
HAL Id: tel-00644079
https://theses.hal.science/tel-00644079

Submitted on 23 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ambiguity Detection for Programming Language
Grammars

Bas Basten

To cite this version:
Bas Basten. Ambiguity Detection for Programming Language Grammars. Computation and Language
[cs.CL]. Universiteit van Amsterdam, 2011. English. �NNT : �. �tel-00644079�

https://theses.hal.science/tel-00644079
https://hal.archives-ouvertes.fr


BasBasten
Bas Basten





Ambiguity Detection
for

Programming Language Grammars

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom

ten overstaan van een door het college voor promoties ingestelde

commissie, in het openbaar te verdedigen in de Agnietenkapel

op donderdag 15 december 2011, te 14:00 uur

door

Hendrikus Joseph Sebastiaan Basten

geboren te Boxmeer



Promotiecommissie

Promotor: Prof. dr. P. Klint
Copromotor: Dr. J.J. Vinju

Overige leden: Prof. dr. J.A. Bergstra
Prof. dr. R. Lämmel
Prof. dr. M. de Rijke
Dr. S. Schmitz
Dr. E. Visser

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The work in this thesis has been carried out at Centrum Wiskunde & Informatica (CWI) in
Amsterdam, under the auspices of the research school IPA (Institute for Programming research
and Algorithmics).



Contents

Contents 5

Acknowledgements 9

1 Introduction 11
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Context-Free Grammars and Parsing . . . . . . . . . . . . . . . . . . 11
1.1.2 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.3 Ambiguity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.4 Goal of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1 Deterministic Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Backtracking Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.3 Generalized Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Scannerless Generalized Parsers . . . . . . . . . . . . . . . . . . . . 15

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Measuring the Practical Usability of Ambiguity Detection . . . . . . 16
1.3.2 Improving the Practical Usability of Ambiguity Detection . . . . . . 17

1.4 Overview of the Chapters and Contributions . . . . . . . . . . . . . . . . . . 17
1.5 Origins of the Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 The Usability of Ambiguity Detection Methods for Context-Free Grammars 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Comparison Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Criteria for Practical Usability . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 AMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Measurements and Analysis . . . . . . . . . . . . . . . . . . . . . . 24

5



2.4 LR(k) Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Measurements and Analysis . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Noncanonical Unambiguity Test . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Measurements and Analysis . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Faster Ambiguity Detection by Grammar Filtering 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Filtering Unambiguous Productions . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 The Noncanonical Unambiguity Test . . . . . . . . . . . . . . . . . 34
3.2.3 LR(0) Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 Finding Ambiguity in an item0 Position Graph . . . . . . . . . . . 35
3.2.5 Filtering Harmless Production Rules . . . . . . . . . . . . . . . . . . 35
3.2.6 Grammar Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Analysis and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.4 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Appendix: Updated Measurement Results . . . . . . . . . . . . . . . . . . . 47

3.5.1 Improved Implementation . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.3 Effects on Sentence Generation Times . . . . . . . . . . . . . . . . . 49

4 Tracking Down the Origins of Ambiguity in Context-Free Grammars 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.1 Context-Free Grammars . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Bracketed Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 Parse Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.4 Ambiguous Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.5 Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.6 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Regular Unambiguity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Position Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Approximated Position Automaton . . . . . . . . . . . . . . . . . . 56
4.3.3 The item0 Equivalence Relation . . . . . . . . . . . . . . . . . . . . 57



4.3.4 Position Pair Automaton . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Finding Parse Trees of Unambiguous Strings . . . . . . . . . . . . . . . . . 59

4.4.1 Unused Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Harmless Production Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.1 Finding Harmless Production Rules . . . . . . . . . . . . . . . . . . 62
4.5.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.3 Grammar Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Noncanonical Unambiguity Test . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.1 Improving the Regular Unambiguity Test . . . . . . . . . . . . . . . 64
4.6.2 Noncanonical Position Pair Automaton . . . . . . . . . . . . . . . . 64
4.6.3 Effects on Identifying Harmless Production Rules . . . . . . . . . . . 66

4.7 Excluding Parse Trees Iteratively . . . . . . . . . . . . . . . . . . . . . . . . 66
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Scaling to Scannerless 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.2 Contributions and Roadmap . . . . . . . . . . . . . . . . . . . . . . 70

5.2 The Ambiguity Detection Framework . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 The Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.2 Notational Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Character-Level Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Baseline Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.1 Step 1: NFA Construction . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2 Step 2: Construct and Traverse Pair Graph . . . . . . . . . . . . . . . 76
5.4.3 Steps 3–4: NFA Filtering and Harmless Rules Identification . . . . . 80
5.4.4 Steps 5–7: NFA Reconstruction and Sentence Generation . . . . . . . 80

5.5 Ambiguity Detection for Character-level Grammars . . . . . . . . . . . . . . 81
5.5.1 Application of Baseline Algorithm on Example Grammar . . . . . . 81
5.5.2 Changes to the Baseline Algorithm . . . . . . . . . . . . . . . . . . 82
5.5.3 NFA Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Grammar Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.7.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.7.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Implementing AMBIDEXTER 93
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Grammar Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



6.2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.2 Architecture and Design . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Sentence Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.2 Architecture and Design . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Parse Forest Diagnostics with DR. AMBIGUITY 105
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2 Solutions to Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3 Causes of Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3.1 Classes of Parse Tree Differences . . . . . . . . . . . . . . . . . . . 113
7.4 Diagnosing Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.4.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.4.3 Discussion on Correctness . . . . . . . . . . . . . . . . . . . . . . . 119

7.5 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.5.1 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 Conclusions 125
8.1 Contributions to Research Questions . . . . . . . . . . . . . . . . . . . . . . 125
8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography 131

Summary 139

Samenvatting 141



Acknowledgements

This thesis is the result of my four-year PhD project at the Centrum Wiskunde & Informatica
in Amsterdam. During this time I met a lot of friendly people. Many of them deserve my
thanks for making my PhD project a productive and enjoyable one.

First of all, I would like to thank my promotor Paul Klint for offering me a PhD position
at CWI, and for supporting and guiding me throughout the project. I have learned a lot from
all his comments and advice. Furthermore, Paul’s liberal way of supervising creates a very
positive, productive and friendly atmosphere to work in.

Second, I wish to thank my co-promotor Jurgen Vinju. He was always enthusiastic about
my ideas, giving me new energy when I felt I was stuck. I think we were a good paper-writing
team. Furthermore, it was very enjoyable to visit various conferences together, where Jurgen
always made an effort to introduce me to many interesting people.

I also would like to specially thank Tijs van der Storm, my officemate for the last two
years, close neighbour, and fellow guitar student. Tijs was always very sociable, both inside
and outside of CWI. I can heartly recommend him as a city guide to Amsterdam, for finding
the best places to eat and drink, at every hour of the day. It’s a pity we didn’t get the chance to
do more research together.

Many thanks as well to all my other colleagues from SEN1: Anya Helene Bagge, for
many great dinners and a nice visit to Bergen, Jeroen van den Bos, with whom it is always
very enjoyable to converse and philosophize, Rob Economopoulos, for sharing an office and
drinking beers1, Jan van Eijck, Paul Griffioen, Jan Heering, Mark Hills, Anastasia Izmaylova,
Davy Landman, Arnold Lankamp, Bert Lisser, Pieter Olivier, Atze van der Ploeg, Riemer van
Rozen, Floor Sietsma for a nice holiday on Cyprus, Sunil Simon, Yanjing Wang and Vadim
Zaytsev. My time at CWI wouldn’t have been so much fun without you. For all of you who
are still working on your PhDs, I wish you the best of luck.

To this list I should also add the following people from SEN3, with whom I shared some
nice experiences as well: Behnaz Changizi, Stephanie Kemper, Young-Joo Moon, José Proença
and Alexandra Silva.

There are also some people from outside of CWI who I wish to thank. Tiago Alves was

1no ambiguity intended

9



(and still is) a good friend and fellow PhD student. During dinner or beers we shared many
thoughts about doing a PhD and other things that are important in life. I have very good
memories about our holidays in Portugal. Thanks to Andreia Esteves too for all the good
times.

I thank Dennis Dams for offering me a three-month visit to Alcatel-Lucent Bell Labs in
Murray Hill, NJ. This was a very exciting and enriching time in my life, during which Dennis
was a very friendly and open host. He helped me to find my way around in the local culture
and surroundings, and let me share Thanksgiving and Christmas with his family.

Finally, I thank my parents, my sisters, and my friends for always being there for me. But
most of all, I am sincerely grateful to my love Elise, for all her patience and support. She
deserves more thanks than I can express in words.



Chapter 1

Introduction

“Thorns and roses grow on the same tree.”

Turkish proverb

Context-free grammars are widely used in software engineering to define a broad

range of languages. However, they have the undesirable property that they can be

ambiguous, which, if unknown, can seriously hamper their use. Automated ambiguity

detection is therefore a very welcome tool in grammar development environments or

language workbenches. The goal of this thesis is to advance ambiguity detection to a

level that is practical for use on grammars of real programming languages. We first in-

vestigate which criteria define the practical usability of an ambiguity detection method,

and use them to evaluate existing methods. After that we present new approaches that

improve upon the state of the art in terms of accuracy, performance, and report quality.

We formally prove the correctness of our approaches and experimentally validate them

on grammars of real programming languages. This chapter describes the motivation

for this work and gives an overview of the thesis.

1.1 Introduction

Before presenting the research questions and contributions of this thesis, this section first gives
a quick introduction into the field of ambiguity detection for context-free grammars.

1.1.1 Context-Free Grammars and Parsing

Context-free grammars form the basis of many language processing systems. They were
originally designed by Chomsky [Cho56] for describing natural languages, but were soon

11



12 Chapter 1. Introduction

�������

�����	�ABBC�
D��EC�

F�D�B
BC�B ���EC

B�CC

�������
�	��A

B��CC��
�	��A

D��A��E��FF��

E��FF��
��F������

D��A��
��F������

�F�	�
���� D��A�

����

(a) (b)

Figure 1.1: Two different parser architectures: hand-written parsers (a) are loosely based on
a grammar, while traditionally generated parsers (b) are directly generated from a formal
grammar definition. The generated parsers require a scanner that first subdivides the input text
into a stream of tokens.

adopted in the area of computer languages. In 1959 John Backus described the syntax of the
ALGOL 58 programming language in a context-free grammar formalism that would later be
named BNF: Backus-Naur Form. At first BNF grammars were only used for documentation
purposes, but shortly after people began to use them for the automatic generation of compilers.
This was already the case for the ALGOL 60 language and its variants.

Nowadays, context-free grammars are used in much more software engineering activities,
ranging from software construction to reverse engineering and reengineering. They play a cen-
tral role in the development of compilers, interpreters, interactive development environments
(IDEs), tools for source code analysis, source-to-source transformation, refactorings, etcetera,
all for different types of languages like programming languages, data definition languages,
specification languages, and domain specific languages [KLV05].

In most cases, language applications deal with source code that is formatted as plain text.
However, they often also require the semantics of the code, which can be derived from its
syntactic or grammatical structure. The process of recovering the grammatical structure of
plain text code into a parse tree or abstract syntax tree is called parsing, and is executed by a
parser. Parsers can be crafted by hand, but can also be automatically generated from a context-
free grammar. The main advantage of the latter approach is that the language definition can be
separated from the parsing algorithm. Context-free grammars are a much more declarative way
of describing languages than the program code of a parser. They allow for easier development
and maintenance of the generated parsers. Furthermore, a parser generator can be reused for
different grammars, and individual grammars can be used for other purposes as well [KLV05].

Figure 1.1 shows the differences in architecture between a hand-written parser and a
generated parser. Traditionally, generated parsers require a scanner to first subdivide their
input text into a stream of tokens. These scanners are typically also generated, using an-
other definition of the lexical syntax of a language. More recently developed scannerless

parsers [SC89, vdBSVV02] do not require this separate pre-processing step, as is shown in



1.1. Introduction 13

����������	�A�	
B��CC��

D��EE��	�FF
���F��

���F��
B�E������

�E���
���� ���F�

����

Figure 1.2: Architecture of a scannerless generalized parser. The parser requires no scanner,
because it directly parses the characters of its input text from a character-level grammar.

Figure 1.2. Instead, they directly parse their input text using a character-level grammar, which
includes both lexical and context-free definitions. This has the advantage that a language can
be completely defined in a single formalism.

1.1.2 Ambiguity

Context-free grammars generate languages through recursion and embedding, which makes
them a very suitable formalism for describing programming languages. Furthermore, there are
many efficient parsing techniques available for them. However, context-free grammars have
the undesirable property that they can be ambiguous.

A grammar is ambiguous if one or more sentences in its language have multiple distinct
parse trees. The structure of a parse tree is often the basis for the semantic analysis of
its sentence, so multiple parse trees might indicate multiple meanings. This is usually not
intended, and can therefore be seen as a grammar bug. As an example, figure 1.3 shows an
often occuring grammar bug: the ‘dangling-else’ ambiguity.

Using ambiguous grammars can lead to different kinds of problems during semantic
analysis. For instance, a compiler could give a different interpretation to a piece of source code
than the programmer that wrote it. This can lead to unintended behaviour of the compiled code.
In other cases, a compiler might be unable to compile a piece of source code that perfectly
fits the language specification, because it simply does not expect the ambiguity or its parser
reports the ambiguity as a parse error. To avoid situations like this, it is important to find all
sources of ambiguity in a grammar before it is being used.

1.1.3 Ambiguity Detection

Searching for ambiguities in a grammar by hand is a very complex and cumbersome job.
Therefore, automated ambiguity detection is a very welcome tool in any grammar development
environment. However, detecting the ambiguity of a grammar is undecidable in general [Can62,
Flo62, CS63]. This implies that it is uncertain whether the ambiguity of a given grammar can



14 Chapter 1. Introduction

if (i==0) then

if (j==0) then

. . .
else

. . .

if-then-else

. . .if-then

. . .j==0

i==0

if-then

if-then-else

. . .. . .j==0

i==0

Figure 1.3: The ‘dangling-else’ ambiguity. This figure shows two possible parse trees of the
code snippet on the left. In the left parse tree the else-statement is paired with the first if
statement, in the right tree the else statement is paired with the second if statement. Depending
on the parse tree that is chosen by the compiler, this piece of code will be executed differently.

be determined in a finite amount of time. Fortunately, this does not necessarily have to be a
problem in practice.

Several ambiguity detection methods (ADMs) exist that approach the problem from
different angles, all with their own strengths and weaknesses. Because of the undecidability
of the problem there are general tradeoffs between accuracy and termination, and between
accuracy and performance. The challenge for every ADM is to give the most accurate and
understandable answer in the time available.

Existing ADMs can roughly be divided into two categories: exhaustive methods and
approximative ones. Methods in the first category exhaustively search the language of a
grammar for ambiguous sentences. There are various techniques available [Gor63, CU95,
Sch01, AHL08, Jam05] for this so-called sentence generation. These methods are 100%
accurate, but a problem is that they never terminate if the grammar’s language is of infinite
size, which usually is the case in practice. They do produce the most accurate and useful
ambiguity reports, namely ambiguous sentences and their parse trees.

Methods in the approximative category sacrifice accuracy to be able to always finish in
finite time. They search an approximation of the grammar or its language for possible ambigu-
ity. The currently existing methods [Sch07b, BGM10] all apply conservative approximation
to never miss ambiguities. However, they have the disadvantage that their ambiguity reports
can contain false positives.

1.1.4 Goal of the Thesis

The current state of the art in ambiguity detection is unfortunately not yet sufficiently practical
on grammars of realistic programming languages, especially those used for scannerless parsers.
The goal of this thesis is therefore to advance ambiguity detection to a more practical level. We
first investigate which criteria define the practical usability of ADMs, and use them to evaluate
existing methods. After that we present new approaches that improve upon the state of the art
in terms of accuracy, performance, and report quality. We formally prove the correctness of
our approaches or experimentally validate them on grammars of real programming languages.



1.2. Motivation 15

1.2 Motivation

This work is motivated by the fact that ambiguity poses problems with many different types of
parsers. Depending on the parsing technique, these problems present themselves in different
ways. In this section we discuss the problems of ambiguity for the most commonly used
techniques, with a special focus on scannerless generalized parsing.

1.2.1 Deterministic Parsers

Although it might not seem so at first sight, ambiguity is a real problem for deterministic
parsers like LL [Knu71], LR [Knu65] or LALR [DeR69]. The reason for this is that many
parser implementations do not require their input grammars to exactly fit their required
grammar class. Instead, they allow for conflicts in their internal representation. These conflicts
mark points during parsing where the next parse action cannot be chosen deterministically.
This can be a result from non-determinism in the grammar, but also from ambiguity.

The way these conflicts are solved during parsing is by choosing an action based on certain
heuristics. This way the parser can always continue with constructing a valid parse tree.
However, if the grammar is ambiguous there might be other parse trees for the same input
text as well, and it is unclear whether or not the produced tree is the right one. This could for
instance lead to the problem where a compiled program executes in a different way than its
programmer intended. Since ambiguities remain hidden by the parser, it can take very long for
these kinds of bugs to be noticed.

1.2.2 Backtracking Parsers

Backtracking parsers, like for instance Packrat parsing [For04] or LL(*) [PF11], suffer from
the same problem. In case of a parse error, these parsers backtrack to the last encountered
conflict, and continue with the next possible action. This process is repeated until they find the
first parse tree that fits their input. Again, if the used grammar is ambiguous, it is hard to tell
whether or not this is the parse tree that the grammar developer intended.

1.2.3 Generalized Parsers

Generalized parsing techniques, like Earley [Ear70], GLR [Tom85, NF91] and GLL [SJ10],
but also parser combinators [Hut92], have the advantage that they do report ambiguity, because
they always return all the valid parse trees of their input text. This set of parse trees is commonly
refered to as a parse forest. However, if the parse forest returned by the parser contains an
ambiguity that was not expected by the following analyses or transformations, the forest
cannot be processed further. A compiler will thus not produce incorrect binaries, for example,
but is simply unable to compile its input program.

1.2.4 Scannerless Generalized Parsers

A special type of generalized parsers that are particularly sensitive to ambiguity are scannerless
generalized parsers. Instead of using a scanner, these parsers directly parse their input



16 Chapter 1. Introduction

characters using a character-level grammar. Examples of character-level grammar formalisms
are SDF2 [HHKR89, Vis97] and RASCAL [KvdSV11].

Among other advantages, character-level grammars can be used to describe languages
that originally were not designed to be parsed using a generated scanner. This makes them
very suitable for the reverse engineering of legacy languages, for instance those that do not
apply keyword reservation (PL/I) or longest match (Pascal). However, to also be able to
describe languages that do require these scanner heuristics, character-level grammars may be
annotated with so-called disambiguation filters [KV94]. These filters allow for the removal of
unwanted parse trees of ambiguous strings, without modifying the structure of the grammar.
If applied right, they filter all but one parse tree of an ambiguous string, thus solving the
ambiguity. Many of the typical scanner heuristics can be mimicked with disambiguation filters,
for instance longest match using follow restrictions, or keyword reservation using rejects. This
makes scannerless parsers suitable for parsing traditional deterministic languages, as well as
non-deterministic (legacy) languages.

Unfortunately, the downside of not using a scanner is that character-level grammars
are more “ambiguity-prone”. In cases where scanner-like heuristics are needed, lexical
determinism needs to be declared manually with disambiguation filters. Especially for large
languages it can be hard to check whether all lexical ambiguities are solved. Therefore,
automated ambiguity detection would be especially helpful when developing character-level
grammars.

1.3 Research Questions

In this thesis we investigate ambiguity detection methods for context-free grammars. We
focus on traditional token-based grammars as well as character-level grammars. Our goal
is to advance ambiguity detection to a level that is practical for use on grammars of real
programming languages. The following sections describe the ideas we explore and the
research questions that guide our investigation.

1.3.1 Measuring the Practical Usability of Ambiguity Detection

Despite the fact that ambiguity detection is undecidable in general, we would like to know
whether approaches exist that can be useful in practice. For this we need a set of criteria to
evaluate the practical usability of a given ambiguity detection method. These criteria enable us
to compare different detection methods and evaluate the benefits of new or improved methods.
This leads us to the first research question:

Research Question 1

How to assess the practical usability of ambiguity detection methods?

After we find such criteria, the next logical step is to evaluate existing methods. This will
give insight into whether or not useable methods already exist, and may point at directions for
improvements. The second question therefore is:



1.4. Overview of the Chapters and Contributions 17

Research Question 2

What is the usability of the state-of-the-art in ambiguity detection?

These two questions are both addressed in Chapter 2. It starts by discussing a list of criteria
for practical usability. Then the implementations of three ambiguity detection methods are
tested on a set of benchmark grammars. Their scores on each of the criteria are measured and
analyzed, and the methods are compared to each other.

1.3.2 Improving the Practical Usability of Ambiguity Detection

The criteria that arise from the first research question direct the areas in which we can improve
the practical usefulness of ambiguity detection. From the five criteria that we defined in
Chapter 2, we will mainly focus on the following three: performance, accuracy, and report
quality. This leads us to the next research questions:

Research Question 3

How to improve the performance of ambiguity detection?

The goal of this question is to find faster searching techniques that require less memory.

Research Question 4

How to improve the accuracy of approximative ambiguity detection?

Approximative ADMs trade in accuracy so they can always terminate. The goal of this question
is to find methods that produce less false positives or false negatives.

Research Question 5

How to improve the usefulness of ambiguity detection reports?

With a useful report we mean any information that helps the grammar developer with under-
standing and solving his ambiguities. The goal of this question is to find more useful types of
reporting, and ways of producing them.

Since the ambiguity problem for CFGs is undecidable in general, there will never be a final
answer to these questions. However, the goal of this thesis is to sufficiently improve ambiguity
detection to a level that is practical for context-free grammars of programming languages. The
advances we have made towards this goal are summarized in the next section.

1.4 Overview of the Chapters and Contributions

The contributions of this thesis are distributed over the following chapters:



18 Chapter 1. Introduction

Chapter 2. The Usability of Ambiguity Detection Methods for Context-Free Grammars

This chapter presents a set of criteria to assess the practical usability of a given ambiguity
detection method, which answers research question 1. After that, it contributes to research ques-
tion 2 by evaluating the usability of three exisiting methods on a set of benchmark grammars.
The methods under investigation are the sentence generator AMBER by Schröer [Sch01], the
Noncanonical Unambiguity Test by Schmitz [Sch07b], and the LR(k) test by Knuth [Knu65].

Chapter 3. Faster Ambiguity Detection by Grammar Filtering

This chapter presents AMBIDEXTER, a new approach to ambiguity detection that combines
both approximative and exhaustive searching. We extend the Noncanonical Unambiguity Test
by Schmitz [Sch07b] to enable it to filter harmless production rules from a grammar. Harmless
production rules are rules that certainly do not contribute to the ambiguity of a grammar.
A filtered grammar contains the same ambiguities as the original, but can be much smaller.
Because of this smaller search space, exhaustive methods like sentence generators will be
able to find ambiguities faster. We experimentally validate an implementation of our grammar
filtering technique on a series of grammars of real world programming languages. The results
show that sentence generation times can be reduced with several orders of magnitude, which
is a contribution to research question 3.

Chapter 4. Tracking Down the Origins of Ambiguity in Context-Free Grammars

This chapter contains the theoretical foundation of the grammar filtering technique presented
in Chapter 3. We show how to extend both the Regular Unambiguity (RU) Test and the
more accurate Noncanonical Unambiguity (NU) Test to find harmless production rules. With
the RU Test our approach is able to find production rules that can only be used to derive
unambiguous strings. With the NU Test it can also find productions that can only be used to
derive unambiguous substrings of ambiguous strings. The approach is presented in a formal
way and is proven correct.

We show that the accuracy of the grammar filtering can be increased by applying it in
an iterative fashion. Since this also increases the accuracy of the RU Test and NU Test in
general, this is a contribution to research question 4. Furthermore, harmless production rules
are helpful information for the grammar developer, which contributes to research question 5.

Chapter 5. Scaling to Scannerless

This chapter presents a set of extensions to the grammar filtering technique to make it suitable
for character-level grammars. Character-level grammars are used for generating scannerless
parsers, and are typically more complex than token-based grammars. We present several
character-level specific extensions that take disambiguation filters into account, as well as a
general precision improving technique called grammar unfolding. We test an implementation
of our approach on a series of real world programming languages and measure the improve-
ments in sentence generation times. Although the gains are not as large as in Chapter 3, our
technique proves to be very useful on most grammars.



1.5. Origins of the Chapters 19

This is again an advancement related to research question 3. Furthermore, the presented
extensions also improve the accuracy of filtering harmless production rules from character-level
grammars, which is a contribution to research question 4.

Chapter 6. Implementing AMBIDEXTER

This chapter presents our tool implementation of AMBIDEXTER. The tool was developed to
experimentally validate our grammar filtering techniques, but also to be used in real grammar
development. The tool consists of two parts: a harmless production rule filter, and a parallel
sentence generator. We discuss the architecture as well as implementation details of both of
these parts, and finish with advise for their usage. Special attention is given to the performance
of our tool, which forms a contribution to research question 3.

Chapter 7. Parse Forest Diagnostics with DR. AMBIGUITY

Once an ambiguity detection method finds an unwanted ambiguity, it should be removed from
the grammar. However, it is not always straightforward for the grammar developer to see
which modifications solve his ambiguity and in which way. This chapter presents an expert
system called DR. AMBIGUITY, that can automatically propose applicable cures for removing
an ambiguity from a grammar.

After giving an overview of different causes of ambiguity and ambiguity resolutions, the
internals of DR. AMBIGUITY are described. The chapter ends with a small experimental
validation of the usefulness of the expert system, in which it is applied on a realistic character-
level grammar for Java. By proposing a technique that helps in understanding and resolving
found ambiguities, this chapter addresses research question 5.

1.5 Origins of the Chapters

• Chapter 2 is published in the Proceedings of the Eighth Workshop on Language Descrip-
tions, Tools and Applications (LDTA 2008) [Bas09].

• Chapter 3 is published in the Proceedings of the Tenth Workshop on Language Descrip-
tions, Tools and Applications (LDTA 2010) [BV10]. It was co-authored by Jurgen Vinju.

• Chapter 4 is a revised version of a paper published in the proceedings of the Seventh
International Colloquium on Theoretical Aspects of Computing (ICTAC 2010) [Bas10].

• Chapter 5 is published in the proceedings of the Fourth International Conference on
Software Language Engineering (SLE 2011) [BKV11]. It was co-authored by Paul Klint
and Jurgen Vinju.

• Chapter 6 is based on a tool demonstation paper that is published in the proceedings of
the Tenth IEEE Working Conference on Source Code Analysis and Manipulation (SCAM
2010) [BvdS10]. This paper was written together with Tijs van der Storm.

• Chapter 7 is published in the proceedings of the Fourth International Conference on
Software Language Engineering (SLE 2011) [BV11]. It was co-authored by Jurgen Vinju.





Chapter 2

The Usability of Ambiguity Detection
Methods for Context-Free Grammars

“In theory there is no difference between theory and practice. In practice there is.”

Jan L. A. van de Snepscheut / Yogi Berra

Despite the fact that the ambiguity problem for context-free grammars is unde-

cidable in general, various ambiguity detection methods (ADMs) exist that aim at

finding ambiguities in real grammars. In this chapter we present a set of criteria

to test whether a given ambiguity detection method is useful in practice. We test

implementations of three ADMs on a set of benchmark grammars, and assess their

practical usability.

2.1 Introduction

Generalized parsing techniques allow the use of the entire class of context-free grammars
(CFGs) for the specification of programming languages. This grants the grammar developer
the freedom of structuring his grammar to best fit his needs. He does not have to squeeze his
grammar into LL, LALR or LR(k) form for instance. However, this freedom also introduces
the danger of unwanted ambiguities.

Some grammars are designed to be completely unambiguous, while others are intended to
contain a certain degree of ambiguity (for instance programming languages that will be type

This chapter was published in the Proceedings of the Eighth Workshop on Language Descriptions, Tools and
Applications (LDTA 2008) [Bas09].

21



22 Chapter 2. The Usability of Ambiguity Detection Methods for Context-Free Grammars

checked after parsing). In both cases it is important to know the sources of ambiguity in the
developed grammar, so they can be resolved or verified.

Unfortunately, detecting the (un)ambiguity of a grammar is undecidable in the general
case [Can62, Flo62, CS63]. Still, several Ambiguity Detection Methods (ADMs) exist that
approach the problem from different angles, all with their own strengths and weaknesses.
A straightforward one is to start generating all sentences of the grammar’s language and
checking them for ambiguity. The results of this method are 100% correct, but its problem
is that it might never terminate. Other methods test for inclusion in unambiguous grammar
classes (LALR, LR(k), LR Regular, etc.), but these do not cover the entire set of unambiguous
grammars. More recent methods (Noncanonical Unambiguity [Sch07b], Ambiguity Checking
with Language Approximation [BGM10]) search conservative approximations of a grammar
or its language, leaving the original ambiguities intact. They are able to terminate in finite
time, but at the expense of accuracy.

All these different characteristics result in differences in the practical usability of the
ADMs. Whether a method is useful in a certain situation also depends on other factors like the
tested grammar, the parameters of the method, the computation power of the used machine, the
experience of the grammar developer, etc. In this chapter we investigate the practical usability
of three ADM implementations in a series of use cases and compare them to each other. The
investigated implementations are: AMBER [Sch01] (a derivation generator), MSTA [Mak95]
(a parse table generator used as LR(k) test [Knu65]) and a modified version of BISON that
implements the Noncanonical Unambiguity test [Sch10].

Overview In Section 2.2 we describe the criteria for practical usability and how they were
measured. In Sections 2.3 to 2.5 we discuss the measurement results of the three investigated
methods and analyze their practical usability. The methods are compared to each other in
Section 2.6. Section 2.7 contains a short evaluation and we conclude in Section 2.8.

2.2 Comparison Framework

In order to measure and compare the practical usability of the investigated methods, we
will first need to define it. This section describes the criteria for practical usability that we
distinguish, how we measured them and how we analyzed the results.

2.2.1 Criteria for Practical Usability

Termination Methods that apply exhaustive searching can run into an infinite search space
for certain grammars. They might run forever, but could also take a very long time before
terminating. In practice they will always have to be halted at some point. To be practically
usable on a grammar, a method has to produce an answer in a reasonable amount of time.

Accuracy After a method has terminated on a grammar it needs to correctly identify the
ambiguity of the tested grammar. Not all methods are always able to produce the right answer,
for instance those that use approximation techniques. Reports of such methods need to be
verified by the user, which influences the usability.



2.2. Comparison Framework 23

We define the accuracy of an ADM on a set of grammars as its percentage of correct reports.
This implies that a method first has to terminate before its report can be tested. Executions
that do not terminate within a set time limit are not used in our accuracy calculations.

Performance Knowing the worst case complexity of an algorithm tells something about the
relation between its input and its number of steps, but this does not tell much about its runtime
behavior on a certain grammar. How well a method performs on an average desktop PC also
influences its usability.

Usefulness of reports After a method has successfully terminated and correctly identified
the ambiguity of a grammar, it becomes even more useful if it indicates the sources of ambiguity
in the grammar. That way they can be verified or resolved. An ambiguity report should be
grammar oriented, localizing and succinct. A very useful one would be an ambiguous example
string, preferably as short as possible, together with its multiple derivations.

Scalability Some ADMs can be executed with various levels of accuracy. There is usually a
trade-off between their accuracy and performance. Accurately inspecting every single possible
solution is more time consuming than a more superficial check. The finer the scale with which
the accuracy of an ADM can be exchanged for performance, the more usable the method
becomes.

2.2.2 Measurements

We tested the implementations of the methods for these criteria on three collections of am-
biguous and unambiguous grammars, named small, medium and large. The small collection
contained 84 ‘toy’ grammars with a maximum size of 17 production rules. They were gathered
from (parsing) literature and known ambiguities in existing programming languages. This
way various cases that are known to be difficult or unsolvable for certain methods are tested
and compared with the other methods. Also some problematic grammar constructs, like the
dangling else, are included.

The medium and large collections were formed of grammars from the real life languages
HTML1, SQL2, Pascal3, C3 and Java4. Their respective sizes were 29, 79, 176, 212 and 349
productions rules, with the line between medium and large drawn at 200 productions. Of each
grammar (except HTML) five ambiguous versions were created through minor modifications.
Again, some of the introduced5 ambiguities were common ambiguous grammar constructs.
Complete references of the grammars and modifications made can be found in [Bas07].

The termination, accuracy and performance of an ADM are closely related. To measure
the accuracy of a method it first has to terminate. How long this takes is determined by its

1Taken from the open source project GraphViz, http://www.graphviz.org/
2Taken from the open source project GRASS, http://grass.itc.it/
3Taken from the comp.compilers FTP, ftp://ftp.iecc.com/
4Taken from GCJ: The GNU Compiler for Java, http://gcc.gnu.org/java/
5See Section 3.3 for an overview.

http://www.graphviz.org/
http://grass.itc.it/
ftp://ftp.iecc.com/
http://gcc.gnu.org/java/


24 Chapter 2. The Usability of Ambiguity Detection Methods for Context-Free Grammars

performance. We measured the accuracy of the methods on the collection of small grammars
to minimize computation time and memory usage.

The termination and performance of an ADM are more relevant in relation to real life
grammars, so we measured them on the collection of medium and large grammars. For each
grammar we measured the computation time and needed virtual memory of the implementa-
tions. The PC used was an AMD Athlon 64 3500 with 1024 MB of RAM (400DDR) running
Fedora Core 6. Different time limits were used to test if the methods would be usable as a
quick check (5 min.) and a more extensive check (15 hrs.). This results in the following four
use cases:

Use case Grammar size Time limit
1. Medium grammars - quick check |P | < 200 t < 5 m.
2. Medium grammars - extensive check |P | < 200 t < 15 h.
3. Large grammars - quick check 200 ≤ |P | < 500 t < 5 m.
4. Large grammars - extensive check 200 ≤ |P | < 500 t < 15 h.

2.2.3 Analysis

From the accuracy and performance measurements of each ADM we have analyzed the scale
with which its accuracy and performance can be exchanged. We also analyzed the usefulness
of the reports of the methods, but only as a theoretical survey.

We finally analyzed the practical usability of the ADMs in each of the stated use cases.
For each ADM we determined their critical properties that were most decisive for this, and
tested if their values were within the constraints of the use cases. Our main focus will be on
the ambiguous grammars. We will assume that a grammar developed for a generalized parser
has a high chance of being ambiguous the first time it is tested.

2.3 AMBER

AMBER is a so called derivation generator. It uses an Earley parser to generate sentences of a
grammar up to a certain length. With a depth-first search of all valid parse actions it builds up
derivations of strings in parallel. When a sentence is completed and has multiple derivations,
an ambiguity is found. The string and its derivations are presented to the user, which is a very
useful ambiguity report.

We have tested AMBER in its default mode and in ellipsis mode. This latter mode also
checks the sentential forms of incomplete derivations for ambiguity, instead of only the actual
sentences of a grammar’s language. This way it might find ambiguities in strings of shorter
length.

2.3.1 Measurements and Analysis

We have iteratively executed the two modes of AMBER on the grammars with increasing
maximum string length. If it found an ambiguity then we stopped iterating. In this way it
checks every sentence of the language of a grammar, and can never miss an ambiguity. On the
small ambiguous grammars both modes had an accuracy of 100%.



2.4. LR(k) Test 25

The downside of this exhaustive checking is that it will never terminate on unambiguous
cyclic grammars, and that it might take very long on larger ambiguous grammars. However,
the ellipsis mode terminated on all medium grammars within both time limits, and the default
mode on all but one. This made them highly usable as both a quick check and an extensive
check.

The large grammars were a bigger challenge for the tool’s computation speed. On this
collection both modes were only moderately usable as a quick check, but still very usable as
an extensive check. Because of its depth first searching AMBER is very memory efficient. In
all cases it consumed less than 7 MB.

The ellipsis mode always took more time than the default mode for the same maximum
string length. It only needed a smaller string length for 4 grammars of the 17 medium and
large grammars that both modes terminated on. Most of the nonterminals in our grammars
could thus derive a string of a very short length. On all but 2 grammars the default mode
terminated the fastest, making it the most practically usable of the two.

By our definition, AMBER is not scalable by using the default or ellipsis mode. The
termination times of both modes varied, but their accuracy is the same.

2.4 LR(k) Test

One of the first tests for unambiguity was the LR(k) test by Knuth [Knu65]. If an LR(k)
parse table without conflicts can be constructed for a grammar, every string of its language is
deterministically parsable and thus unambiguous. To test for LR(k)-ness of a grammar we
used the parser generator MSTA [Mak95]. We ran it iteratively on a grammar with increasing
k, until the test succeeded or the set time limit was reached. This test has a fixed precision and
is therefore not scalable.

If running this method is aborted then it remains uncertain whether the investigated gram-
mar is really ambiguous or simply not LR(k). In some cases the conflicts in the intermediate
parse tables might offer clues to sources of ambiguity, but this can be hard to tell. The conflict
reports are not grammar oriented, which makes them fairly incomprehensible. The numerous
posts about them in the comp.compilers newsgroup also show this.

2.4.1 Measurements and Analysis

MSTA did not terminate on the ambiguous small grammars for values of k as high as 50. On
the unambiguous small grammars it terminated in 75% of the cases. These reports thus had an
accuracy of 100%.

The computation time and memory consumption of the test both grew exponentially
with increasing k. However, the computation time reached an unpractical level faster than
the memory consumption. The highest memory consumption measured was 320 MB on an
ambiguous SQL grammar with k = 6.

The maximum values of k that could be tested for within the time limits of the extensive
check were 6 for the medium grammars, and only 3 for the large grammars. This should not be
a problem, because chances are minimal that a grammar that is not LR(1) is LR(k) for higher
values of k [GJ08]. However, experience also shows that grammars written for generalized



26 Chapter 2. The Usability of Ambiguity Detection Methods for Context-Free Grammars

parsers are virtually never suitable for deterministic parsing. They aim to best describe the
structure of their language, instead of meeting specific parser requirements [GJ08]. The LR(k)
test will probably not be a very useful ambiguity detection method for them.

2.5 Noncanonical Unambiguity Test

Schmitz’ Noncanonical Unambiguity (NU) test [Sch07b] is a conservative ambiguity detection
method that uses approximation to limit its search space. It constructs a nondeterministic
finite automaton (NFA) that describes an approximation of the language of the tested grammar.
The approximated language is then checked for ambiguity by searching the automaton for
different paths that describe the same string. This can be done in finite time, but at the expense
of correctness. The test is conservative however, allowing only false positives. If a grammar is
Noncanonical Unambiguous then it is not ambiguous.

In the other case it remains uncertain whether the grammar is really ambiguous or not. For
each ambiguous string in the approximated language, the investigated tool reports the conflicts
in the constructed NFA. They resemble those of the LR(k) test and are also hard to trace in
the direction of an ambiguity. These ambiguity reports are not very useful, especially if they
contain a high number of conflicts.

The accuracy of the test depends on the used approximation technique. Stricter approxima-
tions are usually more accurate, but result in larger NFAs. We tested an implementation [Sch10]
of the NU test, which offered LR(0), SLR(1) and LR(1) precision. Their NFAs resemble the
LR(0), SLR(1) or LR(1) parsing automata of a grammar, but without the use of a stack. Those
of LR(0) and SLR(1) have the same amount of nodes, but the latter is more deterministic
because the transitions are constrained by lookahead. The LR(1) automata are fairly bigger.

2.5.1 Measurements and Analysis

The LR(0), SLR(1) and LR(1) precisions obtained respective accuracies of 61%, 69% and
86%. The LR(1) precision was obviously the most accurate, but also had the largest NFAs.
The tool could barely cope with our large grammars, running out of physical memory (1GB)
and sometimes even out of virtual memory. When its memory consumption did stay within
bounds, its computation time was very low. It remained below 4 seconds on the small and
medium grammars. The LR(0) and SLR(1) precisions tested all grammars under 3 seconds,
needing at most 68 MB of memory.

Comparing the three precisions of the tool, LR(1) was the most practical on the grammars
of our collection. It was pretty usable as both a quick check and extensive check on the
medium grammars. On the large grammars it was only moderately usable as an extensive
check, because of its high memory usage. The other two precisions were not convincing
alternatives, because of their high number of incomprehensible conflicts. The accuracy and
performance of the investigated tool could thus be scaled, but only in large intervals. A
precision between SLR(1) and LR(1) might be a solution for this, which Schmitz reckons to
be LALR(1).



2.6. Comparison 27

Usability criteria AMBER MSTA Noncanonical Unambiguity
Default Ellipsis LR(k) LR(0) SLR(1) LR(1)
mode mode test precision precision precision

Accuracy
• ambiguous 100 % 100 % n.a. 100 % 100 % 100 %
• unambiguous n.a. n.a. 100 % 61 % 69 % 86 %

Performance1

• computation time – – – – – ++ ++ ++
• memory consumption ++ ++ – ++ ++ –

Termination (amb)
Use cases:
1. medium/quick 90 % 100 % 0 % 100 % 100 % 100 %
2. medium/extensive 100 % 100 % 0 % 100 % 100 % 100 %
3. large/quick 60 % 50 % 0 % 100 % 100 % 20 %
4. large/extensive 80 % 70 % 0 % 100 % 100 % 70 %

Termination (unamb)
• all 4 use cases 0 % 0 % 100 % 100 % 100 % 100 %2

Usefulness of output1 ++ – –
1Scores range from – – to ++
2Except 50 % in use case 3 (large/quick)

Table 2.1: Summary of measurement results

Use case AMBER MSTA Noncanonical Unambiguity
Default Ellipsis LR(k) LR(0) SLR(1) LR(1)
mode mode test precision precision precision

1. medium/quick +++ +++ – – +/– + ++
2. medium/extensive +++ +++ – – +/– + ++
3. large/quick +/– +/– – – – – – – – – –
4. large/extensive ++ + – – – – – – – +/–
Scores range from – – – to +++

Table 2.2: Usability of investigated ADMs on ambiguous grammars of use cases

2.6 Comparison

In the previous three sections we have discussed the measurement results of the three methods.
They are summarized in Table 2.1. From these results we have analyzed the practical usability
of the methods in each of the stated use cases. In this chapter we will compare the methods to
each other. Table 2.2 presents a (subjective) summary of this comparison.

AMBER was the most practically usable ADM in all four use cases. Its ambiguity
reports are correct and very helpful. It has exponential performance, but still managed to find



28 Chapter 2. The Usability of Ambiguity Detection Methods for Context-Free Grammars

most ambiguities within the set time limits. Its biggest drawback is its nontermination on
unambiguous grammars. AMBER’s ellipsis mode was not superior to the default mode. It is
able to find ambiguities in strings of shorter length, but usually took more time to do so.

The NU test with LR(1) precision was also helpful on grammars smaller than 200 pro-
ductions. It offered a pretty high accuracy, guaranteed termination and fast computation time.
However, it suffered from high memory consumption and incomprehensible reports. On the
large grammars it started swapping or completely ran out of virtual memory. The LR(0) and
SLR(1) precisions were no real alternatives because of their high number of conflicts. Another
precision between SLR(1) and LR(1) would make the tested implementation more scalable.

The LR(k) test was the least usable of the three. It is actually only helpful for grammars
that are LR(k) the first time they are tested. In all other cases it will never terminate and its
intermediate reports are hard to trace to (possible) sources of ambiguity. Also, in general the
LR(k) precision of the NU test is guaranteed to be stronger than the LR(k) test, for every value
of k [Sch07b]. The LR(1) precision of the NU test did indeed find no ambiguities in grammars
that MSTA identified as LR(1).

2.7 Evaluation

As a consequence of the different input formats of the investigated implementations we used
only grammars in BNF notation. All three ADMs support the use of priority and associativity
declarations, but it is wrong to assume they all adopt the same semantics [BBV07]. It was hard
finding grammars for generalized parsers that do not use any form of disambiguation, so we
gathered only YACC grammars. To create unambiguous base lines for the medium and large
grammars we removed all their conflicts, effectively making them LALR(1) and thus also
LR(1). The ambiguous versions we created are of course not LR(1), but might still be close.
This should not be a problem for the analysis of AMBER and the LR(k) test (since we focus on
ambiguous grammars), but it might result in the NU test reporting less conflicts. However, it
will not influence its accuracy measurements because the NU test gives conservative answers.

We have investigated implementations of three ADMs, but it would also be interesting
to compare them to other existing methods. Unfortunately, the investigated implementations
were the only ones readily available at the start of this project, with the exception of the
derivation generator of Jampana [Jam05]. However, we choose not to include it because
it closely resembles AMBER, and it is very likely to produce incorrect results. It only
generates derivations in which a production rule is never used more than once, and assumes
all ambiguities of a grammar will show up.

A method that is particulary interesting is the recent “Ambiguity Checking with Language
Approximation” framework (ACLA) by Brabrand et al. [BGM10]. After our own project
had ended, Schmitz compared the accuracy of his ADM to that of ACLA on an extension
of our collection of small unambiguous grammars [Sch07a]. His LR(0), SLR(1) and LR(1)
precisions achieved accuracies of 65%, 75% and 87%, compared to 69% of ACLA. However,
he did not apply any grammar unfolding, which might improve this latter score. 69% of the
grammars were LR(k).

Another interesting method, which was not available at the time of this research, is CFG

ANALYZER by Axelsson et al. [AHL08]. This method uses an incremental SAT-solver to



2.8. Conclusions 29

exhaustively search all sentences of a grammar with increasing length. In Chapter 3 we do use
a tool implementation of CFG ANALYZER. Although the goal of the described experiments is
different, the results do allow for a comparison with AMBER. They show that on all tested
grammars, CFG ANALYZER is equally accurate as AMBER, but much faster.

2.8 Conclusions

In this chapter we have evaluated the practical usability of three ambiguity detection methods
on a set of use cases. We have measured their accuracy, termination and performance, and
analyzed their scalability and the usefulness of their reports. AMBER was very useful in
three out of the four use cases, despite its exponential performance. The tested Noncanonical
Unambiguity implementation was also quite useful on the medium sized grammars. It still has
room for improvement but looks very promising. The LR(k) test was the least usable of the
three. It appeared only useful on grammars that are actually LR(k).

2.8.1 Discussion

The practical usability of an ambiguity detection method depends largely on the grammar
being tested. It is important to keep in mind that our measurements are only empirical and that
the results cannot be easily extended to other grammars of the same sizes. However, they do
give an insight into the practical implications of the differences between the tested methods,
opening up new ways for improvements or optimizations. For instance heuristics that help to
choose between AMBER’s default or ellipsis mode, by calculating the minimum string lengths
of the derivations of nonterminals.

Our results could also lead to new ADMs that combine existing methods, adopting their
best characteristics. For instance, the NU test of Schmitz is very fast and pretty accurate,
but it is not yet able to pinpoint exact sources of ambiguity in a grammar. On the other
hand, derivation generators like AMBER are exact, but they have the problem of possible
nontermination. A more elegant solution would be an iterative approach that gradually narrows
locations of ambiguity in a grammar, testing in more detail with each step. This idea is explored
in the next chapter.





Chapter 3

Faster Ambiguity Detection by
Grammar Filtering

The previous chapter showed two relatively useful, but quite opposite, ambiguity

detection methods: the approximative Noncanonical Unambiguity Test and the exhaus-

tive sentence generator AMBER. In this chapter we present AMBIDEXTER, a new

approach to ambiguity detection that combines both approximative and exhaustive

searching. We extend the Noncanonical Unambiguity Test to enable it to filter harmless

production rules from a grammar. Harmless production rules are rules that certainly

do not contribute to the ambiguity of a grammar. A filtered grammar contains the

same ambiguities as the original, but can be much smaller. Because of this smaller

search space, sentence generators like AMBER will be able to find ambiguities faster.

We experimentally validate an implementation of our grammar filtering technique on

a series of grammars of real world programming languages. The results show that

sentence generation times can be reduced with several orders of magnitude.

3.1 Introduction

Real programming languages are often defined using ambiguous context-free grammars. Some
ambiguities are intentional, while others are accidental. It is therefore important to know
all of them, but this can be a very cumbersome job if done by hand. Automated ambiguity

This chapter was published in the Proceedings of the Tenth Workshop on Language Descriptions, Tools
and Applications (LDTA 2010) [BV10]. It was co-authored by Jurgen Vinju. Compared to the published paper,
Section 3.2.6 contains an updated grammar reconstruction algorithm. Furthermore, Section 3.5 is a small appendix
with updated measurement results.

31



32 Chapter 3. Faster Ambiguity Detection by Grammar Filtering

checkers are therefore very valuable tools in the grammar development process, even though
the ambiguity problem is undecidable in general.

In Chapter 2 we compared the practical usability of several ambiguity detection methods
on a series of grammars.The exhaustive derivation generator AMBER [Sch01] was the most
practical in finding ambiguities for real programming languages, despite its possible nontermi-
nation. The main reasons for this are its accurate reports (Figure 3.1) that contain examples
of ambiguous strings, and its impressive efficiency. It took about 7 minutes to generate all
the strings of length 10 for Java. Nevertheless, this method does not terminate in case of
unambiguity and has exponential performance. For example, we were not able to analyze Java
beyond a sentence length of 12 within 15 hours.

Another good competitor was Schmitz’s Noncanonical Unambiguity Test [Sch07b] (NU
TEST). This approximative method always terminates and can provide relatively accurate
results in little time. The method can be tuned to trade accuracy for performance. Its memory
usage grows to impractical levels much faster than its running time. For example, with the
best available accuracy, it took more than 3Gb to fully analyze Java. A downside is that its
reports can be hard to understand due to their abstractness (Figure 3.2).

In this chapter we propose to combine these two methods. We show how the NU TEST

can be extended to identify parts of a grammar that do not contribute to any ambiguity. This
information can be used to limit a grammar to only the part that is potentially ambiguous.
The smaller grammar is then fed to the exhaustive AMBER and CFG ANALYZER [AHL08]
methods to finally obtain a precise ambiguity report.

The goal of our approach is ambiguity detection that scales to real grammars and real
sentence lengths, providing accurate ambiguity reports. Our new filtering method leads to
significant decreases in running time for AMBER and CFG ANALYZER, which is a good step
towards this goal.

Related Work Another approximative ambiguity detection method is the “Ambiguity Check-
ing with Language Approximation” framework [BGM10] by Brabrand, Giegerich and Møller.
The framework makes use of a characterization of ambiguity into horizontal and vertical
ambiguity to test whether a certain production rule can derive ambiguous strings. This method
might be extended in a comparable fashion as we propose to extend the NU TEST here.

Other exhaustive ambiguity detection methods are [CU95] and [Gor63]. These can benefit
from our grammar filtering similarly to AMBER and CFG ANALYZER.

Outline In Section 3.2 we explain the NU TEST, how to extend it to identify harmless
productions, and how to construct a filtered grammar. Section 3.3 contains an experimental
validation of our method. We summarize our results in Section 3.4.

3.2 Filtering Unambiguous Productions

In this section we explain how to filter productions from a grammar that do not contribute to
any ambiguity. We first briefly recall the basic NU TEST algorithm before we explain how to
extend it to identify harmless productions. This section ends by explaining how to construct a



3.2. Filtering Unambiguous Productions 33

�




�

	

GRAMMAR DEBUG INFORMATION

Grammar ambiguity detected. (disjunctive)

Two different ‘‘type_literals’’ derivation trees for the same phrase.

TREE 1

------

type_literals alternative at line 787, col 9 of grammar {

VOID_TK

DOT_TK

CLASS_TK

}

TREE 2

------

type_literals alternative at line 785, col 16 of grammar {

primitive_type alternative at line 31, col 9 of grammar {

VOID_TK

}

DOT_TK

CLASS_TK

}

Figure 3.1: Excerpt from an ambiguity report by AMBER on a Java grammar.

�




�

	

5 potential ambiguities with LR(1) precision detected:

(method_header -> modifiers type method_declarator throws . ,

method_header -> modifiers VOID_TK method_declarator throws . )

(method_header -> type method_declarator throws . ,

method_header -> VOID_TK method_declarator throws . )

(method_header -> type method_declarator throws . ,

method_header -> modifiers VOID_TK method_declarator throws . )

(method_header -> VOID_TK method_declarator throws . ,

method_header -> modifiers type method_declarator throws . )

(type_literals -> primitive_type DOT_TK CLASS_TK . ,

type_literals -> VOID_TK DOT_TK CLASS_TK . )

Figure 3.2: Excerpt from an ambiguity report by NU TEST on a Java grammar.

valid filtered grammar that can be fed to any exhaustive ambiguity checker. A more detailed
description of our method, together with proofs of correctness, can be found in Chapter 4.

3.2.1 Preliminaries

A grammar G is a four-tuple (N,T, P, S) where N is the set of non-terminals, T the set of
terminals, P the set of productions over N × (N ∪T )∗, and S is the start symbol. V is defined
as N ∪ T . We use A,B,C, . . . to denote non-terminals, u, v, w, . . . for strings of T ∗, and
α, β, γ, . . . for sentential forms: strings over V ∗. The relation =⇒ denotes derivation. We say
αBγ directly derives αβγ, written as αBγ =⇒ αβγ if a production rule B → β exists in P .



34 Chapter 3. Faster Ambiguity Detection by Grammar Filtering

The symbol =⇒∗ means “derives in zero or more steps”. An item indicates a position in a
production rule using a dot, for instance as S → A•BC.

3.2.2 The Noncanonical Unambiguity Test

The Noncanonical Unambiguity test [Sch07b] by Schmitz is an approximated search for two
different parse trees of the same string. It uses a bracketed grammar, which is obtained from
an input grammar by adding a unique terminal symbol to the beginning and end of each
production. The language of a bracketed grammar represents all parse trees of the original
grammar.

From the bracketed grammar a position graph is constructed, in which the nodes are
positions in strings generated by this grammar. The edges represent evaluation steps of
the bracketed grammar: there are derivation, reduction, and shift edges. Derivations and
reductions correspond to entries and exits of a production rule, while shifts correspond to steps
inside a single production rule over terminal and non-terminal symbols.

This position graph describes the same language as the bracketed grammar. Every path
through the graph describes a parse tree of the original grammar. Therefore, the existence
of two different paths of which the labels of shift edges form the same string indicates the
ambiguity of the grammar. So, position graphs help to point out ambiguity in a straightforward
manner, but they are usually infinitely large. To obtain analyzable graphs Schmitz describes the
use of equivalence relations on the nodes. These should induce conservative approximations
of the unambiguity property of the grammar. If they report ambiguity we know that the input
grammar is potentially ambiguous, otherwise we know for sure that it is unambiguous.

3.2.3 LR(0) Approximation

An equivalence relation that normally yields an approximated graph of analyzable size is the
“item0” relation [Sch07b]. We use item0 here to explain the NU TEST for simplicity’s sake,
ignoring the intricacies of other equivalence relations.

The item0 position graph of a grammar closely resembles its LR(0) parse automaton
[Knu65]. The nodes are labeled with the LR(0) items of the grammar and the edges correspond
to actions. Every node with the dot at the beginning of a production of the start symbol is a
start node, and every item with the dot at the end of a production of the start symbol is an end

node. There are three types of transitions:

• Shift transitions, of form A → α•Xβ
X
7−→ A → αX•β

• Derivation transitions, of form A → α•Bγ
〈i
7−→ B → •β, where i is the number of the

production B → β.

• Reduction transitions, of form B → β•

〉i
7−→ A → αB•γ, where i is the number of the

production B → β.

The derivation and shift transitions are similar to those in an LR(0) automaton, but the
reductions are different. The item0 graph has reduction edges to every item that has the dot



3.2. Filtering Unambiguous Productions 35

after the reduced non-terminal, while an LR(0) automaton jumps to a different state depending
on the symbol that is at the top of the parse stack. As a result, a certain path through an item0

graph with a 〈i transition from A → α•Bγ does not necessarily match an 〉i transition to
A → αB•γ. The language characterized by an item0 position graph is thus a superset of the
language of parse trees of the original grammar.

3.2.4 Finding Ambiguity in an item0 Position Graph

To find possible ambiguities, we can traverse the item0 graph using two cursors simultaneously.
If we can traverse the graph while the two cursors use different paths, but construct the same
string of shifted tokens, we have identified a possible ambiguity.

An efficient representation of all such simultaneous traversals is a pair graph (PG). The
nodes of this graph represent the pair of cursors into the original item0 graph. The edges
represent steps made by the two cursors, but not all transitions are allowed. An edge exists
for either an individual derivation or reduction transitions by one of the cursors, or for a
simultaneous shift transition of the exact same symbol by both cursors.

A path in a PG thus describes two potential parse trees of the same string. We call such a
path an ambiguous path pair, if the two paths it represents are not identical. The existence of
ambiguous path pairs is indicated by a join point: a reduce transition from a pair with different
items to a pair with identical items. Ergo, in the item0 case we can efficiently detect (possible)
ambiguity by constructing a PG and looking for join points.

To optimize the process of generating PGs we can omit certain nodes and edges. In
particular, if two paths derive the exact same substring for a certain non-terminal this substring
can safely be replaced by a shift over the non-terminal. We call this process terminalization of
a non-terminal. Such optimizations avoid the traversal of spurious ambiguities.

3.2.5 Filtering Harmless Production Rules

The NU TEST stops after a PG is constructed and the ambiguous path pairs are reported to
the user. In our approach we also use the PG to identify production rules that certainly do not
contribute to the ambiguity of the grammar. We call these harmless production rules.

The main idea is that a production rule is harmless if its items are not used in any ambiguous
path pair. The set of ambiguous path pairs describes an over-approximation of the set of all
parse trees of ambiguous strings. So, if a production is not used by this set it is certainly not
used by any real parse tree of an ambiguous string.

Note that a production like that may still be used in a parse tree of an ambiguous sentence,
but then it does not cause ambiguity in itself. In this case the ambiguity already exists in a
sentential form in which the non-terminal of the production is not derived yet.

We use knowledge about harmless rules to filter the PG and to eventually produce a filtered
grammar containing only rules that potentially contribute to ambiguity. This is an outline of
our algorithm:

1. Remove pairs not used on any ambiguous path pair.

2. Remove noticeably invalid (over-approximated) paths, until a fixed-point:



36 Chapter 3. Faster Ambiguity Detection by Grammar Filtering

a) Remove incompletely used productions.

b) Remove unmatched derivation and reduction steps.

c) Prune dead ends and unreachable sub-graphs.

3. Collect the potentially harmful production rules that are left over.

Step 1 and Step 3 are the essential steps, but there is room for optimization. Because the item0

graph is an over-approximation, collecting the harmful productions also takes parse trees into
account that are invalid for the original grammar. There are at least two situations in which
these can be easily identified and removed.

Incompletely Used Productions

Consider that any path in the item0 graph that describes a valid parse tree of the original
grammar must exercise all items of a production. So, if any item for a production is not used
by any ambiguous path pair, then the entire production never causes ambiguous parse trees for
a sentence for the original grammar.

Note that due to over-approximation, other items of the identified production may still
be used in other valid paths in the item0 graph, but these paths will not be possible in the
unapproximated position graph since they would combine items from different productions.

Once an incompletely used production is identified, all pairs that contain one of its items
can be safely removed from the pair graph and new dead ends and unreachable sub-graphs can
be pruned. This removes some over-approximated invalid paths from the graph.

Unmatched Derivations and Reductions

Furthermore, next to nodes we can also remove certain derivation and reduction edges from the
PG. Consider that any path in the item0 graph that describes a valid parse tree of the original
grammar must both derive and reduce every production that it uses. More specifically, if a 〈i
transition is followed from A → α•Bγ to B → •β, the matching 〉i transition from B → β•

to A → αB•γ must also be used, and vice versa. Therefore, if one of the two is used in the
PG, but the other is not, it can be safely removed, and the PG can be pruned again.

The process of removing items and transitions can be repeated until no more invalid paths can
be found this way. After that the remaining PG uses only potentially harmful productions. We
can gather them by simply collecting the productions from all items used in the graph. Note
that the item0 graph remains an over-approximation, so we might collect productions that are
actually harmless. In Section 3.3 we investigate whether the reduction of the grammar will
actually result in performance gains for exhaustive methods.

3.2.6 Grammar Reconstruction

From applying the previous filtering process we are left with a set of productions that potentially
lead to ambiguity. We want to use this set of productions as input to an exhaustive ambiguity



3.2. Filtering Unambiguous Productions 37

detection method such as CFG ANALYZER or AMBER in order to get precise reports and clear
example sentences. Note that the set of potentially ambiguous productions may be empty, in
which case this step can be omitted completely.

Unfortunately, the filtered set of productions can represent an incomplete grammar. There
might be non-terminals of which all productions are filtered, while they still occur in produc-
tions of other non-terminals (they have been terminalized). In this case we need to restore the
productivity of these non-terminals. Furthermore, certain non-terminals might not be reachable
from the start symbol anymore. This means that, in the original grammar, these non-terminals
can only be used after the application of a harmless production rule. By definition they are
therefore harmless as well, and we can safely discard them.

To restore the productivity property of the grammar, new production rules and terminals
will have to be introduced. Naturally, we must prevent introducing new ambiguities in this
process. Let us use Ph to denote the set of potentially harmful productions of a grammar.
From Ph we can create a new grammar G′ by constructing1:

1. The set of defined non-terminals of Ph:
Ndef = {A|A → α ∈ Ph}.

2. The used but undefined non-terminals of Ph:
Nundef = {B|A → αBβ ∈ Ph}\Ndef .

3. The unproductive non-terminals:
Nunpr = {A|A ∈ Ndef ,¬∃u : A =⇒∗ u using only productions in Ph}.

4. New terminals tA for each non-terminal A ∈ Nundef ∪Nunpr.

5. Productions to complete the unproductive and undefined non-terminals:
P ′ = Ph ∪ {A → (tA)

k | A ∈ Nundef ∪Nunpr, k = minlength(A)}.

6. The new set of terminal symbols:
T ′ = {a|(A → βaγ) ∈ P ′}.

7. Finally, the new grammar:
G′ = (Ndef ∪Nundef , T

′, P ′, S′).

At step 5 we reconstruct the productivity of unproductive non-terminals. For each non-
terminal, we introduce a production that produces a terminal-only string with the same length
as the shortest possible derivation of the non-terminal in the original grammar. This way every
derivation of the original grammar corresponds to a derivation of equal or shorter length in the
filtered grammar. The number of derivations of the filtered grammar up to a certain length is
then always less or equal to that of the original grammar, and certainly not greater. This way,
filtering a grammar can never lead to an increase in sentence generation time. Furthermore, the
introduced productions make use of new unique terminals to not introduce new ambiguities.

1 Where minlength(A) = min({k|∃u, A =⇒∗ u : k = |u|}) using the original grammar.



38 Chapter 3. Faster Ambiguity Detection by Grammar Filtering

3.3 Experimental Validation

After constructing a new, much smaller, grammar we can apply exhaustive algorithms like
AMBER or CFG ANALYZER on it to search for the exact sources of ambiguity. The search space
for these algorithms is exponential in the size of the grammar. Therefore our experimental
hypothesis is:

By filtering the input grammar we can gain an order of magnitude improvement

in run-time when running AMBER or CFG ANALYZER as compared to running

them on the original grammar.

Since building an LR(0) PG and filtering it is polynomial we also hypothesize:

For many real-world grammars the time invested to filter them does not exceed

the time that is gained when running AMBER and CFG ANALYZER on the filtered

grammar.

We will also experiment with other approximations, such as SLR(1), LALR(1) and LR(1) to
be able to reason about the return of investment for these more precise approximations.

3.3.1 Experiment Setup

To evaluate the effectiveness of our approach we must run it on realistic cases. We focus
on grammars for reverse engineering projects. Grammars in this area target many different
versions and dialects of programming languages. They are subject to a lengthy engineering
process that includes bug fixing and specialization for specific purposes. Our realistic gram-
mars are therefore “standard” grammars for mainstream programming languages, augmented
with small variations that reflect typical intentional and accidental deviations.

We have selected standard grammars for Java [GrJ], C [GrC], Pascal [GrP] and SQL [GrS]
which are initially not ambiguous. We labeled them Java.0, C.0, Pascal.0 and SQL.0. Then,
we seeded each of these grammars with different kinds of ambiguous extensions2. Examples
of ambiguity introduced by us are:

• Dangling-else constructs: Pascal.3, C.2, Java.3

• Missing operator precedence: SQL.1, SQL.5, Pascal.2, C.1, Java.4

• Syntactic overloading:3 SQL.2, SQL.3, SQL.4, Pascal.1, Pascal.4, Pascal.5, C.4, C.5,
Java.1, Java.5

• Non-terminals nullable in multiple ways: C.3, Java.2

For each of these grammars we measure:4

2A complete overview of the applied modifications can be found in [Bas07].
3Syntactic overloading happens when reusing terminal symbols. E.g. the use of commas as list separator and

binary operator, forgetting to reserve a keyword, or reuse of juxtapositioning.
4Measurements done on an Intel Core2 Quad Q6600 2.40GHz PC with 8Gb DDR2 memory.



3.3. Experimental Validation 39

1. AMBER/CFG ANALYZER run-time and memory usage,

2. Filtering run-time with precisions LR(0), SLR(1), LALR(1) or LR(1),

3. AMBER/CFG ANALYZER run-time and memory usage after filtering.

Observing only a marginal difference between measures 1 and 3 would invalidate our experi-
mental hypothesis. Observing the combined run-times of measure 2 and 3 being longer than
measure 1 would invalidate our second hypothesis.

To help explaining our results we also track the size of the grammar (number of produc-
tion rules), the number of harmless productions found with each precision (rules filtered),
and the number of tokens explored to identify the first ambiguity (length).

We have used AMBER version 30/03/20065 and CFG ANALYZER version 03/12/20076. To
experiment with the NU TEST algorithm and our extensions we have implemented a prototype
in the Java programming language. We measured CPU user time with the GNU time utility
and measured memory usage by polling a process with pid every 0.1 seconds.

5downloaded from http://accent.compilertools.net/
6downloaded from http://www2.tcs.ifi.lmu.de/~mlange/cfganalyzer/

http://accent.compilertools.net/
http://www2.tcs.ifi.lmu.de/~mlange/cfganalyzer/


40 Chapter 3. Faster Ambiguity Detection by Grammar Filtering

3.3.2 Experimental Results

Results of Filtering Prototype All measurement results of running our filtering prototype
on the benchmark grammars are shown in Table 3.1. As expected, every precision filtered
a higher or equal number of rules than the one before. Columns 3 to 6 show how much
production rules could be filtered with each of the implemented precisions. We see that LR(0)
on average filtered respectively 76%, 12%, 19% and 16% of the productions of the SQL,
Pascal, C and Java grammars. SLR(1) filtered the same or slightly more, with the largest
improvement for the Java grammars: 19%. Remarkably, LALR(1) never found more harmless
rules in the ambiguous grammars than SLR(1)7. LR(1) improved over SLR(1) for 12 out of 20
ambiguous grammars. On average it filtered 78% for SQL, a remarkable 64% for Pascal, and
21% for Java.

Columns 7 to 10 show the run-time of the filtering tool, and columns 11 to 14 show its
memory usage. We see that the LR(0) and SLR(1) precisions always ran under 9 seconds and
used at most 168Mb of memory. SLR(1) was slightly more efficient than LR(0), which can
be explained by the fact that an SLR(1) position graph is generally more deterministic than
its LR(0) counterpart. They both have the same number of nodes and edges, but the SLR(1)
reductions are constrained by lookahead, which results in a smaller pair graph.

An LALR(1) position automaton is generally several factors larger than an LR(0) one,
which shows itself in longer run-time and more memory usage. The memory usage of the
LR(1) precision became problematic for the C and Java grammars. For all variations of both
grammars it needed more than 4Gb. Therefore we ran it on the C and Java grammars that we
filtered first with the SLR(1) precision, and then it only needed around 3Gb. Here we see that
filtering with a lesser precision first can be beneficial for the performance of more expensive
filters.

On average the tool uses its memory almost completely for storing the pair graph, which it
usually builds in two thirds of its run-time. The other one third is used to filter the graph. If
we project this onto the run-times of Schmitz’ C tool [Sch10], it should filter all our grammars
with LR(0) or SLR(1) in under 4 seconds, if extended.

7In Section 3.5 we repeat these measurements with an improved implementation, which does show an advantage
of LALR(1) over SLR(1).



3.3. Experimental Validation 41

R
ul

es
fil

te
re

d
T

im
e

M
em

or
y

(M
b)

G
ra

m
m

ar
R

ul
es

L
R

0
SL

R
1

L
A

L
R

1
L

R
1

L
R

0
SL

R
1

L
A

L
R

1
L

R
1

L
R

0
SL

R
1

L
A

L
R

1
L

R
1

S
Q

L
.0

79
79

79
79

79
0.

4s
0.

4s
1.

0s
3.

1s
16

16
49

54
S

Q
L

.1
79

65
65

65
65

0.
5s

0.
4s

1.
4s

3.
9s

17
16

51
56

S
Q

L
.2

80
47

47
47

47
1.

1s
1.

1s
1.

9s
6.

0s
34

32
58

74
S

Q
L

.3
80

54
54

54
54

0.
6s

0.
5s

1.
3s

3.
9s

18
17

50
56

S
Q

L
.4

80
71

71
71

74
0.

4s
0.

4s
1.

1s
3.

1s
17

17
51

45
S

Q
L

.5
80

68
68

68
72

0.
5s

0.
4s

1.
2s

3.
9s

17
16

53
54

Pa
sc

al
.0

17
6

21
30

17
6

17
6

2.
4s

2.
2s

2.
4s

15
.1

s
50

42
16

0
18

1
Pa

sc
al

.1
17

7
21

25
25

10
4

2.
4s

2.
4s

5.
9s

40
.3

s
48

49
16

2
29

7
Pa

sc
al

.2
17

7
21

25
25

10
4

2.
3s

2.
4s

5.
8s

46
.9

s
52

51
15

9
32

5
Pa

sc
al

.3
17

7
21

30
30

14
4

2.
5s

2.
2s

5.
0s

20
.7

s
52

47
16

0
24

8
Pa

sc
al

.4
17

7
20

24
24

10
3

2.
4s

2.
3s

5.
9s

42
.5

s
50

50
16

3
29

4
Pa

sc
al

.5
17

7
21

25
25

10
3

2.
4s

2.
3s

5.
8s

32
.8

s
52

49
15

9
32

6
C

.0
21

2
41

44
21

2
21

2
4.

2s
3.

9s
15

.8
s

9m
40

s
88

83
42

7
13

97
C

.1
21

3
41

44
44

44
4.

3s
3.

7s
2m

03
s

1h
45

m
10

0
80

61
5

28
98

C
.2

21
3

41
44

44
44

4.
3s

3.
9s

1m
45

s
41

m
58

s
10

1
80

61
1

29
40

C
.3

21
3

40
43

43
43

4.
2s

4.
1s

1m
59

s
42

m
57

s
87

81
61

5
28

85
C

.4
21

3
41

44
44

44
4.

2s
3.

9s
2m

06
s

1h
30

m
87

80
60

7
28

94
C

.5
21

3
40

43
43

43
4.

3s
3.

9s
1m

55
s

47
m

15
s

91
80

63
1

31
07

Ja
va

.0
34

9
56

70
34

9
34

9
8.

2s
6.

9s
54

.0
s

37
m

47
s

15
3

11
6

55
6

13
62

Ja
va

.1
35

0
56

70
70

74
8.

2s
6.

9s
10

m
24

s
3h

55
m

14
4

11
8

10
88

29
08

Ja
va

.2
35

0
53

66
66

70
8.

8s
7.

8s
29

m
57

s
8h

48
m

16
8

12
4

14
27

32
09

Ja
va

.3
35

0
56

70
70

74
8.

3s
6.

9s
10

m
38

s
3h

27
m

14
6

12
0

11
23

30
14

Ja
va

.4
35

0
55

69
69

73
8.

2s
6.

6s
10

m
57

s
4h

11
m

15
6

11
9

11
17

30
73

Ja
va

.5
35

0
53

66
66

70
8.

3s
6.

9s
10

m
40

s
8h

01
m

15
3

12
1

11
17

31
26

Ta
bl

e
3.

1:
R

es
ul

ts
of

Fi
lte

ri
ng

(L
R

1
w

as
ru

n
on

C
an

d
Ja

va
af

te
r

fil
te

ri
ng

fir
st

w
ith

SL
R

1,
du

e
to

ex
ce

ss
iv

e
m

em
or

y
us

ag
e)

.
T

he
se

ar
e

th
e

re
su

lt
s

as
pu

bl
is

he
d

in
[B

V
10

].
Fo

r
ne

w
er

re
su

lt
s

m
ea

su
re

d
w

it
h

an
im

pr
ov

ed
ve

rs
io

n
of

th
e

A
M

B
ID

E
X

T
E

R
to

ol
,s

ee
Ta

bl
e

3.
4.



42 Chapter 3. Faster Ambiguity Detection by Grammar Filtering

Time
Grammar Unfiltered LR0 SLR1 LR1 Length
SQL.1 28m26s 0.1s 0.1s - 15
SQL.2 0.0s 0.0s 0.0s - 7
SQL.3 0.0s 0.0s 0.0s - 6
SQL.4 0.0s 0.0s 0.0s 0.0s 9
SQL.5 1.3s 0.0s 0.0s 0.0s 11
Pascal.1 0.3s 0.1s 0.1s 0.0s 9
Pascal.2 0.0s 0.0s 0.0s 0.0s 7
Pascal.3 31.8s 2.9s 1.9s 0.0s 11
Pascal.4 0.0s 0.0s 0.0s 0.0s 8
Pascal.5 0.0s 0.0s 0.0s 0.0s 8
C.1 42.1s 0.1s 0.0s - 5
C.2 >4.50h1 >18.8h >15.3h - >11
C.3 0.1s 0.0s 0.0s - 3
C.4 42.0s 0.5s 0.4s - 5
C.5 19m09s 0.7s 0.5s - 6
Java.1 >25.0h2 12.2h 3.9h 3.7h 13
Java.2 0.0s 0.0s 0.0s 0.0s 1
Java.3 1h25m 5m35s 2m28s 2m21s 11
Java.4 17.0s 2.9s 1.8s 1.7s 9
Java.5 0.1s 0.0s 0.0s 0.0s 7
1only reached string length of 7.
2only reached string length of 12.

Table 3.2: Running AMBER on filtered and non-filtered grammars.

Results of AMBER Table 3.2 shows the effects of grammar filtering on the behavior of
AMBER. Columns 2 to 5 show the time AMBER needed to find the ambiguity in the original
grammars and the ones filtered with various precisions. There is no column for the LALR(1)
precision, because it always filtered the same number of rules as SLR(1). For LR(1) we only
mention the cases in which it filtered more than SLR(1). AMBER’s memory usage was always
less than 1 Mb of memory.

In all cases we see a decrease in run-time if more rules were filtered, sometimes quite
drastically. For instance the unfiltered Java.1 grammar was impossible to check in under 25
hours, while filtered with SLR(1) or LR(1) it only needed less than 4 hours. The C.2 grammar
still remains uncheckable within 15 hours, but the LR(0) and SLR(1) filtering extended the
maximum string length possible to search within this time from 7 to 11. The decreases in
run-time per string length for this grammar are shown in Figure 3.3.

This confirms our first hypothesis. To test our second hypothesis, we also need to take
the run-time of our filtering tool into account. Figure 3.4 shows the combined computation
times of filtering and running AMBER, compared to only running AMBER on the unfiltered
grammars. Not all SQL grammars are mentioned because both filtering and AMBER took
under 1 second in all cases. Also, timings of filtering with LR(1) are not mentioned because
they are obviously too high and would reduce the readability of the graph. Apart from that, we
see that the short filtering time of LR(0) and SLR(1) do not cancel out the decrease in run-time
for grammars SQL.1, SQL.5, Pascal.3, C.1, C.4, C.5, Java.3 and Java.4. Add to that the effects
on grammars C.2 and Java.1 and we get a significant improvement for 10 out of 20 ambiguous



3.3. Experimental Validation 43

10−1

100

101

102

103

104

105

0 2 4 6 8 10 12 14

→
T

im
e

(s
)

→ String length

AMBER, unfiltered

3

3

3

3

3
3

AMBER, LR0

+

+

+

+

+

+
+

AMBER, SLR1

2

2

2

2

2

2
2

AMBER, LR1

×

×

×

×

×

×

×
CFG ANALYZER, unfiltered

3

3

3

3
3

3
3

3

CFG ANALYZER, LR0

+

+
+

+
+

+
+

+
CFG ANALYZER, SLR1

2

2

2

2
2

2
2

2

CFG ANALYZER, LR1

×

×
×

×
×

× ×

×

10−1

100

101

102

103

104

105

0 2 4 6 8 10 12 14

→
T

im
e

(s
)

→ String length

AMBER, unfiltered

3

3

3

3

3

3

AMBER, LR0

+

+

+

+

+

+

+
AMBER, SLR1

2

2

2

2

2

2

2

CFG ANALYZER, unfiltered

3

3

3

3

3

3

3

3

3

3 3

3

CFG ANALYZER, LR0

+

+
+

+
+

+

+

+
+

+ +

+
CFG ANALYZER, SLR1

2

2

2

2
2

2

2

2

2

2 2

2

Figure 3.3: Run-time of AMBER and CFG ANALYZER on grammars Java.1 (syntax overload-
ing) above and C.2 (dangling-else) below.



44 Chapter 3. Faster Ambiguity Detection by Grammar Filtering

100

101

102

103

104

S
Q

L
.1

S
Q

L
.5

Pascal.1

Pascal.2

Pascal.3

Pascal.4

Pascal.5

C
.1

C
.2

C
.3

C
.4

C
.5

Java.1

Java.2

Java.3

Java.4

Java.5

→
T

im
e

(s
)

Unfiltered
LR0
SLR1

Figure 3.4: Added run-time of grammar filtering and ambiguity checking with AMBER.

grammars. For the other 10 grammars we don’t see improvements because AMBER already
took less time than it took to filter them.

Column 6 shows the string lengths that AMBER had to search to find the ambiguity in each
grammar. All filtered grammars required the same string length as their original versions, as
could be expected from our grammar reconstruction algorithm.

Results of CFG ANALYZER Table 3.3 shows the same results as Table 3.2 but then for
CFG ANALYZER. Again we see a decrease in run-time in almost all cases, as the number of
filtered rules increases, but less significant than in the case of AMBER. We also see that CFG

ANALYZER is much faster than AMBER. It was even able to check the SLR(1) filtered C.2
grammar in 1 hour and 7 minutes. CFG ANALYZER’s memory usage always stayed under
70Mb, except for C.2: it used 1.21Gb for the unfiltered grammar, 1.31Gb for the LR(0) filtered
one, and 742Mb in the SLR(1) case.

We see that CFG ANALYZER always needed smaller lengths than AMBER. This is because
CFG ANALYZER searches all parse trees of all non-terminals simultaneously, whereas AMBER

only checks those of the start symbol.
Figure 3.5 shows the combined run-times of our filtering tool and CFG ANALYZER. Here

we see only significant improvements for grammars SQL.1, SQL.5, C.2, Java.1 and Java.3. In
all other cases CFG ANALYZER took less time to find the first ambiguity than it took our tool
to filter a grammar.



3.3. Experimental Validation 45

Time
Grammar Unfiltered LR0 SLR1 LR1 Length
SQL.1 17.6s 1.8s 1.8s - 11
SQL.2 0.4s 0.1s 0.1s - 3
SQL.3 0.4s 0.0s 0.1s - 3
SQL.4 1.4s 0.0s 0.0s 0.0s 5
SQL.5 14.4s 0.8s 0.8s 0.4s 11
Pascal.1 1.1s 0.9s 0.9s 0.3s 3
Pascal.2 0.5s 0.4s 0.4s 0.1s 2
Pascal.3 9.6s 8.1s 7.5s 1.2s 7
Pascal.4 1.1s 0.9s 0.9s 0.3s 3
Pascal.5 3.5s 0.9s 0.9s 0.3s 3
C.1 1.7s 1.3s 1.3s - 3
C.2 3.00h 1.77h 1.11h - 11
C.3 0.7s 0.5s 0.5s - 2
C.4 1.7s 1.3s 1.3s - 3
C.5 6.6s 5.1s 4.9s - 5
Java.1 48.9s 39.2s 32.5s 32.4s 7
Java.2 0.5s 0.4s 0.4s 0.4s 1
Java.3 47.2s 40.0s 35.2s 35.1s 7
Java.4 8.4s 6.7s 6.5s 6.5s 4
Java.5 4.3s 3.4s 3.3s 3.3s 3

Table 3.3: Running CFG ANALYZER on filtered and non-filtered grammars.

100

101

102

103

104
S

Q
L

.1

S
Q

L
.5

Pascal.1

Pascal.2

Pascal.3

Pascal.4

Pascal.5

C
.1

C
.2

C
.3

C
.4

C
.5

Java.1

Java.2

Java.3

Java.4

Java.5

→
T

im
e

(s
)

Unfiltered
LR0
SLR1

Figure 3.5: Added run-time of grammar filtering and ambiguity checking with CFG ANA-
LYZER.



46 Chapter 3. Faster Ambiguity Detection by Grammar Filtering

3.3.3 Analysis and Conclusions

We saw that filtering more rules resulted in shorter run-times for both AMBER and CFG

ANALYZER. Especially AMBER profited enormously for certain grammars. The reductions in
run-time of CFG ANALYZER were smaller but still significant. This largely confirms our first
hypothesis.

We conclude that the SLR(1) precision was the most beneficial for reducing the run-time
of AMBER and CFG ANALYZER, while requiring only a small filtering overhead. In some
cases LR(1) provided slightly larger reductions, but these did not match up against its own
long run-time. Filtering with SLR(1) resulted in significant decreases in run-time for AMBER

on 10 of the 20 ambiguous grammars, and for CFG ANALYZER on 5 grammars. In all other
cases the filtering did not contribute to an overall reduction, because it took longer than the
time the tools initially needed to check the unfiltered grammars. Nevertheless, this was never
more than 9 seconds. Therefore our second hypothesis is confirmed for the situations that
really matter.

3.3.4 Threats to validity

Internally a bug in our implementation would invalidate our conclusions. This is unlikely
since we tested and compared our results with other independently constructed tools (NU
TEST [Sch10], CFG ANALYZER and AMBER) for a large number of grammars and we obtained
the same results. Our source code is available for your inspection at http://homepages.
cwi.nl/~basten/ambiguity/. Also note that our Java version is slower than Schmitz’
original implementation in C. An optimized version would eliminate some of the overhead we
observed while analyzing small grammars8.

As for external validity, it is entirely possible that our method does not lead to significant
decreases in run-time for any specific grammar that we did not include in our experiment.
However, we did select representative grammars and the ambiguities we seeded are typical
extensions or try-outs made by language engineers.

3.4 Conclusions

We proposed to adapt the approximative NU TEST to a grammar filtering tool and to combine
that with the exhaustive AMBER and CFG ANALYZER ambiguity detection methods. Using
our grammar filters we can conservatively identify production rules that do not contribute to
the ambiguity of a grammar. Filtering these productions from the grammar lead to significant
reductions in run-time, sometimes orders of magnitude, for running AMBER and CFG ANA-
LYZER. The result is that we could produce precise ambiguity reports in a much shorter time
for real world grammars.

8We are thankful to Arnold Lankamp for his help fixing efficiency issues in our Java version.

http://homepages.cwi.nl/~basten/ambiguity/
http://homepages.cwi.nl/~basten/ambiguity/


3.5. Appendix: Updated Measurement Results 47

3.5 Appendix: Updated Measurement Results

The results show in Table 3.1 were measured with the first prototype implementation of our
grammar filtering technique. Unfortunately, this first prototype turned out to be too inefficient
for running the character-level experiments of Chapter 5. We therefore improved our tool for
this type of grammars, which also had a positive effect on checking the token-based grammars
of this chapter.

3.5.1 Improved Implementation

In our first implementation we represented all item pairs and pair transitions of the pair graph
in memory, and performed the filtering and pruning on these data structures. In the next design
we chose to filter the NFA instead, and rebuild the pair graph after each iteration. This had the
advantage that we did not have to store all pair graph transitions, which consumed the largest
part of the memory. Another advantage was that the filtering and pruning of the NFA required
much less time. This enabled us to implement a more thourough NFA pruning algorithm,
which consists of a full reachability analysis of the NFA. For a complete discription of the
latest design and implementation details see Chapter 6.

Because of this new design, our new implementation became efficient enough for filtering
character-level grammars. However, it also performed much better on the token-based gram-
mars checked in this chapter, both in terms of performance and filtering accuracy. To show
these improvements we repeated the measurements of Table 3.1 with our latest implementation
of AMBIDEXTER. The updated results are shown in Table 3.4. We see various things:

3.5.2 Analysis

Harmless Production Rules First, the better NFA pruning leads to the detection of more
harmless production rules. For almost all grammars, LR(0) found more harmless rules than
before. SLR(1) and LALR(1) also improved substantially on all ambiguous Pascal grammars.
On the Java grammars, SLR(1) found on average 30 more harmless rules. In only four cases,
LR(1) finds more rules than LALR(1). However, the increases of 66 and 68 for respectively
C.1 and C.5 are quite remarkable.

Computation Time The new timing figures for LR(0) and SLR(1) show no substantial
differences. Checking with LALR(1) on the other hand, has become much faster. Its average
running time on the C grammars decreased from around two minutes to twelve seconds. For
LR(1) we see similar improvements. It can check all the Java grammars in under nine minutes,
where our previous implementation required at least three and a half hours.

Memory Usage In the figures of the memory usage of the precisions we only see big
differences for LR(1). The memory required for the C and Java grammars looks higher, but
this is because we did not need to pre-filter these grammars first. The new implementation
was able to test them all within 5Gb.



48 Chapter 3. Faster Ambiguity Detection by Grammar Filtering

R
ul

es
fil

te
re

d
T

im
e

M
em

or
y

(M
b)

G
ra

m
m

ar
R

ul
es

L
R

0
SL

R
1

L
A

L
R

1
L

R
1

L
R

0
SL

R
1

L
A

L
R

1
L

R
1

L
R

0
SL

R
1

L
A

L
R

1
L

R
1

S
Q

L
.0

79
79

79
79

79
0.

6s
0.

5s
0.

8s
1.

5s
22

21
27

59
S

Q
L

.1
79

65
65

65
65

0.
6s

0.
7s

1.
0s

1.
8s

21
31

47
64

S
Q

L
.2

80
47

47
47

47
0.

9s
0.

9s
1.

4s
3.

6s
33

45
61

10
0

S
Q

L
.3

80
68

68
68

68
0.

6s
0.

6s
0.

9s
1.

7s
36

32
44

65
S

Q
L

.4
80

71
71

71
74

0.
7s

0.
7s

0.
9s

1.
7s

38
39

34
58

S
Q

L
.5

80
68

68
68

72
0.

6s
0.

6s
0.

8s
1.

6s
35

33
27

60
Pa

sc
al

.0
17

6
30

17
6

17
6

17
6

3.
4s

2.
0s

1.
9s

3.
7s

90
66

67
15

0
Pa

sc
al

.1
17

7
30

53
10

4
10

4
3.

2s
3.

4s
4.

5s
8.

4s
88

96
10

9
27

0
Pa

sc
al

.2
17

7
30

53
10

4
10

4
3.

3s
3.

1s
4.

3s
9.

3s
89

90
10

7
29

7
Pa

sc
al

.3
17

7
30

14
4

14
4

14
4

3.
3s

2.
4s

3.
1s

5.
6s

88
80

85
17

0
Pa

sc
al

.4
17

7
29

52
10

3
10

3
3.

3s
3.

4s
4.

5s
9.

1s
86

93
11

3
28

9
Pa

sc
al

.5
17

7
30

53
10

3
10

3
3.

4s
3.

6s
4.

0s
8.

8s
90

94
11

0
28

6
C

.0
21

2
44

44
21

2
21

2
4.

4s
4.

3s
5.

2s
1m

3s
12

8
11

7
16

2
14

88
C

.1
21

3
44

44
44

44
4.

1s
4.

0s
12

.8
s

4m
41

s
11

7
11

8
52

7
42

42
C

.2
21

3
44

44
11

4
18

0
4.

3s
4.

2s
10

.0
s

3m
02

s
12

7
11

5
36

2
33

39
C

.3
21

3
43

43
43

43
4.

0s
3.

8s
12

.1
s

4m
15

s
11

9
11

6
49

6
41

50
C

.4
21

3
44

44
44

44
4.

1s
4.

0s
12

.2
s

4m
28

s
12

5
11

9
47

4
44

11
C

.5
21

3
43

43
10

0
16

8
4.

1s
4.

2s
10

.6
s

3m
33

s
13

0
11

7
35

3
31

98
Ja

va
.0

34
9

86
10

1
34

9
34

9
6.

4s
6.

2s
7.

6s
1m

13
s

20
7

19
4

29
4

22
91

Ja
va

.1
35

0
86

10
1

10
1

10
1

6.
7s

6.
3s

28
.1

s
7m

03
s

20
4

19
9

10
08

47
35

Ja
va

.2
35

0
83

96
96

96
6.

8s
6.

5s
39

.6
s

8m
45

s
23

9
20

1
12

98
51

05
Ja

va
.3

35
0

86
10

1
10

1
10

1
6.

4s
6.

7s
27

.3
s

7m
18

s
20

6
20

3
11

54
47

04
Ja

va
.4

35
0

83
98

98
98

7.
2s

6.
0s

29
.3

s
7m

27
s

21
2

19
1

94
7

47
02

Ja
va

.5
35

0
82

93
93

93
6.

8s
5.

8s
30

.4
s

7m
10

s
18

7
19

9
10

01
46

85

Ta
bl

e
3.

4:
U

pd
at

ed
re

su
lts

of
gr

am
m

ar
fil

te
ri

ng
ex

pe
ri

m
en

ts
sh

ow
n

in
Ta

bl
e

3.
1,

m
ea

su
re

d
w

ith
op

tim
iz

ed
ve

rs
io

n
of

th
e

A
M

B
ID

E
X

T
E

R

to
ol

.
Im

pr
ov

em
en

ts
in

nu
m

be
r

of
ha

rm
le

ss
pr

od
uc

ti
on

ru
le

s
fo

un
d

ar
e

hi
gh

li
gh

te
d

in
bo

ld
fa

ce
.



3.5. Appendix: Updated Measurement Results 49

Time AMBER

Grammar Previous best SLR1 LALR1 LR1 Length
C.2 >15.3h1 (SLR1) - 19.1h 8.4s 13
Java.1 3.7h (LR1) 3.1h - - 13
Java.3 2m21s (LR1) 1m54s - - 11
1only reached string length of 11.

Time CFG ANALYZER

Grammar Previous best SLR1 LAR1 LR1 Length
C.2 1.11h (SLR1) - 31m43s 5.4s 11
Java.1 32.4s (LR1) 30.4s - - 7
Java.3 35.1s (LR1) 28.9s - - 7

Table 3.5: Updated results of Tables 3.2 and 3.3: running AMBER and CFG ANALYZER on a
selection of grammars, before and after filtering with the improved version of AMBIDEXTER.
Only measurements relevant due to an increase of detected harmless productions are shown.

Concluding, we see that the new figures show the anticipated superiority of LALR(1)
over SLR(1). On four Pascal grammars and two C grammars it found around twice as much
harmless production rules. Furthermore, LALR(1) equaled LR(1) on all but four grammars,
while requiring much less time and memory. On the bigger C and Java grammars, LALR(1)
finished in 10 to 40 seconds, while LR(1) required between 3 to 9 minutes.

3.5.3 Effects on Sentence Generation Times

If we extrapolate our new filtering results to the sentence generation experiments of this
chapter, the number of grammars for which AMBER and CFG ANALYZER will benefit from
filtering do not change. The reason for this is that for the majority of grammars, both tools
were already very fast either before or after filtering. The only results that might change
significantly are the sentence generation times for grammars C.2, Java.1 and Java.3.

Table 3.5 show the results of checking the new filtered versions of these three grammars
with AMBER and CFG ANALYZER. We see that the newly filtered productions indeed result
in even faster sentence generation times. Both tools perform a little better on the versions
of Java.1 and Java.3 filtered with SLR1. However, for the C.2 grammar, which is the most
complex grammar in our set, we see spectacular speedups. Both AMBER and CFG ANALYZER

are now able to find the ambiguity in the LR1 filtered grammar in under 10 seconds, were they
first took over 15 hours, and 1.11 hours respectively. Therefore, the new implementation of our
grammar filter shows that both LALR(1) and LR(1) are now viable approximation precisions
as well.





Chapter 4

Tracking Down the Origins of Ambiguity
in Context-Free Grammars

“All difficult things have their origin in that which is easy, . . . ”

Lao Tzu

This chapter contains the theoretical foundation of the grammar filtering technique

described in the previous chapter. We show how to extend both the Regular Unambi-

guity (RU) Test and the more accurate Noncanonical Unambiguity (NU) Test to find

harmless production rules. With the RU Test our approach is able to find production

rules that can only be used to derive unambiguous strings. With the NU Test it can also

find productions that can only be used to derive unambiguous substrings of ambiguous

strings. The approach is presented in a formal way and is proven correct.

4.1 Introduction

Context-free grammars (CFGs) are widely used in various fields, such as programming
language development, natural language processing, and bioinformatics. They are suitable
for the definition of a wide range of languages, but their possible ambiguity can hinder their
use. Designed ambiguities are not uncommon, but accidentally introduced ambiguities are
unwanted. Ambiguities are very hard to detect by hand, so automated ambiguity checkers are
welcome tools.

This chapter is a revised version of a paper published in the proceedings of the Seventh International Colloquium
on Theoretical Aspects of Computing (ICTAC 2010) [Bas10]. Compared to the published article, this chapter includes
all proofs. Furthermore, Sections 4.4.2, 4.5.2 and 4.5.3 are improved.

51



52 Chapter 4. Tracking Down the Origins of Ambiguity in Context-Free Grammars

Despite the fact that the CFG ambiguity problem is undecidable in general [Can62, Flo62,
CS63], various detection schemes exist. They can roughly be divided into two categories:
exhaustive methods and approximative ones. Methods in the first category exhaustively search
the usually infinite set of derivations of a grammar, while the latter ones apply approximation
to limit their search space. This enables them to always terminate, but at the expense of
potentially incorrect reports. Exhaustive methods do produce precise reports, but only if they
find ambiguity before they are halted. The latter is essential since otherwise the searching
could potentially run forever.

Because of the undecidability it is impossible to always terminate with a correct and
detailed report. The challenge is to develop a method that gives the most precise answer
in the time available. In this chapter we propose to combine exhaustive and approximative
methods as a step towards this goal. We show how to extend the Regular Unambiguity Test
and Noncanonical Unambiguity Test [Sch07a, Sch07b] of Schmitz to improve the precision
of their approximation and that of their ambiguity reports. The extension enables the detection
of harmless production rules, which are rules that do not contribute to the ambiguity of a
grammar. These are already helpful reports for the grammar developer, but can also be used to
narrow the search space of other detection methods. In Chapter 3 we witnessed significant
reductions in the run-time of exhaustive methods due to our grammar filtering.

4.1.1 Related Work

The original Noncanonical Unambiguity Test by Schmitz is an approximative test for the
unambiguity of a grammar. The approximation it applies is always conservative, so it can only
find a grammar to be unambiguous or potentially ambiguous. Its answers always concern the
grammar as a whole, but the reports of a prototype implementation [Sch10] by the author also
contain clues about the production rules involved in the potential ambiguity. However, these
are very abstract and hard to understand. The extensions that we present do result in precise
reports, while remaining conservative.

Another approximative ambiguity detection scheme is the “Ambiguity Checking with
Language Approximation” framework [BGM10] by Brabrand, Giegerich and Møller. The
framework makes use of a characterization of ambiguity into horizontal and vertical ambiguity
— which is equal to [AL90] — to test whether a certain production rule can derive ambiguous
strings. The difference with our approach is that we test whether a production rule is vital for
the existence of parse trees of ambiguous strings.

4.1.2 Overview

We start with background information about grammars and languages in Section 4.2. Then we
repeat the definition of the Regular Unambiguity (RU) Test in Section 4.3. In Section 4.4 we
explain how the RU Test can be extended to identify sets of parse trees of unambiguous strings.
From these parse trees we can identify harmless production rules as explained in Section 4.5 .
Section 4.6 explains the Noncanonical Unambiguity (NU) Test, an improvement over the RU
Test, and also shows how it improves the effect of our parse tree and production rule filtering.



4.2. Preliminaries 53

In Section 4.7 we describe how our approach can be used iteratively to increase its accuracy.
Finally, Section 4.8 contains the conclusion.

4.2 Preliminaries

This section gives a quick overview of the theory of grammars and languages, and introduces
the notational convention used throughout this document. For more background information
we refer to [HU79, SSS88].

4.2.1 Context-Free Grammars

A context-free grammar G is a 4-tuple (N,T, P, S) consisting of:

• N , a finite set of nonterminals,

• T , a finite set of terminals (the alphabet),

• P , a finite subset of N × (N ∪ T )∗, called the production rules,

• S, the start symbol, an element from N .

We use V to denote the set N∪T , and V ′ for V ∪{ε}. The following characters are used to
represent different symbols and strings: a, b, c, . . . represent terminals, A,B,C, . . . represent
nonterminals, X , Y , Z represent either nonterminals or terminals, α, β, γ, . . . represent strings
in V ∗, u, v, w, . . . represent strings in T ∗, ε represents the empty string.

A production (A,α) in P is written as A→α. We use the function pid :P →N to relate
each production to a unique identifier. An item [Knu65] indicates a position in the right hand
side of a production using a dot. Items are written like A→α•β. We use I to denote the set of
items of a grammar.

The relation =⇒ denotes direct derivation, or derivation in one step. Given the string
αBγ and a production rule B → β, we can write αBγ =⇒ αβγ (read αBγ directly derives
αβγ). The symbol =⇒∗ means “derives in zero or more steps”. A sequence of derivation
steps is simply called a derivation. Strings in V ∗ are called sentential forms. We call the set of
sentential forms that can be derived from S of a grammar G, the sentential language of G,
denoted S(G). A sentential form in T ∗ is called a sentence. The set of all sentences that can
be derived from S of a grammar G is called the language of G, denoted L(G).

We assume every nonterminal A is reachable from S, that is ∃αAβ ∈ S(G). We also
assume every nonterminal is productive, meaning ∃u : A =⇒∗ u.

The parse tree of a sentential form α describes how α is derived from S, but disregards
the order of the derivation steps. To represent parse trees we use bracketed strings (See
Section 4.2.3). A grammar G is ambiguous iff there is at least one string in L(G) for which
multiple parse trees exist.



54 Chapter 4. Tracking Down the Origins of Ambiguity in Context-Free Grammars

4.2.2 Bracketed Grammars

From a grammar G = (N,T, P, S) a bracketed grammar Gb can be constructed, by adding
unique terminals to the beginning and end of every production rule [GH67]. The bracketed
grammar Gb is defined as the 4-tuple (N,Tb, Pb, S), where:

• Tb = T ∪ T〈 ∪ T〉,

• T〈 = { 〈i | ∃p ∈ P : i = pid(p)},

• T〉 = { 〉i | ∃p ∈ P : i = pid(p)},

• Pb = {A → 〈iα〉i |A → α ∈ P, i = pid(A → α)}.

Vb is defined as Tb ∪N , and V ′
b as Vb ∪{ε}. We use ab, bb, . . . and Xb, Yb, Zb to represent

symbols in respectively Tb and Vb. Similarly, ub, vb, . . . and αb, βb, . . . represent strings in
respectively T ∗

b and V ∗
b , The relation =⇒b denotes direct derivation using productions in Pb.

The homomorphism h from V ∗
b to V ∗ maps each string in S(Gb) to S(G). It is defined by

h(〈i) = ε, h(〉i) = ε, and h(X) = X .

4.2.3 Parse Trees

L(Gb) describes exactly all parse trees of all strings in L(G). S(Gb) describes exactly all
parse trees of all strings in S(G). We divide it into two disjoint sets:

Definition 1. The set of parse trees of ambiguous strings of G is Pa(G) = {αb | αb ∈
S(Gb), ∃βb ∈ S(Gb) : αb 6= βb, h(αb) = h(βb)}. The set of parse trees of unambiguous

strings of G is Pu(G) = S(Gb) \ P
a(G).

Example 4.1. Below is an example grammar (4.1) together with its bracketed ver-
sion (4.2). The string aaa has two parse trees, 〈1〈2〈2〈3a〉3〈3a〉3〉2〈3a〉3〉2〉1 and
〈1〈2〈3a〉3〈2〈3a〉3〈3a〉3〉2〉2〉1, and is therefore ambiguous.

1 : S → A, 2 : A → AA, 3 : A → a (4.1)

1 : S → 〈1A〉1, 2 : A → 〈2AA〉2, 3 : A → 〈3a〉3 (4.2)

4.2.4 Ambiguous Core

We call the set of the smallest possible ambiguous sentential forms of G the ambiguous core of
G. These are the ambiguous sentential forms that cannot be derived from other sentential forms
that are already ambiguous. Their parse trees are the smallest indicators of the ambiguities in
G.

Definition 2. The set of parse trees of the ambiguous core of a grammar G is Ca(G) =
{αb | αb ∈ Pa(G), ¬∃βb ∈ Pa(G) : βb =⇒b αb}

From Ca(G) we can obtain Pa(G) by adding all sentential forms reachable with =⇒b.
And since Ca(G) ⊆ Pa(G) we get the following Lemma:



4.2. Preliminaries 55

Lemma 1 (ambiguous core). A grammar G is ambiguous iff Ca(G) is non-empty.

Similar to Pu(G), we define the complement of Ca(G) as Cu(G) = S(Gb) \ C
a(G), for

which holds that Pu(G) ⊆ Cu(G).

Example 4.2. The two parse trees 〈1〈2〈2AA〉2A〉2〉1 and 〈1〈2A〈2AA〉2〉2〉1, of the ambiguous
sentential form AAA, are in the ambiguous core of Grammar (4.1).

4.2.5 Positions

A position in a sentential form is an element in V ∗
b × V ∗

b . The position (αb, βb) is written as
αb

•βb. We use pos(Gb) to denote the set of all positions in strings of S(Gb). It is defined as
{αb

•βb | αbβb ∈ S(Gb)}.
Every position in pos(Gb) is a position in a parse tree, and corresponds to an item of G.

The item of a position can be identified by the closest enclosing 〈i and 〉i pair around the dot,
considering balancing. For positions with the dot at the beginning or the end we introduce two
special items •S and S• .

We use the function item to map a position to its item. It is defined by item(γb•δb) =
A → α′

•β′ iff γb•δb = ηb 〈i αb
•βb 〉i θb, A → 〈iα

′β′〉i ∈ Pb, α′ =⇒∗
b αb and β′ =⇒∗

b βb,
item(•αb) = •S, and item(αb

•) = S• . Another function items returns the set of items used
at all positions in a parse tree. It is defined as items(αb) = {A → α•β | ∃γb•δb : γbδb =
αb, A → α•β = item(γb•δb)}.

Example 4.3. The following shows the parse tree representations of the positions
〈1〈2•〈3a〉3〈3a〉3〉2〉1 and 〈1〈2〈3a〉3•〈3a〉3〉2〉1. We see that the first position is at item
A → •AA and the second is at A → A•A.

S

A

A

a

• A

a

S

A

A

a

A •

a

The function proditems maps a production rule to the set of all its items. It is defined as
proditems(A → α) = {A → β•γ | βγ = α}. If a production rule is used to construct a parse
tree, then all its items occur at one or more positions in the tree.

Lemma 2 (items in parse trees). ∀αb〈iβb〉iγb ∈ S(Gb) : ∃A → δ ∈ P : pid(A → δ) = i,
proditems(A→δ) ⊆ items(αb〈iβb〉iγb).

4.2.6 Automata

An automaton A is a 5-tuple (Q,Σ, R,Qs, Qf ) where Q is the set of states, Σ is the input
alphabet, R in Q× Σ×Q is the set of rules or transitions, Qs ⊆ Q is the set of start states,
and Qf ⊆ Q is the set of final states. A transition (q0, a, q1) is written as q0

a
7−→ q1. The



56 Chapter 4. Tracking Down the Origins of Ambiguity in Context-Free Grammars

language of an automaton is the set of strings read on all paths from a start state to an end
state. Formally, L(A) = {α | ∃qs ∈ Qs, qf ∈ Qf : qs

α
7−→∗ qf}.

4.3 Regular Unambiguity Test

This section introduces the Regular Unambiguity (RU) Test [Sch07b] by Schmitz. The RU
Test is an approximative test for the existence of two parse trees for the same string, allowing
only false positives.

4.3.1 Position Automaton

The basis of the Regular Unambiguity Test is a position automaton, which describes all strings
in S(Gb). The states of this automaton are the positions in pos(Gb). The transitions are
labeled with elements in Vb.

Definition 3. The position automaton1 Γ(G) of a grammar G is the tuple (Q, Vb, R,Qs, Qf ),
where

• Q = pos(Gb),

• R = {αb
•Xbβb

Xb7−→ αbXb
•βb | αbXbβb ∈ S(Gb)},

• Qs = {•αb | αb ∈ S(Gb)},

• Qf = {αb
• | αb ∈ S(Gb)}.

There are three types of transitions: derives with labels in T〈, reduces with labels in T〉,
and shifts of terminals and nonterminals in V . The symbols read on a path through Γ(G)
describe a parse tree of G. Thus, L(Γ(G)) = S(Gb).

A grammar G is ambiguous iff two paths exist through Γ(G) that describe different parse
trees in Pa(G) — strings in S(Gb) — of the same string in S(G). We call such two paths an
ambiguous path pair.

Example 4.4. Figure 4.1 shows the first part of the position automaton of the grammar from
Example 4.1. It shows paths for parse trees S, 〈1A〉1 and 〈1〈3a〉3〉1.

4.3.2 Approximated Position Automaton

If G has an infinite number of parse trees, the position automaton is also of infinite size.
Checking it for ambiguous path pairs would take forever. Therefore the position automaton is
approximated using equivalence relations on the positions, also known as quotienting. The
approximated position automaton has equivalence classes of positions for its states. For every
transition between two positions in the original automaton a new transition with the same

1We modified the original definition of the position automaton to be able to explain our extensions more clearly.
This does not essentially change the RU Test and NU Test however, since their only requirement on Γ(G) is that it
defines S(Gb).



4.3. Regular Unambiguity Test 57

•S S•

S

• 〈1A〉1 〈1•A〉1 〈1A• 〉1 〈1A〉1•

〈1 A 〉1

• 〈1〈3a〉3〉1 〈1• 〈3a〉3〉1 〈1〈3•a〉3〉1 〈1〈3a• 〉3〉1 〈1〈3a〉3• 〉1 〈1〈3a〉3〉1•

〈1 〈3 a 〉3 〉1

Figure 4.1: Part of the position automaton of the grammar of Example 4.1.

label then exists between the equivalence classes that the positions are in. If an equivalence
relation is used that yields a finite set of equivalence classes, the approximated automaton can
be checked for ambiguous path pairs in finite time.

Definition 4. Given an equivalence relation ≡ on positions, the approximated posi-
tion automaton Γ≡(G) of the automaton Γ(G) = (Q, Vb, R,Qs, Qf ), is the tuple

(Q≡, V
′
b , R≡, {qs}, {qf}) where

• Q≡ = Q/≡ ∪{qs, qf}, where Q/≡ is the set of non-empty equivalence classes over Q
modulo ≡, defined as {[αb

•βb]≡ | αb
•βb ∈ Q},

• R≡ = {[q0]≡
Xb7−→ [q1]≡ | q0

Xb7−→ q1 ∈ R} ∪ {qs
ε

7−→ [q]≡ | q ∈ Qs} ∪ {[q]≡
ε

7−→
qf | q ∈ Qf},

• qs and qf are respectively a new start state and a new final state.

The paths through Γ≡(G) describe an overapproximation of the set of parse trees of G,
thus L(Γ(G)) ⊆ L(Γ≡(G)). So if no ambiguous path pair exists in Γ≡(G), grammar G is
unambiguous. But if there is an ambiguous path pair, it is unknown if its paths describe real
parse trees of G or approximated ones. In this case we say G is potentially ambiguous.

4.3.3 The item0 Equivalence Relation

Checking for ambiguous paths in finite time also requires an equivalence relation with which
Γ≡(G) can be built in finite time. A relation like that should enable the construction of
the equivalence classes without enumerating all positions in pos(Gb). A simple but useful
equivalence relation with this property is the item0 relation [Sch07b]. Two positions are equal
modulo item0 if they are both at the same item.

Definition 5. αb
•βb item0 γb•δb iff item(αb

•βb) = item(γb•δb).

Intuitively the item0 position automaton Γitem0
(G) of a grammar resembles that grammar’s

LR(0) parse automaton [Knu65]. The nodes are the LR(0) items of the grammar and the X
and 〉 edges correspond to the shift and reduce actions in the LR(0) automaton. The 〈 edges
correspond to the LR(0) item closure operation.



58 Chapter 4. Tracking Down the Origins of Ambiguity in Context-Free Grammars

qs •S
ε

S•

S
qf

ε

S → •A S → A•

A

〈1 〉1

A → •AA A → A•A A → AA•

A A

〈2 〉2

〈2 〉2

〈2 〉2

A → •a A → a•

a

〈3 〉3
〈3 〉3〈3 〉3

Figure 4.2: The item0 position automaton of the grammar of Example 4.1.

The difference between an LR(0) automaton and an item0 position automaton is in the
reductions. The position automaton Γitem0

(G) has reduction edges to every item that has
the dot after the reduced nonterminal, while an LR(0) automaton jumps to a different state
depending on the symbol that is at the top of the parse stack. As a result, a certain path through
Γitem0

(G) with a 〈i transition from A → α•Bγ does not necessarily need to have a matching
〉i transition to A → αB•γ.

Example 4.5. Figure 4.2 shows the item0 position automaton of the grammar of Example 4.1.
Strings 〈1〈2〈3a〉3〉1 and 〈1〈3a〉3〉1 form an ambiguous path pair.

4.3.4 Position Pair Automaton

The existence of ambiguous path pairs in a position automaton can be checked with a position

pair automaton, in which every state is a pair of states from the position automaton. Transitions
between pairs are described using the mutual accessibility relation ma.

Definition 6. The regular position pair automaton ΠR
≡(G) of Γ≡(G) is the tuple

(Q2
≡, V

′2
b ,ma, q2s , q

2
f ), where ma over Q2

≡ × V ′2
b × Q2

≡, denoted by −→−→ , is the union of

the following subrelations:

maDl = {(q0, q1)
(〈i,ε)
−−−→−−−→ (q2, q1) | q0

〈i
7−→ q2},

maDr= {(q0, q1)
(ε,〈i)
−−−→−−−→ (q0, q3) | q1

〈i
7−→ q3},

maS = {(q0, q1)
(X,X)
−−−−→−−−−→ (q2, q3) | q0

X
7−→ q2 ∧ q1

X
7−→ q3, X ∈ V ′},

maRl = {(q0, q1)
(〉i,ε)
−−−→−−−→ (q2, q1) | q0

〉i
7−→ q2},

maRr= {(q0, q1)
(ε,〉i)
−−−→−−−→ (q0, q3) | q1

〉i
7−→ q3}.



4.4. Finding Parse Trees of Unambiguous Strings 59

Automaton Symbol States Alphabet
Position automaton Γ(G) Q = pos(Gb) Vb

Approximated position automaton Γ≡(G) Q≡ = Q/≡ ∪{qs, qf} Vb

Position pair automaton ΠR
≡(G) Q2

≡ V ′2
b

Table 4.1: Overview of the different automata used in the Regular Unambiguity Test.

Every path through this automaton from q2s to q2f describes two paths through Γ≡(G) that
shift the same symbols. The language of ΠR

≡(G) is thus a set of pairs of strings. A path
indicates an ambiguous path pair if its two bracketed strings are different, but equal under
the homomorphism h. Because L(Γ≡(G)) is an over-approximation of S(Gb), L(ΠR

≡(G))
contains at least all ambiguous path pairs through Γ(G).

Lemma 3 (ambiguous path pairs). ∀αb, βb ∈ Pa(G) : αb 6= βb ∧ h(αb) = h(βb) ⇒
(αb, βb) ∈ L(ΠR

≡(G)).

From this we can conclude that the absence of ambiguous path pairs through ΠR
≡(G)

proves the unambiguity of G. However, in the other case it remains uncertain whether or not G
is really ambiguous. The RU Test is therefore an approximative test, giving only conservative
answers. This concludes the explanation of the RU Test. For an overview of the different
automata used see Table 4.1.

4.4 Finding Parse Trees of Unambiguous Strings

The Regular Unambiguity Test described in the previous section can conservatively detect the
unambiguity of a given grammar. If it finds no ambiguity we are done, but if it finds potential
ambiguity this report is not detailed enough to be useful. In this section we show how the RU
Test can be extended to identify parse trees of unambiguous strings. These will form the basis
of more detailed ambiguity reports, as we will see in Section 4.5.

4.4.1 Unused Positions

From the states of Γ≡(G) that are not used on ambiguous path pairs, we can identify parse
trees of unambiguous strings. For this we use the fact that every bracketed string that represents
a parse tree of G must pass all its positions on its path through Γ(G). Therefore, all positions
in states of Γ≡(G) that are not used by any ambiguous path pair through ΠR

≡(G) are positions
in parse trees of unambiguous strings.

To find these parse trees we first gather all states covered by ambiguous path pairs.

Definition 7. The set of states of Γ≡(G) that are used on ambiguous path pairs through

ΠR
≡(G) is Qa

≡ = {q0, q1 | ∃αb, βb, α
′
b, β

′
b : αbβb 6= α′

bβ
′
b, q

2
s

(αb,α
′

b)−−−−−→−−−−−→
∗ (q0, q1)

(βb,β
′

b)−−−−→−−−−→
∗ q2f}.

The set of states not used on ambiguous path pairs is Qu
≡ = Q≡ \Qa

≡.

The following lemma says that the states in Qa
≡ together contain at least all positions in

the parse trees of all ambiguous strings.



60 Chapter 4. Tracking Down the Origins of Ambiguity in Context-Free Grammars

Pa(G)

S(Gb)

L(Γ≡(G))
Pu(G)

Pu
≡(G)

Figure 4.3: Euler diagram showing the relationship between S(Gb) and L(Γ≡(G)). The
vertical lines divide both sets in two: their parse trees of ambiguous strings (left) and parse
trees of unambiguous strings (right).

Lemma 4 (coverage of ambiguous path pairs). ∀αbβb ∈ Pa(G) : [αb
•βb]≡ ∈ Qa

≡.

Proof. We take an arbitrary string αb ∈ Pa(G), and show that the equivalence classes of all
its positions are states in Qa

≡.
Because αb ∈ Pa(G) there exists at least one βb ∈ Pa(G), such that αb 6= βb and

h(αb) = h(βb). From Lemma 3 we know that (αb, βb) ∈ L(ΠR
≡(G)).

From Definitions 3 and 4 it follows that the path αb through Γ≡(G) visits all states that are
an equivalence class of a position in αb. Let us call this set of states Qα

≡. From Definition 6
we can see that all these states occur as first elements in the pairs on the path (αb, βb) through
ΠR

≡(G). By Definition 7 it then holds that Qα
≡ ⊆ Qa

≡.

The states that are not in Qa
≡ therefore contain positions in parse trees of strings that are

unambiguous.

Definition 8. The set of parse trees of unambiguous strings of G that are identifiable with ≡,

is Pu
≡(G) = {αbβb | [αb

•βb]≡ ∈ Qu
≡}.

This set is always a subset of Pu(G), as stated by the following Theorem, and illustrated
by Figure 4.3.

Theorem 1 (underapproximation of Pu(G)). For all equivalence relations ≡, Pu
≡(G) ⊆

Pu(G).

Proof. We take an arbitrary string αbβb ∈ Pu
≡(G) and prove αbβb ∈ Pu(G).

By definition [αb
•βb]≡ ∈ Qu

≡. From Qu
≡ = Q≡ \ Qa

≡ it follows that [αb
•βb]≡ ∈ Q≡

and [αb
•βb]≡ /∈ Qa

≡. From the first we know that αbβb ∈ S(Gb), and from the latter and
Lemma 4 it follows that αbβb /∈ Pa(G). Therefore, because Pu(G) = S(Gb) \ P

a(G), it
must be that αbβb ∈ Pu(G).

The positions in the states in Qa
≡ and Qu

≡ thus identify parse trees of respectively potentially
ambiguous strings and certainly unambiguous strings. However, iterating over all positions in
pos(G) is infeasible if this set is infinite. The used equivalence relation should therefore allow
the direct identification of parse trees from the states of Γ≡(G).



4.5. Harmless Production Rules 61

For instance, a state in Γitem0
(G) represents all parse trees in which a particular item

appears. With this information we can identify production rules that only appear in parse trees
in Pu

≡(G), as we will show in the next section.

4.4.2 Computation

The above definition of Qa
≡ is not yet suitable for computation, because it requires the iteration

over all pairs of different strings αbβb and α′
bβ

′
b in L(ΠR

≡(G)), of which there can be infinitely
many. We therefore need a definition that can be calculated in finite time. For this we make
use of the fact that all pairs αbβb and α′

bβ
′
b have common pre- and postfixes, with different

substrings in the middle. These middle substrings can differ in the following ways: they either
each start with different brackets, or one of the two starts with a bracket and the other with a
terminal or non-terminal. By describing these cases we get an alternative definition of the part
of ΠR

≡(G) that is covered by ambiguous path pairs.2

First, we need the following additional mutual accessibility relations:

maEq = {(q0, q0)
(Xb,Xb)
−−−−−→−−−−−→

∗ (q1, q1) | q0
Xb7−→ q1, Xb ∈ V ′

b },

maDiff〈= {(q0, q0)
(〈i,〈j)
−−−−→−−−−→

∗ (q1, q2) | q0
〈i
7−→ q1 ∧ q0

〈j
7−→ q2, i 6= j},

Then we can define all path pairs of the above mentioned forms with the following
relations:

maEq∗ · maDiff〈 · nma+ (4.3)

maEq∗ · (nmaDl ∪ nmaCl)+ · nmaS · nma+ (4.4)

maEq∗ · (nmaDr ∪ nmaCr)+ · nmaS · nma+ (4.5)

The union of these three relations forms a computable description of all ambiguous path
pairs through ΠR

≡(G). Note that it suffices to only specify the different beginnings of the
middle substrings. We could also explicitely specify the common postfixes, which would
result in nine different relations.

With this alternative definition we can gather Qa
≡ by traversing the above relations from q2s

and collect all states in encountered state pairs. This process is linear in the number of edges
in ΠR

≡(G) (see [SSS88] Chapter 2), which is worst case O(|R≡|
2).

4.5 Harmless Production Rules

In this section we show how we can use Qa
≡, the part of Γ≡(G) that is covered by ambiguous

path pairs, to identify production rules that do not contribute to the ambiguity of G. These are
the production rules that can never occur in parse trees of ambiguous strings. We call them
harmless production rules.

2We thank the anonymous reviewers of ICTAC 2010 for this idea.



62 Chapter 4. Tracking Down the Origins of Ambiguity in Context-Free Grammars

4.5.1 Finding Harmless Production Rules

A production rule is certainly harmless if it is only used in parse trees in Pu
≡(G). We should

therefore search for productions that are never used on ambiguous path pairs of ΠR
≡(G) that

describe valid parse trees in G. We can find them by looking at the items of the positions in
the states of Qa

≡. If not all items of a production rule are used then the rule cannot be used in a
valid string in Pa(G) (Lemma 2), and we know it is harmless.

Definition 9. The set of items used on the ambiguous path pairs through ΠR
≡(G) is Ia≡ =

{A → α•β | ∃q ∈ Qa
≡ : ∃γb•δb ∈ q : A → α•β = item(γb•δb)}.

With it we can identify production rules of which all items are used:

Definition 10. The set of potentially harmful production rules of G, identifiable from ΠR
≡(G),

is Phf = {A → α | proditems(A → α) ⊆ Ia≡}.

Because of the approximation it is uncertain whether or not they can really be used to
form valid parse trees of ambiguous strings. Nevertheless, all the other productions in P will
certainly not appear in parse trees of ambiguous strings.

Definition 11. The set of harmless production rules of G, identifiable from ΠR
≡(G), is Phl =

P \ Phf .

Theorem 2 (harmless production rules). ∀p ∈ Phl : ¬∃αb〈iβb〉iγb ∈ Pa(G) : i = pid(p).

Proof. We take an arbitrary production rule p ∈ Phl and an arbitrary parse tree δb =
αb〈iβb〉iγb such that i = pid(p), and prove that δb /∈ Pa(G).

Because p /∈ Phf there is (at least) one item of p that is not in Ia≡, let us call this item
m. According to Lemma 2 there must be a position ηb•θb in δb such that item(ηb•θb) = m.
From m /∈ Ia≡ it follows that [ηb•θb]≡ /∈ Qa

≡. With Lemma 4 we can then conclude that
δb /∈ Pa(G).

Example 4.6 in Section 4.7 shows finding Phl for a small grammar.

4.5.2 Complexity

Finding Phf comes down to building ΠR
≡(G), finding Qa

≡, and enumerating all positions in all
classes in Qa

≡ to find Ia≡. The number of these classes is finite, but the number of positions
might not be. It would therefore be convenient if the definition of the chosen equivalence
relation could be used to collect Ia≡ in finitely many steps. With the item0 relation this is
possible, because all the positions in a class are all in the same item.

Constructing ΠR
item0

(G) can be done in O(|G|) (see [Sch07b]), where |G| is the number
of items of G. After that, Qa

item0
can be gathered in O(|G|2) (see Section 4.4.2), because

|Ritem0
| is linear with |G|. Then, constructing both Iaitem0

and Phf is also linear with |G|. The
worst case complexity of finding Phf with item0 is therefore O(|G|2).



4.6. Noncanonical Unambiguity Test 63

4.5.3 Grammar Reconstruction

Finding Phl can be very helpful information for the grammar developer. Also, Phf represents
a smaller grammar that can be checked again more easily to find the true origins of ambiguity.
However, the reachability and productivity properties of this smaller grammar might be
violated because of the removed productions in Phl. These must be restored first before the
grammar can be checked again.

If the reachability of the grammar is broken this is not a problem. In fact, all productions
in Phf that are not reachable from S anymore are harmless. Since if a production p is not
reachable from S, it means that p can only appear in parse trees that also contain productions
from Phl. These trees are therefore not in Pa(G), which implies that p is harmless. All
unreachable productions in Phf can thus safely be discarded.

The productivity of the grammar can be restored by adding new productions and terminals.
We must prevent introducing new ambiguities in this process. From Phf we can create a new
grammar G′ by constructing:3

1. The set of defined nonterminals of Phf : Ndef = {A |A → α ∈ Phf}.

2. The used but undefined nonterminals of Phf :
Nundef = {B |A → αBβ ∈ Phf}\Ndef .

3. The unproductive nonterminals:
Nunpr = {A |A ∈ Ndef ,¬∃u : A =⇒∗ u using only productions in Phf}.

4. New terminal symbols tA for each nonterminal A ∈ Nundef ∪Nunpr.

5. Productions to complete the unproductive and undefined nonterminals:
P ′ = Phf ∪ {A → tA |A ∈ Nundef ∪Nunpr}.

6. The new set of terminal symbols: T ′ = {a |A → βaγ ∈ P ′}.

7. Finally, the new grammar: G′ = (Ndef ∪Nundef , T
′, P ′, S).

At step 5 we create the new productions that restore the productivity of the grammar,
without introducing new ambiguities. Every new production contains a new unique terminal
to make sure it cannot be used to form a new parse tree for an existing string in L(G).

4.6 Noncanonical Unambiguity Test

In this section we explain the Noncanonical Unambiguity (NU) Test [Sch07b], which is more
precise than the Regular Unambiguity Test. It enables the identification of a larger set of
irrelevant parse trees, namely the ones that are not in the ambiguous core of G. From these we
can also identify a larger set of harmless production rules.

3This algorithm is essentially the same as the one presented in Section 3.2.6, with the only difference that this
version does not preserve the distribution of string lengths in L(G′).



64 Chapter 4. Tracking Down the Origins of Ambiguity in Context-Free Grammars

4.6.1 Improving the Regular Unambiguity Test

The regular position pair automaton described in Section 4.3 checks all pairs of paths through
a position automaton for ambiguity. However, it also checks some spurious paths that are
unnecessary for identifying the ambiguity of a grammar.

These are the path pairs that derive the same unambiguous substring for a certain nonter-
minal. We can ignore these paths because in this situation there are also two paths in which
the nonterminal was shifted instead of derived. For instance, consider paths 〈1〈2〈3a〉3αb〉2〉1
and 〈1〈2〈3a〉3βb〉2〉1. If they form a pair in L(ΠR

≡(G)) then the shorter paths 〈1〈2Aαb〉2〉1
and 〈1〈2Aβb〉2〉1 will too (considering A → 〈3a〉3 ∈ Pb). In addition, if the first two paths
form an ambiguous path pair, then these latter two will also, because 〈3a〉3 does not contribute
to the ambiguity. In this case we prefer the latter paths because they describe smaller parse
trees than the first paths.

4.6.2 Noncanonical Position Pair Automaton

To avoid common unambiguous substrings we should only allow path pairs to take identical
reduce transitions if they do not share the same substring since their last derives. To keep track
of this property we add two extra boolean flags c0 and c1 to the position pairs. These flags tell
for each position in a pair whether or not its path has been in conflict with the other, meaning
it has taken different reduce steps as the other path since its last derive. A value of 0 means
this has not occurred yet, and we are thus allowed to ignore an identical reduce transition.

All start pairs have both flags set to 0, and every derive step resets the flag of a path to 0.
The flag is set to 1 if a path takes a conflicting reduce step, which occurs if the other path does
not follow this reduce at the same time (for instance 〉2 in the parse trees 〈1〈2〈3a〉3〉2〉1 and
〈1〈2〈3a〉3〉1). We use the predicate confl (called eff by Schmitz) to identify a situation like
that.

confl(q, i) = ∃u ∈ T ∗
〈 : q

u
7−→∗ qf ∨ (∃q′ ∈ Q≡, X ∈ V ∪ T〉 : X 6=〉i, q

uX
7−→+ q′) (4.6)

It tells whether there is another shift or reduce transition other than 〉i possible from q,
ignoring 〈 steps, or if q is at the end of the automaton.

Definition 12. The noncanonical position pair automaton ΠN
≡ (G) of Γ≡(G) is the tuple

(Qp, V ′2
b , nma, (qs, 0)

2, (qf , 1)
2), where Qp = (Q≡×B)2, and nma over Qp×V ′2

b ×Qp is the

noncanonical mutual accessibility relation, defined as the union of the following subrelations:

nmaDl = {(q0, q1)c0, c1
(〈i,ε)
−−−→−−−→ (q2, q1)0, c1 | q0

〈i
7−→ q2},

nmaDr= {(q0, q1)c0, c1
(ε,〈i)
−−−→−−−→ (q0, q3)c0, 0 | q1

〈i
7−→ q3},

nmaS = {(q0, q1)c0, c1
(X,X)
−−−−→−−−−→ (q2, q3)c0, c1 | q0

X
7−→ q2, q1

X
7−→ q3, X ∈ V ′},

nmaCl = {(q0, q1)c0, c1
(〉i,ε)
−−−→−−−→ (q2, q1)1, c1 | q0

〉i
7−→ q2, confl(q1, i)},

nmaCr= {(q0, q1)c0, c1
(ε,〉i)
−−−→−−−→ (q0, q3)c0, 1 | q1

〉i
7−→ q3, confl(q0, i)},

nmaR = {(q0, q1)c0, c1
(〉i,〉i)
−−−−→−−−−→ (q2, q3)1, 1 | q0

〉i
7−→ q2, q1

〉i
7−→ q3, c0 ∨ c1}.



4.6. Noncanonical Unambiguity Test 65

As with ΠR
≡(G), the language of ΠN

≡ (G) describes ambiguous path pairs through Γ≡(G).
The difference is that L(ΠN

≡ (G)) does not include path pairs without conflicting reductions.
Therefore L(ΠN

≡ (G)) ⊆ L(ΠR
≡(G)). Nevertheless, ΠN

≡ (G) does at least describe all the core

parse trees in Ca(G):

Theorem 3 (core ambiguous path pairs). ∀αb, βb ∈ Ca(G) : αb 6= βb ∧ h(αb) = h(βb) ⇒
(αb, βb) ∈ L(ΠN

≡ (G)).

Proof. We take an arbitrary string αb ∈ Ca(G). Then there is at least one βb ∈ Ca(G) such
that αb 6= βb and h(αb) = h(βb). We show that (αb, βb) ∈ L(ΠN

≡ (G)).
Because Ca(G) ⊆ Pa(G) we know from Lemma 3 that αb, βb ∈ L(Γ≡(G)) and

(αb, βb) ∈ L(ΠR
≡(G)). To prove that (αb, βb) is also in L(ΠN

≡ (G)) we show that the ex-
tra restrictions of nma over ma do not apply for (αb, βb). We distinguish the following
cases:

• nmaDl, nmaDr and nmaS: These relations are similar to respectively maDl, maDr and
maS, and have no additional restrictions.

• nmaR: One nmaR transition is similar to taking two consecutive maRl and maRr

transitions with the same 〉i, with the extra restriction that at least one boolean flag is 1.
We will show that it is not possible to reach a pair with both flags 0 if both paths need to
read the same 〉i.

If we would reach a pair like that this means we have not followed any 〈 or 〉 steps since
the two 〈i steps that match the 〉is. Reading a 〈j step after 〈i on any path would set a
flag to 0, but then we would also have read a matching 〉j before 〉i because 〈s and 〉s
are always balanced. However, this would have set at least one flag to 1.

The only steps we thus could have taken since the 〈is are shifts on both paths of the same
terminal or nonterminal symbols. But then we have an identical substring 〈iγ〉i in both
strings αb and βb that represents the same substring in h(αb) and h(βb). This means
αb, βb /∈ Ca(G), because if we “underive” 〈iγ〉i — substituting it with the nonterminal
at the right hand side of production i — in αb an βb we still get two parse trees of an
ambiguous string. Therefore, nmaR can always be followed on path (αb, βb).

• nmaCl and nmaCr: These relations are similar to maRl and maRr, with the added confl

restrictions. Above we saw that if both paths reach identical 〉i symbols we can read
them with nmaR. In all other cases we can read 〉i symbols with either nmaCl and
nmaCr, because then confl will be true: if we ignore 〈 symbols, the 〉i symbol will
eventually come into conflict with another 〉j or X symbol of the other path, or the other
path is already at its end.

All 〈 symbols in αb and βb can thus be read through ΠN
≡ (G) with nmaDl or nmaDr

transitions, the X ∈ V symbols can be read synchronously with nmaS, and the 〉s with nmaCl,
nmaCr or nmaR. Therefore (αb, βb) ∈ L(ΠN

≡ (G)).

Theorem 3 shows that if G is ambiguous — that is Ca(G) is non-empty — L(ΠN
≡ (G)) is

also non-empty. This means that if L(ΠN
≡ (G)) is empty, G is unambiguous.



66 Chapter 4. Tracking Down the Origins of Ambiguity in Context-Free Grammars

4.6.3 Effects on Identifying Harmless Production Rules

The new nma relation enables our parse tree identification algorithm of Section 4.4 to po-
tentially identify a larger set of irrelevant parse trees, namely Cu(G). These trees might be
ambiguous, but this is not a problem because we are interested in finding the trees of the
smallest possible ambiguous sentential forms of G, namely the ones in Ca(G). The trees in
Ca(G) are sufficient to prove the ambiguity or unambiguity of a grammar (Lemma 1).

Definition 13. Given Qu
≡ from ΠN

≡ (G), the set of parse trees not in the ambiguous core of G,

identifiable with ≡, is Cu
≡(G) = {αbβb | ∃q ∈ Qu

≡, αb
•βb ∈ q}.

Theorem 4 (overapproximation of ambiguous core). For all equivalence relations ≡,

Cu
≡(G) ⊆ Cu(G).

The set of harmless production rules that can be identified with ΠN
≡ (G) is also potentially

larger. It might include rules that can be used in parse trees of ambiguous strings, but not in
parse trees in Ca(G). Therefore they are not vital for the ambiguity of G.

Definition 14. Given Qa
≡ and Ia≡ from ΠN

≡ (G), the set of harmless productions of G, identifi-

able from ΠN
≡ (G), is P ′

hl = P \ {A → α | proditems(A → α) ⊆ Ia≡}.

Theorem 5 (harmless production rules of ΠN
≡ (G)). ∀p ∈ P ′

hl : ¬∃αb〈iβb〉iγb ∈ Ca(G) : i =
pid(p).

4.7 Excluding Parse Trees Iteratively

Our approach for the identification of parse trees of unambiguous strings is most useful if
applied in an iterative setting. By checking the remainder of the potentially ambiguous parse
trees again, there is possibly less interference of the trees during approximation. This could
result in less ambiguous path pairs in the position pair automaton. We could then exclude a
larger set of parse trees and production rules.

Example 4.6. The grammar below (4.7) is unambiguous but needs two iterations of the NU
Test with item0 to detect this. At first, ΠN

item0
(G) contains only the ambiguous path pair

〈1〈4c〉4〉1 and 〈2〈5〈6c〉6〉3〉1. The first path describes a valid parse tree, but the second does
not. From B → •Cb it derives to C → •c, but from C → c• it reduces to A → aC• .
Therefore productions 2, 5 and 3 are only used partially, and they are thus harmless. After
removing them and checking the reconstructed grammar again there are no ambiguous path
pairs anymore.

1 : S → A, 2 : S → B, 3 : A → aC, 4 : A → c, 5 : B → Cb, 6 : C → c (4.7)

We can gain even higher precision by choosing a new equivalence relation with each
iteration, similar to the approach of counterexample-guided abstraction refinement [CGJ+00]
described by Clarke et al. If with each step Γ≡(G) better approximates S(Gb), we might end
up with only the parse trees in Pu(G). Unfortunately, the ambiguity problem is undecidable,
and this process does not necessarily have to terminate. There might be an infinite number of



4.8. Conclusions 67

equivalence relations that yield a finite number of equivalence classes. Or at some point we
might need to resort to equivalence relations that do not yield a finite graph. Therefore, the
iteration has to stop at a certain moment, and we can continue with an exhaustive search of the
remaining parse trees.

In the end this exhaustive searching is the most practical, because it can point out the exact
parse trees of ambiguous strings. A drawback of this approach is its exponential complexity.
Nevertheless, excluding sets of parse trees beforehand can reduce its search space significantly,
as we have seen in the previous chapter.

4.8 Conclusions

We have shown how the Regular Unambiguity Test and Noncanonical Unambiguity Test can
be extended to conservatively identify parse trees of unambiguous strings. From these trees we
can identify harmless production rules. These are the production rules that do not contribute
to the ambiguity of a grammar. With the RU Test our approach is able to find production
rules that can only be used to derive unambiguous strings. With the NU Test it can also find
productions that can only be used to derive unambiguous substrings of ambiguous strings.
This information is already very useful for a grammar developer, but it can also be used to
significantly reduce the search space of other ambiguity detection methods.





Chapter 5

Scaling to Scannerless

In this chapter we present a set of extensions to our grammar filtering technique

to make it suitable for character-level grammars. Character-level grammars are

used for generating scannerless parsers, and are typically more complex than token-

based grammars. We present several character-level specific extensions that take

disambiguation filters into account, but also a general precision improving extension

called grammar unfolding. We test an implementation of our approach on a series

of real world programming languages and measure the improvements in sentence

generation times. Although the gains are not as large as in Chapter 3, our technique

proves very useful on most grammars.

5.1 Introduction

5.1.1 Background

Scannerless generalized parsers [vdBSVV02], generated from character-level context-free
grammars, serve two particular goals in textual language engineering: parsing legacy languages
and parsing language embeddings. We want to parse legacy languages when we construct
reverse engineering and reengineering tools to help mitigating cost-of-ownership of legacy
source code. The syntax of legacy programming languages frequently does not fit the standard
scanner-parser dichotomy. This is witnessed by languages that do not reserve keywords from
identifiers (PL/I) or do not always apply “longest match” when selecting a token class (Pascal).
For such languages we may generate a scannerless generalized parser that will deal with such
idiosyncrasies correctly.

This chapter was published in the proceedings of the Fourth International Conference on Software Language
Engineering (SLE 2011) [BKV11]. It was co-authored by Paul Klint and Jurgen Vinju. For completeness, Section 5.4
contains two additional algorithms that were not included in the published paper.

69



70 Chapter 5. Scaling to Scannerless

Language embeddings need different lexical syntax for different parts of a composed
language. Examples are COBOL with embedded SQL, or Aspect/J with embedded Java. The
comment conventions may differ, different sets of identifiers may be reserved as keywords
and indeed identifiers may be comprised of different sets of characters, depending on whether
the current context is the “host language” or the embedded “guest language”. Language
embeddings are becoming increasingly popular, possibly due to the belief that one should
select the right tool for each job. A character-level grammar can be very convenient to
implement a parser for such a combined language [BV04]. The reason is that the particular
nesting of non-terminals between the host language and the guest language defines where the
different lexical syntaxes are applicable. The lexical ambiguity introduced by the language
embedding is therefore a non-issue for a scannerless parser. There is no need to program state
switches in a scanner [VS07], to use scanner non-determinism [AH01], or to use any other
kind of (ad-hoc) programming solution.

Using a character-level grammar and a generated scannerless parser results in more
declarative BNF grammars which may be maintained more easily than partially hand-written
parsers [KVW10]. It is, however, undeniable that character-level grammars are more complex
than classical grammars since all lexical aspects of a language have to be specified in full
detail. The character-level grammar contains more production rules, which may contain
errors or introduce ambiguity. In the absence of lexical disambiguation heuristics, such
as “prefer keywords” and “longest match”, a character-level grammar may contain many
ambiguities that need resolving. Ergo, character-level grammars lead to more declarative
grammar specifications but increase the risk of ambiguities and makes automated ambiguity
detection harder.

5.1.2 Contributions and Roadmap

We introduce new techniques for scaling ambiguity detection methods to the complexity that
is present in character-level grammars for real programming languages. Our point of departure
is a fast ambiguity detection framework that combines a grammar approximation stage with a
sentence generation stage — see Chapter 3. The approximation is used to split a grammar into
a set of rules that certainly do not contribute to ambiguity and a set that might. The latter is
then fed to a sentence generator to obtain a clear and precise ambiguity report. We sketch this
global framework (Section 5.2) and then describe our baseline algorithm (Section 5.4). The
correctness of this framework has been established in Chapter 4 and is not further discussed
here.

We present several extensions to the baseline algorithm to make it suitable for character-
level grammars (Section 5.5). First, we consider character classes as shiftable symbols, instead
of treating every character as a separate token. This is necessary to deal with the increased
lexical complexity of character-level grammars. Second, we make use of disambiguation
filters [vdBSVV02] to deal with issues such as keyword reservation and longest match. These
filters are used for precision improvements at the approximation stage, and also improve the
run-time efficiency of the sentence generation stage by preventing spurious explorations of the
grammar. Third, we use grammar unfolding as a general optimization technique (Section 5.6).
This is necessary for certain character-level grammars but is also generally applicable. At



5.2. The Ambiguity Detection Framework 71

Figure 5.1: Baseline architecture for fast ambiguity detection.

a certain cost, it allows us to more effectively identify the parts of a grammar that do not
contribute to ambiguity.

We have selected a set of real character-level grammars and measure the speed, footprint
and accuracy of the various algorithms (Section 5.7). The result is that the total cost of
ambiguity detection is dramatically reduced for these real grammars.

5.2 The Ambiguity Detection Framework

5.2.1 The Framework

Our starting point is an ambiguity detection framework called AMBIDEXTER, which combines
an extension of the approximative Noncanonical Unambiguity Test [Sch07b] with an exhaus-
tive sentence generator comparable to [Sch01]. The former is used to split a grammar into a
set of harmless rules and a set of rules that may contribute to ambiguity. The latter is used to
generate derivations based on the potentially ambiguous rules and produce understandable
ambiguity reports.

Figure 5.1 displays the architecture of the baseline algorithm which consists of seven steps,
ultimately resulting in a non-ambiguity report, an ambiguity report, or a time-out.

1. In step ¶ the grammar is bracketed, starting and ending each rule with a unique terminal.
The language of the bracketed grammar represents all parse trees of the original grammar.
In this same step an NFA is constructed that over-approximates the language of the
bracketed grammar. This NFA allows us to find strings with multiple parse trees, by
approximation, but in finite time.



72 Chapter 5. Scaling to Scannerless

2. In step · a data-structure called a Pair Graph (PG) is constructed from the NFA.
This PG represents all pairs of two different paths through the NFA that produce the
same sentence, i.e., potentially ambiguous derivations. During construction, the PG is
immediately traversed to identify the part of the NFA that is covered by the potentially
ambiguous derivations.

3. In step ¸ we filter the uncovered parts from the NFA and clean up dead ends. This might
filter potentially ambiguous derivations from the NFA that are actually false positives,
so we reconstruct the PG again to find more uncovered parts. This process is repeated
until the NFA cannot be reduced any further.

4. In step ¹ we use the filtered NFA to identify harmless productions. These are the
productions that are not used anymore in the NFA. If the NFA is completely filtered
then all productions are harmless and the grammar is unambiguous.

5. In step º we prepare the filtered NFA to be used for sentence generation. Due to the
removal of states not all paths produce terminal only sentences anymore. We therefore
reconstruct the NFA by adding new terminal producing paths.

In our original approach we generated sentences based on the remaining potentially
harmful productions. However, by immediately using the filtered NFA we retain more
precision, because the NFA is a more precise description of the potentially ambiguous
derivations than a reconstructed grammar.

6. In step » we convert the NFA into a pushdown automaton (PDA) which enables faster
sentence generation in the next step.

7. The final step (¼) produces ambiguous strings, including their derivations, to report to
the user. This may not terminate, since most context-free grammars generate infinite
languages; we need to stop after a certain limited time. All ambiguity that was detected
before the time limit is reported to the user.

It was shown in Chapter 4 that the calculations employed in this architecture are correct,
and in Chapter 3 that indeed the efficiency of ambiguity detection can be improved considerably
by first filtering harmless productions. However, the baseline algorithm is not suitable for
character-level grammars since it is unable to handle their increased complexity and it will still
find ambiguities that are already solved. It can even lead to incorrect results because it cannot
deal with the non-context-free behaviour of follow restrictions. In this chapter we identify
several opportunities for optimization and correction:

• We filter nodes and edges in the NFA and PG representations in order to make use of
disambiguation information that is found in character-level grammars (Section 5.5).

• We “unfold” selected parts of a grammar to handle the increased lexical complexity of
character-level grammars (Section 5.6).

For the sake of presentation we have separated the discussion of the baseline algorithm
(Section 5.4), the filtering (Section 5.5), and the unfolding (Section 5.6), but it is important to
note that these optimizations are not orthogonal.



5.3. Character-Level Grammars 73

5.2.2 Notational Preliminaries

A context-free grammar G is a four-tuple (N,T, P, S) where N is the set of non-terminals,
T the set of terminals, P the set of productions over N × (N ∪ T )∗, and S is the start
symbol. V is defined as N ∪ T . We use A,B,C, . . . to denote non-terminals, X,Y, Z, . . . for
either terminals or non-terminals, u, v, w, . . . for sentences: strings of T ∗, and α, β, γ, . . . for
sentential forms: strings over V ∗.

A production (A,α) in P is written as A→α. A grammar is augmented by adding an
extra non-terminal symbol S′, a terminal symbol $ and a production S′ → S$, and making S′

the start symbol. We use the function pid :P →N to relate each production to a unique number.
An item indicates a position in a production rule with a dot, for instance as S → A•BC. We
use I to denote the set of all items of G.

The relation =⇒ denotes derivation. We say αBγ directly derives αβγ, written as
αBγ =⇒ αβγ if a production rule B → β exists in P . The symbol =⇒∗ means “derives in
zero or more steps”. The language of G, denoted L(G), is the set of all sentences derivable
from S. We use S(G) to denote the sentential language of G: the set of all sentential forms
derivable from S.

From a grammar G we can create a bracketed grammar Gb by surrounding each production
rule with unique bracket terminals [GH67]. The bracketed grammar of G is defined as
Gb = (N,Tb, Pb, S) where Tb is the set of terminals and brackets, defined as Tb = T ∪T〈∪T〉,
T〈 = {〈i | i ∈ N}, T〉 = {〉i | i ∈ N}, and Pb = {A → 〈iα〉i |A → α ∈ P, i = pid(A → α)}.
Vb is defined as N ∪ Tb. We use the function bracketP to map a bracket to its corresponding
production, and bracketN to map a bracket to its production’s left hand side non-terminal.
They are defined as bracketP(〈i) = bracketP(〉i) = A → α iff pid(A → α) = i, and
bracketN(〈i) = bracketN(〉i) = A iff ∃A → α ∈ P, pid(A → α) = i. A string in the
language of Gb describes a parse tree of G. Therefore, if two unique strings exist in L(Gb)
that become identical after removing their brackets, G is ambiguous.

5.3 Character-Level Grammars

Now we introduce character-level grammars as used for scannerless parsing. Character-level
grammars differ from conventional grammars in various ways. They define their syntax all
the way down to the character level, without separate token definitions. For convenience,
sets of characters are used in the production rules, so-called character classes. Regular
list constructs can be used to handle repetition, like in EBNF. Also, additional constructs
are needed to specify the disambiguation that is normally done by the scanner, so called
disambiguation filters [KV94]. Typical disambiguation filters for character-level grammars are
follow restrictions and rejects [vdBSVV02]. Follow restrictions are used to enforce longest
match of non-terminals such as identifiers and comments. Rejects are typically used for
keyword reservation. Other commonly used disambiguation filters are declarations to specify
operator priority and associativity, so these do not have to be encoded manually into the
production rules.



74 Chapter 5. Scaling to Scannerless

�




�

	

Declaration ::= Specifiers Ws? Identifier Ws? ";" (1)

Specifiers ::= Specifiers Ws? Specifier (2)

Specifiers ::= Specifier (3)

Specifier ::= Identifier | "int" | "float" | ... (4)

Identifier ::= [a-z]+ (5)

Identifier ::= Keyword { reject } (6)

Keyword ::= "int" | "float" | ... (7)

Ws ::= [\ \t\n]+ (8)

Identifier -/- [a-z] (9)

"int" -/- [a-z] (10)

"float" -/- [a-z] (11)

Figure 5.2: Example character-level grammar for C-style declarations.

5.3.1 Example

Figure 5.2 shows an excerpt of a character-level grammar, written in SDF2 [HHKR89, Vis97].
The excerpt describes syntax for C-style variable declarations. A Declaration statement
consists of a list of Specifiers followed by an Identifier and a semicolon, separated
by whitespace (Rule 1). A Specifier is either a predefined type like int or float, or a
user-defined type represented by an Identifier (Rule 4). At Rule 5 we see the use of the
character class [a-z] to specify the syntax of Identifier.

The grammar contains both rejects and follow restrictions to disambiguate the lexical
syntax. The {reject} annotation at Rule 6 declares that reserved keywords of the language
cannot be recognized as an Identifier. The follow restriction statements at Rules 9–
11 declare that any substring that is followed by a character in the range [a-z] cannot
be recognized as an Identifier or keyword. This prevents the situation where a single
Specifier, for instance an Identifier of two or more characters, can also be recognized
as a list of multiple shorter Specifiers. Basically, the follow restrictions enforce that
Specifiers should be separated by whitespace.

5.3.2 Definition

We define a character-level context-free grammar GC as the eight-tuple (N,T, C, P C , S,
RD, RF , RR) where C ⊂ N is the set of character classes over P(T ), P C the set of production
rules over N ×N∗, RD the set of derivation restrictions, RF the set of follow restrictions, RR

the set of rejects.
A character class non-terminal is a finite set of terminals in T . For each of its elements it

has an implicit production with a single terminal right hand side. We can write αCβ =⇒ αcβ
iff C ∈ C and c ∈ C.

The derivation restrictions RD restrict the application of productions in the context of
others. They can be used to express priority and associativity of operators. We define RD as
a relation over I × P C . Recall that we have defined I as the set of all items of a grammar.
An element (A → α•Bγ,B → β) in RD means that we are not allowed to derive a B



5.4. Baseline Algorithm 75

Algorithm 1 Base algorithm for filtering the NFA and finding harmless productions.
function FIND-HARMLESS-PRODUCTIONS() =

(Q,R) = BUILD-NFA()
do

nfasize = |Q|
Qa = TRAVERSE-PATH-PAIRS(Q,R) // returns items used on conflicting path pairs

(Q,R) = FILTER-NFA(Q,R,Qa) // removes unused items and prunes dead ends

while nfasize 6= |Q|
return P \ USED-PRODUCTIONS(Q)

non-terminal with production B → β, if it originated from the B following the dot in the
production A → αBγ.

The follow restrictions RF restrict the derivation of substrings following a certain non-
terminal. We define them as a relation over N ×T+. An element (A, u) in this relation means
that during the derivation of a string βAγ, γ can not be derived into a string of form uδ.

The rejects RR restrict the language of a certain non-terminal, by subtracting the language
of another non-terminal from it. We define them as a relation over N ×N . An element (A,B)
means that during the derivation of a string αAβ, A cannot be derived to a string that is also
derivable from B.

5.4 Baseline Algorithm

In this section we explain the baseline algorithm for finding harmless production rules and
ambiguous counter-examples. The presentation follows the steps shown in Figure 5.1. Algo-
rithm 1 gives an overview of the first stage of finding harmless productions. All functions
operate on a fixed input grammar G = (N,T, P, S) to which they have global read access.

5.4.1 Step 1: NFA Construction

The first step of the baseline algorithm is to construct the NFA from the grammar. It is defined
by the tuple (Q,R) where Q is the set of states and R is the transition relation over Q×Vb×Q.

Edges in R are denoted by Q
Vb7−→ Q. The states of the NFA are the items of G. The start

state is S′ → •S$ and the end state is S′ → S$• . There are three types of transitions:

• Shifts of (non-)terminal symbols to advance to a production’s next item,

• Derives from items with the dot before a non-terminal to the first item of one of the
non-terminal’s productions, labeled over T〈,

• Reduces from items with the dot at the end, to items with the dot after the non-terminal
that is at the first item’s production’s left hand side, labeled over T〉.

Algorithm 2 describes the construction of the NFA from G. First, the set of states Q is
composed from the items of G. Then the transitions in R are constructed, assuming only items



76 Chapter 5. Scaling to Scannerless

Algorithm 2 Computing the NFA from a grammar.
function BUILD-NFA() =
1 Q = I // the items of G

2 R = {A → α•Xβ
X
7−→ A → αX•β | } // shifts

3 ∪ {A → α•Bγ
〈i
7−→ B → •β | i = pid(B → β)} // derives

4 ∪ {B → β•

〉i
7−→ A → αB•γ | i = pid(B → β)} // reduces

5 return (Q,R)

in Q are used. Lines 2–4 respectively build the shift, derive and reduce transitions between the
items of G.

Intuitively, the NFA resembles an LR(0) parse automaton before the item closure. The
major differences are that also shifts of non-terminals are allowed, and that the NFA has — by
definition — no stack. The LR(0) pushdown automaton uses its stack to determine the next
reduce action, but in the NFA all possible reductions are allowed. Its language is therefore an
overapproximation of the set of parse trees of G. However, the shape of the NFA does allow
us to turn it into a pushdown automaton that only generates valid parse trees of G. We will do
this later on in the sentence generation stage.

Without a stack the NFA can be searched for ambiguity in finite time. Two paths through
it that shift the same sequence of symbols in V , but different bracket symbols in Tb, represent
a possible ambiguity. If no conflicting paths can be found then G is unambiguous, but
otherwise it is uncertain whether or not all conflicting paths represent ambiguous strings in
L(G). However, the conflicting paths can be used to find harmless production rules. These
are the rules that are not or incompletely used on these paths. If not all items of a production
are used in the overapproximated set of ambiguous parse trees of G, then the production can
certainly not be used to create a real ambiguous string in L(G).

5.4.2 Step 2: Construct and Traverse Pair Graph

NFA Traversal

To collect the items used on all conflicting path pairs we can traverse the NFA with two cursors
at the same time. The traversal starts with both cursors at the start item S′ → •S$. From there
they can progress through the NFA either independently or synchronized, depending on the
type of the followed transition. Because we are looking for conflicting paths that represent
different parse trees of the same string, the cursors should shift the same symbols. To enforce
this we only allow synchronized shifts of equal symbols. The derive and reduce transitions are
followed asynchronously, because the number of brackets on each path may vary.

During the traversal we wish to avoid the derivation of unambiguous substrings, i.e. an
identical sequence of one derive, zero or more shifts, and one reduce on both paths, and
prefer non-terminal shifts instead. This enables us to filter more items and edges from the
NFA. Identical reduce transitions on both paths are therefore not allowed if no conflicts have
occurred yet since their corresponding derives. A path can thus only reduce if the other path
can be continued with a different reduce or a shift. This puts the path in conflict with the other.



5.4. Baseline Algorithm 77

After the paths are conflicting we do allow identical reductions (synchronously), because
otherwise it would be impossible to reach the end item S′ → S$• . To register whether a path
is in conflict with the other we use boolean flags, one for each path. For a more detailed
description of these flags we refer to [Sch07a] and Chapter 4.

Algorithm 3 describes the traversal of path pairs through the NFA. It contains gaps ¬–¯

that we will fill in later on (Algorithm 9), when extending it to handle character-level grammars.
To model the state of the cursors during the traversal we use an item pair datatype with four
fields: two items q1 and q2 in Q, and two conflict flags c1 and c2 in B. We use Π to denote the
set of all possible item pairs.

The function TRAVERSE-EDGES explores all possible continuations from a given item
pair. We assume it has access to the global NFA variables Q and R. To traverse each pair
graph edge it calls the function TRAVERSE-EDGE — see Algorithm 4 — which in turn calls
TRAVERSE-EDGES again on the next pair. The function SHIFTABLE determines the symbol
that can be shifted on both paths. In the baseline setting we can only shift if the next symbols
of both paths are identical. Later on we will extend this function to handle character-level
grammars. The function CONFLICT determines whether a reduce transition of a certain path
leads to a conflict. This is the case if the other path can be continued with a shift or reduce
that differs from the first path’s reduce.

Pair Graph

There can be infinitely many path pairs through the NFA, which can not all be traversed
one-by-one. We therefore model all conflicting path pairs with a finite structure, called a pair

graph, which nodes are item pairs. The function TRAVERSE-EDGES describes the edges of
this graph. An infinite amount of path pairs translates to cycles in this finite pair graph. To
find the items used on all conflicting paths it suffices to do a depth first traversal of the pair
graph that visits each edge pair only once. Since the pair graph might contain dead ends, the
traversal also needs to keep track of which item pairs are ‘alive’. This is the case if they can
reach an end pair: a pair with S′ → S$• for both its items.

Algorithm 4 describes how to find all items used in alive item pairs in the pair graph.
It basically is the depth first traversal algorithm of Tarjan to find the strongly connected
components (SCCs) of a graph [Tar72], extended to mark alive item pairs. We will not go into
the details of the traversal algorithm, but will only comment on the marking of the alive pairs.

The start function for the traversal is TRAVERSE-PATH-PAIRS. It initializes alive, the
global set of alive pairs, with the possible end pairs of the pair graph (line 3), and begins the
traversal by calling TRAVERSE-PAIR with the start pair (line 4). This function traverses all
edge pairs originating at a given item pair using the earlier described function TRAVERSE-
EDGES — see Algorithm 3 —, which in turn calls the function TRAVERSE-EDGE for each
edge pair. Line 6 of this function adds the source pair of an edge to alive if its target pair is
alive. Lines 5–8 of TRAVERSE-PAIR add all elements of a strongly connected component to
alive if the root of the component is alive. Thus, if a traversal of a path reaches an end pair or
an already visited alive pair, all pairs on the path get marked alive as the path is unwound.



78 Chapter 5. Scaling to Scannerless

Algorithm 3 Traversing NFA edge pairs.

function TRAVERSE-EDGES(p ∈ Π) =

1 for each (p.q1
〈i
7−→ q′1)∈R do //derive of q1

2 p′ = p, p′.q1 = q′1, p
′.c1 = 0

3 TRAVERSE-EDGE(p, p′)
4 od
5 for each (p.q2

〈i
7−→ q′2)∈R do //derive of q2

6 p′ = p, p′.q2 = q′2, p
′.c2 = 0

7 TRAVERSE-EDGE(p, p′)
8 od
9 for each (p.q1

X
7−→ q′1), (p.q2

Y
7−→ q′2)∈R do // synchronized shift

10 if SHIFTABLE(X , Y ) 6= ∅ then
11 p′ = p, p′.q1 = q′1, p

′.q2 = q′2
12 // . . . ¬

13 TRAVERSE-EDGE(p, p′)
14 fi
15 for each (p.q1

〉i
7−→ q′1) ∈ R do

16 if CONFLICT(p.q2, 〉i) then // conflicting reduction of q1
17 p′ = p, p′.q1 = q′1, p

′.c1 = 1
18 // . . . 

19 TRAVERSE-EDGE(p, p′)
20 fi
21 for each (p.q2

〉i
7−→ q′2) ∈ R do

22 if CONFLICT(p.q1, 〉i) then // conflicting reduction of q2
23 p′ = p, p′.q2 = q′2, p

′.c2 = 1
24 // . . . ®

25 TRAVERSE-EDGE(p, p′)
26 fi
27 if p.c1 ∨ p.c2 then

28 for each (p.q1
〉i
7−→ q′1), (p.q2

〉i
7−→ q′2)∈R do // synchronized reduction

29 p′ = p, p′.q1 = q′1, p
′.q2 = q′2, p

′.c1 = p′.c2 = 1
30 // . . . ¯

31 TRAVERSE-EDGE(p, p′)
32 od

function SHIFTABLE(X ∈ V , Y ∈ V ) =
1 // returns whether X and Y can be shifted together

2 if X = Y then return X else return ∅

function CONFLICT(q ∈ Q, 〉i ∈ T〉) =
1 // returns whether a shift or reduce transition that conflicts with 〉i can be taken from q

2 return ∃q′ ∈ Q, u ∈ T ∗
〈 : (∃X : q

uX
7−→+ q′) ∨ (∃ 〉j 6= 〉i : q

u〉j
7−→+ q′)



5.4. Baseline Algorithm 79

Algorithm 4 Traversing the pair graph.

function TRAVERSE-PATH-PAIRS(Q, R) =
1 unnumber all pairs in Π , i = 0
2 initialize stack to empty
3 alive = {(S′ → S$• , S′ → S$• , 0, 1), (S′ → S$• , S′ → S$• , 1, 1)}
4 TRAVERSE-PAIR((S′ → •S$, S′ → •S$, 0, 0))
5 return {q1, q2 | ∃(q1, q2, c1, c2) ∈ alive}

function TRAVERSE-PAIR(p ∈ Π) =
1 i = i+ 1, lowlink(p) = number(p) = i
2 push p on stack

3 TRAVERSE-EDGES(p)
4 if lowlink(p) = number(p) then // p is the root of a SCC

5 do // add all pairs in SCC to alive if p is alive

6 pop p′ from stack

7 if p ∈ alive then add p′ to alive

8 while p′ 6= p

function TRAVERSE-EDGE(p1 ∈ Π , p2 ∈ Π) =
1 if p2 is unnumbered then
2 TRAVERSE-PAIR(p2)
3 lowlink(p1) = min(lowlink(p1), lowlink(p2))
4 else if p2 is on stack then
5 lowlink(p1) = min(lowlink(p1), number(p2))
6 if p2 ∈ alive then add p1 to alive



80 Chapter 5. Scaling to Scannerless

Algorithm 5 Filtering unused states and transitions from an NFA.

function FILTER-NFA(Q, R, Qa ⊆ Q) =
1 // gather subNFA of completely used productions

2 Qu = {A → α•β |A → αβ ∈ USED-PRODUCTIONS(Qa)}

3 Ru = {q0
Xb7−→ q1 ∈ R | q0, q1 ∈ Qu} // R restricted to Qu

4 // prune dead ends

5 Q′ = {q ∈ Qu | S′ → •S$ R∗
u q, q R∗

u S′ → S$•} // items alive in Ru

6 R′ = {q0
Xb7−→ q1 ∈ Ru | q0, q1 ∈ Q′} // Ru restricted to Q′

7 return (Q′, R′)

function USED-PRODUCTIONS(Q′ ⊆ Q) =
1 return {A → α | proditems(A → α) ⊆ Q′}

5.4.3 Steps 3–4: NFA Filtering and Harmless Rules Identification

After the items used on conflicting path pairs are collected in Qa we can identify harmless
production rules from them. As said, these are the productions of which not all items are
used. All other productions of G are potentially harmful, because it is uncertain if they
can really be used to derive ambiguous strings. They can be calculated using the function
USED-PRODUCTIONS shown in Algorithm 5.

We filter the harmless production rules from the NFA by removing all their items and
pruning dead ends. This is described by the function FILTER-NFA in Algorithm 5. If there
are productions of which some but not all items were used, we actually remove a number of
conflicting paths that do not represent valid parse trees of G. After filtering there might thus
be even more unused items in the NFA. We therefore repeat the traversing and filtering process
until no more items can be removed — see again Algorithm 1. Then, all productions that are
not used in the NFA are harmless. This step concludes the first stage of our framework (Find

Harmless Productions in Figure 5.1).

5.4.4 Steps 5–7: NFA Reconstruction and Sentence Generation

In the second part of our framework we use an inverted SGLR parser [vdBSVV02] as a
sentence generator to find real ambiguous sentences in the remainder of the NFA. However,
certain states in the NFA might not lead to the generation of terminal-only sentences anymore,
due to the removal of terminal shift transitions during filtering. These are the states with
outgoing non-terminal shift transitions that have no corresponding derive and reduce transitions
anymore. To make such a non-terminal productive again we introduce a new terminal-only
production for it that produces a shortest string from its original language. Then we add a new
chain of derive, shift, and reduce transitions for this production to the states before and after
the unproductive non-terminal shift.

After the NFA is reconstructed we generate an LR(0) pushdown automaton from it to
generate sentences with. In contrast to the first stage, we now do need a stack because we only
want to generate proper derivations of the grammar. Also, because of the item closure that is



5.5. Ambiguity Detection for Character-level Grammars 81

applied in LR automata, all derivations are unfolded statically, which saves generation steps at
run-time.

The inverted parser generates all sentences of the grammar, together with their parse trees.
If it finds a sentence with multiple trees then these are reported to the user. They are the
most precise ambiguity reports possible, and are also very descriptive because they show
the productions involved. Because the number of derivations of a grammar can be infinite,
we continue searching strings of increasing length until a certain time limit is reached. The
number of strings to generate can grow exponentially with increasing length, but filtering
unambiguous derivations beforehand can also greatly reduce the time needed to reach a certain
length as Section 5.7 will show.

5.5 Ambiguity Detection for Character-level Grammars

After sketching the baseline algorithm we can extend it to find ambiguities in character-level
grammars. We take disambiguation filters into account during ambiguity detection, so we do
not report ambiguities that are already solved by the grammar developer. Furthermore, we
explain and fix the issue that the baseline harmless rules filtering is unable to properly deal
with follow restrictions.

5.5.1 Application of Baseline Algorithm on Example Grammar

Before explaining our extensions we first show that the baseline algorithm can lead to incorrect
results on character-level grammars. If we apply it to the example grammar of Figure 5.2, the
harmless production rule filter will actually remove ambiguities from the grammar. Since the
filtering is supposed to be conservative, this behaviour is incorrect.

The baseline algorithm will ignore the reject rule and follow restrictions in the grammar
(Rules 6, 7, 9–11), and will therefore find the ambiguities that these filters meant to solve.
Ambiguous strings are, among others, “float f;” (float can be a keyword or identifier)
and “intList l;” (intList can be one or more specifiers). Rules 1–5 will therefore be
recognized as potentially harmful. However, in all ambiguous strings, the substrings containing
whitespace will always be unambiguous. This is detected by the PG traversal and Rule 8
(Ws ::= [\ \t\n]+) will therefore become harmless.

Rule 8 will be filtered from the grammar, and during reconstruction Ws? will be termi-
nalized with the shortest string from its language, in this case ε. This effectively removes all
whitespace from the language of the grammar. In the baseline setting the grammar would still
be ambiguous after this, but in the character-level setting the language of the grammar would
now be empty! The follow restriction of line 9 namely dictates that valid Declaration
strings should contain at least one whitespace character to separate specifiers and identifiers.

This shows that our baseline grammar filtering algorithm is not suitable for character-level
grammars as is, because it might remove ambiguous sentences. In addition, it might even
introduce ambiguities in certain situations. This can happen when non-terminals are removed
that have follow restrictions that prohibit a second derivation of a certain string. In short,
follow restrictions have a non-context-free influence on sentence derivation, and the baseline
algorithm assumes only context-free derivation steps. In the extensions presented in the next



82 Chapter 5. Scaling to Scannerless

Algorithm 6 SHIFTABLE function for character-level pair graph.

function SHIFTABLE(X ∈ N , Y ∈ N) =
// returns the symbol that can be shifted from X and Y
if X ∈ C ∧ Y ∈ C then // X and Y are character classes

return X ∩ Y
else if X = Y then // X and Y are the same non-terminal

return X
else // no shift possible

return ∅

Algorithm 7 Filtering derive restrictions from the NFA.

function FILTER-DERIVE-RESTRICTIONS(R) =

return R\{A → α•Bγ
〈i
7−→ B → •β | i = pid(B → β), (A → α•Bγ,B → β) ∈ RD}

\{B → β•

〉i
7−→ A → αB•γ | i = pid(B → β), (A → α•Bγ,B → β) ∈ RD}

section we repair this flaw and make sure that the resulting algorithm does not introduce or
lose ambiguous sentences.

5.5.2 Changes to the Baseline Algorithm

The differences between character-level grammars and conventional grammars result in several
modifications of our baseline algorithm. These modifications deal with the definitions of
both the NFA and the pair graph. We reuse the NFA construction of Algorithm 2 because it
is compliant with character-level productions, and apply several modifications to the NFA
afterwards to make it respect a grammar’s derivation restrictions and follow restrictions. An
advantage of this is that we do not have to modify the pair graph construction. To keep the test
practical and conservative we have to make sure that the NFA remains finite, while its paths
describe an overapproximation of S(Gb).

Character Classes

Because of the new shape of the productions, we now shift entire character classes at once,
instead of individual terminal symbols. This avoids adding derives, shifts and reduces for the
terminals in all character classes, which would bloat the NFA, and thus also the pair graph. In
the PG we allow a synchronized shift of two character classes if their intersection is non-empty.
To enforce this behaviour we only need to change the SHIFTABLE function as shown in
Algorithm 6.

Derivation Restrictions and Follow Restrictions

After the initial NFA is constructed we remove derive and reduce edges that are disallowed by
the derivation restrictions. This is described in function FILTER-DERIVE-RESTRICTIONS



5.5. Ambiguity Detection for Character-level Grammars 83

in Algorithm 7. Then we propagate the follow restrictions through the NFA to make it only
generate strings that comply with them. This is described in function PROPAGATE-FOLLOW-
RESTRICTIONS in Algorithm 8. The operation will result in a new NFA with states that are
tuples containing a state of the original NFA and a set of follow restrictions over P(T+). A
new state cannot be followed by strings that have a prefix in the state’s follow restrictions. To
enforce this we constrain character class shift edges according to the follow restrictions of
their source states.

The process starts at (S′ → •S$, ∅) and creates new states while propagating a state’s
follow restrictions over the edges of its old NFA item. In contrast to the original NFA, which
had at most one shift edge per state, states in the new NFA can have multiple. This is because
non-terminal or character class edges actually represent the shift of multiple sentences, which
can each result in different follow restrictions. Lines 6–9 show the reconstruction of character-
class shift edges from a state (A → α•Bβ, f). Shift edges are added for characters in B that
are allowed by f . All characters in B that will result in the same new set of follow restrictions
are combined into a single shift edge, to not bloat the new NFA unneccesarily. The restrictions
after a shift of a are the tails of the strings in f beginning with a, and are calculated by the
function NEXT-FOLLOW.

Line 12 describes how a state’s restrictions are passed on unchanged over derive edges.
Lines 13–20 show how new non-terminal shift edges are added from a state (A → α•Bβ, f)
once their corresponding reduce edges are known. This is convenient because we can let the
propagation calculate the different follow restrictions that can reach A → αB•β. Once the
restrictions that were passed to the derive have reached a state B → γ• , we propagate them
upwards again over a reduce edge to A → αB•β. If B has follow restrictions — in RF —
these are added to the new state as well. Note that multiple follow restriction sets might occur
at the end of a production, so we might have to reduce a production multiple times. For a
given state B → •γ, the function SHIFT-ENDS returns all states that are at B → γ• and that
are reachable by shifting.

If the reduced production is of form B → ε we create a special non-terminal symbol Bε

and make it the label of the shift edge instead of B. This is a small precision improvement of
the PG traversal. It prevents the situation where a specific non-terminal shift that — because
of its follow restriction context — only represents the empty string, is traversed together with
another instance of the same non-terminal that cannot derive ε.

The propagation ends when no new edges can be added to the new NFA. In theory the new
NFA can now be exponentially larger than the original, but since follow restrictions are usually
only used sparingly in the definition of lexical syntax this will hardly happen in practice. In
Section 5.7 we will see average increases in NFA size of a factor 2–3.

Rejects

Instead of encoding a grammar’s rejects in the NFA, we choose to handle them during the PG
traversal. Consider an element (A,B) in RR, which effectively subtracts the language of B
from that of A. If the language of B is regular then we could, for instance, subtract it from the
NFA part that overapproximates the language of A. This would not violate the finiteness and
overapproximation requirements. However, if the language of B is context-free we have to



84 Chapter 5. Scaling to Scannerless

Algorithm 8 Propagating follow restrictions through the NFA.

function PROPAGATE-FOLLOW-RESTRICTIONS(Q, R) =
1 // propagate follow restrictions through NFA (Q,R) and return a new NFA (Q′, R′)
2 Q′ = {(S′ → •S$, ∅)}, R′ = ∅
3 repeat
4 add all states used in R′ to Q′

5 for qf = (A → α•Bβ, f) ∈ Q′ do
6 if B ∈ C then // B is a character class

7 for a ∈ B, a /∈ f do // all shiftable characters in B
8 let B′={b|b ∈ B, b /∈ f, NEXT-FOLLOW(a, f) = NEXT-FOLLOW(b, f)}

9 add qf
B′

7−→ (A → αB•β, NEXT-FOLLOW(a, f)) to R′

10 od
11 else // B is a normal non-terminal

12 for A → α•Bβ
〈i
7−→ q′ ∈ R do

13 add qf
〈i
7−→ (q′, f) to R′ // propagate f over derivation

14 for qrf = (qr, fr) ∈ SHIFT-ENDS((q′, f))
15 let qsf = (A → αB•β, fr ∪RF (B)) // shift target

16 add qrf
〉i
7−→ qsf to R′ // reduction to shift target

17 if bracketP(〈i) = B → ε then

18 add qf
Bε

7−→ qsf to R′ // non-terminal shift representing empty string

19 else
20 add qf

B
7−→ qsf to R′ // non-terminal shift of non-empty strings

21 od
22 od
23 until no more edges can be added to R′

24 return (Q′, R′)

function SHIFT-ENDS((A → •α, f) ∈ Q′) =
1 // return the states at the end of A → α, reachable from q using only shifts

2 let 99K= {q 99K q′ | q
B
7−→ q′ ∈ R′} // the shift transitions of R′

3 return {(A → α• , f ′) | (A → •α, f) 99K∗ (A → α• , f ′)}

function NEXT-FOLLOW(a ∈ T, f ∈ P(T+))
1 return {α | aα ∈ f, α 6= ε} // the next follow restrictions of f after a shift of a

underapproximate it to finite form first, to keep the NFA an overapproximation and finite. A
possible representation for this would be a second NFA, which we could subtract from the
first NFA beforehand, or traverse alongside the first NFA in the PG.

Instead, we present a simpler approach that works well for the main use of rejects: keyword
reservation. We make use of the fact that keywords are usually specified as a set of non-
terminals that represent literal strings — like Rules 6 and 7 in Figure 5.2. The production



5.5. Ambiguity Detection for Character-level Grammars 85

Algorithm 9 Extensions to TRAVERSE-EDGES for avoiding rejected keywords.
// at ¬ (shift) insert:

p′.r1 = p′.r2 = ∅ // clear reduced sets

// at  and ¯ (conflicting and pairwise reduce) insert:

if not CHK-REJECT(〉i, p.r2) then continue
p′.r1 = NEXT-REJECT(〉i, p.r1)

// similarly, insert at ® and ¯:

if not CHK-REJECT(〉i, p.r1) then continue
p′.r2 = NEXT-REJECT(〉i, p.r2)

function CHK-REJECT(〉i ∈ T〉, r ∈ P(N)) =
// returns whether a reduction with 〉i is possible after reductions r on other path

let A = bracketN(〉i)
return ¬∃B ∈ r : (A,B) ∈ RR ∨ (B,A) ∈ RR

function NEXT-REJECT(〉i ∈ T〉, r ∈ P(N)) =
// adds non-terminal reduced with 〉i to r if it is involved in a reject

let A = bracketN(〉i)
if ∃B ∈ r : (A,B) ∈ RR ∨ (B,A) ∈ RR then

return r ∪ {A}
else return r

rules for "int", "float", etc. are not affected by the approximation, and appear in the
NFA in their original form. We can thus recognize that, during the PG traversal, a path
has completely shifted a reserved keyword if it reduces "int". After that, we can prevent
the other path from reducing Identifier before the next shift. This does not restrict the
language of Identifier in the NFA — it is kept overapproximated —, but it does prevent
the ambiguous situation where “int” is recognized as an Identifier on one path and as
an "int" on the other path.

Of course, Identifier could also be reduced before "int", so we need to register the
reductions of both non-terminals. During the PG traversal, we keep track of all reduced non-
terminals that appear in RR, in two sets r1 and r2, one for each path. Then, if a path reduces a
non-terminal that appears in a pair in RR, together with a previously reduced non-terminal in
the other path’s set, we prevent this reduction. The sets are cleared again after each pairwise
shift transition. Algorithm 9 shows this PG extension.

5.5.3 NFA Reconstruction

In Section 5.5.1 we saw that follow restrictions should be handled with care when filtering
and reconstructing a grammar, because of their non-context-free behaviour. By removing
productions from a grammar certain follow restrictions can become unavoidable, which



86 Chapter 5. Scaling to Scannerless

removes sentences from the language. On the other hand, by removing follow restrictions
new sentences can be introduced that were previously restricted. When reconstructing a
character-level grammar we thus need to terminalize filtered productions depending on the
possible follow-restrictions they might generate or that might apply to them.

Instead, by directly reusing the filtered NFA for sentence generation, we can avoid this
problem. The follow restrictions that are propagated over the states already describe the follow
restriction context of each item. For each distinct restriction context of an item a separate state
exists. We can just terminalize each unproductive non-terminal shift edge with an arbitrary
string from the language of its previously underlying automaton.

Furthermore, the filtered NFA is a more detailed description of the potentially ambiguous
derivations than a filtered grammar, and therefore describes less sentences. For instance, if
derive and reduce edges of a production B → β are filtered out at a specific item A → α•Bγ,
but not at other items, we know B → β is harmless in the context of A → α•Bγ. The
propagated follow restrictions also provide contexts in which certain productions can be
harmless. We could encode this information in a reconstructed grammar by duplicating non-
terminals and productions of course, but this could really bloat the grammar. Instead, we just
reuse the baseline NFA reconstruction algorithm.

5.6 Grammar Unfolding

In Section 5.7 we will see that the precision of the algorithm described above is not always
sufficient for some real life grammars. The reason for this is that the overapproximation in the
NFA is too aggressive for character-level grammars. By applying grammar unfoldings we can
limit the approximation, which improves the precision of our algorithm.

The problem with the overapproximation is that it becomes too aggressive when certain
non-terminals are used very frequently. Remember that due to the absence of a stack, the derive
and reduce transitions do not have to be followed in a balanced way. Therefore, after deriving
from an item A → α•Bβ and shifting a string in the language of B, the NFA allows reductions
to any item of form C → γB•δ. This way, a path can jump to another production while being
in the middle of a first production. Of course, a little overapproximation is intended, but the
precision can be affected seriously if certain non-terminals are used very frequently. Typical
non-terminals like that in character-level grammars are those for whitespace and comments,
which can appear in between almost all language constructs. Since these non-terminals can
usually derive to ε, we can thus jump from almost any item to almost any other item by
deriving and reducing them.

To restrict the overapproximation we can unfold the frequently used non-terminals in
the grammar, with a technique similar to one used in [BGM10]. A non-terminal is unfolded
by creating a unique copy of it for every place that it occurs in the right-hand sides of the
production rules. For each of these copies we then also duplicate the entire sub-grammar of
the non-terminal. The NFA thus gets a separate isolated sub-automaton for each occurence
of an unfolded non-terminal. After the derivation from an item A → α•Bβ a path can now
only reduce back to A → αB•β, considering B is unfolded. After unfolding, the NFA
contains more states, but has less paths through it because it is more deterministic. In the
current implementation we unfold all non-terminals that describe whitespace, comments, or



5.7. Experimental Results 87

Name Produc- SLOC Non- Derive Follow Reserved
tions terminals restrictions restrictions keywords

C1 324 415 168 332 10 32
C++2 807 4172a 430 1 87 74
ECMAScript3 403 522 232 1 27 25
Oberon04 189 202 120 132 31 27
SQL-925 419 495 266 23 5 30
Java 1.56 698 1629 387 297 78 56
1SDF2 grammar library, revision 27501, http://www.meta-environment.org
2TRANSFORMERS 0.4, http://www.lrde.epita.fr/cgi-bin/twiki/view/Transformers/Transformers
3ECMASCRIPT-FRONT, revision 200, http://strategoxt.org/Stratego/EcmaScriptFront
4RASCAL Oberon0 project (converted to SDF2), rev. 34580, http://svn.rascal-mpl.org/oberon0/
5SQL-FRONT, revision 20713, http://strategoxt.org/Stratego/SqlFront
6JAVA-FRONT, revision 17503, http://strategoxt.org/Stratego/JavaFront
aAfter removal of additional attribute code

Table 5.1: Character-level grammars used for validation.

literal strings like keywords, brackets and operators. Later on we will refer to this unfolding
extension as CHAR+UNF.

5.7 Experimental Results

We have evaluated our ambiguity detection algorithm for character-level grammars on the
grammar collection shown in Table 5.1. All grammars are specified in SDF2 [HHKR89,
Vis97]. The selection of this set is important for external validity. We have opted for grammars
of general purpose programming languages, which makes it easier for others to validate
our results. For each grammar we give its name, number of productions, number of source
lines (SLOC), number of non-terminals, number of priorities and associativities (derivation
restrictions), number of follow restrictions and number of reserved keywords.

5.7.1 Experiment Setup

We have run both our NFA filtering and sentence generation algorithms on each of these
grammars. Most measurements were carried out on an Intel Core2 Quad Q6600 2.40GHz
with 8GB DDR2 memory, running Fedora 14. A few memory intensive runs were done
on an Amazon computing cloud EC2 High-Memory Extra Large Instance with 17.1GB
memory. The algorithms have been implemented in Java and are available for download at
http://homepages.cwi.nl/~basten/ambiguity. In order to identify the effects
of the various extensions, we present our empirical findings for the following combinations:

• BASE: the baseline algorithm for token-level grammars as described in Section 5.4,
with the only addition that whole character-classes are shifted instead of individual

http://www.meta-environment.org
http://www.lrde.epita.fr/cgi-bin/twiki/view/Transformers/Transformers
http://strategoxt.org/Stratego/EcmaScriptFront
http://svn.rascal-mpl.org/oberon0/
http://strategoxt.org/Stratego/SqlFront
http://strategoxt.org/Stratego/JavaFront
http://homepages.cwi.nl/~basten/ambiguity


88 Chapter 5. Scaling to Scannerless

Grammar Method Harmless NFA edges Time Memory
productions filtered (sec) (MB)

C BASE 48 / 324 343 / 14359 64 2128
CHAR 62 / 324 2283 / 24565 120 3345
CHAR+UNF 75 / 324 8637 / 30653 97 2616

C++ BASE 0 / 807 0 / 8644 32 1408
CHAR 0 / 807 0 / 39339 527 7189
CHAR+UNFa – – >9594 >17.3G

ECMAScript BASE 44 / 403 414 / 4872 12 547
CHAR 46 / 403 1183 / 10240 46 1388
CHAR+UNF 88 / 403 9887 / 19890 31 1127

Oberon0 BASE 0 / 189 0 / 3701 4.2 256
CHAR 70 / 189 925 / 6162 9.0 349
CHAR+UNF 73 / 189 10837 / 20531 14 631

SQL-92 BASE 13 / 419 98 / 4944 16 709
CHAR 20 / 419 239 / 9031 83 2093
CHAR+UNF 65 / 419 7285 / 14862 37 1371

Java 1.5 BASE 0 / 698 0 / 16844 60 2942
CHAR 0 / 698 0 / 45578 407 7382
CHAR+UNFa 189 / 698 180456 / 262030 1681 15568

aRun on Amazon EC2 High-Memory Extra Large Instance

Table 5.2: Timing and precision results of filtering harmless productions.

tokens. Even though this configuration can lead to incorrect results, it is included as a
baseline for comparison.

• CHAR: the baseline algorithm extended for handling character-level grammars as
described in Section 5.5, including extensions for follow restrictions, derive restrictions
and rejects.

• CHAR+UNF: the CHAR algorithm combined with grammar unfolding (Section 5.6).

5.7.2 Results and Analysis

In Table 5.2 we summarize our measurements of the NFA filtering and harmless production
rule detection. For each grammar and extension configuration we give the number of harmless
productions found versus total number of productions, number of edges filtered from the NFA,
execution time (in seconds) and memory usage (in MB).

Every configuration was able to filter an increasing number of productions and edges for
each of the grammars. For C and ECMAScript BASE could already filter a small number rules
and edges, although it remains unsure whether these are all harmless because the baseline



5.7. Experimental Results 89

algorithm cannot handle follow restrictions properly. For C and Oberon0 our character-
level extensions of CHAR improved substantially upon BASE, without the risk of missing
ambiguous sentences.

Of all three configurations CHAR+UNF was the most precise. For the grammar order
of the table, it filtered respectively 23%, 0%, 22%, 39%, 16% and 27% of the production
rules, and 28%, 0%, 50%, 53%, 49% and 69% of the NFA edges. Unfolding grammars
leads to larger but more deterministic NFAs, which in turn can lead to smaller pair graphs
and thus faster traversal times. This was the case for most grammars except the larger ones.
ECMAScript, SQL-92 and Oberon0 were checkable in under 1 minute, and C in under 2
minutes, all requiring less than 3GB of memory. Java 1.5 was checkable in just under 16GB in
30 minutes, but for the C++ grammar — which is highly ambiguous — the pair graph became
too large. However, the additional cost of unfolding was apparently necessary to deal with the
complexity of Java 1.5.

Table 5.3 allows us to compare the sentence generation times for the unfiltered and filtered
NFAs. For each grammar and NFA it shows the number of sentences of a certain length in the
language of the NFA, and the times required to search them for ambiguities. The unfiltered
sentence generation also takes disambiguation filters into account. C++ is not included because
its NFA could not be filtered in the previous experiments.

For all grammars we see that filtering with CHAR and CHAR+UNF lead to reductions
in search space and generation times. To indicate whether the investments in filtering time
actually pay off, the last column contains the maximum speedup gained by either CHAR
or CHAR+UNF. For sentence lengths that are already relatively cheap to generate, filtering
beforehand has no added value. However, the longer the sentences get the greater the pay-off.
We witnessed speedup factors ranging from a small 1.1 (C length 7) to a highly significant
3399 (Oberon0 length 26). Filtering Oberon0 with CHAR+UNF was so effective that it
increased the sentence length checkable in around 15 minutes from 24 to 35.

For most grammars filtering already becomes beneficial after around 15 seconds to 6
minutes. For Java 1.5 this boundary lies around 35 minutes, because of its high filtering time.
However, after that we see an immediate speedup of a factor 6.2. In all cases CHAR+UNF
was superior to CHAR, due to its higher precision and lower run-times.

The third column of Table 5.3 contains the number of ambiguous non-terminals found
at each length. Because of filtering, ambiguous non-terminals at larger lengths were found
earlier in multiple grammars. There were 2 ambiguous non-terminals in C that were found
faster, and 4 non-terminals in ECMAScript and 3 in SQL-92.

Concluding, we see that our character-level NFA filtering approach was very beneficial
on the small to medium grammars. A relatively low investment in filtering time — under
2 minutes — lead to significant speedups in sentence generation. This enabled the earlier
detection of ambiguities in these grammars. For the larger Java 1.5 grammar the filtering
became beneficial only after 32 minutes, and for the highly ambiguous C++ grammar the
filtering had no effect at all. Nevertheless, ambiguity detection for character-level grammars is
ready to be used in interactive language workbenches.



90 Chapter 5. Scaling to Scannerless

Ambig Unfiltered CHAR CHAR+UNF Maximum
Grammar Len NTs #Sent. Time #Sent. Time #Sent. Time speedup
C 5 6 345K 7.9 273K 5.9 267K 5.9 0.08x

6 8 5.06M 35 3.77M 25 3.66M 25 0.29x
7 8 75.5M 398 53.4M 270 51.6M 259 1.1x
8 9 1.13G 5442 756M 3466 727M 3362 1.6x
9 10 17.0G 78987 10.8G 47833 10.3G 47018 1.7x

ECMAScript 3 6 14.2K 4.5 11.7K 3.5 9.29K 3.3 0.13x
4 8 274K 11 217K 8.9 159K 6.7 0.29x
5 10 5.17M 149 3.92M 120 2.64M 69 1.5x
6 11 96.8M 2805 70.5M 2186 43.8M 1184 2.3x
7 12 1.80G 54175 1.26G 41091 719M 20264 2.7x

Oberon0 22 0 21.7M 60 320 1.0 182 1.0 6.0x
23 0 62.7M 186 571 1.0 248 1.0 19x
24 0 247M 815 1269 1.0 468 1.0 82x
25 0 1.39G 4951 3173 1.1 1343 1.1 490x
26 0 9.56G 35007 9807 1.3 3985 1.3 3399x
32 0 108M 172 13.8M 28
33 0 549M 885 55.6M 101
34 0 2.80G 4524 224M 393
35 0 14.3G 22530 906M 1591
36 0 3.66G 6270

SQL-92 11 5 2.65M 16 1.54M 9.4 321K 4.2 0.39x
12 6 15.8M 102 7.36M 47 1.66M 14 2.0x
13 6 139M 1018 51.3M 379 11.5M 90 8.0x
14 6 1.49G 11369 453M 3572 90.8M 711 15x
15 7 4.39G 35024 742M 5781
16 8 6.13G 47211

Java 1.5 7 0 187K 33 39.1K 6.8 0.02x
8 1 3.15M 115 482K 20 0.07x
9 1 54.7M 1727 6.05M 212 0.91x

10 1 959M 39965 76.2M 4745 6.2x

Table 5.3: Timing results of sentence generation. Times are in seconds. For each sentence
length, the run-time of the fastest configuration (after taking filtering time into account) is
highlighted. Speedup is calculated as unfiltered sentence gen. time

filtering time+sentence gen. time .

5.7.3 Validation

In Chapter 4 we proved the correctness of our baseline algorithm. To further validate our
character-level extensions and their implementations we applied them on a series of toy
grammars and grammars of real world programming languages. We ran various combinations
of our algorithms on the grammars and automatically compared the ambiguous sentences



5.8. Conclusion 91

produced, to make sure that only those ambiguities that exist in a grammar were found, so not
more and not less. For the version of our implementation that we used for the experiments
above, we found no differences in the ambiguous strings generated. The validation was done
in the following stages:

• First we built confidence in our baseline sentence generator by comparing it to the
external sentence generators AMBER [Sch01] and CFG ANALYZER [AHL08]. For this
we used a grammar collection also used in Chapter 2, which contains 87 small toy
grammars and 25 large grammars of real-world programming languages.

• Then we validated the character-level extension of the baseline sentence genera-
tor by comparing it to a combination of our baseline sentence generator and the
SGLR [vdBSVV02] parser used for SDF2. By running the baseline sentence generator
on character-level grammars it will report more strings as ambiguous than actually exist
in a grammar, because it does not regard disambiguation filters. We therefore filter out
the truly ambiguous sentences by using the SGLR parser as an oracle, and test whether
our character-level sentence generator finds exactly the same ambiguous sentences. In
some situations SGLR will produce non-optimal parse trees, so we had to verify these
by hand. In this step and the following we used the SDF2 grammars in Table 5.1.

• Third, we validated our NFA filtering algorithms by running the character-level sentence
generator on both filtered and unfiltered NFAs. Because a filtered NFA contains only
one reconstructed sentence for non-terminals with only harmless productions, it might
produce less variations of ambiguous sentences. We therefore reduced all ambiguous
sentences to their core ambiguous sentential forms — see Chapter 4 before comparison.
This is done by removing the unambiguous substrings from an ambiguous sentence, and
replacing them with their deriving non-terminal.

5.8 Conclusion

We have presented new algorithms for ambiguity detection for character-level grammars and
by experimental validation we have found an affirmative answer to the question whether
ambiguity detection can be scaled to this kind of grammars. We have achieved significant
speedups of up to three orders of magnitude for ambiguity checking of real programming
language grammars. Ambiguity detection for character-level grammars is ready to be used in
interactive language workbenches, which is good news for the main application areas of these
grammars: software renovation, language embedding and domain-specific languages.





Chapter 6

Implementing AMBIDEXTER

“I’d give my right arm to be ambidextrous.”

Brian W. Kernighan

This chapter presents our tool implementation of AMBIDEXTER. The tool was

developed to experimentally validate the techniques presented throughout this thesis,

but also to be used in real grammar development. The tool consists of two parts: a

harmless production rule filter, and a parallel sentence generator. We discuss the

architecture as well as implementation details of both of these parts, and finish with

advise for their usage.

6.1 Introduction

To be able to validate our grammar filtering techniques described in Chapters 3–5 on real
programming language grammars, we needed to implement them in a tool. Furthermore, to
test the effect of filtering on exhaustive searching techniques we also needed implementations
of these methods. For validating the filtering of token-based grammars we could use existing
tools like AMBER and CFG ANALYZER, but for character-level grammars there was no tool
available. We therefore created our own sentence generator for this type of grammars, and
combined it with our grammar filter into a single tool called AMBIDEXTER. In this chapter
we discuss the implementations of both parts of the tool.

This chapter is based on a tool demonstation paper with the same title that was published in the proceedings
of the Tenth IEEE Working Conference on Source Code Analysis and Manipulation (SCAM 2010) [BvdS10]. This
paper was written together with Tijs van der Storm.

93



94 Chapter 6. Implementing AMBIDEXTER

6.2 Grammar Filter

The first part of the tool implements the grammar filtering technique described in Chapters 3,
4 and 5. In this section we assume a basic understanding of the grammar filtering process. For
a detailed introduction we refer to Sections 5.2 and 5.4.

6.2.1 Requirements

The main functional requirement of the tool is of course that it should correctly implement our
grammar filtering technique and its character-level extensions. But apart from that, it should
also fulfill the following non-functional requirements:

• Memory efficient Because the number of item pairs can be very high, the pair graph
traversal is much more memory intensive than it is cpu-intensive.

• Extensible To allow for easy experimenting with new techniques or improvements.

• Explanatory The tool should provide insight into the applied techniques, and might
serve as a reference implementation.

In the next section we describe the architecture of the grammar filtering tool, and describe
how it meets these requirements.

6.2.2 Architecture and Design

Figure 6.1 shows an overview of the architecture of the grammar filtering tool. The process
starts from an input grammar and a precision setting for the approximation. The input grammar
can be read in YACC [Joh]/BISON [DS05], SDF2 [HHKR89, Vis97] or RASCAL [KvdSV11]
format. A nondeterministic finite automaton (NFA) is build from the grammar that approx-
imates its parse trees with the specified precision. The states of this NFA are the items of
the grammar and are, depending on the chosen precision, extended with lookahead informa-
tion. Our tool supports the following precisions: LR(0), SLR(1), LALR(1) and LR(1). The
precisions are named after parsing algorithms, because their resulting NFAs resemble their
corresponding nondeterministic parse automata.

After the basic NFA is constructed, several precision improving operations are made to it,
depending on the type of grammar or options selected by the user. Special NFA modifiers can
be loaded that each alter the nodes and edges of the NFA, for instance by removing edges or
unfolding certain paths. The priority and associativity annotations of character-level grammars
as described by Algorithm 7 in Section 5.5.2 are implemented like this, as well as the follow
restriction propagation of Algorithm 8. To satisfy the extensibility requirement, new modifiers
can be added modularly.

After the NFA is extended, we filter out the states that are not used in the description of
parse trees of potentially ambiguous strings. To find these states we build the pair graph. The
nodes of the pair graph are pairs of NFA nodes, extended with some additional information. A
path through this graph marks two paths through the NFA that describe different parse trees
for the same potentially ambiguous string. Therefore, the nodes that need to be filtered from



6.2. Grammar Filter 95

���
�����	A�B�AC��

D�EFFE�
�����	A�B�AC��

�����	A�B�A��
���

�C�A����
��EFFE�

��A��ACE���
�E�F�B�

����B�AC��	

�	��
����B�AC��
������A��

D�EFFE�

�EC����E��
��A��	C��	

�C�A��C��
����C	C��

���
�BC����

�EC����E��
A�E���	E�

�A�F
�EC�
	A���

��A�����
���

���
�C�A��

�	��
����	AEA�	

 E	�
���

���
F��C�C��	

Figure 6.1: Architecture of AMBIDEXTER’s grammar filter.

the NFA are those that are not used on any complete path through the pair graph. The pair
graph is traversed while it is constructed and the used NFA states are collected — as described
in Algorithm 4. After that, the unused states are filtered from the NFA, and loose ends are
pruned.

The process of pair graph traversal and NFA filtering is repeated until no more states can
be filtered. After that the NFA contains only those states that contribute to possible ambiguity
under the current approximation precision. At this point, this information can be used in



96 Chapter 6. Implementing AMBIDEXTER

two ways. The first one is to collect the potentially harmful production rules from the NFA
and reconstruct a new grammar from them. This grammar can then be searched further with
other ambiguity detection methods. Output formats for the following tools are supported:
YACC/BISON, ACCENT/AMBER [Sch06, Sch01], CFG ANALYZER [AHL08] and the imple-
mentation of the “Ambiguity Checking with Language Approximation” framework [BGM10].
The other option is to reconstruct unproductive states in the NFA and store it to disk, so that it
can be used with AMBIDEXTER’s sentence generator immediately.

To support modifications to the pair graph while keeping a single traversal algorithm,
special pair graph extensions can be loaded. An extension consists of a set of functions that
are called during the traversal of each item pair. The functions are able to store additional
information in an item pair, and can use this information to abort the traversal at certain points.
As an example, the handling of reject filters in character-level grammars — as described in
Section 5.5.2 — is implemented as a pair graph extension. The reject extension stores two
additional sets of reduced non-terminals with each item pair, and aborts the traversal of an
item pair if it encounters the reduction of a rejected non-terminal.

Another important component in the architecture of the pair graph traversal is the item

pair store. The purpose of the item pair store is to keep track of all created item pairs and their
traversal related information in a memory efficient way. Because the number of item pairs
is quadratic in the number of NFA states, pair graphs can become very large. As Table 6.1
shows, the pair graphs required for checking real programming language grammars can grow
up to hundreds of millions of pairs. Without efficient storage, they would be impossible to
traverse on modern machines. The following section discusses the current implementation of
the item pair store in more detail.

6.2.3 Implementation Details

The biggest problem with creating a practically usable grammar filtering tool was to find a
memory efficient pair graph representation. For checking character-level grammars, we need
to record at least the following information per item pair:

• Two NFA states

• Two conflict flags

• number and lowlink (see Algorithm 4)

• alive and on stack flags (see Algorithm 4)

Furthermore, we need to store all created item pairs in a data structure to be able to test
whether a newly visited item pair is already visited before or is new. In the first prototype
implementation we used plain Java objects to represent an item pair, together with a simple
hashmap to store the created objects. For the experiments on token-based grammars shown in
Chapter 3 this design performed sufficiently well. However, for running the character-level
grammars experiments of Chapter 5, it turned out to be too memory inefficient.

In order to take the reject filters into account during the pair graph traversal, we needed to
add two additional sets of reduced non-terminals to our item pairs (see Section 5.5.2). Together



6.2. Grammar Filter 97

Table 6.1: Automaton sizes during grammar filtering experiments shown in Table 5.2.

Grammar Rules Method NFA states Item pairs Memory (MB)
C 324 BASE 1300 937,407 2,128

CHAR 2485 2,453,230 3,345
CHAR+UNF 6225 5,730,374 2,616

C++ 807 BASE 3014 5,530,348 1,408
CHAR 9728 65,761,491 7,189
CHAR+UNFa 51723 >399,300,000 >17,293

ECMAScript 403 BASE 1458 1,124,354 547
CHAR 2695 3,096,719 1,388
CHAR+UNF 8648 7,956,678 1,127

Oberon0 189 BASE 731 307,192 256
CHAR 1232 494,143 349
CHAR+UNF 9038 1,904,378 631

SQL-92 419 BASE 1648 1,473,630 709
CHAR 2549 4,579,967 2,093
CHAR+UNF 6287 7,429,850 1,371

Java 1.5 698 BASE 2639 4,579,132 2,942
CHAR 5892 20,309,357 7,382
CHAR+UNFa 114299 293,592,241 15,568

aRun on Amazon EC2 High-Memory Extra Large Instance

with the information mentioned above, our item pair class now consisted of 7 fields. On a
64-bit Java virtual machine, the object size for such a class is 80 bytes of memory. Furthermore,
each object required an additional 32 bytes for a bucket entry object in the hashmap. Running
the CHAR+UNF experiment on the Java grammar shown in Table 6.1 would therefore take up
at least 33GB of memory. However, this number gets even larger if we also take into account
the space required for storing the loaded grammar and the NFA. Our initial implementation
was not efficient enough for checking character-level grammars, so we needed a more compact
item pair representation.

We looked for inspiration in the closely related field of model checking, where checkers
also need to explore large state spaces. The first idea we adopted was to use bit strings to
represent item pairs. In the current implementation we use one 64-bit Java long to represent a
pair’s identity (NFA states, flags and extension information), and another long for the traversal
related information (number, lowlink, alive and on stack). The first long contains two stretches
of bits to represent an NFA state pair, of which the size depends on the total number of states,
and two bits for the conflict flags. The remainder of the bits can be reserved by the used item
pair extensions to store additional information. The traversal related bit string contains two
31-bit fields to represent a pair’s number and lowlink, and two single bit flags for alive and on

stack. The maximum number of item pairs that can be created with this solution is therefore
limited to 231, but this is more than enough for checking the programming language grammars



98 Chapter 6. Implementing AMBIDEXTER

shown in Table 6.1.
To limit the memory overhead of storing the already traversed item pairs we used a custom

hashmap. Instead of using linked lists for its buckets like the java.util.HashMap does, it
uses plain arrays to store the bit strings. This requires only a small logarithmic space overhead,
instead of the constant 32 bytes for linked list elements. The arrays are searched for item pairs
linearly, which does not result in noticeable speed losses if they are not that long. Therefore,
the hashmap is re-hashed when needed to make sure the arrays do not grow beyond a certain
size — which is currently 2048. This way, the item pair store makes efficient use of heap
space without large performance penalties.

We also considered implementing other techniques used in model checking. For instance,
we experimented with storing the bit strings in BDDs [Ake78]. However, the typical distribu-
tion of the bit strings and their relatively short lengths seem to be unsuitable for reaching good
compression rates. Other space saving options would be to store chunks of bit strings to disk or
compress them in memory. However, this will probably result in a loss of speed. We therefore
chose for the array-backed item pair store described above, because it performed sufficiently
well for the real world grammars tested in Chapter 5, as can be seen from Table 5.2.

6.3 Sentence Generator

In order to validate the effect of our character-level grammar filter, we also needed an exhaus-
tive detection method for character-level grammars. We chose for a simple depth-first sentence
generation technique, similar to that of AMBER. This section highlights the design decisions
we made while developing the sentence generation tool.

6.3.1 Requirements

The main functional requirement for our exhaustive ambiguity detection tool was that it should
find ambiguous sentences in character-level grammars as well as token-based grammars.
Together with their parse trees, ambiguous sentences are the most descriptive proofs of the
ambiguity of a grammar. To not report ambiguities that are already solved by the grammar
developer, the tool should take disambiguation filters into account.

The main non-functional requirement of the exhaustive searching tool was that it should
be as fast as possible. The higher the number of sentences that can be explored per minute,
the higher the chance that ambiguities will be found. Furthermore, we wanted our tool to be
suitable for short interactive use, as well as longer overnight runs.

6.3.2 Architecture and Design

To meet the above requirements we chose to implement a simple depth-first sentence generation
technique, similar to that of AMBER. AMBER uses a modified Earley parser that generates
sentences on the fly while parsing them. In our case however, we chose to use an SGLR
parser, because knowledge about applying disambiguation filters in this parsing technique
was readily available [vdBSVV02, Vis97]. Furthermore, LR parsers are generally faster than
Earley parsers because they use a precomputed parse table.



6.3. Sentence Generator 99

��������
�������	�A

BCDE����F�
�������

��A�F	��
���	���	�

���
��DEF��

�C�
��DEF��

�C�
���	�A������F

�C�

���D��	�A
A�������A

	�

����D��A

����D�
�������	�

���A��

���A�
����A

Figure 6.2: Architecture of AMBIDEXTER’s parallel sentence generator.

Our second design decision was to generate sentences in a depth-first fashion. This requires
only very little memory, whereas with breadth-first searching the memory usage grows with
the number of sentences produced. From the results presented in Section 3.3.2, we see that the
breadth-first CFG ANALYZER already used 1.3GB of memory after searching for 106 minutes.
We therefore expect depth-first search to be a better candidate for running longer checks, even
more so because the languages of character-level grammars are typically much larger than



100 Chapter 6. Implementing AMBIDEXTER

the token-based grammars explored in Section 3.3.2. Furthermore, depth-first searching is
much easier to parallelize than breadth-first searching. We can therefore take advantage of
present-day multicore processors for even better performance.

Figure 6.2 shows the architecture of the sentence generator. The sentence generation pro-
cess can start either from a — possibly filtered — grammar or an NFA that was reconstructed
after filtering. In case a grammar is given, its LR(0) NFA is generated from it, which in turn is
converted into a deterministic LR(0) pushdown automaton. A reconstructed NFA is converted
to deterministic form immediately.

The pushdown automaton is then used to generate sentences of a predefined length k. This
can be done by a certain number of sentence generators in parallel. First, a single sentence
generator is used to generate all prefixes of a given length l < k which are stored in a set.
After that, the parallel sentence generators take the prefixes from this set and generate all their
completions up to length k. All ambiguous sentences that they find are parsed with a small
parser and are reported to the user, together with their parse trees. These parse trees can then
be searched for the causes of ambiguity in the grammar, either by hand, or with an expert
system like DR. AMBIGUITY (see Chapter 7).

6.3.3 Implementation Details

The sentence generator is implemented as a normal SGLR parser (see [Vis97], Chapter 3),
with the following modifications:

• After all stacks at a certain level are reduced, a set of shiftable characters is calculated.

• For each level such a set of candidate characters is stored, using an additional stack.

• The characters to shift are picked and removed from these sets, instead of read from an
input string.

• If the maximum string length is reached, or if the set of candidates at a certain level is
empty, all stacks are backtracked one level, and a new shift is tried.

• The garbage collection only removes stack nodes that are popped during backtracking.

• Follow restrictions do not have to be checked, because they are already propagated
through the parse automaton before determinisation — see Algorithm 8 in Section 5.5.2.

• For speed, parse trees are not build during generation, but are obtained by re-parsing
ambiguous strings.

These changes were relatively easy to implement, except for the selection of the can-
didate characters to shift at each level. Especially with character-level grammars, just
gathering all characters that can be shifted from each stack can lead to an unneccesarily
high number of generated sentences. For instance, consider the typical lexical definition
[a-zA-Z][a-zA-Z0-9_]+ for an identifier. This definition generates a very high number
of possible identifiers. However, these do not all have to be explored if they will never lead to
ambiguities.



6.4. Usage 101

Algorithm 10 Finding an approximation for the smallest set of characters that together
continue the current gss with all possible combinations of paths.

function GET-SHIFTABLE-CHARACTERS(top ∈ P(Q)) =
1 // gather all shift actions of states in top

2 A = {q
a

7−→ q′ ∈ shift | q ∈ top}
3

4 // find a set B ⊆ T s.t. ∀q1
a

7−→q′1, q2
a

7−→ q′2 ∈ A : ∃b ∈ B : q1
b

7−→ q′1, q2
b

7−→ q′2 ∈ A,

5 // preferably the smallest

6 B = ∅
7 while |A| > 0 do
8 pick a b ∈ T that occurs the most often in A

9 remove the elements q
a

7−→ q′ from A for which hold that q
b

7−→ q′

10 add b to B
11 od
12 return B

An ambiguity only appears in case two stacks merge upon reduction of the same substring.
Therefore, it suffices to select only enough candidate characters such that every possible
combination of stacks will be explored, and of course every individual stack as well. This will
lead to the fastest detection of existing ambiguities.

Selecting this minimum set of shiftable characters to cover all combinations of stack
continuations is an instance of the hitting set problem [Kar72], which is NP-complete. In our
current implementation we use a simple non-optimal computation shown in Algorithm 10. As
of yet, it has never led to noticeable performance losses, because the number of stacks and
possible shift transitions are usually quite low. More experiments are required to test whether
finding the smallest possible set of candidates will pay off.

6.4 Usage

To get the fastest results, we advise the following strategy for finding ambiguities with
AMBIDEXTER:

When the grammar under investigation contains a lot of ambiguous production rules, their
ambiguity will propagate to other production rules as well during the approximative search for
harmless productions. This reduces the chance of actual harmless rules being found. Therefore,
we advise to quickly test for ambiguities with the sentence generator first. If ambiguities
pop-up during this search, they can be solved first before trying the harmless rule filter.

When there are no ’low hanging’ ambiguities to be found anymore, the sentence generation
can be sped up by filtering harmless productions from the grammar. Depending on the size
and shape of the grammar, the higher filtering precisions like LR(1) or grammar unfolding
might require very large amounts of memory. Therefore, its best to start checking with lower
precision settings first, and then gradually increase until a configuration is found that runs
within acceptable time and memory limits. Judging from the figures in Table 5.2, this process



102 Chapter 6. Implementing AMBIDEXTER

Figure 6.3: Running AMBIDEXTER from within the RASCAL IDE in Eclipse.

will probably not take more than a couple of minutes for small to medium sized grammars.
If the grammar filter finds harmless production rules, the filtered grammar can be tested

again with the sentence generator. Hopefully the sentence generation will now be faster
so it can search for ambiguities at longer sentence lengths. If more ambiguities are found
they can be removed from the grammar. Then, the grammar filter can be run again to see if
more production rules are harmless. This process of filtering and sentence generation can
be continued until it becomes unfeasible, or until the grammar filter finds the grammar to be
unambiguous.



6.5. Conclusion 103

Package SLOC
Grammar (incl. import/export) 3958
Automata 3408
Pair graph traversal 1817
Sentence generation 1009
Parser 888
Utilities 2039
Tests 563
Main 492
Total: 14180

Table 6.2: Sizes of AMBIDEXTER’s packages in non-comment source lines of Java code
(SLOC). Figures generated using David A. Wheeler’s ‘SLOCCount’.

6.5 Conclusion

In this chapter we have presented our tool implementation of AMBIDEXTER. The tool
implements our grammar filtering techniques, as well as a sentence generator for token-based
grammars and character-level grammars. We have discussed the architectural design and
implementation details of these two parts, together with advice on how they can be used
together in an optimal way.

The AMBIDEXTER tool is integrated in the RASCAL IDE in Eclipse. Figure 6.3 shows the
wizard that can be used to configure it. For checking YACC or SDF2 grammars AMBIDEXTER

can be run from the command-line as well. To get an indication of the development effort
invested in the tool, Figure 6.2 shows the sizes of the AMBIDEXTER’s packages measured in
lines of code.





Chapter 7

Parse Forest Diagnostics with
DR. AMBIGUITY

“A fool sees not the same tree that a wise man sees.”

William Blake

Once an ambiguity detection method finds an unwanted ambiguity, it should be

removed from the grammar. However, it is not always straightforward for the grammar

developer to see which modifications solve his ambiguity and in which way. In this

chapter we present an expert system called Dr. Ambiguity, that can automatically

propose applicable cures for an ambiguous sentence. After giving an overview of

different causes of ambiguity and ambiguity resolutions, the internals of Dr. Ambiguity

are described. The chapter ends with a small experimental validation of the usefulness

of the expert system, by applying it on a realistic character-level grammar for Java.

7.1 Introduction

This work is motivated by the use of parsers generated from general context-free grammars
(CFGs). General parsing algorithms such as GLR and derivates [Tom85, vdBSVV02, AH99,
BG06, Eco06], GLL [SJ10, JS11], and Earley [Ear70, Sch06] support parser generation for
highly non-deterministic context-free grammars. The advantages of constructing parsers using
such technology are that grammars may be modular and that real programming languages

This chapter was published in the proceedings of the Fourth International Conference on Software Language
Engineering (SLE 2011) [BV11]. It was co-authored by Jurgen Vinju.

105



106 Chapter 7. Parse Forest Diagnostics with DR. AMBIGUITY

 CompilationUnit  -> <START>

PackageDec?  ImportDec*  TypeDec+ -> CompilationUnit {cons("CompilationUnit")}

-> PackageDec? ImportDec* TypeDec+

ClassDec -> TypeDec

ClassDecHead  ClassBody -> ClassDec {cons("ClassDec")}

AnnoOrClassMod*  "class"  Id  TypeParams?  Super?  Interfaces? -> ClassDecHead {cons("ClassDecHead")} "{"  ClassBodyDec*  "}" -> ClassBody {cons("ClassBody")}

AnnoOrClassMod* [c] [l] [a] [s] [s] -> "class" ID -> Id {cons("Id")} -> TypeParams? -> Super? -> Interfaces?

<ID-LEX> -> ID

[\{] -> "{" ClassBodyDec* [\}] -> "}"

ClassMemberDec -> ClassBodyDec ClassMemberDec -> ClassBodyDec ClassMemberDec -> ClassBodyDec

FieldDec -> ClassMemberDec

AnnoOrFieldMod*  Type  {VarDec ","}+  ";" -> FieldDec {cons("FieldDec")}

AnnoOrFieldMod* PrimType -> Type {VarDec ","}+ [\;] -> ";"

FieldMod -> AnnoOrFieldMod

Public -> FieldMod

"public" -> Public {cons("Public")}

[p] [u] [b] [l] [i] [c] -> "public"

NumType -> PrimType

IntType -> NumType

"int" -> IntType {cons("Int")}

[i] [n] [t] -> "int"

VarDecId  "="  VarInit -> VarDec {cons("VarDec")}

Id -> VarDecId [\=] -> "=" Expr -> VarInit

ID -> Id {cons("Id")}

<ID-LEX> -> ID

Expr  "+"  Expr -> Expr {left, cons("Plus")}

Expr  "+"  Expr -> Expr {left, cons("Plus")} [\+] -> "+" Literal -> Expr {cons("Lit")}

Literal -> Expr {cons("Lit")} [\+] -> "+" Literal -> Expr {cons("Lit")}

IntLiteral -> Literal

DeciLiteral -> IntLiteral {cons("Deci")}

<DeciLiteral-LEX> -> DeciLiteral

IntLiteral -> Literal

DeciLiteral -> IntLiteral {cons("Deci")}

<DeciLiteral-LEX> -> DeciLiteral

IntLiteral -> Literal

DeciLiteral -> IntLiteral {cons("Deci")}

<DeciLiteral-LEX> -> DeciLiteral

FieldDec -> ClassMemberDec

AnnoOrFieldMod*  Type  {VarDec ","}+  ";" -> FieldDec {cons("FieldDec")}

AnnoOrFieldMod* PrimType -> Type {VarDec ","}+ [\;] -> ";"

FieldMod -> AnnoOrFieldMod

Public -> FieldMod

"public" -> Public {cons("Public")}

[p] [u] [b] [l] [i] [c] -> "public"

NumType -> PrimType

IntType -> NumType

"int" -> IntType {cons("Int")}

[i] [n] [t] -> "int"

VarDecId  "="  VarInit -> VarDec {cons("VarDec")}

Id -> VarDecId [\=] -> "=" Expr -> VarInit

ID -> Id {cons("Id")}

<ID-LEX> -> ID

Expr  "+"  Expr -> Expr {left, cons("Plus")}

Literal -> Expr {cons("Lit")} [\+] -> "+" Expr  "*"  Expr -> Expr {left, cons("Mul")}

IntLiteral -> Literal

DeciLiteral -> IntLiteral {cons("Deci")}

<DeciLiteral-LEX> -> DeciLiteral

Literal -> Expr {cons("Lit")} [\*] -> "*" Literal -> Expr {cons("Lit")}

IntLiteral -> Literal

DeciLiteral -> IntLiteral {cons("Deci")}

<DeciLiteral-LEX> -> DeciLiteral

IntLiteral -> Literal

DeciLiteral -> IntLiteral {cons("Deci")}

<DeciLiteral-LEX> -> DeciLiteral

MethodDec -> ClassMemberDec

MethodDecHead  MethodBody -> MethodDec {cons("MethodDec")}

AnnoOrMethodMod*  TypeParams?  ResultType  Id  "("  {FormalParam ","}*  ")"  Throws? -> MethodDecHead {cons("MethodDecHead")} Block -> MethodBody

AnnoOrMethodMod* -> TypeParams? Type -> ResultType ID -> Id {cons("Id")} [\(] -> "(" {FormalParam ","}* [\)] -> ")" -> Throws?

MethodMod -> AnnoOrMethodMod

Public -> MethodMod

"public" -> Public {cons("Public")}

[p] [u] [b] [l] [i] [c] -> "public"

PrimType -> Type

NumType -> PrimType

IntType -> NumType

"int" -> IntType {cons("Int")}

[i] [n] [t] -> "int"

<ID-LEX> -> ID

"{"  BlockStm*  "}" -> Block {cons("Block")}

[\{] -> "{" BlockStm* [\}] -> "}"

Stm -> BlockStm

Stm

"if"  "("  Expr  ")"  Stm -> Stm {prefer, cons("If")} "if"  "("  Expr  ")"  Stm  "else"  Stm -> Stm {cons("If")}

[i] [f] -> "if" [\(] -> "(" ExprName -> Expr [\)] -> ")" "if"  "("  Expr  ")"  Stm  "else"  Stm -> Stm {cons("If")}

Id -> ExprName {cons("ExprName")}

ID -> Id {cons("Id")}

<ID-LEX> -> ID

[i] [f] -> "if" [\(] -> "(" ExprName -> Expr [\)] -> ")" Expr  ";" -> Stm {cons("ExprStm")} [e] [l] [s] [e] -> "else" Expr  ";" -> Stm {cons("ExprStm")}

Id -> ExprName {cons("ExprName")}

ID -> Id {cons("Id")}

<ID-LEX> -> ID

MethodSpec  "("  {Expr ","}*  ")" -> Expr {cons("Invoke")} [\;] -> ";"

MethodName -> MethodSpec {cons("Method")} [\(] -> "(" {Expr ","}* [\)] -> ")"

Id -> MethodName {cons("MethodName")}

ID -> Id {cons("Id")}

<ID-LEX> -> ID

MethodSpec  "("  {Expr ","}*  ")" -> Expr {cons("Invoke")} [\;] -> ";"

MethodName -> MethodSpec {cons("Method")} [\(] -> "(" {Expr ","}* [\)] -> ")"

Id -> MethodName {cons("MethodName")}

ID -> Id {cons("Id")}

<ID-LEX> -> ID

[i] [f] -> "if" [\(] -> "(" ExprName -> Expr [\)] -> ")" "if"  "("  Expr  ")"  Stm -> Stm {prefer, cons("If")} [e] [l] [s] [e] -> "else" Expr  ";" -> Stm {cons("ExprStm")}

Id -> ExprName {cons("ExprName")}

ID -> Id {cons("Id")}

<ID-LEX> -> ID

[i] [f] -> "if" [\(] -> "(" ExprName -> Expr [\)] -> ")" Expr  ";" -> Stm {cons("ExprStm")}

Id -> ExprName {cons("ExprName")}

ID -> Id {cons("Id")}

<ID-LEX> -> ID

MethodSpec  "("  {Expr ","}*  ")" -> Expr {cons("Invoke")} [\;] -> ";"

MethodName -> MethodSpec {cons("Method")} [\(] -> "(" {Expr ","}* [\)] -> ")"

Id -> MethodName {cons("MethodName")}

ID -> Id {cons("Id")}

<ID-LEX> -> ID

MethodSpec  "("  {Expr ","}*  ")" -> Expr {cons("Invoke")} [\;] -> ";"

MethodName -> MethodSpec {cons("Method")} [\(] -> "(" {Expr ","}* [\)] -> ")"

Id -> MethodName {cons("MethodName")}

ID -> Id {cons("Id")}

<ID-LEX> -> ID

Figure 7.1: The complexity of a parse forest for a trivial Java class with one method; the
indicated subtree is an ambiguous if-with-dangling-else issue (180 nodes, 195 edges).

(often requiring parser non-determinism) can be dealt with efficiently1. It is common to use
general parsing algorithms in (legacy) language reverse engineering, where a language is given
but parsers have to be reconstructed [LV01], and in language extension, where a base language
is given which needs to be extended with unforeseen syntactical constructs [BTV06].

The major disadvantage of general parsing is that multiple parse trees may be produced
by a parser. In this case, the grammar was not only non-deterministic, but also ambiguous.
We say that a grammar is ambiguous if it generates more than one parse tree for a particular
input sentence. Static detection of ambiguity in CFGs is undecidable in general [Can62, Flo62,
CS63].

It is not an overstatement to say that ambiguity is the Achilles’ heel of CFG-general
parsing. Most grammar engineers who are building a parser for a programming language
intend it to produce a single tree for each input program. They use a general parsing algorithm
to efficiently overcome problematic non-determinism, while ambiguity is an unintentional
and unpredictable side-effect. Other parsing technologies, for example Ford’s PEG [For04]
and Parr’s LL(*) [PF11], do not report ambiguity. Nevertheless, these technologies also
employ disambiguation techniques (ordered choice, dynamic lookahead). In combination
with a debug-mode that does produce all derivations, the results in this chapter should be
beneficial for these parsing techniques as well. It should help the user to intentionally select
a disambiguation method. In any case, the point of departure for this chapter is any parsing
algorithm that will produce all possible parse trees for an input sentence.

In Chapters 3–5 we present a fast ambiguity detection approach that combines approxima-
tive and exhaustive techniques. The output of this method are the ambiguous sentences found
in the language of a tested grammar. Nevertheless, this is only a observation that the patient is
ill, and now we need a cure. We therefore will diagnose the sets of parse trees produced for
specific ambiguous sentences. The following is a typical grammar engineering scenario:

1. While testing or using a generated parser, or after having run a static ambiguity detection
tool, we discover that one particular sentence leads to a set of multiple parse trees. This

1Linear behavior is usually approached and most algorithms can obtain cubic time worst time complexity [Lan74]



7.1. Introduction 107

�




�

	

If ( <

ExprName ( Id ( "a" ) ), <

IfElse ( IfElse (

> ExprName ( Id ( "a" ) ),

> If (

ExprName ( Id ( "b" ) ), ExprName ( Id ( "b" ) ),

ExprStm ( ExprStm (

Invoke ( Invoke (

Method ( MethodName ( Id ( "a" ) ) ), Method ( MethodName ( Id ( "a" ) ) ),

[ [

] ) ), | ] ) ) ),

ExprStm ( ExprStm (

Invoke ( Invoke (

Method ( MethodName ( Id ( "b" ) ) ), Method ( MethodName ( Id ( "b" ) ) ),

[ [

] ) ) ) ) | ] ) ) )

Figure 7.2: Using diff -side-by-side to diagnose a trivial ambiguous syntax tree for
a dangling else in Java (excerpts of Figure 7.1).

set is encoded as a single parse forest with choice nodes where sub-sentences have
alternative sub-trees.

2. The parser reports the location in the input sentence of each choice node. Note that
such choice nodes may be nested. Each choice node might be caused by a different
ambiguity in the CFG.

3. The grammar engineer extracts an arbitrary ambiguous sub-sentence and runs the parser
again using the respective sub-parser, producing a set of smaller trees.

4. Each parse tree of this set is visualized on a 2D plane and the grammar engineer spots
the differences, or a (tree) diff algorithm is run by the grammar engineer to spot the
differences. Between two alternative trees, either the shape of the tree is totally different
(rules have moved up/down, left/right), or completely different rules have been used, or
both. As a result the output of diff algorithms and 2D visualizations typically require
some effort to understand. Figure 7.1 illustrates the complexity of an ambiguous parse
forest for a 5 line Java program that has a dangling else ambiguity. Figure 7.2 depicts
the output of diff on a strongly simplified representation (abstract syntax tree) of the
two alternative parse trees for the same nested conditional. Realistic parse trees are not
only too complex to display here, but are often too big to visualize on screen as well.
The common solution is to prune the input sentence step-by-step to eventually reach a
very minimal example that still triggers the ambiguity but is small enough to inspect.

5. The grammar engineer hopefully knows that for some patterns of differences there are
typical solutions. A solution is picked, and the parser is regenerated.

6. The smaller sentence is parsed again to test if only one tree (and which tree) is produced.



108 Chapter 7. Parse Forest Diagnostics with DR. AMBIGUITY

7. The original sentence is parsed again to see if all ambiguity has been removed or
perhaps more diagnostics are needed for another ambiguous sub-sentence. Typically, in
programs one cause of ambiguity would lead to several instances distributed over the
source file. One disambiguation may therefore fix more “ambiguities” in a source file.

The issues we address in this chapter are that the above scenario is (a) an expert job, (b) time
consuming and (c) tedious. We investigate the invention of an expert system that can automate
finding a concise grammar-level explanation for any choice node in a parse forest and propose
a set of solutions that will eliminate it. This expert system is shaped as a set of algorithms that
analyze sets of alternative parse trees, simulating what an expert would do when confronted
with an ambiguity.

The contributions of this chapter are an overview of common causes of ambiguity in
grammars for programming language (Section 7.3), an automated tool (Dr. Ambiguity)
that diagnoses parse forests to propose one or more appropriate disambiguation techniques
(Section 7.4) and an initial evaluation of its effectiveness (Section 7.5). In 2006 we published
a manual [Vin11] to help users disambiguate SDF2 grammars. This well-read manual contains
recipes for solving ambiguity in grammars for programming languages. Dr. Ambiguity
automates all tasks that users perform when applying the recipes from this manual, except for
finally adding the preferred disambiguation declaration.

7.1.1 Preliminaries

In this chapter we will use the following definitions: A context-free grammar G is defined as
a 4-tuple (T,N, P, S), namely finite sets of terminal symbols T and non-terminal symbols
N , production rules P in A × (T ∪ N)∗ written like A → α, and a start symbol S. A
sentential form is a finite string in (T ∪ N)∗. A sentence is a sentential form without
non-terminal symbols. An ε denotes the empty string. We use the other lowercase greek
characters α, β, γ, . . . for variables over sentential forms, uppercase roman characters for non-
terminals (A,B, . . .) and lowercase roman characters and numerical operators for terminals
(a, b,+,−, ∗, /). By applying production rules as substitutions we can generate new sentential
forms. One substitution is called a derivation step, e.g. αAβ ⇒ αγβ with rule A →
γ. We use ⇒∗ to denote sequences of derivation steps. A full derivation is a sequence
of production rule applications that starts with a start symbol and ends with a sentence.
The language of a grammar is the set of all sentences derivable from S. In a bracketed

derivation [GH67] we record each application of a rule by a pair of brackets, for example
S ⇒ (αEβ) ⇒ (α(E+E)β) ⇒ (α((E ∗E)+E)β). Brackets are (implicitly) indexed with
their corresponding rule.

A non-deterministic derivation sequence is a derivation sequence in which a ⋄ operator
records choices between different derivation sequences. I.e. α ⇒ (β) ⋄ (γ) means that
either β or γ may be derived from α using a single derivation step. Note that β does not
necessarily need to be different from γ. An example non-deterministic derivation is E ⇒
(E + E) ⋄ (E ∗ E) ⇒ (E + (E ∗ E)) ⋄ ((E + E) ∗ E). A cyclic derivation sequence is any



7.2. Solutions to Ambiguity 109

sequence α ⇒+ α, which is only possible by applying rules that do not have to eventually
generate terminal symbols, such as A → A and A → ε.

A parse tree is an (ordered) finite tree representation of a bracketed full derivation of
a specific sentence. Each pair of brackets is represented by an internal node labeled with
the rule that was applied. Each leaf node is labeled with a terminal. This implies that the
leafs of a parse tree form a sentence. Note that a single parse tree may represent several
equivalent derivation sequences. Namely in sentential forms with several non-terminals one
may always choose which non-terminal to expand first. From here on we assume a canonical
left-most form for such equivalent derivation sequences, in which expansion always occurs at
the left-most non-terminal in a sentential form.

A parse forest is a set of parse trees possibly extended with ambiguity nodes for each use
of choice (⋄). Like parse trees, parse forests are limited to represent full derivations of a single

sentence, each child of an ambiguity node is a derivation for the same sub-sentence. One such
child is called an alternative. For simplicity’s sake, and without loss of generality, we assume
that all ambiguity nodes have exactly two alternatives.

A parse forest is ambiguous if it contains at least one ambiguity node. A sentence is
ambiguous if its parse forest is ambiguous. A grammar is ambiguous if it can generate at least
one ambiguous sentence. An ambiguity in a sentence is an ambiguity node. An ambiguity

of a grammar is the cause of such aforementioned ambiguity. We define cause of ambiguity

precisely in Section 7.3. Note that cyclic derivation sequences can be represented by parse
forests by allowing them to be graphs instead of just trees [Rek92].

A recognizer for G is a terminating function that takes any sentence α as input and returns
true if and only if S ⇒∗ α. A parser for G is a terminating function that takes any finite
sentence α as input and returns an error if the corresponding recognizer would not return
true, and otherwise returns a parse forest for α. A disambiguation filter is a function that
takes a parse forest for α and returns a smaller parse forest for α [KV94]. A disambiguator

is a function that takes a parser and returns a parser that produces smaller parse forests.
Disambiguators may be implemented as parser actions, or by parser generators that take
additional disambiguation constructs as input [vdBSVV02]. We use the term disambiguation

for both disambiguation filters and disambiguators.

7.2 Solutions to Ambiguity

There are basically two kinds of solutions to removing ambiguity from grammars. The first
involves restructuring the grammar to accept the same set of sentences but using different
rules. The second leaves the grammar as-is, but adds disambiguations (see above). Although
grammar restructuring is a valid solution direction, we restrict ourselves to disambiguations
described below. The benefit of disambiguation as opposed to grammar restructuring is that
the shape of the rules, and thus the shape of the parse trees remains unchanged. This allows
language engineers to maintain the intended semantic structure of the language, keeping parse
trees directly related to abstract syntax trees (or even synonymous) [HHKR89].

Any solution may be language preserving, or not. We may change a grammar to have it
generate a different language, or we may change it to generate the same language differently.
Similarly, a disambiguation may remove sentences from a language, or simply remove some



110 Chapter 7. Parse Forest Diagnostics with DR. AMBIGUITY

ambiguous derivation without removing a sentence. This depends on whether or not the filter is
applied always in the context of an ambiguous sentence, i.e. whether another tree is guaranteed
to be left over after a certain tree is filtered. It may be hard for a language engineer who adds a
disambiguation to understand whether it is actually language preserving. Whether or not it is
good to be language preserving depends entirely on ad-hoc requirements. We therefore do not
answer this question. Where possible, we do indicate whether adding a certain disambiguation
is expected to be language preserving. Proving this property is out-of-scope.

Solving ambiguity is sometimes confused with making parsers deterministic. From the
perspective of this chapter, non-determinism is a non-issue. We focus solely on solutions to
ambiguity.

We now quote a number of disambiguation methods here. Conceptually, the following list
contains nothing but disambiguation methods that are commonly supported by lexer and parser
generators [ASU86]. Still, the precise semantics of each method we present here may be
specific to the parser frameworks of SDF2 [HHKR89, Vis97] and Rascal [KvdSV11]. In partic-
ular, some of these methods are specific to scannerless parsing, where a context-free grammar
specifies the language down to the character level [Vis97, SC89]. We recommend [BBV07],
to appreciate the intricate differences between semantics of operator priority mechanisms
between parser generators.

Priority disallows certain direct edges between pairs of rules in parse trees in order to affect
operator priority. For instance, the production for the + operator may not be a direct
child of the * production [vdBSVV02].
Formally, let a priority relation > be a partial order between recursive rules of an
expression grammar. If A → α1Aα2 > A → β1Aβ2 then all derivations γAδ ⇒
γ(α1Aα2)δ ⇒ γ(α1(β1Aβ2)α2) are illegal.

Associativity is similar to priority, but father and child are the same rule. It can be used to
affect operator associativity. For instance, the production of the + operator may not
be a direct right child of itself because + is left associative [vdBSVV02]. Left and
right associativity are duals, and non-assocativity means no nesting is allowed at all.
Formally, if a recursive rule A → AαA is defined left associative, then any derivation
γAδ ⇒ γ(AαA)δ ⇒ γ(Aα(AαA))δ is illegal.

Offside disallows certain derivations using the would-be indentation level of an (indirect)
child. If the child is “left” of a certain parent, the derivation is filtered [Lan66]. One
example formalization is to let Π(x) compute the start column of the sub-sentence
generated by a sentential form x and let > define a partial order between production
rules. Then, if A → α1Xα2 > B → β then all derivations γAδ ⇒ γ(α1Xα2)δ ⇒∗

γ(α1(. . . (β) . . .)α2)δ) are illegal if Π(β) < Π(α1). Parsers may employ subtly differ-
ent offside disambiguators, depending on how Π is defined for each different language
or even for each different production rule within a language.

Preference removes a derivation, but only if another one of higher preference is present.
Again, we take a partial ordering > that defines preference between rules for the same
non-terminal. Let A → α > A → β, then from all derivations γAδ ⇒ γ((α) ⋄ (β))δ
we must remove (β) to obtain A ⇒ γ(α)δ.



7.2. Solutions to Ambiguity 111

Reserve disallows a fixed set of terminals from a certain (non-)terminal, commonly used
to reserve keywords from identifiers. Let K be a set of sentences and let I be a non-
terminal from which they are declared to be reserved. Then, for every α ∈ K, any
derivation I ⇒∗ α is illegal.

Reject disallows the language of a certain non-terminal from that of another one. This may
be used to implement Reserve, but it is more powerful than that [vdBSVV02]. Let
(I - R) declare that the non-terminal R is rejected from the non-terminal I . Then any
derivation sequence I ⇒∗ α is illegal if and only if R ⇒∗ α.

Not Follow/Precede declarations disallow derivation steps if the generated sub-sentence
in its context is immediately followed/preceded by a certain terminal. This is used
to affect longest match behavior for regular languages, but also to solve “dangling
else” by not allowing the short version of if, when it would be immediately followed
by else [vdBSVV02]. Formally, we define follow declaration as follows. Given
A ⇒∗ α and a declaration A not-follow β, where β is a sentence, any derivation
S ⇒∗ γAβδ ⇒∗ γ(α)βδ is illegal. We should mention that Follow declarations may
simulate the effect of “shift before reduce” heuristics that deterministic — LR, LALR —
parsers use when confronted with a shift/reduce conflict.

Dynamic Reserve disallows a dynamic set of sub-sentences from a certain non-terminal, i.e.
using a symbol table [ASU86]. The semantics is similar to Reject, where the set R is
dynamically changed as certain derivations (i.e. type declarations) are applied.

Types removes certain type-incorrect sub-trees using a type-checker, leaving correctly typed
trees as-is [BVVV05]. Let C(d) be true if and only if derivation d (represented by a
tree) is a type-correct part of a program. Then all derivations γAδ ⇒ γ(α)δ are illegal
if C(α) is false.

Heuristics There are many kinds of heuristic disambiguation that we bundle under a single
definition here. The preference of “Islands” over “Water” in island grammars is an
example [Moo01]. Preference filters are sometimes generalized by counting the number
of preferred rules as well [vdBSVV02]. Counting rules is used sometimes to choose
a “simplest” derivation, i.e. the most shallow trees are selected over deeper ones.
Formally, Let C(d) be any function that maps a derivation (parse tree) to an integer. If
C(A ⇒ α) > C(A ⇒ β) then from all derivations A ⇒∗ (α) ⋄ (β) we must remove
(β) to obtain A ⇒ (α).

Not surprisingly, each kind of disambiguation characterizes certain properties of deriva-
tions. In the following section we link such properties to causes of ambiguity. Apart from
Types and Heuristics (which are too general to automatically report specific suggestions for),
we can then link the causes explicitly back to the solution types.



112 Chapter 7. Parse Forest Diagnostics with DR. AMBIGUITY

7.3 Causes of Ambiguity

Ambiguity is caused by the fact that the grammar can derive the same sentence in at least two
ways. This is not a particularly interesting cause, since it characterizes all ambiguity in general.
We are interested in explaining to a grammar engineer what is wrong for a very particular
grammar and sentence and how to possibly solve this particular issue. We are interested in the
root causes of specific occurrences of choice nodes in parse forests.

For example, let us consider a particular grammar for the C programming language for
which the sub-sentence “{S * b;}” is ambiguous. In one derivation it is a block of a single
statement that multiplies variables S and b, in another it is a block of a single declaration of a
pointer variable b to something of type S. From a language engineer’s perspective, the causes
of this ambiguous sentence are that:

• “*” is used both in the rule that defines multiplication, and in the rule that defines
pointer types, and

• type names and variable names have the same lexical syntax, and

• blocks of code start with a possibly empty list of declarations and end with a possibly
empty list of statements, and

• both statements and declarations end with “;”.

The conjunction of all these causes explains us why there is an ambiguity. The removal of
just one of them fixes it. In fact, we know that for C the ambiguity was fixed by introducing a
disambiguator that reserves any declared type name from variable names using a symbol table
at parse time, effectively removing the second cause.

We now define a cause of an ambiguity in a sub-sentence to be the existence of any edge
that is in the parse tree of one alternative of an ambiguity node, but not in the other. In other
words, each difference between two alternative parse trees in a forest is one cause of the
ambiguity. For example, two parse tree edges differ if they represent the application of a
different production rule, span a different part of the ambiguous sub-sentence, or are located
at different heights in the tree.

We define an explanation of an ambiguity in a sentence to be the conjunction of all causes
of ambiguity in a sentence. An explanation is a set of differences. We call it an explanation
because an ambiguity exists if and only if all of its causes exist. A solution is any change to
the grammar, addition of a disambiguation filter or use of a disambiguator that removes at
least one of the causes.

Some causes of ambiguity may be solvable by the disambiguation methods defined in
Section 7.2, some may not. Our goals are therefore to first explain the cause of ambiguity as
concisely as possible, and then if possible propose a palette of applicable disambiguations.
Note that even though the given common disambiguations have limited scope, disambiguation
in general is always possible by writing a disambiguation filter in any computationally complete
programming language.



7.3. Causes of Ambiguity 113

Figure 7.3: Euler diagram showing the categorization of parse tree differences.

7.3.1 Classes of Parse Tree Differences

Having defined ambiguity and the causes thereof, we can now categorize different kinds of
causes into classes of differences between parse trees. The difference classes are the theory
behind the workings of Dr. Ambiguity (Section 7.5). Figure 7.3 summarizes the cause classes
that we will identify in the following.

For completeness we should explain that ambiguity of CFGs is normally bisected into
a class called HORIZONTAL ambiguity and a class called VERTICAL ambiguity [BGM10,
AL90, Sch01]. VERTICAL contains all the ambiguity that causes parse forests that have two
different production rules directly under a choice node. For instance, all edges of derivation
sequences of form γAδ ⇒ γ((α) ⋄ (β))δ provided that α 6= β are in VERTICAL. VERTICAL

clearly identifies a difference class, namely the trees with different edges directly under a
choice node.

HORIZONTAL ambiguity is defined to be all the other ambiguity. HORIZONTAL does not
identify any difference class, since it just implies that the two top rules are the same. Our
previous example of ambiguity in a C grammar is an example of such ambiguity. We conclude
that in order to obtain full explanations of ambiguity the HORIZONTAL/VERTICAL dichotomy
is not detailed enough. VERTICAL provides only a partial explanation (a single cause), while
HORIZONTAL provides no explanations at all.

We now introduce a number of difference classes with the intention of characterizing
differences which can be solved by one of the aforementioned disambiguation methods. Each
element in a different class points to a single cause of ambiguity. A particular disambiguation
method may be applicable in the presence of elements in one or more of these classes.

The EDGES class is the universe of all difference classes. In EDGES are all single derivation



114 Chapter 7. Parse Forest Diagnostics with DR. AMBIGUITY

steps (equivalent to edges in parse forests) that occur in one alternative but not in the
other. If no such derivation steps exist, the two alternatives are exactly equal. Note that
EDGES = HORIZONTAL ∪ VERTICAL.

The TERMINALS class contains all parse tree edges to non-ε leafs that occur in one alterna-
tive but not in the other. If an explanation contains a difference in TERMINALS, we know
that the alternatives have used different terminal tokens—or in the case of scannerless,
different character classes—for the same sub-sentences. This is sometimes called lexical

ambiguity. If no differences are in TERMINALS, we know that the terminals used in
each alternative are equal.

The WHITESPACE class (⊂ TERMINALS) simply identifies the differences in TERMINALS

that produce terminals consisting of nothing but spaces, tabs, newlines, carriage returns
or linefeeds.

The REGEXPS class contains all edges of derivation steps that replace a non-terminal by a
sentential form that generates a regular language, occurring in one derivation but not
in the other, i.e. A ⇒ (ρ) where ρ is a regular expression over terminals. Of course,
TERMINALS ⊂ REGEXPS. In character level grammars (scannerless [vdBSVV02]), the
REGEXPS class often represents lexical ambiguity. Differences in REGEXPS may point
to solutions such as Reserve, Follow and Reject, since longest match and keyword
reservation are typical solution scenarios for ambiguity on the lexical level.

In the SWAPS class we put all edges that have a corresponding edge in the other alternative
of which the source and target productions are equal but have swapped order. For
instance, the lower edges in the parse tree fragment ((E ∗ E) + E) ⋄ (E ∗ (E + E))
are in SWAPS. If all differences are in SWAPS, the set of rules used in the derivations of
both alternatives are the same and each rule is applied the same number of times—only
their order of application is different.

The SAME class is the subset of edges in SWAPS that have the same source and target
productions. In this case, the only difference between two corresponding edges are
the substrings they span. For instance, the lower edges in the parse tree fragment
((E+E)+E)⋄ (E+(E+E)) are in SAME. Differences in this class typically require
Associativity solutions.

The REORDERINGS class generalizes SWAPS with more than two rules to permute. This
may happen when rules are not directly recursive, but mutually recursive in longer chains.
Differences in REORDERINGS or SWAPS obviously suggest a Priority solution, but
especially for non-directly recursive derivations Priority will not work. For example, the
notorious “dangling else” issue [ASU86] generates differences in application order of
mutually recursive statements and lists of statements. For some grammars, a difference
in REORDERINGS may also imply a difference in VERTICAL, i.e. a choice between an
ifwith an else and one without. In this case a Preference solution would work. Some
grammars (e.g. the IBM COBOL VS2 standard) only have differences in HORIZONTAL

and REORDERINGS. In this case a Follow solution may prevent the use of the if



7.4. Diagnosing Ambiguity 115

without the else if there is an else to be parsed. Note that the Offside solution is
an alternative method to remove ambiguity caused by REORDERINGS. Apparently, we
need even smaller classes of differences before we can be more precise about suggesting
a solution.

The LISTS class contains differences in the length of certain lists between two alternatives.
For instance, we consider rules L → LE and observe differences in the amount of times
these rules are applied by the derivation steps in each alternative. More precisely, for
any L and E with the rule L → LE we find chains of edges for derivation sequences
αLβ ⇒ αLEβ ⇒⇒∗ αLE+β, and compute their length. The edges of such chains of
different lengths in the two alternatives are members of LISTS. Examples of ambiguities
caused by LISTS are those caused by not having “longest match” behavior: an identifier
“aa” generated using the rules I → a and I → I a may be split up in two shorter
identifiers “a” and “a” in another alternative. We can say that LISTS ∩ REGEXPS 6= ∅.

Note that differences in LISTS ∩ REORDERINGS indicate a solution towards Follow or
Offside for they flag issues commonly seen in dangling constructs. On the other hand
a difference in LISTS \ REORDERINGS indicates that there must be another important
difference to explain the ambiguity. The “‘{S * a}”’ ambiguity in C is of that sort,
since the length of declaration and statement lists differ between the two alternatives,
while also differences in TERMINALS are necessary.

The EPSILONS class contains all edges to ε leaf nodes that only occur in one of the alter-
natives. They correspond to derivation steps αAβ ⇒ α()β, using A → ε. All cyclic
derivations are caused by differences in EPSILONS because one of the alternatives of a
cyclic ambiguity must derive the empty sub-sentence, while the other eventually loops
back. However, differences in EPSILONS may also cause other ambiguity than cyclic
derivations.

The OPTIONALS class (⊂ EPSILONS) contains all edges of a derivation step αAβ ⇒ α()β
that only exist in one alternative, while a corresponding edge of δAζ ⇒ δ(γ)ζ only
exists in the other alternative. Problems that are solved using longest match (Follow)
are commonly caused by optional whitespace for example.

7.4 Diagnosing Ambiguity

We provide an overview of the architecture and the algorithms of DR. AMBIGUITY in this
section. In Section 7.5 we demonstrate its output on example parse forests for an ambiguous
Java grammar.

7.4.1 Architecture

Figure 7.4 shows an overview of our diagnostics tool: DR. AMBIGUITY. We start from
the parse forest of an ambiguous sentence that is either encountered by a language engineer
or produced by a static ambiguity detection tool like AMBIDEXTER. Then, either the user



116 Chapter 7. Parse Forest Diagnostics with DR. AMBIGUITY

�����
��������

	AB��B

	AB��B
C���BA�DB

���BE��F�����
�����DB���

���A���C�A��D�
��CC����D��

����������

�DBE���B�
A���C�D��
�����DB���

 FA������A��D�
���DB�A��D�

!BA��AB

	AB��
�DB���

"���
�DB���

���A���C�A��D��
��������E

����EAFCDB��#�

�DBE���B�
�A�BED�EAF��B�
�A�����

��" �$
�AB���C
��A��B��

��%����!&��'

Figure 7.4: Contextual overview (input/output) of Dr. Ambiguity.

points at a specific sub-sentence2, or DR. AMBIGUITY finds all ambiguous sub-sentences
(e.g. choice nodes) and iterates over them. For each choice node, the tool then generates all
unique combinations of two children of the choice node and applies a number of specialized
diff algorithms to them.

Conceptually there exists one diff algorithm per disambiguation method (Section 7.2).

2We use Eclipse IMP [CFJ+09] as a platform for generating editors for programming languages defined using
RASCAL [KvdSV11]. IMP provides contextual pop-up menus.



7.4. Diagnosing Ambiguity 117

However, since some methods may share intermediate analyses there is some additional
intermediate stages and some data-dependency that is not depicted in Figure 7.4. These
intermediate stages output information messages about the larger difference classes that are to
be analyzed further if possible. This output is called “Classification Information” in Figure 7.4.
The other output, called “Disambiguation Suggestions” is a list of specific disambiguation
solutions (with reference to specific production rules from the grammar).

If no specific or meaningful disambiguation method is proposed the classification informa-
tion will provide the user with useful information on designing an ad-hoc disambiguation.

DR. AMBIGUITY is written in the RASCAL domain specific programming lan-
guage [KvdSV11]. This language is specifically targeted at analysis, transformation, genera-
tion and visualization of source code. Parse trees are a built-in data-type which can be queried
using (higher order) pattern matching, visiting and set, list and map comprehension facilities.
To understand some of the RASCAL snippets in this section, please familiarize yourself with
this definition for parse trees (as introduced by [Vis97]):

data Tree

= appl(Production prod, list[Tree] args) // production nodes

| amb(set[Tree] alternatives) // choice nodes

| char(int code); // terminal leaves

data Production

= prod(Symbol lhs, list[Symbol] rhs, Attributes atts); // rules

DR. AMBIGUITY, in total, is 250 lines of RASCAL code that queries and traverses terms of this
parse tree format. The count includes source code comments. It is slow on big parse forests3,
which is why the aforementioned user-selection of specific sub-sentences is important.

7.4.2 Algorithms

Here we show some of the actual source code of DR. AMBIGUITY.
First, the following two small functions iterate over all (deeply nested) choice nodes (amb)

and over all possible pairs of alternatives. This code uses deep match (/), set matching, and set
or list comprehensions. Note that the match operator (:=) iterates over all possible matches
of a value against a pattern, thus generating all different bindings for the free variables in the
pattern. This feature is used often in the implementation of DR. AMBIGUITY.

list[Message] diagnose(Tree t) {

return [findCauses(x) | x <- {a | /a:amb(_) := t}];

}

list[Message] findCauses(Tree a) {

return [findCauses(x, y) | {x, y, _*} := a.alternatives];

}

3The current implementation of RASCAL lacks many trivial optimizations.



118 Chapter 7. Parse Forest Diagnostics with DR. AMBIGUITY

The following functions each implement one of the diff algorithms from Figure 7.4. The fol-
lowing two (slightly simplified4) functions detect opportunities to apply priority or associativity
disambiguations.

list[Message] priorityCauses(Tree x, Tree y) {

if (/appl(p,[appl(q,_),_*]) := x,

/t:appl(q,[_*,appl(p,_)]) := y, p != q) {

return [error("You might add this priority rule: <p> \> <q>")

,error("You might add this associativity group:"

+ " left (<p> | <q>)")];

}

return [];

}

list[Message] associativityCauses(Tree x, Tree y) {

if (/appl(p,[appl(p,_),_*]) := x,

/Tree t:appl(p,[_*,appl(p,_)]) := y) {

return [error("You might add this associativity declaration:"

+ " left <p>")];

}

return [];

}

Both functions “simultaneously” search through the two alternative parse trees p and q,
detecting a vertical swap of two different rules p and q (priority) or a horizontal swap of the
same rule p under itself (associativity).

This slightly more involved function detects dangling-else and proposes a follow restriction
as a solution:

list[Message] danglingCauses(Tree x, Tree y) {

if (appl(p,/appl(q,_)) := x, appl(q,/appl(p,_)) := y) {

return danglingOffsideSolutions(x, y)

+ danglingFollowSolutions(x, y);

}

return [];

}

list[Message] danglingFollowSolutions(Tree x, Tree y) {

if (prod(_, rhs, _) := x.prod,

prod(_, [prefix*, _, l:lit(_), more*], _) := y.prod,

rhs == prefix) {

return [error("You might add a follow restriction for <l>"

+ " on: <x.prod>")];

}

return [];

}

4We have removed references to location information that facilitates IDE features.



7.4. Diagnosing Ambiguity 119

The function danglingCauses detects re-orderings of arbitrary depth, after which the
outermost productions are compared by danglingFollowSolutions to see if one pro-
duction is a prefix of the other.

DR. AMBIGUITY currently contains 10 such functions, and we will probably add more.
Since they all employ the same style —(a) simultaneous deep match, (b) production com-
parison and (c) construction of a feedback message— we have not included more source
code5.

7.4.3 Discussion on Correctness

These diagnostics algorithms are typically wrong if one of the following four errors is made:

• no suggestion is given, even though the ambiguity is of a quite common kind;

• the given suggestion does not resolve any ambiguity;

• the given suggestion removes both alternatives from the forest, resulting in an empty for-
est (i.e., it removes the sentence from the language and is thus not language preserving);

• the given suggestion removes the proper derivation, but also unintentionally removes
sentences from the language.

We address the first threat by demonstrating DR. AMBIGUITY on Java in Section 7.5.
However, we do believe that the number of detection algorithms is open in principle. For
instance, for any disambiguation method that characterizes a specific way of solving ambiguity
we may have a function to analyze the characteristic kind of difference. As an “expert tool”,
automating proposals for common solutions in language design, we feel that an open-ended
solution is warranted. More disambiguation suggestion algorithms will be added as more
language designs are made. Still, in the next section we will demonstrate that the current set
of algorithms is complete for all disambiguations applied to a scannerless definition of Java
5 [BVdGD11], which actually uses all disambiguations offered by SDF2.

For the second and third threats, we claim that no currently proposed solution removes
both alternatives and all proposed solutions remove at least one. This is the case because
each suggestion is solely deduced from a difference between two alternatives, and each
disambiguation removes an artifact that is only present in one of the alternatives. We are
considering to actually prove this, but only after more usability studies.

The final threat is an important weakness of DR. AMBIGUITY, inherited from the strength
of the given disambiguation solutions. In principle and in practice, the application of rejects,
follow restrictions, or semantic actions in general renders the entire parsing process stronger
than context-free. For example, using context-free grammars with additional disambiguations
we may decide language membership of many non-context-free languages. On the one hand,
this property is beneficial, because we want to parse programming languages that have no or
awkward context-free grammars. On the other hand, this property is cumbersome, since we

5The source code is available at http://svn.rascal-mpl.org/rascal/trunk/src/org/

rascalmpl/library/Ambiguity.rsc.

http://svn.rascal-mpl.org/rascal/trunk/src/org/rascalmpl/library/Ambiguity.rsc
http://svn.rascal-mpl.org/rascal/trunk/src/org/rascalmpl/library/Ambiguity.rsc


120 Chapter 7. Parse Forest Diagnostics with DR. AMBIGUITY

Disambiguations Grammar snippet (Rascal notation)
7 levels of expression priority Expr = Expr "++"

> "++" Expr

1 father/child removal MethodSpec = Expr callee "." TypeArgs?

Id { if (callee is ExprName) filter;

}

9 associativity groups Expr = left ( Expr "+" Expr

| Expr "-" Expr )

10 rejects ID = ( [$A-Z_a-z] [$0-9A-Z_a-z]* ) \

Keywords

30 follow restrictions "+" = [\+] !>> [\+]

4 vertical preferences Stm = @prefer "if" "(" Expr ")" Stm

| "if" "(" Expr ")" Stm "else" Stm

Table 7.1: Disambiguations applied in the Java 5 grammar [BVdGD11]

can not easily predict or characterize the effect of a disambiguation filter on the accepted set
of sentences.

Only in the SWAPS class, and its sub-classes we may be (fairly) confident that we do
not remove unforeseen sentences from a language by introducing a disambiguation. The
reason is that if one of the alternatives is present in the forest, the other is guaranteed to be
also there. The running assumption is that the other derivation has not been filtered by some
other disambiguation. We might validate this assumption automatically in many cases. So,
application of priority and associativity rules suggested by DR. AMBIGUITY are safe if no
other disambiguations are applied.

7.5 Demonstration

In this section we evaluate the effectiveness of DR. AMBIGUITY as a tool. We applied
DR. AMBIGUITY to a scannerless (character level) grammar for Java [BVdGD11, BTV06].
This well tested grammar was written in SDF2 by Bravenboer et al. and makes ample use of
its disambiguation facilities. For the experiment here we automatically transformed the SDF2
grammar to RASCAL’s EBNF-like form.

Table 7.1 summarizes which disambiguations were applied in this grammar. RASCAL

supports all disambiguation features of SDF2, but some disambiguation filters are implemented
as libraries rather than built-in features. The @prefer attribute is interpreted by a library
function for example. Also, in SDF2 one can (mis)use a non-transitive priority to remove a
direct father/child relation from the grammar. In RASCAL we use a semantic action for this.

7.5.1 Evaluation Method

DR. AMBIGUITY is effective if it can explain the existence of a significant amount of choice
nodes in parse forests and proposes the right fixes. We measure this effectiveness in terms



7.5. Demonstration 121

Diagnoses
Experiment P A R F c v O Precision Recall
1. Remove priority between "*" and "+" 1 1 0 0 0 1 0 33% 100%
2. Remove associativity for "+" 0 1 0 0 0 0 0 100% 100%
3. Remove reservation of true keyword from ID 0 0 1 0 0 1 0 50% 100%
4. Remove longest match for identifiers 0 0 0 6 0 0 0 16% 100%
5. Remove package name vs. field access priority 0 0 0 0 6 1 0 14% 100%
6. Remove vertical preference for dangling else 0 0 0 1 14 1 1 7% 100%
7. All the above changes at the same time 1 2 1 7 20 4 1 17% 100%

Table 7.2: Precision/Recall results for each experiment, including (P)riority, (A)ssociativity,
(R)eject, (F)ollow restrictions, A(c)tions filtering edges, A(v)oid/prefer suggestions, and
(O)ffside rule. For each experiment, the figures of the removed disambiguation are highlighted.

of precision and recall. DR. AMBIGUITY has high precision if it does not propose too many
solutions that are useless or meaningless to the language engineer. It has high recall if it finds
all the solutions that the language engineer deems necessary. Our evaluation method is as
follows:

• The set of disambiguations that Bravenboer applied to his Java grammar is our “golden
standard”.

• The disambiguations in the grammar are selectively removed, which results in different
ambiguous versions of the grammar. New parsers are generated for each version.

• An example Java program is parsed with each newly generated parser. The program is
unambiguous for the original grammar, but becomes ambiguous for each altered version
of the grammar.

• We measure the total amount and which kinds of suggestions are made by DR. AMBI-
GUITY for the parse forests of each grammar version, and compute the precision and
recall.

Precision is computed by |FOUNDDISAMBIGUATIONS ∩ REMOVEDDISAMBIGUATIONS|
|FOUNDDISAMBIGUATIONS| × 100%. We

expect low precision, around 50%, because each particular ambiguity often has many different
solution types. Low precision is not necessarily a bad thing, provided the total amount of
disambiguation suggestions remains human-checkable.

Recall is computed by |FOUNDDISAMBIGUATIONS ∩ REMOVEDDISAMBIGUATIONS|
|REMOVEDDISAMBIGUATIONS| × 100%. From this

number we see how much we have missed. We expect the recall to be 100% in our experiments,
since we designed our detection methods specifically for the disambiguation techniques of
SDF2.

7.5.2 Results

Table 7.2 contains the results of measuring the precision and recall on a number of experiments.
Each experiment corresponds to a removal of one or more disambiguation constructs and the



122 Chapter 7. Parse Forest Diagnostics with DR. AMBIGUITY

Figure 7.5: DR. AMBIGUITY reports diagnostics in the RASCAL language workbench.

parsing of a single Java program file that triggers the introduced ambiguity.
Table 7.2 shows that we indeed always find the removed disambiguation among the

suggestions. Also, we always find more than one suggestion (the second experiment is the
only exception).

The dangling-else ambiguity of experiment 6 introduces many small differences between
two alternatives, which is why many (arbitrary) semantic actions are proposed to solve these.
We may learn from this that semantic actions need to be presented to the language engineer
as a last resort. For these disambiguations the risk of collateral damage (a non-language
preserving disambiguation) is also quite high.

The final experiment tests whether the simultaneous analysis of different choice nodes that
are present in a parse forest may lead to a loss of precision or recall. The results show that
we find exactly the same suggestions. Also, as expected the precision of such an experiment
is very low. Note however, that DR. AMBIGUITY reports each disambiguation suggestion
per choice node, and thus the precision is usually perceived per choice node and never as an
aggregated value over an entire source file. Figure 7.5 depicts how DR. AMBIGUITY may
report its output.



7.6. Conclusions 123

7.5.3 Discussion

We have demonstrated the effectiveness of DR. AMBIGUITY for only one grammar. Moreover
this grammar already contained disambiguations that we have removed, simultaneously
creating a representative case and a golden standard.

We may question whether DR. AMBIGUITY would do well on grammars that have not
been written with any disambiguation construct in mind. We may also question whether
DR. AMBIGUITY works well on completely different grammars, such as for COBOL or PL/I.
More experimental evaluation is warranted. Nevertheless, this initial evaluation based on Java
looks promising and does not invalidate our approach.

Regarding the relatively low precision, we claimed that this is indeed wanted in many cases.
The actual resolution of an ambiguity is a language design question. DR. AMBIGUITY should
not a priori promote a particular disambiguation over another well known disambiguation. For
example, reverse engineers have a general dislike of the offside rule because it complicates
the construction of a parser, while the users of a domain specific language may applaud the
sparing use of bracket literals.

7.6 Conclusions

We have presented theory and practice of automatically diagnosing the causes of ambiguity in
context-free grammars for programming languages and of proposing disambiguation solutions.
We have evaluated our prototype implementation on an actively used and mature grammar for
Java 5, to show that DR. AMBIGUITY can indeed propose the proper disambiguations.

Future work on this subject includes further extension, further usability study and finally
proofs of correctness. To support development of front-ends for many programming languages
and domain specific languages, we will include DR. AMBIGUITY in releases of the RASCAL

IDE (a software language workbench).





Chapter 8

Conclusions

“I left the ending ambiguous, because that is the way life is.”

Bernardo Bertolucci

This thesis investigates ambiguity detection methods for context-free grammars.

Its goal is to advance the usability of ambiguity detection to a level that is practical

for checking grammars of real world programming languages. The main result of this

thesis is a novel approach called AMBIDEXTER, which detects production rules that

do not contribute to ambiguity. By filtering these rules from a grammar, the runtime

of further ambiguity detection can be reduced significantly. Furthermore, we present

DR. AMBIGUITY, an expert system that automatically proposes possible cures for

ambiguity. This section concludes the thesis by summarizing our contributions, and

discussing future work.

8.1 Contributions to Research Questions

In the introduction we posed a series of research questions that focus on improving the usability
of ambiguity detection. The subsequent chapters each try to answer one or more of these
questions. The following summarizes our contributions to each of the questions.

Research Question 1

How to assess the practical usability of ambiguity detection methods?

An ambiguity detection method (ADM) is practically usable on a given grammar if it can
tell within a reasonable amount of time whether the grammar is ambiguous or not. Therefore,

125



126 Chapter 8. Conclusions

performance, accuracy and termination are very important usability criteria. Furthermore,
a method becomes more usable if it can be run with various accuracy settings, such that
its behaviour can be adjusted to the available time and memory. Finally, the usefulness of
an ADM increases if, in case of ambiguity, it can indicate the causes of the ambiguity in
the grammar, and advise on possible solutions. All these usability criteria are discussed in
Chapter 2.

Research Question 2

What is the usability of the state-of-the-art in ambiguity detection?

Also in Chapter 2, we investigate the usability of three different ADMs. Their imple-
mentations are tested on two sets of benchmark grammars: one set with 84 ambiguous and
unambiguous grammar snippets, and one set containing 25 ambiguous and unambiguous
variants of 5 real programming language grammars. The methods under investigation are the
sentence generator AMBER by Schröer [Sch01], the Noncanonical Unambiguity (NU) Test by
Schmitz [Sch07b], and the LR(k) test by Knuth [Knu65]. Their scores on each of the above
mentioned criteria are measured and analyzed, and the methods are compared to each other.

Two of the investigated ADMs are quite usable on our grammars. The approximative NU
Test shows good accuracy, performance, and termination characteristics, but is only able to
decide unambiguity. On the other hand, the exhaustive sentence generator AMBER can only
detect the existence of ambiguity, with reasonable performance, but it will never terminate on
unambiguous grammars.

Research Question 3

How to improve the performance of ambiguity detection?

In Chapter 3 we present AMBIDEXTER, a novel ambiguity detection approach that uses
grammar filtering to speed up exhaustive searching. It uses an extension of the NU Test that
enables the detection of harmless production rules in a grammar. These are the rules that
certainly do not contribute to ambiguity. If all productions of a grammar are identified as
harmless then the grammar is unambiguous. Otherwise, the harmless rules can safely be
filtered to produce a smaller grammar that contains the same ambiguities as the original one.
This filtered grammar can then be searched with an exhaustive technique in less time, because
of its smaller language.

The effectiveness of this approach is tested on the same set of programming language
grammars that was used in Chapter 2. The results show that the filtering of harmless rules
from these grammars significantly reduces sentence generation times, sometimes with several
orders of magnitude.

In Chapter 5 we present a series of extensions to our grammar filtering approach, to make
it suitable for filtering character-level grammars. These grammars include the full lexical
definitions of their languages, and are therefore more ambiguity-prone. We present extensions
for including disambiguation filters in the test, as well as a grammar unfolding technique to
deal with the increased complexity of character-level grammars.



8.2. Discussion 127

Again, an implementation of the extensions is evaluated on a series of real-world grammars.
Although the reported gains in sentence generation time are not as large as for token-based
grammars, our technique proves to be very useful on all but one grammar.

Research Question 4

How to improve the accuracy of approximative ambiguity detection?

In Chapter 4 we present the theoretical foundations for our grammar filtering technique
and prove its correctness. We show how to extend both the Regular Unambiguity (RU) Test
and the more accurate Noncanonical Unambiguity (NU) Test to find harmless production rules.
With the RU Test our approach is able to find production rules that can only be used to derive
unambiguous strings. With the NU Test it can also find productions that can only be used
to derive unambiguous substrings of ambiguous strings. We also show that the number of
detected harmless rules can be increased if the filtering is applied in an iterative fashion. This
shows that grammar filtering has an accuracy increasing effect on the approximative RU Test
and the NU Test.

Furthermore, the character-level extensions presented in Chapter 5 also increase the
accuracy of our grammar filtering technique and the RU Test and NU Test in general. By
taking disambiguation filters into account, the tests can ignore ambiguities that are already
solved by the grammar developer. Furthermore, the general grammar unfolding technique
increases accuracy by taming the approximation in relevant areas of the grammar.

Research Question 5

How to improve the usefulness of ambiguity detection reports?

Our contribution to this question is twofold. First, the harmless production rules produced
by our grammar filtering approach serve as useful ambiguity reports, because they can give
confidence about the unambiguity of certain parts of a grammar. Second, in Chapter 7 we
present an expert system called DR. AMBIGUITY, that can automatically propose applicable
cures for ambiguous sentences that are for instance found by a sentence generator.

The chapter gives an overview of different types of ambiguity and ambiguity resolutions,
and shows how they are linked together by DR. AMBIGUITY. The usefulness of the expert
system is evaluated by applying it on a mature character-level grammar for Java. We remove
several disambiguation filters from the grammar and test whether DR. AMBIGUITY is able to
detect them as a possible solution. Initial results show that in all cases the removed solution
was among the proposed cures.

8.2 Discussion

Despite the performance and accuracy characteristics on an ADM, its practical usability on a
certain grammar also depends on the shape of the grammar, and available resources like time,
memory and computing power. It is therefore very hard to determine whether the current state
of the art is usable enough for checking real programming language grammars. Furthermore,



128 Chapter 8. Conclusions

because the ambiguity detection problem is undecidable, there are grammars for which one
can never find a satisfying answer.

Nevertheless, as the results presented throughout this thesis show, grammar filtering is
a general technique that can have very beneficial effects in many situations, independent of
the checked grammar, available hardware or applied detection method. Filtering harmless
production rules from a grammar can significantly reduce the runtime of exhaustive ADMs,
as well as improve the accuracy of approximative ADMs. Furthermore, detected harmless
production rules serve as a useful ambiguity report that guarantee the unambiguity of part of a
grammar.

Our experiments also show that most grammars can already be filtered in an efficient
manner on present day hardware. Also, a small investment in filtering time leads to the earlier
detection of ambiguities in existing programming language grammars. Therefore, grammar
filtering is ready to be included in language workbenches, preferably in combination with an
exhaustive sentence generator and an expert system like DR. AMBIGUITY.

8.3 Future Work

An advantage of the undecidability of the ambiguity problem is that there will always be room
for improvement. We envisage that research into improving the performance, accuracy and
reporting of ambiguity detection will always be relevant. To encourage further investigations,
we list a number of possible research directions.

ADM Comparison The evaluation of ADMs in Chapter 2 only includes the implementations
of three methods. It would be interesting to also compare the methods of Brabrand, Giegerich
and Møller [BGM10], Chueng and Uzgalis [CU95], CFG ANALYZER [AHL08], and our own
sentence generator described in Chapter 6.

Approximative Testing Although grammar approximation has already been studied quite
substantially [MN01, Sch07a, BGM10, YJ03], we hope it is still possible to find better
approximations that are suitable for ambiguity detection of programming language grammars.
We see the following challenges and possible directions:

• Since we target grammars of programming languages, we could exploiting their typical
characteristics. Very often, most syntactic structures of a programming language are
regular, and context-free embedding is only used for scoping and expression nesting. If
the regular structures can be separated from the context-free ones, only the latter have
to be approximated.

• Furthermore, the effectiveness of various approximation improvements can vary a lot
per grammar. It would be helpful if certain properties in a grammar can be found that
indicate which type of approximation will result in suitable accuracy and performance.

• Another challenge for approximation techniques is to ignore known or in-
tended [vdBKMV03] ambiguities in a grammar. This way, they can provide a guarantee
that no other unknown ambiguities exist.



8.3. Future Work 129

• In Section 4.7 we discussed refining the approximation precision with every iteration of
filtering a grammar. Like in model checking [CGJ+00], we envisage this can be done in
an automatic way. More research is needed to investigate this approach in the setting of
ambiguity detection.

• From process theory it is known that bisimulation is decidable for processes described
by context-free grammars [HM95]. Bisimulation equivalence of grammars also implies
language equivalence, but it is strictly weaker. Since language equivalence is closely
related to the ambiguity problem, these results might be extended into an approximative
ambiguity test.

Harmless Production Rules The technique for detecting harmless production rules as
described in Chapter 4 is able to detect production rules that can only derive unambiguous
sentences or subsentences. However, there can also be productions that can derive ambiguous
sentences while they are unambiguous themselves. These productions then only appear in
parse trees above ambiguity nodes, and do therefore not directly contribute to ambiguity. We
expect these productions can be found using the maEq∗ relations described in Section 4.4.2.
More research is needed to work out this idea.

Sentence Generation Sentence generation could possibly be sped up enormously by sharing
the many common substrings that exist in the language of a grammar. This is presumably
easier to achieve with breadth first searching. The results of Chapter 3 show that the breadth
first sentence generator CFG ANALYZER [AHL08], which uses an incremental SAT-solver for
its searching, performs very well. Our guess is that by using more domain knowledge about
grammars in the searching, this SAT-based approach might be beaten.

Reporting Initial experiments show that DR. AMBIGUITY is able of reporting all possible
cures for an ambiguous sentence. However, which one to apply is a language design question,
and also depends on its effects on other parse trees. More research is needed to help a grammar
developer to make an informed choice from the — possibly long — list of available solutions.





Bibliography

[AH99] J. Aycock and R. N. Horspool. Faster generalized LR parsing. In S. Jähnichen,
editor, Proceedings of the Eigth International Conference on Compiler Con-

struction (CC 1999), volume 1575 of LNCS, pages 32–46. Springer-Verlag,
1999. Cited on page 105.

[AH01] J. Aycock and R. N. Horspool. Schrödinger’s token. Software: Practice &

Experience, 31(8):803–814, 2001. Cited on page 70.

[AHL08] R. Axelsson, K. Heljanko, and M. Lange. Analyzing context-free grammars
using an incremental SAT solver. In Proceedings of the 35th International Col-

loquium on Automata, Languages, and Programming (ICALP 2008), volume
5126 of LNCS, 2008. Cited on pages 14, 28, 32, 91, 96, 128, and 129.

[Ake78] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
27(6):509–516, 1978. Cited on page 98.

[AL90] T. Altman and G. Logothetis. A note on ambiguity in context-free grammars.
Information Processing Letters, 35(3):111–114, 1990. Cited on pages 52
and 113.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and

tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1986. Cited on pages 110, 111, and 114.

[Bas07] H. J. S. Basten. Ambiguity detection methods for context-free grammars.
Master’s thesis, Universiteit van Amsterdam, August 2007. Cited on pages 23
and 38.

[Bas09] H. J. S. Basten. The usability of ambiguity detection methods for context-free
grammars. In A. Johnstone and J. Vinju, editors, Proceedings of the Eigth

Workshop on Language Descriptions, Tools and Applications (LDTA 2008),
volume 238 of ENTCS, 2009. Cited on pages 19 and 21.

131



132 Chapter 8. Bibliography

[Bas10] H. J. S. Basten. Tracking down the origins of ambiguity in context-free gram-
mars. In Proceedings of the Seventh International Colloquium on Theoretical

Aspects of Computing (ICTAC 2010), volume 6255 of LNCS, pages 76 – 90.
Springer, 2010. Cited on pages 19 and 51.

[BBV07] E. Bouwers, M. Bravenboer, and E. Visser. Grammar engineering support
for precedence rule recovery and compatibility checking. In A. Sloane and
A. Johnstone, editors, Proceedings of the Seventh Workshop on Language

Descriptions, Tools, and Applications (LDTA 2007), pages 82–96, Braga,
Portugal, March 2007. Cited on pages 28 and 110.

[BG06] A. Begel and S. L. Graham. XGLR–an algorithm for ambiguity in program-
ming languages. Science of Computer Programming, 61(3):211 – 227, 2006.
Special Issue on The Fourth Workshop on Language Descriptions, Tools, and
Applications (LDTA 2004). Cited on page 105.

[BGM10] C. Brabrand, R. Giegerich, and A. Møller. Analyzing ambiguity of context-free
grammars. Science of Computer Programming, 75(3):176–191, 2010. Cited
on pages 14, 22, 28, 32, 52, 86, 96, 113, and 128.

[BKV11] H. J. S. Basten, P. Klint, and J. J. Vinju. Ambiguity detection : scaling to
scannerless. In J. Saraiva, U. Assmann, and A. Sloane, editors, Proceedings of

the Fourth International Conference on Software Language Engineering (SLE

2011), LNCS. Springer, 2011. Cited on pages 19 and 69.

[BTV06] M. Bravenboer, É. Tanter, and E. Visser. Declarative, formal, and extensible
syntax definition for AspectJ. SIGPLAN Notices, 41:209–228, October 2006.
Cited on pages 106 and 120.

[BV04] M. Bravenboer and E. Visser. Concrete syntax for objects: domain-specific
language embedding and assimilation without restrictions. In J. M. Vlissides
and D. C. Schmidt, editors, OOPSLA, pages 365–383. ACM, 2004. Cited on
page 70.

[BV10] H. J. S. Basten and J. J. Vinju. Faster ambiguity detection by grammar filtering.
In C. Brabrand and P. E. Moreau, editors, Proceedings of the Tenth Workshop

on Language Descriptions, Tools and Applications (LDTA 2010). ACM, 2010.
Cited on pages 19, 31, and 41.

[BV11] H. J. S. Basten and J. J. Vinju. Parse forest diagnostics with Dr. Ambiguity.
In J. Saraiva, U. Assmann, and A. Sloane, editors, Proceedings of the Fourth

International Conference on Software Language Engineering (SLE 2011),
LNCS. Springer, 2011. Cited on pages 19 and 105.

[BVdGD11] M. Bravenboer, R. Vermaas, R. de Groot, and E. Dolstra. Java-front: Java
syntax definition, parser, and pretty-printer. Technical report, www.program-
transformation.org, 2011. http://www.program-transformation.
org/Stratego/JavaFront. Cited on pages 119 and 120.

http://www.program-transformation.org/Stratego/JavaFront
http://www.program-transformation.org/Stratego/JavaFront


Bibliography 133

[BvdS10] H. J. S. Basten and T. van der Storm. AmbiDexter: Practical ambiguity
detection, tool demonstration. In Proceedings of the Tenth IEEE International

Working Conference on Source Code Analysis and Manipulation (SCAM 2010),
pages 101 –102. IEEE, September 2010. Cited on pages 19 and 93.

[BVVV05] M. Bravenboer, R. Vermaas, J. J. Vinju, and E. Visser. Generalized type-based
disambiguation of meta programs with concrete object syntax. In R. Glück and
M. R. Lowry, editors, Proceedings of the Fourth International Conference on

Generative Programming and Component Engineering (GPCE 2005), volume
3676 of LNCS, pages 157–172, Tallinn, Estonia, 2005. Springer. Cited on page
111.

[Can62] D. G. Cantor. On the ambiguity problem of Backus systems. Journal of the

ACM, 9(4):477–479, 1962. Cited on pages 13, 22, 52, and 106.

[CFJ+09] P. Charles, R. M. Fuhrer, S. M. Sutton Jr., E. Duesterwald, and J. J. Vinju.
Accelerating the creation of customized, language-specific IDEs in Eclipse.
In S. Arora and G. T. Leavens, editors, Proceedings of the 24th Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA 2009), 2009. Cited on page 116.

[CGJ+00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In E. A. Emerson and A. Prasad Sistla, editors, Pro-

ceedings of the 12th International Conference on Computer Aided Verification

(CAV 2000), volume 1855 of LNCS, pages 154–169. Springer, 2000. Cited on
pages 66 and 129.

[Cho56] N. Chomsky. Three models for the description of language. IRE Transactions

on Information Theory, 2(3):113–124, 1956. Cited on page 11.

[CS63] N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free
languages. In P. Braffort, editor, Computer Programming and Formal Systems,
pages 118–161. North-Holland, Amsterdam, 1963. Cited on pages 13, 22, 52,
and 106.

[CU95] B. S. N. Cheung and R. C. Uzgalis. Ambiguity in context-free grammars. In
Proceedings of the 1995 ACM Symposium on Applied Computing (SAC 1995),
pages 272–276, New York, NY, USA, 1995. ACM Press. Cited on pages 14,
32, and 128.

[DeR69] F. L. DeRemer. Practical translators for LR(k) languages. PhD thesis, Dep.
Electrical Engineering, Massachusetts Institute of Technology, Cambridge,
1969. Cited on page 15.

[DS05] C. Donnely and R. Stallman. Bison version 2.5, May 2005. http://www.
gnu.org/software/bison/manual/. Cited on page 94.

http://www.gnu.org/software/bison/manual/
http://www.gnu.org/software/bison/manual/


134 Chapter 8. Bibliography

[Ear70] J. Earley. An efficient context-free parsing algorithm. Communications of the

ACM, 13(2):94–102, 1970. Cited on pages 15 and 105.

[Eco06] G. R. Economopoulos. Generalised LR parsing algorithms. PhD thesis, Royal
Holloway, University of London, August 2006. Cited on page 105.

[Flo62] R. W. Floyd. On ambiguity in phrase structure languages. Communications of

the ACM, 5(10):526–534, 1962. Cited on pages 13, 22, 52, and 106.

[For04] B. Ford. Parsing expression grammars: a recognition-based syntactic foun-
dation. SIGPLAN Notices, 39:111–122, January 2004. Cited on pages 15
and 106.

[GH67] S. Ginsburg and M. A. Harrison. Bracketed context-free languages. Journal

of Computer and System Sciences, 1(1):1–23, 1967. Cited on pages 54, 73,
and 108.

[GJ08] D. Grune and C. J. H. Jacobs. Parsing techniques a practical guide – Second

edition. Springer, 2008. Cited on pages 25 and 26.

[Gor63] S. Gorn. Detection of generative ambiguities in context-free mechanical
languages. J. ACM, 10(2):196–208, 1963. http://doi.acm.org/10.
1145/321160.321168. Cited on pages 14 and 32.

[GrC] C grammar, ftp://ftp.iecc.com/pub/file/c-grammar.gz.
Cited on page 38.

[GrJ] Java grammar, GCC, http://gcc.gnu.org/cgi-bin/cvsweb.

cgi/gcc/gcc/java/parse.y?rev=1.475. Cited on page 38.

[GrP] Pascal grammar, ftp://ftp.iecc.com/pub/file/

pascal-grammar. Cited on page 38.

[GrS] SQL grammar, GRASS, grass-6.2.0RC1/lib/db/sqlp/yac.y

from http://grass.itc.it/grass62/source/grass-6.2.

0RC1.tar.gz. Cited on page 38.

[HHKR89] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition
formalism SDF - reference manual. SIGPLAN Notices, 24(11):43–75, 1989.
Cited on pages 16, 74, 87, 94, 109, and 110.

[HM95] Y. Hirshfeld and F. Moller. Decidability results in automata and process theory.
In F. Moller and G. M. Birtwistle, editors, Banff Higher Order Workshop,
volume 1043 of LNCS, pages 102–148. Springer, 1995. Cited on page 129.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages

and Computation. Addison-Wesley, 1979. Cited on page 53.

http://doi.acm.org/10.1145/321160.321168
http://doi.acm.org/10.1145/321160.321168
ftp://ftp.iecc.com/pub/file/c-grammar.gz
http://gcc.gnu.org/cgi-bin/cvsweb.cgi/gcc/gcc/java/parse.y?rev=1.475
http://gcc.gnu.org/cgi-bin/cvsweb.cgi/gcc/gcc/java/parse.y?rev=1.475
ftp://ftp.iecc.com/pub/file/pascal-grammar
ftp://ftp.iecc.com/pub/file/pascal-grammar
http://grass.itc.it/grass62/source/grass-6.2.0RC1.tar.gz
http://grass.itc.it/grass62/source/grass-6.2.0RC1.tar.gz


Bibliography 135

[Hut92] G. Hutton. Higher-order functions for parsing. Journal of Functional Pro-

gramming, 2(3):323–343, 1992. Cited on page 15.

[Jam05] S. Jampana. Exploring the problem of ambiguity in context-free
grammars. Master’s thesis, Oklahoma State University, July 2005.
http://e-archive.library.okstate.edu/dissertations/

AAI1427836/. Cited on pages 14 and 28.

[Joh] S. C. Johnson. Yacc: Yet Another Compiler-Compiler. AT&T Bell Laboratories.
http://dinosaur.compilertools.net/yacc/. Cited on page 94.

[JS11] A. Johnstone and E. Scott. Modelling GLL parser implementations. In
B. Malloy, S. Staab, and M. van den Brand, editors, Proceedings of the Third

International Conference on Software Language Engineering (2010), volume
6563 of LNCS, pages 42–61. Springer Berlin / Heidelberg, 2011. Cited on
page 105.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972. Cited on page 101.

[KLV05] P. Klint, R. Lämmel, and C. Verhoef. Toward an engineering discipline for
grammarware. ACM Transactions on Software Engineering Methodology,
14:331–380, July 2005. Cited on page 12.

[Knu65] D. E. Knuth. On the translation of languages from left to right. Information

and Control, 8(6):607–639, 1965. Cited on pages 15, 18, 22, 25, 34, 53, 57,
and 126.

[Knu71] D. E. Knuth. Top-down syntax analysis. Acta Informatica, 1:79–110, 1971.
Cited on page 15.

[KV94] P. Klint and E. Visser. Using filters for the disambiguation of context-free
grammars. In Proceedings of the ASMICS Workshop on Parsing Theory,
Technical Report 126-1994, pages 1–20. Università di Milano, 1994. Cited on
pages 16, 73, and 109.

[KvdSV11] P. Klint, T. van der Storm, and J. J. Vinju. EASY meta-programming with Ras-
cal. In J. Fernandes, R. Lämmel, J. Visser, and J. Saraiva, editors, Generative

and Transformational Techniques in Software Engineering III, volume 6491 of
LNCS, pages 222–289. Springer Berlin / Heidelberg, 2011. Cited on pages 16,
94, 110, 116, and 117.

[KVW10] L. C. L. Kats, E. Visser, and G. Wachsmuth. Pure and declarative syntax
definition: paradise lost and regained. In W. R. Cook, S. Clarke, and M. C.
Rinard, editors, OOPSLA, pages 918–932. ACM, 2010. Cited on page 70.

http://e-archive.library.okstate.edu/dissertations/AAI1427836/
http://e-archive.library.okstate.edu/dissertations/AAI1427836/
http://dinosaur.compilertools.net/yacc/


136 Chapter 8. Bibliography

[Lan66] P. J. Landin. The next 700 programming languages. Communications of the

ACM, 9:157–166, March 1966. Cited on page 110.

[Lan74] B. Lang. Deterministic techniques for efficient non-deterministic parsers.
In Proceedings of the Second Colloquium on Automata, Languages, and

Programming (ICALP 1974), volume 14 of LNCS, pages 255–269. Springer,
1974. Cited on page 106.

[LV01] R. Lämmel and C. Verhoef. Semi-automatic grammar recovery. Software:

Practice & Experience, 31:1395–1448, December 2001. Cited on page 106.

[Mak95] V. Makarov. MSTA (syntax description translator), May 1995. See http:
//cocom.sourceforge.net/msta.html. Cited on pages 22 and 25.

[MN01] M. Mohri and M. J. Nederhof. Regular approximations of context-free gram-
mars through transformation. In J. C. Junqua and G. van Noord, editors,
Robustness in Language and Speech Technology, chapter 9, pages 153–163.
Kluwer Academic Publishers, 2001. Cited on page 128.

[Moo01] Leon Moonen. Generating robust parsers using island grammars. In Proceed-

ings of the Eighth Working Conference on Reverse Engineering (WCRE 2001),
pages 13–, Washington, DC, USA, 2001. IEEE Computer Society. Cited on
page 111.

[NF91] R. Nozohoor-Farshi. GLR parsing for epsilon-grammars. In Generalized LR

Parsing, pages 60 – 75. Kluwer Academic Publishers, The Netherlands, 1991.
Cited on page 15.

[PF11] T. Parr and K. Fisher. LL(*): the foundation of the ANTLR parser generator.
In Proceedings of the 32nd ACM SIGPLAN conference on Programming

Language Design and Implementation (PLDI 2011), pages 425–436, New
York, NY, USA, 2011. ACM. Cited on pages 15 and 106.

[Rek92] J. Rekers. Parser Generation for Interactive Environments. PhD thesis,
University of Amsterdam, 1992. Cited on page 109.

[SC89] D. J. Salomon and G. V. Cormack. Scannerless NSLR(1) parsing of program-
ming languages. SIGPLAN Notices, 24:170–178, June 1989. Cited on pages
12 and 110.

[Sch01] F. W. Schröer. AMBER, an ambiguity checker for context-free gram-
mars. Technical report, compilertools.net, 2001. See http://accent.
compilertools.net/Amber.html. Cited on pages 14, 18, 22, 32, 71,
91, 96, 113, and 126.

[Sch06] F. W. Schröer. ACCENT, a compiler compiler for the entire class of context-
free grammars, second edition. Technical report, compilertools.net, 2006.
See http://accent.compilertools.net/Accent.html. Cited
on pages 96 and 105.

http://cocom.sourceforge.net/msta.html
http://cocom.sourceforge.net/msta.html
http://accent.compilertools.net/Amber.html
http://accent.compilertools.net/Amber.html
http://accent.compilertools.net/Accent.html


Bibliography 137

[Sch07a] S. Schmitz. Approximating Context-Free Grammars for Parsing and Verifica-

tion. PhD thesis, Université de Nice - Sophia Antipolis, 2007. Cited on pages
28, 52, 77, and 128.

[Sch07b] S. Schmitz. Conservative ambiguity detection in context-free grammars. In
L. Arge, C. Cachin, T. Jurdziński, and A. Tarlecki, editors, Proceedings of the

34th International Colloquium on Automata, Languages and Programming

(ICALP 2007), volume 4596 of LNCS, 2007. Cited on pages 14, 18, 22, 26, 28,
32, 34, 52, 56, 57, 62, 63, 71, and 126.

[Sch10] S. Schmitz. An experimental ambiguity detection tool. Science of Computer

Programming, 75(1-2):71–84, 2010. Cited on pages 22, 26, 40, 46, and 52.

[SJ10] E. Scott and A. Johnstone. GLL parsing. In Proceedings of the Ninth Workshop

on Language Descriptions Tools and Applications (LDTA 2009), volume 253,
pages 177 – 189, 2010. Cited on pages 15 and 105.

[SSS88] S. Sippu and E. Soisalon-Soininen. Parsing theory. Vol. 1: languages and

parsing. Springer-Verlag New York, Inc., New York, NY, USA, 1988. Cited
on pages 53 and 61.

[Tar72] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on

Computing, 1(2):146–160, 1972. Cited on page 77.

[Tom85] M. Tomita. Efficient Parsing for Natural Languages. A Fast Algorithm for

Practical Systems. Kluwer Academic Publishers, 1985. Cited on pages 15
and 105.

[vdBKMV03] M. van den Brand, S. Klusener, L. Moonen, and J. J. Vinju. Generalized parsing
and term rewriting: Semantics driven disambiguation. ENTCS, 82(3):575–591,
2003. Cited on page 128.

[vdBSVV02] M. G. J. van den Brand, J. Scheerder, J. J. Vinju, and E. Visser. Disambiguation
filters for scannerless generalized LR parsers. In Proceedings of the 11th

International Conference on Compiler Construction (CC 2002), pages 143–
158, London, UK, 2002. Springer-Verlag. Cited on pages 12, 69, 70, 73, 80,
91, 98, 105, 109, 110, 111, and 114.

[Vin11] J. J. Vinju. SDF disambiguation medkit for programming languages. Technical
Report SEN-1107, Centrum Wiskunde & Informatica, 2011. Cited on page
108.

[Vis97] E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University
of Amsterdam, September 1997. Cited on pages 16, 74, 87, 94, 98, 100, 110,
and 117.



138 Chapter 8. Bibliography

[VS07] E. Van Wyk and A. Schwerdfeger. Context-aware scanning for parsing exten-
sible languages. In C. Consel and J. L. Lawall, editors, Proceedings of the

Sixth International Conference on Generative Programming and Component

Engineering (GPCE 2007), pages 63–72. ACM, 2007. Cited on page 70.

[YJ03] A. Yli-Jyrä. Regular approximations through labeled bracketing. In G. Jäger,
P. Monachesi, G. Penn, and S. Wintner, editors, Proceedings of the 8th confer-

ence on Formal Grammar 2003 ”FG Vienna”, pages 189–201, 2003. Cited on
page 128.



Summary

Context-free grammars are the most suitable and most widely used method for describing the
syntax of programming languages. They can be used to generate parsers, which transform a
piece of source code into a tree-shaped representation of the code’s syntactic structure. These
parse trees can then be used for further processing or analysis of the source text. In this
sense, grammars form the basis of many engineering and reverse engineering applications,
like compilers, interpreters and tools for software analysis and transformation. Unfortunately,
context-free grammars have the undesirable property that they can be ambiguous, which can
seriously hamper their applicability.

A grammar is ambiguous if at least one sentence in its language has more than one valid
parse tree. Since the parse tree of a sentence is often used to infer its semantics, an ambiguous
sentence can have multiple meanings. For programming languages this is almost always
unintended. Ambiguity can therefore be seen as a grammar bug.

A specific category of context-free grammars that is particularly sensitive to ambiguity are
character-level grammars, which are used to generate scannerless parsers. Unlike traditional
token-based grammars, character-level grammars include the full lexical definition of their
language. This has the advantage that a language can be specified in a single formalism, and
that no separate lexer or scanner phase is necessary in the parser. However, the absence of
a scanner does require some additional lexical disambiguation. Character-level grammars
can therefore be annotated with special disambiguation declarations to specify which parse
trees to discard in case of ambiguity. Unfortunately, it is very hard to determine whether all
ambiguities have been covered.

The task of searching for ambiguities in a grammar is very complex and time consuming,
and is therefore best automated. Since the invention of context-free grammars, several
ambiguity detection methods have been developed to this end. However, the ambiguity
problem for context-free grammars is undecidable in general, so the perfect detection method
cannot exist. This implies a trade-off between accuracy and termination. Methods that apply
exhaustive searching are able to correctly find all ambiguities, but they might never terminate.
On the other hand, approximative search techniques do always produce an ambiguity report,
but these might contain false positives or false negatives. Nevertheless, the fact that every

139



140 Chapter 8. Summary

method has flaws does not mean that ambiguity detection cannot be useful in practice.
This thesis investigates ambiguity detection with the aim of checking grammars for

programming languages. The challenge is to improve upon the state-of-the-art, by finding
accurate enough methods that scale to realistic grammars. First we evaluate existing methods
with a set of criteria for practical usability. Then we present various improvements to ambiguity
detection in the areas of accuracy, performance and report quality.

The main contributions of this thesis are two novel techniques. The first is an ambi-
guity detection method that applies both exhaustive and approximative searching, called
AMBIDEXTER. The key ingredient of AMBIDEXTER is a grammar filtering technique that
can remove harmless production rules from a grammar. A production rule is harmless if it
does not contribute to any ambiguity in the grammar. Any found harmless rules can therefore
safely be removed. This results in a smaller grammar that still contains the same ambiguities
as the original one. However, it can now be searched with exhaustive techniques in less time.

The grammar filtering technique is formally proven correct, and experimentally validated.
A prototype implementation is applied to a series of programming language grammars, and
the performance of exhaustive detection methods are measured before and after filtering. The
results show that a small investment in filtering time can substantially reduce the run-time of
exhaustive searching, sometimes with several orders of magnitude.

After this evaluation on token-based grammars, the grammar filtering technique is extended
for use with character-level grammars. The extensions deal with the increased complexity
of these grammars, as well as their disambiguation declarations. This enables the detection
of productions that are harmless due to disambiguation. The extentions are experimentally
validated on another set of programming language grammars from practice, with similar results
as before. Measurements show that, even though character-level grammars are more expensive
to filter, the investment is still very worthwhile. Exhaustive search times were again reduced
substantially.

The second main contribution of this thesis is DR. AMBIGUITY, an expert system to help
grammar developers to understand and solve found ambiguities. If applied to an ambiguous
sentence, DR. AMBIGUITY analyzes the causes of the ambiguity and proposes a number of
applicable solutions. A prototype implementation is presented and evaluated with a mature
Java grammar. After removing disambiguation declarations from the grammar we analyze
sentences that have become ambiguous by this removal. The results show that in all cases the
removed filter is proposed by DR. AMBIGUITY as a possible cure for the ambiguity.

Concluding, this thesis improves ambiguity detection with two novel methods. The
first is the ambiguity detection method AMBIDEXTER that applies grammar filtering to
substantially speed up exhaustive searching. The second is the expert system DR. AMBIGUITY

that automatically analyzes found ambiguities and proposes applicable cures. The results
obtained with both methods show that automatic ambiguity detection is now ready for realistic
programming language grammars.



Samenvatting

Context-vrije grammatica’s zijn de methode bij uitstek voor het beschrijven van de syntax
van programmeertalen. Ze worden gebruikt voor het genereren van parsers. Met een parser
kan de syntactische structuur van een stuk broncode worden ontleed. Het resultaat is een
boomstructuur waarmee verdere verwerking of analyse van de broncode mogelijk is. Op deze
manier vormen grammatica’s de basis voor veel (domein specifieke) taalimplementaties, zoals
compilers en interpreters, maar ook voor reverse engineering toepassingen zoals broncodeana-
lyse en -transformatie. Helaas hebben context-vrije grammatica’s de ongewenste eigenschap
dat ze ambigu kunnen zijn.

Een grammatica is ambigu als één of meerdere zinnen of programma’s in haar taal
op verschillende manieren ontleed kunnen worden. De syntactische ontleding is vaak het
uitgangspunt voor semantische analyse, dus een ambigue zin kan meerdere betekenissen
hebben. Omdat programmeertalen juist zijn bedoeld om ondubbelzinnig programma’s in te
schrijven, kan ambiguïteit worden gezien als een grammatica-bug.

Een specifieke klasse van context-vrije grammatica’s die zeer gevoelig zijn voor am-
biguïteit zijn character-level grammatica’s. Deze grammatica’s zijn bedoeld om zogenaamde
scannerless parsers mee te genereren. In tegenstelling tot traditionele token-based gram-
matica’s specificeren character-level grammatica’s ook de lexicale syntax van hun taal. Dit
heeft als voordelen dat een taal in één formalisme gedefinieerd kan worden en dat de parser
geen aparte lexer of scanner nodig heeft. Desalniettemin, door de afwezigheid van een scanner
is er wel additionele lexicale disambiguatie nodig. Character-level grammatica’s kunnen
daarom worden geannoteerd met speciale disambiguatiedeclaraties, om aan te geven welke
alternatieve ontledingen van een ambigue zin genegeerd kunnen worden. Helaas is het erg
moeilijk om vast te stellen of alle ambiguïteiten zijn afgedekt.

Het zoeken naar ambiguïteiten in een grammatica is erg complex en tijdrovend. Daarom
kan deze taak het beste worden geautomatiseerd. Sinds de ontdekking van context-vrije
grammatica’s zijn hiervoor verschillende ambiguïteitsdetectiemethoden ontwikkeld. Echter,
de perfecte detectiemethode zal nooit kunnen bestaan omdat het ambiguïteitsprobleem voor
context-vrije grammatica’s in het algemeen onbeslisbaar is. Hierdoor is er altijd een afweging
tussen accuraatheid en terminatie. Methoden die een uitputtende zoekstrategie toepassen

141



142 Chapter 8. Samenvatting

kunnen in principe alle ambiguïteiten vinden, maar dit kan oneindig lang duren. Aan de andere
kant zijn er methoden die bij benadering zoeken om wel altijd te kunnen termineren, maar hun
resultaten kunnen hierdoor niet altijd correct zijn. Het feit dat elke methode onvolkomenheden
heeft hoeft de praktische bruikbaarheid echter niet in de weg te staan.

Dit proefschrift behandelt ambiguïteitsdetectie gericht op grammatica’s van programmeer-
talen. Hierbij is het de uitdaging om de state-of-the-art te verbeteren door het vinden van
methoden die accuraat genoeg zijn en tegelijkertijd schalen naar realistische grammatica’s.
Als uitgangspunt voor deze zoektocht evalueren we eerst bestaande methoden aan de hand van
bruikbaarheidscriteria’s. Vervolgens verbeteren we de accuraatheid, prestatie en rapportage-
kwaliteit van ambiguïteitsdetectie.

De belangrijkste bijdragen van dit proefschrift zijn twee nieuwe technieken. De eerste is
een detectiemethode genaamd AMBIDEXTER, die een uitputtende zoekstrategie combineert
met zoeken bij benadering. Het hoofdbestanddeel van AMBIDEXTER is een filtertechniek om
onschadelijke productieregels uit een grammatica te verwijderen. Onschadelijke regels dragen
op geen enkele wijze bij aan ambiguïteit en kunnen daarom veilig uit de grammatica verwijderd
worden. Na het filteren blijft er een kleinere grammatica over die dezelfde ambiguïteiten bevat
als de originele grammatica. Het voordeel hiervan is dat de kleinere grammatica nu sneller
doorzocht kan worden met uitputtende zoektechnieken.

De grammaticafiltering is formeel correct bewezen en experimenteel gevalideerd. Met
een prototype implementatie zijn een aantal bestaande grammatica’s van programmeertalen
gefilterd. Daarna is de prestatie van uitputtende zoekmethoden gemeten op de originele en de
gefilterde grammatica’s. De uitkomst is dat een kleine investering in filtertijd de zoektijd van
deze methoden substantieel kan verminderen, soms zelfs met meerdere ordes van grootte.

Na deze evaluatie op token-based grammatica’s passen we de filtertechniek aan voor
character-level grammatica’s. We presenteren een aantal uitbreidingen om de additionele
complexiteit van deze grammatica’s het hoofd te bieden en om rekening te houden met
disambiguatiedeclaraties. Hierdoor kunnen er ook regels gefilterd worden die onschadelijk
zijn gemaakt door disambiguatie. De uitbreidingen zijn wederom experimenteel gevalideerd
op een serie programmeertaalgrammatica’s, met vergelijkbare resultaten. Ondanks het feit dat
character-level grammatica’s duurder zijn om te filteren, blijft de investering de moeite waard.
Ook hier nemen de zoektijden van uitputtende methoden substantieel af.

De tweede hoofdbijdrage van dit proefschrift is DR. AMBIGUITY, een expertsysteem om
grammatica-ontwikkelaars te helpen met het begrijpen en oplossen van gevonden ambiguïteiten.
Hiermee kan een ambigue zin worden geanalyseerd om de oorzaken van de ambiguïteit in
de grammatica te vinden. Vervolgens worden er een aantal toepasbare oplossingen voor de
ambiguïteit voorgesteld. We presenteren een prototype implementatie en evalueren deze op een
grammatica van Java. Door disambiguatiedeclaraties te verwijderen genereren we ambigue
zinnen, die we vervolgens analyseren met DR. AMBIGUITY. In alle gevallen worden de
verwijderde declaraties voorgesteld als mogelijke oplossing voor de geanalyseerde ambiguïteit.

Samenvattend, dit proefschrift verbetert ambiguïteitsdetectie met twee nieuwe methoden.
AMBIDEXTER past grammaticafiltering toe om de zoektijd van uitputtende methoden sub-
stantieel te verkleinen. Het expertsysteem DR. AMBIGUITY kan gevonden ambiguïteiten
analyseren en mogelijke oplossingen voorstellen. De resultaten van beide methoden laten zien
dat ambiguiteitsdetectie klaar is voor realistische grammatica’s van programmeertalen.



Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional Proof System

for Multithreaded Java -Theory and Tool

Support- . Faculty of Mathematics and Natu-
ral Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodeling

in Bone Tissue. Faculty of Biomedical Engi-
neering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Con-

trol - Expression and Enforcement. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2005-03

H. Gao. Design and Verification of

Lock-free Parallel Algorithms. Faculty
of Mathematics and Computing Sciences,
RUG. 2005-04

H.M.A. van Beek. Specification and

Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2005-05

M.T. Ionita. Scenario-Based System Ar-

chitecting - A Systematic Approach to De-

veloping Future-Proof System Architectures.
Faculty of Mathematics and Computing Sci-
ences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Tech-

niques in Security and Fault-Tolerance. Fac-
ulty of Electrical Engineering, Mathematics
& Computer Science, UT. 2005-07

I. Kurtev. Adaptability of Model Trans-

formations. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2005-08

T. Wolle. Computational Aspects of

Treewidth - Lower Bounds and Network Re-

liability. Faculty of Science, UU. 2005-09

O. Tveretina. Decision Procedures for

Equality Logic with Uninterpreted Functions.

Faculty of Mathematics and Computer Sci-
ence, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite Popu-

lations in Dynamic Environments. Faculty
of Biomedical Engineering, TU/e. 2005-11

J. Eggermont. Data Mining using Genetic

Programming: Classification and Symbolic

Regression. Faculty of Mathematics and Nat-
ural Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error Mes-

sages. Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of

Hybrid Systems using Simulation Relations.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2005-14

M.R. Mousavi. Structuring Structural Op-

erational Semantics. Faculty of Mathematics
and Computer Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of Prob-

abilistic Systems. Faculty of Mathematics
and Computer Science, TU/e. 2005-16

T. Gelsema. Effective Models for the Struc-

ture of pi-Calculus Processes with Replica-

tion. Faculty of Mathematics and Natural
Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint

Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transformation of

Source Code by Parsing and Rewriting. Fac-
ulty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction and

Replication of Processes with Data. Faculty
of Sciences, Division of Mathematics and
Computer Science, VUA. 2005-20



A. Dijkstra. Stepping through Haskell. Fac-
ulty of Science, UU. 2005-21

Y.W. Law. Key management and link-layer

security of wireless sensor networks: energy-

efficient attack and defense. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2005-22

E. Dolstra. The Purely Functional Soft-

ware Deployment Model. Faculty of Science,
UU. 2006-01

R.J. Corin. Analysis Models for Secu-

rity Protocols. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2006-02

P.R.A. Verbaan. The Computational Com-

plexity of Evolving Systems. Faculty of Sci-
ence, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. Formal

Specification and Analysis of Hybrid Systems.
Faculty of Mathematics and Computer Sci-
ence and Faculty of Mechanical Engineering,
TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of

UML Models: Tool Support and Composi-

tionality. Faculty of Mathematics and Natu-
ral Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed Au-

tomata - Techniques and Applications. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewriting.
Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-

assisted verification of JML programs. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molecular

Simulations. Faculty of Biomedical Engi-
neering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data.
Faculty of Mathematics and Natural Sci-
ences, UL. 2006-10

G. Russello. Separation and Adaptation

of Concerns in a Shared Data Space. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2006-11

L. Cheung. Reconciling Nondeterministic

and Probabilistic Choices. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2006-12

B. Badban. Verification techniques for Ex-

tensions of Equality Logic. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-

ods and protocol standardization. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for Hy-

brid Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2006-15

M.E. Warnier. Language Based Security

for Java and JML. Faculty of Science, Math-
ematics and Computer Science, RU. 2006-16

V. Sundramoorthy. At Home In Service

Discovery. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2006-17

B. Gebremichael. Expressivity of Timed Au-

tomata Models. Faculty of Science, Mathe-
matics and Computer Science, RU. 2006-18

L.C.M. van Gool. Formalising Interface

Specifications. Faculty of Mathematics and
Computer Science, TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics and

Verification of Security Protocols. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2006-20



J.V. Guillen Scholten. Mobile Channels for

Exogenous Coordination of Distributed Sys-

tems: Semantics, Implementation and Com-

position. Faculty of Mathematics and Natu-
ral Sciences, UL. 2006-21

H.A. de Jong. Flexible Heterogeneous

Software Systems. Faculty of Natural Sci-
ences, Mathematics, and Computer Science,
UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-

urable Network-on-Chip for streaming DSP

applications. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2007-02

M. van Veelen. Considerations on Mod-

eling for Early Detection of Abnormalities

in Locally Autonomous Distributed Systems.
Faculty of Mathematics and Computing Sci-
ences, RUG. 2007-03

T.D. Vu. Semantics and Applications of Pro-

cess and Program Algebra. Faculty of Nat-
ural Sciences, Mathematics, and Computer
Science, UvA. 2007-04

L. Brandán Briones. Theories for Model-

based Testing: Real-time and Coverage. Fac-
ulty of Electrical Engineering, Mathematics
& Computer Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing by Pre-

sentation. Faculty of Science, Mathematics
and Computer Science, RU. 2007-06

M.W.A. Streppel. Multifunctional Geomet-

ric Data Structures. Faculty of Mathematics
and Computer Science, TU/e. 2007-07

N. Trčka. Silent Steps in Transition Systems

and Markov Chains. Faculty of Mathematics
and Computer Science, TU/e. 2007-08

R. Brinkman. Searching in encrypted data.
Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2007-09

A. van Weelden. Putting types to good use.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information in

Software Development Processes. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2007-11

R. Boumen. Integration and Test plans for

Complex Manufacturing Systems. Faculty of
Mechanical Engineering, TU/e. 2007-12

A.J. Wijs. What to do Next?: Analysing and

Optimising System Behaviour in Time. Fac-
ulty of Sciences, Division of Mathematics
and Computer Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improving

the Quality of Modeling: A Series of Em-

pirical Studies about the UML. Faculty
of Mathematics and Computer Science,
TU/e. 2007-14

T. van der Storm. Component-based Con-

figuration, Integration and Delivery. Faculty
of Natural Sciences, Mathematics, and Com-
puter Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of Soft-

ware Architectures. Faculty of Electrical En-
gineering, Mathematics, and Computer Sci-
ence, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for Rea-

soning with Binding. Faculty of Mathemat-
ics and Computer Science, TU/e. 2007-17

D. Jarnikov. QoS framework for Video

Streaming in Home Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures

and Algorithms for Mobile Data. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machinale: Under-

standing the Electronic Voting Controversy.



Faculty of Science, Mathematics and Com-
puter Science, RU. 2008-01

A.L. de Groot. Practical Automaton Proofs

in PVS. Faculty of Science, Mathematics and
Computer Science, RU. 2008-02

M. Bruntink. Renovation of Idiomatic

Crosscutting Concerns in Embedded Sys-

tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2008-03

A.M. Marin. An Integrated System to Man-

age Crosscutting Concerns in Source Code.
Faculty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-based In-

tegration and Testing of High-tech Multi-

disciplinary Systems. Faculty of Mechanical
Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syntax:

Syntax Definition, Parsing, and Assimilation

of Language Conglomerates. Faculty of Sci-
ence, UU. 2008-06

M. Torabi Dashti. Keeping Fairness Alive:

Design and Formal Verification of Optimistic

Fair Exchange Protocols. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2008-07

I.S.M. de Jong. Integration and Test

Strategies for Complex Manufacturing Ma-

chines. Faculty of Mechanical Engineering,
TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coalge-

bras. Faculty of Science, Mathematics and
Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:

Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov

Chains: Techniques and Tools. Faculty of

Electrical Engineering, Mathematics & Com-
puter Science, UT. 2008-11

M. Farshi. A Theoretical and Experimen-

tal Study of Geometric Networks. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2008-12

G. Gulesir. Evolvable Behavior Specifi-

cations Using Context-Sensitive Wildcards.
Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-13

F.D. Garcia. Formal and Computational

Cryptography: Protocols, Hashes and Com-

mitments. Faculty of Science, Mathematics
and Computer Science, RU. 2008-14

P. E. A. Dürr. Resource-based Verification

for Robust Composition of Aspects. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2008-15

E.M. Bortnik. Formal Methods in Support

of SMC Design. Faculty of Mechanical En-
gineering, TU/e. 2008-16

R.H. Mak. Design and Performance Analy-

sis of Data-Independent Stream Processing

Systems. Faculty of Mathematics and Com-
puter Science, TU/e. 2008-17

M. van der Horst. Scalable Block Process-

ing Algorithms. Faculty of Mathematics and
Computer Science, TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects:

Decompositions and Applications. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems

with Data - Enumerative Methods and Con-

straint Solving. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2008-20

E. Mumford. Drawing Graphs for Carto-

graphic Applications. Faculty of Mathemat-
ics and Computer Science, TU/e. 2008-21



E.H. de Graaf. Mining Semi-structured

Data, Theoretical and Experimental Aspects

of Pattern Evaluation. Faculty of Mathemat-
ics and Natural Sciences, UL. 2008-22

R. Brijder. Models of Natural Computation:

Gene Assembly and Membrane Systems. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2008-23

A. Koprowski. Termination of Rewriting

and Its Certification. Faculty of Mathemat-
ics and Computer Science, TU/e. 2008-24

U. Khadim. Process Algebras for Hybrid

Systems: Comparison and Development.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2008-25

J. Markovski. Real and Stochastic Time in

Process Algebras for Performance Evalua-

tion. Faculty of Mathematics and Computer
Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software

Specification and Verification. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from Noisy

Data Theory and Applications. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor Net-

works in Motion: Clustering Algorithms for

Service Discovery and Provisioning. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Validating

Distributed Embedded Real-Time Control

Systems. Faculty of Science, Mathematics
and Computer Science, RU. 2009-01

M. de Mol. Reasoning about Functional

Programs: Sparkle, a proof assistant for

Clean. Faculty of Science, Mathematics and
Computer Science, RU. 2009-02

M. Lormans. Managing Requirements

Evolution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2009-03

M.P.W.J. van Osch. Automated Model-

based Testing of Hybrid Systems. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant Soft-

ware Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2009-05

M.J. van Weerdenburg. Efficient Rewrit-

ing Techniques. Faculty of Mathematics and
Computer Science, TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling: Ap-

plications in Automata Theory and Modal

Logic. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2009-07

A. Mesbah. Analysis and Testing of Ajax-

based Single-page Web Applications. Fac-
ulty of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards Get-

ting Generic Programming Ready for Prime

Time. Faculty of Science, UU. 2009-9

K.R. Olmos Joffré. Strategies for Context

Sensitive Program Transformation. Faculty
of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning about

Java programs in PVS using JML. Faculty
of Science, Mathematics and Computer Sci-
ence, RU. 2009-11

M.G. Khatib. MEMS-Based Storage De-

vices. Integration in Energy-Constrained

Mobile Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2009-12



S.G.M. Cornelissen. Evaluating Dynamic

Analysis Techniques for Program Compre-

hension. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based Net-

work Intrusion Detection Systems. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2009-14

H.L. Jonker. Security Matters: Privacy

in Voting and Fairness in Digital Exchange.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust

Management. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2009-16

T. Chen. Clocks, Dice and Processes. Fac-
ulty of Sciences, Division of Mathematics
and Computer Science, VUA. 2009-17

C. Kaliszyk. Correctness and Availability:

Building Computer Algebra on top of Proof

Assistants and making Proof Assistants avail-

able over the Web. Faculty of Science, Math-
ematics and Computer Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness & Com-

pleteness: Formalizing Logic and Analysis

in Type Theory. Faculty of Science, Mathe-
matics and Computer Science, RU. 2009-19

B. Ploeger. Improved Verification Meth-

ods for Concurrent Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Analysis

of Probabilistic Models. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies

for Parameter Optimization and Their Ap-

plications to Medical Image Analysis. Fac-

ulty of Mathematics and Natural Sciences,
UL. 2009-22

J.H.P. Kwisthout. The Computational Com-

plexity of Probabilistic Networks. Faculty of
Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-

Oriented Law Enforcement. Faculty of Math-
ematics and Natural Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers. Faculty
of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Control

for Dynamic Collaborative Environments.
Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-26

J.F.J. Laros. Metrics and Visualisation

for Crime Analysis and Genomics. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2009-27

C.J. Boogerd. Focusing Automatic Code

Inspections. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2010-01

M.R. Neuhäußer. Model Checking Non-

deterministic and Randomly Timed Systems.
Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2010-02

J. Endrullis. Termination and Productivity.
Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2010-03

T. Staijen. Graph-Based Specification and

Verification for Aspect-Oriented Languages.
Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2010-04

Y. Wang. Epistemic Modelling and Pro-

tocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices and

Probability in Model Checking Timed Au-

tomata. Faculty of Science, Mathematics
and Computer Science, RU. 2010-06



A. Nugroho. The Effects of UML Modeling

on the Quality of Software. Faculty of Math-
ematics and Natural Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2010-08

J.S. de Bruin. Service-Oriented Discovery

of Knowledge - Foundations, Implementa-

tions and Applications. Faculty of Mathe-
matics and Natural Sciences, UL. 2010-09

D. Costa. Formal Models for Component

Connectors. Faculty of Sciences, Divi-
sion of Mathematics and Computer Science,
VUA. 2010-10

M.M. Jaghoori. Time at Your Service:

Schedulability Analysis of Real-Time and

Distributed Services. Faculty of Mathemat-
ics and Natural Sciences, UL. 2010-11

R. Bakhshi. Gossiping Models: Formal

Analysis of Epidemic Protocols. Faculty of
Sciences, Department of Computer Science,
VUA. 2011-01

B.J. Arnoldus. An Illumination of the Tem-

plate Enigma: Software Code Generation

with Templates. Faculty of Mathematics and
Computer Science, TU/e. 2011-02

E. Zambon. Towards Optimal IT Availabil-

ity Planning: Methods and Tools. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2011-03

L. Astefanoaei. An Executable Theory

of Multi-Agent Systems Refinement. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-04

J. Proença. Synchronous coordination of

distributed components. Faculty of Mathe-
matics and Natural Sciences, UL. 2011-05

A. Moralı. IT Architecture-Based Confi-

dentiality Risk Assessment in Networks of

Organizations. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2011-06

M. van der Bijl. On changing models in

Model-Based Testing. Faculty of Electrical
Engineering, Mathematics & Computer Sci-
ence, UT. 2011-07

C. Krause. Reconfigurable Component Con-

nectors. Faculty of Mathematics and Natural
Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis of

Information Leakage in Probabilistic and

Nondeterministic Systems. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2011-09

M. Atif. Formal Modeling and Verifica-

tion of Distributed Failure Detectors. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2011-10

P.J.A. van Tilburg. From Computability to

Executability – A process-theoretic view on

automata theory. Faculty of Mathematics
and Computer Science, TU/e. 2011-11

Z. Protic. Configuration management for

models: Generic methods for model com-

parison and model co-evolution. Faculty
of Mathematics and Computer Science,
TU/e. 2011-12

S. Georgievska. Probability and Hiding in

Concurrent Processes. Faculty of Mathemat-
ics and Computer Science, TU/e. 2011-13

S. Malakuti. Event Composition Model:

Achieving Naturalness in Runtime Enforce-

ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2011-14

M. Raffelsieper. Cell Libraries and Verifi-

cation. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-15



C.P. Tsirogiannis. Analysis of Flow and

Visibility on Triangulated Terrains. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Quality

of Service of Component Connectors. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-17

R. Middelkoop. Capturing and Exploiting

Abstract Views of States in OO Verification.
Faculty of Mathematics and Computer Sci-

ence, TU/e. 2011-18

M.F. van Amstel. Assessing and Improving

the Quality of Model Transformations. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2011-19

A.N. Tamalet. Towards Correct Programs

in Practice. Faculty of Science, Mathematics
and Computer Science, RU. 2011-20

H.J.S. Basten. Ambiguity Detection for Pro-

gramming Language Grammars. Faculty of
Science, UvA. 2011-21

















Youpickedthewrongparsetree...





BasBasten
Bas Basten


	Contents
	Acknowledgements
	1 Introduction
	1.1 Introduction
	1.1.1 Context-Free Grammars and Parsing
	1.1.2 Ambiguity
	1.1.3 Ambiguity Detection
	1.1.4 Goal of the Thesis

	1.2 Motivation
	1.2.1 Deterministic Parsers
	1.2.2 Backtracking Parsers
	1.2.3 Generalized Parsers
	1.2.4 Scannerless Generalized Parsers

	1.3 Research Questions
	1.3.1 Measuring the Practical Usability of Ambiguity Detection
	1.3.2 Improving the Practical Usability of Ambiguity Detection

	1.4 Overview of the Chapters and Contributions
	1.5 Origins of the Chapters

	2 The Usability of Ambiguity Detection Methods for Context-Free Grammars
	2.1 Introduction
	2.2 Comparison Framework
	2.2.1 Criteria for Practical Usability
	2.2.2 Measurements
	2.2.3 Analysis

	2.3 AMBER
	2.3.1 Measurements and Analysis

	2.4 LR(k) Test
	2.4.1 Measurements and Analysis

	2.5 Noncanonical Unambiguity Test
	2.5.1 Measurements and Analysis

	2.6 Comparison
	2.7 Evaluation
	2.8 Conclusions
	2.8.1 Discussion


	3 Faster Ambiguity Detection by Grammar Filtering
	3.1 Introduction 
	3.2 Filtering Unambiguous Productions
	3.2.1 Preliminaries
	3.2.2 The Noncanonical Unambiguity Test
	3.2.3 LR(0) Approximation
	3.2.4 Finding Ambiguity in an item0 Position Graph
	3.2.5 Filtering Harmless Production Rules
	3.2.6 Grammar Reconstruction

	3.3 Experimental Validation
	3.3.1 Experiment Setup
	3.3.2 Experimental Results
	3.3.3 Analysis and Conclusions
	3.3.4 Threats to validity

	3.4 Conclusions
	3.5 Appendix: Updated Measurement Results
	3.5.1 Improved Implementation
	3.5.2 Analysis
	3.5.3 Effects on Sentence Generation Times


	4 Tracking Down the Origins of Ambiguity in Context-Free Grammars
	4.1 Introduction
	4.1.1 Related Work
	4.1.2 Overview

	4.2 Preliminaries
	4.2.1 Context-Free Grammars
	4.2.2 Bracketed Grammars
	4.2.3 Parse Trees
	4.2.4 Ambiguous Core
	4.2.5 Positions
	4.2.6 Automata

	4.3 Regular Unambiguity Test
	4.3.1 Position Automaton
	4.3.2 Approximated Position Automaton
	4.3.3 The item0 Equivalence Relation
	4.3.4 Position Pair Automaton

	4.4 Finding Parse Trees of Unambiguous Strings
	4.4.1 Unused Positions
	4.4.2 Computation

	4.5 Harmless Production Rules
	4.5.1 Finding Harmless Production Rules
	4.5.2 Complexity
	4.5.3 Grammar Reconstruction

	4.6 Noncanonical Unambiguity Test
	4.6.1 Improving the Regular Unambiguity Test
	4.6.2 Noncanonical Position Pair Automaton
	4.6.3 Effects on Identifying Harmless Production Rules

	4.7 Excluding Parse Trees Iteratively
	4.8 Conclusions

	5 Scaling to Scannerless
	5.1 Introduction
	5.1.1 Background
	5.1.2 Contributions and Roadmap

	5.2 The Ambiguity Detection Framework
	5.2.1 The Framework
	5.2.2 Notational Preliminaries

	5.3 Character-Level Grammars
	5.3.1 Example
	5.3.2 Definition

	5.4 Baseline Algorithm
	5.4.1 Step 1: NFA Construction
	5.4.2 Step 2: Construct and Traverse Pair Graph
	5.4.3 Steps 3–4: NFA Filtering and Harmless Rules Identification
	5.4.4 Steps 5–7: NFA Reconstruction and Sentence Generation

	5.5 Ambiguity Detection for Character-level Grammars
	5.5.1 Application of Baseline Algorithm on Example Grammar
	5.5.2 Changes to the Baseline Algorithm
	5.5.3 NFA Reconstruction

	5.6 Grammar Unfolding
	5.7 Experimental Results
	5.7.1 Experiment Setup
	5.7.2 Results and Analysis
	5.7.3 Validation

	5.8 Conclusion

	6 Implementing AmbiDexter
	6.1 Introduction
	6.2 Grammar Filter
	6.2.1 Requirements
	6.2.2 Architecture and Design
	6.2.3 Implementation Details

	6.3 Sentence Generator
	6.3.1 Requirements
	6.3.2 Architecture and Design
	6.3.3 Implementation Details

	6.4 Usage
	6.5 Conclusion

	7 Parse Forest Diagnostics with Dr. Ambiguity
	7.1 Introduction
	7.1.1 Preliminaries

	7.2 Solutions to Ambiguity
	7.3 Causes of Ambiguity
	7.3.1 Classes of Parse Tree Differences

	7.4 Diagnosing Ambiguity
	7.4.1 Architecture
	7.4.2 Algorithms
	7.4.3 Discussion on Correctness

	7.5 Demonstration
	7.5.1 Evaluation Method
	7.5.2 Results
	7.5.3 Discussion

	7.6 Conclusions

	8 Conclusions
	8.1 Contributions to Research Questions
	8.2 Discussion
	8.3 Future Work

	Bibliography
	Summary
	Samenvatting

