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Soit X une variété algébrique propre et lisse sur un corps de nombres F ⊂ C. On
suppose que le motif de Hodge absolu hi(X) appartient à la catégorie Tannakienne
engendrée par les motifs des variétés abélienne. Quitte à remplacer F par une extension
finie, on peut supposer que, la représentation galoisienne `-adique associée à M se
factorise comme ρM,` : ΓF → GM (Q`), où GM est le groupe de Mumford-Tate de M .
Fixons une valuation v de F . La restriction ρM,`|ΓFv

définit une représentation ′Wv → GM/Q`

du groupe de Weil-Deligne. J-P Serre et J-M Fontaine (indépendamment) ont fait des
conjectures qui indiques que pour tout `, la représentation ′Wv → GM/Q`

est définie sur
Q et pour ` variable elles forment un système compatible des représentations. Sous
certaines hypothèses supplémentaire, nous montrons que ceci est vrai, si X a bonne
réduction en v ou réduction semi-stable en v.
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Introduction

Fix a number �eld F with an embedding τ : F ↪→ C. Let v be a
non-archimedean valuation on F , F̄ a �xed algebraic closure of F , v̄ an
extension of v to F̄ . We denote Fv the completion of F at v and F̄v the
localization of F̄ at v̄. The residue �elds of Fv and F̄v are denoted as kv
and k̄v, respectively. Let p > 0 be the characteristic of kv. We denote
ΓFv := Gal(F̄v/Fv) ⊂ ΓF := Gal(F̄ /F ), IFv ⊂ ΓFv is the inertia subgroup
and φv ∈ Gal(k̄v/kv) the Frobenius automorphism. Fix an arithmetic Frobe-
nius Φv ∈ ΓFv , i.e. an element which induces φv.

Consider a proper and smooth algebraic variety X de�ned over Fv. The
group ΓFv acts naturally on the etale cohomology groups V i

l := H i
ét(X/F̄v ,Ql),

for each prime number l and all positive integers i. This action gives rise to
the representations ρil : ΓFv → GL(V i

l ). It is a major theme in arithmetic
geometry to determine to what extent the properties of these representations
are independent of l. In order to answer these l-independence questions, one
often has to restrict the above representations to the Weil group WFv of Fv.
This is the subgroup formed by those elements of ΓFv which induce an inte-
gral power of φv in Gal(k̄v/kv). We endowWFv with the topology determined
by the condition that IFv ⊂ WFv is an open subgroup having the topology
inherited from its topology as a Galois group.

In what follows we assume that l 6= p. Now let X have good reduction at
v, i.e that X extends to a proper and smooth scheme over the ring of integers
of Fv. This implies that the inertia subgroup IFv acts trivially on the etale
cohomology groups V i

l . It is well known from the works of P. Deligne on the
Weil conjectures [Del80], that in this case the character of the representation
ofWFv on each V i

l has values in Q and is independent of l. Since the action of
inertia is trivial, this amounts to a statement on the action of the subgroup
of ΓFv , generated by Φv. We will summarise this by saying that the ρil are
de�ned over Q and form a compatible system of representations of WFv , for
a �xed i and variable l.
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If the algebraic variety X is de�ned over F , then the above situation
has a natural generalization. By using the embedding τ : F ↪→ C we can
consider the i-th singular cohomology V i = H i

B(X(C),Q) of X(C). Then
V i
l = V i ⊗Q Ql. Now let H ⊆ GL(V i) be a linear algebraic group over Q.

Suppose that Im(ρil) ⊆ H(Ql). In most of the cases that we consider this
H would be the Mumford-Tate group (see precise de�nition later ) of the
absolute Hodge motive hi(X). Then we can ask if the H(Ql)-conjugacy class
of ρil(Φv) is de�ned over Q and if it is independent of l. Consider the case
where H = GL(V i). Then Deligne's theorem (cited above) becomes a special
case of this problem.

We can ask similar questions in the case where the algebraic variety X
does not have good reduction. To describe this situation we �rst need some
general notions. Consider any arbitrary quasi-unipotent l-adic representation
of the form

ξl : ΓFv → H(Ql). (1)

Grothendieck's l-adic monodromy theorem ([Del73, 8.2], [Ill94] or [ST68])
tells us that, for a su�ciently small open subgroup of IFv , this action can
be described as exponential of a single endomorphism N ′l , the monodromy
operator. The restriction of ξl to the Weil group WFv can then be encoded
by giving N ′l together with a representation ξ′l of Wv which is trivial on an
open subgroup of the inertia group. We will refer to such a pair (N ′l , ξ

′
l) as

a representation of the Weil-Deligne group ′Wv of Fv. We often denote it
simply as ′Wv → H/Ql . In fact, N ′l ∈ Lie(H/Ql). To explain more about ξ′l
we need some preparation. Let tl : IFv → Zl(1) be the surjection de�ned

by σ 7→
(
σ(π1/lm )

π1/lm

)
m

for a prime element π of Fv. It is known that tl is

independent of the choice of π and its system of lm-th roots π1/lm . Let
w ∈ WFv induce an integral power φα(w)

v of φv in Gal(k̄v/kv). Then, ξ′l is
given as :

ξ′l(w) = ξl(w)exp(−N ′l tl(Φ−α(w)
v w)). (2)

For a �xed l, we say that the representation ′WFv → H/Ql is de�ned over Q,
if for every algebraically closed �eld Ω ⊃ Ql, the base extension of (N ′l , ξ

′
l) to

Ω is conjugate under H(Ω) to all its images under AutQ(Ω). More precisely
this means that for every σ ∈ AutQ(Ω), there exists a g ∈ H(Ω) such that

σξ′l/Ω = g · ξ′l/Ω · g−1 and σ(N ′l ⊗Ql 1) = Ad(g)(N ′l ⊗Ql 1) (3)
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where ξ′l/Ω : WK → H/Ql(Ω) is the extension of scalars and

N ′l ⊗Ql 1 ∈ (h⊗Q Ql)⊗Ql Ω = h⊗ Ω,

h being the Lie-algebra of H.

Varying l over all primes di�erent from p, we say that the representations
(N ′l , ξ

′
l) form a compatible system of representations of ′WFv if for every pair

(l, l′) of prime numbers and every algebraically closed �eld Ω ⊃ Ql,Ql′ , the
base extension to Ω of the l-adic representation of ′WFv is H(Ω)-conjugate
to the base extension of the l′-adic representation. In terms of pairs (N ′l , ξ

′
l)

and (N ′l′ , ξ
′
l′), this means that there exists some g ∈ H(Ω) such that

ξ′l/Ω = g · ξ′l′/Ω · g−1 and N ′l ⊗Ql 1 = Ad(g)(N ′l′ ⊗Ql′ 1) ∈ h⊗ Ω. (4)

These notions originated in the work of P. Deligne (see [Del73]). See also
[Fon94].

Now return to the case of the algebraic variety X and the representations
ρil. We want to use the above notions to study the case where X does not
have good reduction at v. It is known that the representations ρil are quasi-
unipotent ([GRO72]). Suppose again that X is de�ned over F and in (7)
take H as GL(V i) and ξl as ρil. Then it is conjectured by J-M Fontaine that
for a �xed i and variable l, the (N ′l , ρ

′i
l ) form a compatible system of repre-

sentation of ′WFv de�ned over Q, without any assumptions on the reduction
of X. Here we refer to [Fon94, 2.4.3] conjecture CWD, for a statement also
covering p-adic representations.

The conjecture of Fontaine on the l independence of the representation
of the Weil-Deligne group is actually hinged on the monodromy-weight con-
jecture, see [Ill94], [Ito04], [RZ82]. This subtle conjecture is somewhat more
accessible under the hypothesis that X has a semi-stable reduction. If X is
a scheme over S := SpecA, where A is a discrete valuation ring, then we
say that X has semi-stable reduction if etale locally on X and S, X is S-
isomorphic to SpecA[T1, ..., Tn]/(T1, ...Tr−π) for some r ≥ 0, and π being an
uniformizing parameter. This condition is equivalent to the condition that
X is regular, the generic �ber of X is smooth, and the closed �ber of X is a
reduced divisor with normal crossings on X.

Now If X/Fv has semistable reduction over the ring of integers of Fv then
it is known that ρil is unipotent on the inertia subgroup IFv ([Ill94, 3.3] or
[RZ82]). In this situation the action of inertia on V i

l is determined by the
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monodromy operator corresponding to ρil.

One may ask the above questions for motives instead of just algebraic
varieties. At the core of the Grothendieck's theory of motives there is a con-
jectural universal cohomology h(X) for algebraic varieties X/F , with values
in a certain Q-linear Tannakian category. The category of motives is intended
to be the target of this functor h. Every (Weil) cohomolgy functor factors
through h. The category of motives is generated by objects h(X), for X
running through proper and smooth algebraic varieties over F , and the Tate
motive Q(1). There are various constructions of motives depending on how
the morphisms are de�ned in this category. In Grothendieck's category of
motives the morphisms are de�ned by algebraic cycles. However, many of the
desired properties of this category depend on unknown properties (standard
conjectures) of algebraic cycles. P. Deligne and J. Milne gave a construction
of a category of motives, where morphisms are de�ned using absolute Hodge
cycles. In this thesis we will deal with this unconditional theory of motives.

Let MF denote the category of absolute Hodge motives as de�ned in
[DMOS82]. It is a semisimple Tannakian category. The questions that we
asked before are now stated in terms of a Mumford-Tate group of a motive
in MF . A Mumford-Tate group GM of any object M in MF is de�ned
as the automorphism group of a Betti realization functor restricted to the
Tannakian category generated by M and the Tate motive (cf. de�nition
1.3.13 of this document). It is an linear algebraic group over Q. Now for
each prime number l, let Hl(M) denote the l-adic realization of the motive
M . Then the action of the Galois group ΓF on Hl(M) gives us a l-adic Galois
representation

ρM,l : ΓF → GL(Hl(M)).

It is known that ρM,l factors through GM(Ql). This implies that the cor-
responding representations of the Weil-Deligne group of Fv factors through
GM/Ql . The above mentioned l-independence conjecture of Fontaine, for ob-
jects in the Tannakain category generated by M , is equivalent to the state-
ment that the representations ′WFv → GM/Ql induced by ρM,l, form a com-
patible system (as de�ned before) with values in GM . Here, v is �xed and l
runs through set of primes di�erent from p.

We say that a motive M ∈ Ob(MF ) has good reduction at v if ρM,l is
trivial on the inertia subgroup for every l 6= p. For motives with good reduc-
tion J-P Serre [Ser94] has a more geometric formulation of the conjecture of
Fontaine.
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Conjecture. If M is a motive with good reduction at v. Then there exists a
class

CLMFrv ∈ Conj(GM)(Q)

such that Cl(ρM,l(Φv)) = CLMFrv for every prime number l 6= p.

Here Conj(GM) is the universal categorical quotient of GM for its action
on itself by conjugation and Cl : GM → Conj(GM) is the corresponding quo-
tient map. Serre has in fact conjectured this for any unconditional category
of motives.

In this thesis, I study this conjecture and the motivic version of the con-
jecture of Fontaine, in the category of absolute Hodge motivesMF . We will
need to work in the Tannakian subcategory of motives Mav

F of MF gener-
ated by the motives of abelian varieties. It is known thatMav

F contains the
motives of K3-surfaces, unirational varieties of dimension ≤ 3, curves and
Fermat hypersufaces (see [DMOS82, II.6.26]). Recall that we had an embed-
ding τ : F ↪→ C. A fundamental result of Deligne states that for varieties
whose motives M ∈ Mav

F , Hodge cycles relative to τ are absolutely Hodge
([DMOS82, II.6.27]). This implies in particular that for a motive M ∈Mav

F ,
the identity component G◦M of the Mumford-Tate group of the motive M co-
incides with the Mumford-Tate group of the Hodge structure Hτ (M). Here,
Hτ is Betti realization functor and GM is the automorphism group of Hτ

restricted to the Tannakian subcategory generated by M .

Under some additional hypotheses described below, we prove special cases
of the above mentioned conjectures. First we prove the conjecture of Serre
for any algebraic variety whose motive belongs toMav

F . Second, we show the
conjecture of Fontaine holds true for the representations ′Wv → GM/Ql , if GM

is the Mumford-Tate group of a motive of an abelian variety, a K3-surface,
a curve or a Fermat hypersuface, with semi-stable reduction at v.

First of all, in our main theorems (see Theorems A and D below ) we
need to assume that the base �eld is su�ciently large, to guarantee that the
Mumford-Tate groups are connected and even that the Frobenius elements
at the given place of F is weakly neat. The weakly neat condition means that
1 is the only root of unity that occurs as the quotient λµ−1 of any eiegnvalues
λ, µ of ρM,l(Φv) acting on Hl(M). This is a variant of the concept of `neat'
elements that appears in classical literature on arithmetic groups, see [Bor01].

Secondly, in certain cases we prove the conjugacy only in a group which
is larger than the Mumford-Tate group. Only certain factors of Gder

M/Q̄ of
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type D are a�ected by this modi�cation. We denote this algebraic group by
G\
M . Since our questions deal with conjugations, it is su�cient to look at the

adjoint groups. The adjoint group G\ad
M is a `natural extension' of Gad

M/Q̄ and

Gad
M/Q̄ ⊂ G\ad

M . There is an action of G\ad
M on GM/Q̄, extending the adjoint

action of Gad
M/Q̄ on Gder

M/Q̄ and with G\ad
M acting trivially on the center of GM/Q̄.

The algebraic group G\ad
M also acts on the Lie algebra Lie(GM)⊗ Q̄, through

the adjoint representation. An important fact to be noted is that the adjoint
of the Mumford-Tate group Gad

M/Q̄ coincides with the identity component of

G\ad
M . Enlarging the groups obviously weakens the notion of conjugacy. We

will also need the universal categorical quotient for the adjoint action of G\ad
M

on GM , denoted here by Conj′(GM).

The precise results of this thesis are the following :

Theorem A. Let X be a smooth proper algebraic variety over F with good
reduction at v and assume that the motive M := hi(X) ∈ ObMav

F for i ∈ N.
Suppose that GM is connected and that there exists a prime number l 6= p
such that ρM,l(Φv) is weakly neat. Then there exists a conjugacy class

ClMFrv ∈ Conj′(GM)(Q)

such that Cl(ρM,l(Φv)) = ClMFrv, for every prime number l 6= p.

In particular this theorem holds when X is an abelian variety, a K3-
surface, an unirational variety of dimension ≤ 3, a curve, a Fermat hyper-
surface or any product of these algebraic varieties. This is theorem 4.2.6 of
the thesis.

The Theorem A actually follows from the following theorem which es-
tablishes the result of the theorem over a �nite extension of the base �eld,
without the assumption of weak neatness or connectedness of the Mumford-
Tate group of the motive M .

Theorem B. Let X be as in theorem A. Then there exists a �nite extension
F ′ of F and a valuation v′ on F ′ extending v and a conjugacy class

ClMFrv′ ∈ Conj′(GMF ′
)(Q)

such that Cl(ρM,l(Φv′)) = ClMFrv′, ∀ l with v(l) = 0.

Note that here Φv′ = Φd
v, where d is the residual degree of the extension

F ′v′/Fv. We will �rst discuss how to prove the theorem B. It is theorem 4.2.1
of the main text.
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Outline of the proof of Theorem B. The main steps of the proof are following

(a) As M ∈ Ob(Mav
F ), by the existence of weak-Mumford Tate lifts (see

[Noo06]) for abelian motives we have an abelian variety B/F̄ and an
abelian variety C/F̄ with complex multiplication such that

MF̄ ∈ 〈h1(B/F̄ ), h1(C/F̄ ),Q(1)〉 (5)

This inclusion means that MF̄ belongs to the Tannakian subcategory
ofMF̄ , generated by B/F̄ and C/F̄ and the Tate motive Q(1).

Moreover we can assume that B/F̄ is a tractable abelian varietiey (see
[Noo09], [Noo10] for the de�nition). Tractable abelian varities have
also occured earlier in the works of Deligne (see [Del79, 2.3,2.4]).
Let GB×C denote the Mumford-Tate group of the motive h1(B/F̄×C/F̄ ).
SinceMF is a Tannakian category, (5) gives rise to a morphism

θ : GB×C → GMF̄

(b) The Galois group Gal(F̄ /F ) acts on the vector space of absolute Hodge
cycles (on X, B and C) through a �nite quotient (see [DMOS82, I.2.9]).
This implies that we can �nd a a large enough �nite extension F ′ of F ,
such that we have abelian varieties B/F ′ and C/F ′ with B/F ′⊗ F̄ = B/F̄

and C/F ′ ⊗ F̄ = C/F̄ satisfying the following:

MF ′ ∈ 〈h1(B/F ′), h
1(C/F ′),Q(1)〉.

(c) Now denote by GB and GC the Mumford-Tate groups of the motives
h1(B/F ′) and h1(C/F ′), respectively. By taking an appropriate �nite
extension of F we may assume that GB and GC are connected. After
taking another �nite base extension (denoted again by F ′) if necessary,
we may suppose that GMF ′

is connected and that the Mumford-Tate
group of h1(B/F ′ × C/F ′) is GB×C . Thus we have GMF ′

= GMF̄
. Then,

for the representations of the Galois group ΓF ′ = Gal(F̄ /F ′) it can be
shown that the following diagram is commutative:

(GB ×GC)(Ql)

ΓF ′

(ρB,l,ρC,l)
88

ρB×C,l//

ρM,l

&&

GB×C(Ql)
?�

i

OO

θ
��

GMF ′
(Ql)

(6)
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Here i denotes the map induced by the inclusion GB×C ⊆ GB ×GC

(d) Then we prove that the above inclusion GB×C ⊆ GB × GC induces a
closed immersion of algebraic varieties

Conj′(GB×C)→ Conj′(GB ×GC).

(e) Next we use the fact that X have good reduction at v to show that
the abelian variety B/F ′×C/F ′ has potential good reduction at v. Here
we need certain criteria (Néron-Ogg-Shafarevich) for potential good
reduction from [ST68]. This implies that after making another base
extension of F (which we again denote by F ′) if necessary we may
suppose that B/F ′ and C/F ′ has good reduction at v′.

(f) Then for ∗ = B,C, the results of ([Noo09, 2.2,2.4]) gives us conjugacy
classes

Cl∗Frv′ ∈ Conj′(G∗)(Q)

such that Cl(ρ∗,l(Φv′)) = Cl∗Frv′ . By (4.4) and (d) it follows that
(ClBFrv′ ,ClCFrv′) lies in Conj′(GB×C)(Q). Now take ClMFrv′ to be the
image of (ClBFrv′ ,ClCFrv′) under the map

Conj′(GB×C)(Q)→ Conj′(GMF ′
)(Q)

induced by θ. Then the diagram (4.4) implies that ClMFrv′ is our
required conjugacy class of the theorem.

Now we will show how to obtain Theorem A from Theorem B.

Outline of the proof of Theorem A. The following are the main steps of the
proof

(a) Since GM is assumed to be connected GM = GMF ′
, where F ′ is a �nite

extension of F obtained in theorem B. Using some basic algebraic ge-
ometry and theorem B, we establish that for each l 6= p, the element
Cl(ρM,l(Φv)) ∈ Conj′(GM)(Q̄).

(b) From (a) and the fact that ρM,l(Φv) is weakly neat and that the charac-
teristic polynomial of ρM,l(Φv) has coe�cients in Q and is independent
of l (Deligne's theorem, cited before), we now deduce that Cl(ρM,l(Φv))
does not depend on l. Denote this common element by ClMFrv.

(c) Since ClMFrv ∈ Conj′(GM)(Ql) for all l 6= p, we conclude that ClMFrv ∈
Conj′(GM)(Q). This establishes the Theorem A.
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We now describe the results obtained in the case where the algebraic
variety X does not have good reduction at v.

Theorem C. Let X be a smooth proper algebraic variety over F and assume
that M := hi(X) ∈ ObMav

F for i ∈ N. Suppose that GM is connected. Then
there exists a �nite extension F ′ of F and a valuation v′ extending v such
that

1. for every l 6= p the representation (GM/Ql , ρ
′
M,l, N

′
M,l) of

′Wv′ is de�ned

over Q modulo the action G\ad
M and

2. for l running through primes di�erent from p, these representations
form a compatible system of representations of ′Wv′ modulo the action
of G\ad

M .

This is theorem 5.5.8 of the main text. Note that ′Wv′ denotes the Weil-
Deligne group of Fv′ . As GM is assumed to be connected, so GMF ′

= GM .
Here N ′M,l denotes the monodromy operator corresponding to ρM,l. It is un-
changed by �nite base extensions. The morphism ρ′M,l is obtained from ρM,l

as in equation (8). Here of course it refers to the restriction to the Weil-group
Wv′ of Fv′ , which is a subgroup of the Weil-group Wv of Fv.

The statement of theorem C deserves a little explanation. To say that
the representation (GM/Ql , ρ

′
M,l, N

′
M,l) of ′Wv′ is de�ned over Q modulo the

action G\ad
M means that base extension of this representation to any alge-

braically closed �eld Ω ⊃ Ql is conjugate under G\ad
M (Ω) to all its images

under AutQ(Ω). For varying l we say that these representations form a
compatible system of representations of ′Wv′ modulo the action of G\ad

M , if
for every pair of prime numbers (l, l′) and every algebraically closed �eld
Ω ⊃ Ql,Q′l, the base extension to Ω of the l-adic representation of ′Wv′ is
G\ad
M (Ω)-conjugate to the base extension of the l′-adic representation. These

conditions can be also formulated in the same ways as the equations (3) and
(4). For details we refer the reader to �4 of chapter 4, of this document.

Outline of the Proof of Theorem C. The beginning of the proof is analogous
to the proof of theorem B. So we will focus only on the new ideas involved.

(a) Let B/F ′ and C/F ′ be abelian varieties over a �nite extension F ′ of F ,
as obtained in the proof of theorem B. Let v′ be an extension of v to
F ′. The diagram (4.4) is commutative here, too. For any �xed l, using
either Grothendieck's l-adic monodromy theorem or Semi-Stable reduc-
tion theorem [GRO72, IX,3.6] we may suppose that ρB,l and ρB×C,l are
unipotent on the inertia subgroup Iv′ of Gal(F̄ /F ′).
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(b) As C/F ′ has potential good reduction, it follows that the monodromy
operator corresponding to the galois representation ρC,l is trivial. Thus
using [Noo09, 2.2] we conclude that our theorem holds for the motive
h1(C/F ′). It is also known that the theorem holds for the motive h1(B/F ′)
[Noo10, 7.1]. From this we easily show that the theorem holds for the
motive h1(B/F ′ × C/F ′).

(c) From the fact that B/F ′ provides a weak-Mumford lift ofM and that GC

is commutative, we obtain that G\ad
B×C = G\ad

M . We denote this common
algebraic group by G\ad.

(d) Using again the l-adic monodromy theorem we may suppose that ρM,l is
unipotent on Iv′ and hence ρ′M,l is trivial on Iv′ . Another consequence of
the l-adic monodromy theorem is that, the map of Lie-algebras induced
by θ, sends the monodromy operator N ′B×C,l (corresponding to ρB×C,l)
to the monodromy operator N ′M,l (corresponding to ρM,l).

(e) Finally by studying the action of G\ad, on GB×C , GM and their Lie-
algebras gB×C , gM respectively, we establish our theorem for the motive
M .

Under certain additional hypothesis, the theorem C can be sharpened to
give us the result over the base �eld F .

Theorem D. Let X/F be an abelian variety, a K3-surface, a curve or a
Fermat hypersuface, with semi-stable reduction at v. Let M := hi(X) for
i ∈ N, and assume GM is connected. Suppose for some prime number l, the
image ρ′M,l(Φv) is weakly neat. Then

1. for every l 6= p the representation (GM/Ql , ρ
′
M,l, N

′
M,l) of ′Wv is de�ned

over Q modulo the action G\ad
M and

2. for l running through primes di�erent from p, these representations
form a compatible system of representations of ′Wv modulo the action
of G\ad

M .

This is theorem 5.5.10 of the main text.

Outline of the proof of Theorem D. The main steps in the proof are the fol-
lowing

(a) We begin by working over the �nite extension F ′ of F and the valuation
v′ as obtained in theorem C. An useful fact here is that the monodromy
operators are unchanged by �nite base extensions. This is a consequence
of the Grothendieck's l-adic monodromy theorem.

10



(b) As X has semi-stable reduction at v, thus ρM,l is unipotent on the inertia
subgroup Iv of Gal(F̄ /F ) (see [RZ82] or [Ill94, 3.3] ) for a �xed l 6=
p. Thus we show that it su�ces to study the behaviour of ρ′M,l at the
arithmetic Frobenius Φv and the monodromy operator N ′M,l.

(c) Then we note that the characteristic polynomial of ρM,l(Φv) is in Q and
is independent of l (see [Sai03] and [Och99]).

(d) By our hypothesis ρM,l(Φv) is weakly neat. Using some fundamental
properties of weakly neat elements we now establish our theorem.

The Theorem A generalizes the main theorem of [Noo09] and Theorem D
generalizes the main theorem of [Noo10]. We would also like to point out that
the proofs of our results depends on the fact that the corresponding results
are known for tractable abelian varieties, as shown by R.Noot in [Noo09],
[Noo10].

Organisation of this document

The �rst chapter is devoted to study the properties of absolute Hodge
cycles and the construction of the category of motives for absolute Hodge
cycles, as de�ned by P.Deligne and J.Milne in [DMOS82]. Here we also
discuss Tannakian categories, motivic galois groups and the Mumford-Tate
group of a motive. At the end of this chapter we recall some facts about the
Tannakian category of motives generated by abelian varieties(aka abelian
motives). There are no new results here and so we state most of them with-
out proofs.

In the second chapter we recall the de�nition of a tractable abelian vari-
ety as presented in [Noo09] and [Noo10]. Then we brie�y discuss the notion
of weak Mumford-Tate lifts of abelian motives as given in [Noo06]. Finally
we recall the existence of Weak Mumford lifts that are also tractable abelian
varieties.

The third chapter begins with some generalities on the action of algebraic
groups on algebraic varieties and the existence of quotients for these actions.
Then we construct the `natural adjoint group' G\ad associated to any reduc-
tive algebraic group G de�ned over a �eld of characteristic 0 and describe its
action. Finally we study weakly neat elements and prove some useful results
about them.
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In the fourth chapter we prove the �rst of our main results, theorem 4.2.1
and theorem 4.2.6. We begin this chapter by recalling some classical facts on
good reduction of algebraic varieties (e.g Néron-Ogg-Shafarevich criterion).
Then using the materials developed in the previous chapters we study the
`-independence problems for motives, in the good reduction case.

The �nal chapter treats the `-independence problems for motives, in the
semi-stable reduction case. We begin this chapter by recalling various facts
about `-adic monodromy. Then we describe the notions of compatible sys-
tems of representations of the Weil-Deligne groups and some related notions.
The main results of this chapter are theorem 5.5.8 and theorem 5.5.10.
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Résumé

Fixons un corps de nombres F avec un plongement τ : F ↪→ C. On choisit
une clôture algébrique F̄ de F . Soient v une valuation (discrète) de F et v̄
une extension de v à F̄ . On note Fv la complétion de F en v, F̄v la localisation
de F̄ en v̄, kv le corps résiduel de F en v et k̄v le corps résiduel de F̄ en v̄. On
suppose que la caractéristique de kv est p > 0. On note ΓF = Gal(F̄ /F ) et
ΓFv := Gal(F̄v/Fv). On a ΓFv ⊂ ΓF . Soit φv ∈ Gal(k̄v/kv) l'automorphisme
de Frobenius. On �xe un élément de Frobenius (arithmétique) Φv ∈ ΓFv qui
induit φv sur k̄v.

Soit X une variété algébrique propre et lisse sur Fv. Le groupe ΓFv opère
naturellement sur les groupes de cohomologie étale V i

l := H i
t(XF̄v ,Ql), pour

chaque nombre premier l et tous les entiers positifs i. Ainsi, nous avons des
représentations ρil : ΓFv → GL(V i

l ). Un thème majeur en géométrie arithmé-
tique est de déterminer à quel point les propriétés de ces représentations, pour
i �xé, sont indépendante de l. Pour ce faire, on restreint les représentations
ci-dessus, au groupe de Weil WFv de Fv. C'est le sous-groupe formé par les
éléments de ΓFv dont l'image dans Gal(k̄v/kv) est une puissance entière de φv.

Dans ce qui suit, nous supposerons que l 6= p. Supposons d'abord que
X a bonne réduction en v, c'est à-dire que X s'étend à un schéma propre
et lisse sur l'anneau des entiers de Fv. Cela implique que le sous-groupe de
l'inertie IFv de ΓFv opère trivialement sur les groupes V i

l . Grâce aux travaux
de P. Deligne sur les conjectures de Weil [Del80], on sait que dans ce cas le
caractère de la représentation de WFv sur chaque V

i
l est à valeurs dans Q et

est indépendant de l, quand i est �xé. Nous allons résumer cela en disant que,
quand l varie et i est �xé, ρil sont dé�nis sur Q et forment un système com-
patible de représentations de WFv . Puisque l'action de l'inertie est triviale, il
su�t d'étudier l'action du sous-groupe de ΓFv engendré par un élément de
Frobenius.

Si X est dé�ni sur F , nous pouvons généraliser naturellement le problème
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ci-dessus. Soit τ̄ : F̄ ↪→ C, une extension du τ à F̄ . En utilisant le plongement
τ on peut considérer

V i := H i
B(X(C),Q),

le i-ème groupe de cohomologie singulière de X(C). On a un isomorphisme
V i
l = V i ⊗Q Ql. Supposons H ⊆ GL(V i) un groupe algébrique linéaire sur

Q, tel que Im(ρil) ⊆ H(Ql). Dans la plupart des cas que nous considérons,
H sera le groupe de Mumford-Tate (voir la dé�nition précise ci-dessous) du
motif de Hodge absolu hi(X). Maintenant on peut se demander si la classe
de conjugaison de ρil(Φv) dans H(Ql) est dé�nie sur Q et indépendante de l.

Considérons le cas où H = GL(V i), alors le résultat de Deligne (cité ci-
dessus) est un cas particulier de notre problème. Cela veut dire que la classe
de conjugaison de l'image de Φv dans GL(V i

l ) est dé�nie sur Q et indépen-
dante de l.

Nous pouvons poser des questions similaires dans le cas où la variété al-
gébrique X a mauvaise réduction en v. Pour traiter ces questions, nous rap-
pelons quelques notions générales. Considérons une représentation l-adique
quasi-unipotente

ξl : ΓFv → H(Ql). (7)

Le théorème de monodromie l-adique de A.Grothendieck (cf [Del73, 8.2])
a�rme que, pour un sous-groupe ouvert su�samment petit J ⊆ IFv , la res-
triction ξl|J peut être décrite comme l'exponentiel d'un seul endomorphisme
N ′l , l'opérateur de monodromie. Alors la restriction de ξl au groupe de Weil
WFv est déterminée par N ′l et une représentation ξ

′
l deWFv à valeurs dans H,

qui est triviale sur J . Nous appelons un tel couple (N ′l , ξ
′
l) une représentation

du groupe de Weil-Deligne ′WFv de Fv. En fait, N ′l ∈ Lie(H/Ql).
Nous introduisons encore quelques notations. Soit tl : IFv → Zl(1) la

surjection dé�nie par σ 7→ (σ(π1/lm )

π1/lm )m pour une uniformisante π de Fv. On
sait que tl est indépendante du choix de π et du système de racines lm-èmes
π1/lm . Supposons que w ∈ WFv , alors w induit une puissance entière φα(w)

v de
φv. Avec ces notations ξ′l est donné par

ξ′l(w) = ξl(w)exp(−N ′l tl(Φ−α(w)
v w)). (8)

Pour l �xé, on dit que la représentation ′WFv → H/Ql est dé�nie sur
Q, si pour tout corps algébriquement clos Ω ⊃ Ql, l'extension de base de
(N ′l , ξ

′
l) à Ω est conjuguée sous H(Ω) à toutes ses images sous AutQ(Ω). Plus

précisément, pour chaque σ ∈ AutQ(Ω), il existe un g ∈ H(Ω) tel que

σξ′l/Ω = g · ξ′l/Ω · g−1 et σ(N ′l ⊗Ql 1) = Ad(g)(N ′l ⊗Ql 1)
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où ξ′l/Ω : WFv → H/Ql(Ω) est déduit de ξ′l par l'extension des scalaires et

N ′l ⊗Ql 1 ∈ (h⊗Q Ql)⊗Ql Ω = h⊗ Ω,

où h est l'algèbre de Lie de H.
Pour l parcourant l'ensemble des nombres premiers di�érents de p, on dit

que les couples (N ′l , ξ
′
l) forment un système compatible de représentations de

′WFv si pour tout couple (l, l′) de nombres premiers et tout corps algébrique-
ment clos Ω ⊃ Ql,Ql′ , il existe g ∈ H(Ω) tel que

ξ′l/Ω = g · ξ′l′/Ω · g−1 et N ′l ⊗Ql 1 = Ad(g)(N ′l ⊗Ql′ 1) ∈ h⊗ Ω

Ces notions trouvent leur origine dans les travaux de P. Deligne (voir [Del73],
voir aussi [Fon94]).

Revenons maintenant à la variété algébrique X et les représentations ρil.
Nous voulons utiliser les notions ci-dessus pour étudier le cas où X n'a pas
bonne réduction en v. On sait d'après [GRO72] que les représentations ρil
sont quasi-unipotentes. Supposons que X est dé�nie sur F . Dans (7) pre-
nons H = GL(V i) et ξl = ρil. J-M Fontaine a conjecturé que pour i �xe et l
variable, les (N ′l , ρ

′i
l ) forment un système compatible dé�ni sur Q des repré-

sentations de ′WFv . Nous renvoyons à [Fon94, 2.4.3], la conjecture CWD, qui
couvre également les représentations p-adiques.

Cette conjecture de Fontaine est étroitement liée à la conjecture de monodromie-
poids (voir [Ill94], [Ito04], [RZ82]). Cette conjecture subtile est un peu plus
accessible sous l'hypothèse que X a réduction semi-stable. Soit A un anneau
de valuation discrète et X un schéma dé�ni sur S := SpecA. On dit que X/S
a réduction semi-stable, si localement pour la topologie étale sur X et sur S,
X est S-isomorphe à Spec A[T1,··· ,TR]

(T1,···TR−π)
pour certains r ≥ 0 et π une uniformi-

sante. Cette condition est équivalente à la condition suivante : X est régulier,
la �bre générique de X est lisse, et la �bre spéciale de X est un diviseur ré-
duit à croisements normaux dans X. La condition de réduction semi-stable
implique en particulier que chaque ρil est unipotente sur tout le sous-groupe
d'inertie IFv([Ill94, 3.3], [RZ82]). Dans ce cas ρ

′i
l |IFv

est trivial et l'action de
l'inertie sur H i

et(XF̄v ,Ql) est déterminée par l'opérateur de monodromie N ′l .

On peut se poser les questions ci-dessus pour des motifs plutôt que pour
des variétés algébriques. Au c÷ur de la théorie des motifs proposée par Gro-
thendieck, il existe une cohomologie universelle (conjecturale) h(X) pour
les variétés algébriques X/F , à valeurs dans une catégorie Tannakienne Q-
linéaire. La cible de ce foncteur est la catégorie des motifs. Tout foncteur
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cohomologique (de Weil) se factorise à travers h. La catégorie des motifs est
engendrée par des objets h(X), pour X parcourant les variétés algébriques
propres et lisse sur F , et le motif de Tate Q(1). Il existe des constructions
di�érentes des motifs selon les dé�nitions des morphismes. Dans la catégorie
des motifs de Grothendieck, les morphismes sont dé�nis par les cycles algé-
briques. Mais la plupart des propriétés désirées de cette catégorie dépende
de certaines propriétés conjecturales des cycles algébriques, les conjectures
standard. P. Deligne et J. Milne ont construit une variante de catégorie des
motifs, où les morphismes sont dé�nis en utilisant des cycles de Hodge ab-
solus. Les analogues des conjectures standard pour les cycles absolu Hodge
sont vrais (sur le corps F ). Dans cette thèse, nous allons travailler avec la
catégorie des motifs pour les cycles de Hodge absolus.

Notons MF la catégorie des motifs pour les cycles de Hodge absolus,
comme dé�nie dans [DMOS82]. C'est une catégorie Tannakienne semi-simple.
Maintenant nos questions peuvent être formulées en termes des groupes de
Mumford-Tate des motifs dans MF . Le groupe de Mumford-Tate GM d'un
motif M ∈ Ob(MF ) est dé�ni comme le groupe des automorphismes du
foncteur �bre dé�ni par une réalisation de Betti restreint à la catégorie Tan-
nakienne engendrée par M et le motif de Tate (cf. dé�nition 1.3.13 de la
thèse). C'est un groupe algébrique linéaire sur Q. Pour chaque nombre pre-
mier l, notons Hl(M) la réalisation l-adique d'un motif M . L'action de ΓF
sur Hl(M) induit un morphisme

ρM,l : ΓF → GL(Hl(M)).

On sait que ρM,l se factorise par GM(Ql), ce qui implique que les repré-
sentations correspondantes du groupe de Weil-Deligne de Fv se factorisent
également par GM/Ql . Pour les objets dans la sous-catégorie Tannakienne en-
gendrée par M , la conjecture de Fontaine citée ci-dessus sur l'indépendance
de l est équivalente à ce que les représentations ′WFv → GM/Ql induites par
ρM,l forment un système compatible à valeurs dans GM . Ici, v est �xé et l
parcourt l'ensemble des nombres premiers di�érent que p.

On dit que un motif M ∈ Ob(MF ) a bonne réduction en v si ρM,l est
trivial sur le groupe de l'inertie pour chaque nombre premier l 6= p. Pour un
motif ayant bonne réduction J-P Serre a conjecturé dans [Ser94] que :

Conjecture. Soit M un motif ayant bonne réduction en v. Alors il existe
une classe CLMFrv ∈ Conj(GM)(Q) telle que Cl(ρM,l(Φv)) = CLMFrv pour
tout nombre premier l 6= p.
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Nous avons noté Conj(GM) le quotient catégorique universelle de GM ,
pour son action sur lui-même par conjugaison et Cl : GM → Conj(GM) est
l'application du quotient correspondant. En fait Serre a fait cette conjecture
pour un motif quelconque.

Dans cette thèse, nous étudions cette conjecture et la version motivique
de la conjecture de Fontaine, pour la catégorie MF . Nous considérons la
sous-catégorie Tannakienne de motifsMav

F deMF engendrée par les motifs
des variétés abéliennes et le motif de Tate. On sait que Mav

F contient les
motifs des surfaces K3 , des variétés uni-rationnelles de dimension ≤ 3, des
courbes et des hypersurfaces de Fermat (voir [DMOS82, II.6.26]). Considé-
rons le plongement τ : F ↪→ C, un résultat fondamental de Deligne a�rme
que, pour les variétés dont les motifs M ∈Mav

F , les cycles de Hodge relative-
ment à τ sont absolument Hodge ([DMOS82, II.6.27]). Cela implique que si
M ∈ ObMav

F la composante neutre G◦M du groupe de Mumford-Tate, coïn-
cide avec le groupe de Mumford-Tate de la structure de Hodge Hτ (M). Pour
les dé�nitions précises nous renvoyons la lecture à [DMOS82] ou au chapitre
1 de cette thèse.

Sous certaines hypothèses supplémentaires, nous montrons des cas parti-
culiers des conjectures indiquées ci-dessus. Il existe deux types d'hypothèses.
Premièrement, dans les théorèmes principaux (théorèmes A et D, ci-dessous)
nous devons supposer que le corps de base est su�samment grand pour ga-
rantir que les groupes de Mumford-Tate des motifs soient connexes et que
l'élément de Frobenius en v est faiblement net. La condition d'être faiblement
net signi�e que 1 est la seule racine de l'unité parmi les quotients λµ−1 pour
les valeurs propres λ, µ de ρM,l(Φv), agissant sur Hl(M). C'est une variante
de la notion d'élément `net', qui apparaît dans la littérature classique sur les
groupes arithmétiques (voir [Bor01]).

Deuxièmement, dans certains cas, nous montrons la conjugaison dans un
groupe algébrique G\

M qui est un peu plus grand que le groupe de Mumford-
Tate GM . Seulement certains facteurs de type D de Gder

M sont a�ectés par
cette modi�cation. Comme nous traitons des questions sur les classes de
conjugaison, il su�t de décrire le groupe adjoint. Le groupe adjoint G\ad

M est
une extension �naturelle� de Gad

M/Q et Gad
M/Q ⊂ G\ad

M . Ce groupe G\ad
M opère sur

GM/Q̄ . Cette opération étend l'action adjointe de Gad
M/Q sur Gder

M/Q̄, avec G
\ad
M

agissant trivialement sur le centre de GM/Q̄. Le groupe G
\ad
M opère également

sur Lie(GM) ⊗ Q̄, par la représentation adjointe. Le groupe Gad
M/Q̄ coïncide

avec la composante neutre de G\ad
M . Agrandir le groupe a�aiblit évidemment
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la notion de conjugaison. Dans la suite, Conj′(GM) désigne le quotient caté-
gorique universel pour l'action adjointe de G\ad

M sur GM .

Théorème A. Soit X une variété algébrique propre et lisse sur F ayant
bonne réduction en v et M := hi(X) ∈ Ob(Mav

F ). Supposons que le groupe
de Mumford-Tate GM est connexe et qu'il existe un nombre premier l 6= p,
tel que ρM,l(Φv) est faiblement net. Il existe alors une classe

ClMFrv ∈ Conj′(GM)(Q)

telle que Cl(ρM,l(Φv)) = ClMFrv pour tout l 6= p

Ce théorème est vrai en particulier pour les motifs des variétés abéliennes,
des surfaces K3 , des variétés unirationnelles de dimension ≤ 3, des courbes
et des hypersurfaces de Fermat. C'est le théorème 4.2.6 de la thèse.

Le théorème A est déduit du théorème suivant, qui établit le résultat sur
une extension �nie de F , sans l'hypothèse de faiblement net ou la connexité
du groupe de Mumford-Tate GM .

Théorème B. Soient X et M comme dans le théorème A. Alors il existe
une extension �nie F ′ de F , une valuation v′ de F ′ qui étend v et une classe

ClMFrv′ ∈ Conj′(GMF ′
)(Q)

telle que Cl(ρM,l(Φv′)) = ClMFrv′, pour tout l 6= p.

Ici, Φv′ ∈ Gal(F̄v/F
′
v′) est un Frobenius (arithmétique) correspondant à

F ′v′ . On peut choisir Φv′ = Φd
v, où d est le degré résiduelle de l'extension

F ′v′/Fv. C'est le théorème 4.2.1 de la thèse.

Dans le cas où X a mauvaise réduction nous avons les résultats suivants.

Théorème C. Soit X/F une variété algébrique propre et lisse avec M :=
hi(X) ∈ Ob(Mav

F ). Supposons GM est connexe. Alors il existe une extension
�nie F ′ de F , une valuation v′ de F ′ qui étend v, telles que

(i) pour tout l 6= p la représentation (GM/Ql , ρ
′
M,l, N

′
M,l) de ′Wv′ est dé�nie

sur Q modulo l'action de G\ad
M et

(ii) pour l parcourant l'ensemble des nombres premiers di�érents de p, ces
représentations forment un système compatible de représentations de
′Wv′ modulo l'action de G\ad

M .
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C'est le théorème 5.5.8 de la thèse. Nous avons noté ′Wv′ le groupe de
Weil-Deligne de F ′v′ .

Théorème D. Soit X/F une variété abélienne, une surface K3, une courbe
ou une hypersurface de Fermat avec réduction semi-stable en v. On note
M := hi(X) et on suppose que GM est connexe et qu'il existe un nombre
premier l 6= p tel que ρM,l(Φv) est faiblement net. Alors

(i) pour tout l 6= p la représentation (GM/Ql , ρ
′
M,l, N

′
M,l) de ′Wv est dé�nie

sur Q modulo l'action de G\ad
M et

(ii) pour l parcourant l'ensemble des nombres premiers di�érents de p, ces
représentations forment un système compatible de représentations de
′Wv modulo l'action de G\ad

M .

On a noté ′Wv le groupe de Weil-Deligne de Fv. C'est le théorème 5.5.10
de la thèse.
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Chapter 1

Motives for Absolute Hodge

Cycles

In this chapter we present the theory of absolute Hodge cycles and the
category of motives given by them. The main reference is [DMOS82].

1.1 Cohomology and absolute Hodge cycles

Throughout this thesis by an algebraic variety we mean a geometrically
integral, separated scheme of �nite type over a �eld, unless otherwise stated.

Let X be a smooth projective algebraic variety over a �eld F embeddable
in C. If τ : F ↪→ C is an embedding, then we get a complex analytic variety
τX = (X ×F,τ C)(C). Fix an algebraic closure F̄ of F and let ΓF denote the
absolute Galois group Gal(F̄ /F ). The following cohomology groups are of
interest to us:

1. Hr
τ (X) = Hr

B(τX,Q), the singular cohomology (Betti) of τX corre-
sponding to any embedding τ : F ↪→ C. It is a �nite dimensional Q-
vector space with a Q-rational Hodge structure Hr

τ (X)⊗C =
⊕
i+j=r

H i,j
τ

(Hodge decomposition).

2. Hr
l (X) = Hr

et(XF̄ ,Ql), the etale cohomology group for any prime num-
ber l. It is a �nite dimensional Ql-vector space with a continuous action
of ΓF coming from the functoriality of etale cohomology.

3. Hr
dR(X) = Hr(X,Ω·X), the de Rham cohomology, which is by de�nition

the hypercohomology of the complex Ω·X of algebraic di�erential forms
on X. This is a �nite dimensional F -vector space with a decreasing
F -linear �ltration F iHdR(X)
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There are the following comparison isomorphisms for these above mentioned
cohomology groups, which is crucial for de�ning an absolute Hodge cycle.

I∞,τ : Hr
τ (X)⊗ C ∼−→ Hr

dR(τX) ∼= Hr
dR(X)⊗F,τ C,

Il,τ̄ : Hr
τ (X)⊗Ql

∼−→ Hr
et(τ̄(X ⊗F F̄ ),Ql)

for every embedding τ : F ↪→ C and any extension τ̄ : F̄ ↪→ C of
τ . Note that in the �rst comparison isomorphism Hr

dR(τX) denotes the
classical de Rham cohomology of the compex variety τX. I∞,τ relates the
Hodge structure and the Hodge �ltration in the following way

I∞,τ (
⊕
i′≥i

H i′,j
τ ) = F iHr

dR(X)⊗τ,F C.

The Il,τ̄ are related as follows: If τ ′ ∈ ΓF , then we have a commutative
diagram

Hr
l (X)

Hr
τ (X)⊗Ql

Il,τ̄
88

Il,τ̄τ ′ &&
Hr
l (X)

τ ′

OO
(1.1)

In each of these cohomolgy theories �Tate twists� can be de�ned, as below:

1. Let m be an integer, then de�ne

Hr
τ (X)(m) = (2πi)mHr

τ (X) ⊂ Hr
τ (X)⊗ C.

There is a shift (i, j)→ (i−m, j −m) in the Hodge decomposition:

(Hr
τ (X)(m))(i−m,j−m) = H i−m,j−m

τ (X) ⊂ Hr
τ (X)⊗ C.

2.
Hr
l (X)(m) = Hr

l (X)⊗ Zl(1)⊗m,

where Zl(1) = lim
←
µln as a ΓF -module, µln being the group of roots of

unity of degree ln in F̄ .

3. Hr
dR(X)m = Hr

dR(X) as F -vector spaces, but the twist changes the
index in the Hodge �ltration as :

F i−mHr
dR(X)(m) = F iHr

dR(X).
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The cohomlogy theories Hr
∗(X) for ∗ = τ, l, dR as de�ned above satisfy

the axioms of the Weil cohomology (with Tate twists) for �nite dimensional
cohomology groups.

1. If CHr(X) denotes the chow group of algebraic cycles of codimension r
on X modulo linear equivalence, then we have natural homomorphisms
(cycle maps)

clr∗ : CHr(X)→ H2r
∗ (X)(r),

which are compatible with intersection product in the Chow ring and
cup product in the cohomology rings. clr∗ are also compatible with the
comparison isomorphisms.

2. Hr
∗(X) = 0 for r ≥ 2d, d = dimX, and there is a natural nondegenrate

pairing

Hr
∗(X)×H2d−r

∗ (X)→ H2d
∗ (X)

Tr−→ Q∗(−d)

for r = 0, 1, ..., 2d, where Tr is de�ned by H2d
∗ (X)(d)→ Q∗, cld(pt) = 1.

This is the Poincaré duality.

3. If Y is another smooth projective variety then we have the Künneth
isomorphism :

Hr
∗(X × Y )

∼−→
∑
r+s=n

Hr
∗(X)⊗Hs

∗(Y )

For proofs and more details on these above facts see [DMOS82, I,�1]

Now set

Hr(X)(m) = Hr
dR ×

∏
l

Hr
l (X)(m)×

∏
τ

Hr
τ (X)(m),

then we get a map

clr : CHr(X)⊗Ql → H2r(X)(r)

Remark 1.1.1. (a) It is known that the image of clrτ consists of rational
elements of type (0, 0) (Hodge cycles).

(b) The image of clrl is a Q-subspace of Hr
l (X)ΓF , i.e the Ql-subspace of

elements �xed by ΓF .

(c) The cycle maps are compatible with the comparison isomorphisms.

De�nition 1.1.2. The original de�nition of absolute Hodge cycles as given
in [DMOS82] is as follows:
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(i) First assume that the base �eld F is algebraically closed embeddable
in C. Then an absolute Hodge cycle is an element t ∈ H2r

dR(X)(r) ×∏
l

H2r
l (X)(r) satisfying the following conditions :

(a) For each τ : F ↪→ C the element t lies in the rational subspace
H2r
τ (X)(r) given as the image of the comparison isomorphisms.

(b) The �rst component tdR of t lies in F 0H2r(X)(r) = F rH2r(X).

If the above conditions are true for any �xed τ then t is said to be a
Hodge cycle relative to τ .

(ii) Now suppose the base �eld F is not algebraically closed, an absolute
Hodge cycle is then de�ned as an absolute Hodge cycle on X⊗F F̄ , that
is �xed under the natural action of ΓF .

Remark 1.1.3. We will often use the following alternative de�nition of an
absolute Hodge cycle that appears in [Jan90, 2.10]. An absolute Hodge cy-
cle(AHC) x in degree 2r is an element of the �nite-dimensional Q-vector
space

Cr
AH(X) = {(xdR, xl, xτ )l,τ ∈ H2r(X)(r)|I∞,τ (xτ ) = xdR, Il,τ̄ (xτ ) = xl

for all τ : F ↪→ C and τ̄ : F̄ ↪→ C restricting to τ, xdR ∈ F 0H2r
dR(X)(r)}

This de�nition is equivalent to the original de�nition as shown in [Pan94].

Example 1.1.4. (i) If Z ∈ CHr(X), then clr(Z) = (clrdR(Z), clrl (Z), clrτ (Z)) ∈
CHr(X) is an absolute Hodge cycle.

(ii) Let d = dimX and ∆ ⊂ X×X be the diagonal. Consider the Künneth
decomposition

H2d(X ×X)(d) =
2d⊕
i=0

H2d−i(X)⊗H i(x)(d),

and the corresponding decomposition cld(∆) =
2d∑
i=0

πi. The classes πi

are absolute Hodge cycles.

There is a natural action of the Galois group ΓF on the Q-vector space
Cr
AH(X/F̄ ). The following result describes the nature of this action.

Proposition 1.1.5. The action of the Galois group ΓF on Cr
AH(X/F̄ ) is

through a �nite quotient.
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Proof. [DMOS82, I,2.9].

The following is an important result about absolute Hodge cycles on
abelian varieties, proved by P.Deligne.

Theorem 1.1.6. Let F be an algebraically closed �eld with an embedding
τ : F ↪→ C. Let X be an abelian variety over F . If t is a Hodge cycle relative
to τ (1.1.2), then it is an absolute Hodge cycle.

Proof. This is the main theorem [DMOS82, I,2.11].

Now, let X be of pure dimension d. We denote H∗(X) =
⊕

Hr
∗(X),

where Hr
∗(X) is any one of the cohomology groups de�ned in section 1. We

write
MormAH(X, Y ) = Cd+m

AH (X × Y )

then we have the following

MormAH(X, Y ) ⊂ H2d+2m(X × Y )(m+ d)

=
⊕

s+t=2d+2m

Hs(X)⊗H t(Y )(m+ d)

=
⊕

t=s+2m

H∨(X)⊗H t(Y )(m)

=
⊕
s

Hom(Hs(X), Hs+2m(Y )(m))

Using this description and the de�nition of absolute Hodge cycle, it can
be shown that

Proposition 1.1.7. An element f ∈ MormAH(X, Y ) gives rise to

(a) for each prime l, a homomorphism fl : Hl(X)→ Hl(Y ) of graded vector
spaces. This mean that fl is a family of homomorphisms

f rl : Hr
l (X)→ Hr

l (Y )(m)

(b) a homomorphism fdR : HdR(X)→ HdR(Y )(m) of graded vector spaces;

(c) for each τ : F ↪→ C, a homomorphism fτ : Hτ (X)→ Hτ (Y )(m)of graded
vector spaces.
These maps satisfy the following conditions

(d) for all γ ∈ ΓF and primes l, γfl = fl;

(e) fdR is compatible with the Hodge �ltration on each homogeneous factor;
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(f) for each τ : F ↪→ C, the maps fdR, fl and fτ are compatible with the
comparison isomorphisms of section 1.

Conversely, when F is embeddable in C any family of maps fl, fdR as in (a)
and (b) arises from an f ∈ MormAH(X × Y ) if

� (fl) and fdR satisfy (d) and (e) respectively, and
� for every τ : F ↪→ C, there exists an fτ such that (fl), fdR and fτ satisfy
the condition (f).

Moreover f is unique.

Proof. [DMOS82, II,6.1].

1.2 Construction of the category of motives

Let VF denote the category of smooth projective algebraic varieties over
a �eld F of characteristic 0. De�ne CVF to be the category whose objects
are symbols h(X), one for each X ∈ Ob(VF ). If Y is another object of VF ,
then

Hom(h(X), h(Y )) = Mor0
AH(X, Y )

Now, let Z be another object of VF , f ∈ Hom(h(X), h(Y )) and
g ∈ Hom(h(Y ), h(Z)). Then by proposition 1.1.7 we have

f = (fdR, fl, fτ )l,τ ∈ Mor0
AH(X, Y ) and g = (gdR, gl, gτ )l,τ ∈ Mor0

AH(Y, Z).

So now we de�ne

g ◦ f = (gdR ◦ fdR, gl ◦ fl, gτ ◦ fτ )l,τ .

By the converse statement in proposition 1.1.7, g ◦ f is an element of

Hom((h(X), h(Z)) = Cd
AH(X × Z).

This de�nes the composition of morphisms in CVF .

We also have a graph map Hom(Y,X)→ Hom(h(Y ), h(X)), which makes
h a contravariant functor. There is a natural Q-linear tensor law on CVF for
which h(X) ⊗ h(Y ) = h(X × Y ), the commutativity and the associativ-
ity constraints are induced by the natural isomorphisms X × Y ∼= Y × X,
(X × Y )× Z ∼= X × (Y × Z), and h(SpecF ) is the identity object.

We now present the construction of the category of motives for absolute
Hodge cycles as de�ned in [DMOS82, II]. The construction follows in three
steps
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1. The category ṀF
+
(the false e�ective motives) is the pseudo-abelian

envelope of the Q-linear, additive category CVF . Thus the objects of
ṀF

+
are pairs (h(X), p), where p ∈ End(h(X)) is a projector (i.e a

morphism with p2 = p) and

Hom((h(X), p), (h(Y ), q)) = {f ∈ Hom(h(X), h(Y ))|fp = qf}/ ∼
(1.2)

where f ∼ 0 if f ◦ p = 0 = q ◦ f . The tensor law being given by

(h(X), p)⊗ (h(Y ), p) = (h(X)⊗ h(Y ), p⊗ q)

Since this category is pseudo-abelian, there exists a natural grading
h(X) = ⊕hi(X), where for any object X ∈ ObVF the objects hi(X) in
ṀF

+
are de�ned as pairs (h(X), πi), with πi as in 1.1.4. This grading

can be extended to give a grading on all the objects of ṀF
+
.

2. The category ṀF of false motives is obtained by adjoining to ṀF
+

all inverse powers of the Lefschetz object L = h2(P1). Thus, objects
of ṀF are pairs (M,m) , with M ∈ ObṀF

+
and m ∈ Z. For false

motives (M1,m1) and (M2,m2), morphisms are de�ned as

Hom((M1,m1), (M2,m2)) = Hom(M1⊗Lm−m1 ,M2⊗Lm−m2),m ≥ m1,m2

(1.3)
The de�nition is independent of m, since we have a canonical isomor-
phism

Hom(M ′, N ′)
∼−→ Hom(M ′ ⊗ L,N ′ ⊗ L)

The tensor law is

(M1,m1)⊗ (M2,m2) = (M1 ⊗M2,m1 +m2)

and there is a grading compatible with the tensor structure

(M,m)r = M r−2m

Here, M r−2m is the r− 2m th component of M in its grading in ṀF
+
.

We shall identify h(X) with its image under the embeddings

CVF → ṀF
+ → ṀF ,

h(X) 7→ (h(X), id), M 7→ (M, 0)
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The Tate motive T is L−1 = (h(SpecF ), 1). We abbreviate M ⊗
T⊗m = (M,m) by M(m). The category ṀFa rigid abelian tensor
category, because we can de�ne an internal Hom; for d = dimX de�ne
Hom(h(X), h(Y )) as h(X × Y )(d), and this can be extended canoni-
cally to all of ṀF . But it is not a Tannakian category, because the
canonical rank function (de�ned for any rigid tensor category) has the
value

rk h(X) = Σ dimHr
∗(X)

This is the Euler-Poincaré characteristic of the variety and it need not
be positive. But, in a Tannakian category it should coincide with the
dimension of a vector space(the image of h(X)) under a �ber functor.

3. Let the commutativity constraint on ṀF be

ψ̇ : M ⊗N ≈−→ N ⊗M, ψ̇ = ⊕ψ̇r,s, ψ̇r,s : M r ⊗N s ≈−→ N s ⊗M r

Here the morphisms ψ̇r,s are those induced by ψ̇ on the graded com-
ponents of M ⊗ N . As ψ̇ is an isomorphism and the grading in ṀF

is compatible with the tensor products, the ψ̇r,s are also isomorphisms.
Now, de�ne a new commutativity constraint as :

ψ : M ⊗N ≈−→ N ⊗M, ψ = ⊕ψr,s, ψr,s = (−1)r,sψ̇r,s

Then the category ṀF with the commutativity constraint ψ̇ replaced
by ψ, gives us the true category of motivesMF

Here we list some fundamental properties of this category of motives.

Theorem 1.2.1. (i) MF is a neutral semisimple Tannakian category over
Q

(ii) There exists a contravariant functor h : VF →MF such that h(X
∐
Y ) =

h(X)⊕h(Y ), h(X×Y ) = h(X)⊗h(Y ). Every e�ective motive is the im-
age (h(X), p) of an idempotent p ∈ End(h(X)) for some X ∈ Ob(VF ).
Every motive inMF is of the form M(m) for some e�ective motive M
and m ∈ Z.

(iii) For all varieties X, Y , with X pure of dimension d,

Cd+s−r
AH = Hom(h(X)(r), h(Y )(s)).

Morphisms of motives can be expressed in terms of absolute Hodge cycles
on varieties by means of (1.3) and (1.2)
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(iv) For ∗ = τ, ` , or dR, the functors H∗ on VF de�ne Q∗-linear �bre
functors onMF , where Q∗ = Q,Ql,or F .

(v) for M , N ∈ Ob(VF ), Hom(M,N) coincides with the Q-vector space of
families of maps f∗ : H∗(M) → H∗(N), such that fdR preserves the
Hodge �ltration, fl is ΓF -equivariant morphism, and such that the f∗
are compatible under the comparison isomorphisms.

Proof. See [DMOS82, II,6.7]. See also [Jan92] for a correction in the proof
of (i).

Remark 1.2.2. The comparison isomorphisms of section 1 can be extended
over all the motives inMF , see [Jan90]. For any M ∈ ObMF we have

I∞,τ : Hτ (M)⊗Q C ∼−→ HdR(M)⊗F,τ C

and
Il,τ : Hτ (M)⊗Q Ql

∼−→ Hl(M)

for each extension τ̄ : F̄ ↪→ C of τ .

1.3 Motivic Galois groups

In this section �rst we recall a few important facts about rigid abelian
tensor categories before moving on to neutral Tannakian category and �nally
to the motivic Galois group.

Let G be an a�ne group scheme over a �eld K and denote by RepK(G)
the category of �nite dimensional representations of G over K. Thus, an
object of RepK(G) consists of a �nite dimensional vector space V and a
homomorphism g 7→ gV : G→ GL(V ) of a�ne group schemes over K. Then
RepK(G) is a rigid abelian tensor category and End(I) = K, where I denotes
an identity object in RepK(G). This is an important example to keep in
mind, as neutral Tannakian categories resemble this category.

Let ω (or ωG) denote the forgetful functor RepK(G)→ VecK . The auto-
morphism group of ω de�nes a functor from the category ofK-algebras to sets
: For any K-algebra R, Aut⊗(ω)(R) are families (λV ), V ∈ Ob(RepK(G))
and λV is an R-linear automorphism of V ⊗R such that for V1, V2 and W ∈
Ob(RepK(G)) , λV1 ⊗ λV2 = λV1⊗V2 , λI is the identity map on R and,

λW ◦ (α⊗ 1) = (α⊗ 1) ◦ λV : V ⊗R→ W ⊗R

for all G-equivariant morphisms α : V → W . Clearly, every g ∈ G(R) de�nes
an element of Aut⊗(ω)(R), by its action on the objects of RepK(G)
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Proposition 1.3.1. The natural morphism of functors G→ Aut⊗(ω) is an
isomorphism.

Proof. [DMOS82, II,2.8].

A homomorphism φ : G → G′ of a�ne group schemes over K de�nes a
tensor functor ωφ : RepK(G′)→ RepK(G) such that ωG ◦ ωφ = ωG

′
, namely,

ωφ(V, rV ) = (V, rV ◦ φ), for (V, rV ) belonging to RepK(G′).

Corollary 1.3.2. Let G and G′ be a�ne group schemes over K.Let Φ :
RepK(G′) → RepK(G) be a tensor functor such that ωG ◦ Φ = ωG

′
.Then

there exists an unique homomorphism φ : G→ G′ such that ωφ = Φ

Proof. [DMOS82, II,2.9].

To see how the properties of G are re�ected by RepK(G), we note the
following two results.

Proposition 1.3.3. Let G be an a�ne group scheme over K.

(i) G is �nite if and only if there exists an object X of RepK(G) such
that every object of RepK(G) is a subquotient of an object Xn for some
n ≥ 0.

(ii) G is algebraic if and only if RepK(G) has a tensor generator X.

Proof. [DMOS82, II,2.20].

Remark 1.3.4. An objectX of RepK(G) is a tensor generator if every object
of RepK(G) is isomorphic to a subquotient of P (X,X∨) for some P ∈ N[t, s].
Here P (X,X∨) is understood as a polynomial expression in X and X∨, with
multiplication as tensor product in the category and sums as direct sums.

Proposition 1.3.5. Let the notations be as above. Then

(a) If RepK(G) is semisimple category, then φ is faithfully �at if and only if
ωφ is a fully faithful functor.

(b) φ is a closed immersion if and only if every object of RepK(G) is iso-
morphic to a subquotient of an object of the form ωφ(V ′), for V ′ ∈
Ob(RepK(G)).

Proof. [DMOS82, II,2.21 & 2.29].

De�nition 1.3.6. A Neutral Tannakian category over K is a rigid abelian
tensor category (C,⊗), such that K = End(I) and there exists an exact
faithful K-linear tensor functor ω : C → VecK . Any such functor is said to
be a �bre functor on C.
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Now we present an important characterisation of rigid abelian⊗-categories.

Theorem 1.3.7. Let (C,⊗) be a rigid abelian tensor category such that
End(I) = K, and let ω : C → VecK be any exact faithful K-linear tensor
functor. Then

(a) The functor Aut⊗(ω) from the category of K-algebras to groups is repre-
sentable by an a�ne group scheme G.

(b) The functor C → RepK(G) de�ned by ω is an equivalence of tensor
categories.

Proof. [DMOS82, II,2.11].

Remark 1.3.8. 1. Here, Aut⊗(ω) is the functor that associates to anyK-
algebra R, the automorphism group of ω⊗R, Aut⊗(ω)(R) = Aut(ω⊗
R). The functor ω ⊗ R is obtained from ω by composing it with the
base change functor from K to R

ω ⊗R : C → VecK → (R-mod)

ω ⊗R(T ) = ω(T )⊗K R
for T ∈ Ob(C)

2. The equivalence in part (b) of the theorem is given by T → ω(T ).

Thus in view of theorem 1.3.7, every neutral Tannakian category is equiv-
alent (in possibly many di�erent ways ) to the category of �nite dimensional
representations of an a�ne group scheme.

Example 1.3.9. Let C be the category HodR of real Hodge structures. An
object in C is a �nite dimensional vector space over R together with a de-
composition V ⊗ C = ⊕p,qV p,q (Hodge decomposition) such that V p,q and
V q,p are complex conjugate subspaces of V ⊗ C.

ω : (V, (V p,q)) 7→ V

is a �bre functor. The group scheme corresponding to HodR and ω is the
real algebraic group obtained from Gm by restriction of scalars from C to
R: S = ResC/RGm. The real Hodge structure (V, V p,q)) corresponds to the
representation of S on V such that an element λ ∈ S(R) = C× acts on V p,q as
multiplication λ−pλ̄−q. We can write V =

⊕
V n, where V n⊗C = ⊕p,q=nV p,q.

The functor (V, (V p,q)) 7→ (V n) from HodR to the neutral Tannakian category
of graded real vector spaces corresponds to a homomorphism Gm → S which
on real points is t 7→ t−1 : R∗ → C∗. The vector spaces V n are Hodge
structures of weight n.
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Now, let R(1) denote the unique real Hodge structure with weight −2 and
underlying vector space as 2πiR. For any integer m de�ne R(m) = R(1)⊗m.
A polarization on a real Hodge structure of weight n is a bilinear form

φ : V × V → R(−n)

such that the real valued form

(x, y) 7→ (2πi)nφ(x,Cy),

where C denotes the element i ∈ S(R) = C∗, is positive de�nite and sym-
metric.

The weight cocharacter is the homomorphism of algebraic groups w :
Gm,R → S, which is given on points by the natural inclusion

R∗ = Gm,R(R) ↪→ S(R) = C∗

De�nition 1.3.10. A Q-rational Hodge structure is a �nite dimensional
vector space V over Q, with a real Hodge structure on V ⊗R, such that the
weight decomposition is de�ned over Q.

The Tate structure is de�ned to be the vector space Q(1) := 2πi ·Q ⊂ C,
with the Hodge structure Q(1) = Q(1)−1,−1. It has weight −2.

For any integer n, a polarization on Q-rational Hodge structure V is a
bilinear pairing ψ : V → Q(−n) such that ψ⊗R is a polarization on the real
Hodge structure V ⊗ R.

De�nition 1.3.11. Let V be a Q-rational Hodge structure and h : S →
GL(VR) be the corresponding representation of S. The Mumford-Tate group
of V (notation MT(V )) is the smallest algebraic subgroup M ⊆ GL(V ), over
Q such that h factors through MR.

In fact the category of all Q-rational Hodge structures is Tannakian. The
Mumford-Tate group of a Q-rational Hodge structure V is the automorphism
group Aut⊗(ω), where ω : 〈V 〉⊗ → VecQ is the forgetful functor from the
Tannakian subcategory generated by the V to the category of vector spaces
over Q.

Proposition 1.3.12. If V is a polarizable Q-rational Hodge structure, then
the Mumford-Tate group MT(V ) is reductive.

Proof. [DMOS82, I,3.6].
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We shall apply the above theory to the category of absolute Hodge mo-
tives. First we �x a �eld F and an embedding τ : F ↪→ C. Fix an algebraic
closure F̄ of F , and let τ̄ : F̄ ↪→ C. Now consider the semisimple neutral Tan-
nakian categoryMF of absolute Hodge motives over F and the �bre functor
Hτ :MF → VecQ. Using (1.3.7) we obtain an a�ne group scheme G(F, τ),
such that Hτ de�nes an equivalence of categoriesMF ' RepQ(G(F, τ)).

De�nition 1.3.13. The a�ne group scheme G(F, τ) is called motivic Galois
group. Let M ∈ ObMF and denote byMM the Tannakian subcategory of
MF generated byM and the Tate motive. Let GM denote the corresponding
quotient of G(F, τ) (i.e the group scheme representing Aut⊗Hτ |MM

). Then
it follows from (1.3.3) that GM is an algebraic group. We call GM as the
Mumford-Tate group of the motive M .

Theorem 1.3.14. (a) G(F, τ) is pro-reductive a�ne group scheme over Q.
It is connected if F is algebraically closed and all Hodge cycles relative
to τ are absolutely Hodge inMF .

(b) If τ̄ : F̄ ↪→ C is an embedding restricting to τ , then there is an exact
sequence of group schemes

1→ G(F̄ , τ̄)
i−→ G(F, τ)

π−→ ΓF → 1

where G(F̄ , τ̄) is the automorphism group of Hτ̄ :MF̄ → VecQ, and ΓF
is regarded as a constant group scheme. If Hodge cycles relative to τ are
absolute Hodge, then G(F̄ , τ̄) = G◦(F, τ), is the identity component of
G(F, τ)

Proof. [DMOS82, II,6.22 & 6.23].

Remark 1.3.15. (i) In fact G(F, τ) = lim
←

GM , for M ∈ Ob(MF ). As

MF is semisimple, GM is a reductive algebraic group (see the proofs of
[DMOS82, II,2.23 & 6.22]).

(ii) If all Hodge cycles relative to τ are absolute Hodge inMM , then G◦M =
GMF̄

( see the proof of [DMOS82, II,6.23] and [Pan94]).

The Betti realization Hτ (M) carries a Q-rational Hodge structure. Thus,
by (1.3.9) we have a homomorphism of algebraic groups h : S→ GM/R. The
couple (GM , h) is referred as the Mumford-Tate datum associated to the mo-
tive M .

The following proposition relates the Mumford-Tate group of the Hodge
structure Hτ (M) and the Mumford-Tate group GM of a motive M .
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Proposition 1.3.16. 1. The Mumford-Tate group MT (Hτ (M)) is con-
tained in the identity component G◦M of GM .

2. Let Gl be the image of the homomorphism ρl : ΓF → GL(Hl(M)) given
by the action of ΓF on Hl(M). Then Gl is contained in GM(Ql).

3. If Hodge cycles are absolute Hodge in the category MτM , for a mo-
tive M and its base change τM to C, then G◦M = MT (Hτ (M)) and
MT (Hτ (M))(Ql) contains an open subgroup of Gl

Proof. [Pan94, 473-474] & cf lemma 4.2.3 of this document.

We follow the notations as before.

Proposition 1.3.17. Let M ∈ ObMF . If all Hodge cycles relative to the
embedding τ are absolute Hodge cycles in the category MM . Then there
exists a �nite extension F ′ of F such that the Mumford-Tate group GMF ′

is
connected.

Proof. Let F̄ be an algebraic closure of F and τ̄ : F̄ ↪→ C be an extension of τ .
Let GMF̄

denote the Mumford-Tate group of MF̄ . As GMF̄
is reductive, it is

the stabilizer of a line L = 〈u〉 in some tensor space Hτ̄ (MF̄ )⊗n⊗Hτ̄ (MF̄ )∨⊗m

([DMOS82, I,3.1]). Since GMF̄
is isomorphic to the Mumford-Tate group of

the Hodge structure Hτ (M), thus it �xes all Hodge cycles relative to τ on
all tensor products of the type M⊗a

F̄
⊗M∨⊗b

F̄
and any element �xed by GMF̄

in any such tensor spaces is a Hodge cycle relative to τ . Therefore u is a
Hodge cycle on NF̄ := M⊗n

F̄
⊗M∨⊗m

F̄
. By hypothesis Hodge cycles relative

to τ are absolute Hodge cycle inMM , thus u is an absolute Hodge cycle on
NF̄ . Now the action of the Galois group Gal(F̄ /F ) on the vector space of
absolute Hodge cycles on the motive NF̄ is through a �nite quotient ([Jan90,
2.19]). Thus let F ′ be a �nite extension of F such that absolute Hodge
cycles on NF̄ are invariant under the action of Gal(F̄ /F ′). This implies that
u is an absolute Hodge cycle on NF ′ := M⊗n

F ′ ⊗M∨⊗m
F ′ , thus it is �xed by

GMF ′
. This implies that GMF ′

⊆ GMF̄
. By the remarks above we have

GMF̄
= G◦MF ′

⊆ GMF ′
. Thus GMF ′

= GMF̄
is connected.

Remark 1.3.18. (a) An absolute Hodge cycle on a motive M ∈ ObMF is
an element of H(M) = HdR(M) ×

∏
l

Hl(M) ×
∏
τ

Hτ (M), satisfying

similar conditions as in the de�nition1.1.3. See [Jan90, 2.10] for details.

(b) By theorem 1.2.1 every motive M is of the form (h(X), p)(m) for X ∈
ObVF and p ∈ End(h(X)) and m ∈ Z. Note that p is an absolute
Hodge cycle in Cd

AH(X×X), where d is the dimension of X. If F ′ is any
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�eld extension of F then by MF ′ we mean the motive (h(XF ′), p)(m) ∈
ObMF ′ . This makes sense since because by de�nition of an absolute
Hodge cycle, p ∈ Cd

AH(XF ′ ×XF ′).

1.4 Motives of abelian varieties

In this section we discuss abelian motives. The Tannakian subcategory
ofMF , generated by the varieties of dimension zero, is called the category of
Artin motives. LetMav

F be the Tannakian category generated by the abelian
varieties, Artin motives and the Tate motive. Let HodQ denote the category
of Q-rational Hodge structures.

Theorem 1.4.1. For any algebraically closed �eld F and any embedding
τ : F ↪→ C, the functor Hτ :Mav

F → HodQ is fully faithful.

Proof. [DMOS82, II,6.25].

It is natural to ask, which varieties have their motives inMav
F . A partial

answer is the following result of Deligne:

Proposition 1.4.2. The motive h(X) ∈ Ob(Mav
F ) if,

1. X is a curve .

2. X is an unirational variety of dimension ≥ 3.

3. X is a Fermat Hypersuface.

4. X is K3-surface.

Proof. [DMOS82, II,6.26].

Corollary 1.4.3. Every Hodge cycle on a variety that is a product of abelian
varieties, zero dimensional varieties, and varities of type (1), (2), (3), (4),
as above in the proposition, is absolutely Hodge.

Proof. [DMOS82, II,6.27].

Remark 1.4.4. (a) IfX is an algebraic variety of the type given in the corol-
lary and M := hi(X), then from 1.3.16 it follows that MT (Hτ (M)) =
G0
M . It also follows from (1.3.17) that after a �nite base extension we

can assume that GM is connected.

(b) In case of an abelian variety A/F , the situation is quite elegant. Since,

h(A) =
⊕
i

i∧
h1(A), thus Gh1(A) = Gh(A). We will denote this reductive

algebraic group by GA
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Chapter 2

Tractable abelian varieties

In this chapter we recall the notions of Tractable abelian varieties and
Weak Mumford-Tate lifts as developed in [Noo06], [Noo09] and [Noo10].

2.1 Tractable abelain varieties

In [Noo10] the notion of admissible representation and tractable abelian
varieties are de�ned, we recall them here.

Let K be a �eld of characteristic 0 and let K be an algebraic closure.
Let Gs be a linear algebraic group over K such that Gs

K
is almost simple of

classical type, A,B,C or D. Let V s be a faithful K-linear representation of
Gs. We say that V s is an admissible representation of Gs in the following
cases.

1. Gs
K
is of type An and V s ⊗K K is a multiple of the direct sum of the

representations of highest weights $1 and $n.

2. Gs
K

is of type Bn and V s ⊗K K is a multiple of the representation of
highest weight $n .

3. Gs
K

is of type Cn and V s ⊗K K is a multiple of the represntation of
highest weight $1 .

4. Gs
K

is of type Dn and V s ⊗K K is a multiple of the representation of
highest weight $1 .
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5. Gs
K
is of type Dn and V s ⊗K K is a multiple of the direct sum of the

representation of highest weights $n−1 and $n .

In the �rst three cases we say that (Gs, V s) is of type An, Bn or Cn and
in the last two cases we say that (Gs, V s) is of type DHn or of type DRn
respectively.

Let A be an abelian variety over C and let GA denote the Mumford-Tate
group of the absolute Hodge motive h1(A). Denote V := H1

B(A(C),Q) and
consider it as a representation of GA. We say that A is strictly tractable if
the following holds :

� there exists a totally real number �eld K and an almost simple linear
algebraic group Gs over K such that Gder

A = ResK/QGs,
� as a representation of Gder

A , the cohomolgy group V is the restriction
of scalars of an admissible representation V s of Gs,

� if (Gs, V s) is of type DRn then every character space in V ⊗ Q for the
action of the centre of GA/Q is an admissible representation of a factor
of Gder

A/Q and
� the above conditions do not hold for any proper abelian sub-variety of
A.

We shall call A tractable if it is isogenous to a product
∏m

i=1Ai of strictly
tractable abelian variety Ai and Gder

A
∼=
∏m

i=1G
der
Ai

. If K ⊂ C is a sub-�eld,
an abelian variety A/K is (strictly) tractable if AC is so, and if GA is con-
nected.

2.2 Mumford-Tate lifts

In [Noo06] section 2, one comes across the notion of `Mumford-Tate lifts'
and `Mumford-Tate decomposed abelian variety'. We recall these notions
here.

LetM ∈Mav
F be an abelian motive, with Mumford-Tate datum (GM , hM).

This means that the Hodge structure on VM := Hτ (M) is de�ned by the mor-
phism of the real algebraic groups hM : S → GM/R. We say that an abelian
motive N with Mumford-Tate datum (GN , hN) provides a Mumford-Tate lift
ofM , if there exists a central isogeny π : GN → GM , such that πR◦hN = hM .
We say thatM isMumford-Tate liftable if there exists an abelian motive N/C
giving a Mumford-Tate lift of M and such that the morphism π : GN → GM

is not an isomorphism. We say thatM is Mumford-Tate unliftable if it is not
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Mumford-Tate liftable.

If there exists a central isogeny πder : Gder
N → Gder

M such that

padN ◦ hN = padM ◦ hM (2.1)

where padN and padM denotes the projections GN → Gad
N and GM → Gad

M ,
respectively, then N is said to be a weak Mumford-Tate lift of M . As, πder

is a central isogeny it induces an isomorphism Gad
M → Gad

N , this is the reason
that 2.1 is well de�ned. Finally, M is essentially Mumford-Tate unliftable if
there does not exists any abelian motive N/C giving a weak Mumford-Tate
lift of M for which πder is not an isomorphism.

The following results give us the existence of the weak Mumford-Tate
lifts for abelian varieties and motives and relates them with tractable abelian
varieties.

Theorem 2.2.1. For every abelian variety A/C there exists a weak Mumford-
Tate lift B/C of A such that B is tractable

Proof. See [Noo06, 2.12] and [Noo09, 1.8] .

Corollary 2.2.2. ForM ∈Mav
C , there exists a tractable abelian variety B/C

which provides a weak Mumford-Tate lift for M .

Proof. This is an immediate consequence of 2.2.1, cf. [Noo06, 2.15].

Now let us see some important properties of (weak) Mumford-Tate lifts.
First a general result:

Proposition 2.2.3. Suupose A/C and B/C are abelian varieties over C. Let
(GA, hA) and (GB, hB) be the associated Mumford-Tate data and assume that
there exists an isomorphism Gad

A
∼= Gad

B such that padA ◦ hA = padB ◦ hB.
Let F ⊂ C be an algebraically closed �eld. Then there exists an abelian
variety A/F such that A ⊗F C = A if and only if there exists an abelian
variety B/F such that B ⊗F C.

Proof. [Noo06, 3.1].

Corollary 2.2.4. The statement of the proposition holds if B/C is a (weak)
Mumford-Tate lift of A/C.

Proof. This follows from the de�ntion of (weak) Mumford-Tate lifts and the
proposition.
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Now let us turn to `lifts' of motives. From now on for a motiveM ∈MF ,
〈M〉 will denote the Tannakian sub category generated by M and (CM)F
denotes the Tannakian sub category generated by motives of abelian varieties
with complex multiplication.

Proposition 2.2.5. Let A and B be abelian varieties over an algebraically
closed �eld F ⊂ C such that B/C provides a weak Mumford-Tate lift of A/C.
Then h1(A) ∈ 〈h1(B), (CM)F 〉.
Taking the Betti realization , this inclusion induces a a map between the
corresponding Mumford-Tate groups. On the derived group, this map is the
map πder : Gder

B → Gder
A given by the structure of B as weak Mumford-Tate

lift of A.

Proof. [Noo06, 3.4]

Corollary 2.2.6. If M ∈Mav
F . Then there exists a tractable abelian variety

B over F such that
M ∈ 〈h1(B),CMF 〉

Proof. [Noo06, 3.6].
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Chapter 3

Quotients and Neatness

In this chapter, �rst we recall some generalities on categorical quotient.
Then we de�ne the `natural adjoint' groups of reductive algebraic groups
and a corresponding categorical quotient. Finally, we introduce weakly neat
elements and establish some important facts about them.

3.1 Categorical quotient

Let G be a group scheme over a �xed base scheme S. Let µ : G×SG→ G,
β : G→ G and e : S → G, denote the S-morphisms de�ning multiplication,
inverse and unit element.

De�nition 3.1.1. A group scheme G/S as above, acts on a scheme X/S, if
an S-morphism σ : G×S X → X is given, such that :

(a)

G×S G×S X
1G×σ //

µ×1X
��

G×S X
σ

��
G×S X σ // X

(b) The composition

X ∼= S ×S X
e×1X−−−→ G×S X

σ−→ X

equals 1X

In other words for every S-scheme T , σ induces a left action of the group
G(T ) on the set X(T ). We usually denote this action on points by

(g, x) 7→ g · x
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De�nition 3.1.2. For a scheme S-scheme T , let f ∈ X(T ). Then σ◦(1G×f)
is a morphism from G×S T to X. De�ne the morphism

ψGf : G×S T → X ×S T

as (σ ◦ (1G× f), p2). The image of ψGf is called the orbit of f and is denoted
by O(f).

Now we can de�ne the notion of a categorical quotient. Notations are as
before.

De�nition 3.1.3. Given an action σ of G/S on X/S, a pair (Y, π) consisting
of a scheme Y/S and an S-morphism π : X → Y is called a categorical
quotient (of X by G) if

(i) the diagram :
G×S X σ //

p2

��

X

π
��

X
π // Y

commutes,

(ii) given any pair (Z, ω) consisting of a scheme Z over S and a S-morphism
ω : X ×Z such that ω ◦σ = ω ◦ p2, i.e (i) holds for Z and ω, then there
is a unique morphism χ : Y → Z such that ω = χ ◦ π.

The pair (Y, π) will be called a universal categorical quotient if, for all
morphisms Y ′ → Y , we put X ′ = X ×Y Y ′ and let π′ : X ′ → Y ′ denote p2,
then (Y ′, π′) is a categorical quotient of X ′ by G.

The following is a well-known existence result on universal categorical
quotient. We work over a �eld K over characteristic zero.

Theorem 3.1.4. Let X be an a�ne scheme over K, let G be a reductive
algebraic group , and let σ : G × X → X be an action of G on X. Then
an universal categorical quotient (Y, π) exists. If X is algebraic then Y is
algebraic. Moreover X noetherian implies Y noetherian.

Proof. [MFK94, 1.1].

Remark 3.1.5. Let X = SpecR; then G acts dually on R. If R0 ⊂ R be
the ring of invariants. Let Y = Spec(R0) and let π : X → Y be induced by
the inclusion of R0 in R. Then (Y, π) is the universal categorical quotient for
the action σ of G on X (cf [MFK94]).
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3.2 The variety Conj′ G

Since we will work exclusively with smooth a�ne algebraic groups over
a �eld of characteristic zero, thus henceforth we will suppress the terms
`smooth' and `a�ne' and refer them as algebraic groups over the base �eld.

Let G be a reductive algebraic group over �eld K of characteristic zero,
then the adjoint group Gad is also reductive. The algebraic group Gad acts
on G by conjugation action. Thus by theorem 3.1.4 we have an universal cat-
egorical quotient (Conj(G),Cl). The pair (Conj(G),Cl) is also the universal
categorical quotient (Conj(G),Cl) for the action of G on itself by conjugation.

Now assume further that G is connected. Let K̄ be a separable algebraic
closure of K. Then the derived algebraic group Gder

K̄
over K̄, is an almost

direct product of almost simple subgroups Gi, for i ∈ I a �nite indexing
set. Let J ⊂ I such that for i ∈ J , Gi

∼= SO(2ki)K̄ with ki ≥ 4. The Galois
group ΓK := Gal(K̄/K) acts on Gder

K̄
. This action preserves the type of the

almost simple factors of Gder
K̄

and moreover it also preserves the factors of
the form SO(2ki)K̄ (i.e it does not mix with factors of spin type). Thus J
is stable under the action of ΓK . Denote G\

i := O(2ki)K̄ , so that Gi is the
identity component of G\

i. Then for each i ∈ J , the algebraic group G\
i/Gi

is isomorphic to the constant algebraic group {±1}. Thus we get a constant
algebraic group Λ(G)K̄ =

∏
i∈J

G\
i/Gi on which ΓK acts by permutations of

the factors. Now we know that that the category of �nite groups endowed
with a continuous action of ΓK is equivalent to the category of etale algebraic
groups over K. Thus we get an etale algebraic group Λ(G) over K. Now
de�ne another algebraic group

G\ad =
∏
i∈J

G\ad
i ×

∏
i∈I\J

Gad
i ⊃ Gad

K̄

Denote by G\ =
∏
i∈J

G\
i×
∏
i/∈J

Gi. The reductive group G\ad has a natural action

on Z (GK̄) × G\. This gives an action of G\ad on Z (GK̄) ×
∏
i∈I

Gi. More

explicitly on the K̄-valued points this action can be described as follows:

(s̄i) · (x, (gi)) 7→
(
x,
(
sigis

−1
i

))
,

where (s̄i) ∈ G\ad(K̄) is a lifting of (si) ∈ G\(K̄), x ∈ Z(GK̄) and (gi) ∈∏
i∈I

Gi. Since Gder
K̄

is an almost direct product of Gi's, we get an action of
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G\ad on GK̄ = Z(GK̄)×Gder
K̄

extending the action of Gad
K̄
. Denote the cate-

gorical quotient of GK̄ under this action of G\ad as Conj′(G)K̄ . By the prop-
erties of categorical quotients ([Bor91, VI,6.10 & 6.16], this action induces
an action of the constant algebraic group Λ(G)K̄ = G\ad/Gad

K̄
on Conj(G)K̄ ,

such that quotient for this action is isomorphic to Conj′(G)K̄ . This in turn
gives us an action of Λ(G) on Conj(G). The quotient of Conj(G) under this
action, is denoted as Conj′(G) and the quotient map is again denoted as
Cl : G→ Conj′(G).

The variety Conj(G)K̄ is the quotient of a maixmal torus of GK̄ for the
action of the Weyl group W of G. The variety Conj′(G)K̄ is also a quotient
of a maximal torus for the action of a group W̃ , which is an extension of
Λ(G) by W . See [Noo09] and also [Hum95] chapter 3 for more details on
such `quotients'.

Proposition 3.2.1. Let M be an abelian motive and suppose Ω is an alge-
braic closed �eld containing Ql. Let x, y ∈ GM(Ω) be conjugate under the
action of G\ad

M . Then x and y have the same characteristic polynomial acting
on Hσ(M)

Proof. Denote by V the vector space Hσ(M) and consider the representa-
tion GL(V/Q̄), of the algebraic group GM/Q̄ . This representation gives us
a representation of Gder

M/Q̄, which in turn gives a representation of
∏
Gi,

Gi's being the almost direct factors of Gder
M/Q̄. Now consider the decom-

position V/Q̄ = ⊕kWk, where each Wk is an irreducible representation of
Gder
M/Q̄. We can further decompose each Wk = ⊗iWki, where Wki is a repre-

sentation of Gi (other Gj's acting trivially). Now, for the factors Gi of type
SO(2mi)/Q̄, the corresponding representation Wki extends to a representa-

tion of G\
i := O(2mi)/Q̄. Repeating this procedure for all such Gi's, we see

that Wk becomes a representation of G\
M =

∏
i∈J

G\
i ×

∏
i∈I/J

Gi extending the

representation of
∏
Gi.

Now look at the Ω-valued points x and y of the algebraic group G\
M . As

GM is reductive, we can write x = z ·g and y = z′ ·g′, with z, z′ ∈ Z(GM)(Ω)
and g, g′ ∈ Gder

M (Ω). Since x and y are conjugate under the action of G\ad
M ,

thus z = z′ and by the discussion in the preceding paragraph it is clear that
g and g′ have same characteristic polynomial. Since z is in the center it
commutes with g, and therefore z and g can be simultaneously diagonalized.
Thus, the eigenvalues of z · g, are products of the eigenvalues of z and g.
Similarly for z and g′. As x = z · g and y = z · g′ have same eigenvalues they

42



have the same characteristic polynomial.

3.3 Neat and weakly neat elements

Let G be a reductive algebraic group over a �eld K of characteristic 0.
Let Ω be an algebraically closed �eld containing K.

De�nition 3.3.1. A semisimple element g ∈ G(Ω) is neat [Bor01] if the
subgroup Eig(g) of Ω∗ generated by the eigenvalues of g, in some faithful
representation of G , does not contain any roots of unity other than 1.

Being neat is independent of the representation. Fix a faithful K-linear
representation V of G.

De�nition 3.3.2. A semisimple element g ∈ G(Ω) is said to be weakly neat
([Noo09], [Noo10]) if the the only root of unity amongst the quotients λµ−1,
with λ, µ being the eigenvalues of g, is 1.

Note that if g is neat then its weakly neat.

Let φn : G → G, denote the n th power map. Let Y/K denote any one
of the algebraic varieties Conj(G) or Conj′(G). Clearly, φn is equivariant for
the action of conjugation. Since Y is an universal categorical quotient, this
implies that φn induces a map φ̄n : Y → Y such that the following diagram
is commutative :

G
φn //

Cl
��

G

Cl
��

Y
φ̄n // Y

(3.1)

The next two results are stated in [Noo09, 3.2] and [Noo10, 7.4]. For
completeness we present their proofs here.

Proposition 3.3.3. Let Ω be an algebraically closed �eld containing K. Let
V be a faithful K-linear representation of G and α, β ∈ G(Ω) be two weakly
neat elements having same characteristic polynomial in the representation V .
If φ̄n(Cl(α)) = φ̄n(Cl(β)), then Cl(α) = Cl(β).

Proof. It su�ces to assume that K = Ω. Let d be the dimension of the
representation V . Firstly, consider an inclusion of tori T ⊆ Gd

m/K . The
symmetric group Sd acts on Gd

m/K by permuting the factors. Let Twn be the
set de�ned as:
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Twn = {t ∈ T (Ω)|t is weakly neat and ZSd(t) = ZSd(T )}

where ZSd(∗) denotes centraliser of ∗. Note that t ∈ Twn implies tm ∈ Twn, for
all positive integers m ≥ 1. Now consider two elements t1, t2 ∈ Twn such that
φn(t1) = φn(t2) i.e t1n = t2

n and suppose that they have same characteristic
polynomial. This implies that there exists τ ∈ Sd such that τ · t1 = t2. Thus,

τ · t1n = t2
n = t1

n

and from the de�nition of Twn it follows that τ ∈ ZSd(T ). Hence, τ |T = id
and t1 = t2.

Now we are given that α is semisimple, thus it lies in a maximal torus Gd
m

of the connected linear algebraic group GL(V ). If α = (α1, · · · , αd) ∈ Gd
m,

then we de�ne a torus :

Tα = {(t1, · · · , td) ∈ Gd
m|ti = tj if αi = αj}

We shall apply the preceding arguments to this torus. By construction it
follows that α ∈ Tαwn. According to the hypothesis φ̄n(Cl(α)) = φ̄n(Cl(β)).
From, the commutativity of diagram (3.1), it follows that Cl(αn) = Cl(βn).
This mean that αn and βn are conjugate in G(Ω). Thus, there exists a weakly
neat and semisimple element γ ∈ G(Ω), such that αn = γn , Cl(β) = Cl(γ).
Thus by the hypothesis characteristic polynomial of α is same as that of γ.
As γn = αn ∈ Tαwn, it follows that γ ∈ Tαwn. Now from the discussion at the
beginning it follows that α = γ. Thus, Cl(α) = Cl(β).

In the course of the proof we have proved the following result for G = GLd

Proposition 3.3.4. let Ω be an algebraically closed �eld, d a positive integer.
Let x, y ∈ GLd(Ω) be two weakly neat elements such that xn = yn for some
positive integer n, and x and y have same characteristic polynomial. Then
x = y
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Chapter 4

`-independence for motives with

good reduction

4.1 Models and criteria for good reduction

Let F be a �eld, v a discrete valuation of F and Ov the valuation ring of
v; the residue �eld Ov/mv of v will be denoted by kv. Let F̄ be a separable
algebraic closure of F and v̄ an extension of v to F̄ . We denote the inertia
group and decomposition group of v̄ by Iv̄ and Dv̄, respectively. We have the
inclusions Iv̄ ⊂ Dv̄ ⊂ Gal(F̄ /F ). Let Fv be the completion of F with respect
to the valuation v and F̄v̄ is the localization of F̄ at v̄. Then Gal(F̄v̄/Fv) can
be identi�ed with the decomposition group Dv̄. We also have a canonical
isomorphism

Dv̄/Iv̄ ∼= Gal(k̄v/kv)

where k̄v, the residue �eld of v̄, is an algebraic closure of kv. A geometric
Frobenius at v is an element of Dv̄ that induces on k̄v, the inverse of the
Frobenius automorphism x 7→ xqv , where qv is the order of the �eld kv.

De�nition 4.1.1. Let F and v be as above. Let S = Spec(Ov) and X be an

algebraic variety over F . A model for X over S is a scheme X f−→ S whose
generic �bre is isomorphic to X and f is surjective and �at.

De�nition 4.1.2. Let F and v be as before. A smooth and proper algebraic
variety X is said to have good reduction at v if there exists a proper model
X over S such that the morphism X → S is smooth.

There is the following classical result.
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Proposition 4.1.3. Let X be a smooth projective variety de�ned over a
number �eld F . Then X has good reduction at all but �nitely many valua-
tions.

Proof. [HS00, A.9.1.6].

In the case of an abelian variety good reduction can be expressed in terms
of the Néron model. Let A be an abelian variety over F . The Néron minimal
model Av of relative to v is a smooth group scheme of �nite type over Ov,
together with an isomorphism Av ×Ov F ' A, which represents the functor

Y 7→ HomF (Y ×Ov F,A)

on the category of schemes Y smooth over Ov. The abelian variety A has
good reduction at v if and only if Av is proper over Ov, i.e. is an abelian
scheme over Ov (cf. [ST68]). In the case of an abelian variety we also have
the criterion of Néron-Ogg-Shafarevich, for detecting good reduction at the
given valuation. We shall describe it here. First we need to �x some more
notations and defnitions.

A Galois extension E of F contained in F̄ is unrami�ed at v if and only if
E is �xed by Iv̄. More generally, if Gal(F̄ /F ) acts on a set T , one says that T
is unrami�ed at v if Iv̄ acts trivially on it; this does not depend on the choice
of v̄ because the inertia groups of two such choices are conjugate in Gal(F̄ /F ).
In other words, T is unrami�ed at v if and only if the decomposition group
Dv̄ acts on T through its homomorphic image Gal(k̄v/kv).

If m ∈ Z is prime to char(F ), we put

Am = Hom(Z/mZ, A(F̄ ))

Thus, Am is the group of points of order dividing m in the group A(F̄ ) of
F̄ -points of A. It is known that Am is a free Z/mZ-module of rank 2 dim(A)
on which Gal(F̄ /F ) acts continuously, i.e through a �nite quotient by an
open subgroup.

Now, for any prime number l 6= char(F ), denote

Tl(A) = lim
←
Aln = Hom(Ql/Zl, A(F̄ ))

This is a free module of rank 2 dim(A) over Zl; the group Gal(F̄ /F ) acts
continuously on Tl(A).

Theorem 4.1.4. Let A be an abelian variety over F . Let l be a prime number
di�erent from the residual characteristic char(kv). The following properties
are equivalent
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(a) A has good reduction at v.

(b) Am is unrami�ed at v for all m prime to char(kv).

(b') There exists in�nitely many integers m, prime to char(kv), such that Am
is unrami�ed at v.

(c) Tl(A) is unrami�ed at v

Proof. [ST68, Theorem 1].

Let notations be as before. We say that the variety X/F has potential
good reduction at v if there exists a �nite extension F ′ of F and a prolonga-
tion v′ of v to F ′ such that X ×F F ′ has good reduction at v′. If we consider
abelian varieties, then using the Néron-Ogg-Shafarevich condition we can de-
duce some criteria for potential good reduction.

Let l be a prime number di�erent from the residue characteristic, and let

ρl : Gal(F̄ /F )→ Aut(Tl) (4.1)

denote the l-adic representation corresponding to the Galois module Tl =
Tl(A), for the abelian variety A/F .

Theorem 4.1.5. (i) The abelian variety A has potential good reduction at
v if and only if the image by ρl of the inertia group Iv̄ is �nite.

(ii) When this is the case, the restriction of ρl to Iv̄ is independent of l in
the following sense : Its kernel is the same for all l, and its character
has values in Z independent of l

Proof. [ST68, Theorem 2].

Corollary 4.1.6. Suppose the residue �eld k is �nite of characteristic p, and
that, for some l 6= p, the image of Gal(F̄ /F ) in Aut(Tl) is abelian. Then A
has potential good reduction at v.

Proof. [ST68] corollary 1 of theorem 2.

To �nish of this section, we discuss criterion for good reduction of a CM
type abelian variety. We assume now that characteristic of F is 0. For an
abelian variety A/F we denote by End(A) the F -endomorphisms of A and
End0(A) := Q⊗ End(A).

De�nition 4.1.7. Let A be a simple abelian variety over a �eld F . We say
that A is of CM type if K := End0(A) is a CM-�eld of degree 2 dimA over
Q. The abelian variety A is said to be with complex multiplication by K over
F .
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Now we have the general de�nition of complex multiplication.

De�nition 4.1.8. An abelian variety A over a �eld F is said to have complex
multiplication if it is isogeneous to a product of simple abelain varieties

∏
Aeii ,

where Ai 's are pairwise non-isogeneous simple abelian varieties with complex
multiplication by Ki over the �eld F .

If we take the notations of the previous de�nition then it is known that
there exists CM-�elds K̃i, such that [K̃i : Q] = 2 dimAei and there are
injections K̃i ↪→ End0(Aeii ). Now denote K := ⊕K̃i and let

R := K ∩ End(A).

Proposition 4.1.9. Let A/F be an abelian variety with complex multiplica-
tion. The representation ρl attached to the Tate module Tl, (4.1) is a homo-
morphism of Gal(F̄ /F ) into the group Rl = Zl ⊗R. In particular, Im(ρl) is
a commutative group.

Proof. [ST68, Thm.5, cor.2].

4.2 `-independence in the good reduction case

In what follows, we will assume that the base �eld F is a number �eld,
with a �xed embedding τ : F ↪→ C. Fix an algebraic closure F̄ of F . Let
v be a given valuation on F . We also �x a geometric Frobenius element Frv
in ΓF . As described in section (1.3.16), the action of the absolute Galois
group ΓF of a �eld F on the l-adic realization of an absolute Hodge motive
M ∈ Ob(MF ) induces a map ρM,l : ΓF → GL(Hl(M)). It is also known that
that Im(ρM,l) ⊂ GM(Ql) (1.3.16), where GM is the Mumford-Tate group
of the motive M . We will give a proof of this last statement in one of the
following lemmas (4.2.3). As GM is reductive group, the construction (3.2)
gives us an algebraic variety Conj′GM over Q. Recall that we also have the
conjugacy class map Cl : GM → Conj′GM . All the Mumford-Tate groups of
motives considered hereby are assumed to be connected. This can be always
achieved after a �nite base extension (1.3.17).

Now, let X be a smooth, projective algebraic variety over F , such that
the absolute Hodge motive h(X) ∈ Ob(Mav

F ). Thus, for example X could
be a curve, a Fermat hypersurface, a K3-surface, an abelian variety, or any
product of these varieties (see 1.4.3).
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Theorem 4.2.1. Let M := hi(X) for some positive integer i. Assume that
X has good reduction at v and that for some prime number l with v(l) = 0.
Then there exists a �nite extension F ′ of F and a valuation v′ on F ′ extending
v and a conjugacy class

ClMFrv′ ∈ Conj′(GM)(Q)

such that Cl(ρM,l(Frv′)) = ClMFrv′, for all l with v(l) = 0.

The proof of this theorem will occupy most of this section. It follows from
a series of lemmas that we state and prove in the course of the proof of the
theorem. First, we state some important remarks.

Remark 4.2.2. (i) The theorem is known to hold over the base �eld F
itself, in the case where X is a tractable abelian variety or an abelian
variety with complex multiplication. We refer the reader to [Noo09,
2.2, 2.4].

(ii) We shall see in next theorem (4.2.6) that, under further assumptions
the theorem can be sharpened to give us the result over the base �eld
F itself. This generalizes the Theorem 1.8 of [Noo09], where the result
is shown for X an abelian variety.

Proof of 4.2.1. Let τ̄ : F̄ ↪→ C be an extension of τ to an algebraic closure of
F . By 2.2.2 and 2.2.6 we have a tractable abelian variety B/F̄ which provides
a weak Mumford-Tate lift of M , such that the following holds

h1(X/F̄ ) ∈ 〈h1(B/F̄ ), (CM)F̄ 〉.

Here, (CM)F̄ denotes the motives of the abelian varieties over F̄ having
complex multiplication.

Thus, hi(XF̄ ) is a subquotient of a polynomial expression (with coe�-
cients in natural numbers and where + should be interepreted as ⊕ and · as
⊗ ) in objects of the generating family. This implies that

hi(XF̄ ) ∈ 〈h1(B/F̄ ), h1(C1), · · · , h1(Ct),Q(1)〉

for some �nite number of abelian varities C1, . . . , Ct having complex mul-
tiplication. Tannakian subactegories being closed under direct sums and
subquotients, we have

hi(XF̄ ) ∈ 〈h1(B/F̄ ), h1(C/F̄ ),Q(1)〉 (4.2)

where C/F̄ is the �bred product over F̄ of the Ci's , again an abelian variety
with complex multiplication and h1(C/F̄ ) = h1(C1)⊕ · · · ⊕ h1(Ct) .
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Let us denote by GBF̄
, GCF̄

and G(B×C)F̄
the Mumford-Tate groups of

the motives h1(B/F̄ ), h1(C/F̄ ) and h1(B/F̄ × C/F̄ ) respectively. Then, from
the properties of Tannakian categories (chapter 1, �1.4) , we get a map

θ : G(B×C)F̄
−→ GM

Note that by our hypothesis M ∈ Mav
F so Hodge cycles are absolute Hodge

for M and its base change (see 1.4.2). Note that by our hypothesis GM is
connected, so that GM = GMF̄

(1.3.16) where MF̄ denotes hi(X/F̄ ).
The relation 4.2 is actually true over a �nite extension of F . To see this, note
�rst that we can descend from B/F̄ and C/F̄ to abelian varieties B,C/F ′ re-
spectively, where F ′ is some �nite extension of F . Now, hi(X/F̄ ) is obtained
from h1(B/F̄ ) , h1(C/F̄ ) and Tate motive by taking direct sums, tensor prod-
ucts and sub-quotients. We are performing a �nite number of operations on
some idempotents in the endomorphism rings of the motives involved. These
idempotents are by de�nition absolute Hodge cycles de�ned over F̄ . They are
not (necessarily) invariant under the action of the Galois group Gal(F̄ /F ′).
But (1.1.5), implies that the action of the Galois group Gal(F̄ /F ) on the
vector space of absolute Hodge cycles (on B/F̄ ×C/F̄ ) is through a �nite quo-
tient. This means that by taking a big enough �nite extension of F ′ (which
we again denote by F ′), we can make these absolute Hodge cycles invariant
under the action of Gal(F̄ /F ′). So, from the de�nition of absolute Hodge
cycles for non-algebraically closed �elds (chapter 1, �1), we get that

hi(XF ′) ∈ 〈h1(B/F ′), h
1(C/F ′),Q(1)〉 (4.3)

Let GB, GC and GB×C denote the Mumford-Tate groups of the motives
h1(B/F ′), h

1(C/F ′) and h1(B/F ′ × C/F ′) respectively. Taking F ′ to be su�-
ciently large we can assume that GB, GC and GB×C are connected (1.3.17),
and hence isomorphic to GBF̄

, GCF̄
and G(B×C)F̄

respectively. Now, from
(1.3.16) and the de�nition of Mumford-Tate group of Hodge structures (1.3.11)
it follows easily that GB×C is a closed subgroup of the algebraic group
GB ×GC .

Lemma 4.2.3. If M ,B and C are as above then we get the following com-
mutative diagram .

(GB ×GC)(Ql)

ΓF ′

(ρB,l,ρC,l)
88

ρB×C,l//

ρM,l

&&

GB×C(Ql)
?�

i

OO

θ
��

GM(Ql)

(4.4)
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Proof. Note that here i denotes the map induced by the inclusion GB×C ⊆
GB × GC . The �rst thing to observe is how the image of the Galois group
is contained in the Ql-valued points of the Mumford-Tate groups. Then we
will discuss the commutativity of the diagram.
Denote by T the Tannakian subcategory generated by M in Mav

F and T ′
the Tannakian category generated there by N := h1(B/F ′ × C/F ′). Then by
de�nition we have
GM(Ql) = Aut⊗(Hτ |T )(Ql)

= {φ | φ : Hτ |T ⊗Ql −→ Hτ |T ⊗Ql is ismorphism of functors}

and GB×C(Ql) = Aut⊗(Hτ |T ′)(Ql)

= {φ | φ : Hτ |T ′ ⊗Ql −→ Hτ |T ′ ⊗Ql is ismorphism of functors}

Let γ ∈ ΓF ′ . Then we claim that γ induces an isomorphism of functors
γ∗N : Hτ |T ′ ⊗ Ql → Hτ |T ′ ⊗ Ql and similarly γ∗M : Hτ |T ⊗ Ql → Hτ |T ⊗ Ql.
This is true since for any motive N ′ ∈ Ob(T ′), the action of ΓF ′ on the l-adic
realization Hl(N

′) induces a map of vector spaces γ∗N ′ : Hl(N
′) → Hl(N

′).
Similarly for M ′ ∈ Ob(T ), we get a map γ∗M ′ : Hl(M

′) → Hl(M
′). Then,

using the comparison isomorphism (1.2.2) we see that Hl(N
′) = Hτ (N

′)⊗Ql

and thus γ∗N ′ : Hτ (N
′) ⊗ Ql → Hτ (N

′) ⊗ Ql. If we have a morphism of

motives N1
f−→ N2 for N1, N2 ∈ Ob(T ′), then by 1.2.1(v), we know that the

morphism f commutes with the action of the Galois group ΓF ′ on the l-adic
realizations of motives. Thus we get a commutative diagram:

Hτ (N1)⊗Ql

fl
��

γ∗N1 // Hτ (N1)⊗Ql

fl
��

Hτ (N2)⊗Ql

γ∗N2 // Hτ (N2)⊗Ql

(4.5)

This shows that γ∗N ∈ GB×C(Ql). Similarly γ∗M ∈ GM(Ql).

The map θ sends an isomorphism of functors φ ∈ GB×C(Ql) to the iso-
morphism of the same functors restricted to the full subcategory T of T ′.
Thus, θ(γ∗N) = γ∗M . By similar arguments it also follows that the upper tri-
angle is commutative, since each of h1(B), h1(C) generates a full subcategory
in T ′, respectively.

Now we return to the proof the theorem. Consider a valuation v′, of F ′

extending v, where B × C/F ′ has good reduction. The idea of the proof is
to �nd a conjugacy class ClB×CFrv′ ∈ Conj′(GB×C)(Q), such that its image
ClMFrv′ ∈ Conj′(GM)(Q) provides us the conjugacy class of the statement of
the theorem. First, we need a few more lemmas.
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Lemma 4.2.4. The inclusion GB×C ⊆ GB×GC induces a closed immersion
Conj′(GB×C)→ Conj′(GB ×GC).

Proof. Let Conj′(GB×C) ∼= TB×C/W̃1 and Conj′(GB × GC) ∼= TB × TC/W̃2

be the quotient of maximal tori TB×C and TB × TC of GB×C and GB × GC

respectively, for the action of the �nite groups W̃1 and W̃2 (chapter 3,�2).
The algebraic groupsW1 andW2 are extensions of the Weyl groupsW (GB×C)
andW (GB×GC) of GB×C and GB×GC respectively, by the algebraic groups
Λ(GB×C) and Λ(GB ×GC) (chapter 3 �2). As GC is commutative this yields
that Gder

C and Gad
C are trivial and

Gder
B×C
∼= (GB ×GC)der, Gad

B×C
∼= (GB ×GC)ad, andG\ad

B×C
∼= (GB ×GC)\ad.

Since the Weyl group of any algebraic group is isomorphic to the Weyl group
of its derived group, we have W (GB×C) = W (GB ×GC). We also get that

Λ(GB×C) ∼= G\ad
B×C/G

ad
B×C
∼= Λ(GB ×GC).

Therefore, W̃1
∼= W̃2 and we denote this common algebraic group by W̃ .

Since we have GB×C ⊆ GB × GC , we can suppose that TB×C ⊆ TB × TC .
Denote the coordinate rings of TB × TC and TB×C by R and S, respectively.
Then we have a surjective morphism R → S of Q-algebras, with W̃ -action.
Let s ∈ SW̃ , since we are working on Q-algebras we can take the average of
the elements of the W̃ -orbit of any r ∈ R mapping to s and this is also an
element of RW̃ mapping to s. Thus RW̃ → SW̃ is surjective, implying that
Conj′(GB×C)→ Conj′(GB ×GC) is a closed immersion.

Lemma 4.2.5. Under the hypothesis of the theorem, the abelian variety B×C
has potential good reduction at v.

Proof. From the de�nition of a weak Mumford-Tate lift we know that the
morphism GB×C → GM induces isomorphism on the adjoint groups. Further,
as X is smooth and has good reduction at v, the action of the inertia group
on H i

et(X ×F F̄ ,Ql) is trivial. Hence, it follows that ρB×C,l(Iv̄) is contained
in the centre of GB×C(Ql). By proposition 1.3.12 we know that GB×C is
reductive. This means its center is a torus, a commutative group scheme.
Then by corollary 4.1.6, B has potential good reduction at v. By combining
proposition 4.1.9 and corollary 4.1.6, it follows that C has potential good
reduction v. Thus, we can replace F by a �nite extension F ′, extend v to v′

and assume that B × C has good reduction at v′.
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Thus taking F ′ to be a su�ciently large �nite extension of F we can
assume that B and C have good reduction at the valuation v′ extending v to
F ′. Now by remarks 4.2.2 we have conjugacy classes ClBFrv′ ∈ Conj′(GB)(Q)
and ClCFrv′ ∈ Conj′(GC)(Q) such that Cl(ρB,l(Frv′)) = ClBFrv′ for l di�erent
from the residual characteristic of F ′ by v′, and similarly for C. As (ρB,l, ρC,l)
factors through GB×C , by diagram (4.4) and lemma 4.2.4 it follows that
(ClBFrv′ ,ClCFrv′) lies in Conj′(GB×C)(Q). Now take ClMFrv′ to be the image
of (ClBFrv′ ,ClCFrv′), under the canonical map

Conj′(GB×C)(Q)→ Conj′(GM)(Q).

The the diagram (4.4) shows that ClMFrv′ is the required conjugacy class.
This concludes the proof of the theorem.

Theorem 4.2.6. Let the notations be as in the theorem 4.2.1. Assume fur-
ther that ρM,l(Frv) is weakly neat for some l 6= p. Then there exists a conju-
gacy class

ClMFrv ∈ Conj′(GM)(Q)

such that Cl(ρM,l(Frv)) = ClMFrv, for l di�erent from the residual charac-
teristic of F .

Proof. Let F ′/F be a �nite extension of the �eld F as given by the theorem
4.2.1. Let v′ be an extension of the valuation v to F ′ and let

s := ClMFrv′ ∈ Conj′GM(Q) ⊂ Conj′GM(Q̄l)

be the image of ρM,l(Frv′) under the map Cl.

Now we follow the notations of the proposition 3.3.3. Thus φ̄n is the map
induced by the nth power map φn : GM → GM , on Y := Conj′GM . Let s̃ be
any pre-image of ClMFrv′ under the map of Q̄l-valued points Y (Q̄l)→ Y (Q̄l)
induced by φ̄n. First we claim that s̃ is Q̄-valued point of Y (Q̄l). To see
this, let A be the co-ordinate ring of Y and let φ̄]n : A → A denote the
homomorphism induced on the rings by the morphism φ̄n. As, φ̄n ◦ s̃ = s,
we get a commutative diagram

Q̄l A
s̃oo

Q
?�

i

OO

A

φ̄]n

OO

s
oo

(4.6)
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where i is the inclusion map Q→ Q̄l. Since, φ̄]n is a �nite homomorphism of
Q-algebras, s̃(A) is a �nite algebra over s(A) = Q. Thus, K := Frac(s̃(A))
is a �nite �eld extension of Q. Thus, the above diagram can be replaced by
the following

K A
s̃oo

Q
?�
i

OO

A

φ̄]n

OO

s
oo

(4.7)

Therefore, s̃ is a K-valued point of Y . By embedding K into an algebraic
closure Q̄ of Q, we see that s̃ is a Q̄-valued point of Y . This establishes our
claim.
Now Cl(ρM,l(Frv)) is a Ql-valued point of Y mapped to s under the morphism
φ̄n. By, the preceding discussion Cl(ρM,l(Frv)) ∈ Y (Q̄). By the hypothesis
ρM,l(Frv) is weakly neat. Now, as a consequence of the Weil Conjectures
([Del80, 3.3.9]) we know that the characteristic polynomial f of the linear
map induced by ρM,l(Frv) onH i

et(X/F̄ ,Ql) is independent of l and is contained
in Q[X]. Thus if l′ 6= p is any other prime number, then we have another
weakly neat element ρM,l′(Frv) with same characteristic polynomial as that
of ρM,l(Frv). We also have an element Cl(ρM,l′(Frv)) ∈ Y (Ql), such that

φ̄n(Cl(ρM,l(Frv))) = φ̄n(Cl(ρM,l′(Frv))).

By the above discussion Cl(ρM,l′(Frv)) ∈ Y (Q̄). Thus by proposition 3.3.3 we
have Cl(ρM,l(Frv)) = Cl(ρM,l′(Frv)). By repeating the above procedure for all
prime numbers di�erent from p, we see that Cl(ρM,l(Frv)) is unique and we
denote it by ClMFrv. Since we also have ClMFrv ∈ Y (Ql) for all l 6= p. Thus,
ClMFrv is Q-valued point of Y . In other words, ClMFrv ∈ Conj′GM(Q).
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Chapter 5

`-independence for motives with

semi-stable reduction

5.1 Monodromy

Let F be a complete discretely valued �eld, v denote the valuation of
F and kv the residue �eld of characteristic p > 0. For our purpose we will
suppose that kv is �nite, unless otherwise stated. We �x an algebraic closure
F̄ of F and let v̄ be the extension of v to F̄ . The residue �eld of F̄ at v̄ is
denoted by k̄v (which is also an algebraic closure of kv).

The inertia group IF of the extension F̄ /F can be described as the sub-
group of Gal(F̄ /F ) de�ned by the following exact sequence:

1→ IF → Gal(F̄ /F )→ Gal(k̄v/kv)→ 1

Denote by µln the group of ln-th roots of unity in k̄v. Let Zl(1) = lim
←

µln .

Then the inertia group IF �ts into the following exact sequence ([Del73, �2])

1→ P → IF
t−→ Z(p′)(1)→ 1

Where P is a pro-p-group and Z(p′)(1) =
∏
l 6=p

Zl(1). Let l 6= p be a prime

number. We denote by tl : IF → Zl(1), the l-component of t.

De�nition 5.1.1. Let l 6= p be a prime number. An l-adic representation ξl
of Gal(F̄ /F ) is said to be quasi-unipotent if there exists an open subgroup
J of the inertia group IF such that the restriction of ξl to J is unipotent (i.e
ξl(σ) is a unipotent linear map for every σ ∈ J).

A general fact about quasi-unipotent representations is the following.
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Theorem 5.1.2. Let ξl : Gal(F̄ /F ) → GL(U) be any quasi-unipotent rep-
resentation, for a �nite dimensional Ql-vector space U . Then there exists a
unique nilpotent morphism N ′l : U(1)→ U such that if J is an open subgroup
of IF , where ξl is unipotent, then

ξl(σ) = exp(tl(σ)N ′l ) for all σ ∈ J (5.1)

Proof. This is [Del73, 8.2]. See also [Ill94]

Remark 5.1.3. For any Zl-module U , U(1) denotes U ⊗Ql Ql(1), where
Ql(1) = Ql ⊗Zl Zl(1)

Proposition 5.1.4. Let the notations be as in the previous theorem. The
monodromy operator N ′l is unchanged by any �nite extension of the base �eld
F .

Proof. Let F ′ be any �nite extension of F and IF ′ denote the corresponding
inertia subgroup of ΓF ′ := Gal(F̄ /F ′). Denote by ξl|ΓF ′ , the l-adic represen-
tation of ΓF ′ , obtained by restricting ξl. By Galois theory we know that ΓF ′
is an open subgroup of Gal(F̄ /F ). Thus the inertia group IF ′ = ΓF ′∩IF is an
open subgroup of IF . Let J be an open subgroup of IF , where ξl is unipotent.
Then, J ∩ IF ′ is an open subgroup of both IF ′ and IF . The representation
ξl|ΓF ′ is unipotent on J ∩ IF ′ . Thus, by the theorem there exists an unique
nilpotent operator N ′′l : U(1) → U such that (5.1) holds for every element
σ ∈ J ∩ IF ′ , for ξl|ΓF ′ . But, ξl is also unipotent on J ∩ IF ′ . Thus, by the
uniqueness of N ′l , we conclude that N

′′
l = N ′l .

For any smooth proper variety X over F , we denote V i
l := H i

et(X/F̄ ,Ql)
the i-th l-adic cohomology of X.

Theorem 5.1.5. The l-adic Galois representation ρil : Gal(F̄ /F )→ GL(V i
l )

is quasi-unipotent.

Proof. [GRO72]

Hence by theorem 5.1.2, the representation ρil satis�es (5.1).

5.2 Representations of Weil-Deligne group

Let the notations be as in the previous section. But, we now assume that
F is a �nite extension of Qp and let |kv| = qv be the order of kv.
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De�nition 5.2.1. The Weil group WF is the subgroup of Gal(F̄ /F ), con-
sisting of elements Ψ whose image in Gal(k̄v/kv) is an integral power φα(Ψ)

of the Frobenius automorphism φ : a 7→ aqv , of k̄v.

Thus, we have de�ned a map α : WF → Z, which is a group homomor-
phism with kernel IF . We now endow the Weil group WF with the topology
induced by the natural topology of IF , for which IF is open in WF . The Weil
group �ts into the following diagram with exact rows :

1 // IF //

=

��

WF
α //

� _

��

Z //� _

��

1

1 // IF // Gal(F̄ /F ) // Ẑ // 1

(5.2)

The Galois group ΓF is the completion of WF for the topology of open sub-
groups of �nite index. For a �nite extension E of F in F̄ , the corresponding
subgroup of WF is WE. We consider WF as a constant group scheme over Q.

De�nition 5.2.2. The Weil-Deligne group ′WF of F is the group scheme
over Q de�ned as the semi-direct product of WF with the additive group Ga

over Q, on which WF acts as :

w · x · w−1 = qα(w)
v · x

De�nition 5.2.3. Let L be any �eld of characteristic 0. An L-algebraic
representation of ′WF is a triple (H, ξ′, N), where H is a linear algebraic
group over L, ξ′ : WF → H(L) a linear representation with an open sub-
group of IF in its kernel and N ∈ Lie(H) satisfying:

Ad(ρ′(w))(N) = qα(w)
v ·N, for all w ∈ WF

We are interested here in the representations of the Weil-Deligne group
with values in linear algebraic groups de�ned over Ql. Let H be a linear
algebraic group over Ql and ξl be a quasi unipotent l-adic repesentaton
Gal(F̄ /F ) → H(Ql) . Then we can construct a Ql-algebraic representa-
tion of ′WF from ξl. To achieve this, restrict ξl to the Weil groupWF . Fix an
arithmetic Frobenius Φ ∈ Gal(F̄ /F ), i.e a lift of the Frobenius automorphism
φ. Then we de�ne

ξ′l(w) = ξl(w)exp(−N ′l tl(Φ−α(w)w)). (5.3)

Here N ′l is the monodromy operator as in (5.1). It is identi�ed as an element
of the Lie(H), by �xing an isomorphism Ql ' Ql(1). Using the description
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of ξl as in (5.1), we see that ξ′l is trivial on some open subgroup J ⊂ IF .
Thus, (H, ξ′l, N

′
l ) indeed gives us a Ql-algebraic representation of ′WF . More-

over, according to [Del73, 8.11] the geometric isomorphism class of this rep-
resentation is independent of the choice of Φ and the chosen isomorphism
Ql ' Ql(1).

5.3 Compatibility of representations of Weil-

Deligne group

We keep the notations as in the previous section. Let (H, ξ′, N) be a given
L-algebraic representation of ′WF . Let K be a sub�eld of L. We say that
the representation is de�ned over K if for every algebraically closed �eld Ω
containing L the base extension of (H, ξ′, N) to Ω is conjugate under H(Ω)
to all its images under AutK(Ω). More precisely this means that for every
σ ∈ AutK(Ω), there exists a g ∈ H(Ω) such that

σξ′Ω = g · ξ′Ω · g−1 and σ(N ⊗L 1) = Ad(g)(N ⊗L 1)

where ξ′Ω : WF → H(Ω) is the extension of scalars and N ⊗L 1 is the image
of N in Lie(H)⊗ Ω.

Consider a a linear algebraic group H de�ned over K. Let K1 and K2 be
two extensions of K and (H/Ki , ξ

′
i, Ni) (for i = 1, 2) be Ki-algebraic repre-

sentations of ′WF . We say (H/K1 , ξ
′
1, N1) and (H/K2 , ξ

′
2, N2) are compatible if

they are de�ned over K and for every algebraically closed �eld Ω ⊃ K1, K2,
the base extensions of (H, ξ′1, N1) and (H, ξ′2, N2) to Ω are H(Ω)-conjugate.
More explicitly, there exists a g ∈ H(Ω) such that

ξ′1/Ω = g · ξ′2/Ω · g−1 and N1 ⊗K1 1 = Ad(g)(N2 ⊗K2 1) ∈ Lie(H)⊗K Ω

5.4 Compatible systems modulo the action of

G\ad

Here we introduce a variant of the notions described in the previous sec-
tion, for a system of Ql-algebraic representations of ′WF (l di�erent from the
residual characteristic of F ). The notations are as in the previous sections.
For the Lie algebra of an algebraic group G, we use the Gothic letter g.

Fix an algebraic closure Q̄ of the rational numbers. Let G be a reductive
algebraic group over Q and consider the algebraic group G\ad/Q̄, as con-
structed in �3.2. It acts on G/Q̄ by �conjugation� as de�ned there. For this
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action it is possible to de�ne a map similar to the classical adjoint map in
the theory of algebraic groups. We describe it here and we will still call it the
adjoint map. First of all we need to make a base extension to an algebraically
closed �eld Ω ⊃ Q̄. Thus the action of G\ad on G/Q induces an action

G\ad
/Ω ×G/Ω → G/Ω.

If R is an Ω-algebra, g ∈ G\ad
/Ω (R) and x ∈ G/Ω(R), then we will denote the

image of (g, x) under this action, by g · x · g−1 to emphasis the fact that its
an extension of the natural adjoint action of Gad on G.

First we note that the Lie-algebra of an algebraic group H de�ned over a
�eld K, is the tangent space of H at the identity element 1H . Now let G and
Ω be as above. Consider an element g ∈ G\ad(Ω). Let R be an Ω-algebra.
Denote the image of g under the map G\ad(Ω) → G\ad(R) to be gR. Then
we get a morphism of groups G/Ω(R) → G/Ω(R), which is conjugation by
gR. This is functorial, and hence g induces a morphism of algebraic groups
G/Ω → G/Ω. This induces a morphism of Lie-algebras Lie(G/Ω)→ Lie(G/Ω).
As Lie(G/Ω) = g ⊗ Ω, so we get an element of Aut(g ⊗ Ω). Thus we have
de�ned the adjoint map for this action

Ad : G\ad(Ω)→ Aut(g⊗ Ω)

Now consider a Ql-algebraic representation (G/Ql , ξ
′, N) of ′WF , for some

prime number l. For a �xed l we say that this representation is de�ned over
Q modulo the action of G\ad, if for every algebraically closed �eld Ω ⊃ Ql,
the base extension of (G/Ql , ξ

′, N) to Ω is conjugate under G\ad(Ω) to all
its images under AutQ(Ω). More precisely this means that for every σ ∈
AutQ(Ω), there exists a g ∈ G\ad(Ω) such that

σξ′Ω = g · ξ′Ω · g−1 and σ(N ⊗Ql 1) = Ad(g)(N ⊗Ql 1) (5.4)

For any two prime numbers l1 and l2, we say that two representations
(G/Qli , ξ

′
i, N) (for i = 1, 2) are compatible modulo the action of G\ad if for

every algebraically closed �eld Ω ⊃ Ql1 ,Ql2 , there exists some g ∈ G\ad(Ω)
such that

ξ′1/Ω = g · ξ′2/Ω · g−1 and N1 ⊗Ql1 1 = Ad(g)(N2 ⊗Ql2 1) ∈ g⊗ Ω. (5.5)

If the above relations holds for all prime numbers l di�erent from the resid-
ual characteristic of F , then we say that they form a compatible system of
representation modulo the action of G\ad.
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5.5 `-independence in the semi-stable reduc-

tion case

For an algebraic variety X de�ned over a �eld F , we will often denote
X̄ to be its base extension to a �xed algebraic closure of F . We begin this
section by recalling some results on the traces of l-adic Galois representations.

Proposition 5.5.1. Let F be a complete discretely valued �eld with a �nite
residue �eld of characteristic p > 0. DenoteWF the Weil group of F . Assume
that either:

1. X is a proper smooth surface over F or

2. X is a smooth complete intersection variety over F

Then for any positive integer i and any w ∈ WF , Tr
(
w∗;H i

et

(
X̄,Ql

))
is a

rational integer which is independent of the choice of the prime number l 6= p.

Proof. [Och99, 2.4,2.5].

Corollary 5.5.2. If w,F and X are as in the proposition then the char-
acteristic polynomial det

(
1− w∗T ;H i

et

(
X̄,Ql

))
has coe�cients in Q and is

independent of l.

Proof. Let α1, · · ·αm be the eigenvalues of ρ(w). As w was chosen arbitrarily
in the Weil group WF in the proposition, βf = Tr((wf )∗T ;H i

et(X̄,Ql)) is in

Q and is independent of l, for every positive integer f . But βf =
m∑
s=1

αfs .

Now let

p(T ) := det(1− w∗T ;H i
et(X̄,Ql)) =

m∑
r=0

(−1)rarT
m−r

We know that the coe�cients ar are given by elementary symmetric polyno-
mials in α1, · · · , αm. Thus, by the Newton identities, ar and the power sums
βf are related by the following recursion :

β1 = a1

βf =

f∑
r=1

(−1)r−1arβf−r + (−1)f−1faf

Thus it follows that the coe�cients ar in the characteristic polynomial p(T )
are in Q and are independent of l, since the same holds for βf .
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Remark 5.5.3. If X is an abelian variety over the �eld F , then we have
a classical result that det

(
1− w∗T ;H i

et

(
X̄,Ql

))
has coe�cients in Q and is

independent of l. See for example [Sai03, 3.5,0.4].

Let A be a henselian discrete valuation ring with �eld of fractions F .
Denote S := SpecA. Let s (resp. η) be the closed point (resp. generic point)
of S.

De�nition 5.5.4. We say a scheme X over S has semi-stable reduction if
locally for etale topology on X and S, X is isomorphic to Spec A[T1,...,Tn]

(T1...Tr−π)
for

some r ≥ 0, and π being an uniformizing parameter.

More precisely this means that if for every point of X there exists an
etale neighbourhood U , such that U is isomorphic to Spec Ã[T1,··· ,Tn]

T1···Tr−π , for some

etale extension Ã of A. This condition is equivalent to the condition that X
is regular, the generic �ber of X is smooth, and the closed �ber of X is a
reduced divisor with normal crossings on X (see [Ill94]).

There are some important remarks about semi-stable reduction, that we
note here

Remark 5.5.5. (i) In the case of an abelian variety X/F , the usual def-
inition for semi-stable reduction, found in literature is the following :
Let G/S be the Néron minimum model of X and let Gs denote its
closed �bre. Then the abelian variety X has semi-stable reduction if
the identity component G◦s of Gs is a semi-abelian variety. Here semi-
abelian variety means an extension of an abelian variety by a torus. In
this report we will say that such an abelian variety has semi-abelian
reduction.

(ii) If the abelian variety X has a semi-abelian reduction then by [Kün98,
4.6], it follows that after a �nite extension of the base �eld, it also has
semi-stable reduction in the sense of the de�nition 5.5.4.

(iii) The semi-stable reduction theorem of Grothendieck implies that any
abelian variety X as above, has potential semi-abelian reduction. See
[GRO72, IX,3.6] or [BLR90, �7.4,1].

(iv) If X is an abelian variety then the condition of semi-abelian reduc-
tion is equivalent to the fact that the action of the inertia subgroup
of Gal(F̄ /F ) on the Tate module Tl(X) is unipotent. See [GRO72,
IX,3.5,3.8].

Proposition 5.5.6. Let A be a henselian discrete valuation ring with F
as �eld of fractions. Let F̄ be an algebraic closure F and X → SpecA be

61



a scheme having semi-stable reduction. Then for any prime number l, the
action of the inertia group of Gal(F̄ /F ) on the vector space H i

et(XF̄ ,Ql) is
unipotent.

Proof. See [Ill94, 3.3] and [RZ82]

Remark 5.5.7. It follows from this proposition and the above remarks (in
particular iv) that, if X is an abelian variety then semi-stable reduction
implies semi-abelian reduction.

Now we look at the case of algebraic varieties de�ned over number �elds.
Let F be a number �eld embeddable in C. We �x an embedding τ : F ↪→ C.
Let F̄ be a �xed algebraic closure of F . Fix a valuation v of F and a
valuation v̄ of F̄ extending v. Let Fv be the completion of F at v and F̄v̄
be the completion of F̄ at v̄. Then F̄v̄ is an algebraic closure of Fv. Let Ov
be the ring of integers of Fv. To say that a scheme X/F has semi-stable
reduction at v means that the scheme X ×F Fv has semi-stable reduction
over Ov. Fix an embedding F̄ ↪→ F̄v̄, then we have the following important
isomorphism

H i
et(X/F̄ ,Ql) ∼= H i

et(X/F̄v̄ ,Ql).

For the rest of this section we �x an arithmetic Frobeinus element Φv inWv ⊂
Gal(F̄v̄/Fv) ∼= Dv̄ ⊂ Gal(F̄ /F ), where Wv is the Weil group of Gal(F̄v̄/Fv).
Denote ′Wv to be the Weil-Deligne group of Fv.

For any absolute Hodge motiveM ∈ ObMF , we denote GM its Mumford-
Tate group w.r.t. the embedding τ (see chapter 1). This data de�nes, as in
section 5.2, a Ql-algebraic representation (GM/Ql , ρ

′
M,l, N

′
M,l) of ′Wv corre-

sponding to the canonical l-adic Galois representation ρM,l : Wv → GM(Ql)
of M . The homomorphism ρ′M,l is given as

ρ′M,l(w) = ρl(w)exp(−N ′M,ltl(Φv
−α(w)w)) (5.6)

In what follows we shall always assume that the Mumford-Tate group GM is
connected. Note that this can be always achieved for motives inMav

F after
a �nite extension of the base �eld F (1.3.17).
All algebraic varieties X/F are assumed to be smooth and projective, and
such that the absolute Hodge motive h(X) ∈ Ob(Mav

F ). Thus, as in the
main theorem 4.2.6 of chapter 4, X could be a curve, an abelian variety, an
unirational variety of dimension ≤ 3, a K3-surface, or any product of such
varieties. Then we have the following result.

Theorem 5.5.8. Let M be the absolute Hodge motive hi(X) ∈ ObMav
F , then

there exists a �nite extension F ′ of F and a valuation v′ extending v such
that

62



(i) for every l 6= p, the representation (GM/Ql , ρ
′
M,l, N

′
M,l) of

′Wv′ is de�ned

over Q modulo the action G\ad
M and

(ii) for l running through the primes di�erent from p, these representations
form a compatible system of representations of ′Wv′ modulo the action
of G\ad

M .

Remark 5.5.9. 1. Since we assumed GM to be connected, we have GM =
GMF ′

for any �nite extension F ′ of F . By abuse of notation, we denote
the map ρ′M,l to be the restriction of Wv → GM(Ql) to the subgroup
Wv′ . Strictly speaking we should denote it by ρ′MF ′ ,l

. By proposition
5.1.4 monodromy opertor is unchanged by base extension.

2. The theorem is known for tractable abelian varieties, see [Noo10, 7.1].

Proof of theorem 5.5.8. Let B and C be as before in the proof of theorem
4.2.1, i.e B is a tractable abelian variety providing a weak Mumford-Tate lift
of the abelian motiveM , while C is a abelian variety of CM type, both de�ned
over a �nite extension of F . The relation (4.3) still holds in this situation
after appropriate �nite base extension. By preceding remarks we know that
the theorem holds for B after some �nite base extension. The theorem also
holds for C (by theorem 4.2.6) as it has potential good reduction. Let F ′

be a �nite extension of F such that both B and C verify the statement of
the theorem over F ′. Let v′ be an extension of the valuation v to F ′. By
taking F ′ su�ciently large and using theorem 5.1.2 (or 5.5.5(iv)), we can also
suppose that for any prime number l 6= p, the representations ρB,l and ρB×C,l
are unipotent on the inertia subgroup Iv′ of Gal(F̄ /F ′).

Denote the Weil-group of F ′ by Wv′ . Then we have a map α′ : WF ′ → Z
as in diagram (5.2). We also have a new arithmetic Frobenius for this ex-
tension Φv′ = Φd

v, where d is the residual degree of the extension F ′/F . By
proposition 5.1.4 the monodromy operators are unchanged. We denote the
restriction ρ∗,l|Wv′

again by ρ∗,l (for ∗ = B,C,B × C orM). The equation

(5.6) now reads as ρ′∗,l(w) = ρ∗,l(w)exp(N ′∗/ltl(Φ
−α′(w)
v′ w)) for any w in Wv′ .

Thus, ρ′∗,l is same as the restriction ρ′∗,l|Wv′

The lemma 4.2.3 holds here too. We follow the notations there. Let gB,
gC , gB×C and gM be the Lie-algebras of the Mumford-Tate groups GB, GC ,
GB×C and GM respectively. Let N ′B×C,l , N

′
B,l be the monodromy operators

corresponding to B×C and B respectively. Since C now has good reduction,
the inertia subgroup acts trivially on the l-adic cohomology H1

et(C/F̄ ,Ql).
Thus the monodromy operator corresponding to the motive h1(C) is trivial.
Recall we have the inclusion of Mumford-Tate groups GB×C ↪→ GB × GC .
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Since GC is commutative this implies that G\ad
B×C
∼= G\ad

B .

Now �x a prime number l 6= p. Note that as ρB×C,l is unipotent on the
inertia subgroup, thus from its de�nition, ρ′B×C,l is trivial on the inertia sub-
group Iv′ . From (5.2) we haveWv′/Iv′ ' Z, and Φv′ is a generator of Wv′/Iv′ .
This means that it su�ces to verify the �rst equality of the equation (5.4)
(as well as 5.5) on ρ′B×C,l/Ω, at the arithmetic Frobenius Φv′ ∈ Wv′ .

Since ρB×C,l = (ρB,l, ρC,l), by theorem 5.1.2 we get that

exp(N ′B×C,l) = (exp(N ′B,l), 1).

Let i be the inclusion of l-adic Lie groups i : GB×C(Ql) ↪→ (GB×GC)(Ql)
and let Lie(i) : gB×C⊗Ql ↪→ (gB⊕gC)⊗Ql be the corresponding map on Lie
algebras. As i◦exp = exp◦Lie(i), we get that N ′B×C,l = (N ′B, 0) ∈ gB×C⊗Ql.
It is now obvious from the fact that the theorem holds for B and C, that it
is also true for B × C.

Next we shall show that this implies that the theorem also holds for the
abelian motive M after base extension to F ′.

By theorem 5.1.2 we may suppose that ρM,l is unipotent on the inertia
subgroup. Thus, as before it su�ces to verify the �rst equality of the equation
(5.4) (as well as 5.5) on ρ′M,l/Ω, at the arithmetic Frobenius Φv′ ∈ Wv′ .

Now let Ω ⊃ Ql be an algebraically closed �eld. We want to show that
(GM/Ql , ρ

′
M,l, N

′
M,l) is de�ned over Q. Fix an automorphism σ ∈ AutQ(Ω)

and let gσ ∈ G\ad
B×C(Ω) be such that equation (5.4) holds true for B × C.

Thus,

σρ′B×C,l/Ω = gσ ·ρ′B×C,l/Ω ·g−1
σ and σ(N ′B×C,l⊗Ql 1) = Ad(gσ)(N ′B×C,l⊗Ql 1)

(5.7)
As θ ◦ ρB×C/l = ρM,l, we get ρ′M,l/Ω(Φv′) = θ(ρ′B×C,l/Ω(Φv′)). This gives us

σ(ρ′M,l/Ω(Φv′)) = θ(gσ · ρ′B×C/l(Φv′) · g−1
σ ), (5.8)

where σ and gσ are as in (5.7).
As B is a weak Mumford-Tate lift of M , we have Gad

B×C
∼= Gad

B
∼= Gad

M

(chapter 3,�2). This implies that

G\ad := G\ad
B×C = G\ad

B = G\ad
M

and θ : GB×C → GM is equivariant for the conjugation action of G\ad. In
other words we have the following commutative diagram

64



G\ad ×GB×C/Q̄
//

id×θ
��

GB×C/Q̄

θ

��
G\ad ×GM/Q̄

// GM/Q̄

(5.9)

Thus using (5.8) we get

σ(ρ′M,l(Φv′)) = gσ · θ(ρ′B×C/l(Φv′)) · g−1
σ = gσ · (ρ′M,l/Ω(Φv′)) · g−1

σ .

This establishes the �rst equality of equation 5.4 for the abelian motive M
after base extension to F ′.

Now using theorem 5.1.2 again, we get that

θ(exp(N ′B×C,l)) = exp(N ′M,l).

Let Lie(θ) : gB×C ⊗Ql → gM ⊗Ql be the map of Lie-algebras induced by θ.
As θ ◦ exp = exp ◦ Lie(θ), we deduce that Lie(θ) maps N ′B×C,l to N

′
M,l. We

also have the following isomorphisms of Lie algebras

Lie
(
Gss
B×C

)
= Lie

(
Gad
B×C

) ∼= Lie
(
Gad
M

) ∼= Lie (Gss
M) .

The �rst equality follows from the fact that Gss
B×C → Gad

B×C is a �nite map.
Similarly the third equality. The second equality comes from the fact that
Gad
B×C

∼= Gad
M . The action of G\ad on the Lie-algebras �ts in the following

commutative diagram

G\ad(Ω)× gssB×C ⊗ Ω //

'
��

gssB×C ⊗ Ω

'
��

G\ad(Ω)× gM ⊗ Ω // gM ⊗ Ω

(5.10)

The isomorphism gB×C ⊗ Ω ∼= gM ⊗ Ω maps N ′B×C,l ⊗Ql 1 to N ′M,l ⊗Ql 1.
Now let σ and gσ be as before. From equation (5.7) and the commutativity
of the preceding diagram, we get

σ(N ′M,l ⊗Ql 1) = Ad(gσ)(N ′M,l ⊗Ql 1)

Thus we have veri�ed the equalities of (5.4) for M after base extension to
F ′ for any σ ∈ AutQ(Ω). In other words, for a �xed l the representation
(GM/Ql , ρ

′
M,l, N

′
M,l) of Wv′ is de�ned over Q.

By same arguments, using the diagrams above and the fact that equation
(5.5) holds for B × C one shows that for varying l, the (GM/Ql , ρ

′
M,l, N

′
M,l)

forms a compatible system of representations of the Weil-Deligne group ′Wv′

of F ′v′ .

65



Under some additional hypothesis the above theorem can be sharpened
to give result over the base �eld F itself, for certain algebraic varieties.

Theorem 5.5.10. Let X/F be either an abelian variety, a K3 surface, a
Fermat hypersurface or a curve, with semi-stable reduction at v. Let M
denote the absolute Hodge motive hi(X) ∈ ObMav

F . Suppose that for some
prime number l, the image ρ′M,l(Φv) is weakly neat. Then

(i) for every l 6= p, the representation (GM/Ql , ρ
′
M,l, N

′
M,l) of

′Wv is de�ned

over Q modulo the action of G\ad
M and

(ii) for l running through primes di�erent from p, these representations
form a compatible system of representations of ′Wv modulo the action
of G\ad

M .

Remark 5.5.11. 1. If X has good reduction at v then the monodromy
N ′M,l is trivial, as the inertia subgroup acts trivially on the l-adic coho-
mology groups H i

et(X/F̄ ,Ql). In this case the theorem reduces to the
main result of chapter 4, theorem 4.2.6.

2. In the case where X is an abelian variety, semi-abelian reduction is
su�cient to guarantee the theorem. See [Noo10, 3.5]

3. The condition that ρ′M,l(Φv) is weakly neat is independent of the choice
of l.

Proof of 5.5.10. First we note that since X has semistable reduction at v
and as

H i
et(X/F̄ ,Ql) ∼= H i

et(X/F̄v̄ ,Ql),

proposition 5.5.6 implies that ρ′M,l is trivial on the inertia subgroup. Thus
as before, it su�ces to verify the �rst equality of (5.4) (as well as of (5.5))
on ρ′M,l/Ω(Φv).

Let F ′ be a �nite extension of F and v′ be the extension of v to F ′ as
obtained in theorem 5.5.8. By passing to F ′, we have Φv′ = Φd

v, where d is
the residual degree of the extension F ′v′/Fv. This implies that

ρ′M,l(Φv′) = ρ′M,l(Φ
d
v).

The monodromy operator N ′M,l is unchanged by base extension.

Fix a prime number l 6= p. We want to show that the representation
(GM/Ql , ρ

′
M,l, N

′
M,l) of

′Wv is de�ned over Q. Let Ω ⊃ Ql be an algebraically
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closed �eld and σ ∈ AutQ(Ω) be an automorphism. Then the theorem 5.5.8
gives us a gσ ∈ G\ad

M (Ω) such that equation (5.4) holds over F ′ i.e.

σ(ρ′M,l/Ω(Φd
v)) = gσ · (ρ′M,l/Ω(Φd

v)) · g−1
σ and

σ(N ′M,l ⊗Ql 1) = Ad(gσ)(N ′M,l ⊗Ql 1).

So we have (σ(ρ′M,l/Ω(Φv)))
d = (gσ · (ρ′M,l/Ω(Φv)) · g−1

σ )d. By our hy-
pothesis ρ′M,l/Ω(Φv) is weakly neat. So if we prove that σ(ρ′M,l/Ω(Φv)) and
gσ · (ρ′M,l/Ω(Φv)) · g−1

σ have same the characteristic polynomial, then we can
use proposition 3.3.4 to conclude that σ(ρ′M,l/Ω(Φv)) = gσ · (ρ′M,l/Ω(Φv)) · g−1

σ .
Since we already have σ(N ′M,l ⊗Ql 1) = Ad(gσ)(N ′M,l ⊗Ql 1), it would follow
that the representation (GM/Ql , ρ

′
M,l, N

′
M,l) of

′Wv is de�ned over Q.
We begin by noting that gσ ·ρ′M,l/Ω(Φv) ·g−1

σ and ρ′M,l/Ω(Φv) are conjugate
under the action of G\ad and so by proposition 3.2.1 they have same charac-
teristic polynomial. Let B be an ordered basis of the Q-vector space Hτ (M)
and let BQl denote the corresponding basis of

Vl := Hτ (M)⊗Ql.

If (aij) is the matrix of the transformation ρ′M,l(Φv) : Vl → Vl in the ordered
basis BQl , then

σ(ρ′M,l/Ω(Φv)) : Vl ⊗Ql Ω→ Vl ⊗Ql Ω

is the linear transformation whose matrix in the basis BΩ is (σ(aij)). Us-
ing corollary 5.5.2 and remark 5.5.3, we conclude that σ(ρ′M,l/Ω(Φv)) and
ρ′M,l/Ω(Φv) have the same characteristic polynomial with coe�cients in Q.
Thus σ(ρ′M,l/Ω(Φv)) and gσ ·ρ′M,l/Ω(Φv) · g−1

σ also have the same characteristic
polynomial. This implies that

σ(ρ′M,l/Ω(Φv)) = gσ · ρ′M,l/Ω(Φv) · g−1
σ .

Thus, we have shown assertion (i) of the theorem.

Finally we want to show that for varying l the representations

(GM/Ql , ρ
′
M,l, N

′
M,l)

of Wv form a compatible system. For this, let l and l′ be two di�erent primes
and Ω an algebraically closed �eld containing both Ql and Ql′ . Then by
theorem 5.5.8 we know that there exists a g ∈ G\ad(Ω), such that

ρ′M,l/Ω(Φd
v) = g · ρ′M,l′/Ω(Φd

v) · g−1 and (5.11)
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N ′M,l ⊗Ql 1 = Ad(g)(N ′M,l′ ⊗Ql′ 1).

As the mondoromy operators are unchanged by base extensions thus we
just need to verify the �rst equality of equation (5.5). By using corollary
5.5.2 and remark 5.5.3 we know that ρ′M,l/Ω(Φv) and ρ′M,l′/Ω(Φv) have same
characteristic polynomial with coe�cients in Q and it is independent of the
choice of l or l′. As ρ′M,l/Ω(Φv) and ρ′M,l′/Ω(Φv) are weakly neat, by proposition
3.3.4 and equation (5.11) we conclude that

ρ′M,l/Ω(Φv) = g · ρ′M,l′/Ω(Φv) · g−1.

This establishes assertion (ii) of the theorem.
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