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A few words

This thesis is about three years happily spent playing with graphs, walking absentmindedly in cor-

ridors or standing in front a whiteboard, while whistling or listening to music. It contains results

obtained with several coauthors, as well as many of the elegant and more classical results I met

reading books or papers, which to my sense gave a wider understanding of the problems presented.

It has for background the laboratory of the MASCOTTE team set up by Jean-Claude Bermond and

now headed by David Coudert, its offices whose doors open on whiteboards covered with neat and

well-thought formulas – or hasty drawings depending on the character of the inhabitants – and its

collection of open problems on which all of us have once tried our luck.

I owe the time I spent on graph coloring to my advisor Frédéric Havet, on problems of hypergraphs

to Jean-Claude Bermond, and the mixture of flows, graph decompositions and linear programming

that helped me all along is definitely MASCOTTE’s own tune.

I have met in Sophia-Antipolis and elsewhere quantity of people who never hesitated to sit down

and think whenever a question was asked, for the sheer pleasure of doing so. I thank them all whole-

heartedly, and in particular Stephane Perennes who, unbeknownst to him, probably taught me all I

know of graphs today by mixing together in the same sentences the most remote notions, legitimately

“confusing” one word with another, leaving to me to notice days later that “indeed, in this context

replacing the natural notion with this apprently unrelated one was the best way to look at the problem

at hand”.

Because I regularly contributed to the math software Sage [145] during the last two years, I also

found a place inside of a much wider family of mathematicians, sticking together for their interest in

translating into algorithms the words of mathematical theory. It probably would have taken me much

longer, if not for them, to notice how deeply mathematics is an experimental science, and I can but

wonder at how much I would have missed if not for those nights spent implementing, fixing, testing

and rewriting many of the most elementary algorithms graph theory has to offer, and that I wrongly

assumed I had understood before explaining them to a computer. My fellow Sage developpers I want

to thank for their energy, for their infinite enthusiasm, for the discussions at any time of day or night

thanks the timezones they cover, and for constantly daring me to work on the whole spectrum of

mathematics at the same time.

Hence, I am largely indebted to my coauthors from here and abroad, and to all of the genuinely

curious people I have had the pleasure to work with along the years. Let me also thank Jørgen Bang-

Jensen, Daniel Kràl and András Sebő who kindly accepted to read this manuscript as well as Stéphane

Bessy, Victor Chepoi, and Ioan Todinca who were in my jury.

Oh. And because I never miss an occasion to advertise good books – especially when it is out

of place – let me mention many names that were always around during those three years of graphs

and music : Alessandro Barricco, Carlos Castaneda, Michel Foucault, Allen Ginsberg, Hermann
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Hesse, Jack Kerouac, Milan Kundera, Robert Pirsig, Henry-David Thoreau (Walden), Oscar Wilde,

and Stefan Zweig. Just yesterday I finished “The Island” from Aldous Huxley, which was a fantasic

read too.

I can find no words for my mother, who by now is aware that the largest part of everything I do

she taught me herself.

Nathann
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Pretty conjectures

On this page are presented four conjectures which, along with many unsolved others represent the

largest part of the time I spent working during those three years of Ph.D.

Though these do not appear in the following pages, open questions are in many respects much

more interesting that known results. As they taught me much and are, after all, probably the best of

what I learned during all these years, it would have been terribly ungrateful not to give them some

space in this document.

Chvátal’s conjecture

This conjecture first appeared in 1974 in an article from Vašek Chvátal [48].

Given a hereditary Set System, i.e. a family of sets F ⊆ 2X such that ∀S ∈ F any subset of

S is also an element of F , one obtains an intersecting family (i.e. a family I ⊆ F such that any

two elements of I intersect) by picking an element x ∈ X and considering the family Fx of all the

elements of F containing x.

Is max
x∈X

|Fx| the maximum size of an intesecting family in F ?

The Cacetta-Häggkvist conjecture

This conjecture is from 1978, and first appears in [42] from Caccetta and Häggkvist.

Given a directed graph D on n vertices such that any vertex of D as has at least n/3 outneighbors,

does D always contain a directed triangle (a circuit of size 3) ?

The Union-Closed Sets Conjecture

This conjecture is from Frankl, who in [81] wrote it had first been formulated in 1979.

Given a union-closed set system, i.e. a family of sets F ⊆ 2X such that ∀S1, S2 ∈ F the union

S1 ∪ S2 is also an element of F , does there always exist an element x ∈ X such that x appears in at

least one half of the elements of F ?

The Erdős-Hajnal conjecture

This conjecture is the most recent of all those, having been first published in 1989 by Paul Erdős and

András Hajnal [71].

Given a graph H and the family of graphs G such that no G ∈ G contains an induced subgraph

isomorphic to H , does there exists a constant cH > 0 such that the elements of G contain either a

maximum independent set of size Θ(ncH ) or a maximum clique of size Θ(ncH ) ?

Equivalently, given a family of graphs G such that ∀c > 0 both the maximum clique and maximum

independent set are negligible compared to nc, does any graph H appear as an induced subgraph of

some element of G ?
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Chapter 0

Coloring-oriented introduction to Graph

Theory

In this thesis we will talk about graphs, and graphs are according to the level of abstraction one likes

either representations of binary relations, or drawings of dots linked by lines.

They can be used as an abstraction of computer networks, or to describe data structures, and

from the very different fields in which they have been reinvented they were enriched with a plethora

of optimization and existence problems which gives to their simple structure the depth that could

convince somebody to study the object itself. This thesis is the result of the fact that under the layers

of applications, the different interpretations of the object, the sometimes heavy formalism and the

existing knowledge in graph theory that often blocks the view, there remains a pretty combinatorial

structure definitely worth studying.

On the formal side, we will stick to the usual definition of graphs, directed graphs, vertices and

edges as presented in most textbooks (Berge [25], Diestel [62], Bondy and Murty [34], . . . ), and

attempt to define on the way any notion that may not be standard. The following pages undoubtedly

suppose a basic understanding of the elementary results of Graph Theory or of Linear Programming,

and any time spent implementing the classical algorithms or actually computing optimal solution to

hard graph optimization problems would probably enlighten many of the remarks they contain.

From the necessary theoretical background, no result is to be used as systematically as Hall’s

Theorem.

Theorem (Hall). Let G be a bipartite graph with vertex classes A and B. There exists a matching

(set of disjoint edges) in G spanning A if and only if

∀S ⊆ A, |N(S)| ≥ |S|

As a byproduct, a regular bipartite graphs always admits a perfect matching (i.e. a matching spanning

all of its vertices).

This theorem can be seen to appear everywhere in combinatorics, which should come as no sur-

prise given that it actually characterizes the existence of an injective function f : A 7→ B (bijective

when |A| = |B|) satisfying a set of constraints of the type f(a1) ∈ N(a1), f(a2) ∈ N(a2), . . . .

11



12 CHAPTER 0. COLORING-ORIENTED INTRODUCTION TO GRAPH THEORY

Such a function exists unless the set of constraints imply that there should exist an injective func-

tion from a set SA ⊆ A to a set SB ⊆ B of strictly smaller size – which is naturally impossible. Such

a wide expressivity is often the key to many beautiful proofs and algorithms.

Of equal importance, dispite being formally stronger (it implies Hall’s theorem) is Menger’s the-

orem on the duality between maximum flow and minimum cut.

Theorem (Menger). Given a graph (or a digraph D) containing two vertices s and t, the maximum

value of a flow from s to t is equal to the minimum size of a set of edges (or arcs) intersecting all the

paths from s to t.

These results are especially powerful in the fact that they offer at the same time a feasible solution

and a certificate of optimality. By Hall’s theorem one can exhibit a matching in a given bipartite graph

G and the proof that no larger matching exists given by a blocking set. Through Menger’s theorem

one can obtain both a flow of value k and a set of k edges disconnecting s and t, as well as the proof

that no flow of larger value exists by giving a list of k edges disconnecting s from t.

As dangerous as it can be to hold a conjecture for true while thinking of unsolved problems, this

property is acknowledged to be characteristic of polynomial computational problems (until a proof

of that conjecture can finally be found). Indeed, problems for which solutions can be encoded and

checked polynomially (the problems of the complexity class NP ) and those whose certificates of

infeasibility have the same property (the problems of the complexity class coNP ) are conjectured to

intersect precisely on computationally easy problems.

Conjecture. P = NP ∩ coNP

Hall’s and Menger’s theorems assert the existence of certificates of infeasibility for the Maximum

Bipartite Matching problem and the Maximum Flow problem, the two of them being solvable in

polynomial time as expected by the previous conjecture.

Much of what follows can be traced back to one of these two theorems, or to the conjecture

P = NP ∩ coNP .

0.1 Several graphs we will need

Much better than defining the object is a list of examples. Among the 2(
n
2) different labeled graphs

and the roughly equal number of (connected) unlabeled graphs that can be defined on n vertices, graph

theoreticians have grouped many into classes for their common properties.

More is actually true : the different graph classes defined – ISGCI[39] lists more than 1200 – are

of interest both for their properties and for the questions they reveal. On planar graphs (see p.31),

one can define faces and duals, and become interested in properties of a graph that could be traced

to its dual (for instance Tait colorings – see Theorem 26 in [104]), and eventually try to generalize

them on graphs of higher genus or through matroids. Chordal graphs, though very similar to trees,

can be studied with dynamic programming and tree-width in mind. Depending on how lose one likes

to be with definitions, one could also claim that random graphs are an independent class of their own

: they are a family of graphs – or rather a way to think about them – with its own problems, questions,

existence results. From time to time, studies can go so far toward one class of graphs that the results
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obtained on them create a new independent theory (see for example Bollobas [31] for random graphs,

or Mohar and Thomassen [119] for graphs on surfaces).

As an illustration, we now define two kinds of graphs that will be of use later in this thesis.

Random Graphs

The most common instances of random graphs are the Gn
p , or Erdős-Rényi graphs. With n an integer,

and 0 ≤ p ≤ 1, one can build a random graph of type Gn
p by adding independently between each

of the
(
n
2

)
available pairs of vertices an edge with a probability p. As any graph H can be obtained

through this process with probability p|E(H)|(1 − p)(
n
2)−|E(H)| (which equals 1/2(

n
2) when p = 1

2 )

random graph theory is essentially concerned about properties holding “almost surely” when p is a

function depending on n.

These graphs can boast of many properties. Among others, let us say that for a fixed p ∈]0, 1[ the

minimum cut of a graph Gn
p is almost surely the neighborhood of a vertex, or that any graph H is an

induced subgraph of Gn
p with probability 1 when n → ∞. Besides, their clique number (the maximum

size of a complete subgraph) ω(Gn
p ) and independent set α(Gn

p ) verify ω(Gn
p ), α(Gn

p ) = Θ(log(n))
for fixed p, as “implied” by the Erdős-Hajnal conjecture.

Through random graphs have been obtained surprising results of existence (see 0.2.1) – sometimes

with embarrassing ease – when deterministic methods had failed beforehand.

Kneser’s Graphs

Kneser’s graphs can be seen as a generalization of Petersen’s graph. They are also highly symmetric

(arc-transitive) graphs with various regularity properties, and are defined by two integer parameters n
and k.

Kneser’s graph Kn
k is the graph built on the

(
n
k

)
subsets of size k of [n], two of them being adjacent

when they are disjoint. For this reason, one often sees the additional constraint 2k ≤ n, without which

Kn
k has no edges.

Petersen’s graph is isomorphic to K5
2 .

0.2 Graph Coloring

This section will revolve around the notion of proper coloring, and use it as an excuse to present

several proof methods.

As one of the most basic graph-theoretic notion, the first strength of graph coloring is generality.

Many problems often lead to, or can be rephrased, as coloring problems, and any knowledge related

to this area is bound to have a wide range of (at least theoretical) applications.

Its most usual definition – which is probably the least natural – is the following : a proper coloring

of a graph G is a function c : V (G) 7→ {1, 2, . . . } such that c(u) 6= c(v) whenever u and v are

adjacent.

Of course, to any finite graph one can associate such a function by assigning to each vertex an

exclusive number. When dealing with coloring problems, one is usually interested in knowing the
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Figure 1: Petersen’s graph as one of Kneser’s graphs

least value k such that c(v) ≤ k for any vertex. This number is called the chromatic number of G,

written χ(G).

This definition of graph coloring – or of the parameter χ – can be rephrased in several different

ways :

• χ(G) is the smallest cardinality of a partition of V (G) into independent sets (i.e. sets of pairwise

non-adjacent vertices).

• χ(G) is the smallest integer k such that G can be written as (a subgraph of) a k-partite graph.

• χ(G) is the smallest integer k such that there exists a homomorphism from G to Kk, the com-

plete graph on k elements.

• Let (A,B) denote, for A ⊔ B = V (G), the set of edges between A and B. Then the smallest

number k such that the edges of G can be written as (A1, B1) ∪ · · · ∪ (Ak, Bk) is equal to

⌈log2(χ(G))⌉.

To some extent, the following results could be admitted as alternative definition of χ : even though

they appeared later, they both make this parameter appear as the solution of an elementary graph

problem.

• The Hasse-Gallai-Roy-Vitaver theorem ([97, 83, 138, 151]) : χ(G) is the smallest integer k
such that there exist an orientation of G whose longest directed path has k vertices.

• The Erdös-Stone theorem[72] : for any non-bipartite graph H , the maximum density of a H-

free1 graph is
(
χ(H)− 2

χ(H)− 1
+ o(1)

)(
n

2

)

1A graph is H-free if it does not contain H as a subgraph
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Graph coloring is a very elastic notion in many ways. If the very definition has several inter-

pretations, there also exists many paths, many modelings, which lead from a graph or combinatorial

problem to graph coloring. It is a good direction to head for whenever one is looking for a “partition

of a set into well-behaved sets” – some modeling may then be sufficient to find an equivalent coloring

problem.

Here is an illustration of coloring problems converging toward Baranyai’s wonderful theorem (see,

for example, Jukna’s book on extremal combinatorics [107]):

Theorem. Let X be a set of cardinality n. If k divides n, then the set
(
X
k

)
of all k-subsets of X can

be partitioned into partitions of X .

Theorem. Let X be a set of cardinality n. If there exists integers α1, α2, d such that

n = α1k1 + α2k2 and dα1k1 =

(
n

k1

)

and dα2k2 =

(
n

k2

)

then the set
(
X
k1

)
∪
(
X
k2

)
can be partitioned into d partitions of X , each of which contains α1 k2-subsets

and α2 k2-subsets.

Baranyai’s theorem is actually a powerful generalization of these results, going further into the

same direction.

Theorem. Let X be a set of cardinality n, integers k1, . . . , kr and (ai,j) 1≤i≤r
1≤j≤s

such that

∀i,
∑

1≤j≤s

ai,j =

(
n

ki

)

and ∀j,
∑

1≤i≤r

ai,j = n

Then the set
(
X
k1

)
∪· · ·∪

(
X
kr

)
can be partitioned into partitions of X such that the jth partition contains

ai,j sets of cardinality ki.

This theorem can be rephrased as a coloring problem by very simple means : defining a graph

G whose vertices are the elements of
(
X
k1

)
∪ · · · ∪

(
X
kr

)
, two of which being adjacent whenever their

intersection is nonempty. In such a graph, an independent set corresponds to a family of pairwise non-

intersecting sets – note that it is not necessarily a partition of X , as some elements of X could not be

covered. Hopefully, missing vertices will probably mean using more classes in the long run. Partition-

ing
(
X
k1

)
∪ · · ·∪

(
X
kr

)
into partitions of X is possible if and only if χ(G) = 1

n

(

k1
(
n
k1

)
+ · · ·+ kr

(
n
kr

))

(which ensures that each independent set of a the coloring covers precisely n vertices).

This very pleasant expressivity naturally motivates research in graph coloring, at first following

the other problems being reduced to coloring, and then ... for itself !

0.2.1 χ(G) seen from other parameters

The computation of χ(G) is one of the earliest NP-Hard problems. Besides being hard to compute,

the chromatic number of a graph is also hard to approximate by less than a O(n1−ǫ) factor unless

P = NP [159]. Together with the conjecture P = NP ∩ coNP (see p.12) we are led to think that
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there exists no polynomial certificate – no graph decomposition, no nice characterization2 – giving a

polynomially close idea of the value of χ(G) ; that there is, in fact, no polynomial algorithm able to

produce a k coloring of a graph G or to certify that χ(G) > k1−ǫ, i.e. “almost” a proof of infeasibility.

By itself, hardness to approximate χ also means that any graph parameter that can be polynomially

computed would at times be polynomially far from χ.

Without supposing the truth of any complexity-related conjecture, let us look at some graph pa-

rameters and see how they relate to χ.

Maximum degree ∆(G)

The maximum degree ∆(G) of a graph is actually a natural bound for the chromatic number, and one

can obtain a proper coloring of a graph G using at most ∆(G)+1 colors by using the greedy coloring

algorithm.

Greedy coloring algorithm

Iterate over the vertices of G, and assign to a vertex v the smallest positive integer which is not

already assigned to one of its neighbors, in order to keep the current coloring proper.

At most ∆(G) + 1 colors are necessary for such a coloring.

By Brooks’ theorem [40], ∆(G) + 1 colors are required in only two very specific situations, and

it is for this reason often safe to assume that χ(G) ≤ ∆(G), and to deal independently with the

remaining cases if necessary.

Theorem (Brooks (1941)). For any connected graph G holds χ(G) ≤ ∆(G), unless G is a complete

graph or an odd cycle, in which case χ(G) = ∆(G) + 1.

The greedy coloring algorithm yields very different results according to the order in which the

vertices are colored. On lucky days, it can return a coloring with χ(G) colors3, but at other times

return a coloring using ∆(G)+1 colors instead, even when G is a forest (hence bipartite). Determining

the worst behavior of the greedy algorithm is actually a hard problem by itself, and evaluating Γ(G)
– that is the worst possible performance of the greedy algorithm on a given graph – computationally

hard. While Brooks’ theorem and its (constructive) proof suffices to identify the graphs such that

χ(G) = ∆(G) + 1 and obtain a coloring with less than ∆(G) colors otherwise, it is already NP-Hard

[98] to determine whether Γ(G) = ∆(G) + 1.

2This conjecture actually prevents the existence of any “polynomial” decomposition, i.e. a decomposition of non-k-

colorable graphs that could be encoded in polynomial space and attest that a given graph is not k-colorable. This being said,

there actually exists a graph decomposition characteristic of non-k-colorable graphs given by Hajos’ theorem (see Jensen

and Toft’s book [104]), which builds all non-k-colorable graphs from the complete graph on k elements and three simple

operations. It is still open, however, to determine whether the length of a decomposition of a non-k-colorable graph G could

be exponential compared to the size of G (see [130]).
3To do so, one can first compute a proper coloring of a graph G into χ(G) color classes I1, . . . , Iχ(G), then apply the

greedy algorithm to G by first greedily coloring the vertices from I1, then the vertices from I2, etc ... If it does not give a

way to compute an optimal coloring, it proves at least that such a coloring can be produced by the greedy algorithm on a

specific vertex ordering.
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In practice, the greedy algorithm is so quick that it can be profitable to run it several times with

different orderings, in order to obtain good upper bounds on χ. The best upper bound can then be fed

to an exact algorithm for graph coloring, which can use it to cut its exploration tree.

Finding good orderings is a problem with many heuristics, and randomizing them often a useful

idea. The most commonly implemented method is perhaps to find an ordering on the vertices minimiz-

ing the number of already colored neighbors over all the vertices : the trivial bound χ(G) ≤ ∆(G)+1
is obtained through noticing that a vertex v has at most dG(v) neighbors whose color has already be

picked, but there are graphs for which it is possible to order the vertices in such a way that the number

of colored neighbors is always far below ∆(G).

In particular, it is possible to find in planar graphs (see p.31) an ordering such that each vertex has

at most 5 colored neighbors before it is colored itself, ensuring that χ(G) ≤ 6. Such an ordering is

produced by iteratively removing from the graph a vertex a minimum degree, and applying the greedy

coloring algorithm on the reverse of this elimination order. With this algorithm in mind, one can

associate to each graph G an integer δ∗(G) – the degeneracy of G – corresponding to the maximum

degree of a vertex removed during this procedure. It satisfies the equality

δ∗(G) = max
H⊆G

a subgraph

min
v∈H

dH(v)

This yields the following bound on the chromatic number of a graph.

Theorem. For any graph G holds the inequality χ(G) ≤ δ∗(G) + 1.

The reason why δ∗ ≤ 5 for planar graphs is explained p.35.

Maximum clique ω(G)

One of the earliests remarks one can make about a coloring of a graph is that it also defines a coloring

of all of its subgraphs. For this reason the chromatic number is an increasing function over the graphs,

when partially ordered by subgraph containment. Hence, any clique of size k in a graph is a sufficient

proof that the graph’s chromatic number is larger than k. Though the clique number ω(G) is NP-Hard

to compute – and hence no conjecture in complexity theory would prevent us from believing so –

knowing the value of ω(G) still leaves us far from knowing χ. The illustration of it is quickly given

by random graphs.

Indeed, an easy upper bound can be obtained on the size of a maximum clique in the average

graph Gn,1/2 by the so-called first moment method [9]. The expected number of k-cliques in Gn,1/2 is
(
n
k

)
2−(

k
2). Besides,

(
n

k

)

2−(
k
2) ≤ nk2−(

k
2) ≤ 2k log2(n)−(

k
2)

Hence, the probability that a graph Gn,1/2 has at least one clique of size k (and so any clique larger

than k) when k = 2⌈log2(n)⌉+ 3 is at most

2k log2(n)−(
k
2) ≤ 2k log2(n)−

1
2
k(2 log2(n)+2) ≤ 2−k
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As this analysis can be repeated to prove the very same bound on the size of the maximum in-

dependent set in Gn,1/2, such graphs constitute an infinite family whose maximum clique is of log-

arithmic size and whose chromatic number is at least n
2 log2(n)

by virtue of the general inequality

χ(G) ≥ |V (G)|/α(G), where α(G) denote the size of a maximum independent set of G.

Girth g(G)

If it is a fact that small cliques do not necessarily indicate a small chromatic number, one may still

wonder whether some other known measures of complexity may be of any influence on the value of χ.

The girth g(G) of a graph G – that is the size of a smallest cycle in G – is a perfectly good

candidate : around each vertex v of a graph with high girth one can think of G as a tree, and one

may be tempted to think that such an information could be strong enough to ensure a small chromatic

number.

Erdős proved in 1959 that it is not so [68], and that there exists for any value of g and k a graph

whose girth is at least g and chromatic number at least k. The proof, which follows (and can be be

read in “The Probabilistic Method” [9]), is again based on a random graph Gn
p , from which several

vertices are removed to ensure a girth of at least g.

In a graph Gn
p , the average number of cycles of length at most g is

∑

3≤i≤g

pi
n× · · · × (n− i+ 1)

2i

If we intend to remove vertices from this graph to ensure a girth of at least g, we should first

make sure that it is not necessary to remove all the vertices. Removing a small part of them would be

preferable, and so we would like to choose p and g so that this expected value is small compared to n.

For a fixed g, this could lead us to require that p = n1/g−1−ǫ, as

∑

3≤i≤g

pi
n× · · · × (n− i+ 1)

2i
≤
∑

3≤i≤g

(pn)i

2i
≤ g(pn)g ≤ gn−ǫ

Hence, with this choice of p one would have to remove an average of at most gn−ǫ vertices from

Gn
p to ensure it is of girth at most g. Besides, the average maximum independent set of such a graph

is – as previously – asymptotically small compared to n.

(
n

c

)

(1− p)(
c
2) ≤

(

n(1− p)(c−1)/2
)c

≤ (ne−p(c−1)/2)c

And there is almost surely no independent set of size

c = 1 + (3/p)log(n) ≤ n1+2ǫ−1/g = o(n) assuming 2ǫ < 1/g

in such a random graph. As a consequence of these two facts, there exists a random graph with these

parameters from which removing gn−ǫ vertices produces a graph G of girth g, in which α(G) = o(n),
leading to χ(G) ≈ n/log(n) and to the desired result.
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This means in particular that for any graph H containing a cycle, there are H-subgraph-free graphs

of arbitrarily large chromatic number. On the other hand, there exists for each tree T an integer cT
such that every T -subgraph-free graph has a chromatic number at most cT [146, 93].

This being said, one should not – for so few – lose all hope of comparing ω to χ. If it is indeed true

that no function of ω is a bound on χ, or that given a tree T there exists T -free (for induced subgraph

inclusion) graphs of arbitrarily large chromatic number (for example a large complete graph), there

could well be a balance between the two. When T is a tree, Gyàrfàs [92] and Sumner [146] conjectured

that in the class of T -free graphs the value of χ can be upper-bounded by a function of ω. This

conjecture is mostly open today, though proved in the restricted case where H has diameter two

[109].

Fractional Chromatic number χf (G)

The fractional chromatic number is a lower bound on the chromatic number which appears when

one chooses χ to be the “least number of independent sets covering all the vertices”. In this setting,

the problem of finding a smallest family of independent sets covering the vertices can be relaxed by

associating to each independent set S of the graph a real value wS , and requiring that each vertex be

“covered” in this relaxed sense, namely that

∑

v∈S⊆V (G)
an independent set

wS ≥ 1

The solutions of this problem when the values wS are integers instead of real values are precisely

vertex colorings.

This alternative formulation is precisely made to fit into the framework of Linear Programming,

and results in the following two formulations.

Fractional Chromatic Number

• Minimize ∑

S independent set ⊆G

wS

• Such that :

∀v ∈ G,
∑

S independent set ⊆G
v∈S

wS ≥ 1

Or its dual
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Fractional Chromatic Number (Dual)

• Maximize ∑

v∈G

xv

• Such that :

∀S independent set ∈ G,
∑

v∈S

xv ≤ 1

Computing this value has been proven NP-Hard [89], and is still hard to approximate within a

polynomial factor [114]. Numerically, χf (G) can be arbitrarily far from the exact chromatic number

of a graph, and is always at least as strong as the bound χ(G) ≥ n/α(G).

This is illustrated by Kneser’s graph (see p.13) Kn
k . Kneser himself conjectured in 1955 that

χ(Kn
k ) = n− 2k+2, which was in 1978 proved by Lovász using a amazing argument from topology

[113, 116]. On the other hand, the inequality χf (K
n
k ) ≤ n/k is obtained by giving a weight of 1/k

to each stable set {s ∈
(
n
k

)
: i ∈ s} for all i ∈ [n].

0.3 Choosability

0.3.1 Definition

Formally speaking, the definition of the choosability of a graph is very close to the definition of its

chromatic number. Up to now, the vertices had to be colored properly with integers from a set of

cardinality k, and choosability changes to vertex coloring that the vertices may be assigned colors

from different sets.

Given a function L : V (G) 7→ 2N, a graph G is said to be L-list-colorable if there exists a proper

assignment of colors to the vertices (a function c : V (G) 7→ N) such that each vertex receives a color

allowed by its list (∀v, c(v) ∈ L(V )). To associate an integer measure to this version of vertex coloring

which could be comparable to its “number of available colors”, the size of lists is then bounded by a

common value : a graph is said to be k-choosable if it can be properly L-list-colored for any choice

of a function L satisfying L(v) ≥ k, ∀v (which is actually equivalent of being list-colorable for any

choice of lists of size exactly k). The choosability of a graph G, written ch(G), is equal to the smallest

integer k such that G is k-choosable.

From the definition, it appears that k-choosable graphs also are k-colorable graphs (as they can be

colored with a constant list function equal to {1, . . . , k}). Besides, the proofs of results based on local

considerations can sometimes be lifted from vertex coloring to vertex choosability : in particular, the

inequality ch(G) ≤ δ∗(G) + 1 holds.

One of the classical proofs of Brooks’ theorem, however, for being based upon recoloring argu-

ments, does not immediately transfer to graph choosability. This being said, the result remains valid
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in the context of choosability by virtue of a characterization of degree-choosable graphs.

Theorem (Borodin [35], Erdős, Rubin, Taylor [70]). A graph G is said to be degree-choosable if it

is L-list-colorable for any function L associating to each vertex v ∈ V (G) a list of dG(v) admissible

colors.

Equivalently, a graph G is degree-choosable if and only if all of its 2-connected components are

complete graphs or odd cycles (i.e. G is a Gallai tree, see Fig.2).
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Figure 2: A Gallai Tree

As a corollary of this result, the only graphs verifying ch(G) = ∆(G) + 1 are those that verified

the same relationship for χ, namely odd cycles and complete graphs [148]. This is actually one of the

rare occurrences for which the two parameters meet, and the difference between the two parameters

appear as soon as k = 2 : very few bipartite (2-colorable) graphs are 2-choosable.

Theorem (Erdős, Rubin, Taylor [70]). A (connected) graph is 2-choosable if and only if it can be

reduced to the empty graph by iteratively removing vertices of degree one – i.e. the graph is a tree –

or if what remains is an even cycle, or the union of a C4 and another even cycle intersecting on three

consecutive vertices (see Fig.3).

Even more striking is the fact that bipartite graphs – and in particular complete bipartite graphs –

may have an arbitrarily large choice number, as shown by the following classical construction.

Bipartite graphs

Let k > 0 be an integer, and G be the complete bipartite graph defined on two disjoint copies of

the family
(
2k
k

)
of all k-subsets of a set of cardinality 2k, each vertex being assigned as a list the k

elements to which it corresponds. As the graph is complete bipartite, the set of integers used to color

the vertices of one copy is disjoint from the set used to color the other vertices, ensuring that one of
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Figure 3: A C4 and an even cycle, intersecting on three consecutive vertices.
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them is of size at most k. On the other hand, it is not possible to color vertices corresponding to all

the k-subsets with only k colors, as there is a set of size k in the set of size 2k which does not contain

any of them.

Certificates

Another important difference between chromatic number and choice number is that the first – even

though NP-Hard to compute – belongs to NP : the easiest way to certify that a graph is k-colorable is to

produce a proper k-coloring, and checking that a coloring is proper is easily done. On the other hand,

certifying that a graph is k-choosable is giving a proof that to any list assignment can be associated

a satisfiable proper coloring4 which seems computationally much harder [91]. For this reason, any

general framework able to prove an upper bound on the choice number of a graph is particularly

precious5.

0.3.2 Nullstellensatz - Alon Tarsi - Bipartite graphs

Alon and Tarsi [11] introduced in 1992 a surprising and elegant method to prove an upper bound on the

choice number of a graph. It is algebraical, and based on Hilbert’s Nullstellensatz which asserts that if

any nonzero real polynomial of degree d has at most d roots, the same can be said about multivariate

polynomials defined over a field.

Theorem (A first version of the Combinatorial Nullstellensatz [11]). Let P = P (x1, . . . , xn) be a

polynomial of Z[X1, . . . , Xn] whose degree in xi is at most di. Then, for any choice of Si ⊆ Z such

that |Si| > di, P can not be equal to zero on the elements of S1 × · · · × Sn unless P ≡ 0.

In “The combinatorial Nullstellensatz”, Alon [5] presents several combinatorial problems which

can be formulated in the formalism given by this theorem (as graph-theoretic optimization or existence

problems can be formulated using the formalism of linear programming or submodular functions).

This approach leads one to encode the data of a problem into a nonzero polynomial of smallest pos-

sible degree whose zeroes are infeasible or bad solutions, on which the Combinatorial Nullstellensatz

4This problem is finite : given a graph on n vertices and an integer k, the number of possible assignations of lists of

size k is infinite as any imaginable color could be used in the lists, though what really matters is how the lists intersect each

other. In particular, a list assignment using a total of nk colors would be giving disjoints sets to each vertex (of course, many

other different list assignments produce identical intersection patterns between the lists). However, this information would

just let us bound the number of assignment by
(

nk−1
k

)k
which makes absolutely no sense for any practical application.

5For instance, the Alon-Tarsi method presented p.22, or Galvin’s proof on the choice index of bipartite graphs p.30.
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can finally be used to prove the existence of a good solution 6.

This being said, this method has the unpleasant idea to only provide non-constructive proofs of

existence. The second regret is that such a tool can not be hoped to always be sufficient as it is an

implication and not an equivalence – hence one can not hope to obtain short proofs of infeasibility as

in the case of Linear Programming and its duality theorem.

One of its remarkable consequences deals with coloring, as presented in [11].

Choosability through the Nullstellensatz

Given a graph G, one can quickly encode a feasible assignment of colors as coordinates for which a

specific polynomial is non-zero. It would require to associate a variable xv ∈ N to each vertex and

study the solution of any non-zero value in

∏

v∈G

∏

u∈NG(v)

(xu − xv)

What can the Combinatorial Nullstellensatz tell us at this step ? One product being included in

the other, each variable xw appears dG(w) times when v = w, and once for every neighbor or w.

Hence, we know that if vertex v is assigned a list of 2d(v) + 1 colors, then there exists a satisfiable

list-coloring which implies ch(G) ≤ 2∆(G) + 1. This should not come as a surprise, as a greedy

coloring gives us ch(G) ≤ ∆(G) + 1 and even ch(G) ≤ mad(G) + 1. This polynomial, though,

contains for each edge uv both the factors (xu−xv) and (xv −xu), which tells us to focus instead on

its “square root” 7.
∏

uv∈G

(xu − xv)

This new polynomial tells us that if each vertex v is associated to a list of size at least d(v) + 1
a feasible assignment necessarily exists, implying the inequality ch(G) ≤ ∆(G) + 1. This is nice,

but we should expect much better, such a different approach of coloring is bound to yield new and

surprising results !

To improve it, this stronger version of the previous theorem is required.

Theorem (A second version of the Combinatorial Nullstellensatz [11]). Let P = P (x1, . . . , xn) be

a polynomial of Z[X1, . . . , Xn] whose degree is d =
∑

i di. If the coefficient in P of xd11 . . . xdnn is

nonzero, then for any choice of Si ⊆ Z such that |Si| > di, P can not be equal to zero on the elements

of S1 × · · · × Sn unless P ≡ 0.

This second formulation leads us to focus on the shape of the monomials in the polynomial’s

expansion. The whole polynomial’s degree is obvious : each factor is of degree 1 and their number is

|E|, hence the polynomial itself is of degree |E|, and so its monomials of maximum degree are those

obtained by picking one of the two variables in each of its factors.

This is precisely the definition of an orientation of a graph.

6Anybody enjoying this paper will probably take pleasure in reading “Non-constructive proofs in combinatorics” [4]

from the same author.
7Note that this polynomial is not properly defined, as taking vu instead of vu in the enumeration of the edges would

change its sign, though being only interested in its zeroes, any of the two polynomials this could produce is as good as the

other for our purposes
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If any orientation of the graph results in a monomial of maximum degree, the coefficient of such a

monomial can be either 1 or -1, depending on whether the vertex picked in the product (xu − xv) is u
or v. If we call positive an orientation of the graph such that the resulting monomial has coefficient 1,

and negative when it is −1, the coefficient of
∏

v∈G xdvv is equal to the difference between the number

of positive and negative orientations such that the outdegree of v is equal to dv. As we are merely

interested in knowing whether this polynomial is nonzero, what concerns us is the answer to :

“are the number of positive and negative orientations of G such that the outdegree of v is dv equal ?”

Actually, the difference between two given orientations D,D′ of a graph such that the outdegree

of v is dv is succinctly described. Let R ⊆ E(G) (for “reversed”) be the set of edges whose orientation

is different in D and D′, and let v be any vertex or G. D′ can be obtained from D by reversing all the

edges from R (and conversely), and as d+D(v) = d+D′(v) we deduce that the number of arcs leaving v
one must reverse to obtain D′ is equal to the number of arcs entering v which are also contained in R.

Hence, the edges of D contained in R constitute an eulerian subgraph of D (the same being true

for D′). One can then go from any orientation of G to any other with the same outdegree sequence by

reversing the edges of an eulerian subgraph, and any eulerian subgraph of D will result in a different

orientation of G. Besides, one can transform a positive orientation into a negative one (or the opposite)

only by reversing an odd number of edges (reversing an even number of edges preserves the sign of

the orientation). Wondering whether the number of positive and negative orientations of G with some

fixed degree sequence is equal is thus equivalent to answering whether an arbitrary orientation D of

G with the same degree sequence has the same number of odd and even eulerian subgraphs.

Bipartite Graphs

Bipartite graphs already have an unbounded choice number as previously explained. At the same time,

they are a class of graphs for which the comparison between the number of eulerian cycles is not too

troublesome, as having no odd cycle is a sure proof that no odd eulerian subgraph exists. Hence, any

orientation D of a bipartite graph G is a certificate that for any list assignment such that v is given a list

of d+D(v) colors there exists a corresponding list-coloring. By itself, this does not give us any bound

on the choice number of a bipartite graph, but the computation of an orientation of a graph whose

maximum outdegree is minimal can be done easily by the construction presented on p.33, which is

best possible. Hence, the following result :

Theorem (Alon Tarsi (1992) [11]). Let G be a bipartite graph. Then ch(G) ≤ ⌈mad(G)/2⌉+ 1

A game version of choosability

As illustrated by the bipartite graphs, choosability gives a quite different feeling from proper coloring.

One of the reasons why it is much harder to work with is probably that proving an upper bound on

ch requires to test an intractable collection of list assignments, and the insufferable lack of Kempe-

chain-based arguments (see p.28 for a definition of Kempe chains). For this reason, many results

dealing with choosability, including those presented in this thesis, content themselves with very local

considerations – and amenable classes of graphs, like planar graphs or embeddable ones.

Zhu introduced [158] in 2009 a variant on graph choosability – and playing with the very definition

sounds like the sane thing to do in these situations – which, even though heavily more constrained in

its rules has not been proved to be significantly harder than graph choosability yet.
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In his game two players concur, the two of them aware of the whole graph structure. In turn, the

first player will give a subset of the vertices from which the second is to extract a stable set of his

choice (he is actually given at time t “the set of vertices containing color t”, and has to answer the

ones which are to be colored with t). The only added constraint is for the first player to give each

vertex at least k times in the sets he produces (“each vertex has a list of k available colors”).

If, for a fixed graph and integer k, the second player can always achieve to color all the vertices

before all the sets are given, the graph is indeed k-choosable. On the other hand, he may be unable to

complete his coloring on a k-choosable graph as the first player decides of the list-assignment while

the graph is being colored : the next lists can then depend on the current partial coloring. Hence, the

smallest k such that the second player has a winning strategy, noted chOL(G), is greater than ch(G).

Despite being formally harder than the usual choosability, the difference between the two is far

from clear. In particular, the inequality chOL(G) ≤ ⌈mad(G)⌉ + 1 holds and dissipates any hope

to distinguish ch and chOL with such arguments. Besides, Zhu also proved that a choosability proof

based on the Alon-Tarsi method also transfers to on-line choosability. As the means of proving upper

bounds on ch are not that numerous, watching such tools transfer indicates that the difference between

the two parameters is not to be witnessed with the state-of-the-art choosability machinery.

In the same paper, Zhu obtains a characterization of graphs with chOL(G) = 2 similar to the one

Erdős, Rubin and Taylor obtained from 2-choosable graphs (see p.21), which reveals that some graphs

verify ch 6= chOL.

✉

✉

✉ ✉

✉

✉

✉

A 2-choosable graph with chOL = 3

Theorem (Zhu (2010)[158]). A connected graph G satisfies chOL(G) ≤ 2 if and only if its 2-core is

K1, C2n or K2,3. In particular, 2 = ch(θ2,2,2) 6= chOL(θ2,2,2) = 3.

This result leaves open the very interesting question [158] of the possible gap between ch(G) and

chOL(G) : is it arbitrary large ? If it is large is chOL(G) bounded by c × ch(G) for some c ? By a

polynomial function of ch(G) ?

Being able to bound one using the other would give a new ways to think about the ch parameter,

but while these questions stand they point toward ill-understood properties of choosability.

0.4 Edge coloring

Edge coloring is by definition a coloring on L(G) instead of G itself : one now wants to attribute a

color to the edges of a graph in such a way that incident edges have different colors, and χ′(G) – the

chromatic index of G – denotes the minimum number of colors required to properly color L(G), i.e.

χ′(G) = χ(L(G)). Edge coloring may not have been deemed worthy of an independent definition if

any graph could be represented as the line graph of another one. This is indeed wrong, and line graphs

are characterized by a list of forbidden induced subgraphs :
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Theorem (Beineke (1970)). [24] A graph G can be obtained as the line graph of some graph G′ if

and only if it has no induced subgraph isomorphic to a list of nine small graphs (at most 6 vertices).

Let G′ be a graph whose line graph is G. The vertices of G are the edges of G′, and each vertex v
of G′ produces in G a complete graph, as all the edges incident to v are pairwise adjacent in G. It is

then important, when trying to build G from G′ (or when trying to detect whether a graph is actually

a line graph) to pay attention to the cliques as representant of vertices. Of course, all the maximal

cliques of G do not correspond to a vertex of G′ – the edges of a triangle also form a triangle in

the line graph, which is the only alternative reason for the creation of a clique in a line graph (this

becomes for a natural generalization – line graphs of multigraphs).

This is a hint that an easier characterization of line graphs of triangle-free graphs should exist.

Theorem ([41, 99]). A graph is the line graph of some triangle-free graph G′ if and only if it contains

no induced subgraph isomorphic to the claw or to the diamond.

✉

✉ ✉

✉

�
�

❅
❅

Claw

✉

✉

✉✉

Diamond

Note that the claw already belonged to the list of nine graphs mentioned previously. Naturally, the

diamond is an induced subgraph of the eight other graphs.

Vizing’s theorem

The obstructions from before (cliques) are only present in line graphs as “the set of all edges incident

to a specific vertex”. Hence the inequality χ′(G) ≥ ∆(G). Edge coloring is also equivalent to finding

a partition of the edges into matchings. Like vertex coloring, it has a wealth a variants, and the reason

why edge-coloring (coloring of line graphs) is a well-studied problem is probably because of Vizing’s

theorem.

Theorem (Vizing). [152] ∆(G) ≤ χ′(G) ≤ ∆(G) + 1 (a proof of this result is given later)

Besides giving a fair idea of the chromatic index of general graphs (as well as an algorithm, as its

proof is constructive), the natural equivalent of the Fractional Chromatic Number (see p.19) – called

Fractional Chromatic Index – is a polynomial optimization problem and can in practice help detect

graph with χ′ = ∆ + 1. The fact this LP is polynomial is a direct implication of the Separation

Theorem and Edmond’s algorithm for general matching [67]. Moreover, in virtue of the conjecture

asserting that for any polynomial decision problem there exists certificates for both True and False

answer (P = NP ∩co−NP , see p.12) – or more practically because of the LP duality theorem, there

exists a clear characterization of graphs with given fractional chromatic index in terms of obstructions

by overfull subgraphs.
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Fractional Chromatic Index

• Minimize ∑

M matching ⊆G

xm

• Such that :

∀e ∈ E(G),
∑

M matching ⊆G
e∈M

xm ≥ 1

• xm is a real positive variable

Fractional Chromatic Index (dual)

• Maximize ∑

e∈E(G)

xe

• Such that :

∀M matching ⊆ G :
∑

e∈M

xe ≤ 1

• xe is a real positive variable

Obstructions - Overfull subgraphs

Given the duality theorem on Linear Program, there is some hope that this algorithm gives more than a

way to compute the chromatic index but also an idea of what the obstructions are – like Menger’s cutset

with maximum flow, or Tutte’s set for maximum matchings. Indeed, two natural bounds happen to be

sufficient. The first is the inequality χ′
f (G) ≥ ∆(G), and the second an equivalent for edge coloring

of the inequality χ(G) ≥ |V (G)|
α(G) giving χ′

f (G) ≥ |E(G)|
m(G) (where m(G) denotes the cardinality of a

maximum matching in G).
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Theorem (See for example Scheinerman’s “Fractional Graph Theory”[140]).

χ′
f (G) = max

(

∆(G),max
H⊆G
H odd

2|E(G)|
|V (H)− 1|

)

≤ ∆(G) + 1

Of course, assuming the eternal P 6= NP conjecture, one can not hope in general that ⌈χ′
f (G)⌉ =

χ′(G). Hence, there are examples of graphs with χ′
f (G) = ∆(G) and χ′(G) = ∆(G) + 1. It is not

known – for instance – whether the equality ⌈χ′
f (G)⌉ = χ′(G) holds for chordal graphs as it holds

for complete graphs. Actually, we are still to find out whether edge coloring is computationally easy

on well-known classes of graphs like interval graphs, chordal graphs, and cographs [115].

Kempe chains

We now present a proof of Vizing’s theorem, as it is central in edge coloring and can help understand

why this powerful result does not easily extend to acyclic edge coloring or edge choosability. It is

based upon the use of Kempe chains, or alternating chains, which give a way to modify a given edge

coloring of a graph while keeping it proper.

One can obtain a Kempe chain in a given edge-colored graph by picking two adjacent edges e, e′.
Being adjacent, their colors are different, and if we write c and c′ their two respective colors we

can walk through some part of the graph by starting from e or e′ and moving from edge to edge by

iteratively jumping from an edge of color c to an edge of color c′.

The Kempe chain containing e and e′ is actually the connected component containing e and e′

in the graph induced by the color classes c and c′. Such a chain can be recolored by transposing the

colors c and c′ – the coloring obtained remains proper. When it is a path (and not a cycle), the aim of

such a transformation is to change the colors available around the vertices at the ends of the path : if

one endpoint of a Kempe chain is incident to an edge colored with c (hence it has no incident edge

colored with c′), this color will not appear in its neighborhood after the edge-coloring is modified, the

corresponding edge being now colored with c′ – this can be put to good use to obtain a coloring of the

whole graph, which is precisely what Vizing’s theorem builds.

Vizing’s theorem – Proof (Diestel’s Algorithm)

Proof. The proof is constructive, and procedes by coloring G edge by edge, potentially changing the

coloring of previously colored edges (but never uncoloring any), until all the edges of G are properly

colored.

Let the graph Gc (for current G) contain as edges those of G which have already been given a

color, and let uv ∈ E(G) be an edge for which we want to find a color in order to extend our partial

coloring. As u and v are in Gc of degree at most ∆(G) − 1, they both have one (actually, two) color

missing in their neighborhood. Let us respectively note a a color which does not appear on the edges

incident to v, and name b a color which does not appear around v.

Of course, if a and b are the same color, one can immediately use it to color edge uv, but most

probably some other edges of the graph will have to be recolored.

In an attempt to color edge uv with a, it is tempting to consider the maximal ab-path leaving

vertex v (i.e. the Kempe chain with colors a and b containing v) : transposing colors a and b on this
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path has the effect to recolor the edge a around v with color b, which should finally let us color a new

edge uv with color a, now free around both u and v. Of course, the maximal ab-path starting from v
may very well end at u, in which case reverting the two colors on this maximal ab-path recolors with

a an edge around u at the same time that this color becomes available around v.

This is a hopeless situation. We can but stare at v′, the last vertex on the ab-path leaving v – which

is adjacent to u with an edge colored by b – hoping for some comfort : it also has a free color c,
different from both a and b, and it may well be that the ac-chain leaving v′ stops very far away in the

graph, and not at u once more. In this case, one could hope to recolor this ac-chain by exchanging its

two colors. a would now be available around both u and v′ which are linked by a edge with color b.
This puzzle is then solved by recoloring this edge from b to a, and adding an edge between u and v
with color b, as it is now available around both u and v.

Let us remember from this short story that to each vertex v1, . . . , vi around u can be associated a

free color ci, as ∆(G) + 1 in total are available. When considering the maximal aci-path leaving vi,
we are sometimes led to another neighbor of u which can only be Nu(ci) – the neighbor of u sharing

with it an edge colored with ci, if there is any.

Trying to find a color for edge uv led us to recolor edge uNu(a), then to recolor edge uNu(Nu(a)),
then to uNu(Nu(Nu(a))) for as the successive Kempe chains guide us through the neighbors of u.

This run, however, has to stop somewhere as it can not enter a loop : there can not be two distinct

neighbors vj , vj′ of u such that Nu(cj) = Nu(cj′), for this would imply that two distinct alternating

chains with the same colors stop at the same vertex. Besides, there is no vertex vj such that Nu(cj) =
v, as the edge between u and v does not belong to the graph just yet. Hence, by starting our run from

vertex v we are sure it will stop somewhere.

From the beginning, we actually attempted to give color a to uv, which was only possible if a
was available around v. In the latter case, we could still have done so by recoloring a Kempe Chain,

but this Kempe chain may not have been interesting to recolor unless the following Kempe chain

was recolored too. Vizing’s method of recoloring the whole graph lies in the fact that his algorithm

will at some point reach a Kempe chain that can be recolored, meaning that the previous can now be

recolored too, and this until the first one, and until uv can be colored too.

With this algorithm, at each step a new edge of G can be recolored, almost greedily, until the

whole of G has been assigned a color.

List coloring conjecture

Even though research is being led on the differences between class 1 and class 2 graphs (respectively

those whose chromatic index is equal to ∆(G) or ∆(G) + 1) – even in the restricted case of planar

graphs (see p.37) – much about proper edge coloring has been settled by Vizing’s theorem. Studying

the choosability version of proper edge coloring, on the other hand, led to a conjecture which stands

as one of the main open problems in graph coloring. Indeed, while there are clear differences be-

tween ch(G) and χ(G) for general graphs (and even bipartite ones), the conjecture is that the worst

assignment of lists to the edges of a graph is the constant one.

Conjecture (List Coloring Conjecture ([32],[94])). ch(G) = χ(G) for any line graph G – or equiv-

alently – χ′(G) = ch′(G) for any graph G.

This conjecture is especially painful since the proof of Vizing’s theorem is very well understood,
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and relies on simple arguments. Not even the inequality ch′(G) ≤ ∆(G) + 1 is known to hold, and

one of the most remarkable recent results on the subject is Kahn’s one [108] from 2000.

Theorem (Kahn). For any ǫ > 0 there exists χ′
0 such that any graph G with χ′(G) ≥ χ′

0 satisfies

ch′(G) ≤ (1 + ǫ)χ′(G)

Restricted to specific classes of graphs, the List Coloring Conjecture has been proved to hold on

planar graphs whose maximum degree is greater than 12 (see p.37), and on bipartite graphs, a result

proved by Galvin [84] that we present below.

Galvin’s proof for bipartite graphs – Choosability by kernels

The method with which Galvin [84] proved that for any bipartite graph ch′(G) = ∆(G) is simple and

surprisingly efficient. It is actually the application of a method that Alon and Tarsi [11] attribute to

Bondy, Boppana and Siegel, which we now introduce, trying to preserve some intuition.

Given any graph G – which does not have to be a line graph – one can hope to color its vertices

with the following greedy algorithm :

Greedily build a maximal independent set, and remove it from the graph for this is a new color class.

With this algorithm, one always obtains a coloring using less than ∆(G) + 1 colors, as at each

iteration any vertex which is not included in the current maximal independent set is adjacent to a

vertex which is in that set (otherwise, the independent set would not be maximal). If one could

ensure, instead, that there is a way to remove, at each turn, an independent set such that any vertex has

two neighbors in this set (or is in the set itself), this would directly imply that the algorithm can color

a graph using ∆(G)/2+1 colors. This is one possible direction, but not the one Bondy, Boppana and

Siegel successfully picked.

This algorithm – which for the moment is not much more powerful than the more classical version

of greedy coloring – natively works well for list-coloring. Indeed, if any vertex is given a list of colors,

one can rewrite it the following way :

Consider the set of vertices whose list contains color 1, and greedily build a maximal independent set

with those vertices. Color them with 1, remove them from the graph, and do the same iteratively with

the other colors until no vertex remains.

As previously, one can ensure that this algorithm works as soon as the vertices have at least

k = ∆(G) + 1 colors available, for if we focus our attention on one vertex v, and the iterations

c1, . . . , ck of our algorithm corresponding to the colors contained in v’s list, we see that as previously,

at each turn either v or one of its neighbors is colored and removed from the graph.

There still remains the fact that such a coloring can not be hoped to do better than ∆(G) + 1.

The Bondy-Boppana-Siegel method is the following : before coloring a graph G, they choose

an orientation D of G such that ∆−(D) < k. Then, not being satisfied with picking a maximal

independent set, they attempt to find in D an independent dominating set 8 – that is a independent

8Also called kernel in the literature
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set S of vertices independent such that each vertex is in S of has an in-neighbor in S. In the ideal

situation where such a set can always be found, the graph G can be colored with a total of k colors, as

at each turn either v or (at least) one of its < k in-neighbors is colored.

This technique can be as easily adapted to list-coloring. In this case, its main difficulty lies in

finding an orientation D of G with small ∆−(D) (for this value corresponds to the number of col-

ors appearing in the final coloring), and such that there exists in any set S ⊆ V (G) of vertices an

independent dominating set. Such an orientation is the subject of one of Richardson’s theorems [135].

Theorem (Richardson (1946)). If a directed graph D does not containing any induced odd circuit,

then it is kernel-perfect (i.e. there exists in any induced subdigraph D′ ⊆i D an independent domi-

nating set).

In his proof, Galvin [84] shows how to obtain a kernel-perfect orientation D of the line graph of a

bipartite graph G with ∆−(D) = ∆(G)−1, ensuring that ch(G) = ∆(G). He builds it by considering

the two vertex classes A and B of a bipartite graph, and computing a proper edge coloring (hence,

without lists) of G, giving colors 1, . . . ,∆(G) to the edges. The orientation is then built the following

way :

• For any pair of incident edges (u, v), (u′, v), v ∈ B with respective colors c(u, v) < c(u′, v),
there is in D an arc from (u, v) to (u′, v)

• If v′ ∈ A, the arc from (u, v) to (u′, v) is created if c(u, v) > c(u′, v) (the constraint is reversed)

As there are in G a total of ∆(G) colors, in the given orientation D no vertex (corresponding

to the edges of G) has indegree more than ∆(G) − 1. We are left with the task to prove that there

exists in any induced subdigraph D′ ⊆i D an independent dominating set, which actually is a direct

consequence of the Stable Marriage Theorem9. Indeed, in D′ is defined for each vertex v an ordering

on the edges of G incident to v (and hence an ordering on the neighbors of v) : this linear ordering,

seen as a set of preferences, defines a Stable Marriage Problem whose aim is to find a matching in G
such that any other edge of G is dominated in D′. The existence of a stable marriage completes the

proof.

0.5 Planar graphs

A very large part of the work presented in this thesis focuses on planar graphs. A planar graph is

nothing more than a graph that can be drawn on the plane without two edges crossing, or equiva-

lently a drawing of a graph in which two edges intersect only at their common endvertices. Planar

graphs are a frequent occurrence of graphs arising from practical problems, and have been completely

characterized [111] in 1930 by Kuratowski in terms of forbidden subgraphs.

9The Stable Marriage theorem is the actual contribution from Graph Theory to human happiness, and no one short of

graph theoreticians really seems to care. It incidentally deals with matchings in bipartite graphs. In the usual setting, we

have in front of us a set of n women and n men, all very eager to get married. Being so keen on putting an end to celibacy

as soon as possible, they all have sorted their possible mates in a linear order, according to their preferences. A Stable

Marriage is then defined as a matching such that no two people would prefer to be married together than to their actual

mate, hence preventing the chance of any “future troubles”. Scientists noticed that non-stable marriages usually make

things more complicated, and hopefully the Stable Marriage Theorem asserts that a stable marriage always exists (and is

computationally easy to find).
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Theorem (Kuratowski). A graph G is planar if and only if it does not contain as a subgraph a

subdivision of K5 or a subdivision of K3,3.

Hence, testing whether a graph is planar is a computational problem of coNP , as a certificate – in

this case, a subgraph – can be given as a proof that it is not planar. It is obviously a problem of NP ,

as a planar embedding of a graph is a sufficient proof that it is planar. Deciding whether a graph is

planar can be done in linear time (see [38]), which provides yet another illustration of the conjecture

P = NP ∩ coNP .

Because planar graphs are sparse (their average degree is strictly less than 6), because they ad-

mit several equivalent characterizations (cycle space, minors, intersection of linear orders [142], ...),

because they can be easily drawn and visually worked upon, because there is a notion of left and

right, and thanks to the whole body of the theory of planar graphs that has been built during the past

decades, many theoretical or practical, existential or optimization problems are found to be easier on

planar graphs than on general graphs or other graph classes.

This does not mean either that there are no complex problems on planar graphs : it is already NP-

hard to compute the chromatic number of a 4-regular planar graph [59], and plenty of other examples

are to be found all around.

In order to understand the origin of this complexity arising both in computational and purely

graph-theoretical problems, researchers naturally attempted to define various graph parameters that

would stay meaningful on planar graphs in order to capture it.

0.5.1 Maximum Average Degree

The maximum average degree is one such example.

The average degree of a graph – ad(G) = 2|E(G)|
|V (G)| – gives some information on its density, but to

make any use of it one has to consider the graph as a whole and can not infer any local property – for

example on the neighborhood of a vertex. Indeed, any graph H can appear as an induced subgraph of

a graph with high (or low) density : it is enough to add to H a big complete (or independent) graph,

so as to change its density at will.

The maximum average degree of a graph, denoted mad(G), is a slight modification of the average

degree. It is by definition greater than the average degree and gives on planar graphs an appreciable

local information.

Definition (Maximum Average Degree). The maximum average degree of a graph is the density of

its densest subgraph. Formally

mad(G) = max
H⊆G

2|E(H)|
|V H|

This parameter can be quickly computed by linear programming (see p. 34).

Hence, a graph G has mad(G) ≤ c if and only if none of its subgraphs has density > c, which

already is an appreciable local information. For this reason, the maximum average degree can be

used to guide inductive proofs, as it is increasing according to the usual graph containment order-

ing. Removing a vertex from a graph of known mad can only decrease its value, while the same is

immediately seen to be wrong for the average degree.
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Besides, one can notice that many inductive proofs – for instance on planar graphs – can be lifted

at no cost to equivalent proofs on the larger class of graphs with mad < 6 which contains it.

Finally, maximum average degree and degeneracy (see p.17) encode similar information. As,

from the definition, any subgraph H of G has average degree at most mad(G), then any subgraph H
contains a vertex of degree at most ⌊mad(G)⌋. As a result, it is possible to reduce the whole graph G
to the empty graph by iteratively removing vertices of degree at most ⌊mad(G)⌋, and the inequality

δ∗(G) ≤ mad(G) holds. In the opposite direction, as the number of edges in a δ∗-degenerate graph

is at most δ∗n (and the same holds for any subgraph), its average degree is at most 2δ∗. Hence, there

also holds δ∗(G) ≤ mad(G) ≤ 2δ∗(G).

These two bounds are tight. Indeed, any k-regular graph G verifies mad(G) = δ∗(G), and for

any k > 0 the kth power of a path on n vertices P k
n – i.e. the graph defined on {1, . . . , n} in which

i ∼ j if |i− j| ≤ k – verifies asymptotically lim
x→+∞

mad(P k
n )/δ

∗(P k
n ) = 2

Algorithmically

It is also good to consider as an “alternative definition” of the maximum average degree the following

result.

Theorem. Any graph G has an orientation D such that ∆+(D) = ⌈mad(G)/2⌉.

This theorem is perfectly tight : if a graph G contains a subgraph H ⊆ G, any orientation of

G is an orientation of H , and as a result the maximum outdegree of an orientation is greater than

the average outdegree in H , namely ⌈ad(H)/2⌉. Applied over all the subgraphs of G, this leads to

∆+(G′) ≥ ⌈mad(G)/2⌉.

How to obtain an orientation D of a graph G with ∆+(D) ≤ ⌈mad(G)/2⌉ ?

By reducing it to a bipartite flow/matching.

Let B be a bipartite graph on sets L and R, L being equal to E(G) and R containing d =
⌈mad(G)/2⌉ distinct copies of each vertex. Let it also contain an edge between any element of

uv ∈ L and any copy of u or v in R

This graph admits a matching saturating the set L : the neighborhood of any set S ⊆ L = E(G)
has a cardinality of at least d times (number of copies for each vertex) 2|S|/mad(G) (from the

maximum density of a subgraph in H). Hence |NB(S)| ≥ ⌈mad(G)/2⌉2|S|/mad(G) ≥ |S|.
By Hall’s theorem it is possible to associate to each edge one of the copies of its endpoints.

One can then orient each edge of G away from its corresponding endpoint in the matching. As

there are ⌈mad(G)/2⌉ copies of each vertex, this orientation has the desired maximum outde-

gree.

Despite its formal definition, the maximum average degree of a graph – and the correspond-

ing densest subgraph which is its certificate – can be computed in polynomial time through linear

programming. This program is actually a non-integer version of the matching/flow algorithm just

presented.
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Computing the maximum average degree by Linear Programming

In order to compute the maximum average degree of a graph G, we will define a directed bipartite

graph B similar to the previous one. Its left set L is still equal to E(G), but the other side R is now

equal to V (G). An element uv ∈ E(G) is the origin of two arcs towards its endpoints, u and v, and

all these have a capacity of 1. Added to this graph, a source s with arcs toward any element of L –

those are of capacity 1 – and a sink t with corresponding arcs from any element of R to t, these last

arcs having an unknown capacity c10.

We are interested in the value of a maximum st-flow in this graph, depending on c. By Menger’s

theorem, it is equal to the weight of a minimum st-cut C ⊆ E(B). We would now like to prove that a

cut C corresponds to an induced subgraph of G.

If C contains an edge ev where e ∈ E(G) and v ∈ V (G), a cut of the same weight can be

obtained by removing ev from C to be replaced by se ∈ E(B) instead. Hence, C can be supposed to

only contain edges incident to s or t. Of course, as uv = e ∈ E(G) has only two outneighbors in

B, all of se, ut, vt can not be in C at the same time as se is then useless in the cut. the information

encoded by C lies in a set of vertices H ⊆ V (G) corresponding to the elements v ∈ V (G) such that

vt ∈ S . The edges se ∈ C then correspond to all the edges from G having at most one endpoint in H .

The value of this cut is precisely equal to (|E(G)| − |E(G[H])|) × 1 + |H| × c. Hence, we can

send |E(G)| units of flow from s to t whenever this cut is larger than |E(G)| × 1, which is possible if

and only if any induced subgraph H ⊆ G satisfies |H| × c ≥ E(H), and in other words if and only

if c ≥ 2mad(G). From this flow problem we obtain a Linear Program minimizing the value 2c, thus

computing mad(G).

Maximum average degree

• Minimize : 2c

• Such that :

– A vertex can absorb a charge of at most c

∀v ∈ V (G),
∑

e∈E(G)
e∼v

xe,v ≤ c

– Each edge sends a flow of 1 to its endpoints.

∀e = uv ∈ E(G), xe,u + xe,v = 1

• xe,v is a real positive variable, representing the flow sent by an edge e to one of its endpoints v.

10When c = ⌈mad(G)/2⌉, the st-flow problem in this graph corresponds to the computation of an orientation as pre-

sented previously.
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Equivalently, the mad can be computed through the dual.

Maximum average degree (dual)

• Maximize :
∑

e∈E(G) xe

• Such that :

– The charges of the vertices sum up to at most 2

∑

v∈V (G)

xv ≥ 2

– The charge of an edge it a most the charge of each of its endpoints

∀uv = e ∈ E(G)

xe ≤ xv and xe ≤ xu

• xv, xe are real positive variables

This linear formulation of the maximum average degree is also of interest to define other Mixed

Integer Linear Programs involving properties of connectivity or acyclicity (see p.78).

0.5.2 Girth

It is also very common in graph theory to consider another parameter whose information yields a lot

of locality, and has been known to simplify usually hard problems. The girth of a graph G is defined

as the largest integer g(G) such that G does not contain any cycle of length < g(G). Besides, this

parameter can be computed by running several breadth-first-searches in a graph, which makes it quite

easy to implement.

Knowing the girth of a graph has immediate local consequences. When g(G) > 3, the neighbor-

hood of a vertex is an independent set – which is just triangle-freeness. In general, it means that the

neighborhood at distance ⌊g(G)/2⌋ of a vertex induces is a tree in G.

In planar graphs, knowing the value of the mad actually gives an information on the girth through

the inequality mad(G) < 2 + 4
g−2 which is a consequence of Euler’s formula “#vertices - #edges +

#faces = 2”. Hence, the maximum average degree of a planar graph (and in turn its degeneracy δ∗) is

strictly less than 6, as seen in this inequality by substituting g with 3

0.5.3 Discharging

The discharging method is one of the classical tools in the study of planar graphs. It is – most of the

time – based on purely local considerations, and aims at proving the existence of specific configura-
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tions in a graph. More formally, it is in particular used to prove results of the following shape :

Let F = {F1, . . . , Fk} be a fixed (and carefully chosen) family of graphs. Any nonempty graph G of

a class G contains as a subgraph at least one element of F .

Those are often the key lemmas of proofs based on induction. Indeed, in order to prove a result

on a class of graphs, it is sometimes possible to ensure that a minimum counter-example could not

contain some specific patterns for combinatorial reasons. Obtaining the proof that any nonempty

graph necessarily contains one of these patterns is the finishing blow asserting that the only admissible

counterexample would be the empty graph – which usually is not – hence proving the conjecture.

Though this framework is heavily used on planar graphs, the results it produces can sometimes be

generalized to all graphs of bounded maximum average degree (and when this bound is at least 6, it

means the result holds on all planar graphs). It can also be used to obtain results on planar graphs of

large girth (hence of low average degree) through the formula presented in section 0.5.2.

Let us cite as an illustration – beside the proof of the famous 4 colors theorem [18, 136] – a useful

lemma whose proof rests on the discharging method. The first one is a result of van den Heuvel and

McGuiness [149], which ensures that there is in any planar graph a vertex of small degree around

which at most two neighbors have large degree.

Lemma (van den Heuvel and McGuiness). Let G be a planar graph with minimum degree at least

two. Then there exists a vertex v in G with exactly d(v) = k neighbors v1, v2, . . . , vk with d(v1) ≤
d(v2) ≤ . . . ≤ d(vk) such that at least one of the following is true:

(A1) k = 2,

(A2) k = 3 and d(v1) ≤ 11,

(A3) k = 4 and d(v1) ≤ 7, d(v2) ≤ 11,

(A4) k = 5 and d(v1) ≤ 6, d(v2) ≤ 7, d(v3) ≤ 11.

For an concise illustration of discharging to edge-choosability of planar graphs, the reader can

refer to the Appendix p.125, where [51] is presented. The same method is used in [53] (see Appendix

p.110), in which the case analysis is comparatively much heavier.



Chapter 1

Acyclicity and colorings of planar graphs

1.1 Proper coloring

The main focus of this PhD Thesis is on colorings of planar graphs, on which the classical coloring

problems have now long been settled. Let us quickly survey the main related results.

First, one can not avoid mentioning one of the main results in graph theory, and one which has no

other subject than colorings on planar graphs.

Theorem (Appel, Hakken – Four colors theorem [18, 136])). The chromatic number of a planar

graph is at most four.

In 1993, Voigt [154] gave an example of a non-4-choosable planar graph, her paper being followed

one year later by Thomassen’s proof [147] that ch(G) ≤ 5 for planar graph.

Edge coloring planar graphs is also slowly going out-of-fashion, as researchers eventually an-

swered all the elementary questions (with one small omission). To the question “How could Vizing’s

theorem be improved in the context of planar graphs”, Vizing himself partially answered [153] by

proving in 1965 that χ′(G) = ∆(G) when ∆(G) ≥ 8. This result was not improved upon until 2001.

Theorem (Sanders and Zhao (2001)). [139] A planar graph G with maximum degree at least 7 is

∆(G)-edge-colourable (class I).

In the same paper, Vizing [153] had provided examples of planar graphs such that χ′(G) =
∆(G) + 1 for values of ∆(G) in {2, 3, 4, 5} (see Fig.1.1), and conjectured that none existed for

larger values. Hence, proper edge coloring of planar graphs still demands some work for the case

∆(G) = 6.

A planar version of the List Coloring Conjecture (see p.29), though, still has to be proved. In

1990, following the same parametrization on the maximum degree, Borodin studied [36] the edge

choosability of planar graphs.

Theorem (Borodin). If G is a planar graph of maximum degree ∆(G) ≥ 9, then G is (∆(G) + 1)-
edge-choosable.

37
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Figure 1.1: Planar graphs with χ′ = ∆+ 1 for ∆ = 2, 3, 4, 5
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Along with Havet, we gave in [51] (see Appendix p.125) a shorter proof of Borodin’s result,

asserting furthermore that this coloring could be obtained with two elementary operations.

How to color the edges of a planar graph with lists of size ∆(G) + 1 when ∆(G) ≥ 9

Light edges : Given a graph G, along with an assignment of ∆(G) + 1 colors to each edge, we

need not be concerned by any edge uv ∈ E(G) satisfying d(u) + d(v) ≤ ∆(G) + 2. Indeed,

if we were to find a feasible coloring of the edges of G from which uv has been removed, we

could easily extend this partial coloring by noticing that at most ∆(G) other edges are incident

in G to either u or v, and that as a consequence there exists in the list of uv – of length ∆(G)+1
– at least one color available to color uv.

This also tells us that in the abscence of any light edge, G is of minimum degree three as d(u)+
d(v) ≤ ∆(G) + 2 trivially holds around vertices of degree one or two. Besides, any vertex of

degree three is necessarily adjacent to a vertex of degree ∆(G).

Light cycles : An even cycle is always 2-choosable (see p.21). If we were to remove from

G an even cycle C alternating between vertices of degree 3 and ∆(G), we would be able, as

previously, to color the edges of G − C, and then extend the coloring to G. Indeed, in this

context any edge of C is incident to at most ∆(G) − 1 edges of G − C, and we could, if a

feasible coloring of G−C is known, associate to each edge the list of its (at least) two available

colors. All is left to do now is to find a feasible assignment for the edges of C.

With Havet, we proved in [51] (see Appendix p.125) that those two operations were actually

sufficient to color all planar graphs with ∆(G) ≥ 9, using a short discharging argument.

In 1997, along with Kostochka and Woodall [37], Borodin strengthened his result for larger values

of ∆(G) to obtain the best possible version “ch′(G) = ∆(G)”.

Theorem (Borodin, Kostochka and Woodall). If G is a planar graph of maximum degree ∆(G) ≥ 12,

then ch′(G) ≤ ∆(G)

Besides, the promised edge-coloring can be obtained in linear time thanks to an algorithm of Cole,

Kowalik and Škrekovski [55].

1.2 Acyclicity

In the present section, the previous problems of vertex/edge coloring/choosability are once more vis-

ited, under the additional constraint of acyclicity. This constraint adds to the definition of proper

coloring a global range, which is deadly to most known results on proper coloring :

A proper coloring is said to be acyclic if the union of any two colors classes results in an acyclic

graph.

Such a kind of coloring ceases to “simply” be a partition of a graph into well-behaved sets, as

the sets also need to be well-behaved with each other. Splitting a graph in several parts and building
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a coloring of the whole graph through the colorings obtained independently can not be achieved

anymore without great care and strong hypotheses on the splitting and the color classes themselves.

In the specific context of edge coloring, it generally invalidates proofs based on the use of alter-

nating chains, as reversing them may produce the appearance of many bicoloured cycles which is not

easily overcome. It is therefore a tremendous task to generalize result on proper graph coloring –

when at all possible.

Acyclic vertex coloring

A rough way to obtain an acyclic coloring of a graph being to ensure that no two vertices of the same

color are at distance two, the first upper bound one can get on χa(G) is to apply Brooks’ theorem

to the square1 of G, which yields χ(g) ≤ ∆(G)2 + 1. Unfortunately, the behavior is quadratic

according to the maximum degree while one could have wished for something smaller – indeed,

Erdős conjectured [3] in 1976 that one could do much better, namely χa(G) = o(∆(G)2).

This conjecture was finally settled twenty five years later by the following result.

Theorem (Alon, McDiarmid, Reed (1991)[7]). χa(G) = O(∆(G)4/3). Besides, there exist graphs

for which χa(G) = Ω
(

∆(G)4/3

log(∆(G))1/3

)

.

The upper bound, however, is obtained by probabilistic arguments (more precisely by Lovász’

Local Lemma, presented in the next section) and does not yield an explicit algorithm (though Lovász’

Lemma can be derandomized [120]). This motivates studies on acyclic coloring to fill those gaps,

and in 2005 Raspaud and Fertin proved [77] that one could acyclically color a graph with at most
1
2∆(G)(∆(G)− 1) colors in n∆(G)2 time.

Acyclic edge coloring

The situation for acyclic edge coloring is not as good, as no tight upper bounds on χ′
a(G) – the acyclic

chromatic index of G – are currently known. If some graph G satisfy χa(G) = Ω
(

∆(G)4/3

log(∆(G))1/3

)

,

none has been witnessed to invalidate the following conjecture, formulated by Fiamčik [78] in 1978

(in Russian) and in 2001 by Alon, Sudakov, and Zaks [10].

Conjecture (Alon, Fiamčik, Sudakov, and Zaks). For any graph G, χ′
a(G) ≤ ∆(G) + 2

This conjecture is wide open : if proven true, K3,3 and complete graphs of even order would make

it tight, but so far any information of the value of χ′
a(K2n) would be a breakthrough. The following

asserts that χa(K2n) ≥ ∆(K2n) + 2 holds :

Any acyclic edge coloring of K2n can contain at most one perfect matching, as otherwise the union

of any two of them contains a cycle. Hence, k color classes can cover at most n + (k − 1)(n − 1)
edges and

(
2n
2

)
edges require at least 2n+ 1 = ∆+ 2 colors.

1The square of a graph G, written G2, is the graph on the same vertex set in which two vertices are linked when they

are adjacent in G or have a common neighbor.



1.2. ACYCLICITY 41

This is similar to the bound χ(G) ≥ |V (G)|
α(G) , and in any case does not prove that a coloring of K2n

with ∆+ 2 colors exists. The existence of such a coloring would be implied 2 by the following – old,

pretty, well-studied – conjecture.

Conjecture (Perfect 1-factorization conjecture (1963)). [110] The edges of the complete graph K2n

can be decomposed into 2n − 1 matchings such that the union of any two of them is a Hamiltonian

cycle.

(Alon notes in [10] that this conjecture has much in common with the other conjecture χa(K2n) =
∆(K2n) + 2, to which it could very well be equivalent)

As with acyclic vertex coloring, the best general upper bound makes use of Lovász’ Local Lemma.

It is a result of Alon, McDiarmid, and Reed [15] proved in 1991.

Theorem (Alon, McDiarmid, Reed). χ′
a(G) ≤ 16∆(G)

This remains the best general result today on acyclic edge coloring.

The 16∆ bound and the Local Lemma

The Local Lemma, or Lovász’ Local Lemma3, was first presented in 1975, in a paper from both Erdős

and Lovász [69]. If their aim was in this article to prove that k-uniform hypergraphs can be 2-colored 4

when k ≥ 9, the tool they defined turned out to have an exceptional expressivity : since the original

paper, this lemma has been repeatedly used to prove a plethora of existential results, and – among

others – the best known general bound on the acyclic chromatic index of a graph [15].

More technically, it is a lemma whose aim is to bound the probability of the simultaneous realiza-

tion of several non-independent probabilistic events. The first moment method (see [9]), illustrated on

page 17 to compute the size of a maximum independent set in a random graph Gn
p , already achieved

this goal. Given a list of n – possibly dependent – probabilistic events A1, . . . , An, one can roughly

bound the probability that none of them is realized by noticing that in the worst case of total depen-

dence, P [A1 ∧ · · · ∧ An] ≥ 1 − P [A1] − · · · − P [An]. This was sufficient in our former situation,

but while this inequality can very possibly be an equality from time to time, Lovász’ Local Lemma is

a tool that can strengthen it by feeding on the information available on the independence between the

probabilistic events at hand.

God willing, it all begins with a graph.

Given a set of probabilistic events A = {A1, . . . , An}, one can define on them a (non-unique)

dependency graph GA, by defining the adjacency relationship in such a way that non-adjacent events

are independent. More is actually required. In the dependency graph GA, Lovász’ Local Lemma

requires that Ai ∈ V (GA) be mutually independent of all its non-neighbors.

2In [10] the authors note that one can obtain an acyclic edge coloring of K2n−1 and K2n−2 by producing a perfect

1-factorization of K2n and deleting one or two vertices – which breaks any bicoloured cycle.
3Unfortunately, László Lovász’s productivity sometimes works against himself. Lovász’ Local Lemma could have been

referred to by the acronym LLL, though this already points to the Lenstra–Lenstra–Lovász algorithm, which computes a

“nearly-orthogonal” basis of a discrete vector subspace of Rn.
4A 2-coloring of an hypergraph is an assignation of boolean values to its vertices such that no edge is monochromatic –

a possible generalization of proper graph coloring.
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Definition. An event A is said to be mutually independent from events B1, . . . , Bn when the prob-

ability of A does not depend on any simultaneous information on all – or a subset of – the events

B1, . . . , Bn.

This graph contains some information of interest to us. If it is an independent set – meaning

that all the events are mutually independent – the probability that none of them occurs is equal to

P [A1 ∧ · · · ∧An] = P [A1]× · · · × P [An].

If the graph is a cycle and n = 2k, one can infer that

P [A1 ∧ . . . A2i+1 ∧ · · · ∧A2k−1] = P [A1]× · · · × P [A2i+1]× · · · × P [A2k−1]

and

P [A2 ∧ . . . A2i+2 ∧ · · · ∧A2k] = P [A2]× · · · × P [A2i+2]× · · · × P [A2k]

by arguing that the sets (Ai)i even and (Ai)i odd are both independent in GA, and hence that the

events themselves are independents. From these inequalities, one can deduce that

P [A1 ∧ · · · ∧An] ≥1− P [A1 ∧ . . . A2i+1 ∧ · · · ∧A2k−1]− P [A2 ∧ . . . A2i+2 ∧ · · · ∧A2k]

≥1− P [A1]× · · · × P [A2i+1]× · · · × P [A2k−1]

− P [A2]× · · · × P [A2i+2]× · · · × P [A2k]

which is already much stronger than

P [A1 ∧ · · · ∧An] ≥ 1− P [A1]− · · · − P [An]

Of course, if GA is a complete graph, its information only is not sufficient to improve this upper

bound.

The Local Lemma, from a set of events A and a dependency graph GA, defines a collection of

equations from which one can prove P [A1 ∧ · · · ∧An] > 0, hence the existence of such a situation.

Lemma (Lovász Local Lemma). Let A = {A1, . . . , An} be a set of probabilistic events and GA a

dependency graph for this family. If there exists values 0 ≤ x1, . . . , xn < 1 such that the equations

P [Ai] ≤ xi
∏

AjAi∈GA

(1− xj)

hold for any i, then P [A1 ∧ · · · ∧An] > 0.

This system of equations can be simplified to yield the symmetric Local Lemma

Lemma (Symmetric Local Lemma). Let p = maxi P [Ai] and d = ∆(GA).

If epd ≤ 1, then P [A1 ∧ · · · ∧An] > 0.
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In their paper [15], Alon McDiarmid, and Reed give the following result.

Theorem (Alon, McDiarmid, Reed). For any graph G, χ′
a(G) ≤ 16∆(G)

Proof. Let G be a graph, and let its edges be colored independently and uniformly, using colors from

a set of 16∆(G) colors. The events we would like to avoid are the following :

• Ae,e′ is the event that two incident edges e, e′ are colored with the same color. P [Ae,e′ ] =
1

16∆(G) .

• BC is the event that an even cycle C is properly 2-colored. P [BC ] ≤ ( 1
16∆(G))

|C|−2

No edge e lies in more than ∆(G)|C|−2 cycles of size |C|. For any even cycle C, the event BC is

mutually independent from all but 2|C|∆(G) events of type A, and at most |C|∆(G)|C
′|−2 events of

type B∗ where ∗ denotes a cycle of size |C ′|. The values xAe,e′
= 2

16∆(G) and xBC
= ( 2

16∆(G))
|C|−2

satisfy the equations from Lovász’ Local lemma, and prove the result.

Actual computation

Working on acyclic colorings invariably implies needing – from time to time – to color graphs, whether

to prove a result or to help define the most sensible conjecture. When the graphs are becoming less

and less trivial, it can be useful to ask for the computer’s help, as the rules of acyclic coloring make it

tedious to ensure a coloring is valid.

Through the definition of a LP computing the maximum average degree of a graph, it is possible

to ensure from the inside of a LP that a set of edges forms a forest (as it is a graph with mad < 2),

and from there to ensure a set of edges is connected with a small number of constraints.

This method let me define MILP in order to compute optimal acyclic colorings, by combining the

classical formulation of vertex/edge coloring, and adding the (costly) constraints that any two of the
(
k
2

)
pairs of color classes induces an acyclic subgraph.

This practical work is presented in Ch.5.1. Note that the same technique can also be used to define

LP for other known optimization problems (minor testing, TSP, and others).

1.2.1 Linear arboricity

The linear arboricity of a graph is a parameter whose behavior is quite close to acyclic edge coloring.

The arboricity of a graph being the smallest number of edge-disjoint forests required to cover all of

its edges, the linear arboricity – noted la(G) – denotes the smallest integer k such that the edges of G
can be partitioned into k edge-disjoint forests of paths (forests of maximum degree 2).

While any partition of E(G) into k edge-disjoint linear forests results in an proper edge-coloring

of G with 2k colors (it suffices to properly color the edges of the first color class with 1 and 2, those

of the second forest with 3 and 4, etc . . . ), the converse is not true : an edge-coloring of G does not

immediately give a partition into linear forests of E(G), as the union of two color classes probably

induces cycles.

Any upper bound on the acyclic chromatic index, however, also bounds the linear arboricity.

Indeed, one can obtain a covering of the edges of a graph into linear forests by grouping the color
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classes of an acyclic edge coloring into pairs ({{1, 2}, {3, 4}, {5, 6}, . . . }), each of them inducing an

acyclic graph of maximum degree 2, yielding the inequality la(G) ≤ ⌈12χ′
a(G)⌉.

The converse, on the other hand, is not true : the proper edge coloring produced by 2-coloring the

edges of each linear forest has no reason to be acyclic. Indeed, while colors 1 and 2 induce an acyclic

graph there is no reason why such a property should hold between colors 1 and 3. The comparative

strength of the best bound on the linear arboricity, over the best bound on acyclic edge coloring has to

lie in the fact that only k pairs of colors are required to induce an acyclic graph, instead of
(
k
2

)
in the

latter case.

As a linear forest can contain at most two edges incident to the same vertex, the inequality la(G) ≥
⌈12∆⌉ holds in general, but acyclicity being hard to handle the upper bounds on this number are

considerably loose.

In 1980, Akiyama, Exoo, and Harary [2] conjectured a situation echoing of edge coloring.

Conjecture (Akiyama, Exoo, Harary). For any graph G, ⌈12∆(G)⌉ ≤ la(G) ≤ ⌈12(∆(G) + 1)⌉

Such a conjecture would be tight. However, there is still between this conjecture and the best gen-

eral upper bound obtained so far – a result of Alon, Teague, and Wormald [12] in 2001 – a polynomial

difference.

Theorem (Alon, Teague, and Wormald (2001) [12]). There is an absolute constant c such that any

graph G of maximum degree ∆ satisfies

la(G) ≤ ∆

2
+ c∆2/3(log∆)1/3

It is to be noted that similarly to the 16∆ bound on χ′
a, this upper bound was obtained through

Lovász’ Local Lemma (see p.41).

We may be in need of a class of graph achieving higher values of la, or better tools to improve

the upper bounds, but there is definitely room for studies in this area. The structure of planar graphs,

however, is simple enough to balance our misunderstandings of the general case.

Theorem (Cygan, Hou, Kowalik, Lužar, Wu [58]). The linear arboricity conjecture holds for planar

graphs G with ∆(G) ≥ 10.

The intersection of three matroids

The activity of covering – or partitioning – the edges of a graph into forests of paths is a sport that can

only become fashionable once several of its relaxations are deemed understood, and it is a fact that it

is actually the meeting point of several more classical problems.

Indeed, partitioning a graph into linear forests is first trying to partition its edges into arbitrary

forests. The problem of determining the minimum number of such forests – or actually computing

them – has been addressed with a complete characterization from Nash-Williams [124] as early as in

1964.
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Theorem (Nash-Williams). The smallest number of forests necessary to cover the edges of a graph

G is equal to

max
H⊆G

⌈ |E(H)|
|V (H)| − 1

⌉

This result is a complete characterization of graphs that can be written as the disjoint union of

k forests, as for any induced subgraph H ⊆i G the disjoint union of k forests can cover at most

k(|V (H)| − 1) edges.

Hence this theorem from Nash-Williams addresses the relaxed version of linear arboricity in which

degree constraints are left out, but one could have attempted to take a different direction and relax the

acyclicity constraint. At the end of this road lies one of Petersen’s theorems [129].

Theorem (Petersen). A 2k-regular graph is the union of k edge-disjoint 2-regular graphs.

The promised decomposition – and a proof of this theorem – can be obtained in two steps, if one

is willing to work on directed graphs which (for once) greatly simplify the problem.

How to decompose the edges of a graph into edge-disjoint graphs of maximum degree 2

1. Find an orientation D of G of maximum out-degree ⌈12mad(G)⌉ ≤ ⌈12∆⌉ (see p.33). If

G is 2k-regular, then the maximum out-degree ∆+(D) is equal to k.

2. Build a bipartite graph B having on side L a vertex v− and on side R a vertex v+ for any

vertex v of G.

3. For each edge uv ∈ D, link u− to v+ in B. If G is 2k-regular, then B is r-regular.

4. Compute a proper edge coloring of B, which can be done with at most ⌈12∆⌉ color classes.

5. The partition of E(G) is obtained by associating each edge to its corresponding color class

in B. Each vertex v has at most two neighbors of the same class (one for v−, one for v+),

with a total of at most ⌈12∆⌉ different colors (k if G is 2k-regular).

It is hence possible to partition any graph in edge-disjoint graphs of maximum degree two, while

such a construction may give rise to many cycles and no clear indication on how to prevent it.

This proof, however, is clear enough about the interests of dealing with a directed version of our

problem. And indeed, this question is also one of the most disturbing conjectures related to linear

arboricity.

Conjecture (Nakayama, Peroche [122]). The arcs of a directed graph D can be covered with at most

∆+(D) + 1 forests of directed paths.
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Were this conjecture true, one could obtain a decomposition of the edges of a graph G into linear

forest by working on an orientation of G minimizing the out-degree (see p.33).

From this conjecture on directed graphs, one can think of linear arboricity as the intersection of

three matroids :

• A first matroid whose bases are the sets of arcs inducing a digraph of maximum out-degree 1

• A second matroid whose bases are the sets of arcs inducing a digraph of maximum in-degree 1

• A third matroid whose bases are the sets of arcs inducing (when forgetting their orientation) a

forest (the cycle matroid).

The problems of covering the edges of a graph with bases from only one of those matroids can be

solved using the Matroid Union Theorem (see Schrijver [143]) – the third one actually leads directly

to Nash-Williams’ Theorem. Covering the edges of a graph with elements from any two of these

matroids yields Petersen’s theorem when the first two are chosen. There exists, however, no Union

Theorem for the intersection of two matroids though it is computationally easy to find a maximal base

of both matroids. Even finding such a maximal base for the intersection of 3 matroids, though, is

already NP-Hard. Being able to find a maximal common base of these three matroids would mean

being able to decide whether a graph admits a Hamiltonian path, and that may be asking for too much

in polynomial time.

1.2.2 Acyclic edge coloring of planar graphs

As it is the case with the linear arboricity, many hard conjectures virtually disappear when studied in

the context of planar graphs. Instead of having to deal with a state-of-the-art bound of 16∆ on the

acyclic chromatic index of a graph, several stronger results were known.

Theorem (Fiedorowicz, Haluszczak, Narayanan [79]). χ′
a(G) ≤ 2∆(G) + 29 for any planar graph

G.

Or, when restricted to triangle-free graphs :

Theorem (Hou, Liu, Wang (2010) [105]). Let G be a triangle-free planar graph with maximum

degree ∆(G) ≥ 8. Then χ′
a(G) ≤ ∆(G) + 3.

Theorem (Yu, Hou, Liu, Liu, Xu (2009) [157]). Let G be a triangle-free planar graph with maximum

degree ∆(G) ≥ 12. Then χ′
a(G) = ∆(G).

Both papers [105, 157] also studied the acyclic chromatic index of planar graphs with given girth

and maximum degree.

With Basavaraju, Chandran, Havet and Müller, we divided the general bound for planar graphs by

two [22] (see Appendix p.91), obtaining the exact asymptotic behavior.

Theorem (Basavaraju, Chandran, Cohen, Havet and Müller). If G is a planar graph

χ′
a(G) ≤ ∆(G) + 12
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Our proof heavily rests on the theorem from van den Heuvel and McGuiness presented on page

36. We also conjectured that the additive term could be removed for large values of ∆(G), and proved

that ∆ colors were sufficient for graphs of large girth.

Theorem (Basavaraju, Chandran, Cohen, Havet and Müller). If G is a planar graph with girth at

least 5, then χ′
a(G) = ∆(G).

It is also to be noted that on the class of outerplanar graphs – taken as a subclass of 2-degenerate

graphs – a tight result has been obtained.

Theorem (Basavaraju, Sunil Chandran (2010)). [21] Let G be a 2-degenerate graph. Then χ′
a(G) ≤

∆(G) + 1

1.2.3 Linear and 2-frugal choosability in graphs of small maximum average degree

Along with Havet [53] (see Appendix p.110), I studied two variants of proper vertex coloring in the

context of sparse graphs.

The first one is 2-frugal coloring, which is an acyclic coloring deprived of its global constraints.

It is actually a proper coloring of the vertices of a graph in which each pair of color classes induces a

graph of maximum degree 2, and so can be defined by purely local constraints. We also studied the

non-local version – linear coloring – in which pairs of color classes must also induce acyclic graphs.

These global constraints complicate our discharging arguments, which were applied to the choos-

ability version of these colorings of graphs with small maximum average degree, generalizing results

obtained by Esperet, Montassier, and Raspaud [73] on planar graphs.

About these two colorings, we obtained through the discharging method sufficient conditions on

the mad and maximum degree (or alternatively girth and maximum degree) of planar graphs ensuring

the existence of colorings with a small number of colors.
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mad(G) ∆(G) Linear choosability

< 16
7 ≈ 2.2857 ≥ 3 ≤ ⌈∆2 ⌉+ 1 Esperet et al. [74]

< 39
16 = 2.4375 ≥ 5 ≤ ⌈∆2 ⌉+ 1 Appendix p.110

< 48
19 ≈ 2.5263 ≥ 7 ≤ ⌈∆2 ⌉+ 1 Appendix p.110

< 3− 3
∆+1 ≥ 8 ≤

⌈
∆
2

⌉
+ 1 Appendix p.110

< 5
2 ≤ ⌈∆2 ⌉+ 2 Esperet et al. [74]

< 60
23 ≈ 2.6086 ≥ 5 ≤ ⌈∆2 ⌉+ 2 Appendix p.110

< 3− 9
4∆+3 ≥ 7 ≤

⌈
∆
2

⌉
+ 2 Appendix p.110

< 14
5 = 2.8 ≤ ⌈∆2 ⌉+ 3 Appendix p.110

< 3 ≥ 12 ≤
⌈
∆
2

⌉
+ 3 Appendix p.110

< 3 ≤ ⌈∆2 ⌉+ 4 Appendix p.110

mad(G) ∆(G) 2-frugal choosability

< 5
2 ≥ 7 ≤ ⌈∆2 ⌉+ 1 Appendix p.110

< 3 ≤ ⌈∆2 ⌉+ 3 Appendix p.110

Or alternatively, according to the girth of planar graphs :

girth ∆(G) Linear choosability

≥ 16 ≥ 3 ≤ ⌈∆2 ⌉+ 1 Esperet et al. [74]

≥ 7 ≥ 13 ≤ ⌈∆2 ⌉+ 1 Raspaud and Wang [133]

≥ 8 ≤ ⌈∆2 ⌉+ 1 Appendix p.110

≥ 10 ≤ ⌈∆2 ⌉+ 2 Esperet et al. [74]

≥ 9 ≥ 5 ≤ ⌈∆2 ⌉+ 2 Appendix p.110

≥ 7 ≤ ⌈∆2 ⌉+ 3 Appendix p.110

≥ 6 ≤ ⌈∆2 ⌉+ 4 Appendix p.110

≥ 5 ≤ ⌈∆2 ⌉+ 6 Raspaud and Wang [132]

≥ 85 ≤ ⌈ 9
10∆⌉+ 5 Raspaud and Wang [132]

girth ∆(G) 2-frugal choosability

≥ 6 ≤ ⌈∆2 ⌉+ 3 Appendix p.110



Chapter 2

Graph and Hypergraph decomposition

In this chapter are presented two decomposition problems, in the settings of graphs and hypergraphs.

First of all, let us say that a hypergraph H (or set system) defined on a set X of vertices is nothing but

a family of subsets of X . Hence, saying that H ⊆ 2X is by itself a definition of the object, like one

could define a graph G to be a subset of
(
X
2

)
.

A hypergraph can be considered to be a generalization of graphs, like graphs can be considered to

be a generalization of boolean logic. If much of the terminology is common to graphs and hypergraphs

(one will talk about vertices in both situations, edges are renamed as hyperedges, the degree of a

vertex in a hypergraph is the number of hyperedges containing this vertex and regularity has the

same definition), few are the graph problems which remain meaningful when defined in the setting

of hypergraphs. In particular, several possible generalizations are available for the most basic graph

notions of path, cycle, connectivity, or for proper colorings.

One also has to consider the numerical difference between these combinatorial objects, i.e. the nu-

merical difference between the number of hypergraphs on n elements, 22
n

, and the number of graphs

on n elements, 2(
n
2). This is a hint that the average hypergraph encodes an amount of information

way above what a graph on the same amount of vertices (or a polynomial number of them) contains,

and that for this reason most of the hypergraphs produced by a graph problem will inherit a very

constrained structure, unrepresentative of the behavior of “general hypergraphs”.

Hypergraphs, when studied for themselves, have given rise to very elegant results. One could

for instance name Baranyai’s theorem (whose proof rests on computations of flows and/or matchings,

see p.15), or the complete characterization of the profile of Sperner families extending the LYM

inequality (see [30]). However, the most enticing aspect of hypergraph theory is definitely its list

of open problems, if only for Frankl’s conjecture on frequent vertices in union-closed families, or

Chvatal’s conjecture on maximum intersecting families in hereditary hypergraphs (see p.9 for both).

The interested reader can refer to Bollobas [30] or Berge [26] for any additional information.

Besides hypergraphs, the results presented in the current chapter will use one of the fundamental

results of design theory, whose beginning can probably be traced back to the following problem.

Kirkman’s Problem (1850)

Fifteen schoolgirls walk each day arranged three-by-three in five rows. How can their positions be

planned in such a way that during one week no two of them are twice in the same row ?

Kirkman’s problem is actually to find, given a set of n schoolgirls (improperly named vertices in

49
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the whole body of scientific literature), a set of (n − 1)/2 partitions of [n] by elements of
(
[n]
3

)
such

that any two schoolgirls appear in at most one 3-set (and hence exactly one for cardinality reasons).

When n = 15, this problem has a solution (see Fig.2.1).

Day 1 {X,A, a} {E,G, f} {C,D, g} {B,F, d} {b, c, e}
Day 2 {X,B, b} {F,A, g} {D,E, a} {C,G, e} {c, d, f}
Day 3 {X,C, c} {G,B, a} {E,F, b} {D,A, f} {d, e, g}
Day 4 {X,D, d} {A,C, b} {F,G, c} {E,B, g} {e, f, a}
Day 5 {X,E, e} {B,D, c} {G,A, d} {F,C, a} {f, g, b}
Day 6 {X,F, f} {C,E, d} {A,B, e} {G,D, b} {g, a, c}
Day 7 {X,G, g} {D,F, e} {B,C, f} {A,E, c} {a, b, d}

Figure 2.1: A solution to Kirkman’s problem [43]

Ray-Chaudhuri and Wilson proved [134] in 1971 that such a system exists if and only if n ≡ 3[6].
In what will concern us from now on, however, there will be little need for the additional constraint

that the collection of 3-sets be partitioned into partitions of [n]. What we are aiming at are Steiner

Triple Systems.

Definition. A Steiner Triple System of order n is a subset S of
(
[n]
3

)
such that each pair of elements

in [n] appear in exactly one element of S. Equivalently, a Steiner Triple System is a partition of the

edges of the complete graph Kn into triangles.

As previously, such set systems need not necessarily exist for any value of n. Indeed, as each

3-set contains 3 different pairs, and as each pair is required to appear in exactly one 3-set, we already

know that such systems can only exist when
(
n
2

)
≡ 0[3], and so when n ≡ 0, 1[3]. Besides, as any

vertex appears in two different pairs for any 3-set that contains it, the total number of pairs in which

it appears, n− 1, must be divisible by 2. Those two necessary conditions, summed up by n ≡ 1, 3[6],
are actually sufficient.

Theorem (Kirkman (1847)). A Steiner Triple System exists if and only if n ≡ 1, 3[6].

Since, this theorem has been powerfully generalized twice by Wilson, producing the highly reg-

ular structures which are typical of design theory. If his theorems remain (heavily) asymptotic – it

actually proves that the necessary constraints are also sufficient for large enough values of n – exact

constructions are actually available [54] when k ≤ 9.

Theorem (Wilson (1975)). For any fixed k and any large enough integer n, the edges of Kn can be

partitioned into edge-disjoint copies of Kk if and only if k − 1 divides n− 1 and
(
k
2

)
divides

(
n
2

)
.

Wilson’s second generalization involves decomposing the edges of Kn into copies of an arbitrary

graph H , and in this case the necessary conditions are to be changed as H is not necessarily regular

anymore. His answer asserts that once more an arithmetical answer is sufficient : if a vertex of Kn

belongs to different edge-disjoint copies of H , it may successively represent different vertices of H ,

and in particular its degree in Kn is the sum of the degrees of the vertices it represents. Hence,

there exists an integer linear combination using the elements of H’s degree sequence which produces

∆(Kn) = n−1, which in turn is necessarily divisible by the greatest common divisor of the elements

of H’s degree sequence.
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Theorem (Wilson (1975)). For any fixed graph H and any large enough integer n, the edges of Kn

can be partitioned into edge-disjoint copies of H if and only if gcd(dH(v1), . . . , dH(v|V (H)|)) divides

n− 1 and |E(H)| divides
(
n
2

)
.

2.1 Arboricity in hypergraphs

Because there exist in hypergraphs multiple definitions of paths and cycles, there exist as well many

different definitions of what an acyclic hypergraph is. As we would like an acyclic hypergraph to

generalize acyclic graphs, we could attempt to copy a definition of what a forest is.

“A forest is a graph G verifying the equality |V (G)| = |E(G)|+ cc(G).”
(where cc(G) denotes the number of connected components of G)

This, however, would require the definition of connectedness in hypergraphs. Similarly, we could

attempt to generalize this definition of a tree.

“A tree is a graph such that exactly one path exists between any two vertices.”

But once more we should then define what a path is in hypergraphs. In the following, the definition

of acyclicity we study is inherited from this alternative definition of a forest.

“A forest is a graph that can be built by starting from one vertex and repeatedly adding vertices of

degree one.”

A hypergraph H (defined over the set X of vertices) is said to be α-acyclic1 when Graham’s re-

duction algorithm [88] – i.e. the repetition of the following rules – reduces H to the empty hypergraph.

• If a vertex x ∈ X has degree one, then delete x from the edge containing it.

• If A,B ∈ H are distinct edges such that A ⊆ B, then delete A from H.

With these rules, one can say that a k-uniform hypergraph (i.e. a hypergraph whose hyperedges all

have cardinality k) is α-acyclic if and only if it is 1-degenerate according to this given generalization

of degeneracy. As for graphs, researchers studying hypergraphs are interested in possible equivalents

of Nash Williams’ [124] theorem (see p.45).

With Bermond, Chee, and Zhang [27] (see Appendix p.129) we studied the α-arboricity of the

complete 3-uniform hypergraphs, which is the minimum number of α-acyclic hypergraphs necessary

to cover (or equivalently to partition) the edges of the complete 3-uniform hypergraph
(
X
3

)
.

The starting point on this problem is the observation that an α-acyclic k-uniform hypergraph on n
vertices can have at most n− k+1 edges. This can actually be deduced from an equivalent definition

of the α-acyclicity of hypergraphs based on induced cycles (through chordality2).

1For alternative definitions of hypergraph acyclicity, namely Berge-acyclicity, β-acyclicity and γ-acyclicity, see [75]
2A graph is said to be chordal if it has no induced cycle of length ≥ 4, or alternatively if it can be reduced to the empty

graph by successive removals of vertices whose neighborhood is a clique.
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Definition (k-sections of hypergraphs (see Berge [26])). The k-section of a hypergraph H is the k-

uniform hypergraph defined on the same vertex set whose edges are all the k-subsets contained in an

edge of H. The 2-section of a hypergraph is a graph.

Theorem (Beeri et al. [23]). H is α-acyclic if and only if its 2-section G is a chordal graph whose

maximal cliques are the edges of H.

A result of Acharya and Las Vergnas [1],[27], through the definition of the cyclomatic number

gives a complete characterization of α-acyclic hypergraphs pleasantly reminiscing of trees.

Definition (α-acyclic uniform hypergraph, alternative definition [23],[1],[27]). A k-uniform hyper-

graph is α-acyclic if and only if it can be built from one edge by iteratively creating an edge between

isolated vertices and ≤ k − 1 vertices which already belonged to a common hyperedge.

Knowing that a k-uniform α-acyclic hypergraph can have at most n−k+1 edges, one cannot hope

to partition the edges of an hypergraph in fewer than ⌈|E(H)|/(n− k + 1)⌉ α-acyclic hypergraphs. In

particular, it has been conjectured that this lower bound is tight for k-uniform complete hypergraphs.

Conjecture (Wang [156]). The α-arboricity of the complete k-uniform hypergraph on n vertices is

⌈
1

k

(
n

k − 1

)⌉

As it is often the case for such design problems, symmetrical constructions only exist under some

arithmetical constraints. In the specific case of the complete 3-uniform hypergraph, the bound be-

comes 1
3

(
n
2

)
= n(n−1)

6 and one can then hope to obtain symmetrical constructions when this value

needs not to be rounded, namely when n ≡ 1, 3[6].

That this is precisely the existence condition for Steiner triple systems presented previously should

come as no surprise.

Indeed, it is possible to find a partition of a 3-uniform hypergraph on 3n′ + 1 or 3n′ + 3 vertices

into star-shaped α-acyclic hypergraphs (see Fig.2.2). Those stars are built from a central hyperedge

{u, v, w}, to which are added other 3-sets intersecting {u, v, w} in two elements. Hence, all the edges

of this star-shaped hypergraph are of the form {u, v, •}, {u, •, w} or {•, v, w}. We also require that

no vertex except u, v, or w appear in more than one edge of the star.

Such an hypergraph is naturally α-acyclic, according to the definition given previously, as all

the vertices different from u, v or w are of degree 1. Through Graham’s rules they can be reduced

to the center only, and from there to the empty hypergraph. Hence, in order to determine the α-

arboricity of the complete 3-uniform hypergraph we can attempt to decompose it into
n(n−1)

6 star-

shaped hypergraphs.

All is left to do now is to chose the centers of our future
n(n−1)

6 α-acyclic hypergraphs, and

associate to each of them n−3 other sets so that all the hypergraphs are of cardinality n−k+1 = n−2.

This second step can be reduced to solving some maximum matching problem in a bipartite graph G.
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Figure 2.2: A star-shaped 3-uniform hypergraph

From a decomposition problem to a perfect matching

On the first side A appear in this graph vertices representing the
n(n−1)

6 centers we chosed, and

on the second side B all the other 3-sets of
(
n
3

)
.

We aim at associating many 3-sets to each center, and we would like to ensure that any vertex

not contained in the center of the hypergraph is of degree 1. Therefore, we duplicate each of

the vertices representing the centers n − 3 times, and specialize them : we actually replace

each center {u, v, w} by n − 3 copies ({u, v, w}, t) for each vertex t 6∈ {u, v, w}, and link

({u, v, w}, t) to any 3-set of side B containing t and two vertices among {u, v, w}, i.e. the

possible extensions of {u, v, w} containing t.

See Fig.2.3 for the case n = 7.

If there exists in this graph a perfect matching our problem is solved. Indeed, a perfect matching

means that each center {u, v, w} is associated to n − 3 sets of size 3 which are the neighbors of the

vertices of the shape ({u, v, w}, t) and would yield the desired partition. This being said, a perfect

matching in this graph need not necessarily exist. In particular, a vertex ({u, v, w}, t) could be isolated

if we picked all of {u, v, t}, {u, t, w} and {t, v, w} as centers, and ensuring that there is none of the

blocking configuration described by Hall’s theorem does not sound like an easy task either.

Hopefully, we can prove the existence of a perfect matching using a simpler criterion by taking as

centers the elements of a Steiner Triple System. We are sure in this case that none of {u, v, t}, {u, t, w}
or {t, v, w} is a center if {u, v, w} is one, and so all the vertices of A are of degree 3. If we note STSuv

the unique set from our Steiner Triple System containing both u and v, it is also true to say that any

vertex {u′, v′, w′} of B is linked to the three elements (Suv, w), (Suw, v) and (Svw, u), and G is

actually both bipartite and 3-regular.

For these reasons the graph admits a perfect matching, and the complete hypergraph on 3n′ + 1

or 3n′ + 3 vertices admits a partition into
n(n−1)

6 α-acyclic hypergraphs.

With Bermond, Chee, and Zhang [27], we used this construction to completely determine the

α-arboricity of the 3-uniform complete hypergraphs.
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({1, 2, 4} , 0)

({1, 2, 4} , 3)

({1, 2, 4} , 5)

({1, 2, 4} , 6)

({1, 5, 6} , 0)

({1, 5, 6} , 2)

({1, 5, 6} , 3)

({1, 5, 6} , 4)

({2, 3, 5} , 0)

({2, 3, 5} , 1)

({2, 3, 5} , 4)

({2, 3, 5} , 6)

({0, 1, 3} , 2)

({0, 1, 3} , 4)

({0, 1, 3} , 5)

({0, 1, 3} , 6)

({0, 4, 5} , 1)

({0, 4, 5} , 2)

({0, 4, 5} , 3)

({0, 4, 5} , 6)

({0, 2, 6} , 1)

({0, 2, 6} , 3)

({0, 2, 6} , 4)

({0, 2, 6} , 5)

({3, 4, 6} , 0)

({3, 4, 6} , 1)

({3, 4, 6} , 2)

({3, 4, 6} , 5)

{1, 2, 3}

{0, 5, 6}

{0, 2, 5}

{0, 1, 4}

{0, 1, 2}

{0, 3, 4}

{0, 2, 4}

{2, 3, 4}

{3, 5, 6}

{1, 3, 6}

{3, 4, 5}

{2, 5, 6}

{0, 1, 5}

{1, 3, 5}

{1, 4, 5}

{1, 2, 6}

{0, 1, 6}

{0, 4, 6}

{1, 4, 6}

{1, 2, 5}

{2, 3, 6}

{0, 3, 5}

{2, 4, 6}

{4, 5, 6}

{0, 3, 6}

{2, 4, 5}

{1, 3, 4}

{0, 2, 3}

Figure 2.3: Case n = 7
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Theorem (Bermond, Chee, Cohen, Zhang [27] (see Appendix p.129)). The α-arboricity of the com-

plete 3-uniform hypergraph is ⌈n(n− 1)/6⌉.

2.2 Induced decompositions

The results and constructions presented in this section have been obtained in collaboration with

Zsolt Tuza.

In 2010, Bondy and Szwarcfiter [33] began the study of induced decompositions of graphs. While

one common definition of a H-decomposition of a graph G is “a partition of E(G) into copies of H”,

they were interested in finding a partition of E(G) into induced copies of H . Of course, an induced

H-decomposition of G is always a H-decomposition of G.

The following C5-decomposition of K5 (see Fig.2.4) is obviously not induced, while the C4-

decomposition of the octahedron (see Fig.2.5) is a typical example of the constructions they are inter-

ested in.
t
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Figure 2.4: Non-induced C5-decomposition of K5
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Figure 2.5: Induced C4-decomposition of the octahedron

They were in particular interested in determining a parameter whose study for usual graph de-

composition is completely settled. Indeed, while the most general version of Wilson’s theorem (see

p.51) asserts that any fixed graph H decomposes the edge set of arbitrarily large complete graphs,

there is no way to decompose any complete graph into induced copies of another graph H whenever
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H is not complete. They introduced [33] along with their new variant of graph decompositions the

parameter ex(n,H) equal to the maximum number of edges of a graph on n vertices admitting an

induced H-decomposition.

Then again, by Wilson’s Theorem, one can associate to any graph H an infinite sequence of

integers n such that Kn admits a H-decomposition. On the other hand, when H is not complete

we know for sure that ex(n,H) <
(
n
2

)
for any integer n, which leaves wide open the problem of

determining the exact value of ex.

Bondy and Szwarcfiter initiated [33] their study by determining the exact value of ex(n,H) for

several families of graphs, most of the effort going in trying to determine the extremal graphs admit-

ting an induced H-decomposition. In particular, they determined the exact value of ex(n,H) when

H is the complete r-partite graph with k vertices in each part or the star K1,k. They also studied the

value of ex(n,H) for small graphs H , getting exact values for C4, K1 +K2, 2K1 +K2, K1 +K1,2,

and asymptotic values for K4\e. In all these cases the order was
(
n
2

)
− o(n2). They also gave lower

bounds for P4 (of order 3n2/8) and K1,3 + e (of order 2n2/5).

Short of attempting to determine for all graphs the exact value of ex(n,H), or the corresponding

extremal graphs admitting an induced H-decomposition, their results can lead to think that all graphs

H satisfy ex(n,H) =
(
n
2

)
− o(n2). In particular, the smallest graphs for which the asymptotic

behavior of ex was unknown after their paper counts 2K2, P4,K1,3 + e, to which they added C5 and

C6.

2.2.1 Induced 2K2-decomposition of dense graphs

It turns out that 2K2 – which is the disjoint union of two edges – can be used to decompose arbitrarily

dense graphs.

Kneser’s graph Kn
k is the graph built on all k-subsets

([n]
k

)
⊆ 2[n] of [n], two of them being

adjacent whenever they correspond to disjoint sets. For a fixed k, the number of edges in Kn
k is

(1−o(1))
((nk)

2

)
, as two random k-subsets of a n-element set are disjoint with high probability when n

is grows. Hence, proving that Kn
k admits an induced 2K2-decomposition would yield ex(n, 2K2) =(

n
2

)
− o(n2).

This being said, and even though 2K2 is always an induced subgraph of a large enough Kn
k with

k fixed (a necessary condition for an induced 2K2-decomposition to exist), there is no hope of being

able to decompose Kn
2 into induced copies of 2K2, as its number of edges may well be odd at times.

The graph K4
2 is actually isomorphic to 3K2. The family Kn

3 , however, is more promising as it always

has an even number of edges.

Once we are decided on trying to find an induced 2K2 decomposition of Kn
3 , one way to obtain

one presents itself. The first non-empty graph in the family is K6
3 , and it is isomorphic to 10K2 – a

graph that trivially decomposes into induced 2K2. When n is grows large, many copies of K6
3 can be

found in Kn
3 : one but needs to consider, for any subset S ⊆

(
[n]
6

)
, the graph induced by the vertices of

Kn
3 included in S. There will be, for sure, precisely

(
6
3

)
of those, and the graph they induce is without

any surprise a copy of K6
3 .

Hence, any restriction of Kn
3 to a 6-subset S results in an induced copy of 10K2. Besides, all

these copies are edge-disjoint, as there is only one set of size 6 containing the two disjoint sets of size

3 corresponding to adjacent vertices in Kn
3 . One then obtains an induced 2K2-decomposition of Kn

3
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by considering first an induced K6
3 -decomposition of Kn

3 , then splitting the disjoint copies of K6
3 into

induced copies of 2K2.

2.2.2 Induced decomposition of dense graphs (second construction)

If the previous technique lets one prove that ex(n, 2K2) =
(
n
2

)
− o(n2), obtaining the same result for

graphs like P4 or K1,3 + e seems to require additional work. Indeed, if the graphs K7
3 or K8

3 can be

expected to have a more complicated structure 3 than K6
3 , it is not as easy to decompose a “large” Kn

3

into induced copies of K7
3 . Taking a set S of size 7 would indeed lead us toward an induced copy of

K7
3 inside of Kn

3 , but all those we obtain this way have no reason to remain edge-disjoint anymore. In

order to prove ex(n,H) =
(
n
2

)
− o(n2) for H equal to P4 or K1,3 + e, we need to modify our initial

class of graphs to obtain easier decompositions.

Let S1 and S2 be two disjoint sets on n1 and n2 elements. We define the graph Gn1,n2 over

the elements S ⊆ S1 ∪ S2 such that |S ∩ S1| = 1 and |S ∩ S2| = 1, two of them being adjacent

whenever they are disjoint, as they were in Kneser’s graph. This is again a family of dense graphs as

the probability that two random sets be disjoint is equal to (1− 1
n1
)(1− 1

n2
).

(Equivalently, the graph Gn1,n2 can be described as the complement of the line graph of a complete

bipartite graph on n1 + n2 elements, i.e. Gn1,n2 ≈ L(Kn1,n2). This remark will prove useful later on,

though we will stick to the terminology of Kneser graphs in what follows.)

The first non-empty graph of this family happens to be 1-regular with 4 vertices... hence G2,2 ≈
2K2. Besides, it is possible as previously to find an induced decompositions of some large Gn,n

into copies of a fixed G2,2. Indeed, an induced copy of G2,2 can easily be found inside of Gn,n by

considering two sets S′
1 ⊆

(
S1

2

)
and S′

2 ⊆
(
S2

2

)
and taking the restriction 4 of Gn,n to S1 ∪ S2. Let

us also note that an edge between two sets s1, s2 ∈ Gn,n only appears in the induced copy generated

by the restriction of Gn,n to s1 ∪ s2 (which is of cardinality 4). Therefore, taking all possible choices

of S′
1, S

′
2 and the induced copies of G2,2 to which they corresponds results in a complete induced

G2,2 ≈ 2K2-decomposition of Gn,n.

2.2.3 Induced decompositions of dense graphs into small graphs H

We are now again in front of a dense family of graphs which can be decomposed into 2K2. The “next”

graph in our family, G3,2 is actually isomorphic to C6 – which can be decomposed into induced copies

of P4 – and G4,3 can be decomposed into induced copies of K1,3 + e as we immediately show.

3And if we can hope that they admit one of P4 or K1,3 + e as subgraphs, or even better that they can be decomposed

into induced copies of those.
4As for the previous construction, by restriction we mean considering the graph induced in Gn,n by the sets included in

S1 ∪ S2
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Decomposing G4,3 into induced copies of K1,3 + e

The following decomposition was obtained with the software Sage [145], asked to compute a

maximum independent set in the graph of all induced K1,3 + e subgraphs of G4,3, two of them

being adjacent when they share an edge, and thus producing a list of 9 edge-disjoint graphs on 4

edges isomorphic to K1,3 + e, which partition the 36 edges of G4,3.
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Alternatively, if we label the columns with {a, b, c, d} and the rows with {1, 2, 3} (1a being the

bottom-left corner and 3d the top-right one), the decomposition is given by the graphs induced

by the following sets of vertices.

{1a, 2d, 3b, 3d} {1c, 2b, 3d, 2d} {2c, 1d, 3b, 3d}
{2a, 1d, 3c, 3d} {1a, 2b, 3c, 2c} {3a, 1b, 2c, 1c}
{1b, 2d, 3c, 3d} {2a, 1c, 3b, 1b} {3a, 1d, 2b, 2d}

Hence, in order to produce decompositions of dense graphs into copies of P4, C6 or K1,3 + e, it

is enough to show that large graphs Gn,n admit induced G4,3- or G3,2-decompositions.

Given two integers k1, k2, we can once more find in a large Gn,n an induced copy of Gk1,k2 by

picking two sets S′
1 ⊆

(
S1

k1

)
, S′

2 ⊆
(
S2

k2

)
and restricting Gn,n to S′

1 ∪ S′
2. Unfortunately, when k1 or k2

are greater than 3 the same edge of Gn,n could appear in two different induced copies.

To avoid that, we can do better than pick “all the k1-subsets of S1 and all the k2-subsets of S2”.

The property used previously to prove that the induced copies of 2K2 were disjoint is that two disjoints

sets of Gn,n are contained in exactly one choice of sets S′
1, S

′
2. Hence, we are looking for a collections

of k1-subsets of S1 (resp. a collection of k2-subsets of S2) such that any pair of elements in S1 (resp.

S2) appear in exactly one set of our collection.

This property is precisely what describes a decomposition of the complete graph Kn into copies of

Kk1 : a collection of k1-subsets of [n] such that any pair of elements appears in exactly one element of

our collection. Hence, by Wilson’s theorem there exists for any integers k1, k2 ≥ 2 an integer α5 such

5One can choose α = lcm
(

2
(

k1
2

)

, 2
(

k2
2

)

, k1 − 1, k2 − 1
)

to trivially fulfill the divisibility constraints from Wilson’s

theorem, though many other solutions exist in general.. For instance, with k1 = 2, k2 = 3 the decomposition is possible
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that for any sufficiently large integer n with n ≡ 1[α] there exist two families C1 ⊆
(
S1

k1

)
, C2 ⊆

(
S1

k2

)

with the property that any two disjoints sets of Gn,n are contained in the union of two unique elements

S1 ∈ C1 and S2 ∈ C2.

2.2.4 Enlarging our family of dense graphs

The sequence of dense graphs that we have slowly built over the previous decompositions, is, un-

fortunately, quite unable to lead us further. Indeed, the graph Gn,n remains the “complement of the

line graph of a bipartite graph”. Being the complement of a line graph, it can not contain as induced

subgraphs the complement of the forbidden subgraphs of line graphs (see p.26), and so, for instance,

cannot contain K1 +K3 as an induced subgraph (the complement of the claw graph).

Hence, we can not hope to use this family of graphs to prove that ex(n, F ) =
(
n
2

)
− o(n2) for any

graph F . We can, however, try to generalize it so that it may contain any given graph H as an induced

subgraph. This can be achieved by considering sets of size 3 or more.

Definition. Let S1, . . . , Sk be disjoints sets of cardinality n. The graph Gk×n is defined over all the

sets S ⊆ S1 ∪ · · · ∪ Sk such that |S ∩ Si| = 1 for all i. In this graph, two sets S1, S2 ∈ V (Gk×n) are

adjacent if and only if S1 ∩ S2 = ∅.

When k is fixed, the family of graphs Gk×n – which depends on n – is asymptotically dense.

Indeed, Gk×n is a (n − 1)k-regular graph defined on nk vertices. Besides, by construction, Gk×n

is trivially vertex-transitive and edge-transitive6. The most interesting feature of this graph class is,

however, that any graph H appears as the induced subgraph of some Gk×n. The complement K1+K3

of the claw graph K1,3, which did not appear in any of the graphs Gn,n we used in the previous

sections, is an induced subgraph of G3×3 (see Fig.2.6).

Figure 2.6: A realisation of K1 +K3 as an induced subgraph of G3×3

whenever n ≡ 1, 3[6], and it is possible with k1 = 3, k2 = 4 whenever n ≡ 1[12]. In general, complete characterizations

of the values for which there exists a Kk-factorization of Kn are available [54] when k ≤ 9.
6A graph G is said to be vertex-transitive (resp. edge-transitive) whenever there exists, for any pair u, v ∈ V (G)

of vertices (resp. for any pair e, e′ ∈ E(G) of edges), an automorphism f of G such that f(u) = v (resp. such that

f(e) = e′). The reader can refer to Godsil [86] for any related question. The papers [118, 95], which explain Brendan

McKay’s isomorphism algorithm Nauty [117], provide very good excuses to study the basics of Algebraic Graph Theory.
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Lemma. For any graph H there exists integers n0, k0 such that H is an induced subgraph of any

Gk×n with k ≥ k0 and n ≥ n0.

Proof. It is sufficient (and much more than is actually needed) to choose n ≥ |V (H)| and k ≥
(
n
2

)
.

By definition, there exists in Gk×n an independent set of size n, i.e. n disjoint sets Hv ∈ V (Gk×n) of

size k representing each vertex v ∈ H . These n sets induce in Gk×n a complete graph, and they can

be modified step by step so as to induce in Gk×n a copy of H .

Indeed, one can consider in turn each non-edge of H , i.e. all of the {u1v1, . . . , u|E(H)|v|E(H)|} =

E(H), and replace either

Hui by (Hui ∩ Si) ∪ (Hvi ∩ Si)

or

Hvi by (Hvi ∩ Si) ∪ (Hui ∩ Si)

so that Hui and Hui intersect in Si. At the end of this procedure, the graph induced in Gk×n by the

sets (Hv)v∈H is precisely H .

This construction actually requires much larger graphs Gk×n than are actually needed. Of course,

picking k ≥ |E(H)| instead of k ≥
(
n
2

)
would be sufficient, but even there this construction requires

for Kn a graph as large as Gn×(n2)
, while G(n+1)×n or G(⌈log2(n)⌉+1)×2 both contain independent sets

of size n.

This being said, we are now in possession of a class of highly symmetrical dense graphs containing

any graph H as an induced subgraph.

2.2.5 Induced H-decompositions of dense graphs

Considering the construction of an induced subgraph H in an arbitrarily large graph Gk×n, one can

already expect to find many disjoints instances of H inside of it. It is quite unlikely, though, that for

a fixed kH all the sufficiently large graphs GkH×n would admit an induced H-decomposition, if only

because of arithmetical constraints. There is no appearant reason why Wilson’s theorems would not

be required anymore to obtain decompositions of GkH×n when k becomes greater than 3, and so we

should either begin to carefully define for which values of n an induced H-decomposition of Gk×n

could exist, or slightly change our proof’s methodology.

Indeed, if trying to decompose Gk×n into induced copies of a graph H may be asking for too

much, it is actually sufficient to be able to decompose a dense subgraph of Gk×n into copies of H to

obtain our desired result. Hence, we could be satisfied with finding edge-disjoint induced copies of

H in Gk×n using a total of (1− o(1))|E(Gk×n)| edges. The union of these copies is a perfectly valid

example of dense graph admitting an induced H-decomposition.

In order to obtain this decomposition, we will use a lemma from Frankl and Rödl [82] (see also

[13, 87]).

Lemma (Frankl and Rödl [82]). Let the integer m ≥ 3 and the real z > 3 be fixed. Then for every

fixed ǫ > 0 there exists a real δ > 0 and a threshold value M0(ǫ) with the following property. If an

m-uniform hypergraph H has M > M0(ǫ) vertices and all of its vertex degrees are between (1− δ)d
and (1 + δ)d for some d, and moreover each vertex pair is contained in at most d/(logM)z edges of

H, then H contains at least M/m− ǫM mutually disjoint edges.
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This wonderful lemma can let us find the desired set of edge-disjoint induced copies of H in a

large Gk×n if we can achieve to rephrase our problem in terms of a maximum hypergraph matching

(a matching in an hypergraph is a set of vertex-disjoint edges). What we need now is to define a

hypergraph whose edges are all the occurrences of H in Gk×n.

If we were to define on S1 ∪ · · · ∪ Sk the hypergraph in which the edges are all the
⋃H, for

any H ⊆ V (Gk×n) inducing a copy of H in Gk×n, Frankl and Rödl’s lemma would not lead us very

far. Indeed, a maximum matching is this hypergraph corresponds to a maximum collection of induced

vertex-disjoints copies of H , i.e. a very sparse graph, while we are looking for edge-disjoint copies of

H covering the maximum possible amount of edges in Gk×n.

To do so, we have no other alternative but to define our hypergraph using as a vertex set the edge

set of Gk×n. We are now working on the hypergraph GH
k×n, whose set of vertices is E(Gk×n), and

whose edges are all the E(F ), for any induced subgraph F ⊆i E(Gk×n) isomorphic to H .

This hypergraph is vertex-transitive – a direct result of the edge-transitivity of Gk×n – as well as

|E(H)|-uniform. Besides, a matching of size (1−o(1))|E(Gk×n)|/|E(H)| corresponds to a collection

of induced edge-disjoint copies of H in Gk×n covering (1 − o(1))|E(Gk×n)| edges, i.e. a dense

subgraph of Gk×n admitting an induced H-decomposition.

Hence, a successful application of the previous lemma would yield the equality ex(n,H) =
(
n
2

)
− o(n2).

Using Frankl and Rödl’s lemma

Frankl and Rödl’s lemma requires the hypergraph on which it is applied to be “almost regular”, i.e.

that the vertex degrees be “between (1 − δ)d and (1 + δ)d for some d”, which is trivially true in

the present case as GH
k×n is regular. The lemma then rests on a comparison between the degree of a

vertex, and the degree of a pair of vertices, i.e. a comparison between the number of edges containing

a vertex, and the number of edges containing at the same time the two elements of a pair of vertices.

This second property cannot be obtained “for free” from the vertex-transitivity of the edge-

transitivity of Gk×n. What is required here is a relationship between the number of induced copies

of H containing a given edge of Gk×n (i.e. the degree of a given vertex of GH
k×n), and the number of

induced copies of H containing two given edges of Gk×n (i.e. the number of edges of GH
k×n containing

two given vertices).

Let us consider two edges v1v
′
1, v2v

′
2 ∈ E(Gk×n), corresponding to sets S1, S

′
1, S2, S

′
2 ∈

V (Gk×n). By definition, S1 ∩ S′
1 = ∅ and S2 ∩ S′

2 = ∅, but S1 ∪ S′
1 and S2 ∪ S′

2 may very well

intersect.

When k ≥
(
|V H|
2

)
, and so when the size of the sets defining the vertices of Gk×n is large compared

to the number of edges of H , much of the information they contain is not relevant to encode “as few

as” a
(
|V H|
2

)
-size information. In particular, we will be interested in the elements of S1 ∪ S′

1 and

S2 ∪ S′
2 which are necessary to encode the information of a given copy of H in Gk×n.

For any non-edge of our copy of H , corresponding to two sets of Gk×n intersecting on (at least)

one element x, let us mark x if it belongs to S1 ∪ S′
1 ∪ S2 ∪ S′

2. Having marked at most one element

for any non-edge of H , and arguing of the fact that H is not an independent set, there are in each of

our four sets at least k −
(
|V (H)|

2

)
+ 1 unmarked elements.

The unmarked elements of S1 and S′
1 are not actually relevant to the adjacency properties of
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these sets with the other sets of the copy of H . Hence, we can obtain a different induced copy of H
containing S2, S

′
2 but avoiding S1 and S′

1 by replacing in S1 and S′
1 these unmarked elements by any

other element not contained in the current copy of H , i.e. at least n− |V (H)| alternatives for each of

the 2(k −
(
|V H|
2

)
+ 1) unmarked elements.

As a conclusion, one can associate to any copy of H containing all of S1, S
′
1, S2, S

′
2 at least

(n− |V (H)|)2(k−(|V H|
2 )+1) copies of H not containing S1, S

′
1. As the number of times each of these

alternative copies of H can appear from an original copy of k containig all of S1, S
′
1, S2, S

′
2 is a

function of k and H , we deduce that in Gk×n the degree of a vertex is at least Θ(n2(k−(|V H|
2 )+1))

times the number of edges containing any pair of vertices. Let us only remember that for any c > 0
we can chose kc such that the degree of a vertex is at least Θ(nc) times the number of edges containing

any pair of vertices.

It is now possible to use Frankl and Rödl’s lemma. Indeed, given the family of graphs Gkc×n

depending on n, the r-regular hypergraph GH
kc×n defined on a vertex set of size |E(Gkc×n)| verifies

that each pair of vertices is contained in at most Θ(r/nc) = Θ(r/|Gkc×n|c/2k) = o(r/log(|Gkc×n|)3).
Hence, by this lemma there exists in GH

kc×n a matching covering (1 − o(n))|E(Gkc×n)| vertices,

and in turn there exists in Gk×n a dense subgraph admitting an induced H-decomposition.

Theorem (Cohen, Tuza [121]). ex(n,H) =
(
n
2

)
− o(n2) for any non-empty graph H .



Chapter 3

Algorithms

In this chapter are presented works whose considerations shift from graph theory to the design of

algorithms. In turn are presented an algorithm based on color coding to detect the existence of specific

subdigraphs, a scheduling problem in telecommunication networks, and a coloring called good edge

labellings initially defined as an attack of routing problems in networks.

3.1 Subgraph detection using color coding

In [50] (see Appendix p.142), Fomin, Gutin, Kim, Saurabh, Yeo and myself designed an algo-

rithm whose purpose is to detect the presence of specific subdigraphs. In particular, if we call out-

arborescence or out-tree a digraph obtained from a rooted tree by orienting all its edges away from

the root, we obtained the following result.

Theorem (Cohen, Fomin, Gutin, Kim, Saurabh, Yeo [50] (see Appendix p.142)). A copy (under-

stood as a subdigraph) of an out-tree on k vertices can be detected in a digraph on n vertices in

O(n25.704k) time by a randomized algorithm.

To design this algorithm, we used a general method named color coding [14] (see the next section)

initially presented as a way to detect treewidth-bounded subgraphs. These algorithms can in turn easily

be derandomized at the cost of some efficiency, and yield a deterministic algorithm.

Theorem (Cohen, Fomin, Gutin, Kim, Saurabh, Yeo [50] (see Appendix p.142)). A copy (understood

as a subdigraph) of an out-tree on k vertices can be detected in a digraph on n vertices in O(n26.14k)
time by a deterministic algorithm.

In the following sections are presented the method called color coding, an explanation of how they

can be derandomized, and a short explanation of FPT complexity inside of which our result naturally

fits.

3.1.1 Color coding

In 1995, Alon Yuster and Zwick [14] first devised an entertaining technique to locate in a graph

G a subgraph isomorphic to a tree T . This method, that they call color coding, can be seen as an

improvement on the following highly memory-consuming algorithm :

63
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In order to find a tree T in a graph G, pick an edge uv ∈ T , whose removal splits T into two

subtrees Tu and Tv. Then, compute for each vertex r ∈ G the list of all copies of Tu (resp. Tv) in G
where r plays the role of u (resp. v). Once done, and for each edge rurv ∈ G, tests whether there

exists two disjoint copies of Tu and Tv in which ru acts as u and rv as v.

One would naturally expect this algorithm to spend most of its time building, and then exploring

the list of pairs of trees Tv and Tu in order to test whether two of them could be disjoint and correctly

linked, as the number of such trees grows polynomially according to n. The hang of color coding is

to use a much smaller (though incomplete) amount of information.

Let the colors appear. Before running the algorithm, all the vertices are given a color among a set

of k = |V (T )|. The algorithm, instead of using the possibly large information of all the copies of

Tu (where ru acts as u), only remembers “the different sets S of colors such that there exists a copy

Tu whose colors belong to S”. This is sufficient to measure the complexity of the algorithm using k
instead of n. Indeed, if the number of copies can be polynomially large according to n, there is at most

2k different sets of color they can use 1. With this information only, it remains possible to identify

pairs of vertex-disjoint trees Tu and Tv : if we know there is a copy of Tu “around” ru and a copy Tv

“around” rv such that the colors used in Tu are disjoint from the colors used in Tv, then obviously the

trees themselves are disjoint.

In this happy context, the algorithm can return an answer. Most of the other times, or for example

when all the vertices are given the same color, this algorithm will miss most – if not all – pairs of

valid trees. Sheer optimism not being sufficient when it comes to finding a tree in a graph, we now

have to pay the dependency on n which disappeared when the list of all copies of subgraphs has been

shortened to a list of different color sets.

In [14], the authors find their way out by exploring the space of different colorings and note that

such a modified version finds a copy of T in G on the condition that all of its vertices are initially given

different colors, which happens with probability k!/kk when the vertices of G are colored uniformly

at random. Hence, given an integer k, this algorithm finds in any graph G a copy of a tree T on k

vertices with probability at most k!/kk, or equivalently needs to be run at most 1/log(1 − kk

k! ) times

to find a subgraph T with probability at least 1/2.

Derandomization – covering arrays

From this random algorithm, Alon Yuster and Zwick [14] then extract a deterministic one. This can be

done in many ways, the first one being to sequentially consider all the possible nk colorings of V (G),
which would result in a very poor algorithm (it is far less expensive to test whether any of the

(
n
k

)

subsets of vertices represents our tree!). As the algorithm applied on a given coloring only requires

the vertices of the copy of T to be given different colors in order to detect it, one could first attempt

to reduce the space of different colorings through the use of covering arrays (see [96] for a general

survey and [106] for a survey focused on binary covering arrays).

Definition (Covering Arrays). A covering array of strength t from {1, . . . , n} to {1, . . . , k} of size s
is (equivalently) :

• An s × n matrix M with values in {1, . . . , k} such that the restriction of M to any t columns

contains rows corresponding to all the possible kt vectors of length t on {1, . . . , k}.

1Actually
(

n
|Tu|

)
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• A collection C of s functions from {1, . . . , n} to {1, . . . , k} such that any assignment of values

in {1, . . . , k} to the elements of a t-set of {1, . . . , n} is realized by at least one function of C.

Hence, considering as a collection of colorings a (smallest possible) covering array of strength k
from {1, . . . , n} to {1, . . . , k} would certify that any copy of T in G would be detected by the color-

coding algorithm, as any k-subset would be assigned all of its possible k-coloring, including the k!
colorings in which they are all assigned different colors.

In their application, the authors instead use [14] families of perfect hash functions [8], which are

precisely what their algorithm requires.

Definition (Families of hash functions). A function f : [m] 7→ [n] is said to be a S-perfect hash

function for a set S ⊆ [m] if |f(S)| = |S|. A family of hashing functions {f1, . . . , fs} is k-perfect if

it contains a S-perfect hash function for any set S of size k.

With such a set of colorings, there exists for every k-subset S of [n] a function fi such that all

the elements are assigned different colors). They then explain how to build a family of k-perfect

hash functions from {1, . . . , n} to {1, . . . , k} of size 2O(k)log(n) by composing a construction of k-

perfect hashing functions from {1, . . . , n} to {1, . . . , k2} [141] and k-perfect hashing functions from

{1, . . . , k2} to {1, . . . , k}, obtained by Naor et al. [123] and Alon et al. [6].

As in our situation [50] (see Appendix p.142) the algorithm is built recursively, we instead make

repeated use of binary covering arrays.

3.1.2 FPT Complexity

The previous algorithm can be seen as an attempt to study subgraph detection in the framework of

FPT complexity. Indeed, by improving upon the algorithm presented on p.64, Alon Yuster and Zwick

transferred this algorithm’s complexity from the size of G to the size of the subgraph H they want

to find : if it was originally of complexity O(|G|Θ(|H|)) (one can sometimes find Θ(nk) copies of a

graph on k vertices in a graph of n vertices), the color coding method reduced it to a runtime of the

form f(|H|)|G|c – where c is a constant – so that the algorithm’s asymptotic complexity does not

depend anymore on the value of the fixed graph F .

The existence of such an algorithm could lead to think that the complexity of finding a copy of

H in G lies more in the size of H than in the size of G, as f is exponential while |G|c is a fixed

polynomial. For this reason the analysis of an algorithm through the lens of FPT complexity can be

seen as an attempt to get a better theoretical understanding of the source of computational hardness

in a given problem, and provides a framework refining classical complexity when all it yields is NP-

Hardness.

More practically, let us look at the Maximum Independent Set problem, which amounts to decide

– given a graph – the size of a maximum set of pairwise nonadjacent vertices. This problem can

trivially be solved by testing all of its 2|V (G)| subsets and keeping in memory the size of the maximum

independent set found, which takes time at most 2|V (G)||E(G)|. As a decision problem, it is usually

formulated as:

INPUT : A graph G, an integer k
OUTPUT : Does there exist in G an independent set of size at least k ?

There is a algorithm solving this problem in time
(|V (G)|

k

)
|E(G)| ≤ |E|nk, exactly as previously

– by testing all the k-subsets of n, which teaches us nothing new. We barely used the information
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given by k to produce this different algorithm, and the point of FPT complexity is precisely to define

a new analytic framework to decide which kind of parameters give us a powerful information on how

to solve the problem.

A parameterized computational problem is said to be FPT (Fixed Parameter Tractable) if its run-

ning time is of the form O(f(k)nc) for some constant c. This can be read as a sign that the problem’s

complexity lies more in what the parameter k measures2 than in the actual size of the instance. Under

assumptions in FPT complexity which mirror the P 6= NP conjecture, there is actually no FPT-time

algorithm solving this parameterized complexity problem3. A different choice of parameter may have

led to a different conclusion

INPUT : A graph G with tree-width at most k
OUTPUT : Does there exist in G an independent set of size at least t ?

In this different setting, the maximum independent set problem can be solved in 2O(k)|E(G)| time

[20, 80, 29], which is the complexity of a FPT problem.

3.2 Reconfiguration problem

The WDM reconfiguration problem is a macroscopic4 scheduling problem appearing in telecommu-

nication networks. This problem appears when different users need to communicate with each other

using edge-disjoint routes in a network. Practically, we consider in this setting that several users in a

network need to communicate with each other (each user has a list of correspondents with whom he

wants to exchange information), and that the paths in the network they need to exchange information

are to be edge-disjoint, which is the general definition of the Integer Multiflow problem.

This problem is typically hard to solve, even on instances of moderate size5, and is in what con-

cerns us part of the instance of the problem. In the WDM reconfiguration problem, we are actually

given a network, and two different solutions to the integer multiflow problem of identical parameters

(in particular the same pairs of nodes exchange information), and we will be striving to transform this

first routing into the second one according to basic rules meant to preserve the quality of service.

In practice, this scheduling problem can be motivated by the need of a maintenance operation on

some equipment of the network, during which some part of the network itself may be made unavail-

able. In order to prevent it, we would ideally like to redistribute the load withstood by the equipment to

be interrupted, in such a way that the users observe the least possible perturbation in their exchanges.

The WDM reconfiguration problem is a scheduling problem, whose rules follow. They define two

operations modifying a routing scheme, from which precise optimization problems will be defined

afterwords.

2The FPT complexity of the same optimization problem can be analyzed according to different parameters. Actually, a

FPT complexity problem is not properly defined if the parameter is not.
3The Independent Set problem, parametrized with k – the size of the desired independent set – belongs to complexity

class W [1].
4We call it “macroscopic” as the communications we are dealing with are actually aggregated flows of many communi-

cations, which will be operated on as monolithic units.
5It is also used as a subroutine to detect minors in graphs, which can give an idea of its computational hardness.
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WDM reconfiguration problem : the rules

An instance of the WDM reconfiguration problem is a graph, along with two sets S1, S2 of edge-

disjoint paths corresponding to feasible solutions of the integer multiflow problem. In particular,

there is a bijection f : S1 7→ S2 associating to each path of S1 a path f(P ) ∈ S2 with the same

endpoints.

In order to transform a routing scheme S1 into a routing scheme S2, the following two operations

can be applied on the network, to iteratively modify the “current” routing.

• Interrupt a connection, which frees the resources (=edges) it uses

(in this case any exchange of information through connection are to be interrupted)

• Replace a path P ∈ S1 (currently in use, or interrupted) by f(P ) if the resources needed

by f(P ) are available

(in which case its endpoints can immediately use it to exchange information)

Dependency digraph – second formulation

Given two solutions to the integer multiflow problem, the only relevant information – according to

the rules of the WDM reconfiguration problem – lies in a (non-symmetric) binary relation. Two paths

P1, P2 ∈ S1 are in conflict whenever P1 is to be re-routed on a path f(P1) ∈ S2 which requires

resources used by P2.

From an instance of the WDM reconfiguration problem, one can then build a dependency digraph,

in which the vertices represent the paths of S1, with an edge from a vertex u to a vertex v whenever u
is in conflict with v. In this new graph, the WDM reconfiguration problem can be re-defined as a cops

and robbers game [128].

WDM reconfiguration problem : in the dependency digraph

Inside of the dependency digraph, a reconfiguration scheduling is equivalent to a sequence of

the following moves :

• Add an agent on a vertex (i.e. interrupt the corresponding connection)

• Remove a vertex – and eventually the agent lying on top of it – if all of its outneighbors

(possibly 0) have agents placed on them.

This game being completely equivalent to the previous reconfiguration rules, it is equivalent to

study the dependency digraph instead of sets of edge-disjoint paths.
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One can be led to wonder whether the graphs obtained by this transformation may have any useful

specific properties that could be used of help in the analysis. Fortunately, any digraph can be obtained

as the dependency digraph of a pair of two equivalent routings [52] and so the two formulations totally

equivalent.

Finding good reconfiguration orderings

Having modelled the routing reconfiguration problem with a digraph, the next step is to formalize the

objectives of a good reconfiguration ordering and make it an optimization problem. Indeed, there is

always a trivial solution to a reconfiguration problem : it is enough to interrupt all the communications

at once, which frees all the resources, and to resume the information exchange by using the path f(P )
when P ∈ S1 was formerly used. It would have been much better to be able to set up the path

f(P ) before P is interrupted, as in this case the communications can be moved from P to f(P )
unbeknownst to the users.

For this reason, it makes sense to define and study various metrics of the impact a scheduling

may have on the quality of service – for instance the total number of communications interrupted

or (to a lesser extend) the maximum number of simultaneously interrupted communications. With

Coudert, Mazauric, Nepomuceno and Nisse [52] (see Appendix p.161), we studied the computational

complexity of determining optimal orderings minimizing those metrics, as well as their tradeoffs.

Minimizing the number of agents simultaneously present in the digraph (which amounts to min-

imizing the number of simultaneously interrupted connections in the network) has many common

points with determining the pathwidth of a graph [56]. This similarity appears when computing a

reconfiguration ordering of a digraph obtained from a graph after replacing each edge by two opposed

arcs. By minimizing the total number of agents appearing in the digraph (i.e. by trying to minimize

the total number of connections that will be interrupted), we actually solve the Feedback Arc Set

problem6 as no digraph containing a circuit C can be processed if no agent ever touches a vertex of

C. From these two metrics, we defined constrained problems in which one is to minimize the number

of agents simultaneously present, at the same time using a bounded number of agents in total. Simi-

larly, given a constraint of the maximum number of agents simultaneously present, one can strive to

minimize the total number of agents used by a reconfiguration ordering. Unfortunately for practical

applications, these problems often turn out to be NP-Hard, as well as hard to approximate.

3.3 Good edge Labelling

The problem presented in this third section also originates from a routing problem.

In 2009, Bermond, Cosnard and Pérennes [28] studied the problem of allocating frequencies to

lightpaths in fiber networks. As in the previous section, the main problem in this context remains to

find in a network the actual routing of communications between pairs of nodes willing to exchange

information with each other, but once this routing is found many other NP-Hard problems are still left

to be solved. In the context of fiber networks, several communications can share the same medium on

the condition that they use different frequencies. While this constraint is local (all the communications

using the same edge use different frequencies) is it expensive (both in equipment and delay) to alter a

lightpath so as to change its frequency.

6The Minimum Feedback Arc Set problem is a covering problem : the goal is to find in a digraph a smallest set of arcs

hitting all the circuits.
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For this reason, Bermond et al. considered this problem with the additional constraint that a

given communication has a constant frequency. In this context, everything boils down to a coloring

problem. Indeed, given a routing of the communications (some of which sharing edges, according

to their capacity), the assignment of frequencies such that any two lightpaths sharing a medium use

different frequencies is the very definition of a proper coloring in a conflict graph. This is, in practice,

easier to solve than the routing problem. From there, Bermond et al. wondered in which situations the

coloring problem could be the hardest of the two : it is trivially harder in a class of directed graphs in

which there exists only one path from one vertex to another. The routing problem is then trivial, but

on such constrained graphs the resulting coloring problem could also have lost its complexity.

Hence, they began the study of the conflict graph produced by a (trivial) routing in a digraph

having this uniqueness property. They found out [28] that this conflict graph admitted what they

called a good edge labelling (see below), and that conversely any graph which admitted a good edge

labelling could be produced as the conflict graph of a communication routing in a constrained digraph.

In their definition of a good edge labelling of a conflict graph, the idea of unique paths remains.

Definition. A good edge labelling of a graph is an assignation of numerical values to its edges such

that between any two vertices u and v there exists at most one increasing path from u to v in which

the edge labels are increasing.

The class of graphs admitting such an edge labelling – and so the class of conflict graphs produced

by routings in their constrained digraphs – has several basic properties which may be helpful in solving

the complementary proper coloring problem. A triangle, for instance, does not admit a good edge

labelling, and so graphs admitting one are necessarily triangle-free. Besides, as there is in any edge

labelling of a P3 an increasing path from one endpoint to the other, any graph containing two vertices

linked by three different P3 (i.e. a graph containing a copy of K2,3) does not admit a good edge

labelling.

In [19] (see Appendix p.185), we studied some properties of the graphs admitting a good edge

labelling and their recognition :

Theorem (Araujo, Cohen, Giroire, Havet [19]). Deciding whether a bipartite graph admits a good

edge labelling is NP-Complete.

As a corollary of this result, and under the assumption that P 6= NP , the class of graphs admitting

a good edge labelling can not only consist in K3,K2,3-free graphs, as recognising those can be done

in time O(n5) using an enumerative algorithm. Indeed, we also presented in [19] an infinite family of

incomparable K3,K2,3-free graphs admitting no good edge labelling (see Fig.3.1).

Besides, with the remark that a minimal graph admitting no good edge labelling can not contain

a matching cut (i.e. a set of edges disconnecting the graph and inducing a matching), we also proved

that some classes of graphs always admit a good edge labelling, i.e. triangle-free outerplanar graphs,

planar graphs of girth at least 6, subcubic K3,K2,3-free graphs, and K3,K2,3-free ABC-graphs (a

class of graphs with no matching cut defined by Farley and Proskurowski [76]).
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Figure 3.1: Family of incomparable graphs not admitting any good edge labelling
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Wiener and Zagreb indices in chemical

graphs

The Wiener and Zagreb indices are not two, but three indices defined over graphs, measuring prop-

erties of interest in chemistry. Unusually enough, they are not NP-Complete to compute, and can be

easily evaluated on any graph, depending only on very basic parameters. The Wiener index is actually

the sum of the distances between all pairs of vertices of a graph – for obvious reasons defined on

connected graphs.

W (G) =
∑

u,v∈V (G)

d(u, v)

In chemistry, this measure belongs to the larger class of the so-called topological indices [131].

Researchers also studied the behavior of the Wiener index of line graphs (called edge-Wiener index

in [102]), and then compared the respective values of W (G) and W (L(G)) on a given graph G
([60, 103, 65, 63, 66] ).

The Zagreb indices were introduced in 1972 by Gutman et al. [90], and have been used since as a

tool to study various molecular parameters. As graph measures, they are defined by

M1(G) =
∑

v∈V (G)

d(v)2 and M2(G) =
∑

uv∈E(G)

d(u)d(v)

Since [126], there has been a growing interest in comparing the parameters
M1(G)

n and
M2(G)

m on

various classes of graphs.

Wiener index

In [49] (see Appendix p.219), we proved that a minimalistic assumption on the degrees of a graph

is sufficient to ensure W (G) ≤ W (L(G)).

Theorem (Cohen, Dimitrov, Krakovski, Škrekovski, Vukašinović). If the minimum degree of a graph

G is at least two, then W (G) ≤ W (L(G)).

This proof is essentially analytic, and derived from an inequality which lets us compute two mea-

sures depending exclusively on the distance between vertices, instead of working on two different

71
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graphs or dealing with distances between both edges and vertices. If we denote e = uv, e′ = u′v′ ∈
E(G), then

dL(G)(e, e
′) ≥ 1

4

[

d(u, u′) + d(u, v′) + d(v, u′) + d(v, v′)
]

.

From this, one can then derive the inequality W (G) ≤ W (L(G)) by assuming a minimum degree

of at least 2 and some appropriate counting.

While, cycles are the only graphs of minimum degree 2 for which the inequality holds, many in-

stances other instances exist which satisfy W (G) = W (L(G)) – and those have leaves. In particular,

Dobrynin and Mel’nikov posed the following problem.

Problem (Dobrynin and Mel’nikov[64]). Is it true that for every integer g ≥ 5, there exists a graph

G 6= Cg of girth g, for which W (G) = W (L(G))?

We partially answered this question with the following result [49].

Theorem (Cohen, Dimitrov, Krakovski, Skrekovski, Vukasinovic). There exists a graph G of arbi-

trarily large girth satisfying W (G) = W (L(G)).

The construction of these graphs is pretty elementary, as they are built from a cycle (with a chord)

to which are attached two paths of variable lengths (see Fig.4.1).

Φ(k, p, q) L(Φ(k, p, q))

y1

y2

yq−1

x1

x2

xp−1

u2k+1 v2k+1

u2k v2k

vk

vk

v2
v1u1

uk

uk+1

u2

u2k−1 v2k−1
y1

y2

x1

x2

u2k+1 v2k+1

u2k v2k

vk

vk+2

vk+1

v2
v1u1

uk+1

uk+2

uk

u2

xp

yq

Figure 4.1: Graphs Φ(k, p, q) and L(Φ(k, p, q))
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k p q W (G) W (L(G))

2 2 2 96 106

2 2 3 128 136

2 2 4 171 178

2 2 5 226 233

2 3 2 128 136

2 3 3 165 170

2 3 4 214 217

2 3 5 276 278

2 4 2 171 178

2 4 3 214 217

2 4 4 270 270

2 4 5 340 338

2 5 2 226 233

2 5 3 276 278

2 5 4 340 338

2 5 5 419 414

3 2 2 254 274

3 2 3 306 322

3 2 4 373 386

3 2 5 456 467

3 3 2 306 322

3 3 3 363 374

3 3 4 436 443

3 3 5 526 530

3 4 2 373 386

3 4 3 436 443

3 4 4 516 518

3 4 5 614 612

3 5 2 456 467

3 5 3 526 530

3 5 4 614 612

3 5 5 721 714

k p q W (G) W (L(G))

4 2 2 534 568

4 2 3 610 638

4 2 4 705 728

4 2 5 820 839

4 3 2 610 638

4 3 3 691 712

4 3 4 792 807

4 3 5 914 924

4 4 2 705 728

4 4 3 792 807

4 4 4 900 908

4 4 5 1030 1032

4 5 2 820 839

4 5 3 914 924

4 5 4 1030 1032

4 5 5 1169 1164

5 2 2 972 1024

5 2 3 1076 1120

5 2 4 1203 1240

5 2 5 1354 1385

5 3 2 1076 1120

5 3 3 1185 1220

5 3 4 1318 1345

5 3 5 1476 1496

5 4 2 1203 1240

5 4 3 1318 1345

5 4 4 1458 1476

5 4 5 1624 1634

5 5 2 1354 1385

5 5 3 1476 1496

5 5 4 1624 1634

5 5 5 1799 1800

The polynomials obtained with these values are

W (Φ(k, p, q)) =

6k3+2k2p+2k2q+2kp2+2kq2+
1

2
p2q+

1

2
pq2− k2+

1

6
p3− p2+

1

6
q3− q2− 7k− 7

6
p− 7

6
q+4

W (L(Φ(k, p, q))) =

6k3+2k2p+2k2q+2kp2+2kq2+
1

2
p2q+

1

2
pq2+k2+

1

6
p3+

1

6
q3−2kp−2kq−1

2
p2−pq−1

2
q2+k+

1

3
p+

1

3
q

Figure 4.2: Values of W (Φ(k, p, q)) and W (L(Φ(k, p, q))) for k, p, q ∈ {2, 3, 4, 5}
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The main part of our work actually consists in computing the values of W (G) and W (L(G))
when the three different parameters of our graphs are fixed (each pending path has its own length, and

the third parameter measures the size of the central cycle).

While such computations are long and heavy, there exists a quick way to convince oneself that

W (G) = W (L(G)) holds for many graphs of this class. To this aim, one but needs to believe for a

while that – considering the definition of the Wiener index – the value of both W (G) and W (L(G)) is

a polynomial function depending on our three parameters. If this is true, then of course the difference

W (G)−W (L(G)) is also a polynomial1. Besides, given the small size of our graphs, the parameters

W (G) or W (L(G)) can be easily evaluated on many instances (see p.73).

Based on these values, and through the additional assumption that the polynomial corresponding

to W (G)−W (L(G)) is of degree at most 3, one can make great use of Hilbert’s Nullstellensatz (see

p.23). Indeed, under all those assumptions there exists only one polynomial of our three variables

whose value is precisely the one computed directly on 43 different graphs of our family (see p.73).

Once this polynomial has been computed – through Lagrange’s interpolation polynomials, or more

easily by exact matrix inversion – it can be easily tested on instances of Φ(k, p, q) different from those

used to define it, to check that it indeed predicts the actual values of W (G) and W (L(G)).

Through these successive manipulations, one can derive the existence of graphs satisfying

W (G) = W (L(G)) by showing the existence in the polynomial W (G)−W (L(G)) of infinite fami-

lies of zeroes.

Zagreb indices

In [17] (see Appendix p.206) and [16] (see Appendix p.230), together with Vesna Andova and

Riste Škrekovski, we studied the inequality M1/n ≤ M2/m.

As it trivially holds on regular graphs, we gave in [17] a condition on the span of the degree

sequence of a graph ensuring that it verifies this relation.

Theorem (Andova, Cohen, Skrekovski). If G is a graph with ∆(G) − δ(G) ≤ ⌈√c ⌉ and δ(G) ≥ c

for some integer c, then
M1(G)

n ≤ M2(G)
m .

We also provided a class on which the opposite holds regardless of the value of ∆, for an infinite

sequence of graphs of any maximum degree ∆.

Finally, we gave a short elementary proof of the known inequality M1/n ≤ M2/m for trees [155]

and unicyclic graphs [45].

1Note that this assertion can actually hide a mistake. Even though we may intuitively feel that the value of W (G)
or W (L(G)) is a polynomial function of k, p, q, this polynomial may involves operands like ⌊ k

2
⌋. This kind of integer

divisions is by no means a polynomial, and so it may be necessary to study the value of W (G) and W (L(G)) under some

additional constraints of the congruence classes of the parameters.
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Applied theoretical research – Sage

Like a mechanical hand helping researchers, the assistance provided by computers can be invaluable

when working on theoretical problems. Since the beginning of my studies, I have been needing to

compute properties – at first mainly proper colorings – of graphs for which computers are able to enu-

merate all the possibilities. I began by defining my own graph libraries, first in C and in Perl, to finally

download and use various more complete libraries from the internet (including the MASCOPT[112]

library developed in the MASCOTTE research team). Each one had a different aim : some were good

at handling large graphs but were missing important time-consuming methods, other were centered

on statistical properties or linear algebra, other only studied graphs for as long as they were computer

networks and focused on routing properties, etc... Of course, this meant they all used a different class

structure and different languages.

This is how I began to use the general-purpose software Sage [145], which describes itself as

“an attempt to build an open-source alternative to Magma, Maple, Mathematica and Matlab”, and

is a pure product of academia. Being mainly developed by researchers or students (more than 230

contributors), Sage addresses a very wide range of mathematics and grounds many of its algorithms

on third-party open-source code developed independently. One of its most appealing features is of

being a common front-end to state-of-the-art libraries which are meant to execute one very specific

task1, and to do it accurately and efficiently.

Graph Theory in Sage

Sage has now become a complete and expressive library for the study of graph theory (among many

others fields of mathematics). It is able to generate close to 100 different graphs and digraphs2 on

which it can use more than 260 different functions ranging from automorphism test, flows, connectiv-

ity and matchings to exact algorithms for NP-hard problems, along with many tests of recognition of

different graph classes.

For the purposes of research, I enjoyed writing Sage code related to my studies, and ended up

making many additions among the list of graphs it is able to generate, as well as among its graph and

digraph methods.

1Efficiency often excludes “user-friendliness” – each independent software having its specific inputs/outputs – which is

another point for the existence of Sage.
2Many of them are “named” graphs, like Petersen’s or Chvatal’s, but it also contains methods to generate different types

of random graphs (Gn
p , Gn

m, random regular graphs, . . . ) or families of graphs (Kneser’s, unlabeled graphs, from a specified

degree sequence, . . . ).

75
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Bipartite graphs from degree sequences Circuit Graph

Complete Multipartite Graphs DeBruijn

DirectedGNM Kneser’s Graphs

Random Bipartite Graphs Random interval graph

The World’s graph

Figure 5.1: Additions to Sage’s graph classes

Acyclicity test (with certificates) Bounded outdegree orientation

Chordality test (with certificates) Computing graph k-cores

Connectivity methods 3 Counting spanning trees

Eulerian orientation Exhaustive search of subgraphs

Gallai tree recognition Gomory-Hu decomposition

Interval graph recognition Lex-BFS

Line graph recognition Max flow

Merging vertices Minimum out-degree orientation

Overfull graph recognition Perfect graph recognition4

Petersen 2-factor theorem Split graphs recognition

Shortest path between all pairs5 Splitting edges

Strong orientation of graphs Triangle-free graphs recognition

Szeged index Wiener index

Figure 5.2: Additions to Sage’s graph/digraph methods (LP excluded)

Cython : interfacing Sage and other components

Sage’s original language is Python [150], i.e. a highly expressive language in which many scripts can

be written through only a few words, though admittedly not the fastest available. Through the use of

Cython [144], it is possible to write in Sage code based upon both Python and C/C++, possibly mixed

in the same file. Sage’s graph structure – originally based upon the graph library NetworkX [125] –

has since been reimplemented at near-C levels by Robert Miller with huge gains in efficiency. I also

participated to this effort by rewriting at the same level important routines like DFS and BFS traversals

as well as classical and bidirectional versions of Dijkstra’s algorithm, and the implementation now

used by Sage to compute the distance between all pairs of vertices or their associated shortest paths

is also used by the graph library Grph [100]. Sage’s graph library is today written indifferently in

Python, Cython, or C – the language being picked according to the needs in efficiency.

Cython, however, is especially useful to link with Sage pieces of code written independently, in

any language able to produce library files (C/C++/Fortran/...). One of my first contributions was a

patch exposing several algorithms related to cliques in graphs written in the software Cliquer [127],

which now lets Sage quickly compute maximum cliques (equivalently independent sets and vertex

3Computation of min vertex/edge cuts, or the paths promised by Menger’s theorem, . . .
4Through search of odd holes and odd antiholes
5Many implementations have been made of algorithms solving this problem (Floyd-Warshall, BFS, . . . ) in order to

make it efficient, as developers of the library Grph[100] were at the same time striving to find one able to handle graphs on

thousands of nodes which require a large amount of memory
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covers). In the same way, Sage can now use Fabien De Montgolfier’s implementation [61] of the

modular decomposition algorithm he designed with Capelle and Habib [44].

Of even more general use in Graph Theory, my most useful contribution to Sage was probably the

implementation of an interface with the LP and MILP solvers GLPK[85] (GPL), Coin Branch-and-

Cut[47] (Eclipse Public License), or CPLEX[57] (proprietary) which are now used to solve most of

the NP-Hard problems Sage can handle. This interface is also written a C-level.

Linear Programming in Sage

Linear Programming often yields impressive results when exhaustive enumeration would have been

unrealistic. With a transparent interface between Sage and LP solver, I was able to implement in Sage

many new methods solving NP-Hard optimization or existence problems.

Acyclic edge coloring Degree-constrained subgraph

Disjoint routed paths Dominating set

Edge-disjoint spanning trees Fractional chromatic index

Grundy coloring H-minor

Independent Set of Representatives Knapsack

Linear Arboricity Longest path

Matching Max cut

Max Flow Maximum average degree

Min Feedback arc set Min Feedback vertex

Multiflow Multiway cut

Steiner Trees Topological minors

TSP Vertex/Edge proper coloring

Figure 5.3: Additions to Sage’s graph/digraph : Methods based on Linear Programs

With this interface, solving a Maximum Independent Set problem on a graph can be done with the

following lines, which is infinitely faster than what would be needed to implement a purely combina-

torial algorithm.

sage: g = graphs.PetersenGraph()

sage: p = MixedIntegerLinearProgram()

sage: is_used = p.new_variable(binary = True)

sage: p.set_objective( sum(is_used[v] for v in g) )

sage: for u,v,_ in g.edges():

... p.add_constraint( is_used[u] + is_used[v] <= 1)

sage: p.solve()

More complicated Linear Programs involving generation of constraints (useful for the TSP, Frac-

tional Chromatic Index, Minimum feedback arc set, . . . ) can also be easily written in a few lines

through the same interface, and yielded impressive gains of efficiency, in particular when comparing
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for the Minimum Feedback Arc set problem the classical ordering-based LP formulation and the cov-

ering formulation, in which one tries to compute a minimum set of edges covering all the cycles in

the graph.

Documentation

Sage being an open-source software and developped by a large number of people, it necessarily con-

tains an extensive documentation, both of the code and of the mathematical objects it implements.

This documentation is usually more important (in number of lines) than the code itself, and is also

used to automatically test the whole Sage library for possible inconsistencies.

With several colleagues, I participated to the writing of a Sage manual [46] for french undergrad-

uates students. This book, published under the Creative Commons license and authored by Alexan-

dre Casamayou, Guillaume Connan, Thierry Dumont, Laurent Fousse, François Maltey, Matthias

Meulien, Marc Mezzarobba, Clément Pernet, Nicolas M. Thiéry, Paul Zimmerman and myself, at-

tempts at covering the mathematics those students could meet through the use of Sage, with the hope

that students could find there yet other reasons to enjoy mathematics, and possibly eventually partici-

pate to the development of the software itself.

5.1 Several new LP formulation of optimization problems

In this chapter are presented several Mixed Integer Linear Programs solving various graph problems

having in common constraints of acyclicity or connectedness. They are based on the LP formulation

of the maximum average degree (see Sec.0.5.1), which lets us test (from the inside of a linear program)

whether a set of edges is a forest, or if it contains a spanning tree, hence testing its connectedness.

This trick is sufficient to write MILP formulations for problems like the Traveling Salesman Prob-

lem achieving better performances than through the use of an ordering on the vertices which usually

produces bad relaxations. It can also be used to write an exact solver for the H-minor problem even

though it remains computationally exhausting. Their second attractive feature is to use a reduced

number of constraints : the Traveling Salesman Problem can be solved through MILP with constraint

generation, though the corresponding formulations are theoretically of exponential size.

The general principle behind these formulations is conveyed by the following MILP, which com-

putes a minimum-cost spanning tree based on the LP computation the maximum average degree of a

graph presented in p.34.

This problem is very easy to solve, as well as easy to implement. The following MILP is admit-

tedly the worst way to solve it, but it conveys the idea that will be used to solve several different hard

optimization problems later on.

A subgraph H of a graph G – understood as a set of edges – is a spanning tree of G if and only

if it satisfies both |E(H)| = |V (G)| − 1 and mad(H) < 2. As LP solvers are numerical algorithms

subject to noise, there is little meaning is writing a strict constraint “<” in a LP, and it has to be

replaced by the equivalent version mad(H) ≤ 2 − 2
n . From these two constraints we can define the

desired LP.
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Minimum spanning tree

• Minimize : ∑

e∈E(G)

webe

• Such that :

– The number of edges in a spanning tree is precisely |V (G)| − 1:

∑

e∈E(G)

be = |V (G)| − 1

♦ The set of edges is acyclic :

∗ mad(H) is less than 2− 2
n

∀v ∈ V (G)

∑

e∈E(G)
e∼v

xe,v ≤ 2− 2

n

∗ Each edge sends a flow of 2 to its endpoints if it is in the spanning tree, 0 otherwise :

∀e = uv ∈ E(G)

xe,u + xe,v = 2be

• Variables :

– be is a boolean variable indicating whether the corresponding edge is in the spanning tree

– xe,v is a real positive variable, representing the flow sent by an edge e to one of its end-

points v.

This use of the LP solving the MAD problem is the key to solving several optimization problems

based on connectivity whose list follows. Each of these entries point towards a MILP formulation

that has been implemented in the software Sage [145], where they can now be used to solve actual

instances.

Some of them, like TSP problem, can be solved in Sage through different means or formulations

whose efficiency depends on the instances.

In the given MILP formulations, the constraint ≤ 2 − 2
n differs only in the fact that edges send a
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flow of 1 to their endpoints instead of 2. This constraint hence becomes ≤ 1− 1
n . The terminology “an

edge sends a flow of 1 to its endpoints” is kept all along, and appears only at parts of the formulations

whose aim is to bound the MAD, or equivalently to ensure that a given set of edges is acyclic.

Longest path

The Longest Path problem amounts to find in a graph G a path subgraph of longest size.

INPUT : A graph G
OUTPUT : A path P ⊆ G of maximum size.

It can be defined as a Linear Program as a maximum set of edges P such that P is an acyclic

subgraph of maximum degree 2 with |V (P )| vertices and |V (P )|− 1 edges. The formulation is given

on page 84.

Traveling Salesman Problem

The Traveling Salesman Problem is the optimization problem generalizing the existence of an Hamil-

tonian Cycle.

INPUT : A (complete) graph G, a cost function w : E(G) 7→ R
+

OUTPUT : A spanning cycle C ⊆ G of minimum cost.

It can be defined as a Linear Program by identifying a special vertex v∗ ∈ V (G) and searching a

2-regular graph in G whose trace in G− v∗ is acyclic. The formulation is given on page page 85.

Steiner Tree

Given a set S of vertices of a graph G, a Steiner Tree is a minimum subgraph graph connecting all the

vertices of S together.

INPUT : A graph G, a set S of vertices

OUTPUT : A tree T ⊆ G containing the vertices in S with minimum size.

It is also a acyclic graph T of minimum cost containing the vertices of S. See page 86 for the

corresponding formulation.

Minor Testing

A graph H is a minor of a graph G is it can be obtained from G by successive edge deletions or

edge contractions. Among Robertson and Seymour’s results on graph minors [137] is a cubic time

algorithm for the H-minor problem.
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INPUT : A graph G (H is fixed)

OUTPUT : Existence of a H minor in G

Since, this algorithm seems to have been improved to quadratic time by Kawarabayashi,

Kobayashi and Reed [101] (submitted), but so far the known algorithms are still highly enumerative,

and despite their kind asymptotic behavior none has been addressed with a working implementation.

A H-minor in G can also be seen as a family {S1, . . . , S|H|} ⊆ 2V (G) of vertex-disjoint sets

such that each G[Si] is connected (they correspond to the sets of vertices which – once merged – will

correspond to the vertices of H), with the additional property that if uv ∈ E(H) there exists an edge

between one vertex from Su and one vertex from Sv. This describes the formulation given on pages

87-88.

Unfortunately, this formulation is in practice pretty slow.

Edge-disjoint spanning tree

The problem of finding k edge-disjoint spanning trees in a graph is polynomial, and one of the earliest

consequences of the Matroid Union Theorem (see Schrijver [143]).

INPUT : A graph G, an integer k
OUTPUT : (Existence of) k edge-disjoint spanning trees of G

The Linear Program can be written as a coloring of the edges such that each color class is a

spanning tree. See page 90 for the corresponding formulation.

Linear arboricity

The Linear Arboricity is an edge-covering problem presented page 43.

INPUT : A graph G, an integer k
OUTPUT : (Existence of) a family of k linear forests covering the edges of G

This Linear Program can be written by assigning a color class to each edge, while ensuring that

each of the k different graphs has maximum degree 2 and is acyclic. See page 89 for the corresponding

formulation.

Acyclic edge coloring

Acyclic edge coloring is a variant of edge coloring presented page 40.

INPUT : A graph G, an integer k
OUTPUT : (Existence of) an acyclic edge coloring of G with k colors

This Linear Program can be written as a proper edge coloring problem, to which are added con-

straints ensuring that the graphs induced by each pair of color classes is a forest. See p.91 for the

corresponding formulation.
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Longest Path

• Maximize : ∑

e∈E(G)

be

• Such that :

– P is of maximum degree 2

∀v ∈ V (G)
∑

e∈E(G)
e∼v

be ≤ 2

– The number of vertices in P is the number of its edges increased by 1

1 +
∑

e∈E(G)

be =
∑

v∈V (G)

bv

– The two endpoints of an edge in P are also in P

∀uv = e ∈ E(G)

be ≤ bu and be ≤ bv

♦ The graph P is acyclic :

∗ Mad(P ) is less than 2− 2
n

∀v ∈ V (G),
∑

e∈E(G)
e∼v

xe,v ≤ 1− 1

n

∗ Each edge sends a flow of 1 to its endpoints if it is in P , 0 otherwise :

∀e = uv ∈ E(G)

xe,u + xe,v = be

• Variables :

– be is a boolean variable indicating whether the corresponding edge is in the longest path

– bv is a boolean variable indicating whether the corresponding vertex is in the longest path

– xe,v is a real positive variable, representing the flow sent by an edge e to one of its end-

points v.
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Traveling Salesman Problem

• Minimize : ∑

e∈E(G)

w(e)be

• Such that :

– C is 2-regular

∀v ∈ V (G)
∑

e∈E(G)
e∼v

be = 2

♦ The graph C − v∗ is acyclic :

∗ Mad(C − v∗) is less than 2− 2
n

∀v ∈ V (G)\v∗,
∑

e∈E(G)
e∼v

xe,v ≤ 1− 1

n

∗ Each edge of G− v∗ sends a flow of 1 to its endpoints if it is in C, 0 otherwise :

∀e = uv ∈ E(G\v∗)

xe,u + xe,v = be

• Variables :

– be is a boolean variable indicating whether the corresponding edge is in the longest path

– bv is a boolean variable indicating whether the corresponding vertex is in the longest path

– xe,v is a real positive variable, representing the flow sent by an edge e to one of its end-

points v.
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Steiner Tree

• Minimize : ∑

e∈E(G)

w(e)be

• Such that :

– T contains the vertices from S
∀v ∈ S

bv = 1

– The number of vertices in T is the number of its edges increased by 1

1 +
∑

e∈E(G)

be =
∑

v∈V (G)

bv

– The two endpoints of an edge in T are also in T

∀uv = e ∈ E(G)

be ≤ bu and be ≤ bv

♦ The graph T is acyclic :

∗ Mad(T ) is less than 2− 2
n

∀v ∈ V (G),
∑

e∈E(G)
e∼v

xe,v ≤ 1− 1

n

∗ Each edge of G sends a flow of 1 to its endpoints if it is in T , 0 otherwise :

∀e = uv ∈ E(G)

xe,u + xe,v = be

• Variables :

– be is a boolean variable indicating whether the corresponding edge is in the longest path

– bv is a boolean variable indicating whether the corresponding vertex is in the longest path

– xe,v is a real positive variable, representing the flow sent by an edge e to one of its end-

points v.
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H-minor (part 1)

• Minimize : Nothing

• Such that :

– A vertex of G represents at most one vertex of H

∀v ∈ V (G)

∑

h∈V (H)

bv,h ≤ 1

– A vertex of H has a non-empty set of representants

∀h ∈ V (H)

∑

v∈V (G)

bv,h ≥ 1

♦ Each vertex set Sh is connected (it contains a spanning tree Th) :

∗ The number of edges in Th is equal to |Sh| − 1 :

∀h ∈ V (H)

1 +
∑

e∈E(H)

be,h =
∑

v∈V (G)

bv,h

∗ An edge uv = e can belong to Th only if both its endpoints belong to Sh

∀h ∈ V (H)

be,h ≤ bu,h and be,h ≤ bv,h

∗ Mad(Th) is less than 2− 2
n

∀h ∈ V (H), ∀v ∈ V (G),
∑

e∈E(G)
e∼v

xe,v,h ≤ 1− 1

n

∗ Each edge of G sends a flow of 1 to its endpoints if it is in Th, 0 otherwise :

∀h ∈ V (H), ∀e = uv ∈ E(G)

xe,u,h + xe,v,h = be,h
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H-minor (part 2)

• Such that :

♦ For any edge h1h2 ∈ E(H), there is at least one corresponding edge in G:

∗ An edge e ∈ E(G) can represent h1h2 ∈ E(H) only if one of it has endpoints in

both sets Sh1 and Sh2

∀v1v2 ∈ E(G), ∀h1h2 ∈ E(H)

2bv1,v2,h1,h2 ≤ bv1,h1 + bv2,h2 and 2bv2,v1,h1,h2 ≤ bv1,h1 + bv2,h2

∗ There is at least one representant per edge in H

∀h1h2 ∈ E(H)

∑

v1v2∈E(G)

bv1,v2,h1,h2 + bv2,v1,h1,h2 ≥ 1

• Variables :

– bv,h is a boolean variable indicating whether the corresponding vertex belongs to Sh

– be,h is a boolean variable indicating whether the corresponding edge belongs to Th

– xe,v,h is a real positive variable, representing the flow sent by an edge e ∈ Th to one of its

endpoints v.

– xv1,v2,h1,h2 is a boolean variable indicating whether edge v1v2 ∈ E(G) represents h1h2 ∈
E(H).
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Linear Arboricity

• Minimize : Nothing

• Such that :

– The edges belong to one of K linear forests

∀e ∈ E(G)

∑

k∈{1,...,K}

be,k = 1

– A vertex has at most 2 incident edges with the same color

∀v ∈ V (G), ∀k ∈ {1, . . . ,K}
∑

uv=e∈E(G)
v∼e

be,k ≤ 2

– Each color class induces an acyclic graph. The following is to be understood for any k of

the K color classes

∗ An edge whose ends are colored with c1 and c2 sends a flow of 1, else 0.

∀uv ∈ E(G)

ekuv + ekvu ≥ be,k

∗ A vertex can absorb at most n−1
n

∀v ∈ V (G)

∑

u∈NG(v)

ekuv ≤ n− 1

n

• Variables :

– be,c is a boolean variable indicating whether the corresponding edge belongs to forest k

– ekuv is a positive variable indicating the flow sent to v by the edge uv in the graph induced

by the vertices of forest k
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Edge-disjoint spanning trees

• Minimize : Nothing

• Such that :

– Each edge can belong to one of K trees

∀e ∈ E(G)

∑

k∈{1,...,K}

be,k = 1

– A tree has n− 1 edges

∀k ∈ {1, . . . ,K}
∑

e∈E(G)

be,k = n− 1

– Each tree is acyclic

∗ An edge sends a flow of 1 to its endpoints when it is in a tree

∀e = uv ∈ E(G), ∀k ∈ {1, . . . ,K}

ekuv + ekvu ≥ be,k

∗ A vertex can absorb at most n−1
n

∀v ∈ V (G), ∀k ∈ {1, . . . ,K}
∑

u∈NG(v)

ekuv ≤ n− 1

n

• Variables :

– be,k is a boolean variable indicating whether the corresponding edge belongs to tree k.

– ekuv is a positive variable indicating the weight of edge uv in the graph induced by the

edges of class k.
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Acyclic edge coloring

• Minimize : Nothing

• Such that :

– The edges receive a color from a set C

∀e ∈ E(G)

∑

c∈C

be,c = 1

– The coloring is proper

∀v ∈ V (G), ∀c ∈ C
∑

e∈E(G)
v∼e

be,c ≤ 1

– Each pair of color classes induces an acyclic graph. The following is to be understood for

all c1, c2 ∈
(
C
2

)

∗ An edge colored with c1 or c2 sends a flow of 1 to its endpoints, and 0 otherwise.

∀uv ∈ E(G)

ec1c2uv + ec1c2vu ≥ be,c1 + be,c2

∗ A vertex can absorb at most n−1
n

∀v ∈ V (G)

∑

u∈NG(v)

ec1c2uv ≤ n− 1

n

• Variables :

– bv,c is a boolean variable indicating whether the corresponding edge is colored with c

– ec1c2uv is a positive variable indicating the flow sent to v by the edge uv in the graph induced

by colors c1 and c2
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Abstract

A proper edge-colouring with the property that every cycle contains edges of at least three

distinct colours is called an acyclic edge-colouring. The acyclic chromatic index of a graph G,

denoted χ′
a(G) is the minimum k such that G admits an acyclic edge-colouring with k colours.

We conjecture that if G is planar and ∆(G) is large enough then χ′
a(G) = ∆(G). We settle this

conjecture for planar graphs with girth at least 5. We also show that χ′
a(G) ≤ ∆(G)+ 12 for all

planar G, which improves a previous result by Fiedorowicz et al. [15].

1 Introduction

A proper edge-colouring with the property that every cycle contains edges of at least three distinct

colours is called an acyclic edge-colouring. The acyclic chromatic index of a graph G, denoted χ′
a(G)

is the minimum k such that G admits an acyclic edge-colouring with k colours. Fiamčik [12] and later

Alon, Sudakov and Zaks [2] conjecture that ∆(G)+2 colours are enough.

Conjecture 1 (Fiamčik [12]–Alon, Sudakov and Zaks [2]) For every graph G, χ′
a(G)≤ ∆(G)+2.

This conjecture would be tight as there are cases where more than ∆ + 1 colours are needed.

Consider for example a graph G on 2n vertices with at least 2n2 − 2n+ 2 edges. The union of two

perfect matchings is a cycle factor and thus contains a cycle. Hence in an acyclic edge-colouring, at

most one colour class contains n edges. Hence there are at least 1+
⌈

2n2−3n+2
n−1

⌉

= 2n+1 colours. So

χ′
a(G)≥ ∆(G)+2.

Clearly, every graph with maximum degree at most 2 has acyclic chromatic index at most 3. If

∆(G) ≤ 3 then its line-graph L(G) has maximum degree at most 4. Thus by Burnstein’s results [10]
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χa(L(G))≤ 5 and so χ′
a(G)≤ 5. So Conjecture 1 holds for ∆(G)≤ 3. In 1980, Fiamčik [13] conjec-

tured that K4 is the only cubic graph requiring five colours in an acyclic edge-colouring (and actually

gave an uncorrect proof of it). More generally, Alon, Sudakov and Zaks [2] conjectured that if G is a

∆-regular graph then χ′
a(G) = ∆+1 unless G = K2n.

However as noted by Fiamčik [14], these two conjectures are false as χ′(K3,3) = 5. Improving

a result of Basavaraju and Chandran [4] on non-regular subcubic connected graphs, Macajova and

Mazák [19] proved that if G is subcubic and connected then χ′
a(G) ≤ 4 unless G = K4 or G = K3,3.

Finally, Basavaraju, Chandran and Kummini [7] showed that all d-regular graphs with 2n vertices and

d > n, require at least d+2 colors to be acyclically edge-coloured and for every odd n, χ′(Kn,n)= n+2.

They also showed that for every d,n such that d ≥ 5, n ≥ 2d + 3 and dn even, there exist d-regular

graphs which require at least d +2-colours to be acyclically edge-coloured.

Alon, Sudakov and Zaks [2] showed that Conjecture 1 is true for almost all regular graphs. This

was later improved by Nešetřil and Wormald [23] who proved that the acyclic edge-chromatic number

of a random ∆-regular graph is asymptotically almost surely equal to ∆+ 1. Alon, McDiarmid and

Reed [1] showed an upper bound of 64∆(G) for χ′
a(G) which was later improved to 16∆(G) by Molloy

and Reed [20]. For graphs with large girth, better upper bounds are known. Muthu et al [21] showed

that if G has girth at least 9 then χ′
a(G)≤ 6∆(G) and if it has girth at least 220 then χ′

a(G)≤ 4.52∆(G).
Finally, Alon, Sudakov and Saks also showed that Conjecture 1 is true for graphs with girth at least

C∆ log(∆) for some fixed constant C.

Muthu et al [22] proved that χ′
a(G) ≤ ∆(G)+ 1 for outerplanar graphs. Fiedorowicz et al. [15]

proved that χ′
a(G)≤ 2∆(G)+29 if G is planar and χ′

a(G)≤ ∆(G)+6 if G is planar and triangle-free.

This bound has been improved for planar graphs with larger girth. Recall that the girth of a graph is

the minimum length of a cycle it contains or +∞ if it has no cycles. Hou et al. [17] showed that if G

is a planar graph G then χ′
a(G) ≤ ∆(G)+2 if G has girth at least 5, χ′

a(G) ≤ ∆(G)+1 if G has girth

at least 7 and χ′
a(G)≤ ∆(G) if G has girth at least 16 and ∆(G)≥ 3.

Sanders and Zhao [24] showed that planar graphs with maximum degree ∆ ≥ 7 have chromatic

index ∆. A conjecture of Vizing [25] asserts that planar graphs of maximum degree 6 are also 6-edge-

colourable. This would be best possible as for any ∆ ∈ {2,3,4,5}, there are some planar graphs with

maximum degree ∆ with chromatic index ∆+1 [25].

We propose a conjecture analogous to the above one of Vizing.

Conjecture 2 There exists ∆0 such that every planar graph with maximum degree ∆ ≥ ∆0 has an

acyclic edge-colouring with ∆ colours.

In this paper, we give some evidences to this conjecture. Firstly, in Section 2, we show that every

planar graph has an acyclic edge-colouring with ∆+12 colours thus improving the 2∆+29 bound of

Fiedorowicz et al. [15]. In Section 3, we show that Conjecture 2 holds for planar graphs of girth at least

5 (with ∆0 = 19) thus improving the results of Hou et al. [17] and Borowiecki and Fiedorowicz [9].

More generally, we settle Conjecture 2 for graphs with maximum average degree less than 4− ε for

any ε > 0. The maximum average degree of G is Mad(G) = max{ 2|E(H)|
|V (H)| | H is a subgraph of G}.

It is well known that a planar graph of girth g has maximum average degree less than 2 + 4
g−2

.

Conjecture 2 holds for outerplanar graphs with ∆0 = 5 as shown by Hou et al. [18]. Note that

sup{Mad(G) | G is outerplanar}= 4.

Our proofs are constructive and yield efficient polynomial time algorithms. We present the proofs

in a non-algorithmic way. But it is easy to extract the underlying algorithms from them.
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2 Planar graphs

In this section we will prove the following result.

Theorem 3 χ′
a(G)≤ ∆(G)+12 for all planar graphs G.

The proof of Theorem 3 relies on the following theorem of van den Heuvel and McGuiness [16]

which establishes a set of unavoidable configurations in planar graphs.

Lemma 4 (van den Heuvel and McGuiness [16]) Let G be a planar graph with minimum degree

at least two. Then there exists a vertex v in G with exactly d(v) = k neighbours v1,v2, . . . ,vk with

d(v1)≤ d(v2)≤ . . .≤ d(vk) such that at least one of the following is true:

(A1) k = 2,

(A2) k = 3 and d(v1)≤ 11,

(A3) k = 4 and d(v1)≤ 7, d(v2)≤ 11,

(A4) k = 5 and d(v1)≤ 6, d(v2)≤ 7, d(v3)≤ 11.

Sketch of the proof: Let G be a minimum counter-example with respect to the number of vertices

and edges for the statement in Theorem 3. Trivially G has minimum degree at least 2. Indeed, it has

no vertex v of degree 1 because any acyclic edge-colouring of G−v is an acyclic edge-colouring of G,

and it has no vertex v with a unique neighbour u, since any acyclic edge-colouring of G−v on at least

∆ colours may be extended to an acyclic edge-colouring of G by assigning to uv a colour not already

assigned to an edge incident to u. From Lemma 4, we know that there exists a vertex v in G such

that it belongs to one of the configurations A1–A4. If there is a configuration A2, A3 and A4 in G, we

show in Subsection 2.2 how to derive an acyclic edge-colouring with ∆+12 colours of G from one of

G\vv1. Hence, we assume that there is no such configurations. In such case, we select an appropriate

edge uu′ and show again how to derive an acyclic edge-colouring of G with ∆+12 colours from one

of G\uu′. This gives a final contradiction. See Subsection 2.3.

In order to show how to extend an acyclic edge-colouring of G\ e for some edge e into an acyclic

edge-colouring of G,we first establish some preliminaries.

2.1 Preliminaries

Partial edge-colouring: Let H be a subgraph of G. Then an edge-colouring c′ of H is also a partial

edge-colouring of G. Note that H can be G itself. Thus an edge-colouring c of G itself can be

considered a partial edge-colouring. A partial edge-colouring c of G is said to be a proper partial

edge-colouring if c is proper. A proper partial edge-colouring c is called acyclic if there are no

bichromatic cycles in the graph. Note that with respect to a partial edge-colouring c, c(e) may not

be defined for an edge e. So, whenever we use c(e), we are considering an edge e for which c(e) is

defined, though we may not always explicitly mention it.

Let c be a partial edge-colouring of G. We denote the set of colours in c by C = {1,2, . . . ,k}.

For any vertex u ∈ V (G), we define Fu(c) = {c(uz) | z ∈ NG(u)}. For an edge ab ∈ E, we define

Sab(c) = Fb(c)−{c(ab)}. Note that Sab(c) need not be the same as Sba(c). We will abbreviate the

notation to Fu and Sab when the edge-colouring c is understood from the context.

The following definitions arise out of our attempt to understand what may prevent us from extend-

ing a partial edge-colouring of G\ e to G.
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Maximal bichromatic Path: An (α,β)-maximal bichromatic path with respect to a partial edge-

colouring c of G is a maximal path consisting of edges that are coloured using the colours α and β

alternatingly. An (α,β,a,b)-maximal bichromatic path is an (α,β)-maximal bichromatic path which

starts at the vertex a with an edge coloured α and ends at b. We emphasize that the edge of the

(α,β,a,b)-maximal bichromatic path incident on vertex a is coloured α and the edge incident on vertex

b can be coloured either α or β. Thus the notations (α,β,a,b) and (α,β,b,a) have different meanings.

Also note that any maximal bichromatic path will have at least two edges. The following fact is

obvious from the definition of proper edge-colouring.

Fact 5 Given a pair of colours α and β of a proper edge-colouring c of G, there is at most one

maximal (α,β)-bichromatic path containing a particular vertex v, with respect to c.

A colour α 6= c(e) is a candidate for an edge e in G with respect to a partial edge-colouring c of

G if none of the adjacent edges of e is coloured α. A candidate colour α is valid for an edge e if

assigning the colour α to e does not result in any bichromatic cycle in G.

Let e = ab be an edge in G. Note that any colour β /∈ Fa ∪Fb is a candidate colour for the edge ab

in G with respect to the partial edge-colouring c of G. A sufficient condition for a candidate colour

being valid is captured in the lemma below.

Lemma 6 (Basavaraju and Chandran [6]) A candidate colour for an edge e= ab is valid if (Fa(c)∩
Fb(c))\{c(ab)}= Sab(c)∩Sba(c) = /0.

Now even if Sab(c)∩ Sba(c) 6= /0, a candidate colour β may be valid. But if β is not valid, then

what may be the reason? It is clear that colour β is not valid if and only if there exists α 6= β such that

a (α,β)-bichromatic cycle gets formed if we assign colour β to the edge e. In other words, if and only

if, with respect to edge-colouring c of G there existed an (α,β,a,b)-maximal bichromatic path with α

being the colour given to the first and last edge of this path. Such paths play an important role in our

proofs. We call them critical paths. It is formally defined below.

Critical Path: Let ab ∈ E and c be a partial edge-colouring of G. Then an (α,β,a,b)-maximal

bichromatic path which starts out from the vertex a via an edge coloured α and ends at the vertex b

via an edge coloured α is called an (α,β,a,b)-critical path. Note that any critical path will be of odd

length. Moreover the smallest length possible is three.

Let a ∈ NG\vv1
(x) and let c(x,a) = α. Let β ∈ Sxa. colour β is said to be actively present in

a set Sxa, if there exists a (α,β,xy) critical path.

A natural strategy to extend a acyclic partial edge-colouring c of G would be to try to assign one

of the candidate colours to an uncoloured edge e. The condition that a candidate colour being not

valid for the edge e is captured in the following fact.

Fact 7 Let c be a partial edge-colouring of G. A candidate colour β is not valid for the edge e = ab

if and only if for some colour α ∈ Sab ∩Sba, there is an (α,β,a,b)-critical path in G with respect to c.

Colour exchange: Let c be a partial edge-colouring of G. Let u,v,w ∈V (G) and uv,uw ∈ E(G). We

define colour exchange with respect to the edge uv and uw, as the modification of the current partial

edge-colouring c by exchanging the colours of the edges uv and uw to get a partial edge-colouring c′,
i.e., c′(uv) = c(uw), c′(uw) = c(uv) and c′(e) = c(e) for all other edges e in G. The colour exchange

with respect to the edges uv and uw is said to be proper (resp. acyclic) if the edge-colouring obtained

after the exchange is proper (resp. acyclic). The following fact is obvious.
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Fact 8 Let c′ be the partial edge-colouring obtained from an acyclic partial edge-colouring c by the

colour exchange with respect to the edges uv and uw. Then c′ is proper if and only if c(uv) /∈ Suw and

c(uw) /∈ Suv.

The colour exchange is useful in breaking some critical paths as is clear from the following lemma.

Lemma 9 (Basavaraju and Chandran [6, 5]) Let u, v, w, a and b be vertices of G such that uv,

uw and ab are edges. Also let α and β be two colours such that {α,β} ∩ {c(uv),c(uw)} 6= /0 and

{v,w}∩{a,b}= /0. Suppose there exists a (α,β,a,b)-critical path that contains vertex u, with respect

to an acyclic partial edge-colouring c of G. Let c′ be the partial edge-colouring obtained from c by the

colour exchange with respect to the edges uv and uw. If c′ is proper, then there is no (α,β,a,b)-critical

path in G with respect to c′.

Multisets and Multiset Operations: Recall that a multiset is a generalized set where a member can

appear multiple times. If an element x appears t times in the multiset S, then we say that the multiplicity

of x in S is t. In notation multS(x) = t. The cardinality of a finite multiset S, denoted by ‖ S ‖, is defined

as ‖ S ‖= ∑x∈S multS(x). Let S1 and S2 be two multisets. The reader may note that there are various

possible ways to define union of S1 and S2. For the purpose of this paper we define one such union

notion- which we call as the join of S1 and S2, denoted as S1 ⊎ S2. The multiset S1 ⊎ S2 have all the

members of S1 as well as S2. For a member x ∈ S1 ⊎S2, multS1⊎S2
(x) = multS1

(x)+multS2
(x). Clearly

‖ S1 ⊎S2 ‖=‖ S1 ‖ + ‖ S2 ‖. We also need a specially defined notion of the multiset difference of S1

and S2, denoted by S1 \S2. It is the multiset of elements of S1 which are not in S2, i.e., x ∈ S1 \S2 iff

x ∈ S1 but x /∈ S2 and multS1\S2
(x) = multS1

(x).

2.2 There exists a Configuration A2, A3 or A4

We now can resume the proof of Theorem 3. Suppose by way of contradiction that there exists a

Configuration A2, A3 or A4 in G. Let v, v1, v2 and v3 be the vertices as described in Lemma 4.

In all the propositions of this subsection, we start with an acyclic edge-colouring c′ of G\ vv1. So

the abbreviations Fu and Sab stand for Fu(c
′) and Sab(c

′) respectively.

Proposition 10 For any acyclic edge-colouring c′ of G\ vv1, |Fv ∩Fv1
| ≥ 2.

Proof. Suppose by way of contradiction that there is an acyclic edge-colouring c′ of G\vv1 with a set

C of ∆+12 colours such that |Fv ∩Fv1
| ≤ 1.

Assume first that |Fv ∩Fv1
| = 0. The reader can verify from close examination of Configurations

A2, A3 and A4 that |Fv ∪Fv1
| will be maximum for Configuration A2 and therefore |Fv ∪Fv1

|= |Fv|+
|Fv1

| ≤ 2+ 10 = 12. Thus there are ∆ candidate colours for the edge vv1 and by Lemma 6 all the

candidate colours are valid, a contradiction to the assumption that G is a counter-example.

Assume now that |Fv ∩Fv1
|= 1. It is easy to see that |Fv ∪Fv1

|= |Fv|+ |Fv1
|− |Fv ∩Fv1

| ≤ 11 and

hence there are at least ∆+1 candidate colours for the edge vv1. Let Fv ∩Fv1
= {α} and let u ∈ N(v)

be a vertex such that c′(vu) = α. Now if none of the ∆+1 candidate colours is valid for the edge vv1,

then by Fact 7, for each γ ∈ C \ (Fv ∪Fv1
), there exists an (α,γ,v,v1)-critical path. Since c′(vu) = α,

we have all the critical paths passing through the vertex u and hence Svu ⊆C\ (Fv ∪Fv1
). This implies

that |Svu| ≥ |C\ (Fv∪Fv1
)| ≥ (∆+12)−11 = ∆+1, a contradiction since |Svu| ≤ ∆−1. Thus we have

a valid colour for the edge vv1, a contradiction to the assumption that G is a counter-example. �

Let Sv be the multiset defined by Sv = Svv2
⊎Svv3

⊎ . . .⊎Svvk
.
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Proposition 11 For any acyclic edge-colouring c′ of G\ vv1, |Fv ∩Fv1
| 6= 2.

Proof. Suppose not. Let Fv ∩Fv1
= {α1,α2} and let v′,v′′ ∈ NG\vv1

(v) and u′,u′′ ∈ NG\vv1
(v1) be such

that c′(vv′) = c′(v1u′) = α1 and c′(vv′′) = c′(v1u′′) = α2. It is easy to see that |Fv ∪Fv1
| ≤ 10. Thus

there are at least ∆+2 candidate colours for the edge vv1. If any of the candidate colours is valid for

the edge vv1, we are done. Thus none of the candidate colours is valid for the edge vv1. This implies

that there exists a (α1,θ,v,v1)- or (α2,θ,v,v1)-critical path for each candidate colour θ.

Claim 11.1 The multiset Sv contains at least |Fv1
|−1 colours from Fv1

.

Proof. Suppose not. Then there are at least two colours in Fv1
which are not in Sv. Let ν and µ be any

two such colours. Now assign colours ν and µ to the edges vv′ and vv′′ respectively to get an edge-

colouring c′′. Now since ν,µ /∈ Sv, we have ν /∈ Svv′ and µ /∈ Svv′′ . Moreover µ,ν /∈ {α1,α2}. Thus the

edge-colouring c′′ is proper. Now we claim that the edge-colouring c′′ is acyclic also. Suppose not.

Then there has to be a bichromatic cycle containing at least one of the colours ν and µ. Clearly this

cannot be a (ν,µ)-bichromatic cycle since µ /∈ Svv′ . Therefore it has to be a (ν,λ)- or (µ,λ)-bichromatic

cycle where λ ∈ Fv(c
′′) \ {ν,µ}. Let u be a vertex such that c′′(vu) = λ. This means that there was

already a (λ,ν,v,v′)- or (λ,µ,v,v′′)-critical path with respect to the edge-colouring c′. This implies

that ν ∈ Svu or µ ∈ Svu, implying that ν ∈ Sv or µ ∈ Sv, a contradiction. Thus the edge-colouring c′′ is

acyclic. Let u1,u2 ∈ NG\vv1
(v1) be such that c′′(v1u1) = ν and c′′(v1u2) = µ.

Note that |Fv∪Fv1
| ≤ 10 (The maximum value of |Fv∪Fv1

| is attained when the graph has Configu-

ration A2). Therefore there are at least ∆+2 candidate colours for the edge vv1. If any of the candidate

colours are valid for the edge vv1, then we are done as this is a contradiction to the assumption that G

is a counter-example. Thus none of the candidate colours is valid for the edge vv1 and therefore there

exist either a (ν,θ,v,v1)-critical or a (µ,θ,v,v1)-critical path for each candidate colour θ. Let Cν and

Cµ respectively be the set of candidate colours which are forming critical paths with colours ν and µ.

Then clearly Cν ⊆ Sv1u1
and Cµ ⊆ Sv1u2

since c′′(v1u1) = ν and c′′(v1u2) = µ. Now we exchange the

colours of the edges vv′ and vv′′ to get a modified edge-colouring c. Note that c is proper since µ /∈ Svv′

and ν /∈ Svv′′ . By Lemma 9, all (ν,β,v,v1)-critical paths where β ∈Cν and all (µ,γ,v,v1)-critical paths

where γ ∈ Cµ are broken. Now if none of the colours in Cν are valid for edge vv1, then it means that

for each β ∈Cν, there exists a (µ,β,v,v1)-critical path with respect to the edge-colouring c, implying

that Cν ⊆ Sv1u2
. Since the recolouring involved no candidate colours, we still have Cµ ⊆ Sv1u2

. Thus

we have (Cν ∪Cµ) ⊆ Sv1u2
. But |Cν ∪Cµ| ≥ ∆+ 2 which implies that |Sv1u2

| ≥ ∆+ 2, a contradiction

since |Sv1u2
| ≤ ∆−1. �

Claim 11.2 There exists at least two colours β1 and β2 in C \Fv1
with multiplicity at most one in Sv.

Proof. In view of Claim 11.1 we have ∑x∈C\Fv
multSv

(x) =‖ Sv ‖ −(|Fv|−1). Thus if ‖ Sv ‖ −(|Fv1
|−

1)≤ 2|(C\Fv1
)|−3, then there exist at least two colours β1 and β2 in C\Fv1

with multiplicity at most

one in Sv. Thus it is enough to prove ‖ Sv ‖≤ 2|C|− |Fv1
|−4 ≤ 2∆+24−|Fv1

|−4 = 2∆+20−|Fv1
|.

Now we can easily verify that ‖ Sv ‖+|Fv1
| ≤ 2∆+20 for Configurations A2, A3 and A4 as follows:

• For A2, ‖ Sv ‖+|Fv1
| ≤ (d(v2)−1)+(d(v3)−1)+ |Fv1

|= (∆−1)+(∆−1) +10 = 2∆+8.

• For A3, ‖ Sv ‖ +|Fv1
| ≤ (d(v2)− 1)+ (d(v3)− 1)+ (d(v4)− 1)+ |Fv1

| = 10+(∆− 1)+ (∆−
1) +6 = 2∆+14.
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• For A4, ‖ Sv ‖+|Fv1
| ≤ (d(v2)−1)+(d(v3)−1)+(d(v4)−1)+(d(v5)−1)+ |Fv1

|= 6+10+
(∆−1)+(∆−1) + 5 = 2∆+19.

�

The colours β1 and β2 of Claim 11.2 are crucial to the proof. Now we make another claim regarding

β1 and β2:

Claim 11.3 β1 and β2 ∈ Fv.

Proof. Without loss of generality, let β1 /∈ Fv. Then recalling that β1 /∈ Fv1
, β1 is a candidate for the

edge vv1. If it is not valid, then there exists either an (α1,β1,vv1)- or (α2,β1,v,v1)-critical path with

respect to c′. Since the multiplicity of β1 in Sv is at most one, we have the colour β1 in exactly one of

Svv′ or Svv′′ . Without loss of generality let β1 ∈ Svv′′ . Hence there exists an (α2,β1,v,v1)-critical path

with respect to c′.
Now recolour the edge vv′ with colour β1 to get an edge-colouring c. Then c is proper since

β1 /∈ Fv and β1 /∈ Svv′ . We shall prove that is is acyclic. Suppose, by way of contradiction, that

there is a bichromatic cycle with respect to c. Then it has to be a (β1,γ)-bichromatic cycle for some

γ ∈ Fv(c)\c(vv′). Let a ∈ NG\vv1
(v) be such that c(va) = γ. Then the (β1,γ)-bichromatic cycle should

contain the edge va and therefore γ ∈ Sva(c). But we know that v′′ is the only vertex in NG\vv1
(v) such

that β1 ∈ Svv′′ . Therefore a = v′′. This implies that γ = α2 and there existed an (α2,β1,v,v
′)-critical

path with respect to the edge-colouring c′. This is a contradiction to Fact 5 since there already existed

an (α2,β1,v,v1)-critical path with respect to the edge-colouring c′.
Thus the edge-colouring c is acyclic and |Fv(c)∩Fv1

(c)|= 1, a contradiction to Proposition 10. �

Note that {β1,β2}∩{α1,α2}= /0 since β1,β2 /∈Fv1
. In view of Claim 11.3, we have {α1,α2,β1,β2}⊆

Fv and thus |Fv| ≥ 4, which implies that d(v) ≥ 5. Thus the vertex v belongs to Configuration A4.

Therefore d(v) = 5 and Fv = {α1,α2,β1,β2}. There are at least ∆+ 12− (5+ 4− 2) = ∆+ 5 can-

didate colours for the edge vv1. Also recall that d(v2) ≤ 7, c′(vv′) = c′(v1u′) = α1 and c′(vv′′) =
c′(v1u′′) = α2.

Claim 11.4 v2 /∈ {v′,v′′}.

Proof. Suppose not. Then, without loss of generality, v2 = v′ and c′(vv2) = α1. Now if none of the

∆+5 candidate colours is valid for the edge vv1, then they all are in critical paths that contain either

the edge vv′ or the edge vv′′. Now |Svv′ | + |Svv′′ | ≤ 6+∆−1 = ∆+5. Since each of the ∆+5 candidate

colours has to be present in either in Svv′ or Svv′′ , we infer that Svv′′ ∪Svv′ is exactly the set of candidate

colours, i.e., |Svv′ | + |Svv′′ | = ∆+5. This requires that |Svv′ |= 6, |Svv′′ |= ∆−1 and Svv′′ ∩Svv′ = /0. Since

for each γ∈ Svv′′ , we have (α2,γ,v,v1)-critical path containing u′′, we can infer that Svv′′ ⊆ Sv1u′′ (Recall

that c′(v1u′′) = α2). But since |Sv1u′′ | ≤ ∆−1, we have Svv′′ = Sv1u′′ . Thus Sv1u′′ ∩Svv′ = Svv′′ ∩Svv′ = /0.

Now we exchange the colours of the edges vv′ and vv′′ to get an edge-colouring c. Hence

c(vv′) = α2 and c(vv′′) = α1. The edge-colouring c is proper since α2 /∈ Svv′ and α1 /∈ Svv′′ (Recall

that Svv′ and Svv′′ contain only candidate colours). We shall prove that c is also acyclic: A bichromatic

cycle with respect to c has to be an (α1,η)- or (α2,η)-bichromatic cycle for some η ∈ Fv. Clearly

it cannot be an (α1,α2)-bichromatic cycle since α1 /∈ Svv′(c) and therefore η ∈ {β1,β2} (Recall that

Fv = {α1,α2,β1,β2}). This implies that either β1 or β2 belongs to Svv′ ∪ Svv′′ . But we know that

Svv′ ∪ Svv′′ is exactly the set of candidate colours for the edge vv1, a contradiction since β1,β2 ∈ Fv

cannot be candidate colours for the edge vv1.

7



Therefore the edge-colouring c is acyclic. By Lemma 9, all the existing critical paths are broken.

Now consider a colour γ ∈ Svv′ . If it is still not valid then there has to be a (α2,γ,v,v1)-critical path

since c(vv′) = α2 and γ /∈ Svv′′(c). This implies that γ ∈ Sv1u′′(c), a contradiction since Sv1u′′(c)∩
Svv′(c) = /0. Thus we have a valid colour for the edge vv1, a contradiction to the assumption that G is

a counter-example. �

From Claim 11.4, we infer that c′(vv2) /∈ Fv ∩Fv1
since Fv ∩Fv1

= {c′(vv′),c(vv′′)} = {α1,α2}.

Therefore we have c(vv2)∈{β1,β2} since Fv = {α1,α2,β1,β2}. Without loss of generality let c(vv2)=
β1. We know that the colour β2 can be in at most one of Svv′ and Svv′′ by Claim 11.2. Now let v′ be such

that β2 /∈ Svv′ . Note that C\(Svv′∪Fv∪Fv1
) 6= /0 since |Svv′∪Fv∪Fv1

| ≤∆−1+4+5−2=∆+6. Assign

a colour θ ∈C\(Svv′ ∪Fv∪Fv1
) to the edge vv′ to get an edge-colouring c′′. Now |Fv(c

′′)∩Fv1
(c′′)|= 1

so by Proposition 10, it is not acyclic. Hence there is a bichromatic cycle with respect to c′′. This

bichromatic cycle should involve one of the colours α2, β1, β2 along with θ. Since the bichromatic

cycle contains a colour from Svv′ and β2 /∈ Svv′ , it cannot be a (θ,β2)-bichromatic cycle. Now with

respect to the edge-colouring c′, colour θ was not valid for the edge vv1 implying that there existed a

(α1,θ,v,v1)- or (α2,θ,v,v1)-critical path. But (α1,θ,v,v1)-critical path was not possible since θ /∈ Svv′

by the choice of θ. Thus there existed an (α2,θ,v,v1)-critical path with respect to c′. Thus by Fact 5,

there cannot be an (α2,θ,v,v
′)-critical path with respect to c′ and hence there cannot be an (α2,θ)-

bichromatic cycle in c′′ formed due to the recolouring. Thus if there is a bichromatic cycle formed,

then it has to be a (β1,θ)-bichromatic cycle, which implies that β1 ∈ Svv′ .

Now taking into account the fact that β1 is in Svv′ as well as Fv, we get |Svv′ ∪Fv ∪Fv1
| ≤ ∆−

1+4+5−2−1 = ∆+5 and therefore |Svv′ ∪Fv ∪Fv1
∪Svv2

| ≤ ∆+5+6 = ∆+11. Thus C \ (Svv′ ∪
Fv ∪Fv1

∪ Svv2
) 6= /0. Now recolour the edge vv′ using a colour γ ∈ C \ (Svv′ ∪Fv ∪Fv1

∪ Svv2
) to get

an edge-colouring c. Clearly this edge-colouring is proper. It is also acyclic since if a bichromatic

cycle gets formed it has to be a (β1,γ) bichromatic cycle (Note that the (α2,γ) and (β2,γ) bichromatic

cycles are argued out as before). But γ /∈ Svv2
, a contradiction. Thus the edge-colouring c is acyclic.

But |Fv(c)∩Fv1
(c)| = 1, a contradiction to Proposition 10. This completes the proof of Proposi-

tion 11. �

Proposition 12 For any acyclic edge-colouring c′ of G\ vv1, |Fv ∩Fv1
| 6= 3.

Proof. Suppose not. Let c′ be an acyclic edge-colouring of G \ vv1 such that |Fv ∩Fv1
| = 3. Then

|Fv| ≥ 3 and therefore d(v)≥ 4. Thus v belongs to either configuration A3 or A4. Let S′v be the multiset

defined by S′v = Sv\(Fv1
∪Fv. Let v′,v′′,v′′′ ∈NG\vv1

(v) be such that {c(vv′),c(vv′′),c(vv′′′)}=Fv∩Fv1
.

Also let c(vv′) = α1, c(vv′′) = α2 and c(vv′′′) = α3.

Claim 12.1 ‖ S′v ‖≤ 2∆+11.

Proof. When d(v) = 4, it is clear that ‖ S′v ‖≤ (d(v2)− 1)+ (d(v3)− 1)+ (d(v4)− 1) ≤ 10+∆−
1+∆−1 = 2∆+8. On the other hand when d(v) = 5, try to recolour one of the edges vv′, vv′′, vv′′′

using a colour in C \ (Fv ∪Fv1
). There are ∆+ 6 colours in C \ (Fv ∪Fv1

). If any of these colours

is valid for one of vv′, vv′′ or vv′′′, then recolouring this edge with this colour, we obtain an acyclic

edge-colouring c′′ satisfying |Fv(c
′′)∩Fv1

(c′′)|= 2. This contradicts Proposition 11. Hence there has

to be a bichromatic cycle formed during each recolouring. Since such a bichromatic cycle has to

be a (γ1,γ2)-bichromatic cycle where γ1 is the colour used in the recolouring and γ2 ∈ Fv \ {γ1}, we

infer that Svv′ , Svv′′ and Svv′′′ contain at least one colour from Fv. Thus we have ‖ S′v ‖≤‖ Sv ‖ −3 ≤
(d(v2)−1)+(d(v3)−1)+(d(v4)−1)+(d(v5)−1)−3 ≤ 6+10+∆−1+∆−1−3 = 2∆+11. �
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Claim 12.2 There exists at least one colour β ∈C \ (Fv ∪Fv1
) with multiplicity at most one in S′v.

Proof. Since v belongs to either configuration A3 or configuration A4, we have |Fv ∪Fv1
| ≤ 9−3 = 6.

Thus |C \ (Fv ∪Fv1
)| ≤ ∆+6. By Claim 12.1 we have ‖ S′v ‖≤ 2∆+11 and from this it is easy to see

that there exists at least one colour β ∈C \ (Fv ∪Fv1
) with multiplicity at most one in S′v. �

Note that β ∈ C \ (Fv ∪Fv1
), where β is the colour from Claim 12.2 is a candidate colour for the

edge vv1. If it is not valid then there has to be a (θ,β,v,v1)-critical path, where θ ∈ {α1,α2,α3}.

By Claim 12.2, β can be present in at most one of Svv′ , Svv′′ and Svv′′′ . Without loss of generality let

β ∈ Svv′′ . Thus there exists an (α2,β,v,v1)-critical path with respect to the edge-colouring c′. Recolour

the edge vv′ using the colour β to get an edge-colouring c. Clearly c is proper since β /∈ Svv′ and β /∈ Fv.

Let us show that it is also acyclic. A bichromatic cycle (with respect to c) has to contain the colour β

as well as a colour γ ∈ Fv(c)\{β}. If γ = c(vw), then β ∈ Svw, for the (β,γ)-bichromatic cycle to get

formed. But v′′ is the only vertex in NG\vv1
(v) such that β ∈ Svv′′ . Thus w = v′′, γ = α2 and the cycle is

an (α2,β)-bichromatic cycle. This means that there existed an (α2,β,v,v
′)-critical path with respect

to the edge-colouring c′, a contradiction to Fact 5 since there already existed an (α2,β,v,v1)-critical

path with respect to the edge-colouring c′. Thus the edge-colouring c is acyclic.

But |Fv(c)∩Fv1
(c)| = 2, a contradiction to Proposition 11. This completes the proof of Proposi-

tion 12. �

Proposition 13 For any acyclic edge-colouring c′ of G\ vv1, |Fv ∩Fv1
| 6= 4.

Proof. Suppose not. Let c′ be an acyclic edge-colouring of G \ vv1 such that |Fv ∩Fv1
| = 4. Then

|Fv| ≥ 4 and since d(v) ≤ 5, we have d(v) = 5. Hence v belongs to Configuration A4. Let S′v be

the multiset defined by S′v = Sv \ (Fv1
∪ Fv). Also let c(vv2) = α1, c(vv3) = α2, c(vv4) = α3 and

c(vv5) = α4.

Now try to recolour an edge incident on v with a candidate colour from C \ (Fv ∪Fv1
). If the

obtained edge-colouring c′′ is acyclic then |Fv(c
′′)∩Fv1

(c′′)| = 3, a contradiction to Proposition 12.

Hence there has to be a bichromatic cycle created due to recolouring with one of the colours from Fv.

This implies that Fv ∩S′v 6= /0. Thus we have ‖ S′v ‖≤‖ Sv ‖ −1 ≤ (d(v2)−1)+(d(v3)−1)+(d(v4)−
1) + (d(v5)− 1) ≤ 6+ 10+ ∆− 1+ ∆− 1− 1 = 2∆+ 13. Now since there are |C \ (Fv ∪ Fv1

)| ≥
∆+12− (4+5−4) = ∆+7 candidate colours and ‖ S′v ‖≤ 2∆+13, it is easy to see that there exists

at least one candidate colour β with multiplicity at most one in S′v.

Note that β ∈ C \ (Fv ∪Fv1
) is a candidate colour for the edge vv1. If it is not valid then there

has to be a (θ,β,v,v1)-critical path, where θ ∈ {α1,α2,α3,α4}. We know that β can be present in

at most one of Svv2
, Svv3

, Svv4
and Svv5

. Without loss of generality let β ∈ Svv3
. Thus there exists an

(α2,β,v,v1)-critical path with respect to the edge-colouring c′. Recolour the edge vv2 using the colour

β to get an edge-colouring c. Clearly c is proper since β /∈ Svv2
and β /∈ Fv. Let us now show that

it is acyclic. A bichromatic cycle with respect to c has to contain the colour β as well as a colour

γ ∈ Fv(c)\{β}. If γ = c(vw), then β ∈ Svw, for the (β,γ) bichromatic cycle to get formed. But v3 is the

only vertex in NG\vv1
(v) such that β ∈ Svv3

. Thus w = v3, γ = α2 and it has to be a (β,α2) bichromatic

cycle. This means that there existed an (α2,β,v,v2)-critical path with respect to the edge-colouring

c′, a contradiction to Fact 5 since there already existed an (α2,β,v,v1)-critical path with respect to the

edge-colouring c′. Thus the edge-colouring c is acyclic.

But |Fv(c)∩Fv1
(c)|= 3, a contradiction to Proposition 12. �

By Lemma 4, dG\vv1
(v)≤ 4. Thus |Fv∩Fv1

| ≤ |Fv| ≤ 4. Then Propositions 10, 11, 12 and 13 gives

a contradiction to the assumption that G contains a Configuration A2, A3 or A4.
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2.3 There is no Configuration A2, A3 or A4

In the previous subsection, we showed that G contains no Configuration A2, A3 or A4. Then by

Lemma 4, there is a Configuration A1, that is a vertex v such that d(v) = 2. Now delete all the degree

2 vertices from G to get a graph H. Now since the graph H is also planar, there exists a vertex

v′ in H such that v′ belongs to one of the configurations A1, A2, A3 or A4, say A′. The vertex v′

was not already in Configuration A′ in G. This means that the degree of at least one of the vertices

of the configuration A′ i.e., {v′} ∪NH(v
′), got decreased by the removal of 2-degree vertices. Let

P = {x ∈ {v′}∪NH(v
′) : dH(x) < dG(x)}. Let u be the minimum degree vertex in P in the graph H.

Now it is easy to see that dH(u)≤ 11 since v′ did not belong to A′ in G.

Let N′(u) = {x|x ∈ NG(u) and dG(u) = 2}. Let N′′(u) = NG(u)−N′(u). It is obvious that N′′(u) =
NH(u).

Since u ∈ P and dH(u) ≤ 11, we have |N′(u)| ≥ 1 and N′′(u) ≤ 11. In G let u′ ∈ N′(u) be a

two degree neighbour of u such that N(u′) = {u,u′′}. Now by minimality of G, the graph G \ uu′

admits an acyclic edge-colouring c′ using a set C of ∆+12 colours. Let F ′
u = {c′(ux)|x ∈ N′(u)} and

F ′′
u = {c′(ux)|x ∈ N′′(u)}. Now if c(u′u′′) /∈ Fu we are done since |Fu ∪Fu′ | ≤ ∆ and thus there are at

least 12 candidate colours which are also valid by Lemma 6.

We know that |F ′′
v | ≤ 11. If c′(u′u′′) ∈ F ′

v , then let c = c′. Else if c′(u′u′′) ∈ F ′′
v , then recolour edge

u′u′′ using a colour from C \ (Su′u′′ ∪F ′′
v ) to get an edge-colouring c (Note that |C \ (Su′u′′ ∪F ′′

v )| ≥
∆+12− (∆−1+11) = 2 and since u′ has degree one in G−{uu′}, c is acyclic). Now if c(u′u′′) /∈ Fu

the proof is already discussed. Thus c(u′u′′) ∈ F ′
u.

Let us now consider the edge-colouring c. Let a ∈ N′(u) be such that c(ua) = c(u′u′′) = α.

Now if none of the candidate colours in C \ (Fu ∪ Fu′) are valid for the edge uu′, then by Fact 7,

for each γ ∈ C \ (Fu ∪Fu′), there exists an (α,γ,u,u′)-critical path. Since c′(ua) = α, we have all the

critical paths passing through the vertex a and hence Sua ⊆ C \ (Fu ∪Fu′). This implies that |Sua| ≥
|C \ (Fu ∪Fu′)| ≥ ∆+12− (1+∆−1−1) = 13, a contradiction since |Sua|= 1. Thus we have a valid

colour for the edge uu′, a contradiction to the assumption that G is a counter-example.

This final contradiction completes the proof of Theorem 3.

3 Planar graphs of girth at least 5

The aim of this section is to prove Conjecture 2 for planar graphs of girth at least 5. Actually, we

prove the conjecture for a more general class of graphs: the graphs of maximum average degree at

most 10/3. The average degree of a graph G is Ad(G) = 1
|V (G)| ∑v∈V (G) d(v) = 2|E(G)|

|V (G)| . The maximum

average degree of G is Mad(G) = max{Ad(H) | H is a subgraph of G}. It is well known that the girth

and the maximum average degree of a planar graph are related to each other:

Proposition 14 Let G be a planar graph of girth g.

Mad(G)< 2+
4

g−2
.

Theorem 15 Let ∆ ≥ 19 and G be a graph with maximum degree at most ∆ and maximum average

degree less than 10
3

. Then χ′
a(G)≤ ∆.

Theorem 15 and Proposition 14 immediately yield the following.

Corollary 16 Let ∆ ≥ 19 and G be a planar graph with maximum degree at most ∆ and girth at least

5. Then χ′
a(G)≤ ∆.
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More generally than Theorem 15, we show the following.

Theorem 17 For any ε > 0, there exists an integer ∆ε such that every graph G with maximum degree

at most ∆ with ∆ ≥ ∆ε and maximum average degree less than 4− ε is acyclically ∆-edge-colourable.

In order to prove Theorems 15 and 17, we first establish some properties of ∆-minimal graphs

which are graphs with maximum degree at most ∆, not acyclically ∆-edge-colourable but such that

every proper subgraph is. Then, by the Discharging Method, we deduce that such a graph has max-

imum average degree at least 4− ε (resp. 10/3) if ∆ is at least ∆ε (resp. 22). We will first prove, in

Subsection 3.2, Theorem 17 for its discharging procedure is simpler because we only establish the

existence of ∆ε and make no attempt to minimize it. We then show Theorem 15 in Subsection 3.3.

A vertex of degree i is called an i-vertex and an i-neighour of a vertex v is a neighbour of v having

degree i.

3.1 Properties of ∆-minimal graphs

Proposition 18 A ∆-minimal graph G is 2-connected. In particular, δ(G)≥ 2.

Proof. If G is not connected, it is the disjoint union of G1 and G2. Both G1 and G2 admits an acyclic

∆-edge-colouring by minimality of G. The union of these two edge-colourings is an acyclic ∆-edge-

colouring of G.

Suppose now that G has a cutvertex v. Let Ci, for 1 ≤ i ≤ p be the components of G− v and Gi

the graph induced by Ci ∪{v}. By minimality of G, all the Gi admit an acyclic ∆-edge-colouring.

Moreover, free to permute the colours we may assume that two edges incident to v get different

colours. Hence the union of these edge-colourings is an acyclic ∆-edge-colouring of G because any

cycle of G is entirely contained in one of the Gi. �

Proposition 19 Let G be a ∆-minimal graph. For every vertex v ∈V (G), ∑u∈N(v) d(u)≥ ∆+1.

Proof. Suppose by way of contradiction that there is a vertex v such that ∑u∈N(v) d(u) ≤ ∆. Let w

be a neighbour of v. By minimality of G, G \ vw admits an acyclic edge-colouring with ∆ colours.

Now colour vw with a colour distinct from the ones of the edges incident to a neighbour of v. This is

possible as there are at most ∆−1 such edges distinct from vw. Doing so we clearly obtain a proper

edge-colouring. Let us now show that there is no bicoloured cycle. A cycle that does not contain vw

has edges of at least three colours as the edge-colouring of G was acyclic and a cycle containing vw

must contain an edge vu and an edge tu with u ∈ N(v) \ {w}. By construction, the colours of tu, uv

and vw are distinct. �

A thread is a path of length two whose internal vertex has degree 2.

Proposition 20 Let k ≥ 2 be an integer and G a ∆-minimal graph. In G, a ∆-vertex is the end of at

most k threads whose other endvertex has degree at most k.

To prove this proposition we need the following lemma.

Lemma 21 Let H = ((A,B),E) be a bipartite graph with |A|= |B|= c such that for any vertex a ∈ A

d(a) = 1 and let KA,B be the complete bipartite graph with bipartition (A,B). If at least 3 vertices of

B of degree at least one in H then there exists a perfect matching M of KA,B such that the bipartite

graph ((A,B),E ∪M) has girth at least 6.

11



Proof. Let m be the number of vertices of B of degree at least one. Let b1, . . . ,bc be the vertices of B

with d(bi)≥ 1 if i ≤ m and d(bi) = 0 otherwise. And let a1, . . . ,ac be the vertices of A with aibi ∈ E

for all 1 ≤ i ≤ m. If m ≥ 3, let M = {aibi+1 | 1 ≤ i < m}∪ {amb1}∪ {aibi | m < i ≤ c}. Then the

unique cycle in ((A,B),E ∪M) is C = (a1,b2,a2,b3, . . . ,am−1,bm,a1). It has length 2m ≥ 6. �

Proof of Proposition 20. Suppose for a contradiction that there is a ∆-vertex u with c = k+1 threads

uviwi, 1 ≤ i ≤ c, such d(wi)≤ k. Note that c ≥ 3.

Set A = {v1, . . . ,vc}. By Proposition 18, wi /∈ A for all 1 ≤ i ≤ c. By minimality of G, G−A

admits an acyclic ∆-edge-colouring.

Let us first extend it to the viwi as follows. Let F be the set of colours assigned to the edges

incident to u and to no vertex of A and for 1 ≤ i ≤ c let Fi be the set of colours assigned to the edges

incident to wi (and distinct from viwi). Then |F | = ∆− c and |Fi| ≤ k−1. For all 1 ≤ i ≤ c, let Si be

the set of colours not in F ∪Fi. Since |F |+ |Fi|= ∆− c+ k−1 = ∆−2 then |Si| ≥ 2.

Assume first that |Sc
i=1 Si| ≥ 3, then one can assign to each viwi a colour in Si in such a way that

at least 3 colours appear on such edges and that different colours appear on viwi and v jw j ifwi = w j.

We will now colour the edges uvi for 1 ≤ i ≤ c. Therefore let H1 = ((A,B),E1) be the bipartite graph

with B the set of c colours {b1, . . . ,bc} not in F and in which vi is adjacent to b j if c(viwi) = b j. As

long as some vi has degree 0 then add an edge between ai and an isolated b j to obtain a bipartite graph

H2 = ((A,B),E2). Because at least three colours appear on the viwi, the graph H2 fulfils the hypothesis

of Lemma 21. So there exists a perfect matching M of KA,B such that ((A,B),E2∪M) has girth at least

6. For 1 ≤ i ≤ c, assign to each uvi the colour to which vi is linked in M.

Let us now prove that this edge-colouring of G is acyclic. It is obvious that it is proper since vi is

not linked to c(viwi) in M. Let us now prove that it is acyclic. Let C be a cycle of G. If it contains

no vertex of A then it contains edges of three different colours because the edge-colouring of G−A

is acyclic. Suppose now that C contains a unique vertex of A, say vi. Then C contains wivi, viu and

ut with t a neighbour of u not in A. Then c(ut) ∈ F , so by construction, c(wivi) 6= c(ut). Hence

the colours of wivi, viu and ut are distinct. Suppose finally that C contains two vertices of A, say vi

and v j. Then C contains wivi, viu, w jv j and v ju. Since ((A,B),E2 ∪M) has girth at least 6, either

c(viu) 6= c(w jv j) or c(v ju) 6= c(wivi). In both cases, C has edges of three different colours.

Asumme now that |Sc
i=1 Si| < 3. Then all the Si are equal and of cardinality 2, say Si = {a,b} for

all 1 ≤ i ≤ c. Hence all the Fi are the same of cardinality k−1 and disjoint from F . Observe that this

can happen only if all the wi are distinct. Let us denote by f1, . . . , , fk−1} the elements of the Fi. Let us

set c(viwi) = a for 1 ≤ i ≤ k, c(vcwc) = b, c(uvi) = fi for 1 ≤ i ≤ k−1, c(uvk) = b and c(uvk+1 = a.

It is easy to check that the obtained edge-colouring is an acyclic edge-colouring of G.

�

Proposition 22 Let k and l be two positive integers and G a ∆-minimal graph. In G, a (∆− l)-vertex

is the end of at most k−1− l threads whose other endvertex has degree at most k.

To prove this proposition we need the following lemma.

Lemma 23 Let H = ((A,B),E) be a bipartite graph with c = |A|< |B| such that for any vertex a ∈ A

d(a) = 1 and KA,B be the complete bipartite graph with bipartition (AB).
Then there exists a perfect matching M of KA,B such that the bipartite graph ((A,B),E ∪M) has

no cycle.
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Proof. Let c′ = |B|. Let b1, . . . ,bc′ be the vertices of B with d(bi)≥ 1 if i ≤ m and d(bi) = 0 otherwise.

And let a1, . . . ,ac be the vertices of A with aibi ∈ E for all 1 ≤ i ≤ m. Let M = {aibi+1 | 1 ≤ i ≤ c}.

This is well-defined since c′ > c. Then ((A,B),E ∪M) has no cycle. �

Proof of Proposition 22. . Suppose for a contradiction that there is a (∆− l)-vertex u with c = k− l

threads uviwi, 1 ≤ i ≤ c, such d(wi)≤ k.

Set A = {v1, . . . ,vc}. By minimality of G, G−A admits an acyclic ∆-edge-colouring. Let us first

extend it to the viwi as follows. Let F be the set of colours assigned to the edges incident to u and to

no vertex of A and for 1 ≤ i ≤ c let Fi be the set of colours assigned to the edges incident to wi (and

distinct from viwi). Then |F |= ∆− l − c and |Fi| ≤ k−1.

For all 1 ≤ i ≤ c colour viwi with a colour not in F ∪Fi and distinct from the colours. This is

possible since |F |+ |Fi|= ∆− l − c+ k−1 = ∆−1.

We will now colour the edges uvi for 1 ≤ i ≤ c. Therefore let H1 = ((A,B),E1) be the bipartite

graph with B the set of c+ j colours {b1, . . . ,bc+ j} not in F and in which vi is adjacent to b j if

c(viwi) = b j. As long as some vi has degree 0 then add an edge between ai and an isolated b j to

obtain a bipartite graph H2 = ((A,B),E2). Then H2 fulfils the hypothesis of Lemma 23 so there exists

a perfect matching M of KA,B such that ((A,B),E2 ∪M) has no cycle. For 1 ≤ i ≤ c, assign to each uvi

the colour to which vi is linked in M.

In the same way as in the proof of Proposition 20, one shows that the obtained edge-colouring is

acyclic. �

3.2 Proof of Theorem 17

Lemma 24 Let ε > 0. There exists ∆ε such that if ∆ ≥ ∆ε then any ∆-minimal graph has average

degree at least 4− ε.

Proof. The result for ε = 1
2

implies the result for larger values of ε. Hence we assume that ε ≤ 1
2
. Let

us assign an initial charge of d(v) to each vertex v ∈V (G) Set dε =
⌈

8
ε −2

⌉
.

We perform the following discharging rules.

R1: for 4 ≤ d < dε, every d-vertex sends a(d) = 1− 4−ε
d

to each neighbour.

R2: for dε ≤ d ≤ ∆+1−dε then every d-vertex sends 1− ε
2

to each neighbour.

R3: for ∆+2−dε ≤ d ≤ ∆ then every d-vertex sends

- 1− ε to each 3-neighbour;

- 2− ε to each 2-neighbour whose second neighbour has degree 2 or 3;

- b(d) = 2− ε−a(d) to each 2-neighbour whose second neighbour has degree d with 4 ≤
d < dε;

- 1− ε
2

to each 2-neighbour whose second neighbour has degree d ≥ dε.

Let us now check that every vertex v has final charge f (v) at least 4− ε.

If v is a 2-vertex then let u and w be its two neighbours with d(u) ≤ d(w). If d(u) ≤ 3 then

d(w) ≥ ∆− 2 by Proposition 19. Hence v receives 2− ε from w by R3, so f (v) ≥ 2+ 2− ε = 4− ε.

If 4 ≤ d(u)< dε then d(w)> ∆+1−dε by Proposition 19. Hence v receives a(d) from u by R2 and

13



b(d) from w by R3. So f (v) = 4− ε. If d(u)≥ 10 then v receives 1− ε
2

from u and 1− ε
2

from w by

R3. So f (v) = 4− ε.

Suppose that v is a 3-vertex. Then by Proposition 19 it has at least two (≥ 8)-neighbours. Hence

it receives at least 2×1/2 by R1, R2 or R3 because ε ≤ 1
2
. So f (v)≥ 4.

Suppose 4 ≤ d(v)< dε. Then v sends d(v) times 1− 4−ε
d(v) so f (v)≥ 4− ε.

Suppose dε ≤ d(v)≤ ∆+1−dε. Then v sends at most d(v) times 1− ε
2

so f (v)≥ d(v)× ε
2
≥ 4−ε.

Suppose now that d(v)≥ ∆+2−dε. Then by Propositions 20 and 22, the most v can send is when

it has three 2-neighbours with second neighbour of degree at most 3, one 2-neighbour with second

neighbour of degree d for all 4 ≤ d ≤ dε − 1 and ∆− dε + 1 2-neighbours with second neighbour of

degree at least dε. Hence

f (v) ≥ ∆+2−dε −3(2− ε)−
dε−1

∑
d=4

b(d)− (∆−dε +1)(1− ε

2
)

≥ ∆
ε

2
−Sε

with Sε = dε − 2+ 3(2− ε)+∑
dε−1
d=4 b(d)− (1− ε

2
)(dε − 1). Setting ∆ε =

⌈
2
ε (Sε +4− ε)

⌉
, if ∆ ≥ ∆ε,

f (v)≥ 4− ε. �

Proof of Theorem 17. If Theorem 17 were false, then a minimum counterexample G would be a

∆-minimum graph. So by Lemma 24, its average degree would be at least 4− ε, a contradiction. �

3.3 Proof of Theorem 15

Lemma 25 Let ∆ ≥ 19 and G be a ∆-minimal graph. Then Mad(G)≥ Ad(G)≥ 10/3.

Proof. Let us assign an initial charge of d(v) to each vertex v ∈ V (G) and perform the following

discharging rules.

R1: every 4-vertex sends 4/9 to each of its (≤ 3)-neighbours;

R2: every 5-vertex sends 7/12 to each 2-neighbour and 1/3 to each 3-neighbour;

R3: for 6 ≤ d ≤ 9, every d-vertex sends 1−10/3d to each neighbour.

R4: for 10 ≤ d ≤ ∆−9 then every d-vertex sends 2/3 to each neighbour.

R5: for ∆−8 ≤ d ≤ ∆ then every d-vertex sends

- 2/3 to each d-neighbour with 3 ≤ d ≤ 5;

- 4/3 to each 2-neighbour whose second neighbour has degree 2 or 3;

- 8/9 to each 2-neighbour whose second neighbour has degree 4;

- 9/12 to each 2-neighbour whose second neighbour has degree 5;

- 1/3+10/3d to each 2-neighbour whose second neighbour has degree d with 6 ≤ d ≤ 9;

- 2/3 to each 2-neighbour whose second neighbour has degree d ≥ 10.
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Let us now check that every vertex v has final charge f (v) at least 10
3

.

If v is a 2-vertex then let u and w be its two neighbours with d(u) ≤ d(w). If d(u) ≤ 3 then

d(w) ≥ ∆− 2 by Proposition 19. Hence v receives 4/3 from w by R5, so f (v) ≥ 2+ 4/3 = 10/3. If

d(u) = 4 then d(w)≥ ∆−3 by Proposition 19. Hence v receives 4/9 from u by R1 and 8/9 from w by

R5. So f (v) = 10/3. If d(u) = 5 then d(w)≥ ∆−4 by Proposition 19. Hence v receives 7/12 from u

by R2 and 9/12 from w by R5. So f (v) = 10/3. If 6 ≤ d(u)≤ 9 then d(w)≥ ∆−8 by Proposition 19.

Hence v receives 1− 10/3d from u by R3 and 1/3+ 10/3d from w by R5. So f (v) = 10/3. If

d(u)≥ 10 then v receives 2/3 from u by R4 and 2/3 from w by R5. So f (v) = 10/3.

Suppose that v is a 3-vertex. Then, since ∆ ≥ 10, by Proposition 19 it has either a (≥ 5)-neighbour

or two 4-neighbours. Hence it receives either at least 1/3 by R2, R3, R4 or R5, or 2× 4/9 ≥ 1/3 by

R1. In both cases, f (v)≥ 3+1/3 = 10/3.

Suppose that v is a 4-vertex. Then, since ∆ ≥ 18, by Proposition 19, it has either three (≤ 3)-
neighbours and one (≥ 10)-neighbour or at most two (≤ 3)-neighbours. In the first case, it sends 4/9 to

each of its 3-neighbours and receives 2/3 form its (≥ 10)-neighbour. So f (v)≥ 4−3× 4
9
+ 2

3
= 10/3.

In the second case, it sends 4/9 to at most 2 neighbours. So f (v)≥ 4−2× 4
9
> 10/3.

Suppose that v is a 5-vertex.

Assume first that v has at most three (≤ 3)-neighbours. If it has at least one (3)-neighbour it sends

at most 3/2 so f (v) ≥ 5− 3/2 > 10/3. If not it has three 2-neighbours. Let u1 and u2 be the two

(≥ 4)-neighbours of v. By Proposition 19, d(u1)+d(u2)≥ 11 since ∆ ≥ 16. Hence one of these two

vertices is a (≥ 6)-vertex and it sends at least 4/9 to u. Hence f (v)≥ 5+4/9−7/4 > 10/3.

Assume now that v has at least four (≤ 3)-neighbours. Let i be the number of 2-neighbours of v. Then

by Proposition 19, v has exactly 4− i 3-neighbours and its fifth neighbour has degree at least 6+ i

since ∆ ≥ 17. Hence f (v)≥ 5− i. 7
12
− (4− i)1

3
+1− 10

3(6+i) > 10/3.

Suppose 6 ≤ d(v)≤ 9. Then v sends d(v) times 1−10/3d(v) so f (v)≥ d(v)−d(v)(1−10/3d) =
10/3.

Suppose 10≤ d(v)≤∆−10. Then v sends at most d(v) times 2/3 so f (v)≥ d(v)(1−2/3)≥ 10/3.

Suppose that d(v) = ∆− l for 1 ≤ l ≤ 7. By Proposition 22, v is incident to at most ∆− l − 1

threads so its has at least one (≥ 3)-neighbour to which it sends at most 2/3. Moreover the most it can

send is when it has exactly one 2-neighbour with second neighbour of degree d for each l+2 ≤ d ≤ 9

and ∆−9 2-neighbours with second neighbour of degree at least 10. Hence its final charge is

f (v) ≥ ∆− l −
(

(∆−8)
2

3
+

9

∑
d=l+2

s(d)

)

≥ 1

3
∆+

16

3
−
(

l +
9

∑
d=l+2

s(d)

)
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with s(3) = 4/3, s(4) = 8/9, s(5) = 9/12 and s(d) = 1/3+10/3d for 6 ≤ d ≤ 9. Since s(3)> 1 and

s(d)< 1 when d ≥ 4, then l +∑9
d=l+2 s(d) is minimum when l = 2. Hence

f (v) ≥ 1

3
∆+

16

3
−
(

2+
9

∑
d=4

s(d)

)

≥ 1

3
∆+

61

36
− 10

3

9

∑
d=6

1

d

≥ 1

3
∆+

61

36
− 10

3
× 275

504
≥ 10

3

because ∆ ≥ 11.

Suppose d(v) = ∆. By Proposition 20, the most it can send is when it has three 2-neighbours with

second neighbour of degree at most 3, exactly one 2-neighbour with second neighbour of degree d for

4 ≤ d ≤ 9 and ∆−9 2-neighbours with second neighbour of degree at least 10. In this case it sends

3× 4

3
+

8

9
+

9

12
+

9

∑
d=6

(
1

3
+

10

3d
)+(∆−9)

2

3
=

2

3
∆+

35

36
+

10

3

9

∑
d=6

1

d

=
2

3
∆+

35

36
+

10

3
× 275

504

≤ ∆− 10

3

because ∆ ≥ 19. Hence f (v)≥ 10
3

.

Now Ad(G) = 1
|V | ∑v∈V (G) d(v) = 1

|V | ∑v∈V (G) f (v)≥ 10
3

. �

Proof of Theorem 15. If Theorem 15 would be false, a minimum counterexample G would be a

∆-minimum graph. So by Lemma 25, its average degree is at least 4− ε, a contradiction. �
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Linear and 2-frugal choosability of graphs of small maximum average

degree

Nathann Cohen ∗ Frédéric Havet ∗

May 30, 2011

Abstract

A proper vertex colouring of a graph G is 2-frugal (resp. linear) if the graph induced by the vertices of any two colour

classes is of maximum degree 2 (resp. is a forest of paths). A graph G is 2-frugally (resp. linearly) L-colourable if for

a given list assignment L : V (G) 7→ 2N, there exists a 2-frugal (resp. linear) colouring c of G such that c(v) ∈ L(v)
for all v ∈ V (G). If G is 2-frugally (resp. linearly) L-list colourable for any list assignment such that |L(v)| ≥ k for

all v ∈ V (G), then G is 2-frugally (resp. linearly) k-choosable. In this paper, we improve some bounds on the 2-frugal

choosability and linear choosability of graphs with small maximum average degree.

1 Introduction

The notion of acyclic colouring was introduced by Grünbaum [2] in 1973 : a vertex colouring is acyclic if it is proper (no

two adjacent vertices have the same colour), and if there is no bicoloured cycle (the subgraph induced by the union of any

two colours classes is a forest). A colouring such that for every vertex v ∈ V (G), no colour appears more than p times in

the neighborhood of v, is said to be p-frugal, a notion introduced by Hind, Molloy and Reed in [3]. The p-frugal chromatic

number of a graph G, denoted by Φp(G), is the minimum number of colours in a p-frugal colouring of G and is clearly

larger than ⌈∆
p ⌉ + 1. Hind, Molloy, and Reed [3] proved that Φp(G) ≤ max(p∆(G), e3

p ∆(G)1+1/p). In addition, they

show that this upper bound is tight up to within a constant factor by showing graphs G such that Φp(G) ≥ 1
2p∆(G)1+1/p.

Yuster [4] mixed the notions of 2-frugality and acyclicity, thus introducing the concept of linear colouring. A linear

colouring of a graph is an acyclic and 2-frugal colouring. It can also be seen as a colouring such that the subgraph induced

by the union of any two colour classes is a forest of paths (an acyclic graph with maximum degree at most two). The

linear chromatic number of a graph G, denoted by Λ(G), is the minimum number of colours in a linear colouring of G.

As a linear colouring is 2-frugal, Λ(G) ≥ Φ2(G) ≥ ⌈∆
2 ⌉ + 1. Yuster proved in [4] that Λ(G) = O(∆(G)3/2) in the

general case, and he constructed graphs for which Λ(G) = Ω(∆(G)3/2).
These concepts may be generalized to list colouring. Given a list assignment L : V (G) 7→ 2N, an L-colouring of G

is a colouring c such that c(v) ∈ L(v) for each vertex v. A graph G is p-frugally (resp. linearly) L-colourable if there is

an L-colouring of G which is p-frugal (resp. linear). If G is p-frugally (resp. linearly) L-colourable for any assignment

L verifying ∀v ∈ V (G), |L(v)| ≥ k, then G is said to be p-frugally k-choosable (resp. linearly k-choosable). The

smallest integer k such that the graph G is p-frugally k-choosable is the p-frugal choosability or p-frugal list chromatic

number of G and is denoted by Φl
p(G). The linear choosability or linear list chromatic number denoted Λl(G) is defined

analogously. The average degree of G is Ad(G) = 1
|V (G)|

∑

v∈V (G) d(v) =
2|E(G)|
|V (G)| . The maximum average degree of G

is Mad(G) = max{Ad(H) | H is a subgraph of G}.

In [1], Esperet et al. proved some upper bounds on the linear choosability of graphs with small maximum average

degree.

Theorem 1 (Esperet et al. [1]). Let G be a graph with maximum degree at most ∆:

1. If ∆ ≥ 3 and Mad(G) < 16
7 , then Λl(G) =

⌈
∆
2

⌉
+ 1.

2. If Mad(G) < 5
2 , then Λl(G) ≤

⌈
∆
2

⌉
+ 2.

3. If Mad(G) < 8
3 , then Λl(G) ≤

⌈
∆
2

⌉
+ 3.

∗Projet Mascotte, CNRS/INRIA/UNSA, INRIA Sophia-Antipolis, 2004 route des Lucioles BP 93, 06902 Sophia-Antipolis Cedex, France .Partially

supported by the ANR Blanc International Taiwan GRATEL. [Nathann.Cohen,fhavet]@sophia.inria.fr
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In this article, we show in Theorem. 2 that the above upper bounds on the maximum average degree may be assumed

arbitrarily close to 3 when ∆ is large enough. When ∆ is small, we also improve some of the existing bounds (see

Theorem. 3). Since a linear colouring is 2-frugal, the results are also valid for 2-frugal choosability. However, since being

2-frugal is less restrictive than being linear, we improve some of them in this case (see Theorem. 4). All these results,

added to those proved by Esperet et al. [1] which have not been improved, are summarized in the following table :

Mad(G) ∆ Λl(G)

< 16
7 ≈ 2.2857 ≥ 3 ≤ ⌈∆

2 ⌉+ 1 Esperet et al. [1]

< 39
16 = 2.4375 ≥ 5 ≤ ⌈∆

2 ⌉+ 1 Theorem 3-1

< 48
19 ≈ 2.5263 ≥ 7 ≤ ⌈∆

2 ⌉+ 1 Theorem 3-2

< 3− 3
∆+1 ≥ 8 ≤

⌈
∆
2

⌉
+ 1 Theorem 2-1

< 5
2 ≤ ⌈∆

2 ⌉+ 2 Esperet et al. [1]

< 60
23 ≈ 2.6086 ≥ 5 ≤ ⌈∆

2 ⌉+ 2 Theorem 3-3

< 3− 9
4∆+3 ≥ 7 ≤

⌈
∆
2

⌉
+ 2 Theorem 2-2

< 14
5 = 2.8 ≤ ⌈∆

2 ⌉+ 3 Theorem 3-4

< 3 ≥ 12 ≤
⌈
∆
2

⌉
+ 3 Theorem 2-3

< 3 ≤ ⌈∆
2 ⌉+ 4 Theorem 3-5

Mad(G) Φl
2(G) ∆

< 5
2 ≤ ⌈∆

2 ⌉+ 1 ≥ 7 Theorem 4-1

< 3 ≤ ⌈∆
2 ⌉+ 3 Theorem 4-2

The girth g(G) of a graph G is the length of its smallest cycle or +∞ if G has no cycle. Euler’s formula implies that

a planar graph G has bounded maximum average degree in terms of its girth:

Mad(G) < 2 +
4

g(G)− 2
. (1)

This immediately gives to any result on graphs with bounded maximum average degree have an equivalent formulation

for planar graphs with large girth. These are summarized in the following table together with those coming from the papers

of Esperet et al. [1] and Raspaud and Wang [5, 6] which are not improved here.

girth Λl(G) ∆

≥ 16 ≤ ⌈∆
2 ⌉+ 1 ≥ 3 Esperet et al. [1]

≥ 7 ≤ ⌈∆
2 ⌉+ 1 ≥ 13 Raspaud and Wang [5]

≥ 8 ≤ ⌈∆
2 ⌉+ 1

≥ 10 ≤ ⌈∆
2 ⌉+ 2 Esperet et al

≥ 9 ≤ ⌈∆
2 ⌉+ 2 ≥ 5

≥ 7 ≤ ⌈∆
2 ⌉+ 3

≥ 6 ≤ ⌈∆
2 ⌉+ 4

≥ 5 ≤ ⌈∆
2 ⌉+ 6 Raspaud and Wang [6]

≤ ⌈ 9
∆10⌉+ 5 ≥ 85 Raspaud and Wang [6]

girth Φl
2(G) ∆

≥ 6 ≤ ⌈∆
2 ⌉+ 3

The proofs of our results are based on the same general idea. We study graphs which we call k-frugal-minimal (resp.

k-linear-minimal) – i.e. graphs that are not k-frugally colourable (resp. k-linear-colourable), while any of their proper

subgraphs is. We first show in Section 2 that some configurations (i.e. subgraphs) may not appear in such a graph. We

then use in Section 3 the discharging method to show that a graph containing none of these forbidden configurations must

have larger average degree than assumed, giving a contradiction .



2 Forbidden configurations

Before establishing some lemmas, let us give some definitions. Let k a non-negative integer. A k-vertex (resp. (≥ k)-
vertex, (≤ k)-vertex) is a vertex of degree exactly k (resp. at least k, at most k). A k-neighbour of v is a k-vertex adjacent

to v. (≥ k) and (≤ k)-neighbours are defined similarly.

A k-thread in a graph G is an induced path of G with k + 1 edges, and so k internal vertices of degree 2.

Note that a k-frugal-minimal or k-linear-minimal graph is connected and in particular has no 0-vertex. We will

sometimes use this easy fact without referring explicitly to it.

2.1 Linear colouring

Lemma 1. Let H be a k-linear-minimal or k-frugal-minimal graph.

1. If k ≥
⌈
∆(H)

2

⌉

+ 1, then H has no 1-vertex.

2. For every 2-vertex v with N(v) = {a, b} and deg(a) ≤ deg(b), we have deg(b) ≥ 2(k − deg(a)) + 1.

3. If k ≥ 3, then H contains no 3-thread.

4. If k ≥ 4, then no 3-vertex is incident to a 2-thread.

5. Assume k ≥ 4. If a 3-vertex has three 2-neighbours, then the second neighbour of each of those is a (≥ 4)-vertex.

6. If k ≥ 4, then no 4-vertex is adjacent to four 2-threads.

7. If k ≥ 5, then no 4-vertex is incident to a 2-thread.

8. If k ≥ 5, then no 5-vertex is incident to five 2-threads.

9. If k ≥ 5, then a 2-vertex has at most one 3-neighbour.

10. If k ≥ 5, then a 4-vertex is not adjacent to two 2-vertices having each a 3-neighbour.

11. If k ≥
⌈
∆(H)

2

⌉

+ 2, then two 2-vertices are not adjacent.

12. If k ≥
⌈
∆(H)

2

⌉

+ 3, then every 3-vertex has no 2-neighbour.

13. If k ≥
⌈
∆(H)

2

⌉

+ 3, then every 4-vertex has at most three 2-neighbours.

14. If k ≥ ⌈∆(H)
2 ⌉+ 4, then every 4-vertex has at most four 2-neighbours.

15. If k ≥ max
(

6, ⌈∆(H)
2 ⌉+ 4

)

, then every 5-vertex has at most two 2-neighbours.

Proof. In the following, we only prove the assertions for linear colouring : 2-frugal colouring being less restrictive, all

the proofs translate naturally. Suppose that one of the assertions of Lemma 1 does not hold. Let H be a k-linear-minimal

graph for which it fails and L a k-list assignment such that H is not linearly L-colourable.

1. H contains a 1-vertex u. Let v be the neighbour of u. Let c be a linear L-colouring of H − u. We now extend c
to u. The colour c(v) is forbidden. Moreover to preserve the 2-frugality at v, the colours appearing twice in the

neighbourhood of v are also forbidden. There are at most ⌊∆(H)−1
2 ⌋ such colours. Hence, at most ⌈∆(H)

2 ⌉ colours

in total are forbidden at u. Thus u can be coloured with a non-forbidden colour in its list L(u), and the colouring

obtained is a linear L-colouring of H , which is a contradiction.

2 Let v be a 2-vertex of H with N(v) = {a, b} and deg(a) ≤ deg(b), such that deg(b) < 2(k − deg(a)) + 1. Let c
be a linear L-colouring of H − v.

– If c(a) = c(b), let us assign to v a colour c(v) ∈ L(v) different from the ones of the other neighbours of

a (i.e. there are at most deg(a) − 1 of them), c(a), and every colour which is repeated at least twice in the

neighbourhood of b (i.e. there at most
⌊
deg(b)−1

2

⌋

< k − deg(a) of them). Doing so, we obtain a k-linear

L-colouring of H , a contradiction.

– If c(a) 6= c(b), let us assign to v a colour c(v) ∈ L(v) different from c(a), c(b), and every colour which

is repeated at least twice in the neighbourhood of a or in the neighbourhood of b. The number of forbidden

colours is at most 2 +
⌊
deg(a)−1

2

⌋

+
⌊
deg(b)−1

2

⌋

< 2 + deg(a) − 2 + k − deg(a) = k because deg(a) ≥ 2

and so deg(a) ≥ 2 +
⌊
deg(a)−1

2

⌋

. Hence such an assignment is possible, and yields a k-linear L-colouring of

H , a contradiction.



3. It follows directly from 2 which implies that if a 2-vertex has a 2-neighbour then its other neighbour has degree at

least 3.

4. There is a configuration as depicted in Figure 1. with possibly x = u1, or x = u and w = u1.

✉ ✉ ✉ ✉

✉

✉

❅
❅

�
�

��
❅❅

u v w x

u1

u2

Figure 1: Configuration of Case 4

By the minimality of H , there exists a linear L-colouring c of H − v. We now extend it to v :

– If c(u1) = c(u2), we colour v with c(v) ∈ L(v)\{c(u), c(w), c(u1)}. There can be no bicoloured cycle, as

c(v) is different from both c(u1) and c(u2), and the 2-frugality at u is preserved.

– If c(u1) 6= c(v2), we colour v with c(v) ∈ L(v)\{c(u), c(w), c(x)}. There can be no bicoloured cycle, as

c(v) is different from c(x), and c is 2-frugal.

5. There is a configuration as depicted in Figure 2. Possibly ti = ui and wi = ui for i = 1, 2, or some vertices in

{w1, w2, t1, t2} are identified.

✉ ✉ ✉

✉

✉

✉

✉

✉

✉

�
�

��

❅
❅

❅❅

❅
❅

�
�

w v u

w1

w2

u1

u2
t2

t1

Figure 2: Configuration of Case 5

By the minimality of H there exists a linear L-colouring c of H − {u, v}. We now extend it to u and v :

– If c(u1) = c(u2), we colour v with c(v) ∈ L(v)\{c(w), c(w1), c(u1)} and u with c(u) ∈ L(v)\{c(v), c(u1), c(t1)}.

– If c(u1) 6= c(u2), we colour u with c(u) ∈ L(u)\{c(u1), c(u2), c(w)} and v with c(v) ∈ L(v)\{c(u), c(w), c(w1)}.

6. There is a configuration as depicted in Figure 3. Possibly t3 = u = u3 and u1 = t2 and t1 = u2. In this case, a

linear colouring of H − {u1, u2} can be extended into a linear colouring of H by assigning to u1 a colour distinct

from those of u and w1 and to u2 a colour distinct from those of u, u1 and v1. This is a contradiction.

So we may assume that it is not the case. Then possibly some vertices of {t3, u3, v3, w3} may be identified.

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

�
�

�
�

❅
❅

❅
❅x

t1w1

u1v1

t2w2

u2v2

t3w3

u3v3

Figure 3: Configuration of Case 6

By the minimality of H there exists a linear L-colouring c of H − {t1, u1, v1, w1, x}. We now extend it to t1, u1,

v1, w1 and x :

– We colour t1 with c(t1) ∈ L(t1)\{c(t2), c(t3)}.

– We colour u1 with c(u1) ∈ L(u1)\{c(u2), c(u3), c(t1)}.

– We colour x with c(x) ∈ L(x)\{c(t1), c(u1), c(w2)}.

– We colour w1 with c(w1) ∈ L(w1)\{c(t2), c(x)}.

– We colour v1 with c(v1) ∈ L(v1)\{c(v2), c(x), c(w1)}.

There can be no bicoloured cycle through t1 (resp. u1) as its colour is different from c(t3) (resp. c(u3)), and none

going through w2 as its colour is different from c(x).



✉

✉

✉ ✉ ✉✉

✉

��
❅❅

��❅❅

❅❅��

❅❅
��x w1 w2 w3

v

t

u

Figure 4: Configuration of Case 7

7. There is a configuration as depicted in Figure 4. Possibly w3 is one of {t, u, v} or w3 = x and w2 = t. In the later

case, we get a contradiction as in Case 6, so we may assume that it does not occur.

By the minimality of H there exists a linear L-colouring c of H − w1. We extend it to w1 :

– If c(w2) = c(x), then we colour w1 with c(w1) ∈ L(w1)\{c(x), c(w3), c(v), c(t)}. There can be no bi-

coloured cycle as c(w1) 6= c(w3), and the 2-frugality at x is preserved.

– If c(w2) 6= c(x), then we colour w1 with c(w1) ∈ L(w1)\{c(x), c(w2), c(v), c(t)}. There can be no bi-

coloured cycle as c(w2) 6= c(x), and the 2-frugality at x is preserved.

8. There is a configuration as depicted in Figure 5. Possibly, some of the vertices in {s3, t3, u3, v3, w3} are the same

or identified with x (by pairs). In the later case, without loss of generality, s3 = x = t3, s1 = t2 and t1 = s2. Then,

by minimality of H , there is a linear colouring c if H − {s1, s2}. It can be extended by colouring s1 with a colour

c(s1) distinct from c(x) and the possible colour appearing twice on {u1, v1, w1}, and colouring s2 with a colour

c(s2) distinct from c(x), c(s1) and the possible colour appearing twice on {u1, v1, w1}. Hence we may assume that

this case does not appear.

✉

✉

✉

✉��❅❅

✉

✉

✉

✉��
❅❅

✉

✉

✉

✉��
❅❅

✉

✉

✉

✉��
❅❅

✉

✉

✉

✉��
❅❅

x

w1

w2

w3

s1
s2

s3

v1
v2

v3

u1

u2

u3

t1

t2

t3

Figure 5: Configuration of Case 8

By the minimality of H there exists a linear L-colouring c of H − {x, s1, t1, u1, v1, w1}. We extend it to x, s1, t1,

u1, v1, and w1 :

– We colour s1 with c(s1) ∈ L(s1)\{c(s2), c(s3)}.

– We colour t1 with c(t1) ∈ L(t1)\{c(t2), c(t3), c(s1)}.

– We colour u1 with c(u1) ∈ L(u1)\{c(u2), c(u3), c(s1), c(t1)}.

– We colour v1 with c(v1) ∈ L(v1)\{c(v2), c(u1), c(t1), c(s1)}.

– We colour x with c(x) ∈ L(x)\{c(s1), c(t1), c(u1), c(v1)}.

– We colour w1 with c(w1) ∈ L(w)\{c(w2), c(x), c(v1)}.

The 2-frugality at x is preserved as 4 different colours are assigned to the vertices s1, t1, u1 and v1. Furthermore,

there can be no bicoloured cycles going through s1 and s3, t1 and t3, u1 and u3 or w1 and v1. Thus the obtained

L-colouring is linear, a contradiction.



✉ ✉

✉

✉

✉

✉

✉

�
��

❅
❅❅

❅
❅❅

�
��

u vw

v1

v2

w1

w2

Figure 6: Configuration of Case 9

9. There is a configuration as depicted in Figure 6. Possibly, some of the vertices of {v1, v2, w1, w2} are identified or

v1 = v and w1 = w.

By the minimality of H , there exists a linear L-colouring c of H − u. We extend it to u :

– If c(v) = c(w), we colour u with c(u) ∈ L(u)\{c(v), c(v1), c(v2), c(w1)} to prevent the formation of a

bicoloured cycle and preserve the 2-frugality at v and w.

– If c(v) 6= c(w), we colour u with c(u) ∈ L(u)\{c(v), c(v1), c(w1), c(w)} to preserve the 2-frugality at v and

w. There can be no bicoloured cycles because c(v) 6= c(w).

Hence H is linearly L-colourable, a contradiction.

10. There is a configuration as depicted in Figure 7. Possibly some vertices of {v′′1 , v′′′1 , v′′2 , v
′′′
2 , v3, v4} are the same,

or, for i ∈ {1, 2}, v′′i = u and v′i = vi+2.
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Figure 7: Configuration of Case 10

By the minimality of H there exists a linear L-colouring c of H − {v1, v2}. We extend it to v1 and v2:

– If c(v′1) = c(u), we colour v1 with c(v1) ∈ L(v1)\{c(u), c(v′′1 ), c(v′′′1 ), c(v4)}. There can be no bicoloured

cycle through v1 as it is different from both v′′1 and v′′′1 , and the 2-frugality at v′1 is preserved.

– If c(v′1) 6= c(u), we colour v1 with c(v1) ∈ L(v1)\{c(u), c(v′1), c(v′′1 ), c(v4)}. There can be no bicoloured

cycle through v1 as c(v′1) 6= c(u), and the 2-frugality at v′1 is preserved.

We colour v2 with symmetrical rules, replacing v4 by v3.

As c(v4) 6= c(v1) and c(v3) 6= c(v2), the 2-frugality of c is preserved.

11. It follows from 2. Indeed if a 2-vertex would have a 2-neighbour then its second neighbour has degree at least

∆(H) + 1, a contradiction.

12. There is a configuration as depicted in Figure 8 with possibly v′1 = v2.

✉✉ ✉

✉

✉

u v3

v1

v2

v′1

Figure 8: Configuration of Case 12

By the minimality of H , there exists a linear L-colouring c of H − v1.

– If c(u) = c(v′1), we colour v1 with c(v1) ∈ L(v1) that is different from c(u), the colours appearing twice in

the neighbourhood of v′1 (in order to preserve the 2-frugality at this vertex) and different from c(v2) and c(v3)
to prevent the apparition of bicoloured cycles.



– If c(u) 6= c(v′1), we colour v1 with c(v1) ∈ L(v1) that is different from c(u) and c(v′1), the colours appearing

twice in the neighbourhood of v′1 (in order to preserve 2-frugality at this vertex) and different from c(v2) to

preserve the 2-frugality at u. There can be no bicoloured cycles as c(u) 6= c(v′1).

In both cases, H is linearly L-colourable, a contradiction.

13. There is a configuration as depicted in Figure 9 with possibly some of the vertices in {v′1, v′2, v′3, v′4} being identified.

✉✉
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Figure 9: Configuration of Case 13

By the minimality of H there exists a linear L-colouring c of H − {u, v1, v2, v3, v4}. We extend it to u, v1, v2, v3
and v4 :

– We colour u with c(u) ∈ L(u) \ {c(v′1), c(v′2), c(v′3), c(v′4)} to prevent the apparition of bicoloured cycles.

– We colour v1 with c(v1) ∈ L(v1) different from c(u), c(v′1) and the colours appearing twice in the neighbour-

hood of v′1.

– We colour v2 with c(v2) ∈ L(v2) different from c(u), c(v′2) and the colours appearing twice in the neighbour-

hood of v′2.

– We colour v3 with c(v3) ∈ L(v3) different from c(u), c(v′3), c(v2) and the colours appearing twice in the

neighbourhood of v′3.

– We colour v4 with c(v4) ∈ L(v4) different from c(u), c(v′4), c(v1) and the colours appearing twice in the

neighbourhood of v′4.

There can be no bicoloured cycle with this colouring of H and c is 2-frugal because 3 vertices among {v1, v2, v3, v4}
cannot share the same colour. Then H is linearly L-colourable, a contradiction.

14. There is a configuration as depicted in Figure 10 with possibly some of the vertices in {v′1, v′2, v′3, v4} being identi-

fied.
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Figure 10: Configuration of Case 14

By the minimality of H there exists a linear L-colouring c of H − {u, v1, v2, v3}. We extend it to u, v1, v2 and v3:

– We colour u with c(u) ∈ L(u) such that c(u) is different c(v4), c(v
′
1), c(v

′
2), c(v

′
3) (to avoid any bicoloured

cycle) and the colours appearing twice in the neighbourhood of v4.

– We colour v1 with c(v1) ∈ L(v1) different from c(u), c(v′1), c(v4), and the colours appearing twice in the

neighbourhood of v′1.

– We colour v3 with c(v3) ∈ L(v3) different from c(u), c(v′3), c(v4), and the colours appearing twice in the

neighbourhood of v′3.



– We colour v2 with c(v2) ∈ L(v2) different from c(u), c(v′2), c(v3), c(v1), and the colours appearing twice in

the neighbourhood of v′2.

There is no bicoloured cycle containing u because c(u) is different from c(v′1), c(v
′
2) and c(v′3). Moreover, the

2-frugality at U is assured, as 3 vertices among {v1, v2, v3, v4} cannot share the same colour. Hence H is linearly

L-colourable, a contradiction.

15. There is a configuration as depicted in Figure 11 with possibly some of the vertices in {v′1, v′2, v′3, v′4, v′5} being

identified.
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Figure 11: Configuration of Case 15

By the minimality of H there exists a linear L-colouring c of H − {u, v1, v2, v3, v4, v5}. We extend it to u, v1, v2,

v3, v4 and v5 :

– We colour v1 with c(v1) ∈ L(v1) different from c(v′1), and the colours appearing twice in the neighbourhood

of v′1.

– We colour v2 with c(v2) ∈ L(v2) different from c(v′2), c(v1), and the colours appearing twice in the neigh-

bourhood of v′2.

– We colour v3 with c(v3) ∈ L(v3) different from c(v′3), c(v1), c(v2), and the colours appearing twice in the

neighbourhood of v′3.

– We colour v5 with c(v5) ∈ L(v5) different from c(v′5), c(v1), c(v2), c(v3) and the colours appearing twice in

the neighbourhood of v′5.

– We colour u with c(u) ∈ L(u) different from c(v1), c(v2), c(v3), c(v5), and c(v′4).

– We colour v4 with c(v4) ∈ L(v4) different from c(v′4), c(u), and the colours appearing twice in the neigh-

bourhood of v′4.

There is no bicoloured cycle using v′4 because c(v′4) 6= c(u). Moreover there is no bicoloured cycle using both vi
and vj , for i < j and i, j ∈ {1, 2, 3, 5} as c(v1), c(v2), c(v3) and c(v5) are all distionct. For the same reason, the

2-frugality at u is assured. Thus H is linearly L-colourable, a contradiction.

2.2 2-frugal colouring

Lemma 2. Let H be a k-frugal-minimal graph.

(i) If k ≥ 4, then no 4-vertex is incident to two 2-threads.

(ii) If k ≥ ⌈∆
2 ⌉+ 3, then a 4-vertex has at most one 2-neighbour.

(iii) If k ≥ max
(
6, ⌈∆

2 ⌉+ 3
)
, then a 5-vertex has at most four 2-neighbour.

Proof. Suppose that one of the assertions of Lemma 2 does not hold. Let H be a k-frugal-minimal graph for which it fails

and L a k-list assignment such that H is not 2-frugally L-colourable.

(i) There is a configuration as depicted in Figure 12.

By the minimality of H there exists a 2-frugal L-colouring c of H − {v1, v2}. We extend it to v1 and v2:

– We colour v1 with c(v1) ∈ L(v1) different from c(u), c(v4), c(v
′
1).



✉✉

✉

✉

✉

✉ ✉

✉

✉

u v1

v2

v3

v4

v′1 v′′1

v′2

v′′2

Figure 12: Configuration of Case (ii)

– We colour v2 with c(v2) ∈ L(v2) different from c(u), c(v3), c(v
′
2).

c is 2-frugal, given that c(v1) 6= c(v4) and c(v2) 6= c(v3). Hence, H is 2-frugally L-colourable, a contradiction.

(ii) There is a configuration as depicted in Figure 13 with possibly some of the vertices in {v′1, v′2, v3, v4} being identi-

fied.
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Figure 13: Configuration of Case (iii)

By the minimality of H there exists a 2-frugal L-colouring c of H − {v1, v2}. We extend it to v1 and v2:

– We colour v1 with c(v1) ∈ L(v1) different from c(u), c(v4), c(v
′
1) and the colours appearing twice in the

neighbourhood of v′1.

– We colour v2 with c(v2) ∈ L(v2) different from c(u), c(v3), c(v
′
2) and the colours appearing twice in the

neighbourhood of v′2.

c is 2-frugal, given that c(v1) 6= c(v4) and c(v2) 6= c(v3). Hence, H is 2-frugally L-colourable, a contradiction.

(iii) There is a configuration as depicted in Figure 14 with possibly some vertices in {v′1, v′2, v′3, v′4, v′5} being identified.
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Figure 14: Configuration of Case (iv) and its auxiliary graph

By the minimality of H there exists a 2-frugal L-colouring c of H − {u, v1, v2, v3, v4, v5}. We extend it to u, v1,

v2, v3, v4 and v5 :

– We colour v1 with c(v1) ∈ L(v1) different from c(v′1), and the colours appearing twice in the neighbourhood

of v′1.



– We colour v2 with c(v2) ∈ L(v2) different from c(v′2), c(v1) and the colours appearing twice in the neigh-

bourhood of v′2.

– We colour v3 with c(v3) ∈ L(v3) different from c(v′3), c(v1), c(v2) and the colours appearing twice in the

neighbourhood of v′3.

– We colour v4 with c(v4) ∈ L(v4) different from c(v′4), c(v1),c(v2) and the colours appearing twice in the

neighbourhood of v′4.

– We colour v5 with c(v5) ∈ L(v5) different from c(v′5), c(v2),c(v3) and the colours appearing twice in the

neighbourhood of v′5.

– We colour u with c(u) ∈ L(u) different from c(v1), c(v2), c(v3), c(v4) and c(v5).

The colouring is 2-frugal at u because no three vertices of {v1, v2, v3, v4, v5} can share the same colour as there is

no stable set of size 3 in the auxiliary graph depicted on the right of Figure 14. Thus H is 2-frugally L-colourable,

a contradiction.

3 Main results

3.1 Linear colouring – asymptotic result

In this subsection, we prove the following theorem:

Theorem 2. Let G be a graph of maximum degree at most ∆.

1. If Mad(G) < 3− 3
∆+1 and ∆ ≥ 8, then Λl(G) ≤

⌈
∆
2

⌉
+ 1.

2. If Mad(G) < 3− 9
4∆+3 and ∆ ≥ 7, then Λl(G) ≤

⌈
∆
2

⌉
+ 2.

3. If Mad(G) < 3 and ∆ ≥ 12 then Λl(G) ≤
⌈
∆
2

⌉
+ 3.

Proof. The proof of the three statements are similar.

We assume the existence of a counter-example G with maximum degree at most ∆ such that Mad(G) < 3 − ǫ (we

first consider ǫ as a variable). G then contains a subgraph H which is (
⌈
∆
2

⌉
+ q)-linear-minimal with q = 1, 2 and 3

depending one the statement. We give to each vertex v of H an initial charge w(v) equal to its degree degH(v) in H . The

average charge is then equal to the average degree of H which is at most Mad(G).
We then use the following discharging rule :

• Every d-vertex, d ≥ 3, gives αd = d−(3−ǫ)
d to its 2-neighbours.

We shall prove that after the discharging phase every vertex v has final charge w∗(v) at least 3− ǫ for some ǫ ≥ 0 to

be determined. This implies that

Ad(H) =

∑

v∈V (H) w(v)

|V (H)| =

∑

v∈V (H) w
∗(v)

|V (H)| ≥ 3− ǫ

which contradicts Mad(G) < 3− ǫ.
By Lemma 1-1, there is no (≤ 1)-vertex. For any d ≥ 3, every d-vertex send at least d times αd, so its final charge is

at least d− d · αd = 3− ǫ.
Let us now examine the final charge of 2-vertices. We set d′q = 2(

⌈
∆
2

⌉
+ q − d) + 1. By Lemma 1-2, every 2-vertex

having a d-neighbour has also a (≥ d′q)-neighbour. Observe that d′q > ∆ if d ≤ q, thus no 2-vertex has a (≤ q)-neighbour.

If q ≥ 2, then a 2-vertex v has no 2-neighbour. Hence by Lemma 1-2, it has a d1-neighbour and a d2-neighbour, with

2 < d = d1 ≤ d′q ≤ d2. Since α3 ≤ α4 ≤ · · · ≤ α∆, the final charge of v is at least w∗(v) = 2+αd1+αd2 ≥ 2+αd+αd′
q
.

If q = 1 a 2-vertex has either no 2-neighbour and as above its final charge is at least 2+αd+αd′
q

or it has a 2-neighbour

and, by Lemma 1-2, its other neighbour is a ∆-vertex, so it final charge is at least 2 + α∆.

Hence, to prove Theorem 2, it is sufficient to show that 2+αd +αd′
q
≥ 3− ǫ, for all d ≤ d′q and also 2+α∆ ≥ 3− ǫ

when q = 1.

2+αd+αd′
q
≥ 3−ǫ is equivalent to P (d) ≥ 0 with P (d) = (1+ǫ)dd′q+(ǫ−3)(d+d′q). Since d′q = 2(

⌈
∆
2

⌉
+q−d)+1,

P (d) is a polynomial of degree 2 in d of the form −2(1 − ǫ)d2 + A · d + B for some constant A and B (note that the

coefficient of d2 is negative). Hence to verify that P (d) ≥ 0 for all possible values of d it suffices to prove it for the

smallest and largest d such that d ≤ d′q , namely max(3, q+1) and ∆+2q+2
3 (it actually is ∆+2q+2

3 if ∆ is odd and ∆+2q+1
3

if ∆ is even).



If q ≥ 2, we obtain the following two conditions:

ǫ ≥ 3(q + 1)− (q − 2)∆

q + 1 + (q + 2)∆

ǫ ≥ 16− 2q −∆

8 + 2q +∆

For q = 3 and ∆ ≥ 12 the right hand sides of these two inequalities are negative. So they are satisfied for ǫ = 0,

which proves Theorem 2-3. For q = 2 and ∆ ≥ 7 then 9
3+4∆ ≥ 12−∆

12+∆ and so the above inequalities are satisfied for

ǫ = 9
3+4∆ . This proves Theorem 2-2.

If q = 1, we have the three following conditions, the first two given by P (d) and the third one by 2 + α∆ ≥ 3− ǫ.

ǫ ≥ 9

4∆− 5

ǫ ≥ 14−∆

10 +∆

ǫ ≥ 3

∆ + 1

But 3
∆+1 ≥ 9

4∆−5 and 3
∆+1 ≥ 14−∆

10+∆ when ∆ ≥ 8. So the above inequalities are satisfied for ǫ = 3
∆+1 . This

proves Theorem 2-1.

3.2 Graphs of small maximum degree

In this subsection we prove the following theorem.

Theorem 3. Let G be a graph with maximum degree at most ∆:

1. If ∆ ≥ 5 and Mad(G) < 39
16 , then Λl(G) ≤ ⌈∆

2 ⌉+ 1.

2. If ∆ ≥ 7 and Mad(G) < 48
19 , then Λl(G) ≤ ⌈∆

2 ⌉+ 1.

3. If ∆ ≥ 5 and Mad(G) < 60
23 , then Λl(G) ≤ ⌈∆

2 ⌉+ 2.

4. If Mad(G) < 14
5 , then Λl(G) ≤ ⌈∆

2 ⌉+ 3.

5. If Mad(G) < 3. Then Λl(G) ≤ ⌈∆
2 ⌉+ 4.

Proof. The proofs of all statements are similar: we assume the existence of a counter-example G such that Mad(G) < M
(we first consider M as a variable), from which we deduce the existence of a subgraph H which is k-linear-minimal. We

then use the discharging method to reach a contradiction.

We give to each vertex v of H an initial charge w(v) equal to its degree degH(v) in H . The average charge is then

equal to the average degree of H which is at most Mad(G). Then, we define discharging rules by which vertices will

exchange some of their charge, keeping the average constant. We then want to prove with the help of the lemmas of the

previous section that each vertex v has a final charge w∗(v) at least M and so strictly greater than the average charge,

which is a contradiction.

Of course, we want to find rules such that M is as large as possible in each case : for this reason, the following proofs

actually define the constraints of a Linear Programme in which M is the objective value, and whose variables are the

charges exchanged by the vertices during the discharging phase. At the end of each proof, we give an optimal solution of

the given Linear Programme which proves the results.

1. Let G be a graph with maximum degree ∆ ≥ 5 such that Mad(G) < M . Set k1 =
⌈
∆
2

⌉
+ 1. Suppose by way of

contradiction that Λl(G) > k1. Then G has a subgraph H which is k1-linear-minimal.

Let us assign to every vertex of H an initial charge w(v) = degH(v). Then
∑

v∈V (H) w(v) =
∑

v∈V (H) d(v) =

Ad(H) · |V (H)|. We now apply the following discharging rules.

Rule 1. A 2-vertex having two 3-neighbours receives α3 from each of them.

Rule 2. A 2-vertex having only one 3-neighbour receives α′
3 from it.

Rule 3. A 2-vertex having a 2-neighbour and a (≥ 4)-neighbour receives α4 from it.

Rule 4. A 2-vertex having a (≥ 3)-neighbour and a (≥ 4)-neighbour receives α′
4 from its (≥ 4)-neighbour.



At the end we want that the final charge of every vertex is at least M . This implies

Ad(H) =

∑

v∈V (H) w(v)

|V (H)| =

∑

v∈V (H) w
∗(v)

|V (H)| ≥ M

which contradicts Mad(G) < M .

We now define constraints on M and the αi and α′
i guaranteeing the the final charge w∗(v) of every vertex v of H is

at least M .

As there are no (≤ 1)-vertices by Lemma 1-1, let us examine the final charge w∗(v) of a (≥ 2)-vertex v.

• If v is a 2-vertex then by Lemma 1-3 and 1-4 it has either two 3-neighbours, or one 3-neighbour and one (≥ 4)-
neighbour, or one 2-neighbour and one (≥ 4)-neighbour. In the first case w∗(v) = 2 + 2α3, on the second

w∗(v) ≤ 2 + α′
3 + α′

4 and in the last one w∗(v) = 2 + α4. So the required constraints are

M ≤ 2 + 2α3 and M ≤ 2 + α′
3 + α′

4 and M ≤ 2 + α4.

• If v is a 3-vertex adjacent to three 2-neighbours, none of them can be adjacent to another 3-vertex by Lemma 1-5,

and so will give at most 3α′
3. If it is adjacent to two 2-neighbours then it gives at most max{2α3, 2α

′
3}. Hence, we

obtain the constraints

M ≤ 3− 3α′
3 and M ≤ 3− 2α3.

• If v is a 4-vertex, by Lemma 1-6 it can not be adjacent to four 2-threads. Then it gives at most 3α4 + α′
4. (Here we

assume implicitly that α′
4 ≤ α4 which is intuitively true but a priori not proved. However this inequality is satisfied

by the solution giving the optimal value of M and so our assumption is a posteriori correct). Thus we obtain the

constraint M ≤ 4− 3α4 − α′
4.

• If v is a k-vertex with k ≥ 5, it will give at most give kα4 yielding the constraints M ≤ k − kα4.

The optimal value M = 39
16 is obtained for α3 = 7

32 , α′
3 = 3

16 , α4 = 7
16 and α′

4 = 1
4 .

2. Let G be a graph with maximum degree ∆ ≥ 7 such that Mad(G) < M . Set k1 =
⌈
∆
2

⌉
+ 1. Suppose by way of

contradiction that Λl(G) > k1. Then G has a subgraph H which is k1-linear-minimal.

Let us assign to every vertex of H an initial charge w(v) = degH(v) and apply the following discharging rules.

Rule 1. A 3-vertex sends α3 to each of its 2-neighbours.

Rule 2. A (≥ 4)-vertex sends α4 to its 2-neighbours which are in a 2-thread and α′
4 to its other 2-neighbours.

Let us now define constraints to ensure that the final charge w∗(v) of every vertex v of H is at least M , a contradiction.

Again there are no (≤ 1)-vertices by Lemma 1-1.

• Suppose that v is a 2-vertex. Then by Lemma 1-3 it has at most one 2-neighbour. If v has one 2-neighbour then, by

Lemma 1-4, it has a (≥ 4)-neighbour from which it receives α4. We obtain the constraint M ≤ 2 + α4. If v has

no 2-neighbour then, by Lemma 1-9, it has a (≥ 4)-neighbour from which it receives α′
4. Its other neighbour is a

(≥ 3)-neighbour from which it receives α3. Hence we get M ≤ 2 + α′
4 + α3.

• If v is a 3-vertex it sends at most α3 to each neighbour. This yields the constraints M ≤ 3− 3α3.

• If v is a 4-vertex then by Lemma 1-7, it is incident to no 2-thread, yielding M ≤ 4− 4α′
4.

• If v is a 5-vertex then by Lemma 1-8, it is incident to at most four 2-threads, yielding M ≤ 5 − 4α4 − α′
4 (again

we implicitly assume α4 ≥ α′
4 which is satisfied by the solution giving the optimal value).

• If v is a k-vertex with k ≥ 6, it sends at most α4 to each neighbour. Thus M ≤ k − kα4.

The optimal value M = 48
19 is obtained for α3 = 3

19 , α4 = 10
19 and α′

4 = 7
19 .

3. Let G be a graph with maximum degree ∆ ≥ 5 such that Mad(G) < M . Set k2 =
⌈
∆
2

⌉
+ 2. Suppose by way of

contradiction that Λl(G) > k2. Then G has a subgraph H which is k2-linear-minimal.

We assign to every vertex of H an initial charge w(v) = degH(v) and apply the following discharging rules.

Rule 1. A 3-vertex sends α3 to each of its 2-neighbours

Rule 2. A (≥ 4)-vertex sends α4 to each of its 2-neighbours having no (≤ 3)-neighbour.

Rule 3. A (≥ 4)-vertex sends α′
4 to each of its 2-neighbours having a 3-neighbour.



Let us now define constraints to ensure that the final charge w∗(v) of every vertex v of H is at least M , which is a

contradiction.

• If v is a 2-vertex then it has no 2-neighbour by Lemma 1-11. If it has a 3-neighbour its other neighbour is a

(≥ 4)-neighbour according to Lemma 1-9. yielding M ≤ 2 + α3 + α′
4. If v has no 3-neighbour, then we get

M ≤ 2 + 2α4.

• If v is a 3-vertex it sends at most 3α3, yielding M ≤ 3− 3α3.

• If v is a 4-vertex then by Lemma 1-10, it has at most one 2-neighbour that has a 3-neighbour, yielding M ≤
4− α′

4 − 3α4 (with the assumption α′
4 ≥ α4).

• If v is a k-vertex with k ≥ 5, it sends at most kα′
4, yielding M ≤ k − kα′

4.

The optimal value M = 60
23 is obtained for α3 = 3

23 , α4 = 7
23 and α′

4 = 11
23 .

4. Let G be a graph such that Mad(G) < M . Set k3 =
⌈
∆
2

⌉
+ 3. Suppose by way of contradiction that Λl(G) > k3.

Then ∆ ≥ 3, as every graph with maximum degree at most 2 is linearly 3-choosable. Moreover G has a subgraph H
which is k3-linear-minimal.

Let us assign to every vertex of H an initial charge w(v) = dH(v) and apply the following discharging rule.

Rule 1. A (≥ 4)-vertex sends α4 to each of its 2-neighbours

Let us now define constraints to ensure that the final charge w∗(v) of every vertex v of H is at least M , which is a

contradiction.

• If v is a 2-vertex then it has no (≤ 3)-neighbour by Lemmas 1-11 and 1-12. This gives M ≤ 2 + 2α4.

• If v is a 3-vertex then its charge does not change, yielding M ≤ 3.

• If v is a 4-vertex then by Lemma 1-13, it has at most three 2-neighbours. This yields M ≤ 4− 3α4.

• If v is a k-vertex with k ≥ 5, it sends at most α4 to each neighbour, yielding M ≤ k − kα4.

The optimal value M = 14
5 is obtained for α4 = 2

5 .

5. Let G be a graph such that Mad(G) < M . Set k4 =
⌈
∆
2

⌉
+ 4. Suppose by way of contradiction that Λl(G) > k4.

Then ∆ ≥ 3, as every graph with maximum degree at most 2 is linearly 3-choosable. Moreover G has a subgraph H
which is k4-linear-minimal.

Let us assign to every vertex of H an initial charge w(v) = degH(v) and apply the following discharging rule.

Rule 1. A (≥ 4)-vertex sends α4 to each of its 2-neighbours.

Let us now define constraints to ensure that the final charge w∗(v) of every vertex v of H is at least M , which is a

contradiction.

• If v is a 2-vertex then it has no (≤ 3)-neighbour by Lemmas 1-11 and 1-12. This gives M ≤ 2 + 2α4.

• If v is a 3-vertex, its charge is unchanged. This gives M ≤ 3.

• If v is a 4-vertex then by Lemma 1-14, it has at most two 2-neighbours, yielding M ≤ 4− 2α4.

• If v is a 5-vertex then by Lemma 1-15, it has at most four 2-neighbours. This gives M ≤ 5− 4α4.

• If v is a k-vertex with k ≥ 6, it sends at most kα4. Thus M ≤ k − kα4.

The optimal value M = 3 is obtained for α4 = 1
2 .



3.3 2-frugal colouring

In this subsection we prove the following theorem.

Theorem 4. Let G be a graph with maximum degree (at most) ∆

1. If ∆ ≥ 7 and Mad(G) < 5
2 , then Φl

2(G) ≤ ⌈∆
2 ⌉+ 1.

2. If Mad(G) < 3, then Φl
2(G) ≤ ⌈∆

2 ⌉+ 3.

Proof. 1. Let G be a graph with maximum degree ∆ ≥ 7 such that Mad(G) < M . Set k1 =
⌈
∆
2

⌉
+ 1 ≥ 5. Suppose by

way of contradiction that Φl
2(G) > k1. Then G has a subgraph H which is k1-frugal-minimal.

Let us assign to every vertex of H an initial charge w(v) = dH(v). Then
∑

v∈V (H) w(v) =
∑

v∈V (H) d(v) =

Ad(H) · |V (H)|. Let us call a 2-vertex bad if it has a 2-neighbour, and good otherwise. We now apply the following

discharging rules.

Rule 1. 3-vertices give α3 to each of their 2-neighbours.

Rule 2. (≥ 4)-vertices give αg
4 to each of their good 2-neighbours.

Rule 3. (≥ 4)-vertices give αb
4 to each of their bad 2-neighbours.

Let us now define constraints to ensure that the final charge w∗(v) of every vertex v of H is at least M , which is a

contradiction

• There are no 1-vertices by Lemma 1-1.

• If v is a 2-vertex then by Lemma 1-3 it does not have two 2-neighbours. In addition, by Lemma 1-4, no bad vertex

can have a 3-neighbour, and by Lemma 1-9 a 2-vertex has at most one 3-neighbour. This gives the constraints

M ≤ 2 + α3 + αg
4 and M ≤ 2 + αb

4.

• If v is a 3-vertex it sends at most α3 to each of its neighbours, yielding M ≤ 3− 3α3.

• If v is a 4-vertex, then by Lemma 2-i it has at most one bad neighbour. Hence M ≤ 4 − αb
4 − 3αg

4 (with the

assumption αb
4 ≤ αg

4).

• If v is a k-vertex with k ≥ 5 it sends at most αb
4 to each of its neighbours (under the same assumption), yielding

M ≤ k − 4αb
4.

The optimal value M = 5
2 is obtained for α3 = 1

6 , αg
4 = 1

3 and αb
4 = 1

2 .

2. Let G be a graph such that Mad(G) < M . Set k3 =
⌈
∆
2

⌉
+ 3. Suppose by way of contradiction that Φl

2(G) > k3.

Then G has a subgraph H which is k1-frugal-minimal.

We assign to every vertex of H an initial charge w(v) = degH(v) and apply the following discharging rule.

Rule 1. ≥ 4-vertices give α4 to each of their 2-neighbours.

Let us now define constraints to ensure that the final charge w∗(v) of every vertex v of H is at least M , which is a

contradiction.

• There are no 1-vertices by Lemma 1-1.

• If v is a 2-vertex, by Lemma 1-11 it does not have 2-neighbours, and by Lemma 1-12 it can not have any 3-neighbour

either. Hence M ≤ 2 + 2α4.

• If v is a 3-vertex, M ≤ w∗(v) = 3.

• If v is a 4-vertex, by Lemma 2-ii it has at most one 2-neighbour, yielding M ≤ 4− α4.

• If v is a 5-vertex, by Lemma 2-iii it has at most four 2-neighbours, giving M ≤ 5− 4α4.

• If v is a k-vertex with k ≥ 6, then it sends at most α4 to each of its neighbours. This yields M ≤ 6− 6α4.

The optimal value M = 3 is obtained for α4 = 1
2 .
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Planar graphs with maximum degree ∆ ≥ 9 are

(∆+1)-edge-choosable.

A short proof

Nathann Cohen∗ Frédéric Havet∗

Abstract

We give a short proof of the following theorem due to Borodin [2]. Every planar graph G with

maximum degree at least 9 is (∆(G)+1)-edge-choosable.

1 Introduction

All graphs considered in this paper are simple and finite. A proper edge-colouring of a graph G is a

mapping φ from E(G) into a set S of colours such that incident edges have different colours. If |S| = k,

then f is a proper k-edge-colouring. A graph is k-edge-colourable if it has a proper k-edge-colouring.

The chromatic index χ′(G) of a graph G is the least k such that G is k-edge-colourable.

Since edges sharing an endvertex need different colours, χ′(G) ≥ ∆(G), where ∆(G) denotes the

maximum degree of G. The celebrated Vizing’s Theorem [13] (also shown independently by Gupta [5])

states that χ′(G) ∈ {∆(G),∆(G)+1}.

Theorem 1 (Vizing [13]). If G is a graph then ∆(G)≤ χ′(G)≤ ∆(G)+1.

An edge-list-assignment of a graph G is a function L that assigns to each edge e ∈ E(G) a list of

colours L(e). An edge-list-assignment is k-uniform if each list is of size at least k. An L-edge-colouring

of G is a proper edge-colouring f such that ∀v ∈ V (G), f (v) ∈ L(v). A graph G is L-edge-colourable if

there exists an L-edge-colouring of G. It is k-edge-choosable if it is L-colourable for every k-uniform

edge-list-assignment L. The choice index or list chromatic index ch′(G) is the least k such that G is

k-edge-choosable.

One of the most celebrated conjectures on graph colouring is the List Colouring Conjecture asserting

that the chromatic index always equals the list chromatic index.

Conjecture 2 (List Colouring Conjecture). For every graph G, χ′(G) = ch′(G).

Bollobás and Harris [1] proved that ch′(G) < c∆(G) when c > 11/6 for sufficiently large ∆. Using

probabilistic methods, Kahn [9] proved Conjecture 2 asymptotically: ch′(G) ≤ (1+ o(1))∆(G). The

error term was sharpened by Häggkvist and Janssen [7]: ch′(G) ≤ ∆(G)+O(∆(G)2/3
√

log∆(G)) and

later by Molloy and Reed [10]: ch′(G) ≤ ∆(G)+O(∆(G)1/2(log∆(G))4). Galvin [6] proved the List

Colouring Conjecture for bipartite graphs. (See also Slivnik [12]).

The List Colouring Conjecture and Vizing’s Theorem imply the following conjecture :

∗Projet Mascotte, I3S(CNRS, UNSA) and INRIA, 2004 route des lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France.

nathann.cohen@sophia.inria.fr ; fhavet@sophia.inria.fr. Partially supported by the ANR Blanc AGAPE and ANR

Blanc International-Taiwan GRATEL.
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Conjecture 3. For any graph G, ch′(G)≤ ∆(G)+1.

This conjecture holds easily when ∆(G) ≤ 2. It is also true when ∆(G) = 3 as in this case the line-

graph L(G) of G has maximum degree 4 and so ch′(G) = ch(L(G)) ≤ 5 as shown by Juvan et al. [8].

Borodin [2] settled this conjecture for planar graphs of maximum degree at least 9.

Theorem 4 (Borodin [2]). If G is a planar graph of maximum degree at least 9, then G is (∆(G)+ 1)-
edge-choosable.

This theorem does not imply the List Colouring Conjecture for planar graphs of large maximum

degree. Indeed, Sanders and Zhao [11] showed that a planar graph G with maximum degree at least 7

is ∆(G)-edge-colourable. Vizing’s Edge-Colouring Conjecture [14] asserts that ∆(G)-edge-colourability

also holds for planar graphs with maximum degree 6. Proving this for ∆(G) = 6 would be best possible

as for k ∈ {2,3,4,5}, there are some planar graphs with maximum degree k and chromatic index equal

to k+1 [14].

Borodin, Kostochka and Woodall [3] showed that if G is planar and ∆(G)≥ 12, then ch′(G)≤ ∆(G),
thus proving the List Colouring Conjecture for planar graphs with maximum degree at least 12. Another

proof was given by Cole, Kowalik and Škrekovski [4]; it yields a linear-time algorithm to L-edge-colour

a planar graph G for any max{∆(G),12}-uniform edge-list-assignment. Conjecture 3 is still open for

planar graphs with maximum degree between 5 and 8, and it is still unknown whether every planar graph

with maximum degree between 6 and 11 is ∆(G)-edge-choosable.

In this paper, we give a short proof of Theorem 4.

2 Proof of Theorem 4

Our proof uses the discharging method.

A vertex of degree d (respectively at least d, respectively at most d) is said to be a d-vertex (respec-

tively a d+-vertex, respectively a d−-vertex). The notion of a d-face (respectively a d+-face, respectively

a d−-face) is defined analogously regarding the length of a face.

Consider a minimal counterexample G to the theorem. Let L be a (∆(G)+ 1)-uniform ledge-list-

assignment such that G is not L-edge-colourable. The graph G has no edge uv such that d(u)+ d(v) ≤
∆(G)+ 2, since otherwise any L-colouring of G \ uv could be extended to one of G by giving to uv a

colour distinct from the colours of its at most ∆(G) adjacent edges. In particular, δ(G)≥ 3, and for i ≥ 3

the neighbours of an i-vertex have degree at least ∆(G)+3− i.

For each i, let Vi be the set of i-vertices.

Claim 1. |V∆(G)|> 2|V3|.

Proof. Let F the set of edges in G having one endvertex of degree 3 (hence the other endvertex of degree

∆(G)). Let H be the bipartite subgraph with vertex set V3 ∪V∆(G) and edge set F .

We show first that H is a forest. Suppose by way of contradiction that H has a cycle C. Since H is

bipartite, C is even. By minimality of G, G\E(C) has an L-edge-colouring. Now every edge of C has at

least two available colours since it is incident to ∆(G)+1 edges, of which ∆(G)−1 are coloured. Since

even cycles are 2-edge-choosable, one can extend the L-edge-colouring to G, which is a contradiction.

Now, since every vertex of V3 has degree 3 in H, we conclude that |E(H)| = 3|V3|, and hence

|V∆(G)|+ |V3|> 3|V3|.
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Let us assign to each vertex or face a charge equal to its degree (or length) minus 4. It follows easily

from Euler’s Formula that ∑x∈V (G)(d(x)−4)+∑x∈F(G)(d(x)−4) =−8. Let us now discharge along the

following rules:

(R1) Every ∆(G)-vertex gives 1/2 to a common pot from which each 3-vertex receives 1;

(R2) Every 8+-vertex gives 1/2 to each of its incident 3-faces;

(R3) Every d-vertex with d ∈ {5,6,7} gives d−4
d

to each of its incident 3-faces.

We show that the final charge f (x) for every vertex or face is nonnegative. We also show that the final

charge of the common pot is nonnegative. This implies that the total final charge is nonnegative; since

the total final charge equals the total initial charge, this is a contradiction.

• Since |V∆(G)|> 2|V3| by Claim 1, the charge of the common pot is positive.

• Let x be a d-vertex.

If d = 3, then x receives 1 from the pot and gives no charge away, so f (x)≥ 0. If d = 4, the charge of x

does not change, so f (x) = d − 4 = 0. If d ∈ {5,6,7}, then x sends at most d−4
d

to each of its incident

face so f (x)≥ d(1− d−4
d
)−4 ≥ 0. If 8 ≤ d ≤ ∆(G)−1, then x sends at most 1/2 to each of its incident

faces, so f (x)≥ d−4−d/2 ≥ 0. If d = ∆(G), then x loses charge 1/2 to the pot and 1/2 to each incident

3-face, so f (x)≥ d −4−d/2−1/2 ≥ 0, since d ≥ 9.

• Let x be a d-face.

If d ≥ 4, then its charge does not change so f (x) = d(x)−4 ≥ 0. Suppose now that d = 3. If x contains

a 4−-vertex, then the two other neighbours have degree at least ∆(G)−1, so x receives 1/2 from each of

them. Thus f (x) = 3−4+2×1/2 = 0. If x contains a 5-vertex then its two other vertices have degree

at least ∆(G)− 2 which is at least 7. Hence x receives at least 1
5

from its 5-vertex and at least 3
7

from

the other two vertices. So f (x)≥ 3−4+1/5+2×3/7 > 0. Otherwise, all the vertices incident to x are

6+-vertices. Hence f (x)≥ 3−4+3×1/3 = 0.
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α-Acyclicity is an important notion in database theory. The α-arboricity of a hy-

pergraph H is the minimum number of α-acyclic hypergraphs that partition the
edge set of H. The α-arboricity of the complete 3-uniform hypergraph is determined
completely.

1. Introduction

There is a natural bijection between database schemas and hypergraphs, where each at-

tribute of a database schema D corresponds to a vertex in a hypergraph H, and each

relation R of attributes in D corresponds to an edge in H. Many properties of databases

have therefore been studied in the context of hypergraphs. One such property of databases

is the important notion of α-acyclicity. Besides being a desirable property in the design

of databases [2, 3, 8, 9, 10], many NP-hard problems concerning databases can be solved

in polynomial time when restricted to instances for which the corresponding hyper-

graphs are α-acyclic [3, 16, 19]. Examples of such problems include determining global

consistency, evaluating conjunctive queries, and computing joins or projections of joins.
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The α-Aboricity of Complete Uniform Hypergraphs 1

When faced with such computationally intractable problems on a general database

schema, it is natural to decompose it into α-acyclic instances on which efficient algo-

rithms can be applied. This has motivated some recent studies on the α-arboricity of

hypergraphs, the minimum number of α-acyclic hypergraphs into which the edges of a

given hypergraph can be partitioned [4, 14, 17].

In this paper, we give a general construction for partitioning complete uniform hyper-

graphs into α-acyclic hypergraphs based on Steiner systems, and completely determine

the α-arboricity of complete 3-uniform hypergraphs.

2. Preliminaries

We assume familiarity with basic concepts and notions in graph theory.

Let n be a positive integer. The set {1, . . . , n} is denoted [n]. Disjoint union of sets is

denoted by ⊔. We use ⊔ in place of ∪ when we want to emphasize the disjointness of the

sets involved in a union.

For X a finite set and k a nonnegative integer, the set of all k-subsets of X is denoted
(
X
k

)
, that is

(
X
k

)
= {K ⊆ X : |K| = k}. A hypergraph is a pair H = (X,A), where X is a

finite set, and A ⊆ 2X . The elements of X are called vertices and the elements of A are

called edges. The order ofH is the number of vertices inX, and the size ofH is the number

of edges in A. If A ⊆
(
X
k

)
, then H is said to be k-uniform. A 2-uniform hypergraph is

just the usual notion of a graph. The complete k-uniform hypergraph (X,
(
X
k

)
) of order n

is denoted K
(k)
n . A hypergraph is empty if it has no edges. The degree of a vertex v is

the number of edges containing v.

A Steiner system S(t, k, n) is a k-uniform hypergraph (X,A) such that every T ∈
(
X
t

)

is contained in exactly one edge in A.

A group divisible design k-GDD is a triple (X,G,A), where (X,A) is a k-uniform

hypergraph, G = {G1, . . . , Gt} is a partition of X into parts Gi, i ∈ [t], called groups,

such that every T ∈
(
X
2

)
not contained in a group is contained in exactly one edge in A,

and every T ∈
(
X
2

)
contained in a group is not contained in any edge in A. The type of

a k-GDD (X,G,A) is the multiset [|G1|, . . . , |Gt|]. The exponential notation gt11 . . . gtss is

used to denote the multiset where element gi has multiplicity ti, i ∈ [s].

We require the following result from Colbourn et al. [5] on the existence of 3-GDDs.

Theorem 2.1 (Colbourn, Hoffman, and Rees [5]). Let g, t, and u be nonnegative

integers. There exists a 3-GDD of type gtu1 if and only if the following conditions are

all satisfied:

1 if g > 0 then t ≥ 3, or t = 2 and u = g, or t = 1 and u = 0, or t = 0;

2 u ≤ g(t− 1) or gt = 0;

3 g(t− 1) + u ≡ 0 (mod 2) or gt = 0;

4 gt ≡ 0 (mod 2) or u = 0;

5 g2
(
t
2

)
+ gtu ≡ 0 (mod 3).

2.1. Graphs of Hypergraphs

Given a hypergraph H, we may define the following graphs on H.
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Definition. Let H = (X,A) be a hypergraph. The line graph of H is the graph L(H) =

(V, E), where V = A and E = {{A,B} ⊆
(
V
2

)
: A ∩B 6= ∅}.

Definition. Let H = (X,A) be a hypergraph. The primal graph of H is the graph

G(H) = (X, E) such that {x, y} ∈ E if and only if {x, y} ∈ A for some A ∈ A.

A hypergraph H is conformal if for every clique K in G(H), there is an edge in H that

contains K. A hypergraph H is chordal if G(H) is chordal, that is, every cycle of length

at least four in G(H) contains two nonconsecutive vertices that are adjacent.

2.2. Acyclic Hypergraphs

Graham [11], and independently, Yu and Ozsoyoglu [20, 21], defined an acyclicity property

(which has come to be known as α-acyclicity) for hypergraphs in the context of database

theory, via a transformation now known as the GYO reduction. Given a hypergraph

H = (X,A), the GYO reduction applies the following operations repeatedly to H until

none can be applied:

1 If a vertex x ∈ X has degree one, then delete x from the edge containing it.

2 If A,B ∈ A are distinct edges such that A ⊆ B, then delete A from A.

3 If A ∈ A is empty, that is A = ∅, then delete A from A.

Definition. A hypergraph H is α-acyclic if GYO reduction on H results in an empty

hypergraph.

The notion of α-acyclicity is closely related to conformality and chordality for hyper-

graphs. Beeri et al. [3] showed:

Theorem 2.2 (Beeri et al. [3]). H is α-acyclic if and only if H is conformal and

chordal.

Let H = (X,A) be a hypergraph. Assign to every edge {A,B} of L(H) the weight

|A ∩ B|. We denote this weighted line graph of H by L′(H). The maximum weight of a

forest in L′(H) is denoted w(H). Acharya and Las Vergnas [1] introduced the hypergraph

invariant

µ(H) =
∑

A∈A
|A| −

∣
∣
∣
∣
∣

⋃

A∈A
A

∣
∣
∣
∣
∣
− w(H),

called the cyclomatic number of H, and used it to characterize conformal and chordal

hypergraphs.

Theorem 2.3 (Acharya and Las Vergnas [1]). A hypergraph H satisfies µ(H) = 0

if and only if H is conformal and chordal.

Theorem 2.2 and Theorem 2.3 immediately imply the following.
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Corollary 2.4. A hypergraph H is α-acyclic if and only if µ(H) = 0.

Li and Wang [15] were unaware of these connections and rediscovered Corollary 2.4

recently. An easy consequence is that a maximum α-acyclic k-uniform hypergraph of order

n has size n−k+1 [18]. Let Lk−1(H) denote the spanning subgraph of L′(H) containing

only those edges of L′(H) of weight k − 1. We derive the following characterizations of

maximum α-acyclic k-uniform hypergraphs.

Corollary 2.5. A k-uniform hypergraph H = (X,A) of order n and size n − k + 1 is

α-acyclic if and only if L(H) contains a spanning tree, each edge of which has weight

k − 1 (in other words, Lk−1(H) is connected).

Proof. By Corollary 2.4, we have

w(H) =
∑

A∈A
|A| −

∣
∣
∣
∣
∣

⋃

A∈A
A

∣
∣
∣
∣
∣

= (n− k + 1)k − n

= (n− k)(k − 1).

Since every edge in L′(H) has weight at most k − 1, and that a forest of L′(H) contains

at most n− k edges (and with exactly n− k edges if and only if the forest is a spanning

tree), the corollary follows.

An α-acyclic decomposition of a hypergraph H = (X,A) is a set of α-acyclic hyper-

graphs {(X,Ai)}ci=1 such that A1, . . . ,Ac partition A, that is, A =
⊔c

i=1 Ai. The size of

the α-acyclic decomposition is c.

Definition. The α-arboricity of a hypergraph H, denoted αarb(H), is the minimum

size of an α-acyclic decomposition of H.

3. Previous Work

Trivially, αarb(K
(1)
n ) = αarb(K

(n)
n ) = 1, since both K

(1)
n and K

(n)
n are α-acyclic. It is

also known that αarb(K
(2)
n ) = αarb(K

(n−1)
n ) = ⌈n/2⌉ (see, for example, [4]). Li [14] also

showed that αarb(K
(n−2)
n ) = ⌈n(n− 1)/6⌉. In general, Li [14] showed that
⌈
1

k

(
n

k − 1

)⌉

≤ αarb(K(k)
n ) ≤ 1

2

(
n+ 1

k − 1

)

. (3.1)

The upper and lower bounds in (3.1) differ by approximately a factor of k/2. Wang [17]

conjectured the lower bound to be the true value of αarb(K
(k)
n ).

Conjecture 3.1. αarb(K
(k)
n ) =

⌈
1

k

(
n

k − 1

)⌉

.
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Recently, Chee et al. [4] showed that Conjecture 3.1 holds when k = n − 3, so that

Conjecture 3.1 is now known to hold for all n, when k = 1, 2, n− 3, n− 2, n− 1, n. Chee

et al. [4] also showed that Conjecture 3.1 holds whenever there exists a Steiner system

S(n − k, n − k + 1, n), and that Conjecture 3.1 holds in an asymptotic sense when k is

large enough. More precisely, the following was obtained.

Theorem 3.1 (Chee et al. [4]). Let δ be a positive constant. Then for k = n −
O(log1−δ n), we have

αarb(K(k)
n ) = (1 + o(1))

1

k

(
n

k − 1

)

,

where the o(1) is in n.

4. Decompositions based on Steiner Systems

First, note that the cardinality of the Steiner system S(k−1, k, n) is precisely 1
k

(
n

k−1

)
, i.e.,

when such a system exists, the lower bound given by equation 3.1. Therefore, the idea of

our construction consists in using the blocks of a S(k−1, k, n) as centers of our partitions

of K
(k)
n into α-acyclic hypergraphs. Each of these hypergraphs is based on a center C

(in this case a block from the Steiner system) to which are added n − 3 edges, each of

which intersect the center on k − 1 vertices (we name these hypergraphs star-shaped).

The reader may find helpful to consult Fig.1 to illustrate the following proof.

Theorem 4.1. If there exists an S(k − 1, k, n), then αarb(K
(k)
n ) = 1

k

(
n

k−1

)
.

Proof. Let k and n be positive integers, 2 ≤ k ≤ n. Let (X,A) be an S(k−1, k, n) and

consider the set A′ = {(A, x) : A ∈ A and x ∈ X \A}. Define a bipartite graph G with

bipartition A′ ⊔
((

X
k

)
\ A
)

so that vertex (A, x) ∈ A′ is adjacent to vertex K ∈
(
X
k

)
\ A

if and only if K ⊂ A ∪ {x}. Thus, the neighborhood of vertex (A, x) ∈ A′ is the set

N(A, x) = {(A ∪ {x}) \ {u} : u ∈ A}, and the neighborhood of vertex K ∈
(
X
k

)
\ A is

the set N(K) = {(A, x) : x ∈ K, A ∈ A, and K \ {x} ⊂ A}. Evidently, |N(A, x)| = k for

all (A, x) ∈ A′. To see that |N(K)| = k for all K ∈
(
X
k

)
\ A, note that each of the k

(k− 1)-subsets of K is contained in exactly one A ∈ A, since (X,A) is an S(k− 1, k, n).

It follows that |N(A, x)| = |N(K)| = k, and G is k-regular. Hence, G has a perfect

matching M .

Now, for each A ∈ A, let us define the k-uniform hypergraph HA = (X,BA), where

BA = {A}∪{K ∈
(
X
k

)
\A : {(A, x),K} ∈ M for some x ∈ X \A}. It is easy to check that

(
X
k

)
=
⊔

A∈A BA. We claim that, in fact, the set of hypergraphs {HA}A∈A is an α-acyclic

decomposition of (X,
(
X
k

)
). To see this, note that HA has order n and size n − k + 1,

and observe that each edge in BA \ {A} intersects A in exactly k − 1 vertices. Hence,

Lk−1(HA) is connected. It follows from Corollary 2.5 that HA is α-acyclic. The size of

the α-acyclic decomposition {HA}A∈A is the size of an S(k − 1, k, n), which is precisely
1
k

(
n

k−1

)
.
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({1, 2, 4} , 0)

({1, 2, 4} , 3)

({1, 2, 4} , 5)

({1, 2, 4} , 6)

({1, 5, 6} , 0)

({1, 5, 6} , 2)

({1, 5, 6} , 3)

({1, 5, 6} , 4)

({2, 3, 5} , 0)

({2, 3, 5} , 1)

({2, 3, 5} , 4)

({2, 3, 5} , 6)

({0, 1, 3} , 2)

({0, 1, 3} , 4)

({0, 1, 3} , 5)

({0, 1, 3} , 6)

({0, 4, 5} , 1)

({0, 4, 5} , 2)

({0, 4, 5} , 3)

({0, 4, 5} , 6)

({0, 2, 6} , 1)

({0, 2, 6} , 3)

({0, 2, 6} , 4)

({0, 2, 6} , 5)

({3, 4, 6} , 0)

({3, 4, 6} , 1)

({3, 4, 6} , 2)

({3, 4, 6} , 5)

{1, 2, 3}

{0, 5, 6}

{0, 2, 5}

{0, 1, 4}

{0, 1, 2}

{0, 3, 4}

{0, 2, 4}

{2, 3, 4}

{3, 5, 6}

{1, 3, 6}

{3, 4, 5}

{2, 5, 6}

{0, 1, 5}

{1, 3, 5}

{1, 4, 5}

{1, 2, 6}

{0, 1, 6}

{0, 4, 6}

{1, 4, 6}

{1, 2, 5}

{2, 3, 6}

{0, 3, 5}

{2, 4, 6}

{4, 5, 6}

{0, 3, 6}

{2, 4, 5}

{1, 3, 4}

{0, 2, 3}

Figure 1. Case n = 7, k = 3

Corollary 4.2. We have αarb(K
(k)
n ) = 1

k

(
n

k−1

)
whenever any one of the following

conditions hold:

(i) k = 2 and n ≡ 0 (mod 2), or

(ii) k = 3 and n ≡ 1, 3 (mod 6), or

(iii) k = 4 and n ≡ 2, 4 (mod 6), or

(iv) k = 5 and n ∈ {11, 23, 35, 47, 71, 83, 107, 131}, or
(v) k = 6 and n ∈ {12, 24, 36, 48, 72, 84, 108, 132}.

Proof. For (i), note that an S(1, 2, n) is a perfect matching in the complete graph Kn,

and hence exists if and only if n is even. For (ii), an S(2, 3, n) is a Steiner triple system

and exists if and only if n ≡ 1 or 3 (mod 6) (see, for example, [7]). For (iii), an S(3, 4, n)

is a Steiner quadruple system, existence for which was settled by Hanani [13], who showed

that n ≡ 2 or 4 (mod 6) is necessary and sufficient. For (iv)–(v), see [12, 6] for existence

results.

5. α-Arboricity of K(3)
n

We determine αarb(K
(3)
n ) completely in this section. Corollary 4.2 determined αarb(K

(3)
n )

for all n ≡ 1, 3 (mod 6), so we focus on the remaining cases of n ≡ 0, 2, 4, 5 (mod 6) here.

5.1. The Case n ≡ 0, 4 (mod 6)

In this subsection, n ≡ 0, 4 (mod 6), n ≥ 4.

Let X = Y ⊔Z, where |Y | = n−3 and Z = {∞1,∞2,∞3}. Let (Y,A) be an S(2, 3, n−
3).

Our proof here is similar to the one given previously. Our classes, howewer, are now
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of two different kinds : not only do we need our former star-shaped hypergraphs whose

centers belong to a Steiner triple system on Y , but also classes whose centers are two

triples {y,∞1,∞2} and {y,∞1,∞3} (intersecting on y,∞1), for all y ∈ Y . As previously,

any edge of our α-acyclic hypergraphs intersects at least one edge of its center on exactly

two vertices. The decomposition is completed by another star-shaped class containing the

triples {y,∞2,∞3} where y ∈ X\{∞2,∞3}.
We define the bipartite graph Γ with bipartition V (Γ) = P ⊔Q, where

P =

(
⋃

A∈A
{(A, x) : x ∈ X \A}

)

∪



⋃

y∈Y

{({y,∞1,∞2}, {y,∞1,∞3}, z) : z ∈ Y \ {y}}



 ,

Q =

(
X

3

)

\ (A ∪ {{y,∞1,∞2}, {y,∞1,∞3}, {y,∞2,∞3} : y ∈ Y } ∪ {Z}),

with adjacency of vertices in Γ as follows:

(i) Vertex ({a, b, c}, x) ∈ P is adjacent to vertices {a, b, x}, {a, c, x}, {b, c, x} ∈ Q.
(ii) Vertex ({y,∞1,∞2}, {y,∞1,∞3}, z) ∈ P is adjacent to vertices {y, z,∞i} ∈ Q,

i ∈ [3].

Every vertex in P being of degree 3, let us prove the same holds for the vertices of Q.

∀u, v ∈ Y , we name Auv the unique triple of A containing both u and v.

1 {a, b, c} ⊆ Y is adjacent to (Aab, c), (Abc, a), and (Aac, b)
2 {a, b,∞i} ∈ Q is adjacent to (Aab,∞i), ({b,∞1,∞2}, {b,∞1,∞23}, a), and ({a,∞1,∞2}, {a,∞1,∞3}, b).
Hence Γ is 3-regular, and consequently has a perfect matching M .

For each A ∈ A, let us define the 3-uniform hypergraph HA = (X,BA), where

BA = {A} ∪ {T ∈ Q : {(A, x), T} ∈ M for some x ∈ X \A}.
Then HA is of order n and size n− 2. Each edge in BA \ {A} intersects A in exactly two

vertices. Hence, L2(HA) is connected. It follows from Corollary 2.5 that HA is α-acyclic.

In addition, for each y ∈ Y , define the 3-uniform hypergraph Hy = (X,By), where

By = {{y,∞1,∞2}, {y,∞1,∞3}}∪
{T ∈ Q : {({y,∞1,∞2}, {y,∞1,∞3}, z), T} ∈ M for some z ∈ Y \ {y}}.

Then Hy is of order n and size n − 2. In L2(Hy), the vertex {y,∞1,∞2} is adjacent to

{y,∞1,∞3}, and each vertex in By \ {{y,∞1,∞2}, {y,∞1,∞3}} is adjacent to vertices

{y,∞1,∞2} or {y,∞1,∞3}. Hence, L2(Hy) is connected. It follows from Corollary 2.5

that Hy is α-acyclic.

Finally, define the 3-uniform hypergraph H = (X,B), where B = {{y,∞2,∞3} : y ∈
Y } ∪ {Z}. Note that H is α-acyclic, since it GYO-reduces to an empty hypergraph.

Now, we have
(
X

3

)

=

(
⊔

A∈A
BA

)

⊔




⊔

y∈Y

By



 ⊔ B,
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so that {HA}A∈A ∪ {Hy}y∈Y ∪ {H} is an α-acyclic decomposition of K
(3)
n . The size of

this decomposition is

(n− 3)(n− 4)

6
+ (n− 3) + 1 =

n(n− 1)

6
,

which matches the lower bound in (3.1). This gives the following result.

Proposition 5.1. αarb(K
(3)
n ) = n(n− 1)/6 for all n ≡ 0, 4 (mod 6).

5.2. The Case n ≡ 5 (mod 6)

In this subsection, n ≡ 5 (mod 6), n ≥ 5. Write n = 6k + 5. Let X = Y ⊔ {∞1,∞2},
where |Y | = 6k+3, and let (Y,G,A) be a 3-GDD of type 32k+1, which exists by Theorem

2.1. Our construction is still based on star-shaped hypergraphs centered on the triples of

the 3-GDD, but we will this time need to define centers consisting of 3 triples, pairwise

intersecting on two elements. Also, for numerical reasons, 2k + 1 of our classes are of

order only n− 2 and size n− 4.

In the following, only the notations G have been replaced by T

Suppose G = {G1, . . . , G2k+1}, where Gi = {gi,1, gi,2, gi,3}, i ∈ [2k + 1]. To keep our

expressions succinct, we let

T k
i,j,j′ = {gi,j , gi,j′ ,∞k}

for i ∈ [2k + 1] 1 ≤ j < j′ ≤ 3 and k ∈ [2] and

Gi,j = {gi,j ,∞1,∞2}

for i ∈ [2k + 1] and j ∈ [3].

Define the bipartite graph Γ with bipartition V (Γ) = P ⊔Q, where

P =

(
⋃

A∈A
{(A, x) : x ∈ X \A}

)

∪
(
⋃

G∈G
{(G, x) : x ∈ Y \G}

)

∪
(

2k+1⋃

i=1

{(T 1
i,1,2, T

1
i,1,3, Gi,1, x) : x ∈ Y \Gi}

)

∪
(

2k+1⋃

i=1

{(T 2
i,1,2, T

2
i,2,3, Gi,2, x) : x ∈ Y \Gi}

)

,

Q =

(
X

3

)

\
(

A ∪ G ∪
⋃

i,r

j<j′

{T r
i,j,j′ , T

r
i,j,j′ , T

r
i,j,j′} ∪

⋃

i,j

Gi,j

)

,

with adjacency of vertices in Γ as follows:

(i) Vertex ({a, b, c}, x) ∈ P is adjacent to vertices {a, b, x}, {a, c, x}, {b, c, x} ∈ Q.

(ii) Vertex (T 1
i,1,2, T

1
i,1,3, Gi,1, x) ∈ P is adjacent to vertices {gi,ℓ,∞1, x} ∈ Q, ℓ ∈ [3].

(iii) Vertex (T 2
i,1,2, T

2
i,2,3, Gi,2, x) ∈ P is adjacent to vertices {gi,ℓ,∞2, x} ∈ Q, ℓ ∈ [3].
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Every vertex in P being of degree 3, let us prove the same holds for the vertices of Q.

∀u, v ∈ Y , we name Auv the unique triple of A ∪ G containing both u and v.

1 {a, b, c} ⊆ Y is adjacent to (Aab, c), (Abc, a), and (Aac, b).

2 {a, b,∞1} ⊆ Q, where a ∈ Gi and b ∈ Gi′ with i 6= i′, is adjacent to (Aab,∞1),

(T 1
i,1,2, T

1
i,1,2, Gi,1, b) and (T 1

i′,1,2, T
1
i′,1,3, Gi′,1, a)

3 {a, b,∞2} ⊆ Q, where a ∈ Gi and b ∈ Gi′ with i 6= i′, is adjacent to (Aab,∞2),

(T 2
i,1,2, T

2
i,2,3, Gi,2, b) and (T 2

i′,1,2, T
2
i′,2,3, Gi′,2, a)

Hence Γ is 3-regular, and consequently has a perfect matching M .

For each A ∈ A, let us define the 3-uniform hypergraph HA = (X,BA), where

BA = {A} ∪ {T ∈ Q : {(A, x), T} ∈ M for some x ∈ X \A}.

Then HA is of order n and size n− 2. Each edge in BA \ {A} intersects A in exactly two

vertices. Hence, L2(HA) is connected. It follows from Corollary 2.5 that HA is α-acyclic.

In addition, for each G ∈ G, define the 3-uniform hypergraph HG = (Y,BG), where

BG = {G} ∪ {T ∈ Q : {(G, x), T} ∈ M for some x ∈ Y \G}. Then HG is of order n − 2

and size n− 4. By the same reason as for HA, HG is α-acyclic.

Furthermore, for each i ∈ [2k+1], define the 3-uniform hypergraphs Hi = (X,Bi) and

H′
i = (X,B′

i), where

Bi = {T 1
i,1,2, T

1
i,1,3, Gi,1} ∪ {T ∈ Q : {(T 1

i,1,2, T
1
i,1,3, Gi,1, x), T} ∈ M for some x ∈ Y \Gi},

B′
i = {T 2

i,1,2, T
2
i,2,3, Gi,2} ∪ {T ∈ Q : {(T 2

i,1,2, T
2
i,2,3, Gi,2, x), T} ∈ M for some x ∈ Y \Gi}.

Then Hi and H′
i are each of order n and size n−2. In L2(Hi) (respectively, L2(H′

i)), the

vertex T 1
i,1,2 (respectively, T 2

i,1,2) is adjacent to vertices T 1
i,1,3 and Gi,1 (respectively, T 2

i,2,3

and Gi,2), and each vertex in Bi\{T 1
i,1,2, T

1
i,1,3, Gi,1} (respectively, B′

i\{T 2
i,1,2, T

2
i,2,3, Gi,2})

is adjacent to at least one of the vertices T 1
i,1,2, T

1
i,1,3, Gi,1 (respectively, T

2
i,1,2, T

2
i,2,3, Gi,2).

Hence L2(Hi) (respectively, L2(H′
i)) is connected. It follows from Corollary 2.5 that Hi

(respectively, H′
i) is α-acyclic.

Finally, define the 3-uniform hypergraph H = (X,B), where

B =

2k+1⋃

i=1

{T 2
i,1,3, T

1
i,2,3, Gi,3}.

It is easy to see that H is α-acyclic.

Now, we have

(
X

3

)

=

(
⊔

A∈A
BA

)

⊔
(
⊔

G∈G
BG

)

⊔
(

2k+1⊔

i=1

Bi

)

⊔
(

2k+1⊔

i=1

B′
i

)

⊔ B,

so that {HA}A∈A ∪{HG}G∈G ∪{Hi}i∈[2k+1] ∪{H ′
i}i∈[2k+1] ∪{H} is an α-acyclic decom-

position of K
(3)
n . The size of this decomposition is

3

(
2k + 1

2

)

+ (2k + 1) + (2k + 1) + (2k + 1) + 1 = 6k2 + 9k + 4

=

⌈
n(n− 1)

6

⌉

,
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which matches the lower bound in (3.1). This gives the following result.

Proposition 5.2. αarb(K
(3)
n ) = ⌈n(n− 1)/6⌉ for all n ≡ 5 (mod 6).

5.3. The Case n ≡ 2 (mod 6)

We treat the remaining case of n ≡ 2 (mod 6).

Lemma 5.3. αarb(K
(3)
8 ) = 10.

Proof. The lower bound in (3.1) showed that αarb(K
(3)
8 ) ≥ 10. We construct an α-

acyclic decomposition meeting this lower bound.

Consider the S(2, 3, 7), (Z7,A), with A = {{i, i+ 1, i+ 3} : i ∈ Z7}. Let {HA}A∈A be

the α-acyclic decomposition of (Z7,
(
Z7

3

)
) produced by the construction of Section 4. We

use this to construct an α-acyclic decomposition of K
(3)
8 as follows. Let X = Z7 ⊔ {∞},

and let

B1 = {{i, i+ 1,∞} : i ∈ Z7 \ {0}},
B2 = {{i, i+ 3,∞} : i ∈ Z7 \ {1}},
B3 = {{i+ 1, i+ 3,∞} : i ∈ Z7 \ {2}},
B4 = E(H{0,1,3}) ∪ {{0, 1,∞}},
B5 = E(H{1,2,4}) ∪ {{1, 4,∞}},
B6 = E(H{2,3,5}) ∪ {{3, 5,∞}}.

Then {(X,Bi)}i∈[6] ∪ {H{3,4,6},H{0,4,5},H{1,5,6},H{0,2,6}} is an α-acyclic decomposition

of (X,
(
X
3

)
) of size 10.

Henceforth, in what follows, let n ≡ 2 (mod 6), n ≥ 14. Write n = 6k + 2. Let

X = Y ⊔ {∞}, where |Y | = 6k + 1, and let (Y,G,A) be a 3-GDD of type 32k11, which

exists by Theorem 2.1. Here again, we use star-shaped hypergraphs centered on the triples

of A, but also classed whose centers consist of two triples intersecting in 2 elements. They

will be completed with a last star-shaped class of order 2k + 2 and size 2k (in order to

reach the bound).

Suppose G = {G1, . . . , G2k, {g}}, where Gi = {gi,1, gi,2, gi,3}, i ∈ [2k]. To keep our

expressions succinct, we let

G′
i = {gi,1, gi,2,∞},

G′′
i = {gi,1, gi,3,∞},

G′′′
i = {gi,2, gi,3,∞},
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for i ∈ [2k]. Define the bipartite graph Γ with bipartition V (Γ) = P ⊔Q, where

P =

(
⋃

A∈A
{(A, x) : x ∈ X \A}

)

∪
(

2k⋃

i=1

{(Gi, G
′′
i , x) : x ∈ Y \Gi}

)

∪
(

2k⋃

i=1

{(G′
i, G

′′′
i , x) : x ∈ Y \Gi}

)

∪ {Gi : i ∈ [2k]},

Q =

(
X

3

)

\ (A ∪ G ∪ {G′
i, G

′′
i , G

′′′
i : i ∈ [2k]}) ,

with adjacency of vertices in Γ as follows:

(i) Vertex ({a, b, c}, x) ∈ P is adjacent to vertices {a, b, x}, {a, c, x}, {b, c, x} ∈ Q.

(ii) Vertex (Gi, G
′′
i , x) ∈ P is adjacent to vertices {gi,1, gi,2, x}, {gi,1, gi,3, x}, {gi,2, gi,3, x} ∈

Q.

(iii) Vertex (G′
i, G

′′′
i , x) ∈ P is adjacent to vertices {gi,1,∞, x}, {gi,2,∞, x}, {gi,3,∞, x} ∈

Q.

(iv) Vertex Gi ∈ P is adjacent to vertices {gi,j , g,∞} ∈ Q, j ∈ [3].

Every vertex in P being of degree 3, let us prove the same holds for the vertices of Q.

∀u, v ∈ Y , we name Auv the unique triple of A containing both u and v.

1 {a, b, c} ⊆ Y , where a, b, and c belong to 3 different groups, is adjacent to (Aab, c),

(Aac, b), and (Abc, a).

2 {a, b, c} ⊆ Y , where a and b belong to the same group Gi and c 6∈ Gi, is adjacent to

(Aac, b), (Abc, a) and (Gi, G
′′
i , c).

3 {gi,j , gi′,j′ ,∞} ∈ P (hence i 6= i′) is adjacent to (Agi,jgi′,j′ ,∞), (G′
i, G

′′′
i , gi′,j′) and

(G′
i′ , G

′′′
i′ , gi,j)

4 {gi,j , g,∞} is adjacent to (Agi,jg,∞), Gi, and (G′
i, G

′′′
i , g)

Hence Γ is 3-regular, and consequently has a perfect matching M .

For each A ∈ A, let us define the 3-uniform hypergraph HA = (X,BA), where

BA = {A} ∪ {T ∈ Q : {(A, x), T} ∈ M for some x ∈ X \A}.
Then HA is of order n and size n− 2. Each edge in BA \ {A} intersects A in exactly two

vertices. Hence, L2(HA) is connected. It follows from Corollary 2.5 that HA is α-acyclic.

In addition, for each i ∈ [2k], define the 3-uniform hypergraphs Hi = (X,Bi) and

H′
i = (X,B′

i), where

Bi = {Gi, G
′′
i } ∪ {T ∈ Q : {(Gi, G

′′
i , x), T} ∈ M for some x ∈ Y \Gi},

B′
i = {G′

i, G
′′′
i } ∪ {T ∈ Q : {(G′

i, G
′′′
i , x), T} ∈ M for some x ∈ Y \Gi}.

Then Hi and H′
i are each of order n and size n − 2. By the same reason as for HA, Hi

and H′
i are α-acyclic.

Finally, define the 3-uniform hypergraph H = (X,B), where

B =
2k⋃

i=1

{T ∈ Q : {Gi, T} ∈ M}.

It is easy to see that H is α-acyclic, has order 2k + 2 and size 2k.
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Now, we have

(
X

3

)

=

(
⊔

A∈A
BA

)

⊔
(

2k⊔

i=1

Bi

)

⊔
(

2k⊔

i=1

B′
i

)

⊔ B,

so that {HA}A∈A ∪ {Hi}i∈[2k] ∪ {H′
i}i∈[2k] ∪ {H} is an α-acyclic decomposition of K

(3)
n .

The size of this decomposition is
(

3

(
2k

2

)

+ 2k

)

+ 2k + 2k + 1 = 6k2 + 3k + 1

=

⌈
n(n− 1)

6

⌉

,

which matches the lower bound in (3.1). Together with Lemma 5.3, this gives the following

result.

Proposition 5.4. αarb(K
(3)
n ) = ⌈n(n− 1)/6⌉ for all n ≡ 2 (mod 6), n ≥ 8.

5.4. Summary

Corollary 4.2(i), and Propositions 5.1, 5.2, 5.4, combine to give:

Theorem 5.5. αarb(K
(3)
n ) = ⌈n(n− 1)/6⌉ for all n ≥ 3.

6. Conclusion

The problem of determining the α-arboricity of hypergraphs is a problem motivated by

database theory. In this paper, we continue the study of the α-arboricity of complete

uniform hypergraphs. We give a general construction based on Steiner systems and de-

termine completely the value of αarb(K
(3)
n ). Previously, αarb(K

(k)
n ) was only known for

k = 1, 2, n− 3, n− 2, n− 1, n.
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Algorithm for Finding k-Vertex Out-trees and its Application

to k-Internal Out-branching Problem∗
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Saket Saurabh‡ Anders Yeo§

Abstract

An out-tree T is an oriented tree with only one vertex of in-degree zero. A vertex
x of T is internal if its out-degree is positive. We design randomized and deterministic
algorithms for deciding whether an input digraph contains a given out-tree with k vertices.
The algorithms are of running time O∗(5.704k) and O∗(6.14k), respectively. We apply
the deterministic algorithm to obtain a deterministic algorithm of runtime O∗(ck), where
c is a constant, for deciding whether an input digraph contains a spanning out-tree with
at least k internal vertices. This answers in affirmative a question of Gutin, Razgon and
Kim (Proc. AAIM’08).

1 Introduction

An out-tree is an oriented tree with only one vertex of in-degree zero called the root. The
k-Out-Tree problem is the problem of deciding for a given parameter k, whether an input
digraph contains a given out-tree with k ≥ 2 vertices. In their seminal work on Color
Coding Alon, Yuster, and Zwick [1] provided fixed-parameter tractable (FPT) randomized
and deterministic algorithms for k-Out-Tree. While Alon, Yuster, and Zwick [1] only stated
that their algorithms are of runtime O(2O(k)n), however, it is easy to see (see Subsection 2.1),
that their randomized and deterministic algorithms are of complexity1 O∗((4e)k) and O∗(ck),
where c ≥ 4e.

The main results of [1], however, were a new algorithmic approach called Color Coding
and a randomized O∗((2e)k) algorithm for deciding whether a digraph contains a path with
k vertices (the k-Path problem). Chen et al. [4] proposed another approach, a random-
ized divide-and-conquer technique; the new appraoch allowed them to design a randomized
O∗(4k)-time algorithm for k-Path. To divide the technique of Chen et al. [4] uses two colors.
The colors are ‘symmetric’, i.e., both colors play similar role and the probability of coloring
each vertex in one of the colors is 0.5. In this paper, we further develop the technique of
[4] by making it asymmetric, i.e., the two colors play different roles and the probability of
coloring each vertex in one of the colors depends on the color. As a result, we refine the

∗An extended abstract of this paper has appeared in the proceedings of COCOON’09 [6].
†INRIA – Projet MASCOTTE, 2004 route des Lucioles, BP 93 F-06902, Sophia Antipolis Cedex, France,

nathann.cohen@sophia.inria.fr
‡Department of Informatics, University of Bergen, POB 7803, 5020 Bergen, Norway,

fedor.fomin|saket.saurabh@ii.uib.no
§Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX,

UK, gutin|eunjung|anders@cs.rhul.ac.uk
1In this paper we often use the notation O∗(f(k)) instead of f(k)(kn)O(1), i.e., O∗ hides not only constants,

but also polynomial coefficients.
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result of Alon, Yuster, and Zwick by obtaining randomized and deterministic algorithms for
k-Out-Tree, of runtime O∗(5.704k) and O∗(6.14k), respectively.

It is worth to mention here two recent related results on k-Path due to Koutis [10] and
Williams [16] based on an algebraic approach. Koutis [10] obtained a randomized O∗(23k/2)-
time algorithm for k-Path and Williams [16] extended his ideas resulting in a randomized
O∗(2k)-time algorithm for k-Path. While the randomized algorithms based on Color Coding
and Divide-and-Color are not difficult to derandomize, it is not the case for the algorithms of
Koutis [10] andWilliams [16]. Thus, it is unknown whether there are deterministic algorithms
for k-Path of runtime O∗(23k/2). Moreover, it is not clear whether the randomized algorithms
of Koutis [10] and Williams [16] can be extended to solve k-Out-Tree.

While we believe that the study of fast algorithms for k-Out-Tree is a problem interest-
ing on its own, we provide an application of our deterministic algorithm. The vertices of an
out-tree T of out-degree zero (nonzero) are leaves (internal vertices) of T . An out-branching
of a digraph D is a spanning subgraph of D which is an out-tree. The Minimum Leaf

problem is to find an out-branching with the minimum number of leaves in a given digraph
D. This problem is of interest in database systems [7] and the Hamilton path problem is its
special case. Thus, in particular, Minimum Leaf is NP-hard. In this paper we will study
the following parameterized version of Minimum Leaf: given a digraph D and a parameter
k, decide whether D has an out-branching with at least k internal vertices. This prob-
lem denoted k-Int-Out-Branching was studied for symmetric digraphs (i.e., undirected
graphs) by Prieto and Sloper [14, 15] and for all digraphs by Gutin et al. [9]. Gutin et al.
[9] obtained an algorithm of runtime O∗(2O(k log k)) for k-Int-Out-Branching and asked
whether the problem admits an algorithm of runtime O∗(2O(k)). Note that no such algorithm
has been known even for the case of symmetric digraphs [14, 15]. In this paper, we obtain
an O∗(2O(k))-time algorithm for k-Int-Out-Branching using our deterministic algorithm
for k-Out-Tree and an out-tree generation algorithm.

For a set X of vertices of a subgraph H of a digraph D, N+
H (X) and N−

H (X) denote
the sets of out-neighbors and in-neighbors of vertices of X in H, respectively. Sometimes,
when a set has a single element, we will not distinguish between the set and its element. In
particular, when H is an out-tree and x is a vertex of H which is not its root, the unique
in-neighbor of x is denoted by N−

H (x). For an out-tree T , Leaf(T ) denotes the set of leaves
in T and Int(T ) = V (T )− Leaf(T ) stands for the set of internal vertices of T .

2 Algorithms for k-Out-Tree

In Subsection 2.1, we introduce and analyze the randomized algorithm for k-Out-Tree by
Alon, Yuster and Zwick [1]. In Subsection 2.2, we introduce and analyze a new randomized
algorithm for k-Out-Tree. We derandomize our algorithm in Subsection 2.3.

2.1 Algorithm of Alon, Yuster and Zwick

Let c : V (D) → {1, . . . , k} be a vertex k-coloring of a digraph D and let T be a k-vertex
out-tree contained in D (as a subgraph). Then V (T ) and T are colorful if no pair of vertices
of T are of the same color.

The following algorithm of [1] verifies whether D contains a colorful out-tree H such that
H is isomorphic to T , when a coloring c : V (D) → {1, . . . , k} is given. Note that a k-vertex
subgraph H will be colorful with a probability of at least k!/kk > e−k. Thus, we can find a
copy of T in D in ek expected iterations of the following algorithm.
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Algorithm 1 L(T, r)
Require: A digraph D with a given coloring c : V (D) → {1, . . . , k}, an out-tree T on k

vertices, a specified vertex r of D
Ensure: CT (u) for each vertex u of D, which is a family of all color sets that appear on

colorful copies of T in D, where u plays the role of r

1: if |V (T )| = 1 then
2: for all u ∈ V (D) do
3: Insert {c(u)} into CT (u).
4: end for
5: Return CT (u) for each vertex u of D.
6: else
7: Choose an arc (r′, r′′) ∈ A(T ).
8: Let T ′ and T ′′ be the subtrees of T obtained by deleting (r′, r′′), where T ′ and T ′′

contains r′ and r′′, respectively.
9: Call L(T ′, r′).

10: Call L(T ′′, r′′).
11: for all u ∈ V (D) do
12: Compose the family of color sets CT (u) as follows:
13: for all (u, v) ∈ A(D) do
14: for all C ′ ∈ CT ′(u) and C ′′ ∈ CT ′′(v) do
15: C := C ′ ∪ C ′′ if C ′ ∩ C ′′ = ∅
16: Insert C into CT (u).
17: end for
18: end for
19: end for
20: Return CT (u) for each vertex u of D.
21: end if

Theorem 2.1. Let T be an out-tree on k vertices and let D = (V,A) be a digraph. A
subgraph of D isomorphic to T , if one exists, can be found in O(k(4e)k · |A|) expected time
by running the algorithm L(T, r) for a random coloring c iteratively.

Proof. Let c : V (D) → {1, . . . , k} be a given coloring of D and suppose T ′ and T ′′ are the
subtrees of T obtained in line 8. Let |V (T ′)| = k′ and |V (T ′′)| = k′′, where k′+k′′ = k. Then
|CT ′(u)| =

(
k−1
k′−1

)
and |CT ′(u)| =

(
k−1
k′′−1

)
. Checking C ′ ∩C ′′ = ∅ takes O(k) time. Hence, lines

11-19 require at most
(

k
k/2

)2 · k|A| ≤ k22k|A| operations.
Let T (k) be the number of operations for L(T, r). We have the following recursion.

T (k) ≤ T (k′) + T (k′′) + k22k−2|A| (1)

By induction, it is not difficult to check that T (k) ≤ k4k|A|. Since the expected number
of iterations of the algorithm L(T, r) is at most ek, we achieve the claimed running time.

Let C be a family of vertex k-colorings of a digraph D. We call C an (n, k)-family of
perfect hashing functions if for each X ⊆ V (D), |X| = k, there is a coloring c ∈ C such
that X is colorful with respect to c. One can derandomize the above algorithm of Alon et
al. by using any (n, k)-family of perfect hashing functions in the obvious way. The time
complexity of the derandomized algorithm depends of the size of the (n, k)-family of perfect
hashing functions. Let τ(n, k) denote the minimum size of an (n, k)-family of perfect hashing
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functions. Nilli [12] proved that τ(n, k) ≥ Ω(ek log n/
√
k). It is unclear whether there is an

(n, k)-family of perfect hashing functions of size O∗(ek) [4], but even if it does exist, the
running time of the derandomized algorithm would be O∗((4e)k).

2.2 New Algorithm for k-Out-Tree

Before we introduce our new randomized algorithm for k-Out-Tree, we will give a brief
account of the basic idea behind it. Let T be an out-tree on k vertices and let D be a
digraph in which we want to find a copy of T . As in the randomized algorithm by Alon,
Yuster and Zwick in [1], we break T into two subtrees Tw and Tb. However, unlike the
former which deletes an arc of T , we break it by choosing a “splitting vertex” denoted as v∗

and furthermore the resulting two subtrees overlap exactly on this splitting vertex v∗. Next
we randomly partition the digraph D into two vertex-disjoint parts Dw and Db, and then
find a copy of Tw in Dw and a copy of Tb in Db, if one exists. If we try sufficiently many
partitions of D, it is possible to find a copy of T whenever D contains one as a subgraph (with
some good probability in a randomized version of the algorithm, which can be derandomized
consequently).

The trouble is that the fact Dw and Db that contain copies of Tw and Tb, respectively
does not necessarily means that D contains a copy of T as a whole. We need to ensure that
there exist copies of Tw and Tb that actually overlap (and overlap only) on a vertex of D
corresponding to the splitting vertex v∗. To this end, we allow some vertices of Dw, say S,
to be shared by Db by considering Db + S instead of Db. Here S is the set of vertices in
Dw that could correspond to the splitting vertex v∗ of Tw. When we search for a copy of Tb

in Db + S, only those tress isomorphic to Tb in Db + S are considered legitimate where the
vertex corresponding to v∗ lies in S. In other words, we convey the information S obtained
in the phase for Tw-Dw to the next phase for Tb-Db so that we do not only ensure the global
connectivity of Tw +Tb = T in D but also reduce the search space for finding a copy of Tb in
Db.

Moreover, by conveying the information for v∗ we can save the extra effort for ”merging”
the solutions (i.e. copies of Tw and Tb). Rather, once we obtain a copy of Tb in Db + S, it
follows immediately that we have a copy of T in D. Since the number of partitions of D
we need to try is a function of k, the time complexity of finding a copy of T in D can be
written as T (k, n) = f(k)(T (k′, n) + T (k − k′, n) + p1(n)) + p2(n), T (1, n) = p3(n), where
pi(n) is polynomial in n for i = 1, 2, 3. This is why the running time of our algorithm remains
polynomial in n. Making this approach efficient depends crucially on two aspects:

1. to obtain k′ in the above formula as close to half of k as possible; and

2. to replace f(k) with as small growing function as possible.

For the latter, we use a simple unbalanced-partition-strategy which will be explained later.
We achieve the former goal by choosing an appropriate splitting vertex v∗ and then using it
to obtain a Tw-Tb split. The splitting procedure is one of the key part of our algorithm and
next we describe this procedure in details.

The following lemma is well known and will be used as a basic scheme of choosing v∗.

Lemma 2.2 ([5]). Let T be an undirected tree and let w : V → R
+∪{0} be a weight function

on its vertices. There exists a vertex v ∈ V (T ) such that the weight of every subtree T ′ of
T − v is at most w(T )/2, where w(T ) =

∑

v∈V (T )w(v).

Consider a partition n = n1 + · · ·+ nq, where n and all ni are nonnegative integers and

a bipartition (A,B) of the set {1, . . . , q}. Let d(A,B) :=
∣
∣
∣
∑

i∈A ni −
∑

i∈B ni

∣
∣
∣. Given a set
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Q = {1, . . . , q} with a nonnegative integer weight ni for each element i ∈ Q, we say that a
bipartition (A,B) of Q is greedily optimal if d(A,B) does not decrease by moving an element
of one partite set into another. The following procedure describes how to obtain a greedily
optimal bipartition in time O(q log q). For simplicity we write

∑

i∈A ni as n(A).

Algorithm 2 Bipartition(Q, {ni : i ∈ Q})
Require: A set Q = {1, . . . , q} with a nonnegative integer weight ni, ∀i ∈ Q
Ensure: A greedily optimal bipartition (A,B) of Q
1: Let A := ∅, B := Q.
2: while n(A) < n(B) and there is an element i ∈ B with 0 < ni < d(A,B) do
3: Choose such an element i ∈ B with a largest ni.
4: A := A ∪ {i} and B := B − {i}.
5: end while
6: Return (A,B).

Lemma 2.3. Let Q be a set of size q with a nonnegative integer weight ni for each i ∈ Q.
The algorithm Bipartition(Q, {ni : i ∈ Q}) finds a greedily optimal bipartition A ∪ B = Q
in time O(q log q).

Proof. First we want to show that the values ni chosen in line 3 of the algorithm do not
increase during the performance of the algorithm. The values of ni do not increase because
the values of the difference d(A,B) do not increase during the performance of the algorithm.
In fact, d(A,B) strictly decreases. To see this, suppose that the element i is selected in
the present step. If n(A ∪ {i}) < n(B − {i}), then obviously the difference d(A,B) strictly
decreases. Else if n(A ∪ {i}) > n(B − {i}), we have d(A ∪ {i}, B − {i}) < ni < d(A,B).

To see that the algorithm returns a greedily optimal bipartition (A,B), it is enough to
observe that for the final bipartition (A,B), moving any element of A or B does not decrease
d(A,B). Suppose that the last movement of the element i0 makes n(A) > n(B). Then
a simple computation implies that d(A,B) < ni0 . Since the values of ni in line 3 of the
algorithm do not increase during the performance of the algorithm, nj ≥ ni0 > d(A,B) for
every j ∈ A, the movement of any element in A would not decrease d(A,B). On the other
hand suppose that n(A) < n(B). By the definition of the algorithm, for every j ∈ B with
a positive weight we have nj ≥ d(A,B) and thus the movement of any element in B would
not decrease d(A,B). Hence the current bipartition (A,B) is greedily optimal.

Now let us consider the running time of the algorithm. Sorting the elements in nonde-
creasing order of their weights will take O(q log q) time. Moreover, once an element is moved
from one partite set to another, it will not be moved again and we move at most q elements
without duplication during the algorithm. This gives us the running time of O(q log q).

Now we describe a new randomized algorithm for k-Out-Tree. Let D be a digraph and
let T be an out-tree on k vertices. Let us specify a vertex t ∈ V (T ) and a vertex w ∈ V (D).
We call a copy of T in D a T -isomorphic tree. We say that a T -isomorphic tree TD in D is
a (t, w)-tree if w ∈ V (TD) plays the role of t.

We first give an intuitive explanation of our algorithm before giving a formal description.
To find the desired tree in the given input digraph, we first split the tree in two parts with one
common vertex such that the both parts are “almost balanced” Then we randomly partition
the vertices of the D in two parts with probability of a vertex lying in one part or the other
depends on the sizes of the trees we obtained in the first step by splitting it on a vertex. This
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allows us to more or less independently look for the different parts of the tree in different
parts of the partition. We finally merge them cleverly to obtain our solution.

In the following algorithm find-tree, we have several arguments other than the natural
arguments T and D. Our next argument is a vertex t of T . The argument t indicates that we
want to return, at the end of the current procedure, the set of vertices Xt such that there is a
(t, w)-tree for every w ∈ Xt. The fact that Xt 6= ∅ means two points: we have a T -isomorphic
tree in D, and the information Xt we have can be used to construct a larger tree which uses
the current T -isomorphic tree as a building block. Here, Xt is a kind of ‘joint’.

The basic strategy is as follows. We choose a pair TA and TB of subtrees of T such
that V (TA) ∪ V (TB) = V (T ) and TA and TB share only one vertex, namely v∗, the splitting
vertex. We call recursively two ‘find-tree’ procedures on subsets of V (D) to ensure that the
subtrees playing the role of TA and TB do not overlap. The first call (line 15) tries to find
Xv∗ and the second one (line 18), using the information Xv∗ delivered by the first call, tries
to find Xt.

We also need another argument to our algorithm find-tree which is useful while merging
and that is:

• a pair consisting of L ⊆ V (T ) and {Xu : u ∈ L}, where Xu ⊂ V (D) and Xu’s are
pairwise disjoint.

The arguments L ⊆ V (T ) and {Xu : u ∈ L} form a set of information needed to argue the
correctness of the algorithm. Essentially L is a set of vertices of the tree T which has been
used as a splitting vertex at some point during the execution of our recursive procedure. Let
TD be a T -isomorphic tree; if for every u ∈ L, TD is a (u,w)-tree for some w ∈ Xu and
V (TD) ∩Xu = {w}, we say that TD meets the restrictions on L. The algorithm find-tree
intends to find the set Xt of vertices such that for every w ∈ Xt, there is a (t, w)-tree which
meets the restrictions on L.

Deleting a splitting vertex v∗ may produce several subtrees, and there might be many ways
to divide them into two groups, namely (TA, TB). To make the algorithm more efficient, we
try to obtain as ‘balanced’ a partition (TA, TB) as possible. The algorithm tree-Bipartition
is used to produce a pretty ‘balanced’ bipartition of the subtrees. Moreover we introduce
another argument to have a better complexity behavior. The argument v is a vertex which
indicates whether there is a predetermined splitting vertex. If v = ∅, we do not have a
predetermined splitting vertex so we find one in the current procedure. Otherwise, we use
the vertex v as a splitting vertex.

Let r be the root of T . To decide whether D contains a copy of T , it suffices to run
find-tree(T,D, ∅, r, ∅, ∅).

Lemma 2.4. During the performance of find-tree(T,D, ∅, r, ∅, ∅), the sets Xu, u ∈ L are
pairwise disjoint.

Proof. We prove the claim inductively. For the initial call, trivially the sets Xu, u ∈ L are
pairwise disjoint since L = ∅. Suppose that for a call find-tree(T,D, v, t, L, {Xu : u ∈ L})
the sets Xv, v ∈ L are pairwise disjoint. For the first subsequent call in line 15, the sets are
obviously pairwise disjoint. Consider the second subsequent call in line 18. If v∗ ∈ L before
line 17, the claim is true since we convey the argument t := v∗ to the first subsequent call in
line 15 and thus S is contained in Xv∗ . Otherwise, observe that Xu ⊆ Vb for all u ∈ L ∩ Ub

and they are pairwise disjoint. Since Xv∗ ∩ Vb = ∅, the sets Xu for all u ∈ L ∩ Ub together
with Xv∗ are pairwise disjoint.
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Algorithm 3 find-tree(T,D, v, t, L, {Xu : u ∈ L})
Require: An out-tree T on k vertices, a digraph D, v ∈ {∅} ∪ V (T ), a specified vertex

t ∈ V (T ), a subset of vertices L ⊆ V (T ), a family of pairwise disjoint subsets Xu ⊆ V (D)
for each u ∈ L.

Ensure: A set of vertices Xt ⊆ V (D) such that there is a (t, w)-tree for every w ∈ Xt.
1: if |V (T ) \ L| ≥ 2 then
2: for all u ∈ V (T ): Set w(u) := 0 if u ∈ L, w(u) := 1 otherwise.
3: if v = ∅ then Find v∗ ∈ V (T ) such that the weight of every subtree T ′ of T − v∗ is at

most w(T )/2 (see Lemma 2.2) else v∗ := v
4: (WH,BL):=tree-Bipartition(T, t, v∗, L).
5: Uw :=

⋃

i∈WH V (Ti) ∪ {v∗}, Ub :=
⋃

i∈BL V (Ti).
6: for all u ∈ L ∩ Uw: color all vertices of Xu in white.
7: for all u ∈ L ∩ (Ub \ {v∗}): color all vertices of Xu in black.
8: α := min{w(Uw)/w(T ), w(Ub)/w(T )}.
9: if α2 − 3α+ 1 ≤ 0 (i.e., α ≥ (3−

√
5)/2, see (2) and the definition of α∗ afterwards)

then vw := vb := ∅
10: else if w(Uw) < w(Ub) then vw := ∅, vb := v∗ else vw := v∗, vb := ∅.
11: Xt := ∅.
12: for i = 1 to

⌈
2.51

ααk(1−α)(1−α)k

⌉

do

13: Color the vertices of V (D) − ⋃u∈LXu in white or black such that for each vertex
the probability to be colored in white is α if w(Uw) ≤ w(Ub), and 1− α otherwise.

14: Let Vw (Vb) be the set of vertices of D colored in white (black).
15: S :=find-tree(T [Uw], D[Vw], vw, v

∗, L ∩ Uw, {Xu : u ∈ L ∩ Uw})
16: if S 6= ∅ then
17: Xv∗ := S, L := L ∪ {v∗}.
18: S′ :=find-tree(T [Ub ∪ {v∗}], D[Vb ∪ S], vb, t, (L ∩ Ub), {Xu : u ∈ (L ∩ Ub)}).
19: Xt := Xt ∪ S′.
20: end if
21: end for
22: Return Xt.
23: else {|V (T ) \ L| ≤ 1}
24: if {z} = V (T ) \ L then Xz := V (D)−⋃u∈LXu, L := L ∪ {z}.
25: Lo := {all leaf vertices of T}.
26: while Lo 6= L do
27: Choose a vertex z ∈ L \ Lo s.t. N+

T (z) ⊆ Lo.
28: Xz := Xz ∩

⋂

u∈N+
T (z)N

−(Xu); L
o := Lo ∪ {z}.

29: end while
30: Return Xt.
31: end if

The algorithm tree-Bipartition is a subroutine used during the execution of find-tree.
Let T1, . . . , Tq be the subtrees of T − v∗, where v∗ is a splitting vertex of the current call
to find-tree. At the end of tree-Bipartition, we obtain a partition of the subtrees, or
more precisely, a partition (WH,BL) of the indices {1, . . . , q} of the subtrees. The attained
partition (WH,BL) is ’a greedily optimal bipartition’ in certain sense while a nonnegative
integer weight on an element of {1, . . . , q} is set to be w(Ti) with some fine-tuning.

Lemma 2.5. Consider the algorithm tree-Bipartition and let (WH,BL) be a bipartition of
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Algorithm 4 tree-Bipartition(T, t, v∗, L)

1: T1, . . . , Tq are the subtrees of T − v∗. Q := {1, . . . , q}. w(Ti) := |V (Ti) \ L|, ∀i ∈ Q.
2: if v∗ = t then
3: (A,B):=Bipartition(Q, {ni := w(Ti) : i ∈ Q})
4: if w(A) ≤ w(B) then WH := A, BL := B. else WH := B, BL := A.
5: else
6: Let l be such that t ∈ V (Tl)
7: if w(Tl)− w(v∗) ≥ 0 then
8: (A,B):=Bipartition(Q, {ni := w(Ti) : i ∈ Q \ {l}} ∪ {nl := w(Tl)− w(v∗)})
9: if l ∈ B then WH := A, BL := B. else WH := B, BL := A

10: else {w(Tl)− w(v∗) < 0}
11: (A,B):=Bipartition((Q \ {l}) ∪ {v∗}, {ni := w(Ti) : i ∈ Q \ {l}} ∪ {nv∗ := w(v∗)})
12: if v∗ ∈ A thenWH := A−{v∗}, BL := B∪{l}. elseWH := B−{v∗}, BL := A∪{l}
13: end if
14: end if
15: Return (WH,BL).

{1, . . . , q} obtained at the end of the algorithm. Then the partition Uw :=
⋃

i∈WH V (Ti)∪{v∗}
and Ub :=

⋃

i∈BL V (Ti) of V (T ) has the the following property.
1) If v∗ = t, moving a component Ti from one partite set to the other does not decrease the
difference d(w(Uw), w(Ub)).
2) If v∗ 6= t, either exchanging v∗ and the component Tl or moving a component Ti, i 6= v∗, l
from one partite set to the other does not decrease the difference d(w(Uw), w(Ub)).

Proof. Let us consider the property 1). The bipartition (WH,BL) is determined in the first
‘if’ statement in line 2 of tree-Bipartition. Then by Lemma 2.3 the bipartition (WH,BL)
is greedily optimal, which is equivalent to the statement of 1).

Let us consider the property 2). First suppose that the bipartition (WH,BL) is deter-
mined in the ‘if’ statement in line 7 of tree-Bipartition. The exchange of v∗ and the com-
ponent Tl amounts to moving the element l in the algorithm Bipartition. Since (WH,BL)
is returned by Bipartition and thus is a greedily optimal bipartition of Q, any move of an
element in one partite set would not decrease the difference d(WH,BL) and the statement
of 2) holds in this case.

Secondly suppose that the bipartition (WH,BL) is determined in the ‘if’ statement in line
10 of tree-Bipartition. In this case we have w(Tl) = 0 and thus exchanging Tl and v∗ and
amounts to moving the element v∗ in the algorithm Bipartition. By the same argument as
above, any move of an element in one partite set would not decrease the difference d(WH,BL)
and again the statement of 2) holds.

Consider the following equation:

α2 − 3α+ 1 = 0 (2)

Let α∗ := (3−
√
5)/2 be one of its roots. In line 10 of the algorithm find-tree, if α < α∗ we

decide to pass the present splitting vertex v∗ as a splitting vertex to the next recursive call
which gets, as an argument, a subtree with greater weight among the two subtrees T [Uw] and
T [Ub ∪ {v∗}]. Lemma 2.6 justifies this execution. It claims that if α < α∗, then in the next
recursive call with a subtree of weight (1−α)w(T ), we have a more balanced bipartition with
v∗ as a splitting vertex. Actually, the bipartition in the next step is good enough so as to
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compensate for the increase in the running time incurred by the biased (‘α < α∗’) bipartition
in the present step. We will show this later.

Lemma 2.6. Suppose that v∗ has been chosen to split T for the present call to find-tree
such that the weight of every subtree of T − v∗ is at most w(T )/2 and that w(T ) ≥ 5.
Let α be defined as in line 8 and assume that α < α∗. Let {U1, U2} = {Uw, Ub} such
that w(U2) ≥ w(U1) and let {T1, T2} = {T [Uw], T [Ub ∪ {v∗}]} such that U1 ⊆ V (T1) and
U2 ⊆ V (T2). Let α′ play the role of α in the recursive call using the tree T2. In this case the
following holds: α′ ≥ (1− 2α)/(1− α) > α∗.

Proof. Let T1, T2, U1, U2, α, α
′ be defined as in the statement. Note that α = w(U1)/w(T ).

Let d = w(U2)− w(U1) and note that w(U1) = (w(T )− d)/2 and that the following holds

1− 2α

1− α
=

w(T )− 2w(U1)

w(T )− w(U1)
=

2d

w(T ) + d
.

We now consider the following cases.
Case 1. d = 0: In this case α = 1/2 > α∗, a contradiction.
Case 2. d = 1: In this case α∗ > α = w(U1)/(2w(U1)+1), which implies that w(U1) ≤ 1.

Therefore w(U2) ≤ 2 and w(T ) ≤ 3, a contradiction.
Case 3. d ≥ 2: Let C1, C2, . . . , Cq denote the components in T − v∗ and without loss

of generality assume that V (C1) ∪ V (C2) ∪ · · · ∪ V (Ca) = U2 and V (Ca+1) ∪ V (Ca+2) ∪
· · · ∪ V (Cq) = U1. Note that by Lemma 2.5 we must have w(Ci) ≥ d or w(Ci) = 0 for all
i = 1, 2, . . . , q except possibly for one set Cl (containing t), which may have w(Cl) = 1 (if
w(v∗) = 1).

Let Cr be chosen such that w(Cr) ≥ d, 1 ≤ r ≤ a and w(Cr) is minimum possible with
these constraints. We first consider the case when w(Cr) > w(U2) − w(Cr). By the above
(and the minimality of V (Cr)) we note that w(U2) ≤ w(Cr)+1 (as either Cj , which is defined
above, or v∗ may belong to V (T2), but not both). As w(U2) = (w(T )+d)/2 ≥ w(T )/2+1 we
note that w(Cr) ≥ w(T )/2+d/2−1. As w(Cr) ≤ w(T )/2 (By the statement in our theorem)
this implies that d = 2 and w(Cr) = w(T )/2 and w(U2) = w(Cr) + 1. If U1 contains at least
two distinct components with weight at least d then w(U1) > w(U2), a contradiction. If U1

contains no component of weight at least d then w(U1) ≤ 1 and w(T ) ≤ 4, a contradiction.
So U1 contains exactly one component of weight at least d. By the minimality of w(Cr) we
note that w(U1) ≥ w(Cr) = w(U2)− 1, a contradiction to d ≥ 2.

Therefore we can assume that w(Cr) ≤ w(U2)− w(Cr), which implies the following (the
last equality is proved above)

α′ ≥ w(Cr)

w(U2)
≥ d

(w(T ) + d)/2
=

1− 2α

1− α
.

As α < α∗, we note that α′ ≥ (1− 2α)/(1− α) > (1− 2α∗)/(1− α∗) = α∗.

For the selection of the splitting vertex v∗ we have two criteria in the algorithm find-tree:
(i) ‘found’ criterion: the vertex is found so that the weight of every subtree T ′ of T − v∗ is
at most w(T )/2. (ii) ‘taken-over’ criterion: the vertex is passed on to the present step as
the argument v by the previous step of the algorithm. The following statement is an easy
consequence of Lemma 2.6.

Corollary 2.7. Suppose that w(T ) ≥ 5. If v∗ is selected with ‘taken-over’ criterion, then
α > α∗.
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Proof. For the initial call find-tree(T,D, ∅, r, ∅, ∅) we have v = ∅ and thus, the splitting vertex
v∗ is selected with the ‘found’ criterion. We will prove the claim by induction. Consider
the first vertex v∗ selected with then ‘taken-over’ criterion during the performance of the
algorithm. Then in the previous step, the splitting vertex was selected with ‘found’ criterion
and thus in the present step we have α > α∗ by Lemma 2.6.

Now consider a vertex v∗ selected with the ‘taken-over’ criterion. Then in the previous
step, the splitting vertex was selected with the ‘found’ criterion since otherwise, by the
induction hypothesis we have α > α∗ in the previous step, and ∅ has been passed on as the
argument v for the present step. This is a contradiction.

Due to Corollary 2.7 the vertex v∗ selected in line 3 of the algorithm find-tree functions
properly as a splitting vertex. In other words, we have more than one subtree of T − v∗ in
line 4 with positive weights.

Lemma 2.8. If w(T ) ≥ 2, then for each of Uw and Ub found in line 5 of by find-tree we
have w(Uw) > 0 and w(Ub) > 0.

Proof. For the sake of contradiction suppose that one of w(Uw) and w(Ub) is zero. Let us
assume w(Uw) = 0 and w(Ub) = w(T ). If v∗ is selected with ‘found’ criteria, each component
in T [Ub] has a weight at most w(T )/2 and T [Ub] contains at least two components of positive
weights. Then we can move one component with a positive weight from Ub to Uw which
will reduce the difference d(Uw, Ub), a contradiction. The same argument applies when
w(Uw) = w(T ) and w(Ub) = 0.

Consider the case when v∗ is selected with “taken-over” criteria. There are three possi-
bilities.

Case 1. w(T ) ≥ 5: In this case we obtain a contradiction with Corollary 2.7.
Case 2. w(T ) = 4: In the previous step using T ′, where T ⊆ T ′, the splitting vertex v∗

was selected with “found” criteria. Then by the argument in the first paragraph, we have
w(T ′) ≥ 5. A contradiction follows from Lemma 2.6.

Case 3. 2 ≤ w(T ) ≤ 3: First suppose that w(v∗) = 0. Note that T [Uw] − v∗ or T [Ub]
contains a component of weight w(T ) since otherwise we can move a component with a
positive weight from one partite set to the other and reduce d(Uw, Ub). Considering the
previous step using T ′, where T ⊆ T ′, the out-tree T is the larger of T ′

w and T ′
b. We pass

the splitting vertex v∗ to the larger of the two only when α > α∗. So when w(T ) = 3, we
have 3 > (1− α∗)w(T ′) and thus w(T ′) ≤ 4, and when w(T ) = 2 we have 2 > (1− α∗)w(T ′)
and thus w(T ′) ≤ 3. In either case, however, T ′ − v∗ contains a component with a weight
greater than w(T ′)/2, contradicting to the choice of v∗ in the previous step (Recall that v∗

is selected with ‘found’ criteria in the previous step using T ′).
Secondly suppose that that w(v∗) = 1. Then w(Uw) = w(T ) and w(Ub) = 0. We can

reduce the difference d(Uw, Ub) by moving the component with a positive weight from Uw to
Ub, a contradiction.

Therefore for each of Uw and Ub found in line 5 of by find-tree we have w(Uw) > 0 and
w(Ub) > 0.

Lemma 2.9. Given a digraph D, an out-tree T and a specified vertex t ∈ V (T ), consider
the set Xt (in line 22) returned by the algorithm find-tree(T,D, v, t, L, {Xu : u ∈ L}). We
assume that the sets Xu, u ∈ L are pairwise disjoint. If w ∈ Xt then D contains a (t, w)-
tree that meets the restrictions on L. Conversely, if D contains a (t, w)-tree for a vertex
w ∈ V (D) that meets the restrictions on L, then Xt contains w with probability larger than
1− 1/e > 0.6321.
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Proof. Lemma 2.8 guarantees that the splitting vertex v∗ selected at any recursive call of
find-tree really ‘splits’ the input out-tree T into two nontrivial parts, unless w(T ) ≤ 1.

First we show that if w ∈ Xt then D contains a (t, w)-tree for a vertex w ∈ V (D) that
meets the restrictions on L. When |V (T ) \ L| ≤ 1, using Lemma 2.4 it is straightforward
to check from the algorithm that the claim holds. Assume that the claim is true for all
subsequent calls to find-tree. Since w ∈ S′ for some S′ returned by a call in line 18,
the subgraph D[Vb ∪ Xv∗ ] contains a T [Ub ∪ {v∗}]-isomorphic (t, w)-tree T b

D meeting the
restrictions on (L ∩ Ub) ∪ {v∗} by induction hypothesis. Moreover, Xv∗ 6= ∅ when S′ ∋ w is
returned and this implies that there is a vertex u ∈ Xv∗ such that T b

D is a (v∗, u)-tree. Since
u ∈ Xv∗ , induction hypothesis implies that the subgraph D[Vw] contains a T [Uw]-isomorphic
(v∗, u)-tree, say Tw

D .
Consider the subgraph TD := Tw

D ∪ T b
D. To show that TD is a T -isomorphic (t, w)-tree in

D, it suffices to show that V (Tw
D ) ∩ V (T b

D) = {u}. Indeed, V (Tw
D ) ⊆ Vw, V (T b

D) ⊆ Vb ∪Xv∗

and Vw ∩ Vb = ∅. Thus if two trees Tw
D and T b

D share vertices other than u, these common
vertices should belong to Xv∗ . Since T b

D meets the restrictions on (L ∩ Ub) ∪ {v∗}, we have
Xv∗ ∩ V (T b

D) = {u}. Hence u is the only vertex that two trees Tw
D and T b

D have in common.
We know that u plays the role of v∗ in both trees. Therefore we conclude that TD is T -
isomorphic, and since w plays the role of t, it is a (t, w)-tree. Obviously TD meets the
restrictions on L.

Secondly, we shall show that if D contains a (t, w)-tree for a vertex w ∈ V (D) that meets
the restrictions on L, then Xt contains w with probability larger than 1 − 1/e > 0.6321.
When |V (T ) \ L| ≤ 1, the algorithm find-tree is deterministic and returns Xt which is
exactly the set of all vertices w for which there exists a (t, w)-tree meeting the restrictions
on L. Hence the claim holds for the base case, and we may assume that the claim is true for
all subsequent calls to find-tree.

Suppose that there is a (t, w)-tree TD meeting the restrictions on L and that this is a
(v∗, w′)-tree, that is, the vertex w′ plays the role of v∗. Then the vertices of TD corresponding
to Uw, say Tw

D , are colored white and those of TD corresponding to Ub, say T b
D, are colored

black as intended with probability ≥ (αα(1 − α)1−α)k. When we hit the right coloring for
T , the digraph D[Vw] contains the subtree Tw

D of TD which is T [Uw]-isomorphic and which
is a (v∗, w′)-tree. By induction hypothesis, the set S obtained in line 15 contains w′ with
probability larger than 1− 1/e. Note that Tw

D meets the restrictions on L ∩ Uw.
If w′ ∈ S, the restrictions delivered onto the subsequent call for find-tree in line 17

contains w′. Since TD meets the restrictions on L confined to Ub− v∗ and it is a (v∗, w′)-tree
with w′ ∈ S = Xv∗ , the subtree T b

D of TD which is T [Ub ∪ {v∗}]-isomorphic meets all the
restrictions on L. Hence by induction hypothesis, the set S′ returned in line 18 contains w
with probability larger than 1− 1/e.

The probability ρ that S′, returned by find-tree in line 18 at an iteration of the loop,
contains w is, thus,

ρ > (αα(1− α)1−α)k × (1− 1/e)2 > 0.3995(αα(1− α)1−α)k.

After looping ⌈(0.3995(αα(1−α)1−α)k)−1⌉ times in line 12, the probability that Xt contains
w is at least

1−(1−ρ)1/(0.3995(α
α(1−α)1−α)k) > 1−(1−0.3995(αα(1−α)1−α)k)1/(0.3995(α

α(1−α)1−α)k) > 1−1

e
.

Observe that the probability ρ does not depend on α and the probability of coloring a vertex
white/black.
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The complexity of Algorithm find-tree is analyzed in the following theorem.

Theorem 2.10. Algorithm find-tree has running time O(n2kρCk), where w(T ) = k and
|V (D)| = n, and C and ρ are defined and bounded as follows:

C =

(
1

α∗α∗(1− α∗)1−α∗

)1/α∗

, ρ =
ln(1/6)

ln(1− α∗)
, ρ ≤ 3.724, and C ≤ 5.7039.

Proof. Let L(T,D) denote the number of times the ‘if’-statement in line 1 of Algorithm
find-tree is false (in all recursive calls to find-tree). We will prove that L(T,D) ≤ R(k) =
BkρCk + 1, B ≥ 1 is a constant whose value will determined later in the proof. This would
imply that the number of calls to find-tree where the ‘if’-statement in line 1 is true is also
bounded by R(k) as if line 1 is true then we will have at least two calls to find-tree (in fact

it will have at least three as
⌈

2.51
ααk(1−α)(1−α)k

⌉

≥ 3 and we always have a call in line 15). We

can therefore think of the search tree of Algorithm 3 as an out-tree where all internal nodes
have out-degree at least two and therefore the number of leaves is greater than the number
of internal nodes.

Observe that each iteration of the for-loop in line 12 of Algorithm find-tree makes at
most two recursive calls to find-tree and the time spent in each iteration of the for-loop
is at most O(n2). As the time spent in each call of find-tree outside the for-loop is also
bounded by O(n2) we obtain the desired complexity bound O(n2kρCk).

Thus, it remains to show that L(T,D) ≤ R(k) = BkρCk + 1. First note that if k = 0 or
k = 1 then line 1 is false exactly once (as there are no recursive calls) and min{R(1), R(0)} ≥
1 = L(T,D). If k ∈ {3, 4}, then line 1 is false a constant number of times by Lemma 2.8 and
let B be the minimal integer such that L(T,D) ≤ R(k) = BkρCk + 1 for both k = 3 and 4.
Thus, we may now assume that k ≥ 5 and proceed by induction on k.

Let R′(α, k) = (6((1− α)k)ρC(1−α)k)/(ααk(1− α)(1−α)k). Let α be defined as in line 8 of
Algorithm find-tree. We will consider the following two cases separately.

Case 1, α ≥ α∗: In this case we note that the following holds as k ≥ 2 and (1− α) ≥ α.

L(T,D) ≤
⌈
2.51/(ααk(1− α)(1−α)k)

⌉
× (R(αk) +R((1− α)k))

≤ 3/(ααk(1− α)(1−α)k)× (2 ·R((1− α)k))

= R′(α, k).

By the definition of ρ we observe that (1− α∗)ρ = 1/6, which implies that the following
holds by the definition of C:

R′(α∗, k) = 6((1− α∗)k)ρC(1−α∗)k × Cα∗k = kρCk = R(k).

Observe that

ln(R′(α, k)) = ln(6) + ρ [ln(k) + ln(1− α)] + k [(1− α) ln(C)− α ln(α)− (1− α) ln(1− α)]

We now differentiate ln(R′(α, k)) which gives us the following:

∂(ln(R′(α,k)))
∂(α) = ρ −1

1−α + k (− ln(C)− (1 + ln(α)) + (1 + ln(1− α)))

= −ρ
1−α + k

(
ln
(
1−α
αC

))
.
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Since k ≥ 0 we note that the above equality implies that R′(α, k) is a decreasing function
in α in the interval α∗ ≤ α ≤ 1/2. Therefore L(T,D) ≤ R′(α, k) ≤ R′(α∗, k) = R(k), which
proves Case 1.

Case 2, α < α∗: In this case we will specify the splitting vertex when we make recursive
calls using the larger of Uw and Ub (defined in line 5 of Algorithm find-tree). Let α′ denote
the α-value in such a recursive call. By Lemma 2.6 we note that the following holds:

1

2
≥ α′ ≥ 1− 2α

1− α
> α∗.

Analogously to Case 1 (as R′(α′, (1−α)k) is a decreasing function in α′ when 1/2 ≥ α′ ≥
α∗) we note that the L-values for these recursive calls are bounded by the following, where
β = 1−2α

1−α (which implies that (1− α)(1− β) = α):

R′(α′, (1− α)k) ≤ R′ (β, (1− α)k)

= 3/
((

ββ(1− β)(1−β)
)(1−α)k

)

× 2×R((1− β)(1− α)k)

= 6R(αk)/
((

ββ(1− β)(1−β)
)(1−α)k

)

.

Thus, in the worst case we may assume that α′ = β = (1−2α)/(1−α) in all the recursive
calls using the larger of Uw and Ub. The following now holds (as k ≥ 2).

L(T,D) ≤
⌈
2.51/(ααk(1− α)(1−α)k)

⌉
× (R(αk) +R′(α′, (1− α)k))

≤ 3/(ααk(1− α)(1−α)k)×R(αk)×
(

1 + 6/
((

ββ(1− β)(1−β)
)(1−α)k

))

≤ 3R(αk)/(ααk(1− α)(1−α)k)× 7/
((

ββ(1− β)(1−β)
)(1−α)k

)

Let R∗(α, k) denote the bottom right-hand side of the above equality (for any value of α).

By the definition of ρ we note that ρ = 2 ln(1/6)
2 ln(1−α∗) =

ln(1/36)
ln(α∗) , which implies that (α∗)ρ = 1/36.

By the definition of C and the fact that if α = α∗ then β = (1 − 2α∗)/(1 − α∗) = α∗, we
obtain the following:

R∗(α∗, k) = 3R(α∗k)/(α∗α∗k(1− α∗)(1−α∗)k)× 7/
((

α∗α∗
(1− α∗)(1−α∗)

)(1−α∗)k
)

= 21 ·R(α∗k) · Cα∗k · Cα∗(1−α∗)k

= 21α∗ρkρCα∗k × C(2α∗−α∗2)k

= 21α∗ρR(k)

< R(k).

We will now simplify R∗(α, k) further, before we differentiate ln(R∗(α, k)). Note that
β = 1−2α

1−α implies that (1− α)(1− β) = α and β(1− α) = 1− 2α.

R∗(α, k) = 21R(αk)/(ααk(1− α)(1−α)k)× 1/
((

ββ(1− β)(1−β)
)(1−α)k

)

= 21(αk)ρCαk/(ααk(1− α)(1−α)k)× 1/

((
1−2α
1−α

)(1−2α)k (
α

1−α

)αk
)

= 21(αk)ρ
(
Cα/(α2α(1− 2α)(1−2α))

)k
.
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Thus, we have the following:

ln(R∗(α, k)) = ln(21) + ρ (ln(k) + ln(α)) + k (α ln(C)− 2α ln(α)− (1− 2α) ln(1− 2α)) .

We now differentiate ln(R∗(α, k)) which gives us the following:

∂(ln(R∗(α,k)))
∂(α) = ρ

α + k (ln(C)− 2(1 + ln(α)) + 2(1 + ln(1− 2α)))

= ρ
α + k

(

ln
(
C(1−2α)2

α2

))

Since k ≥ 0 we note that the above equality implies that R∗(α, k) is an increasing function
in α in the interval 1/3 ≤ α ≤ α∗. Therefore L(T,D) ≤ R∗(α, k) ≤ R∗(α∗, k) < R(k), which
proves Case 2.

Theorem 2.11. There is an O(n25.704k) time randomized algorithm that solves the k-Out-

Tree problem.

2.3 Derandomization of Our Randomized Algorithm for k-Out-Tree

In this subsection we discuss the derandomization of the algorithm find-tree using the
general method presented by Chen et al. [4] and based on the construction of (n, k)-universal
sets studied in [11].

Definition 2.12. An (n, k)-universal set F is a set of functions from [n] to {0, 1}, such that
for every subset S ⊆ [n], |S| = k the set F|S = {f |S : f ∈ F} is equal to the set 2S of all the
functions from S to {0, 1}.

Such an universal set can play in find-tree the role of the random colorings. In the same
article [4], Chen et al. also give an algorithm to generate one :

Proposition 2.13. ([4]) There is an O(n2k+12 log2 k) time deterministic algorithm that con-

structs an (n, k)-universal set of size bounded by n2k+12 log2 k+2.

Using this universal set alone, however, would not enable us to obtain a deterministic
fixed-parameter algorithm for find-tree, as the size of the family (and, thus, the number of
iterations in the main loop of the algorithm) would now also depend on n, besides k. Hence,
Chen et al. make use (see [4]) of a family of pre-coloring functions (gn,k,z)z≤2n to obtain a
fixed-parameter algorithm. To explain it, let us first give a result from Fredman et al. [8].

Proposition 2.14. Let n and k be integers, n ≥ k, and let q0 be the smallest prime number
such that n ≤ q0 < 2n. For any k-subset S in Zn = 0, . . . , n− 1, there is an integer
z, 0 ≤ z ≤ q0, such that the function gn,k,z over Zn, defined as gn,k,z(a) = (az mod q0)
mod k2, is injective from S.

By the above proposition, computing a (k2, k)-universal set Fk2,k instead of a (n, k)-
universal set is enough for our purposes. Indeed, if we are looking for a k-subgraph S in
our graph, there exists 1 ≤ z ≤ 2n such that gn,k,z is injective on S, thus ensuring that the
family F ′

k,n,z = Fk2,k ◦ gn,k,z = {f ◦ gn,k,z, f ∈ Fk2,k} is such that F ′
k,n,z|S is equal to the set

2S .
This way, derandomizing find-tree amounts to running it at most 2n times (once for

each possible value of z), each time using as a set of coloring functions the family F ′
k,n,z.

Two lines of the algorithm will then need to be modified :
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13 for each function f ∈ F ′
k,n,z do

14 ∀i such that xi ∈ V (D)−⋃u∈LXu, let vi be colored in white if f(i) = 0 and in black
if f(i) = 1

Besides, we also need to pre-compute a (k2, k′)-universal set for any k′ ≤ k, as this will be
needed in the recursions steps of the algorithm. By Proposition 2.13, this can be done in time
O(k32k+12 log2 k). Note that these modifications make the algorithm find-tree deterministic.

Then, from Proposition 2.14 we deduce that if a digraphD contains an out-tree T meeting
the requirements, then there exists a z such that gn,k,z is injective on V (T ). During the
iteration of the algorithm corresponding to z there will be an f ∈ F ′

k,n,z such that the
vertices corresponding to Uw in D with be colored in white while the vertices corresponding
to Ub will be colored in black. Using induction on k, we can prove that this deterministic
algorithm correctly returns the required out-tree provided that such an out-tree exists in the
digraph.

Let us briefly sketch how the running time is derived. We consider the following type of
recurrence relations:

T (k, n) ≤ X02
k × (T ((1− α)k, n) + T (αk, n))

Here X0 is a constant determined by the size of the initial out-tree we are considering,
and it adds to the exponent of T (k, n) with o(k) factor. On the other hand, the value of
α asymtotically evolves around α∗ as we see in the randomized version of algorithm. As a
result, T (k, n) is a function of the form (21/α

∗
)k+o(k). Overall the computation is similar to

that described in the proof of Theorem 2.10. Thus, we obtain the following:

Theorem 2.15. There is an O(n26.139k+o(k)) = O(n26.14k) time deterministic algorithm
that solves the k-Out-Tree problem.

3 Algorithm for k-Int-Out-Branching

A k-internal out-tree is an out-tree with at least k internal vertices. We call a k-internal
out-tree minimal if none of its proper subtrees is a k-internal out-tree, or minimal k-tree in
short. The Rooted Minimal k-Tree problem is as follows: given a digraph D, a vertex
u of D and a minimal k-tree T , where k is a parameter, decide whether D contains an out-
tree rooted at u and isomorphic to T. Recall that k-Int-Out-Branching is the following
problem: given a digraph D and a parameter k, decide whether D contains an out-branching
with at least k internal vertices. Finally, the k-Int-Out-Tree problem is stated as follows:
given a digraph D and a parameter k, decide whether D contains an out-tree with at least
k internal vertices.

Lemma 3.1. Let T be a k-internal out-tree. Then T is minimal if and only if |Int(T )| = k
and every leaf u ∈ Leaf(T ) is the only child of its parent N−(u).

Proof. Assume that T is minimal. It cannot have more than k internal vertices, because
otherwise by removing any of its leaves, we obtain a subtree of T with at least k internal
vertices. Thus |Int(T )| = k. If there are sibling leaves u and w, then removing one of them
provides a subtree of T with |Int(T )| internal vertices.

Now, assume that |Int(T )| = k and every leaf u ∈ Leaf(T ) is the only child of its parent
N−(u). Observe that every subtree of T can be obtained from T by deleting a leaf of T , a
leaf in the resulting out-tree, etc. However, removing any leaf v from T decreases the number
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of internal vertices, and thus creates subtrees with at most k − 1 internal vertices. Thus, T
is minimal.

In fact, Lemma 3.1 can be used to generate all non-isomorphic minimal k-trees. First,
build an (arbitrary) out-tree T 0 with k vertices. Then extend T 0 by adding a vertex x′ for
each leaf x ∈ Leaf(T 0) with an arc (x, x′). The resulting out-tree T ′ satisfies the properties
of Lemma 3.1. Conversely, by Lemma 3.1, any minimal k-tree can be constructed in this
way.

Generating Minimal k-Tree (GMT) Procedure
a. Generate a k-vertex out-tree T 0 and a set T ′ := T 0.
b. For each leaf x ∈ Leaf(T ′), add a new vertex x′ and an arc (x, x′) to T ′.

Due to the following simple observation, to solve k-Int-Out-Tree for a digraph D it
suffices to solve Rooted Minimal k-Tree for each vertex u ∈ V (D) and each minimal
k-tree T rooted at u.

Lemma 3.2. Any k-internal out-tree rooted at r contains a minimal k-tree rooted at r as a
subdigraph.

Similarly, the next two lemmas show that to solve k-Out-Branching for a digraph D
it suffices to solve Rooted Minimal k-Tree for each vertex u ∈ S and each minimal k-tree
T rooted at u, where S is the unique strong connectivity component of D without incoming
arcs.

Lemma 3.3. [2] A digraph D has an out-branching rooted at vertex r ∈ V (D) if and only if
D has a unique strong connectivity component S of D without incoming arcs and r ∈ S. One
can check whether D has a unique strong connectivity component and find one, if it exists,
in time O(m+ n), where n and m are the number of vertices and arcs in D, respectively.

The next lemma is a folklore.

Lemma 3.4. Suppose a given digraph D with n vertices and m arcs has an out-branching
rooted at vertex r. Then any minimal k-tree rooted at r can be extended to a k-internal
out-branching rooted at r in time O(m+ n).

Since k-Int-Out-Tree and k-Int-Out-Branching can be solved similarly, we will
only deal with the k-Int-Out-Branching problem. We will assume that our input digraph
contains a unique strong connectivity component S. Our algorithm called IOBA for solving
k-Int-Out-Branching for a digraph D runs in two stages. In the first stage, we generate
all minimal k-trees. We use the GMT procedure described above to achieve this. At the
second stage, for each u ∈ S and each minimal k-tree T , we check whether D contains an
out-tree rooted at u and isomorphic to T using our algorithm from the previous section. We
return TRUE if and only if we succeed in finding an out-tree H of D rooted at u ∈ S which
is isomorphic to a minimal k-tree.

In the literature, mainly rooted (undirected) trees and not out-trees are studied. However,
every rooted tree can be made an out-tree by orienting every edge away from the root and
every out-tree can be made a rooted tree by disregarding all orientations. Thus, rooted trees
and out-trees are equivalent and we can use results obtained for rooted trees for out-trees.

Otter [13] showed that the number of non-isomorphic out-trees on k vertices is tk =
O∗(2.95k). We can generate all non-isomorphic rooted trees on k vertices using the algorithm
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of Beyer and Hedetniemi [3] of runtime O(tk). Using the GMT procedure we generate all
minimal k-trees. We see that the first stage of IOBA can be completed in time O∗(2.95k).

In the second stage of IOBA, we try to find a copy of a minimal k-tree T in D using our
algorithm from the previous section. The running time of our algorithm is O∗(6.14k). Since
the number of vertices of T is bounded from above by 2k − 1, the overall running time for
the second stage of the algorithm is O∗(2.95k · 6.142k−1). Thus, the overall time complexity
of the algorithm is O∗(2.95k · 6.142k−1) = O∗(112k).

We can reduce the complexity with a more refined analysis of the algorithm. The major
contribution to the large constant 112 in the above simple analysis comes from the running
time of our algorithm from the previous section. There we use the upper bound on the
number of vertices in a minimal k-tree. Most of the minimal k-trees have less than k − 1
leaves, which implies that the upper bound 2k − 1 on the order of a minimal k-tree is too
big for the majority of the minimal k-trees. Let T (k) be the running time of IOBA. Then
we have

T (k) = O∗




∑

k+1≤k′≤2k−1

(# of minimal k-trees on k′ vertices) × (6.14k
′
)



 (3)

A minimal k-tree T ′ on k′ vertices has k′− k leaves, and thus the out-tree T 0 from which
T ′ is constructed has k vertices of which k′ − k are leaves. Hence the number of minimal
k-trees on k′ vertices is the same as the number of non-isomorphic out-trees on k vertices
with k′ − k leaves. Here an interesting counting problem arises. Let g(k, l) be the number of
non-isomorphic out-trees on k vertices with l leaves. Enumerate g(k, l). To our knowledge,
such a function has not been studied yet. Leaving it as a challenging open question, here we
give an upper bound on g(k, l) and use it for a better analysis of T (k). In particular we are
interested in the case when l ≥ k/2.

Consider an out-tree T 0 on k ≥ 3 vertices which has αk internal vertices and (1 − α)k
leaves. We want to obtain an upper bound on the number of such non-isomorphic out-trees
T 0. Let T c be the subtree of T 0 obtained after deleting all its leaves and suppose that T c

has βk leaves. Assume that α ≤ 1/2 and notice that αk and βk are integers. Clearly β < α.
Each out-tree T 0 with (1 − α)k leaves can be obtained by appending (1 − α)k leaves to

T c so that each of the vertices in Leaf(T c) has at least one leaf appended to it. Imagine that
we have βk = |Leaf(T c)| and αk − βk = |Int(T c)| distinct boxes. Then what we are looking
for is the number of ways to put (1 − α)k balls into the boxes so that each of the first βk
boxes is nonempty. Again this is equivalent to putting (1 − α − β)k balls into αk distinct
boxes. It is an easy exercise to see that this number equals

(
k−βk−1
αk−1

)
.

Note that the above number does not give the exact value for the non-isomorphic out-
trees on k vertices with (1−α)k leaves. This is because we treat an out-tree T c as a labeled
one, which may lead to us to distinguishing two assignments of balls even though the two
corresponding out-trees T 0’s are isomorphic to each other.

A minimal k-tree obtained from T 0 has (1−α)k leaves and thus (2−α)k vertices. With
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the upper bound O∗(2.95αk) on the number of T c’s by [13], by (3) we have the following:

T (k) = O∗




∑

α≤1/2

∑

β<α

2.95αk
(
k − βk − 1

αk − 1

)

(6.14)(2−α)k



+O∗




∑

α>1/2

2.95αk(6.14)(2−α)k





= O∗




∑

α≤1/2

∑

β<α

2.95αk
(

k

αk

)

(6.14)(2−α)k



+O∗
(

2.95k(6.14)3k/2
)

= O∗




∑

α≤1/2

(

2.95α
1

αα(1− α)1−α
(6.14)(2−α)

)k


+O∗(44.9k)

The term in the sum over α ≤ 1/2 above is maximized when α = 2.95
2.95+6.14 , which yields

T (k) = O∗(55.8k). Thus, we conclude with the following theorem.

Theorem 3.5. k-Int-Out-Branching is solvable in time O∗(55.8k).

4 Conclusion

In this paper we refine the approach of Chen et al. [4] based on randomized Divide-and-
Conquer technique. Our technique is based on a more complicated coloring and within this
technique we refined the result of Alon et al. [1] for the k-Out-Tree problem. It is interest-
ing to see if this technique can be used to obtain faster algorithms for other parameterized
problems.

As a byproduct of our work, we obtained the first O∗(2O(k))-time algorithm for k-Int-
Out-Branching. We used the classical result of Otter [13] that the number of non-
isomorphic trees on k vertices is O∗(2.95k). An interesting combinatorial problem is to
refine this bound for trees having ⌊αk⌋ leaves for some α < 1.
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Abstract

We consider a variant of the graph searching games that models the routing recon-

figuration problem in WDM networks. In the digraph processing game, a team of

agents aims at processing, or clearing, the vertices of a digraph D. We are interested

in two different measures: 1) the total number of agents used, and 2) the total num-

ber of vertices occupied by an agent during the processing of D. These measures

respectively correspond to the maximum number of simultaneous connections in-

terrupted and to the total number of interruptions during a reconfigurationrouting

in a WDM network.

Previous works have studied the problem of independently minimizing each

of these parameters. In particular, the corresponding minimization problems are

APX-hard, and the first one is known not to be in APX. In this paper, we give

several complexity results and study tradeoffs between these conflicting objectives.

In particular, we show that minimizing one of these parameters while the other

is constrained is NP-complete. Then, we prove that there exist some digraphs

for which minimizing one of these objectives arbitrarily impairs the quality of the

solution for the other one. We show that such bad tradeoffs may happen even for a

basic class of digraphs. On the other hand, we exhibit classes of graphs for which

good tradeoffs can be achieved. We finally detail the relationship between this

game and the routing reconfiguration problem. In particular, we prove that any

instance of the processing game, i.e. any digraph, corresponds to an instance of the

routing reconfiguration problem.
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1. Introduction

In this paper, we study the digraph processing game, analogous to graph search-

ing games [12]. This game aims at processing, or clearing, the vertices of a con-

taminated directed graph D. For this, we use a set of agents which are sequentially

put and removed from the vertices of D. We are interested in two different mea-

sures and their tradeoffs: the minimum number of agents required to clear D and

the minimum number of vertices that must be covered by an agent. The digraph

processing game has been introduced in [6] for its relationship with the routing re-

configuration problem in Wavelength Division Multiplexing (WDM) networks. In

this context, the goal is to reroute some connections that are established between

pairs of nodes in a communication network, which can lead to interruptions of ser-

vice. Each instance of this problem may be represented by a directed graph, called

its dependency digraph, such that the reconfiguration problem is equivalent to the

clearing of the dependency digraph. More precisely, the two measures presented

above respectively correspond to the maximum number of simultaneous disrup-

tions, and to the total number of requests disrupted during the rerouting of the

connections. The equivalence between these two problems is detailed in Section 5.

The digraph processing game is defined by the three following operations (or

rules), which are very similar to the ones defining the node search number [2, 9,

12, 15, 17] of a graph, and whose goal is to process, or to clear, all the vertices of

a digraph D.

R1 Put an agent at a vertex v of D;

R2 Remove an agent from a vertex v of D if all its outneighbors are either pro-

cessed or occupied by an agent, and process v;

R3 Process an unoccupied vertex v of D if all its outneighbors are either pro-

cessed or occupied by an agent.

A digraph whose vertices have all been processed is said processed. A se-

quence of such operations resulting in processing all vertices of D is called a pro-

cess strategy. Note that, during a process strategy, an agent that has been removed

from a (processed) vertex can be reused. The number of agents used by a strategy

on a digraph D is the maximum number of agents present at the same time in D

during the process strategy. A vertex is covered during a strategy if it is occupied

by an agent at some step of the process strategy.
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(a) A (2,4)-process strategy for D.
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(b) A (3,3)-process strategy for D.
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Figure 1: Different process strategies for a symmetric digraph D.

Figure 1 illustrates two process strategies for a symmetric digraph D of 7 ver-

tices. The strategy depicted in Figure 1(a) first puts an agent at vertex x1 (rule R1),

which let y1 (rule R3) be processed. A second agent is then put at r (rule R1) al-

lowing the vertex x1 to be processed, and the agent on it to be removed (rule R2).

The procedure goes on iteratively, until all the vertices are processed. The depicted

strategy uses 2 agents and covers 4 vertices. Another process strategy is depicted

in Figure 1(b) that uses 3 agents and covers 3 vertices. Note that this latter strategy

consists in putting agents at the vertices of a feedback vertex set1 of minimum size.

1A set F of nodes of D is a feedback vertex set if the removal of all nodes in F makes D acyclic.

3



Clearly, to process a digraph D, it is sufficient to put an agent at every vertex of

a feedback vertex set F of D (rule R1), then the vertices of V (D)\F can be sequen-

tially processed using rule R3, and finally the vertices of F can be processed and all

agents can be removed (rule R2). In particular, a Directed Acyclic Graph (DAG)

can be processed using 0 agent and thus covering no vertices. Indeed, to process

a DAG, it is sufficient to process sequentially its vertices starting from the leaves

(rule R3). Note that any process strategy for a digraph D must cover all the vertices

of a feedback vertex set of D (not necessarily simultaneously). Obviously, for any

process strategy, the number of covered vertices is always at least the number of

agents used.

The minimum number of agents required to process a digraph D (without con-

straint on the number of covered vertices) is called the process number [5–7], while

the minimum number of covered vertices required to process D (without constraint

on the number of agents) equals the size of a minimum feedback vertex set of D. In

this paper, we are interested in tradeoffs between the minimum number of agents

used by a process strategy and the minimum number of vertices it covers.

1.1. Definitions and Previous Results

Let D be a n-node directed graph. In the following, a (p,q)-process strategy for

D denotes a process strategy for D using at most p agents and covering at most q

vertices. When the number of covered vertices is not constrained, we write (p,∞)-
process strategy. Similarly, when the number of agents is not constrained, we write

(∞,q)-process strategy.

Process Number. The problem of finding the process number of a digraph D, was

introduced in [6] as a metric of the routing reconfiguration problem (see Section 5).

Formally,

Definition 1. The process number of D, denoted by pn(D), is the smallest p such

that there exists a (p,∞)-process strategy for D.

For instance, the digraph D of Figure 1 satisfies pn(D) = 2. Indeed, Figure 1(a)

describes a process strategy using 2 agents, and it is easy to check that there is no

process strategy using at most 1 agent. Digraphs whose process number is equal to

0 or 1 can easily be identified, as they respectively correspond to acyclic digraphs,

and to graphs whose strongly connected components have a feedback vertex set

of size at most 1 (which can be checked in linear time [7]). In [7] is also given

an polynomial algorithm to recognize digraphs whose process number is equal to

2. However the problem of computing the process number of general digraphs is

NP-complete and not in APX (i.e., admitting no polynomial-time approximation
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algorithm up to a constant factor, unless P = NP) [6]. A distributed polynomial-

time algorithm to compute the process number of trees (or forests) with symmetric

arcs has been proposed in [4]. Furthermore, a general heuristic to compute the

process number of a digraph is described in [5]. In [19], Solano conjectured that

computing the process number of a digraph can be solved, or approximated within

a constant factor, in polynomial time if the set of covered vertices is given as part

of the input. We disprove this conjecture, showing that computing the process

number of a digraph remains not in APX (and so is NP-complete) in this situation

(see Theorem 1).

When considering symmetric digraphs, which can be thought of as a directed

version of an undirected graph, one notices that the process number is closely re-

lated to two other graph invariants, the node search number and the pathwidth.

The node search number of a graph G, denoted by sn(G), is the smallest p such

that rules R1 and R2 (R3 is omitted) are sufficient to process G using at most p

agents. See [2, 9, 12, 15, 17] for more details. The pathwidth of a (undirected)

graph G, denoted by pw(G), was introduced by Robertson and Seymour in [18].

It has been proved in [10] by Ellis et al. that the pathwidth and the node search

number are equivalent, that is for any graph G, pw(G) = sn(G)−1. The relation-

ship between these parameters and the process number has been described in [6]:

pw(G)≤ pn(G)≤ pw(G)+1 (and so sn(G)−1 ≤ pn(G)≤ sn(G)), where pn(G)
is the process number of the digraph built from G by replacing each edge by two

opposite arcs. Since computing the pathwidth of a graph is NP-complete [16] and

not in APX [8], determining these parameters is as hard.

Minimum Feedback Vertex Set. Given a digraph D, the problem of finding a pro-

cess strategy that minimizes the number of nodes covered by agents is equivalent

to the one of computing a minimum feedback vertex set (MFVS) of D. Com-

puting such a set is well known to be NP-complete and APX-hard [14]. A 2-

approximation algorithm is known in undirected graphs [1] and in symmetric di-

graph (where a feedback vertex set is a vertex cover of the underlying graph). As

far as we know, the best approximation algorithm for computing a MFVS in gen-

eral n-node digraphs has ratio logn log logn [11].

We define below the parameter m f vs(D), using the notion of (p,q)-process

strategy, corresponding to the size of a MFVS of D.

Definition 2. Let m f vs(D) denote the smallest q such that there exists a (∞,q)-
process strategy for D.

As an example, the digraph D of Figure 1 satisfies m f vs(D) = 3. Indeed for

i ∈ {1,2,3}, it is easy to see that either xi or yi must be in any feedback vertex

5



set (FV S) of D because of the cycle (xi,yi,xi). Furthermore the removal of x1,

x2, and x3 from D is sufficient to break all the cycles. Thus these three nodes

form a MFVS of D, and so m f vs(D) = 3. The corresponding strategy, covering

m f vs(D) = 3 nodes by agents, is described in Figure 1(b).

As mentioned above, m f vs(D)≥ pn(D). Moreover, the gap between these two

parameters may be arbitrarily large. For example consider a symmetric path Pn

composed of n≥ 4 nodes u1,u2, . . . ,un with symmetric arcs between ui and ui+1 for

i = 1, . . . ,n−1. We get m f vs(Pn) = ⌊n
2
⌋ while pn(Pn) = 2. Indeed either ui or ui+1

must be in any FVS of Pn, and so we deduce that nodes u2,u4,u6, . . . form a MFVS

of Pn. Furthermore pn(Pn)≥ 2 because Pn is strongly connected and m f vs(Pn)> 1.

We then describe a process strategy for Pn using 2 agents: we put the first agent at

u1 (R1), we put the second agent at u2 (R1), we process u1 removing the agent from

it (R2), we put this agent at u3 (R1), we process u2 removing the agent from it (R2),

we put an agent at u4 (R1), and so on.

Remark that this process strategy for Pn uses the optimal number of agents,

pn(D) = 2, but all the n nodes are covered by an agent at some step of the process

strategy. For this digraph Pn, it is possible to describe a (pn(D) = 2,m f vs(D) =
⌊n

2
⌋)-process strategy, that is a process strategy for Pn minimizing both the number

of agents and the total number of covered nodes. We put the first agent at u2 (R1),

we process u1 (R3), we put the second agent at u4 (R1), we process u3 (R3), we

process u2 removing the agent from it (R2), we put this agent at u6 (R1), and so

on. Unfortunately such good tradeoffs are not always possible (it is the case for

the digraph of Figure 1 as explained later). Actually, we prove in this paper that

there exist some digraphs for which minimizing one of these objectives arbitrarily

impairs the quality of the solution for the other one. In the following, we define

formally the tradeoff metrics we will now study.

Tradeoff Metrics. We introduce new tradeoff metrics in order to study the loss one

may expect on one parameter when adding a constraint on the other. In particular,

what is the minimum number of vertices that must be covered by a process strategy

for D using pn(D) agents ? Similarly, what is the minimum number of agents that

must be used to process D while covering m f vs(D) vertices ?

Definition 3. Given an integer q ≥ m f vs(D), we denote by pnq(D) the minimum

p such that a (p,q)-process strategy for D exists. We write pnm f vs+r(D) instead of

pnm f vs(D)+r(D), r ≥ 0.

Definition 4. Given an integer p ≥ pn(D), we denote by m f vsp(D) the minimum

q such that a (p,q)-process strategy for D exists. We write m f vspn+r(D) instead of

m f vspn(D)+r(D), r ≥ 0.
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mfvs(D)

pn(D)

(D)pnmfvs

(D)q = mfvsp

(D)qp = pn pnmfvs(D)

p

q

Figure 2: m f vsp(D) function of p for a digraph D. Filled circles represent minimal values of D.

Intuitively pnm f vs(D) is the minimum number of agents required by a process

strategy minimizing the number of covered vertices, and m f vspn(D) is the min-

imum number of vertices that must be covered by a process strategy using the

minimum number of agents. Note that, pnm f vs(D) is upper bounded by the maxi-

mum MFVS of the strongly connected components of D. Another straightforward

remark is that m f vsm f vs(D) = m f vs(D) for any digraph D.

To illustrate the pertinence of these tradeoff metrics, consider the digraph D

of Figure 1. Recall that pn(D) = 2 and m f vs(D) = 3. We can easily verify that

there does not exist a (2,3)-process strategy for D, that is a process strategy min-

imizing both p and q. On the other hand, we can exhibit a (2,4)-process strategy

(Figure 1(a)) and a (3,3)-process strategy (Figure 1(b)) for D. Hence, we have:

pnm f vs(D) = 3 while pn(D) = 2, and m f vspn(D) = 4 while m f vs(D) = 3. In-

tuitively for these two process strategies, we can not decrease the value of one

parameter without increasing the other.

We generalize this concept through the notion of minimal values of a digraph D.

We say that (p,q) is a minimal value of D if p = pnq(D) and q = m f vsp(D).
Note that (pn(D),m f vspn(D)) and (pnm f vs(D),m f vs(D)) are both minimal values

by definition (and may be the same). For the digraph of Figure 1, there are two

minimal values: (2,4) and (3,3). Figure 2 depicts the variations of the minimum

number q of vertices covered by a p-strategy for a digraph D (p ≥ pn(D)), i.e.,

m f vsp(D) as a function of p. Clearly, it is a non-increasing function upper bounded

by m f vspn(D) and lower bounded by m f vs(D).
Filled circles of Figure 2 represent the shape of minimal values of D. Clearly

for a given digraph D, the number of minimal values is at most linear in the number

of nodes. We now give an example of a family of n-node digraph for which the

number of minimal value is Ω(
√

n). Intuitively, it means that, in those digraphs D,
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starting from the optimal number of agents pn(D), each extra agent added allows

to strictly decrease the number of covered vertices, until the optimal, m f vs(D), is

reached. Let Hn be the symmetric directed star with n ≥ 3 branches of length 2

(for instance, H3 is the digraph of Figure 1), and let Gk be the graph that consists

of the disjoint union of H3, · · · ,Hk, k ≥ 3. Then, for any 0 ≤ i ≤ k−2, (pn(Gk)+
i,m f vs(Gk)+ k−2− i) = (2+ i,(k(k+1)/2)−5+ k− i) are minimal values (this

can be easily proved using the easy results described in Section 2.1).

1.2. Our Results

Our results consist in an analysis of the behaviour of the two given tradeoff

measures both in general digraphs and in symmetric digraphs. As mentioned

above, in general, no process strategy minimizes both the number of agents and

the number of covered vertices (see example in Figure 1). Hence, we are interested

in the loss on one measure when the other is constrained. In particular, we are in-

terested in the ratios
pnm f vs(D)

pn(D) and
m f vspn(D)
m f vs(D) . This study involves various theorems

on the complexity of estimating this loss (Section 2) and the existence of digraphs

for which it can be arbitrarily large (Section 3). We also study in Section 4 the case

of symmetric digraphs. Finally we describe in Section 5 the relation between the

routing reconfiguration problem and the processing game.

More precisely, we begin by disproving a conjecture from Solano [19] (Theo-

rem 1). Then, we prove that for all α,β ≥ 0, the problems of determining the pa-

rameters α.pnm f vs(D)+β.pn(D) and α.m f vspn(D)+β.m f vs(D) are NP-complete

(Theorem 2). In particular, the problem of determining pnm f vs(D) is not in APX

and the problem of determining m f vspn(D) is APX-hard (Theorem 2). Then, we

prove that for any q≥ 0 (resp. for any p≥ 0), the ratio
pnm f vs+q(D)

pn(D) (resp.
m f vspn+p(D)

m f vs(D) )

is not bounded even in the class of bounded process number digraphs (Theorem 3

and Theorem 4). However we prove that
m f vspn(D)
m f vs(D) ≤ pn(D) for any symmetric

digraph D (Lemma 5).

In Section 5, we detail the relationship between the processing game and the

reconfiguration routing problem. In this context, any instance of the routing recon-

figuration problem may be represented by a directed graph, called the dependency

digraph of this instance, such that the routing reconfiguration problem is equivalent

to the processing of this digraph. We prove the reverse, that is, any digraph is the

dependency digraph of an instance of the reconfiguration problem (Theorem 7).

2. Complexity Results

This section is devoted to the study of the complexity of the problems related to

the parameters introduced in Section 1.1. First, we need to define some digraphs.
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2.1. Definition of some useful digraphs.

Let Hn be a symmetric directed star with n≥ 3 branches each of which contains

two vertices (the root r being at distance 2 from any leaf), with a total of 2n+ 1

vertices. H3 is represented in Figure 1. It is easy to check that pn(Hn) = 2. Indeed

1 agent is obviously not sufficient and there exists a (2,n+1)-process strategy for

Hn: an agent is put at the central node r, then we successively put an agent at a

vertex x adjacent to r, the remaining neighbor of x (different from r) is processed,

and we process x itself relieving the agent on it. Then, the same process is applied

until all vertices adjacent to r are processed, and finally we process r. Figure 1(a)

represents a (2,4)-process strategy for H3. Moreover, the single MFVS of Hn is

the set X of the n vertices adjacent to r. It is easy to check that the single pro-

cess strategy occupying only the vertices of X consists in putting n agents at all

vertices of X . No agent can be removed while all agents have not been put. Thus

this strategy is a (n,n)-process strategy, and pnm f vs(Hn) = n. See Figure 1(b) for

such a process strategy for H3. To summarize, the two minimal values of Hn are

(pn(Hn),m f vspn(Hn)) = (2,n+1) and (pnm f vs(Hn),m f vs(Hn)) = (n,n)).

Let Kn be a symmetric complete digraph of n nodes. It is easy to check that the

unique minimal value of Kn is (pn(Kn),m f vs(Kn)) = (n−1,n−1).

Let D = (V,A) be a symmetric digraph with V = {u1, . . . ,un}. Let D̂ = (V ′,A′)
be the symmetric digraph where V ′ = V ∪{v1, . . . ,vn}, and D̂ is obtained from D

by adding two symmetric arcs between ui and vi for i = 1, . . . ,n. It is easy to show

that there exists an optimal process strategy for D̂ such that the set of occupied

vertices is V . Indeed, note that, for all i, at least one of ui or vi must be covered

by an agent (any FVS of D contains at least one of vi or ui). Furthermore if some

step of a process strategy for D̂ consists in putting an agent at some vertex vi, then

the process strategy can be easily transformed by putting an agent at ui instead. In

particular, m f vspn(D̂) = n.

2.2. NP-completeness.

Before proving that computing the tradeoff parameters introduced in Section 1.1

are NP-complete, we disprove a conjecture of Solano about the complexity of com-

puting the process number of a digraph D.

Indeed a possible approach for computing the process number, proposed by

Solano in [19], consists of the following two phases: 1) finding the subset of ver-

tices of the digraph at which an agent will be put, and 2) deciding the order in which

the agents will be put at these vertices. Solano conjectures that the complexity of

the process number problem resides in Phase 1 and that Phase 2 can be solved, or

approximated within a constant factor, in polynomial time [19]. We disprove this

conjecture :
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Theorem 1. Computing the process number of a digraph is not in APX (and thus

NP-complete), even when the subset of vertices of the digraph at which an agent

will be put is given.

Proof. Let D be any symmetric digraph. Let us consider the problem of computing

an optimal process strategy for D̂ when the set of vertices covered by agents is

constrained to be V . By the remark in Section 2.1, such an optimal strategy always

exists. It is easy to check that this problem is equivalent to the one of computing

the node search number (and so the pathwidth) of the underlying undirected graph

of D which is NP-complete [16] and not in APX [8].

Theorem 2. Let α,β ≥ 0 be fixed, with max{α,β} > 0. The problem that takes a

digraph D as an input and that aims at determining:

• α.pnm f vs(D)+β.pn(D) is not in APX,

• α.m f vspn(D)+β.m f vs(D) is APX-hard.

Proof. The two cases for α = 0 and β > 0 clearly holds from the literature. Now,

let us assume α > 0.

• We start with α.pnm f vs(D)+β.pn(D).

Let us first consider the case β = 0. That is, let us show that the problem

of determining pnm f vs is not in APX. Indeed, let D be the class of all di-

graphs D̂ obtained from some symmetric digraph D. For any symmetric

digraph D, the problem of computing pw(D) (where pw(D) is the pathwidth

of the underlying graph of the symmetric digraph of D) is not in APX, and

pn(D̂) = pnm f vs(D̂) = pw(D)+ 1 (see Theorem 1). Hence, the problem of

determining pnm f vs is not in APX.

Assume now that β > 0. To prove that determining α.pnm f vs(D)+β.pn(D)
is not in APX, let D1 be the disjoint union of Hn and any n-node digraph D.

First, let us note that pnm f vs(D1) = pnm f vs(Hn) because pnm f vs(D) ≤ n− 1

and pnm f vs(Hn) = n. Since pn(D1) = max{pn(D), pn(Hn)} and pn(Hn) =
2, we get that α.pnm f vs(D1)+β.pn(D1) = α.n+βmax{pn(D),2}. So, the

NP-completeness comes from the NP-completeness of the process number

problem.

• We now consider α.m f vspn(D)+β.m f vs(D).

When β = 0, let us prove that the problem of determining m f vspn is APX-

hard. Let D2 be the disjoint union of Kn and any n-node digraph D. First

let us note that pn(D2) = max{pn(Kn), pn(D)} because the process number
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of any digraph is the maximum for the process numbers of its strongly con-

nected components. It is easy to show that pn(D2) = pn(Kn) = n−1 because

pn(D)≤ n−1. Hence, when D must be processed, n−1 agents are available.

So, in order to minimize the number of nodes covered by agents, the agents

must be placed on a MFVS of D. Thus m f vspn(D2) = n−1+m f vs(D), and

the result follows because computing m f vs(D) is APX-hard.

Assume now that β> 0. To prove that determining α.m f vspn(D)+β.m f vs(D)
is APX-hard, let D3 be the disjoint union of Kn, Hn, and D. Again, pn(D3) =
max{pn(Kn), pn(Hn), pn(D)}. It is easy to show that pn(D3) = pn(Kn) =
n−1 because pn(Hn) = 2 and pn(D)≤ n−1. Moreover, any process strat-

egy of D3 using n− 1 agents must cover n− 1 nodes of Kn, n+ 1 nodes

of Hn (m f vs(Hn) = n but one extra agent is needed to cover only n nodes),

and m f vs(D) nodes of D (because n−1 agents are available and m f vs(D)≤
n− 1). Hence, m f vspn(D3) = (n− 1) + (n+ 1) +m f vs(D). Furthermore

m f vs(D3)= (n−1)+n+m f vs(D) because m f vs(Kn)= n−1 and m f vs(Hn)=
n. Thus α.m f vspn(D3)+β.m f vs(D3) = (α+β)(m f vs(D)+2n)−β. The re-

sult follows the APX-hardness of the MFVS problem.

Corollary 1. For an input digraph D and two integers p ≥ 0 and q ≥ 0, and any

α,β ≥ 0 ({α,β} 6= {0,0}) the problems of determining:

• α.pnm f vs+q(D)+β.pn(D) are not in APX,

• α.m f vspn+p(D)+β.m f vs(D) are APX-hard.

3. Behaviour of ratios in general digraphs

In this section, we study the behaviours of parameters introduced in Section 1.1

and their ratios, showing that, in general, good tradeoffs are impossible.

Theorem 3. For any C > 0 and any integer q ≥ 0, there exists a digraph D such

that
pnm f vs+q(D)

pn(D) >C.

Proof. Consider the symmetric directed star Hn defined in Section 2.1. Let now D

be the digraph consisting of q+ 1 pairwise disjoint copies of Hn. So D has q+ 1

strongly connected components. We get m f vs(D) = (q+ 1)n. By definition, any

(pnmv f s+q(D),m f vs(D) + q)-process strategy for D covers at most q(n+ 1) + n

11
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(a) Dn,k of Theorem 4 and Corollary 3 (Case k odd). The red symbol ⊖
represents the inexistence of arcs between these subgraphs. The arcs from

V (Dn,k)\V (K1
n+1) to V (K1

n+1) are not represented.

here go

(b) D2,5 in Cor. 3 where the arcs from all vertices to one triangle K1
3 have been omitted.

Figure 3: Digraph Dn,k described in Theorem 4 and Corollary 3.

nodes. Therefore, there exists at least one of the q+ 1 strongly connected com-

ponents for which at most n nodes must be covered. Thus to process this compo-

nent, n agents are required. Indeed (n,n) is a minimal value of Hn, and by defini-

tion we cannot decrease the first value without increasing the second one. Hence,

pnm f vs+q(D) = n while pn(D) = 2. Taking n > 2C, we get
pnm f vs+q(D)

pn(D) >C.

Note that if it is allowed to cover m f vs(D)+ q+ 1 nodes during the process

strategy (instead of m f vs(D)+ q), then the number of agents required is pn(D).
In other words, for the digraph D described in the proof of Theorem 3, we get
pnm f vs+q+1(D)

pn(D) = 1 while
pnm f vs+q(D)

pn(D) = n
2
.

Corollary 2. For any C > 0, there exists a digraph D such that
pnm f vs(D)

pn(D) >C.

In the sequel, we present similar results for the second ratio.

Theorem 4. For any C > 0 and any integer p ≥ 0, there exists a digraph D such

that
m f vspn+p(D)

m f vs(D) >C.

Proof. Let n ≥ 2 and let k ≥ 1 be an odd integer. Let us consider the digraph Dn,k

built as follows. Let IS1
n, · · · , ISk

n be k independent sets, each ISt
n (1 ≤ t ≤ k) having
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n vertices: yt
1,y

t
2, . . . ,y

t
n. Let Pn,k be the digraph obtained from the k independent

sets ISt
n (1 ≤ t ≤ k) by adding the arcs from yt

i to yt+1
j , for 1 ≤ j ≤ i ≤ n and

t = 1,3, . . . ,k−2, and from yt
i to yt+1

j , for 1 ≤ i ≤ j ≤ n and t = 2,4, . . . ,k−1. Let

Kn+1 be the symmetric clique with n+1 nodes: x1,x2, . . . ,xn+1.

The digraph Dn,k is obtained from two copies P1
n,k,P

2
n,k of Pn,k and two copies

K1
n+1,K

2
n+1 of Kn+1, by adding the following arcs. In what follows, y

t,a
j denotes the

jth vertex in the tth independent set of Pa
n,k, where j ≤ n, t ∈ {1,k}, a ∈ {1,2}, and

xa
j denotes the jth vertex of Ka

n , where j ≤ n+1, a ∈ {1,2}. There are arcs from xa
i

to y
1,a
j , for 1 ≤ i ≤ j ≤ n and a = 1,2, and from y

k,a
i to xb

j , for 1 ≤ i ≤ j ≤ n, a = 1,2

and b = 3−a. Finally there is an arc from each node of V (Dn,k)\V (K1
n+1) to each

node of V (K1
n+1). Note that these last arcs are not needed to obtain the results but

help make the proof less technical.

Figure 3(a) shows the general shape of Dn,k, where the red symbol ⊖ represents

the inexistence of arcs between these subgraphs. D2,5 is depicted in Figure 3(b).

For not overloading the figures, the arcs from V (Dn,k) \V (K1
n+1) to V (K1

n+1) are

not represented.

Clearly, m f vs(Dn,k) = 2n, and any MFVS consists of {x1
1, . . . ,x

1
n} plus n ver-

tices of K2
n+1.

First, note that to process one vertex of K1
n+1, there must be a step of any

process strategy for Dn,k where n agents are simultaneously occupying n nodes of

K1
n+1. Hence, pn(Dn,k)≥ n. Note that, similarly, any process strategy for Dn,k must

occupy n vertices of K2
n+1. Moreover, because of the arcs from V (Dn,k)\V (K1

n+1)
to V (K1

n+1), any agent that is placed at some vertex in V (Dn,k)\V (K1
n+1) can only

be removed when all vertices of K1
n+1 are occupied or processed. Consider any

process strategy S for Dn,k (in particular, S uses at least n agents) and let s0 be the

first step of S that does not consist in placing an agent at some vertex of K1
n+1. By

above remark, after step s0 −1 of S, n agents are occupying n vertices of V (K1
n+1).

Up to reorder the first s0 − 1 steps of S, we obtain a process strategy for Dn,k that

starts by placing n agents at n vertices of V (K1
n+1), without increasing the number

of agents used nor the number of vertices occupied by S. Moreover, if the vertex of

V (K1
n+1) that is not occupied is x1

i with i < n+ 1, it means that an agent is placed

at x1
n+1 during the first n steps of the strategy. Replacing this operation by the

placement of an agent at x1
i instead of x1

n+1 does not modify the remaining part of

the strategy (but the operation ”remove the agent from x1
n+1” which is replaced by

”remove the agent from x1
i ”) since the vertex x1

n+1 can be processed immediatly

when the n other vertices of K1
n+1 are occupied. Hence, we may assume that S

starts by placing agents at {x1
1, . . . ,x

1
n} and then processes x1

n+1.

Second, any process strategy for any graph can easily be modified, without
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increasing (possibly decreasing) the number of used agents nor the number of oc-

cupied vertices, in such a way that the strategy processes all possible vertices be-

fore placing or removing agents. In other words, the rule R3 can be made prioritary

without increasing the considered parameters. Therefore, any process strategy S for

Dn,k can be modified , without increasing the number of agents used nor the number

of vertices occupied by S, into a strategy that first places n agents at {x1
1, . . . ,x

1
n},

then processes x1
n+1 and all vertices of P2

n,k, and finally that mimicks S. Such a

strategy is called a good process strategy for Dn,k.

Third, pn(Dn,k) ≤ n+ 1 as proved by the following strategy S∗. First, place n

agents at {x1
1, . . . ,x

1
n}, then process all vertices of P2

n,k and then x1
n+1. In the next

sentence, y
0,1
i denotes x1

i and y
k+1,1
i denotes x2

i , i ≤ n. Then, for j = 1 . . .k+1, the

jth phase of S∗ consists of the following: for i = 1 . . .n, place an agent at y
j,1
n−i+1 if

j odd (resp., at y
j,1
i if j even) and remove the agent at y

j−1,1
n−i+1 (resp., at y

j−1,1
i if j

even). Finally, process all vertices of K2
n+1.

Let p, 0≤ p≤ n−2 (we choose n≥ p−2). Let S be a good process strategy for

Dn,k that uses n+1+ p agents (which exists by the previous remarks). We assume

that S minimizes the number q of independent sets IS
t,1
n of Dn,k for which a vertex is

occupied during the execution of S. Such an independent set is said touched. Note

that the transformation that makes a strategy good does not increase the number of

touched independent sets. Therefore, 2n+q ≤ m f vsn+1+p(Dn,k) since any strategy

occupies n vertices in each clique plus at least one vertex per touched independent

set. In the sequel, we will prove that q ≥ k, i.e., all independent sets of P1
n,k must be

touched, and then, taking k > 2n(C−1), we get that
m f vspn+p(Dn,k)

m f vs(Dn,k)
=

m f vspn+p(Dn,k)
2n

≥
m f vsn+1+p(Dn,k)

2n
≥ 2n+k

2n
>C.

It remains to prove that S touches all the k independent sets of P1
n,k. To do so,

we will modify S, possibly increasing the number of occupied vertices but without

increasing the number of touched independent sets.

Since S is good, it first places n agents at {x1
1, . . . ,x

1
n}, then processes x1

n+1 and

all vertices of P2
n,k. We set x1

i = y
0,1
i , for all i ≤ n. Let S = S0. Let 0 ≤ j < k and

let S j be the strategy that mimicks the j first phases of S∗ and then performs in

the same order those movements of S0 that concern the unprocessed vertices at this

step. We prove by induction on j < k that S j can be transformed into the good

process strategy S j+1 for Dn,k satisfying the desired properties without increasing

the number of touched independent sets. Clearly, S0 is a good process strategy for

Dn,k that satisfies these properties.

Assume that, for some 0 ≤ j < k−1, S j is a good process strategy that satisfies

the desired properties. Then, S j starts by occupying the vertices of {x1
1, . . . ,x

1
n},

14



processes x1
n+1 and the vertices of P2

n,k and then occupies and processes successively

all vertices of IS
r,1
n , r = 1 . . . j until all vertices of IS

j,1
n are occupied. Let s j be the

step of S j when it occurs. We first prove that S j touches IS
j+1,1
n . Indeed, if j is

even, there are n vertex-disjoint paths from y
j+1,1
n (resp., from y

j+1,1
1 if j is odd) to

x2
1, . . . ,x

2
n. While y

j+1,1
n (resp., from y

j+1,1
1 if j is odd) is not processed, no agent in

IS
j,1
n can be removed, and thus only p+1 ≤ n−1 agents are available. Therefore,

the only way to process y
j+1,1
n (resp., from y

j+1,1
1 if j is odd) is to place an agent

at it. Hence, there is a step of S j (hence, of S0) that consists of placing an agent at

y
j+1,1
n (resp., y

j+1,1
1 if j is odd). Hence, S0 touches IS

j+1,1
n . To conclude, we modify

S j by adding after step s j the j+1th phase of S∗. That is, after step j, the strategy

successively occupies the vertices of IS
j+1,1
n removing the agents at IS

j,1
n until all

vertices of IS
j+1,1
n are occupied and all vertices of IS

j,1
n have been processed. Then,

the strategy mimicks the remaining steps of S j. The strategy obtained in such a

way is clearly S j+1 that satisfies all desired properties. In particular, the obtained

strategy is a good process strategy for Dn,k that touches the same independent sets

as S0.

Note that there exists a (pn(D)+ p+ 1,m f vs(D))-process strategy for the di-

graph Dn,k described in the proof of Theorem 4 whereas the minimum q such that

a (pn(D)+ p,q)-process strategy for Dn,k exists, is arbitrarily large.

Corollary 3. For any C > 0, there exists a digraph D such that
m f vspn(D)
m f vs(D) >C.

We obtain this result by considering the digraph Dn,k described in Figure 3(a),

with n = 2 and k ≥ 1 (Figure 3(b) represents D2,5). This digraph is such that

pn(D2,k) = 3 and m f vs(D2,k) = 4 while
m f vspn(D2,k)
m f vs(D2,k)

= k+4
4

is unbounded.

Lemma 5 in Section 4 shows that, in the class of symmetric digraphs with

bounded process number,
m f vspn(D)
m f vs(D) is bounded.

4. Behaviour of ratios in symmetric digraphs

We address in this section the behaviour of
m f vspn(D)
m f vs(D) for symmetric digraphs

D. Note that the behaviours of
pnm f vs+q(D)

pn(D) and
pnm f vs(D)

pn(D) have already been studied

in Section 3 for symmetric digraphs with bounded process number.

Lemma 5. For any symmetric digraph D,
m f vspn(D)
m f vs(D) ≤ pn(D).

Proof. Without loss of generality, we prove the lemma for a connected digraph D.

Let S be a (pn(D),m f vspn(D))-process strategy for D = (V,E). Let O ⊆V be the
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Figure 4: Proof of Lemma 5

set of vertices occupied by an agent during the execution of S. Let F be a MFVS

of D. Let us partition V into (Y,X ,W,Z) = (O∩F,O\F,F \O,V \ (O∪F)). Since

D is symmetric, V \F is an independent set because it is the complementary of

a MFVS. Since the vertices not occupied by S have all their neighbors occupied,

V \O is an independent set. Given V ′ ⊆ V , N(V ′) denotes the set of neighbors of

the vertices in V ′. The partition is illustrated in Figure 4.

First, note that |N(W )∩X | ≤ pn(D)|W |, because, for any vertex v ∈ W to be

processed, all its neighbors must be occupied by an agent. Thus, the maximum

degree of v is pn(D).
Then, we prove that |X \N(W )| ≤ (pn(D)−1)|Y |. Let R = X \N(W ). Because

X ∪Z is an independent set, for any v ∈ R, N(v) ⊆ Y . Let T = N(R) ⊆ Y . Note

that N(T )∩R = R because D is connected and symmetric. Let us order the vertices

of T = {v1, · · · ,vt} in the sequence in which they are processed (when the agents

are removed) when executing S. For any i, 1 ≤ i ≤ t, let Ni =
S

j≤i N(v j)∩R. We

aim at proving that |N1|< pn(D) and |Ni+1 \Ni|< pn(D) for any i < t. Hence, we

obtain |Nt |= |R| ≤ (pn(D)−1)|T | ≤ (pn(D)−1)|Y |.
Let us consider the step of S just before an agent is removed from v1. Let

v ∈ N1 6= /0. Since the agent will be removed from v1, either v has already been

processed or is occupied by an agent. We prove that there is a vertex in N(v) ⊆ T

that has not been occupied yet and thus v must be occupied. Indeed, otherwise,

all neighbors of v are occupied (since, at this step, no agents have been removed

from the vertices of T ) and the strategy can process v without placing any agent on

v, contradicting the fact that S occupies the fewest vertices as possible. Therefore,

just before an agent is to be removed from v1, all vertices of N1 are occupied by an
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Figure 5: Symmetric digraph SDn of Lemma 6 (Figure 5(a)) and instance of SDn when n = 5 (Fig-

ure 5(b)). The red symbol ⊖ represents the absence of arcs.

agent. Hence, |N1|< pn(D).
Now, let 1 < i ≤ t. Let us consider the step of S just before an agent is removed

from vi. Let v ∈ Ni \Ni−1 if such a vertex exists. Since the agent will be removed

from vi, either v has already been processed or is occupied by an agent. We prove

that there is a vertex in N(v) ⊆ T \Ni−1 that has not been occupied yet and thus v

must be occupied. Indeed, otherwise, all neighbors of v are occupied (since, at this

step, no agents have been removed from the vertices of T \Ni−1) and the strategy

can process v without placing any agent on v, contradicting the fact that S occupies

the fewest vertices as possible. Therefore, just before an agent to be removed from

vi, all vertices of Ni+1 \Ni are occupied by an agent. Hence, |Ni+1 \Ni|< pn(D).
To conclude: m f vspn(D) = |O|= |Y |+ |X | and X = |X \N(W )|+ |N(W )∩X |.

Hence, m f vspn(D)≤ pn(D)(|Y |+ |W |) = pn(D)|F |= pn(D).m f vs(D).

Lemma 6. For any given ε > 0, there exists a symmetric digraph D such that

3− ε ≤ m f vspn(D)
m f vs(D) < 3.

Proof. Let n ≥ 1. Let us consider the digraph SDn built as follows. Let IS1
n and

IS2
n be two independent sets of n nodes each: respectively x1, . . . ,xn and z1, . . . ,zn.

Let Kn+1 be a symmetric clique of n+ 1 nodes y1, . . . ,yn,yn+1 = v. The digraph

SDn is built starting from the disjoint union of IS1
n, IS2

n,Kn+1 and 6 isolated vertices

{a,b,c,d,e, f} by adding the following arcs. There are symmetric arcs between

the nodes xi and y j and the nodes zi and y j, for any 1 ≤ i ≤ j ≤ n. Furthermore, all

symmetric arcs of the complete bipartite graph with partitions {b,c} and IS1
n are

added. Similarly, all symmetric arcs of the complete bipartite graph with partitions
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{d,e} and IS2
n are added. Finally, the symmetric arcs (a,b),(a,c),(d, f ),(e, f ) are

added. The general shape of SDn is depicted in Figure 5(a). The digraph SD5 is

represented in Figure 5(b).

Note that the set F = {y1, . . . ,yn,b,c,d,e} is a feedback vertex set of SDn, with

|F | = n+ 4. Thus m f vs(SDn) ≤ n+ 4 (actually, one can easily check that F is a

minimum feedback vertex set of SDn). Clearly, pn(SDn)≥ n. In what follows, we

prove that any strategy using n+ 1 agents needs to cover at least 3n+ 2 vertices,

and we present a (n+ 1,3n+ 2)-process strategy for SDn. Since m f vsn+1(D) ≤
m f vspn(D) for any digraph D, the result follows.

First, we prove by contradiction that all process strategies for SDn using n+1

agents must start by processing either the nodes b and c or the nodes d and e, and

so by placing the n+1 agents either at vertices a and x1, . . . ,xn or at vertices f and

z1, . . . ,zn.

Suppose that the first vertex to be processed is either a or belongs to IS1
n, and it

is processed at step s. Therefore, the vertices b and c must be occupied by agents at

this step (such that a can be processed thereafter). Without loss of generality, let us

assume that b is processed, say at step s′, before c. Since at most n−1 agents are

available while c and b are occupied, no vertex of the clique Kn+1 can be processed

before step s′. On the other hand, at step s′, all vertices of IS1
n are processed or

occupied by agents such that b can be processed. Let X be the subset of vertices

of IS1
n that are occupied at step s′, and let Y = V (IS1

n)\X . For any xi ∈ Y , yi must

be occupied at step s′ (since xi is processed and yi is not). Hence, at step s′, at

least 2+ |X |+ |Y |= n+2 agents are occupying some vertices, a contradiction. By

symmetry, f and any vertex of IS2
n cannot be the first vertex to be processed.

Now suppose that the first vertex to be processed is yi ∈ Kn+1, i ≤ n+1. Note

that all vertices of Kn+1, but yn+1 = v, have at least n+2 outneighbors. Therefore,

i = n+ 1. When v is processed, the n vertices of Kn+1 \ {v} must be occupied,

leaving at most one free agent. But now, all vertices of Kn+1 but v have at least 2

unprocessed outneighbors. Whatever be the placement of the last agent, no other

vertex can be processed and no agents can be released. Hence, the strategy fails, a

contradiction.

Hence, any process strategy using n+1 agents must start by processing b,c,d
or e. Without loss of generality, (by symmetry), let us assume that the first vertex

to be processed is b. Hence, the strategy must start by placing agents at any vertex

in {a}∪V (IS1
n). At this step, the strategy processes b and c without covering them.

Then a can be processed and the agent at it is released. At this step, no other vertex

can be processed. Moreover, the only move that can be done is to place the free

agent at yn. Indeed, any other move would let all agents blocked. Then the free

agent is placed at node yn and xn can be processed and the agent occupying it can

be released. Similarly, the strategy sequentially places an agent at yn−i, processes
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xn−i and removes the corresponding agent, for 1 ≤ i ≤ n−1. It is easy to check that

any variation of this would make the strategy immediately fail. Once all vertices

y1, · · · ,yn are occupied, then v can be processed without being covered. Then, the

strategy goes on being highly constrained: for 1 ≤ i ≤ n, the free agent occupies zi,

allowing to process yi and to free the agent occupying it. Finally, when all vertices

of IS2
n are occupied, the free agent must occupy f , and all remaining vertices may

be processed. Again, all these moves are forced for, otherwise, the strategy would

be blocked.

Such a strategy covers 3n+2 nodes. Therefore, m f vspn(SDn)≥m f vsn+1(SDn)

= 3n+ 2. Hence,
m f vspn(SDn)
m f vs(SDn)

≥ 3n+2
n+4

. For n > 10
ε − 4, we get

m f vspn(SDn)
m f vs(SDn)

≥ 3− ε.

Moreover, since SDn has 3n+ 7 vertices, we get m f vspn(SDn) ≤ 3n+ 6, and so
m f vspn(SDn)
m f vs(SDn)

< 3.

Conjecture 1. For any symmetric digraph D,
m f vspn(D)
m f vs(D) ≤ 3.

5. Process Strategy out of the Routing Reconfiguration Problem

The routing reconfiguration problem occurs in connection-oriented networks

such as telephone, MPLS, or WDM [3, 5–7, 19, 20]. In such networks, a connec-

tion corresponds to the transmission of a data flow from a source to a destination,

and is usually associated with a capacited path (or a wavelength in WDM optical

networks). A routing is the set of paths serving the connections. To avoid confu-

sion, we assume here that each arc of the network has capacity one, and that each

connection requires one unit of capacity. Consequently, no two paths can share the

same arc (valid assumption in WDM networks). When a link of the network needs

to be repaired, it might be necessary to change the routing of the connection using

it, and incidentally to change the routing of other connections if the network has

not enough free resources. Computing a new viable routing is a well known hard

problem, but it is not the concern of this paper. Indeed, this is not the end of our

worries: once a new routing not using the unavailable links is computed, it is not

acceptable to stop all the connections going on, and change the routing, as it would

result in a bad quality of service for the users (such operation requires minutes in

WDM networks). Instead, it is preferred that each connection first establishes the

new path on which it transmits data, and then stops the former one. This requires a

proper scheduling to avoid conflicts in accessing resources (resources needed for a

new path must be freed by other connections first). Furthermore, cyclic dependen-

cies might force to interrupt some connections during that phase. The aim of the

routing reconfiguration problem is to optimize tradeoffs between the total number

and the concurrent number of connections to interrupt.
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Figure 6: Instance of the reconfiguration problem consisting of a network with 10 nodes and sym-

metric arcs, 8 connections (h, i),(h,c),(d,c),(d,b),(e,b),(e, j),(i, j),(g, i) to be reestablished. Fig-

ure 6(a) depicts the old set of routes S1, Figure 6(b) the new set S2, and Figure 6(c) the dependency

digraph from S1 to S2.

As an example, a way to reconfigure the instance depicted in Figure 6 may be to

interrupt connections (h,c),(d,b),(e, j), then set up the new paths of all other con-

nections, tear down their old routes, and finally, set up the new paths of connections

(h,c),(d,b),(e, j). Such a strategy interrupts a total of 3 connections and these

ones are interrupted simultaneously. Another strategy may consist of interrupt-

ing the connection (h, i), then sequentially: interrupt connection (h,c), reconfigure

(d,c) without interruption for it, set up the new route of (h,c), then reconfigure in

the same way first (d,b) and (e,b) without interruption for these two requests, and

then (e, j) and (i, j). Finally, set up the new route of (h, i). The second strategy

implies the interruption of 4 connections, but at most 2 connections are interrupted

simultaneously.

Indeed, possible objectives are (1) to minimize the maximum number of con-

current interruptions [5, 6, 19, 20], and (2) to minimize the total number of dis-

rupted connections [13]. Following [6, 13], these two problems can be expressed

through the theoretical game described in Section 1.1, on the dependency digraph [13].

Given the initial routing and the new one, the dependency digraph contains one

node per connection that must be switched. There is an arc from node u to node v

if the initial route of connection v uses resources that are needed by the new route

of connection u. Figure 6 shows an instance of the reconfiguration problem and

its corresponding dependency digraph. In Figure 6(c), there is an arc from vertex

(d,c) to vertex (h,c), because the new route used by connection (d,c) (Figure 6(b))

uses resources seized by connection (h,c) in the initial configuration (Figure 6(a)).

Other arcs are built in the same way.

Given the dependency digraph D of an instance of the problem, a (p,q)-process

strategy for D corresponds to a valid reconfiguration of the connections where p
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is the maximum number of concurrent disruptions and q is the total number of

interruptions. Indeed the three rules can be viewed in terms of reconfiguration of

requests:

R1 Put an agent at a vertex v of D;

Interrupt the request corresponding to v;

R2 Remove an agent from a vertex v of D if all its outneighbors are either pro-

cessed or occupied by an agent, and process v;

Route an interrupted connection when final resources are available;

R3 Process an unoccupied vertex v of D if all its outneighbors are either pro-

cessed or occupied by an agent;

Reroute a non-interrupted connection when final resources are available.

The next theorem proves the equivalence between instances of the reconfigu-

ration problem and dependency digraphs.

Theorem 7. Any digraph D is the dependency digraph of an instance of the routing

reconfiguration problem whose network is a grid.

Proof. Roughly, consider a grid network where each initial lightpath of any con-

nection is some row of the grid. If two connections i and k are linked by an arc (i,k)
in the dependency digraph, then we build the new lightpaths of both connections

as depicted in Figure 7 which actually create the desired dependence. Note that the

lightpath of connection k is deported on an additional row, i.e., a row correspond-

ing to no connection. For each arc of the dependency digraph, we can use different

columns of the grid-network, in such a way that these transformations may be done

independently.

More formally, let D = (V,A) be a digraph with V = {c1, · · · ,cn} and A =
{a1, · · · ,am}. Let us define the network G as a (n+2)× (2m) grid such that each

edge of which has capacity one. Let Ri denotes the ith row of G (0 ≤ i ≤ n+ 1)

and Ci its ith column (1 ≤ j ≤ 2m), and let vi, j ∈ V (G) be the vertex in Ri ∩C j.

For any i, 1 ≤ i ≤ n, connection i, corresponding to ci in D, occurs between vi,1 ∈
V (G) the leftmost vertex of Ri and vi,2m ∈ V (G) the rightmost vertex of Ri, and

let the initial lightpath of connection i follows Ri. Now, we present an iterative

method to build the new lightpath of each connection. Initially, for any i, 1 ≤ i ≤ n,

the new lightpath P0
i of connection i equals the old lightpath Ri. Now, after the

( j − 1)th step (0 < j ≤ m) of the method, let P
j−1

i be the current value of the

new lightpath of connection i and assume that in the subgraph of G induced by

columns (C2 j−1, · · · ,C2m), P
j−1

i equals Ri. Consider a j = (ci,ck) ∈ A and let us do
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Figure 7: Scheme of the transformation in the proof of Theorem 7

the following transformation depicted in Figure 7. For any ℓ /∈ {i,k}, P
j
ℓ = P

j−1
ℓ .

Now, P
j

i is defined by replacing the edge (vi,2 j−1,vi,2 j) in P
j−1

i by the shortest path

from vi,2 j−1 to vk,2 j−1 (following C2 j−1), the edge (vk,2 j−1,vk,2 j), and the shortest

path from vk,2 j to vi,2 j (following C2 j). Similarly, P
j

k is defined by replacing the

edge (vk,2 j−1,vk,2 j) in P
j−1

k by the shortest path from vk,2 j−1 to vn+1,2 j−1 if i <
k (resp., to v0,2 j−1 if i > k), the edge (vn+1,2 j−1,vn+1,2 j) (resp., (v0,2 j−1,v0,2 j)),
and the shortest path from vn+1,2 j to vk,2 j (resp., from v0,2 j to vk,2 j). It is easy to

check that the grid G, the sets of initial lightpaths {R1, · · · ,Rn} and final lightpaths

{Pm
1 , · · · ,Pm

n } admit D as dependency digraph.

Note that a digraph may be the dependency digraph of various instances of the

reconfiguration problem. Since any digraph may be the dependency digraph of a

realistic instance of the reconfiguration problem, Theorem 7 shows the relevance

of studying these problems through dependency digraph notion.

A feasible reconfiguration may be defined by a (p,q)-process strategy for the

corresponding dependency digraph. Problem (1) is equivalent to minimize p (Sec-

tion 1.1) and Problem (2) is similar to the one of minimizing q (Section 1.1).

Consider the dependency digraph D of Figure 6. From Section 1.1, we can not

minimize both p and q, that is the number of simultaneous disrupted requests and

the total number of interrupted connections. Indeed there does not exist a (2,3)-
process strategy while (2,4) and (3,3) exist (Figure 1(a) and Figure 1(b)).

It is now easy to establish the relationship between tradeoff metrics introduced

in Section 1.1 and tradeoffs for the routing reconfiguration problem. For exam-

ple, pnm f vs introduced in Definition 3 represents the minimum number of requests

that have to be simultaneously interrupted during the reconfiguration when the to-

tal number of interrupted connections is minimum. Also Section 2 shows that the

problems of computing these new tradeoffs parameters for the routing reconfigu-

ration problem are NP-complete and not in APX. Finally Section 3 proves that the
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loss one can expect on one parameter when minimizing the other may be arbitrarily

large.

6. Conclusion

In this paper, we address the routing reconfiguration problem through a game

played on digraphs. We introduce the notion of (p,q)-process strategy and some

tradeoff metrics in order to minimize one metric under the constraint that the other

is fixed. We proved that the problems of computing these parameters are APX-hard

and some are not in APX . We also proved that there exist digraphs for which min-

imizing one parameter may increase the other arbitrarily. For further research, we

plan to continue our study for symmetric digraphs in order to (dis)prove Conjec-

ture 1. Moreover, it would be interesting to design exact algorithms and heuristics

to compute (p,q)-process strategies.
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Abstract

A good edge-labelling of a graph G is a labelling of its edges such that, for
any ordered pair of vertices (x, y), there do not exist two paths from x to y
with increasing labels. This notion was introduced in [1] to solve wavelength
assignment problems for specific categories of graphs. In this paper, we aim
at characterizing the class of graphs that admit a good edge-labelling. First,
we exhibit infinite families of graphs for which no such edge-labelling can be
found. We then show that deciding if a graph G admits a good edge-labelling
is NP-complete, even if G is bipartite. Finally, we give large classes of graphs
admitting a good edge-labelling: C3-free outerplanar graphs, planar graphs of
girth at least 6, subcubic graphs.

Keywords: Graph Theory, NP-completeness, Edge-labelling, Increasing paths.

1. Introduction

A classical and widely studied problem in WDM (Wavelength Division Mul-
tiplexing) networks is the Routing and Wavelength Assignment (RWA) prob-
lem [2, 3, 4]. It consists in finding routes, and their associated wavelength as
well, to satisfy a set of traffic requests while minimizing the number of used
wavelengths. This is a difficult problem which is, in general, NP-hard. Thus, it
is often split into two distinct problems: First, routes are found for the requests.
Then, in a second step, these routes are taken as an input. Wavelengths must
be associated to them in such a way that two routes using the same fiber do
not have the same wavelength. The last problem can be reformulated as fol-
lows: Given a digraph and a set of dipaths, corresponding to the routes for the
requests, find the minimal number of wavelengths w needed to assign different
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wavelengths to dipaths sharing an edge. This problem can be seen as a colour-
ing problem of the conflict graph which is defined as follows: It has one vertex
per dipath and two vertices are linked by an edge if their corresponding dipaths
share an edge. In [1], Bermond et al. studied the RWA problem for UPP-DAG
which are acyclic digraphs (or DAG) in which there is at most one dipath from
one vertex to another. In such digraph the routing is forced and thus the unique
problem is the wavelength assignment one.

In their paper, they introduce the notion of good edge-labelling. An edge-
labelling of a graph G is a function φ : E(G) → R. A path is increasing if the
sequence of its edge labels is non-decreasing. An edge-labelling of G is good
if, for any two distinct vertices u, v, there is at most one increasing (u, v)-
path. Bermond et al. [1] showed that the conflict graph of a set of dipaths in
a UPP-DAG has a good edge-labelling. Conversely, for any graph admitting a
good edge-labelling one can exhibit a family of dipaths on a UPP-DAG whose
conflict graph is precisely this graph. Bermond et al. [1] then use the existence
of graphs with a good edge-labelling and large chromatic number to prove that
there exist sets of requests on UPP-DAGs with load 2 (an edge is shared by at
most two paths) requiring an arbitrarily large number of wavelengths.

To obtain other results on this problem, it may be useful to identify the
good graphs which admit a good edge-labelling and the bad ones which do not.
Bermond et al. [1] noticed that C3 and K2,3 are bad. J.-S. Sereni [5] asked
whether every {C3,K2,3}-free graph (i.e., with no C3 nor K2,3 as a subgraph) is
good. In Section 3, we answer this question in the negative. We give an infinite
family of bad graphs none of which is the subgraph of another.

Furthermore, in Section 4, we prove that determining if a graph has a good
edge-labelling is NP-complete using a reduction from Not-All-Equal 3-SAT.

In Section 5, we show large classes of good graphs: forests, C3-free outer-
planar graphs, planar graphs of girth at least 6. To do so, we use the notion of
critical graph which is a bad graph such that every proper subgraph of which
is good. Clearly, a good edge-labelling of a graph induces a good edge-labelling
of all its subgraphs. So every bad graph must contain a critical subgraph. We
establish several properties of critical graphs. In particular, we show that they
have no matching-cut. Hence, a result of Farley and Proskurowski [6] (Theo-
rem 16) implies that a critical graph G has at least 3

2 |V (G)| − 3
2 edges.

In Section 6, we use the characterization of graphs with no matching-cut
and

⌈
3
2 |V (G)| − 3

2

⌉
edges given by Bonsma [7] to slightly improve this result.

We show that a critical graph G has at least 3
2 |V (G)| − 1

2 edges unless G is C3

or K2,3.
Finally, we present avenues for future research.

2. Preliminaries

In this section, we give some technically useful propositions. Their proofs
are straightforward and left to the reader.

A path is decreasing if the sequence of its edge labels is non-increasing.
Then, a path u1u2 . . . uk is decreasing if and only if its reversal ukuk−1 . . . u1 is
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increasing. Hence an edge-labelling is good if and only if for any two distinct
vertices u, v, there is at most one decreasing (u, v)-path. Equivalently, an edge-
labelling is good if and only if for any two distinct vertices u, v, there is at most
one increasing (u, v)-path and at most one decreasing (u, v)-path.

Let x and y be two vertices of G. Two distinct (x, y)-paths P and Q are
independent if V (P )∩V (Q) = {x, y}. Observe that in an edge-labelled graph G,
there are two vertices u, v with two increasing (u, v)-paths if and only if there
are two vertices u′, v′ with two increasing independent (u′, v′)-paths. Hence
the definition of good edge-labelling may be expressed in terms of independent
paths.

Proposition 1. An edge-labelling is good if and only if for any two distinct
vertices u and v, there are no two increasing independent (u, v)-paths.

As above the definition may also be in terms of decreasing independent paths.
In the paper, we sometimes use Proposition 1 without referring explicitly to it.

Let φ be a good edge-labelling of a graph G. If φ(E(G)) ⊂ A then for every
strictly increasing function f : A → B, f ◦ φ is a good edge-labelling into B.
Moreover if φ is not injective, one can transform it into an injective one by
recursively adding a tiny ε to one of the edges having the same label. Hence we
have the following.

Proposition 2. Let G be a graph and A an infinite set in R ∪ {−∞,+∞}.
Then G admits a good edge-labelling if and only if it admits an injective good
edge-labelling into A.

3. Bad graphs

A path of length one is both increasing and decreasing, and a path of length
two is either increasing or decreasing. So C3 has clearly no good edge-labelling.
Also K2,3 does not admit a good edge-labelling since there are three paths of
length two between the two vertices of degree 3. Hence, in any edge-labelling,
two of them are increasing or two of them are decreasing.

Extending this idea, we now construct an infinite family of bad graphs, none
of which is the subgraph of another. The construction of this family is based
on the graphs Hk defined below. These graphs play the same role as a path of
length two because they have two vertices u and v such that any good edge-
labelling of Hk has either a (u, v)-increasing path or a (v, u)-increasing path.

For any integer k ≥ 3, let Hk be the graph defined by

V (Hk) = {u, v} ∪ {ui | 1 ≤ i ≤ k} ∪ {vi | 1 ≤ i ≤ k},
E(Hk) = {uui | 1 ≤ i ≤ k} ∪ {uivi | 1 ≤ i ≤ k} ∪ {viv | 1 ≤ i ≤ k},

∪{viui+1 | 1 ≤ i ≤ k}

with uk+1 = u1. See Figure 1.
Observe that the graph Hk has no K2,3 as a subgraph, and for i 6= k, Hi is

not a subgraph of Hk.
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Figure 1: Graph Hk

Proposition 3. Let k ≥ 3. For every good edge-labelling, the graph Hk has
either an increasing (u, v)-path or an increasing (v, u)-path.

Proof: Suppose, by way of contradiction, that Hk has a good edge-labelling φ
having no increasing (u, v)-path and no increasing (v, u)-path. By Proposition 2,
we may assume that φ is injective.

A key component in this proof is the following observation which follows
easily from the fact that φ is good.

Observation 3.1. Suppose x1x2x3x4x1 is a 4-cycle. Then, either

• φ(x4x1) < φ(x1x2), φ(x2x3) < φ(x1x2), φ(x2x3) < φ(x3x4) and φ(x1x4) <
φ(x3x4); or

• all those inequalities are reversed.

By symmetry, we may assume that φ(uu1) < φ(u1v1). By Observation 3.1,
φ(v1u2) < φ(u1v1), φ(v1u2) < φ(uu2) and φ(uu1) < φ(uu2). Then, since
vv1u2u is not increasing, φ(u2v1) < φ(v1v). Again by Observation 3.1, φ(v2v) <
φ(u2v2). Thus since uu2v2v is not increasing φ(uu2) < φ(u2v2).

Applying the same reasoning, we obtain that φ(uu2) < φ(uu3) and φ(uu3) <
φ(u3v3) and so on, iteratively, φ(uu1) < φ(uu2) < · · · < φ(uuk) < φ(uu1), a
contradiction. ¤

For convenience we denote by H2 the path of length 2 with end vertices u
and v. Let i, j, k be three integers greater than 1. The graph Ji,j,k is the graph
obtained from disjoint copies of Hi, Hj and Hk by identifying the vertices u of
the three copies and the vertices v of the three copies.
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Proposition 4. Let i, j, k be three integers greater than 1. Then Ji,j,k is bad.

Proof: Suppose, by way of contradiction, that Ji,j,k admits a good edge-labelling.
By Proposition 3, in each of the subgraphs Hi, Hj and Hk, there is either an
increasing (u, v)-path or an increasing (v, u)-path. Hence in Ji,j,k, there are ei-
ther two increasing (u, v)-paths or two increasing (v, u)-paths, a contradiction.
¤

4. NP -completeness

In this section, we prove that it is an NP -complete problem to decide if
a bipartite graph admits a good edge-labelling. We give a reduction from the
NOT-ALL-EQUAL (NAE) 3-SAT Problem [8] which is defined as follows:

Instance: A set V of variables and a collection C of clauses over V such
that each clause has exactly 3 literals.

Question: Is there a truth assignment such that each clause has at least
one true and at least one false literal?

For sake of clarity, we first present the NP-completeness proof for general
graphs.

Theorem 5. The following problem is NP-complete.
Instance: A graph G.
Question: Does G have a good edge-labelling?

Proof: Given a graph G and an injective edge-labelling φ into R, one can check
in polynomial time if φ is good or not using the following algorithm where
(u1v1, . . . , umvm) is an ordering of the edges of G in increasing order according
to their labels.

foreach u ∈ V (G) do
Set V (T ) := {u}, E(T ) := ∅;
foreach i=1 to m do

if {ui, vi} ⊂ V (T ) then
return “bad edge-labelling”;

if ui ∈ V (T ) (and vi /∈ V (T )) then
V (T ) := V (T ) ∪ {vi} and E(T ) := E(T ) ∪ {uivi};

return “good edge-labelling”;

Indeed, for each vertex u, the above algorithm grows the tree T of increasing
paths from u: at each step i, T is the tree of increasing paths from u with arcs
with labels less than φ(uivi). In particular, there is an increasing (u, v)-path Pv

for every v ∈ V (T ). Hence if ui ∈ V (T ) and vi ∈ V (T ) then Pvi
and Pui

+ uivi
are two increasing (u, vi)-paths, so the edge-labelling is not good. If ui ∈ V (T )
and vi /∈ V (T ), then Pui

+ uivi is a new increasing path that must be included
into T . Finally, if ui /∈ V (T ) and vi /∈ V (T ), then uivi will not be in any
increasing path from u as the edges to be considered after it have larger labels.
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Hence the considered problem is in NP.

To prove that the problem is NP-complete, we will reduce the NAE 3-SAT
Problem without repetition (i.e. a variable appears at most once in each clause)
which is equivalent to NAE 3-SAT Problem (with repetition) to it. (For each
repeated variable x, we introduce two other variables y and z. Then the second
(third) occurrence of x in a clause is replaced by y (z). Then, x, y, z are forced
to have the same truth assignment by adding x̄ ∨ y ∨ z, x ∨ ȳ ∨ z, x ∨ y ∨ z̄,
x̄ ∨ ȳ ∨ z, x̄ ∨ y ∨ z̄, and x ∨ ȳ ∨ z̄ to the instance.)

Let V = {x1, . . . , xn} and C = {C1, . . . , Cm} be an instance I of the NAE
3-SAT Problem without repetition. We shall construct a graph GI in such a
way that I has an answer yes for the NAE 3-SAT Problem if and only if GI has
a good edge-labelling.

For each variable xi, 1 ≤ i ≤ n, we create a variable graph V Gi defined as
follows (See Figure 2.):

V (V Gi) = {vi,jk | 1 ≤ j ≤ m, 1 ≤ k ≤ 4} ∪ {ri,jk | 1 ≤ j ≤ m, 1 ≤ k ≤ 4}
∪{si,jk | 1 ≤ j ≤ m, 1 ≤ k ≤ 4}.

E(V Gi) = {vi,jk vi,jk+1 | 1 ≤ j ≤ m, 1 ≤ k ≤ 3} ∪ {vi,j4 vi,j+1
1 | 1 ≤ j ≤ m− 1}

∪{vi,jk ri,jk | 1 ≤ j ≤ m, 1 ≤ k ≤ 4} ∪ {vi,jk si,jk | 1 ≤ j ≤ m, 1 ≤ k ≤ 4}
∪{vi,j4 ri,j1 | 1 ≤ j ≤ m} ∪ {vi,j+1

k ri,jk+1 | 1 ≤ j ≤ m− 1, 1 ≤ k ≤ 3}
∪{vi,j4 si,j1 | 1 ≤ j ≤ m} ∪ {vi,j+1

k si,jk+1 | 1 ≤ j ≤ m− 1, 1 ≤ k ≤ 3}.

... ...
v
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1 v
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2 v
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Figure 2: The variable graph V Gi

For each clause Cj = l1 ∨ l2 ∨ l3, 1 ≤ j ≤ m, we create a clause graph CGj

defined as follows (See Figure 3.):

V (CGj) = {cj , bj1, bj2, bj3};
E(CGj) = {cjbj1, cjbj2, cjbj3}.

Now, for each literal lk, 1 ≤ k ≤ 3, if lk is the non-negated variable xi, we
identify bjk, c

j and bjk+1 (index k is taken modulo 3) with vi,j1 , vi,j2 and vi,j3 ,
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bj2bj1

cj

bj3

Figure 3: The clause graph CGj .

respectively. Otherwise, if lk is the negated variable x̄i, we identify bjk, c
j and

bjk+1 with vi,j3 , vi,j2 and vi,j1 , respectively.

. Let us first show that, if GI has a good edge-labelling φ, then there is a truth
assignment such that each clause of I has at least one true literal and at least
one false literal.

By Proposition 2, we may assume that φ is injective.

Claim 5.1. Let 1 ≤ i ≤ n. If φ(vi,11 vi,12 ) < φ(vi,12 vi,13 ) then φ(vi,j1 vi,j2 ) <

φ(vi,j2 vi,j3 ) for all 1 ≤ j ≤ m.

Proof: By induction on j. A path of length two is necessarily increasing or
decreasing. Now vi,j1 is joined to vi,j4 by two paths of length two via ri,j1 and

si,j1 . Since φ is good, one of these two paths is increasing and the other one

is decreasing. In addition, the path vi,j1 vi,j2 vi,j3 vi,j4 is neither increasing nor

decreasing so φ(vi,j2 vi,j3 ) > φ(vi,j3 vi,j4 ).

Applying three times this reasoning, we derive φ(vi,j3 vi,j4 ) < φ(vi,j4 vi,j+1
1 ),

φ(vi,j4 vi,j+1
1 ) > φ(vi,j+1

1 vi,j+1
2 ) and finally φ(vi,j+1

1 vi,j+1
2 ) < φ(vi,j+1

2 vi,j+1
3 ). ¤

Hence we define the truth assignment Λ by Λ(xi) = true if φ(vi,11 vi,12 ) <

φ(vi,12 vi,13 ) and Λ(xi) = false otherwise.
Let us show that each clause Cj has at least one true literal or one false literal.

Set Cj = l1 ∨ l2 ∨ l3. First observe that, by construction, for all 1 ≤ k ≤ 3, lk is

true if φ(bjkc
j) < φ(bjk+1c

j) and lk is false otherwise. Now the three literals are

not all true otherwise, φ(bj1c
j) < φ(bj2c

j) < φ(bj3c
j) < φ(bj1c

j), a contradiction.

And they are not all false, otherwise φ(bj1c
j) > φ(bj2c

j) > φ(bj3c
j) > φ(bj1c

j), a
contradiction. Hence Cj has at least one true literal and one false literal.

. Conversely, let us now show that if there is a truth assignment Λ such that
each clause of I has at least one true literal and at least one false literal, then
GI has a good edge-labelling.
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The idea is to find a good edge-labelling φ satisfying the following property
(⋆): If Λ(xi) = true, φ(vi,j1 vi,j2 ) < φ(vi,j2 vi,j3 ) for all 1 ≤ j ≤ m and if Λ(xi) =

false, φ(vi,j1 vi,j2 ) > φ(vi,j2 vi,j3 ) for all 1 ≤ j ≤ m.
Let Cj = l1 ∨ l2 ∨ l3 be clause. To satisfy (⋆), we must label the edges of

V Gj such that φ(bjkc
j) < φ(bjk+1c

j) if lk is true and φ(bjkc
j) > φ(bjk+1c

j) if lk is
false. As Cj has at least one true and one false literal, there is a unique way to

label the three edges cjbjk, 1 ≤ k ≤ 3, with {−1, 0,+1} such that the condition
(⋆) is fulfilled.

Let us now extend this edge-labelling to the remaining edges of each of the
variable graphs V Gi. First, for all 1 ≤ j ≤ m and 1 ≤ k ≤ 4, assign −3 and +3
alternatingly on the edges of the cycle of length four containing both ri,jk and

si,jk such that φ(vi,jk ri,jk ) = −3. Then, if Λ(xi) = true, set φ(vi,j3 , vi,j4 ) = −2 and

φ(vi,j4 , vi,j+1
1 ) = 2 for all 1 ≤ j ≤ m, and, if Λ(xi) = false, set φ(vi,j3 , vi,j4 ) = 2

and φ(vi,j4 , vi,j+1
1 ) = −2 for all 1 ≤ j ≤ m.

We claim that φ is a good edge-labelling ofGI . Suppose, by way of contradic-
tion, that there is a pair of vertices (x, y) such that two independent increasing
(x, y)-paths P1 and P2 exist.

A set of two independent paths starting at a vertex of R = {ri,jk | 1 ≤ j ≤
m, 1 ≤ k ≤ 4} ∪ {si,jk | 1 ≤ j ≤ m, 1 ≤ k ≤ 4} contains one increasing path
(the one starting with the edge labelled −3) and one decreasing path (the one
starting with the edge labelled 3). Hence x and y are not in R.

In addition, the union of P1 and P2 cannot be one of the four-cycles formed
by the edges incident to ri,jk and si,jk for some i,j and k.

Without loss of generality, we may assume that P1 is at least as long as
P2. As cycles formed by two graphs GVi and GVj are of length at least 6, P1

has length at least 3. Now one can see that P1 may not contain any vertex
of R because every path of length at least 3 with internal vertices in R is not
increasing (nor decreasing).

Hence P1 must contain at least three consecutive edges on one of the paths
Qi = V Gi −R. So P1 is not increasing, a contradiction. ¤

Observe that the graph GI constructed in the above proof is not bipartite.
However, with a slight modification, we can transform it into a bipartite graph
and obtain the following theorem.

Theorem 6. The following problem is NP-complete.
Instance: A bipartite graph G.
Question: Does G have a good edge-labelling?

Proof: Let G′
I be the graph obtained from GI (described in the proof of The-

orem 5) by replacing each path vi,jk , ri,jk , vi,jk+3 and each path vi,jk , si,jk , vi,jk+3, by
copies of a graphHk′ defined in Section 4, for some k′ ≥ 3 and for all i = 1, . . . , n,
j = 1, . . . ,m and k = 1, . . . , 4 (k + 3 is taken modulo 4).

By Proposition 3, it is not difficult to verify that G′
I admits a good edge-

labelling if, and only if, G′
I also does. Moreover, each Hk′ admits a proper
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2-colouring such that the vertices u and v have disjoint colours. Thus, G′
I is

bipartite, since it admits a proper 2-colouring where all the vertices vi,j1 and vi,j3

belong to the same colour class, for all i = 1, . . . , n and j = 1, . . . ,m. ¤

5. Classes of good graphs

Recall that a graph G is critical if it is bad but each of its proper subgraphs
is good. To prove that every graph in a class C closed under taking subgraphs
has a good edge-labelling, it suffices to prove that C contains no critical graph.

Lemma 7. Let G be a graph with a cutvertex x, C1, . . . , Ck be the components
of G − x and Gi = G〈Ci ∪ {x}〉, 1 ≤ i ≤ k. Then G is good if and only if all
the Gi are good.

Proof: Necessity is obvious since a good edge-labelling of G induces a good
edge-labelling on each subgraph Gi.

Sufficiency follows from the fact that there are two independent (u, v)-paths
in G only if there exists i, 1 ≤ i ≤ k, such that u and v are in V (Gi). Hence
the union of good edge-labellings of all the Gi is a good edge-labelling of G. ¤

Corollary 8. Every critical graph is 2-connected.

Corollary 9. Every forest F admits a good edge-labelling.

Proof: No forest contains a non-trivial 2-connected subgraph, and so contains
no critical subgraph. ¤

Let G = (V,E) be a graph. A K2-cut of G is a set of two adjacent vertices
u and v such that the graph G− {u, v} (obtained from G by removing u and v
and their incident edges) has more connected components than G.

Lemma 10. Let G be a connected graph and {u, v} a K2-cut in G such that
G−{u, v} has two connected components C1 and C2. If G1 = G〈C1∪{u, v}〉 and
G2 = G〈C2∪{u, v}〉 have a good edge-labelling then G has a good edge-labelling.

Proof: Let φ1 and φ2 be good edge-labellings of G〈C1 ∪ {u, v}〉 and G〈C2 ∪
{u, v}〉 respectively such that φ1(uv) = φ2(uv).

Then the union of φ1 and φ2 is a good edge-labelling ofG. Indeed, suppose by
way of contradiction, that there exists x and y and two independent increasing
(x, y)-paths P1 and P2 in G. W. l. o. g., we may assume that x ∈ V (G1). At
least one of the paths, say P1, contains at least one edge e1 in E(G2) \ {uv}
since φ1 is good.

Assume first that y ∈ V (G1). Then P1 must go through u and v. Let Q2 be
the shortest (u, v)-subpath of P1 containing e1. Then Q2 is either increasing or
decreasing. Hence since uv is both increasing and decreasing, there are either
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two increasing paths or two decreasing paths in G2. This contradicts the fact
that φ2 is good.

Assume now that y ∈ C2. Then since P1 and P2 are independent without
loss of generality, P1 goes through u and P2 goes through v. Let Q1 be the (x, u)-
subpath of P1, R1 be the (u, y)-subpath of P1, let Q2 be the (x, v)-subpath of
P2 and R2 be the (v, y)-subpath of P2.

If φ(uv) is larger than the label of the last edge of Q1, then Q1uv and Q2 are
two increasing (x, v)-paths in G1, a contradiction. If not φ(uv) is smaller than
the label of the first edge of R1 and vuR1 and R2 are two increasing (v, y)-paths
in G2, a contradiction.

¤

Let G = (V,E) be a graph. An edge-cut is a non-empty set of edges between
a set of vertices S and its complement S. Formally, for any S ⊂ V , the edge-cut
[S, S] is the set {uv ∈ E | u ∈ S and v ∈ S). An edge cut which is also a
matching is called a matching-cut.

Lemma 11. Let G be a graph and [S, S] a matching-cut in G. If G〈S〉 and
G〈S〉 have a good edge-labelling then G has a good edge-labelling.

Proof: Let φ1 be a good edge-labelling of G〈S〉 and φ2 be a good edge-labelling
of G〈S〉 (in R). Then the edge-labelling φ of G defined by φ(e) = φ1(e) if
e ∈ E(G〈S〉), φ(e) = φ2(e) if e ∈ E(G〈S〉) and φ(e) = +∞ if e ∈ [S, S] is good.

Indeed, suppose by way of contradiction, that it is not good. Then there
exist two vertices u and v and two independent increasing (u, v)-paths P1 and
P2. Since φ1 and φ2 are good, then without loss of generality, we may assume
that u ∈ S and v ∈ S. For i = 1, 2 Pi contains an edge of viwi in [S, S]. Now
as v1w1 and v2w2 are labelled +∞ and incident to no edges labelled +∞, v1w1

must be the last edge of P1 and v2w2 the last edge of P2. So w1 = v = w2 which
is impossible as [S, S] is a matching. ¤

Corollary 12. A critical graph has no matching-cut.

Corollary 13. Every C3-free outerplanar graph admits a good edge-labelling.

Proof: An easy result of Eaton and Hull [9] states that a C3-free outerplanar
graph has either a vertex of degree 1 or two adjacent vertices of degree 2. This
implies that it has a matching-cut. Hence by Corollary 12 no C3-free outerplanar
graph is critical, which yields the result. ¤

A graph is subcubic if every vertex has degree at most three.

Lemma 14. Every subcubic {C3,K2,3}-free graph has a matching-cut.

Proof: Let G be a subcubic graph {C3,K2,3}-free. If G has no cycle, then every
edge forms a matching-cut. Suppose now that G has a cycle. Let C be a cycle

10



of smallest length in G. If C is a connected component of G (in particular if
C = G) then any pair of non-adjacent edges of C forms a matching-cut.

If not, let us show that [V (C), V (C)] is a matching-cut. Let e1 = x1y1 and
e2 = x2y2 be two distinct edges in this set with x1, x2 ∈ V (C). Then x1 6= x2

because these two vertices have degree (at most) 3 and they have two neighbours
in V (C). Suppose by way of contradiction that y1 = y2. Then x1 and x2 are
not adjacent since G is C3-free. Furthermore, there are the two (x1, x2)-paths
along C are of length at most 2 otherwise C would not be a smallest cycle.
Hence C is a cycle of length 4 and the graph induced by V (C)∪ {y1} is a K2,3,
a contradiction. ¤

Corollary 12 and Lemma 14 immediately imply that the sole subcubic critical
graphs are C3 and K2,3.

Corollary 15. Every subcubic {C3,K2,3}-free graph has a good edge-labelling.

Farley and Proskurowski [6] proved that every (multi)graph G on n vertices
with less than 3

2 (n− 1) edges has a matching-cut.

Theorem 16 (Farley and Proskurowski [6]). Let G be a multigraph. If
|E(G)| < 3

2 |V (G)| − 3
2 then G has a matching-cut.

Corollary 12 and Theorem 16 yield immediately the following.

Corollary 17. Every critical graph has at least
⌈
3
2 |V (G)| − 3

2

⌉
edges.

An easy and well-known consequence of Euler’s Formula states that every
planar graph with girth at least 6 has at most 3

2 |V (G)| − 3 edges and so is not
critical.

Corollary 18. Every planar graph of girth at least 6 has a good edge-labelling.

6. Good edge-labelling of ABC-graphs

Corollary 17 states that every critical graph has at least
⌈
3
2 |V (G)| − 3

2

⌉

edges. This is tight since if G is C3 or K2,3 then |E(G)| =
⌈
3
2 |V (G)| − 3

2

⌉
.

We will now show that those two graphs are the unique critical ones satisfying
this equality.

Farley and Proskurowski [6] constructed a class of multigraphs G called
ABC-graphs with no matching-cut having

⌈
3
2 |V (G)| − 3

2

⌉
edges. The definition

of ABC-graphs is based on the following three operations:

• An A-operation on vertex u introduces vertices v and w and edges uv, uw
and vw.

• A B-operation on edge uv introduces vertices w1 and w2 and edges uw1,
vw1, uw2 and vw2, and removes edge uv.
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• A C-operation on vertices u and v (u = v is allowed) introduces vertex w
and edges uw and vw.

Note that the C-operation is the only operation that can introduce parallel
edges.

An ABC-graph is a graph that can be obtained from K1 with a sequence of
A- and B-operations and at most one C-operation.

It is easy to check that ABC-graphs have no matching-cut. In addition,
solving a conjecture of Farley and Proskurowski [6], Bonsma [7, 10] showed that
they are the unique extremal examples, i.e., satisfying |E(G)| =

⌈
3
2 |V (G)| − 3

2

⌉
.

Theorem 19 (Bonsma [7, 10]). Let G be a graph such that |E(G)| =
⌈
3
2 |V (G)| − 3

2

⌉
.

Then G has no matching-cut if and only if G is an ABC-graph.

Our aim is to prove that every {C3,K2,3}-free ABC-graph is good. It is easy
to check that every 2-connected component of an ABC-graph is an ABC-graph,
so by Lemma 7, it suffices to prove it for 2-connected ABC-graphs.

Observe that the C-operation is the only one that changes the parity of the
order. Hence an ABC-graph with an odd number of vertices is obtained from
K1 with a sequence of A- and B-operations and no C-operation.

Let G be a graph obtained from a graph H by a B-operation on some edge
uv. Let φ be an edge-labelling of H. Let φ0 and φ∞ be the edge-labellings of
G defined by:

φ0(e) = φ∞(e) = φ(e) for all e ∈ E(H) \ {uv},
φ0(uw1) = φ0(w2v) = 1/2,

φ0(uw2) = φ0(w1v) = −1/2,

φ∞(uw1) = φ∞(w2v) = +∞,

φ∞(uw2) = φ∞(w1v) = −∞

Proposition 20. Let G be a graph obtained from a graph H by a B-operation
on some edge uv and φ be a good edge-labelling of H.

(i) If φ is injective integer-valued and φ(uv) = 0, then φ0 is a good edge-
labelling of G.

(ii) If φ is real-valued, then φ∞ is a good edge-labelling of G.

Proof: (i) By contradiction, suppose that φ0 is not a good edge-labelling of G.
Then there exist two increasing independent (x, y)-paths P1 and P2 on G, for
some x, y ∈ V (G).

Since φ is a good edge-labelling of H, by the definition of φ0 at least one
edge of the set E′ = {uw1, uw2, vw1, vw2} belongs to some of the paths P1 or
P2. Observe also that an increasing path in H cannot contain more than two
edges of E′.

Suppose then that exactly one of the paths, say P1, contains a non-empty
intersection with the set E′. In this case, there would be two increasing paths
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in the edge-labelling φ of H. To prove this fact, let P ′
1 be the path obtained

from P1 by replacing the edges of the set E′ ∩ E(P1) by the edge uv. Observe
that P ′

1 and P2 would be two increasing paths of H under the edge-labelling φ,
since φ(uv) = 0.

Hence the paths P1 and P2 both contain some edge of the set E′. Suppose
first that P1 and P2 contain exactly one edge of E′ each. As P1 and P2 are
independent, we assume that uw1 ∈ E(P1) and vw1 ∈ E(P2), without loss of
generality. If w1 = y, then the last edge of the (x, u)-subpath of P1 has a label
smaller than 0 (since φ is injective) and the same happens for the last edge of
the (x, v)-subpath of P2 (observe that at least one of these subpaths must be
non-empty). Consequently, there would be two increasing paths (x, u)-paths
or (x, v)-paths in H under the edge-labelling φ. Similarly, one may conclude
that if w1 = x, then there would also be two increasing paths on φ. It is just
necessary to verify that the first edges of the (u, y)-subpath of P1 and of the
(v, y)-subpath of P2 are greater than 0 (at least one of these edges exist) and
that there would be two increasing (u, y)-paths or (v, y)-paths in H.

Finally, P1 and P2 cannot have both two edges from E′ because they are
independent.

(ii) The proof that φ∞ is a good edge-labelling of G is similar to the proof of
(i). In this case, P1 and P2 cannot contain just one edge of E′. Consequently,
either E(P1) ⊂ E′ or E(P2) ⊂ E′. In any case, there would be and increasing
(u, v)-path or an increasing (v, u)-path, which is a contradiction because there
would be two increasing paths in H. ¤

Corollary 21. If G is a graph obtained from a good graph by a B-operation,
then G is good.

Proof: It follows directly from Proposition 20. ¤

Lemma 22. Let G be a 2-connected ABC-graph with an odd number of vertices.
If G /∈ {C3,K2,3} then G is good.

Proof: By contradiction, suppose that G is a counter-example to the state-
ment. As every A-operation (with the exception of the transition K1 → C3)
creates a cut-vertex, by Lemma 7, we may assume that G is obtained from C3

with a sequence of B-operations. However a B-operation on C3 at any edge
creates a K2,3 and a B-operation on K2,3 at any edge creates the graph G1

depicted in Figure 4. If G /∈ {C3,K2,3} then it is obtained from G1 with a
sequence of B-operations. Now this graph G1 admits a good edge-labelling (See
Figure 4). Hence an easy induction and Corollary 21 imply that G has a good
edge-labelling, a contradiction.

¤

Since 2-connected components of an ABC-graph with an odd number of
vertices are ABC-graphs with an odd number of vertices, we have the following:
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Figure 4: The graph G1 and a good edge-labelling.

Corollary 23. Every {C3,K2,3}-free ABC-graph with an odd number of ver-
tices is good.

We now would like to prove an analogous statement to the one of Corollary 23
but for ABC-graphs with an even number of vertices.

Let G be a graph and x, y be two distinct vertices of G. An (x, y)-better
edge-labelling of G is a good edge-labelling of G such that there is no increasing
(x, y)-path. Clearly, if x and y are adjacent or if x and y have two neighbours
in common then G has no (x, y)-better edge-labelling. A graph is friendly if it
has a good edge-labelling and for any pair (x, y) of non-adjacent vertices with
at most one neighbour in common there exists an (x, y)-better edge-labelling.

Lemma 24. G1 is friendly.

Proof: Let φ be the edge-labelling of G1 in Figure 4. Then φ is good.
Let us now prove that for every pair p = (a, b) of two distinct non-adjacent

vertices a and b in G1 such that a and b have at most one common neighbour
and, there is a better (a, b)-edge-labelling of G1.

First, observe that the vertex w of G1 cannot be in such a pair because, for
any other vertex of G1, either w is adjacent to it or they have two common
neighbours.

Suppose now that the vertex y1 ∈ p. Then the other vertex of p must be v3
or v4. But φ is (v3, y1)-better and (y1, v4)-better, and so −φ is (y1, v3)-better
and (v4, y1)-better. Hence in any case, there is a better p-edge-labelling of G1.

By symmetry, if y2 is a vertex of p, there exists a p-better edge-labelling.
Suppose that v1 ∈ p. Then the other vertex of p is v3 or v4. φ is (v1, v4)-

better and exchanging the labels of y2v3 and y2v4 and also the labels of v3w
and v4w we obtain a (v1, v3)-better edge-labelling φ′. Thus −φ′ and −φ are
respectively (v3, v1)-better and (v4, v1)-better. Hence in any case, there is a
better p-edge-labelling of G1.

By symmetry, if v2, v3 or v4 is a vertex of p, there exists a p-better edge-
labelling. ¤

Proposition 25. Let G be a graph obtained from a graph H by a B-operation
on some edge uv. If H is friendly then G is friendly.
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Proof: Let w1, w2 be the vertices created by the B-operation. Let x and y be
two non-adjacent vertices of G having at most one neighbour in common. Then
|{x, y} ∩ {w1, w2}| ≤ 1.

• Suppose first that {x, y} ∩ {w1, w2} = ∅. Then x and y are not adjacent
in H.

Assume first that x and y have at most one common neighbour in H. Let
φ be an injective integer-valued (x, y)-better edge-labelling of H such that
φ(uv) = 0. Then φ0 is a good edge-labelling of G by Proposition 20-(i).
Moreover it is easy to check that there is no increasing (x, y)-path in G.
Hence φ0 is an (x, y)-better edge-labelling of G.

Assume now that x and y have two common neighbours in H. As they
do not have two common neighbours in G, we can suppose w.l.o.g. that
x = u and N(x)∩N(y) = {v, w}, for some vertex w. Let φ be a real-valued
good edge-labelling of H. Free to consider −φ, we may assume that uvy
is an increasing path. Hence in H \ uv there is no increasing (u, y)-path.
By Proposition 20-(ii), φ∞ is a good edge-labelling of G. Moreover it is
an (x, y)-better edge-labelling, because there is no increasing (u, y)-path
in H \ uv and the unique increasing paths containing w1 and w2 are uw2

and uw2v.

• Suppose now that |{x, y} ∩ {w1, w2}| = 1. Without loss of generality, we
may assume that x = w1 and y is not adjacent to v.

Assume first that v and y have at most one common neighbour in H.
Let φ be a (v, y)-better edge-labelling of H. By Proposition 2, we may
assume that φ is real-valued. By Proposition 20-(ii), φ∞ is a good edge-
labelling of G. Moreover, there is no increasing (w1, y)-path, through u
since φ(uw1) = +∞, nor through v since there is no increasing (v, y)-path
in H. Hence φ∞ is a (w1, y)-better edge-labelling of G.

Assume now that v and y have two common neighbours in H.

– Suppose that y is adjacent to u. Let φ be an injective integer-valued
good edge-labelling of H such that φ(uv) = 0. Free to consider −φ,
we may assume that φ(uy) < 0 and so φ(uy) ≤ −1. By Propo-
sition 20-(i), φ0 is a good edge-labelling of G. Moreover it has no
increasing (w1, y)-path and so is (w1, y)-better. Indeed suppose for a
contradiction that there is an increasing (w1, y)-path P :

∗ If u is the second vertex of P then P −w1 is an increasing (u, y)-
path. Since φ(uy) ≤ −1, P − w1 is not (u, y). So P − w1 and
(u, y) are two increasing (u, y)-paths in H a contradiction.

∗ If v is the second vertex of P then the path Q in H obtained from
P by replacing w1 with u is an increasing (u, y)-path because the
labels of the edges of P −w1 are positive. Thus Q and (u, y) are
distinct increasing (u, y)-paths, a contradiction.
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– Suppose that y is not adjacent to u. Let t1 and t2 be the two common
neighbours of v and y. Let φ be an injective integer-valued good edge-
labelling of H such that φ(uv) = 0. Without loss of generality, we
may assume that (v, t1, y) is increasing and (v, t2, y) is decreasing. By
Observation 3.1, φ(vt1) < φ(vt2). Thus, if φ(vt1) > 0 then φ(vt2) >
0. So with respect to −φ, (v, t2, y) is increasing and −φ(vt2) < 0.
Hence, free to consider −φ (and swap the names of t1 and t2), we may
assume that φ(vt1) < 0 and so φ(vt1) ≤ −1. By Proposition 20-(i), φ0

is a good edge-labelling of G. Moreover it has no increasing (w1, y)-
path and so is (w1, y)-better. Indeed suppose for a contradiction that
there is a increasing (w1, y)-path P :

∗ If v is the second vertex of P then P −w1 is an increasing (v, y).
Since φ(vt1) ≤ −1, P − w1 is not (v, t1, y). So there are two
increasing (v, y)-paths in H, a contradiction.

∗ If u is the second vertex of P then the path P ′ inH obtained from
P by replacing w1 with v is an increasing (v, y)-path because the
labels of the edges of P − w1 are positive. P ′ is distinct from
(v, t1, y), a contradiction.

¤

One can now generalize Lemma 22.

Lemma 26. Let G be a 2-connected ABC-graph with an odd number of vertices.
If G /∈ {C3,K2,3} then G is friendly.

Proof: Similarly as in the proof of Lemma 22, combining Lemma 24 and Propo-
sition 25 yield the result by induction. ¤

Corollary 27. Every {C3,K2,3}-free ABC-graph with an odd number of ver-
tices is friendly.

Proof: Let x and y be two non-adjacent vertices of G having at most one
common neighbour.

Assume first that x and y are in a same connected 2-component C. By
Lemma 26, C has an (x, y)-better edge-labelling and, by Corollary 23, G\E(C)
has a good edge-labelling. The union of these two edge-labellings is clearly an
(x, y)-better labelling of G.

Suppose now that the 2-connected components containing x do not contain
y. Let G1 be the graph induced by the union of the 2-connected components
containing x and G2 = G \ E(G1). By Corollary 23, the two graphs G1 and
G2 admit good edge-labellings φ1 and φ2, respectively. Free to add a huge
number to all the labels of φ1, we may assume that min{φ1(e) | e ∈ E(G1)} >
max{φ2(e) | e ∈ E(G2)}. Then the union of φ1 and φ2 is an (x, y)-better
labelling of G. ¤
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Lemma 28. Let G be a 2-connected ABC-graph with an even number of ver-
tices. If G is {C3,K2,3}-free, then G is good.

Proof: We prove this lemma by induction on the number of vertices (or equiv-
alently the number of A-, B- or C-operations). An even ABC-graph is obtained
from K1 with a sequence of A- and B-operations and exactly one C-operation.
Since G is 2-connected, no A-operation can be made after a C-operation. Con-
sider a sequence of operations such that the C-operation is done as late as
possible. Let u and v be the vertices on which the C-operation is done and w
the introduced vertex.

• Suppose that the C-operation is the ultimate one. Note that u 6= v since
G has no multiple edges. Since G is {C3,K2,3}-free then u and v are not
adjacent and u and v have at most one neighbour in common. Hence by
Corollary 27, G−w admits a (u, v)-better edge-labelling φ (in R). Setting
φ(uw) = −∞ and φ(wv) = +∞ we obtain a good edge-labelling of G.

• If the C-operation is the penultimate one, then it is followed by a B-
operation on one of the introduced edges, because the C-operation is ap-
plied as late as possible and G is C3-free. These two operations together
may be seen as a single one on u and v that introduces the vertices t1, t2
and w and the edges ut1, ut2, t1w, t2w and wv.

Note that u and v are not adjacent since G is K2,3-free. Assume first that
u and v have at most one neighbour in common. By Corollary 27, G −
{t1, t2, w} admits a (u, v)-better edge-labelling φ. Let M be the maximum
value of φ. Then setting φ(ut1) = φ(t2w) = −∞, φ(ut2) = φ(t1w) = M+1
and φ(vw) = M + 2, we obtain a good edge-labelling of G.

Assume now that u and v have at least two common neighbours. Since
G is K2,3-free, then u and v have exactly two common neighbours x1

and x2. By Corollary 23, G − {t1, t2, w} admits a good edge-labelling
φ. By Proposition 2, we may assume that φ is injective and real-valued.
Without loss of generality, we may suppose that φ(vx1) > φ(vx2). Let
us set φ(ut1) = φ(t2w) = +∞, φ(ut2) = φ(t1w) = −∞ and φ(vw) =
1
2 (φ(vx1)+φ(vx2)). We claim that φ is a good edge-labelling of G. Indeed
suppose, by way of contradiction, that it is not the case. Then there exist
two vertices a and b and two independent increasing (a, b)-paths P1 and
P2. Since φ is a good edge-labelling of G − {t1, t2, w} one of these two
paths, say P1 must go through w. Moreover since φ(t1w) = −∞ and
φ(t2w) = +∞ and d(w) = 3, then either wt1 (or t1w) is the first edge of
P1 or t2w (or wt2) is the last edge of P1. Free to consider −φ instead of
φ, we may assume that we are in the first case.

Two cases may occur. Either (a) P1 starts in t1 or (b) P1 starts in w.

(a) In this case, P2 = (t1, u) and the third vertex of P1 is v. Then
Q1 = P1−{t1, w} is an increasing (v, u)-path. So by Observation 3.1
and the assumption that φ(vx1) > φ(vx2), Q1 = vx2u (We recall
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the reader that another increasing (v, u)-path not going through x2

cannot exist as φ is a good edge-labelling of G− {t1, t2, w}). This is
a contradiction because φ(wv) > φ(vx2).

(b) In this case, P1 = (w, t1, u), because φ(ut1) = +∞. Now the first
edge of P2 is wv. Hence Q2 = P2 − w is an increasing (v, u)-path
and vx2 is not the first edge of Q2 since φ(wv) > φ(vx2). Note that
by Observation 3.1, vx2u is increasing because φ(vx1) > φ(vx2). So,
in G−{t1, t2, w}, there are two distinct increasing (v, u)-paths. This
contradicts the fact that φ is a good edge-labelling of G−{t1, t2, w}.

• If there are exactly two B-operations after the C-operation, and if u and
v are not adjacent then by the induction hypothesis and Corollary 21,
G has a good edge-labelling. If u and v are adjacent, then uv is a K2-
cut. Let C1 be the component of G − {u, v} containing w (i.e., the set
of vertices added with the C-operation and the following B-operations).
Let G1 = G〈C1 ∪ {u, v}〉 and G2 = G〈V (G) \ C1〉. Note that G1 is
obtained from a triangle by performing two B-operations and thus is the
graph G1 depicted Figure 4 which has a good edge-labelling. Similarly,
G2 is the graph G taken before performing the C-operation has a good
edge-labelling. Hence by Lemma 10, G has a good edge-labelling.

• If there are at least three B-operations after the C-operation, then by the
induction hypothesis and Corollary 21, G has a good edge-labelling.

¤

Lemma 22 and Lemma 28 imply that every 2-connected {C3,K2,3}-free
ABC-graph is good. Since 2-connected components of an ABC-graph are ABC-
graphs, we have the following.

Corollary 29. Every {C3,K2,3}-free ABC-graph is good.

In turn, this corollary, together with Corollary 12, Theorems 16 and 19, yield
the following.

Theorem 30. Let G be a critical graph. If G /∈ {C3,K2,3} then |E(G)| ≥
3
2 |V (G)| − 1

2 .

7. Conclusions and further research

We have shown that it is NP-complete to decide if a graph has a good edge-
labelling, even for the class of bipartite graphs. It would be nice to find large
classes of graphs for which it is polynomial-time decidable. For graphs with
treewidth 1, which are the forests, it is the case. But is it also the case for
graphs with treewidth at most k?

Problem 31. Let k ≥ 2 be a fixed integer. Does there exist a polynomial-time
algorithm that decides if a given graph of treewidth at most k has a good edge-
labelling?
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We also do not know what is the complexity of the problem when restricted
to planar graphs.

Problem 32. Does there exist a polynomial-time algorithm that decides if a
given planar graph has a good edge-labelling?

We do not even know if there are planar critical graphs distinct from C3 and
K2,3.

Problem 33. Does there exist a {C3,K2,3}-free planar graph which is bad?

If there is no such graphs or only a finite number of them then the answer to
Problem 32 will be yes.

Corollary 18 implies that, with the additional condition of girth at least 6,
the answer to Problem 33 is no. It would be nice to solve the above problems
for planar graphs of smaller girth. In particular, we do not know if there is a
planar graph with girth 5 which is bad.

Problem 34. Does every planar graph of girth at least 5 have a good edge-
labelling?

Bonsma [11] showed that it is NP-complete to decide if a planar graph of
girth at least 5 has a matching-cut. In particular, there are infinitely many
planar graphs of girth at least 5 without matching-cut. However, for all such
graphs we looked at, we were able to find a good edge-labelling.

. The average degree of a graph G is Ad(G) =
P

v∈V (G) d(v)

|V (G)| = 2|E(G)|
|V (G)| .

Theorem 30 implies that for any c < 3 there is a finite number of critical
graphs with average degree at most c. Actually, we conjecture that the only
ones are C3 and K2,3.

Conjecture 35. Let G be a critical graph. Then Ad(G) ≥ 3 unless G ∈
{C3,K2,3}.

More generally for any c < 4, we conjecture the following.

Conjecture 36. For any c < 4, there exists a finite list of graphs L such that
if G is a critical graph with Ad(G) ≤ c then G ∈ L.

The constant 4 in the above conjecture would be tight. Indeed, for all k, the
graph J2,2,k defined in Section 3 is critical: it is bad according to Proposition 4.
Moreover one can easily show that for any edge e, Hk \ e has a good edge-
labelling with no (u, v)-increasing path and no (v, u)-increasing (just follow the
constraint as in the proof of Proposition 3). Extending this labelling by labelling
the two H2 with −∞ and +∞ such that one of them is an increasing (u, v)-path
and the other one an increasing (v, u)-path we obtain a good edge-labelling of
J2,2,k \ e. Furthermore Ad(J2,2,k) =

8k+8
2k+4 = 4 − 4

k+2 . Last, one can easily see
that if k 6= k′ then J2,2,k is not a subgraph of J2,2,k′ .
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. Theorem 30 says that if a graph has no dense subgraphs then it has a good
edge-labelling. On the opposite direction one may wonder what is the minimum
density ensuring a graph to be bad. Or equivalently,

Problem 37. What is the maximum number g(n) of edges of a good graph on
n vertices?

Clearly we have g(n) = ex(n, C) where C is the set of critical graphs. As K2,3

is critical then g(n) ≤ ex(n,K2,3) =
1√
2
n3/2+O(n4/3) by a result of Füredi [12].

The hypercubes show that g is super-linear. Indeed the hypercube Hk is
obtained from two disjoints copies ofHk−1 by adding a perfect matching between
them. Hence an easy induction and Lemma 11 shows that Hk has a good
edge-labelling. Since Hk has 2k vertices and 2k−1k edges, g(2k) ≥ 2k−1k, so
g(n) ≥ 1

2n log n.
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Abstract

Recently Hansen and Vukičević [11] proved that the inequality M1/n ≤ M2/m, where
M1 and M2 are the first and second Zagreb indices, holds for chemical graphs, and Vukičević
and Graovac [23] proved that this also holds for trees. In both works a distinct counterex-
ample is given for which this inequality is false in general. Here, we present some classes of
graphs with prescribed degrees, that satisfy M1/n ≤ M2/m . Namely every graph G whose
degrees of vertices are in the interval [c, c+⌈√c ⌉] for some integer c, satisfies this inequality.
In addition, we prove that for any ∆ ≥ 5 , there is an infinite family of connected graphs of
maximum degree ∆ , such that the inequality is false.

1 Introduction

The first and second Zagreb indices are among the oldest topological indices [2, 8, 10, 14, 21],

defined in 1972 by Gutman and Trinajstić [9], and are given different names in the literature,

1Corresponding author.



such as the Zagreb group indices, the Zagreb group parameters and most often, the Zagreb

indices. Zagreb indices were among the first indices introduced, and have since been used to

study molecular complexity, chirality, ZE-isomerism and hetero-systems. Overall, Zagreb

indices exhibit a potential applicability for deriving multi-linear regression models. The

article [18] was responsible for a new research wave concerning Zagreb indices.

In the following, let G = (V,E) be a simple graph with n = |V | vertices and m = |E|

edges. These indices are defined as

M1(G) =
∑

v∈V

d(v)2 and M2(G) =
∑

uv∈E

d(u)d(v) .

For the sake of simplicity, we often use M1 and M2 instead of M1(G) and M2(G) , re-

spectively. See [6, 7, 16, 12, 26, 27, 28] for more work done on these indices. Comparing

the values of these indices on the same graph gives interesting results. At first the next

conjecture was proposed [1, 3, 4]:

Conjecture 1.1. For all simple graphs G ,

M1(G)

n
≤ M2(G)

m
(1)

and the bound is tight for complete graphs.

One can see that this relation becomes an equality on regular graphs, but also when

G is a star. Besides, the inequality is true for trees [23], graphs of maximum degree four,

so called chemical graphs [11] and unicyclic graphs [25], even though it does not hold for

general graphs. See [11, 23, 5, 13, 20] for various examples of graphs dissatisfying the

inequality (1).

In this article, we present some other classes of graphs with prescribed degrees for which

(1) holds, and more generally conditions on the distribution of degrees in a graph G implying

the relation (1). We also show that there are arbitrarily long intervals [a, b] such that a graph

with minimal degree at least a and maximum degree at most b satisfies the same relation.

Namely, every graph G , such that its vertex degrees are in the interval [c, c+ ⌈√c ⌉] for any

integer c , satisfies this inequality. We also prove that for any ∆ ≥ 5 , there is an infinite

family of connected graphs of maximum degree ∆ such that the inequality is false.

We denote by Ka,b the complete bipartite graph with a vertices in one class and b vertices

in the other one. We call k-star the star on k edges, and k-path the path of length k. Since



we discuss necessary conditions for (1) to hold, we denote for the sake of simplicity by mi,j

the number of edges that connect vertices of degrees i and j in the graph G. Then, as

shown in [11]:

M2

m
− M1

n
=

∑

i≤j
k≤l

(i,j),(k,l)∈N2

[(

i j

(
1

k
+

1

l

)

+ k l

(
1

i
+

1

j

)

− i− j − k − l

)

mi,j mk,l

]

. (2)

Sometimes in order to examine whether the inequality (1) holds, one can consider

whether M2/m − M1/n is non-negative. The difference that we are considering is given

by (2). In order to simplify (2), we will define a function f , and study some of its proper-

ties. Now, for integers i, j, k, l, let

f(i, j, k, l) = i j

(
1

k
+

1

l

)

+ k l

(
1

i
+

1

j

)

− i− j − k − l .

Then (2) can be restated as

M2

m
− M1

n
=

∑

i≤j,k≤l

(i,j),(k,l)∈N2

f(i, j, k, l)mi,j mk,l . (3)

2 Some properties of f

In the sequel, we study some properties of the function f .

Lemma 2.1. For any integers i, j, k, l , it holds f(i, j, k, l) < 0 if and only if

(a) ij > kl and
1

k
+

1

l
<

1

i
+

1

j
or

(b) ij < kl and
1

k
+

1

l
>

1

i
+

1

j
.

Proof. This result follows immediately by the decomposition of f . Namely

f(i, j, k, l) =
ij

kl
(k + l)− (k + l) +

kl

ij
(i+ j)− (i+ j)

= (k + l)

[
ij − kl

kl

]

+ (i+ j)

[
kl − ij

ij

]

= (ij − kl)

(
1

k
+

1

l
− 1

i
− 1

j

)

.



Notice that the function f has some symmetry properties, namely for every i, j, k and

l :

f(i, j, k, l) = f(j, i, k, l) and f(i, j, k, l) = f(k, l, i, j) .

Determining the sign of the function f will help us to see whether the difference M2/m−

M1/n is non-negative. The following lemma gives us orderings of the integers i, j, k , and

l , for which f(i, j, k, l) can be negative.

Lemma 2.2. If f(i, j, k, l) < 0 for some integers i ≤ j and k ≤ l , then

i < k ≤ l < j or k < i ≤ j < l .

Proof. Suppose first that i ≤ k . There are only three possibilities:

• i ≤ j ≤ k ≤ l ;

• i ≤ k ≤ j ≤ l ;

• i ≤ k ≤ l ≤ j .

If i ≤ j ≤ k ≤ l , then ij ≤ kl , but 1
k +

1
l <

1
i +

1
j , so this is impossible by Lemma 2.1(a).

If i ≤ k ≤ j ≤ l , then ij ≤ kl and 1
k + 1

l < 1
i +

1
j . This ordering is also impossible by

Lemma 2.1(a). So, the only possible ordering for f(i, j, k, l) to be negative is i ≤ k ≤ l ≤ j .

Now, if i = k (i = k ≤ l ≤ j) , then ij ≥ kl and 1
i +

1
j > 1

k + 1
l , which contradicts

Lemma 2.1 (a). So, we conclude that i < k . Similarly, one can show that l 6= j . Thus, we

obtain the first ordering i < k ≤ l < j given in the lemma.

Suppose now that k ≤ i . Applying a similar argument as above, one obtains that

k < i ≤ j < l is the only possible ordering.

3 Small good sets

It is easy to see that if G is a k-regular graph, then (1) is valid, since

M1

n
= k2 =

M2

m
.

As Conjecture 1.1 is false in general, but true for k-regular graphs, one may wonder if

it also holds for “almost regular” graphs, i.e., graphs with only few vertex degrees. Now,



we verify that this holds for graphs with only two vertex degrees. We give a direct short

proof avoiding using the properties of the function f .

Proposition 3.1. Let x, y ∈ N , and let G be a graph with n vertices, m edges, and d(v) ∈

{x, y} for every vertex v of G . Then, the inequality (1) holds for G .

Proof. Since d(v) = x or y for every vertex v ∈ V , we conclude that mi,j = 0 , whenever

i, j 6∈ {x, y} . By (2), we infer

M2

m
− M1

n
= 2

[
x3(x− y)2

x3y
mx,xmx,y +

2xy(x− y)2(x+ y)

x2y2
mx,xmy,y

+
y3(x− y)2

xy3
mx,y my,y

]

= 2(x− y)2
[
1

y
mx,xmx,y + 2

(
1

x
+

1

y

)

mx,xmy,y +
1

x
mx,y my,y

]

≥ 0

which establishes the claim.

Let D(G) be the set of the vertex degrees of G , i.e., D(G) = {d(v) | v ∈ V } . Motivated

by the above proposition, one may be interested to look for the sets D with property that

for every graph G with D(G) ⊆ D the inequality (1) holds. Hence, it is reasonable to

introduce the following definition: A set S of integers is good if for every graph G with

D(G) ⊆ S , the inequality (1) holds. Otherwise, S is a bad set. Thus, by above any set of

integers of size ≤ 2 is good.

In Proposition 3.1 we have shown that for a graph G with |D(G)| = 2 , the inequality

(1) holds. Sun and Chen [19] showed that any graph G with ∆(G)− δ(G) ≤ 2 satisfies (1).

Thus, any interval of length three is good. One can generalize this result in the following

way:

Proposition 3.2. Let s, x ∈ N . For every graph G with n vertices, m edges, and D(G) ⊆

{x− s, x, x+ s} , the inequality (1) holds.

Proof. The inequality (1) holds if M2/m − M1/n is non-negative. The difference (3) is

non-negative if for any integers i, j, k, l , the function f(i, j, k, l) is non-negative. So we are

interested whether f(i, j, k, l) can be negative for some integers i, j, k, l . By Lemma 2.2,

we may assume, up to symmetry, that the ordering of i, j, k, l is i < k ≤ l < j . Since



i, j, k, l ∈ {x−s, x, x+s} , we have that f(i, j, k, l) , can be negative only if i = x−s, k = l = x

and j = x+ s . But f(x− s, x+ s, x, x) =
1

x− s
− 2

x
+

1

x+ s
> 0 . Hence, we conclude that

M2

m
− M1

n
=

∑

i≤j,k≤l

(i,j),(k,l)∈N2

f(i, j, k, l)mi,j mk,l > 0 .

Notice that the above result cannot be extended to any interval of length 4 as Sun and

Chen [19] gave a non-connected counterexample. For connected one, consider the graph

G(l, k, s) with l = 4 from Fig. 2. It is obvious that D (G(4, k, s)) is a subset of the interval

[2, 5] , but this graph for proper values of k and s does not satisfy the inequality (1), see

Theorem 5.1. Both graphs contain vertices of degree 2. It is interesting that Sun and Chen

[19] proved that any graph G with ∆(G) − δ(G) ≤ 3 and δ(G) 6= 2 satisfy (1). Thus, any

interval [x, x+ 3] is good with only exception of [2, 5] .

The proof of Proposition 3.2 motivates a more general conclusion.

Proposition 3.3. The set of integers {a, b, c} , where a < b < c , is good if and only if

(a) b2 ≥ ac and b(a+ c) ≥ 2ac , or

(b) b2 ≤ ac and b(a+ c) ≤ 2ac .

Proof. Since a < b < c , by Lemma 2.2 the function f can be negative in f(i, j, k, l) only if

either i = a, k = l = b and j = c , or k = a, i = j = b and l = c , i.e., only f(a, c, b, b) =

f(b, b, a, c) = (ac− b2)

(
2

b
− 1

a
− 1

c

)

can be negative. If (a) or (b) holds, then it is obvious

that f(i, j, k, l) ≥ 0 for any integers i, j, k, l ∈ {a, b, c} , and the inequality (1) is valid for

every graph G such that D(G) = {a, b, c} .

For the other direction, suppose that neither (a) nor (b) holds. If this is the case, then

only f(a, c, b, b) < 0 . We construct a graph Gx,y with D(Gx,y) = {a, b, c} , ma,a = mc,c = 0

and ma,b = mb,c = 1 (see Fig. 1). The graph Gx,y can be created in the following way:

• Make a sequence of x copies of Ka,c and then continue that sequence with y copies of

Kb,b .

• Choose an edge from the first Ka,c graph and another edge from the second Ka,c .

Then replace these edges by edges connecting the “a”-vertex from the first graph with

“c”-vertex from the second graph, and another edge connecting the “c”-vertex from



the first graph with “a”-vertex from the second graph. This way the degrees of the

vertices are not changed. Continue this procedure between all x copies of Ka,c .

• Next, chose an edge from the last Ka,c in the sequence and one edge from the first

Kb,b graph, replace these edges by edges connecting the “a”-vertex with one of the

“b” vertices and the “c”-vertex with the other “b” vertex.

• The same procedure is applied between all consecutive graphs Kb,b in the sequence

and this way is Gx,y constructed.

We emphasize that this binding procedure is done only once between Ka,c and Kb,b graphs.

Now,

M2

m
− M1

n
=

∑

i≤j,k≤l
i,j,k,l∈{a,b,c}

f(i, j, k, l)mi,j mk,l

= 2
[
f(a, c, b, b)ma,cmb,b +

[
f(a, c, a, b) + f(a, c, b, c)

]
ma,c

+
[
f(a, b, b, b) + f(c, b, b, b)

]
mb,b + f(a, b, b, c)

]
.

If we increase the number of Ka,c and Kb,b graphs, i.e., x and y , in the graph Gx,y , shown

on Fig. 1, then ma,c and mb,b will increase as well. For ma,c and mb,b big enough, the

difference M2/m−M1/n will be negative.

a

bc

a b

b

b

c

a

c

b

b

Figure 1: A connected graph G with D(G) = {a, b, c} . The edges that should be
removed are drown with dashed lines.

4 Long good intervals

Our next goal is to determine long good intervals. We will need the following lemma to

prove Theorem 4.1.



Lemma 4.1. For integers c, i, j , and p ≤ ⌈√c ⌉ holds:

c(c+ p) > (c+ i)(c+ j) if and only if i+ j < p .

Proof. First notice that ij ≤ (i+ j)2

4
. If c(c+ p) > (c+ i)(c+ j) and i+ j ≥ p , then

c2 + c p > c2 + (i+ j)c+ ij

c p > (i+ j)c+ ij,

which is impossible. For the other direction, suppose that i+ j < p . Then

(c+ i)(c+ j) = c2 + (i+ j)c+ ij

≤ c2 + c(i+ j) +
(i+ j)2

4

≤ c2 + c(p− 1) +
(p− 1)2

4

< c(c+ p)− c+
(
√
c)2

4

< c(c+ p).

This argument completes the proof.

Using the previous lemma we can construct good intervals of any size. Notice that

the following result holds for c ≤ 9 by the results of Sun and Chen [19] mentioned in the

previous section, as in these cases the considered interval is of length at most 4.

Theorem 4.1. For every integer c , the interval [c, c+ ⌈√c ⌉] is good.

Proof. In order to prove the theorem, it is enough to show that f(i, j, k, l) ≥ 0 whenever

i, j, k, l ∈ [c, c + ⌈√c ⌉] . Suppose in contrary that for some i, j, k, l from this interval

f(i, j, k, l) < 0 . By Lemma 2.2, without loss of generality we can assume that i < k ≤ l < j .

Now, let k = i+ s, l = i+ t, j = i+ q where 0 < s ≤ t < q ≤ ⌈√c ⌉ . Now

1

k
+

1

l
=

2i+ s+ t

(i+ s)(i+ t)
and

1

i
+

1

j
=

2i+ q

i(i+ q)
.

If ij > kl , then by Lemma 4.1 s+ t < q . Hence st <
q2

4
. By Lemma 2.1, f(i, j, k, l) < 0 ,



if
1

k
+

1

l
<

1

i
+

1

j
. Hence

2i+ s+ t

(i+ s)(i+ t)
<

2i+ q

i(i+ q)

(2i+ s+ t)(i2 + iq) < (2i+ q)(i2 + (s+ t)i+ st)

2i3 + (s+ t+ 2q)i2 + (s+ t)iq < 2i3 + (2s+ 2t+ q)i2 + 2sti+ (s+ t)iq + stq

i2 q < (s+ t) i2 + 2s t i+ s t q

i2 q < (q − 1) i2 + 2s t i+ s t q

from here

i2 < 2s t i+ s t q

< 2
q2

4
i+

q3

4

which is clearly impossible since q ≤ ⌈
√
i ⌉ .

Similarly, if ij < kl , then s+ t ≥ q . The function f in f(i, j, k, l) is negative if and only

if
1

i
+

1

j
>

1

k
+

1

l
. The last inequality implies

i2 q > (s+ t) i2 + 2s t i+ s t q

≥ q i2 + 2s t i+ s t q

and obviously this is impossible.

So f(i, j, k, l) ≥ 0 , for arbitrary i, j, k, l from the interval [c, c+ ⌈√c ⌉] .

Theorem 4.1 is best in the sense that for c = 2 the interval [2, 4] is good, but the interval

[2, 5] is not. The following corollaries are immediate consequences of the above theorem.

Corollary 4.1. If G is a graph with ∆(G) − δ(G) ≤ ⌈√c ⌉ and δ(G) ≥ c for some integer

c , then G satisfies the inequality (1).

Corollary 4.2. There are arbitrary long good intervals.



5 Graphs of maximum degree at least 5

As we already mentioned, the inequality (1) holds for chemical graphs, but not in general.

In [11, 23, 5, 13, 20, 19], examples of connected simple graph G are given such that M1/n >

M2/m . What strikes the eye in these counterexamples is that either the maximum vertex

degree is at least 10 or the graph is disconnected. We now produce for each ∆ ≥ 5 an

infinite family of connected planar counterexamples to (1) of maximum degree ∆ .

Theorem 5.1. There exists infinitely many graphs G of maximum degree ≥ 5 for which

M1

n
>

M2

m
.

{
2k

{ l

y1 y2

ys

y3

ys-1

Figure 2: G(l, k, s)

Proof. Let G be the graph shown on the Fig. 2. This graph has 2k vertices of degree

5, 2s + 2 of degree 3, 5k + l vertices of degree 2 and two vertices of degree l + 1 . Also

m5,2 = 10k−2, m3,3 = 3s+2, m3,5 = 2 and ml+1,2 = 2(l+1) . Then n = 7k+2s+l+4, m =

10k+3s+2l+4 , M1 = 2(35k+9s+ l2 +4l+10) , M2 = 100k+27s+4l2 +8l+32 . From

here one can obtained that

mM1 − nM2 = −2l2s+ k(−144 + 64l − 8l2 + s)− 8(6 + 5s) + l(8 + 17s) .

For every l , we can find k and s big enough such that mM1−nM2 > 0 . Obviously, we can

find infinitely many such pair (k, s) .

Observe that the right side of the graphG(l, k, s) is the cubic graphK2¤Cs with one edge

twice subdivided. This graph can be substituted with any other cubic graph of appropriate



size. G(4, 9, 33) is the smallest graph for which the inequality of Theorem 5.1 holds, and it

has 137 vertices.
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J. Lacheré, A. Monhait, Variable neighborhood search for extremal graphs 14. The

Auto–GraphiX 2 system, in: L. Liberti, N. Maculan (Eds.), Global Optimization: From

Theory to Implementation, Springer, Berlin, 2005.

[2] A. T. Balaban, I. Motoc, D. Bonchev, O. Mekenyan, Topological indices for structure–

activity correlations, Topics Curr. Chem. 114 (1983) 21–55.

[3] G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs. 1. The

Auto–GraphiX system, Discrete Math. 212 (2000) 29–44.

[4] G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs. 5. Three

ways to automate finding conjectures, Discrete Math. 276 (2004) 81–94.
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Abstract

The Wiener index of a graph G, denoted by W (G), is the sum of distances between
all pairs of vertices in G. In this paper, we consider the relation between the Wiener
index of a graph, G, and its line graph, L(G). We show that if G is of minimum degree
at least two, then W (G) ≤ W (L(G)). We prove that for every non-negative integer g0,
there exists g > g0, such that there are infinitely many graphs G of girth g, satisfying
W (G) = W (L(G)). This partially answers a question raised by Dobrynin and Mel’nikov
[8] and encourages us to conjecture that the answer to a stronger form of their question
is affirmative.

Keywords: Wiener index, line graphs

1 Introduction

In this paper all graphs are finite, simple and undirected. For a graph G, we denote by
V (G) and E(G) its vertex and edge sets, respectively. All paths and cycles are simple, i.e.,
they contain no repeated vertices. A path Pn = x1x2 · · ·xn is given by the sequence of its
consecutive vertices. A path whose endvertices are u and v is called an uv-path. The length
of a path P , denoted |P |, is the number of its edges. A cycle of length k is denoted by Ck.

Given a graph G, its line graph L(G) is a graph such that

• The vertices of L(G) are the edges of G; and

• Two vertices of L(G) are adjacent if and only if their corresponding edges in G share a
common endvertex.

1
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For a vertex v ∈ V (G), we denote by dG(v) the degree of v in G. For the sake of simplicity
we write d(v) if the graph G is clear from the context. For v, u ∈ V (G), we denote by dG(u, v)
(or simply d(u, v)), the length of a shortest path in G between u and v. For e1, e2 ∈ E(G),
we define dG(e1, e2) = dL(G)(e1, e2).

The Wiener index of a graph G, denoted by W (G), is the sum of distances between all
(unordered) pairs of vertices of G, i.e.,

W (G) =
∑

u,v∈V (G)

d(u, v).

The Wiener index is a graph invariant that belongs to the molecules structure-descriptors
called topological indices, which are used for the design of molecules with desired properties
[18]. For details and results on the Wiener index see in [6, 7, 16, 17] and the references cited
therein.

The concept of line graph has various applications in physical chemistry [12, 15]. Recently
there has been an interest in understanding the connection between W (G) and W (L(G)) for
a graph G. In particular, it is important to understand when a graph G satisfies W (G) =
W (L(G)). In sequel, we state some results related to those presented in this paper. For more
results on the topic see [4, 5, 9, 10, 12, 14].

Theorem 1 (Buckley [3]). For every tree T , W (L(T )) = W (T )−
(
n
2

)
.

Theorem 2 (Gutman [11]). If G is a connected graph with n vertices and q edges, then

W (L(G)) ≥ W (G)− n(n− 1) +
1

2
q(q + 1).

Theorem 3 (Gutman, Pavlović [14]). If G is a connected unicyclic graph with n vertices,
then W (L(G)) ≤ W (G), with equality if and only if G is a cycle of length n.

In Section 2 it will be shown that, if G is of minimum degree at least two, then, W (G) ≤
W (L(G)), with a strict inequality as soon as G is not a cycle.

For a graph G, it seems difficult to characterize when W (G) = W (L(G)). Moreover, it is
not clear on which graph parameters or structural properties the difference W (G)−W (L(G))
depends.

A connected graph G is isomorphic to L(G) if and only if G is a cycle. Thus, cycles
provide a trivial infinite family of graphs for which W (G) = W (L(G)). That is, for every
positive number g there exists a graph G with girth g for which W (G) = W (L(G)). In
connected bicyclic graphs all the three cases W (L(G)) < W (G), W (L(G)) = W (G), and
W (L(G)) > W (G) occur [14]. It is known that, the smallest bicyclic graph with the property
W (L(G)) = W (G) has 9 vertices and is unique. There are already 26 ten-vertex bicyclic
graphs with the same property [13]. In [8], Dobrynin and Mel’nikov have constructed infinite
family of graphs of girth three and four with the property W (G) = W (L(G)), and asked the
following:

Problem 1 (Dobrynin and Mel’nikov [8]). Is it true that for every integer g ≥ 5, there exists
a graph G 6= Cg of girth g, for which W (G) = W (L(G))?

The following is the main result of this paper, and provides a partial answer to Problem 1.
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Theorem 4. For every positive integer g0, there exists g ≥ g0 such that there are infinitely
many graphs G of girth g satisfying W (G) = W (L(G)).

Our result encourages us to state the following conjecture. The answer to it for graphs of
girth three and four is affirmative [8].

Conjecture 1. For every integer g ≥ 3, there exist infinitely many graphs G of girth g
satisfying W (G) = W (L(G)).

2 Graphs with minimum degree at least two

The following folk lemma is needed for the proof of Theorem 6, and states that the distance
between two edges can be bounded by the mean of the distances between their endvertices.
For the sake of completness we include its proof.

Lemma 5. Let G be a graph and e = uv, e′ = u′v′ be two edges of G. Then the following
inequality holds:

d(e, e′) ≥ 1

4

[

d(u, u′) + d(u, v′) + d(v, u′) + d(v, v′)
]

.

Proof. Without loss of generality, we can assume that d(v, v′) = min{d(u, u′), d(u, v′), d(v, u′), d(v, v′)}.
We observe that the following holds:

d(v, u′) ≤ d(v, v′) + 1, d(u, u′) ≤ d(v, v′) + 2, and d(u, v′) ≤ d(v, v′) + 1.

Therefore,

1

4

(

d(u, u′) + d(u, v′) + d(v, u′) + d(v, v′)
)

≤ 1

4
(4 d(v, v′) + 4) = d(v, v′) + 1 = d(e, e′).

The last equality in the above expression holds by minimality of d(v, v′).

The following is the main result of this section.

Theorem 6. Let G be a connected graph with δ(G) ≥ 2. Then,

W (G) ≤ W (L(G)).

Moreover, equality holds only for cycles.

Proof. If G is a cycle, then L(G) is isomorphic to G, and so, equality holds. Hence, we may
assume that G has at least one vertex of degree at least three. By Lemma 5, we obtain a
lower bound on W (L(G)):

W (L(G)) =
∑

e,e′∈E(G)

e6=e′

d(e, e′)

≥ 1

4

∑

e=uv∈E(G)

e′=u′v′∈E(G)
e6=e′

(

d(u, u′) + d(u, v′) + d(v, u′) + d(v, v′)
)

=
1

4

[
∑

u,v∈V (G)
uv 6∈E(G)

d(u)d(v)d(u, v) +
∑

u,v∈V (G)
uv∈E(G)

(

d(u)d(v)− 1
)

d(u, v)
︸ ︷︷ ︸

=1

]

.
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Thus, for the difference W (L(G))−W (G), we obtain the following lower bound:

W (L(G))−W (G) ≥ 1

4

[
∑

u,v∈V (G)
uv 6∈E(G)

d(u)d(v)d(u, v) +
∑

u,v∈V (G)
uv∈E(G)

(

d(u)d(v)− 1
)
]

−
∑

u,v∈V (G)

d(u, v)

=
1

4

[
∑

u,v∈V (G)
uv 6∈E(G)

(

d(u)d(v)− 4
)

d(u, v) +
∑

u,v∈V (G)
uv∈E(G)

(

d(u)d(v)− 5
)
]

. (1)

Let G2 be the graph induced by the vertices of degree two in G. Then,

∑

u,v∈V (G2)
uv 6∈E(G2)

(

dG(u)dG(v)− 4
)

dG(u, v) = 0, and
∑

u,v∈V (G2)
uv∈E(G2)

(

dG(u)dG(v)− 5
)

= −|E(G2)|.

(2)

From (1) and (2), we obtain

W (L(G))−W (G) ≥ 1

4

[
∑

u,v∈V (G)
{u,v}6⊆V (G2)

uv 6∈E(G)

(

dG(u)dG(v)− 4
)

dG(u, v)
︸ ︷︷ ︸

≥1

+
∑

u,v∈V (G)
{u,v}6⊆V (G2)

uv∈E(G)

(

dG(u)dG(v)− 5
︸ ︷︷ ︸

≥1

)

− |E(G2)|
]

.

As G has at least one vertex x of degree at least 3, the above sums are not empty. Besides,
we can ensure that |V (G2)| − 1 ≥ |E(G2)|: indeed, we know that |V (H)| ≥ |E(H)| for any
graph H of maximum degree 2 with the equality holds only if H is 2-regular. But, in the
present situation there is at least one vertex of degree two adjacent to a vertex of strictly
larger degree in G, as the graph G is connected and G2 is a proper subgraph of it. So, G2 is
not 2-regular, and so, |V (G2)| > |E(G2)|. Consequently,

W (L(G))−W (G) ≥ 1

4

[
∑

v∈V (G2)

dG(x, v)− |V (G2)|+ 1

]

≥ 1

4
.

This establishes the theorem.

3 Graphs whose Wiener index equals to the Wiener index of
their line graphs

As the equalityW (L(T )) = W (T )−
(
n
2

)
holds for trees [3], and the equalityW (L(C)) = W (C)

holds for cycles, one can expect that there are some graphs G, comprised of cycles and trees,
with property W (L(G)) = W (G). In what follows, we present one such class of graphs.



5

For positive integers k, p, q, we define the graph Φ(k, p, q) as follows (see Figure 1 for an
illustration). The graph Φ(k, p, q) is simple and comprised of two cycles, C1 = u1 · · ·u2k+1

and C2 = v1 · · · v2k+1, and two paths Pp = x1 · · ·xp and Pq = y1 · · · yq such that all introduced
vertices are distinct except for vertices v1 = u1 = x1 and y1 = v2k+1 = u2k+1.

Φ(k, p, q) L(Φ(k, p, q))

y1

y2

yq−1

x1

x2

xp−1

u2k+1 v2k+1

u2k v2k

vk+1

vk

v2
v1u1

uk

uk+1

u2

u2k−1 v2k−1
y1

y2

x1

x2

u2k+1 v2k+1

u2k v2k

vk

vk+2

vk+1

v2
v1u1

uk+1

uk+2

uk

u2

xp

yq

Figure 1: Graphs Φ(k, p, q) and L(Φ(k, p, q))

We are now interested in computing the difference W (L(Φ(k, p, q)))−W (Φ(k, p, q)), which
is determined by the following technical result, and it will be used in the proof of Theorem 8.
As the proof is straightforward and rather technical, we present it in the next section.

Theorem 7. For integers, k, p, q ≥ 1, let G = Φ(k, p, q) with girth g = 2k + 1. Then,

W (L(G))−W (G) =
1

2
(g2 + (p− q)2 + 5(p+ q − 3)− 2g(p+ q − 3)).

We now turn to prove the main theorem of this paper.

Theorem 8. For every non-negative integer h, there exist infinitely many graphs G of girth
g = h2 + h+ 9 with W (L(G)) = W (G).

Proof. Our candidates are Φ graphs defined above. First we prove the following claim:

Claim 1. Let a0, a1, k, such that W (L(Φ(k, a0, a1)) = W (Φ(k, a0, a1)) and a0 < a1. Then,
from a0 and a1, we can build an infinite strictly increasing sequence a0, a1, a2, . . . of integers
such that for every n ≥ 0, W (L(Φ(k, an, an+1))) = W (Φ(k, an, an+1)).
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By Theorem 7, such a sequence can only exist if the following equation is verified for all n:

Dn = W (L(Φ(k, an, an+1)))−W (Φ(k, an, an+1))

=
1

2
g2 − gan − gan+1 +

1

2
a2n − anan+1 +

1

2
a2n+1 + 3g +

5

2
(an + an+1)−

15

2
= 0,

where g = 2k + 1. Then,

Dn −Dn+1 = g(an+2 − an)−
1

2
(a2n+2 − a2n) + an+1(an+2 − an)−

5

2
(an+2 − an)

= (an+2 − an)(g −
1

2
(an+2 + an) + an+1 −

5

2
)

= 0.

As we want the sequence to be strictly increasing, it is enough to solve the following recursive
equation:

g − 1

2
(an+2 + an) + an+1 −

5

2
= 0. (3)

It is well known that a solution to (3) is of the form an = cn + pn, where cn = nx+ y, for
x, y ∈ R, is the homogeneous solution, and pn = cn2, for c ∈ R, is the particular solution. An
easy calculation gives y = a0, x = (52 + a1 − g − a0) and c = g − 5

2 . Hence,

an = (g − 5

2
)n2 + (

5

2
+ a1 − g − a0)n+ a0. (4)

Observe that for every n ≥ 0, an is an integer and an < an+1. As by assumption a0 and
a1 satisfy the equation D0 = 0, the claim follows. ♦

Let k, p, q be positive integers (with g = 2k + 1). By Theorem 7, W (L(Φ(k, p, q)) =
W (Φ(k, p, q)) if

g = −3 + p+ q +
√

24− 11p− 11q + 4pq. (5)

Setting p = 3 and q = h2 +9 for some integer h, one obtains the equation g = h2 + h+9.
Then, g is an odd positive integer. Consequently, for every h ∈ N the parameters g = h2+h+9,
k = 1

2(g − 1), p = 3, and q = h2 + 9 satisfy W (L(G)) = W (G). By Claim 1, for every such
girth, we can compute an infinite family of graphs G satisfying the same equation by setting
a0 = 3 and a1 = h2 + 9. Thus, the theorem is proved.

Clearly, the set of integer solutions of (5) is not complete (see Fig.2 for other infinite fam-
ilies). However, the equation (5) does not have integer solutions for every g, thus preventing
us from producing an infinite family of graphs G satisfying W (L(G)) = W (G) for all girths
with the Φ family.

Theorem 4 is an immediate corollary of Theorem 8. For every positive integer g0, we can
choose a non-negative integer h such that g = h2 + h+9 ≥ g0. By Theorem 8, it follows that
there are infinitely many graphs G of girth g with W (L(G)) = W (G).
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p q g 24− 11p− 11q + 4pq

3 h2 + 9 h2 + h+ 9 h2

4 20h2 + 4 20h2 + 10h+ 5 (10h)2

6 13h2 + 12h+ 6 13h2 + 25h+ 15 (13h+ 6)2

6 13h2 + 14h+ 7 13h2 + 27h+ 17 (13h+ 7)2

7 17h2 + 14h+ 6 17h2 + 31h+ 17 (17h+ 7)2

7 17h2 + 20h+ 9 17h2 + 37h+ 23 (17h+ 10)2

9 h2 + 3 h2 + 5h+ 9 (5h)2

10 29h2 + 2h+ 3 29h2 + 31h+ 11 (29h+ 1)2

10 29h2 + 56h+ 30 29h2 + 85h+ 65 (29h+ 28)2

12 37h2 + 30h+ 9 37h2 + 67h+ 31 (37h+ 15)2

12 37h2 + 44h+ 16 37h2 + 81h+ 45 (37h+ 22)2

13 41h2 + 4h+ 3 41h2 + 45h+ 12 (41h+ 2)2

13 41h2 + 78h+ 40 41h2 + 119h+ 86 (41h+ 39)2

16 53h2 + 44h+ 12 53h2 + 97h+ 41 (53h+ 22)2

16 53h2 + 62h+ 21 53h2 + 115h+ 59 (53h+ 31)2

18 61h2 + 116h+ 58 61h2 + 177h+ 123 (61h+ 58)2

18 61h2 + 128h+ 70 61h2 + 189h+ 141 (61h+ 64)2

Figure 2: Families of integer solutions

4 Proof of Theorem 7

The proof of Theorem 7 follows from the following two lemmas. Their purpose is to compute
the exact value of W (G) and W (L(G)) for the Φ graphs.

Lemma 9. Let G be a graph Φ(k, p, q) where k, p, q ≥ 1. Then,

W (G) =W (Pp+q) + 4W (Pq+k) + 4W (Pp+k) + 2W (C2k+1) + 2W (P2k+1) + 2W (P2k)

− 16W (Pk−1)− 4W (Pq)− 4W (Pp)− p(p+ 1)− q(q + 1)− 2(8k2 + k − 2).

Proof. We consider several paths and cycles in G such that each pair of vertices of G belongs
to at least one of these subgraphs. See Figure 1 for the notation. In order to make our
proof more readable, we denote a shortest path between vertices a and b with P (a, b). The
subgraphs we consider are the following:

• The path P (xp, yq) = xpxp−1 · · ·x1y1y2 · · · yq of length p+ q − 1.

• The paths P (xp, vk+1) = xpxp−1 · · ·x2v1v2 · · · vk+1, P (xp, uk+1) = xpxp−1 · · ·x2u1u2
· · ·uk+1, P (xp, vk+2) = xpxp−1 · · ·x1v2k+1v2k · · · vk+2 and P (xp, uk+2) = xpxp−1 · · ·x1u2k+1

u2k · · ·uk+2 of length p+ k − 1.

• The paths P (yq, vk+1) = yqyq−1 · · · y2v2k+1v2k · · · vk+1, P (yq, uk+1) = yqyq−1 · · · y2u2k+1

u2k · · ·uk+1, P (yq, vk) = yqyq−1 · · · y1v1v2 · · · vk and P (yq, uk) = yqyq−1 · · · y1u1u2 · · ·uk
of length q + k − 1.

• The paths P1(uk+1, vk+1) = uk+1uk · · ·u2v1v2 · · · vk+1 and P2(uk+1, vk+1) = uk+1uk+2

· · ·u2kv2k+1 v2k · · · vk+1 of length 2k have the same endvertices. Similarly, the paths
P (uk, vk+2) = ukuk−1 · · ·u1v2k+1v2k · · · vk+2 and P (uk+2, vk) = uk+2 uk+3 · · ·u2k+1v1v2 · · · vk
are of length 2k − 1.
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• The cycles Cu = u1u2 · · ·u2k+1u1 and Cv = v1v2 · · · v2k+1v1 on 2k + 1 vertices.

The following pairs of vertices were considered more than once:

• Pairs of vertices on the paths P (x1, xp), P (y1, yq), P (v2, vk), P (u2, uk), P (vk+2, v2k) and
P (uk+2, u2k) are considered five times.

• Pair (x1, y1) is on distance 1 and is considered nine times. Similarly pair (uk+1, vk+1)
is on distance 2k and is considered twice.

• Pairs (u1, uk+1), (v1, vk+1), (uk+1, u2k+1) and (vk+1, v2k+1) are on distance k. Similarly
pairs of vertices {(uk+1, a)|a ∈ P (u2, uk) ∪ P (uk+2, u2k)} and {(vk+1, a)|a ∈ P (v2, vk) ∪
P (vk+2, v2k)} are on distances 1, 2, . . . , k − 1. All of them are considered three times.

• Pairs of vertices {(x1, a)|a ∈ P (v2, vk) ∪ P (u2, uk)} and {(y1, a)|a ∈ P (v2k, vk+2) ∪
P (u2k, uk+2)} are on distances 1, 2, . . . , k − 1 and are considered five times.

• Pairs of vertices {(x1, a)|a ∈ P (uk+2, u2k) ∪ P (vk+2, v2k)} and {(y1, a)|a ∈ P (u2, uk) ∪
P (v2, vk)} are on distances 2, 3, . . . , k and are considered three times.

• Pairs of vertices {(x1, a)|a ∈ P (y2, yq)} are on distances 2, 3, . . . , q and {(y1, a)|
a ∈ P (x2, xp)} are on distances 2, 3, . . . , p. They are considered three times.

As the Wiener index of a graph G is the sum of the distances between all pairs of the vertices,
we compute it as a sum of Wiener indices of all observed subgraphs and subtract the distances
between pairs of vertices which were observed more than once. The distances are multiplied
the appropriate number of times. The Wiener index of the graph Φ(k, p, q) is

W (Φ(k, p, q)) = W (Pp+q) + 2W (Pq+k) + 2W (Pq+k) + 2W (Pp+k) + 2W (Pp+k)

+ 2W (C2k+1) + 2W (P2k+1) + 2W (P2k)− 16W (Pk−1)− 4W (Pq)

− 4W (Pp)− 8 · 1− 2k − 4 · 2 · k − 4 · 2(1 + 2 + · · ·+ k − 1)

− 4 · 4(1 + 2 + · · ·+ k − 1)− 4 · 2(2 + 3 + · · ·+ k)− 2(2 + 3 + · · ·+ q)

− 2(2 + 3 + · · ·+ p)

= W (Pp+q) + 4W (Pq+k) + 4W (Pp+k) + 2W (C2k+1) + 2W (P2k+1)

+ 2W (P2k)− 16W (Pk−1)− 4W (Pq)− 4W (Pp)− p2 − p− q2 − q

− 16k2 − 2k + 4.

Lemma 10. Let G = Φ(k, p, q) where k, p, q ≥ 1. Then,

W (L(G)) = W (Pp+q−1) + 2W (Pq+k−1) + 2W (Pq+k) + 2W (Pp+k−1) + 2W (Pp+k)

+ 2W (C2k+1) + 2W (P2k) + 2W (P2k+1)− 16W (Pk)− 4W (Pq−1)

− 4W (Pp−1)− p(p− 1)− q(q − 1)− 4k(k + 1).

Proof. Similar as in the previous lemma, we consider paths and cycles in L(Φ(k, p, q)) such
that each pair of vertices L(φ(k, p, q)) belongs to at least one of these subgraphs. The sub-
graphs we consider are the following:
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• The path P (xp−1, yq−1) = xp−1xp−2 · · ·x1v2k+1y1y2 · · · yq−1 of length p+ q − 2.

• The paths P (xp−1, vk) = xp−1xp−2 · · ·x1v1v2 · · · vk, P (xp−1, uk) = xp−1xp−2 · · ·x1u1
u2 · · ·uk of length p+k−2 and the paths P (xp−1, vk+1) = xp−1xp−2 · · ·x1v2k+1v2k · · · vk+1,
P (xp−1, uk+1) = xp−1 xp−2 · · ·x1u2k+1u2k · · ·uk+1 of length p+ k − 1.

• The paths P (yq−1, vk+1) = yq−1yq−2 · · · y1v2kv2k−1 · · · vk+1, P (yq−1, uk+1) = yq−1yq−2

· · · y1u2ku2k−1 · · ·uk+1 of length q+k−2 and the paths P (yq−1, vk) = yq−1yq−2 · · · y1v2k+1

v1v2 · · · vk, P (yq−1, uk) = yq−1yq−2 · · · y1 u2k+1u1u2 · · ·uk of length q + k − 1.

• The paths P (uk, vk) = ukuk−1 · · ·u1v1v2 · · · vk, P (uk+1, vk+1) = uk+1uk+2 · · ·u2kv2k
v2k−1 · · · vk+1 of length 2k−1 and the paths P (uk, vk+1) = ukuk−1 · · ·u1v2k+1v2k · · · vk+1,
P (uk+1, vk) = uk+1uk+2 · · ·u2k+1v1v2 · · · vk of length 2k.

• The cycles Cu = u1u2 · · ·u2k+1u1 and Cv = v1v2 · · · v2k+1v1 on 2k + 1 vertices.

The pairs of vertices which were observed more than once are the following:

• Pairs of vertices on the paths P (x1, xp−1), P (y1, yq−1), P (v1, vk), P (u1, uk), P (vk+1, v2k)
and P (uk+1, u2k) are considered five times.

• Pairs of vertices {(v2k+1, a)|a ∈ P (u1, uk) ∪ P (v1, vk) ∪ P (uk+1, u2k) ∪ P (vk+1, v2k)} are
on distances 1, 2, . . . , k and are considered three times.

• Pairs of vertices {(v2k+1, a)|a ∈ P (y1, yq−1)} are on distances 1, 2, . . . , q − 1 and are
considered three times. Similarly pairs of vertices {(v2k+1, a)|a ∈ P (x1, xp−1)} are on
distances 1, 2, . . . , p− 1 and are considered three times.

The Wiener index is calculated as a difference between a sum of Wiener indices of all observed
subgraphs and corresponding multiplication of distances between different pairs of vertices
which were observed more than once:

W (L(G)) = W (Pp+q−1) + 2W (Pq+k−1) + 2W (Pq+k) + 2W (Pp+k−1) + 2W (Pp+k)

+ 2W (C2k+1) + 2W (P2k) + 2W (P2k+1)− 16W (Pk)− 4W (Pq−1)

− 4W (Pp−1)− 4 · 2(1 + 2 + · · ·+ k)

− 2(1 + 2 + · · ·+ q − 1)− 2(1 + 2 + · · ·+ p− 1))

= W (Pp+q−1) + 2W (Pq+k−1) + 2W (Pq+k) + 2W (Pp+k−1) + 2W (Pp+k)

+ 2W (C2k+1) + 2W (P2k) + 2W (P2k+1)− 16W (Pk)− 4W (Pq−1)

− 4W (Pp−1)− p2 + p− q2 + q − 4k2 − 4k.

Proof of Theorem 7. By Lemmas 9 and 10, it follows that

W (L(G))−W (G) = W (Pp+q−1)−W (Pp+q) + 2(W (Pq+k−1)−W (Pq+k)) + 2(W (Pp+k−1)

−W (Pp+k)) + 4(W (Pq)−W (Pq−1)) + 4(W (Pp)−W (Pp−1))

+ 16(W (Pk−1)−W (Pk)) + p+ q − 4k2 − 4k + p+ q + 16k2 + 2k − 4.
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The Wiener index of a path with n vertices being W (Pn) =
(
n+1
3

)
[2], we have

W (L(G))−W (G) =

(
p+ q

3

)

−
(
p+ q + 1

3

)

+ 2

((
q + k

3

)

−
(
q + k + 1

3

))

+ 2

((
p+ k

3

)

−
(
p+ k + 1

3

))

+ 4

((
q + 1

3

)

−
(
q

3

))

+ 4

((
p+ 1

3

)

−
(
p

3

))

+ 16

((
k

3

)

−
(
k + 1

3

))

+ 2(p+ q) + 12k2 − 2k − 4

= −
(
p+ q

2

)

− 2

(
q + k

2

)

− 2

(
p+ k

2

)

+ 4

(
q

2

)

+ 4

(
p

2

)

− 16

(
k

2

)

+ 2(p+ q) + 12k2 − 2k − 4

=
1

2
(−8 + 4k2 + 3p+ (p− q)2 + 3q − 4k(−4 + p+ q)).

If we set k = (g − 1)/2, we obtain the claimed formula

W (L(G))−W (G) =
1

2
(g2 + (p− q)2 + 5(p+ q − 3)− 2g(p+ q − 3)).

4.1 Wiener index and Combinatorial Nullstellensatz

We bring to reader’s attention the fact that the polynomials given in Theorem 8 can be easily
obtained through polynomial interpolation with the help of a computer. Indeed, the above
proofs can be massively shortened and simplified if one only needs to show that both W (G)
and W (L(G)) are low-degree polynomials on the variables k, p and q.

Once bounds on the degree of each variable in the polynomials W (L(Φ(k, p, q))) and
W (Φ(k, p, q)) have been derived, it is easy to define a (small) set of representatives of the Φ
family which are sufficient to define exactly the corresponding polynomials using the Combi-
natorial Nullstellensatz [1] (less than 30 different graphs in the present case).

This way, a computer can be made to answer very quickly the following question: “given
a graph family G depending on several parameters p1, . . . , pl, what is the general formula of
W (G(p1, . . . , pl)) − W (L(G(p1, . . . , pl)))?”. This is of great help when looking for graphs G
satisfying the equation W (G) = W (L(G)), as it reduces the problem to finding the integral
zeros of a multivariate polynomial (which is not by itself an easy question).

This approach has to be considered when trying to find more classes of graphs satisfying
the above constraint, especially when the Φ family used here can be modified in so many
ways: one could like to attach paths to the cycles at different points, set two different sizes
for the cycles, or to attach trees instead of paths, etc.
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[15] I. Gutman, L. Popović, B. K. Mishra, M. Kuanar, E. Estrada, and N. Guevara. Appli-
cation of line graphs in physical chemistry. Predicting the surface tensions of alkanes. J.
Serb. Chem. Soc., 62(3):1025–1029, 1997.

[16] I. Gutman, Y. Yeh, S. Lee, and Y. Luo. Some recent results in the theory of the Wiener
number. Indian J. Chem., 32A:651–661, 1993.
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Abstract

For a simple graph G with n vertices and m edges, the inequality
M1(G)

n ≤ M2(G)
m ,

where M1(G) and M2(G) are the first and the second Zagreb indices of G, is known as

Zagreb indices inequality. Recently Vukičević and Graovac [12], and Caporossi, Hansen

and Vukičević [3] proved that this inequality holds for trees and unicyclic graphs, respec-

tively. Here, alternative and shorter proofs for trees and for unicyclic graphs are presented.
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1 Introduction

The first and second Zagreb indices are among the oldest topological indices, defined in

1972 by Gutman et al. [5], and are given different names in the literature, such as the

Zagreb group indices, the Zagreb group parameters and most often, the Zagreb indices.
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Since then, they have been used to study molecular complexity, chirality, ZE-isomerism

and hetero-systems (see [1, 4, 7, 9, 14]).

In the following, let G = (V, E) be a simple graph with n = |V | vertices and m = |E|
edges. These indices are defined as

M1(G) =
∑

v∈V

d(v)2 and M2(G) =
∑

uv∈E

d(u)d(v),

where d(u) stands for the degree of vertex u. For the sake of simplicity, we will often use

M1 and M2 instead of M1(G) and M2(G), respectively.

In 2003, an article [8] repopularized Zagreb indices, and since then a lot of work was

done on this topic. For more results concerning Zagreb indices see [10, 13]. Comparing

the values of these indices on the same graph was one very natural aim, which gave, and

still gives, very interesting results. At first the next conjecture was proposed [2]:

Conjecture 1.1. For all simple graphs G,

M1(G)

n
≤ M2(G)

m
(1.1)

and the bound is tight for complete graphs.

If the graph is regular then this bound is tight, but it is also tight if G is a star. This

inequality holds for trees [12], graphs of maximum degree four, i.e. so called chemical

graphs [6] and unicyclic graphs [3], but does not hold in general. See [6, 12, 3, 11] for

various examples of graphs dissatisfying the inequality (1.1).

For a connected graph G, the cyclomatic number is ν(G) = m − n + 1. Thus, every

tree has cyclomatic number 0. A graph whose cyclomatic number is 1 is called unicyclic.

Note that such a graph has precisely one cycle.

In chemistry trees, unicyclic graphs, bicyclic graphs, and so on, are very important

graphs since they represent classes of molecules. Trees are graph representation of acyclic

molecules like alkanes (also known as paraffins). Cycloalkanes are types of alkanes which

have one or more rings of carbon atoms in the chemical structure of their molecules, so

their graphs are unicyclic graphs, bicyclic graphs, etc.

In this paper we present alternative proofs concerning the Zagreb indices inequality for

trees and unicyclic graphs.

2 An alternative proof for trees and unicyclic graphs

As we said before, trees and unicyclic graphs satisfy M1/n ≤ M2/m. Here, these results

are proven in a shorter way.

A star with k edges is called a k-star. A path of length k is called a k-path. Let p3(G) be

the number of 3-paths, p2(G) the number of 2-paths, and C3(G) is the number of 3-cycles

in G. Note that

p3(G) + 3C3(G) =
∑

uv∈E

(d(v)− 1)(d(u)− 1), (2.1)

where uv in the summation is the middle edge of the (d(u)− 1) (d(v)− 1) corresponding

3-paths. Obviously, a 3-path corresponds to a 3-cycle when its endvertices coincide.
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Theorem 2.1. For any tree G 6= K1, it holds
M1

n
≤ M2

m
. Moreover, equality holds if and

only if G is a star.

Proof. If G is a k-star, then M1 = kn and M2 = km, by which we have equality in (1.1).

So assume now that G has at least two internal adjacent vertices u and v and that v is the

only internal neighbor of u. Observe that M1 =
∑

v∈V d(v)2 = 2(p2(G) +m). We have

M2 =
∑

uv∈E

[

(d(v)− 1)(d(u)− 1) + (d(u) + d(v))− 1
]

= p3(G) +M1 −m. (2.2)

Now, since m = n− 1, we obtain

(n− 1)M1 < nM2

(n− 1)M1 < n [p3(G) +M1 − (n− 1)]

0 < p3(G) +
2

n
(p2(G) + (n− 1))− (n− 1).

Notice that p2(G) ≥ 2 for every tree on at least 4 vertices. Now, we will prove that

p3(G) ≥ n − 3, and this will establish the theorem. Let l1, . . . , lk be the leaves adjacent

to u, and let w 6= u be a neighbor of v. To any vertex x at distance at least 2 from

u we associate the 3-path built from the first three edges of the shortest path from x to

l1. To any leaf li, (i 6= 1), we associate the path from w to li. These 3-paths being all

different, we associated a 3-path to any vertex except three, namely l1, u, v, which ensures

that p3(G) ≥ n− 3.

Theorem 2.2. For any unicyclic graph G, it holds
M1

n
≤ M2

m
. Moreover, equality holds

if and only if G is a cycle.

Proof. Since G is an unicyclic graph, m = n, and so we need to show M1 ≤ M2. If G is

a k-cycle then M1 = 4k and M2 = 4k, so we have equality in (1.1). So, assume that G is

not a cycle, C = x1x2 · · ·xlx1 is the unique cycle of G and x1, has a neighbor y 6∈ V (C).
From (2.1) and the left equality of (2.2), we have

M2 = p3(G) + 3C3(G) +M1 −m.

It is enough to show that M1 + 1 ≤ M2 which is equivalent to M1 ≤ p3(G) + 3C3(G) +
M1 − n− 1, and hence is equivalent to

n+ 1 ≤ p3(G) + 3C3(G). (2.3)

Now, remove the edge x1x2 from the cycle. Then G− x1x2 is a tree and p3(G− x1x2) ≥
n− 3. Including yx1x2x3 we have at least n− 2 different 3-paths.

If C is a 3-cycle, then it is obvious that (2.3) holds. Now, assume l ≥ 4. Observe

that x1x2x3x4, xlx1x2x3, xl−1xlx1x2 are 3-paths all distinct from the 3-paths described.

Hence, p3(G) ≥ n+ 1. This implies (2.3).
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Nomenclature

α Maximum size of an independent set

χ Chromatic number (see p.14)

χ′ Chromatic index (see p.25)

χ′
a Acyclic chromatic index

χa Acyclic chromatic number

χf Fractional chromatic number (see p.19)

∆ Maximum degree of a vertex

δ∗ Degeneracy (see p.17)

∆+ Maximum outdegree of a vertex

Gn
p Random graph on n vertices and probability p

ω Clique number (maximum size of an complete subgraph)

ch Vertex choosability (see p.20)

ch′ Edge choosability (see p.29)

g Girth (see p.18, 35)

Kn
k Kneser’s graph defined over

(
n
k

)
(see p.13)

la Linear Arboricity

mad Maximum average degree (see p.32)
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linear arboricity conjecture. Journal of Graph Theory, 2011.

[59] D.P. Dailey. Uniqueness of colorability and colorability of planar 4-regular graphs are np-

complete* 1. Discrete Mathematics, 30(3):289–293, 1980.

[60] P. Dankelmann, I. Gutman, S. Mukwembi, and H. C. Swart. The edge-Wiener index of a graph.

Discrete Math., 309:3452–3457, 2009.

[61] Fabien de Montgolfier. Modular decomposition code.

http://www.liafa.jussieu.fr/ fm/algos/index.html.

[62] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, Heidelberg,

91:92, 2005.

[63] A. A. Dobrynin. Distance of iterated line graphs. Graph Theory Notes N. Y., 37:8–9, 1999.

[64] Andrey A. Dobrynin and Leonid S. Mel’nikov. Some results on the Wiener index of iterated

line graphs. Electron. Notes Discrete Math., 22:469–475, 2005.

[65] Andrey A. Dobrynin and Leonid S. Melnikov. Wiener index for graphs and their line graphs

with arbitrary large cyclomatic numbers. Appl. Math. Lett., 18(3):307–312, 2005.

[66] Andrey A. Dobrynin and Leonid S. Mel’nikov. Wiener index, line graph and the cyclomatic

number. MATCH Commun. Math. Comput. Chem., 53:209–214, 2005.

[67] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17(3):449–467,

1965.

[68] P. Erd˝ os. Graph theory and probability. Canadian Journal of Mathematics, 11(1):34, 1959.



BIBLIOGRAPHY 241

[69] P. Erd˝ os and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related

questions. Infinite and finite sets, 2:609–627, 1975.

[70] P. Erd˝ os, A.L. Rubin, and H. Taylor. Choosability in graphs. Congr. Numer, 26:125–157,

1979.

[71] P. Erdös and A. Hajnal. Ramsey-type theorems* 1. Discrete Applied Mathematics, 25(1-2):37–

52, 1989.

[72] P. Erdös and A.H. Stone. On the structure of linear graphs. Bull. Amer. Math. Soc, 52:1087–

1091, 1946.

[73] L. Esperet, M. Montassier, and A. Raspaud. Linear choosability of graphs. Discrete Mathe-

matics, 308(17):3938–3950, 2008.

[74] L. Esperet, M. Montassier, and A. Raspaud. Linear choosability of graphs. Discrete Mathe-

matics, 308(17):3938–3950, 2008.

[75] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. Journal of

the ACM (JACM), 30(3):514–550, 1983.

[76] A.M. Farley and A. Proskurowski. Extremal graphs with no disconnecting matching. Congres-

sus Nummerantium, 41:153–165, 1984.

[77] Guillaume Fertin and André Raspaud. Acyclic coloring of graphs of maximum degree ∆.

In Felsner Stefan, editor, 2005 European Conference on Combinatorics, Graph Theory and

Applications (EuroComb ’05), volume AE of DMTCS Proceedings, pages 389–396. Discrete

Mathematics and Theoretical Computer Science, 2005.
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