
HAL Id: tel-00643595
https://theses.hal.science/tel-00643595v1

Submitted on 22 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended Tree Automata Models for the Verification of
Infinite State Systems

Florent Jacquemard

To cite this version:
Florent Jacquemard. Extended Tree Automata Models for the Verification of Infinite State Systems.
Formal Languages and Automata Theory [cs.FL]. École normale supérieure de Cachan - ENS Cachan,
2011. �tel-00643595�

https://theses.hal.science/tel-00643595v1
https://hal.archives-ouvertes.fr

Extended Tree Automata Models

for the Verification of Infinite State Systems

Mémoire d’Habilitation à Diriger des Recherches

Florent Jacquemard

Members of the jury:

Jean-Pierre Jouannaud (reviewer)

Christoph Löding

Denis Lugiez

Luc Segoufin

Helmut Seidl (reviewer)

Sophie Tison (reviewer)

November 2011

Contents

Contents 1

Introduction 3

I Classes of Extended Tree Automata 13

Standard Tree Automata . 13
1 Tree Automata with Local Constraints 18

1.1 Local Equalities and Disequalities Constraints 19
1.2 Reduction Automata . 20
1.3 Restriction to Disequality Constraints 22
1.4 Deciding Regularity . 23
1.5 Applications to First Order Theorem Proving 25

2 Tree Automata as Sets of Horn Clauses 31
2.1 Automatic Clauses . 35
2.2 Automatic Clauses Modulo an Equational Theory 36
2.3 Automata Clauses with Equality Constraints 37
2.4 Automata Clauses with equality constraints modulo equational

theories . 39
2.5 Pushdown and Visibly Pushdown Tree Automata 42
2.6 Related Models . 47
2.7 Application to the verification of communicating processes . . . 50

3 Tree Automata with Global Constraints 53
3.1 TAGED . 54
3.2 Rigid Tree Automata . 55
3.3 DAG Automata . 57
3.4 Boolean combinations of equalities and disequalities 60
3.5 Arithmetic Constraints . 61
3.6 Application to the Static Analysis of XML Specifications 62

II Verification of Infinite State Systems 68

1 Term Rewriting . 69
1.1 Ground Term Rewriting Systems 73

1

Contents

1.2 Flat and Shallow Term Rewriting Systems 74
1.3 Context-Free Term Rewriting Systems 77
1.4 Closure of Languages of Tree Automata with Constraints . . . 78

2 Unranked Tree Rewriting . 80
2.1 Hedge Automata and CF-Hedge Automata 81
2.2 Hedge Rewriting Systems . 85
2.3 Parametrized Hedge Rewriting Systems 88
2.4 Application: Analyze of XQuery Updates 91
2.5 Application: Analyze of XML Access Control Policies 94
2.6 Unranked Unordered Tree Rewriting Systems 96

3 Rewrite Strategies . 98
3.1 Innermost Strategies . 100
3.2 Context-Controlled Rewriting 101
3.3 CF Unranked Tree Languages 107

IIIPerspectives 111
1 Generalized Constraints for Tree Automata 111

1.1 Equality Modulo Equational Theories 111
1.2 Ordering and other Constraints 112
1.3 Separated Constraints . 113

2 Data Trees and Tree Isomorphisms . 114
2.1 Equality of Data Values and Subtrees 114
2.2 Tree Automata with Global Constraints for Data Trees 116
2.3 Data Tree Rewriting . 116
2.4 Generalized Global Constraints for Tree Automata 116

Bibliography 118

Index 141

2

Introduction

This document presents some research work which has mostly been done since mid-
2007, when I joined the research team DAHU at LSV, on Databases and Verification.
The main goal of this research is the study of several models of state machines, all
of them extending the same formalism: the classical tree automata, as defined in the
first chapter of [Comon et al., 2007], and their application in various reasoning tasks,
such as static analysis of programs or systems, typing, verification of the consistency
of specifications, model checking...

Trees are a natural data structure, widespread in computer science, for instance for
the representation of hierarchical or nested data structures, e.g. filesystems, for spe-
cific algorithms (binary search trees, distributed algorithms), for an abstract model for
semi-structured data, sometimes also called Web data, for an algebraic presentation of
recursive processes, as terms in logic... When it comes to reasoning on systems manip-
ulating trees, or modeled by trees, it is crucial to have finite representation of infinite
sets of trees. Tree automata are finite state machines providing such a representation,
acknowledged as suitable for a use in reasoning tasks: they are a well established the-
oretical model, in close relationship with logic, they enjoy good compositional proper-
ties and efficient decision algorithms. In particular, tree automata are used at the core
of systems for software and hardware verification (e.g. Mona [Klarlund and Møller,
2001]) and theorem proving (e.g. SPASS [Weidenbach et al., 2009]).

However, tree automata have also some severe limitations in expressiveness, which
we describe below. Some extensions have been proposed in order to improve the model
while trying to preserve good properties. We present in this document several such
extensions, their properties and the advents of their use in symbolic verification of
systems and programs.

Tree automata are good at reasoning tasks...

In the context of formal verification, tree structures are appropriate for the symbolic
representation of the configurations of several kinds of systems. Consider for instance
the following toy example of a recursive functional program defining an append func-
tion on lists (see also Section II.1)

app(nil, y) = y,
app

(
cons(x, y), z

)
= cons

(
x, app(y, z)

)

3

Contents

In order to check that this function has the expected behavior on every pair of lists ℓ1,
ℓ2 built with nil (empty list), the constructor symbols cons, and possibly some other
symbols for building the elements of the lists, we must consider an infinite set Lin of
terms of the form app(ℓ1, ℓ2), which can be characterized by a tree automaton (such
a tree language is called regular). In this approach, sometimes called regular model
checking [Bouajjani et al., 2000], both the values (lists) and the intermediate steps of
computation are presented as terms. The closure of Lin by the two above equations,
applied from left to right, it also a regular tree language (see e.g. [Genet and Tong,
2001]). This latter language, let us call it L∗, can be analyzed in order to verify
that the above definition of the function app is correct. For instance, one can check
that the intersection of L∗ with a regular tree language Lerr, representing erroneous
configurations, is empty. This is possible because the class of regular tree languages is
effectively closed under intersection (with a polynomial construction) and the empti-
ness of the language of a given tree automaton is decidable (in linear time).

A similar algebraic approach can be followed for the analysis of imperative pro-
cesses with procedure call and creation of concurrent threads, see e.g. [Seidl, 2009;
Bouajjani et al., 2006]. In process calculi modeling concurrency, processes are repre-
sented by terms over a signature containing operators for the composition of processes.
For instance, the terms s · t and s‖t represent processes obtained respectively by the
sequential and parallel composition of the processes s and t. The evolution of the
processes can be defined by rewrite rules between terms. For instance, the following
rule describes the creation of a new thread c at a program point a: a → a‖c. By
iterated application of this rule, we can obtain an infinite set of reachable terms of
the form a‖c‖ . . . ‖c, which is a regular tree language. In Section II.1 we present also
an example of verification of networks of concurrent processes with a tree topology
and without bound on the tree size [Abdulla et al., 2002].

XML documents are commonly represented as labelled trees, and the typing for-
malism in use for XML are all subcases of automata on unranked trees [Murata et al.,
2005]. For instance the following set of rules Dhos defines a regular set of trees, each
of them containing the base of patients of an hospital. These rules associate to every
symbol in an alphabet Σ a regular expression over Σ describing the valid sequences
of its children, or a content str , denoting an arbitrary string. These are similar to
declarations of a Document Type Definition (DTD, see also page 63), a standard XML
schema language.

hospital → patient∗

patient → name, ssn, treatment

treatment → mref, diagnosis, date

name → str ssn → str

mref → str diagnosis → str

date → str

The problem of static typechecking programs defining tree transformations consist in
verifying that a program always converts valid source documents into valid output
trees, where validity is expressed with respect to types defined by tree automata. This
problem reduces in some cases to decision problems for tree automata [Milo et al.,
2003]. In Section II.2.4, we present for instance a typechecking procedure for the iter-

4

Contents

ations of XML update primitives defined in the W3C recommendation [Robie et al.,
2011].

To summarize, standard tree automata are a well-suited formalism for perform-
ing formal verifications of infinite state systems, thanks to the following relevant
properties

• they have a good expressiveness, and are in particular closely related to logics,
like second-order monadic of the tree, in which properties of systems can be
expressed,

• they enjoy good compositional properties, in particular, regular languages are
closed under all Boolean operations,

• efficient decision algorithms exist for the main problems, e.g. emptiness of the
language of a given tree automaton is decidable in linear time, and membership
(whether a given tree is accepted by a given tree automaton) is decidable in
quadratic time.

...but tree automata are sometimes limited.

Tree automata also have some limitations which restrict their use for verification and
make necessary some approximations or extensions.

Let us come back to the previous example on the analysis of functions on lists,
and in particular to the definition of the language Lerr of erroneous configurations.
It can be defined by a finite set of forbidden patterns. For instance, the set of terms
containing the pattern app(app(y1, y2), y3) is definable by a tree automaton, because
the pattern is linear (it does not contain a variable with multiple occurrences). But
this is not the case for non linear patterns such as cons(x, cons(x, y)) which char-
acterizes stuttering lists (this pattern could be interesting for the verification of a
more sophisticated definition of app than the above one). For the detection of non-
linear patterns, some extensions of standard tree automata are necessary. What is
needed for this purpose is the ability to perform test of equalities between the sub-
terms at multiple positions of the same variable in a pattern. Note that the positions
tested are at a bounded distance, hence the tests can be performed locally, during
the computation steps of an automaton.

The algebraic presentation of imperative programs as terms usually requires tak-
ing into account equations between terms which do not preserve regular tree lan-
guages. This is the case for instance of associativity (A) for the sequential compo-
sition operator · or the combination of associativity and commutativity (C), for the
parallel composition operator ‖. The closure of a regular tree language modulo (A)
or (AC) (the combination of (A) and (C)) is in general not regular. Hence we need an
extension of tree automata model able to characterize languages modulo equational
theories such as above, in order to reason on imperative programs with algebraic
properties, see e.g. [Ohsaki, 2001; Ohsaki et al., 2005; Dal Zilio and Lugiez, 2006].

5

Contents

The problem is that handling equations may complicate emptiness decision proce-
dures. Alternatively, we shall also study the closure of regular tree languages under
term rewriting systems (such as the above language L∗). In some cases where this
closure is not regular, it is possible to extend the standard tree automaton model
while retaining good decision properties.

XML documents are often given along with an XML schema which can be used
to ease querying and restructuring. One part of a schema is a typing mechanism (e.g.
a DTD such as the previous Dhos), which is always definable by tree automata, while
a second part of a schema is made of integrity constraints restricting the structure of
documents. A classical example, common in relational databases [Abiteboul et al.,
1995] (from which many XML documents are generated), is the key constraints, which
express that some positions in the documents are uniquely identified by the value of
some attributes. For instance, one might want to impose, in the definition Dhos of the
type hospital, that the string below two distinct positions labeled by ssn are different
(i.e. the social security number is an identifier). In a DTD, this can be expressed by
declaring the string below ssn as an ID attribute. This unary unary key constraint
can also be written ssn[↓] → ssn following the notations of [Buneman et al., 2001]
presented in Section I.3.6 (every two positions labeled by ssn must be the same if
the two strings immediately below them are equal). Similarly, a denial constraint
ssn[↓] 6= mref[↓] expresses that two strings below respectively a ssn and a mref posi-
tion are different. We have already mentioned that standard tree automata capture
the type mechanisms of all XML schemes in use, but they are inadequate to ex-
press integrity constraints as above. In order to fill this gap, we need an external
mechanism for expressing constraints of equality and disequality between subterms
at positions specified for instance by labels. Note that, unlike the case of pattern
matching, the positions to be tested can be at unbounded distance. Therefore, the
integrity constraints cannot be verified using local test. Instead, we need a global
test, performed at the end of a computation.

In conclusion, in many situations, we need to find extensions of standard tree au-
tomata that should preserve as much as possible their good properties. They should
be as natural as possible, and preferably have a correspondence with logic. They
should enjoy closure properties, at least closure by intersection with regular tree lan-
guages, and they should also have decidable membership and /or emptiness problems.
A tree automaton model enjoying all these desirable properties is unknown, and un-
likely to exists in our opinion. Therefore, we shall consider in this document several
extensions of the tree automaton model fitting with different kinds of applications.

Plan

This document is organized in three parts. The two first parts present studies of two
kinds of properties of various tree automata models: static properties in the first part
(Boolean closure and decision problems), and dynamic properties (closure under tree
transformations) in the second part. The third part concludes the document with a
presentation of two research proposals.

6

Contents

In Part I, we present various classes of extended tree automata and some studies
of the properties previously mentioned (composition, emptiness or membership de-
cision...) and we describe applications to first order theorem proving and constraint
solving.

The first automata model, in Section I.1, is a model of tree automata extended
with local constraints, testing equalities and disequalities between subtrees at a
bounded distance in the input tree. This enables in particular non-linear pattern
matching. The most general class is undecidable, and we present several decidable
subclasses. Some applications of these models to inductive first-order theorem prov-
ing are presented in Section I.1.5.

In Section I.2, we introduce tree automata with equational constraints modulo
equational theories. These models combine local equality constraints and closure
under equational theories. This represents a double challenge because the presence
of constraints complicates both the results of emptiness decision and of closure. It
is solved with a uniform presentation based on first order Horn clauses and deci-
sion procedures based on classical theorem proving techniques. We also present in
Section I.2.5 tree automata extended with an auxiliary memory and constraints for
comparing the memory contents. These automata are applied to the verification of
communicating concurrent processes in Section I.2.7.

The third family of models presented in Part I (Section I.3) is tree automata
extended with global constraints which can express XML integrity constraints, such
as keys. We present decision results for several subclasses and a correspondence with
an extension of the monadic second-order logic of the tree (Section I.3.6).

Part II is devoted to the problem of regular model checking, i.e. the computa-
tion of the closure of a tree language by iteration of tree transformation rules, in
particular term rewriting rules, and its application to the verification of infinite state
systems where (infinite) sets of configurations are represented by tree languages and
the dynamics are represented by some transition systems.

Section II.1 is concerned with standard term rewriting systems (TRS). Many
works treat the problem of the closure of regular tree languages by TRS. We consider
the much less well studied problem of the closure of extended tree automata languages,
including the case of tree automata with constraints. We show also how tree automata
techniques helped to solve open decision problems in term rewriting theory.

We present in Section II.2 different classes of automata for unranked trees. They
define languages of trees strongly related to the associative and associative commu-
tative closures of regular sets of terms (see Sections II.2.1 and II.2.6). We study the
closure of these languages by unranked tree rewrite systems (a formalism much less
studied than TRS), and show how the results obtained can be applied to the verifi-
cation of XML updates (Section II.2.4) and XML read/write access control policies
(Section II.2.5).

In Section II.3, we consider the problem of the closure of tree automata lan-
guages under rewriting with various strategies. These strategies enable more precise
representation of transitions of systems, for instance XML transformations where the

7

Contents

positions of transformation are selected with some external mechanism. Using strate-
gies, one can obtain better (II.3.1) or worth (II.3.2) results than with plain rewriting
wrt closure of tree languages, according to the cases.

Several open problems and perspectives are presented along the document. In
the final Part III, we propose, as a conclusion, two longer research subjects. The
first proposal III.1 is the study of extensions of tree automata with other symbolic
constraints than equalities or disequalities between subtrees. The second one III.2
is a comparison between tree automata with constraints and various automata and
logics for data trees, which are trees labeled over an infinite alphabet used to represent
XML documents carrying data from an infinite domain.

What this document is not about

Before giving more details on the contents of the document, let us precise first what
is not in this document. First, all the automata presented in this document compute
on finite labelled trees. The automata on infinite trees, which are used widely e.g. in
the context of verification and game theory, are out of the scope of this memoir.

Moreover, we consider tree automata computing with parallel moves of sev-
eral heads in an input tree: bottom-up from children to parent or top-down from
parent to children. Automata computing sequentially in trees, like tree-walking
automata are not considered in this document, neither are automata computing
on on the textual form of XML documents (like the visibly pushdown automata
of [Alur and Madhusudan, 2004]). See [Schwentick, 2007] for a survey of these topics.

Finally, we purposely focused on formalisms defining languages more expressive
than regular tree languages (i.e. the languages of standard tree automata). There is
a whole thread of research about the automata languages below the regular tree sets,
like for instance the languages definable in first-order logic, see e.g. [Place, 2010] for
recent developments.

Outline of Part I: Classes of Extended Tree Automata

The first extension of tree automata presented in this document is defined by adding
local constraints to the transition rules in order to test, at each computation step,
some equalities and disequalities between "close" subtrees of the input tree (Sec-
tion I.1). These models were introduced as decision tools in the context of auto-
mated theorem proving, because of their strong connexion to term rewriting sys-
tems [Dershowitz and Jouannaud, 1990] (a rule-based formalism for describing cal-
culations on terms of first order logic, by pattern matching and replacement).

For instance, in a somewhat old work [Comon and Jacquemard, 1997, 2003] (Sec-
tion I.1.3), we studied with Hubert Comon the complexity of the emptiness problem
for a tree automata model with local disequality constraints that are able to repre-
sent the set of normal forms of term rewriting systems (the terms that cannot be
evaluated anymore). More recently, we have refuted with Michael Rusinowitch and
Laurent Vigneron [Jacquemard et al., 2008a] (see Section I.2.4) an old conjecture

8

Contents

on the emptiness decision for a larger class of such automata, called reduction au-
tomata [Dauchet et al., 1995]. Some results regarding the problem of the decision of
regularity (is the language of a given extended automaton also a language of a stan-
dard tree automaton?), derived from a long version of [Barguñó et al., 2010] currently
under submission, are also presented in the document.

With Adel Bouhoula [Bouhoula and Jacquemard, 2008, 2006, 2007, 2011] (Sec-
tion I.1.5) we have developed a framework for automating proofs by induction, gen-
eralizing an idea of [Bouhoula and Jouannaud, 2001], where tree automata with local
constraints, characterizing the languages of normal forms, are used both as induction
schemes and as decision tools.

It is known that tree automata can be presented declaratively, as logic pro-
grams (more precisely as a set of first order Horn clauses) [Frühwirth et al., 1991;
Nielson et al., 2002]. This presentation, followed in Section I.2, allows one to apply
well established automated deduction techniques and tools for the decision problem of
tree automata. With Michael Rusinowitch and Laurent Vigneron [Jacquemard et al.,
2006], we have proposed a clausal definition of different models of tree automata with
local equality constraints and computing modulo equational theories (Sections I.2.1-
I.2.4). We use a paramodulation calculus with basic and ordered strategies and with
selection [Bachmair et al., 1995; Nieuwenhuis and Rubio, 2001] in order to ensure the
termination of decision algorithms, which have been implemented [Jacquemard et al.,
2008b]. In a much earlier work with Christoph Meyer and Christoph Weidenbach
[Jacquemard et al., 1998], we had applied a similar approach to tree automata with
simpler local constraints and modulo flat equational theories (the terms in the equa-
tions of the theory are of height at most one), using a different superposition calculus.
This method has been implemented in the system SPASS [Weidenbach et al., 2009].

In addition, following an internship of Nicolas Perrin, we proposed with him and
Hubert Comon [Comon-Lundh et al., 2007] a tree automata model called visibly with
one memory (presented in Section I.2.5 as sets of Horn clauses), which are extended
by an auxiliary memory containing a tree and whose expressiveness lies between the
class of regular tree languages and the class of context-free tree languages. Unlike
the latter, the class of languages defined by visibly tree automata with memory is
closed under intersection and complement. These automata have been extended with
constraints allowing, in the calculations, some tests on the contents of memory and
local tests on the input tree [Comon-Lundh et al., 2007; Comon-Lundh et al., 2008].

These clausal models of constrained tree automata can be used for checking safety
properties of concurrent processes exchanging asynchronously some composite mes-
sages (which are labeled trees of unbounded size) via unreliable communication chan-
nels, in a model related to the applied π-calculus [Abadi and Fournet, 2001], see
Section I.2.7 and [Jacquemard et al., 2008a].

The extensions of tree automata with global constraints are presented in Sec-
tion I.3. These constraints are tested only once, at the end of a computation of
the automaton on a tree, and consist in a combination of tests of equalities and
disequalities between subtrees whose respective positions are defined by the automa-
ton’s computation. A fundamental difference with the local constraints previously

9

Contents

mentioned is that the distance between the positions tested is arbitrary.
The first tree automata model of this type, called TAGED (see Section I.3.1), was

introduced in [Filiot et al., 2007] in connection with the decision of the satisfiability
for the spatial logic TQL, which permits ones to express queries on XML documents.
With Francis Klay and Camille Vacher [Jacquemard et al., 2009] we have studied
independently a subclass of TAGED called rigid tree automata (Section I.3.2) which
has good properties of decision and expressiveness. An application to the verification
of communicating processes is presented in [Jacquemard et al., 2011a]. A combination
of the models of [Jacquemard et al., 2008a] and [Jacquemard et al., 2011a] would be
interesting in this context, see e.g. [Affeldt and Comon-Lundh, 2009].

The problem of decidability of emptiness for TAGED remained open until 2010.
We have solved it with Luis Bargunó, Carlos Creus, Guillem Godoy and Camille
Vacher [Barguñó et al., 2010] (Section I.3.4) for a class strictly extending TAGED, in
particular with arithmetic constraints (Section I.3.5, see also [Seidl et al., 2008]) and
constraints similar to XML unary key constraints. This type of automata is well-
suited to the analysis of XML schemes (problems of satisfiability, inclusion or equiv-
alence of schemes) that are presented as the conjunction of a type constraint, which
can be expressed in general by a tree automaton [Schwentick, 2007], and integrity
constraints, which can be expressed by global constraints. Generalizing a previous
construction [Filiot et al., 2008] we prove in [Barguñó et al., 2010] (Section I.3.6) a
decision result for the satisfiability of an extension of the second-order monadic logic
interpreted on trees, by reduction to the emptiness problem.

Another emptiness decision procedure for TAGED, with a better complexity than
[Barguñó et al., 2010], is presented in the thesis of Camille Vacher [Vacher, 2010]
(Section I.3.3). It works by reduction to the emptiness problem for automata calcu-
lating on the compression of trees in the form of directed acyclic graphs (DAGs). A
work in progress with Anca Muscholl and Igor Walukiewicz also aims to extend this
idea to more general classes of tree automata with global constraints.

Outline of Part II: Verification of Infinite State Systems

In the regular model checking approaches for verification, the transitions between the
configurations of a system are classically represented by formalisms for the transfor-
mation of trees, such as transducers or rewrite systems. A crucial problem in this
context is the finite characterization (by automata) of the closure of tree languages
by these transformations.

We consider first the case of term rewriting systems, (the terms are labeled trees
of bounded rank, Section II.1). We analyze in [Jacquemard et al., 2009, 2011a] the
closure of the rigid tree automata languages under rewriting, with a decision algorithm
for the membership of a given tree to this closure (Section II.1.4). In addition,
we have solved by the negative the open problem of the decidability of reachability
and confluence for flat term rewriting systems [Jacquemard, 2003; Mitsuhashi et al.,
2006] and showed [Godoy and Jacquemard, 2009], using tree automata techniques,
that the problem the uniqueness of normal forms (i.e. that a given rewrite system,

10

Contents

seen as a computation formalism, is functional) is decidable for flat and linear term
rewriting systems and undecidable for flat and right-linear term rewriting systems
(Section II.1.2).

We have also studied the closure of unranked ordered tree languages under rewrite
systems for such trees, called hedge rewriting systems (Section II.2). We have shown
[Jacquemard and Rusinowitch, 2008a] (Section II.2.2) that, on the one hand, rewrite
systems called context-free (because their rules are shaped like productions of context-
free tree grammars) transform languages of unranked ordered tree automata (called
hedge automata [Murata, 1999]) into an extension called context-free hedge automata,
and on the other hand, that the symmetric of these rewriting systems preserve the
hedge automata languages. In addition, we proposed with Michael Rusinowitch
[Jacquemard and Rusinowitch, 2010] (Section II.2.3) an extension of hedge rewriting
systems with some parameters representing hedge automata languages. A parametrized
hedge rewriting rule can represent an infinity of hedge rewriting rules. This provides
a natural model for atomic operations for updating XML documents (renaming, in-
sertion, deletion, replacement) as specified in the W3C recommendation of XQuery
Update Facility 1.0 [Robie et al., 2011] (Section II.2.4). Some results of forward and
backward type inference [Jacquemard and Rusinowitch, 2010] for arbitrary iterations
of these operations (by construction of hedge automata and context-free hedge au-
tomata) allow us to verify properties of consistency of access control policies (for read
and write access) for XML documents (Section II.2.5). The verification of security
policies has also been the subject of several internships in bilateral projects with
Tunisia and of an ARC INRIA [Youssef et al., 2009; Abbassi et al., 2010].

In Section II.3, we consider the closure of tree languages by application of rewrit-
ing with special strategies, a problem which has been less studied than for plain
rewriting. With Andrea Gascon and Guillem Godoy we show [Gascón et al., 2008]
(Section II.3.1) the surprising result that (in the case of terms) the application of
the innermost strategy, which is the analogous to the call-by-value computations for
functional languages, gives better results, wrt regular model checking, than plain
rewriting [Jacquemard, 2003]: the closure of a regular tree language by a flat term
rewriting system is a language of a well known tree automata model with local con-
straints, with good properties [Bogaert and Tison, 1992].

We have also studied with Masahiko Sakai and Yoshiharu Kojima [Jacquemard et al.,
2011b], following an internship of the latter at LSV, the control of term rewriting by
contextual conditions expressed by tree automata: computations of these automata
are used to define the selection of the rewrite positions (Section II.3.2). This work
was motivated by the analysis of XML read/write access control policies, because
in practice, the positions of application of updates are usually selected by XPath
expressions [Robie et al., 2011] and this selection can be defined by tree automata.

Finally, in Section II.3.3, we present some preliminary results obtained with
Adrien Boiret and Luc Segoufin [Boiret, 2010] toward the study of context-free un-
ranked ordered tree languages. The definition a sufficiently expressive and decidable
class of context-free languages for unranked ordered trees is an interesting perspective
for the representation of closures of unranked tree languages under hedge rewriting

11

Contents

with strategies, in the context of the analysis of XML transformations.

12

I

Classes of Extended Tree Automata

We present several classes of tree automata which strictly extend in expressiveness
the standard tree automata, either on ranked or unranked trees. They are classified
into three families, presented in the next three sections, and for each family, we have
chosen one domain of application. Several models are presented for each family.
Tough we do not claim an exhaustive covering, we do not restrict to the models that
we have studied.

Standard Tree Automata

Ranked terms.

A signature Σ is a finite set of function symbols with arity. We sometimes denote Σ
in extenso as {f1 : a1, . . . , fn : an} where f1, . . . , fn are the function symbols, and the
integers a1, . . . , an are the corresponding arities. We denote the subset of function
symbols of Σ of arity n as Σn. A signature is called unary if all its function symbols
have arity 0 or 1. The set of ranked terms (or simply terms) over the signature Σ and a
countable set of variables X is defined recursively as T (Σ,X) := X ∪ {f(t1, . . . , tn) |
n ≥ 0, f ∈ Σn, t1, . . . , tn ∈ T (Σ)}. The set of variables of X occurring in a term
t ∈ T (Σ,X) is denoted vars(t). A term t ∈ T (Σ,X) is called ground if vars(t) = ∅.
The set of ground ranked terms is denoted by T (Σ). A term t ∈ T (Σ,X) is called
linear if every variable of vars(t) occurs at most once in t.

The positions in terms are denoted by sequences of non-zero natural numbers;
ε denotes the empty sequence (root position), and p.p′ denotes the concatenation
of positions p and p′. The prefix ordering on positions is denoted p � p′ and two
positions p, p′ incomparable with respect to this ordering are called parallel, denoted
by p ‖ p′. The domain (set of positions) of a ranked term t = f(t1, . . . , tn) (n ≥ 0) is
defined recursively as Pos(t) = {ε} ∪ {i.p | 1 ≤ i ≤ n, p ∈ Pos(ti)}. It is traditional
to see a ranked term t ∈ T (Σ) as a function from its set of positions Pos(t) into Σ.
For this reason, the symbol labeling the position p in t shall be denoted by t(p). The
height of a term t, denoted by h(t), is the maximal length of a position of Pos(t). In
particular, the length of ε is 0. A term t ∈ T (Σ,X) is called flat if it is of height at
most one, and shallow if every variable of X occurs at a height at most one in t.

13

I. Classes of Extended Tree Automata

The subterm of t at position p, denoted t|p, is defined recursively by t|ε = t and
f(t1, . . . , tn)|i.p = ti|p. The replacement in t of the subterm at position p by s, de-
noted t[s]p, is defined recursively by t[s]ε = s and f(t1, . . . , ti−1, ti, ti+1, . . . , tn)[s]i.p =
f(t1, . . . , ti−1, ti[s]p, ti+1, . . . , tn).

A substitution is a mapping from a finite subset of X into T (Σ,X). The definition
of a substitution σ can be extended homomorphically from variables to arbitrary
terms by σ(x) = x for all x ∈ X \ dom(σ) and σ(f(t1, . . . , tn)) = f

(
σ(t1), . . . , σ(tn)

)
.

A variable renaming is a substitution from variables to variables. Given a substitution
σ, the term σ(t) is called an instance of the term t. A substitution σ is grounding for
a term t ∈ T (Σ,X) is σ(t) is ground.

A context of dimension n is a linear term C ∈ T (Σ, {x1, . . . , xn}). When not
otherwise specified, we shall consider contexts of dimension 1. The context C =
x1 is called the trivial context. Given a context C of dimension n and n terms
t1, . . . , tn ∈ T (Σ,X), we write C[t1, . . . , tn] to denote σ(C) where σ is the substitution
{x1 7→ t1, . . . , xn 7→ tn}.

Ranked Tree Automata.

A ranked tree automaton (TA for short) over a signature Σ is a tuple A = 〈Σ, Q, F,∆〉
where Q is a finite set of states, F ⊂ Q is the subset of final states and ∆ is a set
of transition rules of the form f(q1, . . . , qn) → q, with f ∈ Σn, q1, . . . , qn, q ∈ Q.
Sometimes, we shall refer to A as a subscript of its components, like in QA to indicate
that Q is the state set of A.

A run of a TA A over Σ on a ranked term t ∈ T (Σ) is a function r from Pos(t)
into QA such that for each p ∈ Pos(t), t(p)

(
r(p.1), . . . , r(p.n)

)
→ r(p) is a transition

rule of ∆A (n ≥ 0). The run r is called successful (or accepting) if the state symbol
r(ε) at its root is in FA. By abuse of notation, we shall use the term notations
(subterm, replacement...) for the runs. The language L(A) of A is the set of terms
t ∈ T (Σ) on which there exists a successful run of A. For every state q ∈ Q, we
denote L(A, q) the language of A in state q, which is the set of terms t ∈ T (Σ) on
which there exists a run r of A with r(ε) = q; Hence L(A) =

⋃

q∈F L(A, q). A set of
ranked terms of T (Σ) is called regular if it is the language of some TA.

Equivalently, we can define recursively the languages L(A, q) as the smallest sub-
sets of T (Σ) such that

L(A, q) ⊆
⋃

f(q1,...,qn)→q∈∆

n≥0

{
f(t1, . . . , tn) | ∀i, 1 ≤ i ≤ n, ti ∈ L(A, qi)

}
,

or also as the least fixed points solutions in the Σ-algebra of terms of a set of equations
Xq =

⋃

f(q1,...,qn)→q∈∆ f(Xq1 , . . . ,Xqn) for each state q ∈ Q, see e.g. [Courcelle, 1989].

Example 1 A very classical example of regular tree language is the set of Boolean
expression which evaluate to true. Let Σ = {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0}, and let

14

A = 〈Σ, {q0, q1}, {q1},∆
〉
, where ∆ contains the rules

⊥ → q0, ⊤ → q1,
¬(q0) → q1, ¬(q1) → q0,

∨(q0, q0) → q0, ∨(q0, q1) → q1, ∨(q1, q0) → q1, ∨(q1, q1) → q1,
∧(q0, q0) → q0, ∧(q0, q1) → q0, ∧(q1, q0) → q0, ∧(q1, q1) → q1

This TA will evaluate every true Boolean expression in T (Σ) into q1 and every false ex-
pression into q0. For instance, the unique run of A on t = ∧(∧(⊤,∨(⊤,¬(⊥))),¬(⊤))
is r = q0(q1(q1, q1(q1, q1(q0))), q0(q1)). ✸

Example 2 The following TA A =
〈
Σ, {q, q¬, qf}, {qf},∆

〉
over the same signature

as in Example 1, recognizes the terms containing the pattern ¬(¬(x)). Its transition
rules are

⊥ → q, ⊤ → q,
¬(q) → q, ¬(q) → q¬, ¬(q¬) → qf , ¬(qf) → qf ,
∨(q, q) → q, ∧(q, q) → q
∨(qf , q∗) → qf , ∨(q∗, qf) → qf , ∧(qf , q∗) → qf , ∧(q∗, qf) → qf

where q∗ ∈ {q, q¬, qf}. This TA can be very convenient for instance to recognize the
terms which can simplified by an equation line ¬(¬(x)) = x. ✸

The construction of Example 2 is generalizable: given a linear term t, the set of ground
terms over Σ containing an instance of t as a subterm (ground terms embedding t) is
a regular tree language.

An operational semantics of ranked tree automata can be defined by the ap-
plication of the transitions rules as (ranked) term rewriting rules (see definition in
Section 1.5), where the state symbols are seen as new constant function symbols (of
arity 0). With this approach (see e.g. [Comon et al., 2007]), a computation of a TA

A on a ranked term t is a rewrite sequence, starting from t and reducing it, with
the transition rules of A, into a single state q (in this case, we have t ∈ L(A, q)).
This defines bottom-up computations of ranked tree automata. An alternative is to
consider top-down computations, when the rewriting applies the transition rules in
the other direction (the top-down counterpart of the transition rule f(q1, . . . , qn)→ q
is q → f(q1, . . . , qn)). A top-down computation start from a state q and generate a
term of L(A, q) (it is then a derivation of a regular ranked term grammar). This
approach is convenient for dealing with infinite terms (which is out of the scope of
this document) or for the definition of alternating tree automata.

It is possible to add to TA some ε-transitions of the form q −→ε q′, where q and q′

are states, without changing their expressiveness.

Determinism

A TA A over Σ is called deterministic (resp. complete) if for all f ∈ Σn and all states
q1, . . . , qn of A, there is at most (resp. at least) one state q of A such that A contains

15

I. Classes of Extended Tree Automata

a transition f(q1, . . . , qn) → q. If A is deterministic (resp. complete) then for all
tanked term t ∈ T (Σ), there exists at most (resp. at least) one run of A on t. Hence,
a is deterministic and complete TA A over Σ can be seen as a function from T (Σ) to
QA, such that for all t ∈ T (Σ), A(t) is the unique state q such that t ∈ L(A, q).

Similarly as for finite automata, for all TA A over Σ, one can built in PTIME a
complete TA Ac whose size is polynomial in the size of A, and such that L(Ac) =
L(A). The construction works by addition of a trash state, accepting all terms.
Also, for all TA A over Σ, one can built in EXPTIME with a subset construction a
deterministic TA Ad whose size is exponential in the size of A (the sets of Ad are
subsets of QA) and such that L(Ad) = L(A). It can be shown that the exponential
size for the determinization is a lower bound (it is in particular a consequence of the
properties below).

If we consider the top-down semantics, then the definition of determinism (of A
over Σ) varies: for all state q of A and f ∈ Σ, we want at most tuple of states
(q1, . . . , qn) such that q → f(q1, . . . , qn) is a top-down transition rule of A. With this
definition, not all TA can be determinized (consider for instance the regular language
{f(a, b), f(b, a)}).

There is also an analogous of the Myhill-Nerode Theorem for TA, establishing the
equivalence of the regularity of a ranked term language L ⊆ T (Σ) and the finite index
of the congruence1 ≡L defined by s ≡L t iff for all context C over Σ, C[s] ∈ L ⇔
C[t] ∈ L. Consequently, for every regular ranked term language L ⊆ T (Σ), there
exists a minimal deterministic TA over Σ recognizing L, and its number of states is
the index of ≡L.

Boolean Closures.

The class of regular ranked terms languages is closed under the Boolean operations,
with some procedures of automata construction working within the following com-
plexity bounds on time and size of the automata obtained2

union: linear (union of two tree automata, assuming that their the state sets are
disjoint)

intersection: quadratic (Cartesian product of automata)

complementation: exponential (determinization, completion, and inversion of final
and non-final states).

The exponential complexity for complementation is also a lower bound in general, for
deterministic TA however, the construction for the complementation is polynomial.

1A congruence ≡ on T (Σ) is an equivalence relation such that for all f ∈ Σn, if s1 ≡ t1,. . . ,
sn ≡ tn, then f(s1, . . . , sn) ≡ f(t1, . . . , tn).

2Without further precisions, we consider that the size of a TA (or an extension in the next
sections) is its number of state symbols plus the sum of the respective sizes of its transition rules,
i.e. it is the number of symbols used in the definition of the automaton.

16

Decision Problems.

The two central problems in automata theory in our context are membership and
emptiness decision, which are defined as follows. We shall spend some time to describe
decision algorithms for these two problems, as we shall study them for all automata
models considered in this document.

given a TA A over Σ and a term t ∈ T (Σ), decide whether t ∈ L(A).

Membership Problem:

The membership problem is decidable in PTIME for TA. A polynomial decision
algorithm for a TA A = 〈Σ, Q, F,∆〉 and a term t ∈ T (Σ) works by computing a
labeling function r from Pos(t) into 2Q, which is the unique run of Ad on t. Only
the necessary states are computed, on the fly, in a bottom-up relabeling of t. The
membership problem is actually LOGCFL-complete for general TA and its exact
complexity is still unknown in the case of deterministic TA.

given a TA A over Σ, decide whether L(A) = ∅.

Emptiness Problem:

The emptiness problem is solved by a simple incremental algorithm marking every
state q such that L(A, q) 6= ∅, by iteration of the following step: if q is not marked
and there exists f(q1, . . . , qn)→ q ∈ ∆ such that q1,. . . , qn are marked, then mark q.
Using appropriate data structures for ∆A, the algorithm stops in linear time either
when a final state is marked (L(A) 6= ∅) or if there are no more states to mark (and
then L(A) = ∅). The correctness of this approach can be proved using a pumping
argument : in a term t ∈ L(A), accepted by A with a successful run r, replacing a
subterm of t at a position p by any term of L

(
A, r(p)

)
returns a term which is still

in L(A). In particular, doing replacements by smaller subterms wrt a well-founded
ordering <, total on T (Σ), containing the strict subterm relation and monotonic
wrt context application (see e.g. [Dershowitz and Jouannaud, 1990]) permits ones
to run a minimality argument. Another way to decide emptiness in linear time is
to reduce this problem to the satisfiability of the set of propositional Horn clauses
Xq1 , . . . ,Xqn ⇒ Xq such that there exists f(q1, . . . , qn) → q in ∆. The problem is
PTIME-complete (see e.g. [Veanes, 1997]).

given a TA A over Σ, decide whether L(A) is finite.

Finiteness Problem:

17

I. Classes of Extended Tree Automata

This problem is decidable in PTIME, with an algorithm testing for the existence (in
the TA transitions) of a loop from an non-empty state q to itself, such that a final
state is reachable from q.

The three following problems, which are PSPACE-complete for finite automata,
become EXPTIME-complete (equivalently, alternating PSPACE-complete) for tree
automata.

given n TA A1, . . . ,An over Σ, decide whether L(A1) ∩ . . . ∩ L(An) = ∅?

Problem of the Emptiness of Intersection:

This problem is related to type inference in logic programming [Frühwirth et al.,
1991], a proof of EXPTIME-hardness for non-deterministic and deterministic TA can
be found in [Veanes, 1997] and for deterministic top-down TA in [Seidl, 1994].

given a TA A over Σ, decide whether L(A) = T (Σ).

Problem of Universality:

This problem is EXPTIME-complete. Universality is however decidable in PTIME
for deterministic TA.

given two TA A1 and A2 over Σ, decide whether L(A1) ⊆ L(A2).

Problem of Inclusion:

This problem, whose universality is a particular case, is EXPTIME-complete, and it
is decidable in PTIME when A2 is deterministic.

A study of the parametrized complexity of the above problems has been recently
conducted [Barecka and Charatonik, 2011] for several classes of tree automata. As a
rule of thumb, the difficult problems remain (unfortunately) untractable even after
fixing a parameter like for instance the number of states.

1 Tree Automata with Local Constraints

In this section, we consider some extensions of the classical tree automata model
with the ability to perform some tests on the input term, at each computation step (a
survey on theses classes can be found in the Chapter 4 of [Comon et al., 2007]). These
formalisms have been applied for deciding some problems related to term rewriting
and in deductive and inductive first order theorem proving. The models presented
here are restricted to the recognition of ranked terms.

18

1. Tree Automata with Local Constraints

A severe limitation of standard tree automata is their inability to test for equality
(isomorphism) or disequality between subterms in an input term. For instance, the
pattern matching ability of TA, illustrated by Example 2, is strictly limited to linear
pattern (without multiple occurrence of variables). The language of terms matching a
non-linear pattern such as ∨

(
x,¬(x)

)
is not regular. This can be shown by contradic-

tion, using a pumping argument as in the proof of the emptiness problem on page 17.
In order to overcome this limitation and improve the expressive power of ranked tree
automata, the extensions presented in the next sections have been proposed.

1.1 Local Equalities and Disequalities Constraints

A ranked tree automaton with equality and disequality constraints [Caron, 1993] (TAC

for short) over a signature Σ is a tuple A = 〈Σ, Q, F,∆〉 where Σ, Q and F are like for
TA, and the transitions rules of ∆ have the form f(q1, . . . , qn) −→

c q, where f ∈ Σn,
q1, . . . , qn, q ∈ Q and c is a Boolean combination without negation of equality and
disequality constraints of the respective form π = π′ and π 6= π′, where π and π′ are
positions.

A run of a TAC A over Σ on a ranked term t ∈ T (Σ) is a function from
Pos(t) into QA such that for each p ∈ Pos(t), there exists a a transition rule
t(p)

(
r(p.1), . . . , r(p.n)

)
−→c r(p) in ∆A such that t|p satisfies c, where the satisfaction

of an atomic constraint π = π′ (resp. π 6= π′) by a term s ∈ T (Σ) is defined by
π, π ∈ Pos(t) and s|π = s|π′ (resp. s|π 6= s|π′). Successful runs and languages of
TAC are defined the same way as for TA. Note that the transition rules of TAC with
a trivial constraint equal to true have the same behaviour as TA transitions (hence
TAC strictly extend TA). For the sake of simplicity, we shall write f(q1, . . . , qn)→ q
instead of f(q1, . . . , qn) −−−→

true q.

Example 3 The following TAC A =
〈
Σ, {q, q¬, qf}, {qf},∆

〉
over the same signature

as in Example 1, recognizes the terms matching the non-linear pattern ∨(x,¬(x)),
where ∆ is the following set of transition rules:

⊥ → q, ⊤ → q, ¬(q)→ q, ¬(q)→ q¬,

∨(q, q)→ q, ∧(q, q)→ q, ∨(q, q¬) −−−−→
1=2.1 qf

Note the constraint in the last transition rule, ensuring the equality of the subterms
at the two positions of the variable x in ∨(x,¬(x)). In order to extend A to the
recognition of ranked terms embedding the above pattern (i.e. ranked terms with a
subterm matching this pattern) it is sufficient to add the following transition rules,
ensuring the propagation up to the root position of the final state qf : ¬(qf) → qf ,
∨(qf , q∗)→ qf , ∨(q∗, qf)→ qf , ∧(qf , q∗)→ qf , ∧(q∗, qf)→ qf , where q∗ ∈ {q, q¬, qf}. ✸

The class of TAC languages is still closed under all Boolean operations. In partic-
ular, the TAC can be determinized and completed – a TAC A is called deterministic
(resp. complete) if for all tanked term t ∈ T (Σ), there exists at most (resp. at least)
one run of A on t.

19

I. Classes of Extended Tree Automata

Unfortunately, the emptiness problem is undecidable for TAC [Mongy, 1981; Bogaert,
1990], even when the constraints are restricted to conjunctions of equalities (like in
the original model called RATEG of [Mongy, 1981]) and even when this equalities
are between cousins positions [Tommasi, 1992] (i.e. they have the form π = π′ where
π and π′ have length 2). This can be shown by an encoding of the Post correspon-
dence problem. The key idea for the encodings in these undecidability proofs is the
possibility for the TAC to overlap some (local) equality tests. An overlap occurs
when an equality π = π′ is tested at a position p by a transition rule, and another
equality π0 = π′

0 is tested at a position p0 ≺ p, such that p � p0.π0 ≺ p.π and
p � p0.π

′
0 ≺ p.π′. It appeared that this notion of equality overlapping is important

for drawing the boundaries between decidable and undecidable classes of ranked tree
automata with local constraints, as we will try to describe in the next sections.

Note that the membership problem is still decidable in PTIME for TAC, just by
adding the (PTIME) verification of the constraints to the algorithm presented at
page 17.

Brother Constraints

A decidable subclass of TAC called ranked tree automaton with brother equality and
disequality constraints (TAB) has been proposed in [Bogaert and Tison, 1992]. Every
TAB is a TAC in which every constraint π = π′ or π 6= π′ is such that both π
and π′ have length one. Hence, TAB are restricted to test equality and disequality
between subterms at brother positions. Note that no equality overlap is possible in
the computations of TAB.

Example 4 The following TAB A =
〈
Σ, {q, qf}, {qf},∆

〉
over the signature Σ of

Example 1, recognizes the terms matching the non-linear pattern ∨(x, x), where ∆ is
the following set of transition rules:

⊥ → q, ⊤ → q, ¬(q)→ q

∨(q, q)→ q, ∧(q, q)→ q, ∨(q, q) −−−→1=2 qf

Note however that the language of Example 3 is not recognizable by a TAB.
The set of balanced binary terms built over the signature Σ′ = {⊥ : 0,∨ : 2} is

recognized by the TAB B =
〈
Σ′, {q}, {q}, {⊥ → q,∨(q, q) −−−→1=2 q}

〉
. ✸

The class of TAB languages is closed under all Boolean operations and the empti-
ness problem is decidable, and EXPTIME-complete, for TAB [Bogaert and Tison,
1992] (it is decidable in PTIME for deterministic TAB). In Section II.3.1, we present
a result on the closure under rewriting with the innermost strategy which involves
the construction of a TAB.

1.2 Reduction Automata

Another decidable subclass of TAC has been proposed in [Dauchet et al., 1995]. A
reduction automaton (RA for short) is defined as a TAC A = 〈Σ, Q, F,∆〉 together

20

1. Tree Automata with Local Constraints

with a partial ordering < on Q such that for all transition rule f(q1, . . . , qn) −→
c q ∈ ∆,

q is an upper bound (wrt ≤) of {q1, . . . , qn}, and it is moreover a strict upper bound
if c contains an equality π = π′. With this restriction, the number of equalities tested
along a computation path in a run of A is bounded (by the number of states of A),
hence in particular the number of equality overlap is bounded as well.

Example 5 The TAC of Example 3, recognizing the ranked terms embedding the non-
linear pattern ∨(x,¬(x)), it a RA, with the ordering < defined by q < q¬ < qf . ✸

This example illustrates a remarkable property of RA, that for every ranked term t
(with variables, possibly not linear), the set of ground ranked terms embedding t is
recognizable by a deterministic and complete RA At whose size is polynomial in the
size of t, and which is constructed in PTIME in the size of t. Moreover, the class of
RA languages is closed under union and intersection and the subclass of deterministic
and complete RA is closed under complementation. Also, the class of RA and TAB

are incomparable in expressiveness.
In [Dauchet et al., 1995], it is shown that the emptiness problem is decidable for

deterministic and complete RA. The decidability proof is based on a rather involved
pumping argument. Indeed, the simple pumping argument presented in Section I
for TA is no longer valid for TAC. Let A be a TAC and t a ranked term accepted
by A with a run r. Even if some ranked term t′ < t is accepted in the state r(p)
(for some position p ∈ Pos(t)), the replacement t[t′]p may no longer be accepted
by A. The reason is that some equality or disequality tested by A above p in t
might be invalidated by the replacement (of t|p by t′). The principle of the proof
of [Dauchet et al., 1995] is that if t ∈ L(A) is big enough, it is possible to find
some pumpings (actually combinations of pumpings) in t which do not invalidate the
equalities and disequalities tested by the constraints of A in the unique run r of A
on t. The case of disequalities is complicated, and is described in the next section.
The case of equalities is simpler, using parallel replacements on equivalence classes
of subterms whose size is bounded because of the ordering condition on states in the
definition of the RA.

For RA with the additional restriction that there is no overlapping between con-
straints, emptiness is decidable in PTIME.

It was thought [Dauchet et al., 1995] that emptiness is also decidable for non-
deterministic RA. However we have shown several years later, with Michael Rusinow-
itch and Laurent Vigneron that it is not the case.

The emptiness problem is undecidable for RA.

Theorem 1 [Jacquemard et al., 2006]

We built a RA A which recognizes a set of ranked terms representing computations
of a given 2-counter machine M. A configuration of M is represented by a term
p(sn1(0), sn2(0)) where p is the current state of M and sn1(0), resp. sn2(0), is

21

I. Classes of Extended Tree Automata

the representation of the content of the first, resp. second, counter, in unary us-
ing the symbols 0 and successor s. It is possible to express with a conjunction of
equalities π = π′ that in a ranked term g(ci+1, g(ci, 0)), ci and ci+1 are successive
configurations of M. However, iterating such tests in a sequence of configurations
g(cn, g(cn−1, . . . g(c1, g(c0, 0)))) would require an unbounded number n of overlapping
equality tests along the rightmost branch (on the g positions), and this is not possible
with RA.

We circumvent this problem using redundancy in the representation of compu-
tations of M, transitivity of subterm equality and non-determinism of RA. The
above sequence of successive configurations is represented by the term tn, defined
recursively by t0 = h(g(c0, 0), 0) and ti+1 = h(g(ci+1, ti), ti). All equality tests for
successive configurations will be performed by A on the g positions, which are all
parallel in tn. Moreover, for testing the equality between the two occurrences of ti
in ti+1, it is sufficient to test 1.2 = 2 at the root of tn and 2.2 = 2.1.2 at every g
position. It is possible for A to realize all these equality tests, while fulfilling the RA

condition on the states. However, this requires to have different runs of A on the two
occurrences of ti in ti+1 (one run will test the equalities, and the other not), i.e. A
must be non-deterministic.

Consequently, the RA cannot be determinized. It is not known whether the class
of RA languages is closed under complementation or not.

1.3 Restriction to Disequality Constraints

The complexity of the emptiness decision procedure of [Dauchet et al., 1995] for RA is
rather high (a tower of several exponentials in time) and the exact complexity of the
problem is unknown. In an old work with Hubert Comon [Comon and Jacquemard,
1997, 2003], we focus on another subclass of TAC which was sufficient for our purpose
(the decision of ground reducibility, see Section 1.5 below). In this subclass, that we
denote by TAC 6=, the constraints in transition rules are conjunctions of disequalities
π 6= π′, and we managed to reduce the time complexity of emptiness decision to one
exponential.

Emptiness is decidable in EXPTIME for TAC 6=.

Theorem 2 [Comon and Jacquemard, 1997, 2003]

More precisely, the complexity upper bound of our emptiness decision algorithm,
for a TAC 6= A = 〈Σ, Q, F,∆〉, is O

(
(|Q| × |∆|)P (A)

)
, where P is a polynomial in

the size of the constraints in the transition rules of A. The proof follows the same
principles (combined pumping argument) as the proof for RA, but with some new
combinatorial arguments in order to reduce the complexity upper bound, in particular
a state marking algorithm based on the pumping argument, where several marks per
state are needed. This algorithm avoids the enumeration of all ranked terms smaller
that the bound above which a pumping is possible.

22

1. Tree Automata with Local Constraints

An important difference with [Dauchet et al., 1995] is that we consider general re-
placement for the pumping, whereas in [Dauchet et al., 1995], a pumping is restricted
to be the replacement of t|p (for p ∈ Pos(t)) by one of its subterms. Finding pump-
ing which do not invalidate disequalities tested by the automaton is done following
the same principle as in [Dauchet et al., 1995] though. This involves on one hand
an enumeration for bounding the cases of disequality test invalidated by pumping
close to the test position, and on the other hand, the trick that if some disequality is
invalidated by a pumping not too close to the test position, then it means that some
subterms of t are equal and we can combine replacements in this subterms in parallel.

No Overlap

Another decidable model of tree automata with local constraints has been introduced
more recently [Godoy et al., 2010], in order to solve the problem of deciding whether
the image of a regular (ranked) tree language under a given homomorphism is regular.
This model called TAhom, 6= in [Godoy et al., 2010] is not (up to my knowledge) a
subcase of TAC, but it is closely related. The automata contain arbitrary disequality
constraints defined as above, and limited equality constraints, which, roughly, cannot
be superposed.

It is also shown in [Godoy et al., 2010] that the complement of a TAC= (the
subclass of TAC whose constraints are conjunctions of atomic equality constraints) is
a TAC 6=, and vice-versa (both constructions are exponential). We will come back in
Part II to an important consequences of this result.

1.4 Deciding Regularity

The decidability of regularity (whether the language of a given tree automaton with
constraint is regular) is in general difficult to establish for strict extensions of TA. In
this section, we propose a general criteria for proving its undecidability.

It is well know that it is undecidable whether a given CF language is regular.
This is a consequence of a more general Greibach’s Theorem ([Hopcroft and Ullman,
1979], § 8.7) which states that this undecidability result holds for every class of
languages satisfying some closure properties and for which universality is undecid-
able. This result can be generalized to ranked tree languages. The composition of
L1 ⊆ T (Σ1),. . . , Ln ⊆ T (Σn) by a n-ary symbol d (possibly in one of the signatures
Σi) is d(L1, . . . , Ln) = {d(t1, . . . , tn) | t1 ∈ L1, . . . , tn ∈ Ln}.

Let Γ be a class of tree recognizers whose set of corresponding languages is
strictly larger than the set of regular tree languages, and stable under union
and composition. Then universality for Γ is reducible to regularity for Γ.

Theorem 3

23

I. Classes of Extended Tree Automata

With Luis Barguñó, Carlos Creus, Guillem Godoy, and Camille Vacher, we show
in [Barguñó et al., 2010] this result for a particular tree automata model presented
in Section 3. However, the proof principle is very general and can be applied to
Theorem 3 as well. Let N be a non-regular language of Γ over a signature Σ, and
let d be a new function symbol with arity 2, not in Σ. Let C ∈ Γ, over the same
signature Σ, be an input for the problem of universality, and let C′ ∈ Γ be such that
L(C′) = d

(
T (Σ), N

)
∪ d

(
L(C),T (Σ)

)
.

It holds that L(C) = T (Σ) if and only if L(C′) is regular. If L(C) = T (Σ),
then L(C′) = d

(
T (Σ),T (Σ)

)
, and it is regular. For the other direction, assume that

L(C) 6= T (Σ) and let s ∈ T (Σ) \ L(C). By construction, N = {t | d(s, t) ∈ L(C′)}. It
follows that L(C′) is not regular.

Stability under union and composition is a reasonable requirement, satisfied by
all the classes of tree automata previously presented. It is not difficult to show
that universality is undecidable for RA and TA 6=, for instance by constructing an
automaton recognizing all the ranked terms which are not representing a computation
of a given 2-counter machine. It can be defined as a union of automata, corresponding
to the different error cases, where each case can be handled either by a TA or with some
disequality constraints. It is also a consequence of the result of [Godoy et al., 2010]
on the complementation of TAC= into TAC 6=, and the undecidability of emptiness of
TAC=. Then, following Theorem 3, we have the following result.

Regularity is undecidable for RA and TA 6=.

Corollary 4

Note that on the other hand, regularity of the set of irreducible ground terms for a
given rewrite system is decidable [Vágvölgyi and Gilleron, 1992; Kucherov and Tajine,
1995] (these sets are languages of TA 6=, see below). Also, universality is decidable
for TA= [Godoy et al., 2010], hence Theorem 3 is not applicable to these automata.
It is however easy to obtain a analogous result of Theorem 3 by reduction of the
emptiness problem.

Let Γ be a class of tree recognizers whose set of corresponding languages
is strictly larger than the set of regular tree languages, and stable under
composition. Then emptiness for Γ is reducible to regularity for Γ.

Theorem 5

Let N be a non-regular language of Γ over a signature Σ, and let d be a function
symbol of arity 2. Let C ∈ Γ be an input for the emptiness problem, over the same
signature Σ, and let C′ ∈ Γ be such that L(C′) = d

(
L(C), N

)
. It holds that L(C) = ∅

if and only if L(C′) is regular. If L(C) = ∅, then L(C′) = ∅, and it is regular. For the
other direction, assume that L(C) 6= ∅. It is not difficult to show that the regularity
of L(C′) would imply the regularity of N , hence L(C′) is not regular.

24

1. Tree Automata with Local Constraints

Regularity is undecidable for TA=.

Corollary 6

It is shown in [Bogaert et al., 1999] that regularity is decidable for TAB.

1.5 Applications to First Order Theorem Proving

Since many years, ranked tree automata have served as decision tool in the theory
of term rewriting. In Part II of this document, we present several studies of the
rewrite closure of tree languages, and applications to the verification of infinite state
systems. Let us present in this section some applications of tree automata techniques
to automated deduction.

Term Rewriting Systems

Term rewriting is a rule-based formalism for describing computations in ranked
terms [Dershowitz and Jouannaud, 1990; Baader and Nipkow, 1998]. A term rewrit-
ing system (TRS) over a signature Σ is a finite set of rewrite rules ℓ → r, where
ℓ ∈ T (Σ,X) \ X (ℓ is called left-hand side (lhs) of the rule, and describes a pattern
to be replaced in a term) and r ∈ T (Σ, vars(ℓ)) (r is called right-hand side (rhs) of
the rule, and it is the new term for replacement).

A term s ∈ T (Σ,X) rewrites to t by a TRS R at a position p of s with a
substitution σ, denoted s −−−−→R,p,σ t (p and σ may be omitted in this notation) if there
is a rewrite rule ℓ → r ∈ R such that s|p = σ(ℓ) and t = s[σ(r)]p. In this case, s
is said to be reducible. The set of irreducible terms, also called R-normal forms, is
denoted by NFR. The reflexive, transitive closure and reflexive, symmetric, transitive
closure of the relation −−→R are denoted respectively −−→∗R and←−−→∗R . A term t′ is a normal
form of a term t for a TRS R if t −−→∗R t′ and t′ ∈ NFR.

A TRS R is terminating if there is no infinite chain of terms si, i ≥ 0, such that
si −−→R si+1. A TRS R is confluent if for all terms t, s1, s2 such that s1 ←−−

∗
R t −−→∗R s2

there exists a term t′ such that s1 −−→
∗
R t′ ←−−∗R s2. A TRS is convergent if it is both

terminating and confluent.

First Order Logics of Rewrite Relations

Tree automata techniques have been used to established results of decision of sat-
isfiability for several first order logics related to rewriting. This is achieved by a
compilation of formulas into tree automata and then decision of emptiness.

This technique works for instance for the encompassment theory, interpreted on
the domain of ground terms T (Σ). The formulas of this theory are built with a
finite number of unary predicates of the form Et, for t ∈ T (Σ,X), such that Et(u)
holds for u ∈ T (Σ) if t matches a subterm of u (u embeds t). The formulas of this
logic can be compiled into deterministic reduction automata (RA) characterizing the

25

I. Classes of Extended Tree Automata

models, hence satisfiability is decidable [Dauchet et al., 1995]. Similar techniques
apply also to the first order theory of a reduction relation, with a binary predi-
cate interpreted as the rewrite relation −−→∗R , on ground terms, for a fixed TRS R.
Compilation into tree automata, hence decision of satisfiability, is possible when R
is ground or R is such that for every rule ℓ → r, ℓ and r are linear and do not
share variables [Dauchet and Tison, 1990]. These results can be used to decide some
properties of TRS expressible in these logics.

In a recent work with Etienne Lozes, Ralf Treinen and Jules Villard [Jacquemard et al.,
2011c], we generalize this approach for showing decidability of first order theories with
several unary predicates interpreted by membership of ground terms to fixed regular
tree languages, and several binary predicates interpreted as different congruence re-
lations ←−−−→∗R1

, . . . , ←−−−→∗Rk
, where the TRS R1, . . . , Rk satisfy the above conditions (i.e.

they are linear and variable disjoint).
We show also that either relaxing the conditions on the TRS’s or adding ternary

predicates of the form x = f(y, z) (for f ∈ Σ) leads to undecidability (even for
ground TRS in the second case). The decidability result is applied to the model-
checking problem of AπL, a spatial equational logic for the applied π-calculus, using
a reduction of this problem to the validity of first-order formulas in T (Σ) with multiple
congruence relations.

Inductive Theorem Proving

The goal of inductive theorem proving is to automatize the proof of statements in
some particular structures, like natural numbers, integers, lists, binary trees... Let
us focus on specifications defined by finite sets of equational Horn clauses (univer-
sally quantified disjunctions of equations or negation of equations between terms).
An equational clause C is an inductive theorem of such a specification E , assumed
consistent, if C is valid in the smallest Herbrand model of E . A Herbrand model H
of a set of first order sentences with equality has for domain a quotient of the set of
terms T (Σ) by a congruence, and interprets every function symbol f ∈ Σ as a term
constructor (for t1, . . . , tn ∈ T (Σ), f(t1, . . . , tn) is interpreted in H as the equivalence
class of the term f(t1, . . . , tn)). A set of first order formulas is consistent iff it has an
Herbrand model, and in the case of Horn clauses, there exists a smallest Herbrand
model, obtained by intersection of all the Herbrand models. It is also classically
obtained as the least fixpoint of the immediate consequence operator defined by the
Horn clauses.

Example 6 The following set of equations specifies the addition of natural numbers
E = {0 + x = x, s(x) + y = s(x + y)}. The minimal Herbrand model of E is the
quotient of the term algebra T (Σ), where Σ = {0, s,+}, by the equational of E. It is
isomorphic to the set of natural numbers, i.e. the set of terms {0, s(0), s(s(0)), . . .} =
T
(
{0, s}

)
. The conjecture x + 0 = x holds in this model. This can be shown using

the classical induction scheme over natural numbers (0 + 0 = 0 holds, and assuming
sn(0) + 0 = sn(0), we can show sn+1(0) + 0 = sn+1(0) using simplification with the

26

1. Tree Automata with Local Constraints

equations of E). Note however that x+0 = x is not a logical consequence of E: there
are some models of E (less "natural" than T

(
{0, s}

)
) in which it does not hold. ✸

Normal Form Automata

For every TRS R over a signature Σ, the set of R-normal forms is the language of a
tree automaton with disequality constraints (TA 6= of Section 1.3). For several reasons
explained in the two subsections below, this finite representation of normal forms is
very interesting in inductive theorem proving. Intuitively, under some conditions, it
is a finite presentation of the smallest Herbrand model.

For all TRS R, there exists a TA 6= ANF(R) whose size is exponential in the
size of R, and such that L

(
ANF(R)

)
is the set of ground normal forms of R.

Theorem 7 [Comon and Jacquemard, 2003]

The construction of ANF(R) is presented in Figure 1. Intuitively, it corresponds to the
complementation and completion of a TA= recognizing R-reducible terms by pattern
matching of left members of rewrite rules of R, where every subset of states (for the
complementation) is represented by the most general common instance (mgi) of its
elements (if they are unifiable). The complementation of TA= into TA 6= is formally
defined in [Godoy et al., 2010]. In Figure 1, we use the notion of the linearized version
lin(ℓ) of a term ℓ ∈ T (Σ,X), which is a term such that Pos(lin(ℓ)) = Pos(ℓ), lin(ℓ)
is linear and for all p ∈ Pos(ℓ) such that ℓ(p) /∈ X , lin(ℓ)(p) = ℓ(p). This term lin(ℓ)
is unique up to variable renaming.

Figure 1 Construction of a TA 6= ANF(R) recognizing theR-normal forms of a TRSR.

L(R) = {u | u is a strict subterm of lin(ℓ) for some ℓ→ r ∈ R}
ANF(R) = 〈Σ, QNF(R), QNF(R),∆NF(R)〉 with

QNF(R) =
{
〈mgi(t1, . . . , tn)〉 | {t1, . . . , tn} is a maximal
subset of L(R) s.t . t1, . . . , tn are unifiable

}

∆NF(R) contains every f(〈u1〉, . . . , 〈un〉) −→
c 〈t〉 such that f ∈ Σ,

f(u1, . . . , un) is not matched by a linear lhs of R,
t is the mgi of

{
u
∣
∣ 〈u〉 ∈ QNF(R) and u matches f(u1, . . . , un)

}
, and

c =
∧

ℓ→r∈R,

ℓmatches f(u1,...,un)

∨

x∈vars(ℓ)

ℓ|π= ℓ|π′=x,π 6=π′

π 6= π′.

Example 7 To take a somewhat trivial example, if R is obtained from the specifi-
cation of the addition of natural numbers from Example 6 by orienting the 2 equa-
tions from left to right (into rewrite rules) we have L(R) = {0, x, s(x)}, QNF(R) =

27

I. Classes of Extended Tree Automata

{〈0〉, 〈s(x)〉}, and ∆NF(R) = {s(〈0〉) → 〈s(x)〉, s(〈s(x)〉) → 〈s(x)〉}. The language of
ANF(R) is then T

(
{0, s}

)
. ✸

Example 8 Let us extend the specification of Examples 6, 7 into the following spec-
ification of relative integers:

R = {0+x→ x, s(x)+y → s(x+y), p(x)+y → p(x+y), s(p(x))→ x, p(s(x))→ x}.

With the construction of Figure 1, L(R) = {0, x, s(x), p(x)}, QNF(R) = {〈0〉, 〈s(x)〉, 〈p(x)〉},
and ∆NF(R) = {s(〈0〉) → 〈s(x)〉, s(〈s(x)〉) → 〈s(x)〉p(〈0〉) → 〈p(x)〉, p(〈p(x)〉) →
〈p(x)〉}. The language of ANF(R) is then T

(
{0, s}

)
∪ T

(
{0, p}

)
. ✸

Proof by Consistency and Ground Reducibility

Some approaches for automatic inductive theorem proving, in the case of equational
specifications, work by trying to derive of an inconsistency from a set of equations
or a TRS, and a conjecture, using first order deduction techniques [Huet and Hullot,
1982; Jouannaud and Kounalis, 1986; Kapur and Musser, 1987]. What characterizes
these approaches is that the proofs do not use explicit induction schemes. They are
therefore also called inductionless induction, see [Comon-Lundh, 2001] for a general
framework for such techniques.

An example is inductive completion [Fribourg, 1989; Bachmair, 1991] when the
specification is presented by a ground convergent TRSR. This method is a restriction
of the Knuth-Bendix completion procedure, applied to R∪{s = t}. An inconsistency
in this case is the derivation of a rewrite rule ℓ→ r such that ℓ is not ground reducible
wrt R. It means that the intersection between the set of ground instances of ℓ and
the ground R-normal forms is empty. Intuitively, this inconsistency condition means
that the initial model of R (set of ground R-normal forms) is different from the initial
model of R ∪ {s = t}. Therefore, the above construction of ANF(R) can be used as
a decision tool for ground reducibility in an inductive completion procedure, with
optimal complexity.

Ground reducibility is EXPTIME-complete.

Theorem 8 [Comon and Jacquemard, 2003]

This approach can be generalized to sets of Horn clauses with equations, using
saturation by superposition calculi, see [Ganzinger and Stuber, 1993].

Implicit Inductive Theorem Proving

Another family of methods for inductive theorem proving uses some explicitly induc-
tion schemes in the proofs (unlike proof by consistency methods), but these schemes
are not manually provided by the user but rather automatically computed by the sys-
tem [Zhang et al., 1988; Bouhoula and Rusinowitch, 1995; Bouhoula, 1997]. Roughly,

28

1. Tree Automata with Local Constraints

these methods compute, in a preliminary step, a finite set of terms, called cover-set
in [Zhang et al., 1988] and test-set in [Bouhoula and Rusinowitch, 1995; Bouhoula,
1997], which is used in the induction steps of the proof to instantiate induction vari-
ables.

It is common in inductive theorem proving to assume that the specifications are
built with constructor function symbols (for constructing terms representing data)
and defined symbols (representing the operations defined on constructor terms).

Example 9 In Example 6, the symbols 0 and s are the constructors, and the symbol
+, which occurs at the head of lhs of equations, is defined. ✸

In the specification of Example 9, the constructors are called free because there are
no equations between terms made only of constructor symbols. This is also the
case of the simple specification of append on lists proposed in Introduction (where
the constructors symbols are cons and nil). In the specification of Example 8, the
constructors 0, s and p are not free, because of the rules s(p(x))→ x and p(s(x))→ x.

The sufficient completeness of a TRS R is a condition expressing that every
ground term is reducible to a constructor term using the rules of R. If a TRS R with
constructors is sufficiently complete and terminating, then a set of representatives
for the smallest Herbrand model of R is the set of ground constructor normal forms
of R. When the constructors are free in R, the set of ground constructor normal
forms is simply the set of ground constructors terms and it is very easy in this case
to define an induction schema. This situation is therefore convenient for inductive
reasoning, and many inductive theorem provers require free constructors, termination
and sufficient completeness.

However, the assumption of constructor-freeness is too restrictive to define com-
plex data structures such as sets, sorted lists, powerlists, binary search trees, etc. Such
data structure generate complex induction schemes, and the automation of inductive
proofs is therefore difficult in this settings. The soundness of cover-set [Zhang et al.,
1988] and test-set [Bouhoula and Rusinowitch, 1995; Bouhoula, 1997] induction tech-
niques do not require that the constructors are free. But, when they are not free,
cover-sets and test-sets are over-approximating induction schemes, in the sense that
they may represent some reducible ground terms. This may cause the failure (a
“don’t know” result) of the induction proofs. Moreover, the refutational completeness
of test-set induction technique is not guaranteed in this case.

Some progress has been done in [Bouhoula and Jouannaud, 2001] in the direc-
tion of handling specification with non-free constructors. It has been generalized
in [Bouhoula et al., 2000] to membership equational logic. These approaches work
by transforming the initial specification in order to get rid of rewrite rules between
constructors terms, using the construction of normal form tree automata (I imple-
mented this procedure as a module of the system Maude [Clavel et al., 1999]). The
axioms for constructors are however assumed to be left-linear rewrite rules, which is
still too restrictive for the specification of structures like sets or sorted lists...

29

I. Classes of Extended Tree Automata

With Adel Bouhoula [Bouhoula and Jacquemard, 2008], we propose a framework
for inductive theorem proving in theories containing constrained rewrite rules between
constructor terms (where the constraints express e.g. syntactic equality, disequality,
ordering, membership in a fixed regular tree language) and constrained equational
Horn clauses (more exactly, constrained and conditional rewrite rules) for defined
functions. The key idea is a strong and natural integration of tree automata with
constraints in an implicit induction procedure, where they are used as induction
schema. The tree automata recognize exactly the sets of constructor normal forms,
and are computed using a generalization of the procedure of Figure 1 to arbitrary sym-
bolic constraints on the variables in lhs of rewrite rules (instead of equalities between
this variables in the case of Figure 1). Therefore, the normal form tree automata
constructed contains arbitrary constraints (intuitively, negations of the constraints of
the rewrite rules between constructors). They are used in the procedure as induction
schemes (for the generation of subgoals at induction steps, using the transition rules
backward, like production rules of tree grammars) and, moreover, for several decision
procedures similar to the consistency in the above proof by consistency, by reduction
to emptiness test.

Our procedure is sound and refutationaly complete under the assumption of suffi-
cient completeness of the given set of rewrite rules R and separate termination of the
respective sets of rules for defined functions and for the constructors (there is no re-
quirement for termination of the whole set of rules unlike [Bouhoula and Rusinowitch,
1995; Bouhoula, 1997]). It is moreover sound for disproofs (if the procedure fails, then
the conjecture is not an inductive theorem), provided that R is strongly complete (a
stronger condition for sufficient completeness) and ground confluent.

Moreover, the use of constraints permits us in some cases to use the constrained
completion technique of [Kirchner et al., 1990] in order to transform a non-terminating
theory into a terminating one, by the addition of ordering constraints in constructor
rules. This allows in particular to make proofs modulo non orientable axioms, with-
out having to modify the core of our procedure. Ordering constraints are also useful
for specifying complex data structures. For instance in [Bouhoula and Jacquemard,
2008] we study a specification of ordered lists, build on the top of the example of
lists (with nil and cons) in Introduction with new constrained rewrite rules such as
x1 > x2 ⇒ cons(x1, cons(x2, y))→ cons(x2, cons(x1, y)).

Joinable Inductive Theorem Proving

We have also proposed with Adel Bouhoula an adaptation of the above induction
procedure [Bouhoula and Jacquemard, 2007] to relax the assumption of confluence
of the specification. This approach is used for simultaneous proof of reachability
properties and detection of attacks for finite set of processes communicating on an
insecure network (see Section 2.7 below for more details on this setting). The non-
confluence is needed in order to specify the non-deterministic behavior of the insecure
network.

30

2. Tree Automata as Sets of Horn Clauses

The specification language described above, combining conditional rewrite rules
and constraints, enables to express concisely and independently the instructions of
the processes, the behavior of the insecure network, the algebraic laws followed by
the operators (the latter are specified as rules between constructors), and security
properties of several kind, following a generic scheme based on a definition of traces.

Decision of Sufficient Completeness

We propose moreover with Adel Bouhoula, [Bouhoula and Jacquemard, 2006] and
[Bouhoula and Jacquemard, 2011] a procedure for checking the sufficient complete-
ness of specifications as above (conditional and constrained TRS). This procedure is
integrated into the above framework for inductive theorem proving. The procedure is
presented by an inference system which is shown sound and complete if the specifica-
tion in input is convergent for ground terms. The goal of the system is the incremental
construction of a finite pattern tree for each non-constructor symbol. The pattern
trees are labeled by constrained terms and every construction step consists in the
replacement of variables by terms, using backward the transitions of the constructor
normal form automaton. Intuitively, the idea is to build a finite representation of
all the terms of the form f(t1, . . . , tn) such that f is a defined symbol and t1, . . . , tn
are ground constructor terms irreducible by R (if R is ground convergent, then it is
sufficiently complete iff every such term is reducible). We show that it is sufficient
in these settings to consider a finite set of positions of variables to be replaced, and
therefore that the construction terminates.

A precondition of one inference of this system refers to a (undecidable) property
called strong ground reducibility. This sufficient condition for ground reducibility
requires in particular that the conditions of candidate rules of R (for reducing ground
instances) are inductive consequences of R, hence it is undecidable in general for
conditional term rewriting systems, this condition is discharged to the above inductive
theorem proving system. We show that strong ground reducibility and hence sufficient
completeness become decidable for unconditional (i.e. purely equational) TRS which
may contain constraints.

We have successfully applied our method to several examples, returning readable
proofs and, in case of negative answer, a counter-example suggesting how to complete
the specification.

An ongoing work, still with Adel Bouhoula, is concerned with the simultaneous
decision of completeness and confluence for specifications as above. Finally, Figure 2
summarizes the joint works presented above with the assumptions.

2 Tree Automata as Sets of Horn Clauses

We consider in this section another presentation of tree automata with local con-
straints, based on a definition as finite sets of Horn clauses, following an approach
initiated by Frühwirth et al [Frühwirth et al., 1991], for type inference in logic pro-
gramming. This approach has had many developments, in particular in the con-

31

I. Classes of Extended Tree Automata

Figure 2 Procedures for conditional constrained TRS, with assumptions.

Inductive theorem proving

termination
sufficient completeness
confluence (for disproof)

Joinable inductive
theorem proving

termination
sufficient completeness

Sufficient completeness

termination
confluence

Completeness
and confluence

termination

text of verification of infinite states systems [Nielson et al., 2001; Verma et al., 2005;
Seidl and Verma, 2007, 2008; Verma and Goubault-Larrecq, 2007b; Seidl and Verma,
2009]. In Sections 2.1-2.4 we present several tree automata models and decision re-
sults, summarizing a joint work with Michael Rusinowitch and Laurent Vigneron
[Jacquemard et al., 2006] and [Jacquemard et al., 2008a], in a uniform framework:

• the automata are defined as Horn clauses sets (this presentation is also adopted
in Sections 2.5 and 2.6),

• the decision procedures are based on the saturation of clauses sets under a
paramodulation calculus,

• we consider one unified decision problem, expressible in this settings, and gen-
eralizing most of the problems previously mentioned.

A Horn clause is a disjunctions of literals −A1∨. . .∨−Ak∨H, (every literal is an atom
A or the negation of an atom −A) denoted A1, . . . , Ak ⇒ H, where −A1, . . . ,−Ak

are negative literals called antecedents (the set of antecedents is also called the body
of the clause) and H is a positive literal called head of the clause. When H is missing,
A1, . . . , Ak ⇒ is called a goal clause, and otherwise it is called definite. A definite
clause without negative literals is called positive. We call clausal tree automaton a
finite sets of definite Horn clauses built over a signature Σ, a finite set unary predicates
denoted by lowercase letter p, q,. . . , and the equality predicate =.

Every predicate symbol other than = occurring in a given clausal tree automaton
A is called a state of A. Given a clausal tree automaton A and a state q of A, the
language of A in q, denoted by L(A, q), is the set of terms t ∈ T (Σ) such that q(t) is
a logical consequence of A, i.e. such that q(t) is true in the smallest (wrt inclusion)
Herbrand model of A (note that such a model always exists and is unique since all
the clauses of A are definite).
The unified problem mentioned above is the following

32

2. Tree Automata as Sets of Horn Clauses

given a clausal tree automaton A over Σ, n ≥ 1 states of A, q1,. . . , qn and
n terms t1, . . . , tn ∈ T (Σ,X), decide whether there exists a substitution σ,
grounding for t1, . . . , tn and such that σ(ti) ∈ L(A, qi) for all 1 ≤ i ≤ n.

Problem of Membership to the Intersection of Instances (MII):

We will see below that MII generalizes many decision problems presented in the
previous pages. Following the above definitions, the problem MII is satisfied by A,
q1, . . . , qn and t1, . . . , tn iff the set of clausesA∪{q1(t1), . . . , qn(tn)⇒} is unsatisfiable.
The above fact suggests the use of classical first order theorem proving techniques
[Bachmair and Ganzinger, 2001; Nieuwenhuis and Rubio, 2001] in order to solve de-
cisions problems like MII, following for instance the approaches [Verma, 2003],
[Goubault-Larrecq, 2005]. The main originality of our approach is the use of paramod-
ulation, an equational calculus (instead e.g. of resolution in [Goubault-Larrecq,
2005]). This permits us to consider two extensions of standard tree automata which
are important in the context of system verification: tree automata languages modulo
equational theories (Section 2.2) and tree automata with local equality constraints
(Section 2.3), as well as the combination of both (Section 2.4). The idea is that,
in this framework, both the equational theories and the equality constraints can be
represented directly in the clausal formalism.

We consider with Michael Rusinowitch and Laurent Vigneron [Jacquemard et al.,
2008a] a calculus called basic ordered paramodulation with selection [Bachmair et al.,
1995; Nieuwenhuis and Rubio, 2001]. It is sound (every inference rule of the calculus
generate from 2 clauses φ1 and φ2 in premise a new clause φ which is a logical
consequence of φ1 and φ2) and refutationally complete (from every unsatisfiable set
of clauses, the inference system will generate, with a fair strategy, the empty clause).
Hence, in order to solve the MII problem for a given clausal tree automaton A,
it is sufficient to try to generate the empty clause by iteration of the rules of this
paramodulation calculus, starting from the clauses of A and a goal clause of the form
q1(t1), . . . , qn(tn) ⇒. Decidability is obtained for a clausal model of tree automata
as soon as it can be established that the iteration will terminate for automata of
this class, i.e. starting from the clauses of an automaton and a goal clause as above,
at some point, the set of clauses will be saturated (no new clause can be generated).
The decidability results of the next Sections 2.1 and 2.3 are obtained by showing such
termination results, either by showing that all the clauses which will be generated
are of some type containing only a finite number of clauses (this number gives a
complexity bound in the worst case), or by exhibiting a well-founded ordering such
that a generated clause is strictly smaller than its premises.

We won’t present in detail the inference rules of the calculus of basic ordered
paramodulation with selection (there are given in Figure 3 for the sake of complete-
ness, one may refer to [Jacquemard et al., 2008a] for more details). Instead, we will
just describe briefly some characteristics, in particular the control which permits us
to obtain the termination results. The paramodulation calculus works by application

33

I. Classes of Extended Tree Automata

Figure 3 Basic ordered paramodulation with selection. The conditions missing above
are: (iii) ℓσ 6� rσ and ℓσ = rσ is strictly maximal in Γσ, ℓσ = rσ, (v) uσ = vσ is
maximal in Γ′σ, uσ = vσ, where σ is the most general unifier (mgu) of θ, θ′, ℓ′ =
ℓ, x = r, (v’) uσ = vσ is maximal in Γ′σ, uσ = vσ,Aσ (σ is as in (v)).

Γ⇒ ℓ = r JθK Γ′ ⇒ u[ℓ′]p = v Jθ′K
Right Paramodulation

Γ,Γ′ ⇒ u[x]p = v Jθ, θ′, ℓ′ = ℓ, x = rK

if x is fresh, and (i) ℓ′ /∈ X , (ii) no literal is selected in Γ and Γ′, (iii) and (v) hold.

Γ⇒ ℓ = r JθK Γ′, u[ℓ′]p = v ⇒ A Jθ′K
Left Paramodulation

Γ,Γ′, u[x]p = v ⇒ A Jθ, θ′, ℓ′ = ℓ, x = rK

if x is fresh, (i) ℓ′ /∈ X , (ii) no literal is selected in Γ, (iii) holds, (iv) u = v is selected
or (v’) holds.

Γ, s = t⇒ A JθK
Equation Solving

Γ⇒ A Jθ, s = tK

if (vi) s = t is selected or (vii) sσ 6≺ tσ and sσ = tσ is maximal in Γσ, sσ = tσ,Aσ,
where σ is the mgu of θ, s = t.

B,Γ⇒ HJθK
ε-splitting

B ⇒ qBJθK qB,Γ⇒ HJθK

where the literals of Γ ∪ H are not equational, Bθ is a set of literals of the form
q1(x), . . . , qn(x), x is a variable which does not occur in Γ and H, and where qB is a
nullary uniquely associated with B, modulo variable renaming.

of equational reasoning i.e. replacement of equals by equals. Therefore, it will only
involve literals that are equations. This is not a real limitation since non-equational
atoms of the form q(t) can be represented as equations q(t) = true, where true is a
distinguished nullary function symbol in Σ. Therefore, below, by abuse, we shall talk
about terms to refer either to first order terms or to literals.

The basic strategy requires that no inference will be performed in parts of terms
which were generated by unification in previous steps. In practice, this is realized
with constrained clauses, where the constraint (denoted in brackets in Figure 3) stores
equations representing the result of unifications, and no inference is performed on the
term in the constraint.

The principle of the ordered strategy and selection are the following. The inference
rules are parametrized by a reduction ordering ≻ and a selection function. A reduction
ordering is a well-founded ordering on atoms, stable under application of substitutions
and contexts), assumed total on ground atoms. In [Jacquemard et al., 2008a], it is
defined as an extension of a precedence ordering defined on the symbols of Σ and
the predicates, to a lexicographic path ordering [Dershowitz and Jouannaud, 1990].
A selection function assigns to each clause a set of selected negative literals. The

34

2. Tree Automata as Sets of Horn Clauses

strategy, roughly, restricts the inference rules to take place only on selected literals
or literals which are either maximal in a clause (and will be reduced).

Furthermore, we use a rule called ε-splitting [Goubault-Larrecq, 2005], [Goubault-Larrecq et al.,
2005], a variant of splitting without backtracking [Riazanov and Voronkov, 2001]. The
principle of this rule is to replace a clause by two split clauses (the other rules of the
paramodulation calculus add new clauses). Each of the split clauses contains a new
nullary predicate qB corresponding to a set of literals of the form q1(x), . . . , qn(x)
(ε-block). Roughly, this nullary predicate is true as soon as the intersection of
the languages of q1,. . . , qn is not empty. More formally, one of the split clauses
is q1(x), . . . , qn(x) ⇒ qB, and the other is obtained by replacement of the ε-block
by qB, in the body of the clause, if the variable x does not occur elsewhere in the
clause. With a careful choice of the ordering ≻, the effect of the rule of ε-splitting
will be to force, before the treatment of a clause C, a pre-treatment to decide the
non-emptiness of the intersection of q1,. . . , qn. This is important in order to achieve
termination. Note that the number of nullary literals add by this rule is bounded.

2.1 Automatic Clauses

We consider first the clauses called automatic, of the form

q1(x1), . . . , qn(xn)⇒ q
(
f(x1, . . . , xn)

)
(aut)

where n ≥ 0 and x1,. . . ,xn are distinct variables.
It is easy to see that the class of languages of clausal tree automata made only

of automatic clauses coincide with the regular tree languages: a clause as above
corresponds indeed to a bottom-up TA transition of the form f(q1, . . . , qn) → q.
Hence, let us call, by abuse, tree automaton (TA) every finite set of automatic clauses.

It was observed in [Goubault-Larrecq, 2005] that a resolution calculus (whose
rules can be simulated by the above paramodulation calculus), with the strategies
presented above (ordered strategy, selection and ε-splitting) permits ones to solve
MII, by saturation. This results also holds for the above paramodulation calculus.

Ordered paramodulation with selection and ε-splitting terminates in a num-
ber of steps at most exponential, when performed on the union of a TA A
and a goal clause q1(t1), . . . , qn(tn)⇒.

Theorem 9 [Goubault-Larrecq, 2005; Jacquemard et al., 2008a]

Let us discuss the complexity of the problem of membership to the intersection of
instances (MII) in the case of TA. When n = 1, we have a problem sometimes called
membership of an instance. It is known to be EXPTIME-complete in general [Tison,
2000]. When n = 1 and t1 is a ground term, then the problem is equivalent to
a membership problem for A, and when t1 is a variable, then it is equivalent to
a non-emptiness problem for A. Hence it is solvable in PTIME in the two latter

35

I. Classes of Extended Tree Automata

cases (see page 17). The problem is also solvable in PTIME when n = 1 and the
term t1 is linear, and it is NP-complete when n = 1 and A is deterministic (and t1
arbitrary), see e.g. [Comon et al., 2007]. When t1 = . . . = tn = x (a variable), MII is
equivalent to the problem of non-emptiness of intersection of tree automata, which is
EXPTIME-complete (page 18).

The termination result of Theorem 9 permits us to obtain the EXPTIME upper-
bound for MII in the case of TA (this result is probably folklore knowledge).

The problem MII is EXPTIME-complete for TA.

Corollary 10

Extending the TA with facts of the form ⇒ q(t) does not increase their expres-
siveness when q is a state and t is a ground or linear term. However, this is not the
case when t can be non-linear.

The problem of membership of an instance is undecidable for the union of a
TA and facts.

Theorem 11 [Jacquemard et al., 2008a]

2.2 Automatic Clauses Modulo an Equational Theory

Combining tree automata and term rewriting techniques for the verification of infi-
nite state systems is the object of Part II. A problem in this context is to extend the
decidability results on tree automata languages to equivalence classes of terms mod-
ulo an equational theory. Some authors, e.g. [Verma and Goubault-Larrecq, 2007a;
Ohsaki and Takai, 2002a], have investigated the problem of emptiness decision for
tree automata modulo specific equational theories, e.g. A, AC, ACU. . .Moreover,
it is also shown in [Ohsaki and Takai, 2002a] that emptiness is decidable for regular
languages modulo any linear equational theory.

In [Jacquemard et al., 2006], we propose with Michael Rusinowitch and Laurent
Vigneron to apply the approach presented in the above paragraph to this problem.
Indeed, an advantage of the clausal formalism is that we can add the equations of an
equational theory directly in the set of clauses defining an automaton. Moreover, the
above basic paramodulation calculus is still able to deal with such set of equational
(positive) clauses, without preprocessing like e.g. in [Blanchet, 2001].

We call an equational theory a finite set of positive clauses of the form:

⇒ ℓ = r (eq)

A tree automaton modulo an equational theory (TAE) is a finite set of clauses of
type (aut) and (eq).

36

2. Tree Automata as Sets of Horn Clauses

In [Jacquemard et al., 2008a], we consider conditions on equational theories called
≻-convergence and monadicness which ensures the termination of the above basic
paramodulation calculus on TAE. An equational theory is called ≻-convergent if every
equation ℓ = r is orientable by the ordering ≻, i.e. ℓ ≻ r, and the rewrite relation
induced is confluent. The orientation ensures that the ordered paramodulation will
always replace ℓ by r, and the confluence ensures that no paramodulation inferences
can take place between the equations of the theory. An oriented equation ℓ = r,
with ℓ ≻ r, is monadic if r is either a variable occurring in ℓ or a term of the form
g(z1, . . . , zk) for some g ∈ Σ, k ≥ 0 and some distinct variables z1, . . . , zk occurring
in ℓ.

Example 10 The following axiom for integer equality: eq(s(x), s(y)) = eq(x, y) as
well as this axiom for the elimination of stuttering in lists: cons(x, cons(x, y)) =
cons(x, y) are monadic (oriented) equations. ✸

Basic ordered paramodulation with selection and ε-splitting terminates when
performed on the union of a TAE A modulo a ≻-convergent and monadic
equational theory and a goal clause p1(t1), . . . , pn(tn)⇒.

Theorem 12 [Jacquemard et al., 2008a]

The saturation of the clauses of Theorem 12 roughly works in two steps (the order
of the steps is guarantied by the ordered and selection strategies): first, superposition
of the equational clauses into the automatic clauses, producing two-ways like clauses,
and second, treating these two-ways clauses as in [Goubault-Larrecq, 2006]. The
proof of termination of Theorem 12 is based on an invariant on the kind of clauses
produced, which all belong to a finite type of clauses. The use of a basic strategy is
crucial for this termination result.

The problem MII is decidable for TA modulo a ≻-convergent monadic equa-
tional theories.

Corollary 13 [Jacquemard et al., 2008a]

2.3 Automata Clauses with Equality Constraints

It is also possible to use literals built with the equality predicate = in the body
of clauses, in order to represent local equality constraints. In [Jacquemard et al.,
2008a], we apply with Michael Rusinowitch and Laurent Vigneron this idea to the
definition of a tree automata model with equality constraints generalizing those of
reduction automata [Dauchet et al., 1995] (see Section 1.2), with equality tests be-
tween arbitrary terms. Note that the clausal tree automata with equality constraints

37

I. Classes of Extended Tree Automata

of [Jacquemard et al., 2008a] do not contain disequality constraints, unlike reduction
automata.

Following the idea of [Dauchet et al., 1995], the clausal transitions with equality
constraints are restricted in order to obtain decidability. Actually, we needed to
reinforce the conditions of [Dauchet et al., 1995] in [Jacquemard et al., 2008a], in
order to avoid the undecidability problem of Theorem 1. For this purpose, we use the
precedence ordering (total on the function and predicate symbols) that is used for
the definition of the reduction ordering ≻ on literals. Let us denote > the precedence
ordering.

Let P0 ⊎ P1 be a partition of the set of unary predicates (states) into ordinary
predicates of P0 and test predicates of P1. We shall sometimes mark a predicate q
like in q̂ to indicate that it is a test predicate. The constrained transitions of our
automata have the following form:

q1(x1), . . . , qn(xn), u1 = v1, . . . , uk = vk ⇒ q̂(x) (deep)

where n, k ≥ 0, x1,. . . , xn, x are distinct variables, u1, v1, . . . , uk, vk ∈ T
(
Σ, {x1, . . . , xn, x}

)
,

q1, . . . , qn, q ∈ P0 ⊎P1, q̂ is a test predicate, and for all i ≤ n, if qi is a test predicate
then q̂ > qi.

The unconstrained transitions are restricted automatic clauses of type (aut) which
contain no more test predicates symbols in their antecedents than in their heads.

q1(x1), . . . , qn(xn)⇒ q
(
f(x1, . . . , xn)

)
(aut′)

where n ≥ 0, x1, . . . , xn are distinct variables, and either q1, . . . , qn, q ∈ P0 or q is a
test predicate and at most one of q1, . . . , qn is equal to q, and the others belong to
P0.

A tree automaton with equational constraints (TAD) is a finite set of clauses of
type (aut′) or (deep). Note that every TA is a particular case of TAD (without test
predicates and with all states in P0).

Example 11 The language of the following TAD in state q2 is the set of stuttering
lists of natural numbers build with the symbols cons and empty:

⇒ q0(0) q0(x1) ⇒ q0(s(x1))
⇒ q1(empty) q0(x1), q1(x2) ⇒ q1(cons(x1, x2))

q0(x1), q2(x2) ⇒ q2(cons(x1, x2))
q0(x1), q1(x2), x2 = cons(x1, y), x = cons(x1, x2) ⇒ q2(x)

✸

Ordered paramodulation with selection and ε-splitting terminates when per-
formed on the union of a TAD A and a goal clause q1(t1), . . . , qn(tn)⇒.

Theorem 14 [Jacquemard et al., 2008a]

38

2. Tree Automata as Sets of Horn Clauses

The proof of termination is a long case analysis [Jacquemard et al., 2008a] showing
that, starting with A∪{q1(t1), . . . , qn(tn)⇒ }, every step of ordered paramodulation
wrt the ordering ≻ and an ad-hoc selection function, with eager ε-splitting, returns
either a clause smaller than all its premises (wrt to a well founded ordering ≫) or a
clause of a type containing only a finite number of clauses.

Two key points ensure this result. First, the selection function selects in priority
the equality constraints (e.g. ui = vi in a clause (deep)). Hence, equations in the
bodies of clauses will be eliminated first, before these clauses can be involved in
resolution. Second, when all such equations have been eliminated, the predicates in
the clauses obtained satisfy the same ordering condition as for (deep). Hence, thanks
to the ordering conditions on predicates, the application of such clauses in resolution
makes clauses smaller wrt ≫.

2.4 Automata Clauses with equality constraints modulo

equational theories

The extensions of tree automata with local equality constraints and of tree automata
modulo equational theories (or more generally, the rewrite closure of regular tree lan-
guages, see Part II) have been well studied separately. However, to our knowledge,
there are very few decision results for the combination of both extensions. One
difficulty stems from the fact that local equality constraints which test, by definition,
syntactic equalities (isomorphisms between subterms), do not combine well with lan-
guages terms modulo. This problem is discussed furthermore in Part II.

A solution to this problem is to generalize the constraints to equality modulo. The
Horn clauses formalism is particularly well-suited for this purpose: it is sufficient to
combine the clauses of Sections 2.2 (eq) and 2.3 (types (deep) and (aut′)) in order
to obtain the automata expected. In the next paragraphs, we present two works
following this approach.

TA with brother constraints modulo flat equational theories

We had observed already in a somewhat old work with Christoph Meyer and Christoph
Weidenbach [Jacquemard et al., 1998] that the equality tests between brother posi-
tions à la [Bogaert and Tison, 1992], presented in Section 1.1, can be easily simulated
in the Horn clauses representation of tree automata. Equations are not necessary for
this purpose, since multiple occurrences of a variable suffice. More precisely, an au-
tomatic clause with equality constraints between brothers is a clause of the form

q1(x1), . . . , qn(xn)⇒ q
(
f(x1, . . . , xn)

)
(ab)

where n ≥ 0 and x1,. . . ,xn are variables (not necessarily distinct).
In [Jacquemard et al., 1998], we show a saturation result under sorted superposi-

tion, a variant of the above calculus, for clauses of the following type, which is more
general than (ab), modulo flat equational theories

p1(t), . . . , pm(t), q1(x1), . . . , qn(xn)⇒ H (fb)

39

I. Classes of Extended Tree Automata

where m,n ≥ 0, t is a flat term, x1,. . . ,xn are variables (not necessarily distinct)
and H is either an atom of the form q(s), where s is a flat term, or an equation ℓ = r
where ℓ and r are flat, or H is missing.

Sorted superposition terminates when performed on a finite set of clauses of
type (fb).

Theorem 15 [Jacquemard et al., 1998]

It follows in particular that emptiness and emptiness of intersection are decidable
for TAB with equality constraints only, modulo equational theories, and unification
modulo theories (fb) is decidable. This latter result is extended in [Jacquemard et al.,
1998] to so-called semi-linear theories, which are shown to be finitely transformable
into sets of clauses of type (fb).

TA with general equational constraints modulo equational theories

A tree automaton with equational constraints modulo an equational theory (TADE,
defined with Michael Rusinowitch and Laurent Vigneron [Jacquemard et al., 2006])
is the union of an equational theory (finite set of clauses of type (eq)) and of a

TAD. Some combinations of clauses presented in the above sections are summarized
in Table 1.

no clauses (eq)
(empty eq. theory)

clauses (eq)

std TA

(aut)
TA TAE

TA with constraints
(deep)+(aut′)

TAD TADE

Table 1: Summary of the automata classes of Sections 2.1-2.4.

In order to obtain a saturation result for TADE, we restrict in [Jacquemard et al.,
2008a] the equational theories in consideration to be ≻-convergent (a condition pre-
sented in Section 2.2, and moreover to contain only sublinear and collapsing equa-
tions, which means that the equations have the form: f(t1, . . . , tm) = x where the
subterms t1, . . . , tm are linear (f(t1, . . . , tm) may be non-linear) and x is a variable.

Example 12 The following theory of projections on pairs is sublinear and collapsing:
fst(pair(x, y)) = x, snd(pair(x, y)) = y, as well as the following equations on function
on lists car(cons(x, y)) = x, cdr(cons(x, y)) = y, cons(car(x), cdr(x)) = x.

Other classical examples of sublinear and collapsing equations can specify some
algebraic properties of cryptographic functions, like decryption in a symmetric cryp-
tosystem dec

(
enc(x, y), y

)
= x (the symbols enc and dec stand for encryption and

40

2. Tree Automata as Sets of Horn Clauses

decryption and the variables x and y correspond respectively to the encrypted plain-
text and the encryption key), or, in the case of public (asymmetric) key cryptography:
adec

(
aenc(x, pub(y)), inv(pub(y))

)
= x and adec

(
aenc(x, inv(pub(y))), pub(y)

)
= x

where inv is an idempotent operator, following the axiom inv(inv(y)) = y, which asso-
ciates to a public encryption key its corresponding private key (for decryption), and
conversely. ✸

Basic ordered paramodulation with selection and ε-splitting terminates when
performed on the union of TADE A modulo a ≻-convergent sublinear and
collapsing equational theory and a goal clause q1(t1), . . . , qn(tn)⇒.

Theorem 16 [Jacquemard et al., 2008a]

The proof follows the same schema as for Theorem 14 (TAD). It is however much
more involved, with a refinement of the ordering ≫ on clauses in order to take into
account the number of occurrences of variables in positive literals (whereas, roughly,
the multisets of predicates and of negative literals were sufficient for Theorem 14).

Implementation

A prototype has been developed [Jacquemard et al., 2008b], implementing the proce-
dure of Theorem 16. The Ocaml sources are available at http://tace.gforge.inria.fr/.

Relating RA and TADE

We show in [Jacquemard et al., 2008a] that every reduction automaton containing
only equality constraints is equivalent to a TADE of the same size, as long as its
transitions fulfill the restrictions on predicates introduced in the definition of (aut′)
and (deep) in order to preserve decidability of emptiness.

The idea is to use a ≻-convergent sublinear–collapsing theory defining projection
symbols π1, . . . , πa of arity 1, where a is the maximal arity of a function symbol of Σ,
with equational clauses of the form ⇒ πi(f(x1, . . . , xn)) = xi for all f ∈ Σn, i ≤ n.
Then, an equality constraint of the form p = p′, with p = p1 . . . pk and p′ = p′1 . . . p

′
l,

with k, l ≥ 1, is replaced by an equation πp2(. . . πpk(xp1)) = πp′
2
(. . . πp′

l
(xp′

1
)) in a

clause of type (deep).

Perspective: combination of TACE with brother equality constraints

The combination of the classes of TA with brother constrains of [Bogaert and Tison,
1992] (Section 1.1) and of reduction automata of [Dauchet et al., 1995] (Section 1.2)
preserves emptiness decidability [Caron et al., 1994].

Hence it could be interesting to study in the clausal framework the combination
of equality tests restricted by ordering conditions on states and unrestricted tests

41

http://tace.gforge.inria.fr/

I. Classes of Extended Tree Automata

between brother positions, possibly modulo equational theories, i.e. to study satu-
ration procedures for the combination of clauses of type (deep), equational clauses
(eq), and clauses of a type similar to (aut′) except that the variables x1, . . . , xn are
not supposed to be distinct.

2.5 Pushdown and Visibly Pushdown Tree Automata

CF Tree Grammars and Pushdown tree automata

A tree grammar (see e.g. [Comon et al., 2007]) is a tuple G = 〈N , S,Σ, P 〉 where
N is a finite set of non-terminal symbols with arities, denoted by uppercase letters,
S ∈ N has arity 0 (it is called the axiom of G), Σ is a signature disjoint from N (its
elements are also called terminal symbols), and P is a set of production rules, of the
form ℓ → r where ℓ, r are terms of T (Σ ∪ N ,X) and such that ℓ contains at least
one non-terminal. The derivation relation t −→∗G s induced by a tree grammar G is the
reflexive and transitive closure of the rewrite relation defined by P . The language of
the tree grammar G is defined as L(G) = {t ∈ T (Σ) | S −→∗P t}.

A context-free tree grammar (CFTG) is a tree grammar whose production rules
all have the form X(x1, . . . , xn)→ r where X ∈ N has arity n, x1, . . . , xn are distinct
variables, and r ∈ T

(
Σ ∪ N , {x1, . . . , xn}

)
. When r = xi for some i ≤ n, then the

rule is called erasing or collapsing.
An notion of pushdown tree automata equivalent to CF tree grammars has been

proposed in [Guessarian, 1983; Schimpf and Gallier, 1985; Coquidé et al., 1994], ex-
tending tree automata with an auxiliary memory containing ground terms. Let us
assume two signatures: an input signature Σ and a memory signature Γ. We propose
a definition of pushdown tree automata transitions in the clausal formalism, with
Horn clauses of the following two forms.

q1(x1, s1), . . . , qn(xn, sn)⇒ q
(
f(x1, . . . , xn), h(y1, . . . , ym)

)
(read)

where f ∈ Σ, h ∈ Γ, s1, . . . , sn ∈ T (Γ, {y1, . . . , ym}) (read rules in [Guessarian,
1983]), and

q1(x, s)⇒ q
(
x, h(y1, . . . , ym)

)
(pda-ε)

where h ∈ Γ, s ∈ T (Γ, {y1, . . . , ym}) (ε-rules in [Guessarian, 1983]).
Let us call pushdown tree automata (PTA) a finite set of clauses of type (read)

or (pda-ε). As usual, the (non-equational) predicate symbols are called states of the
PTA. Note however that, at the difference of the previous sections, the states are
binary for PTA, and not unary. Intuitively, the first argument of a state in a PTA is
a subterm of the input term, and the second argument is the content of the memory.

Given a PTA A and a state q of A, the language of A in state q, denoted L(A, q),
is the set of ground terms t ∈ T (Σ) such that q(t, s) holds in the smallest Herbrand
model of A, for some s ∈ T (Γ). The stack language of A in state q, denoted S(A, q),
is the set of ground terms s ∈ T (Γ) such that q(t, s) holds in the smallest Herbrand
model of A, for some t ∈ T (Σ).

42

2. Tree Automata as Sets of Horn Clauses

Note that adding some variants of the rules (read) and (pda-ε) where the term
h(y1, . . . , ym) in the right-hand-side is replaced by a single variable y does not increase
the expressiveness of the model [Guessarian, 1983].

In [Guessarian, 1983], it is also shown that the memory signature Γ of PTA can
be assumed to contain only nullary and unary function symbols, without loss of
generality (i.e. the PTA with a stack memory have the same expressiveness as the
PTA with a tree memory).

Visibly Pushdown Tree Automata

We have proposed with Hubert Comon-Lundh and Nicolas Perrin, a generaliza-
tion [Comon-Lundh et al., 2007] of the visibility condition of [Alur and Madhusudan,
2004] for some tree automata transitions of the form of the above PTA. The idea
is that the symbol in input (in a term in the case of [Comon-Lundh et al., 2007]
or [Alur et al., 2006], and in a word in the case of [Alur and Madhusudan, 2004])
determines the kind of operation that the automata can perform on the stack. There-
fore, we assume that the input signature Σ is partitioned in eight subsets, each subset
corresponding to one category of operation.

Σ = Σpush ⊎ Σpop11
⊎ Σpop12

⊎ Σpop21
⊎ Σpop22

⊎ Σint0 ⊎ Σint1 ⊎ Σint2

The visibly pushdown tree automata (VPTA) are finite sets of Horn clause of the
types defined in Figure 4. For the sake of simplicity, we assume in this definition that
all the symbols of Σ and Γ have either arity 0 or 2. This is not a real restriction,
and the results of [Comon-Lundh et al., 2007] can be extended straightforwardly to
the case of function symbols with other arity. We assume moreover that Γ contains
a special constant symbol ⊥, which is used to represent an empty memory. Note
that the other constant symbols of Γ are not relevant since they cannot be pushed or
popped. Every pop rule has a variant which read an empty memory.

In [Comon-Lundh et al., 2007], VPTA are called visibly tree automata with one
memory following the terminology of [Comon and Cortier, 2005]. The VPTA strictly
generalizes the VP Languages of [Alur and Madhusudan, 2004], and the addition of
constraints on the memory contents.

The visibly tree automata of [Alur et al., 2006] use a word stack instead of a tree
structured memory. The comparison with VPTA is not easy as they are alternating
and compute top-down on infinite trees.

A formalism combining pushdown top-down tree automata of [Guessarian, 1983]
with the concept of visibly pushdown languages has been proposed in [Chabin and Réty,
2007]. These automata recognize finite trees using a word stack. They have a de-
cidable emptiness problem and the corresponding tree languages (Visibly Pushdown
Tree Languages, VPTL) are closed under Boolean operations. Following remarks of
one of the two authors of [Chabin and Réty, 2007], it appeared that VPTA and visibly
pushdown tree languages are incomparable.

The class of languages of context-free tree grammars is not closed under inter-
section or complementation. The visibility condition of VPTA enables a Cartesian

43

I. Classes of Extended Tree Automata

Figure 4 Transitions of VPTA.

q1(x1, y1), q2(x2, y2) ⇒ q
(
f2(x1, x2), h(y1, y2)

)
(push)

q1
(
x1, h(y11, y12)

)
, q2(x2, y2) ⇒ q

(
f3(x1, x2), y11

)
(pop11)

q1(x1,⊥), q2(x2, y2) ⇒ q
(
f3(x1, x2),⊥

)

q1(x1, h(y11, y12)), q2(x2, y2) ⇒ q
(
f4(x1, x2), y12

)
(pop12)

q1(x1,⊥), q2(x2, y2) ⇒ q
(
f4(x1, x2),⊥

)

q1(x1, y1), q2
(
x2, h(y21, y22)

)
⇒ q

(
f5(x1, x2), y21

)
(pop21)

q1(x1, y1), q2(x2,⊥) ⇒ q
(
f5(x1, x2),⊥

)

q1(x1, y1), q2
(
x2, h(y21, y22)

)
⇒ q

(
f6(x1, x2), y22

)
(pop22)

q1(x1, y1), q2(x2,⊥) ⇒ q
(
f6(x1, x2),⊥

)

⇒ q(a,⊥) (int0)
q1(x1, y1), q2(x2, y2) ⇒ q

(
f7(x1, x2), y1

)
(int1)

q1(x1, y1), q2(x2, y2) ⇒ q
(
f8(x1, x2), y2

)
(int2)

where q1, q2, q ∈ Q, x1, x2, y1, y2, . . . are distinct variables of X , h ∈ Γ2, a ∈ Σint0 ,
and every fi is in the corresponding partition of Σ (f2 ∈ Σpush, f3 ∈ Σpop11

, etc).

product construction for the intersection. More precisely, the memory signature,
state set and final state set of the VPTA for intersection are the Cartesian products
of the respective memory signatures, state sets and final state sets of the two VPTA

in input, and the construction of product clauses is possible because two clauses with
the same input function symbol (in Σ) in their head have the same shape.

Moreover, we propose in [Comon-Lundh et al., 2007] a determinization procedure
for VPTA, with an exponential blowup in the number of states and symbols in the
memory signature. The closure under complementation follows.

The class of VPTA tree languages is closed under union, intersection and
complement.

Theorem 17 [Comon-Lundh et al., 2007]

Regarding the decision problems, in particular emptiness, we can observe that,
given a VPTA A and one of its states q, the language L(A, q) is empty iff the memory
language S(A, q) is empty. We show [Comon-Lundh et al., 2007] that every S(A, q)
is recognized by a two-way tree automaton, hence it is regular (see Section 2.6).
The clauses of the two-way tree automaton are obtained simply by forgetting the
first component of predicates in the clauses of the VPTA. Even better, the clauses
obtained belong to the class H3 [Nielson et al., 2002], for which emptiness is decidable
in cubic time. It follows that emptiness of VPTA is decidable in cubic time.

44

2. Tree Automata as Sets of Horn Clauses

The emptiness problem is PTIME-complete for VPTA. The universality and
inclusion problems are EXPTIME-complete for VPTA.

Theorem 18 [Comon-Lundh et al., 2008]

The results on universality and inclusion immediately follow from the closure results
of Theorem 17 and the decidability of emptiness. The lower bounds follow from the
corresponding properties for standard TA.

Visibly Pushdown Tree Automata with local constraints

With Hubert Comon-Lundh and Nicolas Perrin, we have proposed [Comon-Lundh et al.,
2007; Comon-Lundh et al., 2008] to extend VPTA with local constraints testing the
content of the memory. The idea is that, since each step of a bottom-up computation
starts with two states and two memories (and ends with one state and one stack), it
is possible to compare the contents of these two memories, with respect to an equiv-
alence relation R on T (Γ). In Figure 5 we describe two types of clauses which are
constrained versions of clauses int1 and int2, and induce two new categories for the
symbols of Σ: intR1 , intR2 , in addition to the eight previous categories of Figure 4.
We do not extend the clauses (push) and (pop) with constraints for some technical
reasons explained in [Comon-Lundh et al., 2007].

Figure 5 Constrained variant of VPTA clauses.

q1(x1, y1), q2(x2, y2), R(y1, y2) ⇒ q
(
f9(x1, x2), y1

)
(intR1)

q1(x1, y1), q2(x2, y2), R(y1, y2) ⇒ q
(
f10(x1, x2), y2

)
(intR2)

The equivalence relation R is specified by some Horn clauses of the following form

R1(x11, x12), R2(x21, x22)⇒ R3

(
g(x11, x21), h(x12, x22)

)
(bin)

where R1,R2, R3 are auxiliary binary predicates (R is one of these predicates) and
g, h ∈ Γ. We also assume in the type of clauses (bin) the cases where g or h have arity
0. A finite set B of Horn clauses of type (bin) always has a minimal Herbrand model
(these clauses are all definite) and we can define as above the language L(B, R) of B
in predicate R as the set of pairs of ground terms s, t ∈ T (Σ) such that R(s, t) is true
in the smallest Herbrand model of B. A binary relation on ground terms is called
regular if it is a union of languages of some finite set of clauses of type (bin).

We call visibly pushdown tree automaton with R-constraints (VPTAR) a finite
set containing Horn clauses of the types defined in Figures 4 and 5, as well as some
clauses (bin) specifying the relation R.

The definition of [Comon-Lundh et al., 2007] actually also includes negative con-
straints, in clauses e.g. of the form q1(x1, y1), q2(x2, y2),¬R(y1, y2)⇒ q

(
f9(x1, x2), y1

)
.

These are not Horn clauses, hence our semantics based on the smallest Herbrand

45

I. Classes of Extended Tree Automata

model is not adapted to this case (the definition of the languages in [Comon-Lundh et al.,
2007] is based on more operational semantics). However, as shown in [Comon-Lundh et al.,
2008], it is possible to get rid of negative constraints, providing that the cardinality of
every equivalence classes modulo R is finite (this condition is satisfied by the relations
of syntactic and structural equality described below). More precisely, we show that
in this case, for every VPTAR A with states set Q, extended with transitions with
negative constraints as above, there exists a VPTAR A′ (without negative constraints)
whose set of states is a superset of Q, and such that for all q ∈ Q, S(A′, q) = S(A, q).

Emptiness is in general undecidable for VPTAR.

The membership is NP-complete and emptiness is undecidable for VPTAR

when R is a regular binary relation.

Theorem 19 [Comon-Lundh et al., 2008]

Emptiness becomes decidable when the memory languages are regular, and effec-
tively recognized by a TA (remember that for VPTAR, the emptiness of the language
is equivalent to the emptiness of the memory language). In [Comon-Lundh et al.,
2007], we propose the following criteria on R ensuring that S(A, q) is regular for
every state q of a VPTAR A: R is defined by a finite set of clauses (bin) over the state
set {R1, . . . , Rn} and such that ∀i, j ∃k, l Ri(x, y) ∧ Rj(y, z)|=|Rk(x, y) ∧ Rl(x, z).
It is shown by a technique of saturation with a calculus similar to the one of the
above sections (resolution with selection and eager splitting), applied to the clauses
obtained by forgetting the first argument of states (but not of the predicates Ri).
This generalizes a former proof of [Comon and Cortier, 2005], see also the paragraph
in Section 2.6 on the transformation of alternating and two-way TA into TA. Two
classes of constraints satisfying this condition are the syntactic equality = defined by

⇒ a = a ∀a ∈ Γ0

x11 = x12, x21 = x22 ⇒ g(x11, x21) = g(x12, x22) ∀g ∈ Γ2

and the structural equality ≡ defined by

⇒ a ≡ b ∀a, b ∈ Γ0

x11 ≡ x12, x21 ≡ x22 ⇒ g(x11, x21) ≡ h(x12, x22) ∀g, h ∈ Γ2

Membership is NP-complete and emptiness is decidable in EXPTIME for
VPTA=. Membership is decidable in PTIME and emptiness is decidable in
2-EXPTIME for VPTA≡.

Theorem 20 [Comon-Lundh et al., 2008]

46

2. Tree Automata as Sets of Horn Clauses

Moreover, VPTA≡ (and its extension with negative constraints) is closed under inter-
section and complementation, but not VPTA=, for which universality is undecidable.

The regular tree languages and VPL are particular cases of VPTA languages.
In some cases, the TAB of [Bogaert and Tison, 1992] can be simulated by VPTA=

pushing all the symbols in input up to (dis)equality tests. Some other examples of
VPTA≡ extended with negative tests can be found in [Comon-Lundh et al., 2008],
including balanced binary trees, powerlists and red-black (binary search) trees.

Finally, in [Comon-Lundh et al., 2008], we also study the addition to VPTAR of
the TAB equality and disequality constraints à la [Bogaert and Tison, 1992] (testing
the term in input, i.e. the variables in the first components of the states in clauses).
We show the Boolean closure and the decidability of emptiness for the model obtained.
Table 2 summarizes the results on VPTA presented in this section.

∈ ∅ ∩, ¬
VPTA PTIME PTIME yes
VPTA= NP-complete EXPTIME no
VPTA≡ PTIME 2-EXPTIME yes
VPTAR NP-complete undec. yes

Table 2: Summary of the results on VPTA.

2.6 Related Models

The above results may be alternatively viewed as new decidable classes of first-order
formula. Other related decidable fragment of first-order logic include the extended
Skolem class and the E+ class [Fermüller et al., 2001]. We present below some other
decidable classes of clausal tree automata.

Two-Way and Alternating Tree Automata

The proof of Theorem 12 is based on an invariant on the type of clauses produced by
the saturation, which contains only a finite (exponential) number of clauses. Let us
present two particular subcases of this invariant, which correspond to the transitions
of two classical tree automata models.

The application, by paramodulation, of an equational clause of type (eq) into an
automatic clause (aut) can return a clause of the following form

q
(
f(x1, . . . , xn)

)
⇒ qi(xi) (bidi)

Such clauses, called two-way clauses in [Frühwirth et al., 1991], push clauses in [Verma,
2003] or selecting theories in [Truderung, 2005] correspond to transitions of two-way
tree automata: the automatic clauses (aut) correspond to bottom-up transitions,
whereas clauses as above correspond to top-down transitions.

47

I. Classes of Extended Tree Automata

The following kind of clause is also a particular case of the invariant type of clauses
for the proof of Theorem 12

q1(x), . . . , qn(x)⇒ q(x) (alt)

Such a clause expresses that the state q will capture the intersection of the languages
of q1,. . . , qn. It is called an alternating clause, because it permits us to describe
naturally alternating tree automata, an exponentially succinct presentation of tree
automata.

Alternating and two-way tree automata are made of clauses of types (aut),
(bidi) and (alt). They are equivalent in expressiveness to regular tree languages,
and there is an exponential transformation procedure from these automata to stan-
dard tree automata, see [Frühwirth et al., 1991; Charatonik and Podelski, 2002], and
also [Comon et al., 2007] (Chapter 7).

The transformation can be achieved by saturation techniques (by resolution)
[Goubault-Larrecq, 2006]. In our framework, as noticed above, the clauses (bidi)
and (alt) are particular cases of the invariant type of clauses generated by the basic
ordered paramodulation with selection and ε-splitting, starting from a TAE. Hence,
when started with a finite set of automatic clauses of types (aut), (bidi) and (alt)
saturation by this calculus will terminate with a set C of clauses of the invariant
type. Moreover, it can be shown that, thanks to the chosen ordered and selection
strategies, for every ground term t ∈ T (Σ) and state q occurring in C, a paramod-
ulation step between a clause of C and the goal clause q(t) ⇒ can only involve an
automatic clause (the other clauses of the invariant type are excluded by the ordering
or selection condition). Hence, the tree language defined by C is regular, and it is
recognized by a tree automaton made of the subset of automatic clauses (aut) of C.

The class H1

A class of finite Horn clause sets called H1 has been proposed in [Nielson et al., 2002],
for which satisfiability is EXPTIME-complete, and such that H1 clause sets can be
transformed to standard TA in exponential time. The subclasses H2 and H3 have
respectively polynomial time and cubic satisfiability. These results are applied to the
control flow analysis of the Spi-calculus.

In the version of [Goubault-Larrecq, 2005], H1 Horn clauses have a head whose
argument is at most of height one and linear (without duplicated variables), or are
purely negative (goals), and the conversion to TA is obtained by saturation techniques
(ordered resolution with selection and ε-splitting). H1 becomes undecidable when
allowing variable duplication in the heads. The above model TAD allows this under
the previously mentioned restrictions.

48

2. Tree Automata as Sets of Horn Clauses

Tree Automata with Term Constraints

The bottom-up tree automata with term constraints (TCA) of [Reußand Seidl, 2010]
are defined as finite set of Horn clauses of the form

q1(x1), . . . , qn(xn), xi1 = s1, . . . , xik = sk, xj1 6= t1, . . . , xjl 6= tl ⇒ q
(
f(x1, . . . , xn)

)

(tca)
where 1 ≤ i1, . . . , ik, j1, . . . , jl ≤ n and s1, . . . , sk, t1, . . . , tl ∈ T (Σ, {x1, . . . , xn}).

The TCA strictly generalizes the TAB of [Bogaert and Tison, 1992]. Without
the condition that the variables of the terms si in the equalities are restricted to
x1, . . . , xn, the automata would be able to simulate the undecidable class TAC. The
class of TCA languages is closed under Boolean operation, and has an exponential
determinization procedure. Note that the TCA are interesting for the characterization
of languages of normal form wrt a TRS, and therefore the results of [Reußand Seidl,
2010] could be useful in particular in the context of inductive theorem proving, see
Section 1.5.

It is shown in [Reußand Seidl, 2010] that the the equality constraints in clauses
(tca) can be eliminated, and that emptiness is decidable for TCA with only disequality
constraints. The decision algorithm tries to construct witnesses for the languages
of the different states of the automaton, and the number of necessary iterations is
bounded using a combinatorial argument.

Perspectives: TCA and saturation

It would be interesting to know whether some classical saturation techniques as the
ones of the above section could be used to decide emptiness of TCA, and whether it
is possible to combine the TCA clauses with equalities clauses (eq) or clauses with
equality tests (deep) in a decidable model.

Horn Clauses with Rigid Variables

Rigid clauses [Andrews, 1981] contain distinguished free variables called rigid, and
denoted by uppercase letters. A set C of clauses with rigid free variables Y1, . . . , Ym

and other free variables x1, . . . , xn (called flexible) is satisfiable if there exists a Σ-
algebra A such that for all valuation σ : {X1, . . . ,Xm} → A, there exists a first order
model M with domain A such that M, σ |= ∀x1, . . . , xn C. It is equivalent to say
that for all valuation σ : {X1, . . . ,Xm} → T (Σ), there exists an Herbrand model H
such that H |= ∀x1, . . . , xn σ(C).

A translation of clauses with rigid variables into first order clauses (without rigid
variables), preserving satisfiability, is proposed in [Affeldt and Comon-Lundh, 2009],
and used below in Section 3.2. The idea is to add accumulating parameters to the
predicates in order to store the valuations of the rigid variables. Each rigid variable
is evaluated once for all, hence the parameters can be set only once, as indicated by
a flag in the predicate name, with a clause of the form

qu(yi, y1, . . . , ym)⇒ qu′(yi, y1, . . . , ym) (write)

49

I. Classes of Extended Tree Automata

where the variables y1, . . . , ym are the accumulating parameters, and are pairwise
distinct, and u, u′ ∈ {0, 1}m are tuples of flags such that ui = 0, and u′i = 1 and
u′j = uj for all j 6= i. Note the similarity between the relation on the tuples of flags
and the ordering condition on the predicates of clause (deep), in Section 2.3.

Otherwise, the parameters are propagated in the clauses, like for instance in the
following extension of automatic clause, with m parameters

qu(x1, y1, . . . , ym), . . . , qu(xn, y1, . . . , ym)⇒ qu
(
f(x1, . . . , xn), y1, . . . , ym

)
(rig)

where the variables x1, . . . , xn, y1, . . . , ym are pairwise distinct.
The clauses studied in [Affeldt and Comon-Lundh, 2009] are actually more general

than this, with e.g. arbitrary terms s and t instead of the last occurrences of yi in
the body and the head of (write). However, although the name of tree automata is
not used in [Affeldt and Comon-Lundh, 2009], such clauses can alternatively be seen
as transitions of tree automata extended with m auxiliary registers storing terms of
T (Σ). It is shown in [Affeldt and Comon-Lundh, 2009] that binary resolution with
an appropriate ordered strategy terminates on clauses of a certain type, including
the above (write) and (rig). Section 3.2 discusses the relation between this result and
classes of tree automata with global equality constraints.

2.7 Application to the verification of communicating processes

One of our motivations for the introduction of TADE was to represent concurrent pro-
cesses exchanging messages asynchronously over insecure communication channels. In
some models like the applied π-calculus [Abadi and Fournet, 2001], the messages are
not atoms but ground terms, and the processes construct the messages they send from
the messages they can read in the network, by application of some operators whose
semantics are defined by equational axioms. Some examples of operators and axioms
are given in Example 12. The insecure communication channels can be represented
in this setting by their ability to alter the messages exchanged, also by application of
operators (to existing messages). Therefore, the number and the size of the messages
that can be found at some time in the communication channels is unbounded, and it
is relevant to use tree automata for representing these sets of messages.

Tree automata techniques have actually been quite a popular approach for the
static analysis of such systems, in particular for deciding reachability properties,
see e.g. [Comon and Cortier, 2005; Genet and Klay, 2000; Goubault-Larrecq, 2005;
Verma and Goubault-Larrecq, 2007a; Seidl and Verma, 2008, 2009] But this kind of
analyses has limitations due to approximations with regular sets. Such approxima-
tions may conduct to false alarms, as discussed e.g. in [Amadio and Charatonik, 2002]
or [Affeldt and Comon-Lundh, 2009]. The goal for the introduction of the TADE in
this context was to avoid some sources of imprecision, with an increased expressive-
ness (over TA), in order to handle the multiple occurrences of variables in the body
of messages sent with clauses (deep), and with a better control of the interleaving of
messages sent by processes, using several state symbols. Moreover, TADE permit us
to represent the equational axioms directly in a uniform model, as equational clauses

50

2. Tree Automata as Sets of Horn Clauses

(eq) of TAE, and to enable conditional tests for the composition of messages, with
constrained clauses (deep) of TAD. We will give below some more descriptions of the
principles of the model with TADE (without too much details though), and discuss
possible further directions.

The system to verify is a finite set of concurrent processes, where a process is a
finite sequence of instructions of the form recv(x).if e then send(s) where x is a vari-
able, s ∈ T (Σ, {x}) and e is a set (possibly empty) of equations between terms of
T (Σ, {x}). The sub-instruction recv acts as a binder for the variable x. We also as-
sume a program point before each instruction, and a distinguished program point at
the end of the process. Moreover, a finite set E of sublinear and collapsing equations
(see Example 12) is also assumed given, and all the terms are considered modulo this
theory. The signature Σ contains two kind of symbols: the public symbols, represent-
ing functions publicly known, and private symbols, representing secret constants or
functions. In the signature of Example 12, pair, fst, snd, enc, dec, aenc, adec, pub are
public and inv is private. Given N ⊆ T (Σ), we define closureE(N) as the smallest
(wrt inclusion) subset of T (Σ) containing N , closed under application of equations
of E , and such that for all public symbol f ∈ Σn, for all t1, . . . , tn ∈ closureE (N),
f(t1, . . . , tn) ∈ closureE(N).

A configuration of the system is a pair (st,N) where st is a function associating
to each process its current program point, and N is a (possibly infinite) set of ground
terms representing the possible content of the communication channel (we assume
only one channel for simplicity but could model several). The operational semantics
for the system is the following (we purposely omit some details): every execution
step changes the running configuration (st,N) into (st′, N ′), if for some process p,
the program point st(p) is not the final program point of p, the instruction after
this program point is recv(x).if e then send(s), st′(p) is the next program point of p,
st′(p′) = st(p′) for all process p′ 6= p, there exists a ground term t ∈ closureE(N)
and the substitution θ = {x 7→ t} is such that θ(ℓ) and θ(r) are equal modulo E for
all ℓ = r in e, and N ′ = N ∪ {θ(s)}. We assume an initial configuration (st0, N0)
where st0(p) is the first program point of p for every process p and N0 is an arbitrary
regular tree language over Σ.

Example 13 Let E be the set of sublinear and collapsing equations of Example 12.
The following instruction 0.recv(x).if fst(t) = b, then send(enc(m, snd(t))).1 with t =
adec

(
adec(snd(x), pub(fst(x))), inv(pub(b))

)
, expresses that the process receives a mes-

sage x, then it verifies, with the equations in the conditional, that x has the form
pair

(
a, aenc(aenc(pair(b, key), pub(b)), inv(pub(a)))

)
. The symbols a, b, key are con-

stant and private function symbols. The second component of the message x is a
double encryption: once with the public key pub(b), and once with the private key of
inv(pub(a)) (the latter corresponds to a signature by a). According to the equations
of E, it means that t is equal (modulo E) to pair(b, key) and hence snd(t) = key. This
value key is then use to encrypt a confidential message m sent by the process. ✸

If N is regular, then closureE (N) is a regular tree language modulo E (see e.g.

51

I. Classes of Extended Tree Automata

[Amadio and Lugiez, 2000]). It is actually possible to construct a TADE A whose
language is the set of terms t in N for a reachable configuration (st,N). This TADE

contains the equations of E , as clauses of type (eq). It contains also, for each in-
struction of the form i.recv(x).if u1 = v1, . . . , uk = vk then send(s).i′, in a process p,
the clauses of type (deep) of the form

qm,i,n(x), u1 = v1, . . . , uk = vk, y = s⇒ qm,i′,n(y).

The indexes i and i′ are program points of p and m, n are arbitrary sequences of
program points of the other processes. Intuitively, the state qm,i,n represents the pos-
sible contents of the communication channel when the processes are at the respective
program points m, i, n. It is immediate to find an ordering on state predicates such
that qm,i′,n > qm,i,n, ensuring the conditions of type (deep).

Example 14 Let us come back to Example 13, assuming one process p1 with pro-
gram points {0, 1, 2} and one other process p2 containing only the instruction in this
example (with program points 0 and 1). The clauses of type (deep) associated with
this systems are (with i = 0, 1, 2 and t = adec

(
adec(snd(x), pub(fst(x))), inv(pub(b))

)
)

qi,0(x), fst(t) = b, y = enc(m, snd(t))⇒ qi,1(y)

✸

The TADE A also contains some clauses of type (aut′) and (deep) specifying the
closure closureE(N), like e.g. qm(x1), qm(x2)⇒ qm(f(x1, x2)) where f ∈ Σ is a public
symbol, or qm(x1), qn(x2)⇒ qn(f(x1, x2)) with n > m. Finally, it also contains some
clauses of type (aut′) for the definition of N0, part of the initial configuration.

In [Jacquemard et al., 2008a], we present with Michael Rusinowitch and Laurent
Vigneron two authentication protocols modeled as TADE following the above prin-
ciples, including a recursive authentication protocol [Bull and Otway, 1997] which
ensures the distribution of certified session keys to a group of clients by a server
which process recursively an unbounded list of requests. The model is then used
to verify some reachability properties of the protocol using the termination results
presented in Section 2.4. This serves either at finding an attack, when the empty
clause is derived, or certify the protocol otherwise.

Perspectives: extensions of the TADE model

The TADE clauses of Section 2.4 can be extended in several ways in order to improve
this model. For instance, an extension with disequality constraints (in addition to the
current equality constraints of clauses (deep) would permit us to model if-then-else

conditional, and not only if-then as above (see the above discussion in Section 2.6).
It would also be interesting to extend the above saturation results (in particular for

classes modulo monadic or collapsing theories) to term algebra modulo associativity
and commutativity (AC), using AC-paramodulation techniques [Nieuwenhuis and Rubio,

52

3. Tree Automata with Global Constraints

2001]. This combination (AC + sublinear–collapsing theories) would permit ones e.g.
to axiomatizing operators like the exclusive-or.

Another more challenging perspective is to extend TADE in order to handle pro-
cesses with local and global memories taking their values in infinite domains and
which can be written only once. A limitation of the above model of processes is
indeed that the term s and equations e of an instruction recv(x).if e then send(s) can
only use the variable x (the message that was immediately read). The goal of the
extension would be to enable to reuse in s and e some other previously bound vari-
ables. In the semantics, a configuration is in this case a triple (st, σ,N) where st
and N are as above, and σ is a substitution of the bound variables of the processes
which are assumed pairwise distinct (we studied such a model with Stephanie De-
laune in [Delaune and Jacquemard, 2004]). A natural model for such processes would
be an extension of TADE-like clauses with accumulating parameters (rigid variables)
like in the clauses presented in Section 2.6 (see also the discussion in Section 3.2).
These accumulating parameters are also necessary in order to obtain an exact model
for the representation of information that can be exchanged by the processes, as they
prevent to make several instantiation of the same bound variable x occurring in an
instruction send(x), which is a cause of false positive, see [Affeldt and Comon-Lundh,
2009].

Our initial goal for the studies presented above was actually to propose a clausal
tree automaton model combining local equality and disequality constraints like RA

with rigid variables, in order to obtain an exact abstract model of communicating
processes as above. Then termination results for the saturation of such clauses wrt
to a first order calculus could enable the proof of safety properties, or temporal
properties, by intersection with a TA language (hence using classical regular model
checking techniques). Unfortunately, only the first step of this project (study and
implementation of TADE) could be realized.

3 Tree Automata with Global Constraints

The tree automata presented in Section 1 test some constraints on ranked terms at
runtime, during the application of transition rules. Another more recent trend in tree
automata theory consists in testing a global constraint only once, at the end of the
computation of the automaton, where some equalities and disequalities are checked
between some subterms at positions defined by the states reached by the automaton
during the computation. We present in this section some results in this approach. We
use a general tree automata model with global constraints, TAGC, introduced with
Luis Barguñó, Carlos Creus, Guillem Godoy, and Camille Vacher in [Barguñó et al.,
2010], and present former classes, such as TAGED [Filiot et al., 2008], as particular
cases of TAGC.

Let us consider some constraints interpreted on runs of TA. An atomic equality
constraint (resp. atomic disequality constraint) over a state set Q is a pair of states
denoted q ≈ q′ (respectively q 6≈ q′) with q, q′ ∈ Q. It is satisfied by a run r of a

53

I. Classes of Extended Tree Automata

TA on a term t ∈ T (Σ), denoted by r |= q ≈ q′ (respectively r |= q 6≈ q′) if for all
different positions p, p′ ∈ Pos(t) such that r(p) = q and r(p′) = q′, t|p = t|p′ holds
(respectively t|p 6= t|p′ holds). The satisfiability is extended to Boolean combination
of atomic constraints as expected. Note that the semantics of ¬(q ≈ q′) and q 6≈ q′

differ, as well as the semantics of ¬(q 6≈ q′) and q ≈ q′.
We denote by ≈ the type of equality constraints, 6≈ the type of disequality con-

straints. These types are further partitioned into the type ≈irr of irreflexive equality
constraints: atomic constraints of the form q ≈ q′ with q 6= q′, the type 6≈irr of ir-
reflexive disequality constraints: atomic constraints of the form q 6≈ q′ with q 6= q′,
the type ≈ref of reflexive equality constraints: atomic constraints of the form q ≈ q,
and the type 6≈ref of reflexive disequality constraints: atomic constraints of the form
q 6≈ q.

A tree automaton with global constraints TAGC[τ1, . . . , τk] over a signature Σ is
a tuple A = 〈Σ, Q, F,∆, C〉 where 〈Σ, Q, F,∆〉 is a TA, denoted ta(A), and C is a
Boolean combination of atomic constraints of type in τ1,. . . , τk.

A run r of the TAGC[τ1, . . . , τk] A = 〈Σ, Q, F,∆, C〉 is a run of ta(A) such that
furthermore r |= C. The run r is called successful (or accepting) if the state symbol
r(ε) at its root is in F . The language L(A) of A is the set of terms t ∈ T (Σ) on
which there exists a successful run of A. For every state q ∈ Q, we denote L(A, q)
the language of A in state q, which is the set of terms t ∈ T (Σ) on which there exists
a run r of A with r(ε) = q. Hence L(A) =

⋃

q∈F L(A, q).

Example 15 The following TAGC[≈, 6≈] A = 〈Q,Σ, F,∆, ∅, C〉 accepts (in state qM)
lists of dishes called menus, where every dish is associated with one identifier (state
qid) and the time needed to cook it (state qt). We have other states accepting digits
(qd), numbers (qN) and lists of dishes (qL). It is defined as follows: Σ = {0, . . . , 9 :
0, N,L0 : 2, L,M : 3}, Q = {qd, qN , qid, qt, qL, qM}, F = {qM}, and ∆ = {i → qd |
qN | qid | qt : 0 ≤ i ≤ 9} ∪ {N(qd, qN)→ qN | qid | qt, L0(qid, qt)→ qL, L(qid, qt, qL)→
qL,M(qid, qt, qL) → qM}. The constraint C ensures that all the identifiers of the
dishes in a menu are pairwise distinct (i.e. that qid is a key) and that the time to
cook is the same for all dish: C = qid 6≈ qid ∧ qt ≈ qt. A term in L(A) together with
an associated successful run are depicted in Figure 6. ✸

3.1 TAGED

The TAGED model (tree automata with global equality and disequality constraints)
has been introduced in [Filiot et al., 2007] as a tool for deciding satisfiability of a
spatial logic. It is equivalent to the subclass of TAGC[≈, 6≈irr] whose constraints are
conjunctions of atomic constraints (from now on, we shall call such a subclass positive
TAGC[≈, 6≈irr]). The class of TAGED languages is closed under union and intersec-
tion, but not under complement, and TAGED cannot be determinized [Filiot et al.,
2008]. Membership is NP-complete for TAGED [Filiot et al., 2008], and the emptiness
problem was first shown decidable for the following subclasses

54

3. Tree Automata with Global Constraints

Figure 6 Term and successful run (Example 15).

M
qM

1
qid

N
qt

2
qd

0
qN

L
qL

2
qid

N
qt

2
qd

0
qN

L
qL

3
qid

N
qt

2
qd

0
qN

L0

qL

4
qid

N
qt

2
qd

0
qN

• TAGED with only equalities (i.e. positive TAGC[≈]), for which emptiness is
EXPTIME-complete [Filiot et al., 2008], see also the paragraph on RTA below,

• TAGED with only disequalities (i.e. positive TAGC[6≈irr]), for which emptiness
is decidable in NEXPTIME [Filiot et al., 2008], see also the paragraph on DAG
automata below,

• a subclass of TAGED which allow only a bounded number (by some constant
independent of the tree) of (dis)equality tests on the run [Filiot et al., 2007],

• an extension of the above subclass to TAGED restricting to a bounded number
the tests of disequality only, [Filiot et al., 2008].

Universality and inclusion are undecidable for TAGED [Filiot et al., 2008], and
finiteness is decidable in EXPTIME [Filiot et al., 2008] for the first above subclass
(TAGED with only equalities). The question of the decidability of emptiness for the
whole class TAGED has been open for 3 years and we answered it by the positive (see
Corollary 26 below).

3.2 Rigid Tree Automata

The rigid tree automata (RTA) form a further restricted subclass of TAGED, con-
sisting in positive TAGC[≈ref]. We introduced them with Francis Klay and Camille
Vacher in [Jacquemard et al., 2009], in the context of reachability analysis for com-
municating processes (see Section 2.7). Note that RTA are sufficiently expressive
to characterize the sets of ranked terms embedding a ground instance of a given
(non-linear) term t as a subterm. It was already observed in [Filiot et al., 2008] that
RTA already have the expressiveness of TAGC[≈], but at the price of an exponential
blowup.

We show in [Jacquemard et al., 2009] several results on the expressiveness of RTA,
some of them are summarized below (DRTA is the class of deterministic RTA).

55

I. Classes of Extended Tree Automata

– The class of RTA languages is closed under union and intersection, with an
exponential lower bound for the intersection.
– The class of RTA languages is not closed under complement.
– TA (DRTA (RTA.

Theorem 21 [Jacquemard et al., 2009]

The languages of RTA and TA= (local constraints) are incomparable.
Regarding decidability, we have the following results.

– Membership is NP-complete for RTA.
– Emptiness is decidable in linear time for RTA.
– Universality and inclusion are undecidable for RTA.
– Finiteness is decidable in PTIME for RTA.

Theorem 22 [Jacquemard et al., 2009]

For the emptiness problem, one can observe that the emptiness of the language of a
given RTA is equivalent to the emptiness of the language of its underlying TA.

A comparison of these results with some related models is presented in Table 3.
Following Theorems 3 and 22 (undecidability of universality), regularity is undecid-
able for RTA, and therefore for the superclasses of TAGED and TAGC[≈].

Regularity is undecidable for RTA, TAGED, TAGC[≈].

Theorem 23 [Barguñó et al., 2010]

Our main contribution on RTA languages is the study of their rewrite closure,
in [Jacquemard et al., 2009, 2011a]. These results are presented in Part II.1.4.

Perspective: Clausal Representation of RTA

We show in [Jacquemard et al., 2011a], with Francis Klay and Camille Vacher, that
the languages of RTA can be defined as models of automatic clauses with rigid vari-
ables (see Section 2.6). The idea is to associate one rigid variable Xq to each rigid
state q in the clausal representation of tree automata transition (see Section 2.1).
More precisely, let A = 〈Σ, Q, F,∆, C〉 be a RTA and let R = {q ∈ Q | q ≈ q ∈ C}.
We associate to A the set CA of rigid Horn clauses of the form q1(α1), . . . , qn(αn)⇒
q
(
f(α1, . . . , αn)

)
such that f(q1, . . . , qn) → q ∈ ∆ and for all i ≤ n, αi = Xqi if

qi ∈ R and αi is a flexible variable yi otherwise. Then, we have

⋃

σ:{Xq |q∈R}→T (Σ)

L
(
σ(CA), q

)
= L(A, q).

56

3. Tree Automata with Global Constraints

Following [Affeldt and Comon-Lundh, 2009] (see Section 2.6) the translation of
the above rigid automatic clause into a Horn clause without rigid variables returns

q1(α
′
1, y), . . . , qn(α

′
n, y)⇒ q

(
f(α′

1, . . . , α
′
n), y

)
(rta)

where y = (yq)q∈R is a sequence of |R| flexible variables, one variable yq for each
rigid state q ∈ R (hence one for each rigid variable Xq). Every variable α′

i, i ≤ n, is
either yqi if αi is the rigid variable Xqi (i.e. if qi ∈ R) and α′

i = αi = yi otherwise.
A natural question is whether it is possible to saturate sets of clauses representing

RTA, with e.g. the standard first order theorem proving techniques presented in Sec-
tion 2. Note however that the termination result of [Affeldt and Comon-Lundh, 2009]
(Section 2.6) does not enable this in full generality, because every clause (rig) involve
only a single predicate (state) symbol, which is a strong restriction from an automata
theoretic point of view. The resolution strategy of [Affeldt and Comon-Lundh, 2009]
does not terminate on clauses (rig) with more than one state symbol and finding a
terminating resolution strategy for this case seems not obvious. Some progress in
this direction would enable the application of first order theorem proving techniques
in order to decide problems for RTA, or extensions of RTA with e.g. equational tests
or language modulo equational theories, with clauses generalizing (deep) and (eq) of
Sections 2.3, 2.2 (see also Section II.1.4 regarding this latter point).

3.3 DAG Automata

A popular compact representation of ranked terms uses directed acyclic graphs (DAGs)
with one unique root and where multiple occurrence of the same subtree are shared.
This enables an exponential compression of terms in size (for instance in the case of
balanced binary trees).

More precisely, the DAG associated to a term t ∈ T (Σ), denoted dag(t), has for
domain (set of nodes, denoted dom(dag(t))) the set of subterms of t, every node v
of the form f(s1, . . . , sn) (n ≥ 0) has a label f ∈ Σ (denoted lab(v)) and n successor
nodes succ1(v) = s1,. . . , succn(v) = sn. Note that the edges outgoing of a node
f(s1, . . . , sn) are ordered (from 1 to n). This kind of ordered DAGs are sometimes
called t-dags in the literature, and we shall use this term from now on. With the
above definition, the unique root of the t-dag dag(t) is t itself. Let us denote D(Σ)
the set {dag(t) | t ∈ T (Σ)}. We extend the definition of dag from T (Σ) to the subsets
of T (Σ) by dag(L) = {dag(t) | t ∈ L}.

In [Charatonik, 1999], Witold Charatonik proposes to run TA directly on the
t-dags of D(Σ). The idea is to evaluate compressed terms with a TA without decom-
pressing. In this case, the TA is called a DAG automaton (DA). More precisely, a run
r of a TA A on a t-dag d ∈ D(Σ) is a function from dom(d) into QA such that for each
v ∈ dom(d) with lab(v) ∈ Σn (n ≥ 0), lab(v)

(
r(succ1(v)), . . . , r(succn(v))

)
→ r(v) is

a transition rule of ∆A. The languages Ld(A, q) and Ld(A) are the sets of t-dags on
which there exists a run of A rooted by q, respectively by a final state of A.

We can immediately associate to every run r of A on d a run r′ of A on dag−1(d)
with the same state at the root. In particular, for all t-dag d ∈ Ld(A), it holds that

57

I. Classes of Extended Tree Automata

dag−1(d) ∈ L(A). However, the converse does not hold unless A is deterministic.
For every TA A, dag

(
L(A)

)
is the t-dag language of a DA (the deterministic version

of A), but there exists some (non-deterministic) DA such that dag−1
(
Ld(A)

)
is not

a regular tree language.
The class of DA languages is closed under union and intersection but not under

complementation [Anantharaman et al., 2005] (the set of balanced binary trees is not
DA-recognizable but its complement is DA-recognizable).

The problem of membership is NP-complete for DA: a non-deterministic de-
cision procedure is presented in [Charatonik, 1999] and NP-hardness is proved in
[Anantharaman et al., 2005] by reduction of Boolean satisfiability. An uncompressed
version of this problem (given a TA A and a tdag d, decide whether dag−1(d) ∈ L(A)
was proved PTIME-complete in [Lohrey and Maneth, 2006].

The emptiness problem is also NP-complete for DA, as shown in [Charatonik, 1999]
with a rather involved pumping argument, close to negative set constraint solving
techniques [Charatonik and Pacholski, 1994, 2010]. Roughly, it is shown that if Ld(A)
is not empty, then A recognizes a tdag of size at most a polynomial in the number of
states of A. Universality and inclusion are undecidable for DA [Anantharaman et al.,
2005].

There is some kind of duality between the DA and the above classes of positive
TAGC[≈] (TAGED without disequalities) and RTA: the DA force in their runs a unique
state for the multiple occurrence of the same subterm in a term, whereas the RTA

force a unique subtree for all the occurrences of a rigid state. However, these
classes of languages are incomparable: the language L0 = {g(t, t) | t ∈ T (Σ)} is
recognizable by a RTA (or positive TAGED) but dag(L0) is not DA recognizable. For
the complement of this language, the situation is opposite – see [Jacquemard et al.,
2011a] for a more detailed comparison.

TA RTA TAGED[≈] DA

pos. TAGC[≈ref] pos. TAGC[≈]

∪ PTIME PTIME PTIME PTIME
∩ PTIME EXPTIME EXPTIME not [ANR05]
¬ EXPTIME not not not

emptiness linear-time linear-time EXPTIME-c. NP-c.
membership PTIME NP-complete NP-complete NP-c.
∩-emptiness EXPTIME-c. EXPTIME-c. EXPTIME-c.
universality EXPTIME-c. undecidable undecidable undecidable
inclusion EXPTIME-c. undecidable undecidable undecidable
finiteness PTIME PTIME EXPTIME

Table 3: Closure and decision results for RTA and related classes ([ANR05] is
[Anantharaman et al., 2005]).

It was observed in the PhD thesis of Camille Vacher [Vacher, 2010] that for all

58

3. Tree Automata with Global Constraints

DA D, one can build a positive TAGC[6≈irr] A such that L(A) = dag−1
(
Ld(D)

)
.

Conversely, for all positive TAGC[6≈irr] A, one can build a DA D such that Ld(D) =
dag

(
L(A)

)
. The latter direction involves a subset construction, hence the size of D

is exponential in the size of A. This can be summarized as follows.

Positive TAGC[6≈irr] and DA are equally expressive.

Theorem 24 [Vacher, 2010]

This result can be extended [Vacher, 2010] in order to handle global equality
constraints, by the addition of a further restriction in the definition of runs of DA

which is compatible with the NP emptiness decision procedure for DA of [Charatonik,
1999]. Alternatively, this can be defined3 by adding to DA some global constraints of
type ≈, interpreted on a run r on a t-dag d by r |= q ≈ q′ if for all nodes p, p′ of d
such that r(p) = q and r(p′) = q′, then p = p′. Then, if DA[≈] denote DA extended
with such constraints, we have the following result.

Positive TAGC[≈, 6≈irr] and DA[≈] have the same expressiveveness.

Theorem 25

The transformation from positive TAGC[≈, 6≈irr] to DA[≈] is the same as above (hence
it is exponential). Moreover, emptiness is still NP-complete for DA[≈], and hence we
solved the question of the decidability of the emptiness for TAGED (which are positive
TAGC[≈, 6≈irr]).

Emptiness is decidable in NEXPTIME for TAGED.

Corollary 26

Another consequence is that for TAGED, it is not restrictive to assume that the binary
relation on states defined by the disequalities of the global constraint is maximal (i.e.
the global constraint is a conjunction

∧

q 6=q′ q 6≈ q′∧C ′ where C ′ contains only atomic
equality constraints. Note that it was already observed that it is not restrictive to
assume that all the atomic equality constraints have the form q ≈ q (like for RTA).

Perspectives: DAG Compression with Partial Sharing

An alternative definition of DAG automata could be to consider DAGs representation
of terms with partial sharing. For instance, one could impose a maximal sharing for
sibling subtrees (and no sharing for the others). This is is an assumption of the Active

3Igor Walukiewicz, personal communication

59

I. Classes of Extended Tree Automata

XML model [Abiteboul et al., 2008] (note though that the AXML trees are unranked
unordered labeled trees). It would be interesting to know whether the complexity of
emptiness for automata running on such DAGs is better than for DA.

3.4 Boolean combinations of equalities and disequalities

For all the automata classes presented in Sections 3.1-3.3, the global constraints are
restricted to be conjunctions of atomic equality and disequality constraints. We show
with Luis Barguñó, Carlos Creus, Guillem Godoy, and Camille Vacher that this is
not a real limitation (i.e. that conjunctions of atomic constraints are as expressive
than Boolean combinations of atomic constraints).

Positive TAGC[≈, 6≈irr, 6≈ref] and TAGC[≈, 6≈irr, 6≈ref] have the same expressive-
ness.

Theorem 27 [Barguñó et al., 2010]

The proof of this result uses an intermediate class of constraints presented below in
Section 3.5.
The main result of [Barguñó et al., 2010] is the decidability of emptiness for all TAGC.

Emptiness is decidable for TAGC[≈, 6≈irr, 6≈ref].

Theorem 28 [Barguñó et al., 2010]

The proof is based on a rather involved pumping argument using a well quasi-ordering
≤. Given a positive TAGC[≈, 6≈irr, 6≈ref] A, we associate to a successful run r of A
on a term t one measure ei for each 0 ≤ i ≤ h(t). The measures are such that a
pumping transforming the run r into a smaller run (wrt a well founded ordering) is
possible as soon as there exists an increasing pair of elements ei ≤ ej in the sequence
e1, . . . , eh(t) associated to t. By Higman lemma, Kruskal lemma and a condition on
the first element and the relation between an element ei and the next ei+1 in the
sequences associated to the runs, we show that there exists a bound B on the height
of runs with no possible pumpings, and hence that emptiness is decidable. The value
of the bound B is not known explicitly, though.

The above emptiness decidability result still holds for more general automata
models, like the extension of TAGC[≈, 6≈irr, 6≈ref] with local brother equality and dise-
quality constraints such as those of TAB described in Section 1.1, and also a similar
automata model with global constraints computing on unranked trees.

In a long version of [Barguñó et al., 2010], currently in submission, the above re-
sults are furthermore generalized by allowing the equality and disequality constraints
(both for global and the local constraints between brother subtrees) to be interpreted
modulo a flat equational theory.

60

3. Tree Automata with Global Constraints

Perspectives: DA and TAGED

We are currently working with Anca Muscholl, Camille Vacher and Igor Walukiewicz
in a generalization of the approach presented in Section 3.3, with constrained DA,
extending DA[≈] (which is equivalent to TAGED), and capturing the full model of
TAGC. The goal is to express the constraints of type 6≈ref , and to deduce an elementary
emptiness decision procedure for TAGC[≈, 6≈irr, 6≈ref].

3.5 Arithmetic Constraints

A feature for counting the number of occurrences of states is a natural extension of
automata, which permits ones to deal with numerical properties of trees in input,
useful for instance in the context of XML querying [Seidl et al., 2003, 2004; Lugiez,
2005; Dal Zilio and Lugiez, 2006; Seidl et al., 2008].

We consider with Luis Barguñó, Carlos Creus, Guillem Godoy, and Camille Vacher
[Barguñó et al., 2010] the extension of TAGC with the following two kinds of counting
constraints. A linear inequality over a state set Q is an expression of the form
∑

q∈Q

aq · |q| ≥ a or
∑

q∈Q

aq · ‖q‖ ≥ a where every aq and a belong to Z. When the

above coefficients aq and a have all the same sign, then the inequality is called a
natural linear inequality over Q (note that it is equivalent to consider inequalities in
both directions whose coefficients are all non-negative). The types of the linear and
natural linear inequalities are denoted by |.|Z, ‖.‖Z and |.|N, ‖.‖N.

The satisfaction of a linear equalities by a run r of a TA on a ranked term t is
defined by the interpretation in integers, after replacing the expressions |q| and ‖q‖
by their respective interpretations as the following cardinalities: J |q| Kr = |r−1(q)|
and J ‖q‖ Kr =

∣
∣{t|p | p ∈ Pos(t), r(p) = q}

∣
∣.

The class TAGC[|.|Z] has been studied under different names, e.g. Parikh au-
tomata in [Klaedtke and Ruess, 2002], linear constraint tree automata in [Bojańczyk et al.,
2009]... It has a decidable emptiness test. Indeed, the set of successful runs of a given
TA with state set Q is a context-free language (seeing runs as words of Q∗), and the
Parikh projection (the set of tuples over N|Q| whose components are the J |q| Kr for
every run r) of such a language is a semi-linear set. The idea for deciding emptiness
for a TAGC[|.|Z] A is then to compute this semi-linear set and to test the emptiness
of its intersection with the set of solutions in N|Q| of the arithmetic constraint of A
(a Boolean combination of linear inequalities of type |.|Z) which is also semi-linear.
This can be done in NPTIME, see [Bojańczyk et al., 2009]. The global constraints
of types |.|Z and ‖.‖Z are also discussed in III.2.

The Presburger automata [Seidl et al., 2003, 2008] contain constraints for counting
the siblings of unranked trees. These constraints are tested at every transition steps,
hence, following the terminology of Section 1, they are local constraints.

Combining global constraints of type ≈ and counting constraints of type |.|Z leads
to undecidability.

61

I. Classes of Extended Tree Automata

Emptiness is undecidable for positive TAGC[≈, |.|Z].

Theorem 29 [Barguñó et al., 2010]

The proof is based on a reduction from the Hilbert’s tenth problem. The main idea
is that we can encode (non negative) integer multiplication by combining ≈ and |.|Z.

The main difference between the linear inequalities of type |.|Z and |.|N (and
respectively ‖.‖Z and ‖.‖N) is that the former can compare the respective number
of occurrences of two states, like e.g. in |q| ≤ |q′|, whereas the latter can only
compare the number of occurrences of one state (or a sum of the number occurrences
of several states with coefficients) to a constant as e.g. in |q| ≤ 4 or |q|+ 2.|q′| ≤ 9.
This difference permits us to obtain the decidability of the extension of TAGC with
arithmetic constraints.

TAGC[≈, 6≈, |.|N, ‖.‖N] and positive TAGC[≈, 6≈] have the same expressiveness.

Theorem 30 [Barguñó et al., 2010]

Actually, the arithmetic constraints are used in [Barguñó et al., 2010] as an interme-
diate formalism in order to eliminate the negations of equality and disequality atoms
in the global constraint of a TAGC. Intuitively, the negations are replaced using some
copies of the states and tests on the number of occurrences of states in runs, and of
the number of subterms accepted in some states in runs. With Theore 28, we have
that

Emptiness is decidable for TAGC[≈, 6≈, |.|N, ‖.‖N].

Corollary 31 [Barguñó et al., 2010]

3.6 Application to the Static Analysis of XML Specifications

Semi-structured data, unlike relational tables, are not supposed to respect a prede-
fined schema in order to be interpreted. They are rather labeled graphs, and data is
contained not only in the labels but also in the structure. In the case of XML doc-
uments, the only requirement is well-formedness, meaning essentially that opening
and closing tags are well parenthesized. This condition makes well-formed documents
amenable to a labeled tree representation. This flexibility makes XML a uniform data
model, which has developed as a standard for the exchange of data on the Web.

Some constraints can be expressed in order to impose more structure to XML
documents. For instance, typing formalisms like DTDs or XML Schema permit ones
to constrain how the tags are arranged in trees. The typing formalisms in use are
all subcases of tree automata. Other constraints include variants of the integrity

62

3. Tree Automata with Global Constraints

constraints found in relational databases [Abiteboul et al., 1995], from which many
XML documents are generated, like inclusions, keys and foreign keys.

Tree automata with global constraints are a good tool for reasoning about combi-
nations of typing and integrity constraints: the typing constraints can be expressed
as tree automata, and the integrity constraints can be expressed as global constraints.
They permit ones to decide properties like consistency (does there exists at least one
document satisfying a given set of constraints) of entailment (do some constraints
imply others). Applications of these properties include data integration, query op-
timization or database normalization. We will discuss in the next paragraphs the
interest of the above tree automata models in this context.

The logics on trees have also attracted a lot of attention in the context of XML
foundations, as they provide a basis for query languages and for verification problems.
We will discuss also below the extension to tree automata with constraints of the
well-known connection between tree automata and monadic second order logic on
labeled trees. In Part II, we will consider the question of the static analysis of XML
transformations.

XML Type Definitions, Unranked Tree Recognizers

Type definitions can be provided along with XML documents in order to constrain
their structure. They also provide users some guidance for accessing them through
query languages. There are many formalisms for defining type of XML documents,
with different expressive power. The less expressive and also the most frequently
used are the DTDs. A DTD over Σ can be defined as a function D mapping Σ to
regular expressions over Σ. The popular type definition language Relax NG, has the
same expressive power as tree automata. XML Schema is argued to have an interme-
diate expressiveness [Murata et al., 2005]. We won’t describe all the type definition
formalisms here, but we shall just remark that regular tree languages capture them
all – see e.g. [Murata et al., 2005] who presents several XML schema languages and
their corresponding subclasses of regular tree grammars.

There is however an important difference between the tree automata correspond-
ing to XML type definitions and the tree automata considered so far in this docu-
ment. Indeed, the common abstraction of well-formed XML documents is unranked
ordered trees (the number children of a position is not bounded) whose positions are
labeled by symbols from a finite alphabet [Vianu, 2001; Schwentick, 2007], whereas
the automata presented in the above sections recognize sets of ranked terms, whose
labeling respect the arities specified in the signature. The hedge automata [Murata,
2000] are recognizers of unranked ordered labeled trees generalizing the above tree
automata computing on ranked terms. They are presented formally in Section II.2.1
below. A run of an hedge automata is still a function from the set of position of an
unranked tree into states, and hence the definition of the satisfiability of the above
global constraints can be extended naturally from ranked terms to unranked ordered
trees.

63

I. Classes of Extended Tree Automata

The above emptiness decision results for TAGC carry over to their generalization
to unranked trees, using a standard bijection from unranked ordered trees to ranked
binary terms like the one presented in Section II.2.1 below, and corresponding trans-
formations of hedge automata into (binary) tree automata.

The generalization of tree automata with local constraints from ranked to un-
ranked trees is not so immediate. Some models have been proposed for instance for
generalizing TAB to unranked ordered trees [Wong and Löding, 2007], [Löding and Wong,
2009], and this topic is discussed in Part III, Section 2.4.

Integrity Constraints

In addition to a type definition, one may want to impose some integrity constraints to
XML documents. The notion of keys is traditionally used in database theory in order
to characterize a unique identifier for an element of data [Abiteboul et al., 1995]. The
key constraint [Buneman et al., 2001]

q[π1, . . . , πk]→ q (key)

expresses that every two positions p and p′ of type q coinciding on attributes π1, . . . , πk
must be the same. The above key is called unary if k = 1.

For simplicity, we assume that every attribute πi is a simple path (a sequence
of labels), which, given a position p, defines the set of positions reachable from p
following the path πi. There are several possible definitions of the type q of a position
p: it can be for instance an element type of a DTD (i.e. the label of the position p),
or a path expression π (p can be reached from the root of the tree following a path
defined by π), or more generally a state of a tree automaton (it is well known that
XPath can be translated into tree automata, see e.g. [Francis et al., 2011]).

A foreign key constraint is the conjunction of an inclusion constraint and a key
constraint [Buneman et al., 2001], such as the following

q[π1, . . . , πk] ⊆ q′[π′
1, . . . , π

′
k], q′[π′

1, . . . , π
′
k]→ q′ (fkey)

The above inclusion constraint expresses that for every position p of type q, there
exists a position p′ of type q′ such that the attributes π1, . . . , πk of p coincide with the
attributes π′

1, . . . , π
′
k of p′. Inclusion constraints, functional constraints and inverse

constraints can also be defined in term of path expressions [Fan and Siméon, 2000].
The above notion of attribute that coincide was purposely left unspecified and

may actually have several meanings. Remember that the attributes of a position p
are positions reachable from p following some given paths. A first definition (att1)
refers to a model called data trees where every position in a tree representing an
XML document carries not only a label in a finite alphabet but also a data value
from an infinite domain. In this case, coincidence of attributes positions is simply
the equality of the respective values at these positions. A stronger definition (att2)
of coincidence of attributes positions is the equality of these positions in the tree.
At last, an even stronger definition (att3) is based on the subtree equality, i.e. the

64

3. Tree Automata with Global Constraints

equality constraints of the above sections: two attribute positions π1 and π2 coincide
if the respective subtrees at π1 and π2 are isomorphic. Note that if we use a DAG
representation of tree with maximal sharing like in Section 3.3, then the definitions
(att1) and (att2) are equivalent, but in general, (att2) is a particular case of (att3).
The relation between the notions (att1) and (att3) is further discussed as a perspective
in Part III, Section 2.

The approach (att3) for equality corresponds to the idea that there is no dis-
tinction between the structure of the tree and the data – this kind of flexibility is
considered as a strong point of XML and semi-structured data. In this settings,
the above TAGC, generalized to unranked ordered trees, offer a uniform framework
for defining combinations of type definitions and integrity constraints. For instance,
positive TAGC[6≈ref] can express unary key constraints in presence of a regular type
definition, wrt the definition (att3) of attribute equality. Indeed, if we define a state
q1 characterizing the positions corresponding to attribute π1 (i.e. every position p1
reached from a position p of type q following π1), then the constraint q1 6≈ q1 corre-
sponds to the above key constraint (key), when k = 1 (the subtrees at two different
positions in state q1 are not isomorphic).

Similarly, the positive TAGC[6≈irr] can express denial constraints of the form

q[π1 . . . , πk] 6= q′[π1 . . . , πk].

A constraint as above says that two positions of respective type q and q′ cannot
coincide on attributes π1 . . . , πk. Such constraint can be used to deal with inconsistent
data.

Reasoning on combinations of integrity constraints in presence of a type definition
is known to be difficult. For instance, in the above case (att1), the problem of
consistency of a given (unranked ordered) tree automaton A and a set of unary key
and foreign key constraints (whether there is an XML document in L(A) satisfying
the constraints) is NP-complete and it is undecidable for DTDs and general keys and
foreign keys [Fan and Libkin, 2002].

Perspective: Complexity Bounds for TAGC

In the case (att3), consistency reduces to emptiness decision for TAGC, hence a precise
complexity analysis of this problem is interesting in this setting.

For the full TAGC class, (Theorems 28 and Corollary 31) the current upper bounds
are non-elementary. As explained in Section 3.4, finding an elementary upper bound
is the subject of an ongoing work. The best lower bound known for TAGC emptiness
decision is EXPTIME-hardness [Filiot et al., 2008].

The upper bounds for emptiness decision of subclasses of TAGC presented above
are, to sum up, NEXPTIME for TAGED (i.e. positive TAGC[≈, 6≈irr]), EXPTIME
for positive TAGC[≈] and linear time for RTA. The exact complexity of emptiness
decision for TAGC[6≈ref] is EXPTIME-completeness4. The latter result is good to

4Guillem Godoy, personal communication.

65

I. Classes of Extended Tree Automata

know in the context of consistency of a given tree automaton with a set of unary
XML keys. This indicates in particular that this problem seems harder for (att3)
than for (att1). Note however that the above integrity constraints, interpreted in
the case (att3), are translated into TAGC such that the test positions, for equality
and disequality tests, are pairwise incomparable (wrt prefix ordering). It would be
interesting also to investigate the complexity of emptiness decision for TAGC in this
restricted case.

Monadic Second Order Logic

Monadic second order logic (MSO), when interpreted on the positions of labeled trees,
provides a formalism for Web data querying, which is considered as appropriate in
the sense that it has a good expressiveness and its satisfiability is decidable. By
querying, we mean the extraction of tuples of subtrees from a given XML tree. The
arity of a query is the length of the tuple extracted, defined by the number of free
variable in a MSO formula.

The seminal result of [Thatcher and Wright, 1968] states that MSO has exactly
the same expressiveness as TA, and therefore its satisfiability is decidable, although
with an non-elementary complexity, see also e.g. [Thomas, 1997], [Courcelle, 1990]
for the connections between logic and automata.

Several (ranked or unranked) tree automata based XML query mechanisms cap-
turing the power of MSO have been proposed in [Neumann and Seidl, 1998], [Neven and Schwentick,
2002] for unary queries and [Berlea and Seidl, 2004], [Niehren et al., 2005] for n-
ary queries. Monadic Datalog is also shown equivalent to MSO for unary queries
[Gottlob and Koch, 2004]. MSO has been extended e.g. with numerical constraints
[Seidl et al., 2003, 2008], and by attribute grammars in [Neven and Van den Bussche,
2002].

The TAGEDs have been introduced [Filiot et al., 2007] as a decision tool for the
satisfiability of a guarded fragment of TQL [Cardelli and Ghelli, 2004], which is a
spatial logic defined for querying unranked ordered labeled trees, with spatial pred-
icates which are algebraic operation on hedges (composition into tree (addition of
root), concatenation), a fixpoint operator and tree variables. It is close to XML
pattern-matching languages [Benzaken et al., 2003], and permits ones in particular
to define pattern with tree variables (matched against XML trees) and context vari-
ables (matched against n-ary contexts). It is possible to have multiple occurrences of
the same tree variable x in a pattern, expressing tree isomorphism. As a consequence,
TQL is more expressive than MSO. Moreover, in a pattern of the form X(id(x), id(x)),
where X is a binary context variable, the two occurrences of the tree variable x may
be arbitrary distant. Hence, a tree automaton recognizing the instance of this pattern
cannot use a local constraint in order to test the equality of the two instances of x.

The monadic second order formulae are built with the usual Boolean connec-
tors, with quantifications over first order variables (interpreted as positions), denoted
x, y . . . and over unary predicates (i.e. monadic second order variables interpreted as
sets of positions), denoted X,Y . . ., and with the following predicates, whose inter-

66

3. Tree Automata with Global Constraints

pretation domain is the set of positions Pos(t) of a ranked term t ∈ T (Σ) : equality
(between positions) x = y, membership X(x) (the position x belongs to the set X),
labeling a(x), for a ∈ Σ (the position x is labeled by a in t), and navigation Si(x, y),
for all i smaller than or equal to the maximal arity of symbols of Σ (y is the ith child
of x in t). If we want to interpret the formulae on unranked ordered trees, the above
successor predicates Si(x, y) are not sufficient, and are replaced by: S↓(x, y) (y is a
child of x), and S→(x, y) (y is the immediate successor sibling of x). Note that the
above predicates S1, S2, . . . can be expressed using these two predicates only.

Some strict extensions of MSO with predicates corresponding to the above equal-
ity, disequality and arithmetic constraints have been proposed in [Filiot et al., 2008]
and then generalized in [Barguñó et al., 2010]. The new predicates for term equality
X ≈ Y , and term disequality X 6≈ Y hold when for all p in X and all p′ in Y ,
t|p = t|p′ , resp. t|p 6= t|p′ , (we note these predicate types ≈ and 6≈). We consider
also [Barguñó et al., 2010] linear inequalities:

∑
ai.|Xi| ≥ a or

∑
ai.‖Xi‖ ≥ a, where

ai and a belong to Z (|Xi| is interpreted as the cardinality of Xi and ‖Xi‖ as the
cardinality of {t|p | p ∈ Xi}). The corresponding predicate types are denoted |.|Z,
‖.‖Z, and |.|N and ‖.‖N for the restriction where all the coefficients are of the same
sign.

We write MSO[τ1, . . . , τk] for the set of monadic second order logic formulae with
equality, membership, labeling predicates and other predicates of type τ1, . . . , τk,
amongst the above types ≈, 6≈, and |.|N, ‖.‖N and +1, this latter denoting the succes-
sor predicates. Let EMSO[τ1, . . . , τk] be the fragment of MSO[τ1, . . . , τk] containing
the formulae of the form ∃X1 . . . ∃Xn φ such that all the atoms of type ≈, 6≈, Z or N

in φ involve only second order variables amongst X1, . . . ,Xn.
The theorem of Thatcher and Wright [Thatcher and Wright, 1968] states that

MSO[+1] is decidable because it has the same expressiveness as TA. The extension
MSO[+1,≈] is undecidable, see e.g. [Filiot et al., 2007]. The extension MSO[+1, |.|Z]
is undecidable as well [Klaedtke and Ruess, 2002].

On the other side, the fragment EMSO[+1, |.|Z] is decidable [Klaedtke and Ruess,
2002], and a fragment of EMSO[+1,≈, 6≈] is shown decidable in [Filiot et al., 2008] for
a restricted variant of 6≈, using a two way correspondence between these formulae and
a decidable subclass of TAGED. This latter construction has been straightforwardly
adapted in order to establish a two way correspondence between EMSO[+1,≈, 6≈,N]
and TAGC[≈, 6≈, |.|N, ‖.‖N].

EMSO[+1,≈, 6≈, |.|N, ‖.‖N] is decidable.

Theorem 32 [Barguñó et al., 2010]

67

II

Verification of Infinite State Systems

Significant progress in the areas of specification and verification of systems have been
achieved through model-checking [Vardi and Wolper, 1986], an algorithmic method
for exploring exhaustively the set of reachable configurations (assumed finite) of a sys-
tem, in order to verify that the system’s behavior meets certain properties expressed
by logical formulas. The use of these techniques is fairly widespread, in particular
through symbolic methods for representing very large (but finite) sets of configura-
tions. An important current research topic deals with the generalization of these
techniques to systems with an infinite set of reachable configurations, for instance
when the configurations contain a finite but unlimited amount of information and
they can be represented by words or more generally by finite trees. Regular model
checking [Wolper and Boigelot, 1998; Abdulla et al., 2002] is a general framework for
reasoning about such systems. It uses a finite representation of infinite sets of config-
urations by automata on words or trees. The dynamics of the systems (the transition
between the system’s configurations) are represented by abstract reduction systems
like transducers or rewriting systems, and reasoning on reachability properties of such
systems can then be reduced to the computation of the transitive closure of automata
languages by the transducer or rewrite system. This problem can be summarized by
the following general property, that we simply call model checking below: given an
automaton accepting a language Lin, which represents a set of possible initial configu-
rations of the system, another automaton accepting a language Lerr, which represents
a set of erroneous configurations, and given a binary relation R (defined, say, by a
rewrite system), we want to decide whether the rewrite closure of Lin by R, denoted
post ∗R(Lin), has an empty intersection with Lerr. Note that non-reachability, the prob-
lem whether a given target configuration t cannot be reached by R starting from a
given source configuration (s) is a particular case of this problem, when Lin = {s}
and Lerr = {t}.

When (in the context of tree configurations) the transitive closure post∗R(Lin) is
the language of a TA, and this TA can effectively constructed. then model checking
reduces to a decision problem for TA, namely the emptiness of intersection. Therefore,
the problem of the preservation of regularity of tree languages by rewrite rules (prov-
ing that the rewrite closure of a TA language is again a TA language) has deserved
quite some attention. For restricted classes of rewrite rules, defined by syntactical
restrictions, the result can be established with a procedure of completion of the TA for

68

1. Term Rewriting

Lin, adding some tree automata transitions by superposition of the rewrite rules into
the the TA transitions rules, see e.g. [Genet and Rusu, 2010] for a recent reference.
In some other cases, finding an effective TA construction requires the use of accelera-
tions techniques, e.g. [Bouajjani and Touili, 2002] or [Jacquemard and Rusinowitch,
2008a]1. We present several results around these problems in the case of term rewrit-
ing systems (TRS) (applying to ranked trees) in Section 1.

The regular model checking is also related to static typechecking programs for
tree transformations, see [Milo et al., 2003], and the beginning of Section 2, which
is the problem to verify that a program always converts valid source trees (semi-
structured documents) into valid output trees (where types are defined by TA). This
problem concerns in general unranked trees. In Section 2, we consider generalizations
of automata models for unranked trees (hedge automata and variants) and term
rewriting systems for unranked trees (hedge rewrite systems), and we present results
on the rewrite closures of (unranked) tree languages. We will see in particular in
Section 2.5 that this can be applied to the verification of consistency of read/write
access control policies to XML documents.

In general, the transitive closure post ∗R(Lin) is not a regular tree language, and
we are left with several other options. For instance, it is possible to define a safe
over-approximation of post∗R(Lin) by a TA [Genet and Rusu, 2010]. Alternatively, it
might also be the case that the model checking is undecidable, but the membership
to post∗R(Lin) is decidable, hence in particular reachability is decidable in this case,
we consider similar situations in Section 1.4. It can occur also if post∗R(Lin) is a
context-sensitive language. In general, one can consider more expressive, yet decid-
able, formalisms for defining tree language, in order to capture post ∗R(Lin), as well as
its intersection with Lerr. We present some work following this approach in Section 2
(using so called context-free hedge automata), Section 3.1 (using TAB), Section 3.2
(with context-free and context-sensitive ranked tree languages), and we discuss the
problem of the definition of context-free unranked tree languages in this context, in
Section 3.3.

1 Term Rewriting

Term rewriting systems (TRS) and the rewrite relations are defined in Section I.1.
Given a TRS R over a signature Σ and L ⊆ T (Σ), we note pre∗R(L) = {s | ∃t ∈
L, s −−→∗R t}, post∗R(L) = {t | ∃s ∈ L, s −−→∗R t}, and NFR(L) = post∗R(L) ∩ NFR.

Some terms s1, . . . , sn are called joinable by R (resp. they have a common an-
cestor wrt R) if there exists a term t such that si −−→

∗
R t (resp. t −−→∗R si) for all i in

{1, . . . , n}.
A rewrite rule ℓ→ r is called left-ground (resp. right-ground, ground) if ℓ ∈ T (Σ)

(resp. r ∈ T (Σ), ℓ, r ∈ T (Σ)), left-linear (resp. right-linear, linear) if ℓ (resp. r,
both) is linear, and similarly for flat and shallow. It is called collapsing if r ∈ vars(ℓ).
A TRS R is called ground (linear, etc) if all its rules are ground (linear, etc).

1the later result is presented in Section 2.2.

69

II. Verification of Infinite State Systems

In this section, we present some studies of the closure of ranked terms languages
under ranked term rewriting. We wont follow the organizations of the other sec-
tions, and will present some applications first, with examples used to motivate the
following theoretical results. Some of these examples extend the cases presented in
Introduction.

Analysis of Functional Programs

Functional programs manipulating tree structured data values with pattern matching
can be described by rewrite rules [Jones and Andersen, 2007] such that the rewriting
relation represents the program evaluation. Let us consider for instance the TRS con-
taining the two following rules, which define the operators app for the concatenation
of two lists and rev for the reverse of one list ([Genet and Tong, 2001]),

app(nil, y) → y,
app

(
cons(x, y), z

)
→ cons

(
x, app(y, z)

)
,

rev
(
cons(x, y)

)
→ app

(
rev(y), cons(x, nil)

)

and let us consider the set Lin of initial "values", containing terms of the form

rev(cons(0, . . . , cons(0, cons(1, . . . , cons(1, nil)))))

where 0 and 1 are constant function symbols. Note that Lin is a regular tree language.
An analysis of the terms of post∗R(Lin), which is too long to be performed by hand,
shows that this closure is a regular tree language. An example of the construction
of a tree automaton for post∗R(Lin), obtained with the system Timbuk, is presented
in [Genet and Tong, 2001]. The use of some accelerations (defined by the user) is re-
quired during the construction. Moreover, with a second tree automata construction,
it can be checked that the intersection of the closure of Lin with the set NFR (this
latter set is also a regular tree language because R is left-linear) contains exactly the
terms of the form

cons(1, . . . , cons(1, cons(0, . . . , cons(0, nil)))).

This shows that the values returned by the program on the above set of inputs (i.e.
the normal forms obtained from the terms of Lin) are as expected.

This approach based on tree automata construction enables reachability analy-
sis and flow analysis of functional programs. For instance, in [Jones and Andersen,
2007], regular tree grammars are constructed in order to approximate the collecting
semantics of programs (roughly a mapping associating to each program point the set
of configurations reachable at that point), when a program is represented by a left-
linear TRS as above. In [Kochems and Ong, 2011], a finer approximation is refined
by using indexed linear tree grammars instead of regular grammars.

70

1. Term Rewriting

Analysis of Networks with a Tree Architecture

A similar approach can be applied to the analysis of communicating processes orga-
nized in network with a tree-like architecture [Abdulla et al., 2002; Bouajjani and Touili,
2002; d’Orso and Touili, 2006]. Case studies include leader election protocols, mutual
exclusion protocols (like the tree arbiter protocol) and multicast protocols.

The goal of such analysis is to be applicable to networks of any size, in other terms,
the analysis is performed on a system parametrized by the number of processes, with
an infinite number of instances. Hence the number of configurations to consider is
infinite, but as in the cases cited above, it is a regular tree language.

In the case studies cited above, the communications typically consist in the ex-
change of a token between positions and children or parents positions, and can be
represented by rules of tree transducers, like the rules presented in Figure 7, which
model a token tree protocol [Abdulla et al., 2002].

Figure 7 Bottom-up tree transducer rules for a token tree protocol [Abdulla et al.,
2002].

n → q0(n
′) t → q1(n

′)
n
(
q0(x1), q0(x2)

)
→ q0

(
n(x1, x2)

)
t
(
q0(x1), q0(x2)

)
→ q1

(
n(x1, x2)

)

n
(
q1(x1), q0(x2)

)
→ q2

(
t(x1, x2)

)
n
(
q0(x1), q1(x2)

)
→ q2

(
t(x1, x2)

)

n
(
q2(x1), q0(x2)

)
→ q2

(
n(x1, x2)

)
n
(
q0(x1), q2(x2)

)
→ q2

(
n(x1, x2)

)

Note that the rules of Figure 7 form a TRS R over a signature containing the
binary symbols t and n, for inner positions with, resp. without, the token, the nullary
symbols t, t′ and n, n′ for the leaf positions (with the same signification) and three
unary state symbols: q0 (the token is neither on the position nor on a position below)
q1 (the position is releasing the token to its parent’s position) and q2 (the token is
either in the position or below).

It can be shown that given regular tree language Lin, post∗R(Lin) is regular (see
[Seki et al., 2002] for a systematic study of TRS of the above kind, called layered
transducing TRS therein). This permits ones to show in particular that if Lin is the
subset of terms of T

(
{t, n, t, n}

)
containing exactly one token, then the intersection of

post∗R(Lin) with the set {q2(t) | t ∈ T
(
{t, n, t, n}

)
, t contains at least 2 tokens} (this

set is regular) is empty. This shows that the above token protocol ensures mutual
exclusion property on every network.

Analysis of Imperative Programs

Tree automata techniques have also been used in many works for the analysis of im-
perative programs with recursive procedure calls and spawning of concurrent threads.
Such programs can be modeled by ground term rewriting rules of two main kinds:

71

II. Verification of Infinite State Systems

• pushdown rules, containing only constant symbols and the binary function sym-
bol · which is associative (A) and represents the sequential composition,

• multiset rules, containing only constant symbols and the binary function sym-
bol ‖ which is associative and commutative (AC) and represents the parallel
composition.

We assume a constant symbol 0, which is neutral wrt · and ‖, representing the
null process and some other process constant symbols a, b, . . . Figure 8 describes

Figure 8 A procedure a calls in (r1) a second procedure b. The procedure b can
either return true (t, with r2) or false (f, with r3). If b returns true, then a new thread
is launched, containing a procedure c (r4). If b returns false, then the procedure a

returns (r5) ([Bouajjani and Touili, 2002]).

void a() {

while(true) {

if b() {

thread_create(&t1,c)

} else { return }}}

a → b · a (r1)
b → t (r2)
b → f (r3)

t · a → a ‖ c (r4)
f → 0 (r5)

for instance 5 rewrite rules [Bouajjani and Touili, 2002] representing an imperative
program with a loop calling a procedure b and creating threads c. Note that (r1)
in Figure 8 calls b in a loop (a is restarted if b has returned with true) hence the
number of thread created is unbounded.

A procedure call can be represented by a rule of the form a→ b · a′: at program
point a, a second procedure is called, which starts at program point b. When this
second procedure returns, the program continues at program point a′. We can have
a′ = a, meaning that the second procedure b is called in a while loop. If we want
moreover to represent a global state of the program (describing for instance the
current state of some global variables with a finite data domain), we can add a new
constant symbol at the beginning of the prefix sequence, see e.g. [Schwoon, 2002].
For instance, the rules for procedure calls will have the form q · a → q′ · b · a′ (they
corresponds to push transition of a pushdown automaton, the first symbol is the state
of the automaton, the others represent the top of the stack). For a procedure return
we have q · a→ q′ (pop transitions of pda) and we can have also rule changing only
the global state q · a→ q′ · a (internal transitions of pda).

The pushdown rules have the general form a1 · . . . · an → b1 · . . . · bm.
For a proper representation of sequential execution of programs, we consider a

relation called prefix rewriting which differs from the rewrite relation defined above
(for instance, we do not want to allow a rewriting of the form a→ b·a→ b·b·a). Prefix
rewriting associated to a rewrite system R as above is the smallest binary relation
7→R containing the rules of R and such that if s 7→R t, then for all t′, s·t′ 7→R t·t′ and
s‖t′ 7→R t‖t′. Algorithms computing regular reachability sets of pushdown rewrite

72

1. Term Rewriting

systems (wrt prefix rewriting) have been proposed in [Caucal, 1992; Bouajjani et al.,
1997].

The creation of a new thread can be represented by a rule of the form a→ a ‖ b.
The multiset rules have the general form a1‖ . . . ‖an → b1 ‖ . . . ‖ bm and correspond
to Petri net transitions, which were proposed for the representation of multithreaded
programs (with synchronization) see e.g. [Delzanno et al., 2002].

PA processes are set of pushdown and multiset rules the left-hand sides of which
are restricted to a single constant. In [Lugiez and Schnoebelen, 2002] it is shown
that sets of representative (modulo A for · and AC for ‖) of reachable terms can be
characterized by ranked TA, hence that TA can be used for the reachability analysis
of PA processes.

Process rewrite systems (PRS) are arbitrary combinations of pushdown rules and
multiset rules. In [Bouajjani and Touili, 2005], the computation of an exact tree
automata-based representation of the reachability set is proposed for restricted PRS
whose multiset rewrite rules are preserving semilinear sets. This is the case for in-
stance of the form a → b1 ‖ . . . ‖ bm. Approximations are proposed for arbitrary
PRS.

For the related model of dynamic pushdown networks, reachability analysis can
also be performed though reduction to tree automata decision problems [Seidl, 2009].

The close connections between regular set of terms modulo A for · and AC for ‖ and
unranked ordered, respectively unranked unordered trees are discussed in Sections 2.1
and 2.6.

1.1 Ground Term Rewriting Systems

It is undecidable in general whether a given TRS is preserving regularity [Gilleron,
1991]. A lot of efforts has been put into identifying classes of TRS, generally defined
by syntactical restrictions, enjoying this property.

The first such class of TRS identified, and perhaps the simplest, is the class of
ground TRS [Brainerd, 1969]. Given a TA Ain and a ground TRS R, it is not difficult
to construct a TA recognizing post∗R

(
L(Ain)

)
. In a preliminary step, we construct

a TA A0, obtained form Ain by adding one new state qr for each strict subterm of
a rhs of rule of R, and adding all the transitions of the form f(qr1 , . . . , qrn) → qr
such that r = f(r1, . . . rn). Hence, for all r, L(A0, qr) = {r}. Then, we iterate the
following completion operation (i ≥ 0): for each ground rule ℓ → f(r1, . . . rn) in R
(with n ≥ 0), and for each state q such that ℓ ∈ L(Ai, q), the TA Ai+1 is obtained
form Ai by adding the transition f(qr1 , . . . , qrn)→ q. No state is added in the above
step, hence the number of transitions that can be added is finite and polynomial, and
the construction will terminate in polynomial time with a TA Ak of size polynomial
in the sizes of Ain and R, and such that L(Ak) = post∗R

(
L(Ain)

)
.

The stronger property holds that for every ground TRS R, the rewrite relation
−−→∗R is regular [Dauchet et al., 1987] – see Section I.2.5 for the definition of regular
binary relations on ground terms. If a binary tree relation is regular, then the closure
of every regular tree language under this relation is also regular.

73

II. Verification of Infinite State Systems

1.2 Flat and Shallow Term Rewriting Systems

It is shown in [Nagaya and Toyama, 2002] that for every right-linear and right-shallow
TRS R and every regular tree language Lin, the closure post∗R(Lin) is regular. This
regularity preservation results generalizes many former ones: for linear and right-flat
(also called monadic) TRS [Salomaa, 1988], for linear and right-shallow (also called
semi-monadic or inverse-growing) TRS [Coquidé et al., 1994; Jacquemard, 1996]...

The above regularity preserving have been further generalized to the classes of
linear and generalized semi-monadic TRS [Gyenizse and Vágvölgyi, 1998] and the
more general right-linear finite path overlapping TRS [Takai et al., 2000].

The TA construction for the rewrite closure for linear and right-shallow TRS is
quite similar to the ground TRS case: the TA recognizing the initial language Lin is
completed by adding new transitions in order to simulate rule applications of R. In
a completion step, for each rule ℓ → f(r1, . . . rn) in R, ℓ may be not ground. Then,
for each substitution σ form vars(ℓ) into the state set of the automaton, such that
σ(ℓ) rewrites into a state q using the current transitions rules of the TA, we add the
transition f(q1, . . . , qn)→ q, where for all i ≤ n, qi = qri if ri is not a variable (in this
case it is a ground term by assumption), and qi = σ(ri) otherwise. Like for ground
TRS, a TA recognizing the rewrite closure is obtained in polynomial time.

The construction for the right-linear and right-shallow TRS [Nagaya and Toyama,
2002] is more involved because these TRS are not left-linear. The trick for the con-
struction is to start with a subset construction, determinizing the initial automaton
Ain, and then work on state sets, in order to preserve determinism at each completion
step.

The conditions of right-linearity and right-shallowness are not easy to relax. Re-
garding the right-shallowness, it holds that for instance, with rewrite rules whose
left and right hand-side have height at most two, it is possible simulate Turing ma-
chine computations, even in the case of words (when all the symbols in the signature
are unary or constant). The linear layered-transducing TRS, form a particular class
of TRS with rules with lhs and rhs of height more than two and preserving regular-
ity [Seki et al., 2002]. The rules of these TRS have a form similar to those in Figure 7,
with a separation of the function symbols in two categories: the states and the others
(like in the transitions of bottom-up tree transducers).

Regarding right-linearity, let us consider the following flat and left-linear TRS:
R = {f(x) → g(x, x)}, and let Lin contain all the terms of the form f(. . . f(c)).
The intersection of post∗R(Lin) with the regular tree language T

(
{g, c}

)
is the set of

balanced binary trees of T
(
{g, c}

)
. This set is not regular.

Decision of Properties of Term Rewriting Systems

As mentioned above, a result of effective regularity preservation for a class of TRS
ensures the decidability for these TRS of the following property called model checking.

74

1. Term Rewriting

Given two TA Ain and Aerr and a TRS R, decide whether
post∗R

(
L(Ain)

)
∩ L(Aerr) = ∅.

Problem of Model Checking:

We also noticed that non-reachability is a particular case of model checking, hence
its decidability follows from effective regularity preservation.

Given two terms s, t ∈ T (Σ) and a TRS R, decide whether s −−→∗R t.

Problem of Reachability:

A consequence of the result of [Nagaya and Toyama, 2002] is the decidability of
reachability for right-linear and right-shallow TRS. This also holds for the larger class
of finite path overlapping TRS of [Takai et al., 2000]. The decidability of local conflu-
ence is also a consequence of the effective preserving regularity [Gyenizse and Vágvölgyi,
1998] as well as the decidability of the following property [Gilleron and Tison, 1995].

Given two terms s, t ∈ T (Σ) and a TRS R, decide whether there exists a
term u ∈ T (Σ) such that s −−→∗R u←−−∗R t.

Problem of Joinability:

It has been conjectured that reachability was decidable for shallow TRS (dropping
the right-linearity restriction). A clue for this was in particular that the word problem
is decidable for shallow equational theories [Comon et al., 1994]. However, we have
shown that it is not the case for TRS.

Reachability and joinability are undecidable for flat TRS.

Theorem 33 [Jacquemard, 2003]

The proof of undecidability of reachability is a somewhat involved reduction of the
Post correspondence problem, using coloring techniques of an older proof that we
had written with Harald Ganzinger and Margus Veanes for the undecidability of
rigid reachability [Ganzinger et al., 1998, 2000], though this latter result could not
be reused directly in this context. The TRS for the reduction contains only one
non-linear rule of the form f(x)→ g(x) where x is a sequence of variables with some
repetitions (hence this rule is actually non-left-linear and non-right linear). All the
other rules are linear, and their purpose is renaming (a(x) → b(x)) and projection
(a(x) → x). The undecidability of joinability follows from a reduction presented

75

II. Verification of Infinite State Systems

in [Verma et al., 2001]. The above proofs have been simplified later in a joint work
with Ichiro Mitsuhashi and Michio Oyamaguchi [Mitsuhashi et al., 2006] and also in
[Godoy and Hernandez, 2009]. A light modification of the reduction also permits us
to show the undecidability of confluence.

Confluence is undecidable for flat TRS.

Theorem 34 [Jacquemard, 2003; Mitsuhashi et al., 2006]

On the positive side, confluence is decidable for shallow right-linear TRS
[Godoy and Tiwari, 2005], and for right-(ground or variable) TRS
[Godoy and Tiwari, 2004].

We have already highlighted that term rewriting systems can be seen as a com-
putational model, where the evaluation consists in the application of rewrite rules,
starting from a given term, until a normal form is reached, which is considered the
result of the computation – see for instance the example with the functions app and
rec on lists in Section 1. In this context, an important property of TRS is whether
this evaluation process is functional, i.e. whether the computation with a TRS is
always unique.

Given a TRS R over Σ, decide whether for all ground term t ∈ T (Σ), the
set NFR(t) has a cardinality at most one.

Problem of Unique Normalization (UN):

We have proved results for this problem with Guillem Godoy.

UN is decidable in PTIME for shallow and linear TRS.

Theorem 35 [Godoy and Jacquemard, 2009]

The proof is based on some necessary and sufficient conditions for UN for shallow and
linear TRS. The conditions are expressed as properties of some characteristic sets of
terms, or more precisely pairs of sets of terms, called fork of languages, which, intu-
itively, characterize pairs of terms 〈t1, t2〉 which are susceptible to be the first rewrite
steps from a common term s towards two distinct normal forms. The properties of
forks of languages are shown to be verifiable by reduction to TA decision problems
such as emptiness and cardinality. The polynomial time upper bound is achieved
through a careful analysis of the size of TAs constructed during the reduction and
the complexity of the decision procedures.

This result is very near to the limits of decidability, since unique normalization
is known to be undecidable for very restricted classes like right-ground TRS [Verma,
2008], flat TRS [Godoy and Hernandez, 2009], and also linear and right-flat TRS
[Godoy and Tison, 2007]. We have proved another undecidability result for UN.

76

1. Term Rewriting

UN is undecidable for flat and right-linear TRS.

Theorem 36 [Godoy and Jacquemard, 2009]

This result is in contrast with the fact that many other natural properties of TRS
like reachability, termination, confluence, weak normalization, etc. are decidable for
this class of TRS.

A tree automata based method for proving termination of left-linear term rewrit-
ing systems on a given regular language of terms is proposed in [Geser et al., 2007].
Note that termination has been shown decidable for right-shallow right-linear TRS
[Godoy et al., 2007] and other variants of syntactic restrictions based on the form of
the dependency pairs obtained from a TRS [Wang and Sakai, 2006]. Termination is
undecidable for flat TRS [Godoy et al., 2007].

Perspective: Shallow and non-Collapsing TRS

The above proof of undecidability of reachability for flat TRS uses non-linear variables
in lhs and rhs of the same rewrite rule, and collapsing (projection) rules of the form
a(x)→ x. We are currently studying with Masahiko Sakai the importance of these 2
conditions for the undecidability of reachability.

The result [Nagaya and Toyama, 2002] of preservation of regularity for right-
shallow and right-linear TRS implies the decidability of reachability for this class
of TRS but also for the symmetric class of left-shallow, left-linear and non-collapsing
TRS. The non collapsing condition stems from the fact that lhs of rewrite rules cannot
be variables.

The question of the decidability of reachability is open for for shallow and left
linear TRS (including collapsing rules). We think that tree automata technique can
help for this case, for instance, the post∗ of regular tree sets could be recognized
by a variant of TAB (tree automata with brother constraints). The case of shallow
(without restriction on linearity) and non-collapsing TRS is also open, and seems
difficult.

1.3 Context-Free Term Rewriting Systems

It has been observed, see e.g. [Hofbauer and Waldmann, 2004], that in several cases,
one class of word rewrite system preserves regularity and its symmetric class preserves
CF languages. This is the case for instance of monadic semi-Thue systems, whose
rules are length reducing and with a rhs of length at most one.

The conditions of flatness (or shallowness) and linearity for rhs of rewrite rules
ensure the preservation of regularity, even for rules with arbitrary lhs of rewrite
rules [Nagaya and Toyama, 2002]. The symmetric rules, with flat and linear lhs,
correspond exactly to productions of context-free tree grammars (presented in Sec-
tion 2.5) and it can be observed that they preserve context-free tree languages.

77

II. Verification of Infinite State Systems

Let us call a TRS over Σ context-free (CF) if its rules all have the form

f(x1, . . . , xn)→ r

where r ∈ T
(
Σ, {x1, . . . , xn}

)
, and x1, . . . , xn are distinct variables. Recall that when

r = xi for some i ≤ n, then the rule is called collapsing.

For all CF tree grammar G and CF TRS R, a CF tree grammar G′ such that
L(G′) = post ∗R(L) can be constructed in PTIME.

Theorem 37

It follows that model-checking and reachability are decidable for CF TRS (for model
checking, we use the fact that the intersection of a CF tree language and a regular
tree language is a CF tree language). In Section 3.2, we propose the definition of a
class of context-sensitive tree languages, which is closed by rewriting with linear and
size non-decreasing rewrite rules.

1.4 Closure of Languages of Tree Automata with Constraints

Results of preservation (of tree languages) under rewriting are much more difficult to
obtain for classes of tree automata with equality and disequality constraints than for
standard tree automata. The reason is the difficulty to capture the behavior of the
constraints after the application of rewrite rules. To our knowledge there have been
only few works on this problem. We present in the next paragraphs two case studies
and one idea to overcome this difficulty.

Closure of TAB

It was already observed in [Jacquemard et al., 1998] (joint work with Christoph Meyer
and Christoph Weidenbach) that the class of languages of the TAB of [Bogaert and Tison,
1992] (tree automata with local equality tests between brother positions, see Sec-
tion I.1.1) is not closed under rewriting with flat TRS.

There exists a regular tree language L and a flat TRSR such that the closure
post∗R(L) is not recognizable by a TAB.

Theorem 38 [Jacquemard et al., 1998]

Note that Theorem 38 is a consequence of Theorem 33 and the decidability of empti-
ness for TAB. There are simpler counter-examples than the TRS of Theorem 33
for this fact. Let us come back for instance to the example of Section 1.2, R =
{f(x) → g(x, x)}. The set post∗R

(
T ({f, a})

)
∩ g(T ({g, a}),T ({f, a})) is {g(t1, t2) |

t1 ∈ T ({g, a}), t2 ∈ T ({f, a}), h(t1) = h(t2)} and it is not recognizable by a TAB.

78

1. Term Rewriting

The situation is not the same when applying the innermost strategy for rewriting.
This issue is presented in Section 3.1. Recall that a tree automata model with brother
equality modulo flat equational theories was shown decidable in [Jacquemard et al.,
1998] (Theorem 15).

Closure of RTA Languages

In [Jacquemard et al., 2011a], we study with Francis Klay and Camille Vacher the
closure of languages of tree automata with global constraints. We show that the
closure of a RTA language under rewriting is generally not a RTA language, even for
a very restrictive class of TRS.

In general post∗R(L) is not an RTA language when L is an RTA language and
R a linear and collapsing TRS.

Theorem 39 [Jacquemard et al., 2011a]

Restricting to the terms of the rewrite closure in normal form does not help: the
intersection of post∗R

(
L(A)

)
with NFR is not an RTA language in general, when A

is an RTA and R a linear and collapsing TRS. This situation is in contrast with TA

languages, which are closed under rewriting with such TRS [Salomaa, 1988].
However, the preservation of automata languages is not always necessary for sys-

tems verification in these settings. For instance, it could be often sufficient to consider
the following particular case of the model checking problem where, instead of a TA

Aerr we have a single term t representing an erroneous configuration.

Given a TRS R over Σ, an automaton A and a ground term t ∈ T (Σ) decide
whether t ∈ post∗(L(A)).

Problem of Membership Modulo:

This problem is unfortunately undecidable for the above class of TRS.

Membership modulo is undecidable for RTA and linear and collapsing TRS.

Theorem 40 [Jacquemard et al., 2011a]

Invisibly Pushdown Term Rewriting Systems

We show in [Jacquemard et al., 2011a] that the problem of membership modulo be-
comes decidable with some further syntactic restrictions on the TRS, inspired by
the definition of visibly pushdown automata [Alur and Madhusudan, 2004]. We

79

II. Verification of Infinite State Systems

have mentioned in Section I.2.5 a model of visibly pushdown tree automata defined
in [Chabin and Réty, 2007] (called VPTA in [Chabin and Réty, 2007] but which is
incomparable in expressiveness with the model called VPTA in Section I.2.5). It is
shown in [Chabin and Réty, 2007] that the class of languages of these automata is
closed under rewriting with so called linear visibly context-free TRS. We use a similar
definition in order to characterize a class of TRS wrt which membership modulo is
decidable for RTA.

Let us assume a partition of the signature Σ into Σc⊎Σr⊎Σℓ. A collapsing TRSR
is called inverse-visibly pushdown (invisibly pushdown) if for every rule ℓ → x ∈ R,
d(ℓ) ≥ 1, x occurs once in ℓ, and if x occurs at height 1 in ℓ then ℓ ∈ T (Σℓ,X),
otherwise, ℓ(ε) ∈ Σc, the symbol immediately above x is in Σr and all the other
symbols of ℓ are in Σℓ.

Linear and invisibly pushdown TRS can typically specify cryptographic opera-
tors with rules like decrypt(encrypt(x, pk(A)), sk(A)) → x, see also Example 12. We
present in [Jacquemard et al., 2011a] an application of RTA to the verification of prob-
lems like those mentioned in Section I.2.7 (see also the discussion in Section I.3.2).

Membership modulo is decidable for RTA and linear and invisibly pushdown
TRS.

Theorem 41 [Jacquemard et al., 2011a]

The decision algorithm is quite involved. It is based on the construction of a visi-
bly pushdown automaton recognizing the language of ancestors of t wrt R (pre∗R({t}))
that belong to L(A).

Perspective: Saturation of Clausal Representation of RTA

The difficulty of the problem of membership modulo stems from the fact that a
RTA defines syntactic equalities constraints, and we want to consider the closure of
languages under rewriting with a TRS.

In section I.3.2, we mentioned the opportunity to study models of tree automata
with parameters (rigid tree automata) defined as combinations of clauses (rta) and a
generalization of (eq) (Section I2.2) with parameters. This would be a model of RTA

modulo equational theory, where equality is also considered modulo the same theory,
an leaves hope for simpler techniques for proving membership modulo.

In particular, a termination results for saturation of sets of such clauses under
a e.g. a paramodulation calculus would provide an interesting alternative to the
decision algorithms presented in [Jacquemard et al., 2009, 2011a].

2 Unranked Tree Rewriting

The examples of applications of regular model checking techniques presented in Sec-
tion 1 were restricted to ranked terms (standard term rewriting systems and ranked

80

2. Unranked Tree Rewriting

tree automata). In some cases though, the tree structure to be manipulated consist
in unranked trees. For instance, it is convenient to consider unranked tree when
dealing with signatures containing binary function symbols modulo A and modulo
AC, like respectively the sequential composition · and the parallel composition ‖
used in Section 1 for the analysis of imperative programs with recursive proce-
dure calls and thread creation. It is common to consider the associative symbols
as variadic, i.e. to assume that these symbols can have an arbitrary number of
children in trees. In [Bouajjani and Touili, 2005], a model of tree automata comput-
ing on unranked trees, related to other models [Colcombet, 2002; Seidl et al., 2003;
Dal Zilio and Lugiez, 2006] is used in a regular model checking procedure. Labeled
unranked trees are also commonly used as an abstract model of XML documents, and
we discuss the role of unranked tree languages in this context in the next paragraph.

Typechecking Unranked Tree Transformations

A typical case where the data manipulated by programs is represented by unranked
trees is the analysis XML transformations. We have seen in Section I.3.6 that XML
documents are often constrained by a type definition expressed as an automaton
computing on unranked trees (we will give the precise definition classes of tree au-
tomata below in Section 2.1). A central problem in this context is static typecheck-
ing [Milo et al., 2003], which amounts to verifying at compile time that every output
XML document which is the result of a specified query or transformation applied to
an input document with a valid input type has a valid output type.

Given two tree automata Ain and Aout and a tree transformation T , decide
whether T

(
L(Ain)

)
⊆ L(Aout).

Problem of Typechecking:

It is equivalent to check whether L(Ain) ∩ pre∗R
(
L(Aout)

)
= ∅, where L(Aout) is the

complement of L(Aout). Typechecking is therefore closely related to the problem of
model checking of Section 1. A standard approach to XML typechecking is forward
(resp. backward) type inference, that is, the computation of an output (resp. input)
XML type (as a tree automaton) given an input (resp. output) type and a tree
transformation. Then the typechecking itself can be reduced to the verification of
set operations on the computed input or output type, see [Milo et al., 2003] for an
example of backward type inference procedure.

2.1 Hedge Automata and CF-Hedge Automata

We consider a finite alphabet Σ, i.e. a set of symbols without arity. The set H(Σ,X)
of hedges over Σ and X is the set of finite (possibly empty) sequences of unranked
ordered trees and the set of unranked ordered trees over Σ and X is O(Σ,X) :=
X ∪

{
a(h)

∣
∣ a ∈ Σ, h ∈ H(Σ,X)

}
. The empty sequence is denoted () and when h

81

II. Verification of Infinite State Systems

is empty, the tree a(h) will be simply denoted by a. A root of a hedge (t1 . . . tn) is
a root position of one of t1, ..., tn. We will sometimes consider a tree as a hedge of
length one, i.e. consider that O(Σ,X) ⊂ H(Σ,X). The sets of ground trees (trees
without variables) and ground hedges are respectively denoted O(Σ) and H(Σ).

Hedge Automata and CF-Hedge Automata

The two dimensions, horizontal and vertical, for the navigation in the above un-
ranked ordered trees are captured by the following definitions of unranked tree au-
tomata. The hedge automata [Murata, 2000] captures the expressive strength of
almost all popular type formalisms for XML [Murata et al., 2000]. We consider also
a second class, perhaps lesser known, the context-free hedge automata, introduced
in [Ohsaki et al., 2003]. The context-free hedge automata are strictly more expressive
than the hedge automata and we shall see that they are of interest for computing
certain rewrite closures.

A hedge automaton (HA), resp. context-free hedge automaton (CF-HA), is a tuple
A = (Σ, Q, F,∆) where Σ is a finite alphabet, Q is a finite set of states disjoint from
Σ, F ⊆ Q is a set of final states, and ∆ is a set of transitions of the form a(L) → q
where a ∈ Σ, q ∈ Q and L ⊆ Q∗ is a regular word language, resp. a context-free
word language. The languages L in the transitions can be presented in several ways
(finite (pushdown) automata, grammars, alternating automata, regular expression...).
Unless otherwise stated, we assume that L is presented by finite automata for HA

and context-free grammars for CF-HA. The move relation between ground hedges
h, h′ ∈ H(Σ∪Q) is defined as follows: h −−→A h′ iff there exists a context C ∈ H(Σ, {x})
and a transition a(L) → q ∈ ∆ such that h = C[a(q1 . . . qn)], with q1 . . . qn ∈ L and
h′ = C[q]. The relation −−→∗A is the transitive closure of −−→A .

The language of a HA or CF-HA A over Σ in one of its states q, denoted by L(A, q)
and also called the set of hedges of type q, is the set of ground hedges h ∈ H(Σ) such
that h −−→∗A q. Note that with the above definitions, all hedges in L(A, q) are actually
trees of O(Σ). The language of L(A) of A, is the union

⋃

q∈F L(A, q).
The problems of membership and emptiness are decidable in PTIME for both

classes of HA [Murata, 2000; Comon et al., 2007] and CF-HA [Ohsaki et al., 2003].
The HA languages are effectively closed under all Boolean operations (union,

intersection, complementation), with PTIME (resp. EXPTIME) constructions of
automata of polynomial (resp. exponential) sizes for the closures under union and
intersection (resp. complement). The CF-HA are not closed under intersection and
complementation, this is a consequence of the same property of CF word languages.
The intersection of a CF-HA language and a HA language is a CF-HA language (with
a PTIME automata construction by Cartesian product).

Epsilon and Collapsing Transitions

We study with Michael Rusinowitch, in [Jacquemard and Rusinowitch, 2008a, 2010]
the extension of HA and CF-HA with so called collapsing transitions which are special

82

2. Unranked Tree Rewriting

transitions of the form L → q where L ⊆ Q∗ is a context-free language and q is a
state. The move relation for the extended set of transitions generalizes the above
definition with the case C[q1 . . . qn] −−→A C[q] if there exists a collapsing transition
L → q of A and q1 . . . qn ∈ L. The definition of the languages of HA and CF-HA is
extended to automata with collapsing transitions accordingly. Note that collapsing
transitions can reduce a ground hedge of length more than one into a single state.
Hence, if A contains collapsing transitions, then the languages L(A, q) may contain
some hedges of H(Σ) \ O(Σ).

A collapsing transition with a singleton language L containing a length one word
(i.e. transitions of the form {q′} → q, where q′ and q are states) correspond to
ε-transitions for tree automata, and we use the same name here. The ε-transitions
do not increase the expressiveness HA or CF-HA (see [Comon et al., 2007] for HA

and the proof for CF-HA is similar), but collapsing transitions strictly extend HA in
expressiveness, and even collapsing transitions of the form L → q where L is finite
(hence regular).

Example 16 The extended HA

A =
(
{q, qa, qb, qf}, {g, a, b}, {qf}, {a→ qa, b→ qb, g(q)→ qf , qa q qb → q}

)

recognizes {g(anbn) | n ≥ 1} which is not a HA language. ✸

ε-transitions
collapsing-
transitions

HA HA CF-HA

CF-HA CF-HA CF-HA

Table 4: Extensions of HA and CF-HA with ε- and collapsing-transitions.

We show with Michael Rusinowitch that collapsing transitions can be eliminated
from CF-HA, when restricting to the recognition of trees (and not hedges).

Every CF-HA A extended with collapsing transitions can be transformed in
polynomial time into a CF-HA A′ without collapsing transitions such that
L(A′) = L(A) ∩ O(Σ).

Theorem 42 [Jacquemard and Rusinowitch, 2008a]

Relation between HA and Ranked Term Languages

The models of tree automata of Part I compute on ranked terms. Several encodings
of unranked ordered trees into ranked terms have been proposed, like the first-child-
next-sibling encoding [Koch, 2003]. The following transformation [Carme et al., 2004]

83

II. Verification of Infinite State Systems

curry : O(Σ)→ T (Σ@) is particularly well-suited for bottom-up tree recognizers. It
is a bijection from unranked ordered trees over a finite alphabet Σ into binary trees
over the (ranked) signature Σ@ := {a : 0 | a ∈ Σ} ∪ {@ : 2} where @ is a new symbol
not in Σ.

curry(a) = a for all a ∈ Σ
curry

(
a(t1, . . . , tn)

)
= @

(
curry

(
a(t1, . . . , tn−1)

)
, curry(tn)

)

An example of application of this operator is presented in Figure 9. We extend the

Figure 9 Currying an unranked tree.

a

b

c

d f

g h

7→curry @

@

@

a @

b c

d

@

@

f g

h

application of the operator curry to set of trees by curry(L) = {curry(t) | t ∈ L}.
The HA are expressively equivalent to the TA via this transformation: for all HA

A over Σ, on can construct in polynomial time a TA over Σ@ recognizing curry
(
L(A)

)
.

Reciprocally, is it immediate that every TA is a particular case of HA (whose languages
in the transitions rules are finite).

Relation between CF-HA Ranked Term Languages

Let us assume a signature Σ, and a distinguished subset ΣA of binary symbols which
follows the associativity axiom.

a(x1, a(x2, x3)) = a(a(x1, x2), x3) (A)

The function flat : T (Σ) → O(Σ) associates to every ranked term t ∈ T (Σ)
an unranked ordered tree labeled over Σ representing all the terms equivalent to t
modulo (A). The definition of flat in Figure 10 uses intermediate functions hflata :
T (Σ)∗ → H(Σ), for each a ∈ ΣA, transforming a sequence of terms into an hedge
over Σ. The inverse function flat−1 : O(Σ)→ T (Σ) is defined on O(Σ)∩ flat(T (Σ)).

The CF-HA are equivalent in expressiveness (via the flattening) to the class of clo-
sure of regular ranked term languages modulo (A) (the closure of a language L is de-
noted A(L)): for all TA A there exists a CF-HA A′ such that L(A′) = flat

(
A(L(A))

)
,

and for all CF-HA A there exists a TA A′ such that L(A′) = flat−1
(
L(A)

)
. Note that

it can happen that the closure modulo (A) of a regular ranked term language is not
regular. The above notion of closure of regular languages is captured by the model
of equational tree automata for associative theories [Ohsaki, 2001].

84

2. Unranked Tree Rewriting

Figure 10 Definitions of flattening and unflattening operators (g ∈ Σn \ {a}).

flat
(
g(t1, . . . , tn)

)
= g(flat (t1) . . .flat(tn)) for all g ∈ Σ \ΣA

flat
(
a(t1, t2)

)
= a(hflata(t1 t2)) for all a ∈ ΣA

hflata
(
g(s1, . . . , sn) t2 . . . tm

)
= flat

(
g(s1, . . . , sn)

)
hflata(t2 . . . tm)

for all g ∈ Σ \ {a}
hflata

(
a(s1, s2) t2 . . . tm

)
= hflata(s1s2 t2 . . . tm)

flat−1
(
g(t1 . . . tn)

)
= g(flat−1(t1), . . . ,flat

−1(tn)) for all g ∈ Σ \ΣA

flat−1
(
a(t1 . . . tm)

)
= a(flat−1(t1), a(flat

−1(t2), . . . ,
a(flat−1(tm−1),flat

−1(tm)))) (m ≥ 2), for all a ∈ ΣA

2.2 Hedge Rewriting Systems

Inspired by [Touili, 2007], we have studied in [Jacquemard and Rusinowitch, 2008a],
with Michael Rusinowitch, a non-standard definition of rewriting, extending the clas-
sical TRS of [Dershowitz and Jouannaud, 1990] from ranked terms to unranked trees.

Let us extend first the definition of substitution σ to mappings from finite subsets
of the variable set X into the hedges of H(Σ,X) (instead of trees in Section 1). An
hedge rewriting system (HRS) R over a finite unranked alphabet Σ is a set of hedge
rewrite rules of the form ℓ → r where ℓ ∈ H(Σ,X) \ X and r ∈ H(Σ,X). Unless
otherwise stated, we assume the HRS that we consider to be finite. The notions of
(left-, right-) linear, ground and collapsing rules is the same for HRS as for TRS.
Then, as in Section 1, the rewrite relation −−→R of a HRS R is defined as the smallest
binary relation on H(Σ,X) containing R and closed by application of substitutions
(by hedges) and contexts. In other words, h −−→R h′ iff there exists a context C, a
rule ℓ → r in R and a substitution σ such that h = C[σ(ℓ)] and h′ = C[σ(r)]. The
reflexive and transitive closure of −−→R is denoted −−→∗R .

Example 17 With R = {g(x) → x}, we have g(h) −−→R h for all h ∈ H(Σ,X)
(the tree is reduced to the hedge h of its arguments). With R = {g(x) → g(axb)},
g(c) −−→∗R g(ancbn) for every n ≥ 0. ✸

The decision problems of reachability, joinability and model checking are defined
for HRS similarly as for TRS (Section 1.2), with ground hedges instead of ground
terms and HA instead of TA.

CF and inverse-CF HRS

In [Jacquemard and Rusinowitch, 2008a], we consider particular cases of rewrite rules:
a HRS rule ℓ→ r is called

context-free if ℓ = a(x) with a ∈ Σ and x ∈ X (it is not required that x ∈ vars(r)),

inverse context-free if r → ℓ is context-free,

85

II. Verification of Infinite State Systems

prefix (resp. postfix) if r = g(t0 . . . tn x) (resp. r = g(x t0 . . . tn)) with x ∈ vars(ℓ)
and no variable of ℓ occurs in the trees t0, . . . , tn.

A HRS is said to have one of the above properties if all its rules have this property. It
is shown in [Touili, 2007] how to compute the image of a HA language in one step of
rewriting by a right-linear HRS, and how to over-approximate of the rewrite closure
of a HA for linear HRS. We propose with Michael Rusinowitch the computation of
the exact closure for a class of non-linear HRS.

For all HA A and inverse context-free HRS R, a HA A′ can be constructed
such that L(A′) = post∗R

(
L(A)

)
.

Theorem 43 [Jacquemard and Rusinowitch, 2008a]

This result is a non-trivial generalization of theorems of [Nagaya and Toyama, 2002]
and [Touili, 2007], with proof techniques extending both these former constructions.
On one side we generalize [Nagaya and Toyama, 2002] to unranked tree languages. In
particular, we start (roughly) by determinizing A and then complete the HA obtained
with new transition rules, according to the rules of R, with the invariant that at each
completion step, the HA obtained is deterministic. On the other side, the completion
steps follow some principles of the construction of [Touili, 2007], with new construc-
tions and new conditions in order to ensure termination (the construction of [Touili,
2007] is limited to one rewrite step).

As a consequence of Theorem 43, reachability, joinability and model-checking are
decidable for inverse context-free HRS.

Relaxing the above assumption on R in Theorem 43 invalidate the result. We
show in particular in [Jacquemard and Rusinowitch, 2008a] that post ∗R(L) is not a
HA language in general when L is a HA language and R is

1. a collapsing HRS with rules of the form a(x) → x. Roughly, in this case, the
construction of Theorem 43 has to be adapted by adding some collapsing tran-
sitions to the HA, but collapsing transitions strictly extend HA, see Example 16.

2. a context-free, linear and flat HRS, even when the rules of R are all prefix or
postfix.

3. a linear and flat HRS whose rules contain at most two variables: It is possible
to simulate Turing Machine computations with such rules.

4. a HRS whose rhs of rules are ground or of the form d(xx). We reduce in
[Jacquemard and Rusinowitch, 2008a] the blank accepting problem for a Turing
machine to reachability for a HRS with right-ground (but not left-linear) rules
and one rule of the form d(xx)→ d′(xx).

86

2. Unranked Tree Rewriting

In the above cases 1 and 2, a CF-HA can be constructed for post∗R(L) (see Theorem 44
below). In contrast to the above results, in the case of ranked terms, collapsing
TRS (even not linear nor flat) preserve regularity [Nagaya and Toyama, 2002], and
reachability is decidable in PTIME for the TRS of the above type 3. For HRS, the
undecidability result for reachability in this latter case 3 even holds with the strong
restriction that rewriting is performed only at the root position, like e.g. in this
recent application [Fagin et al., 2011] to rewriting of the queries of search engines.

We call a HRS R shallow-context-free if it is context-free, and moreover, for all
rule a(x) → r ∈ R, x can occurs in r only at height at most 1. Note that this
definition includes the case of collapsing rules a(x)→ x.

For all CF-HA A and linear shallow-context-free HRS R, a CF-HA A′ such
that L(A′) = post∗R

(
L(A)

)
can be constructed in PTIME.

Theorem 44 [Jacquemard and Rusinowitch, 2008a]

The proof works by completing the CF grammars in the transitions rules of A, ac-
cording to the non-collapsing rules of R, and adding collapsing-transitions for the
collapsing rules a(x)→ x.

A consequence of Theorem 44 is the decidability in PTIME of reachability and
model-checking for linear shallow-context-free HRS.

The restrictions of Theorem 44 cannot be relaxed: post∗R(L) is not a CF-HA

language in general when L is a HA language and R is

1. a linear context-free HRS. A counter example is R = {f(x) → g(f(ax))} and
L = {f(c)}. In this case, post∗R(L) is

{
g(g(. . . g(
︸ ︷︷ ︸

n

f(anc))))
∣
∣ n ≥ 0

}
.

2. a shallow-context-free HRS (not linear). A counter example is R = {f(x) →
f(xx)} and L = {f(a)}. Then post∗R(L) = {f(a

n) | n = 2k, k ≥ 0}.

The results of Theorems 43 and 44 cannot be combined. In other terms, for
some HRS containing both linear inverse context-free and linear shallow-context-free
rules, the set of descendants of a HA language is not a HA language, neither a CF-HA

language and even not recursive.

post∗R(L) is not recursive in general when L is a HA language and R is a HRS
whose rules are either linear inverse context-free or linear shallow-context-
free and contain only one variable.

Theorem 45 [Jacquemard and Rusinowitch, 2008a]

87

II. Verification of Infinite State Systems

We propose in [Jacquemard and Rusinowitch, 2008a] a reduction of the Post corre-
spondence problem to reachability for HRS of the above form. Finally, we have seen
above that context-free HRS do not preserve HA languages. The symmetric result
also holds for inverse-context-free HRS and CF-HA languages.

post∗R(L) is not recursive in general when L is a CF-HA language and R is
an inverse context-free HRS.

Theorem 46 [Jacquemard and Rusinowitch, 2008a]

Encoding into Term Rewriting

Encodings of unranked ordered trees into binary trees, like the one presented in Sec-
tion 2.1 permit ones to reuse formalisms which operate on ranked terms for reasoning
on unranked tree transformations. This approach has been followed for the study of
the typechecking problem for XML transformations using tree transducers defined on
ranked trees, see e.g.[Maneth et al., 2005].

There is however no natural translation of HRS rules compatible with the usual bi-
nary encodings. Consider for instance the following inverse-context-free hedge rewrite
rule f(axc)→ f(x). For every n ≥ 0, f(abnc) reduces in one step to f(bn), however
there is no finite term rewrite system that can simulate such reductions in one step
(see [Jacquemard and Rusinowitch, 2008b] for more details). It is possible to trans-
form one HRS rule as above into several TRS rules operating on binary encodings as
expected, however, the rule rules produced would not be in a form known to preserve
regularity (typically, this would require lhs and rhs of height larger than 2). There-
fore, it appeared that working directly on the automata for unranked trees is more
convenient in this case.

Term Rewriting Modulo Associativity

The HRS actually correspond exactly to TRS modulo associativity [Dershowitz and Jouannaud,
1990], like CF-HA correspond exactly to the closure of TA languages under associativ-
ity, as we have seen in Section 2.1. There have been many studies of term rewriting
modulo associativity and commutativity, but significantly less studies of term rewrit-
ing modulo associativity (A) alone. The above results can be seen alternatively as
decision results for term rewriting modulo A, and results of closure by ranked term
rewriting modulo A of regular ranked term languages modulo A.

2.3 Parametrized Hedge Rewriting Systems

We propose with Michael Rusinowitch in [Jacquemard and Rusinowitch, 2010] an
extension of HRS where the rewrite rules are parametrized by HA languages. It
means in particular that a parametrized rule can represent an infinite number of
unparametrized rules.

88

2. Unranked Tree Rewriting

PHRS

Let A = (Σ, Q, F,∆) be a HA. An hedge rewriting system over Σ parametrized by A
(PHRS) is a finite set, denoted R/A, of rewrite rules ℓ→ r where ℓ ∈ H(Σ,X) \ X
and r ∈ H(Σ⊎Q,X) and the symbols of Q can only label leaves of r. In this notation,
A may be omitted when it is clear from context or not necessary. The rewrite relation
−−−→R/A associated to a PHRS R/A is defined as the rewrite relation −−−→R[A] where the
HRS R[A] is the (possibly infinite) set of all the hedge rewrite rules obtained from
the rules ℓ→ r in R/A by replacing in r every state p ∈ Q by a ground unranked tree
of L(A, p). Note that when there are multiple occurrences of a state p in a rule, each
occurrence of p is independently replaced with a tree of L(A, p), which can generally
be different from one another.

Several examples of parametrized rewrite rules can be found in Figure 11, where
parameters range over the states p, p1,.., pn of a given HA. These rules represent
infinite sets of atomic operations of the XQuery update facility [Robie et al., 2011],
and some restrictions or extensions. The application is presented in more details in
Section 2.4.

Figure 11 Examples of PHRS Rules (XQuery Update Facility Primitives and Ex-
tensions).

a(x) → b(x) REN

a(x) → a(p x) INSfirst a(x) → p a(x) INSbefore
a(x) → a(x p) INSlast a(x) → a(x) p INSafter

a(xy) → a(x p y) INSinto
a(x) → p RPL1 a(x) → p1 . . . pn RPL

a(x) → () DEL a(x) → x DELs

Besides the parameters, there are some other differences with the HRS rules stud-
ied in Section 2.2 (Theorems 43 and 44). The rules of type INSbefore, INSafter, RPL
or DEL are really hedge rewriting rules, in the sense that the rhs of these rules are
hedges of length strictly larger than one. We will see below that such rules have a
great importance wrt type inference, because they can cause the closure of HA lan-
guages to be outside HA languages. Another (less important) difference is the rules
of type INSinto which contain two variables. The restricted form of INSinto prevents
the simulation of Turing machine mentioned above.

We call UFO the class of PHRS rules presented in Figure 11, and UFOreg the
subclass of PHRS rules of type REN, INSfirst, INSlast, INSinto, RPL1, or DEL.

Forward and Backward Type Inference for PHRS

In [Jacquemard and Rusinowitch, 2010], we show forward and backward type infer-
ence results for arbitrary finite iterations of parametrized hedge rewrite rules of the
above types, taken in a given set.

89

II. Verification of Infinite State Systems

Let A be a HA, R/A be a PHRS with rules of type UFOreg, and B be a HA.
Then post∗R/A

(
L(B)

)
is the language of an HA of size polynomial and which

can be constructed in PTIME in the size of R/A and B.

Theorem 47 [Jacquemard and Rusinowitch, 2010]

The construction starts with B and completes it incrementally according to a case
analysis of the update rules of R/A: roughly, for the cases REN, INSfirst, INSlast,
INSinto, some transitions are added to the the finite automata defining the transitions
rules of B, and for the cases RPL1 and DEL, some ε-transitions are added.

A trick in the construction is to use accelerations for the completion steps corre-
sponding to rules INS∗. For instance, for a rule a(x)→ a(p x) of type INSfirst, a loop
ia,q −→

p ia,q is added, where ia,q is the initial state of the finite automaton recognizing
L in the HA transition a(L) → q. This permits us to treat with one new transition
an arbitrary number of application of INSfirst.

Theorem 47 does not hold for all the rules of UFO: some rules of UFO do not pre-
serve HA languages in general. It is evident for RPL: a rule of the form a(x)→ pbpapc,
when the languages of pa, pb, pc are respectively the singleton sets {a}, {b}, {c} trans-
forms {d(a)} into {d(bn a cn) | n ≥ 0}. We give in [Jacquemard and Rusinowitch,
2010] other examples for the rules DELs on the one hand and a combination of rules
INSfirst, INSlast and REN on the other hand. However, the image of a HA under
arbitrary iterations of rewrite rules in the class UFO is a CF-HA.

Let A be a HA, R/A be a PHRS with rules of type UFO, and B be a CF-HA.
Then post∗R/A

(
L(B)

)
is the language of an CF-HA of size polynomial and

which can be constructed in PTIME in the size of R/A and B.

Theorem 48 [Jacquemard and Rusinowitch, 2010]

The principle of the construction is the same as in Theorem 47. The main difference
is that we add collapsing-transitions (actually a generalisation which preserves CF-HA

languages) for the cases INSbefore, INSafter, RPL, DELs.
A consequence of Theorem 48 is that reachability and model checking are decid-

able in PTIME for the PHRS in UFO. Moreover, the problem of typechecking the
arbitrary iterations of UFO rules is EXPTIME-complete, and PTIME-complete when
the output type is presented by a deterministic and complete HA. The EXPTIME-
hardness follows from the fact that the inclusion problem is already EXPTIME-
complete for ranked TA (see Part I) and the PTIME-hardness follows from the fact
that the inclusion problem is PTIME-hard for deterministic HA (see e.g. [Comon et al.,
2007]).

We have also studied the backward type inference for UFO rewrite rules.

90

2. Unranked Tree Rewriting

Let A be a HA, R/A be a PHRS with rules of type UFO, and B be a HA.
Then pre∗R/A

(
L(B)

)
is the language of a HA of size exponential and which

can be constructed in EXPTIME in the size of R/A and B.

Theorem 49 [Jacquemard and Rusinowitch, 2010]

Related Work

Similar results [Löding, 2002] have been obtained for ranked terms, for rewrite rules of
the form L→ R which specify the replacement of any element of a regular language
L by any element of a regular tree language R. These rules have been shown to
preserve regularity. Then [Löding and Spelten, 2007] has extended some of these
works to unranked tree rewriting for the case of subtree and flat prefix rewriting
which is a combination of standard ground tree rewriting and prefix word rewriting
on the ordered leaves of subtrees of height 1.

2.4 Application: Analyze of XQuery Updates

The language XQuery has been extended to XQuery Update Facility [Robie et al.,
2011] in order to provide convenient means of modifying XML documents or data.
The language is a recommendation from W3C and adds imperative operations that
permit one e.g. to update some parts of a document while leaving the rest unchanged.
This includes rename, insert, replace and delete primitive operations at the node level.
Compared to other transformation languages (such a XSLT), XQuery Update Facility
is considered to offer concise, readable solutions. However, the update operations, can
create and delete entire subtrees in documents, modifying a document’s structure;
hence type inference for the updated documents it not an obvious problem.

In the case of replacement or insertion, the new subtrees in argument (called
content nodes in [Robie et al., 2011]) are specified by positions within the tree in
input (using XPath expressions). A formal model for XQuery Update Facility has
been proposed [Benedikt and Cheney, 2009] with languages for update primitives
and XQuery Updates and their operational semantics. In this abstract model, the
subtrees in arguments are approximated by states of a tree automaton (type names of
regular expression types [Hosoya et al., 2005]), just like the parameters of the PHRS
of Section 2.3. The class UFO of PHRS rules, defined in Figure 11, indeed represent
the update primitives operations of the XQuery update facility, and some additional
operations

REN renames a position: it changes its label from a into b. Such a rule leaves the
structure of the tree unchanged.

INSfirst inserts a tree of type p at the first position below a position labeled by a.

INSlast inserts at the last position and

91

II. Verification of Infinite State Systems

INSinto inserts at an arbitrary position below a position labeled by a.

INSbefore (resp. INSafter) inserts a tree of type p at the left (resp. right) sibling
position to a position labeled by a.

DEL deletes a whole subtree whose root position is labeled by a.

RPL replaces a subtree by a sequence of trees of respective types p1, . . . , pn.

RPL1 is the particular case of RPL with n = 1. Note that DEL is also a special case
of RPL, with n = 0.

Example 18 Assume that the data of patients in a hospital is stored in an XML
document whose type definition is characterized by a HA A (generalizing the DTD
given in introduction) with the following transition rules

hospital({ppa, pepa}
∗) → ph, name(p∗c) → pn,

patient(pn ps) → pepa, ssn(p∗c) → ps,
patient(pn ps pt) → ppa, mref(p∗c) → pmed,

treatment(pmed pdia pda) → pt, diagnosis(p∗c) → pdia,
a→ pc, b→ pc, c→ pc . . . date(p∗c) → pda

The state ph is final (it corresponds to the entry point of a DTD). A DEL rule
patient(x) → () will delete a patient and a INSlast rule hospital(x) → hospital(x ppa)
will insert a new patient, at the last position below the root position hospital. We
can ensure that the patient newly added has an empty treatment list (to be completed
later) using hospital(x)→ hospital(x pepa). A INSafter rule name(x)→ name(x) pt can
be used to insert later a treatment next to the patient’s name. ✸

We propose also in Figure 11 another update primitive not in [Robie et al., 2011]:
DELs deletes a single position p whose children inherit the position. In other words, it
replaces the subtree at p with the hedge containing the children of p. This operation
can be employed to build security views [Fan et al., 2004] of XML documents under
read access control policies, see the discussion on this point in Section 2.5. It can
also be useful for updates as well, as shown by the following example.

Example 19 Assume that some patients of the hospital of Example 18 are grouped
in one department like in hospital(. . . surgery(p∗pa) . . .), and that we want to suppress
the department surgery while keeping its patients. This can be done with the DELs
rule surgery(x)→ x. ✸

We have seen that the results presented in Section 2.3 permit ones to solve the
problems reachability, model checking and typechecking of transformations defined
as the iteration of primitive update operations taken in a given finite PHRS of type
UFO.

The results of Theorems 47 and 48 also enable the synthesis of missing input
or output types for given PHRS in UFO. Unlike HA, CF-HA are not popular type

92

2. Unranked Tree Rewriting

schemes, but HA solely are not expressive enough to extend the results of Theorem 48
to the whole class UFO. One may wonder to what extent the CF-HA produced
by Theorem 48, is actually an HA. This problem is actually undecidable, since the
problem of knowing whether a given CF language is regular is undecidable and every
CF language can be described by the closure post ∗R/A(L(B)) for some A, R and L(B).

Moreover, for a R/A ∈ UFO, if an output type is given, then Theorem 49 provides
in EXPTIME an input type, presented as a HA of exponential size.

Perspectives: Scheduling and Selection of Rewrite Positions

The model of [Benedikt and Cheney, 2009] defines particular scheduling for the ap-
plication of update primitives. This point is discussed below at the end of Section 3.2.
The question of the selection of the rewrite positions is also discussed in Section 3.2.

Related Work: Typechecking XML Transformations

Several approaches to typechecking XML transformation languages are based on tree
transducers. For instance let us cite macro tree transducers (MTT) [Perst and Seidl,
2004; Maneth et al., 2007], and k-pebble tree transducers (k-PTT) [Milo et al., 2003],
a powerful model defined so as to cover relevant fragments of XSLT [Kay, 2003] and
other XML transformation languages. Some restrictions on schema languages and
on top down tree transducers (on which transformations are based) have also been
studied [Martens and Neven, 2004; Engelfriet et al., 2009] in order to obtain PTIME
typechecking procedures.

On the one hand, the above class UFO of PHRS rules permit ones to express only a
set of atomic update primitives, and its expressiveness cannot be compared to general
purpose transformation languages, unlike the above transducer models. Moreover, the
form of transducer rules is not captured by the UFO rewrite rules. On the other hand,
the main difference between the transducer based and rewrite based approaches wrt
typechecking is the application strategies. The rewrite based approaches consider
arbitrary iterations of rewriting with HRS rules, whereas transducers use specific
hedge traversal strategies in order to perform a single top-down or bottom pass on
an input tree. This makes the two approaches hardly comparable in expressiveness:
each of the primitive update operations of UFO can be solely modeled by a MTT. It is
however not clear whether the finite (but unbounded) iterations of updates operations
can be easily expressed as a transducer relation.

It is shown in [Milo et al., 2003] that the set of output trees of a k-PTT for a
fixed input tree is a HA tree language. In contrast, we have seen that it is not the
case for the iteration of UFO operations for which CF-HA are needed. Therefore,
such transformation are not expressible as k-PTT. Theorem 48 can be related to the
result of [Engelfriet and Vogler, 1985], used in [Maneth et al., 2007] in the context
of typechecking XML transformations, which states that the output language of a
linear stay MTT can be characterized by a context-free tree grammar (in the case of
ranked trees).

93

II. Verification of Infinite State Systems

2.5 Application: Analyze of XML Access Control Policies

Another important issue for XML data processing is the specification and enforcement
of access control policies (ACP). A large amount of work has been devoted to secure
XML querying, with a focus on read-only rights in most of the work. The first access
control model for XML was proposed by [Damiani et al., 2000] and was extended to
secure updates in [C. Lim and Son, 2003]. Static analysis has been applied to XML
Access Control in [Murata et al., 2006] to determine if a query expression is guaran-
teed not to access to elements that are forbidden by the policy. Some work have con-
sidered update rights for XQuery Update Facility operations [Fundulaki and Maneth,
2007; Bravo et al., 2008]. In [Jacquemard and Rusinowitch, 2010] and an extension
currently in submission, we consider with Michael Rusinowitch two approaches for
the static analysis of ACP for XML updates.

Rule Based Specification of ACPs

In this approach, following [Fundulaki and Maneth, 2007; Bravo et al., 2008], an ACP
for XML updates is defined as a pair of 〈Ra/A,Rf/A〉 of PHRS of type UFO rep-
resenting the update operations respectively allowed forbidden to a user. Such an
ACP is called inconsistent [Fundulaki and Maneth, 2007; Bravo et al., 2008] if some
forbidden operation can be simulated through a sequence of allowed operations,
i.e. if there exists t, u ∈ O(Σ) such that t −−−−→Rf/A

u and t −−−−→∗
Ra/A

u. Such situa-
tions may lead to serious security breaches which are challenging to detect according
to [Fundulaki and Maneth, 2007].

Example 20 Assume that in the hospital document of Example 18, it is forbidden to
rename a patient, that is the following update of type RPL1 is forbidden: name(x)→
pn. If the following updates are allowed: patient(x) → () for deleting a patient, and
hospital(x) → hospital(x ppa) to insert a new patient, then we have an inconsistency
since the effect of the forbidden update can be obtained by a combination of allowed
updates. ✸

Using the results of Section 2.3, we can verify locally the consistency of ACPs,
i.e. check whether no sequence of allowed updates starting from a given document
can achieve an explicitly forbidden update. More precisely, we solve the following
problem.

given a HA A over Σ and a tree t ∈ O(Σ), an ACP (Ra/A,Rf/A) is locally
inconsistent if there exists u ∈ O(Σ) such that t −−−−→Rf/A

u and t −−−−→∗
Ra/A

u?

Problem of Local Inconsistency:

94

2. Unranked Tree Rewriting

Local inconsistency is decidable in PTIME for UFO based ACPs.

Theorem 50 [Jacquemard and Rusinowitch, 2010]

It is shown in [Fundulaki and Maneth, 2007] that inconsistency is undecidable for
an ACP defined by a pair of rewrite systems (Ra,Rf) of a kind strictly more general
than the above PHRS (roughly, they extend the PHRS with the possibility to select
the rewrite positions by XPath expressions, see also Section 3.2). Moreover, for such
rewrite systems, the problem whether a given unranked tree t can be obtained from
a given tree s using instances of rules of Ra which are not in Rf is also undecid-
able [Moore, 2011]. Therefore local consistency is undecidable as well in this case. A
decidable fragment is also presented in [Moore, 2011]. It is an open question whether
inconsistency is decidable or not for PHRS of type UFOreg or UFO.

DTD Based Specification of ACPs

A second approach is proposed in [Fundulaki and Maneth, 2007] for the definition of
ACP for XML updates in presence of a DTD D. The idea, following the principle
of DTD-based ACPs [Fan et al., 2004], is to add to D some security annotations
specifying the authorizations for the update operations for XML documents valid for
D.

The definition of DTD-based ACPs is proposed in [Fan et al., 2004] with a focus on
read access control. This paper also introduces the fundamental notion of security
view : a view of an XML document exposes all and only the data elements and
structure accessible to a given user according to an ACP. Assume for instance that
in a document of the form

t = hospital(p1 . . . pi surgery(pi+1 . . . pj) pj+1 . . . pk)

like in Example 19, where p1, . . . , pk are trees representing patients (of type ppa), the
position labeled by surgery is not accessible for reading by some user Alice, while all
the patients’ data is accessible for reading (including the data of pi+1 . . . pj below
surgery). One possibility to represent this restriction is to offer Alice the following
view of the document t:

hospital(p1 . . . pi⊥(pi+1 . . . pj) pj+1 . . . pk)

where the label surgery is hidden to her. However, with this view Alice has still the
information that patients pi+1 . . . pj belong to a special category, and this structural
information can be considered as a leak. A solution to avoid this leak is to remove
the single position labeled surgery while keeping its children, using the rule DELs
described in the previous section. This returns the following tree.

v = hospital(p1 . . . pi pi+1 . . . pj pj+1 . . . pk)

95

II. Verification of Infinite State Systems

We have observed in Section 2.3 that this kind of rule can transform a HA language
into a CF-HA languages. This shows the relevance of the above notions of PHRS rules
and CF-HA for building security views of XML documents under read access control
policies.

The formalism of [Fan et al., 2004; Fundulaki and Maneth, 2007] for DTD based
specification of XML ACPs imposes the condition that every document t to which we
want to apply an update operation (under the given ACP) must be valid for the DTD

D. In our rewrite-based formalism, the latter condition may be expressed by adding
global constraints to the PHRS rules of Section 2.3. These global constraints restrict
the rewrite relation to trees in a given HA language. Given a HA A, a hedge rewriting
system over Σ, parametrized by A and with global constraints (PGHRS) is given by a
PHRS, denoted R/A, and L ⊆ O(Σ) an HA language. We say that L is the constraint
of R. The rewrite relation generated by the PGHRS is defined as the restriction of the
relation defined in Section 2.3 to ground unranked tree such that for the application
of a rule ℓ→ r ∈ R/A to a tree t, we require that t ∈ L. Unfortunately, adding such
constraints to parametrized rewrite rules of type REN or RPL makes the reachability
undecidable even in the restricted case of non recursive DTD’s. We recall that a DTD

over Σ is function D that maps Σ to regular expressions over Σ. The dependency
graph of a DTD D is a directed graph on the set of vertices Σ such that the set of
edges contains all (a, b) such that b occurs in the regular expression D(a). A DTD is
non recursive if this graph is acyclic.

Reachability is undecidable for PGHRS with rules of type REN or RPL and
and constraint given by a non recursive DTD.

Theorem 51 [Jacquemard and Rusinowitch, 2010]

It follows that local inconsistency is undecidable for such PGHRS. It is shown in the
extended version of [Jacquemard and Rusinowitch, 2010] that the above result also
holds for PGHRS whose rules are ground (without variables nor parameters). Hence
the above result can be contrasted with the decidability of reachability for ground
term rewriting [Gilleron, 1991].

In [Abiteboul et al., 2009] the authors study, in the context and unranked un-
ordered trees, the more general problem of satisfiability for active XML documents,
which is the existence of an update of a given document returning a particular result
for a given query. This property is shown decidable for insertions constrained by an
unordered DTD, but undecidable when they are constrained by an unordered HA.

2.6 Unranked Unordered Tree Rewriting Systems

Several models of automata have been defined to compute on unranked unordered
trees (which correspond to terms with symbols modulo commutativity and associa-
tivity) [Lugiez, 2005; Seidl et al., 2003] or on mixed unranked trees, containing sym-
bols whose children are ordered and symbols whose children are unordered (which

96

2. Unranked Tree Rewriting

correspond to terms with symbols modulo associativity and symbols modulo commu-
tativity and associativity) [Colcombet, 2002; Seidl et al., 2003; Bouajjani and Touili,
2005; Dal Zilio and Lugiez, 2006]. Some of the above results on the rewrite closure
of unranked tree automata languages can be extended to such automata.

The set of unranked unordered trees over a finite alphabet Σ and set of variables
X is U(Σ,X) := X ∪

{
a(m)

∣
∣ a ∈ Σ,m ∈ M(Σ,X)

}
, where M(Σ,X) is the class

of multisets of unranked unordered trees. The subsets without variables are denoted
respectively U(Σ) and M(Σ).

Presburger Tree Automata

We give a definition of tree automata computing on unranked unordered trees from
[Seidl et al., 2003]. A Presburger tree automaton (PTA) is a tuple A = (Σ, Q, F,∆)
where Σ is a finite alphabet, Q = {q1, . . . , qp} is a finite set of states disjoint from
Σ, F ⊆ Q is the subset of final states and ∆ is a set of transition rules of the form:
a
(
φ
)
→ q with a ∈ Σ, q ∈ Q, φ = φ(x1, . . . , xp) is a Presburger formula (formula of

first-order logic with equality, addition of natural numbers, zero and successor) with
exactly one free variable for each state of Q.
The move relation between ground trees t, t′ ∈ U(Σ∪Q) is defined as follows: t −−→A t′

iff there exists a context C ∈ U(Σ, {x}) and a transition a
(
φ(x1, . . . , xp)

)
→ q ∈ ∆

such that a ∈ Σ, t = C[a(w)], with w = qi1 . . . qin for some integers 1 ≤ i1, . . . , in ≤ p,
Parikh(w) |= φ(x1, . . . , xp) and t′ = C[q], where the Parikh projection Parikh(w) is
the p-uple (|w|q1 , . . . , |w|qp), |w|qj representing the number of occurrences of qj in w.
The relation −−→∗A is the transitive closure of −−→A , and the language of a PTA A over
Σ in one of its states q, denoted by L(A, q) is the set of trees t ∈ U(Σ) such that
t −−→∗A q. The PTA are equivalent in expressiveness to

• the CF-HA such that the words CF language in the transitions are closed under
permutations,

• the class of regular ranked tree (terms) languages modulo (AC) or equivalently
the AC-tree automata of [Ohsaki, 2001; Ohsaki and Takai, 2002b]. The equiv-
alence is established with the flattening function of Section 2.1 (Figure 10).

Note that the closure modulo AC of a regular ranked tree language is not always
regular.

The class of PTA languages is closed under union, intersection and complemen-
tation and and PTA have a decidable emptiness problem [Seidl et al., 2003]. For
the emptiness decision, one may assume, according to Parikh’s Theorem, that every
Presburger formula φ(x1, . . . , xp) of the MTA has been pre-compiled into a NFA A
such that Parikh

(
L(A)

)
= {(n1, . . . , np) |= φ(x1, . . . , xp)}. An equivalent extension

of MSO, with counting constraints, interpreted over the trees of U(Σ) is proposed
in [Seidl et al., 2003].

97

II. Verification of Infinite State Systems

Unranked Unordered Tree Rewriting Systems

Similarly to HRS, we can define rewriting systems over unranked unordered tree, using
substitutions which are mappings from a finite subset of the variable set X into the
multisets ofM(Σ,X). A multiset rewriting system (MRS) R over a finite unranked
alphabet Σ is a finite set of rewrite rules of the form ℓ→ r where ℓ ∈ M(Σ,X) \ X
and r ∈ M(Σ,X). The rewrite relation −−→R associated to a MRS R is defined as
the smallest binary relation on M(Σ,X) containing R and closed by application
of substitutions (by multisets) and contexts. In other words, m −−→R m′, iff there
exists a context C, a rule ℓ → r in R and a substitution σ such that m = C[σ(ℓ)]
and m′ = C[σ(r)]. The reflexive and transitive closure of −−→R is denoted −−→∗R . The
definition of shallow-context-free MRS is the same as for HRS in Section 2.2. In an
unpublished work, we show with Michael Rusinowitch that the result of Theorem 44
can be transposed to PTA and MRS.

For all PTA A and all linear shallow-context-free MRS R, a PTA A′ such
that L(A′) = post∗R

(
L(A)

)
can be constructed in PTIME.

Theorem 52

The construction is very similar as in Theorem 44, with the completion of Pres-
burger formulae (instead of CF grammars) and the addition of collapsing transitions
(for PTA, the collapsing transitions are of the form φ(x1, . . . , xp) → q and can be
eliminated).

The related model of Presburger weighted tree automata [Lugiez, 2009] is used
for forward reachability analysis of dynamic networks of pushdown systems, a model
for concurrent programs with dynamic thread creation.

3 Rewrite Strategies

Many strategies have been proposed for controlling explicitly the application of term
rewriting rules, for instance in the cases when the computation result may be not
unique, or from a practical point of view, for termination and efficiency. We describe
below some work using tree automata techniques for the analysis of rewrite relations
under various strategies, with a focus on the representation by tree automata of the
rewrite closures of regular tree languages.

The rewrite closures of tree languages have been extensively studied for plain
rewriting (see for instance the results presented in Section 1.2), but much less for
rewriting with strategies. We present below some studies of the automata represen-
tation of the rewrite closures with various strategies. Different classes of extended
tree automata are needed for these studies.

98

3. Rewrite Strategies

Bottom-up and Bounded Strategies

The bottom-up strategy [Durand and Sénizergues, 2007] is defined for linear term
rewriting systems and imposes, roughly speaking, that in the rewrite derivations,
the rewrite rules are applied from the bottom of the term towards the top. It is
shown in [Durand and Sénizergues, 2007] that bottom-up rewriting effectively inverse-
preserves recognizability for linear TRS: the backward closure pre∗R(L) of a regular
tree language L is regular.

The bottom-up strategy has been refined into the bounded strategy [Durand et al.,
2010; Durand and Sylvestre, 2011], which is parametrized by an integer k and such
that, roughly, when a rewrite rule is applied, the parts of the substitution located
at a height greater than k are not rewritten further. This strategy is shown to
inverse-preserves recognizability for linear TRS [Durand et al., 2010] and left-linear
TRS [Durand and Sylvestre, 2011].

These strategies can also serve as defining a class of TRS which inverse-preserve
regularity: the bounded class (BO) of TRS is the set of left-linear TRS for which
every derivation can be replaced by a bottom-up derivation. This approach is an
alternative to the syntactical definitions presented e.g. in Section 1.2, and the class
BO is actually strictly more general than several classes of TRS which were already
known to be inverse-recognizability preserving, like the symmetric of left-linear semi-
monadic TRS or right-linear finite-path overlapping TRS.

Context-Sensitive Strategy

With the context-sensitive strategy [Futatsugi et al., 1985] (see also [Lucas, 2002]),
the rewriting positions are restricted according to a mapping µ associating to every
symbol of the signature the subset of the indexes of its argument that can be rewritten.
More precisely, the positions selected for rewriting in a term f(t1, . . . , tn) are defined
recursively as the root position and all the positions selected in every ti such that
i ∈ µ(f). A result of preservation of regularity for this rewrite strategy is established
in [Kojima and Sakai, 2008] for linear right-shallow TRS. Context-sensitive is related
to the strategy presented in Section 3.2.

Call-by-Need strategies

Another related topic is the optimal call-by-need rewrite strategies for TRS. In [Comon,
1995] and [Durand and Middeldorp, 2005], it is shown how to select the needed re-
dexes (positions at which rewriting must be performed in order to transform a term
to its normal form) using monadic second order logic formulae, which corresponds
to using the selection automata presented in Section 3.2. Besides the detection of
needed redexes, tree automata techniques have also been used in order to characterize
the class of TRS on which such strategy is effective. The idea for this purpose is,
given a TRS R, to compute the inverse closure of the set of R0-ground normal forms
for a TRS R0 over-approximating R (in the sense that the binary relation −−→∗R0

is an
over-approximation of −−→∗R) see [Durand and Middeldorp, 2005].

99

II. Verification of Infinite State Systems

3.1 Innermost Strategies

The innermost rewrite strategy corresponds to the call by value computations for
functional languages, where the arguments must be fully evaluated before the function
application. More precisely, a rewrite step s −−−−→R,p,σ t is called innermost if all proper
subterms of s|p are R-normal forms. In this case, we write s −−→ıR t, and the transitive
and reflexive closure of this relation is denoted by −−→�R , and post�

R(L) is {t | ∃s ∈
L, s −−→�R t}.

Some tree automata constructions are proposed in [Réty and Vuotto, 2005] to ex-
press the sets of descendants of regular languages by constructor-based linear rewrite
systems, according to several strategies, including innermost, outermost, leftmost and
innermost-leftmost, and under various conditions.

In [Gascón et al., 2008], with Adria Gascon and Guillem Godoy, we consider in-
nermost rewriting with shallow TRS, without assumptions on the linearity of rules.
In all the known cases of TRS preserving regularity, including those presented in
Section 1.2, the condition of right-linearity is necessary. In fact, we have seen in Sec-
tion 1.2 that a TRS as simple as R = {g(x)→ f(x, x)} does not preserve regularity,
because post∗R

(
T ({g, a})

)
∩T ({f, a}) is the set of balanced binary trees of T ({f, a}),

that we denote Bf,a. Note that this set is a TAB language. However, we have also
seen (Theorem 38) that the rewrite closure of a regular tree language by a flat TRS
is not a TAB language in general. The essential problem relies on the fact that after
an application of the rule g(x) → f(x, x) on a subterm g(t), producing f(t, t), some
further applications of this rewrite rule in f(t, t) can modify both occurrences of t
in different ways, producing subterms f(t1, t2) with t1 6= t2 but h(t1) = h(t2). The
equality constraints of TAB are not expressive enough to capture the relation between
t1 and t2, which corresponds to the fact that the both are reachable from a common
term.

The above problem does not occur with innermost rewriting. In the above exam-
ple, when we apply the rule g(x)→ f(x, x) with the innermost strategy, the subterm
to whom it is applied has to be of the form g(t), for a normal form t. Hence, in
the term obtained f(t, t), the two occurrences of t cannot be further modified by
rewriting. In fact, the innermost closure post�

R

(
T ({g, a})

)
is {gn(t) | t ∈ Bf,a} and

this set is a TAB language. We generalize this result to all shallow TRS with Adria
Gascon and Guillem Godoy.

For all TA A and all shallow TRS R, post�

R

(
L(A)

)
is a TAB language.

Theorem 53 [Gascón et al., 2008]

Note that in the above example, post�

R(T) is a TAB language which is not regular.
The technique of tree automata completion, which works well with TA and e.g. linear
and shallow TRS, see Sections 1.1 and 1.2, cannot be generalized to TAB, neither for
plain nor innermost rewriting. Indeed, in general, post∗R(L) and post�

R(L) are not
TAB languages when L is a TAB language and R is a flat and linear TRS.

100

3. Rewrite Strategies

Example 21 ([Gascón et al., 2008]) Consider for instance the non-regular TAB

language
L = {h(fn(a), fn(a)) | n ≥ 0} and the linear and flat TRS R = {f(x)→ g(x)}.

It holds that post ∗R(L) ∩ {h(f
n(0), gm(0)) | m,n ≥ 0} = {h(fn(0), gn(0))}, which

is not a TAB language. This also holds when we restrict to innermost rewriting. ✸

The proof of Theorem 53 works in two steps. First, we reduce the problem of repre-
senting the reachable terms from a regular set to the reachable terms from a constant.
Next, we give a direct construction of a TAB recognizing the reachable terms from
a constant. It is based on a representation of the set of reachable terms introduced
in [Godoy and Huntingford, 2007] using constrained terms.

A consequence of Theorem 53 is that innermost reachability and joinability are
decidable for shallow TRS. This is in contrast with Theorem 33 for plain rewrit-
ing. Another consequence is that it is decidable whether post�

R

(
L(A)

)
is regular

given a TA A and a shallow TRS R, because the regularity of TAB is decidable (see
[Bogaert et al., 1999] and Section I.1.4). In contrast the regularity of post ∗R

(
L(A)

)

is undecidable under the same assumptions [Gascón et al., 2008].
We also show that, like for plain rewriting, innermost rewriting with linear and

right-shallow TRS preserves regularity.

For all TA A and all linear and right-shallow TRS R, a TA A′ can be con-
structed in PTIME such that L(A′) = post�

R

(
L(A)

)
.

Theorem 54 [Gascón et al., 2008]

This result has been independently obtained in [Kojima and Sakai, 2008]. In our case,
it is proved with a non trivial adaptation of the tree automata completion technique.
The cases of plain and innermost rewriting are different in essence to treat, and some
subtle differences need to be introduced. We show in particular [Gascón et al., 2008]
that even though TA completion permits ones to establish that right-linear and right-
flat TRS (i.e. when left-hand sides of rules might be not linear) preserve regular
languages under plain rewriting, this property is no longer true for under innermost
rewriting. A counter example is the following.

Example 22 ([Gascón et al., 2008]) Let L = {f(f(a, a), c)}, andR = {f(x, c)→
x, f(g(x), x) → h(x), h(x) → h(x), a → g(a), a → b}. The intersection post�

R(L) ∩
T
(
{f, g, b}

)
is the set {f(gn(b), gm(b)) | n 6= m+1}, which is not a TAB language.✸

3.2 Context-Controlled Rewriting

With the definition of Section 1, a rewrite rule can be applied at any position in a
term, providing that the lhs of the rule matches the subterm at this position. For
instance, a rule with lhs a(x1, x2) can be applied at any position labelled by a. For
some applications like the analysis of XML document transformations or of access-
control policies, presented in Sections 2.4 and 2.5, it is important to be able to express

101

II. Verification of Infinite State Systems

explicitly some context conditions to be checked before applying a rewrite rule. For
instance, one may want to rename the label at some position with a rewrite rule
a(x) → b(x) providing that there is no occurrence of b above the position to be
rewritten (position labeled with a). Some standard XML transformation languages
like XSLT or XQuery update [Robie et al., 2011], use the path specification language
XPath or a XQuery expressions in order to define the position where the transformation
can be applied.

We studied with Yoshiharu Kojima and Masahiko Sakai [Jacquemard et al., 2011b]
a strategy of selection of the rewrite positions based on tree automata, in the context
of regular tree model checking. The so called controlled term rewriting systems are
defined by the combination of term rewriting rules with constraints (called control)
specifying the possible rewrite positions.

Selection Automata

In order to define constraints controlling the rewrite rules, we have chosen in [Jacquemard et al.,
2011b] a model called selection tree automata (SA), similar to [Frick et al., 2003],
which, intuitively, select positions in a term based on the computations of a tree au-
tomaton. A selection automaton (SA) A is a tuple 〈Σ, Q, F, S,∆〉 where 〈Σ, Q, F,∆〉
is a tree automaton denoted ta(A) and S is a set of states of Q called selection states.
Given a SA A and a term t ∈ T (Σ), the set of positions of t selected by A is defined
as

sel(A, t) = {p ∈ Pos(t) | ∃r successful run of ta(A) on t, r(p) ∈ S}.

This gives a powerful selection mechanism, with the same expressiveness as the
formula of monadic second order logic of the tree with one free variable, or monadic
Datalog [Gottlob and Koch, 2004].

We consider also a restriction of the SA where a position p in a term t is selected if
the sequence of symbols on the path from p to the root of t belongs to a given regular
(word) language. More precisely, a selection automaton A = 〈Σ, Q, F, S,∆〉 is called
prefix if Q contains two special states: q0 (universal state) and qs (selection state),
F ⊆ Q \ {q0}, S = {qs}, and ∆ contains f(q0, . . . , q0) → q0 and f(q0, . . . , q0) → qs
for all f ∈ Σ, and some other transition rules of the form f(q1, . . . , qn) → q where
q ∈ Q \ {q0, qs} and there exists exactly one i ≤ n such that qi 6= q0. Intuitively,
assume that we are given a finite automaton B defining the strict prefixes of selected
positions. Then qs is the initial state of B, F is the set of final states of B, and for all
a ∈ Σn, ∆ contains n rules a(q0, . . . , q0, q

′, q0, . . . , q0)→ q for each transition q′ −→a q
of B. Note that with this definition, the root position is always selected by a prefix
selection automaton.

Controlled Term Rewriting Systems

We propose a formalism that extends standard TRS presented in Section 1 by re-
stricting the possible rewrite positions to positions selected by a given SA. Formally, a
controlled term rewriting system (CTRS) R over Σ is a finite set of controlled rewrite

102

3. Rewrite Strategies

rules of the form A : ℓ → r, made of a SA A over Σ and a rewrite rule ℓ → r such
that ℓ ∈ T (Σ,X) \ X and r ∈ T (Σ, vars(ℓ)).

The rewrite relation defined by a CTRS R is the usual rewrite relation of TRS,
restricted to the positions selected by the SA of the rewrite rules. More precisely,
a ground term s rewrites to t in one step by a CTRS R, denoted by s −−→R t, if
there exists a controlled rewrite rule A : ℓ → r ∈ R, a position p ∈ sel(A, s), and
a substitution σ such that s|p = σ(ℓ) and t = s[σ(r)]p. The CTRS such that all
selection automata associated to rules are prefix are called prefix controlled rewrite
systems (pCTRS).

The innermost strategy, presented in Section 3.1, can be expressed in controlled
rewriting for left-linear TRS, because the set of normal forms for such TRS are
recognizable by tree automata.

The set of positions selected for the context-sensitive strategy can be defined by
SA, i.e. context-sensitive rewriting is a particular case of controlled rewriting. It is a
strict subcase because with the context-sensitive strategy, the root position is always
rewritable whereas this is not the case for controlled rewriting.

Flat and Ground Controlled Rewrite Rules

It turns quickly out that CTRS are too powerful: they can simulate computations of
Turing machines even under strong syntactical restrictions (recall that a signature is
unary when all its symbols have arity 0 or 1).

Reachability is undecidable for flat CTRS over unary signatures and for
ground CTRS.

Theorem 55 [Jacquemard et al., 2011b]

These results contrast with the case of plain rewriting because both classes of linear
and flat TRS and ground TRS preserve regular tree languages, and in both cases
reachability is decidable in PTIME. Reachability is decidable when restricting to
words (unary signature), prefix control and flat controlled rewrite rules.

Reachability is decidable in PSPACE for flat non-collapsing pCTRS over
unary signatures.

Theorem 56 [Jacquemard et al., 2011b]

However, flat pCTRS over unary signatures do not preserve regularity (see Sec-
tion 3.3).

103

II. Verification of Infinite State Systems

Monotonic Controlled Rewrite Rules

We consider in [Jacquemard et al., 2011b] some larger class of tree languages strictly
larger than regular languages: the context-free tree languages defined in Section I.2.5
and context-sensitive tree languages defined as follows. A TRS is called monotonic
if it is linear and all its rules ℓ → r are such that vars(r) = vars(ℓ) and |Pos(ℓ)| ≤
|Pos(r)|.

Let us call a tree grammar G = 〈N , S,Σ, P 〉 context-sensitive (CSTG) when all
the production rules of P are monotonic. Membership is PSPACE-complete and
emptiness undecidable for CSTG (see [Jacquemard et al., 2011b]).

Given a CSTG G and a monotonic CTRS R, one can construct in PTIME
a CSTG generating the closure post ∗R

(
L(G)

)
, and whose size is linear in the

size of G and R.

Theorem 57 [Jacquemard et al., 2011b]

It follows that reachability is decidable (in PSPACE) for monotonic CTRS. More-
over, with flat and monotonic CTRS over unary signatures (i.e. CTRS over words
with rules of the form A : a(x) → b(x)) it is possible to simulate linear bounded
automata [Kuroda, 1964] (Turing machines computing on a tape of fixed length).
Therefore, reachability is NLINSPACE-complete and model checking is undecidable
for these CTRS.

CF Controlled Rewrite Rules

The controlled rewrite systems have been introduced in the case of word rewrit-
ing, see [Sénizergues, 1993] for a survey. The related conditional context-free gram-
mars [Dassow et al., 1997] can be redefined in our settings as word grammars (tree
grammars over unary signatures), whose production rules are CF controlled rewrite
rules (CF rewrite rules are defined in Section 1.3) and derivations are defined using
the controlled rewrite relation. It is shown in [Dassow et al., 1997] that the class of
languages of conditional CF grammars without collapsing rules coincide with context-
sensitive (CS) word languages. Hence, it also holds that reachability is PSPACE-
complete and model checking is undecidable for CF non-collapsing CTRS over unary
signatures.

Some other former results in the case of words imply that the above lower bounds
still hold when control is limited to prefix SA: it is shown in [Penttonen, 1974] that
every CS word language can be generated by a CS grammar with production rules
of the form A(B(x)) → A(C(x)), A(x) → B(C(x)), A(x) → a(x) (where A, B, C
are non-terminal and a is a terminal). It follows that every CS word language is
the closure of a constant symbol under a CF non-collapsing pCTRS (over a unary
signature).

104

3. Rewrite Strategies

Reachability is PSPACE-complete and regular model checking undecidable
for CF non-collapsing pCTRS over unary signatures.

Theorem 58 [Jacquemard et al., 2011b]

Recursive Control

We consider in [Jacquemard et al., 2011b] a relaxed form of the prefix control on
rewrite rules, where the selection is done by considering the term in input modulo
the rewrite relation. A recursive pCTRS R is defined as a pCTRS. In order to define
formally the rewrite relation, let us recall first that in the runs of a prefix SA A, the
states below a selection state qs are all universal (q0), hence we can have any subterm
at a selected position (only the part of the term above the selected position matters).
Following this observation, we say that the variable position p in a context C[x1] over
Σ is selected by the prefix SA A if p is selected in C[c] where c is an arbitrary constant
symbol of Σ0. A term s rewrites to t in one step by a recursive pCTRS R, denoted
by s −−→R t, if there exists a controlled rewrite rule A : ℓ→ r ∈ R, where A is a prefix
SA, a substitution σ, a position p ∈ Pos(s), such that s|p = σ(ℓ), t = s[σ(r)]p, and
moreover there exists a context C[x1] such that C[x1] −−→

∗
R s[x1]p and the position of

x1 is selected in C[x1] by A. This definition is well-founded because of the restriction
to prefix control (remember that the root position is always selected by prefix SA).

Example 23 Let Σ = {a, b, c, d,⊥} be a unary signature, and let R be the flat recur-
sive pCTRS containing the rules C1 : a(a(x))→ b(x), and C2 : c(x)→ d(x), where the
SA C1 selects the position after a prefix aa, and C2 selects the position after a prefix
aaaa. Then we have with R (we omit the parentheses and the tail ⊥, and underline
the part of the term which is rewritten)

aaaac −−→
R

aabc −−→
R

aabd

Note that for the last step, we have use the fact that aaaa −−→R aab, i.e. that there
exists C[x1] = aaaa(x1) with C[x1] −−→R aab(x1) and the position of x1 in C[x1] is
selected by C2. The last rewrite step would not be possible if R would not be recursive,
because aab is not a prefix admitted by C2. ✸

With this recursive form of prefix controlled rewriting, we obtain a regularity
preservation result.

Regular model-checking is decidable in EXPTIME for linear and right-
shallow recursive pCTRS.

Theorem 59 [Jacquemard et al., 2011b]

The proof is based on the construction of an alternating tree automata with ε-
transitions (such automata recognize regular tree languages).

105

II. Verification of Infinite State Systems

Tree Transducers with Regular Look-Ahead

Top-down tree transducers with regular look-ahead [Engelfriet, 1976] (which have
been used to represent XML transformations, see e.g. [Engelfriet et al., 2009]) are an
extension of top-down tree transducers, where a transition can be fired provided that
the current subtree belongs to some given regular tree language. This is similar to
our notion of control for rewrite systems. A notable difference however is that the
transducers transform terms in one (top-down) pass, whereas we consider here the
terms computed by an arbitrary iteration of controlled rewrite rules.

Perspective: Verification of XML Updates and ACPs

One of our motivations for studying CTRS is the specification, by controlled rewrite
rules, of XML transformations whose positions of application (target positions, us-
ing the vocabulary of [Robie et al., 2011]) are defined by some formalism enabling
unary queries, like Monadic Datalog or Core XPath [Gottlob and Koch, 2004]. In
particular, XPath serves as a sublanguage in the W3C recommendation for XQuery
Update [Robie et al., 2011]. The navigational core of XPath corresponds, roughly, to
first order logic with two variables (wrt unary queries)) and it is hence less expressive
than SA (which corresponds to monadic second order logic with one free variable).
The prefix SA correspond to a fragment of Regular XPath [Marx, 2004] which may
be interesting in practice.

The results presented above may be seen as preliminary work towards an exten-
sion of the approach presented in Sections 2.4 and 2.5 for the static analysis of the
iterations of XML updates rules with target selection mechanisms. These results
are in particular limited to ranked term rewriting whereas the rewrite rules used in
Sections 2.4, 2.5 are hedge rewrite rules.

Some previous work already consider transformation formalisms close to hedge
rewriting extended with XPath selection. For instance, in [Jacquemard and Rusinowitch,
2010] we show that reachability is undecidable for sets of rewrite rules of type REN

and RPL1 (defined in Figure 11) extended with selection by a fragment of XPath.
Some similar undecidability results can also be found in [Fundulaki and Maneth,
2007] and [Moore, 2011]. A decidable case is also presented in [Moore, 2011]: roughly,
reachability for a controlled extension of ACP rules close to the definition of Sec-
tion 2.5, without delete rules (hence monotonic controlled rewrite rules, in the above
sense).

Note also that, in the definition of the set of selected positions sel(A, t), for a
SA A, it is required that t is recognized by A in order to select positions. Hence, in
the context of ranked terms, the CTRS are more general than the PGHRS defined in
Section 2.5 for the DTD based specification of update ACPs, hence the undecidability
result of Theorem 51 also holds for controlled rewrite rules of type rename or replace.

106

3. Rewrite Strategies

Perspective: Regularly Controlled Rewriting

In Section 2.4, we considered the application, to XML documents, of arbitrary se-
quences of update primitives (amongst a given finite set of primitives represented by
a PHRS). Our results can be applied to the verification of set of allowed updates
primitives, see in particular Section 2.5 and application to the verification of access
control policies for updates.

In the XQuery Update Facility [Robie et al., 2011] however, an update is not
any sequence of update primitives. It is an XQuery expression u, containing update
primitives, which is applied in several phases to a given document t. In a first phase, u
is converted into a sequence w of primitive updates to be applied to t (the pending list
generated by u over t). Then in a second phase, the sequence w is analyzed (sanity
check) and the order of its elements is possibly modified (according to a priority
ordering for the update primitives), giving a new sequence w′. Afterward, in a final
phase, w′ is applied to t, returning the updated document t′.

In [Benedikt and Cheney, 2009], an finite (approximative) representation is pro-
posed for the set of the pending lists generated by an update expression u for all
the trees in an input type Lin (an HA language). It consists in a regular expres-
sion Ω over the alphabet of all possible update primitives, called the effect expres-
sion in [Benedikt and Cheney, 2009]. The alphabet of update primitives corresponds
roughly to the set of rewrite rules presented in Figure 11 in Section 2.3. Note that
for a given Σ, a fixed HA A, and a fixed number n for RPL, this set is finite. Let us
call it R/A. Following this approach, the effect of the application of u to the trees
in Lin can be represented in our settings, by the refined closure

postΩR/A(Lin) = {h
′ ∈ H(Σ) | ∃h ∈ L,∃r1 . . . rn ∈ Ω, h −−→

r1
. . . −−→

rn
h′}.

The computation of postΩR/A(Lin) (given a finite PTRS R/A, Ω a regular expres-
sion over R/A and an HA Ain recognizing Lin) is therefore an interesting problem,
apparently related to the study of languages of context-free grammars with regulated
rewriting [Dassow et al., 1997]. It has been studied by Ryma Abassi during an in-
ternship in 2010. It is related to the study of languages of context-free grammars
with regulated rewriting [Dassow et al., 1997]: languages of words generated by a
given CF grammar G following a derivation which is a sequence of production rules
of G in given regular language R. These languages range between context-free and
context-sensitive (when collapsing production rules are excluded), and membership
is decidable but emptiness undecidable.

3.3 CF Unranked Tree Languages

It is known that the transformations of unranked ordered trees go quickly out of HA

(i.e. regular) languages, because they can transform a HA language into a non-HA

language [Vianu, 2001]. We have already observed some examples of this fact in
Sections 2.2 and 2.3. There, we saw that for various cases of HRS which do not
preserve HA language but transform a HA language into a CF-HA language. For

107

II. Verification of Infinite State Systems

instance, the language {g(an c bn) | n ≥ 0} of Example 17 is a CF-HA language
obtained by rewrite closure with the rule g(x) → g(axb). In can also be interesting
to consider unranked tree languages more general than CF-HA, with context-free
constructions in the horizontal or the vertical dimensions, or combining both. For
instance, in page 87 (after Theorem 44), we have seen how to produce a language of
trees of the form g(g(. . . g(

︸ ︷︷ ︸

n

f(anc)))), by closure with the hedge rewrite rule f(x)→

g(f(ax)).
This kind of generalized CF unranked ordered tree languages can also be useful for
the study of XML updates, as presented in the next examples.

Controlled PHRS

As explained in Section 3.2, for XML standards like XQuery update [Robie et al.,
2011], a path specification language XPath is used in order to define the position
where the updates can be applied. Let us add some context control, with selection
automata (generalized to HA) to the PHRS rules presented in Section 2.3, Figure 11,
in order to model this feature of XQuery updates. The controlled version of PHRS
is called CPHRS.

We have seen in Theorem 55 that, even in the case of words (every position in
the tree has zero or one child) flat controlled rules of the form REN and DELs are
sufficient to simulate Turing machines. Restricting to prefix control, we define a class
called pCPHRS which does not preserve HA languages. Consider for instance the
pCPHRS containing the 4 following rules of type REN (in the rewrite rules, we use an
informal description of the languages of the prefix selected, instead of giving explicitly
the prefix SA):

no a′, no a : c(x) → a′(x), exactly one a′ : d(x) → b′(x),
no a′, no a : a′(x) → a(x), no a′, no b′, no b : b′(x) → b(x).

The intersection of the HA language of trees of the form a(. . . a(b(. . . b(b))) with
the closure of the HA language of trees of the form c(. . . c(d(. . . d(d) by the above
four prefix controlled rewrite rules, is

{
a(a(. . . a
︸ ︷︷ ︸

n

(b(. . . b(b)
︸ ︷︷ ︸

m

| n ≥ m
}
. This set is not a

HA and neither a CF-HA language. It is easy to find variants of the above examples,
using rules of the form INSfirst or INSbefore instead of REN, and producing e.g. set of
tree of the form a(a(. . . a

︸ ︷︷ ︸

n

(bm) with n ≥ m.

General CF Tree Grammars

During an internship at LSV [Boiret, 2010] (with Luc Segoufin and myself), Adrien
Boiret has studied several possible definitions of context-free unranked ordered tree
languages. Our goal was to find a formalism which permits to express

1. all CF languages of trees of bounded rank (as defined in Section I.2.5),

108

3. Rewrite Strategies

2. the image of every CF binary tree language under the inverse of an encoding
from unranked into ranked trees, like the one defined in Section 2.1.

The difficulty, compared to the definition of context-free ranked tree grammars (see
Section I.2.5), is to decompose the list of children of one position, without knowing
in general the number of children. The proposal of [Boiret, 2010] for this problem is
to provide, access to the first child of a position, with an operator head , and to the
rest of the children, with the operator tail .

A context-free unranked tree grammar is a tuple G = 〈N , S,Σ, P 〉 where N is a
finite set of non-terminal symbols (without arities), S ∈ N is the axiom of G, Σ is a
finite alphabet disjoint from N (its elements are also called terminal symbols), and
P is a set of production rules, of the form N(x) → r where N ∈ N , x is a variable
and r ∈ O

(
Σ ∪ N ∪ {head , tail}, {x}

)
. We assume moreover that all the subtrees of

r headed by head and tail have the form head(x) and tail(x).
The derivation relation t −→∗P s induced by a unranked tree grammar is the re-

flexive and transitive closure of the (hedge) rewrite relation defined by P , with,
moreover, after every rewrite step, a normalization under the simplification axioms:
head(a(x) y) → a(x) and tail(a(x) y) → y for all a ∈ Σ ∪ N . We also assume an
alternative strategy, call non-discriminative in [Boiret, 2010] where two other nor-
malization rules are applied to the empty hedge: head() → () and tail() → (). The
language of the tree grammar G is defined as L(G) = {t ∈ O(Σ) | S −→∗P t}. Note that
the symbols head and tail are excluded from the language. It means that they must
have been eliminated the simplification axioms. Under the discriminative strategy,
an occurrence of head or tail applied to the empty hedge is blocking.

It is shown in [Boiret, 2010] that the discriminative formalism is more power-
ful than the non-discriminative one, and that the non-discriminative unranked tree
grammars fulfill the two above goals (1) and (2) (i.e. they generalize the ranked tree
context-free grammars). Unfortunately, emptiness appears to be undecidable for this
formalism.

The emptiness problem is undecidable for non-discriminative context-free
unranked tree grammars.

Theorem 60 [Boiret, 2010]

This result is shown by a reduction of the reachability problem for 2 counters ma-
chines. Moreover, it is also shown that restricting to a top-down (outermost) strategy
for the application of the production rules is a real limitation in expressiveness, still
satisfying the goals (1) and (2), but also still with an undecidable emptiness problem.

The question of the definition of a decidable and sufficiently expressive class of
CF unranked ordered tree languages (more general than CF-HA languages) is still not
totally clear, since many options are possible, combining the horizontal and vertical
dimensions in trees. An alternative definition would be to consider only the images of
CF binary tree languages (following the definition of Section I.2.5) under the inverse of

109

II. Verification of Infinite State Systems

a transformation of unranked ordered trees into binary trees (e.g. the transformation
presented in Section 2.1). It would be interesting to relate the languages defined this
way with the CF-HA languages. Moreover, as suggested by Sebastian Maneth, an
interesting approach for defining decidable classes of languages above CF-HA could
be also to consider the inverse images of the hierarchies of ranked tree languages
defined in [Engelfriet, 1981] by the composition of top-down tree transducers.

Perspective: Atomic CF Tree Grammars

A subclass of the above context-free unranked tree grammars with a decidable empti-
ness problem is defined by the case where the production rules do not contain any
occurrence of head and tail . Let us call atomic unranked tree grammars this subclass.
This restriction means that, in the grammar derivation, the lists of siblings cannot be
decomposed. Therefore, atomic unranked tree grammars do not satisfy the goal (1).
Nevertheless, we believe that they can be useful in for verification of XML updates
and XML read/write access control policies. An interesting question in this context
is whether the update PHRS rules of Figure 11 (Section 2.3), extended with prefix
control, preserve the languages of atomic unranked tree grammars.

Alternatively, we could also consider a control of the subtrees below the selected
rewrite positions, similar to the tree transducers with look-ahead[Engelfriet, 1976]).
More precisely, in this case, a rewrite position p is selected in a tree t if the subtree
of t|p belong to a fixed HA language. This restriction can be defined by a condition
on selection automata symmetric to the prefix automata. The idea behind the above
condition, for modeling updates, for instance in order to express that a patient will
be updated only if its records contain some special information. Whether the atomic
unranked tree grammars capture the closure of HA language under rewriting with
such a strategy is also an interesting question.

110

III

Perspectives

We have presented many perspectives in the previous pages, some of them are di-
rect extensions of former works, some could be the subject of longer studies. Let
us conclude this document with a discussion on two particular topics, which could
be consider as mid-term research goals (for instance, the subjects of master or PhD
thesis). The first section below summarizes several ideas regarding models tree au-
tomata with constraints, presented in Parts I and II. The second section is more
prospective and aims at establishing some bridges between too independent family of
models: tree automata (and logics) with equality constraints and the formalisms for
data trees.

1 Generalized Constraints for Tree Automata

The models of extended tree automata presented in Part I are limited to testing
equalities, i.e. isomorphism between subtrees in the tree in input. It could be in-
teresting for several reasons to study extensions of tree automata with other kind of
constraints (either local or global). We present below some examples of such exten-
sions that could be worth studying.

1.1 Equality Modulo Equational Theories

It is sometimes useful to interpret equalities between trees not simply as tree isomor-
phism but rather as equality modulo equational theories (i.e., in the case of terms,
as the binary relation ←−−→R for some TRS R).

For instance, in Section I.2.5 (Theorem 20), we saw that relaxing the equality
relation of VPTA= into structural equality gives a model VPTA≡ enjoying better clo-
sure properties. Structural equality can be interpreted as equality modulo a TRS
that "wipes out" the function symbols into blank symbols ⊥n with rules such as
f(x1, . . . , xn) → ⊥n(x1, . . . , xn). This relaxation permits us to gain closure under
intersection and complementation. More generally, we consider in a long version
of [Barguñó et al., 2010] (see Section I.3.4), currently in submission, equality and
disequality constraints interpreted modulo a flat equational theory (this includes
in particular structural equality) both for global and the local constraints between
brother subtrees.

111

III. Perspectives

It is has been observed that in general, isomorphism constraints do no combine
well with closure under rewriting. In other terms, the closure of the languages of
tree automata with this kind of constraints can generally not be captured by tree au-
tomata with constraints, see Section II.1.4. An exception is presented in Section II.3.1
(Theorem 53), thanks to a use of the innermost strategy. We obtain in general bet-
ter results for computing the closure by a rewrite system when considering equality
modulo the same rewrite system, see the discussions in Sections I.2.4 and II.1.4. For
instance, the TADE of Section I.2.4 are defined as the union of a set of automata
clauses (with equational constraints, of type TAD) and a set of equational clauses. It
means that the equational constraints of the TAD part are interpreted modulo the
theory defined by the equational part. The equational theories for which decidability
of emptiness can be achieved for TADE is however limited.

A more specialized approach focuses on the closure of tree languages or modulo
associativity and commutativity (AC). We have already mentioned as a perspective in
Section I.2.7 the extension of the TADE model modulo AC, using AC-paramodulation
techniques [Nieuwenhuis and Rubio, 2001] for the decision procedures.

Moreover, we have seen in Section I.2.1 that CF-HA are equivalent (via the flat-
tening operations defined in Figure 10) to the class of closure of regular ranked term
languages modulo associativity, and the Presburger automata (PTA) presented in Sec-
tion I.2.6 correspond to the class of closure of regular ranked term languages modulo
associativity and commutativity. A challenging perspective could be to study the ex-
tension of CF-HA and PTA with global constraints of equality and disequality modulo
A and AC.

1.2 Ordering and other Constraints

We have outlined in Section I.1.5, the interest of the construction of normal form
tree automata in the context of automatic theorem proving. The procedure of
[Bouhoula and Jacquemard, 2008] handles constrained rewrite rules between con-
structors of the form c ⇒ ℓ → r, where the constraint c is a conjunction of atoms
P (t1, . . . , tn), P being a predicate with a fixed interpretation on ground constructor
terms, and t1, . . . , tn being terms built with constructor symbols and variables of
ℓ. Therefore, the automata recognizing the normal forms for such constrained TRS
may contain arbitrary constraints (roughly, the negation of constraints found in the
rewrite rules).

We identify in [Bouhoula and Jacquemard, 2008] some cases of constrained TRS
such that the associated normal form tree automata belong to decidable subclasses of
TAC. It would interesting to establish emptiness decidability results for some other
tree automata models, with different kinds of local constraints, defined by predicates
interpreted on ground terms.

One example of other constraints is the equality of height of terms. A tree au-
tomata model with similar constraints is studied in [Habermehl et al., 2010] where
it is applied to the analysis non-recursive C programs manipulating balanced tree-
like data structures. We also use such tree automata in [Bouhoula and Jacquemard,

112

1. Generalized Constraints for Tree Automata

2008] for proofs on a specification of powerlists – lists of length 2n, for n ≥ 0, whose
elements are stored in the leaves of a balanced binary tree.

One could also consider constraints based on reduction orderings
[Dershowitz and Jouannaud, 1990]. As outlined in Section I.1.5, adding such ordering
constraints to rewrite rules permits ones inductive theorem proving on complex data
structures like ordered lists, and permits ones also to transform a non terminating
TRS into an equivalent orientable theory (containing rules with ordering constraints),
by application of constrained completion techniques [Kirchner et al., 1990]. To my
knowledge, tree automata with ordering have not been studied yet, and designing
emptiness decision procedure for such tree automata seems a challenging problem.

1.3 Separated Constraints

A recent proposal by Christoph Weidenbach and Jochen Eisinger, which is the subject
of a current ongoing joint work, is to restrict the definition of constraints for tree
automata to terms over a distinguished signature Σ. The proposal is to consider tree
automata with very general local constraints, defined as first-order formula of the form
φ(π1, . . . , πn) where φ is built over a set of function symbols Σ, and a set of predicates
P, and the free variables π1,. . . ,πn are positions (exactly like the positions in equality
and disequality constraints π = π′, π 6= π′ of the TAC of Section I.1). Given a fixed
first order interpretation structure A for Σ and P, with domain dom(A), constraints
as above can be evaluated at a position p of a ground term t, by replacing in φ every
πi (1 ≤ i ≤ n) by the subterm t|p·πi

, providing that this subterm belongs to T (Σ).
This permits the constrained tree automata to compute on ground terms of T (Σ∪Σ′),
using this interpretation of the constraints at every computation step.

The difficulty is of course the decidability of emptiness for these tree automata,
and some assumptions on the first-order structure A are necessary. A possibility could
be to assume the decidability of the first-order theory of A, and the existence of a
bound B on the index of the equivalence ≡ defined on tuples of elements of dom(A),
roughly, by the satisfaction of the same formula. The goal is to enable a pumping
argument implying the decidability of emptiness: in a term of t ∈ L(A) sufficiently
large (according to a bound which depends on B) a replacement of equivalent (wrt ≡,
after interpretation of the terms in A) subterms is possible, reducing t into a smaller
term of L(A). Note that assumptions as above should probably not hold for the
equality and disequality constraints of the TAC of section Section I.1. However a good
candidate for dom(A) could be the automatic structures of [Blumensath and Grädel,
2000], including Presburger arithmetic.

An interesting constrained tree automata model would be an extension of TA 6=

with constraints as above: it would permit us to characterize the languages of ground
normal forms of rewrite systems with constrained rules of the form φ(x1, . . . , xn) ⇒
ℓ→ r, where ℓ, r ∈ T (Σ′,X), φ is a first order formula over Σ and P and x1, . . . , xn ∈
vars(ℓ). We believe that, under assumptions similar to the above ones, a adaptation
of the emptiness decision procedure presented in Section I.1.3 could be applied to
this extension.

113

III. Perspectives

2 Data Trees and Tree Isomorphisms

In Section I.3.6, we discuss the application of results of Part I to reasoning tasks
for XML documents which are represented by trees labeled with a finite alphabet.
Many theoretical works on XML consider a more realistic model of XML docu-
ment as data tree, whose positions carry both a label from a finite alphabet and
a data value from an infinite domain. Some models of automata and logic working
on such trees have been proposed, [Bojańczyk et al., 2009; Bojanczyk et al., 2006;
Demri and Lazić, 2009; Jurdzinski and Lazic, 2007; Bouyer et al., 2001; Neven et al.,
2001], with the ability to compare the data values. One example is FO2[+1,∼], the
first order formulas with 2 variables and the navigation predicates S↓ and S→ defined
Section I.3.6 and a predicate ∼ for testing the equality of data values. This logic is
decidable on data trees [Bojańczyk et al., 2009] (with a 3NEXPTIME complexity), as
well as its extension EMSO2[+1,∼] with existential monadic second-order quantifiers.

Comparing the models for data tree with the formalisms presented in Part I, e.g.
TAGC[≈, 6≈, |.|N, ‖.‖N] and EMSO[+1,≈, 6≈,N], testing isomorphisms on subtrees, is a
difficult question, which has probably no simple or systematic answer. We propose
below some reflections on this problem.

2.1 Equality of Data Values and Subtrees

Encoding Data Values as Subtrees

The simplest approach for relating the formalisms for data trees and the formalisms
testing isomorphism of subtrees is to encode the data values as trees. For instance,
one can represent the natural numbers by terms built with the symbol 0 and successor
s, and transform every data tree of O(Σ×N) into an unranked tree of O

(
Σ⊎ {s, 0}

)

by adding a new child to every position, for carrying the tree representation of its
data value. More precisely, this is done by the mapping τ defined recursively by
τ
(
〈a, n〉(t1, . . . , tn)

)
= a(τ(t1), . . . , τ(tn), s

n(0)), where a ∈ Σ and n ∈ N. Note
that the codomain of τ is regular. Applying ≈ constraints of TAGC or equality
constraints of TAC to the auxiliary child encoding data values permits us to simulate
the predicate ∼ on data values.

However, some properties expressible in FO2 cannot be expressed with TAGC via
τ . For instance, this is the case of the inclusion constraints presented in page 64,
expressing that for all position x labeled with a there exists a position y labeled with
b with the same data value, in FO2 ∀x∃y a(x) ⇒ (b(y) ∧ x ∼ y). Conversely, the
equality between subtrees, i.e. the TAGC constraint (and predicate of EMSO) ≈ is not
expressible in MSO[+1] on trees [Comon et al., 2007], hence it is neither expressible
in EMSO2[∼,+1] (data values cannot help for this purpose).

Another interesting formalism for a comparison is the alternating register au-
tomata over data trees proposed in [Jurdzinski and Lazic, 2007]. These automata
(called ATRA1) use one register for data values: at every position p of computa-
tion, the data value at p can be stored in the register or compared to the data
value currently in the register. Emptiness is decidable for these automata (though

114

2. Data Trees and Tree Isomorphisms

non primitive recursive) and undecidable when there is more than one register. The
the ATRA1 have been introduced as a decision tool for an alternation-free modal
µ-calculus over data trees generalizing to trees the extension of the linear temporal
logic LTL with freeze quantification (these quantification play the role of the above
registers) [Demri and Lazić, 2009]. We have seen in Section I.3.2 that the RTA (which
are equivalent in expressiveness to the positive TAGC[≈]) can be presented as sets of
Horn clauses with rigid variables. Intuitively, these rigid variables can be seen as reg-
isters storing subtrees, which can be used only once for writing, but an unbounded
number of times for reading. Hence, roughly, the ATRA1 have one register which
can be rewritten and the RTA have several non-rewritable registers. Studying the
expressiveness of tree automata with global constraints from this angle could be an
interesting subject, for instance for identifying a corresponding fragment of a modal
logic over data trees (with freeze quantifier).

Besides the problem of expressiveness, it would also be interesting to study the
complexity of emptiness decision for TAGC computing on the encoding of data trees.
Indeed (as already noted in Section I.3.6), in this case, all the positions of subtrees
tested for isomorphism by an automaton during a computation are incomparable
(wrt the prefix ordering). We believe that such a strong restriction could permit us
to decrease dramatically the complexity upper bounds for emptiness decision.

Encoding Subtrees as Data Values

We may also wonder whether the decidable formalisms for data trees could be used
in order to improve the expressiveness of tree automata of Part I. As noted in
Section I.3.6, reasoning on integrity constraints in presence of HA is more complex
when equality is interpreted as subtree isomorphism than when it is interpreted as
data equality. The reason is that data values in the different positions of a data
tree are independent, whereas there are dependencies between subtrees. Hence, some
restrictions are necessary in order to reduce the problems of automata with equality
constraints to problems for formalisms for data trees.

For instance, we could require that the data at a position p in a tree t ∈ O(Σ×N)
is uniquely associated to the subtree erase(t|p) obtained by erasing the data values.
More formally, t is required to be such that every two positions p1 and p2 in Pos(t)
have the same data value iff erase(t|p1) = erase(t|p2) (*). Note that it is a strict
restriction on data trees. Assuming this restriction, we can express in EMSO2 the
existence of a run of a given TAGC. However, the property (*) is not expressible in
MSO2 and we do not know whether FO2[∼,+1] is decidable or not on the subset of
data trees following this restriction.

We can observe that when considering the model of binary trees, in a variant of
FO2 where the two relations S↓, S→ are replaced by successor functions, FO2[∼,+1]
is undecidable on the data tree satisfying the above restriction (*). We can indeed
encode any finite grid N×N as a binary tree such that for all position x, x.1.2 ∼ x.2.1.

115

III. Perspectives

2.2 Tree Automata with Global Constraints for Data Trees

Another approach could be to use the TAGC to compute on data trees, the constraints
being interpreted as value equality, instead of subtree equality. More precisely, given
a TAGC A, a data tree t ∈ O(Σ× N), and a run r of the underlying TA on erase(t),
r |= q ≈ q′ (respectively r |= q 6≈ q′) if for all different positions p, p′ ∈ Pos(t) such
that r(p) = q and r(p′) = q′, data(t(p)) = data(t(p′)) holds (respectively data(t(p)) 6=
data(t(p′))), where data

(
〈a, n〉

)
= n.

A recent paper [David et al., 2011], introduces tree automata extended with a
conjunction of (global) constraints of two kinds. Constraints of the first kind are
called linear data constraints, and are linear integer constraints over variables similar
to |a| and ‖a‖ defined in Section I.3.5, except that they refer to the data and not
the subtrees, and that a is a symbol of Σ and not a state of the automaton. Hence
the interpretation of these linear constraints in [David et al., 2011] depends only on
a data tree t and not on a run of the automaton: |a| is the number of positions
labeled by a in t and ‖a‖ is the cardinality of the set of data values found at positions
labeled by a in t. The second kind of constraints are set constraints over the sets
of data values on the position labeled by a particular letter of Σ. The emptiness is
shown decidable in NP for these automata [David et al., 2011] using integer linear
programming techniques.

The same techniques should be applicable to TAGC[|.|Z, ‖.‖Z]. Note that ([David et al.,
2011]) a key constraint, for state q, can be expressed by |q| = ‖q‖. Whether is could
be applicable also to the whole class TAGC[≈, 6≈, |.|Z, ‖.‖Z] (on data trees) is an in-
teresting question.

2.3 Data Tree Rewriting

One other perspective related to the Section II.2 on unranked tree rewriting is to
add constraints to rewrite rules in order to handle data values. In [Bouajjani et al.,
2007], a notion of constrained data word rewriting system is proposed. The con-
straints are expressed in a first-order logic over data words. This framework is
applied in [Bouajjani et al., 2007] to the verification of programs with unbounded
control structures and unbounded data domains

To my knowledge, there is no generalization of term rewriting to data tree rewrit-
ing yet. This could be useful for representing XML transformations that take into
account data values. In could be interesting to define a formalism of data tree rewrit-
ing systems and study the closure, by such systems, of unranked tree automata with
global constraints on data values in the context of typechecking data tree transfor-
mations.

2.4 Generalized Global Constraints for Tree Automata

The constraints of TAGC are universally quantified, and if they are well-suited to
express key or denial constraints, they cannot express constraints defined with an
alternation of quantifiers, such as inclusion constraints: for all position p of type q,

116

2. Data Trees and Tree Isomorphisms

there exists a position p′ of type q′ such that the subtrees at p and p′ are the same.
The emptiness decision proof technique of Section I.3.4 does not work for this kind
of constraints.

TA with Global Monadic First Order Constraints

One possibility to generalize the constraints of TAGC is to consider, given an under-
lying tree automaton with state set Q, monadic first order formulas without function
symbols, with atoms built over the state symbols of Q, considered as unary pred-
icates, and equality. These formula are interpreted, given a tree t and a run r of
the tree automaton on t, over a structure whose domain is the set of subtrees of t,
and such that a predicate q ∈ Q holds on a subtree s of t if there exists a position
p ∈ Pos(t) such that t|p = s and r(p) = q.

The monadic class of first-order formulas is closely related to set constraints, and
decision algorithms for these constraints [Bachmair et al., 1993; Charatonik and Pacholski,
1994] could be a good starting point for studying emptiness decision of tree automata
with monadic first order constraints.

TA with Global Monadic Second Order Constraints

We have seen that the emptiness decision procedure of Section I.3.4 also work, on the
one hand for an extension of TAGC[≈, 6≈irr, 6≈ref] with local equality and disequality
constraints between sibling subtrees, like those of TAB (defined in Section I.1.1), and
on the other hand for unranked ordered tree automata with global constraints like
those of TAGC.

There exist a decidable model of unranked ordered tree automata with local equal-
ity and disequality tests between siblings subtrees called UTASC [Wong and Löding,
2007; Löding and Wong, 2009], generalizing TAB to unranked ordered trees. The
local constraints of UTASC use monadic second-order formula with 2 free variables
(over words) used to select the pairs of sibling positions of subtrees to be tested for
equality or disequality. The decidability of emptiness is open for unranked tree au-
tomata combining global constraints like those of TAGC and local constraints like
those of UTASC.

More generally, we could study unranked ordered tree automata extended with
global constraints using monadic second-order formula (over trees) for the selection
of the pairs positions of subtrees to be tested (following e.g. [Niehren et al., 2005]).
Emptiness is undecidable for such automata, and the problem would be to identify
decidable relevant fragments.

117

Bibliography

M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL, pages 104–115, 2001.

R. Abbassi, F. Jacquemard, M. Rusinowitch, and S. Guemara El Fatmi.
XML access control: from XACML to annotated schemas. In Intl.
Conf. on Communications and Networking (ComNet), pages 1–8,
2010. doi: http://dx.doi.org/10.1109/COMNET.2010.5699810. URL
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/AJRG-comnet10.pdf.

P. A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular tree model checking. In
Proceedings of the 14th International Conference on Computer Aided Verification,
CAV’02, pages 555–568, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-
43997-8. URL http://portal.acm.org/citation.cfm?id=647771.734407.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995. ISBN 0-201-53771-0.

S. Abiteboul, O. Benjelloun, and T. Milo. The active xml project: an
overview. The VLDB Journal, 17:1019–1040, August 2008. ISSN
1066-8888. doi: http://dx.doi.org/10.1007/s00778-007-0049-y. URL
http://dx.doi.org/10.1007/s00778-007-0049-y.

S. Abiteboul, P. Bourhis, and B. Marinoiu. Satisfiability and relevance for queries over
active documents. In J. Paredaens and J. Su, editors, Proceedings of the Twenty-
Eigth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2009, pages 87–96. ACM, 2009. ISBN 978-1-60558-553-6.

R. Affeldt and H. Comon-Lundh. Verification of security protocols with a
bounded number of sessions based on resolution for rigid variables. In
Formal to Practical Security, volume 5458 of Lecture Notes in Computer
Science, State-of-the-Art Survey, pages 1–20. Springer, May 2009. URL
http://staff.aist.go.jp/reynald.affeldt/documents/rigid.pdf.

118

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/AJRG-comnet10.pdf
http://portal.acm.org/citation.cfm?id=647771.734407
http://dx.doi.org/10.1007/s00778-007-0049-y
http://staff.aist.go.jp/reynald.affeldt/documents/rigid.pdf

Bibliography

R. Alur and P. Madhusudan. Visibly pushdown languages. In 36th Annual ACM
Symposium on Theory of Computing, STOC, pages 202–211. ACM, 2004. ISBN
1-58113-852-0.

R. Alur, S. Chaudhuri, and P. Madhusudan. Languages of nested trees. In T. Ball and
R. B. Jones, editors, Proceedings of the 18th International Conference on Computer
Aided Verification (CAV), volume 4144 of Lecture Notes in Computer Science,
pages 329–342. Springer, 2006.

R. Amadio and D. Lugiez. On the reachability problem in cryptographic protocols. In
Concurrency Theory, 11th Int. Conf. on Concurrency Theory, CONCUR, volume
1877 of LNCS, pages 380–394. Springer, 2000.

R. M. Amadio and W. Charatonik. On name generation and set-based analysis in
the dolev-yao model. In 13th International Conference on Concurrency Theory,
CONCUR, volume 2421 of Lecture Notes in Computer Science, pages 499–514.
Springer, 2002. ISBN 3-540-44043-7.

S. Anantharaman, P. Narendran, and M. Rusinowitch. Closure properties and de-
cision problems of dag automata. Inf. Process. Lett., 94(5):231–240, 2005. ISSN
0020-0190. doi: http://dx.doi.org/10.1016/j.ipl.2005.02.004.

P. B. Andrews. Theorem proving via general matings. Journal of the ACM, 28(2):
193–214, 1981.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, New York, 1998. ISBN 0-521-45520-0.

L. Bachmair. Canonical Equational Proofs. Birkhäuser, Boston, 1991.

L. Bachmair and H. Ganzinger. Resolution theorem proving. In J. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, chapter 2. Elsevier, 2001.

L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are the monadic class.
In Proceedings of Eighth Annual IEEE Symposium on Logic in Computer Science
(LICS), pages 75 – 83. IEEE Computer Society Press, 1993. doi: 10.1109/LICS.
1993.287598.

L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation. In-
formation and Computation, 121(2):172–192, 1995.

A. Barecka and W. Charatonik. The parameterized complexity of chosen problems
for finite automata on trees. In proceedings of the 5th International Conference on
Language and Automata Theory and Applications (LATA’09), 2011.

L. Barguñó, C. Creus, G. Godoy, F. Jacquemard, and C. Vacher. The Empti-
ness Problem for Tree Automata with Global Constraints. In J.-P. Jouan-
naud, editor, Proceedings of the 25th Annual IEEE Symposium on Logic in

119

Bibliography

Computer Science (LICS), pages 263–272, Edinburgh, Scotland, United King-
dom, 2010. IEEE Computer Society Press. doi: 10.1109/LICS.2010.28. URL
http://hal.inria.fr/inria-00578901/en.

M. Benedikt and J. Cheney. Semantics, types and effects for xml updates. In Proceed-
ings 12th International Symposium on Database Programming Languages (DBPL),
volume 5708 of Lecture Notes in Computer Science, pages 1–17, Lyon, France,
August 2009. Springer.

V. Benzaken, G. Castagna, and A. Frisch. Cduce: An xml-centric general-purpose
language. In Proceedings of the ACM International Conference on Functional Pro-
gramming, 2003.

A. Berlea and H. Seidl. Binary queries for document trees. Nord. J. Comput., 11(1):
41–71, 2004.

B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In
Proceedings of the 14th IEEE workshop on Computer Security Foundations, CSFW
’01, pages 82–, Washington, DC, USA, 2001. IEEE Computer Society. URL
http://portal.acm.org/citation.cfm?id=872752.873511.

A. Blumensath and E. Grädel. Automatic structures. In In 15th Annual IEEE
Symposium on Logic in Computer Science (LICS), pages 51–62. IEEE Computer
Society, 2000.

B. Bogaert. Automates d’arbres avec tests d’égalités. PhD thesis, LIFL, Université
des Science et Technologies de Lille, 1990.

B. Bogaert and S. Tison. Equality and Disequality Constraints on Direct Subterms
in Tree Automata. In A. Finkel and M. Jantzen, editors, 9th Symp. on Theoretical
Aspects of Computer Science, STACS, volume 577 of Lecture Notes in Computer
Science, pages 161–171, Cachan, France, February 13-15 1992. Springer.

B. Bogaert, F. Seynhaeve, and S. Tison. The recognizability problem for tree au-
tomata with comparisons between brothers. In W. Thomas, editor, Foundations
of Software Science and Computation Structure, Second International Conference,
FoSSaCS’99, volume 1578 of Lecture Notes in Computer Science, pages 150–164.
Springer, Mar. 1999. ISBN 3-540-65719-3.

A. Boiret. Grammaires context-free pour les arbres sans rang. Rapport de Master,
Master Parisien de Recherche en Informatique, Paris, France, Sept. 2010. URL
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/boiret-m2.pdf.

M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-
variable logic on words with data. In Proceedings of the 21st Annual IEEE Sym-
posium on Logic in Computer Science, pages 7–16, Washington, DC, USA, 2006.
IEEE Computer Society. ISBN 0-7695-2631-4. doi: 10.1109/LICS.2006.51. URL
http://portal.acm.org/citation.cfm?id=1157735.1158037.

120

http://hal.inria.fr/inria-00578901/en
http://portal.acm.org/citation.cfm?id=872752.873511
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/boiret-m2.pdf
http://portal.acm.org/citation.cfm?id=1157735.1158037

Bibliography

M. Bojańczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic
on data trees and xml reasoning. Journal of the ACM, 56(3):13:1–13:48, May
2009. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/1516512.1516515. URL
http://doi.acm.org/10.1145/1516512.1516515. A preliminary version was pre-
sented at PODS’06.

A. Bouajjani and T. Touili. Extrapolating tree transformations. In E. Brinksma
and K. Larsen, editors, Computer Aided Verification, volume 2404 of Lecture Notes
in Computer Science, pages 349–363. Springer Berlin / Heidelberg, 2002. URL
http://dx.doi.org/10.1007/3-540-45657-0_46.

A. Bouajjani and T. Touili. On computing reachability sets of process rewrite sys-
tems. In J. Giesl, editor, Proceedings of the 16th International Conference on Term
Rewriting and Applications (RTA), volume 3467 of Lecture Notes in Computer Sci-
ence, pages 484–499, Nara, Japan, April 19-21 2005. Springer. ISBN 3-540-25596-6.

A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In A. Mazurkiewicz and J. Winkowski,
editors, CONCUR ’97: Concurrency Theory, volume 1243 of Lecture Notes in
Computer Science, pages 135–150. Springer Berlin / Heidelberg, 1997. URL
http://dx.doi.org/10.1007/3-540-63141-0_10.

A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
Proc. of the 12th Int. Conf. on Computer Aided Verification, volume 1855 of Lecture
Notes in Computer Science, pages 403–418, 2000.

A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract regular tree
model checking of complex dynamic data structures. In K. Yi, editor, Static Anal-
ysis, volume 4134 of Lecture Notes in Computer Science, pages 52–70. Springer
Berlin / Heidelberg, 2006. URL http://dx.doi.org/10.1007/11823230_5.

A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu. Rewriting systems
with data. In Proceedings of the 16th international symposium on Fundamen-
tals of Computation Theory, pages 1–22, Berlin, Heidelberg, 2007. Springer-
Verlag. ISBN 978-3-540-74239-5. doi: 10.1007/978-3-540-74240-1_1. URL
http://portal.acm.org/citation.cfm?id=1421249.1421251.

A. Bouhoula. Automated theorem proving by test set induction. Journal of Symbolic
Computation, 23(1):47–77, 1997.

A. Bouhoula and F. Jacquemard. Automating sufficient completeness check for con-
ditional and constrained trs. In Proceedings of the 20th International Workshop on
Unification, 2006.

A. Bouhoula and F. Jacquemard. Verifying regular trace properties of security
protocols with explicit destructors and implicit induction. In Proc. of the

121

http://doi.acm.org/10.1145/1516512.1516515
http://dx.doi.org/10.1007/3-540-45657-0_46
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/11823230_5
http://portal.acm.org/citation.cfm?id=1421249.1421251

Bibliography

Joint Workshop on Foundations of Computer Security and Automated Reason-
ing for Security Protocol Analysis (FCS-ARSPA’07), pages 27–44, 2007. URL
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2008-07.pdf.

A. Bouhoula and F. Jacquemard. Automated induction with constrained tree au-
tomata. In A. Armando, P. Baumgartner, and G. Dowek, editors, Proceedings
of the 4th International Joint Conference on Automated Reasoning (IJCAR), vol-
ume 5195 of Lecture Notes in Artificial Intelligence, pages 539–553, Sydney, Aus-
tralia, Aug. 2008. Springer-Verlag. doi: 10.1007/978-3-540-71070-7_44. URL
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BJ-ijcar08.pdf.

A. Bouhoula and F. Jacquemard. Sufficient completeness verifica-
tion for conditional and constrained trs. Journal of Applied Logic,
2011. ISSN 1570-8683. doi: 10.1016/j.jal.2011.09.001. URL
http://www.sciencedirect.com/science/article/pii/S1570868311000413.

A. Bouhoula and J.-P. Jouannaud. Automata-driven automated induction. Informa-
tion and Computation, 169(1):1–22, 2001.

A. Bouhoula and M. Rusinowitch. Implicit induction in conditional theories. Journal
of Automated Reasoning, 14(2):189–235, 1995.

A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in member-
ship equational logic. Theoretical Computer Science, 236(1-2):35–132, 2000.

P. Bouyer, A. Petit, and D. Thérien. An algebraic characterization of data and timed
languages. In Proceedings of the 12th International Conference on Concurrency
Theory, CONCUR ’01, pages 248–261, London, UK, 2001. Springer-Verlag. ISBN
3-540-42497-0. URL http://portal.acm.org/citation.cfm?id=646736.701768.

W. S. Brainerd. Semi-thue systems and representations of trees. In
Proceedings of the 10th Annual Symposium on Switching and Au-
tomata Theory (swat 1969), pages 240–244, Washington, DC, USA,
1969. IEEE Computer Society. doi: 10.1109/SWAT.1969.19. URL
http://portal.acm.org/citation.cfm?id=1443219.1443424.

L. Bravo, J. Cheney, and I. Fundulaki. Accon: checking consistency of xml write-
access control policies. In EDBT 2008, 11th International Conference on Extending
Database Technology, Nantes, France, March 25-29, 2008, Proceedings, volume 261
of ACM International Conference Proceeding Series, pages 715–719. ACM, 2008.

J. A. Bull and D. J. Otway. The authentication protocol. Technical report, Defence
Research Agency, Malvern, UK, 1997.

P. Buneman, W. Fan, J. Siméon, and S. Weinstein. Constraints for
semistructured data and xml. SIGMOD Rec., 30:47–54, March 2001.
ISSN 0163-5808. doi: http://doi.acm.org/10.1145/373626.373697. URL
http://doi.acm.org/10.1145/373626.373697.

122

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2008-07.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BJ-ijcar08.pdf
http://www.sciencedirect.com/science/article/pii/S1570868311000413
http://portal.acm.org/citation.cfm?id=646736.701768
http://portal.acm.org/citation.cfm?id=1443219.1443424
http://doi.acm.org/10.1145/373626.373697

Bibliography

S. C. Lim and S. H. Son. Access control of xml documents considering update oper-
ations. In Proc. of ACM Workshop on XML Security, 2003.

L. Cardelli and G. Ghelli. Tql: a query language for semistructured data
based on the ambient logic. Mathematical. Structures in Comp. Sci., 14:285–
327, June 2004. ISSN 0960-1295. doi: 10.1017/S0960129504004141. URL
http://portal.acm.org/citation.cfm?id=992032.992034.

J. Carme, J. Niehren, and M. Tommasi. Querying unranked trees with stepwise
tree automata. In International Conference on Rewriting Techniques and Applica-
tions, Aachen, volume 3091 of Lecture Notes in Computer Science, pages 105–118.
Springer, 2004.

A.-C. Caron. Structures et Décision en Réécriture. PhD thesis, LIFL, Université des
Science et Technologies de Lille, Feb. 1993.

A.-C. Caron, H. Comon, J.-L. Coquidé, M. Dauchet, and F. Jacquemard. Pumping,
Cleaning and Symbolic Constraints Solving. In S. Abiteboul and E. Shamir, editors,
21st Int. Coll. on Automata, Languages and Programming (ICALP), volume 820
of Lecture Notes in Computer Science, pages 436–449. Springer, 1994.

D. Caucal. On the regular structure of prefix rewriting. Theor. Comput. Sci., 106:61–
86, January 1992. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/0304-3975(92)
90278-N. URL http://dx.doi.org/10.1016/0304-3975(92)90278-N.

J. Chabin and P. Réty. Visibly pushdown languages and term rewriting. In Pro-
ceedings 6th International Symposium on Frontiers of Combining Systems (FroCos
2007), volume 4720 of Lecture Notes in Computer Science, pages 252–266. Springer,
2007. ISBN 978-3-540-74620-1.

W. Charatonik. Automata on dag representations of finite trees. Technical
Report Technical Report MPI-I-99-2-001, Max-Planck-Institut fÂ ŗ Informatik,
SaarbrÂ¸cken, Germany, 1999.

W. Charatonik and L. Pacholski. Negative set constraints with equal-
ity. In Proceedings Ninth Annual IEEE Symposium on Logic in Com-
puter Science, pages 128–136. IEEE Comput. Soc. Press, 1994. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=316078.

W. Charatonik and L. Pacholski. Set constraints with projections. J. ACM, 57:
23:1–23:37, May 2010. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/1734213.
1734217. URL http://doi.acm.org/10.1145/1734213.1734217.

W. Charatonik and A. Podelski. Set constraints with intersec-
tion. Information and Computation, 179(2):213 – 229, 2002.
ISSN 0890-5401. doi: DOI:10.1006/inco.2001.2952. URL
http://www.sciencedirect.com/science/article/pii/S0890540101929529.

123

http://portal.acm.org/citation.cfm?id=992032.992034
http://dx.doi.org/10.1016/0304-3975(92)90278-N
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=316078
http://doi.acm.org/10.1145/1734213.1734217
http://www.sciencedirect.com/science/article/pii/S0890540101929529

Bibliography

M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. Quesada.
Maude: Specification and Programming in Rewriting Logic. SRI International,
1999.

T. Colcombet. Rewriting in the partial algebra of typed terms modulo ac. Electr.
Notes Theor. Comput. Sci., 68(6), 2002.

H. Comon. Sequentiality, second order monadic logic and tree automata. In Proceed-
ings, Tenth Annual IEEE Symposium on Logic in Computer Science (LICS), pages
508–517. IEEE Computer Society, 1995.

H. Comon and V. Cortier. Tree automata with one memory, set con-
straints and cryptographic protocols. Theoretical Computer Science,
331(1):143–214, Feb. 2005. doi: 10.1016/j.tcs.2004.09.036. URL
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/ComonCortierTCS1.ps.

H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-complete. In Pro-
ceedings, 12th Annual IEEE Symposium on Logic in Computer Science (LICS),
pages 26–34, Warsaw, Poland, 27-30 july 1997. IEEE Computer Society Press.

H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-complete. Infor-
mation and Computation, 187(1):123–153, Nov. 2003.

H. Comon, M. Haberstrau, and J. P. Jouannaud. Syntacticness, cycle-
syntacticness, and shallow theories. Information and Computation, 111(1):
154 – 191, 1994. ISSN 0890-5401. doi: DOI:10.1006/inco.1994.1043. URL
http://www.sciencedirect.com/science/article/pii/S0890540184710431.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez,
S. Tison, and M. Tommasi. Tree Automata Techniques and Applications.
http://tata.gforge.inria.fr, 2007.

H. Comon-Lundh. Inductionless induction. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume 2, chapter 14, pages 913–962. Elsevier,
2001.

H. Comon-Lundh, F. Jacquemard, and N. Perrin. Tree automata with memory,
visibility and structural constraints. In H. Seidl, editor, Proceedings of the 10th
International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS’07), volume 4423 of Lecture Notes in Computer Science,
pages 168–182. Springer, Mar. 2007. doi: 10.1007/978-3-540-71389-0_13. URL
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CJP-fossacs07.pdf.

H. Comon-Lundh, F. Jacquemard, and N. Perrin. Visibly tree automata with memory
and constraints. Logical Methods in Computer Science, 4(2:8), 2008. doi: 10.2168/
LMCS-4(2:8)2008.

124

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/ComonCortierTCS1.ps
http://www.sciencedirect.com/science/article/pii/S0890540184710431
http://tata.gforge.inria.fr
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CJP-fossacs07.pdf

Bibliography

J.-L. Coquidé, M. Dauchet, R. Gilleron, and S. Vágvölgyi. Bottom-up tree push-
down automata: classification and connection with rewrite systems. Theoretical
Computer Science, 127(1):69–98, 1994.

B. Courcelle. On recognizable sets and tree automata. In M. Nivat and H. Ait
Kaci, editors, Resolution of Equations in Algebraic Structures, volume 1, Algebraic
techniques, pages 93–126. Academic Press, 1989. ISBN 0-12-046370-9.

B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume 2, chapter 5, pages 193–
242. Elsevier, 1990.

S. Dal Zilio and D. Lugiez. XML schema, tree logic and sheaves automata. Journal
Applicable Algebra in Engineering, Communication and Computing, 17(5):337–377,
2006.

E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati. Securing xml doc-
uments. In Proceedings of the 7th International Conference on Extending Database
Technology (EDBT 2000), volume 1777 of Lecture Notes in Computer Science,
pages 121–135. Springer, 2000. ISBN 3-540-67227-3.

J. Dassow, G. Paun, and A. Salomaa. Grammars with controlled derivations. In
Handbook of Formal Languages, volume 2, chapter 3, pages 101–154. Springer,
1997. ISBN 3-540-60648-3.

M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In
Proceedings Fifth Annual IEEE Symposium on Logic in Computer Science (LICS),
pages 242–248. IEEE Computer Society, 1990.

M. Dauchet, S. Tison, T. Heuillard, and P. Lescanne. Decidability of the confluence
of ground term rewriting systems. In Proceedings of the second Symposium on Logic
in Computer Science (LICS), pages 353–359. The Computer Society of the IEEE,
22–25 jun 1987. ISBN 0-8186-0793-9.

M. Dauchet, A.-C. Caron, and J.-L. Coquidé. Reduction properties and automata
with constraints. Journal of Symbolic Computation, 20(2):215–233, 1995.

C. David, L. Libkin, and T. Tan. Efficient reasoning about data trees via integer lin-
ear programming. In Proceedings of the 14th International Conference on Database
Theory (ICDT), ICDT ’11, pages 18–29, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0529-7. doi: http://doi.acm.org/10.1145/1938551.1938558. URL
http://doi.acm.org/10.1145/1938551.1938558.

S. Delaune and F. Jacquemard. A decision procedure for the verification of security
protocols with explicit destructors. In Proceedings of the 11th ACM conference on
Computer and communications security, CCS ’04, pages 278–287, New York, NY,
USA, 2004. ACM. ISBN 1-58113-961-6. doi: http://doi.acm.org/10.1145/1030083.
1030121. URL http://doi.acm.org/10.1145/1030083.1030121.

125

http://doi.acm.org/10.1145/1938551.1938558
http://doi.acm.org/10.1145/1030083.1030121

Bibliography

G. Delzanno, J.-F. Raskin, and L. V. Begin. Towards the automated verification of
multithreaded java programs. In Proceedings of the 8th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, TACAS
’02, pages 173–187, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-43419-4.
URL http://portal.acm.org/citation.cfm?id=646486.694620.

S. Demri and R. Lazić. Ltl with the freeze quantifier and regis-
ter automata. ACM Trans. Comput. Logic, 10:16:1–16:30, April 2009.
ISSN 1529-3785. doi: http://doi.acm.org/10.1145/1507244.1507246. URL
http://doi.acm.org/10.1145/1507244.1507246.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume volume B: Formal Models and
Semantics, chapter 6, pages 243–320. North-Holland, Amsterdam, 1990.

J. d’Orso and T. Touili. Regular hedge model checking. In In Proc. of the 4th IFIP
International Conference on Theoretical Computer Science (TCS’06). IFIP, 2006.

I. Durand and A. Middeldorp. Decidable call-by-need computations
in term rewriting. Information and Computation, 196(2):95 – 126,
2005. ISSN 0890-5401. doi: DOI:10.1016/j.ic.2004.10.003. URL
http://www.sciencedirect.com/science/article/B6WGK-4F7VFHM-2/2/d7b66e9e8ca0d695ab486fb08dec4bc1

I. Durand and G. Sénizergues. Bottom-up rewriting is inverse recognizability pre-
serving. In F. Baader, editor, Proceedings of the 18th International Conference on
Term Rewriting and Applications (RTA), volume 4533 of Lecture Notes in Com-
puter Science, pages 107–121. Springer, 2007.

I. Durand and M. Sylvestre. Left-linear Bounded TRSs are Inverse Recogniz-
ability Preserving. In M. Schmidt-Schauß, editor, 22nd International Confer-
ence on Rewriting Techniques and Applications (RTA’11), volume 10 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 361–376, Dagstuhl,
Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-
3-939897-30-9. doi: http://dx.doi.org/10.4230/LIPIcs.RTA.2011.361. URL
http://drops.dagstuhl.de/opus/volltexte/2011/3135.

I. Durand, G. Sénizergues, and M. Sylvestre. Termination of linear bounded
term rewriting systems. In C. Lynch, editor, Proceedings of the 21st Interna-
tional Conference on Rewriting Techniques and Applications, volume 6 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 341–356, Dagstuhl,
Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-
3-939897-18-7. doi: http://dx.doi.org/10.4230/LIPIcs.RTA.2010.341. URL
http://drops.dagstuhl.de/opus/volltexte/2010/2662.

J. Engelfriet. Top-down tree transducers with regular look-ahead. The-
ory of Computing Systems, 10:289–303, 1976. ISSN 1432-4350. URL
http://dx.doi.org/10.1007/BF01683280.

126

http://portal.acm.org/citation.cfm?id=646486.694620
http://doi.acm.org/10.1145/1507244.1507246
http://www.sciencedirect.com/science/article/B6WGK-4F7VFHM-2/2/d7b66e9e8ca0d695ab486fb08dec4bc1
http://drops.dagstuhl.de/opus/volltexte/2011/3135
http://drops.dagstuhl.de/opus/volltexte/2010/2662
http://dx.doi.org/10.1007/BF01683280

Bibliography

J. Engelfriet. Three hierarchies of transducers. Theory of Computing Systems, 15:
95–125, 1981. ISSN 1432-4350. URL http://dx.doi.org/10.1007/BF01786975.
10.1007/BF01786975.

J. Engelfriet and H. Vogler. Macro tree transducers. J. Comp. Syst. Sci., 31:71–146,
1985.

J. Engelfriet, S. Maneth, and H. Seidl. Deciding equivalence of top-down xml trans-
formations in polynomial time. J. Comput. Syst. Sci., 75(5):271–286, 2009.

R. Fagin, B. Kimelfeld, Y. Li, S. Raghavan, and S. Vaithyanathan. Rewrite
rules for search database systems. In Proceedings of the thirtieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
PODS ’11, pages 271–282, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0660-7. doi: http://doi.acm.org/10.1145/1989284.1989322. URL
http://doi.acm.org/10.1145/1989284.1989322.

W. Fan and L. Libkin. On xml integrity constraints in the presence of dtds. J. ACM,
49:368–406, May 2002. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/567112.
567117. URL http://doi.acm.org/10.1145/567112.567117.

W. Fan and J. Siméon. Integrity constraints for xml. In Proceedings of
the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, PODS ’00, pages 23–34, New York, NY, USA, 2000. ACM.
ISBN 1-58113-214-X. doi: http://doi.acm.org/10.1145/335168.335172. URL
http://doi.acm.org/10.1145/335168.335172.

W. Fan, C.-Y. Chan, and M. Garofalakis. Secure xml querying with security views. In
Proceedings of the 2004 ACM SIGMOD international conference on Management
of data (SIGMOD’04), pages 587–598, New York, NY, USA, 2004. ACM. ISBN
1-58113-859-8. doi: http://doi.acm.org/10.1145/1007568.1007634.

C. G. Fermüller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution deci-
sion procedures, pages 1791–1849. Elsevier Science Publishers B. V., Amster-
dam, The Netherlands, The Netherlands, 2001. ISBN 0-444-50812-0. URL
http://portal.acm.org/citation.cfm?id=778522.778534.

E. Filiot, J.-M. Talbot, and S. Tison. Satisfiability of a spatial logic with tree variables.
In Proceedings of the 21st International Workshop on Computer Science Logic (CSL
2007), volume 4646 of Lecture Notes in Computer Science, pages 130–145. Springer,
2007. ISBN 978-3-540-74914-1.

E. Filiot, J.-M. Talbot, and S. Tison. Tree automata with global constraints. In
12th International Conference in Developments in Language Theory (DLT 2008),
volume 5257 of Lecture Notes in Computer Science, pages 314–326. Springer, 2008.
ISBN 978-3-540-85779-2.

127

http://dx.doi.org/10.1007/BF01786975
http://doi.acm.org/10.1145/1989284.1989322
http://doi.acm.org/10.1145/567112.567117
http://doi.acm.org/10.1145/335168.335172
http://portal.acm.org/citation.cfm?id=778522.778534

Bibliography

N. Francis, C. David, and L. Libkin. A direct translation from xpath to nondetermin-
istic automata. In 5th Alberto Mendelzon International Workshop on Foundations
of Data Management, 2011.

L. Fribourg. A strong restriction of the inductive completion procedure. Journal of
Symbolic Computation, 8(3):253–276, 1989.

M. Frick, M. Grohe, and C. Koch. Query evaluation on compressed
trees (extended abstract). In Proceedings of the 18th Annual IEEE Sym-
posium on Logic in Computer Science, pages 188–, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-1884-2. URL
http://portal.acm.org/citation.cfm?id=788023.789040.

T. Frühwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic programs as types for
logic programs. In Proc. of the 6th IEEE Symposium on Logic in Computer Science,
pages 300–309, 1991.

I. Fundulaki and S. Maneth. Formalizing xml access control for update operations. In
SACMAT ’07: Proceedings of the 12th ACM symposium on Access control models
and technologies, pages 169–174, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-745-2. doi: http://doi.acm.org/10.1145/1266840.1266868.

K. Futatsugi, J. A. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of obj2.
In Proceedings of the 12th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, POPL ’85, pages 52–66, New York, NY, USA, 1985.
ACM. ISBN 0-89791-147-4. doi: http://doi.acm.org/10.1145/318593.318610. URL
http://doi.acm.org/10.1145/318593.318610.

H. Ganzinger and J. Stuber. Inductive theorem proving by consistency for first-order
clauses. In Proceedings of the Third International Workshop on Conditional Term
Rewriting Systems, pages 226–241, London, UK, 1993. Springer-Verlag. ISBN 3-
540-56393-8. URL http://portal.acm.org/citation.cfm?id=648339.756052.

H. Ganzinger, F. Jacquemard, and M. Veanes. Rigid reachability. In Proc. ASIAN’98,
volume 1538 of Lecture Notes in Computer Science, pages 4–??, Berlin, 1998.
Springer-Verlag.

H. Ganzinger, F. Jacquemard, and M. Veanes. Rigid reachability: The non-symmetric
form of rigid E-unification. Intl. Journal of Foundations of Computer Science, 11
(1):3–27, 2000.

A. Gascón, G. Godoy, and F. Jacquemard. Closure of tree automata languages
under innermost rewriting. In A. Middeldorp, editor, Proceedings of the 8th
International Workshop on Reduction Strategies in Rewriting and Programming
(WRS’08), volume 237 of Electronic Notes in Theoretical Computer Science, pages
23–38, Castle of Hagenberg, Austria, July 2008. Elsevier Science Publishers. URL
http://hal.inria.fr/inria-00578966/en.

128

http://portal.acm.org/citation.cfm?id=788023.789040
http://doi.acm.org/10.1145/318593.318610
http://portal.acm.org/citation.cfm?id=648339.756052
http://hal.inria.fr/inria-00578966/en

Bibliography

T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In Proc.
of 17th Int. Conf. on Automated Deduction, CADE, volume 1831 of Lecture Notes
in Computer Science, pages 271–290. Springer, 2000.

T. Genet and V. Rusu. Equational approximations for tree automata
completion. Journal of Symbolic Computation, 45(5):574 – 597,
2010. ISSN 0747-7171. doi: DOI:10.1016/j.jsc.2010.01.009. URL
http://www.sciencedirect.com/science/article/B6WM7-4Y95RK3-3/2/2124c281aa8809d67b302fd73ff20c40

Symbolic Computation in Software Science.

T. Genet and V. V. T. Tong. Reachability analysis of term rewriting systems with
timbuk. In Proceedings of the Artificial Intelligence on Logic for Programming,
LPAR ’01, pages 695–706, London, UK, 2001. Springer-Verlag. ISBN 3-540-42957-
3. URL http://portal.acm.org/citation.cfm?id=645710.664452.

A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that certify
termination of left-linear term rewriting systems. Information and Computation,
205(4):512 – 534, 2007. ISSN 0890-5401. doi: DOI:10.1016/j.ic.2006.08.007. URL
http://www.sciencedirect.com/science/article/pii/S0890540106001544.
Special Issue: 16th International Conference on Rewriting Techniques and
Applications.

R. Gilleron. Decision problems for term rewriting systems and recognizable tree
languages. In Proceedings of the 8th annual symposium on Theoretical aspects of
computer science (STACS), volume 480 of Lecture Notes in Computer Science,
pages 148–159. Springer-Verlag New York, Inc., 1991. ISBN 0-387-53709-0.

R. Gilleron and S. Tison. Regular tree languages and rewrite systems. Fundam.
Inform., 24(1/2):157–176, 1995.

G. Godoy and H. Hernandez. Undecidable properties of flat term
rewrite systems. Appl. Algebra Eng., Commun. Comput., 20:187–205,
June 2009. ISSN 0938-1279. doi: 10.1007/s00200-009-0097-1. URL
http://portal.acm.org/citation.cfm?id=1554984.1554989.

G. Godoy and E. Huntingford. Innermost-reachability and innermost-joinability are
decidable for shallow term rewrite systems. In F. Baader, editor, Proceedings of
the 18th International Conference of Rewriting Techniques and applications (RTA),
volume 4533 of Lecture Notes in Computer Science, pages 184–199. Springer, July
2007.

G. Godoy and F. Jacquemard. Unique normalization for shallow trs. In R. Treinen,
editor, 20th International Conference on Rewriting Techniques and Applica-
tions (RTA), volume 5595 of Lecture Notes in Computer Science, pages 63–
77, Brazilia, Brésil, 2009. Springer. doi: 10.1007/978-3-642-02348-4_5. URL
http://hal.inria.fr/inria-00578959/en/.

129

http://www.sciencedirect.com/science/article/B6WM7-4Y95RK3-3/2/2124c281aa8809d67b302fd73ff20c40
http://portal.acm.org/citation.cfm?id=645710.664452
http://www.sciencedirect.com/science/article/pii/S0890540106001544
http://portal.acm.org/citation.cfm?id=1554984.1554989
http://hal.inria.fr/inria-00578959/en/

Bibliography

G. Godoy and S. Tison. On the normalization and unique normalization properties
of term rewrite systems. In F. Pfenning, editor, Proc. 21st International Confer-
ence on Automated Deduction (CADE), volume 4603 of Lecture Notes in Computer
Science, pages 247–262, July 2007.

G. Godoy and A. Tiwari. Deciding fundamental properties of right-(ground or vari-
able) rewrite systems by rewrite closure. In D. Basin and M. Rusinowitch, editors,
Intl. Joint Conf. on Automated Deduction, IJCAR, volume 3097 of LNAI, pages
91–106. Springer, July 2004.

G. Godoy and A. Tiwari. Confluence of shallow right-linear rewrite systems. In C.-
H. L. Ong, editor, 19th International Workshop of Computer Science Logic, CSL,
volume 3634 of Lecture Notes in Computer Science, pages 541–556. Springer, Aug.
2005.

G. Godoy, E. Huntingford, and A.Tiwari. Termination of rewriting with right-flat
rules. In F. Baader, editor, 18th International Conference on Term Rewriting and
Applications (RTA), volume 4533 of Lecture Notes in Computer Science, pages
200–213. Springer, June 2007.

G. Godoy, O. Giménez, L. Ramos, and C. Àlvarez. The hom problem is decidable.
In L. J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC 2010, pages 485–494, Cambridge, Massachusetts, USA, 5-8
June 2010.

G. Gottlob and C. Koch. Monadic datalog and the expressive power of languages for
web information extraction. Journal of the ACM, 51(1):74–113, 2004.

J. Goubault-Larrecq. Deciding H1 by resolution. Information Processing
Letters, 95(3):401–408, Aug. 2005. doi: 10.1016/j.ipl.2005.04.007. URL
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/Goubault-h1.pdf.

J. Goubault-Larrecq. Démonstration automatique. MPRI Lecture Notes, 2006. URL
http://www.lsv.ens-cachan.fr/~goubault/DemAuto/demauto.html.

J. Goubault-Larrecq, M. Roger, and K. N. Verma. Abstraction and reso-
lution modulo ac: How to verify diffie-hellman-like protocols automatically.
Journal of Logic and Algebraic Programming, 64(2):219–251, 2005. URL
http://www2.in.tum.de/~verma/publications/GLRV-acm.pdf.

I. Guessarian. Pushdown tree automata. Mathematical Systems Theory, 16(1):237–
263, 1983.

P. Gyenizse and S. Vágvölgyi. Linear generalized semi-monadic rewrite systems
effectively preserve recognizability. Theoretical Computer Science, 194:87–122,
March 1998. ISSN 0304-3975. doi: 10.1016/S0304-3975(96)00333-7. URL
http://portal.acm.org/citation.cfm?id=271246.271255.

130

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/Goubault-h1.pdf
http://www.lsv.ens-cachan.fr/~goubault/DemAuto/demauto.html
http://www2.in.tum.de/~verma/publications/GLRV-acm.pdf
http://portal.acm.org/citation.cfm?id=271246.271255

Bibliography

P. Habermehl, R. Iosif, and T. Vojnar. Automata-based verification of programs
with tree updates. Acta Informatica, 47:1–31, 2010. ISSN 0001-5903. URL
http://dx.doi.org/10.1007/s00236-009-0108-5. 10.1007/s00236-009-0108-5.

D. Hofbauer and J. Waldmann. Deleting string rewriting systems preserve regularity.
Theor. Comput. Sci., 327(3):301–317, 2004. ISSN 0304-3975. doi: http://dx.doi.
org/10.1016/j.tcs.2004.04.009.

J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and
computation. Addison-Wesley series in computer science. Addison-Wesley, Reading,
Mass., 1979. ISBN 020102988X.

H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types
for xml. ACM Trans. Program. Lang. Syst., 27:46–90, January 2005.
ISSN 0164-0925. doi: http://doi.acm.org/10.1145/1053468.1053470. URL
http://doi.acm.org/10.1145/1053468.1053470.

G. P. Huet and J.-M. Hullot. Proofs by induction in equational theories with con-
structors. J. Comput. Syst. Sci., 25(2):239–266, 1982.

F. Jacquemard. Decidable approximations of term rewriting systems. In
H. Ganzinger, editor, Proceedings of the 7th International Conference on Rewriting
Techniques and Applications (RTA), volume 1103 of Lecture Notes in Computer
Science, pages 362–376. Springer, 1996.

F. Jacquemard. Reachability and confluence are undecidable for flat term rewriting
systems. Inf. Process. Lett., 87(5):265–270, 2003.

F. Jacquemard and M. Rusinowitch. Closure of Hedge-automata languages by
Hedge rewriting. In A. Voronkov, editor, Proceedings of the 19th Interna-
tional Conference on Rewriting Techniques and Applications (RTA’08), vol-
ume 5117 of Lecture Notes in Computer Science, pages 157–171, Hagenberg,
Austria, July 2008a. Springer. doi: 10.1007/978-3-540-70590-1_11. URL
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/JR-rta08.pdf.

F. Jacquemard and M. Rusinowitch. Rewrite closure of Hedge-
automata languages. Research Report LSV-08-05, Laboratoire Spé-
cification et Vérification, ENS Cachan, France, 2008b. URL
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2008-05.pdf.

F. Jacquemard and M. Rusinowitch. Rewrite-based verification of xml updates. In
Proceedings of the 12th ACM SIGPLAN International Symposium on Principles
and Practice of Declarative Programming (PPDP), PPDP ’10, pages 119–130, New
York, NY, USA, 2010. ACM. ISBN 978-1-4503-0132-9. doi: http://doi.acm.org/
10.1145/1836089.1836105.

131

http://dx.doi.org/10.1007/s00236-009-0108-5
http://doi.acm.org/10.1145/1053468.1053470
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/JR-rta08.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/ rr-lsv-2008-05.pdf

Bibliography

F. Jacquemard, C. Meyer, and C. Weidenbach. Unification in Extensions of Shallow
Equational Theories. In 9th Int. Conf. on Rewriting Techniques and Applications,
RTA, volume 1379 of Lecture Notes in Computer Science, pages 76–90. Springer,
1998.

F. Jacquemard, M. Rusinowitch, and L. Vigneron. Tree automata with equality
constraints modulo equational theories. In U. Furbach and N. Shankar, editors,
Proceedings of the 3rd International Joint Conference on Automated Reasoning
(IJCAR’06), volume 4130 of Lecture Notes in Artificial Intelligence, pages 557–571,
Seattle, Washington, USA, Aug. 2006. Springer-Verlag. doi: 10.1007/11814771_45.

F. Jacquemard, M. Rusinowitch, and L. Vigneron. Tree automata with equal-
ity constraints modulo equational theories. Journal of Logic and Algebraic Pro-
gramming, 75(2):182–208, Apr. 2008a. doi: 10.1016/j.jlap.2007.10.006. URL
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/JRV-jlap08.pdf.

F. Jacquemard, M. Rusinowitch, and L. Vigneron. Tace: Library of tree automata
with constraints, 2008b. URL http://tace.gforge.inria.fr.

F. Jacquemard, F. Klay, and C. Vacher. Rigid tree automata. In A. Horia Dediu,
A. Mihai Ionescu, and C. Martín-Vide, editors, Proceedings of the 3rd International
Conference on Language and Automata Theory and Applications (LATA’09), vol-
ume 5457 of Lecture Notes in Computer Science, pages 446–457, Tarragona, Spain,
Apr. 2009. Springer.

F. Jacquemard, F. Klay, and C. Vacher. Rigid tree automata and applications. Inf.
Comput., 209(3):486–512, 2011a.

F. Jacquemard, Y. Kojima, and M. Sakai. Controlled term rewriting. In C. Tinelli
and V. Sofronie-Stokkermans, editors, Proceedings of the 8th International Sympo-
sium Frontiers of Combining Systems (FroCoS), volume 6989 of Lecture Notes in
Artificial Intelligence, pages 179–194, Heidelberg, 2011b. Springer.

F. Jacquemard, E. Lozes, R. Treinen, and J. Villard. Multiple congru-
ence relations, first-order theories on terms, and the frames of the ap-
plied pi-calculus. In Theory of Security and Applications (TOSCA), Lecture
Notes in Computer Science, Saarbrücken, Allemagne, 2011c. Springer. URL
http://hal.inria.fr/inria-00578896/en/. To appear.

N. D. Jones and N. Andersen. Flow analysis of lazy higher-order
functional programs. Theoretical Computer Science, 375(1-3):120 –
136, 2007. ISSN 0304-3975. doi: 10.1016/j.tcs.2006.12.030. URL
http://www.sciencedirect.com/science/article/B6V1G-4MPC46J-5/2/9270a15e14345e4de06b194031a1010d

J.-P. Jouannaud and E. Kounalis. Proof by induction in equational theories without
constructors. In In Proc. 1st IEEE Symposium on Logic in Computer Science,
1986.

132

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/JRV-jlap08.pdf
http://tace.gforge.inria.fr
http://hal.inria.fr/inria-00578896/en/
http://www.sciencedirect.com/science/article/B6V1G-4MPC46J-5/2/9270a15e14345e4de06b194031a1010d

Bibliography

M. Jurdzinski and R. Lazic. Alternation-free modal mu-calculus for data trees. In
Proceedings 22nd IEEE Symposium on Logic in Computer Science (LICS), pages
131–140. IEEE Computer Society, 2007.

D. Kapur and D. R. Musser. Proof by consistency. The Artificial Intelligence Journal,
31:125–157, 1987.

M. Kay. Xsl transformations (xslt) 2.0. W3c working draft, World Wide Web Con-
sortium, 2003. Available at http://www.w3.org/TR/xslt20.

C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic constraints.
Revue d’Intelligence Artificielle, 4(3):9–52, 1990. Special issue on Automatic De-
duction.

F. Klaedtke and H. Ruess. Parikh automata and monadic second-order logics with
linear cardinality constraints. Technical Report 177, Intitute of Computer Science
at Freiburg University, 2002.

N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS, Department
of Computer Science, Aarhus University, January 2001. Notes Series NS-01-1.
Available from http://www.brics.dk/mona/. Revision of BRICS NS-98-3.

C. Koch. Efficient processing of expressive node-selecting queries on xml data
in secondary storage: a tree automata-based approach. In Proceedings of the
29th international conference on Very large data bases - Volume 29, VLDB
’2003, pages 249–260. VLDB Endowment, 2003. ISBN 0-12-722442-4. URL
http://portal.acm.org/citation.cfm?id=1315451.1315474.

J. Kochems and L. Ong. Improved functional flow and reachability analyses using
indexed linear tree grammars. In M. Schmidt-Schauß, editor, Proceedings of the
22nd International Conference on Rewriting Techniques and Applications (RTA),
volume 10 of LIPIcs, pages 187–202, Novi Sad, Serbia, 2011. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik.

Y. Kojima and M. Sakai. Innermost reachability and context sensitive reachabil-
ity properties are decidable for linear right-shallow term rewriting systems. In
A. Voronkov, editor, Proceedings of the 19th International Conference on Rewrit-
ing Techniques and Applications (RTA), volume 5117 of Lecture Notes in Computer
Science, pages 187–201. Springer, 2008. ISBN 978-3-540-70588-8.

G. Kucherov and M. Tajine. Decidability of regularity and related properties of
ground normal form languages. Information and Computation, 118(1):91–100,
April 1995.

S. Y. Kuroda. Classes of languages and linear-bounded automata. Information and
Control, 7:207–223, 1964.

133

http://www.w3.org/TR/xslt20
http://portal.acm.org/citation.cfm?id=1315451.1315474

Bibliography

C. Löding. Ground tree rewriting graphs of bounded tree width. In Proceedings of the
19th Annual Symposium on Theoretical Aspects of Computer Science (STACS’02),
volume 2285 of Lecture Notes in Computer Science, pages 559–570. Springer, 2002.

C. Löding and A. Spelten. Transition graphs of rewriting systems over unranked
trees. In L. Kucera and A. Kucera, editors, Mathematical Foundations of Com-
puter Science 2007, 32nd International Symposium, MFCS 2007, Ceský Krumlov,
Czech Republic, August 26-31, 2007, Proceedings, volume 4708 of Lecture Notes in
Computer Science, pages 67–77, 2007. ISBN 978-3-540-74455-9.

C. Löding and K. Wong. On nondeterministic unranked tree automata with sibling
constraints. In R. Kannan and K. N. Kumar, editors, IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
volume 4 of Leibniz International Proceedings in Informatics (LIPIcs), pages 311–
322. Schloss Dagstuhl - Leibniz-Zentrum für Informatik., 2009.

M. Lohrey and S. Maneth. The complexity of tree automata and xpath
on grammar-compressed trees. Theoretical Computer Science, 363:196–210,
October 2006. ISSN 0304-3975. doi: 10.1016/j.tcs.2006.07.024. URL
http://portal.acm.org/citation.cfm?id=1217607.1217615.

S. Lucas. Context-sensitive rewriting strategies. Inf. Comput., 178:294–343, Oc-
tober 2002. ISSN 0890-5401. doi: 10.1016/S0890-5401(02)93176-7. URL
http://portal.acm.org/citation.cfm?id=603645.603659.

D. Lugiez. Multitree automata that count. Theor. Comput. Sci., 333:225–
263, March 2005. ISSN 0304-3975. doi: 10.1016/j.tcs.2004.10.023. URL
http://portal.acm.org/citation.cfm?id=1196006.1196014.

D. Lugiez. Forward analysis of dynamic network of pushdown systems is easier with-
out order. In Proceedings of the 3rd International Workshop on Reachability Prob-
lems, RP ’09, pages 127–140, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN
978-3-642-04419-9. doi: http://dx.doi.org/10.1007/978-3-642-04420-5_13. URL
http://dx.doi.org/10.1007/978-3-642-04420-5_13.

D. Lugiez and P. Schnoebelen. The Regular Viewpoint on PA-Processes. Theoretical
Computer Science, 274(1-2):89–115, 2002.

S. Maneth, A. Berlea, T. Perst, and H. Seidl. Xml type checking with macro tree
transducers. In 24th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems (PODS), pages 283–294, 2005.

S. Maneth, T. Perst, and H. Seidl. Exact xml type checking in polynomial time. In
T. Schwentick and D. Suciu, editors, Proceedings of the 11th International Confer-
ence on Database Theory (ICDT 2007), volume 4353 of Lecture Notes in Computer
Science, pages 254–268. Springer, 2007. ISBN 3-540-69269-X.

134

http://portal.acm.org/citation.cfm?id=1217607.1217615
http://portal.acm.org/citation.cfm?id=603645.603659
http://portal.acm.org/citation.cfm?id=1196006.1196014
http://dx.doi.org/10.1007/978-3-642-04420-5_13

Bibliography

W. Martens and F. Neven. Frontiers of tractability for typechecking simple xml trans-
formations. In Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), pages 23–34. ACM, 2004.

M. Marx. Xpath with conditional axis relations. In E. Bertino, S. Christodoulakis,
D. Plexousakis, V. Christophides, M. Koubarakis, K. Böhm, and E. Ferrari, editors,
Advances in Database Technology - EDBT 2004, volume 2992 of Lecture Notes
in Computer Science, pages 579–580. Springer Berlin / Heidelberg, 2004. URL
http://dx.doi.org/10.1007/978-3-540-24741-8_28.

T. Milo, D. Suciu, and V. Vianu. Typechecking for xml transformers. J. of Comp.
Syst. Sci., 66(1):66–97, 2003.

I. Mitsuhashi, M. Oyamaguchi, and F. Jacquemard. The confluence problem for flat
TRSs. In Proc. 8th Intl. Conf. on Artificial Intelligence and Symbolic Computation
(AISC’06), volume 4120 of LNAI, pages 68–81. Springer, 2006.

J. Mongy. Transformation de noyaux reconnaissables d’arbres. Forêts RATEG. PhD
thesis, LIFL, Université des Science et Technologies de Lille, 1981.

N. Moore. Computational complexity of the problem of tree generation under fine-
grained access control policies. Inf. Comput., 209(3):548–567, 2011.

M. Murata. Hedge automata: a formal model for XML schemata. Technical report,
Fuji Xerox INformation Systems, 1999.

M. Murata. Hedge automata: a formal model for XML schemata. Web page, 2000.
URL citeseer.nj.nec.com/murata99hedge.html.

M. Murata, D. Lee, and M. Mani. Taxonomy of xml schema languages using formal
language theory. In In Extreme Markup Languages, 2000.

M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of xml schema languages
using formal language theory. ACM Trans. Internet Technol., 5:660–704, November
2005. ISSN 1533-5399. doi: http://doi.acm.org/10.1145/1111627.1111631. URL
http://doi.acm.org/10.1145/1111627.1111631.

M. Murata, A. Tozawa, M. Kudo, and S. Hada. Xml access control using static
analysis. ACM Trans. Inf. Syst. Secur., 9(3):292–324, 2006. ISSN 1094-9224. doi:
http://doi.acm.org/10.1145/1178618.1178621.

T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting systems.
Inf. Comput., 178(2):499–514, 2002.

A. Neumann and H. Seidl. Locating matches of tree patterns in forests. In V. Arvind
and R. Ramanujam, editors, Proceedings of the 18th Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), volume 1530
of Lecture Notes in Computer Science, pages 134–145, Chennai, India, December
17-19 1998. Springer. ISBN 3-540-65384-8.

135

http://dx.doi.org/10.1007/978-3-540-24741-8_28
citeseer.nj.nec.com/murata99hedge.html
http://doi.acm.org/10.1145/1111627.1111631

Bibliography

F. Neven and T. Schwentick. Query automata over finite trees. Theoretical Computer
Science, 275(1-2):633–674, 2002.

F. Neven and J. Van den Bussche. Expressiveness of structured document query
languages based on attribute grammars. Journal of the ACM, 49(1):56–100, 2002.

F. Neven, T. Schwentick, and V. Vianu. Towards regular languages over
infinite alphabets. In Proceedings of the 26th International Symposium
on Mathematical Foundations of Computer Science, MFCS ’01, pages 560–
572, London, UK, 2001. Springer-Verlag. ISBN 3-540-42496-2. URL
http://portal.acm.org/citation.cfm?id=645730.668039.

J. Niehren, L. Planque, J.-M. Talbot, and S. Tison. N-ary queries by tree automata.
In Proceedings of the 10th International Symposium on Database Programming Lan-
guages (DBPL), volume 3774 of Lecture Notes in Computer Science, pages 217–231.
Springer, 2005.

F. Nielson, H. R. Nielson, and H. Seidl. Cryptographic Analysis in Cubic Time.
Electr. Notes Theor. Comput. Sci., 62, 2001.

F. Nielson, H. Riis Nielson, and H. Seidl. Normalizable Horn Clauses, Strongly
Recognizable Relations, and Spi. In Static Analysis, 9th Int. Symp., SAS, volume
2477 of Lecture Notes in Computer Science, pages 20–35. Springer, 2002.

R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving, chapter
Handbook of Automated Reasoning, Volume I, Chapter 7, pages 371–443. Elsevier
Science and MIT Press, 2001.

H. Ohsaki. Beyond the regularity: Equational tree automata for associative and
commutative theories. In Proceedings of CSL 2001, volume 2142 of Lecture Notes
in Computer Science. Springer, 2001.

H. Ohsaki and T. Takai. Decidability and Closure Properties of Equational Tree
Languages. In 13th Int. Conf. on Rewriting Techniques and Applications, RTA,
volume 2378 of LNCS, pages 114–128. Springer, 2002a.

H. Ohsaki and T. Takai. Decidability and closure properties of equational tree lan-
guages. In 13th Int. Conf. on Rewriting Techniques and Applications (RTA), vol-
ume 2378 of Lecture Notes in Computer Science, pages 114–128. Springer, 2002b.

H. Ohsaki, H. Seki, and T. Takai. Recognizing boolean closed a-tree languages with
membership conditional rewriting mechanism. In Proc. of the 14th Int. Conference
on Rewriting Techniques and Applications (RTA 2003), volume 2706 of Lecture
Notes in Computer Science, pages 483–498. Springer Verlag, 2003. ISBN 3-540-
40254-3.

136

http://portal.acm.org/citation.cfm?id=645730.668039

Bibliography

H. Ohsaki, J.-M. Talbot, S. Tison, and Y. Roos. Monotone AC-tree automata.
In 12th International Conference on Logic for Programming Artificial Intelli-
gence and Reasoning, Lecture Notes in Computer Science. Springer, 2005. URL
http://www.lifl.fr/~yroos/bib/Monotone-AC-Tree-Automata.pdf.

M. Penttonen. One-sided and two-sided context in formal grammars. Information
and Control, 25:371–392, 1974.

T. Perst and H. Seidl. Macro forest transducers. Information Processing Letters, 89:
141–149, 2004.

Th. Place. Decidable Characterizations for Tree Logics. Thèse de doctorat, Lab-
oratoire Spécification et Vérification, ENS Cachan, France, Dec. 2010. URL
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/place-phd.pdf.

P. Réty and J. Vuotto. Tree automata for rewrite strategies. J. Symb. Comput., 40:
749–794, July 2005. ISSN 0747-7171. doi: http://dx.doi.org/10.1016/j.jsc.2004.12.
008. URL http://dx.doi.org/10.1016/j.jsc.2004.12.008.

A. Reußand H. Seidl. Bottom-up tree automata with term constraints. In Pro-
ceedings of the 17th international conference on Logic for programming, ar-
tificial intelligence, and reasoning, LPAR’10, pages 581–593, Berlin, Heidel-
berg, 2010. Springer-Verlag. ISBN 3-642-16241-X, 978-3-642-16241-1. URL
http://portal.acm.org/citation.cfm?id=1928380.1928421.

A. Riazanov and A. Voronkov. Splitting Without Backtracking. In Proc. of the
17th Int. Joint Conf. on Artificial Intelligence, IJCAI, pages 611–617. Morgan
Kaufmann, 2001.

J. Robie, D. Chamberlin, M. Dyck, D. Florescu, J. Melton, and J. Siméon.
Xquery update facility 1.0. Technical report, W3C, March 2011. URL
http://www.w3.org/TR/xquery-update-10/.

K. Salomaa. Deterministic tree pushdown automata and monadic tree rewriting
systems. J. Comput. Syst. Sci., 37(3):367–394, 1988.

K. M. Schimpf and J. Gallier. Tree pushdown automata. Journal of Computer and
System Sciences, 30(1):25–40, 1985.

T. Schwentick. Automata for xml - a survey. J. Comput. Syst. Sci., 73(3):289–315,
2007.

S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische Universität
München, 2002.

H. Seidl. Haskell overloading is dexptime-complete. Information Processing Letters,
52(2):57–60, 1994. ISSN 0020-0190. doi: http://dx.doi.org/10.1016/0020-0190(94)
00130-8.

137

http://www.lifl.fr/~yroos/bib/Monotone-AC-Tree-Automata.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/place-phd.pdf
http://dx.doi.org/10.1016/j.jsc.2004.12.008
http://portal.acm.org/citation.cfm?id=1928380.1928421
http://www.w3.org/TR/xquery-update-10/

Bibliography

H. Seidl. Program Analysis through Finite Tree Automata. In S. Maneth, editor,
Implementation and Application of Automata, volume 5642 of Lecture Notes in
Computer Science, page 3, Sydney, Australia, July 2009. Springer.

H. Seidl and K. N. Verma. Cryptographic Protocol Verification Using Tractable
Classes of Horn Clauses. In T. W. Reps, M. Sagiv, and J. Bauer, editors, Program
Analysis and Compilation, Theory and Practice, volume 4444 of Lecture Notes in
Computer Science, pages 97–119. Springer, 2007.

H. Seidl and K. N. Verma. Flat and one-variable clauses: Complexity of verifying
cryptographic protocols with single blind copying. ACM Trans. Comput. Log., 9
(4), 2008.

H. Seidl and K. N. Verma. Flat and one-variable clauses for single blind copying
protocols. In R. Treinen, editor, Proceedings 20th International Conference on
Rewriting Techniques and Applications (RTA), volume 5595 of Lecture Notes in
Computer Science, pages 118–132. Springer, 2009. ISBN 978-3-642-02347-7.

H. Seidl, T. Schwentick, and A. Muscholl. Numerical document queries. In 22nd
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS), pages 155–166. ACM Press, 2003.

H. Seidl, T. Schwentick, A. Muscholl, and P. Habermehl. Counting in trees for free.
In In Proc. ICALP’04, volume 3142 of LNCS, pages 1136–1149. Springer-Verlag,
2004.

H. Seidl, T. Schwentick, and A. Muscholl. Counting in trees. In J. Flum, E. Grädel,
and T. Wilke, editors, Logic and Automata: History and Perspectives [in Honor of
Wolfgang Thomas], volume 2 of Texts in Logic and Games, pages 575–612. Ams-
terdam University Press, 2008. ISBN 978-90-5356-576-6.

H. Seki, T. Takai, Y. Fujinaka, and Y. Kaji. Layered Transducing Term Rewriting
System and Its Recognizability Preserving Property. In Int. Conf. on Rewriting
Techniques and Applications (RTA), volume 2378 of Lecture Notes in Computer
Science, pages 98–113. Springer, 2002.

G. Sénizergues. Formal languages and word-rewriting. In H. Comon and J.-P. Jouan-
naud, editors, Term Rewriting, Advanced Course of French Spring School of The-
oretical Computer Science, Font Romeux, France, volume 909 of Lecture Notes in
Computer Science, pages 75–94. Springer, 1993.

T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping term rewriting
systems effectively preserve recognizability. In 11th International Conference on
Rewriting Techniques and Applications (RTA), volume 1833 of Lecture Notes in
Computer Science, pages 246–260. Springer, 2000.

J. Thatcher and J. Wright. Generalized finite automata theory with an application
to a decision problem of second-order logic. Math. Syst. Theory, 2(1):57–81, 1968.

138

Bibliography

W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, edi-
tors, Handbook of Formal Languages, volume 3, chapter 7, pages 389–455. Springer
Verlag, 1997.

S. Tison. Tree automata and term rewrite systems. Invited tutorial at the 11th Int.
Conf. on Rewriting Techniques and Applications, RTA, 2000.

M. Tommasi. Automates d’arbres avec tests d’égalité entre cousins germains. Mé-
moire de DEA, Univ. Lille I, 1992.

T. Touili. Computing transitive closures of hedge transformations. In In Proc. 1st
International Workshop on Verification and Evaluation of Computer and Commu-
nication Systems (VECOS’07), eWIC Series. British Computer Society, 2007.

T. Truderung. Selecting theories and recursive protocols. In Proceedings of the 16th
International Conference on Concurrency Theory (CONCUR), volume 3653 of Lec-
ture Notes in Computer Science, pages 217–232. Springer, 2005.

C. Vacher. Automates à contraintes globales pour la vérification
de propriétés de sécurité. Thèse de doctorat, Laboratoire Spéci-
fication et Vérification, ENS Cachan, France, Dec. 2010. URL
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/vacher-phd.pdf.

S. Vágvölgyi and R. Gilleron. For a rewrite system it is decidable whether the set
of irreducible ground terms is recognizable. Bulletin of the EATCS, 48:197–209,
1992. URL http://hal.inria.fr/inria-00538877/en/.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. Logic in Computer Science, pages 332–344, 1986. URL
http://www.cs.utep.edu/sroach/F07-5383/AutomataTheoretic-Approach-SPIN-lics86.pdf.

M. Veanes. On computational complexity of basic decision problems of finite tree
automata. Technical report, Uppsala Computing Science Department, 1997.

K. N. Verma. Two-Way Equational Tree Automata. PhD thesis, ENS Cachan, Sept.
2003.

K. N. Verma and J. Goubault-Larrecq. Alternating two-way
AC-tree automata. Information and Computation, 205(6):
817–869, June 2007a. doi: 10.1016/j.ic.2006.12.006. URL
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/VG-icomp07.pdf.

K. N. Verma and J. Goubault-Larrecq. Alternating two-way
AC-tree automata. Information and Computation, 205(6):
817–869, June 2007b. doi: 10.1016/j.ic.2006.12.006. URL
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/VG-icomp07.pdf.

139

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/vacher-phd.pdf
http://hal.inria.fr/inria-00538877/en/
http://www.cs.utep.edu/sroach/F07-5383/AutomataTheoretic-Approach-SPIN-lics86.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/VG-icomp07.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/VG-icomp07.pdf

Bibliography

K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational horn
clauses. In 20th Int. Conf. on Automated Deduction (CADE), volume 3632 of
LNCS, pages 337–352. Springer, 2005.

R. Verma. Complexity of normal form properties and reductions for rewriting prob-
lems. Fundamenta Informaticae, 2008. Accepted for publication.

R. M. Verma, M. Rusinowitch, and D. Lugiez. Algorithms and reductions for rewrit-
ing problems. Fundam. Inf., 46:257–276, August 2001. ISSN 0169-2968. URL
http://portal.acm.org/citation.cfm?id=1219995.1220000.

V. Vianu. A web odyssey: from codd to xml. In Proceedings of
the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, PODS ’01, pages 1–15, New York, NY, USA, 2001. ACM.
ISBN 1-58113-361-8. doi: http://doi.acm.org/10.1145/375551.375554. URL
http://doi.acm.org/10.1145/375551.375554.

Y. Wang and M. Sakai. Decidability of termination for semi-constructor trss, left-
linear shallow trss and related systems. In Proceedings of the 17th International
Conference on Rewriting Techniques and Applications (RTA), volume 4098 of Lec-
ture Notes in Computer Science, pages 343–356. Springer, 2006.

C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski.
Spass version 3.5. In 22nd International Conference on Automated Deduction
(CADE), volume 5663 of Lecture Notes in Computer Science, pages 140–145.
Springer, 2009.

P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces. In
Proceedings of the 10th International Conference on Computer Aided Verification,
CAV ’98, pages 88–97, London, UK, 1998. Springer-Verlag. ISBN 3-540-64608-6.
URL http://portal.acm.org/citation.cfm?id=647767.733630.

K. Wong and C. Löding. Unranked tree automata with sibling equalities and dise-
qualities. In Proceedings of 34th International Colloquium on Automata, Languages
and Programming (ICALP), volume 4596 of Lecture Notes in Computer Science,
pages 875–887. Springer, 2007. ISBN 978-3-540-73419-2.

N. B. Youssef, A. Bouhoula, and F. Jacquemard. Automatic verification of confor-
mance of firewall configurations to security policies. In Proceedings of the 14th IEEE
Symposium on Computers and Communications (ISCC), pages 526–531. IEEE,
2009.

H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A mechanizable induction principle
for equational specifications. In In Proc. 9th Int. Conf. on Automated Deduction,
volume 310 of Lecture Notes in Computer Science, pages 162–181. Springer, 1988.

140

http://portal.acm.org/citation.cfm?id=1219995.1220000
http://doi.acm.org/10.1145/375551.375554
http://portal.acm.org/citation.cfm?id=647767.733630

Index

H(Σ,X), 79
L(A), 13
L(A, q), 31
L(A, q), 13
M(Σ,X), 94
NFR, 24
Pos(t), 12
T (Σ,X), 12
O(Σ,X), 79
U(Σ,X), 94
≈, 51, 64
≈irr, 51
≈ref , 52
≡, 44
h(t), 12
6≈irr, 52
6≈ref , 52
6≈, 51, 64
‖ . ‖N, 59
‖ . ‖Z, 59
post∗, 67
pre∗, 67
ε, 12
sel(A, t), 99
|.|N, 59
|.|Z, 59
ε-transition, 80
vars(t), 12
t[s]p, 13
t|p, 13
DTD, 61

non recursive, 93

PGHRS, 93
PHRS, 86

automatic clauses, 33

basic strategy, 32
binary encodings, 81

clauses
(alt), 46
(bidi), 46
(ab), 38
(bin), 43
(deep), 36
(eq), 35
(fb), 38
(pda-ε), 41
(read), 40
(write), 48
(rig), 48
(rta), 54
(aut′), 36
(aut), 34
(tca), 47
definite, 31
goal, 31
positive, 31
rigid, 47

collapsing, 40
collapsing transition, 80
common ancestor property, 67
complete tree automata, 14, 18
confluence, 73

141

Index

confluent TRS, 24
congruence, 15
constrained and conditional rewrite rules,

28
constructor function symbols, 27
context, 13
CF-HA, 79
context-free hedge automata (CF-HA),

79
CFTG, 40
CTRS, 99
convergent TRS, 24
currying, 81

DAG, 55
DA, 55
DAG automata (DA), 55
data tree, 62, 111
decision problem

emptiness, 16
emptiness of intersection, 17
finiteness, 16
inclusion, 17
joinability, 73, 83
membership, 16
membership modulo, 77
membership to the intersection of

instances, 31
model checking, 66, 72, 83
reachability, 73, 83
regularity, 22
typechecking, 79
unique normalization, 74
universality, 17

defined symbols, 27
deterministic tree automata, 14, 18

embedding, 14, 24
emptiness, 16
equational Horn clauses, 25
erasing (CF tree grammar production),

40
EMSO, 65

finiteness, 16

foreign key constraint, 62
free constructors, 28

global equality constraints, 51
ground reducibility, 21, 27
ground term, 12

H1, 46
hedge, 79
HA, 79
hedge automata (HA), 61, 79
hedge rewriting system, 82

context-free, 83
inverse context-free, 83
parametrized, 86
parametrized with global constraints,

93
prefix, 83

HRS, 82
height, 12
Herbrand model, 25, 31
Horn clauses, 25, 31

inclusion constraint, 62, 111
inconsistency (ACP), 91
inductive theorem, 25
instance, 13

joinability, 67

key constraint, 62

language, 80, 94, 106
linear inequality, 59, 65
linear term, 12

membership, 16
monadic, 35
monadic second order logic, 64
MSO, 64
MRS, 95
multiset rewriting system (MRS), 95

natural linear inequality, 59, 65
normal form, 24

paramodulation, 32

142

Index

position, 12
positive TAGC, 53
Presburger arithmetic, 94
Presburger automata, 59
PTA, 94
PTA, 41

ranked term, 12
reduction automata, 19
RA, 19
reduction ordering, 32
regular, 13
regular binary relation, 43
regular model checking, 66
replacement, 13
resolution, 46
rigid clauses, 47
RTA, 53
rigid variables, 47
run, 18, 52, 55

security view, 92
selection, 32
selection automata

prefix, 99
SA, 99
selection automata (SA), 99
signature, 12
stack language, 41
strategy

basic, 32
bottom-up, 96
bounded, 96
call-by-need, 96
context-sensitive, 96, 100
innermost, 97, 100
ordered, 32
selection, 32

structural equality, 44
substitution, 13, 82

grounding, 13
subterm, 13
successful run, 13
sufficient completeness, 28

term, 12
ground, 12
linear, 12
shallow, 12

term rewriting system, 24, 67
bounded class, 96
collapsing, 40, 67
context-free, 75
controlled (CTRS), 99
finite path overlapping, 71
flat, 67, 71, 73, 76
generalized semi-monadic, 71
ground, 67, 71
invisibly pushdown, 77
layered transducing, 69
layered-transducing, 72
linear, 67
modulo associativity, 86
monadic, 35, 71
monotonic, 101
recursive prefix controlled, 102
semi-monadic, 71
shallow, 67, 71

TRS, 24
terminating TRS, 24
tree automata, 13

alternating, 46
clausal, 31
language, 13, 31, 41, 52
modulo an equational theory (TAE),

35
Presburger (PTA), 94
pushdown (PTA), 41
rigid (RTA), 53
two-way, 46
visibly pushdown (VPTA), 41
visibly pushdown with R-constraints

(VPTAR), 44
visibly pushdown with equality con-

straints (VPTA=), 44
visibly pushdown with structural

constraints (VPTA≡), 44
with brother constraints (TAB), 19

143

Index

with disequality constraints (TAC 6=),
21

with equality and disequality con-
straints (TAC), 18

with equality constraints (TAC=),
22

with equational constraints (TAD),
36

with equational constraints mod-
ulo an equational theory (TADE),
38

with global constraints (TAGC), 52
with global equality and disequal-

ity constraints (TAGED), 52
with term constraints (TCA), 47

TA, 13
TAE, 35
TAB, 19
TAC 6=, 21
TAC, 18
TAC=, 22
TAD, 36
TADE, 38
TAGC, 52
TAGED, 52
(TCA), 47
tree grammar, 40

context-free (CFTG), 40
context-free unranked, 106
context-sensitive, 101

typechecking, 67, 78

unary signature, 12
universality, 17
unranked unordered tree, 94
UTASC, 114

variable renaming, 13
view, 92
VPTA, 41
VPTAR, 44
VPTA=, 44
VPTA≡, 44

XML access control policy, 91

DTD based, 92
rule based, 91

XQuery Update Facility, 88

144

	Contents
	Introduction
	Classes of Extended Tree Automata
	Standard Tree Automata
	Tree Automata with Local Constraints
	Local Equalities and Disequalities Constraints
	Reduction Automata
	Restriction to Disequality Constraints
	Deciding Regularity
	Applications to First Order Theorem Proving

	Tree Automata as Sets of Horn Clauses
	Automatic Clauses
	Automatic Clauses Modulo an Equational Theory
	Automata Clauses with Equality Constraints
	Automata Clauses with equality constraints modulo equational theories
	Pushdown and Visibly Pushdown Tree Automata
	Related Models
	Application to the verification of communicating processes

	Tree Automata with Global Constraints
	TAGED
	Rigid Tree Automata
	DAG Automata
	Boolean combinations of equalities and disequalities
	Arithmetic Constraints
	Application to the Static Analysis of XML Specifications

	Verification of Infinite State Systems
	Term Rewriting
	Ground Term Rewriting Systems
	Flat and Shallow Term Rewriting Systems
	Context-Free Term Rewriting Systems
	Closure of Languages of Tree Automata with Constraints

	Unranked Tree Rewriting
	Hedge Automata and CF-Hedge Automata
	Hedge Rewriting Systems
	Parametrized Hedge Rewriting Systems
	Application: Analyze of XQuery Updates
	Application: Analyze of XML Access Control Policies
	Unranked Unordered Tree Rewriting Systems

	Rewrite Strategies
	Innermost Strategies
	Context-Controlled Rewriting
	CF Unranked Tree Languages

	Perspectives
	Generalized Constraints for Tree Automata
	Equality Modulo Equational Theories
	Ordering and other Constraints
	Separated Constraints

	Data Trees and Tree Isomorphisms
	Equality of Data Values and Subtrees
	Tree Automata with Global Constraints for Data Trees
	Data Tree Rewriting
	Generalized Global Constraints for Tree Automata

	Bibliography
	Index

