 dB 23.27 dB 74.14 %
X X × × 24.43 dB 24.63 dB 66.87 %

Football

X X X X 24.82 dB 24.82 dB 69.03 %
X × × × 30.47 dB 31.12 dB 89.27 %
× X × × 27.84 dB 27.44 dB 95.56 %
× X X X 31.58 dB 31.58 dB 93.43 %
X X × × 31.77 dB 32.22 dB 91.87 %

Foreman

X X X X 32.34 dB 32.68 dB 92.05 %
X × × × 23.84 dB 24.15 dB 95.70 %
× X × × 21.70 dB 21.40 dB 98.24 %
× X X X 25.57 dB 25.59 dB 96.75 %
X X × × 26.57 dB 26.92 dB 96.12 %

Mobile

X X X X 26.87 dB 27.23 dB 96.12 %
X × × × 27.87 dB 28.63 dB 95.87 %
× X × × 24.63 dB 24.30 dB 98.64 %
× X X X 28.69 dB 28.80 dB 97.52 %
X X × × 28.95 dB 29.41 dB 96.79 %

Paris

X X X X 29.34 dB 29.75 dB 96.95 %
X × × × 26.85 dB 27.13 dB 94.84 %
× X × × 25.49 dB 25.23 dB 97.98 %
× X X X 28.59 dB 28.74 dB 96.25 %
X X × × 28.95 dB 29.30 dB 95.48 %

Tempest

X X X X 29.20 dB 29.54 dB 95.50 %

Table C.1.1: Hybridization of the four motion modes: resulting SPSNRs and reconstruction rates - detailed results of table 5.3.1
from section 5.3.5
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Figure C.1.1: Hybridization of the four motion modes: resulting SPSNRs and reconstruction rates - detailed results of figure 5.3.12
from section 5.3.5
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C.2 Influence of the LAOTMC on the synthesized images

Sequence LAOTMC use PSNR Iref dB SPSNR Icur dB Rec. rate %
No LAOTMC split 23.85 dB 23.42 dB 92.37 %
LAOTMC split down to 4× 4 23.09 dB 23.27 dB 87.57 %Bus
LAOTMC split down to 2× 2 22.92 dB 23.42 dB 85.74 %
No LAOTMC split 24.03 dB 22.69 dB 82.02 %
LAOTMC split down to 4× 4 23.91 dB 23.27 dB 74.14 %Football
LAOTMC split down to 2× 2 23.73 dB 23.55 dB 69.17 %
No LAOTMC split 31.00 dB 30.39 dB 96.65 %
LAOTMC split down to 4× 4 31.58 dB 31.58 dB 93.43 %Foreman
LAOTMC split down to 2× 2 31.49 dB 31.85 dB 91.97 %
No LAOTMC split 25.60 dB 25.47 dB 97.88 %
LAOTMC split down to 4× 4 25.57 dB 25.59 dB 96.75 %Mobile
LAOTMC split down to 2× 2 25.52 dB 25.65 dB 96.46 %
No LAOTMC split 28.28 dB 28.00 dB 98.92 %
LAOTMC split down to 4× 4 28.69 dB 28.80 dB 97.52 %Paris
LAOTMC split down to 2× 2 28.54 dB 28.88 dB 96.99 %
No LAOTMC split 28.44 dB 27.99 dB 97.98 %
LAOTMC split down to 4× 4 28.59 dB 28.74 dB 96.25 %Tempest
LAOTMC split down to 2× 2 28.54 dB 28.77 dB 96.00 %

Table C.2.1: LAOTMC: resulting SPSNRs and reconstruction rates - detailed results from section 5.3.5.2
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C.3 Influence of the regularization on the synthesized images

C.3.1 Multigrid versus rate-distortion regularization
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Figure C.3.1: Influence of the regularization on the reconstruction SPSNRs for various sequences - detailed results of section 5.4.3.3
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C.3.2 Rate-distortion regularization: QP and motion bitrates
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Figure C.3.3: Rate-distortion regularization: influence on the reconstruction SPSNRs for various sequences - detailed results of
section 5.4.3.3. For each curve, the R-D points correspond, from right to left, to: no RDO, then RDO at successive QPs 22, 27, 32
and 37.
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Figure C.3.4: Rate-distortion regularization: influence on the reconstruction rates for various sequences - detailed results of section
5.4.3.3. For each curve, the R-D points correspond, from right to left, to: no RDO, then RDO at successive QPs 22, 27, 32 and 37.

C.4 Variable-sized motion tubes: rate-distortion performances
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Figure C.4.1: Influence of the size of the motion tubes: resulting SPSNRs for various sequences - detailed results of section 5.6.3.
For each curve, the R-D points correspond, from right to left, to: 32× 32, 16× 16, 8× 8 and 4× 4 motion tubes.
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Figure C.4.2: Influence of the size of the motion tubes: resulting reconstruction rate for various sequences - detailed results of section
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Appendix D

Texture synthesis improvements: detailed
results

D.1 Bi-predictive motion tubes: detailed performances
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Figure D.1.1: Influence of the B-tubes bi-prediction on the PSNR of reconstructed areas - detailed results of section 6.2.3
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Figure D.1.2: Influence of the B-tubes bi-prediction on the reconstruction rate - detailed results of section 6.2.3
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Figure D.1.3: Influence of the B-tubes bi-prediction on the motion bitrate - detailed results of section 6.2.3
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D.2 Inpainting: detailed performances
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Figure D.2.1: Influence of inpainting on the PSNR of reconstructed areas - detailed results of section 6.4.2.4.
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Appendix E

Résumé

Dans un monde toujours plus connecté, où l’on parle même d’hyper-connectivité, de plus en plus d’informations sont
échangées. En effet, un nombre toujours croissant d’utilisateurs a maintenant accès à de nombreux services qui nécessitent
la transmission de données à travers un réseau de communication. Au delà de cet aspect purement démographique, la
multitude de terminaux communicants aujourd’hui disponibles, ainsi que la disparité des systèmes de communication sont
également responsables d’un accroissement spectaculaire de la quantité de données échangées. A titre d’exemple, on
peut citer le formidable essort des téléphones mobiles qui permettent désormais d’accéder à internet, et ainsi d’échanger
des volumes de données importants, via les nouveaux standards de communications mobiles (3G, 4G).
Les contenus vidéo, en particulier, constituent la majeure partie du volume de données échangées. En effet, les contenus
et les usages, eux aussi, évoluent. De plus en plus diversifiés (WebTV, VOD, P2P), les contenus audiovisuels sont
toujours plus accessibles et génèrent donc un traffic croissant. Par ailleurs, leur qualité s’améliore elle aussi, à travers
l’arrivée récente de la haute-définition (HD), ainsi que de la 3D qui perce depuis peu également. Ces améliorations ont
un impact direct sur le traffic réseau, puisque les contenus associés sont beaucoup plus volumineux.
En conséquence, une augmentation considérable du traffic réseau est à prévoir. Selon CISCO, le traffic réseau mondial
devrait tripler d’ici 2014 [CIS10]. Quant à la vidéo, si elle n’occupe que 40% du traffic à l’heure actuelle, on estime qu’elle
représentera 90% de celui-ci en 2014 [CIS10]. Malgré les progrès constants en matière de transmission, on estime que
les infrastructures réseaux ne pourront probablement pas supporter une telle charge.

Figure 1: 2011 - 2014 : Evolution du traffic réseau et de la proportion représentée par les données vidéo [CIS10]

A ce titre, il est plus que jamais capital de travailler au développement de techniques qui permettront de réduire au
maximum la quantité d’informations nécessaires à la transmission de données vidéo. En d’autres termes, la compression
vidéo est encore et toujours d’actualité. D’autre part, devant la multiplication des contenus, notre capacité à les analyser,
les décrire et les indexer va s’avérer cruciale. C’est dans ce contexte que les travaux présentés dans cette thèse se
situent. En effet, notre objectif est de construire une nouvelle manière de représenter les vidéos,

• en vue d’améliorer les performances de compression par rapport aux approches existantes,
• tout en garantissant un niveau sémantique aussi élevé que possible, facilitant ainsi d’éventuelles étapes d’analyse,

de description et d’indexation.
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Cette annexe vise à fournir un résumé du contenu anglais disponible dans le document. Elle s’articule en sept sections :

la section E.1 propose un bref état de l’art qui se concentre sur les différentes approches qui ont été employées dans
le cadre de la compression vidéo,

la section E.2 introduit le concept de la représentation proposée, à travers l’utilisation de “tubes de mouvement”,
la section E.3 s’intéresse au modèle de mouvement, adapté aux tubes, que nous avons proposé,
la section E.4 se concentre sur diverses approches visant à maximiser la cohérence spatio-temporelle de la représentation,

à travers une structuration systématique et l’emploi de techniques de régularisation,
la section E.5 introduit la méthodologie de validation que nous avons suivie, à travers l’intégration des tubes au sein

d’un codeur standardisé, ITU-T H.264/AVC,
la section E.6 s’intéresse au problème de la vie et de la mort des tubes et propose une approche préliminaire permettant

d’optimiser leur utilisation pour garantir un maximum de compacité,
la section E.7 conclut ce résumé et introduit brièvement quelques unes des nombreuses perspectives que nos travaux

proposent.

E.1 La compression vidéo : approches existantes

E.1.1 La chaîne de compression

La figure E.1.1 illustre certaines opérations de base réalisées par la majorité des codeurs vidéo. Si le mode de
partitionnement de l’information dépend principalement de la représentation choisie, un certain nombre d’opérations sont
généralement communes à la plupart des codeurs:

• l’estimation et la compensation en mouvement permet d’aligner les différents éléments (pixels, blocs ou objets) le
long de l’axe temporel;

• la transformation permet d’exprimer un ensemble de valeurs à transmettre dans un espace où elles sont naturelle-
ment plus compactes -à noter que le terme transformation est à prendre au sens large du terme, et peut désigner
une transformation mathématique ou une quelconque étape qui modifie la représentation des valeurs de manière à
les compacter-;

• la quantification permet de réduire la dynamique des coefficients à transmettre ; non réversible, cette opération
introduit des pertes et des distorsions, mais permet de contrôler le débit final;

• le codage entropique permet de compacter l’information binaire obtenue en s’appuyant sur les propriété statistiques
de celle-ci.

Partition-
nement Quantification

Flux
binaire

Séquence
d'entrée

Codage
entropiqueTransformée

Estimation de
mouvement

Figure E.1.1: Une chaîne de compression typique

E.1.2 Représentation et niveau sémantique

Avant même de sélectionner les outils de codage qui permettront de compresser l’information vidéo, il est crucial de
choisir avec soin la manière dont on veut la représenter. Celle-ci peut être considérée comme un simple amas de pixel,
ou à l’inverse comme la projection d’une scène 3D et donc composée d’objets sémantiques. Le choix de la représentation
dirigera ensuite le choix des outils de codage appropriés. La complexité de la solution proposée est étroitement liée à
la représentation choisie : si la sémantique est un atout déterminant en vue de l’analyse, elle est aussi relativement
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complexe à construire. La figure E.1.2 illustre ce concept en ordonnant les principales représentation suivant leur niveau
sémantique.

Figure E.1.2: Echelle des représentations

E.1.2.1 Représentations photométriques

Les représentations photométriques considèrent les séquences d’images comme un simple amas de pixel, et n’associent
pas de sémantique particulière à leur contenu. En conséquence, un partitionnement en blocs réguliers [Ric03, WS03] ou
régions arbitraires [PL99] est souvent utilisé.
Quel que soit le partitionnement utilisé, ces approches n’optimisent les décisions de codage que sur critères débit-
distortion, et ce de façon objective. Du fait de sa simplicité d’utilisation, la représentation photométrique constitue
aujourd’hui l’approche classique.

E.1.2.2 Représentations sémantiques

A l’opposé, les représentations sémantiques considèrent les vidéos comme étant la projection sur le plan de la caméra
d’un ensemble d’objets en mouvement dans une scène. A l’instar de cette interprétation, les séquences d’images sont
partitionnées en régions sémantiques (objets ou parties d’objet) dont les déplacements et les déformations éventuels sont
suivis au cours du temps. On parle alors d’approches basées régions ou basées modèles [YW94, SGPK94, SMP+97,
SM99, XLLZ01]. Parfois, la sémantique est introduite via une étape de codage supplémentaire, en aval d’un codage
photométrique (ex: MPEG-4 Part 2 [ISO00a]).
Les objets étant ensuite représentés par une ou plusieurs régions, ils peuvent être traités indépendamment les uns
des autres et décrits à l’aide de modèles 2D ou 3D. Une fois ces objets transmis au décodeur, ce dernier peut alors
reconstituer la scène. En pratique, cependant, la viabilité de ces codeurs est difficile à justifier :

• une fois paramétrisés, l’information nécessaire à la transmission de ces objets est parfois prohibitive, en particulier
à bas débits ;

• l’étape de segmentation nécessaire à l’identification des objets ou des régions est souvent trop complexe en vue
d’applications temps-réel.

E.1.2.3 Approches pseudo-sémantiques

A mi-chemin entre l’approche photométrique et l’approche sémantique, les approches pseudo-sémantiques offrent un com-
promis sémantique/complexité. Si le codage s’effectue toujours au niveau pixel, une étape préliminaire de partitionnement
permet d’intégrer un certain degré de sémantique à la représentation, ce qui est susceptible d’exhiber un maximum de
corrélation et de cohérence, tant spatiales que temporelles.
A l’instar des approches sémantiques, les approches pseudo-sémantiques ne permettent généralement pas de décrire la
scène de manière parfaite ; elles se content de construire une représentation visuellement acceptable. A titre d’exemple,
on pensera aux approches par analyse-synthèse (cf section suivante) et à certains codeurs régions [PL99, DBBR07] qui
ne segmentent pas la vidéo sur critères sémantiques.
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E.1.3 Approches classiques et approches en rupture

E.1.3.1 Approche classique

Si de nombreuses solutions de codage ont été proposées, les standards de compression se succèdent et se ressemblent
: depuis les premières versions du standard MPEG, la représentation n’a pas ou peu évoluée et reste photométrique.
Seuls les outils de codage évoluent et offrent toujours plus de performances. HEVC, le successeur du standard actuel
(H.264/AVC) ne déroge pas à la règle et ne remet pas en cause cette approche.
Ainsi, l’axe temporel est décrit de manière discontinue : la vidéo est découpée en images qui sont traitées une à une. Dans
le domaine spatial, le contenu est décrit de manière locale (ou discontinue) : chaque image est découpée en macroblocs.
Les performances de compression obtenues sont très élevées : le découpage des images en blocs permet d’effectuer une
optimisation débit-distorsion au niveau local. D’autre part, cette approche est relativement facile à implanter sur de
nombreux systèmes.

E.1.3.2 Approches en rupture

Les codeurs régions [SM99, XLLZ01, FBDC07], déjà évoqués précédemment, sont certes idéaux en termes de sémantique,
mais sont difficiles à mettre en œuvre en pratique. Ils ne seront pas abordés plus en détails.

Les codeurs par ondelette 3D [Ohm94, CW99, ST01, PPB01] effecutent une transformée en ondelette le long de la
trajectoire du mouvement, et une transformée dans le domaine spatial. Cette solution exhibe donc la continuité
des informations, et parfois leur scalabilité, tant spatiales que temporelles [XXLZ01, XWX+04].

Les codeurs par analyse-synthèse [TZ94, WXCM99, Cam04, LG08], enfin, cherchent à décorréler la texture et le mouve-
ment. Hautement flexible, cette approche pose un nouveau problème : comment répartir le débit entre le mouvement
et la texture ?
Certains outils sont représentatifs de ces codeurs : la compensation en mouvement globale [YW94, PMCM01,
Cam04], par exemple, consiste à projeter toutes les images d’un groupe d’images sur une seule image de référence.
Elle nécessite l’utilisation d’un modèle de mouvement avancé (par opposition à celui proposé par l’approche
classique, i.e. purement translationnel). Plus récemment, des outils de synthèse de texture ont été proposés [DH04,
ZSWL07a, NNHW07, MADB10] ; à l’heure actuelle ces approches souffrent de leur complexité, ne conviennent
pas à tous les types de textures, et surtout sont difficiles à mettre en œuvre le long de l’axe temporel.

E.1.3.3 Discussion

A la lumière de cette revue, un schéma alternatif se dessine : construire une représentation à mi-chemin entre l’approche
classique (photométrique) et certaines des approches en rupture dont l’intérêt à été prouvé. C’est donc vers un schéma
pseudo-sémantique que nous nous dirigeons : une description locale (discontinue) du contenu spatial, à l’image de
l’approche classique, couplée à une description continue de son évolution temporelle (à l’image des approches par
analyse-synthèse). En terme de compression, enfin, nous tâcherons de rester aussi proche que possible des codeurs
standardisés, à travers un partitionnement en blocs.

E.2 Le tube de mouvement : concept

E.2.1 Persistance temporelle des texture

Lorsque l’on observe une séquence d’images naturelles, il est facile d’observer à quel point les images successives
se ressemblent : une même zone de texture est généralement présente dans plusieurs images consécutives. En effet,
l’information de texture est portée par le fond et les objets de la scène ; ceux-ci persistent au cours du temps. Cependant,
les mouvements de la caméra ou ceux des objets de la scène se traduisent par des déplacement ou des déformations
de texture le long de l’axe temporel. Ce phénomène est illustré dans la figure E.2.1 : le patch vert subit une simple
translation, tandis que le patch bleu subit une translation ainsi qu’une rotation dues au mouvement du ballon.
Ainsi, une séquence d’images peut être, dans une certaine mesure, considérée comme un ensemble de patchs de textures,
qui se déplacent et se déforment le long de trajectoires temporelles. En supposant qu’il soit possible de déterminer cet
ensemble de patchs et leurs trajectoires, on peut alors représenter les séquences d’images par cet ensemble, et plus
par une simple succession d’images. Il est important de noter, toutefois, que toutes les textures ne peuvent pas être
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Figure E.2.1: Persistance temporelle des texture dans une séquence d’images

représentées dans un tel cadre : les objets particulaires, les liquides et les effets de transparence, entre autres, sont
impossibles à suivre au cours du temps simplement via déformation et déplacement d’une texture initiale. En conséquence,
nos travaux se concentrent sur des séquences où de tels effets sont absents.

E.2.2 Du patch de texture au tube

Comme on peut le voir sur la figure E.2.2, la succession des formes prises par un patch de texture rappelle un tube dont la
section se déforme au cours du temps. Pour cette raison, il a été choisi de baptiser ces patchs de textures qui sont suivis
des tubes de mouvement. On notera que ce concept a déjà été proposé dans de précédentes études [PBC07, BDRB07],
dans lesquelles il était utilisé à des fins d’analyse, et non pas de représentation comme c’est le cas pour nos travaux.

temps

(a) Un patch de texture en déplacement

temps

(b) Représentation simpliste d’un tube de mouve-
ment

Figure E.2.2: Du patch au tube

Ainsi, le tube de mouvement se conceptualise à travers quatre composantes :

1. un patch de texture,
2. une trajectoire spatio-temporelle,
3. des déformations appliquées le long de la trajectoire,
4. et une durée de vie : le tube apparaît à un certain instant, et disparaît à un autre instant.

Dès lors, la séquence d’image peut être représentée par un ensemble de tubes qui peuvent être connectés les uns aux
autres, ou inversement, déconnectés. De plus, chacun de ces tubes peut apparaître ou disparaître à n’importe quel instant.
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Enfin, ils peuvent également se recouvrir ou se découvrir, introduisant ainsi des zones multi-connectées (représentées par
plusieurs tubes) ou des zones non-connectées (représentées par aucun tube). Ces diverses possibilités sont illustrées
dans la figure E.2.3.

temps
1 2
3 4

5

t0

t1

t2
t3 t4

Figure E.2.3: Une séquence d’image partiellement reconstruite par quelques tubes

E.2.3 Problèmes soulevés par la représentation

Si les tubes de mouvement sont susceptibles d’améliorer la cohérence temporelle de la représentation, ils introduisent
toutefois de nouvelles problématiques. Premièrement, quel modèle de déplacement et de déformation est le plus adapté
aux tubes de mouvement ? Deuxièmement, sur quels critères doit-on se baser pour déterminer la durée de vie des tubes
; en d’autres termes, comment mesurer la qualité ou l’efficacité d’un tue vis-à-vis de la représentation ? Troisièmement,
comment gérer les recouvrements (qui introduisent de la redondance) et les découvrements (qui doivent être comblés) des
tubes ? Enfin, comment décrire l’évolution temporelle de la texture elle-même, du fait (par exemple) des changements
d’illumination ou de pertes de résolution ? C’est à certaines de ces questions que nos travaux vont tenter de répondre.

E.3 Un modèle de mouvement basé tubes

Suivre des patchs de texture dans le temps nécessite l’utilisation d’un modèle de déplacement ainsi que d’un modèle de
déformation afin de déterminer la trajectoire et la déformation subits par les patchs. Dans le domaine spatial, il s’agira
notamment de se donner la possibilité de capturer tant les continuités que les discontinuités du champ de mouvement.
Dans le domaine temporel, les modèles devront être en mesure d’exhiber la cohérence et la continuité du mouvement.
Si de nombreux modèles existent, certaines contraintes vont limiter nos choix. En effet, le contexte de compression
implique l’utilisation de modèles aussi compacts que possible, et dont l’estimation des paramètres est relativement peu
complexe en vue d’implantations matérielles.
D’autre part, les tubes eux-même vont guider notre choix : puisqu’ils partitionnent le domaine image en patchs, il devient
alors assez naturel d’utiliser un modèle par mise en correspondance de motif (ex: bloc, mailles, régions). Reste donc à
déterminer les propriétés du motif envisagé. Enfin, il s’agira également de mettre en place des contraintes de régularité
afin d’encourager la cohérence de la représentation.

E.3.1 Blocs et mailles : un compromis entre capacité et complexité

Si de nombreuses solutions par mise en correspondance ont été proposées dans le cadre de l’estimation de mouvement,
les solutions basées blocs et celles basées mailles prédominent. Ces deux approches diffèrent non seulement par leur
complexité, mais aussi par leur capacités. Antagonistes de par leurs capacités, blocs et mailles sont tous deux intéressants
pour les tubes de mouvement. La figure E.3.1 en synthétise les caractéristiques.
A la lumière de ce comparatif, il apparait clairement que le modèle par blocs est particulièrement intéressant de par sa
simplicité ainsi que sa capacité à représenter les ruptures du champ de mouvement. Le modèle par maillage, lui, même
s’il permet de représenter naturellement les continuités du mouvement, reste trop complexe dans le cadre de notre étude.
Le modèle par blocs recouvrants, enfin, propose une alternative au mailles : pour un niveau de complexité réduit, il permet
lui aussi de représenter de légères déformations, et donc les continuités du champ de mouvement, au prix d’un effet de
flou. L’annexe A démontre en particulier que l’Overlapped BMC (OBMC) peut effectivement être considéré comme une
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Figure E.3.1: Complexité et caractéristiques des modèles de mouvement par blocs et maille : comparatif

version basse complexité du modèle par maillage. C’est donc logiquement que notre approche va se concentrer sur le
modèle par blocs et le modèle par blocs recouvrants (OBMC).

E.3.2 Un modèle hybride basé blocs et blocs recouvrants

Afin de représenter continuités et disonctinuités du mouvement, ainsi que déplacements et déformations des patchs, nos
travaux se basent sur l’utilisation d’un modèle hybride connu sous le nom de Switched OBMC (SOBMC) [IM00], qui mèle
un modèle purement translationnel (le Block Motion Compensation (BMC) [JJ81]) et un modèle qui permet de représenter
des déformations simples (l’OBMC [NO92, AKOK92, OS94, CHJ+06]).

E.3.2.1 Construction du modèle de mouvement
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dTL dTR

BR

(a) Bloc de texture initial

ddBL

dTL dTR

BR

(b) Déformation idéale par maillage

ddBL

dTL dTR

BR

BTL
MT

BTR
MT

BBL
MT

BBR
MT

(c) Approximation de la déformation par OBMC

Figure E.3.2: Modèle de déformation proposé pour les tubes

Chaque tube est donc initialisé comme étant un bloc rectangulaire. A l’instar d’une maille, il est muni de quatre vecteurs
de mouvement en chacun de ses coins (qui jouent donc le rôle de points de contrôle, au sens d’un maillage). A chaque
instant, ces quatre vecteurs vont définir le déplacement et la déformation subits par le tube. Dans le cas général, le
bloc initial est translaté aux quatre positions définies par les vecteurs de mouvement. Une fenêtre de pondération propre
à chaque coin permet ensuite de sommer les différentes contributions pour un même point. La figure E.3.2 illustre le
modèle proposé. Deux cas de figures sont alors envisagés :

• soit le modèle translationnel est utilisé, et les quatre vecteurs sont égaux (cela revient donc à un simple BMC)
; on peut ainsi représenter les déconnections entre tubes, faisant ainsi apparaître les ruptures du champ de
mouvement ;

• soit le modèle recouvrant est utilisé, et les vecteurs haut-gauche, haut-droit et bas-gauche sont donnés par les
tubes voisins à gauche et en haut; on peut ainsi représenter les connections entre tubes, et faire apparaître les
continuités du champ de mouvement.

La figure E.3.3 montre comment ces deux modèles peuvent être couplés. Quatre tubes A, B, C et X sont initialement
connectés (traits pointillés). A gauche, la figure E.3.3a illustre le cas où A, B et C sont gardés connectés, tandis que X
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est déconnecté et subit un simple déplacement. A droite, la figure E.3.3b illustre le cas où X est connecté à ses voisins
B et C, malgré les disparités de mouvement de A, B et C.

ddBL

dTL dTR

BR

A B

C
X

(a) A, B et C: OBMC; X: BMC

dBL

dTR

dBR

A B

C

dTL

X

(b) A et X: OBMC; B et C: BMC

Figure E.3.3: Différentes combinaisons des deux modèles de mouvement

E.3.2.2 Compensation en mouvement : résultats

La figure E.3.4 illustre les capacités des modèles de mouvement sélectionnés à compenser les images en mouvement. La
séquence Foreman est d’abord partitionnée à t0 en tubes à section carrée disjoints et connectés. Deux instants de temps
de plus tard, on peut voir l’image Î2 compensée en mouvement ainsi que le déplacement ou la déformation des tubes. Les
légendes de la figure E.3.4 mentionnent également le PSNR des zones reconstruites (noté SPSNR) ainsi que le taux de
reconstruction (% Rec.).

(a) Reconstruction de I2 par BMC
SPSNR = 32.55 dB, % Rec. = 91.10%

(b) Reconstruction de I2 par OBMC
SPSNR = 29.80 dB, % Rec. = 99.03%

(c) Reconstruction de I2 par BMC + OBMC
SPSNR = 33.47 dB, Rec. rate = 95.78%

(d) Découpage de Î2 en tubes (BMC) (e) Déformation des tubes sur Î2 (OBMC) (f ) Déformation et déplacement des tubes sur
Î2 (BMC + OBMC)

Figure E.3.4: Modèles de mouvement BMC et OBMC : performances respectives et hybridation
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Cet exemple, représentatif de l’ensemble des séquences étudiées, montre à quel point l’hybridation des deux modèles
BMC et OBMC permet de construire une compensation en mouvement plus cohérente et de meilleure qualité que celle
produite par chacun des deux modèles pris individuellements.

E.3.3 Régularisation spatio-temporelle du mouvement

Si le modèle de mouvement hybride introduit par nos travaux permet de représenter avec efficacité tant les ruptures que
les continuités du champ de mouvement, et donc les déplacements et les déformations de la texture à travers le temps, il
n’est soumis pour l’instant à aucune contrainte spatio-temporelle et produit ainsi une description assez peu cohérente du
mouvement à travers le temps. Notre principale motivation, quant à l’utilisation des tubes de mouvement, est de décrire
la persistence temporelle des textures, et donc d’exhiber au maximum la cohérence de l’information à travers le temps et
l’espace (le domaine image).

E.3.3.1 Minimisation sous contrainte de régularité

Pour cette raison, il est indispensable d’intégrer des critères de régularité au mécanisme d’estimation de mouvement.
Non seulement la régularisation va garantir un maximum de cohérence à la représentation, mais elle va aussi permettre
d’optimiser la compacité de l’information de mouvement. Généralement, le principe de la régularisation, appliquée à
l’estimation de mouvement, consiste à minimiser une fonctionnelle J qui est donnée par la somme d’un terme d’attache
aux données D et d’un terme de régularité R (exemple : la différence entre le vecteur de mouvement

−→
d courant et ses

voisins
−→
di ),

J = Err
[
Icur(P)− Iref(P +

−→
d )
]

︸ ︷︷ ︸
Terme d’attache aux données D

+ µ

∥∥∥∥∥∑
i

−→
d −

−→
di

∥∥∥∥∥︸ ︷︷ ︸
Terme de régularité R

(E.1)

où Icur est l’image courante et Iref l’image de référence, et µ un coefficient de pondération.

Si de nombreuses techniques de minimisation sous contrainte existent, une des plus populaires est celle des multiplicateurs
de Lagrange. Le système à minimiser s’écrit alors

min Err
[
Icur(P)− Iref(P +

−→
d )
]

︸ ︷︷ ︸
D D

+ λ R
(−→
d −

−−→
dpred

)
︸ ︷︷ ︸
Terme de régularité R

(E.2)

où λ est le multiplicateur de Lagrange,
−−→
dpred est une prédiction de

−→
d et R est le coût de codage du résidu de mouvement.

La régularisation du champ de mouvement est maintenant garantie par l’utilisation de prédicteurs de mouvement spatio-
temporels

−−→
dpred : les vecteurs de mouvement dont le coût de codage (et donc le terme de régularité) sera le plus faible

sont ceux définis par les prédicteurs.

E.3.3.2 Des prédicteurs spatio-temporels adaptés aux tubes

De part sa nature, la représentation des séquences d’images en tubes permet de construire une large variété de
prédicteurs, tant dans la dimension spatiale (le domaine image) que dans la dimension temporelle. Le mouvement des
tubes voisins, par exemple, constitue souvent un excellent prédicteur spatial. Quand à la dimension temporelle, elle est
utilisée pour prédire le mouvement d’un tube à l’instant courant à l’aide du mouvement de ce même tube aux instants
temporel précédents et/ou suivants. La notion de trajectoire peut ici être exhibée à travers une estimation temporellement
hiérarchique du mouvement : la trajectoire est d’abord estimée entre deux instants de temps distants, puis successivement
raffinée à mesure que les instants intermédiaires sont estimés à leur tour. D’autre part, l’estimation de mouvement est
elle aussi régularisée via une approche de type EPZS, où les vecteurs de mouvement candidats sont également obtenus
à l’aide de prédicteurs spatio-temporels.

Cet ensemble de prédicteurs permet alors de régulariser efficacement le mouvement et la déformation des tubes, et ainsi
de proposer une représentation cohérente de la séquence. La figure E.3.5 montre comment la régularisation améliore
singulièrement la cohérence des images reconstruites.
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(a) Sans régularisation
SPSNR = 41.94 dB, % Rec. = 68.12%

(b) Avec régularisation
SPSNR = 39.81 dB, % Rec. = 93.45%

Figure E.3.5: Impact de la régularisation sur la sequence Foreman

E.4 Structuration de la représentation

Si la section précédente abordait le modèle de mouvement et de déformation proposé pour les tubes de mouvement,
elle n’indiquait pas comment la représentation dans son ensemble est structurée. Comment découper (spatialement) les
images en tubes de manière à ce que la plus grande partie de la séquence puisse être reconstruite ? Comment s’assurer
que les zones non connectées (synthétisés par aucun tube) soient aussi peu nombreuses que possible ? C’est à ces deux
questions que la présente section va répondre à travers deux solutions simples et efficaces.

E.4.1 La famille de tubes

Afin de simplifier la gestion des tubes, nous introduisons d’abord le concept de famille de tubes de mouvement. Une
famille de tubes est un ensemble de tubes qui sont initialisés au même instant de référence, et qui sont suivis à travers
le même groupe d’images (GOP). La structuration spatiale et temporelle de la représentation se base sur l’utilisation
d’une ou plusieurs de ces familles. La figure E.4.1 illustre la notion de famille de tubes. A l’instant de référence, l’image
est découpée en blocs de pixels (ou patchs) non recouvrants. Chacun de ces blocs est ensuite utilisé pour initialiser un
tube de mouvement qui sera suivant à travers le GOP.

Figure E.4.1: Une famille de tube initialisée à l’instant t0 et suivie jusque tn
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E.4.2 Adaptation au contenu spatial : granularité des tubes

Si nos premières expérimentations partitionnent les images en patchs à dimensions fixes et égales, notre schéma a ensuite
évolué vers une approche adaptative. En effet, une question a rapidement émergé : quelle est la dimension optimale pour
les tubes ? Les zones dont le mouvement est uniforme se prêtent à l’utilisation de tubes d’assez grande taille, tandis que
celles dont le mouvement est plus complexe requièrent des tubes de plus faibles dimensions. La figure E.4.2 présente le
découpage d’une image de la séquence Foreman proposée par des tubes de différentes tailles, fixes ou variables.

(a) 8× 8 tubes sur Î2 (b) Tubes à taille variable sur Î2 (c) 16× 16 tubes sur Î2

Figure E.4.2: Tubes à taille variales: application à la séquence Foreman

Pour ces raisons, il a été proposé de déterminer une partition optimale via optimisation Lagrangienne. Au coût de codage
qui incorporait déjà le coût du résidu de mouvement, on ajoute le coût du partitionnement, permettant ainsi de déterminer
le meilleur compromis entre taille du tube, le coût du mouvement, et la qualité de l’image reconstruite. La figure E.4.3
montre que malgré le surcoût de codage lié à la transmission de la partition optimale, l’utilisation des tubes à taille
variable propose une meilleure reconstruction pour un même débit, ou inversement un débit moindre pour une même
qualité de reconstruction. Quant au taux de reconstruction, il n’est ni amélioré ni réduit par les tubes à taille variable.
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Figure E.4.3: Tubes à taille variables: courbes débit-distortion et débit-reconstruction

E.4.3 Adaptation au contenu temporel : plusieurs familles de tubes

Si le découpage spatial des images est désormais assuré par les tubes à taille variable, une seule et même famille de
tubes ne suffit que rarement à représenter l’ensemble d’un groupe d’images. En effet, tout patch de texture invisible ou



198 APPENDIX E. RÉSUMÉ

absent à l’instant de référence n’est alors représenté par aucun tube lorsqu’il apparaît aux autres instant. C’est donc très
naturellement que nous avons proposé l’utilisation de familles de tubes additionnelles, chacune initialisée à des instants
de temps différents. La figure E.4.4 en illustre le principe à travers l’utilisation de trois familles (rouge, bleue et verte).

temps

t0

t1

t
t3 t4

2 Famille F    (t )0MT
Famille F    (t )2MT
Famille F    (t )4MT

Figure E.4.4: Plusieurs familles pour reconstruire un groupe d’images

En pratique, l’utilisation de plusieurs familles contribue effectivement à augmenter le taux de reconstruction. La figure
E.4.5 montre comment la reconstruction de la séquence Foreman est assurée par plusieurs familles de tubes. Une première
famille de tubes est initialisée à t0 (zones en jaune) et suivie jusque t8. Une seconde famille est alors initialisée à t8
et suivie vers t0 et reconstruit d’avantage l’image (zones en bleu lorsque seule la seconde famille est utilisée, et en vert
lorsqu’une pondération des deux familles est utilisée). Enfin, une troisième et dernière famille, initialisée en t4 et suivie
vers les deux extrémités du GOP, permet de combler la plupart des zones non connectées restantes. Bien entendu, les
“trous” restants peuvent être comblés via des mécanismes de synthèse de texture ou de structure tels que l’inpainting.

(a) Reconstruction de la famille 1
SPSNR = 35.79 dB, % Rec. = 86.81%

(b) Reconstruction des familles 1 et 2
SPSNR = 36.52 dB, % Rec. = 96,26%

(c) Reconstruction des 3 familles
SPSNR = 36.24 dB, % Rec. = 99.29%

(d) Zones reconstruites par la famille 1 (e) Zones reconstruites par les familles 1 et 2 (f ) Zones reconstruites par les familles 1, 2 et
3

Figure E.4.5: Reconstruction de la sequence Foreman à l’aide de trois familles de tubes
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E.5 Validation du modèle proposé

Si l’objectif principal de nos travaux est de proposer une nouvelle représentation pour les séquences d’images, il ne
s’agit pas d’oublier que nous nous situons dans le contexte de la compression. Aussi, il est important de s’assurer que
la représentation est effectivement compacte et compétitive face aux représentations existantes : en d’autres termes, que
la représentation est viable. Dans cet objectif, nos travaux ont cherché à mettre en compétition la représentation par
tubes de mouvement à l’approche standard de compression qu’est H.264/AVC. Toutefois, nous nous sommes concentrés
sur l’aspect représentation, et n’avons cherché qu’à vérifier que la reconstruction des images proposées par les tubes est
avantageuse vis-à-vis de la représentation classique par blocs. La figure E.5.1 représente le schéma de codage modifié
pour permettre l’insertion du modèle par tubes de mouvement.

Figure E.5.1: Schéma de codage AVC modifié par l’insertion du modèle par tubes

Afin de mener à bien cette étape de validation, nous avons intégré le mode de prédiction par tubes de mouvement au sein
du codeur H.264/AVC. Dans le codeur modifié, la décision d’utiliser ou de ne pas utiliser les tubes ne se base que sur la
distorsion et ne tient pas compte du coût de codage des tubes. En effet, le manque d’optimisation du codage des tubes
de mouvement les rend inintéressants dans un contexte débit-distorsion. La figure E.5.2 montre cependant que les tubes
sont très largement utilisés par le codeur modifié, et donc que la représentation est viable en terme de distorsion. A
terme, il s’agira bien entendu de mettre en place un mécanisme de codage adapté aux tubes afin de proposer effectivement
des performances de compression intéressantes, qui pour l’instant présentent peu d’intérêt tant le codage et la gestion
des tubes sont peu optimisés.

E.6 Vie et mort des tubes

Si la représentation par tubes de mouvement permet effectivement d’exhiber la persistance et la cohérence temporelle de
l’information, elle repose pour l’instant sur l’hypothèse selon laquelle chaque patch de texture est disponible pendant la
totalité du groupe d’image représenté. Or, en pratique, une grande partie de ces patchs n’est pas disponible pendant
toute la durée d’un GOP et ne peuvent donc pas être suivis.
Afin d’optimiser la compacité de la représentation, il s’agit alors de mettre en place un mécanisme de vie et de mort
des tubes. En d’autre termes, des outils permettant de supprimer une partie ou l’intégralité d’un tube si le patch de
texture correspondant disparaît ou devient impossible à suivre. On améliore ainsi la compacité de la représentation en
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(a) Codeur initial (b) Codeur modifié

Figure E.5.2: Taux d’utilisation des modes de prédiction H.264/AVC et des tubes dans les codeurs étudiés ; moyenne sur six séquences
et quatre débits

utilisant moins de tubes pour représenter la séquence. En terme de compression, on évite également la transmission de
mouvements incohérents, lorsque le suivi échoue, qui sont typiquement difficiles à coder.

Figure E.6.1: Disponibilité d’un patch de texture à travers un GOP : quatre scenarii à envisager

Idéalement, un mécanisme de vie et de mort devrait être en mesure de détecter plusieurs cas de figure (voir figure E.6.1):

• les patchs qui sont disponibles pendant l’intégralité du GOP (en rose sur la figure),
• les patchs qui disparaissent (ex: occultations) au cours du GOP (en bleu sur la figure),
• les patchs qui apparaissent (ex: désoccultation) au cours du GOP (en vert sur la figure),
• et les patchs qui ne peuvent pas être suivis (en orange sur la figure).

En pratique, cela requiert la construction d’un critère de qualité et/ou d’efficacité propre aux tubes : ce critère permettra
ainsi de mesurer à quel point un tube est efficace au sens de la représentation, et donc de le continuer ou de l’arrêter,
de le garder ou le supprimer selon les situations. Or, il est difficile de définir un tel critère tant les paramètres qui
régissent le mouvement et la déformation des tubes sont nombreux. Dans le domaine spatial, la position, la distorsion, et la
déformation, pour n’en citer que trois, sont à prendre en compte. De plus, certains paramètres temporels jouent également
un rôle primordial, dont la trajectoire et la régularité du mouvement. Enfin, si les critères mentionnés précédemment sont
purement objectifs, on peut également envisager l’utilisation de critères subjectifs.
Devant la multitude critères à envisager, nos travaux ont visé à proposer une solution préliminaire qui se base sur les



E.7. CONCLUSIONS ET PERSPECTIVES 201

choix opérés par le codeur H.264/AVC modifié. En étudiant l’utilisation des tubes par ce dernier, on ne vient garder
que ces tubes dont l’utilisation spatiale et/ou temporelle est supérieure à un certain seuil. Dans la figure E.6.2, on
observe bien que la sélection des tubes privilégie ceux qui correspondent aux zones uniformes et dont le suivi est aisé.
A l’inverse, les zones plus complexes comme le visage de Foreman sont elles moins sélectionnées.

(a) QP 22, avec tous les tubes (b) QP 22, seuil d’utilisation minimal : 60 % (c) QP 22, seuil d’utilisation minimal : 80 %

(d) QP 37, avec tous les tubes (e) QP 37, seuil d’utilisation minimal : 60 % (f ) QP 37, seuil d’utilisation minimal : 80 %

Figure E.6.2: Sequence Foreman : sélection des tubes selon le taux d’utilisation de ces derniers par le codeur H.264/AVC modifié

Si dans le domaine spatial, le choix du codeur peut s’avérer judicieux, ce n’est absolument pas le cas dans le domaine
temporel : les décisions prises par le codeur se font instant par instant, et ne considèrent donc pas la dimension
temporelle et persistante des tubes. Ainsi, rien ne garantit que le mécanisme de sélection proposé aboutisse à des
décisions cohérentes le long de l’axe temporel. C’est effectivement le cas : la solution préliminaire devra ensuite être
améliorée en filtrant la sélection au cours du temps.

E.7 Conclusions et perspectives

Avec les tubes de mouvement, nos travaux introduisent une nouvelle représentation pour les séquences d’images dont
l’objectif principal est d’exhiber la persistance et la cohérence temporelle de la texture. D’autre part, les tubes de
mouvement forment une représentation pseudo-sémantique et flexible, tout en maintenant la complexité à un niveau
raisonnable.
Notre première contribution consiste en l’élaboration d’un modèle de mouvement qui permet de décrire tant les déplace-
ments que les déformations des tubes, ainsi que leurs connections et leurs déconnections. D’autre part, des étapes de
régularisation permettent au mouvement estimé d’être relativement cohérent tant spatialement que temporellement.
Notre seconde contribution a posé les bases de la représentation dans son ensemble à travers l’emploi de familles de
tubes. Dans le domaine spatial, la dimension des tubes a été adaptée aux propriétés du mouvement. Dans le domaine
temporel, l’emploi de plusieurs familles de tubes permet de maximiser le taux de reconstruction et donc de réduire les
zones non prédites.
Fort de cette première représentation, nous avons cherché à en vérifier la viabilité à travers son intégration dans
le standard de compression H.264/AVC. Certes le manque d’optimisation de la transmission des tubes se traduit en
performances de compression significativement réduites, mais les résultats obtenus montrent d’abord et avant tout que
les tubes sont effectivement capables de représenter un groupe d’images. Les perspectives d’améliorations en termes de
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compression sont nombreuses ; on pensera en tout premier lieu à supprimer les tubes qui sont inutiles et non sélectionnés,
réduisant ainsi leur coût de codage.
Maintenant dotés d’un outil d’évaluation, nous avons alors pu nous pencher sur le problème de la vie et de la mort des
tubes. La solution proposée est préliminaire, et se base sur les décisions opérées par le codeur H.264/AVC modifié.
En perspective, il est crucial de développer un critère permettant d’évaluer la qualité et/ou l’efficacité d’un tube, qu’il
soit objectif ou subjectif. Celui-ci servira alors à déterminer quels sont les tubes qui doivent être gardés et quels sont
ceux qui doivent être supprimés. D’autre part, il est également important de régulariser cette sélection le long de l’axe
temporel.
Enfin, si les tubes proposent une nouvelle manière de représenter les vidéos, ils ouvrent aussi la voie à de nombreuses
extensions. Par exemple, la description d’une même zone à travers plusieurs tubes de différentes tailles, qualités ou
durées de vie, permet d’introduire les scalabilités en qualité, spatiale et temporelle. La scalabilité en mouvement est elle
déjà accessible via raffinements successifs de la trajectoire des tubes. On peut également penser à étendre le concept
des tubes pour décrire les changements entre différentes vues d’une même scène, particulièrement intéressant dans le
cadre de la vidéo 3D. Enfin, le caractère pseudo-sémantique de la représentation est lui aussi intéressant en vue de
la description et de l’indexation, qui peuvent être grandement facilitées par l’analyse de la séquence réalisée par les
tubes.
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Résumé

En quelques années, le trafic vidéo a augmenté de manière
spectaculaire sur de nombreux médias. D’ici 2014, on es-
time que la quasi-intégralité du trafic IP sera composée de
données vidéo. De même, l’usage de la vidéo sur les télé-
phones mobiles aura subi une augmentation sans précédent.
Or, on estime que les infrastructures réseau, malgré les pro-
grès constants en matière de transmission, ne pourront pas
supporter une telle charge. A ce titre, il est plus que jamais
capital d’améliorer nos capacités à compresser les vidéos.

Depuis 30 ans, la recherche travaille à l’élaboration de tech-
niques de décorrélation, notamment afin de réduire les redon-
dances spatiales et temporelles des séquences d’images et
les compresser. A ce jour, l’approche classique est basée sur
le concept de macroblocs: le contenu spatial est divisé en
un ensemble de blocs. Le long de l’axe temporel, les images
sont traitées une à une, sans faire apparaître de continuité
évidente. Bien que cette approche soit déjà très efficace (cf.
standards H.264/AVC et futur HEVC), l’emploi d’approches
en rupture reste toujours envisageable. celles-ci offrent, entre
autre, la possibilité de décrire l’évolution temporelle du con-
tenu de manière continue. Cependant, elles mettent souvent
en œuvre des outils dont l’utilisation, en pratique, est délicate.

Ce travail de thèse propose une nouvelle représentation, qui
combine les avantages de l’approche classique et ceux de
certaines approches en rupture, puis en étudie la viabilité.
On cherche à exhiber la persistance temporelle des textures,
à travers une description continue le long de l’axe temporel.
A l’instar de l’approche classique, la représentation proposée
est basée sur des blocs. Au lieu de réinitialiser la descrip-
tion à chaque image, notre représentation suit l’évolution de
blocs initialement repérés à un instant de référence. Ces
blocs, ainsi que leur trajectoire spatio-temporelle, sont ap-
pelés tubes de mouvement.

Trois problématiques sont soulevées. Tout d’abord, les tubes
doivent être capable de représenter continuités et discontinu-
ités du mouvement, ainsi que de suivre les déplacements et
les déformations de patchs de texture. Des mécanismes de
régularisation sont également mis en place, et s’assurent que
l’évolution des tubes se fait de manière cohérente. Ensuite, la
représentation doit gérer les recouvrements et les découvre-
ments de tubes, et donc la manière dont la texture doit être
synthétisée. Enfin, la problématique de vie et de mort des
tubes est probablement la plus délicate: comment détecter
la disparition ou l’impossibilité de suivre un patch de texture
? Le cas échéant, le tube correspondant devra être arrêté,
ceci afin de garantir une représentation aussi compacte que
possible. Les résultats montreront que notre représentation
est viable, et ses performances seront comparées à celles du
standard H.264/AVC.

Abstract

Within a few years only, the amount of video information trans-
mitted across a large range of communication channels has
been critically increasing. It is expected, by 2014, that IP traf-
fic will consist, most exclusively, of video data. In mobiles,
video traffic is expected to undergo an increase without prece-
dent as well. Despite the ever-increasing throughput of mod-
ern transmission channels, these will not be able to sustain
such an increase in payload. More than ever, it is essential to
improve our ability to compact the video information.

Research, for the past 30 years, provided numerous decor-
relation tools that reduce the amount of redundancies across
both spatial and temporal dimensions in image sequences.
To this day, the classical video compression paradigm locally
splits the images into blocks of pixels (macroblocks), and pro-
cesses the temporal axis on a frame by frame basis, without
any obvious continuity. Despite very high compression perfor-
mances (e.g. H.264/AVC and forthcoming HEVC standards),
one may still advocate the use of alternative approaches. Dis-
ruptive solutions have also been proposed, and notably offer
the ability to continuously process the temporal axis. How-
ever, they often rely on complex tools (e.g. Wavelets, control
grids) whose use is rather delicate in practice.

This thesis investigates the viability of an alternative repre-
sentation that embeds features of both classical and disrup-
tive approaches. Its goal is to exhibit the temporal persis-
tence of the textural information, through a time-continuous
description. However, it still relies on blocks, mostly respon-
sible for the popularity of the classical approach. Instead of
re-initializing the description at each frame, it is proposed to
track the evolution of initial blocks taken from a reference im-
age. A block, and its trajectory across time and space, is
called a motion tube. An image sequence is then interpreted
as a set of motion tubes.

Three major problems have been considered within this the-
sis. At first, motion tubes need to track both continuous and
discontinuous displacements and deformations of individual
patches of textures. Above all, it is critical for them to evolve
as consistently as possible, which will require dedicated reg-
ularization mechanisms. Then, a second problem lies in the
texture itself and the way it is used to synthesize images: how
to handle non-registered and multi-registered areas. Finally,
it is essential for a motion tube to be terminated whenever the
corresponding patch of texture disappears or cannot be prop-
erly tracked any longer, which raises the problem of quality
and efficiency assessment. This has a critical influence on
the compactness of the representation. Results will eventu-
ally show that tubes can effectively be used to represent im-
age sequences, and compare their performances with those
of H.264/AVC standard.

Mot-clés : tubes de mouvement, vidéo, compression,
représentation, persistance temporelle, suivi temporel

Keywords: motion tubes, video, compression, representa-
tion, temporal persistence, tracking
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