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L’Université de Rennes 1
Institut des Sciences et Technologies

de l’Information et de la Communication (ISTIC)

par

François TAÏANI
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CHAPTER 1

Foreword

This document summarises part of my research over the last six years. It
focuses on the programmability of complex distributed systems, i.e. on ap-
proaches and tools to help developers design, develop and analyse large-
scale and composite networked applications. The seeds of this research
were planted ten years ago during my doctoral studies at LAAS-CNRS,
in Toulouse, France. The works I present cover my postdoctoral stay at
AT&T Labs, in Florham-Park, New Jersey, in 2004, and the following years
at Lancaster University, in the United Kingdom, from 2005 to 2010.

Although the period this document covers has been incredibly rich, it
would not have occurred without a spell in the German subsidiary of ILOG,
an INRIA spin-off company (now a part of IBM) in the late nineties. ILOG
would only recruit doctors in its development teams. This prompted my
career turn. The bankruptcy of my initial Ph.D. sponsor, and a lucky en-
counter with Jean-Charles Fabre finally set me off into the fascinating field
of distributed computer systems.

Since then, I have sought to better understand, from a developer’s point
of view, some of the challenges inherent to the development of modern dis-
tributed applications. Over the last six years since I left LAAS, this part of
my research has been organised around two primary axes (Figure 1.1 on the
following page):
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Figure 1.1: Research topics and their relationships over the period 2000-
2010. Topics in bold (solid bars) are those presented in this document.

• Axis 1: Distributed Programming.
In this first line of research, I have sought to identify reusable mechanisms
and abstractions in large-scale decentralised systems, with a focus on
peer-to-peer overlay networks, Wireless Sensor Networks (WSNs), and
gossip protocols.

• Axis 2: Experimental Software Engineering
In parallel, I have continued the work started in my Ph.D. on modern pro-
gramming techniques, and on their effects on contemporary middleware.
This line of research contains two strands:

– I have pursued my analysis of industry-grade middleware to explore
the challenges arising from high levels of reuse in modern distributed
systems, in particular in terms of performance, analysis and compre-
hension.

– As a continuation of my Ph.D. work on reflective architectures, I have
also investigated the reliability of aspect-oriented programs, a technol-
ogy closely related to reflection, first by looking at analysis approaches
to detect undesirable aspect interactions, and then by developing mea-
sures to better assess the fragility of aspect-oriented mechanisms.

Although I only develop some of these topics in this document (marked in
bold in Figure 1.1), these two axes have been closely related in my research,
and, can be understood as representing different facets of the same problem:
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Foreword

As distributed computer systems grow in size, complexity, and dependen-
cies, they require higher levels of organisation and abstraction, prompting
my research on reusable mechanisms and abstractions for distributed pro-
gramming (first axis in Figure 1.1). Ultimately this line of research seeks to
promote composite architectures made of a large number of reusable third-
party constituents1.

Reusable programming abstractions are not, however, without problems,
which motivated my work in experimental software engineering (second axis
in Figure 1.1): First, because reusable abstractions seek to make their im-
plementation transparent, they make it harder for developers to analyse
non-functional emergent properties, a particularly problematic situation in
distributed systems. Second, advanced composition mechanisms (e.g. as-
pects and reflective architectures) that have been proposed to encapsulate
reusable entities (in particular in distributed middleware and systems) can
also make a system’s structure more difficult to analyse and develop. I have
used my research in these areas to better understand the implication of high
reuse in modern middleware, and thus inform my work on abstractions.

In the following I provide a rapid overview of my research trajectory along
these two research axes, before moving on to Chapter 2, which introduces
the contributions included in this document.

In my Ph.D. [Täıani (2004)], performed at LAAS-CNRS in Toulouse be-
tween 2000 and 2004, I investigated the use of reflection to implement fault-
tolerance mechanisms in complex multi-layer systems. Reflection is the abil-
ity of a computing system to act upon itself as part of its own computa-
tion [Smith (1984); Maes (1987)]. Reflection is primarily an architectural
paradigm that guides a system’s organisation into a set of principled in-
terfaces and components, and seeks to promote modularity, composability,
and reuse. As such, it is particularly well adapted to crosscutting non-
functional behaviours, such as fault tolerance. My Ph.D. work focused more
precisely on distributed systems made of numerous software components

1As often in Computer Science, component is an overloaded term. In in its broadest accep-
tation, component may refer to an independent piece of software (as in Commercial-Off-

the-Shelf components, or COTS), usually developed by a third party for reuse into larger
systems (e.g. an OS, a DBMS, a graphical library, a middleware). Component may how-
ever also refer to a software module with clearly defined dependencies [Szyperski (2002)],
that usually follows some predefined binary format and is readily deployable within a com-
ponent engine (e.g. as in Component-Based Software-Engineering (CBSE)). To avoid any
confusion, we will reserve the word component for this latter meaning in this document, and
will use interchangeably constituent and element to refer more generally to the reusable
parts of a software system (which might in turn present themselves as components, or
not).
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(OS, libraries, virtual machines, middleware, etc.), often independently de-
veloped by third parties and organised in interdependent abstraction layers.
I showed how the use of runtime information obtained from different layers
of a complex architecture could help develop more efficient replication mech-
anisms. This work led me to highlight the importance of understanding and
leveraging cross-layer interactions in complex platforms [Täıani et al. (2002,
2003); Täıani et al. (2005a)], and to propose tools to support the analysis of
these interactions in large (more than 100,000 lines of code) and multi-level
software [Täıani (2003); Täıani et al. (2009)].

After my Ph.D. I was privileged to join Rick Schlichting’s research group
at AT&T Labs on an INRIA International Post-Doctoral Scholarship. I
used this visit to start considering larger-scale distributed platforms, specif-
ically in the field of grid computing. In particular, I analysed the impact of
the introduction Web Services in the grid middleware Globus [Täıani et al.
(2005a)]. The version I considered was the first to feature a Service Ori-
ented Architecture (SOA) based on Web Services. Because of the speed of
this architectural transformation (a few months), Globus provided a very
good case study for the potential limitation of current reuse practices in
production middleware.

Since I joined Lancaster University in 2005, I have started to work on
reusable abstractions and mechanisms for large-scale composite systems.
This work has accompanied the concomitant evolution of distributed sys-
tems, and focused on large-scale fully decentralised systems such as peer-to-
peer overlays [Porter et al. (2008, 2006b,a)], gossip protocols [Lin et al. (2011,
2007, 2009)], and wireless sensor networks [Grace et al. (2008); Greenwood
et al. (2006); Hughes et al. (2006); Porter et al. (2010b,a)]. As part of this
research, I have contributed to the design of the OpenCom V2 component
engine [Coulson et al. (2008)], developed at Lancaster. OpenCom is marked
by both its minimalism and reflective properties, allowing for a high ver-
satility, both in terms of target platforms (Java, Linux, WSN nodes), and
reconfiguration capability. The design of OpenCom has in turn influenced
my own work, in particular on gossip protocols.

In parallel to this work on large-scale systems, I have further explored
the research questions opened during my stay at AT&T on the analysis of
middleware assembled from a large set of third-party constituents. This
has led to a collaboration with the Psychology Department of Lancaster
University, and the development of a novel analysis tool (ProfVis) to help
developers navigate the performance traces of unfamiliar composite software.

Finally, I have studied how advanced composition mechanism such as
aspect-orientation could be made less error-prone. Aspect-orientation [Kiczales
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Foreword

et al. (1997)] is a programming paradigm closely linked to computational re-
flection that allows developers to encapsulate crosscutting concerns (such
a security, fault-tolerance, logging, caching) in well-identified and cohesive
modules. Aspect-orientation comes however with its own challenges. I have
shown, with colleagues from AT&T, how aspects are in fact closely related
to event-based programming [Hiltunen et al. (2006)], and create similar dif-
ficulties. As part of my research, I have contributed to novel approaches
to detect inter-aspect interactions [Weston et al. (2007, 2005)], and develop
new software metrics to better understand the conditions that might lead to
faults in aspect-oriented programs [Burrows et al. (2011, 2010a,b)].

The remainder of this document covers my work on reusable mechanisms
and abstractions in overlays and gossip-based systems, as well as the perfor-
mance analysis of complex composite middleware. Although my research on
the OpenCom platform and on aspects played an important role in informing
the works presented here, I have left it out of scope for brevity’s sake.

Last, but not least, all the works presented here are the result of close
collaborations with colleagues and students. I mention at the start of each
chapter the publications which the chapter summarises, and the collabora-
tors I worked with. All errors and lacks are however mine.
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CHAPTER 2

Introduction

Large-scale distributed computer systems are progressively pervading most
of our activities, from cloud services, and social and entertainment networks
(Facebook, Twitter, the PlayStation Network), through to smart infrastruc-
tures for energy and water distribution. In contrast to earlier distributed
systems, these systems are large-scale, typically involving millions of users
and tens of thousands of nodes; they are heterogeneous, often combining
large data centres, mobile appliances, and sensors, often managed by differ-
ent organisations; and they are composite, integrating an increasing number
of enabling technologies and services provided by third parties.

This explosion of size, diversity, and complexity has been accompanied
by novel approaches in both distributed computing, and software engineer-
ing, two fields that are central to the works presented in this document. In
distributed computing, new forms of distribution have emerged to accommo-
date the dynamicity and extra large scale of these new systems. These new
forms of distribution include decentralised and self-adapting technologies,
such as peer-to-peer systems, overlays, gossip protocols, and autonomous ar-
chitectures. In software engineering, this has been mirrored by new forms of
programming and composition, such as reflection, components, and aspect-
oriented programming. These novel software engineering techniques allow
developers to construct large and rich distributed systems by assembling
reusable software elements provided by third parties. They thus facilitate
the rise of composite architectures that integrate a large number of reusable
entities, such as libraries, middleware, OSs, and standards.

17



Chapter 2.

Reusability, and its corollary composite architectures, form the main guid-
ing thread that link together the works presented in this document. The first
two following chapters (Chapter 3 on fault-tolerant overlays, and Chapter 4
on the programming of gossip protocols) seek to expose reusable mecha-
nisms and abstractions in decentralised distributed technologies. Chapter 5
then considers the challenges posed by composite architectures in today’s
middleware platforms, with a focus on performance analysis and program
understanding.

These three chapters cover a broad spectrum of topics. In the follow-
ing, we briefly discuss the developments in distributed computing and soft-
ware engineering that motivated each of these works, and conclude with an
overview of the contributions we present in the remaining chapters.

2.1 Large-scale decentralised computing

Emerging distributed systems are increasingly large, multi-faceted, and com-
posite. Social networking applications, for instance, illustrate how different
providers can create an ecosystem of on-line services that build on each
other to provide sophisticated functionalities to a very large number of users:
companies such as twitter, Facebook, and Google now routinely provide ad-
vanced on-line Application Programming Interfaces (APIs) to exploit their
services, providing a rich feeding ground for innovative start-ups such as
foursquare or TweetDeck (now part of Twitter). The whole business model
is in turn enabled by the cheap availability of elastic on-demand computing
resources offered by cloud computing providers.

These services need to be highly scalable and evolvable, two goals that are
difficult to attain in tightly integrated architectures. Among candidate tech-
nologies, peer-to-peer overlays [Milojicic et al. (2003); Doval and O’Mahony
(2003)], and gossip protocols [Agrawal et al. (1997); Birman et al. (1999)],
have emerged as particularly promising choices to address this challenge.
Overlay networks provide application-level networking abilities that are not
available or difficult to implement at OS or network level, such as stream-
ing, multicast, or group communications. Gossip protocols, which can be
use to implement overlay networks, take their inspiration from the spread of
epidemics in large populations to provide a broad range of lightweight and
highly resilient distributed mechanisms, from failure detection, and multi-
cast, to clustering.

Both overlay networks and gossip protocols have attracted a considerable
amount of attention over the last decade. Programming both kind of systems
remains, however, as much an art as a science. Programming frameworks for
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Components and component frameworks

overlays, and large-scale distributed systems [Gong (2001); Babaoglu et al.
(2002); Urbán et al. (2002); Li et al. (2004); Grace et al. (2005); Rodriguez
et al. (2004); Leonini et al. (2008)] are often limited to functional concerns
or low-level interactions, and rarely provide non-functional mechanisms that
are both high-level and reusable, such as fault-tolerance. Similarly, gossip
protocols lack highly reusable programming frameworks, in spite of early
works in this direction [Jelasity and Babaoglu (2005); Kermarrec and van
Steen (2007); Eugster et al. (2007)].

This lack of generic fault-tolerance for overlay networks has motivated
our own research in the field, which we present in Chapter 3. Similarly,
the lack of concrete programming frameworks for gossip protocols has led
us to propose our WhispersKit technology, which combines component
frameworks and macro-programming languages for gossip systems, which
we present in Chapter 4.

2.2 Components and component frameworks

The solutions we present in Chapters 3 and 4 are strongly informed by
early modular approaches to protocol design and implementations [Hiltunen
and Schlichting (2000); van Renesse et al. (1998a); Bhatti et al. (1998);
van Renesse et al. (1996)], and by Component-Based Software Engineer-
ing (CBSE). Components can be seen as an evolution of object orientation
that seeks to avoid the hidden dependencies found in object-oriented sys-
tems [Szyperski (2002)]. A component explicitly exposes both provided and
required interfaces, which greatly facilitates reconfiguration and system anal-
ysis. Components have been successfully applied both in the industry (c.f.
EJB, CORBA Component Model, DCOM), and in middleware research,
giving rise to lightweight component technologies [Coulson et al. (2004);
Bruneton et al. (2006)], and their associated middleware frameworks [Grace
et al. (2004); McKinley et al. (2001); Seinturier et al. (2011)].

Identifying reusable modular artefacts suitable for componentisation is
however challenging for at least two reasons: First, generalising a set of
mechanisms (such as repair approaches in overlays, or interaction patterns in
gossip protocols) usually requires reaching a high-enough level of abstraction
where commonalities become apparent. This search for commonalities is
a theme we return to in Chapter 3 (in the context of fault-tolerance in
overlay networks) and Chapter 4 (for gossip protocols). Second, finding
an appropriate partitioning among emerging concepts demands that one
walks a fine line between simplicity (avoiding too many components and
interactions), reusability (avoiding too many specific implementations), and
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flexibility (favouring loose and robust interactions). Chapter 3 considers
distributed fault-tolerant interactions with a scalable consensus mechanism,
while Chapter 4 touches on all three themes within the same component
framework.

2.3 Complexity in modern distributed software

Component-based software engineering, and more generally third-party soft-
ware parts, encourage reuse, and thus allow software developers to easily
integrate a large number of concerns and technologies in their systems. This
is particularly beneficial in large-scale distributed systems, which must face
high levels of heterogeneity, must remain interoperable with other systems,
and must cater for a large number of non-functional concerns (e.g. monitor-
ing, maintenance, billing, security, fault-tolerance, scalability.)

This high level of reuse and the large number of entities involved can
lead however to high levels of complexity [Brooks (1987)], which is in many
ways inherent to software and distribution. Like today’s distributed systems,
this complexity typically takes many forms (see for instance [Ranganathan
and Campbell (2007)]). In my work, I have considered two examples of
complexity, one involving component frameworks, and the other performance
analysis in unfamiliar software. In both cases, I have tried to alleviate the
cognitive complexity faced by developers, i.e. the difficulty for developers to
make sense of the abstractions and systems they must deal with.

Because component frameworks tend to focus on structure rather than
behaviour, they are limited in their ability to represent a system’s detailed
execution [Clements (1996)]. This in turn can make it difficult for develop-
ers who are unfamiliar with a particular framework to understand its logic
[Edwards et al. (2004)]. These limitations explain in part the success of
alternative high-level programming techniques for distributed systems, such
as specification languages [Eijk and Diaz (1989); Amer and Çeçeli (1990)],
Domain Specific Languages [Killian et al. (2007)], and macro-programming
approaches [Newton et al. (2007); Madden et al. (2005); Gummadi et al.
(2005)]. Macro-programming in particular seeks to present a distributed
system (typically a wireless sensor network) as a single programmable en-
tity, hiding distribution under a shared-memory or database metaphor. In
Chapter 4, we argue that components and macro-programming are in fact
complementary, delivering different benefits to different levels of the architec-
ture, and propose an approach, transparent componentisation, that combines
both technologies in the context of gossip protocols.
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Programming complex distributed platforms

A second challenge pertains to the non-functional properties of reusable
software entities, and of the composite systems they contribute to. Whereas
the functions of components and libraries are usually reasonably well docu-
mented, their non-functional characteristics (performance, robustness, relia-
bility) are much harder to gauge [Arlat et al. (2000)]. One reason is because
these characteristics tend to be context dependent. They vary depending on
the operational environment (workload, co-existing systems, underlying lay-
ers) a software element is exposed to. Another reason is linked to the increas-
ing number of constituents and technologies found in modern distributed sys-
tems, multiplying the possible combinations and interactions they can give
rise to. Analysing the non-functional characteristics of a large composite
system thus becomes extremely challenging: Developers must analyse fine-
grained interactions between libraries they have not developed, at layers they
have not designed (or might even be unaware of) in implementations that
might be undocumented and prone to change. We look at these challenges
in Chapter 5, in the context of the Web Service core of the Grid middleware
Globus, and present a novel abstraction-driven performance analysis tool to
alleviate this problem.

2.4 Programming complex distributed platforms

In summary, the research presented in this document covers a broad spec-
trum of contributions, from fault-tolerant mechanisms (Chapter 3) and dis-
tributed programming (Chapter 4), through to performance analysis (Chap-
ter 5). These contributions are however unified by the two goals they seek to
advance: to better construct modern distributed systems, and to understand
better the properties of the resulting software.

Better constructing advanced distributed systems. This document gen-
erally looks at how new forms of distribution can be modularised into
generic and reusable entities. In the continuation of my Ph.D. work at
LAAS-CNRS [Täıani et al. (2005a); Täıani et al. (2003, 2002)], Chapter 3
proposes a generic and reusable repair mechanism for overlay networks,
and in particular a scalable coordination protocol to organise repair in
large-scale overlays. Following this strategy of modularisation, Chapter 4
moves to epidemic protocols, and discusses the WhispersKit platform,
a hybrid approach to the realisation of epidemic mechanisms that lever-
ages both the power of components (GossipKit) and that of higher-level
programming languages (Whispers).
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Chapter 2.

Understanding high-reuse industrial middleware. The approaches we
advocate to construct fault tolerance overlays and epidemic protocols
generally seek to yield high-reuse architectures. We argue that, unfor-
tunately, as reuse grows, so does complexity. With more reuse, today’s
developers have to integrate, expand, and correct software constituents
that they have for the most part not developed. This growing reliance
on “unfamiliar software” makes it much harder for developers to analyse
and understand the systems they produce, in particular in terms of their
non-functional characteristics. In my Ph.D., I have explored the prob-
lem of dynamic reverse engineering in multi-layer architectures [Täıani
et al. (2009); Täıani (2003)] to implement generic replication mechanisms.
Chapter 5 extends this line of research to quantitative properties, and
looks at the difficulty of analysing the performance of a complex middle-
ware platform (the WS-* core of Globus). Chapter 5 then presents a novel
navigation approach of performance traces (ProfVis) to help developers
negotiate the uncharted behaviours of unfamiliar software.

2.5 Organisation of the document

The remainder of this document is organised in four chapters. Chapter 3
presents Echo, a scalable and generic agreement protocol to coordinate re-
pair actions in large-scale overlays, and Sonar, a generic repair for overlay
protocols based on Echo. Chapter 4 describes WhispersKit, the combi-
nation of a component-based platform (GossipKit) and an associated high-
level domain specific language (Whispers) for the modular development of
epidemic algorithms. Chapter 5 moves on to the dynamic analysis of com-
plex software in general, with a particular focus on middleware, first in the
context of the Globus Grid Computing middleware, and then by proposing
a novel navigation paradigm to explore dynamic performance data. Finally
Chapter 6 concludes, and offers some long-term perspectives on the works
presented in this document.

22



CHAPTER 3

Generic Repair in Peer-to-Peer Overlays

Overlays networks provide application-level networking capabilities that go
beyond that typically offered by the underlying network (e.g. TCP/IP),
for instance for large-scale broadcasting, multi-media streaming, or publish-
subscribe services. Because overlays are designed to operate in large-scale
and potentially failure-prone networks, they often include advanced self-
repair mechanisms to maintain their structural integrity in the case of fail-
ures. In spite of commonalities, each self-repair mechanism is specialised to
meet the specific needs of a particular overlay, and reuse and cross-pollination
between systems have so far been difficult. This chapter summarises the ap-
proach I have developed, together with my colleagues Geoff Coulson and
Barry Porter, to overcome this difficulty and to factor out a generic repair
mechanism that is reusable and adaptable across a wide range of overlays.
This chapter is based on two original publications, which can be found in
[Porter et al. (2006b,a, 2008)]. An in-depth and detailed description of the
same work is also available in [Porter (2007)].

3.1 The need for generic repair in overlays

Overlay networks [Doval and O’Mahony (2003)] are application-level services
that offer specialised virtual network topologies (e.g. trees or rings), or
application-specific functions (e.g. application-level multicast, DHT, ad-hoc
routing) which are outside the scope of the underlying network. Their use
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is increasingly common and the set of overlay proposed types is particularly
diverse [Rowstron and Druschel (2001); Castro et al. (2002); Zhao et al.
(2001); Chawathe et al. (2000); Clarke et al. (2001a)].

Most overlay networks provide some mechanism for self-repair so that the
loss of nodes does not unduly affect overlay services. Such repair mechanisms
are essential, as overlays typically operate in hostile environments in which
nodes run on unstable machines that are subject to crash or to be switched
off. One well-known example of a repair mechanism is that adopted by
the Chord distributed hash-table (DHT) overlay [Stoica et al. (2001)] which
redundantly stores data on multiple nodes, and ensures that requests for
data on lost nodes are redirected to nodes holding replicas. As another
example, the Overcast content-dissemination overlay [Jannotti et al. (2000)]
maintains its structure in the face of failure using ancestor lists, which are
used to locate and attach to a surviving ancestor when a parent’s node fails.

Although these various repair strategies work, there are three main prob-
lems with this ad-hoc, per-overlay approach to repair.

Low reusability. The lack of generic, reusable repair mechanism causes
overlay designers to repeatedly solve the same fundamental problems, and
limits reuse across platforms and prototypes. This is particularly true in
the DHT field: many DHTs adopt a similar approach to that of Chord
(e.g. [Rowstron and Druschel (2001); Zhao et al. (2001); Ratnasamy et al.
(2000)]), but modified to fit the precise operation of the overlay (such as
CAN’s n-dimensional coordinate space [Ratnasamy et al. (2000)]).

Tangling of concerns. Repair protocols are typically embedded in over-
lay’s functional behaviour, with little separation of concerns. This lack of
modularity makes overlays harder to design than they otherwise would.

Lack of flexibility. Because repair is just one of a much wider set of con-
cerns, the repair approach adopted by overlay designers is often sub-
optimal or not as flexible as might be desired. For example, one ap-
proach to repairing the tree-based overlay of Figure 3.1-a on the facing
page would be to restore copies of nodes 28, 29 and 68 on other hosts. But
if such hosts cannot be found, an alternative approach would be to repair
the tree without actually restoring the failed nodes (Figure 3.1-b and -c).
As further examples, it may be useful in some installations to increase or
decrease the degree of redundancy in a DHT by deciding whether or not
to restore failed nodes; or, in Gnutella [Yang and Garcia-Molina (2003)],
to proactively migrate the leaf nodes of a failed super-node to another
super-node.
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Figure 3.1: (a) An overlay with a failed region (nodes 28, 29 and 68); and
(b) and (c), possible repairs of this failure. Squares are squares, and circles
overlay nodes. (from [Porter et al. (2006b)])

The key barrier to addressing the above three problems, and achieving
generic overlay repair is the imprecise and dynamic nature of the environ-
ment in which any repair mechanism must operate. In such an environment
failures may stay undetected for a long time, nodes may hold inconsistent
views of which other nodes have failed, and concurrent repair activities might
conflict. Traditionally such problems have been addressed in three ways: (i)
by imposing some form of global coordination (e.g. consensus, atomic broad-
cast); (ii) by relying on probabilistic approaches (e.g. gossip); or (iii) by em-
ploying pre-defined repair strategies based on application-specific knowledge
(e.g. tree-specific repair). Unfortunately none of these approaches sit well
with our goals. In particular, global coordination does not scale, probabilis-
tic approaches do not lend themselves to consistency, and pre-defined repair
strategies clearly do not meet the need for genericity.

We have therefore taken a fundamentally different tack: The core of our
approach is a localized ‘agreement protocol’ called Echo (Edge Consensus
for High reliability Overlays) that enables the set of nodes bordering a failed
region of an overlay (i) to discover and agree on the extent of the failed
region; (ii) to agree on a repair action to be taken; and (iii) to select a co-
ordinator from among themselves to manage the repair. To succeed, Echo
must however overcome a pernicious inter-dependency that arises between
those who are agreeing (what we call the ‘border set’) and that which they
are agreeing to (i.e. the extent of the failed region, which implies the con-
stituency of the ‘border set’ itself). We refer to this phenomenon, which
is one of the defining challenges addressed by Echo, as the ‘self-defining
constituency problem’.

Building on Echo, we have developed Sonar, a generic approach which
offers reusable and flexible building blocks for overlay repair. Sonar illus-
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trates the practical value of Echo for concrete systems, and delivers the
following benefits:

Separation of generic and specific aspects of repair. Sonar/Echo sep-
arates overlay repair into two parts: a generic part in which the extent
of a failure is detected and delineated (Echo); and a repair specific part
in which a repair strategy is selected and enacted (Sonar). This separa-
tion allows us to support alternative repair strategies that make different
tradeoffs depending on their deployment environment.

Localised repair. Sonar/Echo only involves nodes in the locality of a
failed node or failed region. This locality is essential to guarantee the
scalability of our approach. In very large overlays, such as Internet-scale
P2P networks, it would be completely infeasible to involve centralised
services or nodes beyond the failure locality.

Aggregated failure handling. Rather than restrict ourselves to treating
individual overlay nodes as the unit of failure detection and repair, Sonar/Echo
deals with failed regions of overlay. This is especially beneficial where the
virtual structure of an overlay is related to the underlying physical topol-
ogy of the network, and thus the simultaneous failure of adjacent overlay
nodes is likely to be relatively common. Prominent examples are ad-hoc
networks, or multicast trees organised in terms of IP domains.

The rest of the chapter is organised as follows. Section 3.2 first presents
the overall architecture of the Echo/Sonar service. Section 3.3 proposes
a formal specification of Echo (termed “convergent failure detection”), and
sketches a proof of its Echo’s correctness. Section 3.4 moves on to describe
how Sonar builds upon Echo to offer a generic and adaptive repair mech-
anism for overlays. Section 3.5 provides some elements of evaluation, and
Section 3.6 concludes the chapter.

3.2 Architecture of Echo/Sonar

Sonar/Echo is composed of three major services (Figure 3.2): a distributed
backup service which stores backups of the local node on other hosts, a per-
node failure agreement protocol (Echo) to detected and delineated the extent
of a failure, and a recovery service (Sonar) that provide generic repair.

Sonar uses Echo to determine the extent of a failed overlay region,
and decide on a repair strategy. Sonar and Echo use the backup service
to obtain the state of failed nodes, including the neighbour links of those
nodes, plus any additional overlay-specific data (e.g. DHT data), and repair-
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specific information. Echo also relies on a failure detector (more on this on
section 3.3) to learn about failed nodes

3.2.1 Main intuition

Achieving adaptive repair in arbitrary overlay networks ultimately aims to
guarantee that each failed node is repaired exactly once; this is key to (safely)
allowing fully generic adaptive repair, providing a platform from which many
different repair strategies can be used at runtime. The challenge is to achieve
this in a decentralised manner, and we solve it by leveraging distributed
consensus [Chandra and Toueg (1996)] to have nodes collaborate and agree
upon the course of action to take for each failure encountered.

While consensus protocols can achieve the necessary agreement, they do
not however scale to the massive membership of many overlays—if all nodes
in the overlay had to agree on a course of action for each failure, repairs
would be unfeasibly slow. We therefore scope our consensus ‘groups’ to much
smaller areas of overlay, such that participation of a node in a consensus
group only occurs if it directly neighbours a given failure. This limits the
number of nodes that must agree on how to deal with a failure, enabling
scalability to very large systems. This ad-hoc consensus group formation
and agreement is not straightforward, however, and give rise to a problem
we have termed self-defining constituencies, to which we return in section 3.3.

3.2.2 Repair mechanisms: key phases

Sonar/Echo operates in three main phases, shared between Echo (Phases
1 & 2) and Sonar (Phase 3).

Phase 1 (Echo). When a node p detects a failed neighbour, p constructs
a ‘view’ of the failure (which may be a ‘failed region’ of more than one node),
and discovers the other live nodes surrounding the failure (the ‘border nodes’,
including p). This phase operates by progressively discovering the extent of

Figure 3.2: The architecture of Sonar/Echo
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(a) (b) Phase 1 (c) Phase 2 (d) Phase 3

Figure 3.3: The three main phases of our repair algorithm (from [Porter
et al. (2006b)])

a failed region, starting from a failed neighbour m. That neighbour’s backup
is acquired from the backup service and m’s neighbours extracted. These
‘next hop’ neighbours are then queried with the failure detector to ascertain
their liveness. Reportedly live nodes are added to the border node set, and
failed nodes to the failed region. This process is repeated until no more
failed nodes are found (Figure 3.3-b).

Phase 2 (Echo). Node p exchanges its phase 1 view with the other
border nodes it has discovered, and those border nodes negotiate until they
come to a single agreed view. During this process, border nodes may have
their view rejected if their view conflicts with that of other nodes. It is at
this point that we use consensus to reach agreement. Border nodes whose
views are rejected at this stage return to phase 1 to re-consider their view,
and may then re-enter phase 2. Repair strategy information is disseminated
in phase 2, simply by piggy-backing it on agreement messages, and follow-
ing agreement one of the border nodes is selected as the repair coordinator
(Figure 3.3-c).

Phase 3 (Sonar). In phase 3 of the protocol, the chosen coordinator
executes the selected repair strategy. The coordinator logs its intended repair
in its local, per-node repair log, and while the repair is being carried out, the
other border nodes wait until either they receive a repairNotification message
from the coordinator, or they detect that the coordinator has failed. If the
former happens, any local repair duties for non-coordinator nodes are carried
out, completing the repair, and if the latter happens, the protocol loops back
to the beginning.

3.3 Echo : convergent agreement

Echo allows the nodes bordering a failed overlay region to agree on the
extent of this failed region, and decide on a common course of action. For
scalability reasons, Echo limits communication to the failed region’s border.
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(a) (b)

Figure 3.4: Protocol instances and conflicting views

This scoping strategy creates however a pernicious inter-dependency between
the protocol’s participants (the ‘constituency’) and what they are agreeing
to: To start Echo, a node needs to know with whom it should be agreeing
(its fellow border nodes), but this set of nodes depends on the final outcome
of the protocol (the failed region agreed upon).

In the following, we first illustrate this problem, which we have termed
self-defining constituencies (Section 3.3.1). We then move on to define for-
mally the properties of Echo (Section 3.3.2); we present Echo (Section 3.3.3
and 3.3.4; and we finally propose a proof of its correctness.

3.3.1 The Challenge: self-defining constituencies

In the overlay of Figure 3.4-a, the nodes in region F1 and F2 have crashed.
These crashes are being detected by the border nodes (i.e. the neighbouring
nodes) of each failed region: paris, london, madrid and roma for F1 and
tokyo, vancouver, portland, sydney, and beijing for F2. This detection
occurs with the help of an appropriate failure detector and knowledge of the
overlay’s topology provided by the backup service.

Our scalability requirements impose that communications related to F1

(resp. F2) should be limited to nodes bordering F1 (resp. F2). For instance
vancouver should not have to communicate with madrid to decide on a
repair strategy for F2. This excludes traditional consensus approaches that
would involve the entire overlay in a protocol run.

Because of ongoing crashes, nodes bordering the same failed region might
however possess divergent views regarding the extent of their region, and
hence have diverging perceptions of who should get involved in a protocol
run. In Figure 3.4-b, for instance, paris fails after madrid has detected F1 as
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crashed, but before an agreement on F1 has been reached. The failed region
F1 thus grows into F3, and a new node berlin (paris’s still non-crashed
neighbour) becomes involved. berlin detects the entirety of F3 as crashed.

madrid and berlin now have different, albeit overlapping views. If madrid

is slow to detect paris’ crash, it might try to agree on F1 with london and
roma alone, while berlin will try to involve all nodes bordering F3 to decide
on F3. Each node’s effort could possibly stall each other, or could lead to
duplicated or inconsistent repairs. Echo prevents this and insures that any
decisions pertaining to the same part of the network converge to a unified
view.

3.3.2 System model and assumptions

We model an overlay network as a finite undirected graph G = (Π,E) of
asynchronous message-passing nodes Π = {p1, .., pn}, where G represents
the failure-free overlay topology. For space reasons, we only consider single
execution runs in the remainder of this section and ignore repairs: we assume
that G is static, i.e. that except for crashes, no nodes join or leave the overlay
network while the algorithm executes. We return to this point in Section 3.4,
where we explain how Echo can be adapted to work with Sonar in a context
of ongoing repairs.

A node is faulty if it crashes at some point, correct if it does not crash
during the execution of the algorithm. Any two nodes might exchange mes-
sages through asynchronous, reliable, and ordered (fifo) channels. We also
assume that each node can query G on demand, either by directly contacting
live nodes, or querying the backup service for failed nodes.

The border of a node p is the set of p’s neighbours. By extension, the
border of a set S ⊆ Π of nodes are the nodes that have a neighbour in S but
do not belong to S: border(S) = {q ∈ Π\S | ∃p ∈ S : (p, q) ∈ E}. A region
is a connected subgraph of G. A failed region at a time t is a region in which
all nodes have crashed.

To specify the liveliness of Echo, we need to define the three additional
notions of adjacency, faulty domain and faulty cluster, which capture the
maximum extent of failed regions during a run. More precisely, a faulty
domain is a region in which all nodes are faulty, but whose border nodes
are correct. By construction, two faulty domains can only be either equal or
disjoint.

Two faulty domains F and H are adjacent (noted F ‖ H) if their borders
intersect (e.g. F1 ‖ F2 in Figure 3.5). We say that two faulty domains F0

and Fn are in the same faulty cluster, noted clustered(F0, Fn), if they are
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Figure 3.5: A cluster of adjacent faulty domains

transitively adjacent1, i.e. if there is a sequence of faulty domains Fi so that
F1 ‖ F2 ... Fn−1 ‖ Fn. For instance, we have clustered(F1, F4) in Figure 3.5.

3.3.3 Specification

Echo delivers a service we have termed convergent detection of failed regions.
In the following, we use the event-based model to define this service formally
in terms of operations and properties.

Operations

Echo starts when a node detects one of its neighbours q as crashed (〈crash | q〉
event). It stops by raising a 〈decideECHO |V, d〉 event, where V is the
failed region decided by the local node, and d the decision taken respect to
V (in Sonar, a repair plan). We call V the view of the deciding node.

Properties

The convergent detection of failed regions is characterised by the following
properties:

CD1 (Integrity) No node decides twice on the same region.

CD2 (View Accuracy) If a node p decides (V, d), then p ∈ border(V ),
and V is a failed region.

CD3 (Locality) Communication is limited to faulty-domains and their
borders, i.e. a node p only exchanges messages with a node q if there
is a faulty domain S such that {p, q} ⊆ S ∪ border(S).

CD4 (Border Termination) If p decides (V, d), then all correct nodes in
border(V ) eventually decide.

1More formally, clustered(., .) is the transitive closure of the adjacency relation, and faulty

clusters its equivalence classes.

31



Chapter 3.

CD5 (Uniform Border Agreement) If two nodes p and q decide, and p

decides (V, d), and q ∈ border(V ), then q decides (V, d).

CD6 (View Convergence) If two correct nodes decide V and W , (V ∩
W 6= ∅)⇒ (V = W ).

CD7 (Progress) In each faulty cluster, at least one correct node bordering
a faulty domain in the cluster eventually decides: if D is the set of all
faulty domains, ∀V ∈ D : ∃W ∈ clustered(V, ·) : ∃p ∈ border(W ) : p

decides.

CD1 (Integrity), CD5 (Uniform Border Agreement), and CD4 (Border Ter-
mination) are directly adapted from (uniform) consensus; CD2 (View Ac-
curacy) is taken over from the strong accuracy of fault detectors; and CD7
(Progress) is a weak form of termination.

The problem’s originality resides in the two remaining properties: CD6
(View Convergence) and CD3 (Locality). View convergence forbids con-
flicting agreements on overlapping failed regions (F1 and F3 in Figure 3.4).
Locality provides scalability by limiting the system’s reaction to the vicinity
of failed regions. As a result, the protocol only depends on the amount of
failures in the system, but not on the system’s actual size. Locality also
excludes the use of a system-wide consensus to fulfil the other properties.

3.3.4 Failure detector, multicast, region ranking

Our algorithm uses a perfect failure detector (we return in Section 3.5 on the
practical implications of this choice), provided in the form of a subscription-
based service: a node p subscribes to the crashes of a subset of nodes S

by issuing the event 〈monitorCrash |S〉 to its local failure detector. Our
failure detector is perfect and insures: (i) Strong Accuracy : if a node p

receives a 〈crash | q〉, then q has crashed, and p did subscribe to be notified
of q’s crash; and (ii) Strong Completeness: if a node q has crashed, and p

has subscribed to be notified of q’s crash, then p will eventually receive a
〈crash | q〉 event.

For compactness, we use a basic multicast service, represented by the
events 〈multicast | R, [m]〉 and 〈mDeliver | p, [m]〉. This service simply
sends to each recipient the multicast message over the underlying point-to-
point channels, in a plain loop. This service provides no guarantees beyond
those of the underlying channels, and is essentially a shorthand to keep our
code brief.

We also use a ranking relation between regions, noted ≻: R ≻ S iff either
(i) R contains more nodes than S, or (ii) they contain the same number of
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nodes but R’s border contains more nodes than S’s border, or (iii) R and
S have the same size, and so do their respective borders, but R is greater
than S according to some strict total order relation ✄ on sets of nodes. The
actual ordering relation ✄ on node sets does not matter. One possibility is
to use a lexicographic order on node IDs. By construction, ≻ is a strict total
order on regions. For a set C of regions, maxRankedRegion(C) is the highest
ranked region in C.

Finally, for a subset S of nodes, connectedComponents(S) returns the set
of the maximal regions of S, i.e., formally, the vertex sets of the connected
components of the subgraph G[S] induced by S in G.

3.3.5 Algorithm

The pseudo code of our algorithm is given in Algorithm 1. 〈initECHO〉 is
executed by all nodes when the protocol starts. Each node then remains idle
until one of its neighbours fails, as notified by a 〈crash | q〉 event.

The bulk of the protocol is primarily a superposition of flooding uniform
consensus instances [Chandra and Toueg (1996)] between the border nodes
of proposed views. This superposition is complemented by an arbitrating
mechanism to deal with overlapping but conflicting views (line 26). Because
of this arbitration, all consensus instances must be tracked concurrently by
Echo, in the variables opALL[·][·][·] and waiting[·][·], which are indexed by
proposed views (in addition to rounds, and, for opALL, participants).

A node starts a consensus instance when it detects that one of its neigh-
bours has crashed (line 17). The view it proposes has been incrementally
built when receiving 〈crash | .〉 events (line 5), and is the highest ranked
failed region known to the node at this point. The view construction con-
tinues in the background as the consensus unfolds (lines 5-10), to be used if
the attempt to reach an agreement fails.

The opinion vectors received from other nodes in a round are gathered
at line 18. Because a node might be involved simultaneously in multiple
conflicting consensus instances, messages related to conflicting views are also
gathered and processed. The resulting opinion vectors, indexed by round and
proposed view (line 24) are stored in opALL[·][·][·].

If a node becomes aware of a conflicting view with a lower rank (line 26),
it sends a special opreject vector to this view’s border nodes, and subsequently
ignores any message related to this view (lines 28-31).

Rounds are completed at line 32 when all non-crashed border nodes of
Vp have replied: if no more rounds are needed (line 34), and the node’s
final vector only contains accept values, a decision value is deterministically
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Algorithm 1 ECHO: Convergent detection executed by node p

1: upon event 〈initECHO〉
2: decided← ⊥ ; proposed← ⊥ ; newCandidate← false
3: crashedp, candidateView, Vp, received, rejected← ∅
4: trigger 〈monitorCrash | border(p)〉

5: upon event 〈crash | q〉 ⊲ View construction
6: crashedp ← crashedp ∪ {q}
7: trigger 〈monitorCrash | border(q)\crashedp〉
8: C ← connectedComponents(crashedp)
9: if candidateView ≺ maxRankedRegion(C) then

10: candidateView = maxRankedRegion(C)
11: newCandidate← true

12: upon event proposed = ⊥ ∧ newCandidate = true ⊲ New consensus instance
13: Vp ← candidateView ; newCandidate← false
14: proposed← selectValueForView(Vp)
15: opaccept[pk]← ⊥ for all pk ∈ border(Vp)\{p}
16: opaccept[p]← (accept,proposed) ; r ← 1
17: trigger 〈multicast | border(Vp), [1, Vp, border(Vp), opaccept]〉

18: upon event 〈mDeliver | pi,[r, V,B, op]〉 ∧V 6∈ rejected ⊲ Updating opinions
19: if V 6∈ received then
20: received← received ∪ {V } ⊲ Initialise data structures for V

21: opALL[V ][r][pk]← ⊥ for all pk ∈ B ∧ 1 ≤ r < |B|;
22: waiting[V ][r]← B for all 1 ≤ r < |B|

23: for all pk such that (opALL[V ][r][pk] = ⊥ ∧ op[pk] 6= ⊥) do
24: opALL[V ][r][pk]← op[pk]

25: waiting[V ][r]← waiting[V ][r]\ ({pi} ∪ {pk|op[pk] = reject})

26: upon event ∃L ∈ received : L ≺ Vp ⊲ Rejecting a lower ranked view
27: trigger 〈reject |L〉

28: upon event 〈reject |L〉
29: opreject[pk]← ⊥ for all pk ∈ border(L)\{p}
30: opreject[p]← reject; received← received\{L}; rejected← rejected ∪ {L}
31: trigger 〈multicast | border(L), [1, L, border(L), opreject]〉

32: upon event Vp ∈ received ∧ waiting[Vp][r]\crashedp = ∅ ∧ decided = ⊥
33: if r = |border(Vp)| − 1 then ⊲ Consensus instance completed
34: if ∀pi ∈ border(Vp) : opALL[Vp][r][pi] = (accept, vpi

) then
35: decided← deterministicPick({vpi

}pi∈border(Vp)) ⊲ decision
36: trigger 〈decideECHO |Vp,decided〉
37: else proposed← ⊥ ⊲ Consensus attempt failed, reset

38: else ⊲ New round
39: r ← r + 1
40: trigger 〈multicast | border(Vp), [r, Vp, border(Vp), opALL[Vp][r − 1]]〉
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selected for the proposed view (line 35), and the node decides2. Otherwise
the whole process is reset, and restarts at line 12 as soon as a new crashed
node is detected.

3.3.6 Proof of correctness

In the following, we use a subscript notation to distinguish between the same
protocol variable at different nodes: e.g. vp for variable Vp of p.

Theorem 3.3.1. Echo fulfils properties CD1 (Integrity), CD2 (View Ac-
curacy), and CD3 (Locality).

Proof. CD1 is fulfilled by construction. For CD2, connectedComponents() at
line 8 and the strong accuracy of the failure detector insure that proposed
views are failed regions. Using recursion on 〈crash | .〉 events, a node p can
be shown to respect the two invariants (i) p ∈ border(crashedp) and (ii)
{p} ∪ crashedp is connected, thus yielding that p is on the border of any
view it proposes. CD3 follows from CD2, and the fact that two nodes only
exchange messages when both border a region detected as failed by one of
them.

Our proof of the remaining four properties reuses elements of the proof of
the consensus algorithm presented in [Chandra and Toueg (1996)] for strong
failure detectors (S), of which the flooding uniform consensus is derived.
The difficulty lies in that our protocol uses multiple overlapping consensus
instances, each indexed by the view it proposes, with no prior agreement on
either the set the consensus instances, their participants, or their sequence.
In addition, our arbitrating mechanism means a node can first propose and
then reject the same view, thus complicating the uniform border agreement,
as we shall see.

Lemma 3.3.2. At any execution point the vectors opALL
p [S][r][·] of p are

such that ∀q ∈ border(S) :
1) opALL

p [S][r][q] = reject⇒ q rejected S earlier ∧

2) opALL
p [S][r][q] = (accept, ·)⇒ q accepted S earlier

Proof. This lemma follows from a recursive data-flow argument on the val-
ues of opinions[S][r][·], the properties of the best-effort multicast and the
transitivity of the happened-before relation.

2For clarity’s sake, the presented version is not optimised. A classical optimisation consists
in terminating a consensus instance once a node sees that all nodes in its border set know
everything (i.e. no ⊥), i.e. after two rounds, in the best case.
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Lemma 3.3.3. A node proposes (resp. rejects) a given view S at most once.
A node never proposes a view it has previously rejected.

Proof. The uniqueness of rejection follows from the use of the rejected and
received variables. The use of the strict ranking relation ≺ (line 9) means
the series of values taken by Vp is strictly monotonic according to ≺, and by
construction that this is also true of Vp, thus completing the lemma.

Lemma 3.3.4. If two nodes p and q complete a consensus instance on the
same vp|q = S (line 34), they obtain the same opinion vector:

opALL
p [S][N ][·] = opALL

q [S][N ][·] where N = |border(S)|

Proof. We prove this lemma by contradiction. Let’s assume ∃k ∈ border(S) :
opALL

p [S][N ][k] 6= opALL
q [S][N ][k]. If one of the two values is ⊥, we can use

the well-known argument on cascading crashes, identifying N − 1 distinct
nodes in border(S) that did not complete the consensus instance, contradict-
ing the fact that p and q completed it.

Let’s now assume both values are non-⊥. The first sub-case is when
both values are accept for k, with different decision values on p and q, i.e.
opinionsp[S][N ][k] = (accept, v

p
k) and opinionsq[S][N ][k] = (accept, v

q
k) with

v
p
k 6= v

q
k. Using lemma 3.3.3, we conclude that line 16 is executed only once

by k for S, and that v
p
k = v

q
k, yielding the contradiction.

Finally, let’s assume one value is accept, while another is reject, e.g.
From lemma 3.3.2 we conclude that k has both proposed and rejected S.
Let’s call ek

accept and ek
reject the corresponding execution points. Because of

lemma 3.3.3, ek
accept and ek

reject are unique, and ek
accept happened before ek

reject.
Because the best-effort multicast is fifo, this means q received the message
for ek

accept before that of ek
reject, and because line 24 only updates ⊥ values,

that opALL
q [S][N ][k] = (accept, ·), yielding the contradiction.

Theorem 3.3.5. Echo fulfils properties CD5 (Uniform border agreement)
and CD4 (Border termination).

Proof. Let’s assume p and q decide, p decides (S, decidedp), and q ∈ border(S).
If p decides on S, then p completed the corresponding consensus instance
with only accept values, and since q ∈ border(S) we have opALL

p [S][N ][q] =
(accept, ·). By lemma 3.3.2, q proposed S. Since by construction a node
(i) cannot propose any new view once it has decided on one, and (ii) can-
not start a new consensus instance before completing the current one, q

proposed S and completed the corresponding consensus instance before de-
ciding. By lemma 3.3.4, q obtained the same vector opALL

q as p on S, and
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hence decided (S, decidedp) by determinism of deterministicPick (line 35),
thus proving CD5.

CD4 follows the same line, with the observation that if a node p com-
pletes a consensus instance on a view S, then all other nodes in border(S)
either took part in each round or crashed, implying that all correct nodes
eventually complete the instance with the same opinion vector as p (by way
of lemma 3.3.4).

Theorem 3.3.6. Echo fulfils CD6 (View convergence).

Proof. Let’s consider two correct nodes p and q that decide on overlapping
failed regions Sp and Sq: Sp ∩ Sq 6= ∅. If one node is in the border of the
other’s region, e.g. p ∈ border(Sq), then Uniform Border Agreement (CD5)
and Integrity (CD1) give us Sp = Sq.

Let’s now assume p 6∈ border(Sq) ∧ q 6∈ border(Sp), and use a proof by
contradiction. Since Sp∩Sq 6= ∅, there is a node a ∈ Sp∩Sq (Figure 3.6). Sp

being a region bordered by p (CD2), there exists a path (n0 = p, n1, ..., nk =
a) that links a to p through Sp: {n1, ..., nk, a} ⊆ Sp. Since a ∈ Sq, we can
consider the point when this path “penetrates” for the first time into Sq, i.e.
we can consider ni0 ∈ Sq and ∀i < i0 : ni 6∈ Sq. Since p is correct, ni0 6= p,
i.e. i0 ≥ 1, and we can look at ni0−1, the node in the path just before ni0 .
Let’s call this node r (Figure 3.6). Because ni0 is the first node in the path
to belong to Sq, we have r ∈ border(Sq), and since p 6∈ border(Sq), r = ni0−1

cannot be p (i0 > 1). Because, with the exception of p, the path connecting
p to a is embedded in Sp, this means that r is in fact located in p’s failed
region. This reasoning thus yields us a node (r) that is both on border(Sq)
and in p’s failed region: r ∈ Sp ∩ border(Sq). Using an identical argument,
we can find a node s such that s ∈ Sq ∩ border(Sp) (Figure 3.6).

Figure 3.6: Convergence between overlapping views

To complete our proof, we now look at the happen-before relationships
between events related to r and s. Let’s first consider s. Since s ∈ border(Sp)
and p decided on Sp, s itself did propose Sp (lemma 3.3.2). Since r ∈ Sp, s
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did detect r as crashed as some point. By a similar reasoning, we conclude
that r proposed Sq, and hence detected s as crashed as some point.

We thus end up with a set of 6 events that form a circular chain of
happen-before events: s detects r → s proposes → s crashes → r detects s
→ r proposes → r crashes → s detects r ... This provides our contradiction.

Theorem 3.3.7. Echo fulfils properties CD7 (Progress).

Proof. Again we use a contradiction: consider a cluster of adjacent faulty
domains (Figure 3.5), and assume none of its correct border nodes ever
decide. Since this situation lasts indefinitely, we can consider the case where
all failed regions are maximal and all remaining nodes are correct.

Because the views proposed by a node are strictly monotonic according
to ≺, and because G is finite, a node cannot propose an infinite sequence
of views. A correct border node p that does not decide falls therefore into
two cases: either (C1) p is blocked waiting for the reply of another node q

(line 38); or (C2) the last view proposed by p failed (line 37), and p does
not detect any new crashed node (line 5).

Case C1 : If p is waiting for the reply of some other node q, q must be
correct (if it were not, q would eventually crash, thus unblocking p). Since
there’s a path of crashed nodes from p to q (since p is waiting for q), q

is on the border of the same faulty domain as p, so q never decides (by
assumption).

As for p, q falls in either case C1 or C2. Let’s first assume that the last
view Smax

q proposed by q failed, and q does not detect any new crashed node
(C2). Since we’ve assumed that all faulty nodes have crashed, by strong
completeness of the failure detector, Smax

q is a faulty domain, and because
of the use of maxRankedRegion (line 10) and the fact that ≺ subsumes set
inclusion, Smax

q is higher ranked than any failed region bordered by q.
Since p is waiting for q, Sp 6= Smax

q , and since q is on the border of both
Sp and Smax

q , Sp is lower-ranked than Smax
q : Sp ≺ Smax

q . q has received a
round-1 message proposing Sp (line 18), and should have rejected it (line 31),
thus ending p’s wait on q, which contradicts our assumption.

We therefore conclude that q cannot fall in case C2, and instead is blocked
in a consensus round proposing a failed region Sq (case C1). q received p’s
proposal message, and did consider it for rejection (line 26). Because p is
waiting for q, we know it did not receive any rejection message from q, and
therefore, Sp � Sq. Since p is waiting for q, q is not proposing the same view
as p, yielding a strict ordering between the two views Sp ≻ Sq.
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This construction can be repeated recursively, first for q, and then for the
node q is waiting on, etc, each time yielding an infinite number of pairwise
distinct failed regions (via CD2) that are strictly ordered by the ranking
relationship: Sp1

≻ Sp2
≻ ... ≻ Spi

≻ ... This contradicts our assumption
that each faulty cluster contains a finite number of faulty domains, each
containing a finite number of nodes.

Case C2 : Let’s now assume the last view Smax
p proposed by p failed,

and p does not detect any new crashed node. As above Smax
p is a faulty

domain, and all its border nodes are correct. Because the failure detector
is strongly accurate, for p’s proposal to fail, one node q ∈ border(Smax

p )
must have rejected Smax

p because it was proposing a higher-ranked view. By
assumption, q never decides, it must either fall in case C1 or C2. If C1,
we’re back to the previous case. If C2, q’s last view Smax

q is higher than any
view q ever proposed, implying Smax

p ≺ Smax
q .

By recursively applying this argument, we either come back to case C1 at
some point, or obtain an infinite sequence of strictly ordered faulty domains
Smax

p1
≺ Smax

p2
≺ Smax

p3
≺ ..., with the same kind of contradiction as in case

C1 above, which concludes our proof by contradiction.

3.4 Sonar : Generic repair

Sonar (Algorithm 2 on the next page) builds on Echo to encapsulate
reusable repair strategies in a generic service. Sonar starts once a deci-
sion has been reached by Echo, returning a repair plan for a failed region
(line 3). This repair plan is selected by Echo from the set of repair plans
proposed by each border nodes (through the function selectValueForView at
line 14 of Algorithm 1 on page 34). The chosen repair plan lays out the con-
crete repair strategy to be pursued (more on this in section 3.4.2)3, including
an indication of which node should coordinate the repair. This special node
is known as the ‘coordinator’ and originally each participating node proposes
itself as coordinator. While the repair unfolds, the other border nodes wait
until either they receive a repairNotification message from the coordinator,
or they detect that the coordinator has failed.
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Algorithm 2 The Sonar repair protocol (executed by node p)

1: upon event 〈initSONAR〉
2: repairLog, logsSeen← ∅

3: upon event 〈decideECHO | failedRegion, repairPlan〉
4: coord← getCoordinator(repairPlan)
5: if p = coord then ⊲ I am the coordinator
6: repairLog← repairLog ∪ {failedRegion}
7: enactRepair(failedRegion, repairPlan) ⊲ Phase3
8: trigger 〈send | border(failedRegion), [repairNotification, p, failedRegion]〉
9: else ⊲ I am not the coordinator

10: wait until
11: 〈receive | coord,[repairNotification, coord, failedRegion]〉 or
12: 〈crash | coord〉

13: upon event 〈receive | q, [repairNotification, s, reg]〉 ⊲ remote reset
14: crashedp ← crashedp\

⋃
{x ∈ connectedComponents(crashedp)|x ∩ reg 6= ∅}

15: if Vp 6⊆ crashedp then Vp ← ∅; proposed← ⊥
16: if candidateView 6⊆ crashedp then
17: candidateView← ∅ ; newCandidate← false

18: logsSeen← logsSeen ∪ {(s, reg)}
19: trigger 〈monitorCrash | border(p)\crashedp〉

20: upon event ∃vi ∈ received, (s, ℓ) ∈ logsSeen : ℓ ∩ vi 6= ∅ ∧ (s, ℓ) 6∈ vi.logs
21: trigger 〈send | border(vi), [repairNotification, s, ℓ]〉
22: received← received\vi

3.4.1 Ongoing repairs and coordination in Sonar

As in Echo, other nodes might attempt to repair a region overlapping with
that of the coordinator: for instance, returning to Figure 3.4 on page 29,
madrid might be selected as coordinator to repair region F1 (Figure 3.4-a),
but if paris fails, berlin will try to get an agreement on region F3, which
contains F1 (Figure 3.4-a). Thanks to Echo’s blocking mechanism, berlin

is prevented to proceed. However, in Sonar, berlin should eventually be
allowed to resume execution, either once the region F1 has been success-
fully repaired by madrid, or if madrid fails halfway through its repair. In
both cases, however, berlin should restart its view construction to take into
account the new (possibly only partially) repaired state of the overlay.

To provide this property, the coordinator logs its intended repair in a
permanent, per-node repair log, provided by the backup service (Figure 3.2).

3Formally only regions are repaired, not nodes. In particular, node IDs are not reused, so
that a node that has failed is considered permanently so. As a shortcut, however, we say
that a node p has been repaired if a failed region that contains p has been repaired.
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Algorithm 3 Modified view construction of Echo (executed by node p)

1: upon event 〈crash | q〉 ⊲ View construction
2: if ∃reg ∈ q.repairLog : (q, reg) 6∈ logsSeen then
3: for all reg ∈ q.repairLog ∧ (q, reg) 6∈ logsSeen do
4: trigger 〈send | p, [repairNotification, q, reg]〉

5: return
6: if q 6∈ border(crashedp ∪ {p}) then return ⊲ crashedp might now shrink
7: crashedp ← crashedp ∪ {q} ⊲ Back to original view construction
8: trigger 〈monitorCrash | border(q)\crashedp〉
9: C ← connectedComponents(crashedp)

10: if candidateView ≺ maxRankedRegion(C) then
11: candidateView← maxRankedRegion(C)

Each node also keeps track of the repairs it has heard of in the variable
‘logsSeen’, which is appended to each proposed view (not shown). This
mechanism has two usages. First, if a node p receives a view vi that does
not know of repairs that p knows of (line 20), all nodes holding this view are
forced to reset their view (lines 13- 19).

Second, the view construction part of Echo is modified to take into
account the repair logs of crashed coordinators (algorithm 3): When a node
encounters a failed node’s backup for the first time, the logs are examined,
and used to update the node’s knowledge of the overlay’s current state.

3.4.2 Example repair strategies

Each border node constructs a repair strategy with the function selectValue-
ForView (line 14 of algorithm 1) and ‘scores’ it using a uniform grading
system. This score is then used in deterministicPick (line 35 of algorithm 1)
so that the best-graded repair is chosen for each failure, from all those sug-
gested. Quite importantly, nodes can propose a wide range of repair strate-
gies within the framework proposed by Sonar. In particular, each node can
tune the repair it proposes based on run-time contextual information, thus
providing maximum flexibility to the scheme.

For instance a node may choose to propose an additive repair, which
creates or restores nodes as part of the repair, thereby adding new resources
to the overlay (Figure 3.7 on the following page). This form of repair might
be well adapted in Grid and Cloud-like environments, where additional re-
sources may be available, and can be total (Figure 3.7-b), with an exact
clone of the failed region recreated on new hosts, or partial (Figure 3.7-c),
with only a few hubs (one in the figure) replacing the failed nodes.
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Figure 3.7: Tree overlay with a failed region (a), followed by a full (b) and
partial (c) additive repair. Overlay nodes are shown with numbers, and
physical hosts with letters.

Alternatively, a node may propose a subtracting repair, by re-distri-
buting the responsibilities of the failed nodes among live overlay nodes to
maintain functionality after failures. For instance, one simple option is to use
a ‘single hub’ approach in which the coordinator takes on the responsibilities
of the failed region (shown in Figure 3.1 on page 25). This kind of repair may
be particularly suitable when resources beyond the scope of the overlay are
limited—particularly in end-user-host deployments, or when the expected
workload does not warrant the need for additional resources.

3.5 Evaluation

Echo and Sonar have been evaluated analytically, in simulations, and on a
real deployment in PlanetLab. The following provides a high-level overview
of these results, with details available in the relevant publications [Porter
(2007); Porter et al. (2006b)].

3.5.1 Failure free runs

Echo is triggered when a region fails in an overlay. The most favourable
runs, from a performance perspective, are when the nodes bordering the
failed region all detect the full extent of this region at the start of the pro-
tocol, and no additional failure occurs while the protocol executes (‘failure
free runs’). In such runs, the per-node message complexity of Echo is pro-
portional to O(b + f) (or O(b2 + b · f) overall), where b is the size of the
border set, and f is the number of nodes in failed region. This complexity
assumes the optimisation mentioned in note 2, and includes failure notifica-
tions, backup-accesses, and Echo messages.
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Turning to Sonar, the number of messages involved is that of Echo, plus
those of the repair itself, which are dependent on the selected repair strategy
(Section 3.4.2). Generally, however, these costs are minor compared to those
incurred by Echo. For example, node restoration typically incurs one extra
message per restored node to instantiate and add state to that node, in
addition to the cost of locating suitable hosts (not considered in this paper).

Overall, as the combined cost is a polynomial function of the size of the
border set and the failed region, the overhead only becomes an issue with
‘large’ failed regions and highly connected overlays. Moreover, this overhead
is completely independent of the size of the overlay itself.

To put this in context, any failure in the Chord [Stoica et al. (2001)]
ring-based overlay would involve just two border nodes (excluding ‘finger’
nodes, which are refreshed continuously). This would yield a message count
of 9 for a failed region of size 1, and 33 for a failed region of size 5, including
FD probe usage, backup accesses4, and agreement messages. Similarly, the
failed region in Figure 3.1 would result in a border set of size 4 (yielding a
repair message count of 66). In both cases the cost is independent of the
size of the overlay.

3.5.2 On-going failures

Sonar/Echo accommodates ongoing failures, but assumes that failures will
stop for long enough for the protocol to complete. The worst possible case
occurs when (i) the round-reducing optimisation discussed in footnote 2 on
page 35 cannot be used and (ii) the agreement concludes only for the view to
be aborted. This happens when a border node fails at the very start of Echo
without providing an opinion, and a full consensus instance is executed to
no effect.

If this happens repeatedly as a failed section grows in size, the overall
number of messages can become as large as O(b3 · f + b · f2), with b and f

the final size of the border set and the failed section, respectively. This is to
be compared against a count in O(b2 + b · f) in good runs. Although rather
high, this worst-case overhead can be traced back to the strong robustness
property provided, and should in practice remain relatively rare.

4In these examples we assume a backup service that incurs 2 messages to retrieve each
backup.
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Figure 3.8: Effects of false positives in fully-connected mesh overlays

3.5.3 The impact of imperfect failure detection

Our demonstration of Echo in Section 3.3.5 assumed a perfect failure detec-
tor (class P ). Such detectors are in practice extremely hard to approximate
in asynchronous environments (and formally impossible to realise). Many
practical fault-tolerance algorithms therefore either assume an eventually
perfect (✸P ) or eventually strong detector (✸S).

The reason behind Echo’s reliance on a perfect failure detector is to be
found in the semantic of the service: if the output of the failure detector
cannot be trusted, the protocol can no longer be guaranteed to distinguish
failed regions from non-failed ones, and the formal properties specified in
Section 3.3.3 collapse.

Practice is however not so bleak: With an imperfect failure detector,
Echo will in most cases still return valid failed regions, and guarantee the
convergence of overlapping views. This is because in order to wrongly de-
cide on a region that contains non-failed nodes, all the nodes bordering that
region must receive the same incorrect suspicions from their local failure
detector. (They must all be wrong in the same way.) With uncorrelated
false positive, our simulations show that the probability of this happening is
relatively low: a large percentage of per-node false positives is required for
non-failed nodes to be wrongly repaired, and the probability of this happen-
ing decreases with the connectivity of the overlay (Figure 3.8).

3.5.4 TBCP Case study and PlatnetLab deployment

To evaluate finally the viability of Echo/Sonar in a concrete overlay, we
used it to replace the custom-build repair mechanism of TBCP, a well-known
application-level multicast overlay [Mathy et al. (2001)]. In TBCP, nodes
join at the tree root, and from there find a ‘good’ parent node to become a
child of according to set preferences.
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Figure 3.9: Standard TBCP & Sonar/TBCP repair times

In simulations, our own version of TBCP (termed Sonar/TBCP) was on
average 1.8 times faster standard TBCP in repairing failures (Figure 3.9-a)
in a 1000-node overlay. This is explained by the re-join-at-grand-parent/root
strategy of the default TBCP repair mechanism. This strategy maintains a
very good tree shape, but can take a significant time to ‘stabilise’ as displaced
nodes find new positions in the tree. To put this in context, Figure 3.9-b
shows the spread of repair times for the two versions—the fastest repairs
were 1,868 time units for standard TBCP, and 21,444 for Sonar/TBCP;
and their slowest repairs 615,144 and 70,533 respectively. On inspection,
this is explained by the fact that Sonar/TBCP takes longer in ‘easy’ repairs
where nodes fail close to the leaves of the tree, but performs much better
near the root, giving it a lower average.

To test the practical feasibility of our approach, we also deployed Sonar/TBCP
on 150 PlanetLab hosts. Figure 3.10 shows Sonar/TBCP’s network usage
at the root node on PlanetLab, giving a flavour of the real costs involved.
Globally, Sonar/TBCP showed a low normal network usage, at around 5KB
per second on average. During this experiment, the root node shown was
involved in 4 repairs (marked with arrows), and these caused higher volumes
of network traffic over brief periods.

3.6 Conclusion

This chapter has presented my work on Sonar/Echo, a generic and reusable
service for repairing of arbitrary overlay networks. Sonar/Echo allows
surviving nodes to dynamically select and enact a repair strategy in a fully
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Figure 3.10: Sonar/TBCP network usage at the root node on PlanetLab.

decentralised and localised manner, and leverages distributed consensus with
scoped communications (Echo) to create agreement on how to repair each
failure. Building on this agreement service, Sonar provides a framework in
which a range of repair strategies can safely be enacted. The approach as
a whole simplifies the design and implementation of new overlays (because
repair issues can be treated orthogonally to basic functionality), and can
thus supports tailorable levels of dependability, by adapting the proposed
repair strategies to runtime conditions.

The work presented bridges traditional small-scale fault-tolerance and
large-scale decentralised systems. This is illustrated by the fact that al-
though Echo is based on a traditional consensus algorithm, its message
complexity is independent of the system’s global size. Instead, Echo/Sonar
only involve nodes bordering a failed region (locality), which inherently in-
sures scalability in very large systems.

The results included also cover different forms of research: while we have
proved formally the correctness of Echo under strictly defined conditions,
our treatment of Sonar has been much more experimental and geared to-
wards practical feasibility, using simulations and a prototype deployment on
the PlanetLab platform.
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Programming Gossip Protocols: GossipKit and Whispers

Gossip protocols1 have attracted a considerable amount of attention over
the last decade. Their natural robustness, scalability, and self-stabilisation
properties make them particularly well adapted to the needs of peer-to-peer
social networks [Bertier et al. (2010)], wireless sensor networks [Haas et al.
(2006)], and large-scale data-centres [Agrawal et al. (1997)]. Although the
principles of gossip protocols are relatively easy to grasp, their variety, and
the wide range of environments in which they can be deployed can make their
design, implementation, and evaluation highly time consuming. Specifically,
the lack of a unified programming model for gossip protocols means that
developers can not easily reuse, compose, and adapt existing solutions to
fit their needs, and limits opportunities for knowledge sharing and cross-
pollination.

To address these challenges, I have looked in my research for approaches
that maximise code reuse across gossip protocols, simplify the development
of new and composite protocols, and lend themselves to dynamic evolution
and re-deployment in a broad range of environments. This research has
led me to envisage two complementary tracks, that of component frame-
works, and that of distributed macro-programming languages, and to con-
sider more particularly their synergies in terms of structure and behaviour.
This chapter summarises the results of this line of research, which I per-

1‘Gossip’ and ‘epidemic’ protocols are used interchangeably in the distributed system com-
munity.
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formed together with my student Shen Lin and my colleague Gordon Blair
from Lancaster, and with Marin Bertier and Anne-Marie Kermarrec from
IRISA/INRIA Rennes. The original publications on which this chapter is
based can be found in [Lin et al. (2007, 2008); Lin (2010); Lin et al. (2011)].

4.1 Structure and behaviour in gossip protocols

As pointed out by a number of authors [Jelasity and Babaoglu (2005);
Kermarrec and van Steen (2007); Eugster et al. (2007)], Gossip protocols
usually share a core set of common features, with key variation points de-
termining their specific properties. An important effort of our research con-
sisted in precisely identifying and documenting both these common features
and variation points across a wide range of gossip protocols, and mapping
these, first on an event-based component engine (GossipKit), and then an a
specialised macro-programming language (Whispers). Our interest focused
in particular on the synergies between these two technologies, through an ap-
proach we have termed transparent componentisation. This novel approach,
which we detail in Section 4.3, provides the behavioural expressiveness of
macro-programming, while preserving the reusability and composability of
components.

4.1.1 Gossip protocols

In gossip protocols, individual nodes exchange data with some of their neigh-
bours according to stochastic patterns, causing information to eventually
spread through a distributed system like a “rumour” would. Gossip pro-
tocols offer three key advantages over more traditional systems: 1) they
are particularly scalable; 2) they are naturally robust to node failures and
message losses; and 3) they are efficient in terms of message exchanges and
latencies. As a result, they have been applied to a wide range of problems
such as peer sampling [Ganesh et al. (2003); Jelasity et al. (2004)], ad-hoc
routing [Haas et al. (2006)], reliable multicast [Eugster et al. (2001); Birman
et al. (1999)], database replication [Agrawal et al. (1997)], failure detection
[van Renesse et al. (1998b)], and data aggregation [Gupta et al. (2001)].

To meet their requirements, individual protocols differ in their communi-
cation pattern (periodic or reactive); in the type of information they main-
tain (a measurement, a list, a dictionary); in the probability function that
drives their message exchanges; and in the mechanisms they use to updates
their state. Some protocols might also be composite: for instance one gossip
protocol might rely on another to build and maintain its neighbourhood.
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4.1.2 Component Frameworks

Following on the work on configurable communication platforms [Bhatti
et al. (1998); van Renesse et al. (1995)], and early proposals in the area
of gossip protocols [Jelasity and Babaoglu (2005); Kermarrec and van Steen
(2007); Eugster et al. (2007)], our first choice to systematise the develop-
ment of gossip protocols was to consider component frameworks. Software
components extend the notion of object-orientation by introducing explicit
dependencies between provided and required interfaces [Szyperski (2002)].
Component frameworks add rules for composition, and structural constrains
that capture the domain knowledge of a particular area. They thus encour-
age a compositional approach to system construction that fosters modularity,
reuse, and configurability. They also facilitate the development of dynam-
ically adaptive systems: knowledge about provided and required interfaces
allows the reconfiguration logic to reason about dependencies, while dynamic
bindings provide a simple mechanism to update a system at runtime. Fi-
nally, components foster knowledge sharing and reuse across systems, thus
reducing both development effort and resource overhead.

These benefits make components a particularly popular approach to de-
velop distributed platforms. They have been successfully applied both in the
industry (c.f. EJB, CORBA Component Model, DCOM), and in middle-
ware research, giving rise to lightweight component technologies (OpenCom
[Coulson et al. (2004)], Fractal [Bruneton et al. (2004)]) and their associ-
ated middleware frameworks (GridKit [Grace et al. (2004)], RAPIDWare
[McKinley et al. (2001)], FraSCAti [Seinturier et al. (2011)]).

4.1.3 High-level distributed programming

In spite of the many advantages of component-based approaches, compo-
nents primarily cater for structural concerns. This can be expected to work
well in situations in which each component’s role is well understood, and the
features of the emerging system can be easily derived from each component’
characteristics. These conditions however often do not apply to distributed
protocols and systems [Hiltunen et al. (2006)]. In particular, because compo-
nent frameworks focus on structure rather than algorithms, they are limited
in their ability to represent a system’s detailed behaviour, such as execu-
tion flows and message exchanges [Clements (1996)]. This in turn makes it
difficult for developers who are unfamiliar with a particular framework to
understand its logic [Edwards et al. (2004)]. We have observed this effect
in our own work. Our component platform GossipKit performs well in
terms of configurability, reuse, and adaptability but remains radically differ-
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ent from the pseudo code protocol designers typically employ when creating
new gossip mechanisms.

This raised the question of whether a component approach could be aug-
mented with alternative approaches more oriented towards the algorithmic
logic of distributed systems. One inspiration for this part of our research
came from the many high-level distributed languages that have been pro-
posed over the years to specify, realise and verify distributed systems, such
as Lotos [Eijk and Diaz (1989)], Estelle [Amer and Çeçeli (1990)], PLAN-P
[Thibault et al. (1998)], Promela++ [Basu et al. (1997)], and Mace [Killian
et al. (2007)]. A second strong inspiration was provided by the recent emer-
gence of specialised languages for wireless sensor networks (WSNs), with
systems such as Kairos, Regiment, Cougar and TinyDB [Gummadi et al.
(2005); Madden et al. (2005); Newton et al. (2007); Fung et al. (2002)]. These
languages, often referred to as macro-programming approaches, seek to hide
the intricacies of distribution by abstracting a large-scale distributed system
as a single programmable entity. To reach their goal, macro-programming
approaches either use declarative abstractions that capture collections of
nodes such as in TinyDB, or emulate a shared-memory programming model
augmented with parallel constructs for distribution, such as in Kairos and
Regiment. A compiler automatically translates a system-level program into
deployable executable code, and shields the programmer from explicitly deal-
ing with network messages used to access remote data.

4.1.4 Transparent componentisation: WhispersKit

While components cater for structure, macro-programming handles beha-
viour. Our goal was to bring these two technologies together, in order to
benefit both from the advantages of components (reusability, maintainability,
and adaptability), and that of macro-programming languages (expressive-
ness, understandability, proximity to practice of protocol designers). Struc-
ture and behaviour are two recurring concerns developers have to deal with.
In some way or other, they both appear in most programming technologies.
Two traditional strategies to bring these concerns together in component-
based approaches consist in either (i) requiring developers to encapsulate
behaviour within components (Figure 4.1a), or (ii) in extending the com-
position mechanism with programmatic capabilities, for instance by adding
scripting capabilities to connectors and/or to the containing component en-
gine (Figure 4.1b).

Although both strategies have proved their values (encapsulation for
instance is a hallmark of modular programming models, and of object-
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orientation in particular), they both require developers to explicitly han-
dle the articulation of structure and behaviour in their code. This cre-
ates tensions: for instance the best granularity to leverage adaptation and
reuse might not be the most appropriate to maximise expressiveness and
understandability. Similarly, the orchestration features best adapted to self-
organising systems might not be those that foster the most intuitive compo-
sition semantics.

These considerations have led us to explore a third way (Figure 4.2),
which separates behavioural concerns from structural ones. Protocol design-
ers, who wish to focus on a behavioural representation, can work at the level
of a macro-programming language, with no or little structural constrains.
The platform then takes care of converting this high-level representation into
an intermediate component-based configuration. This component-based con-
figuration can in turn draw on existing component libraries and can leverage
reconfiguration approaches adapted to component-based systems. As a proof
of concept of this approach, which we have termed transparent componentisa-
tion, and to assess its benefits, we have realised a prototype targeting gossip
protocols, WhispersKit. WhispersKit is made of GossipKit, a generic
and expressive component framework for gossip protocols, and Whispers,
a macro-programming language based on GossipKit tailored for rapid pro-
tocol development. We detail each of them in the remainder of this chapter.
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Figure 4.3: GossipKit’s common architectural pattern (from [Lin (2010)])

4.2 The GossipKit component framework

Identifying how best to partition a family of algorithms, here gossip proto-
cols, into a set of generic and reusable entities is as much a craft as a science.
We designed GossipKit with two principal aims: generality and simplicity.
These two traditional aims are generally at odds in component frameworks,
and more generally any approach targeting a high level of reuse. A very
general framework might for instance require a large number of component
types to cater for a broad range of underlying mechanisms. Alternatively, a
simple framework, based on a limited number of component roles, might be
applicable to only a limited family of mechanisms, or might require a large
number of specific implementations for each supported protocol.

To achieve these two aims in GossipKit, we made two design choices:
that of fine-grained components, to maximise the potential of one component
implementation being reused in different protocols, and that of structured
nested events, to simplify component interactions, while maintaining some
structure in our handling of events.

4.2.1 GossipKit’s common interaction pattern

The architecture of GossipKit is based on a common interaction pattern
(Figure 4.3) that captures a recurring set of roles and interactions we have
observed across a representative set of 30 gossip protocols. In Figure 4.3,
each rectangle represents a GossipKit component type (or role)2, and each
arrow a possible interactions between the connected components. As the
APIs proposed in [Eugster et al. (2007)], this common interaction pattern

2When the distinction is clear, we use component in the following as a shorthand for com-

ponent type.
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combines the patterns identified in periodic gossip frameworks [Jelasity and
Babaoglu (2005); Kermarrec and van Steen (2007)], with the reactive gossip
patterns observed on gossip protocols such as [Ganesh et al. (2003)] and
[Haas et al. (2006)]. In contrast to [Eugster et al. (2007)], this pattern also
explicitly focuses on encapsulated and reusable entities (component types),
rather than on procedural interfaces.

This pattern is both simple (in only encompasses seven component types),
and highly generic: it is based on the analysis of 30 representative gossip
protocols, which can all be mapped onto the pattern. As shown on the
figure, it also conforms to the Control Forward State pattern generally ob-
served in overlay protocols [Grace et al. (2004)], allowing it to readily fit into
middleware that follows this architectural model [Grace et al. (2004, 2008)].

To increase opportunities for reuse, each of the roles shown in Figure 4.3
might be implemented as a composite component, made of smaller com-
ponents. One particular case is when one role (e.g. the Peer Selection
module) is implemented as a gossip protocol (e.g. the RPS protocol [Jelasity
et al. (2007)]) that itself follows the same interaction model. Another exam-
ple is the family of gossip-based ad-hoc routing protocols proposed in [Haas
et al. (2006)], whose Decision role can be decomposed into a combination
of three basic micro-components [Lin et al. (2008)].

GossipKit’s architectural pattern covers all the steps of a typical gossip
round in an gossip protocol: rounds might be triggered periodically (a) as in
RPS [Jelasity et al. (2007)]), or started in reaction to an application event
(b) or to an incoming gossip message (c), as in reactive routing protocols
[Haas et al. (2006); Hou and Tipper (2004)]. The rest of the gossip round
is then orchestrated by the Gossip component. First a decision is made
(usually probabilistically) whether to gossip or not (d). If positive, a subset
of neighbours is selected for communication (e), and finally the message is
disseminated (g). On receiving a gossip message, the node might further
update its internal data (e.g. merging neighbourhood lists) using the mes-
sage’s content (j and l). The state component plays a major role in this
sequence, by storing the node’s current neighbourhood; providing additional
context for the gossiping decision and peer selection (e.g. as in [Ganesh et al.
(2003)]); and storing any additional data maintained and disseminated by
the node (e.g. a sensor value, routing tables). Finally, some of these steps
are optional. For instance, in wireless sensor networks, gossip protocols typi-
cally broadcast to all neighbours within a node’s radio range. In such a case,
the Peer Selection component is not used, and the probabilistic nature of
the protocol entirely relies on the Decision component.
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4.2.2 Rich and uniform event interactions

Which interaction paradigm to use is a critical design decision of any com-
ponent framework. In GossipKit we have opted for event-based interac-
tions, following in that respect the design of earlier configurable communi-
cation platforms [Hiltunen and Schlichting (2000); van Renesse et al. (1998a);
Bhatti et al. (1998)], and high-level APIs proposed for gossip-based systems
[Eugster et al. (2007)]. Events are well adapted to the asynchronous in-
teractions found in gossip protocols. They also minimise explicit coupling
between modules [Bhatti et al. (1998)], which allow our framework to be
easily extended by plugging in new micro-modules (i.e. event handlers) and
reconfiguring event bindings to support new interaction patterns.

GossipKit uses rich events that carry a number of contextual parameters
needed by each component (e.g. protocol ID, event source, data payload).
GossipKit events also feature two innovations: first the same event mecha-
nism is used for both local and remote interactions, i.e. whether the involved
components reside within the same address space, or on different machines.
This allows for a uniform interaction model, that naturally captures the
distributed nature of gossip protocols. Second, events can be nested into
compound events, to express complex event sequences at different levels of
abstractions.

4.2.3 Evaluation

Our evaluation of GossipKit is based on a prototype implementation in
Java, and builds upon the OpenCom component engine developed at Lan-
caster [Clarke et al. (2001b)], a lightweight and reflective component en-
gine. The prototype is available on-line3, and relies on events (rather than
threads) for an efficient handling of concurrency. By design, the Gossip-
Kit prototype naturally supports the execution of composite and co-existing
gossip protocols, a feature we have used for instance to investigate synergies
in overlay networks [Lin et al. (2009)] (not detailed in this document). A
GossipKit configuration is declared as an XML file that is parsed by the
GossipKit engine and specifies which component to instantiate, and which
event interactions should take place between these components.

Evaluating a component framework’s suitability to a particular domain
(here gossip protocols) is always a somewhat disputable task. What consti-
tute an appropriate measure of generality? How should one assess simplicity?
Our first step was to refine our two original aims of generality and simplicity

3ftaiani.ouvaton.org/GossipKit/
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Reused Specific Reuse
Protocol (LoC) (LoC) Rate
Gossip1 [Haas et al. (2006)] 626 134 82.3%
Gossip2 [Haas et al. (2006)] 626 138 81.9%
SCAMP [Ganesh et al. (2003)] 888 120 88.1%
RPS [Jelasity et al. (2007)] 1221 0 100%
Anti Entropy [Demers et al. (1987)] 1349 56 96.0%
Averaging [Jelasity et al. (2005)] 1102 152 87.9%
Ordered Slicing [Jelasity and Kermarrec (2006)] 1102 178 86.1%
T-Man [Jelasity and Babaoglu (2005)] 1144 309 78.7%
Average 1007 136 88.1%

Table 4.1: Reused achieved by GossipKit (from [Lin (2010)])

(Section 4.2) into more concrete properties: size and complexity—for sim-
plicity, and configurability, reusability, reconfigurability, and expressiveness
for generality. We also implemented a representative set of eight diverse gos-
sip protocols, with GossipKit and directly in Java, to serve as a reference
point for comparison. In the following we focus on reuse (as a quantitative
measure of GossipKit’s ability to factorise common code, and thus capi-
talise on development efforts), and size (as a surrogate for simplicity). The
full detail of our evaluations can be found in the relevant publications [Lin
(2010); Lin et al. (2008, 2007)].

Table 4.1 compares for each target protocols the amount of component
code shared with at least another protocol against component code unique
to this particular protocol. Although the study only covers 8 protocols,
the reuse rate (defined as the proportion of reused component code) ranges
from 100% (RPS) to 78.7% (T-Man), and remains particularly high, with a
weighted average of 88.1%. Furthermore, reuse would likely increase if addi-
tional protocols were added, as more commonalities would show up within
a larger protocol population.

As a surrogate for simplicity, we also compared for each protocol the size
of the GossipKit configuration file against that of a direct Java implemen-
tation of the same protocol (Table 4.2). If one assumes, as is reasonable to
believe here for XML and Java, that programming efforts are roughly pro-
portional to code size, GossipKit’s declarative approach allows for a much
more direct construction of a protocol (code about five times smaller) than a
Java implementation. Even when one adds the part of the component from
Table 4.1 that is specific to each protocol, the effort requires by GossipKit
remains about half that of Java (last column). This represents however an
extreme case, as the specific parts would be likely to decrease with more pro-
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GossipKit Java XML
Protocol (XML LoC) (LoC) Ratio +Specific Ratio
Gossip1 39 277 14.1% 173 62.5%
Gossip2 39 279 14.0% 177 63.4%
SCAMP 88 463 19.0% 208 44.9%
RPS 81 439 18.5% 81 18.5%
Anti Entropy 100 544 18.4% 156 28.7%
Averaging 85 466 18.2% 237 50.9%
Ordered Slicing 85 471 18.0% 263 55.8%
T-Man 93 491 18.9% 402 81.9%
Average 76.3 424 18.0% 212.3 50.1%

Table 4.2: GossipKit’s implementation effort (in LoC) compared to Java

tocols added, as discussed above. We return to simplicity and expressiveness
(the ability to express advanced behaviour in an easily comprehensible man-
ner) when we will discuss Whispers’ evaluation in Section 4.3.3 on page 60.

In addition to reuse and compactness, GossipKit also brings the tradi-
tional advantages associated with component frameworks, such as the ability
to easily reason about configurations, and the basic mechanisms to reconfig-
ure a running deployment. We come back in particular to dynamic adapta-
tion in the next section, where we discuss the synergies between GossipKit
and our macro-programming solution Whispers.

4.3 Transparent componentisation

In spite of its benefits, GossipKit’s style of programming remains quite
different from the approach favoured by designers of new epidemic proto-
cols, as documented in the literature. Configuring GossipKit is mainly a
declarative task that focuses on components and event-based connections,
while protocol designers usually prefer a more algorithmic approach, based
on pseudo-code.

To leverage the advantages of GossipKit’s components (reuse, struc-
tural reasoning, dynamic adaptation), we have therefore explored how a
component-based development framework (GossipKit) could be combined
productively with a higher-level representation, here a macro-programming
language tailored for epidemic protocols (Whispers). The resulting plat-
form (WhispersKit) illustrates a more general design strategy we have
termed transparent componentisation (Section 4.1.4), that seeks to uncouple
as much as possible behavioural concerns from structural ones.
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4.3.1 The Whispers language

Whispers is a macro-programming language, strongly inspired from solu-
tions such as Kairos [Gummadi et al. (2005)] that presents developers with a
shared-memory metaphor of a peer-to-peer systems, and provides a number
of useful constructs to program gossip protocols.

As an illustration of Whispers’ capabilities, Figure 4.4 shows the Whis-
pers source code of the RPS protocol [Jelasity et al. (2007)], Figure 4.5
that of the wireless gossip1 protocol [Haas et al. (2006)], and Figure 4.6 lists
Whispers’ most important programming constructs.

We designed Whispers based on the understanding of gossip protocols
gained through GossipKit, with transparent componentisation in mind
(Section 4.1.4 on page 50). The main challenge in this context consisted
in translating the core concepts of GossipKit into a different programming
paradigm (an imperative language), while maintaining an explicit reverse
mapping to allow any Whispers program to be translated into a Gossip-
Kit configuration. The controlled mapping we have used encompasses three
cases:

Direct Exposition. Some GossipKit component types, whose function
is well identified (Peer Selection and State Process), are directly ex-
posed in Whispers as method calls on Node objects. That’s the case of
RandomPeerSelection and RandomStateCompress in Figure 4.4, which
realise the component types State Process and Peer Selection, re-
spectively.

Blocks. The execution sequences and control flows involved in a gossip
protocol are captured as traditional programmatic constructs in Whis-
pers, to increase the programmability and the understandability of the
language. This is the case for instance of the every (Figure 4.4) and wait

blocks (Figure 4.5), which capture the effect of the Periodic Trigger

component, and of external events, respectively. This also applies to con-
ditional if statements, which are automatically synthesised into Decision
components.

Types. Finally, some Whispers concepts are exposed as specialised types,
such as State or Node. State declaration directly maps onto State com-
ponents, while Node variable describe a locus of execution and as such
might involve the Network component (in case of a remote invocation as
in Figure 4.4), or other components directly exposed as libraries.

Finally, because a gossip system typically involves multiple collaborative pro-
tocols, Whispers provides high-level expressions to describe interactions be-

57



Chapter 4.

RPS { 

  State sample = new State[Node:PeerID][Size=5]; 

  Node n, i; 

  every (5000) { // do the following every 5000 ms 

    foreach (n in AllNodes) { // for each node n 

      i=n.RandomPeerSelection(n.sample)[Size=1]; 

      n.sample.add([n]); 

      i.RandomStateCompress(i.sample,n.sample)[Size=5]; 

      n.RandomStateCompress(i.sample,n.sample)[Size=5]; 

    } // end of foreach 

  } // end of every 

} // end of RPS protocol block 

RPS { 

  State sample = new State[Node:PeerID][Size=5]; 

  Node n, i; 

  every (5000) { // do the following every 5000 ms 

    foreach (n in AllNodes) { // for each node n 

      i=n.RandomPeerSelection(n.sample)[Size=1]; 

      n.sample.add([n]); 

      i.RandomStateCompress(i.sample,n.sample)[Size=5]; 

      n.RandomStateCompress(i.sample,n.sample)[Size=5]; 

    } // end of foreach 

  } // end of every 

} // end of RPS protocol block 

Figure 4.4: Whispers program of the RPS protocol [Jelasity et al. (2007)]

Gossip1 {
  State state = new State[Event:Packet][Size=10];
  wait(Event evt type Forward) {
    if(!this.state.contains(evt.ID) &
       (Math.random()<0.6 | evt.HopCount<4))  {
      evt.HopCount++;
      this.broadcast(evt);
    } // end if
    if (!this.state.contains(evt.ID)) {
      this.state.add([evt]);
    } // end if
  } // end of wait block
} // end of Gossip1

Figure 4.5: Whispers program of the Gossip1 protocol [Haas et al. (2006)]

SomeProtocol {..}          // protocol block

every (time) {..}          // periodic behaviours

wait (Event e type T) {..} // reactive behaviours

foreach(n in nodeSet)      // distribution

synchronised {..}          // pairwise data exchange 

State state = new State[fields][size] ; // state decl. 

state.field ;              // get a column of data 

state.add([fields])        // add

state.remove(row_ID)       // remove

i.RandomStateCompress(...) // library call

Figure 4.6: The language primitives of Whispers
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Figure 4.7: Deployment Process in WhispersKit

tween gossip protocols. These expressions can then be automatically trans-
lated into a combination of coexisting gossip protocols in GossipKit.

4.3.2 Synthesis and deployment

The Whispers language forms the start of a compiling tool chain, Whis-
persKit, that transforms and deploys Whispers programs as GossipKit
configurations (Figure 4.7). Whispers programs (Step (1)) are compiled
by the componentisation mechanism (Step (2)) (based on JavaCC4) into
a GossipKit configuration. The componentisation mechanism also gener-
ates any protocol-specific components that might be required (essentially
Decision components) by the original Whispers program. The resulting
configuration file and generated components are disseminated to each node’s
runtime, where it gets deployed (Steps (3a) and 3b).

The componentisation mechanism. The Whispers compiler uses a
two-step process that first transforms a Whispers program into a set of
direct acyclic graphs representing the behaviour of individual nodes (shown
in Figure 4.8 for the RPS protocol of Figure 4.4). This intermediate repre-
sentation exposes low-level programming details such as threading, message
handling, data synchronisation, remote data access, and network interface
management for sending or receiving messages. It is used in a second step
to generate the final GossipKit configuration (Figure 4.9), and generated
components (if any).

Deployment and dynamic reconfiguration. The deployment of the
initial GossipKit configuration generated by WhispersKit is assumed to

4http://javacc.java.net/
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occur at installation time, when each node is set up (Step (3a) in Figure 4.7
on the previous page). Once an initial configuration is running, Whis-
persKit provides a distributed reconfiguration service (Step (3b)), which
piggybacks reconfiguration requests on the messages of the currently run-
ning gossip protocol(s). When receiving such a request, each node compares
its current architecture with the target one, and computes an optimised set
of local transformations (parameter change, component instantiations and
bindings) to realise the new configuration.

This mechanism directly benefits from the self-stabilisation of gossip pro-
tocols, which allows the system to tolerate transient states in which nodes
do not all execute the same configuration. It also clearly demonstrates the
advantages of transparent componentisation: while developers work at the
level of Whispers programs, and do not need to worry about the scope and
granularity of GossipKit components, the platform is able to leverage the
component structure of GossipKit to reason about change and evolution.

Figure 4.8: Per-node program of RPS [Lin et al. (2011)]

Figure 4.9: Component realisation of RPS [Lin et al. (2011)]

4.3.3 Evaluation

The following discusses a reconfiguration scenario with WhispersKit, and
then focuses in more detail on a quantitative assessment of the simplicity
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Figure 4.10: Dynamic reconfigurations with WhispersKit [Lin et al. (2011)]

of the Whispers language. We have deliberately left performance measure-
ments out of scope, which can be found in [Lin et al. (2011)].

Dynamic reconfiguration. Figure 4.10 demonstrates on a simple sce-
nario how WhispersKit is able to reconfigure a set of distributed of gossip
protocols. The scenario involves 100 nodes simulated on the Jist/SWANS
network simulator [Barr et al. (2005)]. Each node is initiated with the RPS
protocol (Figure 4.10a). The first reconfiguration consists in launching an
implementation of T-Man [Jelasity and Babaoglu (2005)] to construct a ring
topology (Figure 4.10b). Because T-Man relies on RPS to sample peers,
the WhispersKit compiler includes RPS in the generated configuration,
and each node’s runtime then takes care of instantiating T-Man on top of
the already running instance of RPS. Once the ring topology has converged
(Figure 4.10c), a second reconfiguration is triggered that uses a modification
of T-Man to build a grid topology (Figures 4.10e and 4.10e).

The two reconfigurations occur at two levels of granularity, both trans-
parently supported by WhispersKit. The first reconfiguration is coarse-
grained: it deploys an entirely new protocol (i.e. T-Man) atop RPS, injecting
8 new components and 10 new bindings. By contrast, the second reconfig-
uration is fine-grained, and only involves the State Process component of
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T-Man and two bindings. Thanks to the Transparent Componentisation
provided by WhispersKit, developers do not need to worry how coarse- or
fine-grained a reconfiguration is in practice, or which architectural depen-
dencies should be taken care of. These concerns are automatically addressed
by the underlying tool chain, on the sole basis of the provided Whispers
programs.

Simplicity. Table 4.3 shows the length of Whispers programs for the
eight protocols we used for our evaluation, together with the size of the
corresponding GossipKit configuration, and the size of a direct java imple-
mentation. Whispers programs, thanks to their imperative approach and
high-level distribution constructs, are substantially shorter than GossipKit
configurations (20.2% of the size on average), and much shorter than their
Java counterpart (3.6%).

Protocol Whispers GossipKit Ratio Java Ratio
Gossip1 14 39 35.9% 277 5.1%
Gossip2 14 39 35.9% 279 5.0%
Anti Entropy 16 100 16.0% 544 2.9%
Averaging 14 85 16.5% 466 3.0%
Ordered Slicing 14 85 16.5% 471 3.0%
RPS 12 81 14.8% 439 2.7%
SCAMP 19 88 21.6% 463 4.1%
T-Man 20 93 21.5% 491 4.1%
Average 15.4 76.3 20.2% 424 3.6%

Table 4.3: Whispers program sizes vs. GossipKit and java (LoC)

Comparing heterogeneous programming technologies (here a macro-pro-
gramming languages, a component framework, and a general purpose lan-
guage) simply in term of code size can however be misleading. Both Java and
XML are known for instance for their verbosity, but more lines (in particular
if they are short and only involve simple operations) do not necessarily make
a program harder to understand. One could even argue that a too concise
program, in particular if it relies on dense and unintelligible code, might be
harder to read and understand than a more expanded version. Simply com-
paring size becomes even more problematic when it involves different pro-
gramming paradigms: while Whispers and Java, being imperative, share a
number of commonalities, GossipKit configuration files, being declarative,
differ markedly.

To address these limitations of raw program size, Table 4.4 presents alter-
native measures of the same protocol implementations: cyclomatic complex-
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Whispers Java GossipKit
Protocol (Cyclomatic Comp.) Comp. Param. Bindings
Gossip1 2 11 5 6 7
Gossip2 2 11 5 6 7
Anti Entropy 3 10 9 15 13
Averaging 3 6 8 12 11
Ordered Slicing 3 11 8 12 11
RPS 2 12 7 15 10
SCAMP 3 20 8 10 12
T-Man 3 11 8 15 12
Average 2.6 11.5 7.3 11.4 10.4

Table 4.4: Whispers programs vs. Java and GossipKit [Lin (2010)]

ity [McCabe (1976)] for Whispers and Java, and the number of components,
parameters and bindings for GossipKit (Table 4.4). If one considers a cycle
to represent a basic unit of understanding, somewhat comparable to a com-
ponents or binding, it appears that Whispers, with an average cyclomatic
complexity of 2.6, maintains here also its advantage over Java (11.5) and
GossipKit (7.3 components and 10.4 bindings on average).

4.4 Conclusion

GossipKit has demonstrated that gossip protocols could greatly benefit
from a component-based development approach. Our results open the path
in particular for the application to gossip systems of higher-level develop-
ment processes, such as software product lines [Paul Clements (2001)]. This
research also sheds light on the inherent structures and interaction patterns
of gossip protocols, offering a unified conceptual and implementation frame-
work in which to design, implement, and analyse gossip protocols. We have
started to explore this area ourselves, by using the common interaction pat-
tern provides by GossipKit to investigate synergies in co-existing overlays
[Lin et al. (2009)].

The combination of Whispers and GossipKit shows how two hetero-
geneous programming paradigms, components and macro-programming lan-
guages, can be brought together to harness the strengths of each approach.
Our work with the Whispers language more generally raises the issue of
the role of structure and behaviour in programs, and how they might be
addressed at different levels of the compilation and deployment tool-chain
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to provide an optimal combination of understandability, expressiveness, and
flexibility to developers in a particular domain.
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CHAPTER 5

Anomaly Diagnosis and Understanding in Complex Systems

The works presented in Chapters 3 and 4 both attempt to propose a unified
view of distributed systems, either by proposing a generic mechanism for
fault-tolerant overlays (Chapter 3), or by developing a reusable component
framework for gossip protocols (Chapter 4). Many modern distributed sys-
tems are however far from being unified. Instead, they commonly involve
parts (middleware, libraries, OS) developed by distinct teams in indepen-
dent organisations. They are continuously expanded and corrected; and for
many end up resembling a living organism, constantly evolving in a loosely
controlled manner.

This type of system would not be possible without appropriate software
technologies that provide the flexibility, interoperability, and separation of
concerns they require. In terms of distributed interactions, these technolo-
gies range from distributed object technologies such as Java RMI or CORBA
[OMG (2008)], proposed in mid 80’s and 90’s, to web services [Chinnici et al.
(2007)], and REST architectures [Fielding and Taylor (2002)] proposed over
the last 15 years. Many of these technologies are available as reusable soft-
ware elements (libraries, tools, frameworks), some of which rely on advanced
composition technologies (e.g. aspects and reflective architectures) to inter-
face with the rest of the system [Fleury and Reverbel (2003); Colyer and
Clement (2004)].

These technologies allow for a loosely coupled, evolving, and distributed
development, where reuse and abstraction (in the form of APIs) play a crit-
ical role. Unfortunately, this constant evolution and somewhat organically
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grown structures can also lead to a ‘Frankenstein’ effect, in which no single
person thoroughly understands all finer details of a large system. When this
happens, undesirable emergent behaviours (unexpected performance drops,
unstable behaviours leading to crashes, faulty synchronisation between dif-
ferent parts of the program leading to deadlocks) become particularly hard
to trace, and often need to be masked or hastily dealt with on an ad-hoc
basis.

The reason abnormal behaviours are particularly difficult to diagnose in
high-reuse distributed systems is, we argue, that they typically involve both
synergistic interactions between a system’s many parts, and microscopic in-
terferences within the system’s lowest levels. System architects, who possess
an overview of the fundamental structure of the system, lack the necessary
understanding of the system’s finer details. Conversely specialist developers,
who have an in-depth understanding of individual components, do not have
the ‘architectural’ overview needed to identify the stream of interactions that
produces these undesirable behaviours.

One strand of research to address this problem involves the dynamic
reverse engineering of a system’s behaviour based on its observation at run-
time [Systä et al. (2001); Jerding et al. (1997); Richner and Ducasse (1999);
Täıani et al. (2009)]. Another trend consists in automatically localising
faults, using data obtained from a program’s execution (system logs, dumps,
network latencies) [Xu et al. (2009); Chen et al. (2009); Zamfir and Candea
(2010)] to identify patterns and executions that lead to failures. Unfortu-
nately, dynamic reverse-engineering techniques often involve complex data
manipulation languages [Systä et al. (2001); Reiss and Renieris (2003)] that
can represent a steep learning curve, and do not take into account quantita-
tive measurements such as resource usage, or exception density. Similarly,
approaches for automatic fault location can considerably assist diagnosis,
but—except in simple or small-case examples—usually assume some good
knowledge of the underlying platform to interpret and analyse the output
they produce.

In this context, we have sought to better understand the problems faced
by developers who must diagnose anomalies in high-reuse unfamiliar soft-
ware. We have started this work with an in-depth analysis of the impact
of web-service technologies [Gudgin et al. (2007); Chinnici et al. (2007)]
on the performance of the grid middleware Globus [Foster et al. (2005)].
Building on this concrete experience, we have then developed an interactive
tool for performance diagnosis, ProfVis, that combine architectural reverse
engineering with performance analysis. ProfVis is the result an interdisci-
plinary collaboration with psychologists from the Department of Psychology
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of Lancaster, and provides a simple visual interface to navigate the perfor-
mance traces of large unfamiliar software. Its evaluation is based on a user
study to observe how developers react to our technology, which we think is
an essential step for this type of research.

This chapter summarises the results of this research, which I performed in
collaboration with my colleagues Rick Schlichting and Matti Hiltunen from
AT&T, and Shen Lin, Tom Ormerod and Linden Ball from Lancaster. The
original publications on which this chapter is based can be found in [Lin
et al. (2010); Täıani et al. (2005b)].

In the following, Section 5.1 presents our work on web-services and Globus,
which motivated the rest of the research. Section 5.2 then moves on to the
presentation of our interactive performance analysis tool, ProfVis, and
Section 5.3 concludes the chapter.

5.1 Complexity and performance: Globus

Globus is one of the reference implementations for grid computing. While
Globus originally started as a set of distributed tools implemented in C and
then Java, it experienced a drastic architectural turn in 2004/2005 when
its Java implementation was recast into a pure service-oriented architecture
(SAO) based on the Web-Service stack (WS-*) of the World-Wide-Web con-
sortium (W3C) [Foster et al. (2005)]. The first version (3.9.x) to feature this
new SOA structure was unveiled within a few months of the announcement
of the new direction of the project, a substantial development feat consid-
ering the Java code base at the time already contained more than 100,000
lines of code.

This swift transition towards Web-Services was in large part enabled by
the availability of reusable software elements (libraries, tools) implementing
the essential mechanisms needed to transform Globus into a set of networked
services. These libraries, mainly from the Apache foundation, provided the
Globus development team with the ability to rapidly integrate technologies
such as XML, SOAP, WSDL (the web service description language), and
WSRF (the web service resource framework [Graham et al. (2004)], which
provides stateful operations to web-services) into Globus under a short pe-
riod. Their use perfectly illustrates the benefit of reuse and appropriate
encapsulation of standard functionalities.

Because of the speed of this architectural transformation (a few months),
Globus also provides a very good case study of the challenges created by
current reuse practices in production middleware. While the functional APIs
of mature third party libraries are usually reasonably well documented, their
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non-functional characteristics (e.g. performance, robustness, reliability) are
much harder to gauge on paper. In turned out, for instance, that the SOA
version of Globus exhibited extremely long start-up times, without there
being any clear explanation of why this was the case. Anecdotal discussions
with Globus users (themselves most of the time developers) suggest that
they too were at a loss and had little spare resources to dive into the depth
of the platform and understand the source of its poor performance.

Analysing the performance impact of Web Services in Globus brought
two contributions:

• At a technological level, this work illustrates the challenges of introduc-
ing a novel middleware technology into a production-level distributed
platform. In particular, this demonstrates in very concrete terms the
potential side effects that appear when realising a substantial piece of
software from third party elements, under quite a short time.

• At a methodological level, this study also highlights the need devel-
opers have of analysing dynamic properties in unfamiliar software. It
thus lays the foundation for our follow-up research on the navigability
of performance traces, presented in Section 5.2.

In the following, we first give an overview of the experimental methodology
we used to analyse the performance of Globus (Section 5.1.1), and then pro-
vide a summary of our results (Section 5.1.2). A more complete description
of these results can be found in [Täıani et al. (2005b)].

5.1.1 Between black and grey: an hybrid approach

Analysing the performance of a complex software platform requires observing
it at runtime. Unfortunately, a detailed and fined-grained observation will
tend to disturb the target system, sometimes to the point of rendering the
results meaningless. To overcome this inherent tension between observation
and interference, we adopted a progressive strategy combining a black and
grey box approach to explore the link between the architecture of Globus
and its observable performance. Black box profiling is particularly basic, and
incurs no interference with the server part of the platform. The execution
times and latencies obtained with this approach are thus fairly representative
of what one would get in a production environment, assuming a similar
workload and hardware set-up.

Black box profiling is however limited, in that it does not provide any
insights on the causes of observed execution times. In order to better analyse
how individual technologies were impacting the performance of Globus, we
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Figure 5.1: Black box profiling: experimental set-up

therefore used a complementary technique, known as sample-based profiling
[Zhang et al. (1997); Anderson et al. (1997)]. A sampled-based profiling tool
periodically interrupts an application and captures the state of the currently
active thread. This state may be limited to the currently executing function,
or might include additional context information, from the direct caller (as
in gprof [Graham et al. (1983)]), up to the full call path from the thread’s
starting point (e.g. hprof [O’Hair (2004)], which we have used, or STAT
from the Paradyn project [Arnold et al. (2007)]). The granularity of the
obtained data is usually coarser than with approaches based on an exhaustive
instrumentation of the source code, but sampling-based approaches are much
less invasive and impose far less overhead.

Black-box profiling: tracking lazy initialisation

The main challenge in designing our black-box profiling campaign consisted
in capturing all cases of lazy initialisation present in Globus. Lazy initialisa-
tion is directly linked to the extreme flexibility of the web service framework
used by Globus. Service implementations are loaded on demand using nu-
merous customisation files (e.g., deployment files, service description files)
that are written in various XML dialects, such as the Web Service Defini-
tion Language, the Web Service Deployment Descriptor language, and the
Resource Specification Language. Because of this flexibility, many initialisa-
tion steps do not occur until they are actually required. As a consequence,
the first execution of an operation usually takes much more time than its
successors. This effect needs to be precisely understood, in particularly
for dynamic execution scenarios, such as elastic computing provisioning, in
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which containers or resources might be regularly launched and destroyed
according to demand.

The resulting experimental set-up we used to analyse this effect is shown
in Figure 5.1. It involves a set of fundamental operations on a Globus entity
known as a container (essentially a server), to create, update, and destroy
a simple counter (implemented as WSRF resource). In addition, the client
subscribes to notifications by the server on the counter just created, so that
any change on the counter causes the server to call back the client (‘no-
tify’ in Figure 5.1). Simple timer probes measure the end-to-end latency of
each individual operation, from the client’s point of view. All measurements
probes are located on the client, so as to avoid any interference with the
server. Sequences of interactions (e.g. creating, manipulating, and destroy-
ing a counter) are repeated in a set of nested loops to precisely analyse the
influence of lazy initialisation steps on Globus’ performance.

Sample-based profiling: the challenges of representation

Our sample-based profiling campaign used a similar workload to that of
Figure 5.1, albeit with one single client and container to limit data explosion
(shown in Figure 5.2). The primary challenge when using sample-based
profiling is however dealing with the volume of data. This problem is further
compounded when working on an unfamiliar code, as was Globus for us. Our
experiment, although relatively limited, returned more than 55550 method
invocations, distributed over 32 threads, and involving up to 1861 methods,
724 classes, and 182 different Java packages.

containerclient

create

subscribe

add 3

notify 3

destroy ×5
×5

Java VM

hprof

profiling data

Figure 5.2: Workload of the sample-based profiling campaign
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Our approach to deal with this mass of unfamiliar data was to adapt
techniques proposed for software visualisation [Pauw et al. (2002, 1993);
Reiss and Renieris (2000)] to our context.

The resulting strategy is best explained on a small toy example, such
as that Figure 5.3, which shows in a graph form the data returned by a
typical sample-based profiling tool. In this example, an hypothetical bi-
ology simulation program has been sampled six times, and three different
stacks have been captured (the stacks are shown in a call graph for clarity).
In 3 out of the 6 samples, the active thread of the program was execut-
ing the first stack; in one sample, it was executing the second; and in two
samples, the third. As can be seen, using stacks to capture the program’s
execution state indicates which methods the program is actually executing
(e.g. lib3.Signal.travel in 5 out of 6 samples). Most importantly, it
also indicates on behalf of whom these methods are being executed. On the
example of Figure 5.3, the use of lib3.Signal.travel entirely results from
two methods of the class lib2.Muscle: contract and stop.

lib2.Lung  .inhale

lib2.Muscle.contract

lib2.Nerve .transmit

lib1.Whale .breath

lib1.Mammal.inhale

lib3.Signal.travel

lib3.Blood .flow

lib3.Pressure.foo

lib2.Muscle.stop

lib2.Nerve .transmit

lib3.Signal.travel
!3 !1 !2

Figure 5.3: An example sampling result

To represent the data of Figure 5.3 in a more compact form, and raise its
level of abstraction, we took inspiration from Jinsight [Pauw et al. (2002)],
where an execution trace is represented on a stack-depth × time-line dia-
gram in which stack frames are colour-coded according to their class. More
precisely we adapted this representation in two major ways:

Package-Level Granularity. Due to the large number of classes present
in our traces (724), our representation uses package-based rather than
class-based colour codes. This is quite flexible since nested packages
might be grouped together with their parent depending on the level of
granularity required.

Depth × Weight Projection. Since sample-based profiling does not pro-
vide ordering information on the observed stack traces, a time-line rep-
resentation is not appropriate. Instead, to make the internal layering
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of the Globus container apparent, we represent each Globus package
according to the frequency and the stack depths at which it occurs in
the sampled traces.
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Figure 5.4: Graphical projection of figure 5.3

Figure 5.4 illustrates our presentation technique based on the toy example of
figure 5.3. The diagrams indicate how often a given package was encountered
in the samples at a given stack depth. Two diagrams are shown. The first
represents exclusive weights, i.e., only the last invocation of each stack is
considered. Here, only the library lib3 appears, since in all six samples
of figure 5.3, the active thread is executing inside lib3 at a call depth of
6. This diagram fails however to capture on behalf of which higher-level
packages lib3 is executed. The right hand diagram does just that. It
takes into consideration all the frames of all sampled stacks, and presents
the packages according to their depth and to the weight of the individual
stacks. In this second diagram, the surface of each library in the diagram
is proportional to the time spent by the processor in the library or in code
called by this library at execution time.

5.1.2 Results and analysis

For brevity’s sake, we only provide here a high-level summary of the results
obtained with the experimental approach we have just described. A detailed
account can be found in [Täıani et al. (2005b)].

Measuring the influence of lazy initialisation

Our black box measurements clearly demonstrated that execution times in
Globus were heavily influenced by the initialisation state of the different
entities involved. With our settings, the first notification sent by a container
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client

experienced a 1700% overhead (3029 ms) over the stabilised latencies for
the same operation (176 ms). Similarly, the creation of a resource took
8700% longer the first time it was invoked compared to when the system had
stabilised (33425 ms compared to 384 ms). All latencies were measured after
the container and client had completed their initial set up, indicating that
the overhead must be caused by this lazy initialisation activity. In addition,
the experiments showed that even the stabilised latencies were quite high:
159 ms for a round-trip add request and 176 ms for a notification message.
These figures do not include any network delays since both the client and
the service were on the same machine.

As a representative case, Figures 5.5 and 5.6 show measured latencies for
add operations on a WSRF resource (a sort of distributed object). Figure 5.5
shows the latency of the first add request on each of the 25 resources created
(i.e., 5 resources for each of the 5 clients). Figure 5.6 shows the latencies of
the 25 add requests made by the first client only (i.e., 5 requests on each of
the 5 resources the client creates). (Note that the data in the figures overlap:
the Client 0 row of the Case 3 area in figure 5.5 is duplicated in figure 5.6.)

By comparing the latency of Case 1 (new container, new client, new
resource) with that of Case 4 (stabilised latencies in Figure 5.6), we can
infer from figure 5.5 that some lazy initialisation is triggered by the container
when an add request is executed for the first time, the effect being roughly
421 ms. Similarly the two figures shows that, for add requests, neither the
client nor the resources seem to cause any significant lazy initialisation.
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Table 5.1 summarises these latencies for add and notifications requests.
The last three columns of the table evaluate how much lazy initialisation is
triggered by each of the entities involved (Container, Client, and Resource).
These numbers clearly illustrate the lazy-initialisation effect related to re-
sources for change notifications. Specifically, while the average stabilised
latency for notification is 176 ms (Case 4), the first notifications for Re-
sources 2 to 5 (Case 3) take an average of 1110 ms. Hence, the overhead is
approximately 934 ms. As this is just under that caused by client initialisa-
tion (1487 ms, column before last), this hints that much of the initialisation
work such as deployment and hot-plugging occurs when a resource is actu-
ally instantiated, and is repeated regardless of the use of prior resources of
the same type.
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Case 1 Case 2 Case 3 Stable Cont. Client Res.

Add latency 682 261 194 159 421 66 36

Notification 3029 2597 1110 176 432 1487 934

Table 5.1: Lazy initialisation caused by the container, the clients, and the
resources for add and notification operations

Analysing the impact of individual WS-* technologies

Figure 5.7 shows the results of a sample-based profiling of a Globus container
with the workload of Figure 5.2 (with samples corresponding to blocked
server sockets removed for clarity’s sake, since they lay outside the execution
path for a client request).

The diagram reveals three areas of interest (marked 1 to 3 in the Figure).
None of them can be fully understood by solely looking at the diagram,
but the compact presentation it offers provides a critical orientation map
to direct further analysis. The first area (marked 1) corresponds to stacks
stopping at depth 13 in the java.net package. Further analysis reveals that
these stacks belong to the handling of notifications by the server, when the
server waits for a acknowledgement by the client that the notification has
been received.

The second area (marked 2) shows a clearly layered structure, with most
packages spanning less that a few depth levels. The different layers mir-
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Figure 5.7: Performance sampling of the Globus container (inclusive)

ror the internal organisation of the Globus middleware, and highlight the
weight of various libraries in the execution of the platform. It clearly shows
the important role of played by reflection (sun.reflect) (used by Globus
to locate appropriate implementations), the Globus Security Infrastructure
(org.globus.gsi), and Axis1 (org.apache.axis), a core library from the
Apache foundation to provide a bridge between Java and web-service RPCs
(known as SOAP-RPC [Gudgin et al. (2007)]).

Most interesting, however, is the area marked 3, from depth 28 onward.
Any layered structure disappears in this part of the graph, with org.-
apache.axis representing most of the activity at all stack depths. The
recorded stacks go as deep as 108 nested invocations, which is quite note-
worthy, even for a reasonably complex piece of middleware. The relative
weight of each package remains quite regular, and as the decreasing slope
of the total number of samples for each depth suggests, stacks have been
sampled regularly at all lengths from 28 to 75 and beyond. Further analysis
reveals that activity in the package org.apache.axis.wsdl.symbolTable

1http://ws.apache.org/axis/
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Package count %

org.apache.axis.wsdl 231 21%

org.apache.axis.encoding 66 6%

org.apache.axis (others) 113 10%

org.globus.gsi 249 23%

org.globus.wsrf 49 4%

cryptix.provider.rsa 82 7%

org.apache.xerces 78 7%

org.bouncycastle.asn1 57 5%

others 180 16%

Total 1105 100%

Table 5.2: Breakdown of samples

makes up most of the org.apache.axis package in this part of the graph,
and that this abnormally long tail corresponds to recursive invocations of
the method symbolTable.SymbolTable.setTypeReferences. This hints at
some algorithmic issues in WSDL symbol management.

A high level summary of this analysis is provided by table 5.2, which gives
the package breakdown of profiling samples on non-java packages, once the
effect of notifications has been removed (i.e. Area 1 is ignored). This ta-
ble confirms that org.apache.axis (and in particular its wsdl component)
takes a significant amount of execution time (37%). It also shows that SOAP
and XML processing—org.apache.axis as a whole and org.apache.xerces—
have a strong impact on performance (44%). Finally, enforcing security has
a non-trivial cost, since the Globus Security Infrastructure (GSI) together
with the encryption library rsa together account for 30% of the samples.

5.2 Structural contraction in performance graphs

The conditions in which we analysed Globus are quite typical of the situation
of many developers of distributed systems today. The architectural layers
present in current systems continue to grow, contributing to their complexity,
and to the difficulty of their analysis. Simultaneously, the time available to
developers to analyse the software elements contained in these layers (OS, li-
braries, middleware, frameworks, development tools) tends to decrease (both
because of productivity constraints, and because of the growing number of
elements to consider). This is particularly true for the non-functional prop-
erties of these elements (reliability, performance, energy efficiency), which
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are often much less documented (if at all) than functional concerns. As
a first step to attack this problem, our work of Globus highlighted how
the structural information present in execution traces (in our case package
names in Java) could potentially help analyse such properties (in this case
performance) in complex and unfamiliar software.

In our study of Globus, the structural information contained in profiling
observation provided the necessary filter to raise the level of abstraction of
our performance data, and helped guide our analysis in terms of technological
impact (Section 5.1.2 on page 74). In the Globus study, however, our level
of abstraction was fixed. Figure 5.7 on page 75, for instance, shows the
activity of the package org.apache.axis (the Axis library), but does not
provide any insight on the activity of sub-packages within axis. Deciding
on an optimal abstraction level to represent behavioural data is not an easy
task: the final criterion of success is the understanding gained by developers,
which is influenced both by the characteristics of the targeted system, and
the preferences of each individual.

This research context led us to initiate a collaboration with the Depart-
ment of Psychology at Lancaster to investigate how developers could deter-
mine themselves the right level of abstraction to represent performance data
in unfamiliar software. More precisely, we used our experience with Globus
to proposed a method that allows developers to selectively raise or lower the
local abstraction level of profiling call trees, and thus reduce the amount
of information presented to them while retaining a systemic overview of a
system’s behaviour.

5.2.1 Approach

Intuition. A set of profiling traces, such as that of Figure 5.3 on page 71,
can be represented as a weighted call tree (e.g. Figure 5.8) in which the
weight of each node represents the execution time taken by the correspond-
ing invocation. The same information can be represented at different levels
of abstraction: Figure 5.9a only shows first level packages (similarly to Fig-
ure 5.4), while Figure 5.9b presents an intermediary situation, in which dif-
ferent nodes use different levels of compaction. The same package might in
particular be represented at different levels of abstraction in different parts
of the graph: In Figure 5.9b, lib3 is expanded on the right, while it is left
compacted on the left.

Interestingly, this intuition is in line with other approaches for interactive
structural compaction (e.g. Creole2, DA4Java [Pinzger et al. (2008)] or

2http://www.thechiselgroup.org/creole
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lib3.Signal.travel() [×2]

lib2.Nerve.transmit() [×2]

lib2.Muscle.stop() [×2]

lib3.Blood.flow() [×1]

lib3.Pressure.foo() [×1]

lib3.Signal.travel() [×3]

lib2.Nerve.transmit() [×3]

lib2.Muscle.contract() [×4]

lib2.Lung.inhale() [×6]

lib1.Mammal.inhale() [×6]

lib1.Whale.breath() [x6]

Figure 5.8: The weighted profiling tree corresponding to Figure 5.3

 l ib3 [×6]

 l ib2 [×6]

 l ib1 [×6]

(a) Full compaction: only
showing packages

lib3 [×5]

lib2.Nerve [×5]

lib3.Blood [×1]

lib3.Pressure [×1]

lib2.Muscle [×6]

lib2.Lung [×6]

lib1 [×6]

lib3 node
locally
expanded

(b) Intermediate expansion, with a localised
expansion of lib3

Figure 5.9: Different degrees of structural compaction

Bundle Views [Cornelissen et al. (2008)]) proposed in the field of reverse
engineering (rather than performance analysis). These previous approaches,
however, do not allow for localised levels of abstraction, which accounts for
the main complexity of our mechanism. This localised ability, we argue, is a
critical ability for diagnosis tasks, which are highly context-dependent, and
is one of the key differentiating factors of our contribution.

Formalisation. Our approach allows developers to seemingly navigate be-
tween the various representations exemplified in Figures 5.8 and 5.9 by using
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two simple operations on nodes: structural compaction and extension. These
two operations are based on two elements, both illustrated in Figure 5.10:

• The ability to specify the local compaction level that should apply for
a particular package in a particular area of the profiling tree.

• A localised merging mechanism that captures the interplay of both
structural and behavioural closeness to determine the final abstraction
level of each program execution points.
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×1]

×1]
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Figure 5.10: Local granularity levels and compaction process

To address the first point, we associate each node with a granularity
level, an integer that represents how much of the node’s full name should be
represented in the rendered tree. For instance, Figure 5.10 shows the value
of granularity levels (in circles) leading to the compaction of lib2 in a single
node (Figure 5.11). The granularity level of a node determines its compacted
name (essentially a prefix of its full name), by indicating how many elements
of the node’s name should be retained in the final graph. For instance in
Figure 5.10, node lib2.Lung.inhale() has a granularity level of 1, meaning
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lib3.Signal.travel() [×5]

lib3.Blood.flow() [×1]

lib3.Pressure.foo() [×1]

lib2 [×6]

lib1.Mammal.inhale() [×6]

lib1.Whale.breath() [x6]

Figure 5.11: Partial compaction of lib2 resulting from Fig. 5.10

that it should be merged with nodes in its vicinity (essentially descendants
or siblings) that also belong to lib2 (represented by the ‘lib2’ set of nodes
on Figure 5.10). The resulting compacted node will then be represented by
its top-level package lib2 (in bold) in the compacted tree (Figure 5.11). All
nodes outside lib2 have a granularity level of ‘3’, meaning they should be
represented with 3 name elements (in this case package, class and method).

Compacted names create a ‘take-over’ relationship between nodes (shown
with red arrows on Figure 5.10) that indicates how nodes should be merged
in the resulting graph. The goal of this relationship is to capture the inter-
play of both structural and behavioural closeness to implement a localised
merging mechanism. Structural because only nodes that belong to a com-
mon enclosing package (e.g. lib2 in Figure 5.10) should be merged together.
Behavioural because this merging should only happen between nodes that
lay in each other’s vicinity in the call-tree.

The concept of vicinity is meant to encompass children and siblings, but
needs to be defined somewhat more broadly to capture the situation where
two nodes are brought close together because their parents have merged. For
instance in Figure 5.10, two leaf nodes refer to the method lib3.Signal.-

travel(). In the fully expanded tree of Figure 5.10, these two nodes are
neither siblings, nor descendants of one another, and are therefore repre-
sented as independent nodes. However, once the nodes belonging to lib2

are merged into one compacted node (upper enclosing shape in Figure 5.10),
both lib3.Signal.travel() nodes become ‘siblings’ referring to the same
program element and should therefore also be merged (with an appropriately
updated weight, as explained below).
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The nodes of the resulting compacted tree are the connected components
(in the sense of graph theory) of the take-over relationship (represented as
free-form shapes in Figure 5.10). The weight of each compacted node is that
of the highest node being merged in the original tree, if there is only one
such node (e.g. lib2.lung.inhale() in Figure 5.10), or the sums of the
weights of the highest nodes if there are several (such as the two leaf nodes
lib3.Signal.travel() in the same example).

The two operations of localised compaction and extension can then be
simply implemented by manipulating each node’s granularity level. Essen-
tially, a compacting operation on a compacted node will lower the granu-
larity level of all the nodes in the original profiling tree that correspond to
the selected compacted node. An expansion is the reverse: the granularity
is raised. In both cases a new merged tree is computed, and a dynamic
animation is used to highlight how nodes either merge or separate.

5.2.2 Evaluation

Design. We based our evaluation on an explorative user study with an
evaluation prototype implementing our compaction mechanism. Figure 5.12
shows a screenshot of this prototype (named ProfVis3) on a sampled-down
version of the Globus profiling data of Section 5.1.2. Figure 5.13 shows the
layout of the fully compacted profiling tree for the same data. This fully
compacted tree only contains 89 nodes, which compares favourably against
the 1341 nodes in the original profiling tree.

Figure 5.12: The prototype applied
to a Globus trace
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Figure 5.13: The fully compacted
graph produced by our tool for the
Globus trace (89 nodes)

3Available at http://ftaiani.ouvaton.org/7-software/profvis.html.
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Figure 5.14: Comparison baseline: a semi-textual navigation tool based on
branch collapsing

As a comparison baseline for our user study, we selected a semi-textual
navigation tool (shown in Figure 5.14) that uses the typical branch-based
collapsing found in tree widgets. This baseline is representative of the
tools commonly available in the industry to navigate performance data [HPj
(2009); Ecl (2010)]. We then asked four users to analyse the performance of
four different programs (two small and two larger ones, see Table 5.3 on the
next page) with ProfVis, and with the baseline (called TreeTable). We
asked each user to verbalise their activities (an approach commonly used in
Psychology and User Studies in general [Van Someren et al. (1994)]), and
recorded each session, both as a video, and a stream of interaction events
(node expansion, contraction, etc.). We also asked users to self-assess the
quality of their understanding of performance issues in each target program,
and assessed off-line this same understanding based on our recordings. We
performed 16 sessions in total: four per users, 8 per tool.

Our analysis of the resulting data focuses of two aspects: a comparison of
the understanding gained by users with the two tools, and the identification
of any arising interaction patterns. This analysis is of course constrained
by the small size and nature of our user study: rather than a full-fledged
controlled experiment, our goal was to highlight potential issues and trends
in the use of localised structural compaction for performance analysis.
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LoC classes methods prof. tree

BubbleSort 59 2 7 100

Simulation 140 5 16 71

OPSBrowser 13624 172 1002 1059

Globus (ws-core-3.9.4) 42477 432 2550 1341

Table 5.3: Some statistics regarding the target programs of our study

In the following, we summarise the main findings from this study, with a
more detailed description of our experimental set-up and results available in
[Lin et al. (2010)].

Understanding. In our experiment, users were generally able to provide
better performance analysis with ProfVis than with the baseline (Fig-
ure 5.15). The difference is slight, but promising, in particular when con-
sidering that most users felt more comfortable with the baseline tool, which
might hint as both familiarity and usability factors that played against our
prototype.

Quite interestingly, users had generally a wrong assessment of their own
understanding (Figure 5.16). As Figure 5.16 shows, the two measures are
largely unrelated: some users thought they did well in some tasks, while
missing most of the key points and thus scoring low on the assessed mea-
sure, while others did the reverse. Some patterns do seem to appear though:
Users are best aligned with their assessed performance when analysing small
programs with the baseline (TreeTable, hollow rhombus); they tend to
underestimate their understanding of large programs with ProfVis (solid
squares); and tend to overestimate their understanding of both small pro-
grams with ProfVis (hollow squares) and large programs with TreeTable
(solid rhombus).

One possible explanation is to observe that the branch navigation used
by the baseline only displays as many nodes as the user has expanded. As a
result users may easily perceive a large trace graph as smaller than it really
is with the baseline tool, and from there reach a false sense of confidence
when they have missed some key parts of a program’s execution. By con-
trast, ProfVis forces users to confront a program’s full call-tree from the
onset, even if in a highly compacted form. For instance, the fully compacted
version of the Globus traces contains 89 nodes when ProfVis starts (Fig-
ure 5.12), while TreeTable only shows two lines for the same trace file.
This might lead users to a sense of helplessness with ProfVis, explaining
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Perceived Understanding
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their underestimation of their performance, and part of the discomfort they
expressed with our prototype (while performing well with it).

Interaction patterns and strategies. Our evaluation shows an even
stronger contrast between the two tools in the strategies taken by the users
to explore the profiling data. With the baseline tool (TreeTable) most
users adopted a depth-first strategy with, rapidly moving deep into the call
tree along a single execution branch (generally that of the most weighted
child), and only occasionally backtracking through large jumps back to the
top of the tree (Figure 5.17a). With ProfVis, by contrast, users went far less
deep, and tended (for the majority at least) to keep interacting at the same
depth over long periods of time (appearing as ‘plateaus’ on Figure 5.17b).

This pattern hints at the key importance of presentation, in particular
layout, in influencing user choices in their exploration of a program’s execu-
tion. The layout of TreeTable naturally encourages users to go deep first:
the next child with the highest share of CPU usage is always the closest and
lies in a predictable position. By contrast, the relative location of nodes in
ProfVis evolves in a two-dimensional plane with each new interaction. As
a result node positions are far less predictable, possibly deterring users from
rapidly moving away from their current position.

5.3 Conclusion

The introduction of new technologies in existing distributed systems is al-
ways a challenging endeavour. Our work on Globus has shown how the intro-
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Figure 5.17: Interaction patterns on large programs

duction of a generic web-service layer, essentially provided by the reusable
Apache Axis library, could have a critical impact on the general performance
of a platform. Beside the inherent interest of this research for WS-* archi-
tectures, and grid computing, our study of Globus also demonstrates the
difficulty in diagnosing a complex composite software made of a large num-
ber of third party elements. In the profiling results we obtained for Globus,
Globus packages only account for a small part of the container execution
time (Figure 5.7 and Table 5.2), while reused WS-* libraries explain most of
the latencies observed.

The tool ProfVis we have presented addresses this problem, and lever-
ages the structural information present in performance traces to offer de-
velopers with a simple and interactive technique to navigate profiling trees.
Contrary to typical performance analysis tool that hide or show part of the
execution, our approach continuously offers a complete and holistic view of
a program’s execution, but allows developers to vary the level of abstraction
at which the data is presented. This level of abstraction can be fine-tuned
depending on the context of execution, contrary to related reverse engineer-
ing tools, and more generally demonstrates how structure and behaviour can
be combined to analyse quantitative runtime data.

Interestingly, because our technique essentially produces an alternative
and more compact tree, it can be combined with almost any additional
tree navigation and visualisation approach, such a branch-base collapsing,
or advanced layout and panning techniques.

Finally, although our study has focused on execution time, a large range
of runtime properties can be represented using the same approach. ProfVis
is essentially applicable to any weighted set of stack traces, which might cor-
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respond to object allocation sites (for memory usage analysis), exception
stack traces from fault injection campaigns (to analyse error detection capa-
bilities), or error messages from logs (to identify problematic behaviour in
deployed software).

86



CHAPTER 6

Conclusion and outlook

The works presented in this document cover a large range of research topics,
from distributed algorithms in large-scale systems to performance analysis in
complex middleware architectures. Although each work belongs to a distinct
research area, they remain linked to each other, at least in terms of motiva-
tion: They all aim to facilitate the development and analysis of large-scale
distributed systems, with better mechanisms, better programming abstrac-
tions, and better tools.

In the following we revisit each of these three facets in the light of the
works presented in the previous chapters, and conclude with some discussion
of the future work we envisage for our research.

6.1 Developing better distributed mechanisms

Today’s distributed protocols can roughly be divided into two categories:
a first category of protocols, such as those for consensus, or state machine
replication [Lamport (1998); Chandra and Toueg (1996); Castro and Liskov
(2002)], provide strong (and proved) guarantees. Some of these protocols
(in particular Paxos) can be found at the core of many cloud infrastructures
such as that of Google and Yahoo! where they provide critical coordination
services [Burrows (2006); Cooper et al. (2009)]. These protocols are however
only moderately scalable, in particular on wide area networks: recent exper-
iments have reported consensus implementation on PlanetLab with a few
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hundreds of nodes [Maia et al. (2011)], but ranges of hundreds of thousands
to hundreds of millions of nodes appear much more problematic.

An alternative to these strong-guarantees protocols are opportunistic
mechanisms, such as gossip protocols [Agrawal et al. (1997); van Renesse
et al. (1998b); Gupta et al. (2006)], and other mechanisms found in peer-to-
peer overlays [Stoica et al. (2001); Rowstron and Druschel (2001)]. These
protocols are extremely scalable, and target highly dynamic systems (where
peers join and leave continuously), at the cost of weaker guarantees: There is
typically some probability (even minute) that some properties will not hold
(e.g. that message will not be distributed to all participants, or that some
inconsistencies will be returned by the system), and decision problems (such
as consensus) are typically not supported.

Our own work on fault-tolerant overlays represents a middle ground be-
tween these two extremes. We have shown how traditional consensus could
be used in a scalable manner in networks of arbitrary size to coordinate
repair. Our approach consists in only involving those nodes present in the
vicinity of a failed region. The key challenge with this strategy is in deciding
within the consensus which nodes should be involved (what we have termed
self-defining constituencies). The approach we propose (Echo) consists in
coordinating multiple instances of competing consensus, and arbitrating be-
tween overlapping consensus attempts. Our mechanism allows nodes that
hold conflicting views of the system’s state (and hence of whom should be
participating in a consensus instance) to converge onto a unified perception
of the overlay’s condition. As a proof concept we have developed a generic
repair framework (Sonar) based on Echo. Our evaluations are positive,
and show that this type of generic repair is generally robust, even when our
strict assumptions are not met, and that our framework can even outperform
existing tailored approaches.

6.2 Software abstractions for distribution

To become accessible to developers, distributed mechanisms must be pre-
sented within appropriate programming abstractions. We have shown with
GossipKit, that components represent a particularly promising technology
to organise and systematise the development of gossip protocols. In spite of
their broad range, and the many services they provide (fault-detection, par-
titioning, multicast, data aggregation, search, routing), GossipKit demon-
strates how gossip protocols can be decomposed in a set of limited and highly
reusable elements applicable across a large range of representative protocols,
thus greatly simplifying the development of gossip-based systems.
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Components are however not the only approach available to develop gos-
sip protocols: Annotations [Princehouse and Birman (2010)] and object
frameworks1 have for instance been used. In our own work, we have shown
how a high-level distributed language (Whispers), inspired from macro-
programming approaches, could be coupled to a component framework to
present developers with a familiar set of constructs and abstractions. This
synergy between two programming paradigms (components providing struc-
ture and (re)configurability, while imperative constructs provide expressive-
ness and programmability) is reminiscent of dual architectures, in which one
level mirrors the other in a different representation. This is the case of reflec-
tive architectures, but also of recent work on models at runtime [Floch et al.
(2006)]. These multi-paradigm approaches provide teams of developers with
different perspectives on the same concrete system, and certainly represent
a powerful trend to master the conflicting concerns (reliability, adaptability,
interoperability) of today’s large-scale distributed systems.

6.3 Abstraction, transparency, and understanding

Our work on fault-tolerant overlays (Chapter 3) and gossip protocols (Chap-
ter 4) has sought to identify and encapsulate generic patterns into reusable
abstractions. Ultimately, this philosophy, which is generally shared by mid-
dleware researchers and developers, aims to propose modular and multi-
levels architectures, in which different developer teams (possibly from dif-
ferent organisations) can manipulate the underlying system using their own
point of view. The use of abstractions is however a double-edge sword: Most
abstractions aim to make their implementation at least partly transparent
to the developers who use them. Unfortunately this transparency is often
imperfect, and cannot hide many undesirable side effects, in particular in
distributed systems. This fact, combined with the growing size and com-
plexity of today’s systems, makes it particularly difficult for developers to
track non-functional anomalies across abstraction boundaries. One reason
is that non-functional properties are closely linked to a particular imple-
mentation of an abstraction, rather than to an abstraction itself, and often
result from emerging interactions between independently developed software
parts. Another reason pertains to the layered organisation that is naturally
promoted by abstractions: Developers end up using libraries or components
(e.g. Axis in our case) that lay below the layer they normally work at, and
represent unfamiliar code.

1http://gossiplib.gforge.inria.fr/

89

http://gossiplib.gforge.inria.fr/


Chapter 6.

In my research, I have explored the concrete impact of this phenomenon
in the web-service version of Globus, one of today’s production-level middle-
ware for grid computing. Web-services provide extreme levels of genericity.
For instance both the typing system and the on-wire representation of data
can be specified independently of a web-service interface, and, at least in the-
ory, can be discovered on the fly by a web service endpoint. This genericity
has implications, both in terms of software organisation, and performance
behaviour, as illustrated by the general use of lazy initialisation in Globus,
and the role played by internal (non-Globus) libraries in the observed laten-
cies.

Analysing the performance of multi-layer software such as Globus repre-
sents a combination of reverse engineering and non-functional analysis, for
which current tools and approaches are not well adapted. Inspired from our
work on Globus, and our previous research in reverse engineering [Täıani
et al. (2009)], we have therefore proposed ProfVis, a simple and interac-
tive tool that combines the structural information found in execution traces
with the quantitative information of performance profiling. Our user study
based on ProfVis has shed light on some interesting strategies taken by
developers to explore runtime data of unfamiliar code. In particular, our
work suggests that presenting too many details at the expense of an over-
all perspective can lure developers into a fall sense of mastery, and lead to
mis-diagnosis.

6.4 Outlook

The works presented in this document raise a number of exciting oppor-
tunities for future research, in particular at the boundaries between the
research areas involved. In the short term, GossipKit and Whispers raise
the possibility of extending them beyond gossip-based systems (for instance
to structured overlays), and for the application of higher-level development
processes to gossip protocols, such as software product lines [Paul Clements
(2001)]. The work on ProfVis calls for further studies of developers’ per-
ception of unfamiliar software, and their strategies to explore performance
data.

In the medium term, GossipKit and Whispers also open interesting
avenues for the development of large-scale smart systems, for which I am
about to start an industrial collaboration at Lancaster. Smart systems are
being proposed for industries with a low technological awareness, such as
water distribution companies. These industries are today looking for ap-
proachable and easily programmable systems that can provide aggregation
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and regulation mechanisms over large areas (several 10,000 km2), in adverse
and dynamic communication conditions. Gossip protocols, and high-level
languages provide a promising mix to address these goals. On a different
note, GossipKit and Whispers also offer an attractive framework to rea-
son about interference and synergies in co-existing decentralised systems.
This is a path I have started to explore conceptually [Lin et al. (2009)], and
that I would like to pursue, in particular to automate the discovery and au-
tomatic activation of synergies in such multi-tenant multi-purpose systems.

In the longer term, our application of component frameworks for gossip-
based systems in GossipKit raises the reciprocal question whether compo-
nents should not be adapted to the kind of interactions promoted by gossip
protocols. Some programming paradigms such as fragmented components
[Makpangou et al. (1994)] and chemical and membrane computing [Banâtre
et al. (2005); Paun (2003)] seem to offer particularly promising avenues to
organise the structure and computation of gossip-based systems. Similarly,
families of gossip-based protocols are now emerging for specific areas, such
as social networks [Bertier et al. (2010)], and peer-to-peer search [Bai et al.
(2010)]. Extending the strategy of Whispers, there seem to be some strong
potential for exposing the ingredients that form these systems as high-level
programmable constructs, and thus simplify their development.

Finally, gossip protocols can be considered as a special case of a broader
class of decentralised opportunistic systems, hinted at for instance by works
on morphogenetic engineering [Doursat (2008)]. If one assumes that these
decentralised opportunistic systems will form an important part tomorrow’s
digital infrastructure, this also raises the question of the analysis, diagno-
sis, and understanding of the runtime behaviour of these systems. Current
diagnosis approaches, including the one we have proposed for Globus, are
unlikely to translate unchanged to these emerging programming paradigms.
An open question is therefore how the behaviour of decentralised opportunis-
tic systems should be monitored, processed and represented to make sense
for developers.
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Systä, T., Koskimies, K., and Müller, H. (2001). Shimba—an environment for
reverse engineering java software systems. Softw. Pract. Exper., 31(4):371–394.

Szyperski, C. (2002). Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition.
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Täıani, F., Killijian, M.-O., and Fabre, J.-C. (2009). CosmOpen: dynamic reverse
engineering on a budget. Softw. Pract. Exper., 39(18):1467–1514.
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Weston, N., Täıani, F., and Rashid, A. (2007). Interaction analysis for fault-
tolerance in aspect-oriented programming. In Proceedings of the Workshop on
Methods, Models and Tools for Fault Tolerance (MeMoT), held in conjunction
with iFM 2007: integrated Formal Methods, pages 95–102. Technical report CS-
TR-1032, Newcastle University, UK.

Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M. I. (2009). Detecting
large-scale system problems by mining console logs. In SOSP ’09: Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, pages
117–132, Big Sky, Montana, USA. ACM.

Yang, B. and Garcia-Molina, H. (2003). Designing a super-peer network. In Proc.
of the 19th Int. Conf. on Data Eng.

Zamfir, C. and Candea, G. (2010). Execution synthesis: a technique for automated
software debugging. In Proceedings of the 5th European conference on Computer
systems, EuroSys ’10, pages 321–334, New York, NY, USA. ACM.

Zhang, C. X., Wang, Z., Gloy, N. C., Chen, J. B., and Smith, M. D. (1997). System
support for automated profiling and optimization. In Symposium on Operating
Systems Principles, pages 15–26.

Zhao, B. Y., Kubiatowicz, J. D., and Joseph, A. D. (2001). Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing. Technical Report
UCB/CSD-01-1141, UC Berkeley.

109


	Contents
	1 Foreword
	2 Introduction
	2.1 Large-scale decentralised computing
	2.2 Components and component frameworks
	2.3 Complexity in modern distributed software
	2.4 Programming complex distributed platforms
	2.5 Organisation of the document

	3 Generic Repair in Peer-to-Peer Overlays
	3.1 The need for generic repair in overlays
	3.2 Architecture of Echo/Sonar
	3.2.1 Main intuition
	3.2.2 Repair mechanisms: key phases

	3.3 Echo: convergent agreement
	3.3.1 The Challenge: self-defining constituencies
	3.3.2 System model and assumptions
	3.3.3 Specification
	3.3.4 Failure detector, multicast, region ranking
	3.3.5 Algorithm
	3.3.6 Proof of correctness

	3.4 Sonar: Generic repair
	3.4.1 Ongoing repairs and coordination in Sonar
	3.4.2 Example repair strategies

	3.5 Evaluation
	3.5.1 Failure free runs
	3.5.2 On-going failures
	3.5.3 The impact of imperfect failure detection
	3.5.4 TBCP Case study and PlatnetLab deployment

	3.6 Conclusion

	4 Programming Gossip Protocols: GossipKit and Whispers
	4.1 Structure and behaviour in gossip protocols
	4.1.1 Gossip protocols
	4.1.2 Component Frameworks
	4.1.3 High-level distributed programming
	4.1.4 Transparent componentisation: WhispersKit

	4.2 The GossipKit component framework
	4.2.1 GossipKit's common interaction pattern
	4.2.2 Rich and uniform event interactions
	4.2.3 Evaluation

	4.3 Transparent componentisation
	4.3.1 The Whispers language
	4.3.2 Synthesis and deployment
	4.3.3 Evaluation

	4.4 Conclusion

	5 Anomaly Diagnosis and Understanding in Complex Systems
	5.1 Complexity and performance: Globus
	5.1.1 Between black and grey: an hybrid approach
	5.1.2 Results and analysis

	5.2 Structural contraction in performance graphs
	5.2.1 Approach
	5.2.2 Evaluation

	5.3 Conclusion

	6 Conclusion and outlook
	6.1 Developing better distributed mechanisms
	6.2 Software abstractions for distribution
	6.3 Abstraction, transparency, and understanding
	6.4 Outlook

	List of Figures
	List of Tables
	Bibliography

