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Introduction

The present document contains descriptions of results I obtained in the last few years. I chose
these specific results because I feel they correspond to the most significant steps towards
achieving my main long-term research goals. The purpose of the document is to provide an
overview without forcing the reader to delve into the technical proofs of the corresponding
articles. The interested reader can however easily access to precisions, as the research articles
corresponding to the described results are appended to the text.

My research focuses on devising and analysing faster algorithms for Euclidean lattices
and their applications. Lattice algorithms are often classified into two categories: Polynomial-
time algorithms for providing interesting representations of lattices, which often means
LLL-type algorithms (although Hermite Normal Form algorithms would nicely fit in this
category); And slower algorithms that attempt to achieve computationally more demand-
ing tasks. This distinction is clearly artificial (as originally observed by Claus-Peter Schnorr,
there exists a whole continuum between the two categories), and tends to become even more
so, as ideas developed for one tend to prove useful as well for the other. Nevertheless, the
algorithms of the first category deserve specific attention, as they tend to be more practical
and have progressively become widespread tools in many fields of computational mathe-
matics and computer science: Amazingly, LLL sometimes seems more famous than the ob-
jects it handles! The applications of lattice algorithms are numerous and occur in a very wide
variety of fields of mathematics and computer science. The seminal article of Arjen Lenstra,
Hendrik Lenstra Jr and László Lovász already considered applications in Computer Algebra
(for factoring integer polynomials), Combinatorial Optimisation (for solving Integer Linear
Programming instances) and Algorithmic Number Theory (for simultaneous Diophantine
approximation). The range of applications of lattices has considerably widened, now in-
cluding Cryptography (for cryptanalytic purposes, and more recently, for devising crypto-
graphic schemes), Computer Arithmetic, Communications Theory, Computational Group
Theory, GPS, etc. For some applications, well-known lattice algorithms can be applied di-
rectly, whereas others lead to new mathematical and computational problems on lattices,
thus reviving the field.

My PhD thesis was already centred on lattice algorithms and their applications. First,
I studied and proposed improvements to lattice reduction algorithms, focusing on strong
reductions in tiny dimensions, and on the Lenstra-Lenstra-Lovász reduction in arbitrary di-
mensions. An important result in that direction was the elaboration, empirical study and
implementation of the L2 algorithm [82, 85, 83, 16]. L2 was the first algorithm to compute
LLL-reduced bases with run-time bounded quadratically with respect to the bit-sizes of the
input matrix entries. The algorithmic acceleration was due to the efficient and reliable use of
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low-precision floating-point arithmetic to compute (an approximation to) the Gram-Schmidt
orthogonalisation of the current lattice basis. This established a link between lattice reduc-
tion, traditionally seen as an algebraic procedure, and computer arithmetic and numerical
analysis. The second theme of my PhD thesis was the use of lattice reduction to solve diffi-
cult problems from the field of computer arithmetic. The main such problem I tackled was
the so-called Table’s Maker Dilemma: Given a function f over R, an interval I and a preci-
sion p f (e.g., f = exp on [1/2, 1) with precision p f = 53), compute the minimal sufficient
precision pc such that for any precision p f floating-point number x in I, the closest preci-
sion p f floating-point number to f (x) can be determined from a precision pc floating-point
approximation to f (x). I proposed a new approach for solving this problem, combining
non-linear polynomial approximations to f and Coppersmith’s method for finding small
roots of bivariate polynomials modulo an integer. The latter itself relies on an LLL-reduction
algorithm [117, 116].

After the completion of my PhD thesis, I chose to focus mainly on lattice reduction. I
continued investigating numerical analysis techniques for speeding up LLL-reduction algo-
rithms. In particular, with Gilles Villard, we started to progressively replace the Cholesky
factorisation used within L2 for handling the Gram-Schmidt orthogonalisation computa-
tions, by the QR-factorisation. These are mathematically equivalent, but the numerical prop-
erties of the QR-factorisation are superior, in the sense that smaller precisions may be used
while still obtaining meaningful results. Xiao-Wen Chang helped us analysing the sensitivity
of the R-factor of the QR-factorisation for LLL-reduced bases, which led to the introduction
of a perturbation-friendly modified definition of LLL-reducedness [20]. This study helped
us devising an alternative to L2 relying on Householder’s QR-factorisation algorithm [78],
and later devising the first LLL-reduction algorithm with quasi-linear complexity with re-
spect to the bit-sizes of the input matrix entries and polynomial complexity with respect to
the dimension [88]. Chapter 1 contains the background and reminders necessary for the full
document, whereas Chapter 2 is an overview of these results on the LLL-reduction. The
reader interested in obtaining more details is referred to the following accompanying arti-
cles:

• X.-W. Chang, D. Stehlé and G. Villard. Perturbation Analysis of the QR factor R in the
Context of LLL Lattice Basis Reduction. To appear in Mathematics of Computation.

• I. Morel, D. Stehlé and G. Villard. H-LLL: Using Householder inside LLL. In the pro-
ceedings of ISSAC 2009.

• A. Novocin, D. Stehlé and G. Villard. An LLL-reduction algorithm with quasi-linear
time complexity. In the proceedings of STOC 2011.

Chapter 3 is devoted to algorithms for solving problems on Euclidean lattices that are out
of reach of LLL-type algorithms. In 2006, Guillaume Hanrot and I started working on the
Kannan-Fincke-Pohst algorithm for solving the Shortest and Closest Lattice Vector Problems.
We improved its complexity analysis, and then, together with Xavier Pujol, we studied its
numerical and implementation facets [44, 95, 23]. More recently, we investigated the use
of a low-dimensional SVP solver for computing bases that are reduced in a stronger sense
than LLL’s. More specifically, we showed that a slightly simplified version of the Schnorr
and Euchner BKZ algorithm [105, 106] may be terminated within a polynomial number of
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iterations while still providing bases of excellent quality [43]. The results of this chapter
correspond to the following accompanying articles:

• G. Hanrot and D. Stehlé. Improved Analysis of Kannan’s Shortest Lattice Vector Algo-
rithm. In the proceedings of CRYPTO 2007.

• G. Hanrot, X. Pujol and D. Stehlé. Analyzing Blockwise Lattice Algorithms using Dy-
namical Systems. To appear in the proceedings of CRYPTO 2011.

During my secondment to the University of Sydney and to Macquarie University (be-
tween 2008 and 2010), and in collaboration with Ron Steinfeld, I started working in a third
field related to the computational aspects of Euclidean lattices. Instead of devising faster
algorithms for solving computational problems, the aim was to exploit the apparent com-
putational hardness of some problems on lattices to derive secure cryptographic functions.
Lattice-based cryptography started in the mid-90’s with Ajtai’s seminal worst-case to average-
case reduction [3]. It boomed about five years ago, with the elaboration of numerous cryp-
tographic schemes (see [74] for a recent survey). The facet I am most interested in is to use
structured lattices corresponding to ideals and modules over rings of integers of some num-
ber fields (typically a cyclotomic fields of orders that are powers of 2) to achieve improved
efficiency and/or new functionalities. In this vein, together with Ron Steinfeld, Keisuke
Tanaka and Keita Xagawa, we proposed the first encryption scheme with quasi-optimal key
sizes and encryption/decryption performances, that is provably secure, assuming the expo-
nential quantum worst-case hardness of standard problems on ideal lattices [119]. By build-
ing upon recent tools concurrently and independently developed by Lyubashevsky, Peikert
and Regev [69], we proved that the famous NTRU encryption scheme [54, 55] can be slightly
modified so that it allows for a security proof under a similar assumption [118]. Chapter 4 is
devoted to these results.

• D. Stehlé, R. Steinfeld, K. Tanaka and K. Xagawa. Efficient Public-Key Encryption
Based on Ideal Lattices. In the proceedings of ASIACRYPT 2009.

• D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems over ideal
lattices. In the proceedings of EUROCRYPT 2011.

Writing this document was an excellent opportunity for me to clarify and put in perspec-
tive the results I obtained in the last few years. In particular, it has allowed me to take the
time to re-think and structure my research targets. These goals are succinctly overviewed in
the “Perspectives” sections of each one of the different chapters. Although lattice algorithms
and cryptographic applications will remain my core research area, I intend to broaden my
research scope to a larger range of applications of Euclidean lattices, including communi-
cations theory (e.g., MIMO technology), numerical analysis (e.g., using lattice algorithms to
improve numerical stability), and computational number theory (e.g., units of and modules
over the rings of integers of number fields). Looking at the same object from many different
angles will hopefully leads to a deeper understanding of its inner workings.





Notations

For a matrix B, we let BT denote the transpose of B. Furthermore, if B is square, then we will
let B−T denote the transpose of its inverse. Also, for any matrix B, the notation |B| will refer
to the same matrix where the coefficients have been replaced by their absolute values. The
identity matrix will be denoted by I. If (xi)i≤n ∈ Rn, we let diag(xi) denote the diagonal
matrix whose diagonal coefficients are the xi’s. We let Dn and D+

n respectively denote the
sets of n-dimensional diagonal matrices and n-dimensional diagonal matrices with positive
diagonal coefficients. The notation ‖B‖2 refers to the standard matrix norm induced by the
vectorial Euclidean norm.

Vectors will always be denoted by bold-case letters. If two vector b and c have matching
dimensions, their inner product ∑i bici will be denoted by 〈b, c〉. By default, the notation ‖b‖
corresponds to the Euclidean norm of b. If S ⊆ Rn, we let Span(S) denote the vectorial
subspace of Rn spanned by the elements of S. The set of all n × n matrices over a ring R
that are invertible (over R) will be denoted by GLn(R). The notation Bn(c, r) refers to the
n-dimensional (closed) ball of centre c and radius r.

If S is a finite set, its cardinality is denoted by |S|. If S is countable set and f is a function
defined over S taking non-negative values, then we let f (S) ∈ [0,+∞] denote ∑x∈S f (x).

We use the standard Landau notations O(·), o(·), ω(·) and Ω(·). We also use the no-
tations Õ(·) and Ω̃(·) fro hiding poly-logarithmic factors. E.g., the function n 7→ n2 logc n
is Õ(n2) for any constant c. The notation poly(n) denotes any polynomial in n. When a func-
tion decreases faster than n−c for any constant c > 0, we say it is negligible (or, equivalently,
that it is n−ω(1)).

If D is a distribution, the notation x ←↩ D means we sample x with distribution D. If a
set S is finite, we let U(S) denote the uniform distribution on S. Also, the probability that
an event X occurs will be denoted by Pr[X]. If two distributions D1 and D2 are defined over
the same support S and if that support is countable, then the statistical distance between D1
and D2 is defined as ∆(D1, D2) =

1
2 ∑x∈S |D1(x)− D2(x)|.

The notation bxe denotes an arbitrary integer closest to x. We will use a standard base-2
arbitrary precision floating-point model, such as described in [50, Sec. 2.1]. The notation �(a)
refers to the floating-point rounding of a (the working precision being given by the context).





CHAPTER 1
Reminders on Euclidean Lattices

The aim of this chapter is to recall the necessary mathematical background. More in-depth
and comprehensive introductions to lattices are available in [41, 115]. Detailed accounts on
the computational aspects of lattices include [66, 86, 72, 26, 97].

1.1 Euclidean lattices

A Euclidean lattice L a discrete additive subgroup of a Euclidean space. When the lat-
ter is Rn, we call n the embedding dimension of the lattice. Equivalently, a lattice in Rn

can be defined as the set of all linear integer combinations of linearly independent vec-
tors b1, . . . , bd ∈ Rn, in which case we write:

L
[
(bi)i≤d

]
=

{
∑
i≤d

xibi : (xi)i≤d ∈ Zd

}
= ∑

i≤d
Zbi.

We say that the bi’s form a basis of the lattice they span. A lattice may have many bases,
but they share the same cardinality d (≤ n), which is called the dimension of the lattice. The
most common way to represent a lattice is to encode it by a basis, i.e., by an n × d matrix
whose columns are the coordinates of the basis vectors. Several situations are of particular
interest: When d = n, the lattice is said full-rank; and when L ⊆ Zn (resp. Qn), the lattice is
said integral (resp. rational). For the sake of simplicity, we will restrict ourselves to full-rank
lattices, and very often (but not always) to rational lattices.

Unless d = n ≤ 1, a (full-rank) lattice has infinitely many bases. The bases of a given
lattice are obtained from one another by unimodular transformations, i.e., invertible integer
linear maps. More precisely, if (bi)i≤n is a basis of a lattice L, a tuple (ci)i≤n is also a basis
of L if and only if there exists U ∈ GLn(Z) such that (ci)i≤n = (bi)i≤n ·U. Figure 1.1 gives a
two-dimensional lattice with two different bases.

Given a basis of a lattice L, it is of interest to obtain information that is intrinsic to L,
i.e., independent of the particular representation of L. The dimension n and embedding
dimension n are two such lattice invariants. Popular lattice invariants also include:

• The minimum λ1(L) is the (Euclidean) norm of a shortest non-zero vector of L,

• The successive minima are defined by λi(L) = min(r : dim Span(L ∩ Bn(0, r)) ≥ i) for
all i ≤ n;

• The determinant det(L) = limr→∞ |Bn(0, r) ∩ L|/vol(Bn(0, r)) quantifies the density
of the lattice in its linear span;
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Figure 1.1: A two-dimensional lattice along with two of its bases.

• The covering radius ρ(L) is the largest distance to L of a point in the linear span of L.

Minkowski’s theorem provides a link between the minima and the determinant. It states
that any lattice L of dimension n satisfies:

∏
i≤n

λi(L) ≤
√

nn · det(L).

This implies that the finiteness of the maximum over all n-dimensional lattices L of the
quantity λ1(L)2/ det(L)2/n. This maximum, called Hermite’s constant in dimension n, will
be denoted by γn (and we have γn ≤ n).

Finally, in order to study a given lattice L, it often proves useful to consider its dual
lattice L̂ = {c ∈ Span(L) : ∀b ∈ L, 〈b, c〉 ∈ Z}. If B is a basis matrix of L, then as the
columns of the matrix B−T form a basis of the dual L̂.

1.2 Algorithmic problems on lattices

The most studied algorithmic problems on Euclidean lattices are computational tasks nat-
urally related to the lattice invariants described in the previous section. There exist many
variants of the problems we give below, but describing them all is not the purpose of this
chapter. We only give those we will consider later on. Also, in order to avoid irrelevant tech-
nicalities due to real numbers, the inputs to these problems are restricted to being rational.

SVPγ. The Shortest Vector Problem with parameter γ ≥ 1 is as follows: Given a basis (bi)i≤n
of a rational lattice L, find b ∈ L such that 0 < ‖b‖ ≤ γ · λ1(L).

SIVPγ. The Shortest Independent Vectors Problem with parameter γ ≥ 1 is as follows:
Given a basis (bi)i≤n of a rational lattice L, find (ci)i≤n ∈ Ln linearly independent such
that maxi ‖ci‖ ≤ γ · λn(L).

HSVPγ. The Hermite Shortest Vector Problem with parameter γ ≥ 1 is as follows: Given a
basis (bi)i≤n of a rational lattice L, find b ∈ L such that 0 < ‖b‖ ≤ γ · (det L)1/n.

CVPγ. The Closest Vector Problem with parameter γ ≥ 1 is as follows: Given a basis (bi)i≤n
of a rational lattice L and a target t ∈ Span(L), find b ∈ L such that ‖b− t‖ ≤ γ · dist(t, L).
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BDDγ. The Bounded Distance Decoding Problem with parameter γ ≥ 1 is as follows: Given
a basis (bi)i≤n of a rational lattice L and a target t ∈ Span(L) such that dist(t, L) ≤ γ−1 ·
λ1(L), find b ∈ L such that ‖b− t‖ = dist(t, L).

Clearly, the complexity of these problems grows with n and decreases with γ. The de-
cisional variant of SVPγ (deciding whether the minimum of a given lattice is ≤ 1 or ≥ γ,
under the promise that we are in one of these situations) is known to be NP-hard under ran-
domised reductions for small values of γ [4, 47]. The same holds for SIVPγ and CVPγ under
deterministic reductions [28, 24]. Unfortunately, the largest values of γ for which such results
are known to hold remain quite small (smaller than nc for any c > 0), but these problems
seem to remain very hard to solve even for larger values of γ. The best known algorithms
for solving these problems for γ ≤ poly(n) all have exponential complexity bounds and are
believed to be at least exponential-time in the worst case [77, 76, 44, 96] and the survey [42].
Schnorr’s algorithm [104] using [76] as a subroutine allows one to trade cost for output qual-
ity. It is the best known algorithm for intermediate values of γ, reaching γ = kO(n/k) in time
and space poly(n) · 2O(k) (up to a factor that is polynomial in the bit-size of the input). By

choosing k = O(log n), one obtains a polynomial-time algorithm for γ = 2O(n log log n
log n ). Beating

the trade-off achieved by Schnorr’s hierarchy is a long-standing open problem.
It is also worth noting at this stage that it is not currently known how to exploit quan-

tum computing to outperform classical algorithms for solving these problems. However, no
argument is known either for discrediting such a possibility.

1.3 Lattice reduction

Lattice reduction is a representation paradigm. Given a basis of a lattice, the aim is to find
another basis of the same lattice with guaranteed norm and orthogonality properties. All the
known algorithms for solving the problems mentioned in the previous section rely at least at
some stage, or completely, on lattice reduction. Note that the word reduction is ambiguous,
as it can equally refer to the state of being reduced, or to the process of reducing. However,
the meaning is usually clear from the context.

In order to be able to properly define several notions of reduction, we first recall some
facts on the QR matrix factorisation and its relationship to the Gram-Schmidt orthogonalisa-
tion.

Any full column rank matrix B ∈ Rn×n (which can be seen as the basis matrix of a lattice)
can be factored as B = QR where Q ∈ Rn×n is an orthogonal matrix (i.e., Q ·QT = QT ·Q =
I), and R ∈ Rn×n is upper triangular with positive diagonal coefficients. Note that the R-
factor of B can also be obtained from the Cholesky factorisation G = RTR of the positive
definite matrix G = BTB, called the Gram matrix of B. The QR matrix factorisation encodes
the same information as the Gram-Schmidt orthogonalisation (GSO for short): the former
lends itself more easily to algebraic and numeric techniques, while the latter conveys more
geometrical intuition. The Gram-Schmidt orthogonalisation of a basis (bi)i≤n is the orthog-
onal family (b∗i )i≤n where b∗i is the projection of bi orthogonally to the span of b1, . . . , bi−1.
More explicitly

b∗i = bi −∑
j<i

µijb∗j with µij =
〈bi, b∗j 〉
‖b∗j ‖2 .
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If B = (bi)i≤n has QR-factorisation B = QR and GSO (b∗i )i≤n, then for i ≤ n the ith column
of Q is b∗i

‖b∗i ‖
, and for 1 ≤ i ≤ j ≤ n we have rij = µji‖b∗i ‖ = µjirii.

The QR-factorisation and GSO provide informations on the lattice invariants. If (bi)i≤n
is a basis of a lattice L, then we have:

λi(L) ≥ min
j≥i
‖b∗j ‖ for all i ≤ n,

λi(L) ≤ max
j≤i
‖bj‖ for all i ≤ n,

det(L) = ∏
i≤n
‖b∗i ‖,

ρ(L) ≤ 1
2

√
∑
i≤n
‖b∗i ‖2.

We say that a basis (bi)i≤n is size-reduced if |µij| ≤ 1/2 (or, equivalently, if |rji| ≤ rjj/2)
for all i > j. Other definitions of size-reducedness have been introduced, with computational
advantages over this classical definition, but we postpone this discussion to Chapter 2. The
basis (bi)i≤n is said Lenstra-Lenstra-Lovász-reduced with parameter δ ∈ (1/4, 1] (δ-LLL-
reduced for short) if it is size-reduced and for all i < d we have δr2

ii ≤ r2
i+1i+1 + r2

ii+1 (or,
equivalently, δ‖b∗i ‖2 ≤ ‖b∗i+1 + µi+1ib

∗
i ‖2). The latter condition, often ascribed to Lovász,

states that once projected orthogonally to b1, . . . , bi−1, the i + 1th vector is almost longer
than the ith vector. Figure 2.1 illustrates this definition in dimension 2.

Figure 1.2: The hashed area is the set of possible locations for (b1, b2) to be δ-LLL-reduced.

LLL-reduction has the twofold advantage of being computable in polynomial-time (us-
ing the LLL algorithm [65]) and providing bases of quite decent quality. Among others,
an LLL-reduced basis (bi)i≤n of a lattice L satisfies the following properties (with α =
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(δ− 1/4)−1 ≥
√

3/2):

rii ≤ α · ri+1i+1 for all i < n,

‖bi‖ ≤ αi−1 · rii for all i ≤ n,

αi−d · rii ≤ λi(L) ≤ αi · rii for all i ≤ n,

‖b1‖ ≤ α
n−1

2 · (det(L))
1
n ,

∏
j≤n
‖bj‖ ≤ α

n(n−1)
2 · det(L).

Oppositely, the quality of Hermite-Korkine-Zolotarev-reduced bases (HKZ-reduced for
short) is much higher, but computing an HKZ-reduced basis of a lattice L from an arbitrary
basis of L is polynomial-time equivalent to solving SVPγ for γ = 1. A basis (bi)i≤n is said
HKZ-reduced if it is size-reduced and if for any i ≤ n, we have ‖b∗i ‖ = λ1(L[(b(i)

j )j≥i]),

where b(i)
j = bj − ∑k<i µjkb∗k is the projection of the vector bj orthogonally to b1, . . . , bi−1.

As a direct consequence of Minkowski’s theorem, we have:

∀i ≤ n, ‖b∗i ‖ ≤
√

n− i + 1

(
n

∏
j=i
‖b∗j ‖

) 1
n−i+1

.

In 1987, Schnorr introduced a hierarchy of reductions ranging from LLL to HKZ [103]. All
known algorithms mentioned in the previous section for solving the four mentioned prob-
lems for intermediate values of γ attempt to achieve Schnorr’s Block-Korkine-Zolotarev re-
duction (BKZ for short) or variants thereof (see, e.g., [103, 105, 106, 33, 34]). A basis (bi)i≤n is
said BKZβ-reduced for β ∈ [2, n] if it is size-reduced and if for all i ≤ n the vectors b∗i , b(i)

i+1, . . . ,

b(i)
min(i+β−1,n) form an HKZ-reduced basis (in dimension min(n− i + 1, β)).

1.4 Lattice Gaussians

Discrete Gaussian distributions with lattice supports have recently arisen as a powerful tool
in lattice-based cryptography. They have been first used by Micciancio and Regev [73] to
improve on Ajtai’s worst-case to average-case reduction [3]. Another major breakthrough
occurred in 2008, when Gentry, Peikert and Vaikutanathan [39] showed that Klein’s algo-
rithm [61] may be used to sample points according to these distributions (or, more precisely,
from distributions whose statistical distances to desired discrete Gaussians is small).

Let L ⊆ Rn be a full-rank lattice. The discrete Gaussian distribution DL,σ,c of support L,
centre c ∈ Rn and standard deviation σ is defined by:

∀x ∈ L : DL,σ,c(x) =
ρc,σ(x)

∑b∈L ρc,σ(b)
,

where ρc,σ(x) = exp(−π‖x− b‖2/σ2). The subscripts c and L will be omitted when c = 0
and L = Zn respectively. Two Gaussian distributions with centre 0 and support Z2 but
different standard deviations are presented in Figure 1.4.

As can be observed, the larger the standard deviation, the smoother the distribution
looks. In fact, the larger the standard deviation, the closer the behaviour of the discrete
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Figure 1.3: Three discrete Gaussian distributions with support Z2 and centre 0, but different
standard deviations s.

Gaussian to that of a continuous Gaussian. This phenomenon is quantified by the so-called
smoothing parameter. For a lattice L and a parameter ε > 0, the ε-smoothing parameter of L
is defined by ηε(L) = min(σ : ρ0,1/σ(L̂ \ 0) ≤ ε). For any ε ∈ (0, 1), we have (see [73, 91]):

ηε(L) ≤
√

ln(2n + 1/ε))

π
·min

(
λn(L),

1
λ∞

1 (L̂)

)
,

where λ∞
1 (L̂) stands for the first minimum of the dual L̂ with respect to the infinity norm.

We will use the following properties of lattice Gaussians (proved in [39, 73]):

• For any full-rank lattice L ⊆ Rn, c ∈ Rn, ε ∈ (0, 1/3) and σ ≥ ηε(L), we have
Prb←↩DL,σ,c [‖b‖ ≥ σ

√
n] ≤ 2−n+1.

• For any full-rank lattices L′ ⊆ L ⊆ Rn, c ∈ Rn, ε ∈ (0, 1/2) and σ ≥ ηε(L′), we
have ∆(DL,σ,c mod L′; U(L/L′)) ≤ 2ε.

Finally, as we mentioned above, any Gaussian distribution with support a full-rank lat-
tice L ⊆ Qn may be sampled from efficiently using a basis (bi)i≤n of L, provided that the
desired standard deviation is sufficiently large.

Theorem 1 ([39, Th. 4.1]) There exists a polynomial-time algorithm that takes as input any
basis (bi)i≤n of any lattice L ⊆ Qn, any centre c ∈ Qn and any σ = ω(

√
log n) ·max ‖bi‖

(resp. σ = Ω(
√

n) ·max ‖bi‖), and returns samples from a distribution whose statistical
distance to DL,σ,c is negligible (resp. exponentially small) with respect to n.



CHAPTER 2
Computing LLL-Reduced Bases

In their seminal article [65], Lenstra, Lenstra and Lovász both introduced the notion of LLL-
reducedness (recalled in Chapter 1), and an algorithm for computing LLL-reduced bases.
This algorithm, commonly referred to as LLL or L3, is recalled in Figure 2.1.

Input: A basis (bi)i≤n of L ⊆ Zn and δ ∈ (1/4, 1).
Output: A δ-LLL-reduced basis.
1. Compute the rational GSO, i.e., all the µi,j’s and b∗i ’s.
2. κ := 2. While κ ≤ n do
3. Size-reduce the vector bκ using the size-reduction algorithm of Figure 2.2.
4. If δ · ‖b∗κ−1‖2 ≤ ‖b∗κ‖2 + µ2

κκ−1‖b∗κ−1‖2, then set κ := κ + 1.
5. Else swap bκ−1 and bκ , update the GSO and set κ := max(2, κ − 1).
6. Output (bi)i≤n.

Figure 2.1: The L3 algorithm.

Input: A basis (bi)i≤n of L ⊆ Zn, its GSO and an index κ.
Output: The same basis but with the vector bκ size-reduced, and the updated GSO.
1. For i = κ − 1 down to 1 do
2. bκ := bκ − dµκ,ic · bi.
3. Update the GSO accordingly.

Figure 2.2: The size-reduction algorithm.

In this chapter, we will use the variable β = maxi log ‖bi‖, using the input bi’s. The costs
of LLL and its variants will be bounded with respect to both n and β.

The LLL algorithm is polynomial-time but remains quite slow. Its inefficiency stems from
the following combination of drawbacks:

• The GSO computations are performed in exact rational arithmetic, with numerators
and denominators of possibly huge bit-sizes O(nβ).

• The basis computations are performed in exact integer arithmetic. The involved in-
tegers have smaller bit-sizes O(n + β) than the rationals involved in the GSO com-
putations, but still significantly contribute to the cost, as there are up to O(n2β) loop
iterations (from Steps 3 to 6 of the algorithm of Figure 2.1).
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• Finally, many of the size-reduction steps are superfluous. Assume the index κ remains
in some small interval [i1, i2] during some consecutive loop iterations, then for each
iteration LLL performs a full size-reduction of the current vector with respect to all the
previous basis vectors (i.e., in the algorithm of Figure 2.2, the index i goes from κ all the
way down to 1 every time). But only the GSO quantities ‖b∗i ‖2 and µij for i, j ∈ [i1, i2]
are useful for correctly deciding the Lovász tests (Step 4 of the algorithm of Figure 2.1).

The first two sources of inefficiency are of an arithmetic flavour, while the third is related
to fast linear algebra techniques (subdividing matrices into blocks and using fast matrix
multiplication). In this chapter, we will be concerned with the arithmetic aspects of LLL
and we will not elaborate on how to save size-reduction operations (see [109, 102, 121] for
works in that direction). Table 2.1 summarises the algorithmic improvements for computing
LLL-reduced bases over the original LLL algorithm, that are of an arithmetic nature. For
the derivation of the bit-complexity upper bounds, we assume fast integer multiplication is
used [111, 32]: Two `-bit long integers may be multiplied in time O(`1+ε), for some ε that
is o(1). Also, it is worth noting that among the described algorithms, only those from [65]
and [58] return bases that are genuinely LLL-reduced. The others return bases that are re-
duced in a sense that is slightly weaker than the LLL-reduction (see Section 2.1 below).

Table 2.1: Bit-complexities of selected LLL-reduction algorithms.

Bit-complexity Output reducedness
[65], LLL/L3 O(n5+εβ2+ε) δ-LLL-reduced

[58] O(n5β2(n + β)ε) δ-LLL-reduced
[104] O(n4β(n + β)1+ε) (δ, η)-LLL-reduced

[82, 84], L2 O(n4+εβ(n + β)) (δ, η)-LLL-reduced
[78] and Section 2.2, H-LLL O(n4+εβ(n + β)) (δ, η, θ)-LLL-reduced

[88] and Section 2.3, L̃
1

O(n5+εβ + n4+εβ1+ε) (δ, η, θ)-LLL-reduced

The L2 algorithm was the first to achieve a complexity bound that is quadratic with re-
spect to β. It relies on exact integer operations for the basis matrix computations and on ap-
proximate floating-point arithmetic for the underlying GSO computations. By relying on an
exact Gram matrix computation (the Gram matrix of the basis (bi)i≤n is the positive symmet-
ric definite matrix (〈bi, bj〉)i,j≤n) and on the Cholesky factorisation algorithm, the computed
approximations of the GSO coefficients can be proven to be close to the genuine GSO coef-
ficients, and the decisions taken by the tests of the LLL algorithm using these approximate
data thus remain sufficiently meaningful for making progress during the execution. The cost
improvement of L2 stems from the fact that a low precision of O(n) bits suffices for being
able to guarantee correctness: This itself originates from the facts that at any loop iteration
the vector bκ under scope is always such that (bi)i<κ is a reduced basis and that reduced
bases are well-conditioned, guaranteeing that a low precision suffices to obtain meaningful
results.

An important drawback of L2 is its reliance on the Cholesky factorisation algorithm:
First, it leads L2 to require the computation and update of the (exact) Gram matrix; And
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second the Cholesky factorisation is much more sensitive to perturbations than the QR-
factorisation, leading to requiring higher precisions than a priori necessary. In Sections 2.1
and 2.2 explain how the Cholesky factorisation may be replaced by the QR-factorisation.
Section 2.3 presents another step towards improving LLL-reduction algorithms: approxi-
mate computations may also be performed on the basis matrices themselves.

2.1 A perturbation-friendly definition of LLL-reduction

The following examples in dimension 2 show that the classical notion of LLL-reduction is
not preserved under roundings of the basis vectors. Assume we round each entry of the
following matrices at t1 bits of precision:

B1 :=

[
1 2t1+t2+1 + 2t2

−1 2t1+t2+1

]
and B2 :=

[
1 2t1 + 2−1 + 2−2t2

2−t2 −2t1+t2

]
.

Then we obtain:

B1 :=

[
1 2t1+t2+1

−1 2t1+t2+1

]
and B2 :=

[
1 2t1 + 1

2−t2 −2t1+t2

]
.

The basis matrix B1 is not reduced as the inner product of the two columns is 2t2 , which
can be set arbitrarily large compared to the norm of the first column, by letting t2 grow to
infinity. However, its approximation B1 is always reduced, as its columns are orthogonal.
Oppositely, the basis matrix B2 is reduced as soon as t2 ≥ 1, while its approximation B2 is
not reduced.

This phenomenon is unfortunate: It would be convenient (and more efficient!) to be able
to decide reducedness by looking only at the most significant bits of the entries of the matrix
under scope. But the above examples show that LLL-reducedness is not preserved under
roundings, or, more generally, perturbations.

As the definition of LLL-reduction expresses itself in terms of the QR matrix factorisa-
tion, it is natural to analyse the sensitivity of the R-factor of an LLL-reduced basis under
perturbations. This is a classical topic in numerical analysis [123, 19, 18], but we needed
stronger results for our purposes.

Theorem 2 ([20]) Let B ∈ Rn×n be of full column rank with QR factorisation B = QR. Let
the perturbation matrix ∆B ∈ Rn×n satisfy maxi

‖∆bi‖
‖bi‖ ≤ ε. If

cond(R) · ε <
√

3/2− 1
n3/2 with cond(R) = ‖|R||R−1|‖,

then B + ∆B has a unique QR factorisation B + ∆B = (Q + ∆Q)(R + ∆R), and

max
i

‖∆ri‖
‖ri‖

≤ (
√

6 +
√

3)n3/2χ(B) ε,

where (with ζdiag(δi) :=
√

1 + maxi<j(δj/δi)2):

χ(B) = inf
D∈D+

n

ζD
∥∥|R||R−1|D

∥∥
2

∥∥D−1R
∥∥

2
‖R‖2

.
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Given this columnwise perturbation bound, the aim is then to find a variant of the defi-
nition of LLL-reduction that is preserved under columnwise perturbations. This is provided
by the following definition (a variant of that definition was implicit in [102]).

Definition 1 ([20, Def. 5.3]) Let Ξ = (δ, η, θ) with η ∈ (1/2, 1), θ > 0 and δ ∈ (η2, 1).
Let B ∈ Rd×d be non-singular with QR factorisation B = QR. The matrix B is Ξ-LLL-reduced
if:

• For all i < j, we have |rij| ≤ ηrii + θrjj;

• For all i, we have δ · r2
ii ≤ r2

ii+1 + r2
i+1i+1.

Let Ξi = (δi, ηi, θi) be valid LLL-parameters for i ∈ {1, 2}. We say that Ξ1 is stronger than Ξ2
and write Ξ1 > Ξ2 if δ1 > δ2, η1 < η2 and θ1 < θ2.

Note that for θ = 0, we recover the (δ, η)-LLL-reduction from [82] (which was already
implicit in [104]), and that for (η, θ) = (1/2, 0), we recover the classical δ-LLL-reduction.
Figure 2.1 illustrates these different types of reduction.

Figure 2.3: The hashed area is the set of vectors b2 such that (b1, b2) is (from left to right)
(1, 0, 0)-LLL, (δ, 0, 0)-LLL, (δ, η, 0)-LLL and (δ, η, θ)-LLL.

Note that the Ξ-LLL-reduction and classical δ-LLL-reduction mostly differ when the rii’s
increase, which is the case of the two-dimensional examples above. Also, the quality prop-
erties satisfied by δ-LLL-reduced bases (see Section 1.3) are also satisfied by (δ, η, θ)-reduced

bases, after replacing α = (δ − 1/4)−1 ≥
√

3/2 by α =
θη+
√

(1+θ2)δ−η2

δ−η2 . Additionally,

any (δ, η, θ)-reduced basis B with R-factor R satisfies cond(R) ≤ |1−η−θ|α+1
(1+η+θ)α−1 (1+ η + θ)nαn =

2O(n), allowing us to use Theorem 2.
Finally, the following result, derived from Theorem 2 and the good orthogonality proper-

ties of Ξ-reduced bases, shows that the modified notion of LLL-reduction is preserved under
column-wise perturbations.

Theorem 3 ([20, Co. 5.1]) Let Ξ1 > Ξ2 be valid reduction parameters. There exists a con-
stant c such that for any Ξ1-LLL-reduced B ∈ Rn×n and any ∆B ∈ Rn×n with max ‖∆bi‖

‖bi‖ ≤
2−c·n, the matrix B + ∆B is non-singular and Ξ2-LLL-reduced.
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2.2 LLL-reducing using the R-factor of the QR-factorisation

By combining the above sensitivity analysis of the R-factor under columnwise perturbations,
with the backward stability of the Householder QR-factorisation algorithm (see [50, Ch. 19]
and [20, Se. 6]), we obtain that if a basis is Ξ-LLL-reduced, then the matrix R computed by
Householder’s algorithm with precision p floating-point arithmetic is a good approximation
to the genuine R-factor. Note that any other algorithm computing the R-factor could be
equally used, as long as it satisfies a column-wise backward error stability bound such as the
one below (up to any multiplicative factor that is polynomial in n): This includes the Givens
algorithm based on Givens rotations, and the Modified Gram-Schmidt algorithm [50, Ch.
19].

Theorem 4 Let R be the computed R-factor of the QR factorisation of a given matrix B ∈
Rn×n by the Householder algorithm, with precision p floating-point arithmetic. If 80n2 ·
2−p ≤ 1, then there exists an orthogonal matrix Q ∈ Rn×n such that

B + ∆B = QR and max
‖∆bi‖
‖bi‖

≤ 80n2 · 2−p.

Inputs: A basis B = (bi)i≤n of L ⊆ Zn×n; a precision p;
�(2−cn) (for an arbitrary c > 0); and a floating-point number δ.
Output: A basis of L.
1. Compute an approximation r1 of the first column of the R-factor of B,
using Householder’s algorithm in precision p.
2. κ := 2. While κ ≤ n, do
3. Call the algorithm of Figure 2.5 on input

[
(bi)i≤n, (ri)i<κ , �(2−cd), p

]
.

4. s := �(‖ � (bκ)‖2); s := �(s−∑i≤κ−2 r2
iκ).

5. If �(δ · �(r2
κ−1κ−1)) ≤ s, then κ := κ + 1.

6. Else swap bκ−1 and bκ ; and set κ := max(κ − 1, 2).
7. Return (bi)i≤n.

Figure 2.4: The H-LLL algorithm.

The H-LLL algorithm, given in Figure 2.4, mimics the LLL algorithm except that it relies
on an approximate R-factor computed and updated using the (floating-point) Householder
QR-factorisation algorithm. The operations performed on the exact data (the lattice basis)
are derived from approximate values. The fact that these are good approximations to the
genuine values allow us to show that H-LLL is correct: It returns Ξ-reduced bases.

Theorem 5 ([78]) Given as inputs a basis (bi)i≤n of a lattice L ⊆ Zn, a precision p = Θ(n),
and floating-point numbers δ ∈ (1/2, 1) and �(2−cn), the H-LLL algorithm returns a (δ, η, θ)-
LLL-reduced basis (ci)i≤n of L, with δ, η, θ close to δ, 1/2+ �(2−cn) and �(2−cn) respectively.
Furthermore, its bit-complexity is bounded by

O

[(
n + log ∏

db
i

dc
i
+

1
n

log ∏
‖bi‖
‖ci‖

)
n2+ε(n + β)

]
,
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Inputs: A basis (bi)i≤n of L ⊆ Zn×n; a precision p; approximations (ri)i<κ of
the κ − 1 first columns of the R-factor of B; �(2−cn) (for an arbitrary c > 0); a precision p.
Output: A basis (bi)i≤n of L, approximations (ri)i≤κ of the κ first columns of the R-factor of B.
1. Do
2. Compute rκ using Householder’s algorithm (in precision p).
3. For i from κ − 1 to 1, do
4. Xi := b�(riκ/rii)e.
5. For j from 1 to i− 1, do rjκ := �

(
rjκ − �

(
Xirji

))
.

6. t := �(‖bκ‖2); bκ := bκ −∑i<κ Xibi.
7. Until �(‖bκ‖2) > �(�(2−cd) · t).
8. Compute rκ using Householder’s algorithm (in precision p).
9. Return (bi)i≤n and (ri)i≤κ .

Figure 2.5: The size-reduction algorithm of H-LLL.

where β = maxi log ‖bi‖, ε = o(1) and db
i (resp. dc

i ) is the determinant of the lattice spanned
by the first i columns of the input (resp. output) basis. The complexity bound above is
itself O(n4+εβ(n + β)).

Precise conditions on p, δ ∈ (1/2, 1), �(2−cn), and (δ, η, θ) may be found in [78]. H-
LLL has three advantages over L2. First, it does not require to compute and update the
Gram matrix of the current basis. Second, its precision requirement is lower: in the case
of (δ, η, θ) close to (1, 1/2, 0), the precision required for ensuring correctness of L2 tends
to [log2 3 + o(1)] · n <∼ 1.6 · n, while that of H-LLL tends to n. This is not only an arti-
fact of the worst-case analysis, as it can be observed on actual examples that the numeri-
cal performance of H-LLL is superior to that of L2 (e.g., using the input bases from http:
//perso.ens-lyon.fr/damien.stehle/L2.html. It actually seems that the worst-
case bound on the precision required by H-LLL might not be sharp: Checking the reduced-
ness of an LLL-reduced basis can require as low as [ 1

2 log2 3+ o(1)] · n <∼ 0.8 · n precision, but
for the moment we do not manage to prove correctness of the size-reduction process with
that low a precision. These two facts, on the Gram matrix and the working precision, lead
to constant factor improvements. The third advantage of H-LLL over L2 is its simplified
complexity analysis. The analysis of L2 from [82, 84] required a rather involved amortised
analysis for summing the cost bounds for the successive size-reductions. In H-LLL, the cor-
responding analysis is much simpler, as the cost of a size-reduction is bounded by

O
(

n1+ε(n + β)

(
n +

log ‖bb
κ‖

log ‖be
κ‖

))
,

where bb
κ and be

κ denote bκ before and after the call to the size-reduction algorithm, respec-
tively. Summing such quantities over the successive loop iterations is straightforward. This
simplification is not simply a technical stroke of luck: The H-LLL algorithm is vectorial in
nature, as all operations are vector operations, and it is no surprise that the cost bound for
the size-reduction directly involves the bit-sizes of the vector that is currently under scope.
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2.3 A quasi-linear-time reduction algorithm

As a broad approximation, L3, L2 and H-LLL are generalisations of Euclid’s greatest common
divisor algorithm. The successive bases computed during the execution play the role of Eu-
clid’s remainders, and the elementary matrix operations performed on the bases play the role
of Euclid’s quotients. L3 may be interpreted in such a framework. It is slow because it com-
putes its “quotients” using all the bits from the “remainders” rather than the most significant
bits only: The cost of computing one Euclidean division in an L3 way is O(β1+ε), leading to
an overall O(β2+ε) bound for Euclid’s algorithm (for β-long input integers). Lehmer [64]
proposed an acceleration of Euclid’s algorithm by the means of truncations. Since the ` most
significant bits of the remainders provide the first Ω(`) bits of the sequence of quotients,
one may: Truncate the remainders to precision `; Compute the sequence of quotients for
the truncated remainders; Store the first Ω(`) bits of the quotients into an Ω(`)-bit matrix;
Apply the latter to the input remainders, which are shortened by Ω(`) bits; And iterate. The
cost gain stems from the decrease of the bit-lengths of the computed remainders. Choos-
ing ` ≈

√
β leads to a complexity bound of O(β3/2+ε). In the early 1970’s, Knuth [62] and

Schönhage [108] independently observed that using Lehmer’s idea recursively leads to a gcd
algorithm with complexity bound O(β1+ε). The above approach for the computation of gcds
has been successfully adapted to two-dimensional lattices [122, 110, 25], and the resulting al-
gorithm was then used in [27] to reduce lattices in arbitrary dimensions in quasi-linear time.
Unfortunately, the best known cost bound for the latter is O(β1+ε(log β)n−1) for fixed n.

L̃
1

aims at adapting the Lehmer-Knuth-Schönhage gcd framework to the case of LLL-

reduction. L̃
1

takes as inputs LLL parameters Ξ and a non-singular B ∈ Zn×n; terminates
within O(n5+εβ + n4+εβ1+ε) bit operations, where β = log max ‖bi‖; and returns a basis of
the lattice spanned by B which is Ξ-LLL-reduced.

The efficiency of the fast gcd algorithms stems from two sources: Performing opera-
tions on truncated remainders is meaningful (which allows one to consider remainders with
smaller bit-sizes), and the obtained transformations corresponding to the quotients sequence
have small bit-sizes (which allows one to transmit at low cost the information obtained on
the truncated remainders back to the genuine remainders). We achieve an analogue of the
latter by gradually feeding the input to the reduction algorithm, and the former is ensured
thanks to the modified notion of LLL-reduction which is resilient to truncations. The main
difficulty in adapting the fast gcd framework lies in the multi-dimensionality of lattice re-
duction. In particular, the basis vectors may have significantly differing magnitudes. This
means that basis truncations must be performed column-wise. Also, the resulting unimod-
ular transformations may have large magnitudes, hence need to be truncated for being be
stored on few bits.

To handle these difficulties, we focused on reducing bases which are a mere scalar shift
from being reduced. We call this process lift-reducing, and it can be used to provide a family
of new reduction algorithms. Lift-reducing was introduced by Belabas [13], van Hoeij and
Novocin [52], in the context of specific lattice bases that are encountered while factoring ra-
tional polynomials (e.g., with the algorithm from [51]): It was restricted to reducing specific
sub-lattices which avoid the above dimensionality difficulty. We generalise these results to
the following. Suppose that we wish to reduce a matrix B with the property that B0 := σ−k

` B
is reduced for some k and σ` is the diagonal matrix diag(2`, 1, . . . , 1). If one runs L3 on B
directly then the structure of B0 is not being exploited. Instead, the matrix B can be slowly
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reduced allowing us to control and understand the intermediate transformations: Compute
the unimodular transform U1 (with any reduction algorithm) such that σ`B0U1 is reduced
and repeat until we have σk

`B0U1 · · ·Uk = B(U1 · · ·Uk). Each entry of Ui and each entry of
U1 · · ·Ui can be bounded sensitive to the shape of the lattice (i.e., to k).

The algorithm from Figure 2.6 shows how to LLL-reduce an arbitrary lattice basis given
a Lift-reducing algorithm (used in Step 5).

Inputs: LLL parameters Ξ; a non-singular B ∈ Zn×n.
Output: A Ξ-reduced basis of L(B).
1. B := HNF(B).
2. For k from n− 1 down to 1 do
3. Let C be the bottom-right (n− k + 1)-dimensional submatrix of B.
4. `k := dlog2(bkk)e, C := σ−1

`k
C.

5. Find U′ unimodular such that σ`k
CU′ is Ξ-reduced.

6. Let U be the block-diagonal matrix diag(I, U′).
7. Compute B := B ·U, reducing row i symmetrically modulo bii for i < k.
8. Return B.

Figure 2.6: Reducing LLL-reduction to lift-reduction.

Lemma 1 The algorithm of Figure 2.6 Ξ-reduces B such that max ‖bi‖ ≤ 2β using

O
(

n4+ε(β1+ε + n)
)
+

1

∑
k=n−1

Ck

bit operations, where Ck is the cost of Step 5 for the specific value of k.

The above shows that we can now restrict ourselves to Lift-reducing efficiently. In or-
der to be able to Lift-reduce by means of truncations, we can use the sensitivity analysis of
Section 2.1 along with a bound on the coefficients of a lift-reducing U.

Lemma 2 Let Ξ1, Ξ2 be valid parameters. Let ` ≥ 0, B ∈ Rn×n (with R-factor R) be Ξ1-
reduced and U such that C = σ`BU (with R-factor R′) is Ξ2-reduced. We have:

∀i, j : |uij| ≤ ζn ·
r′jj
rii
≤ 2`ζ2n · rjj

rii
,

for some ζ that depends only on Ξ1 and Ξ2.

Suppose the sequence of the rii’s is very unbalanced. As B is reduced, this can only occur
when the sequence increases sharply. In that situation, Lemma 2 does not prevent U from be-
ing arbitrarily large. However, its entries may be truncated while preserving unimodularity
and the fact that it actually lift-reduces B.

Lemma 3 Let Ξ1, Ξ2, Ξ3 be valid LLL parameters with Ξ2 > Ξ3. There exists a constant c
such that the following holds for any ` ≥ 0. Let B ∈ Rn×n (with R-factor R) be Ξ1-reduced,
and U be unimodular such that σ`BU (with R-factor R′) is Ξ2-reduced. If ∆U ∈ Zn×n satisfies

|∆uij| ≤ 2−(`+c·n) · r′j,j
ri,i

for all i, j, then U +∆U is unimodular and σ`B(U +∆U) is Ξ3-reduced.
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Lifting and truncation are the main conceptual ingredients for the Lift-L̃1 algorithm,
given in Figure 2.7. Lift-L̃1 makes use of specific compact representations of basis and
transformation matrices to handle the possible unbalancedness of the current basis vec-
tors. Lift-L̃1 makes use of several subroutines: The BaseCase algorithm performs lift-
reduction for small values of ` and relies on a truncation and a call to H-LLL (see Section 2.2);
BaseCase may be used with ` = 0 to strengthen the reducedness of a reduced basis (i.e.,
Ξ2-reducing a Ξ1-reduced basis, for Ξ2 > Ξ1); The MSBk function replaces a matrix B by
a truncated B + ∆B with max ‖∆bi‖

‖bi‖ ≤ 2−k; the U1 � U2 operation is a matrix multiplica-
tion of U1 and U2 which is specifically designed to handle the specific format chosen for
the unimodular transformations (in particular, it performs a truncation after computing the
product, to ensure that the output entries have small bit-sizes).

Inputs: Valid LLL-parameters Ξ3 > Ξ2 ≥ Ξ4 > Ξ1; a lifting target `; (B′, (ei)i) such that
B = B′ · diag(2ei ) ∈ Qn×n is Ξ1-reduced and max |b′ij| ≤ 2`+c·n for some c > 0.
Output: (U′, (di)i , x) such that σ`BU is Ξ1-reduced, with U = 2−xdiag(2−di ) ·U′ · diag(2di )
and max |u′ij| ≤ 22`+2c·n.
1. If ` ≤ n, then use BaseCase with lifting target `. Otherwise:
2. /∗ Prepare 1st recursive call ∗/

Call BaseCase on (B, Ξ2); Let U1 be the output.
3. B1 := MSB(`/2+c3·n)(B ·U1).
4. /∗ 1st recursive call ∗/

Call Lift-L̃1 on B1, with lifting target `/2; Let UR1 be the output.
5. /∗ Prepare 2nd recursive call ∗/

U1R1 := U1 �UR1 .
6. B2 := σ`/2BU1R1 .
7. Call BaseCase on (B2, Ξ3). Let U2 be the output.
8. U1R12 := U1R1 �U2.
9. B3 := MSB(`/2+c3·n)(σ`/2BU1R12).
10. /∗ 2nd recursive call ∗/

Call Lift-L̃1 on B3, with lifting target `/2; Let UR2 be the output.
11. /∗ Prepare output ∗/

U1R12R2 := U1R12 �UR2 .
12. B4 := σ`BU1R12R2 .
13. Call BaseCase on (B4, Ξ4); Let U3 be the output.
14. U := U1R12R2 �U3; Return U.

Figure 2.7: The Lift-L̃1 algorithm.

The L̃
1

algorithm is the algorithm from Figure 2.6, where Lift-L̃
1

is used to implement
lift-reduction (with appropriate pre- and post-processings to handle the input and output

formats of Lift-L̃
1
. A careful bit-operation count involving an amortisation analysis (over

the successive calls to Lift-L̃
1

leads to the following result.

Theorem 6 ([88]) Given as inputs Ξ and a matrix B ∈ Zn×n with max ‖bi‖ ≤ 2β, the L̃
1

algorithm returns a Ξ-reduced basis of L(B) within O(n5+εβ + n4+εβ1+ε) bit operations.
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2.4 Perspectives

The complexity of the L̃
1

algorithm with respect to β = log max ‖bi‖ seems hard to improve
further: Up to a constant factor, it is the same as for the best known gcd algorithms [62,
108], i.e., O(M(β) log β), whereM(`) denotes the time required to multiply two `-bit long
integers. The remaining challenge on the cost of LLL-reduction consists in decreasing the
dependences in the lattice dimension n.

Let ω denote the fast linear algebra exponent: Two n-dimensional square matrices over
a field K may be multiplied within O(nω) arithmetic operations over K (the Coppersmith

and Winograd algorithm [22] achieves ω ≤ 2.376). Then the complexity of L̃
1

is O(n5+εβ +
nω+1+εβ1+ε). Intuitively, the first term corresponds to O(β) LLL-reductions of n-dimensional
matrices whose entries have bit-sizes O(n) and that perform O(n2) LLL swaps, whereas the
second term corresponds to the binary tree multiplication of O(β) matrices of dimension n
and whose entries have bit-sizes O(n) (this originates from Steps 1 and 7 of the algorithm

of Figure 2.6). It seems the second term is intrinsic to L̃
1
, and that a new reduction ap-

proach is required for avoiding it. The first term, which currently dominates the overall cost,
could however be improved using techniques developed by Schönhage, Koy and Schnorr
and Storjohann [109, 63, 121] to lower the number of arithmetic operations arising from the
size-reductions. It remains to be seen whether these techniques can be combined with the
numerical analysis and floating-point arithmetic approaches used in L2 and H-LLL. Further-
more, even if the latter difficulty can be handled, and if no further progress is made on the
numerical analysis aspects, the required floating-point precision will remain Ω(n): If R is
the R-factor of an LLL-reduced matrix, the quantity cond(R) from Theorem 2 can be as large
as 2Ω(n) (see [20, Re. 7]), which can be compensated only by taking a working precision that
is Ω(n).

From the discussion above, it appears that more work is required on the numerical as-
pects of LLL. A first step consists in assessing whether what has been achieved for L2 and

H-LLL can be carried over to [109, 63, 121]. This will hopefully allows the complexity of L̃
1

to
be decreased down to Õ(nω+1β). To decrease this bit-complexity further, significantly new
ingredients will be needed, in particular to avoid the Ω(n)-bit-long floating-point arithmetic,
at least for most arithmetic operations.

Independently from the cost objective, the techniques developed for L̃
1

could prove use-
ful for related computational tasks. Can they be exploited for reduction of polynomial ma-

trices [90, 79] or for Hermite Normal For computations? Also, the lifting technique of L̃
1

seems reminiscent of the PSLQ algorithm for disclosing integer relations between real num-
bers [29]: By revisiting PSLQ under this new light, one might be able to prove its correctness
under floating-point arithmetic and to investigate its bit-complexity.
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Stronger Lattice Reduction Algorithms

The LLL lattice reduction algorithm and its variants run in polynomial time but only provide
vectors that are no more than exponentially longer (with respect to the lattice dimension n)
than the shortest non-zero lattice vectors. This worst-case behaviour seems to also hold in
practice [83], up to a constant factor in the exponent.

Solving the Shortest and Closest Vectors Problem exactly is much more expensive. There
exist three main families of SVP and CVP solvers, which we compare in Table 3.1. (In the
table, and more generally in the present chapter introduction, we omit the arithmetic costs,
which are all poly(n, max log ‖bi‖), where (bi)iZ

n×n is the input basis.) The algorithm by
Micciancio and Voulgaris [76, 75] aims at computing the Voronoi cell of the lattice, whose
knowledge facilitates the tasks of solving SVP and CVP. This algorithm allows one to solve
SVP and CVP deterministically, in time ≤ 22n+o(n) and space ≤ 2n+o(n).

Single exponential time complexity had already been achieved about 10 years before by
Ajtai, Kumar and Sivakumar [8, 9], with an algorithm that consists in saturating the space
with a cloud of (perturbed) lattice points. But the saturation algorithms suffer from at least
three drawbacks: They are Monte Carlo (their success probability can be made exponentially
close to 1, though); The CVP variants of these algorithms may only find vectors that are no
more than 1+ ε times further away from the target than the optimal solution(s) (it is possible
to choose an arbitrary ε > 0, but the complexity grows quickly when ε tends to 0); and
their best known complexity upper bounds are higher than that of the Micciancio-Voulgaris
algorithm relying on the Voronoi cell computation. The Ajtai et al. SVP solver has been

Table 3.1: Comparing the three main families of SVP and CVP solvers.

Time complexity
upper bound

Space complexity
upper bound

Underlying
principle

[76, 75] for SVP and CVP 22n+o(n) 2n+o(n) Voronoi cell

[8, 97, 87, 77, 96] for SVP 22.465n+o(n) 21.325n+o(n)
Saturation

[9, 14] for CVP1+ε (2 + 1/ε)O(n) (2 + 1/ε)O(n)

[30, 31, 59, 60, 48, 44] for SVP nn/(2e)+o(n) poly(n)
Enumeration

[30, 31, 59, 60, 48, 44] for CVP nn/2+o(n) poly(n)
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successively improved in [97, 87, 77, 96], and the currently best time complexity upper bound
is 22.465n+o(n), with a space requirement bounded by 21.325n+o(n). Improvements on the Ajtai
et al. CVP solver have been proposed by Blömer and Naewe [14].

Before the elaboration of the saturation-based solvers by Ajtai, Kumar and Sivakumar,
the asymptotically fastest SVP and CVP solvers relied on a deterministic procedure that
enumerates all lattice vectors within a prescribed distance to a given target vector (chosen
to be 0 in the case of SVP). This procedure exploits the Gram-Schmidt orthogonalisation
of the input basis to recursively bound the integer coordinates of the candidate solutions.
Enumeration-based SVP and CVP solvers were first described by Fincke and Pohst [30, 31]
and Kannan [59, 60]. Kannan used it to propose solvers with bit-complexities nO(n). These
were later refined by Helfrich [48].

The practicality of SVP solvers has attracted much attention, as it is the dominating cost
component of the generic cryptanalyses of the lattice-based cryptographic schemes. De-
termining and extrapolating the current practical limits is crucial for choosing key sizes
that are meaningful for desired security levels. For currently handleable dimensions, the
enumeration-based SVP solvers seem to outperform those of the other families. This state-
ment requires clarification, as rigorous codes providing correctness guarantees can be accel-
erated significantly by allowing heuristics, which makes the comparison task more complex.
On the rigorous side, all the available implementations providing strong correctness guar-
antees (e.g., fplll [16] or the SVP solvers of the Magma computational algebra system [15])
rely on the enumeration process. They seem to be currently limited to dimensions around 75.
On the heuristic side, the solvers of the saturation and enumeration families can be acceler-
ated by making reasonable but unproved assumptions. The heuristic implementations of
the enumeration families, relying on tree pruning strategies [106, 107, 120, 36], seem to out-
perform the heuristic implementations of the saturation families [87, 77]. They seem to allow
one to reach dimensions around 110. The enumeration solvers have also been implemented
in hardware [49, 23]. At the time being, the Micciancio-Voulgaris algorithm relying on the
Voronoi cell seems uncompetitive, and would require further practical investigation.

With Guillaume Hanrot, we studied in detail the cost of the enumeration procedure of
the enumeration-based solvers, in order to get a better grasp on the currently most practical
family of SVP and CVP solvers. This line of work will be described in Section 3.1. We de-
creases the best known complexity upper bounds of Kannan’s SVP solver (resp. CVP solver)
from nn/2+o(n) (resp. nn+o(n)) to nn/(2e)+o(n) (resp. nn/2+o(n)). The ideas underlying this result
are summarised in Section 3.1.

When the dimension of the lattice under scope is too high, all known SVP and CVP
solvers (and thus also HKZ reduction) become prohibitively expensive. However, it is still
possible to compute lattice bases of higher quality than those provided by LLL-type algo-
rithms. Schnorr’s hierarchy [103] of reduction algorithms allows one to achieve a contin-
uum between the LLL and HKZ reductions. The best known theoretical variant, in terms of
achieved basis quality for any fixed computational cost, is due to Gama and Nguyen [34].
All known realizations of Schnorr’s hierarchy (see the surveys [80, 102]) rely on an algo-
rithm that solves SVP for smaller-dimensional lattices. We let β denote the largest dimension
in which the SVP solver is used. Table 3.2 describes the time/quality trade-off reached by
Schnorr’s hierarchy. In this table, the output quality is measured by the best known Her-
mite factor upper bound of an output basis, where the Hermite factor of a basis (bi)i≤n of a
lattice L is defined as HF((bi)i≤n) = ‖b1‖/(det L)1/n.
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Table 3.2: Time/quality trade-offs reached by several reduction algorithms.

HKZ [34] with parameter β LLL

Hermite factor
√

n
√

β(1 + ε)
n−1
β−1 2O(n)

Time 2O(n) 2O(β) · poly(n) poly(n)

In practice, the heuristic and somewhat mysterious BKZ algorithm from [106] is used
instead of the slide reduction algorithm from [34] (see [35] for a detailed account on the
practical behaviour of BKZ).

With Guillaume Hanrot and Xavier Pujol, we started trying to analyse the BKZ algo-
rithm, in order to understand why it performs so well in practice. Our results so far remain
partial. However, we could provide the first non-trivial worst-case analysis on the perfor-
mance of BKZ: We showed that if stopped after a polynomial number of calls to the under-
lying low-dimensional SVP solver, the Hermite factor of the output basis admits a bound
similar to that of the basis returned by the algorithm from [34]. We elaborate on this result
in Section 3.2.

3.1 Cost analysis of the enumeration-based SVP and CVP solvers

The Enum algorithm, given in Figure 3.1, enumerates L ∩ Bn(t, A) by using the triangular
relationship between the basis (bi)i≤n of L and its Gram-Schmidt orthogonalisation (b∗i )i≤n.
More precisely, it relies on the two following observations:

• If x = ∑i xibi belongs to L ∩ Bn(t, A), then, for any i ≤ n, we have x(i) ∈ L(i) ∩
Bn−i+1(t(i), A), where x(i), L(i) and t(i) are the projections of x, L and t respectively,
orthogonally to the linear span of b1, . . . , bi−1.

• Enumerating L(n) ∩ B1(t(n), A) is easy and once L(i+1) ∩ Bn−i(t(i+1), A) is known, it
is easy to enumerate L(i) ∩ Bn−i+1(t(i), A): Assume that x(i) ∈ L(i) ∩ Bn−i+1(t(i), A);
Write x(i) = x(i+1) + (xi + ci)b∗i for some xi ∈ Z and ci ∈ Q; Once x(i+1) ∈ L(i+1) ∩
Bn−i(t(i+1), A) is fixed, we must have

xi ∈ Z∩

−ci −

√
A2 − ‖x(i+1)‖2

‖b∗i ‖
,−ci +

√
A2 − ‖x(i+1)‖2

‖b∗i ‖


 (3.1)

These observations lead to interpreting Enum as a depth-first tree traversal, where the
nodes correspond to the considered (xn, . . . , xi) for all i, and the sons of a node (xn, . . . , xi+1)
are the (x′n, . . . , x′i) such that xj = x′j for all j ≥ i + 1. The execution starts at the nodes () (i.e.,
the node whose sons are the (xn)’s for the possible values of xn), and the goal is to obtain the
list of the tree leaves (xn, . . . , x1).

Algorithm Enum may be used directly to solve SVP and CVP, once the bound A has
been set. In the case of SVP, it may be derived from Minkowski’s theorem, or from the
current basis (bi)i≤n: For example, one may choose A = min(mini ‖bi‖,

√
γn(det L)1/n).
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Inputs: A basis (bi)i≤n of a lattice L ⊆ Qn×n, t ∈ Qn, A > 0.
Output: All vectors in L ∩ B(t, A).
1. Compute the µi,j’s and ‖b∗i ‖2’s.
2. Compute the ti’s such that t = ∑i tib

∗
i .

3. S := {}, ` := 0, x := 0, xn := dtn − A/‖b∗n‖e, i := n.
4. While i ≤ n, do
5. `i := (xi − ti + ∑j>i xjµji)

2‖b∗i ‖2,
6. If i = 1 and ∑1≤j≤n `j ≤ A2, S := S ∪ {x}, x1 := x1 + 1.

7. If i 6= 1 and ∑j≥i `j ≤ A2, i := i− 1, xi :=
⌈

ti −∑j>i(xjµji)−
√

A2−∑j>i `j
‖b∗i ‖2

⌉
.

8. If ∑j≥i `j > A, then i := i + 1, xi := xi + 1.
9. Return S.

Figure 3.1: The Enum algorithm.

In the case of CVP, it may be derived from any bound on the covering radius ρ(L), such

as 1
2

√
∑i ‖b∗i ‖2. The bound may also be set heuristically using the Gaussian heuristic: The

guess for A is then derived from the equation vol(Bn(t, A)) ≈ det(L), and is increased if
no solution is found. The bound A can also be decreased during the execution of Enum,
every time a better solution is found. Also, the space required by Enum may be more
than poly(n, log max ‖bi‖), because |S| might be exponentially large. The space require-
ment can be made poly(n, log max ‖bi‖) for the SVP and CVP applications, as only a single
shortest/closest vector is required: The update of S in Enum should then be replaced by an
update of the best solution found so far.

During its execution, algorithm Enum considers all points in L(i) ∩Bn−i+1(t(i), A), for i =
n, n − 1, . . . , 1. An inherent drawback is that the complexity may be (significantly) more
than |L ∩ Bn(t, A)|. This is because it often occurs that at some stage, an element of L(i+1) ∩
Bn−i(t(i+1), A) has no descendant in L(i) ∩ Bn−i+1(t(i), A) (i.e., the interval in Equation (3.1)
contains no integer): This corresponds to a “dead-end” in the enumeration tree.

The cost of Enum can be bounded by ∑i |L(i) ∩ Bn−i+1(t(i), A)|, up to a small polynomial
factor. The Gaussian heuristic allows us to estimate the latter quantity: If K is a measurable
subset of the span of the n-dimensional lattice L, then |K ∩ L| ≈ vol(K)/ det(L) (where vol
denotes the n-dimensional volume). This leads to the approximation (for i ≤ n):

|L(i) ∩ Bn−i+1(t(i), A)| ≈ 2O(n)An−i+1

(n− i + 1)
n−i+1

2 ·∏n
j=i ‖b∗j ‖

.

This heuristic cost analysis of the enumeration process, given in [44], has interesting practical
implications:

• It allows a user to assess in advance if the computation has a chance to terminate within
a reasonable amount of time. This has been implemented in the Magma computational
algebra system [15].

• Suppose the tree search corresponding to Enum is performed using parallel processors.
The heuristic cost formula above can be used to estimate the sizes of subtrees, in order
to give well-balanced tasks to slave processors [23].
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• Finally, this formula can be tweaked to account for tree pruning and thus to optimise
the pruning strategy [36, 120].

Unfortunately, from a theoretical standpoint, some of the involved balls are very small
compared to their corresponding lattice L(i), and it seems hard to prove that the heuristic
is indeed valid in these cases. Though of mostly theoretical nature (because of the fuzzy
2O(n) factor), the following result provides theoretical evidence towards the validity of the
Gaussian heuristic in the present situation.

Theorem 7 ([44]) If given as inputs a lattice basis (bi)i≤n and a target vector t, the number of
arithmetic operations performed during the execution of Enum can be bounded from above
by:

2O(n) ∏
1≤i≤n

max
(

1,
A√

n‖b∗i ‖

)
≤ 2O(n) max

I⊆[1,n]

(
A|I|

√
n|I| ·∏i∈I ‖b∗i ‖

)
.

The latter upper bound for the cost of Enum and the heuristic cost estimate strongly
depend on A and on the decrease of the ‖b∗i ‖’s. This suggests that the more reduced the
basis (bi)i, the lower the cost. Fincke and Pohst [30] initially used a LLL-reduced basis (bi)i.
For such a basis, we have ‖b∗i+1‖ ≥ ‖b∗i ‖/2 for all i, which leads to a 2O(n2) complexity
upper bound. Kannan [59] observed that the cost of Enum is so high that a much more
aggressive pre-processing significantly lowers the total cost while negligibly contributing to
it. Kannan’s SVP algorithm is in fact an HKZ-reduction algorithm that calls itself recursively
in lower dimensions to strengthen the reducedness before calling Enum. The bases (bi)i
given as inputs to Enum always satisfy the following conditions: It is size-reduced, ‖b∗2‖ ≥
‖b∗1‖/2 and once projected orthogonally to b1, the other bi’s are HKZ-reduced. We call such
bases quasi-HKZ-reduced. A detailed analysis gives that if a basis (bi)i≤n is quasi-HKZ-
reduced, then:

max
I⊆[1,n]

(
‖b1‖|I|√

n|I| ·∏i∈I ‖b∗i ‖

)
≤ 2O(n)nn/(2e).

The calls to Enum dominate the overall cost of Kannan’s HKZ-reduction algorithm, so
that Kannan’s SVP solver terminates within nn/(2e)+o(n) arithmetic operations. Kannan’s
CVP algorithm first HKZ-reduces the given lattice basis, and then calls Enum using the re-
duced basis. The number of arithmetic operations it performs can be bounded from above
by nn/2+o(n).

The cost upper bound of Kannan’s SVP algorithm is optimal. More precisely, a proba-
bilistic construction due to Ajtai [6, 7] can be adapted to prove the existence of HKZ-reduced
bases for which Enum actually performs nn/(2e)+o(n) bit operations [45]. The proof relies on
the following converse to Theorem 7.

Theorem 8 ([46, Se. 3]) If given as inputs a lattice basis (bi)i≤n and a target vector t, the
number of arithmetic operations performed during the execution of Enum can be bounded
from below by:

2O(n)
n

∏
i=i0

A√
n‖b∗i ‖

,

where i0 is the smallest such that maxi≥i0 ‖b∗i ‖ ≤ 2
3

√
A
n .
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For CVP, a gap remains between the lowest known complexity upper bound nn/2+o(n)

for Kannan’s solver and its largest known worst-case complexity lower bound nn/(2e)+o(n).

3.2 Terminating the Schnorr-Euchner BKZ algorithm

As mentioned at the beginning of this chapter, slide reduction [34] seems to be outperformed
by the BKZ algorithm [35] in practice: For comparable run-times, the quality of the computed
bases seems higher with BKZ (or, equivalently, the same basis quality is reached faster with
BKZ). With respect to run-time, no reasonable bound was known on the number of calls to
the β-dimensional HKZ reduction algorithm it needs to make before termination (a naive
bound O(β)n can be proven if BKZ is slightly modified, see [43, App. A]). In practice, this
number of calls does not seem to be polynomially bounded [35] and actually becomes huge
when β ≥ 25. Because of its large (and somewhat unpredictable) runtime, it is folklore
practice to terminate BKZ before the end of its execution, when the solution of the problem
for which it is used for is already provided by the current basis [107, 81].

Figure 3.2 illustrates the evolution of the Hermite factor during the execution of the orig-
inal BKZ and modified BKZ’ (described in Figure 3.3). We refer the reader to [43] for a
description of the (mild) differences between BKZ and BKZ’. The corresponding experiment
is as follows: We generated 64 “knapsack-like” lattice bases [83] of dimension n = 108, with
non-trivial entries of bit-lengths 100n; Each was LLL-reduced using fplll [16] (with param-
eters δ = 0.99 and η = 0.51); Then for each we ran NTL’s BKZ [114] and an implementation
of BKZ’ in NTL, with blocksize 24. Figure 3.2 only shows the beginning of the executions
(more than half were more than 6 times longer). A “tour” corresponds to calling the smaller
dimensional HKZ-reduction algorithm n− β + 1 times. As can be observed, BKZ and BKZ’
quickly end up spending of lot of time making very little progress.
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Figure 3.2: Evolution of the Hermite factor ‖b1‖
(det L)1/n during the execution of BKZ and BKZ’.

With Xavier Pujol and Guillaume Hanrot, we showed that if terminated within polyno-
mially many calls to HKZ/SVP, a slightly modified version of BKZ returns bases of excellent
quality, close to that reached by the slide reduction algorithm.

Theorem 9 There exists C > 0 such that the following holds for all n and β. Let B =
(bi)i≤n be a basis of a lattice L, given as input to the modified BKZ algorithm of Figure 3.3
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with block-size β. If terminated after C n3

β2

(
log n + log log maxi

‖bi‖
(det L)1/n

)
calls to an HKZ-

reduction (or SVP solver) in dimension β, the output (ci)i≤n is a basis of L that satisfies
(with γ′β ≤ β defined as the maximum of Hermite’s constants in dimensions ≤ β):

‖c1‖ ≤ 2(γ′β)
n−1

2(β−1)+
3
2 · (det L)

1
n .

If L is a rational lattice, then the overall cost is≤ poly(n, log max ‖bi‖) · CHKZ(β), where CHKZ(β) =
2O(β) is any upper bound on the time complexity of HKZ-reducing a β-dimensional lattice
basis of bit-size ≤ poly(β).

Input: A basis (bi)i≤n and a blocksize β.
Output: A basis of L[(bi)i≤n].
1. Repeat while no change occurs or termination is requested:
2. For k← 1 to n− β + 1,
3. Modify (bi)k≤i≤k+β−1 so that (b(k)

i )k≤i≤k+β−1 is HKZ-reduced,
4. Size-reduce (bi)i≤n.

Figure 3.3: The modified BKZ algorithm: BKZ’.

To achieve this result, we used a new approach for analysing lattice reduction algorithms.
The classical approach to bound their runtimes was to introduce a quantity, sometimes called
potential, involving the current Gram-Schmidt norms ‖b∗i ‖, which always strictly decreases
every time some elementary step is performed. This technique was introduced by Lenstra,
Lenstra and Lovász [65] for analysing their LLL algorithm, and is still used in all complexity
analyses of (current variants of) LLL. It was later adapted to stronger lattice reduction algo-
rithms [103, 33, 102, 34]. We still measure progress with the ‖b∗i ‖’s, but instead of considering
a single scalar combining them all, we look at the full vector (‖b∗i ‖)i≤n. More specifically, we
observe that each call to HKZ within BKZ has the effect of applying an affine transformation
to the vector (log ‖b∗i ‖)i≤n: Instead of providing a lower bound to the progress made on a
“potential”, we are then led to analyse a discrete-time dynamical affine system. Its fixed-
points encode information on the output quality of BKZ, whereas its speed of convergence
provides an upper bound on the number of times BKZ calls HKZ.

Intuitively, the effect of a call to HKZ on the vector (log ‖b∗i ‖)i≤n is to essentially re-
place β consecutive coefficients by their average. We formalise this intuition by making the
following Heuristic Sandpile Model Assumption (SMA): We assume for any HKZ-reduced
basis (bi)i≤β, we have xi =

1
2 log γβ−i+1 +

1
β−i+1 ∑

β
j=i xj for all i ≤ β, with x = (log ‖b∗i ‖)i≤β.

Under this assumption, the execution of BKZ exactly matches with a dynamical system that
can be explicited and fully analysed. A BKZ tour corresponds to applying a specific affine
transformation to x: x ← Ax + Γ. The fixed-points of A provide information on the output
quality of BKZ, whereas the largest singular value of AT A smaller than 1 drives the speed of
convergence.

However, the heuristic SMA is not always correct: Consider for example orthogonal bi’s
of growing norms. This difficulty can be circumvented by considering the vector (µi)i≤n
where µi =

1
i ∑i

j=1 log ‖b∗j ‖ for any i. This amortisation was already used in [44] for analysing
HKZ-reduced bases. Here it allowed us to rigorously bound the evolution of (µi)i≤n by the
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orbit of a vector under another dynamical system. This bound holds coefficient-wise, and
relies on the result below.

Lemma 4 ([44, Le. 3]) If (bi)i≤β is HKZ-reduced, then

∀k ≤ β, µk − µβ ≤
β− k

k
log Γβ(k),

with Γβ(k) = ∑
β−1
i=β−k

log γi+1
2i .

This new dynamical system bounding the evolution of (µi)i≤n happens to be a slight
modification of the dynamical system used in the idealised sandpile model, and the analysis
performed for the idealised model can be adapted to the rigorous set-up.

3.3 Conclusion and perspectives

Many important techniques and results on solving SVP and CVP have been discovered in the
last few years: The Ajtai et al. saturation-based solver [8] was obtained 10 years ago and has
steadily been improved since then, while the Micciancio-Voulgaris Voronoi-based [76] solver
is even more recent. The interest in this topic was revived at least in large part thanks to the
rise of lattice-based cryptography: Assessing the precise limits of the algorithms for SVP,
CVP and their approximations is the key towards providing meaningful key-sizes ensuring
specific security levels.

The saturation-based and Voronoi-based algorithms have better asymptotic complexity
bounds than the enumeration-based solvers, but in practice this comparison is reversed. It
is tempting to investigate this oddity. Is it possible to improve these algorithms further?
Are there reasonable heuristics that would allow for competing with heuristic enumeration-
based solvers? For example, saturation-based solvers make use of perturbations to hide
information to the inner sieving steps. It is unclear whether the perturbations of the lattice
vectors in saturation-based solvers are inherently necessary or just an artifact of the proof. As
these perturbations lead to increased complexity bounds, proving them unnecessary could
make these solvers competitive with [76]. Also, is it a valid heuristic to remove them in
practice? It is also completely conceivable that faster solvers exist, that remain to be discov-
ered. For example, is it possible to achieve exponential time complexity with a polynomially
bounded space requirement? Are there ways to exploit quantum computations to obtain
better complexity bounds? An important challenge in this line of research would be to de-
sign a polynomial-time algorithm that could find non-zero lattice vectors that are no more
than polynomially longer (in the dimension) than the lattice minimum. In particular, this
could render lattice-based cryptography insecure.

The newer types of efficient SVP and CVP solvers seem to at least partially circumvent
lattice reduction: The Ajtai et al. solver only uses a LLL-type algorithm and the Voronoi-
based Micciancio-Voulgaris uses strong reduction only to improve the constant in the expo-
nent of its complexity bound, whereas the cost of the enumeration is highly dependent on the
strongness of the reduction of the input basis. This raises the question of the relevance of lat-
tice reduction in the first place. An important step towards assessing this relevance consists
in determining whether a BKZ-like trade-off between cost and smallness of the computed
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vectors could be achieved (or even beaten) without lattice reduction. For example, is it pos-
sible to accelerate the Ajtai et al. and Micciancio-Voulgaris algorithms, without lowering the
output quality too much?

Finally, even if the tasks of improving LLL-type algorithms and SVP/CVP solvers seem
quite distinct, the works described in Chapters 2 and 3 suggest a few possible links. Nat-
urally, it is tempting to exploit the analysis of the BKZ algorithm based on dynamical sys-
tems to simplify and maybe improve the block-based algorithms for fast LLL-type reduc-

tion [109, 63, 121]. In the other direction, the lift-reduction strategy developed for the L̃
1

of
Section 2.3 could be investigated in the context of solving SVP. At a very high level, it con-
sists in finding a sequence of small deformation steps such that: The start of the deformation

path is already handled (in the case of L̃
1
, a reduced basis of some lattice); The ending point

of the deformation path contains the solution of the problem under scope (in the case of L̃
1
,

a reduced basis of the input lattice); And each deformation step is computationally easy. In
the case of SVP, this suggests starting from an easy lattice and progressively deforming it
towards the desired lattice, so that each step is cheaper to solve than a general instance of
SVP.





CHAPTER 4
Asymptotically Efficient Lattice-Based

Encryption Schemes

The aim of an encryption scheme is to securely transmit information between two parties.
An asymmetric, or public-key, encryption scheme allows anyone to encrypt a message using
the receiver’s public key, while only the receiver can decrypt messages encrypted under its
public key, using the associated secret key. As opposed to symmetric encryption, asymmet-
ric encryption does not require the parties to have previously agreed on a shared secret key.
Asymmetric encryption schemes were first proposed at the end of the 1970’s [101, 70]. Most
public-key encryption schemes deployed today heuristically/provably rely on the assump-
tion that (a variation of) one of the following problems is hard to solve:

• The integer factorisation problem: Given an integer N which is the product of two
large primes, factor N.

• The discrete logarithm problem in finite fields (DLP). Given a finite field F, a genera-
tor g of the group of units F× and an element h ∈ F×, find x ∈ Z such that h = gx.

• The discrete logarithm problem in elliptic curves (ECDLP). Given an elliptic curve E
over a finite field, a generator g of a large subgroup of E and an element h in that
subgroup, find x ∈ Z such that h = x · g.

It is worth noting that the actual hardness assumptions that are made involve average in-
stances for specific input distributions: Typically, DLP and ECDLP involve a random h, while
IF involves random prime factors.

All known encryption schemes relying on these problems suffer from at least two main
drawbacks. First, they are inherently slow. The operations that are performed for encryp-
tion and decryption, such as modular exponentiation, typically cost O(n3) in naive arith-
metic or O(n2+ε) using fast integer multiplication, where n is the bit-size of the key pair.
Further, in the case of IF and DLP (and also for ECDLP for the curves used in pairing-based
cryptography), the best known attacks are sub-exponential with respect to the key-length:
They can typically be mounted with 2Õ(n1/3) bit operations. In order to resist to attacks cost-
ing up to 2t (we call t the security parameter), then n should be set Ω̃(t3), making encryp-
tion and decryption typically cost Ω̃(t6). Second, the fact that these problems can all be
solved in polynomial-time using a quantum computer [112, 113] raises the question whether
they might not share some common weakness, even against classical computers. Further,
many schemes are proved secure under the assumptions that ad-hoc variants of IF, DLP
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and ECDLP are hard, creating a myriad of related but not so clearly equivalent hardness
assumptions.

A few other mathematical objects and corresponding algorithmic problems seem to en-
able cryptographic constructions without some of the drawbacks mentioned above. These
include error correcting codes and systems of multivariate polynomial equations. However,
the natural problems on Euclidean lattices seem to be the most promising candidates. On
the one hand, schemes based on lattices have very low asymptotic complexities (they typi-
cally involve basic linear algebra operations, over small rings), which can be lowered even
further using specific subfamilies of lattices (see below). On the other hand, these schemes
admit security proofs under a small number of well-identified worst-case problems (as op-
posed to average-case hardness assumptions for specific input distributions). Additionally,
lattice-based cryptographic primitives involve simple and flexible operations: this flexibility
allows for the design of primitives that were not realized before, such as fully homomorphic
encryption [38].

Lattice-based encryption comes in two flavours: practical with heuristic security argu-
ments, and slower but with very strong security proofs. From a practical perspective, the
NTRUEncrypt scheme offers impressive encryption and decryption performances. It was
devised by Hoffstein, Pipher and Silverman, and first presented at the Crypto’96 rump ses-
sion [54]. Although its description relies on arithmetic over the polynomial ring Zq[x]/(xn−
1) for n prime and q a small power of 2 (we use the notation Zq to denote the ring of inte-
gers modulo q), it was quickly observed that breaking it could be expressed as a problem
over Euclidean lattices [21]. At the ANTS’98 conference, the NTRU authors gave an im-
proved presentation including a thorough assessment of its practical security against lattice
attacks [55]. We refer to [53] for an up-to-date account on the past 15 years of security and
performance analyses. Nowadays, NTRUEncrypt is generally considered as a reasonable al-
ternative to the encryption schemes based on IF, DLP and ECDLP, as testified by its inclusion
in the IEEE P1363 standard [56]. It is also often considered as the most viable post-quantum
public-key encryption (see, e.g., [94]).

In parallel to a rising number of attacks and practical improvements on NTRUEncrypt
the (mainly) theoretical field of provably secure lattice-based cryptography has steadily been
developed. It originated in 1996 with Ajtai’s acclaimed worst-case to average-case reduc-
tion [3], leading to a collision-resistant hash function that is as hard to break as solving sev-
eral worst-case problems defined over lattices. Ajtai’s average-case problem is now referred
to as the Small Integer Solution problem (SIS). Another major breakthrough in this field
was the introduction in 2005 of the Learning with Errors problem (LWE) by Regev [98, 99]:
LWE is both hard on the average (worst-case lattice problems quantumly reduce to it), and
sufficiently flexible to allow for the design of cryptographic functions. In the last few years,
many cryptographic schemes have been introduced that are provably at least as secure as
LWE and SIS are hard (and thus provably secure, assuming the worst-case hardness of lat-
tice problems). These include encryption schemes secure under Chosen Plaintext Attacks
and Chosen Ciphertext Attacks, identity-based encryption schemes, digital signatures, etc
(see [99, 91, 39, 17, 1] among others, and the surveys [74, 100]).

The currently easiest (and most efficient) way to build encryption schemes whose secu-
rity relies on the worst-case hardness of standard lattice problems (such as SIVPγ for approx-
imation factors γ that are polynomial in n) is to proceed via the LWE problem. To formulate
it, we need the following notation: For an s ∈ Zn

q , and a distribution χ over Zq, we let Ds,χ
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denote the distribution over Zn+1
q obtained by sampling a←↩ U(Zn

q ) and e←↩ χ and return-
ing (a, 〈a, s〉 + e). The Computational Learning With Errors Problem Comp-LWEq,χ is as
follows: Given n and an access to an oracle that samples from Ds,χ for some s ∈ Zn

q , find s.
The Decisional Learning With Errors Problem Dec-LWEq,χ is as follows: Let s ←↩ U(Zn

q );
Given access to an oracleO which is sampling from either U(Zn+1

q ) or Ds,χ, decide in which
situation we are. Regev showed that if χ is the Gaussian distribution of standard devia-
tion αq reduced modulo q and rounded to the closest integer (which we denote by χα), then:

• If γ, q ≥ ω(
√

n/α) (resp. γ, q ≥ Ω(n/α), then there exists a quantum polynomial-time
(resp. sub-exponential-time) reduction from SIVPγ to Comp-LWEq,χα .

• If q ≤ poly(n) (resp. q ≤ 2o(n)) is prime, then there exists a randomised polynomial-
time (resp. sub-exponential-time) reduction from Comp-LWEq,χα to Dec-LWEq,χα .

When the number m of calls to the oracle is predetermined, then LWE has a natural
linear algebra interpretation. Comp-LWE consists in finding s ∈ Zm

q from (A, As + e),
where A ←↩ U(Zm×n

q ) and e ←↩ χm, while stating that Dec-LWE is hard to solve means

that for s ←↩ U(Zn
q ), the distributions U(Z

m×(n+1)
q ) and (A, As + e), with A ←↩ U(Zm×n

q ),
are computationally indistinguishable.

Ajtai [5] showed how to simultaneously sample, in polynomial-time, an LWE matrix A ∈
Zm×n

q and a (trapdoor) basis S = (s1, . . . , sm) ∈ Zm×m of the lattice A⊥ = {b ∈ Zm : bT A =
0 mod q}, with the following properties: The distribution of A is within exponentially small
statistical distance to U(Zm×n

q ); The basis vectors s1, . . . , sm are short. Recently, Alwen and
Peikert [10, 11] improved Ajtai’s construction in the sense that the created basis has shorter

vectors: They achieved ‖S‖ = O(r
√

m) with m = Ω(n log2 q
log r ) for any integer r.

These results allow for the elegant design of a cryptosystem that is provably secure under
Chosen Plaintext Attacks [39, 91]:

• Key Generation: Run the Alwen-Peikert algorithm and obtain a pair (A, S) ∈ Zm×n
q ×

Zm×m
q ; Sample A′ ←↩ U(Zm×n

q ) and let (A, A′) be the public key while S is the secret
key;

• Encryption: To encrypt M ∈ {0, 1}m, sample s ←↩ U(Zn
q ) and e, e′ ←↩ χm, and re-

turn (As + e, A′s + e′ + bq/2cM);

• Decryption: To decrypt (C1, C2) ∈ Zm
q ×Zm

q , first compute SC1 mod q, which should
be exactly Se (over the integers), since the entries of both S and e are small with re-
spect to q; Then recover e by multiplying by S−1 and then recover s; Using C2 and s,
recover e′ + bq/2cM; At this stage, the vector M can be recovered componentwise by
assessing whether the given component is close to q/2 or to 0.

Unfortunately, this encryption scheme is bound to remain somewhat inefficient, as the
key-size is Ω(m2 log q) = Ω(n2). In this chapter, we present two ways of waiving this re-
striction and obtaining quasi-optimal efficiency: The key-size and the run-times of encryp-
tion and decryption all will be Õ(t), where t is the security parameter (i.e., all known attacks
cost 2Ω(t)).
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4.1 A first attempt, from a trapdoor one-way function

In order to accelerate encryption schemes based on lattices, Micciancio [71] introduced the
class of structured cyclic lattices, which correspond to ideals in polynomial rings Z[x]/(xn−
1), and presented the first provably secure one-way function based on the worst-case hard-
ness of the restriction of poly(n)-SVP to cyclic lattices. At the same time, thanks to its al-
gebraic structure, this one-way function enjoys high efficiency: Õ(n) evaluation time and
storage cost. Subsequently, Lyubashevsky and Micciancio [68] and independently Peikert
and Rosen [92] showed how to modify Micciancio’s function to construct an efficient and
provably secure collision resistant hash function. For this, they introduced the more gen-
eral class of ideal lattices, which correspond to ideals in polynomial rings Z[x]/ f (x) (via
the isomorphism that consists in identifying a polynomial to its coefficient vector). In this
chapter, we will restrict ourselves to f (x) = xn + 1 with n a power of 2 (this is the 2n-th
cyclotomic polynomial, and Z[x]/(xn + 1) is the ring of integers of the 2n-th cyclotomic
number field). The collision resistance relies on the hardness of the restriction of poly(n)-
SVP to ideal lattices (called poly(n)-Ideal-SVP). The average-case collision-finding problem
is a natural computational problem called Ring-SIS, which has been shown to be as hard as
the worst-case instances of Ideal-SVP.

The Small Integer Solution problem with parameters q, m, β (SISq,m,β) is as follows:
Given n and a matrix A sampled uniformly in Zm×n

q , find e ∈ Zm \ {0} such that eT A =
0 mod q (the modulus being taken component-wise) and ‖e‖ ≤ β. The Ring Small Integer
Solution problem with parameters q, m, β and f (Id-SIS f

q,m,β) is as follows: Given n and m
polynomials g1, . . . , gm chosen uniformly and independently in Zq[x]/ f , find e1, . . . , em ∈
Z[x] not all zero such that ∑i≤m eigi = 0 in Zq[x]/ f and ‖e‖ ≤ β, where e is the vector
obtained by concatenating the coefficients of the ei’s. Id-SIS is exactly SIS, where G is chosen
to be rot f (g). The matrix rot f (g) is defined as follows: If r ∈ Z[x]/ f , then rot f (r) ∈ Qn×n

is the matrix whose rows are the xir(x) mod f (x)’s, for 0 ≤ i < n; This is extended to the
matrices A over Q[x]/ f , by applying rot f component-wise.

Our construction attempts to use a variant of LWE using a structured matrix A instead
of A ←↩ U(Zm×n

q ). More specifically, The Ideal Learning With Errors problem Comp-Id-
LWEq,m,χ is the same as Comp-LWE restricted to m calls to the oracle Ds,χ, except that A =
rot f (a) with a ←↩ U((Zq[x]/ f )m). The space saving due to using Id-LWE arises from the
fact that n rows of A may be stored with n elements of Zq instead of n2. This allows us to set
Id-LWE’s m to be n times smaller than LWE’s m. The efficiency improvement arises from the
fact that a multiplication rot f (g) ·b may be performed in quasi-linear time, as the coefficients
of the obtained vector are those of the polynomial b(x) · g(1/x) mod xn + 1, which may be
computed efficiently using fast polynomial multiplication [37, Ch. 8]. However, it is not
straightforward to adapt Regev’s reductions from worst-case lattice problems to Dec-LWE,
to this structured setting (although this has been recently achieved by Lyubashevsky, Peikert
and Regev [69], as explained in the next section). To circumvent this difficulty, we proposed
a new reduction, directly from Id-SIS to Id-LWE, using Regev’s quantum reduction:

Theorem 10 Let q, m, n be integers with q ≡ 3 mod 8, n ≥ 32 a power of 2, poly(n) ≥
m ≥ 41 log q and α < min

(
1

10
√

ln(10m)
, 0.006

)
. Let χα be the normal law of standard devia-

tion αq, reduced modulo q and rounded to the closest integer. Suppose that there exists an
algorithm that solves Comp-Id-LWEq,m,χ in time T and with probability ε ≥ 4m exp

(
− π

4α2

)
.
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Then there exists a quantum algorithm that solves Id-SIS
q,m,

√
m

2α

in time poly(T, n) and with

probability ε3

64 −O(ε5)− 2−Ω(n).

This result ensures that Comp-Id-LWE is indeed at least as hard to solve as worst-case
lattice problems for ideal lattices, because Id-SIS is known to be so [68, 92]. However, it
is weaker than what could hope from a full-fledged adaptation of Regev’s worst-case to
average-case reduction, for two reasons: First, Comp-Id-LWE is restricted to a fixed m, and
second it is not clear how to derive from the result above that a decisional variant of Comp-
Id-LWE is also hard.

However, an asymptotically efficient encryption scheme can still be built. At this stage,
the hardness of Comp-Id-LWE provides us a family of one-way functions: s 7→ rot f (a) · s +
e. Furthermore, the Ajtai-Alwen-Peikert trapdoor construction for LWE can be adapted to
derive a a family of trapdoor one-way functions, see [119]. By combining this trapdoor func-
tion with the Goldreich-Levin generic hardcore function [40, Sec. 2.5] we obtain a security
proof for the following encryption scheme Id-Enc.

• Key generation. For security parameter n, run the modified Ajtai-Alwen-Peikert algo-
rithm from [119] to get g ∈ (Zq[x]/(xn + 1))m and a trapdoor S (such that S · g = 0
in Zq[x]/(xn + 1)). Let `I = O(n log q) = Õ(n), generate r ∈ Z

`I+`M
2 uniformly and

define the Toeplitz matrix MGL ∈ Z
`M×`i
2 (allowing fast multiplication [89]) whose i-th

row is [ri, . . . , r`I+i−1]. The public key is (g, r) and the secret key is S.

• Encryption. Given `M-bit message M with `M = n/ log n = Ω̃(n) and public key (g, r),
sample (s, e) with s ∈ Zn

q uniform and e sampled from χα, and evaluate C1 = rot f (g)T ·
s + e. Compute C2 = M ⊕ (MGL · s), where s is viewed as a string over Z

`I
2 , the

product MGL · s is computed over Z2, and the ⊕ notation stands for the bit-wise XOR
function. Return the ciphertext (C1, C2).

• Decryption. Given ciphertext (C1, C2) and secret key (S, r), invert C1 to compute (s, e)
such that rot f (g)T · s + e = C1, and return M = C2 ⊕ (MGL · s).

Theorem 11 Any chosen plaintext attack against indistinguishability of Id-Enc with run-
time T and success probability 1/2 + ε provides an algorithm for Id-LWE f

q,m,χα
with run-

time O(23`M n3ε−3 · T) and success probability Ω(2−`M n−1 · ε).

4.2 A security proof for NTRUEncrypt

Last year, Lyubashevsky, Peikert and Regev [69] proposed in a concurrent and independent
work a full-fledged adaptation of Regev’s reductions for Dec-LWE, to the case of structured
lattices. To define the Decisional Ring Learning With Errors Problem (Dec-RLWE), we first
need a few notations.

Let R = Z[x]/(xn + 1) for n a power of 2 and Rq = Zq[x]/(xn + 1) = R/(qR), for
an integer q. For s ∈ Rq and ψ a distribution in Rq, we define As,ψ as the distribution ob-
tained by sampling the pair (a, as + e) with (a, e) ←↩ U(Rq) × ψ. The (parametrised) dis-
tributions ψα used by Lyubashevsky et al are a bit technical to define, but may be thought
of as n-dimensional Gaussian vectors with standard deviations αq, rounded to the closest
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integer vector and reduced modulo q. They actually differ a little from this: For instance,
the distribution ψα is itself chosen randomly, from a (parametrised) distribution Υα. The im-
portant facts to be remembered are that sampling from Υα and from the sample ψα can be
performed in quasi-linear time (with respect to n log q), and that the samples from ψα are
small (smaller than αq

√
nω(

√
log n) with overwhelming probability) and can be obtained

in quasi-linear time (with respect to n log q).
The Ring Learning With Errors Problem with parameters q and α (Dec-RLWEq,α) is as

follows. Let ψ ←↩ Υα and s ←↩ U(Rq). Given access to an oracle O that produces samples
in Rq × Rq, distinguish whether O outputs samples from As,ψ or from U(Rq × Rq). The dis-
tinguishing advantage should be 1/poly(n) (resp. 2−o(n)) over the randomness of the input,
the randomness of the samples and the internal randomness of the algorithm. It was shown
in [69] that there exists a randomised polynomial-time (resp. sub-exponential) quantum re-
duction from γ-Id-SVP to Dec-RLWEq,α, with γ = ω(n1.5 log n)/α (resp. Ω(n2.5)/α), under
the assumptions that: αq = ω(n

√
log n) (resp. Ω(n1.5)) with α ∈ (0, 1); and q = poly(n) is

prime such that xn + 1 has n distinct linear factors modulo q.

With Ron Steinfeld, we exploited the proven hardness of the Dec-RLWE problem to mod-
ify NTRUEncrypt so that it becomes provably secure, under the assumed quantum hard-
ness of standard worst-case lattice problems, restricted to ideal lattices. The revised scheme
NTRUEncrypt’ is as follows.

• Key generation. Sample f ′ from DZn ,σ using the Gentry et al. sampler (Theorem 1);
Let f = 2 f ′ + 1 and restart if f is not invertible in Rq. Similarly, sample g from U(R×q ).
The secret key is f , while the public key is h = 2g/ f ∈ R×q .

• Encryption. Given message M ∈ R whose coefficients belong to {0, 1}, set s, e ←↩
φα ←↩ Υα and return ciphertext C = hs + 2e + M ∈ Rq.

• Decryption. Given ciphertext C and secret key f , compute C′ = f · C ∈ Rq and return
C′ mod 2.

The scheme is very similar to NTRUEncrypt, apart from minor-looking differences which
have significant impact for allowing for a security proof based on the hardness of Dec-RLWE.

1. In NTRUEncrypt, the polynomial rings are RNTRU = Z[x]/(xn − 1) with n a prime
number, and RNTRU

q = Zq[x]/(xn − 1) with q a power of 2. These rings were modified
to match those for which Dec-RLWE is known to be hard.

2. As a side effect, the modification of q allows for setting NTRU’s p to 2 (in the original
scheme, p was chosen to be x + 2 or 3, because it is required to be invertible modulo q.

3. In NTRUEncrypt, the secret key polynomial f ′ and g were chosen with coefficients
in {−1, 0, 1}, with predetermined numbers of coefficients being set to 0. Instead, we
sample f ′ and g using discrete Gaussians over R, rejecting the samples that are not
invertible in Rq. This allows us for showing that f /g is statistically close to uniform
over R×q .

4. In NTRUEncrypt, no error term e is used in the encryption algorithm, and the nonce s
is chosen from a distribution similar to that of f ′. Adding the error allows for relying
on the hardness of Dec-RLWE.
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By relying on fast arithmetic over polynomials, we obtain that the encryption and de-
cryption operations of NTRUEncrypt’ can be performed in time quasi-linear in n. Further-
more, the key generation process is also very efficient, as the rejection probability is small:
The probability that x ←↩ U(Rq) is not invertible modulo n is O(n/q), and this fact can also
be shown to hold when x ←↩ DZn ,σ for a sufficiently large σ.

The security of NTRUEncrypt’ relies on a mild modification of Dec-RLWE. First, us-
ing [12, Le. 2], it is possible to show that Dec-RLWE remains hard if s is sampled from ψα

(instead of s←↩ U(Rq)). Furthermore, the problem still remains hard if we assume that the a
of (a, as + e) is sampled from U(R×q ) instead of U(Rq), because there are sufficiently many
invertible elements in Rq. Given these modifications on Dec-RLWE, and the fact that 2 ∈ R×q ,
it follows that if h was sampled uniformly in R×q , then a ciphertext 2(hs + e) + M would be
indistinguishable from uniform. This is our main contribution: We show that if h is sampled
as described, its statistical distance to uniformity is exponentially small. Overall, this leads
to the following result.

Theorem 12 Suppose n is a power of 2 such that Φ = xn + 1 splits into n linear factors
modulo prime q = poly(n) such that q

1
2−ε = ω(n2.5 log2 n) (resp. q

1
2−ε = ω(n3 log1.5 n)),

for arbitrary ε ∈ (0, 1/2). Let σ = 2n
√

ln(8nq) · q 1
2+ε and α−1 = ω(n0.5 log nσ). If there

exists an Chosen Plaintext Attack against the Indistinguishability of NTRUEncrypt’ which
runs in time T = poly(n) and has success probability 1/2 + 1/poly(n) (resp. time T =
2o(n) and success probability 1/2 + 2−o(n)), then there exists a poly(n)-time (resp. 2o(n)-time)
quantum algorithm for γ-Id-SVP with γ = O(n3 log2.5 nq

1
2+ε) (resp. γ = O(n4 log1.5 nq

1
2+ε)).

Moreover, the decryption algorithm succeeds with probability 1− n−ω(1) over the choice of
the encryption randomness.

As mentioned above, the most important fact that remains to be proven is that the public
key polynomial is indeed close to uniformly distributed in R×q . We denote by D×σ,z the dis-
crete Gaussian DZn ,σ restricted to R×q + z, where z is an arbitrary element of Rq. The public
key uniformity is a direct consequence of the following result.

Theorem 13 Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits into n linear factors
modulo prime q ≥ 5. Let ε > 0 and σ ≥ 2n

√
ln(8nq) · q 1

2+2ε. Let p ∈ R×q , yi ∈ Rq and zi =

−yi p−1 mod q for i ∈ {1, 2}. Then

∆
[

y1 + p · D×σ,z1

y2 + p · D×σ,z2

mod q ; U
(

R×q
)]
≤ 23nq−bεnc.

The proof consists in showing that for every a ∈ R×q , the probability that f1/ f2 = a is
extremely close to (q− 1)−n, where fi ←↩ y1 + p · D×σ,z1

. For this, it suffices to show that for
every a1, a2 ∈ R×q , the probability that f1a1 + f2a2 = 0 is extremely close to (q− 1)−n. The fact
that f1 and f2 are not sampled with rejection is handled via an inclusion-exclusion argument.
From now on, we assume for simplicity that f1, f2 ←↩ DZn ,σ. It then suffices to bound the
statistical distance to U(R×q × R×q × Rq) of the triple (a1, a2, f1a1 + f2a2) when ai ←↩ U(R×q )
and fi ←↩ DZn ,σ. The latter question is reminiscent of the left-over hash lemma [57], and a
bound can be obtained in this specific context using standard tools on discrete Gaussians [73,
39] (and some elementary algebraic number theory). The reader is referred to [118] for more
details.
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4.3 Perspectives

Replacing arbitrary lattices by ideal lattices and unstructured matrices by structured matri-
ces was a significant step towards making lattice-based cryptography practical. However, its
deployment remains curbed by a few important difficulties. First and perhaps most impor-
tantly, the practical limits of the best known attacks are still fuzzy. At the time this document
is being written, the statement from [35] that solving γ-SVP with γ = (1.01)n is hard with
current implementations seems generally accepted. However, it gives no precise estimate of
how hard it actually is, nor how it would extrapolate for different levels of security.

From a security viewpoint, the restriction to ideal lattices further narrows the link to
NP-hardness results. The LWE and SIS problems were already only known to be no easier
than γ-SIVP and γ-CVP for values of γ for which no NP-hardness result is known to hold.
In fact, it is even strongly suspected that these problem relaxations are not NP-hard, as they
belong to NP∩coNP [2]. But in the case of ideal lattices, no NP-hardness result is known
to hold even for γ = 1. On the other hand, there is no known significant computational
advantage when standard lattice problems are restricted to ideal lattices (apart from the gap
decisional version of SVP). The assumption that the restriction to ideal lattices creates no
vulnerability needs further investigation. On a related topic, the argument that lattice-based
cryptography (including schemes based on ideal lattices) resists would-be quantum comput-
ers needs further backing. For the moment, it relies on the single observation that it is not
known how to exploit quantum computing to solve standard lattice problems significantly
more efficiently than with classical computers. Proving a quantum hardness result (such as
QMA-hardness, the quantum equivalent to NP-hardness) for a lattice problem would sub-
stantiate the assumption.

Finally, cryptography is far from being restricted to encryption resisting to Chosen Plain-
text Attacks. Far more functionalities and efficient implementations thereof would be re-
quired if lattice-based cryptography were to be deployed widely. There has already been
quite some effort spent on signatures (see, e.g., [67]) and hash functions [68, 93]. On the
other hand, at the time being there is no lattice-based encryption scheme both resisting Cho-
sen Ciphertext Attacks and consisting of quasi-linear time algorithms. An interesting goal in
this context would be to discover an equivalent to pairings on elliptic curves in the context
of lattices, as these have allowed for the efficient realization of many cryptographic function-
alities.
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PERTURBATION ANALYSIS OF THE QR FACTOR R

IN THE CONTEXT OF LLL LATTICE BASIS REDUCTION

XIAO-WEN CHANG, DAMIEN STEHLÉ, AND GILLES VILLARD

Abstract. In 1982, Arjen Lenstra, Hendrik Lenstra Jr. and László Lovász in-

troduced an efficiently computable notion of reduction of basis of a Euclidean
lattice that is now commonly referred to as LLL-reduction. The precise def-

inition involves the R-factor of the QR factorisation of the basis matrix. In

order to circumvent the use of rational/exact arithmetic with large bit-sizes,

it is tempting to consider using floating-point arithmetic with small precision

to compute the R-factor. In the present article, we investigate the accuracy

of the factor R of the QR factorisation of an LLL-reduced basis. Our main

contribution is the first fully rigorous perturbation analysis of the R-factor of

LLL-reduced matrices under column-wise perturbations. Our results are very

useful to devise LLL-type algorithms relying on floating-point approximations.

1. Introduction

Let B ∈ R
m×n be of a full column rank matrix. It has a unique QR factor-

ization B = QR, where the Q-factor Q ∈ R
m×n has orthonormal columns, i.e.,

QT Q = I (where I is the identity matrix), and the R-factor R ∈ R
n×n is upper

triangular with positive diagonal entries (see, e.g., [6, §5]). This fundamental tool
in matrix computations is central to the LLL reduction algorithm, named after the
authors of [12], which aims at efficiently finding reduced bases of Euclidean lattices.

A Euclidean lattice L is a discrete subgroup of R
m and it can always be repre-

sented by a full column rank basis matrix B ∈ R
m×n: L = {Bx,x ∈ Z

n}. If n ≥ 2,
L has infinitely many bases. They are related by unimodular transforms, i.e., mul-
tiplication on the right of B by an n × n integer matrix with determinant ±1.
Given a lattice, one is often interested in obtaining a basis whose vectors are short
and close to being orthogonal. Refining the quality of a basis is generically called
lattice reduction. Among many others, lattice reduction has applications in cryp-
tology [19], algorithmic number theory [4], communications [16], etc. LLL takes
as input a basis matrix B and returns a basis of the same lattice which is made
of vectors whose norm product is not arbitrarily larger than the lattice determi-
nant detL =

�
det(BT B) (see Theorem 5.2). More informatively, LLL returns a

new basis matrix of the same lattice whose jth basis vector has norm not arbitrar-
ily larger than the norm of the orthogonal projection of this basis vector onto the
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Damien Stehlé’s work was partly funded by the LaRedA ANR project.

Gilles Villard’s work was partly funded by the Gecko ANR project.

c�XXXX American Mathematical Society

1



2 X.-W. CHANG, D. STEHLÉ, AND G. VILLARD

orthogonal complement of the space spanned by the first j−1 basis vectors for each
j ≥ 2.

The original LLL algorithm [12] assumed that the input basis is integral and
used integer arithmetic for the operations on the basis and rational arithmetic for
the operations on the R-factor. The bit-size of each rational (the bit-size of a/b
with a, b ∈ Z is the sum of the bit-sizes of a and b) is bounded by a polynomial
in the bit-sizes of the input matrix entries. Nevertheless, the cost of the rational
arithmetic grows quickly and dominates the overall cost. Schnorr [22] was the
first to use approximations of these rationals in a rigorous way. His algorithm was
improved recently by Nguyen and Stehlé [17, 18] who significantly decreased the bit-
size required for each approximation, and thus the overall complexity of the LLL-
reduction. (Note that contrarily to [17, 18] Schnorr’s approximations are not relying
on standard floating-point arithmetic.) To further decrease the required precision
and therefore the cost, Schnorr [11, 23, 24] suggested using the Householder QR
factorization algorithm instead of the Cholesky factorization algorithm as was used
in [17, 18], since it is known that the R-factor computed by Householder’s algorithm
is more accurate than the one computed with the Cholesky factorization of BT B.

The R-factor of the matrix B varies continuously with B. If we consider a per-
turbed matrix B+ΔB that is sufficiently close to B (note that in the perturbation
matrix ΔB, Δ does not represent anything, i.e., ΔB is not a product of Δ and B),
then its R-factor R +ΔR remains close to R. The goal of the present article is to
investigate how ΔB affects ΔR, for LLL-reduced matrices B. This perturbation
analysis helps understanding and providing (a priori) guarantees on the quality of
numerically computed factors R. The QR-factorization is typically computed by
Householder reflections, Givens rotations or the modified Gram-Schmidt orthogo-
nalization. These algorithms are backward stable with respect to the R-factor: if

the computations are performed in floating-point arithmetic, then the computed �R

is the true R-factor of a matrix �B which is very close to the input matrix B (see [7,
§18]). Along with the backward stability analysis, a perturbation analysis pro-

vides accuracy bounds on the computed �R. In the present paper, we consider a
perturbation ΔB that satisfies

(1.1) |ΔB| ≤ εC|B|,

where ci,j = 1 for all i, j and ε > 0 is a small scalar (it will be specified in the relevant
theorems to be given in the paper how small it needs to be for the results to hold).
The motivation for considering such a class of perturbations is that the backward
rounding error from a rounding error analysis of the standard QR factorization
algorithms fits in this class with ε = O(u), where we omitted the dependence with
respect to the matrix dimensions and u is the unit roundoff (see [7, Th. 18.4] and
Theorem 6.4 given later).1

Our results. Our main contribution is the first fully rigorous perturbation
analysis of the R-factor of LLL-reduced matrices under the perturbation (1.1) (The-
orem 5.6). In order to make this result consistent with the LLL-reduction (i.e., the

1Note that the description of the backward error in [7, Th. 18.4] was modified in the newer

edition [8, Th. 19.4]. In the latter, the matrix equation (1.1) is replaced by �Δbi� ≤ ε�bi�, for

all i. The two formulations are equivalent (up to a small factor that is polynomial in the matrix

dimensions), but the matrix equation (1.1) is more suited for our sensitivity analysis.



PERTURBATION OF THE QR FACTOR R AND LLL REDUCTION 3

perturbed reduced basis remains reduced, possibly with respect to weaker reduc-
tion parameters), we introduce a new notion of LLL-reduction (Definition 5.3).
Matrices reduced in this new sense satisfy essentially the same properties as those
satisfied by matrices reduced in the classical sense. But the new notion of reduction
is more natural with respect to column-wise perturbations, as the perturbation of
a reduced basis remains reduced (this is not the case with the classical notion of
reduction). Another important ingredient of the main result, that may be of inde-
pendent interest, is the improvement of the perturbation analyses of [1] and [28]
for general full column rank matrices (section 2). More precisely, all our bounds
are fully rigorous, in the sense that no higher order error term is neglicted, and
explicit constant factors are provided. Explicit and rigorous bounds are invaluable
for guaranteeing computational accuracy: one can choose a precision that will be
known in advance to provide a certain degree of accuracy in the result. In [1, §6],
a rigorous error bound was proved. A (much) smaller bound was given in [1, §8],
but it is a first-order bound, i.e., high-order terms were neglected. Our rigorous
bound is close to this improved bound. Our approach to deriving this rigorous
bound is new and has been extended to the perturbation analysis of some other
important matrix factorizations [3]. Finally, we give explicit constants in the back-
ward stability analysis of Householder’s algorithm from [8, §19], which, along with
the perturbation analysis, provides fully rigorous and explicit error bounds for the
computed R-factor of a LLL-reduced matrix.

Implications. Our results are descriptive in nature. However, the rigorous
and explicit error analysis and the new notion of LLL-reducedness should lead to
significant algorithmic improvements. Intuitively, we formalize the idea that only
the O(n) most significant bits of the vectors matter for their LLL-reducedness.
Such a property has dramatic algorithmic consequences, as it implies that instead
of computing with all bits we shall try to make use of only O(n) bits for each matrix
entry. For instance, in a context similar to [27], our result implies that in order to
check the LLL-reducedness of a matrix, one only needs to consider O(n) most sig-
nificant bits of each column. This provides a O(n5)-time (resp. O(n4+ε)-time) LLL
certificate with naive integer arithmetic (resp. with FFT-based arithmetic [26]).
Also, our results have been used to devise an efficient algorithm that improves
the LLL-reducedness of an already LLL-reduced basis [15]. That algorithm finds
a good unimodular transform by looking only at the O(n) most significant bits of
each column of the input matrix. Furthermore, the present work is the first step
towards achieving Schnorr’s goal of an LLL algorithm relying on the floating-point
Householder algorithm. This goal has been reached in [14], which relies on the
present results. Finally, these results helped devising an LLL-reduction algorithm
whose bit-complexity is quasi-linear in fixed dimension [21], in the fashion of the
Knuth-Schönhage quasi-linear time gcd algorithm [10, 25]. Roughly speaking, the
first k bits of the quotients sequence of Euclid’s gcd algorithm depends only on the
first 2k bits of the two input integers. Knuth and Schönhage use that property
to compute the quotients sequence by looking only at the first bits of the remain-
ders sequence. Adapting this strategy to lattices involves truncations and hence
perturbations of the basis vectors.

Road map. In section 2, we give our perturbation analysis of the R-factor for
general full column matrices. Sections 3, 4 and 5 specialize the analysis to different
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sets of matrices, including LLL-reduced matrices. Finally, in section 6, we provide
explicit backward error bounds for Householder’s QR factorization algorithm.

Notation. If b is a vector, then �b�p denotes its �p norm. If p = 2, we
omit the subscript. The jth column of a matrix A = (ai,j) is denoted by aj

and |A| denotes (|ai,j |). We use the MATLAB notation to denote submatrices:
The matrix A(i1 : i2, j1 : j2) consists of rows i1 to i2 and columns j1 to j2 of A;
If i1 and i2 (resp. j1 and j2) are omitted, then all the rows (resp. columns) of A
are kept; Finally, if i1 = i2 (resp. j1 = j2), we will write A(i1, j1 : j2) (resp.
A(i1 : i2, j1)). The Frobenius norm is �A�F = (

�
i,j a2i,j)

1/2. The �p matrix norm

is �A�p = sup
x∈Rn �Ax�p/�x�p. We use �A�1,∞ to denote either the 1-norm or the

∞-norm. We have �A�2 ≤ �A�F . If A and B are of compatible sizes, then �AB�F ≤
�A�F �B�2 (see [8, Pbm. 6.5]) and �AB�2 ≤ �A�2�B�2. If A is a square matrix,
then up(A) denotes the upper triangular matrix whose ith diagonal entry is ai,i/2
and whose upper-diagonal entries match those of A. We let Dn ⊆ R

n×n be the set
of diagonal matrices with positive diagonal entries. For any nonsingular matrix X
we define

(1.2) cond2(X) =
�
�|X||X−1|

�
�
2
.

If a is a real number, then fl(a) denotes the floating-point number closest to a
(with even mantissa when a is exactly half-way from two consecutive floating-point
numbers). As a side-effect of our bounds being fully explicit, and since we tried to
give tight and explicit perturbation bounds, some of theses bounds involve rather
complicated and uninteresting terms. To make the presentation more compact, we
encapsulate them in the variables c1, c2, . . ..

2. Refined Perturbation Analysis of the R-Factor

In this section, we first give a general matrix-norm perturbation bound, then
derive a column-wise perturbation bound.

2.1. A matrix-norm perturbation bound. We will present a rigorous bound
(i.e., without any implicit higher order term) on the perturbation of the R-factor
when B is under the perturbation (1.1). In order to do that, we need the following
two technical lemmas.

Lemma 2.1. Let n > 0, X ∈ R
n×n and D = diag(δ1, . . . , δn) ∈ Dn. We de-

fine ζD = 1 for n = 1 and, for n ≥ 2:

(2.1) ζD =

�

1 + max
1≤i<j≤n

(δj/δi)
2
.

Then we have

(2.2) �up(X) + D−1up(XT )D�F ≤ ζD�X�F ,

and in particular, when XT = X and D = I,

(2.3) �up(X)�F ≤
1
√
2
�X�F .

Proof. The inequality (2.2) was given in [2, Lemma 5.1]. The inequality (2.3),
which was given in [2, Eq. (2.3)], can also be derived from (2.2). �
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The following provides a sufficient condition for the rank to be preserved during
a continuous change from a full column-rank matrix B to B + ΔB. This ensures
that the R-factor is well-defined on the full path. This is of course not true if the
matrix B is close to being rank deficient and the perturbation ΔB is not small, but
that situation is prevented by assumption (2.4).

Lemma 2.2. Let B ∈ R
m×n be of full column rank with QR factorization B = QR.

Let the perturbation matrix ΔB ∈ R
m×n satisfy (1.1). If

(2.4) cond2(R)ε <
c

m
√

n
,

for some constant 0 < c ≤ 1, then the matrix B + tΔB has full column rank for
any |t| ≤ 1. Furthermore, �ΔBR−1�F < c.

Proof. The second assertion follows from (2.4). In fact, from (1.1) and (2.4), we
obtain

�ΔBR−1�F ≤ ε
�
�C|Q||R||R−1|

�
�

F
≤ ε

�
�C

�
�

F

�
�Q

�
�

F

�
�|R||R−1|

�
�
2

= εm
√

n cond2(R) < c.

We now consider the first assertion. Notice that

QT (B + tΔB) = R + tQTΔB =
�
I + tQTΔBR−1

�
R.

But �tQTΔBR−1�2 ≤ �ΔBR−1�2 < 1, thus I + tQTΔBR−1 is non-singular. So
is QT (B + tΔB), and hence B + tΔB must have full column rank. �

Using the above two lemmas, we can prove the following perturbation theorem.

Theorem 2.3. Let B ∈ R
m×n be of full column rank with QR factorization B =

QR. Let the perturbation matrix ΔB ∈ R
m×n satisfy (1.1). If

(2.5) cond2(R)ε <

�
3/2− 1

m
√

n
,

then B +ΔB has a unique QR factorization

(2.6) B +ΔB = (Q +ΔQ)(R +ΔR),

and

(2.7)
�ΔR�F

�R�2
≤ c1(m,n)χ(B) ε,

where, with ζD defined in (2.1):

c1(m,n) = (
√
6 +

√
3)mn1/2,(2.8)

χ(B) = infD∈Dn
χ(R,D), χ(R,D) =

ζD�|R||R−1|D�
2
�D−1R�

2

�R�2
.(2.9)

Proof. The condition (2.5) ensures that (2.4) holds with c =
�
3/2 − 1. Then, by

Lemma 2.2, B + tΔB is of full column rank for any |t| ≤ 1. Thus B + tΔB has the
unique QR factorization

(2.10) B + tΔB = (Q +ΔQ(t))(R +ΔR(t)),

which, with ΔQ(1) = ΔQ and ΔR(1) = ΔR, gives (2.6).
From (2.10), we obtain (B + tΔB)T (B + tΔB) = (R + ΔR(t))T (R + ΔR(t)),

leading to

RTΔR(t) + ΔR(t)T R = tRT QTΔB + tΔBT QR + t2ΔBTΔB −ΔR(t)TΔR(t).
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Multiplying the above by R−T from the left and R−1 from the right, we obtain

R−TΔR(t)T +ΔR(t)R−1

= tQTΔBR−1 + tR−TΔBT Q + R−T
�
t2ΔBTΔB −ΔR(t)TΔR(t)

�
R−1.

Since ΔR(t)R−1 is upper triangular, it follows that

ΔR(t)R−1 = up(tQTΔBR−1 + tR−TΔBT Q)

+ up(t2R−TΔBTΔBR−1)− up
�
R−TΔR(t)TΔR(t)R−1

�
.

(2.11)

Taking the F -norm on both sides of (2.11) and using Lemma 2.1 and the orthogo-
nality of Q, we obtain

(2.12) �ΔR(t)R−1�F ≤
√
2|t|·�ΔBR−1�F +

1
√
2
t2�ΔBR−1�2F +

1
√
2
�ΔR(t)R−1�2F .

Let ρ(t) = �ΔR(t)R−1�F and δ(t) = |t|·�ΔBR−1�F . Then from (2.12)

ρ(t)(
√
2− ρ(t)) ≤ δ(t)(2 + δ(t)).

Here the left hand side has its maximum of 1/2 with ρ(t) = 1/
√
2 and is increasing

with respect to ρ(t) ∈ [0, 1/
√
2]. But, by Lemma 2.2, for |t| ≤ 1,

(2.13) 0 ≤ δ(t) ≤ �ΔBR−1�F < c =
�
3/2− 1.

This implies that 0 ≤ δ(t)(2 + δ(t)) < 1/2 and ρ(t), starting from 0, cannot reach

its maximum. Hence ρ(t) < 1/
√
2 for any |t| ≤ 1. In particular, when t = 1,

(2.14) �ΔRR−1�F < 1/
√
2.

For any matrices X ∈ R
n×n and D ∈ Dn, we have up(XD) = up(X)D. Thus

from (2.11) with t = 1 it follows that

ΔRR−1D = up
�
(QTΔBR−1D) + D−1(DR−TΔBT Q)D

�

+ up(R−TΔBTΔBR−1D)− up(R−TΔRTΔRR−1D).
(2.15)

Then, using Lemma 2.1, the inequality �up(X)�F ≤ �X�F for any X ∈ R
n×n and

the orthogonality of Q, we obtain from (2.15) that

�ΔRR−1D�F ≤ ζD�ΔBR−1D�F + �ΔBR−1�F �ΔBR−1D�F

+ �ΔRR−1�F �ΔRR−1D�F .

Therefore, with (1.1), (2.13) and (2.14), we have

�ΔRR−1D�F ≤
ζD +

�
3/2− 1

1− 1/
√
2

�C�F �Q�F

�
�|R||R−1|D

�
�
2

≤ (
√
6 +

√
3)ζDmn1/2

�
�|R||R−1|D

�
�
2
,

where in deriving the second inequality we used the fact that ζD ≥ 1. Therefore,

�ΔR�F = �ΔRR−1DD−1R�F ≤ �ΔRR−1D�F �D
−1R�2

≤ (
√
6 +

√
3)ζDmn1/2

�
�|R||R−1|D

�
�
2
�D−1R�2,

leading to the bound (2.7). �
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Remark 1. Theorem 2.3 is a rigorous version of a first-order perturbation bound
given in [1, §8], which also involves χ(B). The new bound given here shows that
if (2.4) holds then the high-order terms ignored in [1, §8] are indeed negligible.
Numerical tests given in [1, §9] indicated that the first-order bound is a good
approximation to the relative perturbation error in the R-factor. This suggests
that the rigorous bound (2.7) is a good bound. By taking D = I in (2.9), we

obtain χ(B) ≤
√
2cond2(R). The quantity cond2(R) is involved in the rigorous

perturbation bound obtained in [1, §6] and can be arbitrarily larger than χ(B).

Remark 2. If the assumptions of Theorem 2.3 hold for B with perturbation ΔB,
then they also hold for BS, for any arbitrary column scaling S ∈ Dn, with per-
turbation ΔBS. The new R-factor is RS and the corresponding error is ΔRS.
However, the quantity χ(B) is not preserved under column scaling.

2.2. A column-wise perturbation bound. For j = 1, . . . , n, we define Rj =
R(1 : j, 1 : j), ΔRj = ΔR(1 : j, 1 : j), rj = R(1 : j, j) and Δrj = ΔR(1 : j, j). Using
Zha’s approach [28, Cor. 2.2], we derive the following result.

Corollary 2.4. If the assumptions of Theorem 2.3 hold, then for j = 1, . . . , n,

(2.16)
�Δrj�

�rj�
≤ c1(m, j)χ(B, j)ε,

where

(2.17) χ(B, j) = inf
D∈Dj

χ(R,D, j) ≥ 1, χ(R,D, j) =
ζD

�
�|Rj ||R

−1
j |D

�
�
2
�D−1rj�

�rj�
.

Proof. For any j ≤ n, we define Bj = B(:, 1 : j) and ΔBj = ΔB(:, 1 : j). Note that

|ΔBj | ≤ εC|Bj | and cond2(Rj)ε ≤ cond2(R)ε ≤ (
�
3/2 − 1)/(m

√
n). Thanks to

Remark 2, we can apply Theorem 2.3 to BjS for an arbitrary S ∈ Dj with the
perturbation matrix ΔBjS. Therefore, for any D ∈ Dj ,

�ΔRjS�F ≤ c1(m, j)ζD

�
�|Rj ||R

−1
j |D

�
�
2

�
�D−1RjS

�
�
2
ε.

Now, let the jth diagonal entry of S be 1 and the others tend to zero. Taking the
limit provides (2.16). The lower bound on χ(B, j) in (2.17) follows from ζD ≥ 1
and

�
�|Rj ||R

−1
j |D

�
�
2
�D−1rj� ≥

�
�|Rj ||R

−1
j |DD−1|rj |

�
� ≥

�
�|RjR

−1
j rj |

�
� = �rj�.

�

Remark 3. The quantity χ(B, j) can be interpreted as an upper bound on the
condition number of the jth column of R with respect to the perturbation ΔB
of B. It is easy to check that the lower bound 1 on χ(B, j) in (2.17) is reached
when j = 1, i.e., that χ(B, 1) = 1.

In the following sections, we specialize Theorem 2.3 and Corollary 2.4 to several
different classes of matrices, that are naturally linked to the LLL reduction.

3. Perturbation Analysis for Size-Reduced Matrices

We now study χ(B, j) for the class of size-reduced matrices, defined as follows.

Definition 3.1. Let η ≥ 0. A full column-rank matrix B ∈ R
m×n with R-factor R

is η-size-reduced if for any 1 ≤ i < j ≤ n, we have |ri,j | ≤ η · ri,i.
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A matrix is 1-size-reduced if the largest element in magnitude in each row of
the R-factor is reached on the diagonal. An example is the QR factorization with
standard column pivoting (see, e.g., [6, Sec. 5.4.1]): one permutes the columns of the
considered matrix so that for any j ≤ n, the jth column is the one maximising rj,j

among the last n − j + 1 columns. If column pivoting is used, then the sorted
matrix is 1-size-reduced. The LLL algorithm [12] has a sub-routine usually called
size-reduction which aims at computing a 1/2-size-reduced matrix by multiplying
the initial matrix on the right by an integer matrix whose determinant is equal to 1
or −1. In the L2 algorithm from [18], a similar sub-routine, relying on floating-point
arithmetic, aims at computing an η-size-reduced matrix, for any specified η > 1/2.

In subsection 3.1, we establish an upper bound on χ(B, j). That upper bound
corresponds to a particular choice of scaling D in χ(R,D, j). In subsection 3.2, we
compare our particular scaling with the different scalings discussed in [1, §9]. We
then give a geometric interpretation of the result we obtain in subsection 3.3.

3.1. Perturbation bounds for size-reduced matrices. We first propose a way
of selecting a good diagonal matrix D in (2.9) and in (2.17) to bound χ(B) and
χ(B, j), respectively. Combined with Theorem 2.3 and Corollary 2.4, this directly
provides matrix-norm and column-wise perturbation bounds.

Theorem 3.2. Let B ∈ R
m×n with full column rank be η-size-reduced and let R

be its R-factor. For j = 1, . . . , n, we define r�j,j = rj,j/max1≤k≤j rk,k and D�
j =

diag(r�1,1, . . . , r
�
j,j). Then

χ(B) ≤ 2(1 + (n− 1)η)(1 + η)n−1ζD�n
,(3.1)

χ(B, j) ≤ c2(j, η)(1 + η)jζD�
j

�
max
1≤k≤j

rk,k

�
/�rj�, j = 1, . . . , n,(3.2)

where ζD is defined in (2.1) for any arbitrary positive diagonal matrix D, and

(3.3) c2(j, η) = 2
�
1 + (j − 1)η2/(1 + η).

Proof. Let R�
j be obtained from Rj by dividing the kth column by max1≤i≤k ri,i,

for k = 1, . . . , j. The diagonal entries of R�
j match r�i,i’s from D�

j . Since Rj is η-

size-reduced, so is R�
j . Let Tj = D�

j
−1

R�
j . We have ti,i = 1 and ti,k ≤ η for k > i.

Therefore, we have |T−1
j | ≤ U−1

j , where Uj ∈ R
j×j is upper triangular with ui,i = 1

and ui,k = −η for k > i, see, e.g., [8, Th. 8.12]. Since Vj = U−1
j satisfies vi,i = 1

and vi,k = η(1 + η)k−i−1 for k > i (see, e.g., [8, Eq. (8.4)]), we obtain

|Rj ||R
−1
j |D�

j = |R�
j ||R

�
j
−1
|D�

j = D�
j |Tj ||T

−1
j |

≤ D�
j |Uj ||Vj | = D�

j









1 2η 2η(1 + η) · 2η(1 + η)j−2

1 2η · 2η(1 + η)j−3

· · ·
1 2η

1









.

Since |r�i,i| ≤ 1 for any i, we have

(3.4)
�
�|Rj ||R

−1
j |D�

j

�
�
1,∞

≤
�
1 + 2η

j−2�

k=0

(1 + η)k
�
≤ 2(1 + η)j−1.
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Notice that |rp,q|/r
�
p,p = |rp,q|max1≤k≤p rk,k/rp,p ≤ ηmax1≤k≤p rk,k. It follows

that |D�
j
−1

Rj | ≤ (max1≤k≤j rk,k)|Uj |. Therefore,

�D�
j
−1

Rj�1,∞ ≤ (1+ (j− 1)η) max
1≤k≤j

rk,k,
�
�D�

j
−1
rj

�
� ≤

�
1 + (j − 1)η2 max

1≤k≤j
rk,k.

Then from the above and (3.4), and using the fact that �S�2 ≤ (�S�1�S�∞)1/2 for
any matrix S (see, e.g., [8, Eq. (6.19)]), we obtain

�
�|R||R−1|D�

n

�
�
2
�D�

n
−1

R�2

�R�2
≤ 2(1 + (n− 1)η)(1 + η)n−1,

�
�|Rj ||R

−1
j |D�

j

�
�
2

�
�D�

j
−1
rj

�
�

�rj�
≤

2
�
1 + (j − 1)η2(1 + η)j−1max1≤k≤j rk,k

�rj�
.

Thus from (2.9) and (2.17) we conclude that (3.1) and (3.2) hold, respectively. �

Remark 4. Suppose we use the standard column pivoting strategy in computing
the QR factorization of B. Then ri,i ≥ rk,k for i < k ≤ j, implying that ζD�

j
≤
√
2.

Then, if P is the pivoting permutation matrix

χ(BP ) ≤
√
2n2n and χ(BP, j) ≤

�
2j2jr1,1/�rj�.

A similar bound on χ(BP ) was given in [1, Th. 8.2].

3.2. Choosing the row scaling in χ(R,D). In [1, §9], Chang and Paige suggest
different ways of choosing D in χ(R,D) to approximate χ(B). One way is to
choose Dr := diag(�R(i, :)�) and D = I and take min{χ(R,Dr), χ(R, I)} as an
approximation to χ(B). The other way is to choose D = De (see below for the
definition of De) and use χ(R,De) as an approximation to χ(B).

The following matrix shows that the scaling D� from Theorem 3.2 can provide a
much better approximation to χ(B) than min(χ(R,Dr), χ(R, I)). Let

B = R =




1 0 0
0 γ ηγ
0 0 1/γ



 .

When γ goes to infinity, both χ(R,Dr) and χ(R, I) tend to infinity, whereas
χ(R,D�) remains bounded. This also indicates that min{χ(R,Dr), χ(R, I)} can
be significantly larger than χ(B).

The scaling De is constructed from DcR
−1 with Dc = diag(�ri�1). If we as-

sume that B is a generic η-size-reduced matrix (or, more formally, that each ri,j

is uniformly and independently distributed in [−η · ri,i, η · ri,i]), then with high
probability Dc is the same as diag(max1≤k≤i rk,k), up to a polynomial factor
in n. We have DcD

−1 ≤ Dc|R
−1| ≤ Dc|V |D

−1, where V is as in the proof of
Theorem 3.2 and D = diag(ri,i). This implies that up to a factor exponential
in n, �(DcR

−1)(:, i)� is 1/r�i,i. The diagonal matrix De is defined by De(i, i) =

min1≤k≤i 1/�(DcR
−1)(:, k)�2. Up to factors exponential in n and for generic η-

size-reduced matrices, the scaling De can be equivalently defined by De(i, i) =
min1≤k≤i r

�
k,k. A bound similar to the one of Theorem 3.2 can be derived for the

latter scaling. Nevertheless, if R is diagonal, then De = I and χ(R,De) =
√
2, but

χ(R,D�) can be significantly larger. Finally, one may note that it is not known how

2The description of De in [1, §9] has an unintended error.
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to compute De from R in O(n2) arithmetic operations or less, while computing D�

requires only O(n) arithmetic operations.

3.3. Geometric interpretation of Theorem 3.2. It is easy to verify that

max
1≤k≤i≤j

(r�i,i/r
�
k,k) ≤ ζD�

j
≤
√
2 max
1≤k≤i≤j

(r�i,i/r
�
k,k).

When (max1≤i≤j ri,i)/�rj� = O(1), e.g., for a generic η-size-reduced matrix with
|ri,j | expected to be somewhat proportional to ri,i, we see from (3.2) that the
quantity max1≤k≤i≤j(r

�
i,i/r

�
k,k) bounds (up to a multiplicative factor that depends

only on j) the sensitivity of the jth column of the R-factor. Let x �→ r(x) be
the piecewise affine interpolating function defined on [1, n] such that r(j) = rj,j

for j = 1, . . . , n. For x1 and x2 in [1, n] such that r(x1) = r(x2), we consider the
quantity maxx∈[x1,x2] r(x1)/r(x) = maxx∈[x1,x2] r(x2)/r(x), which, as illustrated by
Figure 1, represents the multiplicative depth of the graph of r between x1 and x2.

1 nx1 x2x

h = log
r(x1)
r(x)

1 n

log r

logH

Figure 1. A possible graph of log r: on the left hand side, with
a depth h between x1 and x2 (the multiplicative depth is exp(h));
on the right hand side, with the additive height function logH.

We define the maximum depth before rj,j as:

Hj = max
1≤x1≤x2≤j, r(x1)=r(x2)

�

max
x∈[x1,x2]

r(x1)

r(x)

�

,

which is illustrated on the right hand side of Figure 1. We now show the equivalence
between ζD�

j
and Hj . Without loss of generality, we consider only Hn.

Lemma 3.3. We have Hn = max1≤i≤j≤n(r
�
j,j/r

�
i,i).

Proof. We first prove that for any i and j such that 1 ≤ i ≤ j ≤ n, Hn ≥
r�j,j/r

�
i,i. We distinguish two cases, depending on the smallest index k0 at which

max1≤k≤j rk,k is reached. If k0 ≤ i, then r�j,j/r
�
i,i = rj,j/ri,i. If rj,j ≤ ri,i, the result

holds since Hn ≥ 1; otherwise, we have rj,j > ri,i, leading to Hn ≥ rj,j/ri,i (in the
definition of Hn, consider x = i, x2 = j and x1 ∈ [k0, i] such that r(x1) = r(x2)).
Suppose now that i < k0. Since r�j,j ≤ 1, we have r�j,j/r

�
i,i ≤ max1≤k≤i rk,k/ri,i.

The latter is not greater than Hn (in the definition of Hn, consider x = i, x1 ≤ i
such that r(x1) = max1≤k≤i rk,k and x2 ∈ [i, k0] such that r(x2) = r(x1)).

We now prove that max1≤i≤j≤n(r
�
j,j/r

�
i,i) ≥ Hn. Let x1 ≤ x ≤ x2 in [1, n]

be such that Hn = r(x1)/r(x) = r(x2)/r(x). We suppose that x1 < x < x2 as
otherwise Hn = 1 ≤ max1≤i≤j≤n(r

�
j,j/r

�
i,i). By the definition of r(·), the real x
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must be an integer. Similarly, either x1 or x2 is an integer. We consider these
two cases separately. Suppose first that x1 ∈ Z. Then r(x1) ≤ r(�x2�). We
must have max1≤k≤�x2� rk,k = rx1,x1

and max1≤k≤�x2� rk,k = r�x2�,�x2�. This gives
that r�x,x = rx,x/rx1,x1

and r��x2�,�x2�
= 1. Thus Hn = rx1,x1

/rx,x = r��x2�,�x2�
/r�x,x.

Suppose now that x2 ∈ Z. Then r(�x1�) ≥ r(x2). Since max1≤k≤x2
rk,k is reached

before x1, we have r�x2,x2
/r�x,x = rx2,x2

/rx,x = Hn. �

If (maxi≤j ri,i)/�rj� = O(1), then from Corollary 2.4 and Theorem 3.2 it follows

that �Δrj�/�rj� <∼ (1 + η)jHjε.

4. Perturbation Analysis for Weakly-Size-Reduced Matrices

The perturbation bounds given in Theorem 3.2 does not indicate that size-
reducedness, as defined in section 3, is preserved after η-size-reduced B is perturbed
to B +ΔB. In fact, from (2.16) and (3.2),

(4.1) |Δri,j | ≤ �Δrj� ≤ c1(m, j)c2(j, η)(1 + η)jζD�
j

�
max
1≤k≤j

rk,k

�
ε,

and in particular,

(4.2) |Δri,i| ≤ c1(m, i)c2(i, η)(1 + η)iζD�
i

�
max
1≤k≤i

rk,k

�
ε.

If the rk,k’s are increasing, then the upper bound in (4.1) with i < j can be
arbitrarily larger than the upper bound in (4.2). Thus we cannot ensure that
|ri,j + Δri,j | ≤ η|ri,i + Δri,i|. Suppose we restrict ourselves to setting ε as a
function of n only. Computationally, this corresponds to allowing ourselves to use
arbitrary precision arithmetic, but with a precision that shall depend only on the
dimension and not on the matrix entries. Then for any η� > η, one may choose
rk,k’s so that the perturbed basis cannot be guaranteed η�-size-reduced by the
perturbation bound. Overall, this means that given a basis that we are told is η-
size-reduced, and given η� > η, we cannot always ensure that it is η�-size-reduced,
without setting the precision as a function of the matrix entries. This is a very
undesirable computational property. For this reason, we modify the notion of size-
reducedness. We will not be able to show that this new definition is preserved under
the perturbation analysis of the R-factor (although the counter-example above will
not work anymore): to obtain such a property, we will need a LLL-type set of
conditions relying on the weakened size-reduction (see section 5).

Definition 4.1. Let η, θ ≥ 0. A full column-rank matrix B ∈ R
m×n with R-

factor R is (η, θ)-weakly-size-reduced ((η, θ)-WSR for short) if |ri,j | ≤ ηri,i + θrj,j

for any i < j.

The following matrix illustrates Definition 4.1: the magnitude of the coeffi-
cient ri,j is bounded with respect to both ri,i and rj,j .












. . .

ri,i
η

←−−− ri,j

. . . ↓ θ

rj,j

. . .
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As in the previous section, we analyze the quantity χ(B, j) by looking at the
diagonal elements of the R-factor, i.e., the sequence of ri,i’s.

Theorem 4.2. Let B ∈ R
m×n with full column rank be (η, θ)-WSR for some η ≥ 0

and θ ≥ 0. Let R be its R-factor. For j = 1, . . . , n, we let r�j,j = rj,j/max1≤k≤j rk,k,

D�
j = diag(r�1,1, . . . , r

�
j,j) and ξD�

j
=

�
1≤k<j max

�
r�k+1,k+1

r�
k,k

, 1
�
. Then

(4.3) χ(B, j) ≤
√
2c2(j, η + θ)(1 + η + θ)jξD�

j

�
max
1≤k≤j

rk,k

�
/�rj�, j = 1, . . . , n.

Proof. Without loss of generality, we assume that r1,1 = max1≤k≤n rk,k. If this
is not the case, we divide the jth column of R by max1≤k≤j rk,k for j = 1, . . . , n.
Note that χ(B, j) is column-scaling invariant (see (2.17)), and that the quantities
(max1≤k≤j rk,k)/�rj� and ξD�

j
are invariant under this particular scaling.

Let D = diag(ξD�1
, . . . , ξD�n

) and let R̄ = RD−1. As χ(B, j) is invariant under

column-scaling, we have χ(B, j) = χ(BD−1, j). The most important part of the
proof is to show that R̄ is η̄-size-reduced with η̄ = η + θ. Once this is established,
we will apply Theorem 3.2 to R̄ to derive (4.3).

We want to prove that for any i < j, we have |r̄i,j | ≤ η̄r̄i,i. Because of the (η, θ)-
WSR assumption, this will hold if

η
ri,i

ξD�
j

+ θ
rj,j

ξD�
j

≤ (η + θ)
ri,i

ξD�
i

.

Since ξD�
j
≥ ξD�

i
when j ≥ i, it suffices to prove that

rj,j

ξ
D�

j

≤
ri,i

ξ
D�

i

, or equivalently

that the sequence of the r̄i,i’s is non-increasing. This is equivalent to showing
that

rj,j

ξ
D�

j

≤
rj−1,j−1

ξ
D�

j−1

holds for any j ≥ 2, which is a direct consequence of the

definition of ξD�
j
.

We now apply Theorem 3.2 to BD−1. For any 1 ≤ j ≤ n, we have

χ(B, j) = χ(BD−1, j) ≤ c2(j, η̄)(1 + η̄)jζD̄�
j

�
max
1≤k≤j

r̄k,k

�
/�r̄j�,

with D̄�
j = diag

�
r̄i,i

max1≤k≤i r̄k,k

�

1≤i≤j
. The fact that the sequence of the r̄i,i’s is non-

increasing implies that D̄�
j = diag

�
r̄i,i

r̄1,1

�

1≤i≤j
. For the same reason, we have ζD̄�

j
≤

√
2. This also gives that max1≤k≤j r̄k,k = r1,1. Finally, we have �r̄j� = �rj�/ξD�

j
=

�rj�/ξDj
. Since we assumed that r1,1 = max1≤k≤n rk,k, this completes the proof.

�

Remark 5. Naturally, as the assumption on B in Theorem 4.2 is weaker than in
Theorem 3.2, the bound obtained for χ(B, j) is weaker as well. Indeed, it is easy

to show that we always have ζD�
j
≤
√
2ξD�

j
. Furthermore, ξD�

j
can be arbitrarily

larger than ζD�
j
. For instance, consider {ri,i}1≤i≤5 defined by r1,1 = r3,3 = r5,5 =

1 and r2,2 = r4,4 = ε, where ε > 0 tends to 0. In this case, ζD�
j
= O(1/ε),

whereas ξD�
j
= O(1/ε2).

Remark 6. Similarly to size-reduced matrices, we cannot argue from the perturba-
tion results given in Corollary 2.4 and Theorem 4.2 that the weak size-reducedness
is preserved after the perturbation (cf. the discussion given at the beginning of
section 4). However, LLL-reduced matrices, which rely on weak size-reduction and
will be introduced in section 5, do not have this drawback.
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5. LLL Reduction is a Fix-Point Under Column-Wise Perturbation

In the present section, after some reminders on Euclidean lattices, we will in-
troduce a modification of the LLL reduction [12] which is compatible with the
perturbation analysis of the R-factor that we performed in the previous sections.

5.1. Background on Euclidean lattices. We give below the background on lat-
tices that is necessary to the upcoming discussion. For more details, we refer to [13].
A Euclidean lattice is the set of all integer linear combinations of the columns of a
full column rank basis matrix B ∈ R

m×n: L = {Bx,x ∈ Z
n}. The matrix B is said

to be a basis matrix of L and its columns are a basis of L. If n ≥ 2, a given lat-
tice has infinitely lattice bases, but they are related to one another by unimodular
transforms, i.e., by right-multiplication by n×n integer matrices of determinant ±1.
A lattice invariant is a quantity that does not depend on the particular choice of
a basis of a given lattice. The simplest such invariant is the lattice dimension n.
Let R be the R-factor of the basis matrix B. The determinant of the lattice L is
defined as the product of the diagonal entries of R: det(L) =

�
1≤i≤n ri,i. Since

lattice bases are related by unimodular matrices, the determinant is a lattice in-
variant. Another important invariant is the minimum λ(L) defined as the norm of
a shortest non-zero vector of L.

Lattice reduction is a major paradigm in the theory of Euclidean lattices. The
aim is to find a basis of good quality of a lattice given by an arbitrary basis. One
usually targets orthogonality and norm properties. A simple reason why one is
interested in short vectors is that they require less space to store. One is interested
in basis matrices whose columns are fairly orthogonal relatively to their norms
(which can be achieved by requiring the off-diagonal ri,j ’s to be small and the
sequence of the ri,i’s to not decrease too fast), for several different reasons. For
example, it is crucial to bound the complexity of enumeration-type algorithms
that find shortest lattice vectors and closest lattice vectors to given targets in
the space [9, 5]. In 1982, Lenstra, Lenstra and Lovász [12] described a notion
of reduction, called LLL reduction, that can be reached in time polynomial in the
size of the input basis and that ensures some orthogonality and norm properties.
Their algorithm immediately had great impact on various fields of mathematics
and computer science (we refer to [20] for an overview).

Definition 5.1. Let η ∈ [1/2, 1) and δ ∈ (η2, 1]. Let B be a lattice basis matrix
and R be its R-factor. The basis matrix B is (δ, η)-LLL-reduced if it is η-size-
reduced and if for any i we have δ · r2i,i ≤ r2i,i+1 + r2i+1,i+1.

Originally in [12], the parameter η was set to 1/2, but this condition was relaxed
later by Schnorr [22] to allow inaccuracies in the computation of the entries of the
matrix R. Allowing η > 1/2 does not change significantly the guaranteed quality of
LLL-reduced matrices (see below). The parameter δ was chosen to be 3/4 in [12],
because this simplifies the expressions of the constants appearing in the quality
bounds of (δ, 1/2)-LLL-reduced matrices (the α in Theorem 5.2 becomes

√
2). The

second condition in Definition 5.1 means that after projection onto the orthogonal
complement of the first i−1 columns, the ith one is approximately shorter (i.e., not
much longer) than the (i+ 1)th. Together, the two conditions imply that the ri,i’s
cannot decrease too quickly and that the norm of the ith column is essentially ri,i

(up to a factor that depends only of the dimension). The theorem below gives the
main properties of LLL-reduced matrices.
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Theorem 5.2. Let η ∈ [1/2, 1) and δ ∈ (η2, 1]. Let α = 1√
δ−η2

. If B ∈ R
m×n is a

(δ, η)-LLL-reduced basis matrix of a lattice L, then we have:

rj,j ≤ α · rj+1,j+1, j = 1, . . . , n− 1,

�bj� ≤ αj−1 · rj,j , j = 1, . . . , n,

�b1� ≤ αn−1 · λ(L),

�b1� ≤ α
n−1

2 · (det(L))
1
n ,

�

1≤j≤n

�bj� ≤ α
n(n−1)

2 · det(L).

We do not give a proof, since Theorem 5.2 is a simple corollary of Theorem 5.4.

5.2. A weakening of the LLL-reduction. LLL-reduction suffers from the same
drawback as size-reduction with respect to column-wise perturbations. If the ε
parameter of a column-wise perturbation is set as a function of n, then for any η� >
η and any δ� < δ, one may choose rk,k’s so that the initial basis is (δ, η)-LLL-
reduced but the perturbed basis cannot be guaranteed (δ�, η�)-size-reduced. Indeed,

consider the matrix

�
1 0
0 γ

�

, where γ grows to infinity. We can choose Δr1,1 = 0

and Δr1,2 = εγ. The latter grows linearly with γ and eventually becomes bigger
than any fixed η�, thus preventing the perturbed matrix from being size-reduced.

For this reason, we introduce a weakening of LLL-reduction that relies on weak-
size-reduction instead of size-reduction. This seems to be more coherent with the
approximate computation of the R-factor of the QR factorization by Householder
reflections, Givens rotations or the Modified Gram-Schmidt orthogonalization. The
weakening has the nice property that if a basis is reduced according to this defini-
tion and the corresponding R-factor is computed by any of these algorithms using
floating-point arithmetic, then it suffices to show that the basis is indeed reduced
according to this weakening (up to a small additional relaxation of the same type).
This relaxation is thus somehow a fix-point with respect to floating-point compu-
tation of the R-factor by these algorithms. We will make this statement precise in
Corollary 6.5. The need for such a weakening was discovered by Schnorr [23, 24],
though he did not define it formally nor proved any quality property.

Definition 5.3. Let η ∈ [1/2, 1), θ ≥ 0 and δ ∈ (η2, 1]. Let B be a lattice basis
matrix and R be its R-factor. The basis matrix B is (δ, η, θ)-LLL-reduced if it
is (η, θ)-WSR and if for any i we have: δ · r2i,i ≤ r2i,i+1 + r2i+1,i+1.

Figure 2 illustrates the different definitions of LLL-reduction. If the ri,i’s are
decreasing, then a (δ, η, θ)-LLL-reduced basis matrix is (δ, η + θ)-reduced. The
weakening becomes more interesting when the ri,i’s do not decrease. In any case,
it does not worsen significantly the bounds of Theorem 5.2.
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Figure 2. The hashed area is the set of vectors b2 such that
(b1,b2) is (from left to right) (1, 0, 0)-LLL, (δ, 0, 0)-LLL, (δ, η, 0)-
LLL and (δ, η, θ)-LLL.

Theorem 5.4. Let η ∈ [1/2, 1), θ ≥ 0 and δ ∈ (η2, 1]. Let α =
θη+

√
(1+θ2)δ−η2

δ−η2 .

If B ∈ R
m×n is a (δ, η, θ)-LLL-reduced basis matrix of a lattice L, then we have

rj,j ≤ α · rj+1,j+1, j = 1, . . . , n− 1,(5.1)

�bj� ≤ αj−1 · rj,j , j = 1, . . . , n,(5.2)

�b1� ≤ αn−1 · λ(L),(5.3)

�b1� ≤ α
n−1

2 · (det(L))
1
n ,(5.4)

�

1≤j≤n

�bj� ≤ α
n(n−1)

2 · det(L).(5.5)

Here α is always greater than or equal to 1√
δ−η2

, the value of α defined in

Theorem 5.2. However, when θ tends to 0, the former tends to the latter.

Proof. By the given conditions, we have:

δr2j,j ≤ (ηrj,j + θrj+1,j+1)
2 + r2j+1,j+1 ≤ η2r2j,j + 2ηθrj,jrj+1,j+1 + (1+ θ2)r2j+1,j+1.

This implies that x :=
rj,j

rj+1,j+1
satisfies the following degree-2 inequality:

(5.6) (δ − η2)x2 − 2ηθx− (1 + θ2) ≤ 0.

The discriminant is 4
�
(1 + θ2)δ − η2

�
> 0 and the leading coefficient is non-

negative. As a consequence, we have:

x ≤
θη +

�
(1 + θ2)δ − η2

δ − η2
= α,

leading to (5.1).
Now we show (5.2). From (5.6), we have (δ − η2)α2 − 2ηθα − (1 + θ2) = 0.

But δ ≤ 1. Thus (1−η2)α2−2ηθα−(1+θ2) ≥ 0, or equivalently (θ+ηα)2 ≤ α2−1.
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Using this fact and α ≥ 1 as well, we have

�bj�
2 =

�

1≤i≤j

r2i,j ≤ r2j,j +
�

1≤i<j

�
η2 · r2i,i + 2θη · rj,jri,i + θ2 · r2j,j

�

≤
�
1 +

�

1≤i<j

(η2α2(j−i) + 2θηαj−i + θ2)
�
· r2j,j

≤
�
1 +

�

1≤i<j

(η2α2 + 2θηα + θ2)α2(j−i−1)
�
· r2j,j

≤
�
1 + (θ + ηα)

2 α2(j−1) − 1

α2 − 1

�
· r2j,j ≤ α2(j−1) · r2j,j ,

leading to (5.2).
From (5.1), we have rj,j ≥ α1−j · r1,1. Suppose that z ∈ Z

n satisfies zi �= 0 while
zj = 0 for j = i+ 1, . . . , n. Then

�Bz� = �Rz� ≥ |ri,izi| ≥ ri,i ≥ α1−ir1,1 = α1−i�b1�.

We thus have λ(L) = minz∈Zn,z�=0 �Bz� ≥ α1−n�b1�, which proves (5.3).

Since det(L) =
�

1≤j≤n rj,j ≥
�

1≤j≤n(α
1−j · r1,1) = α(n−1)n/2�b1�

n, (5.4)

holds. The inequality (5.5) follows from (5.2). �

5.3. Application to LLL-reduced matrices. We first show that the assump-
tion of Theorem 2.3 is fulfilled for (δ, η, θ)-reduced basis matrices. To do this, we
bound cond2(R) for any upper triangular basis matrix R which is reduced.

Lemma 5.5. Let η, θ ≥ 0 and α ≥ 1. Suppose an upper triangular matrix R ∈
R

n×n with positive diagonal entries satisfies

(5.7) |ri,j | ≤ ηri,i + θrj,j , ri,i ≤ αri+1,i+1, j = i+1, . . . , n, i = 1, . . . , n− 1.

Then

(5.8) cond2(R) ≤
|1− η − θ|α + 1

(1 + η + θ)α− 1
(1 + η + θ)nαn.

Proof. In the proof, we will use the following fact a few times: for any strictly upper
triangular matrix U ∈ R

n×n, we have (I − U)−1 =
�

0≤k<n Uk.

Write R = R̄ ·D, where D = diag(r1,1, . . . , rn,n) and r̄i,j =
ri,j

rj,j
for i ≤ j. From

the assumption (5.7) it follows that |r̄i,j | ≤ (ηαj−i + θ) for i < j. Define T to be
the strictly upper triangular matrix with ti,j = r̄i,j for i < j. Let J be the matrix
whose all entries are 0, except that all (i, i + 1) entries are 1’s. The matrix T is
nilpotent and satisfies

|T | ≤ (η + θ)
�

1≤k<n

(αJ)k = (η + θ)αJ(I − αJ)−1.

Since R̄ = I + T , we have

|R̄| ≤ I + (η + θ)αJ(I − αJ)−1 = (I − (1− η − θ)αJ)(I − αJ)−1.
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Since T is strictly upper triangular, R̄−1 =
�

0≤k<n(−T )k. As a consequence,

|R̄−1| ≤
�

0≤k<n

|T |k ≤
�

0≤k<n

�
(η + θ)αJ(I − αJ)−1

�k

=
�
I − (η + θ)αJ(I − αJ)−1

�−1

= (I − αJ) (I − (1 + η + θ)αJ)
−1

= (I − αJ)
�

0≤k<n

(1 + η + θ)kαkJk.

using the fact that �J�2 = 1, we obtain

�
�|R̄|·|R̄−1|

�
�
2
≤ �I − (1− η − θ)αJ�2

�

0≤k<n

�
�(1 + η + θ)kαkJk

�
�
2

≤ (|1− η − θ|α + 1)
�

0≤k<n

(1 + η + θ)kαk

≤
|1− η − θ|α + 1

(1 + η + θ)α− 1
(1 + η + θ)nαn.

Using the equality cond2(R) = cond2(R̄) allows us to assert that (5.8) holds. �

Remark 7. Let R be the upper triangular matrix with ri,i = α−i and ri,j =
ηα−i(−1)i−j+1 for i < j. Then R satisfies (5.7) with θ = 0, and we have cond2(R) ≥
ηαn−1(1 + η)n−2, which is very close to the upper bound (5.8) with θ = 0. Indeed,
if we use the same notations as in the proof of Lemma 5.5, we have cond2(R) =
cond2(R̄) with R̄ = I + ηαJ − ηα2J2 + . . . = I + ηαJ(I + αJ)−1. Then R̄−1 =
I − ηαJ(I + (1 + η)αJ)−1. The proof is completed by noting that cond2(R̄) is
not smaller than the (1, n)-entry of |R̄| · |R̄−1|, which itself is not smaller than
ηαn−1(1 + η)n−2.

We now specialize our perturbation analysis of the previous sections to the case
of (δ, η, θ)-LLL-reduced basis matrices.

Theorem 5.6. Let η ∈ [1/2, 1), θ ≥ 0, δ ∈ (η2, 1] and α =
θη+

√
(1+θ2)δ−η2

δ−η2 .

Let B ∈ R
m×n be a (δ, η, θ)-LLL-reduced basis matrix and R be its R-factor.

Let ΔB ∈ R
m×n be a perturbation matrix satisfying (1.1), where ε satisfies

(5.9) c3(1 + η + θ)nαnε < 1,

with

(5.10) c3 =
(|1− η − θ|α + 1)m

√
n

((1 + η + θ)α− 1)(
�
3/2− 1)

.

Then B +ΔB has a unique R-factor R +ΔR and

(5.11) �Δrj� ≤
√
2c1(m, j)c2(j, η + θ)(1 + η + θ)jαkjrj,jε, j = 1, . . . , n,

where c1 and c2 are defined by (2.8) and (3.3), respectively, and kj is the number
of indices i such that i < j and ri,i > ri+1,i+1.
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Proof. From Lemma 5.5, we see that the condition (5.9) ensures that the assump-
tion (2.5) in Theorem 2.3 is satisfied. From Corollary 2.4 and Theorem 4.2 it follows
that

(5.12) �Δrj� ≤
√
2c1(m, j)c2(j, η + θ)ξD�

j
(1 + η + θ)j

�
max
1≤i≤j

ri,i

�
ε, j = 1, . . . , n,

where ξD�
j
=

�j−1
i=1 max

�
r�i+1,i+1/r

�
i,i, 1

�
with r�j,j = rj,j/max1≤i≤j ri,i. If ri,i >

ri+1,i+1 holds, then with (5.1) we have r�i,i/r
�
i+1,i+1 = ri,i/ri+1,i+1 ≤ α, thus 1 ≤

α · r�i+1,i+1/r
�
i,i. Then it follows that

ξD�
j
=








j−1�

i = 1
r�i+1,i+1 ≥ r�i,i

r�i+1,i+1

r�i,i







·








j−1�

i = 1
r�i,i > r�i+1,i+1

α
r�i+1,i+1

r�i,i







≤ αkj

r�j,j
r�1,1

= αkjr�j,j ,

which, combined with (5.12), results in (5.11). �

Remark 8. It is also possible to obtain an upper bound on
�Δrj�

rj,j
by using (5.2),

Corollary 2.4 with D = I, and Lemma 5.5. This allows to circumvent the more
tedious analysis corresponding to sections 3 and 4. However, the bound obtained
in this way is (much) larger.

We can now conclude that the set of LLL-reduced matrices is a fix-point under
column-wise perturbations.

Corollary 5.7. Let η ∈ [1/2, 1), θ ≥ 0, δ ∈ (η2, 1] and α =
θη+

√
(1+θ2)δ−η2

δ−η2 .

Let B ∈ R
m×n be a (δ, η, θ)-LLL-reduced basis matrix. Let ΔB ∈ R

m×n be a
perturbation matrix satisfying (1.1), where ε is such that

ε� := c4(1 + η + θ)nαnε < 1,

with

(5.13) c4 = max(c3,
√
2c1(m,n)c2(n, η + θ)),

and with c1, c2 and c3 defined by (2.8), (3.3) and (5.10), respectively. Then B+ΔB
is (δ�, η�, θ�)-LLL-reduced with

δ� = δ
(1− ε�)2

(1 + ε�)2(1 + 2ε�(ηα + θ))
, η� =

η

1− ε�
and θ� =

θ + ε�

1− ε�
.

Proof. Let R� = R+ΔR be the R-factor of B+ΔB. From Theorem 5.6, it follows
that for all 1 ≤ i ≤ j ≤ n, we have |Δri,j | ≤ ε�rj,j . Therefore,

(1− ε�)ri,i ≤ r�i,i ≤ (1 + ε�)ri,i and |r�i,j | ≤ ηri,i + (θ + ε�)rj,j .

As a consequence, we have |r�i,j | ≤
η

1−ε� r
�
i,i +

θ+ε�

1−ε� r
�
j,j , which gives us the weak-size-

reduction. We also have

|r�i,i+1| ≥ |ri,i+1| − ε�ri+1,i+1

(r�i,i+1)
2 ≥ r2i,i+1 − 2ε�|ri,i+1|ri+1,i+1

≥ r2i,i+1 − 2ε� (ηri,i + θri+1,i+1) ri+1,i+1

≥ r2i,i+1 − 2ε�(ηα + θ)r2i+1,i+1.
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Therefore:

δ

(1 + ε�)2
· (r�i,i)

2 ≤ r2i+1,i+1 + r2i,i+1 ≤ r2i+1,i+1 + (r�i,i+1)
2 + 2ε�(ηα + θ)r2i+1,i+1

≤
1 + 2ε�(ηα + θ)

(1− ε�)2
�
(r�i+1,i+1)

2 + (r�i,i+1)
2
�
.

This completes the proof. �

If the initial parameters δ, η and θ are such that η ∈ (1/2, 1), θ > 0, and δ ∈
(η2, 1), then ε can be chosen as a function of δ, η, θ,m and n so that the resulting
parameters δ�, η�, θ� also satisfy the domain conditions η� ∈ (1/2, 1), θ� > 0 and δ� ∈
((η�)2, 1). Overall, this means that the set of basis matrices that are (δ, η, θ)-LLL-
reduced for some parameters η ∈ (1/2, 1), θ > 0, and δ ∈ (η2, 1) is stable under
column-wise perturbations when ε is limited to a function of the parameters and the
dimensions m and n only. Note that if we fix θ = 0, we cannot guarantee that the
perturbed basis is reduced with θ� = 0. This is why the weakened LLL-reduction
is more appropriate with respect to column-wise perturbations.

6. Practical Computation

In many cases, the perturbation matrix considered in a perturbation analysis
comes from a backward stability result on some algorithm. In the case of QR
factorization, the algorithms for which backward stability is established are the
Householder algorithm, the Givens algorithm and the Modified Gram-Schmidt al-
gorithm [8, §19]. In this section, we give a precise backward stability result for
Householder’s algorithm. We then apply it to LLL reduced bases. Similar results
hold for the Givens and Modified Gram-Schmidt algorithms.

6.1. Backward stability of Householder’s algorithm. Columnwise error anal-
ysis of the Householder QR factorization algorithm has been given in [8, §19]. But
the constant in the backward error bound is not precisely computed. However, this
information is crucial for some applications, such as the LLL reduction, since it will
allow one to select floating-point precision to provide correctness guarantees. The
purpose of the present section is to give a precise backward error bound. The model
of floating-point arithmetic that we use is formally described in [8, Eq. (2.4)].

Suppose we are given an m×n matrix B that has full column rank and that we
aim at computing its R-factor R. Householder’s algorithm proceeds column-wise
by transforming B to R. Suppose that after j steps we have transformed B into a
matrix of the following form:

�
B�
1,1 B�

1,2

0 B�
2,2

�

,

where B�
1,1 is an j×j upper triangular matrix with positive diagonal entries. In the

(j + 1)th step, we apply a Householder transformation Qj+1 (which is orthogonal)
to B�

2,2 from the left such that the first column of B�
2,2 becomes [×, 0, . . . , 0]T . For

the computation of the Householder transformation, see Figure 3, which gives two
variants and is taken from [8, Lemma 19.1] with some changes. The Householder

algorithm computes the full form of the QR factorization: B = Q

�
R
0

�

, where

Q ∈ R
m×m is orthogonal and R ∈ R

n×n is upper triangular. Some of the diagonal
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entries of R may be negative, but if we want them to be positive, we can multiply
the corresponding rows of R and columns of Q by −1.

Input: A vector b ∈ R
m.

Output: A vector v ∈ R
m such that Q = I − vvT is

orthogonal and Q · b = (±�b�, 0, . . . , 0)T .

1. v:=b.
2. s:=sign(b1) · �b�.

3. v1:=b1 + s (variant A) or v1:=
−

Pm
i=2 b

2
i

b1+s
(variant B).

4. v:= 1√
s·v1

· v (variant A) or v:= 1√
−s·v1

· v (variant B).

Figure 3. Two variants of computing the Householder transformation.

The algorithm of Figure 3 is performed with floating-point arithmetic. The com-
putational details are straightforward, except for Step 3 of variant B: the numerator
is a term that appears in the computation of Step 2, and thus does not need being
re-computed. In our rounding error analysis, all given numbers are assumed to be
real numbers (so they may not be floating-point numbers), and all algorithms are
assumed to be run with unit roundoff u, i.e., u = 2−p, where p is the precision. We
use a hat to denote a computed quantity. For convenience, we use δ to denote a
quantity satisfying |δ| ≤ u. The quantity γm := mu

1−mu will be used a few times.
The computations of some bounds contained in the proofs of the following lemmas
were performed by MAPLE. The corresponding MAPLE work-sheet is available at
http://perso.ens-lyon.fr/damien.stehle/RPERTURB.html.

The following lemma is a modified version of [8, Lemma 19.1].

Lemma 6.1. Suppose we run either variant of the algorithm of Figure 3 on a
nonzero vector b ∈ R

m with unit roundoff u satisfying c5 ·u ≤ 1, where:

(6.1) c5 = 4(6m + 63) for variant A, and c5 = 8(6m + 39) for variant B.

Let v̂ be the computed vector and v be the vector that would have been computed
with infinite precision. Then v̂ = v+Δv with |Δv| ≤ (m+11)u · |v| for variant A
(resp. |Δv| ≤ 1

2 (5m + 29)u · |v| for variant B).

Proof. Let c = bTb. Then ĉ = fl(b̂T b̂) where |b̂ − b| ≤ u|b|. By following [8,
p. 63], it is easy to verify that

(6.2)
|ĉ− c|

|c|
≤ γm+2.

Note that the above result is different from [8, Eq. (3.5)], since here the bi’s are not
assumed to be floating-point numbers. Since γm+2 < 1, using (6.2) we have

(6.3)
|
√

ĉ−
√

c|
√

c
=
|ĉ− c|
√

c

1
√

ĉ +
√

c
≤

|ĉ− c|

2c
√
1− γm+2

≤
γm+2

2
√
1− γm+2

=: β1.

Then it follows that at Step 2,

(6.4)
|ŝ− s|

|s|
=
|
√

ĉ(1 + δ)−
√

c|
√

c
≤ (1 + β1)(1 + u)− 1 =: β2.
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We now consider variants A and B of the algorithm separately. For variant A
and at Step 3, the quantities b1 and s have the same sign, so |b1| + |s| = |b1 + s|.
Thus, using (6.4) we have

|v̂1 − v1|

|v1|
=
|(b̂1 + ŝ)(1 + δ)− (b1 + s)|

|b1 + s|
≤
|b̂1(1 + δ)− b1|+ |ŝ(1 + δ)− s|

|b1 + s|

≤
|b1|[(1 + u)2 − 1] + |s|[(1 + β2)(1 + u)− 1]

|b1 + s|
≤ (1 + β2)(1 + u)− 1 =: β3,

(6.5)

Then, using (6.4) and (6.5) we have

(6.6)
|d̂− d|

|d|
=
|ŝv̂1(1 + δ)− sv1|

|sv1|
≤ (1 + β2)(1 + β3)(1 + u)− 1 =: β4.

The MAPLE work-sheet shows that β4 < 1. Let e =
√

d =
√

sv1. Then, by the
same derivation for (6.4) (see (6.3)), using (6.6) we have

(6.7)
|ê− e|

|e|
=
|
�

d̂ (1 + δ)−
√

d|
√

d
≤

�

1 +
β4

2
√
1− β4

�

(1 + u)− 1 := β5.

The MAPLE work-sheet shows that β5 < 1. Then from (6.5) and (6.7) we obtain
the following componentwise bound:

(6.8) |v̂ − v| ≤

�
1 + β3
1− β5

(1 + u)− 1

�

|v| = β6|v|,

where β6 =
1+β3

1−β5
(1 + u)− 1 ≤ (m+ 11)u, as indicated by the MAPLE work-sheet.

Now we consider variant B. The quantity
�m

i=2 b2i from Step 3 has been computed
at Step 2. The relative error in the computed value is bounded by γm+1. Thus,
using this fact and (6.5) (for the denominator) we conclude that

(6.9)
|v̂1 − v1|

|v1|
≤

1 + γm+1

1− β3
(1 + u)− 1 =: β�3.

According to the MAPLE work-sheet, we have β�3 < 1. The rest analysis is similar
to the derivation for (6.6)–(6.8) and we have the following componentwise bound:

(6.10) |v̂ − v| ≤

�
1 + β�3
1− β�5

(1 + u)− 1

�

|v| = β�6|v|,

where β�5 =

�

1 +
β�4

2
√

1−β�4

�

(1 + u)− 1, β�4 = (1 + β2)(1 + β�3)(1 + u)− 1 and β�6 :=

1+β�3
1−β�5

(1 + u)− 1. The MAPLE work-sheet shows that β�6 ≤
1
2 (5m + 29)u. �

At step j + 1 of the QR factorization, once the Householder vector v is com-
puted, the Householder matrix is applied to all the remaining column vectors of the
matrix B�

2,2. The following lemma, a modified version of [8, Lemma 19.2], provides
a backward analysis for this step.

Lemma 6.2. Suppose that the assumptions of Lemma 6.1 hold. Let c ∈ R
m,

Q = I−vvT and y = Qc = c−v(vT c). In computing y, the computed Householder
vector v̂ is used. Then there exists ΔQ ∈ R

m×m such that

(6.11) ŷ = (Q +ΔQ)c and �ΔQ�F ≤
1

4
c5u.
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Proof. The proofs for both variants of the algorithm of Figure 3 are the same, so
we only consider variant A. Let t = vT c. Then t̂ = fl(v̂T ĉ), where |ĉ − c| ≤ u|c|
and |v̂−v| ≤ β6|v|, by Lemma 6.1. Then by following the derivation of [8, Eq. (3.4)],
we can show that

(6.12) |t̂− t| ≤ [(1 + β6)(1 + u)(1 + γm)− 1] |v|T |c| = β7|v|
T |c|,

where β7 := (1+β6)(1+u)(1+γm)−1. Let w = v(vT c) = vt. Then ŵ = v̂t̂(1+δ).
Using (6.8), (6.10) and (6.12) we obtain the following bound:

|ŵ −w| ≤ ((1 + β6)(1 + β7)(1 + u)− 1) |v||v|T |c| = β8|v||v|
T |c|,

where β8 = (1 + β6)(1 + β7)(1 + u)− 1. Then it follows that

(6.13) |ŷ−y| = |fl(ĉ−ŵ)−(c−w)| ≤ [(1+u)2−1]|c|+[(1+β8)(1+u)−1]|v||v|T |c|.

Note that the Householder vector v satisfies �v� =
√
2. Thus from (6.13) it follows

that

�ŷ − y� ≤ [(1 + u)2 − 1]�c�+ 2[(1 + β8)(1 + u)− 1]�c� = β9�c�,

where β9 = (1 + u)2 + 2(1 + β8)(1 + u) − 3. We can write ŷ = (Q + ΔQ)c

with ΔQ = (ŷ−y)cT

cT c
. We have �ΔQ�F = �ŷ−y�

�c� ≤ β9. In the MAPLE work-sheet,

we see that β9 ≤
1
4c5u, and thus (6.11) holds. �

The following lemma is a modified version of [8, Lemma 19.3]. It considers error
analysis of a sequence of Householder matrices applied to a given matrix.

Lemma 6.3. Let B ∈ R
m×n and let Qi = I − viv

T
i for i ≤ n be a sequence

of Householder matrices. We consider the sequence of transformations Bi+1 =
QiBi, with B1 = B. Suppose that these transformations are performed by using the
computed Householder vectors v̂i with unit roundoff u. Let

(6.14) c6 =
1

2
nc5,

with c5 defined by (6.1). If c6u ≤ 1, then the computed matrix �Bn+1 satisfies

�Bn+1 = QT (B +ΔB),

where QT = QnQn−1 . . . Q1 and

(6.15) �Δbj� ≤ c6u�bj�, j = 1, . . . , n.

Proof. Let b
(n+1)
j be the jth column of Bn+1. From Lemma 6.2 it follows that

there exist ΔQ1, . . . ,ΔQn ∈ R
m×m such that

b̂
(n+1)
j = (Qn +ΔQn) . . . (Q1 +ΔQ1)bj and �ΔQi�F ≤

1

4
c5u.

Write QT +ΔQT = (Qn +ΔQn) . . . (Q1 +ΔQ1). Then by [8, Lemma 3.7] we have

�ΔQT �F ≤
�
1 +

1

4
c5u

�n

− 1 ≤
1
4c5nu

1− 1
4c5nu

≤ c6u.

Define Δbj = QΔQTbj . Then

b̂
(n+1)
j = QTbj +ΔQTbj = QT (bj +Δbj) and �Δbj� ≤ c6u�bj�.

�
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We can now conclude with a version of [7, Th. 18.4] (or [8, Th. 19.4], in the
newer edition), with generic constants replaced by explicit constants.

Theorem 6.4. Let �R be the computed R-factor of the QR factorization of a given
matrix B ∈ R

m×n by the Householder algorithm, with unit roundoff u. If c6u ≤ 1
with c6 = 2n(6m + 63) for variant A and 4n(6m + 39) for variant B, then there
exists an orthogonal matrix Q ∈ R

m×m such that

B +ΔB = Q

�
�R
0

�

and �Δbj� ≤ c6u�bj�, j = 1, . . . , n.

The latter implies that |ΔB| ≤ c6uC|B|, where ci,j = 1 for all i, j. The matrix Q
is given explicitly by QT = QnQn−1 . . . Q1, where Qi is the Householder matrix
corresponding to the exact application of the ith step of the Householder algorithm

to �Bi.

Proof. As a direct consequence of Lemma 6.3, we have:

B +ΔB = Q

�
�R
0

�

and �Δbj� ≤ c6u�bj�, j = 1, . . . , n,

with Q = QT
1 QT

2 . . . QT
n . Then

|Δbi,j | ≤ c6u�bj� ≤ c6u�bj�1 = c6ue
T |bj |,

where e = [1, . . . , 1]T . We thus have |Δbj | ≤ c6uee
T |bj | for all j, which gives

|ΔB| ≤ c6uC|B| since C = eeT . �

6.2. Application to LLL-reduced matrices. By using Theorem 6.4 and Corol-
lary 5.7, we have the following result on LLL-reduced bases.

Corollary 6.5. Let η ∈ [1/2, 1], θ ≥ 0, δ ∈ (η2, 1] and α =
θη+

√
(1+θ2)δ−η2

δ−η2 .

Let B ∈ R
m×n be a (δ, η, θ)-LLL-reduced basis matrix. Let u be such that

u� := c7(1 + η + θ)nαnu < 1,

where c7 = c4c6 and with c4 defined by (5.13) and c6 defined by (6.14). Suppose
we compute the R-factor of B with the algorithm described in Subsection 6.1. Then

the computed matrix �R is (δ�, η�, θ�)-LLL-reduced with

δ� = δ
(1− u�)2

(1 + u�)2(1 + 2u�(ηα + θ))
, η� =

η

1− u�
, θ� =

θ + u�

1− u�
.

Proof. From Theorem 6.4, we know that (1.1) holds with ε = c6u. The result
directly follows from Corollary 5.7. �

The weakening of the LLL-reduction is stable under Householder’s algorithm: if
the input basis is reduced, then so is the output basis (with slightly relaxed factors).

7. Concluding Remarks

We investigated the sensitivity of the R-factor of the QR-factorisation under
column-wise perturbations, which correspond to the backward stability results
of the standard QR factorization algorithms. We focused on the case of LLL-
reduced matrices, and showed that if the classical definition of LLL-reducedness
is sligthly modified, then LLL-reducedness is preserved under column-wise pertur-
bations. This implies that by computing the R-factor of a reduced matrix with a
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standard floating-point QR factorization algorithm (e.g., Householder’s algorithm),
then one can numerically check that the LLL conditions (5.3) are indeed satis-
fied, for slightly degraded parameters. These certified reduction parameters can be
made arbitrarily close to the actual reduction parameters by setting the precision
sufficiently high. Importantly, the required precision for the above to be valid is
linear with respect to the dimension, and does not depend on the magnitudes of
the matrix entries. This study was motivated by its algorithmic implications: the
results may be used to efficiently check the LLL-reducedness of a basis and to speed
up the LLL-reduction process.
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ABSTRACT
We describe a new LLL-type algorithm, H-LLL, that relies
on Householder transformations to approximate the under-
lying Gram-Schmidt orthogonalizations. The latter com-
putations are performed with floating-point arithmetic. We
prove that a precision essentially equal to the dimension suf-
fices to ensure that the output basis is reduced. H-LLL re-
sembles the L2 algorithm of Nguyen and Stehlé that relies
on a floating-point Cholesky algorithm. However, replac-
ing Cholesky’s algorithm by Householder’s is not benign,
as their numerical behaviors differ significantly. Broadly
speaking, our correctness proof is more involved, whereas
our complexity analysis is more direct. Thanks to the new
orthogonalization strategy, H-LLL is the first LLL-type al-
gorithm that admits a natural vectorial description, which
leads to a complexity upper bound that is proportional to
the progress performed on the basis (for fixed dimensions).

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Computations
on matrices

General Terms
Algorithms

Keywords
Lattice Reduction, LLL, Floating-Point Arithmetic, House-
holder’s Algorithm

1. INTRODUCTION
Lattice reduction is a fundamental tool in diverse fields

of computational mathematics [2] and computer science [8].
The LLL algorithm, invented in 1982 by Arjen Lenstra, Hen-
drik Lenstra Jr and László Lovász [7], allows one to perform
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lattice reduction in time polynomial in both the dimensions
and the bit-sizes of the entries of the input matrix.

In terms of efficiency, the major weakness of the origi-
nal rational algorithm and its improved variants [5, 17] is
that they perform all computations with exact arithmetic,
leading to the use of very large integers. This considerably
slows down the algorithm, making it impractical for large
dimensions or entries. As early as 1983, Odlyzko, in his first
attempts to cryptanalyze knapsack cryptosystems [10], used
floating-point arithmetic (fpa for short) within LLL to avoid
the rational arithmetic cost overhead. The cost of updating
the basis being negligible compared to the cost of computing
and updating the Gram-Schmidt orthogonalization (GSO
for short) of the vectors, it seems natural to compute the
latter using fpa, while using exact arithmetic to update the
basis. This was at first implemented in a heuristic manner,
without ensuring the accuracy of the computations. In a pio-
neering work [13], Schnorr showed that the natural heuristic
approach can be made rigorous.

In the present paper we present a new fp LLL algorithm
that relies on the computation of the QR-factorization of
the basis using Householder’s algorithm. H-LLL computes
fp approximations to the coefficients of the R-factor and
uses them to perform exact operations on the basis. We
prove that if the precision is large enough, then H-LLL runs
correctly. The bound on the precision depends on the di-
mension only (it is actually essentially equal to it). Our
analysis relies on bounds on the errors made while comput-
ing the R-factor of a given reduced basis. Those bounds are
proved in [1]. Exploiting them while requiring a fairly small
precision is where the technical complexity of the present
work lies. In particular, the bounds do not seem sufficient
to perform a size-reduction, a crucial step in the LLL algo-
rithm (even with the weaker version of Definition 2). This
is where H-LLL differs from most LLL variants: rather than
fully size-reducing the current vector, we transform it so that
enough information is obtained to decide whether Lovász’s
condition is satisfied. The correctness of H-LLL is thus
harder to prove, but its unique design allows us to explic-
itly bound the bit-complexity in terms of the actual work
that was performed on the lattice basis. All other LLL al-
gorithms work on the underlying quadratic form, whereas
ours can be interpreted as working on vectors. Considering
a basis matrix (b1, . . . ,bd) ∈ Zn×d with vectors of euclidean
norms ≤ ‖B‖, the total bit complexity is:

O

»„

d + log
Y db

i

de
i

+
1

d
log

Y ‖bb
i‖

‖be
i ‖

«

nM(d)(d + log ‖B‖)

–

,



where db
i (resp. de

i ) is the determinant of the lattice spanned
by the first i columns of B at the beginning (resp. the end),
and M(x) = O(x2) is the cost of multiplying two x-bit
long integers. The product

Q

di is classically referred to

as the potential. The term log
Q db

i
de

i
quantifies the actual

progress made with respect to the potential, while the term

log
Q ‖bb

i ‖
‖be

i ‖ quantifies the progress made with respect to the

norms of the vectors. One can note that the obvious bound
on the latter (d log ‖B‖) is negligible compared to the ob-
vious bound on the former (d2 log ‖B‖). The overall bit
complexity is O(nd2M(d) log ‖B‖(d + log ‖B‖)).

Related works. As mentioned previously, the first rig-
orous fp LLL was invented by Schnorr in 1988 (see [13]).
However, the precision used in the fp computations was a
linear function of both the bit-size of the matrix entries and
the dimension, with rather large constant factors. Since
then, Schnorr et. al have described several heuristic reduc-
tion algorithms [15, 6, 14, 12], notably introducing in [15]
the concept of lazy size-reduction and in [6] the idea to use
Householder’s algorithm. The outputs of those heuristic al-
gorithms may be certified LLL-reduced with [18], but so far
there does not exist any proved variant of LLL relying on
Householder’s algorithm and using a fp precision that does
not depend on the bit-size of the matrix entries. The L2

algorithm [9] of Nguyen and Stehlé is a proven fp LLL, also
of complexity O(nd2M(d) log ‖B‖(d + log ‖B‖)), that relies
on a lazy size-reduction based on Cholesky’s algorithm. Al-
though this approach is close to the present work, there are
a few key differences caused by the use of different orthog-
onalization algorithms. The first difference is the nature of
the numerical errors. Both Cholesky’s algorithm and House-
holder’s are backward stable [4] and forward stable when the
input is LLL-reduced [9, 1]. When computing the R-factor
of a given basis, the error made using Cholesky’s relates to
the diagonal coefficient of the row, which induces an abso-
lute error on the Gram-Schmidt coefficients. When using
Householder’s, the same error involves the diagonal coeffi-
cient of the column, inducing possibly much larger absolute
errors on the Gram-Schmidt coefficients. This leads us to
use a slightly relaxed definition of reduction, which is a fix-
point under perturbation of the original basis [1]. The dif-
ferent nature of the error makes the correctness harder to
obtain. The second difference is the number and type of
arithmetic operations made. Cholesky’s algorithm uses the
exact Gram matrix of the basis to compute the R-factor,
which implies additional integer arithmetic. Furthermore
the overall number of operations needed to compute and up-
date the GSO-related quantities using Cholesky’s algorithm
is roughly twice the number of operations needed when using
Householder’s. Also, the precision required is higher when
using the Cholesky factorization, which can be explained
intuitively by its condition number being greater than the
condition number of the QR-factorization. This leads to the
fact that H-LLL requires a precision of ≈ d bits, whereas
L2 requires a precision of ≈ 1.6d bits. Finally, the vectorial
nature of H-LLL makes its complexity analysis simpler than
that of L2: the amortized cost analysis (which allows to get
a complexity bound that is quadratic when the dimensions
are fixed) is much more direct.

Road-map. In Section 2, we give some reminders that are
necessary for the description and analysis of H-LLL. In Sec-

tion 3, we describe a new (incomplete) size-reduction al-
gorithm and analyze it. H-LLL relies on the (incomplete)
size-reduction algorithm and is presented in Section 4.

Notation. Vectors will be denoted in bold. If b is a vec-
tor, then ‖b‖ will denote its euclidean norm. For a ma-
trix A = (ai,j) ∈ Rm×n, its j-th column will be denoted
by aj . If b is a vector and i ≤ j are two valid entry indices,
then b[i..j] is the (j−i+1)-dimensional sub-vector of b con-
sisting of its entries within indices i and j. The notation ⌊x⌉
denotes an arbitrary integer closest to x. We define sign(x)
as 1 if x ≥ 0 and −1 otherwise. We use a standard base-2
arbitrary precision fp model, such as described in [4, Sec.
2.1]. The notation ⋄(a) refers to the fp rounding of a. If x is
a variable, the variable x hopefully approximates x and ∆x
is the distance between them. For complexity statements,
we count all elementary bit operations.

Glossary. The variables α, δ, δ, δ′, η, η, θ, θ and ρ all refer
to parameters related to the LLL-reduction. For simplicity,
the reader may think of α ≈ 2/

√
3, 1 ≈ δ < δ < δ′ <

1, 1/2 < η < η ≈ 1/2, 0 < θ < θ ≈ 0 and ρ ≈
√

3.
The variables c0, c1 are polynomially bounded functions of d
and n (and the variables above) and can be safely thought
of as constants.

2. LATTICE REDUCTION
A euclidean lattice L is a discrete subgroup of Rn. A

basis B = (b1, . . . ,bd) ∈ Ld of L is a tuple of linearly
independent vectors such that L is precisely the set of all
integer linear combinations of the bi’s. The integer d ≤ n is
the dimension of L. Any lattice L of dimension d ≥ 2 has
infinitely many bases, which can all be derived from any ar-
bitrary basis of L by applying unimodular transformations,
i.e., invertible integral operations. Lattice reduction aims
at finding ’good’ bases, i.e., bases with reasonably short and
orthogonal vectors. Having such a basis allows one to obtain
information about the lattice more easily. In the following
we consider only integer lattices, i.e., L ⊆ Zn. We represent
a basis B by using the n × d integer matrix whose columns
are the bi’s. We will now introduce some elementary notions
about lattices. We refer to [8] for more details.

Orthogonalization. The Gram-Schmidt orthogonaliza-
tion maps a basis B = (b1, . . . ,bd) to a tuple of orthogonal
vectors (b∗

1, . . . ,b
∗
d) defined by:

∀i ≤ d, b∗
i = bi −

X

j<i

〈bi,b
∗
j 〉

‖b∗
j ‖2

b∗
j .

The GSO quantifies the orthogonality of the bi’s. If
the 〈bi,b

∗
j 〉/‖b∗

j ‖2’s are small and the ‖b∗
i ‖’s do not de-

crease too fast, then the bi’s are fairly orthogonal. The GSO
is closely related to the R-factor of the QR-factorization of
the basis matrix. For a given B ∈ Rn×d of rank d, there ex-
ist matrices Q ∈ Rn×d and R ∈ Rd×d, such that QT Q = I,
R is upper triangular with positive diagonal coefficients
and B = QR. Such a factorization is unique and we
have Ri,i = ‖b∗

i ‖ and Ri,j = 〈bj ,b
∗
i 〉/‖b∗

i ‖ for any i < j.

Lattice invariants. An invariant of a lattice L is a quantity
that does not depend on the particular choice of a basis of L.
The minimum is defined by: λL = min(‖b‖,b ∈ L \ {0}).

The determinant det L =
p

det(BT B) =
Q ‖b∗

i ‖ is another
lattice invariant.



LLL-reduction. The LLL-reduction is an efficiently com-
putable relaxation of a reduction introduced by Hermite [3].
We give a generalization of the definition of [7].

Definition 1. Let η ≥ 1/2 and δ ≤ 1. A
basis (b1, . . . ,bd) is (δ, η)-LLL reduced if for
any i < j, |Ri,j | ≤ ηRi,i (size-reduction condition) and
if for any i, δR2

i−1,i−1 ≤ R2
i−1,i + R2

i,i (Lovász’s condition).

For the purpose of this work, we need a slightly weaker
definition of reduction, introduced in [1]. One can recover
Definition 1 by taking θ = 0.

Definition 2. Let η ≥ 1/2, δ ≤ 1 and θ ≥ 0.
A basis (b1, . . . ,bd) is (δ, η, θ)-LLL reduced if for
any i < j, |Ri,j | ≤ ηRi,i + θRj,j (weak size-reduction con-
dition) and if Lovász’s condition holds.

The latter definition is essentially equivalent to the for-
mer, as it only differs when Rj,j ≫ Ri,i, which corre-
sponds to quite orthogonal vectors. The following theorem
(from [1]) formalizes this equivalence by exhibiting prop-
erties of (δ, η, θ)-reduced bases similar to the properties of
(δ, η)-reduced bases [7].

Theorem 2.1. Let η ∈ [1/2, 1], θ ≥ 0, δ ∈ (η2, 1]

and α =
θη+

√
(1+θ2)δ−η2

δ−η2 . Let (b1, . . . ,bd) be a (δ, η, θ)-

LLL reduced basis of a lattice L. Then for all i, we
have Ri,i ≤ αRi+1,i+1 and Ri,i ≤ ‖bi‖ ≤ αi−1Ri,i.

We also have ‖b1‖ ≤ αd−1λL, ‖b1‖ ≤ α
d−1
2 (det L)

1
d

and
Q ‖bi‖ ≤ α

d(d−1)
2 (det L).

The LLL algorithm. LLL [7] computes a (δ, η)-LLL-
reduced basis in time polynomial both in the dimensions d
and n and the bit-size of the entries log ‖B‖, provided that
η ∈ [1/2, 1) and δ ∈ (δ − η2, 1). Although there are many
LLL variants, they all roughly follow the same high-level
design, described in Algorithm 1.

Algorithm 1 A generic LLL algorithm.

Input: A basis (b1, . . . ,bd) of a lattice L.
Output: An LLL-reduced basis of L.
1: κ := 2.
2: While κ ≤ d, do
3: Size-reduce bκ.
4: If Lovász’s condition holds for κ, then κ := κ + 1.
5: Else swap bκ−1 and bκ; κ := max(κ − 1, 2).

Perturbation analysis of the R-factor. In this paper we
introduce a new variant of LLL that relies on the approxi-
mate computation of the R-factor of B using Householder’s
algorithm (Algorithm 2). With fpa, all operations are per-
formed in the naive order, and all sums of several terms are
computed sequentially. In order to ensure the soundness
of the operations we will perform on the basis (in H-LLL),
which are dictated by the values of the Ri,j , we need to ad-
dress the issue of the accuracy of the computed R-factor.
It is known (see [4, Ch. 19]) that Householder’s algorithm
computing the R-factor is backward-stable (i.e., its output
is the R-factor of a matrix that is close to its input), but it is
not forward-stable in the general case. Theorem 2.3 (proved
in [1]) bounds the sensibility of the R-factor to column-
wise input perturbations, when the input is LLL-reduced.

Combined with the backward stability of Householder’s al-
gorithm (Theorem 2.2, proved in [1]), Corollary 2.4 shows
the forward-stability of Householder’s algorithm in the case
of LLL-reduced inputs.

Algorithm 2 Householder’s algorithm.

Input: A rank d matrix B ∈ Rn×d.
Output: An approximation to the R-factor of B.
1: R := ⋄(B).
2: For i from 1 to d, do
3: For j from 1 to i − 1, do
4: ri[j..n] = ri[j..n] − (vT

j ri[j..n]) · vj ; ri[j] := σjri[j].
5: r := ri[i..n];vi := r.
6: σi := sign(r[1]); s := σi‖r‖.

7: vi[1] := (− Pn−i+1
j=2 r[j]2)/(r[1] + s).

8: If vi[1] 6= 0, then vi := vi/
p

−s · vi[1].

9: ri[i..n] := (‖r‖, 0, . . . , 0)T .
10: Return the first d rows of R.

Theorem 2.2. Let B ∈ Rn×d be a rank d matrix given
as input to Algorithm 2. Let us assume that the com-
putations are performed with fpa in precision p such that
8d(n + 9)2−p ≤ 1. Let R ∈ Rd×d be the output. Then
there exists Q ∈ Rn×d with orthonormal columns such
that ∆B = B − QR satisfies:

∀i ≤ d, ∆‖bi‖ ≤ 8d(n + 9)2−p · ‖bi‖.

Theorem 2.3. Let η ∈ [1/2, 1), θ ≥ 0 and δ ∈ (η2, 1].
Let B ∈ Rn×d of rank d be (δ, η, θ)-LLL-reduced. Let ε ≥ 0
such that c0ρ

dε < 1, where ρ = (1 + η + θ)α and:

c0 = max

8

>

<

>

:

1 + |1 − η − θ|α
(η + θ)

“

−1 +
q

3
2

” ,
4
√

6

1 + η

p

1 + dη2

9

>

=

>

;

n
√

d.

If ∆B ∈ Rn×d is such that ∀i, ∆‖bi‖ ≤ ε·‖bi‖ and if R+∆R
is the R-factor of B + ∆B (which exists), then:

∀i ≤ d, ∆‖ri‖ ≤ c0ρ
iε · Ri,i.

The following result provides an error bound for the R ma-
trix computed by Algorithm 2 using precision p fpa, starting
from a B in Rn×d whose d−1 first columns are LLL-reduced.

Corollary 2.4. Let η ∈ [1/2, 1), θ ≥ 0 and δ ∈ (η2, 1).
Let B ∈ Rn×d be a rank d matrix whose first (d − 1)
columns are (δ, η, θ)-LLL-reduced and which is given as in-
put to Algorithm 2. Let us assume that the computations
are performed with fpa in precision p such that c1ρ

d2−p < 1,
where c1 = 8d(n + 9)c0. Let R = R + ∆R ∈ Rd×d be the
output matrix. Then:

∀j ≤ i < d, ∆Rj,i ≤ c1ρ
i2−p · Ri,i

and

∀i < d, ∆Ri,d ≤ c1(1 + 1/θ)ρi+12−p · (Ri,i + ‖bd‖).

Thus denoting the quantity c1(1+1/θ)ρi+1 by φ(i), we have
for any j ≤ i < d:

∆Rj,i ≤ 2−pφ(i)Ri,i and ∆Ri,d ≤ 2−pφ(i)(Ri,i + ‖bd‖).



Proof. The first statement is a direct consequence of The-
orems 2.2 and 2.3. Let i < d. We consider the basis
(b′

1, . . . ,b
′
i+1) defined by b′

j = (bT
j , 0)T for j ≤ i and b′

i+1 =

(bT
d , Ri,i + ‖bd‖/θ)T . By construction, it is (δ, η, θ)-LLL re-

duced. Furthermore, calling Algorithm 2 on (b′
1, . . . ,b

′
i+1)

leads to exactly the same fp operations as on (b1, . . . ,bd),
for the approximation of R′

i,i+1 = Ri,d. Therefore, using the
first part of the result:

∆Ri,d = ∆R′
i,i+1 ≤ c1ρ

i+12−p · R′
i+1,i+1.

Then we use R′
i+1,i+1 ≤ Ri,i + (1 + 1/θ)‖bd‖. 2

This result implies that if we start from a (δ, η, θ)-LLL-
reduced basis, then we can use Householder’s algorithm to
check that it is reduced for (arbitrarily) slightly weaker pa-
rameters. It is incorrect to say that if we start from a (δ, η)-
reduced basis, then Householder’s algorithm allows to check
that it is (δ′, η′)-reduced for slightly weaker parameters δ′

and η′ (a counter-example is provided in [16]). This is the
reason that underlies the weakening of the LLL-reduction.

3. AN INCOMPLETE SIZE-REDUCTION
In the present section, we present a novel algorithm (Algo-

rithm 3) that relies on a fp Householder’s algorithm (Algo-
rithm 2). It does not size-reduce the vector bκ under scope,
it does not even weakly size-reduce it in general. However,
to some extent, it decreases the length of bκ. This is ex-
actly the progress it attempts to make (see Step 7). Also,
we will prove that the output basis is of sufficient numerical
quality for Lovász’s condition to be (approximately) tested.
If the latter is satisfied, then we know a posteriori that the
basis was indeed weakly size-reduced (see Section 4). The
condition on the precision p ensures the soundness of the
computations.

The algorithm contains a main loop (Steps 1–7). The vec-
tor bκ becomes more reduced with respect to the previous
ones every time the loop is iterated. Within the loop, House-
holder’s algorithm is called (Step 2) to obtain an approxi-
mation to rκ. This approximation is then used to perform
a partial size-reduction (Steps 3–6), whose progress may be
limited by the inaccuracies created at Step 2. Note that only
the GSO computations are performed approximately, the
basis operations being always exact. Right before the end,
at Step 8, new approximations rκ and vκ are computed to
ensure that the output vectors r1, . . . , rκ and v1, . . . ,vκ are
exactly those that would have been returned by Algorithm 2
given the first κ columns of the returned B as input.

During the execution, the quantities Ri,κ for i < κ are
known only approximately, and are updated within the loop
made of Steps 3–5. To simplify the exposure, we introduce
some notation. We will denote by Ri,κ (resp. Ri,κ) the ap-
proximate (resp. exact) value of Ri,κ at Step 2. We will

denote by R
′
i,κ the approximate value of Ri,κ at the begin-

ning of Step 4. This is an approximation to R′
i,κ = Ri,κ −

Pκ−1
j=i+1 XjRi,j . Finally, we define R′′

i,κ = R′
i,κ − XiRi,i,

which is the new (exact) value of Ri,κ after Step 4. We
will also use the index i0 to denote the largest i < κ such
that Xi 6= 0, with i0 = 0 if not defined.

We analyze Algorithm 3 as follows. We first consider the
effect of one iteration of the loop made of Steps 3–6 on the
Ri,κ’s and ‖bκ‖. This study will then lead us to correctness
and complexity results on Algorithm 3.

Algorithm 3 The incomplete size-reduction algorithm.

Input: A matrix B ∈ Zn×d, κ ≤ d and the output
r1, . . . , rκ−1,v1, . . . ,vκ−1, σ1, . . . , σκ−1 of Algorithm 2
when given as input the first κ − 1 columns of B. We
assume that the first κ − 1 columns of B are (δ, η, θ)-
LLL-reduced with η ∈ (1/2, 1), δ ∈ (η2, 1) and θ ∈
(0, η − 1/2).

Input: ⋄(2−cd) (for an arbitrary c > 0) and a fp preci-

sion p > log2(2
cd
2

+9κ3φ(κ)α/θ).
1: Do
2: Compute rκ using Steps 3–4 of Algorithm 2.
3: For i from κ − 1 to 1, do

4: Xi =
j

⋄
“

Ri,κ

Ri,i

”m

.

5: For j from 1 to i−1, do Rj,κ := ⋄
`

Rj,κ − ⋄
`

XiRj,i

´´

.

6: t := ⋄(‖bκ‖2); bκ := bκ − P

i<κ Xibi.

7: Until ⋄(‖bκ‖2) > ⋄(⋄(2−cd) · t).
8: Compute rκ,vκ, σκ using Steps 3–9 of Algorithm 2.
9: Return B, r1, . . . , rκ, v1, . . . ,vκ and σ1, . . . , σκ.

3.1 Analysis of Steps 3–6
The aim of the next lemmata is to bound the magnitude

of R′
i,κ and its error ∆R′

i,κ. As is often the case in numerical
analysis, the error and magnitude bounds are intertwined.
This issue is solved by building up an induction on the two
bounds (Lemmata 3.2 and 3.3), and the induction itself is
solved in Lemma 3.4. This allows us to lower bound the
decrease of ‖bκ‖ after an iteration of the loop (in Theo-
rem 3.7).

Lemma 3.1. For any i < κ, the quantity |Xi|Ri,i is upper
bounded by both

Ri,i

2
+ (1 + 2−p+1φ(i))|R′

i,κ| and 4|R′
i,κ|.

Proof. The result being obviously correct when Xi = 0, we
assume that Xi 6= 0. We have that |Xi| is no greater than

1/2 + ⋄(|R′
i,κ|/Ri,i) ≤ 1/2 + (1 + 2−p)|R′

i,κ|/Ri,i.

Therefore, by using Corollary 2.4:

|Xi||Ri,i| ≤ Ri,i

2
+

1 + 2−p

1 − 2−pφ(i)
|R′

i,κ|

≤ Ri,i

2
+ (1 + 2−p+1φ(i))|R′

i,κ|.

Since Xi 6= 0, we have |R′
i,κ| ≥ Ri,i

2
≥ (1−2−pφ(i))Ri,i

2
. Thus:

|Xi||Ri,i| ≤ 2(1 + 2−p+1φ(i))|R′
i,κ|,

which completes the proof. 2

Lemma 3.2. For any i ≤ i0, we have:

|R′
i,κ| ≤‖bκ‖ + καi0−iRi0,i0

+ (1 + 2−p+1φ(i0))

i0
X

j=i+1

“

ηαj−i + θ
”

|R′
j,κ|.

Proof. By using the LLL-reducedness of the first κ − 1



columns of B, we have:

|R′
i,κ| ≤ |Ri,κ| +

i0
X

j=i+1

|Xj ||Ri,j |

≤ ‖bκ‖ +

i0
X

j=i+1

(ηαj−i + θ)|Xj |Rj,j

≤ ‖bκ‖ + καi0−iRi0,i0 .

The result is then provided by Lemma 3.1. 2

Lemma 3.3. For any i ≤ i0, we have:

∆R′
i,κ ≤ 2−p+2φ(i)(‖bκ‖ + Ri,i) + 2−p+4

i0
X

j=i+1

φ(j)|R′
j,κ|.

Proof. Using the bound [4, Eq. (3.5)], Corollary 2.4,
Lemma 3.1 and the LLL-reducedness of the first κ − 1
columns of B, we have that ∆R′

i,κ is bounded by:

κ2−p+1

 

|Ri,κ|+
i0

X

j=i+1

|XjRi,j |
!

+

i0
X

j=i+1

|Xj |∆Ri,j + ∆Ri,κ

≤ κ2−p+1

 

‖bκ‖ +

i0
X

j=i+1

|XjRi,j |
!

+ 2

i0
X

j=i+1

|Xj |∆Ri,j +2∆Ri,κ

≤ κ2−p+1‖bκ‖ + 2−p+1
i0

X

j=i+1

|Xj |(κRi,i +φ(j)Rj,j) +2∆Ri,κ

≤ κ2−p+1‖bκ‖ + 2−p+1φ(i)(‖bκ‖ + Ri,i)

+ 2−p+3
i0

X

j=i+1

(καj−i + φ(j))|R′
j,κ|,

which provides the result. 2

Lemma 3.4. For any i ≤ i0, we have that

|R′
i,κ| ≤ 2κρi0−i (‖bκ‖ + Ri0,i0). This bound also holds

for any |Ri,κ| at any moment within the loop made of
Steps 3–5.

Proof. Using Lemmata 3.2 and 3.3, we bound |R′
i,κ| by:

|R′
i,κ| + ∆R′

i,κ

≤ |R′
i,κ| + 2−p+2φ(i)(‖bκ‖ + Ri,i) + 2−p+4

i0
X

j=i+1

φ(j)|R′
j,κ|

≤ α‖bκ‖ + 2καi0−iRi0,i0

+

i0
X

j=i+1

“

ηαj−i + θ + 2−p+5φ(i0)α
j−i

”

|R′
j,κ|.

We now define (ui)i≤i0 by ui0 = |Ri0,κ| and, for i < i0:

ui = α‖bκ‖ + 2καi0−iRi0,i0 +

i0
X

j=i+1

A(i, j)uj ,

with A(i, j) = ηαj−i + θ + 2−p+5φ(i0)α
j−i. For any i ≤ i0,

we have |R′
i,κ| ≤ ui. Moreover, using the fact that Ri,i ≤

αRi+1,i+1, we obtain that for i < i0 − 1:

ui − αui+1 ≤ A(i, i + 1)ui+1 ≤ α(η + θ)ui+1.

Thus ui ≤ ρui+1 and, by using Corollary 2.4, we have that
for any i < i0:

ui ≤ ρi0−i−1ui0−1

≤ ρi0−i−1α (‖bκ‖ + 2κRi0,i0 + (η + θ) (‖bκ‖ + ∆Ri0,κ))

≤ 2ρi0−i−1`

ρ‖bκ‖ +καRi0,i0 +α(η + θ)2−pφ(i0)Ri0,i0

´

,

which gives the result for i < i0. To conclude, note that:

ui0 ≤ ‖bκ‖ + ∆Ri0,κ ≤ 2(‖bκ‖ + 2−pφ(i0)Ri0,i0).

This completes the proof. 2

We can now use Lemma 3.4 to obtain a bound on
the ∆R′

i,κ’s that does not depend on the computed R
′
i,κ’s

but only on their exact values.

Lemma 3.5. For any i ≤ i0, we have:

∆R′
i,κ ≤ 2−p+6κ2φ(i0)(‖bκ‖ + Ri0,i0).

Proof. Using Lemma 3.4, we have:

i0
X

j=i+1

φ(j)|R′
j,κ| ≤ 2κ(‖bκ‖ + Ri0,i0)

i0−1
X

j=i+1

φ(j)ρi0−j

≤ 2κ2(‖bκ‖ + Ri0,i0)φ(i0).

Together with Lemma 3.3, the latter provides the result. 2

Now that we understand precisely the R′
i,κ’s, we study

the R′′
i,κ’s.

Lemma 3.6. Let η̄ = 1/2 + 2−p+1φ(κ). We have:

|R′′
i,κ| ≤ η̄Ri,i+

˛

˛

˛

˛

2−p+7κ2φ(i0)(‖bκ‖ + Ri0,i0) if i ≤ i0
2−pφ(i)‖bκ‖ if i > i0.

Proof. Suppose first that i ≤ i0. Then

|R′′
i,κ| = |R′

i,κ − XiRi,i|
≤ ∆R′

i,κ + |R′
i,κ − XiRi,i| + |Xi|∆Ri,i

≤ ∆R′
i,κ + Ri,i ·

˛

˛

˛

˛

˛

R
′
i,κ

Ri,i

− Xi

˛

˛

˛

˛

˛

+ |Xi|∆Ri,i

≤ ∆R′
i,κ +

Ri,i

2
+ 2−p|R′

i,κ| +

 

1

2
+ 2

|R′
i,κ|

Ri,i

!

∆Ri,i

≤ ∆R′
i,κ +

Ri,i

2
+ 2−p|R′

i,κ| +

 

1 + 2
|R′

i,κ|
Ri,i

!

∆Ri,i

≤ ∆R′
i,κ +

„

1

2
+ 2−pφ(i)

«

Ri,i + 2−p+2φ(i)|R′
i,κ|,

where we used Corollary 2.4. Therefore, using Lemmata 3.4
and 3.5, we get the result.

Suppose now that i > i0. Then, using Corollary 2.4:

|R′′
i,κ| = |R′

i,κ| ≤ |R′
i,κ| + ∆R′

i,κ

≤ Ri,i/2 + 2−pφ(i)(‖bκ‖ + Ri,i),

which completes the proof. 2

The latter bound on the R′′
i,κ’s shows that at Step 6, the

length of the vector bκ is likely to decrease.



Theorem 3.7. Consider bκ at the beginning of Step 6.
Let b′′

κ be its new value at the end of Step 6. Then

‖b′′
κ‖ ≤ 2κ max

i≤κ
Ri,i + 2−p+7κ3φ(κ)‖bκ‖.

Proof. Using Lemma 3.6:

‖b′′
κ‖ ≤

κ
X

i=1

|R′′
i,κ| = Rκ,κ +

i0
X

i=1

|R′′
i,κ| +

κ−1
X

i=i0+1

|Ri,κ|

≤ Rκ,κ + 2−p+7κ2i0φ(i0)Ri0,i0 + κη max
i<κ

Ri,i

+ 2−p+7κ3φ(κ)‖bκ‖.

The latter provides the result. 2

3.2 Correctness and Cost of Algorithm 3
The following lemma ensures the soundness of the test of

Step 7. It also implies that the algorithm terminates.

Lemma 3.8. Consider bκ at the beginning of Step 6. Let
b′′

κ be its new value at the end of Step 6. If the test of Step 7
succeeds, then ‖b′′

κ‖2 ≥ 2−cd−1‖bκ‖2. If the test of Step 7
fails, then ‖b′′

κ‖2 ≤ 2−cd+1‖bκ‖2.

Proof. Using [4, Eq. (3.5)], we have for any b ∈ Zn that
⋄(‖b‖2) ∈ (1 ± n2−p+1)‖b‖2. Thus ⋄

`

⋄(2−cd) · ⋄(‖bκ‖2)
´

∈
(1 ± n2−p+2)2−cd‖bκ‖2. 2

The following shows that at the end of the execution of
Algorithm 3, the length of bκ and the Ri,κ’s are small. The
algorithm is correct in the sense that the size of the output
vector is bounded.

Theorem 3.9. Let θ = 2−p+8+ cd
2 κ3φ(κ) and η̄ = 1/2 +

2−p+1φ(κ). At the end of the execution of Algorithm 3, we
have:

‖bκ‖ ≤ 3κ max
i≤κ

Ri,i,

∀i < κ, |Ri,κ| ≤ ηRi,i + θ(‖bκ‖ + Rκ−1,κ−1).

Proof. Lemma 3.8 gives us that ‖b†
κ‖2 ≤ 2cd+1‖bκ‖2,

where b†
κ (resp. bκ) is the vector bκ at the beginning (resp.

at the end) of the last iteration of the loop made of Steps 1–
7. Using Theorem 3.7, we obtain:

‖bκ‖ ≤ 2κ max
i≤κ

Ri,i + 2−p+7κ3φ(κ)‖b†
κ‖

≤ 2κ max
i≤κ

Ri,i + 2−p+8+ cd
2 κ3φ(κ)‖b†

κ‖

≤ 3κ max
i≤κ

Ri,i.

For the second inequality, note that Lemma 3.6 implies:

|Ri,κ| ≤ ηRi,i + 2−p+7κ2φ(κ)(‖b†
κ‖ + Rκ−1,κ−1).

It only remains to use the inequality ‖b†
κ‖2 ≤ 2cd+1‖bκ‖2.

2

We now consider the cost of Algorithm 3. We start by
bounding the number of iterations of the main loop.

Lemma 3.10. The number of iterations of the loop made
of Steps 1–7 is:

O

„

1 +
1

d
log

‖bb
κ‖

‖be
κ‖

«

,

where bb
κ (resp. be

κ) is bκ at the beginning (resp. the end).

Proof. Let bℓ
κ be the vector bκ at the beginning of Step 2 of

the last iteration of the loop made of Steps 1–7. Lemma 3.8
implies that the number of loop iterations is bounded by 1+

2
cd−1

log
‖bb

κ‖
‖bℓ

κ‖ . If all the Xi’s of the last iteration are zero,

then be
κ = bℓ

κ. Otherwise, since Xi0 6= 0, Lemma 3.1 and
Corollary 2.4 give:

‖bℓ
κ‖ ≥ |Rℓ

i0,κ| ≥ |Rℓ
i0,κ| − ∆Rℓ

i0,κ

≥ 1

4
|Xi0 |Ri0,i0 − 2−pφ(i0)(‖bℓ

κ‖ + Ri0,i0)

≥ 1

8
Ri0,i0 .

Furthermore, using Lemma 3.6, we get (not-
ing a = (Re

1,κ, . . . , Re
i0,κ, 0, . . . , 0) and b =

(0, . . . , 0, Re
i0+1,κ, . . . , Re

κ,κ, 0, . . . , 0)):

‖be
κ‖ − ‖bℓ

κ‖ = ‖re
κ‖ − ‖rℓ

κ‖
≤ ‖a‖ + ‖b‖ − ‖b‖
≤

X

i≤i0

|Re
i,κ|

≤ (καi0 + θ)Ri0,i0 + θ‖bℓ
κ‖

≤ 9(καi0 + θ)‖bℓ
κ‖.

This gives that ‖be
κ‖ ≤ 10κακ‖bℓ

κ‖, which provides the
bound. 2

The result above leads us to the following complexity up-
per bound.

Theorem 3.11. Let (b1, . . . ,bd) ∈ Zn×d be a valid input
to Algorithm 3. Let κ be the input index. Suppose the pre-

cision satisfies p > log2(2
cd
2

+9κ3φ(κ)α/θ) and p = 2O(d).
Then the execution finishes within

O

»„

d + log
‖bb

κ‖
‖be

κ‖

«

nM(d)

d
(d + log ‖B‖)

–

bit operations,

where ‖B‖ = maxi≤κ ‖bi‖ and bb
κ (resp. be

κ) is bκ at the
beginning of Step 1 (resp. Step 9).

Proof. The bit-cost of one iteration of Steps 4 and 5
is O(dM(d)) for handling the mantissas (thanks to the sec-
ond restriction on p) and O(d log(d + log ‖B‖)) for handling
the exponents (thanks to Corollary 2.4 and Lemmata 3.1
and 3.4). This implies that one iteration of the loop made of
Steps 3–5 costs O(d2M(d)+d2 log log ‖B‖). A similar bound
O(ndM(d)+nd log log ‖B‖) holds for one iteration of Step 2.
The computation of t at Step 6 is negligible compared to
the costs above. Theorem 3.9 implies that the update of bκ

at Step 6 can be performed within O(nM(d) log(d‖B‖)) bit
operations (note that though Xi can be a very large inte-
ger, it is stored on ≤ p = O(d) bits). The cost of Step 7
is also negligible compared to the costs above. Overall, the
bit-cost of one iteration of the loop consisting of Steps 1–7
is O(nM(d)(d+ log ‖B‖)). Lemma 3.10 provides the result.
2



4. AN LLL RELYING ON HOUSE-
HOLDER’S ALGORITHM

The H-LLL algorithm (Algorithm 4) follows the general
structure of LLL algorithms (see Algorithm 1). For the
size-reduction, it relies on Algorithm 3. The precision re-
quirement is a little stronger than in the previous section.
Asymptotically, for close to optimal parameters δ, η and θ
(i.e., δ ≈ 1, η ≈ 1/2 and θ ≈ 0), a sufficient precision
is p ≈ d.

Algorithm 4 The H-LLL algorithm.

Input: A matrix B ∈ Zn×d of rank d and valid LLL pa-
rameters δ, η and θ, with θ < η − 1/2.

Input: ⋄(2−cd) (for an arbitrary c > 0) and a fp precision
p > p0 + 1 − log2(1 − δ) − log2(η − θ − 1/2) with p0 :=
log2(d

3φ(d)αd/θ) + 16 + cd/2.
Output: A (δ, η, θ)-LLL-reduced basis of the lattice

spanned by the columns of B.
1: Let δ be a fp number in (δ + 2−p+p0 , 1 − 2−p+p0).
2: Compute r1,v1, σ1 using Steps 3–9 of Algorithm 2.
3: κ := 2. While κ ≤ d, do
4: Call Algorithm 3 on B, r1, . . . , rκ−1,v1, . . . ,vκ−1 and

σ1, . . . , σκ−1.

5: s := ⋄(‖ ⋄ (bκ)‖2); s := ⋄(s − P

i≤κ−2 R
2
i,κ).

6: If ⋄(δ · ⋄(R
2
κ−1,κ−1)) ≤ s, then κ := κ + 1.

7: Else swap bκ−1 and bκ; κ := max(κ − 1, 2).
8: Return B.

Before proceeding to the analysis of Algorithm 4, let us
explain how Step 5 is performed. We compute ⋄(‖ ⋄ (bκ)‖2)

sequentially; we compute the ⋄(R
2
i,κ)’s; and finally we com-

pute s := ⋄(‖ ⋄ (bκ)‖2 − P

i≤κ−2 R
2
i,κ) sequentially. Corol-

lary 2.4 and Theorem 3.9 provide the soundness of such a
computation.

Lemma 4.1. Assume that the first κ−1 columns of B are
LLL-reduced. Then at the end of Step 5, we have:
˛

˛s − (R2
κ,κ + R2

κ−1,κ)
˛

˛ ≤ 2−p+12κ3ακφ(κ)(R2
κ,κ +R2

κ−1,κ−1).

Proof. First of all, thanks to [4, Eq. (3.5)], we
have | ⋄ ‖ ⋄ (bκ)‖2 − ‖bκ‖2| ≤ n2−p+1‖bκ‖2. Also:

| ⋄ (R
2
i,κ) − R2

i,κ| ≤ 2−p+1R2
i,κ + 2|R2

i,κ − R2
i,κ|

≤ 2−p+1R2
i,κ + 2∆Ri,κ(|Ri,κ| + ∆Ri,κ).

Thanks to the LLL-reducedness of the first κ − 1 columns
of B, Corollary 2.4 and Theorem 3.9, we have (using θ ≤
α−κ):

|Ri,κ| ≤ 2(ακ−iRκ−1,κ−1 + α−κ‖bκ‖)

≤ 8κ(ακ−iRκ−1,κ−1 + Rκ,κ)

∆Ri,κ ≤ 2−pφ(i)(ακ−iRκ−1,κ−1 + ‖bκ‖)

≤ 2−p+2κφ(i)(ακ−iRκ−1,κ−1 + Rκ,κ).

As a consequence, we obtain the bound:

| ⋄ (R
2
i,κ) − R2

i,κ| ≤ 2−p+8κ2α2κ(R2
κ−1,κ−1 + R2

κ,κ)

+2−p+7κ2φ(i)(ακ−iRκ−1,κ−1 + Rκ,κ)2

≤ 2−p+9κ2ακφ(κ)(R2
κ−1,κ−1 + R2

κ,κ).

Finally, using [4, Eq. (3.5)], we get the bound:

|s − (R2
κ,κ + R2

κ−1,κ−1)| ≤ κ2−p+1(R2
κ,κ + R2

κ−1,κ−1)

+ 2| ⋄ ‖bκ‖2 − ‖bκ‖2| + 2
X

i≤κ−2

| ⋄ (R
2
i,κ) − R2

i,κ|,

which leads to the result. 2

Lemma 4.2. Assume that the first κ−1 columns of B are
LLL-reduced. Then at the end of Step 5, we have:

| ⋄ (δ̄ · ⋄(R̄2
κ−1,κ−1)) − δ̄R2

κ−1,κ−1| ≤ 2−p+3φ(κ)δ̄R2
κ−1,κ−1.

Lemmata 4.1 and 4.2 imply the soundness of the test of
Step 6.

Theorem 4.3. Let θ = 2−p+8+ cd
2 d3φ(d) and η̄ =

1/2 + 2−p+1φ(d). Assume that the first κ − 1 columns
of B are (δ, η, θ)-LLL-reduced. If the test of Step 6
succeeds then the first κ columns of B are (δ, η, θ)-
LLL-reduced. Otherwise δ′R2

κ−1,κ−1 > R2
κ,κ + R2

κ−1,κ with

δ′ = δ(1 + 2−p+14κ3φ(κ)ακ).

Proof. Suppose that the test succeeds. Corollary 2.4 and
Lemmata 4.1 and 4.2 imply:

(1 − 2−p+3φ(κ))δR2
κ−1,κ−1

≤ (1 + 2−p+12κ3ακφ(κ))(R2
κ,κ + R2

κ−1,κ−1).

By choice of δ, this implies that δR2
κ−1,κ−1 ≤ R2

κ−1,κ +R2
κ,κ.

Now, using Theorem 3.9, we know that:

|Rκ−1,κ| ≤ (η + θ)Rκ−1,κ−1 + θ‖bκ‖
≤ (η + θ(1 + 3κακ))Rκ−1,κ−1 + 3θκRκ,κ

≤ ηRκ−1,κ−1 + θRκ,κ.

As a consequence, we have Rκ−1,κ−1 ≤ αRκ,κ. By using
Theorem 3.9 again, we have:

|Ri,κ| ≤ ηRi,i + θ(‖bκ‖ + Rκ−1,κ−1)

≤ ηRi,i + θ(3κ max
j≤κ

(Rj,j) + αRκ,κ)

≤ ηRi,i + 4θκακRκ,κ,

which completes the proof of the first claim of the theorem.
Suppose now that the test fails. Corollary 2.4 and Lem-

mata 4.1 and 4.2 imply:

(1 + 2−p+3φ(κ))δR2
κ−1,κ−1

≥ (1 − 2−p+12κ3ακφ(κ))(R2
κ,κ + R2

κ−1,κ−1).

By definition of δ′, this implies that δ′R2
κ−1,κ−1 > R2

κ−1,κ +
R2

κ,κ. 2

We can now conclude our study of Algorithm 4.

Theorem 4.4. Algorithm 4 returns a (δ, η, θ)-LLL-
reduced basis (be

1, . . . ,b
e
d) of the lattice spanned by the input

basis (bb
1, . . . ,b

b
d) ∈ Zn×d. Furthermore, the bit complexity

is

O

»„

d + log
Y db

i

de
i

+
1

d
log

Y ‖bb
i‖

‖be
i ‖

«

nM(d)(d + log ‖B‖)

–

,

where ‖B‖ = max ‖bi‖ and db
i (resp. de

i ) is the determi-
nant of the lattice spanned by the first i columns of the in-
put (resp. output) basis. The complexity bound above is
itself O(nd2M(d) log ‖B‖(d + log ‖B‖)).



Proof. Using the classical analysis of the LLL algorithm [7]
and Theorem 4.3, we know that the algorithm terminates

within O
“

d + log
Q

i≤d

db
i

de
i

”

iterations. A simple induction

using Theorem 4.3 proves that the output is indeed (δ, η, θ)-
LLL reduced. Furthermore, the classical analysis of LLL
yields that at any moment, the norms of the basis vectors
are below d‖B‖ (except within the calls to Algorithm 3).

Each call to Algorithm 3 that transforms b
(old)
κ into b

(new)
κ

costs

O

" 

d + log
‖b(old)

κ ‖
‖b(new)

κ ‖

!

nM(d)

d
(d + log ‖B‖)

#

bit operations.

As a consequence, the total cost of Algorithm 4 is (using
the fact that the product over the loop iterations of

the ‖b(old)
κ ‖

‖b(new)
κ ‖

’s is exactly
Q

i

‖bb
i ‖

‖be
i ‖ ):

O

"

X

iterations

 

d + log
‖b(old)

κ ‖
‖b(new)

κ ‖

!

nM(d)

d
(d + log ‖B‖)

#

=O
h“

d + log
Q db

i
de

i
+ 1

d
log

Q ‖bb
i ‖

‖be
i ‖

”

nM(d)(d + log ‖B‖)
i

.

Since
Q ‖bb

i‖ ≤ ‖B‖d and
Q

db
i ≤ ‖B‖d2

, that bound
immediately gives a O(nd2M(d) log ‖B‖(d+log ‖B‖)) com-
plexity upper bound. 2

5. CONCLUSION
The decision to use Householder’s transformations instead

of Cholesky’s factorization within LLL leads to modifica-
tions in the proof of correctness: the perturbations induced
on the approximate R-factor have a different structure than
in the L2 algorithm of [9]. These modifications may probably
be used for other forms or applications of the floating-point
reduction of lattices. For example the new approach may
be carried over to the case of linearly dependent input vec-
tors, and to the case of stronger reductions (such as the fp
Hermite-Korkine-Zolotarev reduction algorithm of [11]). An
important direction that deserves to be investigated would
be to try to further decrease the precision of the approxi-
mate computations. We showed that a precision essentially
equal to the problem dimension is sufficient. Can we do bet-
ter? It seems unnatural that a higher precision is required
in H-LLL than in its (incomplete) underlying size-reduction
algorithm. Finally, a more precise understanding of the nu-
merical behavior is required for various aspects, such as the
efficient implementation of H-LLL, which we are currently
investigating.
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An LLL-Reduction Algorithm

with Quasi-linear Time Complexity1

Andrew Novocin, Damien Stehlé, and Gilles Villard
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Laboratoire LIP 46 Allée d’Italie, 69364 Lyon Cedex 07, France.
{andrew.novocin,damien.stehle,gilles.villard}@ens-lyon.fr

Abstract. We devise an algorithm, eL1, with the following specifications: It takes as input an ar-
bitrary basis B = (bi)i ∈ Zd×d of a Euclidean lattice L; It computes a basis of L which is reduced
for a mild modification of the Lenstra-Lenstra-Lovász reduction; It terminates in time O(d5+εβ +
dω+1+εβ1+ε) where β = log max �bi� (for any ε > 0 and ω is a valid exponent for matrix multiplica-
tion). This is the first LLL-reducing algorithm with a time complexity that is quasi-linear in β and
polynomial in d.
The backbone structure of eL1 is able to mimic the Knuth-Schönhage fast gcd algorithm thanks to
a combination of cutting-edge ingredients. First the bit-size of our lattice bases can be decreased
via truncations whose validity are backed by recent numerical stability results on the QR matrix
factorization. Also we establish a new framework for analyzing unimodular transformation matrices
which reduce shifts of reduced bases, this includes bit-size control and new perturbation tools. We
illustrate the power of this framework by generating a family of reduction algorithms.

1 Introduction

We present the first lattice reduction algorithm which has complexity both quasi-linear in the
bit-length of the entries and polynomial time overall for an input basis B = (bi)i ∈ Zd×d. This is
the first progress on quasi-linear lattice reduction in nearly 10 years, improving Schönhage [28],
Yap [32], and Eisenbrand and Rote [7] whose algorithm is exponential in d. Our result can be
seen as a generalization of the Knuth-Schönhage quasi-linear GCD [13, 26] from integers to ma-
trices. For solving the matrix case difficulties which relate to multi-dimensionality we combine
several new main ingredients. We establish a theoretical framework for analyzing and designing
general lattice reduction algorithms. In particular we discover an underlying structure on any
transformation matrix which reduces shifts of reduced lattices; this new structure reveals some
of the inefficiencies of traditional lattice reduction algorithms. The multi-dimensional difficulty
also leads us to establish new perturbation analysis results for mastering the complexity bounds.
The Knuth-Schönhage scalar approach essentially relies on truncations of the Euclidean remain-
ders [13, 26] , while the matrix case requires truncating both the “remainder” and “quotient”
matrices. We can use our theoretical framework to propose a family of new reduction algorithms,
which includes a Lehmer-type sub-quadratic algorithm in addition to �L1.

In 1982, Lenstra, Lenstra and Lovász devised an algorithm, L3, that computes reduced bases
of integral Euclidean lattices (i.e., subgroups of a Zd) in polynomial time [16]. This typically
allows one to solve approximate variants of computationally hard problems such as the Shortest
Vector, Closest Vector, and the Shortest Independent Vectors problems (see [18]). L3 has since
proven useful in dozens of applications in a wide range including cryptanalysis, computer algebra,
communications theory, combinatorial optimization, algorithmic number theory, etc (see [22, 6]
for two recent surveys).

1 Extended abstract appears in the Proc. 43rd ACM Symposium on Theory of Computing (STOC 2011), June
6-8, San Jose, California, 2011.
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2 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

In [16], Lenstra, Lenstra and Lovász bounded the bit-complexity of L3 by O(d5+εβ2+ε) when
the input basis B = (bi)i ∈ Zd×d satisfies max �bi� ≤ 2β . For the sake of simplicity, we will only
consider full-rank lattices. The current best algorithm for integer multiplication is Fürer’s, which
allows one to multiply two k-bit long integers in time M(k) = O(k(log k)2log∗ k). The analysis
of L3 was quickly refined by Kaltofen [11], who showed a O(d5β2(d + β)ε) complexity bound.
Schnorr [24] later proposed an algorithm of bit-complexity O(d4β(d+ β)1+ε), using approximate
computations for internal Gram-Schmidt orthogonalizations. Some works have since focused on
improving the complexity bounds with respect to the dimension d, including [27, 30, 14, 25], but
they have not lowered the cost with respect to β (for fixed d). More recently, Nguyen and Stehlé
devised L2 [21], a variant of L3 with complexity O(d4+εβ(d + β)). The latter bound is quadratic
with respect to β (even with naive integer multiplication), which led to the name L2. The same
complexity bound was also obtained in [20] for a different algorithm, H-LLL, but with a simpler
complexity analysis.

As a broad approximation, L3, L2 and H-LLL are generalizations of Euclid’s greatest common
divisor algorithm. The successive bases computed during the execution play the role of Euclid’s
remainders, and the elementary matrix operations performed on the bases play the role of Eu-
clid’s quotients. L3 may be interpreted in such a framework. It is slow because it computes its
“quotients” using all the bits from the “remainders” rather than the most significant bits: The
cost of computing one Euclidean division in an L3 way is O(β1+ε), leading to an overall O(β2+ε)
bound for Euclid’s algorithm. Lehmer [15] proposed an acceleration of Euclid’s algorithm by the
means of truncations. Since the � most significant bits of the remainders provide the first Ω(�)
bits of the sequence of quotients, one may: Truncate the remainders to precision �; Compute the
sequence of quotients for the truncated remainders; Store the first Ω(�) bits of the quotients into
an Ω(�)-bit matrix; Apply the latter to the input remainders, which are shortened by Ω(�) bits;
And iterate. The cost gain stems from the decrease of the bit-lengths of the computed remain-
ders. Choosing � ≈

√
β leads to a complexity bound of O(β3/2+ε). In the early 70’s, Knuth [13]

and Schönhage [26] independently observed that using Lehmer’s idea recursively leads to a gcd
algorithm with complexity bound O(β1+ε). The above approach for the computation of gcds has
been successfully adapted to two-dimensional lattices [32, 28, 5], and the resulting algorithm was
then used in [7] to reduce lattices in arbitrary dimensions in quasi-linear time. Unfortunately, the
best known cost bound for the latter is O(β1+ε(log β)d−1) for fixed d.

Our result.We adapt the Lehmer-Knuth-Schönhage gcd framework to the case of LLL-reduction.
�L1 takes as input a non-singular B ∈ Zd×d; terminates within O(d5+εβ + dω+1+εβ1+ε) bit oper-
ations, where β = logmax �bi�; and returns a basis of the lattice L(B) spanned by B which is
LLL-reduced in the sense of Definition 1 given hereafter. (L3 reduces bases for Ξ = (3/4, 1/2, 0).)
The time bound is obtained via an algorithm that can multiply two d × d matrices in O(dω)
scalar operations. (We can set ω ≈ 2.376 [4].) Our complexity improvement is particularly rele-
vant for applications of LLL reduction where β is large. These include the recognition of algebraic
numbers [12] and Coppersmith’s method for finding the small roots of polynomials [3].

Definition 1 ([2, Def. 5.3]). Let Ξ = (δ, η, θ) with η ∈ (1/2, 1), θ > 0 and δ ∈ (η2, 1).
Let B ∈ Rd×d be non-singular with QR factorization B = Q · R (i.e., the unique decomposition
of B as a product of an orthogonal matrix and an upper triangular matrix with positive diagonal
entries). The matrix B is Ξ-LLL-reduced if:

• for all i < j, we have |ri,j | ≤ ηri,i + θrj,j (B is size-reduced);

• for all i, we have δ · r2
i,i ≤ r2

i,i+1 + r2
i+1,i+1 (B is said to satisfy Lovász’ conditions).
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Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 3

Let Ξi = (δi, ηi, θi) be valid LLL-parameters for i ∈ {1, 2}. We say that Ξ1 is stronger than Ξ2

and write Ξ1 > Ξ2 if δ1 > δ2, η1 < η2 and θ1 < θ2.

This modified LLL-reduction is as powerful as the classical one (note that by choosing (δ, η, θ)
close to the ideal parameters (1, 1/2, 0), the derived α tends to 2/

√
3):

Theorem 1 ([2, Th. 5.4]). Let B ∈ Rd×d be (δ, η, θ)-LLL-reduced with R-factor R. Let α =
ηθ+

√
(1+θ2)δ−η2

δ−η2 . Then, for all i, ri,i ≤ α · ri+1,i+1 and ri,i ≤ �bi� ≤ αi · ri,i. This implies

that �b1� ≤ α
d−1
2 |detB|1/d and αi−dri,i ≤ λi ≤ αiri,i, where λi is the ith minimum of the

lattice L(B).

�L1 and its analysis rely on two recent lattice reduction techniques (described below), whose
contributions can be easily explained in the gcd framework. The efficiency of the fast gcd algo-
rithms [13, 26] stems from two sources: Performing operations on truncated remainders is mean-
ingful (which allows one to consider remainders with smaller bit-sizes), and the obtained trans-
formations corresponding to the quotients sequence have small bit-sizes (which allows one to
transmit at low cost the information obtained on the truncated remainders back to the genuine
remainders). We achieve an analogue of the latter by gradually feeding the input to the reduction
algorithm, and the former is ensured thanks to the modified notion of LLL-reduction which is
resilient to truncations.

The main difficulty in adapting the fast gcd framework lies in the multi-dimensionality of
lattice reduction. In particular, the basis vectors may have significantly differing magnitudes.
This means that basis truncations must be performed vector-wise. (Column-wise using the matrix
setting.) Also, the resulting unimodular transformation matrices (integral with determinant ±1
so that the spanned lattice is preserved) may have large magnitudes, hence need to be truncated
for being be stored on few bits.

To solve these dilemmas we focus on reducing bases which are a mere scalar shift from being
reduced. We call this process lift-reducing, and it can be used to provide a family of new reduction
algorithms. We illustrate in Section 2 that the general lattice reduction problem can be reduced to
the problem of lift-reduction. Indeed, the LLL-reduction of B can be implemented as a sequence
of lift-reductions by performing a Hermite Normal Form (HNF) computation on B beforehand.
Note that there could be other means of seeding the lift-reduction process. Our lift-reductions
are a generalization of recent gradual feeding algorithms.

Gradual feeding of the input. Gradual feeding was introduced by Belabas [1], Novocin,
and van Hoeij [23, 10], in the context of specific lattice bases that are encountered while factoring
rational polynomials (e.g., with the algorithm from [9]). Gradual feeding was restricted to reducing
specific sub-lattices which avoid the above dimensionality difficulties. We generalize these results
to the following. Suppose that we wish to reduce a matrix B with the property that B0 := σ−k

� B
is reduced for some k and σ� is the diagonal matrix diag(2�, 1, . . . , 1). If one runs L3 on B
directly then the structure of B0 is not being exploited. Instead, the matrix B can be slowly
reduced allowing us to control and understand the intermediate transformations: Compute the
unimodular transform U1 (with any reduction algorithm) such that σ�B0U1 is reduced and repeat
until we have σk

� B0U1 · · ·Uk = B(U1 · · ·Uk). Each entry of Ui and each entry of U1 · · ·Ui can be
bounded sensitive to the shape of the lattice. Further we will illustrate that the bit-size of any
entry of Ui can be made O(� + d) (see Theorems 2 and 4).

In addition, control over U gives us the ability to analyze the impact of efficient truncations
on lift-reductions.
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4 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

Truncations of basis matrices. In order to work on as few bits of basis matrices as possible
during our lift-reductions, we apply column-wise truncations. A truncation of precision p replaces
a matrix B by a truncated matrix B + ΔB such that max �Δbi�

�bi�
≤ 2−p holds for all i, and only

the most significant p + O(log d) bits of every column of B + ΔB are allowed to be non-zero.
Each entry of B + ΔB is an integer multiplied by some power of 2. (In the notation ΔB, Δ
does not represent anything, i.e., the matrix ΔB is not a product of Δ and B.) A truncation
is an efficiency-motivated column-wise perturbation. The following lemmata explain why we are
interested in such perturbations.

Lemma 1 ([2, Se. 2], refined from [8]). Let p > 0, B ∈ Rd×d non-singular with R-factor R,

and let ΔB with max �Δbi�
�bi�

≤ 2−p. If cond(R) = �|R||R−1|�2 (using the induced norm) satis-

fies c0 · cond(R) · 2−p < 1 with c0 = 8d3/2, then B +ΔB is non-singular and its R-factor R+ΔR

satisfies max �Δri�
�ri�

≤ c0 · cond(R) · 2−p.

Lemma 2 ([2, Le. 5.5]). If B ∈ Rd×d with R-factor R is (δ, η, θ)-reduced then cond(R) ≤ ρ+1
ρ−1ρd,

with ρ = (1 + η + θ)α, with α as in Theorem 1.

These results imply that a column-wise truncation of a reduced basis with precision Ω(d)
remains reduced. This explains why the parameter θ was introduced in Definition 1, as such a
property does not hold if LLL-reduction is restricted to θ = 0 (see [29, Se. 3.1]).

Lemma 3 ([2, Co. 5.1]). Let Ξ1 > Ξ2 be valid reduction parameters. There exists a constant c1

such that for any Ξ1-reduced B ∈ Rd×d and any ΔB with max �Δbi�
�bi�

≤ 2−c1·d, the matrix B+ΔB
is non-singular and Ξ2-reduced.

As we will see in Section 3 (see Lemma 7) the latter lemmata will allow us to develop the
gradual reduction strategy with truncation, which is to approximate the matrix to be reduced,
reduce that approximation, and apply the unimodular transform to the original matrix, and
repeat the process.

Lift-�L1. Our quasi-linear general lattice reduction algorithm, �L1, is composed of a sequence of
calls to a specialized lift-reduction algorithm, Lift-�L1. Sections 2 and 4.4 show the relationship
between general reduction and lift-reduction via HNF.

Inputs: B0 reduced, and target lift �.
Output: Usmall such that σ�B0Usmall is reduced.

1. Get U1,small from pseudo-Lift-eL1(truncate(B0), �/2).
2. B1 := σ�/2B0U1,small.
3. Get U from refineReduction(C).

4. Get U2,small from pseudo-Lift-eL1(truncate(B1U), �/2).
5. Usmall :=clean(U1,small · U · U2,small).
6. Return Usmall.

Fig. 1. pseudo-Lift-eL1.

When we combine lift-reduction (gradual feeding) and truncation we see another difficulty
which must be addressed. That is, lift-reducing a truncation of B0 will not give the same trans-
formation as lift-reducing B0 directly; likewise any truncation of U weakens our reduction even
further. Thus after working with truncations we must apply any transformations to a higher
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Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 5

precision lattice and refine the result. In other words, we will need to have a method for strength-
ening the quality of a weakly reduced basis. Such an algorithm exists in [19] and we adapt it to
performing lift-reductions in section 3.2. Small lift-reductions with this algorithm also become
the leaves of our recursive tree. The Lift-�L1 algorithm in Figure 4 is a rigorous implementation
of the pseudo algorithm in Figure 1: Lift-�L1 must refine current matrices more often than this
pseudo algorithm to properly handle a specified reduction.

It could be noted that clean is stronger than mere truncation. It can utilize our new under-
standing of the structure of any lift-reducing U to provide an appropriate transformation which
is well structured and efficiently stored.

Comments on the cost of �L1. The term O(d5+εβ) stems from a series of β calls to H-LLL [20]
or L2 [21] on integral matrices whose entries have bit-lengths O(d). These calls are at the leaves of
the tree of the recursive algorithm. An amortized analysis allows us to show that the total number
of LLL switches performed summed over all calls is O(d2β) (see Lemma 11). We recall that
known LLL reduction algorithms perform two types of vector operations: Either translations or
switches. The number of switches performed is a key factor of the complexity bounds. The H-LLL
component of the cost of �L1 could be lowered by using faster LLL-reducing algorithms than H-LLL
(with respect to d), but for our amortization to hold, they have to satisfy a standard property (see
Section 3.2). The term O(dω+1+εβ1+ε) derives from both the HNF computation mentioned above
and a series of product trees of balanced matrix multiplications whose overall product has bit-
length O(dβ). Furthermore, the precise cost dependence of �L1 in β is Poly(d)·M(β) log β. We also
remark that the cost can be proven to be O(d4+ε log | detB|+d5+ε+dω(log | detB|)1+ε)+H(d, β),
where H(d, β) denotes the cost of computing the Hermite normal form. Finally, we may note that
if the size-reduction parameter θ is not considered as a constant, then a factor Poly(log(1/θ)) is
involved in the cost of the leaf calls.

Road-map. We construct �L1 in several generalization steps which, in the gcd framework, respec-
tively correspond to Euclid’s algorithm (Section 2), Lehmer’s inclusion of truncations in Euclid’s
algorithm (Section 3) and the Knuth-Schönhage recursive generalization of Lehmer’s algorithm
(Section 4).

2 Lift-Reduction

In order to enable the adaptation of the gcd framework to lattice reduction, we introduce a
new type of reduction which behaves more predictively and regularly. In this new framework,
called lift-reduction, we are given a reduced matrix B and a lifting target � ≥ 0, and we aim
at computing a unimodular U such that σ�BU is reduced (with σ� = diag(2�, 1, . . . , 1)). Lift-
reduction can naturally be performed using any general purpose reduction algorithm, however we
will design fast algorithms specific to lift-reduction in Sections 3 and 4. Lifting a lattice basis has
a predictable impact on the ri,i’s and the successive minima.

Lemma 4. Let B be non-singular and � ≥ 0. If R (resp. R�) is the R-factor of B (resp. B� =
σ�B), then r�i,i ≥ ri,i for all i and

�
r�i,i = 2�

�
ri,i. Furthermore, if (λi)i (resp. (λ

�
i)i) are the

successive minima of L = L(B) (resp. L� = L(B�)), then λi ≤ λ�i ≤ 2�λi for all i.

Proof. The first statement is proven in [10, Le. 4]. For the second one, notice that
�

r�i,i =

|detB�| = 2�| detB| = 2�
�

ri,i. We now prove the third statement. Let (vi)i and (v�i)i be linearly
independent vectors in L and L� respectively with �vi� = λi and �v

�
i� = λ�i for all i. For any i,

we define S�
i = {σ�vj , j ≤ i} and Si = {σ−1

� v�j , j ≤ i}. These are linearly independent sets in L�

and L respectively. Then for any i we have λi ≤ max�·�(Si) ≤ λ�i ≤ max�·�(S
�
i) ≤ 2�λi. ��
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6 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

We can now bound the entries of any matrix which performs lift-reduction.

Lemma 5. Let Ξ1, Ξ2 be valid parameters and α1 and α2 as in Theorem 1. Let � ≥ 0, B ∈ Rd×d

be Ξ1-reduced and U such that C = σ�BU is Ξ2-reduced. Letting ζ1 = (1+η1+θ1)α1α2, we have:

∀i, j : |ui,j | ≤ 4d3ζd1 ·
r�j,j
ri,i

≤ 2�+2d3ζ2d
1 ·

rj,j
ri,i

,

where R (resp. R�) is the R-factor of B (resp. C). In addition, if V = U−1 and ζ2 = (1 + η2 +
θ2)α2α1:

∀i, j : |vj,i| ≤ 2�+2d3ζd2 ·
ri,i
r�j,j

≤ 2�+2d3ζ2d
2 ·

ri,i
rj,j

.

Proof. Let B = QR, C = Q�R� be the QR-factorizations of B and C. Then

U = R−1Qtσ−1
� Q�R�

= diag(r−1
i,i )R̄

−1
�
Qtσ−1

� Q�
�

R̄�diag(r�j,j),

with R̄ = R · diag(1/ri,i) and R̄� = R� · diag(1/r�j,j). From the proof of [2, Le. 5.5], we know

that |R̄−1| ≤ 2((1 + η1 + θ1)α1)
dT , where ti,j = 1 if i ≤ j and ti,j = 0 otherwise. By Theorem 1,

we have |R̄�| ≤ (η2α
d−1
2 +θ2)T ≤ 2αd

2T (using θ2 ≤ α2 and η2 ≤ 1). Finally, we have |Q|, |Q�| ≤ M ,
where mi,j = 1 for all i, j. Using the triangular inequality, we obtain:

|U | ≤ 4ζddiag(r−1
i,i )TM2Tdiag(r�j,j)

≤ 4d3ζddiag(r−1
i,i )Mdiag(r�j,j).

Now, by Theorem 1 and Lemma 4, we have r�j,j ≤ αd−j
2 λ�j ≤ 2�αd−j

2 λj ≤ 2�αj
1α

d−j
2 rj,j , which

completes the proof of the first statement.

For the second statement note that

V = diag(r�
−1
i,i )R̄

�−1 �
Q�tσ�Q

�
R̄diag(rj,j)

is similar to the expression for U in the proof of the first statement, except that σ� can increase
the innermost product by a factor 2�. ��

LLL-reduction as a sequence of lift-reductions. In the remainder of this section we
illustrate that LLL-reduction can be achieved with an efficient sequence of lift-reductions.

Lift-reduction is specialized to reducing a scalar-shift/lift of an already reduced basis. In
Figure 2 we create reduced bases (of distinct lattices from the input lattice) which we use to
progressively create a reduced basis for the input lattice. Here we use an HNF triangularization
and scalar shifts to find suitable reduced lattice bases. We analyze the cost and accuracy of
Figure 2 using a generic lift-reduction algorithm. The remainder of the paper can then focus on
specialized lift-reduction algorithms which each use Figure 2 to achieve generic reduction. We
note that other wrappers of lift-reduction are possible.

Recall that the HNF of a (full-rank) lattice L ⊆ Zd is the unique upper triangular basis H
of L such that −hi,i/2 ≤ hi,j < hi,i/2 for any i < j and hi,i > 0 for any i. Using [17, 31], it can
be computed in time O(dω+1+εβ1+ε), where the input matrix B ∈ Zd×d satisfies max �bi� ≤ 2β .

Let H be the HNF of L(B). At the end of Step 1, the matrix B = H is upper triangu-
lar,

�
bi,i = |detH| ≤ 2dβ , and the 1×1 bottom rightmost sub-matrix of H is trivially Ξ-reduced.
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Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 7

In each iteration we Ξ-reduce a lower-right sub-matrix of B via lift-reduction (increasing the di-
mension with each iteration). This is done by augmenting the previous Ξ-reduced sub-matrix by
a scaling down of the next row (such that the new values are tiny). This creates a C which is
reduced and such that a lift-reduction of C will be a complete Ξ-reduction of the next largest
sub-matrix of B. The column operations of the lift-reduction are then applied to rest of B with
the triangular structure allowing us to reduce each remaining row modulo bi,i. From a cost point
of view, it is worth noting that the sum of the lifts �k is O(log |detH|) = O(dβ).

Inputs: LLL parameters Ξ; a non-singular B ∈ Zd×d.
Output: A Ξ-reduced basis of L(B).

1. B := HNF(B).
2. For k from d− 1 down to 1 do
3. Let C be the bottom-right (d− k + 1)-dimensional submatrix of B.
4. �k := �log2(bk,k)�, C := σ−1

�k
C.

5. Lift-reduction: Find U � unimodular such that σ�kCU � is Ξ-reduced.
6. Let U be the block-diagonal matrix diag(I, U �).
7. Compute B := B · U , reducing row i symmetrically modulo bi,i for i < k.
8. Return B.

Fig. 2. Reducing LLL-reduction to lift-reduction.

Lemma 6. The algorithm of Figure 2 Ξ-reduces B such that max �bi� ≤ 2β using

O(dω+1+ε(β1+ε + d)) +
1�

k=d−1

Ck

bit operations, where Ck is the cost of Step 5 for the specific value of k.

Proof. We first prove the correctness of the algorithm. We let UH be the unimodular transfor-
mation such that H = BUH . For k < d, we let U �

k be the (d − k + 1) × (d − k + 1) unimodular
transformation that reduces σ�kC at Step 5 and U ��

k be the unimodular transformation that re-
duces rows 1 ≤ i < k at Step 7. With input B the algorithm returns B · UH · diag(I, U �

d−1) ·
U ��
d−1 . . . · diag(I, U �

2) · U ��
2 · U �

1. Since B is multiplied by a product of unimodular matrices, the
output matrix is a basis of the lattice spanned by the columns of B.

We show by induction on k from d down to 1 that at the end of the (d− k)-th loop iteration,
the bottom-right (d−k+1)-dimensional submatrix of the current B is Ξ-reduced. The statement
is valid for k = d, as a non-zero matrix in dimension 1 is always reduced, and instanciating the
statement with k = 1 ensures that the matrix resturned by the algorithm is Ξ-reduced. The
non-trivial ingredient of the proof of the statement is to show that for k < d, the input of the
lift-reduction of Step 5 is valid, i.e., that at the beginning of Step 5 the matrix C is Ξ-reduced.
Let R be the R-factor of C. Let C � be the bottom-right (d − k) × (d − k) submatrix of C. By
induction, we know that C � is Ξ-reduced. It thus remains to show that the first row of R satisfies
the size-reducedness condition, and that Lovász’ condition between the first two rows is satisfied.
We have r1,j = hk,k+j−1/2

�k , for j ≤ d − k + 1, thus ensuring the size-reducedness condition.
Furthermore, by the shape of the unimodular transformations applied so far, we know that C �

is a basis of the lattice L� generated by the columns of the bottom-right (d − k)-dimensional
submatrix of H, which has first minimum λ1(L

�) ≥ mini>k hi,i ≥ 1. As r2,2 is the norm of the
first vector of C �, we have r2,2 ≥ λ1(L

�) ≥ 1. Independently, by choice of �k, we have r1,1 ≤ 1.
This ensures that Lovász’ condition is satisfied, and completes the proof of correctness.
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8 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

We now bound the cost of the algorithm of Figure 2. We bound the overall cost of the d− 1
calls to lift-reduction by

�
k<d Ck. It remains to bound the contribution of Step 7 to the cost.

The cost dominating component of Step 7 is the computation of the product of the last d− k +1
columns of (the current value of) B by U �. We consider separately the costs of computing the
products by U � of the k× (d− k+1) top-right submatrix B of B, and of the (d− k)× (d− k+1)
bottom-right submatrix B of B

For i ≤ k, the magnitudes of the entries of the i-th row of B are uniformly bounded by hi,i. By
Lemma 5, if e, j < d−k+1, then |u�e,j | ≤ 2�k+2d3ζd1 ·

rj,j

re,e
(recall that R is the R-factor of C at the

beginning of Step 5). As we saw above, we have r2,2 ≥ 1, and, by reducedness, we have re,e ≥ α−e

for any e ≥ 2 (using Theorem 1). Also, by choice of �k, we have r1,1 ≥ 1/2. Overall, this gives
that the jth column of U � is uniformly bounded as log �u�

j� = O(�k + d + log rj,j). The bounds

on the bit-lengths of the rows of B and the bounds on the bit-lengths of the columns of U � may
be very unbalanced. We do not perform matrix multiplication naively, as this unbalancedness
may lead to too large a cost (the maxima of row and column bounds may be much larger than
the averages). To circumvent this difficulty we use Recipe 1, given in Appendix 1 p. 17, with
“S = log detH + d2 + d�k". Since detH = |detB| the multiplication of B with U � can be
performed within O(dωM((log | detB|)/d + d + �k)) bit operations.

We now consider the product P := BU �. By reducedness of B, we have �bj� ≤ αdrj,j
(from Theorem 1). Recall that we have |u�e,j | ≤ 2�k+2d3ζd1 ·

rj,j

re,e
. As a consequence, we can

uniformly bound log �u�
j� and log �pj� by O(�k + d + log rj,j) for any j. We can thus use

Recipe 3, given in Appendix 1 p. 17, to compute P , with “S = O(log detH + d2 + d�k)” us-
ing O(dω+εM((log | detB|)/d + d + �k)) bit operations.

The proof can be completed by noting that the above matrix products are performed d − 1
times during the execution of the algorithm and by also considering the cost O(dω+1+εβ1+ε) of
converting B to Hermite normal form. ��

We use the term Ck in order to amortize over the loop iterations the costs of the calls to the
lift-reducing algorithm. In the algorithm of Figure 2 and in Lemma 6, the lift-reducing algorithm is
not specified. It may be a general-purpose LLL-reducing algorithm [16, 11, 21, 20] or a specifically
designed lift-reducing algorithm such as Lift-�L1, described in Section 4.

It can be noted from the proof of Lemma 6 that the non-reduction costs can be refined
as O(dω+εM(log | detB|) + dω+1+εM(d)) + H(d, β). We note that the HNF is only used as a
triangularization, thus any triangularization of the input B will suffice, however then it may be
needed to perform d2 reductions of entries bi,j modulo bi,i. Thus we could replace H(d, β) by
O(d2β1+ε) for upper triangular inputs. Using the cost of H-LLL for lift-reduction, we can bound
the complexity of Figure 2 by Poly(d) · β2. This is comparable to L2 and H-LLL.

3 Truncating matrix entries

We will now focus on improving the lift-reduction step introduced in the previous section. In this
section we show how to truncate the “remainder” matrix and we give an efficient factorization
for the “quotient” matrices encountered in the process. This way the unimodular transformations
can be found and stored at low cost. In the first part of this section, we show that given any B
reduced and � ≥ 0, finding U such that σ�BU is reduced can be done by looking at only the most
significant bits of each column of B. In the context of gcd algorithms, this is equivalent to saying
that the quotients can be computed by looking at the most significant bits of the remainders only.
In the gcd case, using only the most significant bits of the remainders allows one to efficiently
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Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 9

compute the quotients. Unfortunately, this is where the gcd analogy stops as a lift-reduction
transformation U may still have entries that are much larger than the number of bits kept of B.
In particular, if the diagonal coefficients of the R-factor of B are very unbalanced, then Lemma 5
does not prevent some entries of U from being as large as the magnitudes of the entries of B (as
opposed to just the precision kept). The second part of this section is devoted to showing how to
make the bit-size of U and the cost of computing it essentially independent of these magnitudes.
In this framework we can then describe and analyze a Lehmer-like lift-reduction algorithm.

3.1 The most significant bits of B suffice for reducing σ�B

It is a natural strategy to reduce a truncation of B rather than B, but in general it is unclear if
some U which reduces a truncation of B would also reduce B even in a weaker sense. However,
with lift-reduction we can control the size of U which allows us to overcome this problem. In this
section we aim at computing a unimodular U such that σ�BU is reduced, when B is reduced, by
working on a truncation of B. We use the bounds of Lemma 5 on the magnitude of U to show
that a column-wise truncation precision of � +O(d) bits suffices for that purpose.

Lemma 7. Let Ξ1, Ξ2, Ξ3 be valid reduction parameters with Ξ3 > Ξ2. There exists a constant c3

such that the following holds for any � ≥ 0. Let B ∈ Rd×d be Ξ1-reduced and ΔB be such
that max �Δbi�

�bi�
≤ 2−�−c3·d. If σ�(B +ΔB)U is Ξ3-reduced for some U , then σ�BU is Ξ2-reduced.

The proof is given in Appendix 2 p. 19. The above result implies that to find a U such
that σ�BU is reduced, it suffices to find U such that σ�(B

� · E)U is reduced (for a stronger Ξ),
for well chosen matrices B� and E, outlined as follows.

Definition 2. For B ∈ Zd×d with β = logmax �bj� and precision p, we chose to store the p most
significant bits of B, MSBp(B), as a matrix product B�E or just the pair (B�, E). This pair should

satisfy B� ∈ Zd×d with p = logmax �b�
j�, E = diag(2ei−p) with ei ∈ Z such that 2ei−�bi�

�bi�
≤ 2d,

and max
�(bj−b�j ·2

ei−p�
�bj�

≤ 2−p.

3.2 Finding a unimodular U reducing σ�B at low cost

The algorithm TrLiftLLL (a truncated lift-LLL) we propose is an adaptation of the StrengthenLLL
from [19], which aims at strengthening the LLL-reducedness of an already reduced basis, i.e., Ξ2-
reducing a Ξ1-reduced basis with Ξ1 < Ξ2. One can recover a variant of StrengthenLLL by
setting � = 0 below. We refer the reader to Appendix 3 p. 19 for a complete description of
TrLiftLLL.

Theorem 2. For any valid parameters Ξ1 < Ξ2 and constant c4, there exists a constant c�4 and
an algorithm TrLiftLLL with the following specifications. It takes as inputs � ≥ 0, B ∈ Zd×d

and E = diag(2ei) with max �bi� ≤ 2c4(�+d), ei ∈ Z and BE is Ξ1-reduced; It runs in time
O(d2+ε(d+ �)(d+ �+ τ)+ d2 logmax(1+ |ei|)), where τ = O(d2(�+ d)) is the number of switches
performed during the single call it makes to H-LLL; And it returns two matrices U and D such
that:

1. D = diag(2di) with di ∈ Z satisfying max |ei − di| ≤ c�4(� + d),

2. U is unimodular and max |ui,j | ≤ 2�+c�4·d,

3. D−1UD is unimodular and σ�(BE)(D−1UD) is Ξ2-reduced.
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10 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

When setting � = O(d), we obtain the base case of lift-�L1, the quasi-linear time recursive
algorithm to be introduced in the next section. The most expensive step of TrLiftLLL is a call
to an LLL-type algorithm, which must satisfy a standard property that we identify hereafter.

When called on a basis matrix B with R-factor R, the L3, L2 and H-LLL algorithms per-
form two types of basis operations: They either subtract to a vector bk an integer combination
of b1, . . . ,bk−1 (translation), or they exchange bk−1 and bk (switches). Translations leave the ri,i’s
unchanged. Switches are never perfomed when the optimal Lovász condition r2

i,i ≤ r2
i,i+1+r2

i+1,i+1

is satisfied, and thus cannot increase any of the quantities maxj≤i rj,j (for varying i), nor decrease
any of the quantities minj≥i rj,j . This implies that if we have maxi<k ri,i < mini≥k ri,i for some k
at the beginning of the execution, then the computed matrix U will be such that ui,j = 0 for
any (i, j) such that i ≥ k and j < k. We say that a LLL-reducing algorithm satisfies Property (P)
if for any k such that maxi<k ri,i < mini≥k ri,i holds at the beginning of the execution, then it
also holds at the end of the execution.

Property (P) is for instance satisfied by L3 ([16, p. 523]), L2 ([21, Th. 6]) and H-LLL ([20,
Th. 4.3]). We choose H-LLL as this currently provides the best complexity bound, although �L1

would remain quasi-linear with L3 or L2.
TrLiftLLL will also be used with � = 0 in the recursive algorithm for strengthening the

reduction parameters. Such refinement is needed after the truncation of bases and transformation
matrices which we will need to ensure that the recursive calls get valid inputs.

3.3 A Lehmer-like lift-LLL algorithm

By combining Lemma 7 and Theorem 2, we obtain a Lehmer-like Lift-LLL algorithm, given in
Figure 3. In the input, we assume the base-case lifting target t divides �. If it is not the case, we
may replace � by t��/t�, and add some more lifting at the end.

Inputs: LLL parameters Ξ; a Ξ-reduced matrix B ∈ Zd×d; a lifting target �; a divisor t of �.
Output: A Ξ-reduced basis of σ�B.

1. Let Ξ0, Ξ1 be valid parameters with Ξ0 < Ξ < Ξ1,
c3 as in Le. 7 for “(Ξ1, Ξ2, Ξ3) := (Ξ, Ξ, Ξ1)”,
c1 as in Le. 3 with “(Ξ1, Ξ2) := (Ξ, Ξ0)”,
and c�4 as in Th. 2 with “(Ξ1, Ξ2, c4) := (Ξ0, Ξ1, c3 + 2)”.

2. For k from 1 to �/t do
3. (B�, E) := MSB(t+c3d)(B).
4. (D, U) := TrLiftLLL(B�, E, t).
5. B := σtBD−1UD.
6. Return B.

Fig. 3. The Lehmer-LiftLLL algorithm.

Theorem 3. Lehmer-LiftLLL is correct. Furthermore, if the input matrix B satisfies max �bi� ≤
2β, then its bit-complexity is O(d3�(d1+εt + t−1+ε(� + β))).

Proof. The correctness is provided by Lemmata 3 and 7 and by Theorem 2. At any moment
throughout the execution, the matrix B is a Ξ-reduced basis of the lattice spanned by an ��-lift
of the input, for some �� ≤ �. Therefore, by Theorem 1 and Lemma 4, the inequality max �bi� ≤
αdmax ri,i ≤ 2c·(�+β) holds throughout the execution, for some constant c. The cost of Step 3
is O[d2(t+log(�+β))]. The cost of Step 4 is O[d4+εt2+d2 log(�+β)]. Step 5 is performed by first
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Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 11

computing σtBD−1, whose entries have bit-sizes O(�+β), and then multiplying by U and finally
by D. This costs O(d3(� + β)tε) bit operations. The claimed complexity bound can by obtained
by summing over the �/t loop iterations. ��

Note that if � is sufficiently large with respect to d, then we may choose t = �a for a ∈ (0, 1),
to get a complexity bound that is subquadratic with respect to �. By using Lehmer-LiftLLL
at Step 5 of the algorithm of Figure 2 (with t = �.5), it is possible to obtain an LLL-reducing
algorithm of complexity Poly(d) · β1.5+ε.

4 Quasi-linear algorithm

We now aim at constructing a recursive variant of the Lehmer-LiftLLL algorithm of the previous
section. Because the lift-reducing unimodular transformations will be produced by recursive calls,
we have little control over their structure (as opposed to those produced by TrLiftLLL). Before
describing Lift-�L1, we thus study lift-reducing unimodular transformations, without considering
how they were computed. In particular, we are interested in how to work on them at low cost.
This study is robust and fully general, and afterwards is used to analyze lift-�L1.

4.1 Sanitizing unimodular transforms

In the previous section we have seen that working on the most significant bits of the input matrix B
suffices to find a matrix U such that σ�BU is reduced. Furthermore, as shown in Theorem 2, the
unimodular U can be found and stored on few bits. Since the complexity of Theorem 2 is quadratic
in � we will use it only for small lift-reductions (the leaves of our recursive tree) and repairing
reduction quality (when � = 0). For large lifts we will use recursive lift-reduction. However, that
means we no longer have a direct application of a well-understood LLL-reducing algorithm which
was what allowed such efficient unimodular transforms to be found. Thus, in this section we show
how any U which reduces σ�B can be transformed into a factored unimodular U � which also
reduces σ�B and for which each entry can be stored with only O(�+d) bits. We also explain how
to quickly compute the products of such factored matrices. This analysis can be used as a general
framework for studying lift-reductions.

The following lemmata work because lift-reducing transforms have a special structure which
we gave in Lemma 5. Here we show a class of additive perturbations which, when viewed as
a transformations, are in fact unimodular transformations themselves. Note that these entry-
wise perturbations are stronger than mere truncations since Δui,j could be larger than ui,j .
Lemma 8 shows that a sufficiently small perturbation of a unimodular lift-reducing matrix remains
unimodular.

Lemma 8. Let Ξ1, Ξ2 be valid LLL parameters. There exists a contant c7 such that the following
holds for any � ≥ 0. Let B ∈ Rd×d (with R-factor R) be Ξ1-reduced, and U be unimodular such

that σ�BU (with R-factor R�) is Ξ2-reduced. If ΔU ∈ Zd×d satisfies |Δui,j | ≤ 2−(�+c7·d) ·
r�j,j

ri,i
for

all i, j, then U + ΔU is unimodular.

Proof. Since U is unimodular, the matrix V = U−1 exists and has integer entries. We can thus
write U + ΔU = U(I + U−1ΔU), and prove the result by showing that U−1ΔU is strictly upper
triangular, i.e., that (U−1ΔU)i,j = 0 for i ≥ j. We have (U−1ΔU)i,j =

�
k≤d vi,k ·Δuk,j . We now

show that if Δuk,j �= 0 and i ≥ j, then we must have vi,k = 0 (for a large enough c7).
The inequality Δuk,j �= 0 and the hypothesis on ΔU imply that

rk,k

r�j,j
≤ 2−(�+c7·d). Since i ≥ j

and σ�BU is reduced, Theorem 1 implies that
rk,k

r�i,i
≤ 2−�+(c−c7)d, for some constant c > 0.

e
n

s
l-

0
0

5
3

4
8

9
9

, 
ve

rs
io

n
 2

 -
 7

 A
p

r 
2

0
1

1



12 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

By using the second part of Lemma 5, we obtain that there exists c� > 0 such that |vi,k| ≤
2�+c�·d ·

rk,k

r�i,i
≤ 2(c+c�−c7)d. As V is integral, setting c7 > c + c� allows us to ensure that vi,k = 0,

as desired. ��

Lemma 9 shows that a sufficiently small perturbation of a unimodular lift-reducing matrix
remains lift-reducing.

Lemma 9. Let Ξ1, Ξ2, Ξ3 be valid LLL parameters such that Ξ2 > Ξ3. There exists a contant c8

such that the following holds for any � ≥ 0. Let B ∈ Rd×d (with R-factor R) be Ξ1-reduced,
and U be unimodular such that σ�BU (with R-factor R�) is Ξ2-reduced. If ΔU ∈ Zd×d satisfies

|Δui,j | ≤ 2−(�+c8·d) ·
r�j,j

ri,i
for all i, j, then σ�B(U + ΔU) is Ξ3-reduced.

Proof. We proceed by showing that |σ�BΔU | is column-wise small compared to |σ�BU | and by
applying Lemma 3. We have |ΔU | ≤ 2−(�+c8·d)diag(r−1

i,i )Cdiag(r�j,j) by assumption, where ci,j = 1
for all i, j. Since B is Ξ1-reduced, we also have |R| ≤ diag(ri,i)T +θ1Tdiag(rj,j), where T is upper
triangular with ti,j = 1 for all i ≤ j. Then using |RΔU | ≤ |R||ΔU | we get

|RΔU | ≤ 2−(�+c8·d)
�
diag(ri,i)Tdiag(r−1

j,j )+θ1T
�

Cdiag(r�j,j).

Since B is Ξ1-reduced, by Theorem 1, we have ri,i ≤ αd
1rj,j for all i ≤ j, hence it follows that

|RΔU | ≤ 2−(�+c8·d)(αd
1 + θ1)TCdiag(r�j,j).

As a consequence, there exists a constant c > 0 such that for any j:

�(σ�BΔU)j� ≤ 2��(BΔU)j� = 2��(RΔU)j� ≤ 2(c−c8)dr�j,j .

We complete the proof by noting that r�j,j ≤ �(σ�BU)j� and by applying Lemma 3 (which requires
that c8 is set sufficiently large). ��

Lemmata 8 and 9 allow us to design an algorithmically efficient representation for lift-reducing
unimodular transforms.

Theorem 4. Let Ξ1, Ξ2, Ξ3 be valid LLL parameters with Ξ2 > Ξ3. There exist contants c9, c10 >
0 such that the following holds for any � ≥ 0. Let B ∈ Rd×d be Ξ1-reduced, and U be unimodular
such that σ�BU is Ξ2-reduced. Let di := �log �bi�� for all i. Let D := diag(2di), x := � + c9 · d,
�U := 2xDUD−1 and U � := 2−xD−1��U�D. We write Clean(U, (di)i, �) := (U �, D, x). Then U � is
unimodular and σ�BU � is Ξ3-reduced. Furthermore, the matrix �U satisfies max |�ui,j | ≤ 22�+c10·d.

Proof. We first show that U � is integral. If ��ui,j� = �ui,j , then u�i,j = ui,j ∈ Z. Otherwise, we

have �ui,j �∈ Z, and thus x + di − dj ≤ 0. This gives that ��ui,j� ∈ Z ⊆ 2x+di−dj Z. We conclude
that u�i,j ∈ Z.

Now, consider ΔU = U � − U . Since ΔU = 2−xD−1(��U� − �U)D, we have |Δui,j | ≤ 2dj−di−x,

for all i, j. Thus by Theorem 1 and Lemma 4, we have |Δui,j | ≤ 2−x+c·d ·
r�j,j

ri,i
for some constant c.

Applying Lemmata 8 and 9 shows that U � is unimodular and σ�BU � is Ξ3-reduced (if c9 is chosen
sufficiently large).

By Lemma 5, we have for all i, j:

|�ui,j | = |ui,j |2
x+di−dj ≤ 2x+�+c�d ·

rj,j

2�log �bj��

2�log �bi��

ri,i
,

for some constant c�. Theorem 1 then provides the result. ��
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Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 13

The above representation of lift-reducing transforms is computationally powerful. Firstly, it
can be efficiently combined with Theorem 2: Applying the process described in Theorem 4 to the
unimodular matrix produced by TrLiftLLL may be performed in O(d2(d+�)+d logmax(1+ |ei|))
bit operations, which is negligible comparable to the cost bound of TrLiftLLL. We call TrLiftLLL’
the algorithm resulting from the combination of Theorems 2 and 4. TrLiftLLL’ is to be used as
base case of the recursion process of Lift-�L1. Secondly, the following result shows how to combine
lift-LLL-reducing unimodular transforms. This is an engine of the recursion process of Lift-�L1.

Lemma 10. Let U = 2−xD−1U �D ∈ Zd×d with U � ∈ Zd×d and D = diag(2di). Let V =
2−yE−1V �E ∈ Zd×d with V � ∈ Zd×d and E = diag(2ei). Let � ∈ Z and fi ∈ Z for i ≤ d.
Then it is possible to compute the output (W �, F, z) of Clean(U · V, (fi)i, �) (see Theorem 4)
from x, y, �, U �, V �, (di)i, (ei)i, (fi)i, in time O(dωM(t + log d)), where

max
i,j

max(|u�i,j |, |v
�
i,j |) ≤ 2t

and
max

i
max(|di − ei|, |fi − ei|, |�− (x + y)|) ≤ t.

For short, we will write W := U � V , with W = 2−zF−1W �F and F = diag(2fi).

Proof. We first compute m = max |di − ei|. We have

UV = 2(−x−y−m) · F−1T · F,

where
T = (FD−1)U �diag(2di−ei+m)V �(EF−1).

Then we compute T . We multiply U � by diag(2di−ei+m), which is a mere multiplication by a
non-negative power of 2 of each column of U �. This gives an integral matrix with coefficients of
bit-sizes ≤ 3t. We then multiply the latter by V �, which costs O(dωM(t+log d)). We multiply the

result from the left by (FD−1) and from the right by EF−1. From T , the matrix �W of Theorem 4
may be computed and rounded within O(d2t) bit operations. ��

It is crucial in the complexity analysis of Lift-�L1 that the cost of the merging process above
is independent of the magnitude scalings (di, ei and fi).

4.2 Lift-�L1 algorithm

The Lift-�L1 algorithm given in Figure 4 relies on two recursive calls, on MSB, truncations, and
on calls to TrLiftLLL’. The latter is used as base case of the recursion, and also to strengthen the
reducedness parameters (to ensure that the recursive calls get valid inputs). When strengthening,
the lifting target is always 0, and we do not specify it explicitly in Figure 4.

Theorem 5. Lift-�L1 is correct.

Proof. When � ≤ d the output is correct by Theorems 2 and 4. In Step 2, Theorems 2 and 4
give that BU1 is Ξ2-reduced and that U1 has the desired format. In Step 3, the constant c3 ≥ c1

is chosen so that Lemma 3 applies now and Lemma 7 will apply later in the proof. Thus B1

is Ξ1-reduced and has the correct structure by definition of MSB. Step 4 works (by induction)
because B1 satisfies the input requirements of Lift-�L1. Thus σ�/2B1UR1 is Ξ1-reduced. Because
of the selection of c3 in Step 3 we know also that σ�/2BU1UR1 is reduced (weaker than Ξ1) using
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14 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

Lemma 7. Thus by Theorem 4, the matrix B2 is reduced (weakly) and has an appropriate for-
mat for TrLiftLLL’. By Theorem 2, the matrix σ�/2BU1R1U2 is Ξ3-reduced and by Theorem 4
we have that σ�/2BU1R12 is Ξ2-reduced. By choice of c3 and Lemma 3, we know that the ma-

trix B3 is Ξ1-reduced and satisfies the input requirements of Lift-�L1. Thus, by recursion, we
know that σ�/2B3UR2 is Ξ1-reduced. By choice of c3 and Lemma 7, the matrix σ�BU1R12UR2 is
weakly reduced. By Theorem 4, the matrix B4 is reduced and satisfies the input requirements of
TrLiftLLL’. Therefore, the matrix σ�BU1R12R2 is Ξ4-reduced. Theorem 4 can be used to ensure
U has the correct format and σ�BU is Ξ1-reduced. ��

Inputs: Valid LLL-parameters Ξ3 > Ξ2 ≥ Ξ4 > Ξ1; a lifting target �;

(B�, (ei)i) such that B = B�diag(2ei) is Ξ1-reduced and max |b�i,j | ≤ 2�+c·d.

Output: (U �, (di)i, x) such that σ�BU is Ξ1-reduced,

with U = 2−xdiag(2−di)U �diag(2di) and max |u�i,j | ≤ 22�+2c·d.

1. If � ≤ d, then use TrLiftLLL’ with lifting target �.
Otherwise:

2. Call TrLiftLLL’ on (B, Ξ2); Let U1 be the output. /∗ Prepare 1st recursive call ∗/
3. B1 := MSB(�/2+c3·d)(B · U1).
4. Call Lift-L1 on B1, with lifting target �/2; /∗ 1st recursive call ∗/

Let UR1 be the output.
5. U1R1 := U1 � UR1 . /∗ Prepare 2nd recursive call ∗/
6. B2 := σ�/2BU1R1 .
7. Call TrLiftLLL’ on (B2, Ξ3). Let U2 be the output.
8. U1R12 := U1R1 � U2.
9. B3 := MSB(�/2+c3·d)(σ�/2BU1R12).
10. Call Lift-L1 on B3, with lifting target �/2; /∗ 2nd recursive call ∗/

Let UR2 be the output.
11. U1R12R2 := U1R12 � UR2 . /∗ Prepare output ∗/
12. B4 := σ�BU1R12R2 .
13. Call TrLiftLLL’ on (B4, Ξ4); Let U3 be the output.
14. U := U1R12R2 � U3; Return U .

Fig. 4. The Lift-eL1 algorithm.

4.3 Complexity analysis

Theorem 6. Lift-�L1 has bit-complexity

O
�
d3+ε(d + � + τ) + dωM(�) log � + � log(β + �)

�
,

where τ is the total number of LLL-switches performed by the calls to H-LLL (through TrLiftLLL),
and max |bi,j | ≤ 2β.

Proof. We first bound the total cost of the calls to TrLiftLLL’. There are O(1 + �/d) such
calls, and for any of these the lifting target is O(d). Their contribution to the cost of Lift-�L1

is therefore O(d3+ε(d + � + τ)). Also, the cost of handling the exponents in the diverse diagonal
matrices is O(d(1 + �/d) log(β + �)).

Now, let C(d, �) be the cost of the remaining operations performed by Lift-�L1, in dimension d
and with lifting target �. If � ≤ d, then C(d, �) = O(1) (as the cost of TrLiftLLL’ has been put
aside). Assume now that � > d. The operations to be taken into account include two recursive
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Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 15

calls (each of them costing C(d, �/2)), and O(1) multiplications of d-dimensional integer matrices
whose coefficients have bit-length O(d+ �). This leads to the inequality C(d, �) ≤ 2C(d, �/2)+K ·
dωM(d+ �), for some absolute constant K. This leads to C(d, �) = O(dωM(d+ �) log(d+ �)). ��

4.4 �L1 algorithm

The algorithm of Figure 4 is the Knuth-Schönhage-like generalization of the Lehmer-like algorithm
of Figure 3. Now we are ready to analyze a general lattice reduction algorithm by creating a
wrapper for Lift-�L1.

Algorithm �L1: We define �L1 as the algorithm from Figure 2, where Figure 5 is used to
implement lift-reduction.

As we will see Figure 5 uses the truncation process MSB described in Definition 2 and
TrLiftLLL to ensure that �L1 provides valid inputs to Lift-�L1. Its function is to process the
input C from Step 5 of Figure 2 (the lift-reduction step) which is a full-precision basis with no
special format into a valid input of Lift-�L1 which requires a truncated basis B� · E. Just as in
Lift-�L1 we use a stronger reduction parameter to compensate for needing a truncation.

Inputs: Valid LLL parameters Ξ1 > Ξ; C Ξ-reduced with βk = log max �C�;
a lifting target �k;

Output: U unimodular, such that σ�CU is Ξ-reduced

1. C�F := MSB�k+c3d(C)
2. Call TrLiftLLL on (C�F, Ξ1). Let D−1U0D be the output.
3. B� := C�FD−1U0; E := D

4. Call Lift-eL1 on (B�, E, Ξ1). Let U�k be the output.
5. Return U := D−1U0DU�k .

Fig. 5. From Figure 2 to Lift-eL1

This processing before Lift-�L1 is similar to what goes on inside of Lift-�L1. The accuracy
follows from Lemma 3, Theorem 2, Theorem 5, and Lemma 7. While the complexity of this pro-
cessing is necessarily less than the bit-complexity of Lift-�L1,O(d3+ε(d+�k+τk)+dωM(�k) log �k+
�k log(βk + �k)) from Theorem 6, which we can use as Ck from Lemma 6.

We now amortize the costs of all calls to Step 5 using Figure 5. More precisely, we bound
�

k �k
and

�
k τk more tightly than using a generic bound for the �k’s (resp. τk’s). For the �k’s, we

have
�

k �k ≤ log detH ≤ dβ. To handle the τk’s, we adjust the standard LLL energy/potential
analysis to allow for the small perturbations of ri,i’s due to the various truncations.

Lemma 11. Consider the execution of Steps 2–8 of �L1 (Figure 2). Let H ∈ Zd×d be the initial
Hermite Normal Form. Let Ξ0 = (δ0, η0, θ0) be the strongest set of LLL-parameters used within the
execution. Let B be a basis occuring at any moment of Step 5 during the execution. Let R be the R-
factor of B and nMSB be the number of times MSB has been called so far. We define the energy of
B as E(B, nMSB) :=

1
log 1/δ0

��
i[(i− 1) · log ri,i] + d2nMSB

�
(using the natural logarithm). Then

the number of LLL-switches performed so far satisfies τ ≤ E(B, nMSB) = O(d · log detH).

Proof. The basis operations modifying the energy function are the LLL switches, the truncations
(and returns from truncations), the adjunctions of a vector at Steps 3–4 of the algorithm from
Figure 2 and the lifts. We show that any of these operations cannot decrease the energy function.
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16 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

As Ξ0 is the strongest set of LLL parameters ever considered during the execution of the
algorithm, each LLL switch increases the weighted sum of the ri,i’s (see [16, (1.23)]) and hence E
by at least 1.

We now consider truncations. Each increase of nMSB possibly decreases each ri,i (and again
when we return from the truncation). We see from Lemma 1 and our choices of precisions p that
for any two LLL parameters Ξ � < Ξ there exists an ε < 1 such that each ri,i decreases by a
factor no smaller than (1 + ε). Overall, the possible decrease of the weighted sum of the ri,i’s is
counterbalanced by the term “d2nMSB” from the energy function, and hence E cannot decrease.

Now, the act of adjoining a new row in Figure 2 does not change the previous ri,i’s but
increases their weights. Since at the moment of an adjoining all log ri,i’s except possibly the first
one are non-negative and since the weight of the first one is zero, Steps 3–4 cannot decrease E .

Finally, each product by σ� (including those within the calls to TrLiftLLL’) cannot decrease
any ri,i, by Lemma 4.

To conclude, the energy never decreases and any switch increases it by at least 1. This implies
that the number of switches is bounded by the growth E(B, nMSB) − E((hd,d), 0). The initial
value E((hd,d), 0) of the energy is ≥ 0. Also, at the end of the execution, the term

�
[(i−1) log ri,i]

is O(log detH). As there are 5 calls to MSB in the algorithm from Figure 4 (including those
contained in the calls to TrLiftLLL’), we can bound d2nMSB by 5d2

�
k(�k/d) = 5 log detH. ��

We obtain our main result by combining Theorems 5 and 6, and Lemma 11 to amortize the
LLL-costs in Lemma 6 (we bound log detH by dβ).

Theorem 7. Given as inputs Ξ and a matrix B ∈ Zd×d with max �bj� ≤ 2β, the �L1 algorithm
returns a Ξ-reduced basis of L(B) within O(d5+εβ + dω+1+εβ1+ε) bit operations.
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Appendix 1 - Recipes used in the proof of Lemma 6

Let us first recall useful recipes for partially linearizing integer matrices and reducing the bit-cost
of their products using asymptotically fast matrix multiplication algorithms. If one is interested
in ω = 3, then applying the naive matrix multiplication algorithm directly (without the lineariza-
tion) already provides the given complexity upper bounds.
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Recipe 1 Let B and U be two d × d integer matrices such that
�d

i=1 logmax1≤j≤d |bi,j | and�d
j=1 logmax1≤i≤d |ui,j | are both bounded by some S. We show how to compute the product B ·U

within O(dωM(S/d + log d)) bit operations.

We reduce the product B ·U to a product with balanced row and column bit-sizes by splitting
into several rows the rows of B for which logmax1≤j≤d |bi,j | ≥ β, with β := �S/d�. We also
split into several columns the columns of U for which logmax1≤i≤d |ui,j | ≥ β. More precisely, for
1 ≤ i ≤ d, let si = �(logmax1≤j≤d |bi,j |)/β�, and, for 1 ≤ j ≤ d, let tj = �(logmax1≤i≤d |ui,j |)/β�.
If x and y respectively denote row i of B and column j of U , then they are respectively replaced
by






x
(0)
1 . . . . . . x

(0)
d

... . . . . . .
...

x
(si−1)
1 . . . . . . x

(si−1)
d






and 








y
(0)
1 . . . y

(tj−1)
1

... . . .
...

... . . .
...

y
(0)
d . . . y

(tj−1)
d










,

where xk =
�si−1

l=0 x
(l)
k 2lβ , with log |x

(l)
k | ≤ β, and yk =

�tj−1
l=0 y

(l)
k 2lβ , with log |y

(l)
k | ≤ β.

The inner product x · y is then obtained by summing the entries of D1PD2, where P is the
product of the two matrices above (which are sub-matrices of the expansions of B and U),
D1 := diagl<si

(2lβ), and D2 := diagl<tj (2
lβ). Summing along antidiagonals and then summing

the partial sums costs O(sitj(β + log d)). The number of rows of the expansion of B is less than�
i si ≤ d + d

S

�
i logmax1≤j≤d |bi,j | ≤ 2d. Similarly, the number of columns of the expansion

of U is less than
�

j tj ≤ d + d
S

�
j logmax1≤i≤d |ui,j | ≤ 2d. To complete the proof, note that all

the entries of these expanded matrices have bit-lengths O(β). ��

Recipe 2 Let k ≤ log d. Let U be a d× (d/2k) integer matrix whose entries have bit-size ≤ 2kγ,
and B a d×d integer matrix such that

�d
j=1 log �bj� ≤ dγ, for some γ. Let C = BU and assume

that the entries of C have bit-size ≤ 2kγ. We show how to compute C within O(dω+εM(γ)) bit
operations, where ε is o(1)

For l ≥ 0 we see that B has at most d/2l columns bj such that log �bj� ≥ 2lγ. For l > 0,
let Jl denote the set of the indices of the columns of B such that 2lγ ≤ log �bj� < 2l+1γ. Note
that Jl = ∅ for l > log d. We denote by J0 the set of indices of the columns with log �bj� < 2γ.
For simplifying the cost bound discussion hereafter we assume that Jl has exactly d/2l elements
(rather than ≤ d/2l). Let also B(l) be the submatrix of B formed by the columns whose indices are
in Jl. Accordingly, let U (l) be the submatrix of U formed by the rows whose indices are in Jl. Then
we may compute C = BU in log d products since (taking a symmetric modulo representation)

C =
�

l

B(l)U (l) mod 22k+1γ . (1)

For k ≤ l, the matrix B(l) has dimension d × (d/2l), its entries may be taken modulo 22k+1γ

using O((d2/2l)M(2lγ)) hence O(d2+εM(γ)) bit operations. The resulting matrix is seen as the
concatenation of 2l square row blocks of dimension d/2l. The matrix U (l) has d/2l rows and
d/2k ≥ d/2l columns. We may decompose U (l) into 2l−k square column blocks with d/2l columns.
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The product B(l)U (l) in (1) can be done by blocks within O(2l× 2l−k× (d/2l)ω×M(2kγ)) hence
O(dω+εM(γ)) bit operations.

For k > l we proceed as for Recipe 1 with β := 2lγ for expanding U (l) into a matrix with
(d/2k)·(2k−l) columns. Hence B(l) is d×d/2l, and the expansion of U (l) is square of dimension d/2l.
Both have entries of bit size O(2lγ). By decomposing B(l) into 2l square row blocks with d/2l rows,
we can compute the product B(l)U (l) in time O(2l(d/2l)ωM(2lγ+log d)) and hence O(dω+εM(γ))
bit operations. Overall, the cost for computing C using (1) is O(dω+εM(γ)). ��

Recipe 3 Let B, U and C = BU be d × d integer matrices. Assume that there exists s1, . . . , sd
such that log �cj�, and log �uj� are ≤ sj, and

�
j log �bj�, and

�
j sj are ≤ S, for some S. We

show how to compute the product C within O(dω+εM(S/d)) bit operations, where ε is o(1).

We apply to C the column decomposition seen in Recipe 2 for B. For 0 < k ≤ log d, we
let Ik denote the set of the indices of the columns of C such that 2kS/d ≤ log �cj� < 2k+1S/d.
We denote by I0 the set of indices of the columns with log �cj� < 2S/d. Let also U (k) be the
submatrix of U formed by the columns whose indices are in Ik. As prior, the cardinality of Ik is
at most d/2k.

To compute C, it suffices to compute the B · U (k)’s, for 0 ≤ k ≤ log d. This can be done
within O(dω+εM(S/d)) bit operations by using Recipe 2. Bounding the number of k’s by O(log d)
allows us to complete the proof. ��

Appendix 2 - Proof of Lemma 7

Lemma 12. Let Ξ1, Ξ2, Ξ3 be valid reduction parameters with Ξ3 > Ξ2. There exists a con-
stant c2 such that the following holds for any � ≥ 0. Let B ∈ Rd×d be Ξ1-reduced, U such
that σ�BU is Ξ3-reduced and ΔB with max �Δbi�

�bi�
≤ 2−�−c2·d. Then σ�(B +ΔB)U is Ξ2-reduced.

Proof. By Lemma 5, there exists a constant c such that for all i, j we have |uj,i| ≤ 2c·d
r�i,i
rj,j

,

where R (resp. R�) is the R-factor of B (resp. C = σ�BU). Let C + ΔC = σ�(B + ΔB)U . The

norm of Δci =
�

j uj,iσ�Δbj is ≤
�

j 2
−p+�+c·d r�i,i

rj,j
�bj� ≤ dαd

12
−p+�+c·dr�i,i, by Theorem 1 and

with p such that max �Δbi�
�bi�

≤ 2−p. Furthermore, we have �ci� ≥ e�i,i. This gives max �Δci�
�ci�

≤

dαd
12

−p+�+c·d. By Lemma 3 (applied to C and C +ΔC), there exists c� such that if p ≥ �+ c� · d,
then C + ΔC is Ξ2-reduced. ��

By combining Lemmata 12 and 3, we have that a reducing U can be found by working on a
truncation of B.

Lemma 7. Let Ξ1, Ξ2, Ξ3 be valid reduction parameters with Ξ3 > Ξ2. There exists a constant c3

such that the following holds for any � ≥ 0. Let B ∈ Rd×d be Ξ1-reduced and ΔB be such
that max �Δbi�

�bi�
≤ 2−�−c3·d. If σ�(B+ΔB)U is Ξ3-reduced for some U , then σ�BU is Ξ2-reduced.

Proof. Let Ξ0 < Ξ1 be a valid set of reduction parameters. By Lemma 3, there exists a constant c
such that if max �Δbi�

�bi�
≤ 2−c·d, then B + ΔB is non-singular and Ξ0-reduced. We conclude by

using Lemma 12. ��

Appendix 3 - Proof of Theorem 2 and description of Algorithm TrLiftLLL

Theorem 2. For any valid parameters Ξ1 < Ξ2 and constant c4, there exists a constant c�4
and an algorithm TrLiftLLL with the following specifications. It takes as inputs � ≥ 0, B ∈
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20 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

Zd×d and E = diag(2ei) with max �bi� ≤ 2c4(�+d), ei ∈ Z and BE is Ξ1-reduced; It runs in
time O(d2+ε(d + �)(d + � + τ) + d2 logmax(1 + |ei|)), where τ = O(d2(� + d)) is the number
of switches performed during the single call it makes to H-LLL; And it returns two matrices U
and D such that:

1. D = diag(2di) with di ∈ Z satisfying max |ei − di| ≤ c�4(� + d),

2. U is unimodular and max |ui,j | ≤ 2�+c�4·d,

3. D−1UD is unimodular and σ�(BE)(D−1UD) is Ξ2-reduced.

The possible unbalancedness of the columns of BE (due to E), prevents us from applying
H-LLL directly on C = σ�BE. Indeed, even if we were dividing the full matrix by a large common
power of 2, the resulting basis may have a bit-size that is arbitrarily large compared to d and �. Our
goal is to call H-LLL on a integral matrix whose entries have bit-sizes O(d+�). To circumvent the

possible unbalanced-ness of the columns of C, we find blocks of consecutive vectors whose r
(C)
i,i ’s

have similar magnitudes, where R(C) is the R-factor of C, and we apply a column-scaling to
re-balance C before calling H-LLL.

Finding blocks. The definition of block is motivated by Property (P) above. To determine mean-

ingful blocks, the first step is to find good approximations to the r
(C)
i,i ’s and r

(BE)
i,i ’s (where R(BE)

is the R-factor of BE). Computing the R-factor of a non-singular matrix is most often done by
applying Householder’s algorithm (see [8, Ch. 19]). The following lemma is a rigorous and explicit
variant of standard backward stability results.

Lemma 13 ([2, Se. 6]). Let p ≥ 0 and B ∈ Rd×d be non-singular with R-factor R. Let �R be
the R-factor computed by Householder’s algorithm with floating-point precision p. If c52

−p < 1
with c5 = 80d2, then there exists an orthogonal �Q such that �Q �R = B + ΔB with max �Δbi�

�bi�
≤

c52
−p.

By Lemma 2, we have that cond(R(BE)) ≤ ρ+1
ρ−1ρd. Since R(BE) = R(B) · E, with R(B) the

R-factor of B, we have cond(R(B)) ≤ ρ+1
ρ−1ρd (because cond(·) is invariant under column scaling).

Now, by Lemmata 1 and 13, for any c there exists c� such that Householder’s algorithm with

precision p = c�d allows us to find �R(B) withmax
�br

(B)
i −r

(B)
i �

�r
(B)
i �

≤ 2−cd. By defining �R(BE) by �R(B)·E,

we have max
�br

(BE)
i −r

(BE)
i �

�r
(BE)
i �

≤ 2−cd. The latter can be made ≤ 1
100 .

We now show that we can also compute approximations to the r
(C)
i,i ’s. Let B = Q(B)R(B) and

σ�B = Q(σ�B)R(σ�B) be the QR factorizations of B and σ�B respectively. We have:

cond(R(σ�B)) =
�
�
�|R(σ�B)||(R(σ�B))−1|

�
�
�

=
�
�
�|(Q(σ�B))tσ�Q

(B)R(B)||(R(B))−1(Q(B))tσ−1
� Q(σ�B)|

�
�
�

≤
�
�
�|(Q(σ�B))t|σ�|Q

(B)||R(B)||(R(B))−1||(Q(B))t|σ−1
� |Q(σ�B)|

�
�
�

≤ d22�cond(R(B)) = d22�cond(R(B)E).

Since R(B)E is the R-factor of BE which is reduced, Lemma 2 gives that cond(R(σ�B)) ≤
d2 ρ+1

ρ−1ρd2�. Now, Lemmata 1 and 13 imply that for any c there exists c� such that House-

holder’s algorithm with precision p = 2�+ c�d allows us to find �R(σ�B) with max
�br

(σ�B)

i −r
(σ�B)

i �

�r
(σ�B)

i �
≤
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2−�−cd. Since �r
(σ�B)
i � ≤ 2��r

(B)
i � ≤ 2�αdr

(B)
i,i ≤ 2�αdr

(σ�B)
i,i (using Theorem 1 and Lemma 4),

we obtain that Householder’s algorithm with precision 2� + O(d) provides some �r
(σ�B)
i,i ’s such

that max
|br

(σ�B)

i,i −r
(σ�B)

i,i |

r
(σ�B)

i,i

≤ 1
100 . Since R(C) = R(σ�B)E, we have max

|br
(C)
i,i −r

(C)
i,i |

r
(C)
i,i

≤ 1
100 , with

�R(C) =

�R(σ�B)E. Furthermore, as the run-time of Householder’s algorithm in precision p is O(d3p1+ε),

the computation of these �r
(C)
i,i ’s costs O(d3(� + d)1+ε).

We define the blocks of vectors of C as follows: The first block starts with ci1 = c1 and stops

with ci2−1 where i2 is the smallest i such that minj≥i �r
(C)
j,j > ν ·maxj<i �r

(C)
j,j (if i2 = d + 1, then

the process ends); The kth block starts with cik and stops with cik+1−1 where ik+1 is the smallest

index i > ik such that minj≥i �r
(C)
j,j > ν · maxj<i �r

(C)
j,j . The purpose of the constant ν ≥ 4, to be

set later, is to handle the inaccuracy of �R(C) and to ensure that the matrix CD−1UD eventually
obtained by TrLiftLLL will be size-reduced.

Let Ik = [ik, ik+1). Since ν ≥ 4, Property (P) implies that if we were to call H-LLL on C, the
unimodular U that we would obtain would satisfy ui,j = 0 if i ∈ Ik1 and j ∈ Ik2 with k1 < k2, i.e.,
U would be (Ik)-block upper triangular. Any diagonal block-submatrix of U would be unimodular.
Computing the Ik’s from the �rj,j ’s may be done in time O(d2(d + � + logmax(1 + |ei|))).

By construction of the blocks, the amplitude of r
(C)
i,i ’s within a block is bounded.

Lemma 14. We use the same notations as above. We let (�i = r
(C)
i,i /r

(BE)
i,i . There exists a con-

stant c6 (depending on Ξ1 and ν only) such that for any k, we have
maxi∈Ik

r
(C)
i,i

mini∈Ik
r
(C)
i,i

≤ 2c6|Ik|·maxi∈Ik
�i.

Proof. Let i, j ∈ Ik. We are to compute an upper bound for
r
(C)
j,j

r
(C)
i,i

. If j ≤ i, the reducedness of BE

implies that
r
(C)
j,j

�j
≤ αi−j r

(C)
i,i

�i
, for α as in Theorem 1. The fact that �i ≥ 1 (see Lemma 4) provides

the result. Assume now that j > i. If r
(C)
i,i = maxt≥i r

(C)
t,t , then the bound holds. Otherwise,

by definition of the blocks, there exists i� > i in Ik such that r
(C)
i�,i� ≤ 2ν · r

(C)
i,i (the factor 2

takes the inaccuracy of �R into account). By induction, it can be shown that r
(C)
i��,i�� ≤ (2ν)|Ik|r

(C)
i,i ,

with i�� = ik+1 − 1. We conclude that
r
(C)
j,j

r
(C)
i,i

≤ (2ν)|Ik|
r
(C)
j,j

r
(C)

i��,i��

≤ (2να)|Ik|�j , by using the first part of

the proof (since j ≤ i��). ��

Re-balancing the columns of C. The blocks allow us to define the diagonal matrix D

of Theorem 2. We define the gap between two blocks Ik and Ik+1 to be gk =
minj∈Ik+1

br
(BE)
j,j

maxj∈Ik
br
(C)
j,j

.

We define D = diag(2di) such that the block structure is preserved, but the gaps get shrunk:
For i ∈ Ik, we set di = e1 +

�
k�<k�log2 gk�/

√
ν�.

We prove several facts about this scaling.

(i) The matrix B� = BED−1 is Ξ1-reduced, because r
(C)
j,j ≥ r

(BE)
j,j for all j.

(ii) The matrix C � = CD−1 with R-factor R(C�) = R(C)D−1 admits the same block-structure a C:

For any k, we have minj∈Ik+1
r
(C�)
j,j ≥ ν � ·maxj∈Ik

r
(C�)
j,j , with ν � =

√
ν/2 ≥ 1.

(iii) The di’s satisfy Property 1 of Theorem 2: Thanks to the reducedness of BE, the size condition

on B, and Lemma 4, each ei is within O(� + d) of log r
(C)
i,i . Thanks to Lemmata 14 and 4 (in

particular the fact that the product of all �j ’s is 2
�), the same holds for the di’s.
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22 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

LLL-reducing. We now call H-LLL on input matrix C �, with LLL-parameters Ξ > Ξ2, and
let C(2) be the output matrix. Thanks to (iii), the matrix C � belongs to 2−c(�+d)Zd×d for some
constant c, and each c�i,j may be stored on O(� + d) bits. I.e., the matrix C � is balanced. As a

consequence, the call to H-LLL costs O(d2+ε(d+ �+ τ)(d+ �)) bit operations (see [20, Th. 4.4]),
where τ be the number of switches performed.

Let U be the corresponding unimodular transform (which can be recovered from C � and C(2) by
a matrix inversion, costing O(d3(d+�)1+ε)). Lemma 5 and the fact that B� is Ξ1-reduced (by (i))
ensure that Property 2 of Theorem 2 is satisfied. Also, since C � follows the block-structure defined
by the Ik’s (by (ii)), Property (P) may be used to assert that U is (Ik)k-block upper triangular
and that its diagonal blocks are unimodular. The coefficients of D are non-decreasing, and they
are constant within any Ik. This ensures that D−1UD is integral and that its diagonal blocks are
exactly those of U , and thus that D−1UD is unimodular.

Let C(3) = σ�BED−1UD = C(2)D. It remains to show that C(3) is Ξ2-reduced. Let R(2) (resp.
R(3)) be the R-factor of C(2) (resp. C(3)). Let Ξ = (δ, η, θ) and Ξ2 = (δ2, η2, θ2). If i and j belong

to the same Ik, then |r
(3)
i,j | ≤ ηr

(3)
i,i +θr

(3)
j,j , because this holds for R(2) and

r
(3)
i,j

r
(2)
i,j

=
r
(3)
i,i

r
(2)
i,i

=
r
(3)
j,j

r
(2)
j,j

= 2dik .

Since η < η2 and θ < θ2, the size-reduction condition for (i, j) is satisfied. Similarly, the Lovász

conditions are satisfied inside the Ik’s. They are also satisfied for any i = ik − 1, since c
(2)
ik

is

multiplied by 2dik ≥ 2dik−1 . It remains to check the size-reduction conditions for (i, j) with i ∈ Ik,

j ∈ Ik� and k� > k. By reducedness of C(2), we have |r
(2)
i,j | ≤ ηr

(2)
i,i + θr

(2)
j,j . Since it was the case

for R�, by Property (P), we have that r
(2)
i,i ≤

1
ν� r

(2)
j,j (with ν � =

√
ν/2), and thus |r

(2)
i,j | ≤ (θ+ 1

ν� )r
(2)
j,j .

This gives |r
(3)
i,j | ≤ (θ + 1

ν� )r
(3)
j,j . In order to ensure size-reducedness, it thus suffices to choose ν

such that θ + 1
ν� ≤ θ2. ��
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Abstract. The security of lattice-based cryptosystems such as NTRU,
GGH and Ajtai-Dwork essentially relies upon the intractability of com-
puting a shortest non-zero lattice vector and a closest lattice vector to
a given target vector in high dimensions. The best algorithms for these
tasks are due to Kannan, and, though remarkably simple, their complex-
ity estimates have not been improved since over twenty years. Kannan’s
algorithm for solving the shortest vector problem (SVP) is in particu-
lar crucial in Schnorr’s celebrated block reduction algorithm, on which
rely the best known generic attacks against the lattice-based encryp-
tion schemes mentioned above. In this paper we improve the complexity
upper-bounds of Kannan’s algorithms. The analysis provides new insight
on the practical cost of solving SVP, and helps progressing towards pro-
viding meaningful key-sizes.

1 Introduction

A lattice L is a discrete subgroup of some Rn. Such an object can always be rep-
resented as the set of integer linear combinations of at most n vectors b1, . . . , bd.
These vectors can be chosen linearly independent, and in that case, we say that
they are a basis of the lattice L. The most famous algorithmic problem associated
with lattices is the so-called shortest vector problem (SVP). Its computational
variant is to find a non-zero lattice vector of smallest Euclidean length — this
length being the minimum λ(L) of the lattice — given a basis of the lattice. Its
decisional variant is known to be NP-hard under randomised reductions [2], even

if one only asks for a vector whose length is no more than 2(log d)1−ε

times the
length of a shortest vector [12] (for any ε > 0).

SVP is of prime importance in cryptography since a now quite large family of
public-key cryptosystems relies more or less on it. The Ajtai-Dwork cryptosys-
tem [4] relies on dc-SVP for some c > 0, where f(d)-SVP is the problem of finding

� Work partially supported by CNRS GDR 2251 “Réseau de théorie des nombres”.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 170–186, 2007.
c© International Association for Cryptologic Research 2007
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the shortest non-zero vector in the lattice L, under the promise that any vector
of length less than f(d) · λ(L) is parallel to it. The GGH cryptosystem [11] re-
lies on special instances of the Closest Vector Problem (CVP), a non-homogeneous
version of SVP. Both the Ajtai-Dwork and GGH cryptosystems have been shown
impractical for real-life parameters [25,23] (the initialGGHcontaining amajor the-
oretical flaw as well). Finally, one strongly suspects that in NTRU [15] the private
key can be read on the coordinates of a shortest vector of the Coppersmith-Shamir
lattice [8]. The best known generic attacks against these encryption schemes are
based on solving SVP. It is therefore highly important to know precisely what com-
plexity is achievable, both in theory and practice, in particular to selectmeaningful
key-sizes. Most often, for cryptanalysing lattice-based cryptosystems, one consid-
ers Schnorr’s block-based algorithms [28, 30], such as BKZ. These algorithms in-
ternally solve instances of SVP in much lower dimensions (related to the size of the
block). They help solving relaxed variants of SVP in high dimensions. Increasing
the dimensions up to which one can solve SVP helps decreasing the relaxation fac-
tors that are achievable in higher dimensions. Solving the instances of SVP is the
computationally expensive part of the block-based reduction algorithms.

Two main algorithms are known for solving SVP. The first one is based on
the deterministic exhaustive enumeration of lattice points within a small convex
body. It is known as Fincke-Pohst’s enumeration algorithm [9] in the algorithmic
number theory community. Cryptographers know it as Kannan’s algorithm [16].
There are two main differences between both: firstly, in Kannan’s algorithm, a
long pre-computation on the basis is performed before starting the enumeration
process; secondly, Kannan enumerates integer points in a hyper-parallelepiped
whereas Fincke and Pohst consider an hyper-ellipsoid which is strictly contained
in Kannan’s hyper-parallelepiped – though Kannan may have chosen the hyper-
parallelepiped in order to simplify the complexity analysis. Kannan obtained
a dd+o(d) complexity bound (in the complexity bounds mentioned in the intro-
duction, there is an implicit factor that is polynomial in the bit-size of the input).
In 1985, Helfrich [13] refined Kannan’s analysis, and obtained a dd/2+o(d) com-
plexity bound. On the other hand, Ajtai, Kumar and Sivakumar [5] designed a
probabilistic algorithm of complexity 2O(d). The best exponent constant is likely
to be small, as suggested by some recent progress [26]. A major drawback of this
algorithm is that it requires an exponential space, whereas Kannan’s requires a
polynomial space.

Our main result is to lower Helfrich’s complexity bound on Kannan’s algo-
rithm, from d

d
2 +o(d) ≈ d0.5·d to d

d
2e +o(d) ≈ d0.184·d+o(d). This may explain why

Kannan’s algorithm is tractable even in moderate dimensions. Our analysis can
also be adapted to Kannan’s algorithm for CVP: it decreases Helfrich’s com-
plexity bound from dd+o(d) to dd/2+o(d). The complexity improvement for SVP
provides better worst-case efficiency/quality trade-offs for Schnorr’s block-based
algorithms [28, 30, 10].

It must be noted that if one follows our analysis step by step, the derived o(d)
may be large when evaluated for some practical d. The hidden constants can be
improved (for some of them it may be easy, for others it is probably much harder).
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No attempt was made to improve them and we believe that it would have com-
plicated the proof with irrelevant details. In fact, most of our analysis consists in
estimating the number of lattice points within convex bodies and showing that the
approximations by the volumes are almost valid. By replacing this discretisation
by heuristic volume estimates, one obtains very small hidden constants.

Our complexity improvement is based on a fairly simple idea. It is equivalent
to generate all lattice points within a ball and to generate all integer points
within an ellipsoid (consider the ellipsoid defined by the quadratic form natu-
rally associated with the given lattice basis). Fincke and Pohst noticed that it
was more efficient to work with the ellipsoid than to consider a parallelepiped
containing it: indeed, when the dimension increases, the ratio between the two
volumes tends to 0 very quickly. In his analysis, instead of considering the el-
lipsoid, Kannan bounds the volume of the parallelepiped. Using rather involved
technicalities, we bound the number of points within related ellipsoids. Some
parts of our proof could be of independent interest. For example, we show that
for any Hermite-Korkine-Zolotarev-reduced (HKZ-reduced for short) lattice ba-
sis (b1, . . . , bd), and any subset I of {1, . . . , d}, we have:

‖b1‖|I|
∏

i∈I ‖b∗
i ‖

≤
√

d
|I|(1+log d

|I| ),

where (b∗
i )i≤d is the Gram-Schmidt orthogonalisation of the bi’s. This generalises

the results of [28] on the quality of HKZ-reduced bases.

Practical Implications. We do not change Kannan’s algorithm, but only
improve its complexity upper-bound. As a consequence, the running-time of
Kannan’s algorithm remains the same. Nevertheless, our work may still have
some important practical impact. First of all, it revives the interest on Kannan’s
algorithm. Surprisingly, although it has the best complexity upper-bound, it is
not the one implemented in the usual number theory libraries (e.g., NTL [32]
and Magma [18] implement Schnorr-Euchner’s variant [30]): we show that by
using Kannan’s principle (i.e., pre-processing the basis before starting the enu-
meration), one can solve SVP in larger dimensions. This might point a prob-
lem in NTRU’s security estimates, since they are derived from experimentations
with NTL. Secondly, our analysis helps providing a heuristic measure of the
(practical) cost of solving SVP for a particular instance, which is both efficiently
computable and reliable: given a lattice basis, it provides very quickly a heuristic
upper bound on the cost of finding a shortest vector.

Road-Map of the Paper. In Section 2, we recall some basic definitions and
properties on lattice reduction. Section 3 is devoted to the description of Kan-
nan’s algorithm and Section 4 to its complexity analysis. In Section 5, we give
without much detail our sibling result on CVP, as well as direct consequences
of our result for block-based algorithms. In Section 6, we discuss the practical
implications of our work.

Notation. All logarithms are natural logarithms, i.e., log(e) = 1. Let ‖·‖ and 〈·, ·〉
be the Euclidean norm and inner product of Rn. Bold variables are vectors. We



Improved Analysis of Kannan’s Shortest Lattice Vector Algorithm 173

use the bit complexity model. The notation P(n1, . . . , ni) means (n1 · . . . ·ni)
c for

some constant c > 0. If x is real, we denote by �x	 a closest integer to it (with any
convention for making it unique) and we define the centred fractional part {x}
as x − �x	. Finally, for any integers a and b, we define �a, b� as [a, b] ∩ Z.

2 Background on Lattice Reduction

We assume that the reader is familiar with the geometry of numbers and its
algorithmic aspects. Introductions may be found in [21] and [27].

Lattice Invariants. Let b1, . . . , bd be linearly independent vectors. Their Gram-
Schmidt orthogonalisation (GSO) b∗

1, . . . , b
∗
d is the orthogonal family defined

recursively as follows: the vector b∗
i is the component of bi which is orthog-

onal to the span of the vectors b1, . . . , bi−1. We have b∗
i = bi − ∑i−1

j=1 μi,jb
∗
j

where μi,j =
〈bi,b

∗
j 〉

‖b∗
j ‖2 . For i ≤ d we let μi,i = 1. Notice that the GSO family

depends on the order of the vectors. If the bi’s are integer vectors, the b∗
i ’s and

the μi,j ’s are rational. The volume of a lattice L is defined as det(L) =
∏d

i=1 ‖b∗
i ‖,

where the bi’s are any basis of L. It does not depend on the choice of the basis
of L and can be interpreted as the geometric volume of the parallelepiped nat-
urally spanned by the basis vectors. Another important lattice invariant is the
minimum. The minimum λ(L) is the length of a shortest non-zero lattice vector.

The most famous lattice problem is the shortest vector problem (SVP). Here is
its computational variant: given a basis of a lattice L, find a lattice vector whose
norm is exactly λ(L). The closest vector problem (CVP) is a non-homogeneous
variant of SVP. We give here its computational variant: given a basis of a lattice L
and a target vector in the real span of L, find a vector of L which is closest to
the target vector.

The volume and the minimum of a lattice cannot behave independently. Her-

mite [14] was the first to bound the ratio λ(L)

(detL)1/d as a function of the di-

mension only. His bound was later on greatly improved by Minkowski in his
Geometrie der Zahlen [22]. Hermite’s constant γd is defined as the supremum

over d-dimensional lattices L of λ(L)2

(detL)2/d . We have γd ≤ d+4
4 (see [19]), which

we will refer to as Minkowski’s theorem.

Lattice Reduction. In order to solve lattice problems, a classical strategy
consists in considering a lattice basis and trying to improve its quality (e.g.,
the slow decrease of the ‖b∗

i ‖’s). This is called lattice reduction. The most usual
notions of reduction are probably L3 and HKZ. HKZ-reduction is very strong,
but expensive to compute. On the contrary, L3-reduction is fairly cheap, but an
L3-reduced basis is of much lower quality.

A basis (b1, . . . , bd) is size-reduced if its GSO family satisfies |μi,j | ≤ 1/2 for
all 1 ≤ j < i ≤ d. A basis (b1, . . . , bd) is said to be Hermite-Korkine-Zolotarev-
reduced if it is size-reduced, the vector b1 reaches the lattice minimum, and the pro-
jections of the (bi)i≥2’s orthogonally to the vector b1 are themselves an
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HKZ-reduced basis. Lemma 1 immediately follows from this definition and
Minkowski’s theorem. It is the sole property on HKZ-reduced bases that we will
use.

Lemma 1. If (b1, . . . , bd) is HKZ-reduced, then for any i ≤ d, we have:

‖b∗
i ‖ ≤

√
d − i + 5

4
·

⎛
⎝∏

j≥i

‖b∗
j‖

⎞
⎠

1
d−i+1

.

A basis (b1, . . . , bd) is L3-reduced [17] if it is size-reduced and if its GSO satisfies

the (d − 1) Lovász conditions: 3
4 ·

∥∥b∗
κ−1

∥∥2 ≤
∥∥b∗

κ + μκ,κ−1b
∗
κ−1

∥∥2
. The L3-

reduction implies that the norms of the GSO vectors never drop too fast: in-
tuitively, the vectors are not far from being orthogonal. Such bases have useful
properties, like providing exponential approximations to SVP and CVP. In par-
ticular, their first vector is relatively short.

Theorem 1 ( [17]). Let (b1, . . . , bd) be an L3-reduced basis of a lattice L. Then

we have ‖b1‖ ≤ 2
d−1
4 · (det L)1/d. Moreover, there exists an algorithm that takes

as input any set of integer vectors and outputs in deterministic polynomial time
an L3-reduced basis of the lattice they span.

In the following, we will also need the fact that if the set of vectors given as
input to the L3 algorithm starts with a shortest non-zero lattice vector, then
this vector is not changed during the execution of the algorithm: the output
basis starts with the same vector.

3 Kannan’s SVP Algorithm

Kannan’s SVP algorithm [16] relies on multiple calls to the so-called short lattice
points enumeration procedure. The latter finds all vectors of a given lattice that
are in the sphere centred in 0 and of some prescribed radius. Variants of the
enumeration procedure are described in [1].

3.1 Short Lattice Points Enumeration

Let (b1, . . . , bd) be a basis of a lattice L ⊂ Zn and let A ∈ Z. Our goal is to find

all lattice vectors
∑d

i=1 xibi of squared Euclidean norm ≤ A. The enumeration

works as follows. Suppose that ‖∑i xibi‖2 ≤ A for some integers xi’s. Then, by
considering the components of the vector

∑
i xibi on each of the b∗

i ’s, we obtain d
equations:

(xd)
2 · ‖b∗

d‖2 ≤ A,

(xd−1 + μd,d−1xd)
2 · ‖b∗

d−1‖2 ≤ A − (xd)
2 · ‖b∗

d‖2,

. . .
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⎛
⎝xi +

d∑

j=i+1

μj,ixj

⎞
⎠

2

· ‖b∗
i ‖2 ≤ A −

d∑

j=i+1

lj ,

. . .

where li = (xi +
∑

j>i xjμj,i)
2 · ‖b∗

i ‖2. The algorithm of Figure 1 mimics the
equations above. It can be shown that the bit-cost of this algorithm is bounded
by the number of loop iterations times a polynomial in the bit-size of the input.
We will prove that if the input basis (b1, . . . , bd) is sufficiently reduced and

if A = ‖b1‖2, there are ≤ d
d
2e +o(d) loop iterations.

Input: An integer lattice basis (b1, . . . , bd), a bound A ∈ Z.
Output: All vectors in L(b1, . . . , bd) that are of squared norm ≤ A.
1. Compute the rational μi,j ’s and ‖b∗

i ‖2’s.
2. x:=0, l:=0, S:=∅.
3. i:=1. While i ≤ d, do
4. li:=(xi +

�
j>i xjμj,i)

2‖b∗
i ‖2.

5. If i = 1 and
�d

j=1 lj ≤ A, then S:=S ∪ {�d
j=1 xjbj}, x1:=x1 + 1.

6. If i �= 1 and
�

j≥i lj ≤ A, then

7. i:=i − 1, xi:=

�
−�j>i(xjμj,i) −

�
A−�j>i lj

‖b∗
i ‖2

�
.

8. If
�

j≥i lj > A, then i:=i + 1, xi:=xi + 1.

9. Return S.

Fig. 1. The enumeration algorithm

3.2 Solving SVP

To solve SVP, Kannan provides an algorithm that computes HKZ-reduced bases,
see Figure 2. The cost of the enumeration procedure dominates the overall cost
and mostly depends on the quality of the input basis. The main idea of Kannan’s
algorithm is to spend a lot of time pre-computing a basis of excellent quality
before calling the enumeration procedure. More precisely, it pre-computes a so-
called quasi-HKZ-reduced basis.

Definition 1 (Quasi-HKZ-reduction). A basis (b1, . . . , bd) is quasi-HKZ-
reduced if it is size-reduced, if ‖b∗

2‖ ≥ ‖b∗
1‖/2 and if once projected orthogonally

to b1, the other bi’s are HKZ-reduced.

A few comments need to be made on the algorithm of Figure 2. Steps 3 and 9 are
recursive calls. However, the b′

i’s may be rational vectors, whereas the input of
the algorithm must be integral. These vectors may be scaled by a common factor.
Steps 4 and 10 may be performed by expressing the reduced basis vectors as
integer linear combinations of the initial ones, using these coefficients to recover
lattice vectors and subtracting a correct multiple of the vector b1. In Step 6, it
is possible to choose such a vector b0, since this enumeration always provides
non-zero solutions (the vector b1 is one of them).
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Input: An integer lattice basis (b1, . . . , bd).
Output: An HKZ-reduced basis of the same lattice.
1. L3-reduce the basis (b1, . . . , bd).
2. Compute the projections (b′

i)i≥2 of the bi’s orthogonally to b1.
3. HKZ-reduce the (d − 1)-dimensional basis (b′

2, . . . , b
′
d).

4. Extend the obtained (b′
i)i≥2’s into vectors of L by adding to them rational

multiples of b1, in such a way that we have |μi,1| ≤ 1/2 for any i > 1.
5. If (b1, . . . , bd) is not quasi-HKZ-reduced, swap b1 and b2 and go to Step 2.
6. Call the enumeration procedure to find all lattice vectors of length ≤ ‖b1‖.
Let b0 be a shortest non-zero vector among them.
7. (b1, . . . , bd):=L3(b0, . . . , bd).
8. Compute the projections (b′

i)i≥2’s of the bi’s orthogonally to the vector b1.
9. HKZ-reduce the (d − 1)-dimensional basis (b′

2, . . . , b
′
d).

10. Extend the obtained (b′
i)i≥2’s into vectors of L by adding to them rational

multiples of b1, in such a way that we have |μi,1| ≤ 1/2 for any i > 1.

Fig. 2. Kannan’s SVP algorithm

3.3 Cost of Kannan’s SVP Solver

We recall briefly Helfrich’s analysis [13] of Kannan’s algorithm and explain our
complexity improvement. Let C(d, n, B) be the worst-case complexity of the al-
gorithm of Figure 2 when given as input a d-dimensional basis which is embedded
in Zn and whose coefficients are smaller than B in absolute value. The following
properties hold:

– Kannan’s algorithm computes an HKZ-reduced basis of the lattice spanned
by the input vectors.

– All arithmetic operations performed during the execution are of cost P(d, n,
log B). This implies that C(d, n, B) can be bounded by C(d) ·P(log B, n) for
some function C(d).

– There are fewer than O(1) + log d iterations of the loop of Steps 2–5.
– The cost of the call to the enumeration procedure at Step 6 is bounded

by P(log B, n) · dd/2+o(d).

From these properties and those of the L3 algorithm as recalled in the previous
section, it is easy to obtain the following equation:

C(d) ≤ (O(1) + log d)(C(d − 1) + P(d)) + P(d) + d
d
2 +o(d).

One can then derive the bound C(d, B, n) ≤ P(log B, n) · d d
2 +o(d).

The main result of the present paper is to improve this complexity upper
bound to P(log B, n) · d

d
2e +o(d). In fact, we show the following:

Theorem 2. Given as inputs a quasi-HKZ-reduced basis (b1, . . . , bd) and A =

‖b1‖2, there are 2O(d)·d d
2e loop iterations during the execution of the enumeration
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algorithm as described in Figure 1. As a consequence, given a d-dimensional basis
of n-dimensional vectors whose entries are integers with absolute values ≤ B,
one can compute an HKZ-reduced basis of the spanned lattice in deterministic
time P(log B, n) · d d

2e +o(d).

4 Complexity of the Enumeration Procedure

This section is devoted to proving Theorem 2. The previous section has shown
that the cost of Kannan’s algorithm is dominated by the time for enumerating
the integer points in the hyper-ellipsoids (Ei)1≤i≤d defined by Ei ={
(yi, . . . , yd) ∈ Rd−i+1, ‖∑j≥i yjb

(i)
j ‖ ≤ ‖b1‖

}
, where b

(i)
j = bj −∑

k<i μj,kb∗
k is

the vector bj once projected orthogonally to b∗
1, . . . , b

∗
i−1. Classically, the num-

ber of integer points in a body of some Rn is heuristically estimated by the n-
dimensional volume of the body. This yields the following heuristic complexity
upper-bound for Kannan’s algorithm:

max
i≤d

Vi‖b1‖i

∏
j≥d−i+1 ‖b∗

j‖
<∼ max

i≤d

‖b1‖i

(
√

i)i ·∏j≥d−i+1 ‖b∗
j‖

, (1)

where Vi is the volume of the i-dimensional unit ball.
Here, such an estimate may be too optimistic since the hyper-ellipsoids might

be too flat for the approximation by the volume to be valid. The first step of
our analysis is to prove a slight modification of this heuristic estimate. This
is essentially an adaptation of a method due to Mazo and Odlyzko [20] to
bound the number of integer points in hyper-spheres. We prove the weaker upper

bound maxI⊂�1,d�
‖b1‖|I|

√
d

|I|�
i∈I ‖b∗

i ‖
, for quasi-HKZ-reduced bases (Subsections 4.1

and 4.2).
In the second step of our analysis (Subsection 4.3), we bound the above quan-

tity. This involves a rather precise study of the geometry of HKZ-reduced bases.
The only available tool is Minkowski’s inequality, which is used numerous times.
For the intuition, the reader should consider the typical case where (bi)1≤i≤d is
an HKZ-reduced basis for which (‖b∗

i ‖)i is a non-increasing sequence. In that
case, the first part of the analysis shows that one has to consider a set I of
much simpler shape: it is an interval �i, d� starting at some index i. Lemmata 2
and 3 (which should thus be considered as the core of the proof) and the fact
that x log x ≥ −1/e for x ∈ [0, 1] are sufficient to deal with such sets.

Non-connex sets I are harder to handle. We split the HKZ-reduced basis into
blocks (defined by the expression of I as a union of intervals), i.e., groups of
consecutive vectors bi, . . . , bj−1 such that i, . . . , k − 1 �∈ I and k, . . . , j − 1 ∈ I.
The former vectors will be the “large ones” and the latter the “small ones”. Over
each block, Lemma 3 relates the average size of the small vectors to the average
size of the whole block. We consider the blocks by decreasing indices and use an
amortised analysis to combine the local behaviours on blocks to obtain a global
bound (Lemma 4). A final convexity argument gives the result (Lemma 5).
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4.1 Integer Points in Hyper-Ellipsoids

In this subsection, we do not assume anything on the input basis vectors b1, . . . , bd

and on the input bound A. Up to some polynomial in d and log B, the complex-
ity of the enumeration procedure of Figure 1 is the number of loop iterations.
This number of iterations is itself bounded by 3

∑d
i=1 |Ei|. Indeed, the truncated

coordinate (xi, . . . , xd) is either a valid one, i.e., we have ‖∑d
j=i xjb

(i)
j ‖2 ≤

A, or (xi − 1, . . . , xd) is a valid one, or (xi+1, . . . , xd) is a valid one. In fact,
if (xi, . . . , xd) is a valid truncated coordinate, at most two non-valid ones re-
lated to that one may be considered during the execution of the algorithm:
(xi + 1, . . . , xd) and (xi−1, xi . . . , xd) for at most one integer xi−1. We now fix

some i ≤ d. By applying the change of variable xj ← xj −
⌊∑

k>j μk,jxk

⌉
, we

obtain:

|Ed−i+1| ≤

∣∣∣∣∣∣

⎧
⎨
⎩(xj)i≤j≤d ∈ Zd−i+1,

∑

j≥i

(xj +
∑

k>j

μk,jxk)2 · ‖b∗
j‖2 ≤ A

⎫
⎬
⎭

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

⎧
⎨
⎩(xj)i≤j≤d ∈ Zd−i+1,

∑

j≥i

(xj + {
∑

k>j

μk,jxk})2 · ‖b∗
j‖2 ≤ A

⎫
⎬
⎭

∣∣∣∣∣∣
.

If x is an integer and ε ∈ [−1/2, 1/2], then we have (x + ε)2 ≥ x2/4 (it
suffices to use the inequality |ε| ≤ 1/2 ≤ |x|/2, which is valid for a non-
zero x). As a consequence, up to a polynomial factor, the complexity of the
enumeration is bounded by

∑
i≤d Ni, where Ni =

∣∣E ′
i ∩ Zd−i+1

∣∣ and E ′
i ={

(yi, . . . , yd) ∈ Rd−i+1,
∑

j≥i y2
j ‖b∗

j‖2 ≤ 4A
}
, for any i ≤ d.

We again fix some index i. The following sequence of relations is inspired
from [20, Lemma 1].

Ni =
∑

(xi,...,xd)∈Zd−i+1

1E′
i
(xi, . . . , xd) ≤ exp

⎛
⎝d

⎛
⎝1 −

∑

j≥i

x2
j

‖b∗
j‖2

4A

⎞
⎠
⎞
⎠

≤ ed ·
∏

j≥i

∑

x∈Z
exp

(
−x2

d‖b∗
j‖2

4A

)
= ed ·

∏

j≥i

Θ

(
d‖b∗

j‖2

4A

)
,

where Θ(t) =
∑

x∈Z exp(−tx2) is defined for t > 0. Notice that Θ(t) = 1 +

2
∑

x≥1 exp(−tx2) ≤ 1 + 2
∫∞
0

exp(−tx2)dx = 1 +
√

π
t . Hence Θ(t) ≤ 1+

√
π√

t
for

t ≤ 1 and Θ(t) ≤ 1 +
√

π for t ≥ 1. As a consequence, we have:

Ni ≤ (4e(1 +
√

π))d ·
∏

j≥i

max

(
1,

√
A√

d‖b∗
j‖

)
. (2)

One thus concludes that the cost of the enumeration is bounded by:

P(n, log A, log B) · 2O(d) · max
I⊂�1,d�

(
(
√

A)|I|

(
√

d)|I| ∏
i∈I ‖b∗

i ‖

)
.
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4.2 The Case of Quasi-HKZ-Reduced Bases

We now suppose that A = ‖b1‖2 and that the input basis (b1, . . . , bd) is quasi-
HKZ-reduced. We are to strengthen the quasi-HKZ-reducedness hypothesis into
an HKZ-reducedness hypothesis. Let I ⊂ �1, d�. If 1 /∈ I, then, because of the
quasi-HKZ-reducedness assumption:

‖b1‖|I|

(
√

d)|I| ∏
i∈I ‖b∗

i ‖
≤ 2d ‖b∗

2‖|I|

(
√

d)|I| ∏
i∈I ‖b∗

i ‖
.

If 1 ∈ I, we have, by removing ‖b∗
1‖ from the product

∏
i∈I−{1} ‖b∗

i ‖:

‖b1‖|I|

(
√

d)|I| ∏
i∈I ‖b∗

i ‖
≤ 2d ‖b∗

2‖|I|−1

(
√

d)|I|−1
∏

i∈I−{1} ‖b∗
i ‖

.

As a consequence, Theorem 2 follows from the following:

Theorem 3. Let (b1, . . . , bd) be HKZ-reduced and I ⊂ �1, d�. Then

‖b1‖|I|
∏

i∈I ‖b∗
i ‖

≤ (
√

d)|I|(1+log d
|I| ) ≤ (

√
d)

d
e +|I|.

By applying Theorem 3 the HKZ-reduced basis (b1, . . . , bi) and I = {i}, we
recover the result of [28]: ‖b∗

i ‖ ≥ (
√

i)− log i−1 · ‖b1‖.

4.3 A Property on the Geometry of HKZ-Reduced Bases

In this section, we prove Theorem 3, which is the last missing part to obtain
the claimed result. The proofs of the following lemmata will be contained in the
full version of this paper. In the sequel, (bi)i≤d is an HKZ-reduced basis of a
lattice L of dimension d ≥ 2.

Definition 2. For any I ⊂ �1, d�, we define πI =
(∏

i∈I ‖b∗
i ‖
) 1

|I| . Moreover,

if k ∈ �1, d − 1�, we define Γd(k) =
∏d−1

i=d−k (γi+1)
1
2i .

We need upper bounds on Γd(k) and a technical lemma allowing us to finely
recombine such bounds. Intuitively, the following lemma is a rigorous version of
the identity:

log Γd(k) ≈
∫ d

x=d−k

1

2x
log xdx ≈ log2(d) − log2(d − k)

4
<∼

log d

2
log

d

d − k
.

Lemma 2. For all 1 ≤ k < d, we have Γd(k) ≤
√

d
log d

d−k .

We now give an “averaged” version of [28, Lemma 4], deriving from Lemma 2.
This provides the result claimed in Theorem 3 for any set I of the shape �i, j�,
for any i ≤ j ≤ d.
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Lemma 3. For all k ∈ �0, d − 1�, we have π�1,k� ≤ (Γd(k))
d/k · π�k+1,d� and

π�k+1,d� ≥ (Γd(k))
−1 · (det L)1/d ≥

√
d
log d−k

d (detL)1/d.

We prove Theorem 3 by induction on the number of intervals occurring in the
expression of the set I as a union of intervals. The following lemma is the in-
duction step. This is a recombination step, where we join one block (between
the indices 1 and v, the “small vectors” being those between u + 1 and v) to one
or more already considered blocks on its right. An important point is to ensure
that the densities δi defined below actually decrease when their indices increase.
Its proof is based on Lemma 3.

Lemma 4. Let (b1, . . . , bd) be an HKZ-reduced basis. Let v ∈ �2, d�, I ⊂ �v + 1, d�
and u ∈ �1, v�. Assume that:

π
|I|
I ≥

∏

i<t

(
π

|Ii|
�αi+1,αi+1� ·

√
d

|Ii| log δi

)
,

where Ii =I∩�αi+1, αi+1� , δi =
|Ii|

αi+1−αi
is the density of the set I in �αi + 1, αi+1�,

and the integers t and αi’s, and the densities δi’s satisfy t ≥ 1, v = α1 < . . . <
αt ≤ d and 1 ≥ δ1 > . . . > δt−1 > 0. Then, we have

π
|I′|
I′ ≥

∏

i<t′

(
π
|I′

i|
�α′

i+1,α′
i+1� ·

√
d
|I′

i| log δ′
i

)
,

where I ′ = �u + 1, v�∪I, I ′
i = I ′∩

�
α′

i + 1, α′
i+1

�
, δ′

i =
|I′

i|
α′

i+1−α′
i

and the integers t′

and α′
i’s, and the densities δ′

i satisfy t′ ≥ 1, 0 = α′
1 < . . . < α′

t′ ≤ d and 1 ≥
δ′
1 > . . . > δ′

t′−1 > 0.

The last ingredient to the proof of Theorem 3 is the following, which derives
from the convexity of the function x �→ x log x.

Lemma 5. Let Δ ≥ 1, and define FΔ(k, d) = Δ−k log k
d . We have, for any t ∈ Z,

for any k1, . . . , kt ∈ Z and d1, . . . , dt ∈ Z such that 1 ≤ ki < di for all i ≤ t,

∏

i≤t

FΔ(ki, di) ≤ FΔ

⎛
⎝∑

i≤t

ki,
∑

i≤t

di

⎞
⎠ .

Finally, Theorem 3 follows from Lemmata 4 and 5.

Proof of Theorem 3. Lemma 4 gives us, by induction on the size of the
considered set I, that for all I ⊂ �1, d�:

π
|I|
I ≥

∏

i<t

(
π

|Ii|
�αi+1,αi+1� ·

√
d

|Ii| log δi

)
,

where Ii = I ∩ �αi + 1, αi+1�, and t, the αi’s, and the densities δi = |Ii|
αi+1−αi

satisfy t ≥ 1, 0 = α1 < . . . < αt ≤ d and 1 ≥ δ1 > . . . > δt−1 > 0. By using
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Lemma 5 with Δ:=
√

d, ki:= |Ii| and di:=αi+1 − αi, we obtain:

π
|I|
I ≥

(√
d

|I| log |I|
αt−α1

)
·
(∏

i<t

π
|Ii|
�αi+1,αi+1�

)
.

We define δt = 0. Because of the definition of the αi’s, we have:

∏

i<t

π
|Ii|
�αi+1,αi+1� =

∏

i<t

(
π

αi+1−αi

�αi+1,αi+1�
)δi

=
∏

i<t

∏

i≤j<t

(
π

αi+1−αi

�αi+1,αi+1�
)δj−δj+1

=
∏

j<t

⎛
⎝∏

i≤j

π
αi+1−αi

�αi+1,αi+1�

⎞
⎠

δj−δj+1

=
∏

j<t

(
π

αj+1

�1,αj+1�
)δj−δj+1

.

By using t − 1 times Minkowski’s theorem, we obtain that:

π
|I|
I

√
d

|I| log |I|
d

≥
(‖b1‖√

d

)�
j<t αj+1(δj−δj+1)

≥
(‖b1‖√

d

)|I|
.

The final inequality of the theorem comes from the fact that the function x �→
x log(d/x) is maximal for x = d/e. �

5 CVP and Other Related Problems

Our improved analysis of Kannan’s algorithm can be adapted to the Closest
Vector Problem and other problems related to strong lattice reduction.

In CVP, we are given a basis (b1, . . . , bd) and a target vector t, and we look
for a lattice vector that is closest to t. Kannan’s CVP algorithm starts by HKZ-
reducing the bi’s. Then it runs a slight modification of the enumeration algorithm
of Figure 1. For the sake of simplicity, we assume that ‖b∗

1‖ is the largest of
the ‖b∗

i ‖’s (we refer to Kannan’s proof [16] for the general case). By using Babai’s
nearest hyperplane strategy [6], we see that there is a lattice vector b at distance
less than

√
d·‖b1‖ of the target vector t. As a consequence, if we take A = d·‖b1‖2

in the modified enumeration procedure, we will find all solutions. The analysis

then reduces (at the level of Equation (2)) to bound the ratio ‖b1‖d
�

i≤d ‖b∗
i ‖ , which

can be done with Minkowski’s theorem.

Theorem 4. Given a basis (b1, . . . , bd) and a target vector t, all of them in Zn

and with coordinates whose absolute values are smaller than some B, one can
compute all vectors in the lattice spanned by the bi’s that are closest to t in
deterministic time P(log B, n) · dd/2+o(d).

The best deterministic complexity upper bound previously known for this prob-
lem was P(log B, n) · dd+o(d) (see [13, 7]).

Our result can also be adapted to the enumeration of all vectors of a given
lattice that are of length below a prescribed bound, which is in particular use-
ful in the context of computing lattice theta series. Another important conse-
quence of our analysis is a significant worst-case bound improvement of Schnorr’s
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block-based strategy [28] to compute relatively short vectors in high-dimensional
lattices. More precisely, if we take the bounds given in [10] for the quality of
Schnorr’s semi-2k reduction and for the transference reduction, we obtain the
table of Figure 3. Each entry of the table gives the upper bound of the quan-

tity ‖b1‖
(det L)1/d which is reachable for a computational effort of 2t, for t growing

to infinity. To sum up, the exponent constant is divided by e ≈ 2.7. The table

upper bounds may be adapted to the quantity ‖b1‖
λ1(L) by squaring them.

Semi-2k reduction Transference reduction

Using [13] <∼ 2
log 2

2
d log2 t

t ≈ 20.347 d log2 t
t <∼ 2

1
4

d log2 t
t ≈ 20.250 d log2 t

t

Using Theorem 2 <∼ 2
log 2
2e

d log2 t
t ≈ 20.128 d log2 t

t <∼ 2
1
4e

d log2 t
t ≈ 20.092 d log2 t

t

Fig. 3. Worst-case bounds for block-based reduction algorithms

6 Practical Implications

As mentioned in the introduction, the main contribution of the present paper is
to improve the worst-case complexity analysis of an already known algorithm,
namely, Kannan’s HKZ-reduction algorithm. Our improvement has no direct
impact on the practical capabilities of lattice reduction algorithms. However,
our work may have two indirect consequences: popularising Kannan’s principle
and providing easily computable cost estimates for SVP instances.

6.1 Pre-processing Before Enumerating

In the main libraries containing lattice reduction routines, the shortest vector
problem is solved with the enumeration routine, but starting from only L3-
reduced bases. This is the case for the BKZ routines of Victor Shoup’s NTL [32],
which, depending on a parameter k, compute strongly reduced bases in high
dimensions (the quality being quantified by k). This is also the case in Magma’s
ShortestVectors routine [18], which computes the shortest vectors of a given
lattice. Both rely on the enumeration of Schnorr and Euchner [30]. On the theo-
retical side, this strategy is worse than using Kannan’s algorithm, the worst-case
complexity being 2O(d2) instead of dO(d). To justify this choice, one might argue
that L3 computes much better bases in practice than guaranteed by the worst-
case bounds, in particular in low dimensions (see [24] for more details), and that
the asymptotically superior algorithm of Kannan may overtake the L3-based
enumeration only for large dimensions (in particular too large to be tractable).

It may be that the genuine Kannan algorithm is expensive. However, the
general principle of enumerating from a more than L3-reduced basis works, as
the following experiments tend to show. For a given dimension d, we consider
the lattice spanned by the columns of the following matrix:
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⎛
⎜⎜⎜⎜⎜⎝

x1 x2 . . . xd

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

,

where the xi’s are chosen uniformly and independently in
�
0, 2100·d�. The basis

is then L3-reduced with a close to optimal parameter (δ = 0.99). For the same
lattice, we compute more reduced bases, namely BKZk-reduced for different
parameters k, using NTL’s BKZ_FP routine without pruning and close to optimal
factor (δ = 0.99). We run the same enumeration routine starting from these
different bases and compare the timings. The results of the experiments are
given in Figure 4. The enumeration is a non-optimised C-code, which updates
the norm upper bound during the enumeration [30]. All timings are given in
seconds and include the BKZ-reduction (unless we start from the L3-reduced
basis). Each point corresponds to the average over at least 10 samples. The
experiments were performed on 2.4 GHz AMD Opterons. The enumeration from
an L3-reduced basis is clearly outperformed. BKZ-reducing the basis with larger
block-sizes becomes more interesting when the dimension increases: it seems that
in moderate dimension, a BKZk reduced basis is close to being HKZ-reduced,
even when k is small with respect to the dimension.

pre-processing d = 40 d = 43 d = 46 d = 49 d = 52 d = 55 d = 58

L3 1.8 15 110 990 5.0 · 103 − −
BKZ10 0.36 1.6 6.7 36 160 − −
BKZ20 0.40 1.3 4.7 21 96 800 2.5 · 103

BKZ30 0.57 1.7 5.2 19 68 660 1.6 · 103

Fig. 4. Comparison between various pre-processings

6.2 Estimating the Cost of Solving SVP

The cost of solving SVP on a particular instance with the enumeration routine
is essentially dominated by the cost of the highest-dimensional enumeration. Up
to a polynomial factor, the cost of the enumeration as described in Figure 1 can
be estimated with Equation (1):

E(b1, . . . , bd):= max
i≤d

πi/2 · ‖b1‖i

Γ (i/2 + 1) ·∏j≥d−i+1 ‖b∗
j‖

.

This estimate is simply the application of the Gaussian heuristic, stating that the
number of integer points within a body is essentially the volume of the body. It
can be computed in polynomial time from the basis from which the enumeration
will be started. We computed E(b1, . . . , bd) for random bases generated as above
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pre-processing d = 40 d = 45 d = 50 d = 55 d = 60 d = 65 d = 70 d = 75

L3 1.0 · 108 4.4 · 109 1.5 · 1014 9.6 · 1016 3.0 · 1018 6.1 · 1021 2.8 · 1027 1.6 · 1030

BKZ10 4.6 · 105 1.2 · 107 1.1 · 108 1.3 · 1010 7.6 · 1011 1.7 · 1014 4.3 · 1016 1.9 · 1019

BKZ20 2.4 · 105 2.7 · 106 3.1 · 107 1.3 · 109 4.1 · 1010 3.7 · 1012 6.4 · 1013 2.1 · 1016

BKZ30 1.9 · 105 1.6 · 106 1.8 · 107 3.0 · 108 4.3 · 109 1.1 · 1011 3.7 · 1012 1.9 · 1014

Fig. 5. Value of E(b1, . . . , bd) for randomly generated (b1, . . . , bd)

and obtained the table of Figure 5. It confirms that a strong pre-processing should
help increasing the dimension up to which SVP may be solved completely.

If one is looking for vectors smaller than some prescribed B (for example if the
existence of an unusually short vector is promised), then ‖b1‖ may be replaced
by B in the estimate. Overall, these estimates are rather crude since factors that
are polynomial in the dimension should be considered as well. Furthermore, it
does not take into account more elaborate techniques such as updating the norm
during the enumeration, pruning [30, 31] and random sampling [29].

Open problem. One may wonder if the complexity upper bound for Kannan’s
SVP algorithm can be decreased further. Work under progress seems to show, by
using a technique due to Ajtai [3], that it is sharp, in the sense that for all ε > 0,
we can build HKZ-reduced bases for which the number of steps of Kannan’s

algorithm would be at least dd( 1
2e −ε).
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Abstract. Strong lattice reduction is the key element for most attacks against lattice-based cryptosystems.
Between the strongest but impractical HKZ reduction and the weak but fast LLL reduction, there have been
several attempts to find efficient trade-offs. Among them, the BKZ algorithm introduced by Schnorr and Euchner
[FCT’91] seems to achieve the best time/quality compromise in practice. However, no reasonable complexity
upper bound is known for BKZ, and Gama and Nguyen [Eurocrypt’08] observed experimentally that its prac-
tical runtime seems to grow exponentially with the lattice dimension. In this work, we show that BKZ can
be terminated long before its completion, while still providing bases of excellent quality. More precisely, we
show that if given as inputs a basis (bi)i≤n ∈ Qn×n of a lattice L and a block-size β, and if terminated after
Ω

“
n3

β2 (logn+ log logmaxi ‖bi‖)
”
calls to a β-dimensional HKZ-reduction (or SVP) subroutine, then BKZ re-

turns a basis whose first vector has norm ≤ 2ν
n−1

2(β−1)
+ 3

2

β · (detL) 1
n , where νβ ≤ β is the maximum of Hermite’s

constants in dimensions ≤ β. To obtain this result, we develop a completely new elementary technique based on
discrete-time affine dynamical systems, which could lead to the design of improved lattice reduction algorithms.
Keywords. Euclidean lattices, BKZ, lattice-based cryptanalysis.

1 Introduction

A (full-rank) n-dimensional lattice L ⊆ Rn is the set of integer linear combinations
∑n

i=1 xibi of some
linearly independent vectors (bi)i≤n. Such vectors are called a basis and we write L = L[(bi)i]. Since L is
discrete, it contains a shortest non-zero lattice vector, whose norm λ1(L) is called the lattice minimum.
Computing such a vector given a basis is referred to as the (computational) Shortest Vector Problem (SVP),
and is NP-hard under randomized reductions [1,12]. The complexities of the best known SVP solvers are no
less than exponential [22,23,2,15] (the record is held by the algorithm from [22], with complexity 22n+o(n) ·
Poly(logmaxi ‖bi‖)). Finding a vector reaching λ1(L) is polynomial-time equivalent to computing a basis
of L that is reduced in the sense of Hermite-Korkine-Zolotarev (HKZ). The aforementioned SVP solvers can
all be used to compute HKZ-reduced bases, in exponential time. On the other hand, bases reduced in the
sense of Lenstra-Lenstra-Lovász (LLL) can be computed in polynomial time [16], but the first vector is only
guaranteed to satisfy the weaker inequality ‖b1‖ ≤ (4/3 + ε)

n−1
2 · λ1(L) (for an arbitrary ε > 0). In 1987,

Schnorr introduced time/quality trade-offs between LLL and HKZ [33]. In the present work, we propose
the first analysis of the BKZ algorithm [36,37], which is currently the most practical such trade-off [40,9].

Lattice reduction is a popular tool in cryptanalysis [27]. For many applications, such as Coppersmith’s
method for computing the small roots of polynomials [5], LLL-reduction suffices. However, reductions of
much higher quality seem required to break lattice-based cryptosystems. Lattice-based cryptography origi-
nated with Ajtai’s seminal hash function [1], and the GGH and NTRU encryption schemes [10,14]. Thanks
to its excellent asymptotic performance, provable security guarantees, and flexibility, it is currently attract-
ing wide interest and developing at a steady pace. We refer to [21,31] for recent surveys. A major obstacle to
the real-life deployment of lattice-based cryptography is the lack of a precise understanding of the limits of
the best practical attacks, whose main component is the computation of strongly reduced lattice bases. This
prevents from having a precise correspondence between specific security levels and practical parameters.
Our work is a step towards a clearer understanding of BKZ, and thus of the best known attacks.

Strong lattice reduction has been studied for about 25 years (see among others [33,37,34,7,32,9,8]). From
a theoretical perspective, the best known time/quality trade-off is due to Gama and Nguyen [8]. By building
upon the proof of Mordell’s inequality on Hermite’s constant, they devised the notion of slide reduction, and



proposed an algorithm computing slide-reduced bases: Given an arbitrary basis B = (bi)i≤n of a lattice L,
the slide-reduction algorithm finds a basis (ci)i≤n of L such that

‖c1‖ ≤ ((1 + ε)γβ)
n−β
β−1 · λ1(L), (1)

within τslide := O
(
n4

β·ε · logmaxi ‖bi‖
)

calls1 to a β-dimensional HKZ-reduction algorithm and a β-
dimensional (computational-)SVP solver, where γβ ≈ β is the β-dimensional Hermite constant. If L ⊆ Qn,
the overall cost of the slide-reduction algorithm is ≤ Poly(n, size(B)) · CHKZ(β), where CHKZ(β) = 2O(β) is
the cost of HKZ-reducing in dimension β. The higher β, the lower the achieved SVP approximation factor,
but the higher the runtime. Slide reduction also provides a constructive variant of Minkowski’s inequality,
as (letting detL denote vol(Rn/L)):

‖c1‖ ≤ ((1 + ε)γβ)
n−1

2(β−1) · (detL) 1
n , (2)

From a practical perspective, however, slide reduction seems to be (significantly) outperformed by the
BKZ algorithm [9]. BKZ also relies on a β-dimensional HKZ-reduction algorithm (resp. SVP-solver). The
worst-case quality of the bases it returns has been studied in [34] and is comparable to that of the slide
reduction algorithm. The first vector of the output basis (ci)i≤n satisfies ‖c1‖ ≤ ((1 + ε)γβ)

n−1
β−1 · λ1(L).

Note that this bound essentially coincides with (1), except for large values of β. A bound similar to that
of (2) also holds.2 In practice, the quality of the computed bases seems much higher with BKZ than with
the slide-reduction algorithm [9]. With respect to run-time, no reasonable bound is known on the number
of calls to the β-dimensional HKZ reduction algorithm it needs to make before termination.3 In practice,
this number of calls does not seem to be polynomially bounded [9] and actually becomes huge when β ≥ 25.
Because of its large (and somewhat unpredictable) runtime, it is folklore practice to terminate BKZ before
the end of its execution, when the solution of the problem for which it is used for is already provided by
the current basis [38,24].

Our result. We show that if terminated within polynomially many calls to HKZ/SVP, a slightly modified
version of BKZ (see Section 3) returns bases whose first vectors satisfy a slightly weaker variant of (2).

Theorem 1. There exists4 C > 0 such that the following holds for all n and β. Let B = (bi)i≤n be a basis
of a lattice L, given as input to the modified BKZ algorithm of Section 3 with block-size β. If terminated
after τBKZ := C n3

β2

(
log n+ log logmaxi

‖bi‖
(detL)1/n

)
calls to an HKZ-reduction (or SVP solver) in dimension β,

the output (ci)i≤n is a basis of L that satisfies (with νβ ≤ β defined as the maximum of Hermite’s constants
in dimensions ≤ β):

‖c1‖ ≤ 2(νβ)
n−1

2(β−1)
+ 3

2 · (detL)
1
n .

If L ⊆ Qn, then the overall cost is ≤ Poly(n, size(B)) · CHKZ(β).
By using [18, p. 25], this provides an algorithm with runtime bounded by Poly(n, size(B)) · CHKZ(β)

that returns a basis whose first vector satisfies ‖c1‖ ≤ 4(νβ)
n−1
β−1

+3 · λ1(L), which is only slightly worse
than (1). These results indicate that BKZ can be used to achieve essentially the same quality guarantees
as slide reduction, within a number of calls to HKZ in dimension β that is no larger than that of slide
reduction. Actually, note that τBKZ is significantly smaller than τslide, in particular with a dependence with

1 The component n4

β
of this upper bound is derived by adapting the results from [8] to our notations. A more thorough

analysis leads to a smaller term.
2 In [9], the bound ‖c1‖ ≤ (γβ)

n−1
2(β−1)

+ 1
2 · (detL) 1

n is claimed to hold, but without proof nor reference. We prove a (slightly)
weaker bound, but we are able to improve it if γn is replaced by any linear function. See appendix.

3 A bound (nβ)n is mentioned in [9]. For completeness, we give a proof of a similar result in appendix.
4 The constant C is used to absorb lower-order terms in n, and could be taken small.
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respect to maxi ‖bi‖ that is exponentially smaller. It may be possible to obtain a similar bound for the
slide-reduction algorithm by adapting our analysis.

To achieve our result, we use a completely new approach for analyzing lattice reduction algorithms. The
classical approach to bound their runtimes was to introduce a quantity, sometimes called potential, involving
the current Gram-Schmidt norms ‖b∗i ‖, which always strictly decreases every time some elementary step
is performed. This technique was introduced by Lenstra, Lenstra and Lovász [16] for analyzing their LLL
algorithm, and is still used in all complexity analyzes of (variants of) LLL we are aware of. It was later
adapted to stronger lattice reduction algorithms [33,7,32,8]. We still measure progress with the ‖b∗i ‖’s, but
instead of considering a single scalar combining them all, we look at the full vector (‖b∗i ‖)i. More specifically,
we observe that each call to HKZ within BKZ has the effect of applying an affine transformation to the
vector (log ‖b∗i ‖)i: instead of providing a lower bound to the progress made on a “potential”, we are then
led to analyze a discrete-time dynamical affine system. Its fixed-points encode information on the output
quality of BKZ, whereas its speed of convergence provides an upper bound on the number of times BKZ
calls HKZ.

Intuitively, the effect of a call to HKZ on the vector (log ‖b∗i ‖)i≤n is to essentially replace β consecutive
coefficients by their average. We formalize this intuition by making a specific assumption (see Section 4).
Under this assumption, the execution of BKZ exactly matches with a dynamical system that we explicit and
fully analyze. However, we cannot prove that this assumption is always correct (counter-examples can actu-
ally be constructed). To circumvent this difficulty, we instead consider the vector µ = (1i

∑i
j=1 log ‖b∗j‖)i≤n.

This amortization (also used in [11] for analyzing HKZ-reduced bases) allows us to rigorously bound the
evolution of µ by the orbit of a vector under another dynamical system. Since this new dynamical system
happens to be a modification of the dynamical system used in the idealized model, the analysis performed
for the idealized model can be adapted to the rigorous set-up.

This approach is likely to prove useful for analyzing other lattice reduction algorithms. As an illustration
of its power, we provide two new results on LLL. First, we show that the SVP approximation factor

√
4/3

n−1

can be reached in polynomial time using only Gauss reductions. This is closely related to the question
whether the “optimal LLL” (i.e., using LLL parameter δ = 1) terminates in polynomial time [3,17]. Second,
we give a LLL-reduction algorithm of bit-complexity Poly(n) · Õ(size(B)). Such a complexity bound was
only very recently achieved, with a completely different approach [29]. Note that close-by results on LLL
have been concurrently and independently obtained by Schnorr [35].

Practical aspects. Our result is a (possibly pessimistic) worst-case quality bound on BKZ with early
termination. In itself, this does not give a precise explanation of the practical behavior of BKZ. In particular,
it does not explain why it outperforms slide reduction, but only why it does not behave significantly worse.
However, this study illustrates the usefulness of early termination in BKZ: Much progress is done at the
beginning of the execution, and quickly the basis quality becomes excellent; the rest of the execution takes
much longer, for a significantly less dramatic quality improvement. This behavior is very clear in practice,
as illustrated by Figure 1 of Section 2. Since most of the work performed by BKZ is completed within the
first few calls to HKZ, it shows that the BKZ performance extrapolations used to estimate the hardness
of cryptographic instances should focus only on the cost of a single call to HKZ and on the achieved basis
quality after a few such calls. For instance, it indicates that the strategy (adopted, e.g., in [14,13]) consisting
in measuring the full run-time of BKZ might be reconsidered.

Additionally, parts of the analysis might prove useful to better understand BKZ and devise reduction
algorithms with improved practical time/quality trade-offs. In particular, the heuristic modelisation of BKZ
as a discrete-time affine dynamical system suggests that the block of vectors on which HKZ-reduction is
to be applied could be chosen adaptively, so that the system converges faster to its limit. It would not
improve the output quality for BKZ, but it is likely to accelerate its convergence. Also, the second phase
of BKZ, the one that takes longer but during which some little progress is still made, could be understood
by introducing some randomness in the model: most of the time, the norm of the first vector found by
the HKZ-reduction sub-routine is around its expected value (a constant factor smaller than its worst-case
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bound), but it is significantly smaller every now and then. If such a model could predict the behavior of
BKZ during its second phase, then maybe it would explain why it outperforms slide reduction. It might give
indications on the optimal time for stopping BKZ with block-size β before switching to a larger block-size.

Notations. All vectors will be denoted in bold, and matrices in capital letters. If b ∈ Rn, the notation ‖b‖
will refer to its Euclidean norm. If B ∈ Rn×n, we define ‖B‖2 = max‖x‖=1 ‖B · x‖ and we denote the
spectral radius of B by ρ(B). If B is a rational matrix, we define size(B) as the sum of the bit-sizes of the
numerators and denominators of its entries. All complexity statements refer to elementary operations on
bits. We will use the Landau notations o(·), O(·), Õ(·) and Ω(·). The notations log(·) and ln(·) respectively
stand for the base 2 and natural logarithms.

2 Reminders

For an introduction to lattice reduction algorithms, we refer to [28].
Successive Minima. Let L be an n-dimensional lattice. Its i-th minimum λi(L) is defined as the minimal
radius r such that B(0, r) contains ≥ i linearly independent vectors of L.
Hermite’s constant. The n-dimensional Hermite constant γn is defined as the maximum taken over all
lattices L of dimension n of the quantity λ1(L)2

(detL)2/ dim(L) . Let νn = maxk≤n γk, an upper bound on γn which
increases with n. Very few values of νn are known, but we have νn ≤ 1 + n

4 for all n (see [20, Re 2.7.5]).
Gram-Schmidt orthogonalisation. Let (bi)i≤n be a lattice basis. Its Gram-Schmidt orthogonalization
(b∗i )i≤n is defined recursively by b∗i = bi −

∑
j<i µi,jb

∗
j with µi,j = (b∗i , b

∗
j )/‖b∗j‖2 for i > j. The b∗i ’s are

mutually orthogonal. For i ≤ j, we define b(i)j as the projection of bj orthogonally to Span(bk)k<i. Note
that if L is an n-dimensional lattice, then detL =

∏n
i=1 ‖b∗i ‖, for any basis (bi)i≤n of L.

A few notions of reduction. Given a basis (bi)i≤n, we say that it is size-reduced if the Gram-Schmidt
coefficients µi,j satisfy |µi,j | ≤ 1/2 for all j < i ≤ n. We say that (bi)i≤n is δ-LLL-reduced for δ ≤ 1
if it is size-reduced and the Lovász conditions δ‖b∗i ‖2 ≤ ‖b∗i+1‖2 + µ2i+1,i‖b∗i ‖2 are satisfied for all i < n.
For any δ < 1, a δ-LLL-reduced basis of a rational lattice L can be computed in polynomial time, given
an arbitrary basis of L as input [16]. We say that (bi)i≤n is HKZ-reduced if it is size-reduced and for
all i < n, we have ‖b∗i ‖ = λ1(L[(b

(i)
j )i≤j≤n]). An HKZ-reduced basis of a lattice L ⊆ Qn can be computed

in time 22n+o(n) · Poly(size(B)), given an arbitrary basis B of L as input [22]. The following is a direct
consequence of the definitions of the HKZ-reduction and Hermite constant.

Lemma 1. For any HKZ-reduced basis (bi)i≤n, we have: ∀i < n, ‖b∗i ‖ ≤
√
νn−i+1 · (

∏n
j=i ‖b∗j‖)

1
n−i+1 .

The BKZ algorithm. We recall the original BKZ algorithm from [37] in Algorithm 1. BKZ was originally
proposed as a mean of computing bases that are almost β-reduced. β-Reduction was proposed by Schnorr
in [33], but without an algorithm for achieving it. The BKZ algorithm proceeds by iterating tours consisting
of n − 1 calls to a β-dimensional SVP solver called on the lattices L[(b(k)i )k≤i≤k+β−1]. Its execution stops
when no change occurs during a tour.

Input : A (LLL-reduced) basis (bi)i≤n, a blocksize β and a constant δ < 1.
Output : A basis of L[(bi)i≤n].
repeat

for k ← 1 to n− 1 do
Find b such that ‖b(k)‖ = λ1(L[(b

(k)
i )k≤i≤min(k+β−1,n)]);

if δ · ‖b∗k‖ > ‖b‖ then
LLL-reduce(b1, . . . , bk−1, b, bk, . . . , bmin(k+β,n)).

else
LLL-reduce(b1, . . . , bmin(k+β,n)).

until no change occurs.
Algorithm 1: The Schnorr and Euchner BKZ algorithm.
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3 Terminating BKZ

In this article, we will not analyze the original BKZ algorithm, but we will focus on a slightly modified variant
instead, which is given in Algorithm 2. It also performs BKZ tours, and during a tour it makes n−β+1 calls
to a β-dimensional HKZ-reduction algorithm. It fits more closely to what would be the simplest BKZ-style
algorithm, aiming at producing a basis (bi)i≤n such that the projected basis (b(k)i )k≤i≤k+β−1 is HKZ-reduced
for all k ≤ n− β + 1.

Differences between the two variants of BKZ. The differences between the two algorithms are the
following:

• In Algorithm 2, the execution can be terminated at the end of any BKZ tour.
• In the classical BKZ algorithm, the vector b found by the SVP solver is kept only if ‖b(k)‖ is smaller

than δ · ‖b∗k‖. Such a factor δ < 1 does not appear in Algorithm 2. It is unnecessary for our analysis to
hold, complicates the algorithm, and leads to output bases of lesser quality.
• For each k within a tour, Algorithm 1 only requires an SVP solver while Algorithm 2 calls an HKZ-

reduction algorithm, which is more complex. We use HKZ-reductions for the ease of the analysis. Our
analysis would still hold if the loop was done for k from 1 to n − 1 and if the HKZ-reductions were
replaced by calls to any algorithm that returns bases whose first vector reaches the minimum (which
can be obtained by calling any SVP solver, putting the output vector in front of the input basis and
calling LLL to remove the linear dependency).
• Finally, to insert b in the current basis, Algorithm 1 performs an LLL-reduction. Indeed, applying

LLL inside the projected block (i.e., to b(k), b(k)k , . . . , b
(k)
k+β−1) would be sufficient to remove the linear

dependency while keeping b(k) in first position, but instead it runs LLL from the beginning of the basis
until the end of the next block to be considered (i.e., up to index min(k + β, n). This reduction is
performed even if the block is already reduced and no vector is inserted. Experimentally, this seems to
improve the speed of convergence of the algorithm by a small factor, but it does not seem easy to use
our techniques to analyze this effect.

Input : A basis (bi)i≤n and a blocksize β.
Output : A basis of L[(bi)i≤n].
repeat

for k ← 1 to n− β + 1 do
Modify (bi)k≤i≤k+β−1 so that (b(k)i )k≤i≤k+β−1 is HKZ-reduced;
Size-reduce(b1, . . . , bn).

until no change occurs or termination is requested.
Algorithm 2: BKZ’, the modified BKZ algorithm.

On the practical behavior of BKZ. In order to give an insight on the practical behavior of BKZ
and BKZ’, we give experimental results on the evolution of the quantity ‖b1‖

(detL)1/n
(the so-called Hermite

factor) during their executions. The experiment corresponding to Figure 1 is as follows: We generated 64
knapsack-like bases [25] of dimension n = 108, with non-trivial entries of bit-length 100n; Each was LLL-
reduced using fplll [4] (with parameters δ = 0.99 and η = 0.51); Then for each we ran NTL’s BKZ [40]
and an implementation of BKZ’ in NTL, with blocksize 24. Figure 1 only shows the beginning of the
executions. For both algorithms, the executions of about half the samples consisted in ' 600 tours, whereas
the longest execution stopped after ' 1200 tours. The average value of ‖b1‖

(detL)1/n
at the end of the executions

was ' 1.012.

Cost of BKZ’. In order to bound the bit-complexities of BKZ and BKZ’, it is classical to consider several
cost components separately. In this article, we will focus on the number of tours. The number of calls to
an SVP solver (for BKZ) or an HKZ-reduction algorithm (in the case of BKZ’) is ≤ n times larger. A
tour consists of efficient operations (LLL, size-reductions, etc) and of the more costly calls to SVP/BKZ.
The cost of the SVP solver or the HKZ-reduction algorithm is often bounded in terms of the number of
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(detL)1/n

during the execution of BKZ and BKZ’.

arithmetic operations it performs: For all known algorithms, this quantity is (at least) exponential in the
block-size β. Finally, one should also take into account the bit-costs of the arithmetic operations performed
to prepare the calls to SVP/HKZ, during these calls, and after these calls (when applying the computed
transforms to the basis, and calling LLL or a size-reduction). These arithmetic costs are classically bounded
by considering the bit-sizes of the quantities involved. They can easily be shown to be polynomial in the
input bit-size, by relying on rational arithmetic and using standard tools from the analyses of LLL and
HKZ [16,15]. It is likely that these costs can be lowered further by relying on floating-point approximations
to these rational numbers, using the techniques from [26,30]. To conclude, the overall cost is upper bounded
by Poly(n, log ‖B‖) · 2O(β) · τ , where τ is the number of tours.

4 Analysis of BKZ’ in the Sandpile Model

In this section, we (rigorously) analyze a heuristic model of BKZ’. In the following section, we will show
how this analysis can be adapted to allow for a (rigorous) study of the genuine BKZ’ algorithm.

We first note that BKZ’ can be studied by looking at the way the vector x := (log ‖b∗i ‖)i changes during
the execution, rather than considering the whole basis (bi)i. This simplification is folklore in the analyzes
of lattice reduction algorithms, and allows for an interpretation in terms of sandpiles [19]. The study in the
present section is heuristic in the sense that we assume the effect of a call to HKZβ on x is determined by x
only, in a deterministic fashion.

4.1 The model and its dynamical system interpretation

Before describing the model, let us consider the shape of a β-dimensional HKZ-reduced basis. Let (bi)i≤β
be an HKZ-reduced basis, and define xi = log ‖b∗i ‖. Then, by Lemma 1, we have:

∀i ≤ β, xi ≤
1

2
log νβ−i+1 +

1

β − i+ 1

β∑

j=i

xj . (3)

Our heuristic assumption consists in replacing these inequalities by equalities.

Heuristic Sandpile Model Assumption (SMA). We assume for any HKZ-reduced basis (bi)i≤β , we
have xi = 1

2 log νβ−i+1 +
1

β−i+1

∑β
j=i xj for all i ≤ β, with x = (log ‖b∗i ‖)i≤β .

Under SMA, once
∑

i xi (i.e., |det(bi)i|) is fixed, an x of an HKZ-reduced basis is uniquely determined.

Lemma 2. Let (bi)i≤β be HKZ-reduced, x = (log ‖b∗i ‖)i and E[x] =
∑

i≤β
xi
β . Then, under SMA, xβ =

E[x]− Γβ(β − 1) and:
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∀i < β, xi = E[x]− (β − i+ 1)Γβ(i− 1) + (β − i)Γβ(i),

with Γn(k) =
∑n−1

i=n−k
log νi+1

2i for all 0 ≤ k < n.

Proof. SMA is equivalent to the following triangular system of linear equations:

∀i ≤ β, xi =
β − i+ 1

2(β − i) log νβ−i+1 +
1

β − i

β∑

j=i+1

xj .

Let yi =
∑β

j=i xj , for i ≤ β. Then yβ = xβ and yi = β−i+1
β−i

(
yi+1 +

1
2 log νβ−i+1

)
for all i < β. By induction:

∀i ≤ β, yi = (β − i+ 1)

(
yβ +

β−i∑

j=1

log νj+1

2j

)
.

Taking i = 1 and noting that y1 = β · E[x] gives yβ = xβ = E[x]− Γβ(β − 1). Now:

∀i < β, yi = (β − i+ 1)

(
E[x]− Γβ(β − 1) +

β−i∑

j=1

log νj+1

2j

)
= (β − i+ 1) (E[x]− Γβ(i− 1)).

The result derives from the equality xi = yi − yi+1. ut

We now exploit SMA to interpret BKZ’ as a discrete-time linear dynamical system. Let (bi)i≤n be a
lattice basis and x = (log ‖b∗i ‖)i. Let β ≤ n be a block-size and α ≤ n − β + 1. When we apply an HKZ
reduction algorithm to the projected sublattice (b

(α)
i )α≤i<α+β−1, we obtain a new basis (b′i)i≤n such that

(with x′ = (log ‖b′∗i ‖)i):

α+β−1∑

i=α

x′i =
α+β−1∑

i=α

xi and ∀i 6∈ [α, α+ β − 1], x′i = xi.

Under SMA, we also have:

∀i ∈ [α, α+ β − 1], x′i =
1

2
log να+β−i +

1

α+ β − i

α+β−1∑

j=i

x′j .

By applying Lemma 2, we obtain x′ = A(α) · x+ g(α), with:

A(α) =







. . .
1

1
β · · · 1β (α)

...
. . .

...
1
β · · · 1β (α+β−1)

1
. . .

and g(α)i =





0 if i < α

(β + α− i− 1)Γβ(i− α+ 1)− (β + α− i)Γβ(i− α)
if i ∈ [α, α+ β − 2]

−Γβ(β − 1) if i = α+ β − 1

0 if i ≥ α+ β.

We recall that a BKZ’ tour is the successive (n−β+1) applications of an HKZ-reduction algorithm with
α = 1, . . . , n− β + 1 (in this order). Under SMA, the effect of a BKZ’ tour on x is to replace it by Ax+ g
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with g = g(n−β+1) +A(n−β+1) · (g(n−β) +A(n−β) · (. . .)) and:

A = A(n−β+1) · . . . ·A(1) =

(1) (β)





1
β · · · 1

β
β−1
β2 · · · β−1

β2
1
β

...
...

. . . . . .
(β−1)n−β
βn−β+1 · · · (β−1)

n−β

βn−β+1 · · · β−1β2
1
β (n−β+1)

...
...

...
...

(β−1)n−β
βn−β+1 · · · (β−1)

n−β

βn−β+1 · · · β−1β2
1
β (n)

.

We sum up the study of the discrete-time dynamical system x ← A · x + g in the following Theorem.
The solutions and speed of convergence respectively provide information on the output quality and runtime
of BKZ’ (under SMA). Overall, we have:

Theorem 2. Under SMA, there exists C > 0 such that the following holds for all n and β. Let (bi)i≤n be
given as input to BKZ’β and L the lattice spanned by the bi’s. If terminated after C n2

β2 (log n+log logmaxi
‖b∗i ‖

(detL)1/n
)

tours, then the output (ci)i≤n is a basis of L that satisfies ‖x−x∞‖2 ≤ 1, where xi = log
‖c∗i ‖

(detL)1/n
for all i

and x∞ is the unique solution of the equation x∞ = A · x∞ + g with E[x∞] = 0. This implies that:5

‖c1‖ ≤ 2(νβ)
n−1

2(β−1)
+ 3

2 · (detL)
1
n .

4.2 Solutions of the dynamical system

Before studying the solutions of x = A · x+ g, we consider the associated homogeneous system.

Lemma 3. If A · x = x, then x ∈ span(1, . . . , 1)T .

Proof. Let x ∈ Rn such that A · x = x. Let i the largest index such that xi = maxj xj . We prove by
contradiction that i = n. Assume that i < n. We consider two cases, depending on whether i < β or i ≥ β.
Recall that applying A(α) to a vector y consists in replacing yα, . . . , yα+β−1 by their mean, and in leaving
the others constant. As a result, the maximum of the yi’s cannot increase.

Assume first that i < β. Let x′ = A(1) · x. By definition of i, we must have xi+1 < xi, and there-
fore maxj≤β x′j < maxj≤β xj . By choice of i, we also have maxj≤n x′j < maxj≤n xj . But x = A(n−β+1) · . . . ·
A(2)x′, which leads to the inequality maxj≤n xj ≤ maxj≤n x′j . We obtained a contradiction.

Now, assume that i ≥ β. Let x′ = A(i−β+1) · . . . ·A(1) · x and x′′ = A(i−β+2) · x′. We have maxj≤n x′j ≤
maxj≤n xj = xi. Moreover, we have x′i−β+1 = . . . = x′i ≤ xi and for all j > i, x′j = xj < xi. This implies
that maxi−β+2≤j≤n x′′j < xi. Since x = A(n−β+1) · . . . ·A(i−β+3) · x”, we obtain that maxi−β+2≤j≤n xj < xi.
In particular, we obtain the contradiction xi < xi.

So far, we have proven that xn = maxj≤n xj . Symmetrically, we could prove that xn = minj≤n xj , which
provides the result. ut

It thus suffices to find one solution to x = A · x+ g to obtain all the solutions. We define x as follows:

xi =

{
β

2(β−1) log νβ +
1

β−1
∑i+β−1

j=i+1 xj if i ≤ n− β
g
(n−β+1)
i if i > n− β

.

5 If we replace νβ by a linear function that bounds it (e.g., νβ ≤ β), then the constant 3
2
may be replaced by 1−ln 2

2
+ ε

(with ε > 0 arbitrarily close to 0 and β sufficiently large).
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Lemma 4. We have x = A · x+ g.

Proof. Note first that for any α and any x, we have
∑n

i=1(A
(α) · x)i =

∑n
i=1 xi and

∑n
i=1 g

(α)
i = 0. This

implies that:
n∑

i=1

(A(α) · x+ g(α))i =

n∑

i=1

xi. (4)

Let x(0) = x and x(α) = A(α) · x(α−1) + g(α), for α ∈ [1, n− β + 1]. We prove by induction that:

α+β−1∑

i=α+1

x
(α)
i =

α+β−1∑

i=α+1

xi and x
(α)
i = xi if i 6∈ [α+ 1, α+ β − 1]. (∗)

This holds for α = 0 since x(0) = x. Let α ≥ 1. By the induction hypothesis and equality of the columns
α, . . . , α + β − 1 of A(α), we have A(α) · x(α−1) = A(α) · x and hence x(α) = A(α) · x + g(α). This directly
implies that x(α)i = xi when i 6∈ [α, α+ β − 1]. Combining this with (4) gives:

α+β−1∑

i=α

x
(α)
i =

α+β−1∑

i=α

xi. (5)

Since x(α)α = 1
2 log νβ +

1
β

∑α+β−1
j=α x

(α)
j , we obtain (using (5) and the definition of x):

x(α)α =
1

2
log νβ +

1

β

α+β−1∑

j=α

xj = xα.

Combining this equality and (5) allows to complete the proof of (∗).
It remains to prove that x(n−β+1)

i = xi for i ≥ n− β + 2. For i ≥ n− β + 1, we have:

x
(n−β+1)
i =

1

2
log νn−i+1 +

1

n− i+ 1

n∑

j=i

x
(n−β+1)
j .

By Lemma 2 and the definition of g(n−β+1), this implies that x(n−β+1)
i = 1

β

∑n
j=n−β+1 x

(n−β+1)
j + g

(n−β+1)
i .

As a consequence (using (5) and the definition of x):

x
(n−β+1)
i =

1

β

n∑

j=n−β+1

xj + g
(n−β+1)
i =

1

β

n∑

j=n−β+1

g
(n−β+1)
j + g

(n−β+1)
i = g

(n−β+1)
i = xi.

Overall, we have proven that A · x+ g = x(n−β+1) = x. ut
Fact. Given Mk ∈ Rk×k, a, b ∈ Rk and c ∈ R, we define Mn ∈ Rn×n for n ≥ k, as follows:

Mn =




c · · · c · · · aT · · ·
...
. . .

...
...

c · · · c · · · aT · · ·
...

...
b · · · b Mk
...

...




Then, for any n ≥ k, we have χ(Mn)(t) = (n− k)tn−k−1 · χ(Mk+1)− (n− k − 1)tn−k · χ(Mk).
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Proof of the fact. We prove the result by induction. It clearly holds for n = k and n = k + 1. Assume
now that n > k + 1. We have:

χ(Mn)(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(t− c) −c · · · −c · · · −aT · · ·
−c (t− c) · · · −c · · · −aT · · ·
...

...
−c −c
...

... tIn−2 −Mn−2
−b −b
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2t −t 0
−t (t− c) · · · −c · · · −aT · · ·

...
−c

0
... tIn−2 −Mn−2
−b
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2t · χ(Mn−1)− t2 · χ(Mn−2).

The result follows by elementary calculations. ut

We now provide explicit lower and upper bounds for the coordinates of the solution x.

Lemma 5. For all i ≤ n− β + 1, we have
(
n−i
β−1 − 3

2

)
log νβ ≤ xi − xn−β+1 ≤ n−i

β−1 log νβ.

Proof. We prove these bounds by induction on i for i = n− β, . . . , 1. Recall that

∀i ≤ n− β, xi =
β

2(β − 1)
log νβ +

1

β − 1

i+β−1∑

j=i+1

xj .

We first consider the upper bound on xi − xn−β+1. Since we defined Hermite’s constant so that (νi)i is
increasing, we have xn−β+1 ≥ · · · ≥ xn. Therefore:

∀i > n− β, xi − xn−β+1 ≤ 0 ≤ n−i
β−1 log νβ .

Using the induction hypothesis, we obtain:

xi ≤
β

2(β − 1)
log νβ +

1

β − 1

i+β−1∑

j=i+1

(
n− j
β − 1

log νβ + xn−β+1

)
=
n− i
β − 1

log νβ + xn−β+1.

We now consider the lower bound on xi − xn−β+1. It clearly holds for i = n − β + 1. We now prove it
for i ∈ [n− 2(β − 1), n− β]. For that specific situation, we use the identity:

∀i ∈ [n− 2(β − 1), n− β], xi =
β

2(β − 1)
log νβ +

1

β − 1

( n−β∑

j=i+1

xj +

i+β−1∑

j=n−β+1

xj

)
. (6)

As (xj)j decreases, we have 1
i+2β−n−1

∑i+β−1
j=n−β+1 xj ≥ 1

β−1
∑n

j=n−β+1 xj = xn−β+1 − 1
2 log νβ . This implies:

1

i+ 2β − n− 1

i+β−1∑

j=n−β+1

xj ≥ xn−β+1 +
log νβ

i+ 2β − n− 1

i+β−1∑

j=n−β+1

(
n− j
β − 1

− 3

2

)
. (7)

Using the induction hypothesis, we also have:

1

n− β − i

n−β∑

j=i+1

xj ≥ xn−β+1 +
log νβ

n− β − i

n−β∑

j=i+1

(
n− j
β − 1

− 3

2

)
. (8)

Now, plugging (7) and (8) into (6) gives:
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xi ≥
β

2(β − 1)
log νβ + xn−β+1 +

log νβ
β − 1

i+β−1∑

j=i+1

(
n− j
β − 1

− 3

2

)
=

(
n− i
β − 1

− 3

2

)
log νβ + xn−β+1.

When i < n− 2(β − 1), the proof for the lower bound is similar to that of the upper bound. ut

As the set of solutions to x = A ·x+ g is x+Span(1, . . . , 1)T , the value of x is only interesting up to a
constant vector, which is why we bound xi−xn−β+1 rather than xi. In other words, since x∞ of Theorem 1
is x− (E[x])i, the Lemma also applies to x∞. It is also worth noting that the difference between the upper
and lower bounds 3

2 log νβ is much smaller than the upper bound n−i
β−1 log νβ (for most values of i). If we

replace νβ by β, then, via a tedious function analysis, we can improve both bounds so that their difference
is lowered to 1

2 log β. In the special case β = 2, the expression of x is xi = xn + (n− i) log ν2.

4.3 Speed of convergence of the dynamical system

The classical approach to study the speed of convergence (with respect to k) of a discrete-time dynamical
system xk+1 := An · xk + gn (where An and gn are the n-dimensional values of A and g respectively)
consists in providing an upper bound to the largest eigenvalue of ATnAn. It is relatively easy to prove that it
is 1 (note that An is doubly stochastic). We are to show that the second largest singular value is < 1− β2

2n2 ,
and that this bound is sharp, up to changing the constant 1/2 and as long as n− β = Ω(n).

The asymptotic speed of convergence of the sequence (Akn ·x)k is in fact determined by the eigenvalue(s)
of An of largest module6 (this is the principle of the power iteration algorithm). However, this classical fact
provides no indication on the dependency with respect to x, which is crucial in the present situation. As
we use the bound ‖Akn · x‖ ≤ ‖An‖k2 · ‖x‖, we are led to studying the largest singular values of ATnAn.

We first explicit the characteristic polynomial χn of ATnAn. The following lemma shows that it satisfies
a second order recurrence formula.

Lemma 6. We have χβ(t) = tβ−1(t− 1), χβ+1(t) = tβ−1(t− 1)(t− 1
β2 ) and, for any n ≥ β:

χn+2(t) =
(2β(β − 1) + 1)t− 1

β2
· χn+1(t)−

(
β − 1

β

)2

t2 · χn(t).

Proof. We have ATβAβ = Aβ and dimker(Aβ) = β − 1, thus tβ−1|χβ(t). Since Tr(Aβ) = 1 we have χβ(t) =
tβ(t− 1). The computation of ATβ+1Aβ+1 gives:

ATβ+1Aβ+1 =




...
β+(β−1)2

β3
β−1
β2

...
· · · β−1

β2 · · · 1
β



.

If y1+· · ·+yβ = 0 and yβ+1 = 0, then ATβ+1Aβ+1·y = 0, hence dimker(ATβ+1Aβ+1) ≥ β−1 and tβ−1|χβ+1(t).
It can be checked that ATβ+1Aβ+1 · (1, · · · , 1)T = (1, · · · , 1)T . Finally, since Tr(ATβ+1Aβ+1) = 1 + 1

β2 we
have χβ+1(t) = tβ−1(t− 1)(t− 1

β2 ).
For n ≥ 1, let Cn be the n×n bottom-right corner of ATn+β−1An+β−1. Note that for n, i, j > 1, we have

cnij = cn−1,i−1,j−1, which means that we can write Cn as:

Cn =




cn11 cn12 · · · cn1n
cn21
... Cn−1

cnn1


 .

6 which can also be proved to be ≤ 1− cβ2/n2 for some constant c.
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Moreover, we have cn11 =
(
β−1
β

)2
cn22 +

1
β2 , cni1 = β−1

β cni2 and cn1i = β−1
β cn2i for all i > 1. Subtracting

β−1
β times the second column of tIn − Cn from the first column and subtracting β−1

β times the second row
from the first row gives:

χ(Cn)(t) =

∣∣∣∣∣∣∣∣∣∣∣∣

2β2−2β+1
β2 t− 1

β2 −β−1
β t 0 · · · 0

−β−1
β t

0
... tIn−1 − Cn−1
0

∣∣∣∣∣∣∣∣∣∣∣∣

.

By expansion on the first column and then on the first row we obtain:

χ(Cn)(t) =
(2β2 − 2β + 1)t− 1

β2
· χ(Cn−1)(t)−

(
β − 1

β

)2

t2 · χ(Cn−2)(t).

Since the β first columns (resp. rows) of ATn+β−1An+β−1 are identical, we obtain, by the previous Fact, that
χn+β−1(t) = βtβ−1 · χ(Cn)(t) − (β − 1)tβ · χ(Cn−1)(t). This implies that the χn’s satisfy the same second
order relation as the χ(Cn)’s. ut

We finally study the roots of χn(t). The proof of the following result relies on several changes of variables
to link the polynomials χn(t) to the Chebyshev polynomials of the second kind.

Lemma 7. For any n ≥ β ≥ 2, the largest root of the polynomial χn(t)t−1 belongs to
[
1− π2β2

(n−β)2 , 1−
β2

2n2

]
.

Proof. Let χn(t) be the polynomial tnχn(1/t). Then, by Lemma 6, we have χβ(t) = 1 − t, χβ+1(t) =

(1− t)
(
1− t

β2

)
, and, for n ≥ β:

χn+2(t) = tn+2 (2β(β − 1) + 1) 1
t − 1

β2
· χn+1

(
1

t

)
− tn+2

(
β − 1

β

)2 1

t2
· χn

(
1

t

)

=
(2β(β − 1) + 1)− t

β2
· χn+1(t)−

(
β − 1

β

)2

· χn(t).

Let τ(t′) = 2β(β−1)(t′−1) and ψn(t′) =
(

β
β−1

)n−β
· χn(1−τ(t′))τ(t′) . We have ψβ(t′) = 1, ψβ+1(t

′) = 2t′− β−1
β

and, for n ≥ β:

ψn+2(t
′) = 2t′

(
β

β − 1

)n+1−β
· χn+1 (1− τ(t′))

τ(t′)
−
(

β

β − 1

)n−β
· χn (1− τ(t

′))
τ(t′)

= 2t′ · ψn+1(t
′)− ψn(t′).

As a consequence, the ψn’s are polynomials (in t′). Now, let (Un)n≥0 be the sequence of Chebyshev poly-
nomials of the second kind, i.e., U0 = 0, U1 = 1 and Un+2(t

′) = 2t′ · Un+1(t
′) − Un(t′) for n ≥ 0. These

polynomials satisfy the following property:

∀n ≥ 0, ∀x ∈ R \ {2kπ; k ∈ Z}, Un(cosx) =
sin(nx)

sinx
.

It can be proven by induction that ψn = Un−β+1 − β−1
β Un−β for all n ≥ β. By the Fact given below, this

implies that there exists t′0 ∈
[
cos π

n−β , cos
π

2(n−β+1)

]
such that ψn(t′0) = 0 and ψn(t′) > 0 for all t′ ∈ (t′0, 1).

We have χn(1 − τ(t′0)) =
(
β−1
β

)n−β
τ(t′0)ψn(t

′
0) = 0, hence t0 = (1− τ(t′0))−1 is a root of χn(t). Since
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the image of (t′0, 1) by t′ 7→ (1 − τ(t′))−1 is (t0, 1), we obtain that t0 is the largest root of χn(t) smaller
than 1. We now compute bounds for t0. We have 2(n − β + 1) ≤ 2n so cos π

n−β ≤ t′0 ≤ cos π
2n . It can

be checked that for u ≤ π
4 , we have cosu ≤ 1 − 8

17u
2, so 1 − π2

(n−β)2 ≤ t′0 ≤ 1 − 2π2

17n2 . This leads to

1 + π2β2

(n−β)2 ≥ 1− τ(t′0) ≥ 1 + 2β(β − 1) 2π2

17n2 ≥ 1 + 2π2β2

17n2 , and thus 1− π2β2

(n−β)2 ≤ t0 ≤ 1− 1
2
β2

n2 .

To conclude, let φn(t) be the polynomial χn(t)
t−1 . By using Lemma 6, it can be checked that φn(1) =(

β−1
β

)n−β
n
β , which implies that φn(1) 6= 0. This proves that 1 is never a multiple root of χn, which

completes the proof. ut

Fact. Let n ≥ 2 and f(x) = sin((n+1)x)
sinx − β−1

β ·
sin(nx)
sinx . The smallest positive root of f belongs to

[
π

2(n+1) ,
π
n

]
.

Proof of the fact. Since sin is an increasing function on
[
0, π2

]
, we have sin(nx) < sin ((n+ 1)x) for all

0 < x ≤ π
2(n+1) . This implies that f(x) > 0 on this interval. We also have f

(
π
n

)
= −1 < 0. The result

follows from the intermediate value theorem. ut

Proof of Theorem 2. The unicity and existence of x∞ come from Lemmata 3 and 4.

Let (b(k)i )i≤n be the basis after k tours of the algorithm BKZ’β and x(k)
i = log

‖b(k)∗i ‖
(detL)1/n

. The definition

of x∞ and a simple induction imply that x(k) − x∞ = Ak(x(0) − x∞). Both x(0) and x∞ live in the
subspace E := Span(1, . . . , 1)⊥, which is stabilized by A. Let us denote by AE the restriction of A to this
subspace. Then the largest eigenvalue of ATEAE is bounded in Lemma 7 by

(
1− β2

2n2

)
. Taking the norm in

the previous equation gives:

‖x(k) − x∞‖2 ≤ ‖AE‖k2 · ‖x(0) − x∞‖2 = ρ(ATEAE)
k/2 · ‖x(0) − x∞‖2

≤
(
1− β2

2n2

)k/2
‖x(0) − x∞‖2.

The term ‖x(0)−x∞‖2 is bounded by
(
log

maxi ‖b∗i ‖
(detL)1/n

)
n+nO(1). Thus, there exists C such that ‖x(k)−x∞‖2 ≤

1 when k ≥ C n2

β2 (log n+ log logmaxi
‖b∗i ‖

(detL)1/n
).

We now prove the last inequality of the theorem. By Lemma 5 and the fact that
∑n

i=n−β+1 x
∞
i ≥

βx∞n−β+1 +
∑n

i=n−β+1

(
log νβ
β−1 (n− i)− 3

2 log νβ

)
, we have:

x∞1 ≤ (n− 1)
log νβ
β − 1

− 1

n

n∑

i=1

(
log νβ
β − 1

(n− i)− 3

2
log νβ

)

=

(
n− 1

2(β − 1)
+

3

2

)
log νβ.

Using the inequality x(k)1 ≤ x∞1 + 1 and taking the exponential (in base 2) leads to the result. ut

5 Analysis of BKZ’

We now show how the heuristic analysis of the previous section can be made rigorous. The main difficulty
stems from the lack of control on the ‖b∗i ‖’s of an HKZ-reduced basis (bi)i≤β . More precisely, once the
determinant and ‖b∗β‖ are fixed, the ‖b∗i ‖’s are all below a specific curve (explicitly given in Lemma 2).
However, if only the determinant is fixed, the pattern of the ‖b∗i ‖’s can vary significantly: as an example,
taking orthogonal vectors of increasing norms shows that ‖b∗1‖ (resp. ‖b∗β‖) can be arbitrarily small (resp.
large). Unfortunately, when applying HKZ within BKZ’, it seems we only control the determinant of the
HKZ-reduced basis of the considered block, although we would prefer to have an upper bound for each
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Gram-Schmidt norm individually. We circumvent this difficulty by amortizing the analysis over the ‖b∗i ‖’s:
as observed in [11], we have a sharp control on each average of the first ‖b∗i ‖’s. For an arbitrary basis B :=

(bi)i≤n, we define µ(B)
k = 1

k

∑
1≤i≤k log ‖b∗i ‖, for k ≤ n.

Lemma 8 ([11, Le. 3]). If B = (bi)i≤β is HKZ-reduced, then µ(B)
k ≤ β−k

k logΓβ(k) + µ
(B)
β for all k ≤ β.

5.1 A dynamical system for (genuine) BKZ’ tours

We now reformulate the results of the previous section with the µ(B)
i ’s instead of the log ‖b∗i ‖’s. This amounts

to a base change in the discrete-time dynamical system of Subsection 4.1. We define:

P = (1i1i≥j)1≤i,j≤n, Ã = PAP−1 and g̃ = P · g.

Note that µ(B) = P · x(B), where x(B) = (log ‖b∗i ‖)i and µ(B) = (µ
(B)
i )i.

Lemma 9. Let B′ be the basis obtained after a BKZ’ tour given an n-dimensional basis B as input. Then
µ(B′) ≤ Ã · µ(B) + g̃, where the inequality holds componentwise.

Proof. Let α ≤ n− β + 1. We define Ã(α) = PA(α)P−1 and g̃(α) = P · g(α). Let B(α) be the basis after the
first α calls to β-HKZ (starting with indices 1, . . . , α). We first prove that we have:

µ(B(α)) ≤ Ã(α) · µ(B(α−1)) + g̃(α). (9)

This vectorial inequality can be checked by making Ã(α) and g̃(α) explicit:

Ã
(α)
ij =





1 if i = j with i < α or i ≥ α+ β − 1
α−1
i

(
1− i−α+1

β

)
if i ∈ [α, α+ β − 2] and j = α− 1

(α+β−1)(i−α+1)
βi if i ∈ [α, α+ β − 2] and j = α+ β − 1

0 otherwise,

g̃
(α)
i =

{
β−i+α−1

i logΓβ(i− α+ 1) if i ∈ [α, α+ β − 2]
0 otherwise.

We provide more details on the proof of (9) in appendix.
Now, let ν(0) = µ(B(0)) = µ and ν(α) = Ã(α) · ν(α−1) + g̃(α). We prove by induction that µ(B(α)) ≤ ν(α).

For α ≥ 1, we have (successively using (9), the induction hypothesis and the fact that Ã(α) ≥ 0):

µ(B(α)) ≤ Ã(α) · µ(B(α−1)) + g̃(α) ≤ Ã(α) · ν(α−1) + g̃(α) = ν(α).
The result follows, by taking α = d− β + 1. ut

5.2 Analysis of the updated dynamical system

Similarly to the analysis of the previous section, it may be possible to obtain information on the speed
of convergence of BKZ’ by estimating the eigenvalues of ÃT · Ã. However, the latter eigenvalues seem
significantly less amenable to study than those of ATA. The following lemma shows that we can short-
circuit the study of the modified dynamical system. For a basis B ∈ Rn×n given as input to BKZ’β , we
define B[0] = B and B[i] as the current basis after the i-th BKZ’ tour. We also define µ∞ = P · x∞.

Lemma 10. Let B ∈ Rn×n a basis given as input to BKZ’β. Wlog we assume that µ(B)
n = µ∞n (since

µ
(B)
n = 1

n log | detB|, this can be achieved by multiplying B by a scalar). We have:

∀k ≥ 0,∀i ≤ n, µ
(B[k])
i ≤ µ∞i + (1 + log n)1/2 ·

(
1− β2

2n2

)k/2
‖x(B[0]) − x∞‖2.
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Proof. First, by using Lemma 9 and noting that Ã · µ∞ = µ∞ + g̃, it can be shown by induction that

µ(B[k]) − µ∞ ≤ Ãk · (µ(B[0]) − µ∞). (10)

Now, we have ‖Ãk · (µ(B[0]) − µ∞)‖2 = ‖PAkP−1 · (µ(B[0]) − µ∞)‖2 ≤ ‖P‖2 · ‖Ak · (x(B[0]) − x∞)‖2.
Thanks to the assumption on µ(B)

n , we know that x(B[0]) − x∞ ∈ Span(1, . . . , 1)⊥, which is stable under A.
As in theorem 2, we introduce the restriction AE of A to this subspace. By the results of Subsection 4.3,
we know that the largest eigenvalue of ATE ·AE is ≤ (1− β2

2n2 ). Therefore:

‖Ãk · (µ(B[0]) − µ∞)‖2 ≤ ‖P‖2 · ‖AkE · (x(B[0]) − x∞)‖2 ≤ ‖P‖2 · ‖AE‖k2 · ‖x(B[0]) − x∞‖2

≤ ρ(P TP )1/2 ·
(
1− β2

2n2

)k/2
· ‖x(B[0]) − x∞‖2,

where ρ denotes the spectral radius. Now, the sum of the coordinates of any row of P TP is ≤ ∑n
i=1

1
i ≤

1 + lnn ≤ 1 + log n. This gives ρ(P TP ) ≤ 1 + log n. The result follows. ut

Lemma 11. There exists C > 0 such that the following holds for all integers n ≥ β, and ε ∈ (0, 1].
Let (bi)i≤n be a basis of a lattice L, given as input to the modified BKZ’ algorithm of Section 2 with block-
size β. If terminated after C n3

β2 (log
n
ε + log logmaxi

‖b∗i ‖
(detL)1/n

) calls to an HKZ-reduction (resp. SVP solver)
in dimension β, the output (ci)i≤n is a basis of L that satisfies:

‖c1‖ ≤ (1 + ε)νβ

n−1
2(β−1)

+ 3
2 · (detL)

1
n .

Proof. Wlog we assume that µn(B[0]) = µ∞n . The proof is similar to that of theorem 2. We know that:

µ∞1 − µ∞n = x∞1 −
1

n
(x∞1 + · · ·+ x∞n ) ≤

(
n− 1

2(β − 1)
+

3

2

)
log νβ (11)

We have log
( (1+logn)

1
2 ‖x(B[0])−x∞‖2
log(1+ε)

)
= O(log n

ε + log logmaxi ‖bi‖) so there exists C ≥ 0 (independent

of β) such that for any k ≥ C n2

β2 (log
n
ε + log logmax ‖bi‖), we have:

(1 + log n)
1
2

(
1− β2

2n2

) k
2 ‖x(B[0])− x∞‖2 ≤ log(1 + ε).

This gives µ1(B[k]) ≤ µ∞1 + log(1 + ε) ≤
(
µn(B

[0]) + n−1
2(β−1) +

3
2

)
log νβ + 1. Taking the exponential (in

base 2) leads to the result. ut

Theorem 1 corresponds to taking ε = 1 in Lemma 11. Also, when β = 2, using the explicit expression

of x∞ leads to the improved bound ‖c1‖ ≤ (1 + ε) · (ν2)
n−1
2 · (detL) 1

n .

6 Applications to LLL-Reduction

In this section, we investigate the relationship between BKZ’2 reduction and the notion of LLL-reduction [16].
Note that analogues of some of the results of this section have been concurrently and independently obtained
by Schnorr [35].
Reminders on the LLL algorithm. The LLL algorithm with parameter δ proceeds by successive loop
iterations. Each iteration has a corresponding index k, defined as the smallest such that (bi)i≤k is not δ-LLL-
reduced. The iteration consists in size-reducing (bi)i≤k and then checking Lovász’s condition δ‖b∗k−1‖2 ≤
‖b∗k‖2 + µ2k,k−1‖b∗k−1‖2. If it is satisfied, then we proceed to the next loop iteration, and otherwise, we
swap the vectors bk and bk−1. Any such swap decreases the quantity Π((bi)i) =

∏n
i=1 ‖b∗i ‖2(n−i+1) by
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a factor ≥ 1/δ whereas it remains unchanged during size-reductions. Since Π((bi)i) ≤ 2O(n2 size(B))) and
since for any integer basis Π((bi)i) is an integer, this allows to prove termination within O(n2 size(B)) loop
iterations when δ < 1. When δ = 1, we obtain the so-called optimal LLL algorithm. Termination can still
be proven by using different arguments, but with a much larger bound 2Poly(n) · Poly(size(B)) (see [3,17]).
An iterated version of BKZ’2. We consider the algorithm Iterated-BKZ’2 (described in Algorithm 3)
which given as input a basis (bi)i≤n successively applies BKZ’2 to the projected bases (bi)i≤n, (b

(2)
i )2≤i≤n,

. . . , (b(n−1)i )n−1≤i≤n. By using a quasi-linear time Gauss reduction algorithm (see [39,42]) as the HKZ2

algorithm within BKZ’2, Algorithm Iterated-BKZ’2 can be shown to run in quasi-linear time.

Input : A basis (bi)i≤n of a lattice L.
Output : A basis of L.
for k := 1 to n− 1 do

Apply BKZ’2 to the basis (b(k)i )k≤i≤n;
Let T be the corresponding transformation matrix;
Update (bi)i≤n by applying T to (bi)k≤i≤n.

Return (bi)i≤n.
Algorithm 3: Iterated-BKZ’2 Algorithm

Lemma 12. Let B be a basis of an n-dimensional lattice, and ε > 0 be arbitrary. Then, using Algo-
rithm Iterated-BKZ’2, one can compute, in time Poly(n) · Õ(size(B)), a basis (b′i)i≤n such that

∀i ≤ n, ‖b′i
∗‖ ≤ (1 + ε)

(
4

3

)n−i
2

·
( n∏

j=i

‖b′i
∗‖
) 1
n−i+1

. (12)

Proof. We first prove that (12) holds for the output of Iterated-BKZ’2. The remark at the end of Section 5
shows that (12) holds for i = 1 after the first step of the algorithm. The following steps do not modify the
first vector of the basis, nor do they modify the right hand side of (12), hence the inequality holds. Now,
Iterated-BKZ’2 starting from Step 2 is equivalent to applying Iterated-BKZ’2 to the basis (b

(2)
i )2≤i≤n. It

follows from the case i = 1 and a direct induction that (12) holds for all i.
We turn to analyzing the complexity. First, note that HKZ in dimension 2, i.e., Gauss’ reduction, can be

performed in time Õ(size(C)) given basis C ∈ Q2×2 as input (see [39,42]). Standard techniques allow one to
bound the bit-sizes of all the vectors occurring during an execution of BKZ′2 (and hence Iterated-BKZ’2),
by a linear function of the bit-size of the input. This completes the proof. ut

A close analogue of the optimal LLL. Let B = (bi)i≤n an integral basis output by Iterated-BKZ’2.
For i ≤ n, we let pi, qi be coprime rational integers such that pi

qi
=
(
3
4

)(n−i+1)(n−i) · ‖bi∗‖2(n−i+1)Qn
j=i ‖bj∗‖2

. By (12), we

know that pi/qi ≤ (1+ε)n−i+1. Note that pi/qi is a rational number with denominator ≤ 2O(n2+size (B)). We
can thus find a constant c such that, for all i, the quantity |pi/qi− 1| is either 0 or ≥ 2−c(n

2+size (B)). Hence,
if we choose ε < 1

2n .2
−c(n2+size(B′)), all the inequalities from (12) must hold with ε = 0. Overall, we obtain,

in polynomial time and using only swaps and size-reductions, a basis for which (12) holds with ε = 0.

A quasi-linear time LLL-reduction algorithm. BKZ’2 can be used to obtain a variant of LLL which
given as input an integer basis (bi)i≤n and δ < 1 returns a δ-LLL-reduced basis of L[(bi)i≤n] in time Poly(n)·
Õ(size(B)). First, we apply the modification from [18, p. 25] to a terminated BKZ’2 so that the modified
algorithm, when given as input an integer basis (bi)i≤n and ε > 0, returns in time Poly(n) · Õ(size(B)) a
basis (b′i)i≤n of L[(bi)i≤n] such that ‖b′1‖ ≤ (1 + ε)2(4/3)n−1λ1(L). The complexity bound holds because
the transformation from [18, p. 25] applies BKZ’2 n times on bases whose bit-sizes are Poly(n) · Õ(size(B)).

We iterate this algorithm n times on the projected lattices (b(k)i )k≤i≤n so that the output basis (ci)i≤n
of L[(bi)i≤n] satisfies:

∀i ≤ n, ‖ci∗‖ ≤ (1 + ε)2(4/3)n−iλ1(L[(b
(i)
j )i≤j≤n]). (13)
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It follows from inequalities and the size-reducedness of (ci)1≤i≤n that size(C) = Poly(n) · size(B).
We call δ-LLL’ the successive application of the above algorithm based on BKZ’2 and LLL with param-

eter δ. We are to prove that the number of loop iterations performed by δ-LLL is Poly(n).

Theorem 3. Given as inputs a basis B ∈ Zn×n of a lattice L and δ < 1, algorithm δ-LLL’ algorithm
outputs a δ-LLL-reduced basis of L within Poly(n) · Õ(size(B)) bit operations.

Proof. With the same notations as above, it suffices to prove that given as input (ci)i≤n, algorithm δ-LLL
terminates within Poly(n) · Õ(size(C)) bit operations. Let (c′i)i≤n be the output basis. As size-reductions
can be performed in time Poly(n) · Õ(size(C))), it suffices to show that the number of loop iterations
of δ-LLL given (ci)i≤n as input is Poly(n). To do this, it suffices to bound Π((ci)i≤n)

Π((c′i)i≤n)
by 2Poly(n).

First of all, we have λ1(L[(c
(i)
j )i≤j≤n]) ≤ λi(L), for all i ≤ n. Indeed, let v1, . . . ,vi ∈ L be linearly

independent such that maxj≤i ‖vj‖ ≤ λi(L); at least one of them, say v1, remains non-zero when projected
orthogonally to Span(cj)j<i. We thus have λ1(L[(c

(i)
j )i≤j≤n]) ≤ ‖v1‖ ≤ λi(L). Now, using (13), we obtain:

Π((ci)i≤n) =
n∏

i=1

‖ci∗‖2(n−i+1) ≤ 2O(n3)
n∏

i=1

λi(L)
2(n−i+1).

On the other hand, we have (see [16, (1.7)]) λi(L) ≤ maxj≤i ‖c′j‖ ≤ ( 1√
δ−1/4

)i−1‖c′∗i ‖, for all i ≤ n. As
a consequence, we have Π((c′i)i≤n) ≥ 2−O(n3) ·∏n

i=1 λi(L)
2(n−i+1). This completes the proof. ut
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A Bounding the number of tours in the original BKZ algorithm

A bound (nβ)n is claimed in [9]. The authors kindly explained to us how to prove a similar upper bound.
We give the proof, for the sake of completeness.

First, note that during the execution of BKZ (Algorithm 1), the basis (b
(k)
i )k≤i≤min(k+β−1,n) given as

input to the SVP solver is always LLL-reduced. Now, we modify the call to LLL following the call to the

18



SVP, as follows. If the SVP solver did not find a sufficiently short vector (i.e., δ ·‖b∗k‖ ≤ ‖b‖ in Algorithm 1),
then we proceed as in Algorithm 1. Otherwise, we first call LLL on b, b(k), b(k)k , . . . , b

(k)
min(k+β−1,n) to remove

the linear dependency, we apply the appropriate transformation matrix to b1, . . . , bn, and then we call LLL
again on the vectors b1, . . . , bmin(k+β,n).

Suppose the call to the SVP solver is successful. The modification above ensures that the projected
basis b(k)k , . . . , b

(k)
min(k+β−1,n) is reduced both before the call to the SVP solver and before the second call to

LLL. Furthermore, by a standard property of LLL, the vector found by the SVP solver is the first vector
of the basis before the second call to LLL. Overall, the effect on the ‖b∗i ‖’s of a call to the SVP solver and
the first call to LLL is as follows:

• ‖b∗k‖ decreases by a factor ≤ δ,
• ‖b∗j‖ remains constant if j 6∈ [k,min(k + β − 1, n)],
• ‖b∗j‖ does not increase by a factor ≥ 2β if j ∈ [k+1,min(k+β−1, n)] (because the former and new ‖b∗j‖’s

approximate the successive minima of L[(b(k)i )k≤i≤min(k+β−1,n)] (see, e.g., [6, Th. 18.12.1]).

To conclude, consider the quantity
∏
i≤n ‖b∗i ‖

[ 3β
log(1/δ)

]n−i+1

. From the above, it always decreases by a
factor ≤ 1

2 during a successful call to the SVP solver followed by the first call to LLL. It also always
decreases during a LLL swap (see [16]). Finally, it never increases during the execution of BKZ. As the
input and output bases of BKZ are LLL-reduced, it always belongs to the interval


∏

i≤n
(λi2

−n)[
3β

log(1/δ)
]n−i+1

,
∏

i≤n
(λi2

n)
[ 3β
log(1/δ)

]n−i+1


 ,

where the λi’s are the successive minima of the lattice under scope. This implies that the number of calls
to the SVP oracle is O(β)n. ut

B Improving the constant 3
2

in Theorems 1 and 2

Theorem 1 asserts the following bound on the output of the modified BKZ algorithm:

‖c1‖ ≤ 2(νβ)
n−1

2(β−1)
+ 3

2 · (detL)
1
n .

We show that that there exists a universal (and efficiently computable) constant K such that for sufficiently
large β and n ≥ β, we have:

‖c1‖ ≤ K · β
n−1

2(β−1)
+ 1−ln 2

2 · (detL)
1
n .

The base β of the power could be replaced by αβ (α < 1) provided that νβ < αβ holds for sufficiently
large β.

Proof. In the present work, we only used the facts that νn is an upper bound on the Hermite constant and
that νn ≤ νn+1. Since νn ≤ n, the proofs also hold with νn replaced by n.

Let y1 = 0 and yi+1 =
1
i

∑i
j=1 yj +

i+1
2i log(i+ 1) for i ≥ 2. We have:

yi+1 − yi =
1

i

i−1∑

j=1

yj +
i+ 1

2i
log(i+ 1)− i− 1

i
yi

=
1

i

i−1∑

j=1

yj +
i+ 1

2i
log(i+ 1)− i− 1

i


 1

i− 1

i−1∑

j=1

yj +
i

2(i− 1)
log i




=
i+ 1

2i
log(i+ 1)− 1

2
log i

=
1

2
(log(i+ 1)− log i) +

1

2i
log(i+ 1).
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Let (b1, . . . , bn) be an BKZ-reduced basis and xi = log ‖b∗i ‖. Wlog, we may assume that ‖b∗n‖ = 1.
Under the SMA, we have xi = yn−i+1 for all i ∈ [n − β + 1, n]. We proceed as for Lemma 5: we compute
upper and lower bounds for any fixed point (xi)i of the dynamical system x← A ·x+ g. It then suffices to
combine them, as in the proof of Theorem 2.

A lower bound on xi. We prove by induction on i = n− β + 1, . . . , 1 that we have:

∀i ∈ [1, n− β + 1], xi − xn−β+1 ≥
(
n− i
β − 1

− 1

)
log β.

This trivially holds for i = n−β+1. As in the proof of Lemma 5, we now consider i ∈ [n− 2(β− 1), n−β],
for which we have (Eq. (6)):

xi =
β

2(β − 1)
log β +

1

β − 1

( n−β∑

j=i+1

xj +

i+β−1∑

j=n−β+1

xj

)
. (14)

The following sequences are concave:

• (yk)1≤k≤β : It suffices to show that yk+1 − yk = 1
2(log(k + 1) − log k) + 1

2k log(k + 1) is non-increasing;
For k ≥ 3, both (log(k+1)− log k) and 1

2k log(k+1) are non-increasing; It can be checked by hand that
y4 − y3 ≤ y3 − y2 ≤ y2 − y1.
• (yβ−k+1)1≤k≤β : By symmetry.
•
(
1
k

∑k
j=1 yβ−j+1

)
1≤k≤β

: See [41, Le. 5] for example.

• (zk)k∈[1,β] defined by zk = 1
k

∑n−β+k
j=n−β+1 xj : This is a simple translation of indices.

Since (zk)k is concave, we obtain

zk ≥ z1 + (zβ − z1)
k − 1

β − 1
= xn−β+1 −

log β

2
· k − 1

β − 1
= xn−β+1 −

log β

k
·
k∑

j=1

j − 1

β − 1
. (15)

Using the previous equation with k = i+ 2β − n− 1 gives:

1

i+ 2β − n− 1

i+β−1∑

j=n−β+1

xj ≥ xn−β+1 +
log β

i+ 2β − n− 1

i+β−1∑

j=n−β+1

(
n− j
β − 1

− 1

)
. (16)

Using the induction hypothesis (on each xj for j ∈ [n− β + 1, i+ β − 1]), we also have:

1

n− β − i

n−β∑

j=i+1

xj ≥ xn−β+1 +
log β

n− β − i

n−β∑

j=i+1

(
n− j
β − 1

− 1

)
. (17)

Then, we plug (16) and (17) into (14). The end of the proof is similar to that of Lemma 5 (where the
constant 3

2 is replaced by 1).

An Upper bound on xi. Starting from the equation yi+1 − yi = 1
2(log(i + 1) − log i) + 1

2i log(i + 1), we
obtain:

yi =
1

2
log i+

i∑

j=2

log j

2(j − 1)

=
1

2
log i+

i∑

j=2

(
log j

2j
+

log j

2j(j − 1)

)

≤ 1

2
log i+

∫ i

x=1

log x

2x
dx+ C1

≤ ln 2

4
log2 i+

1

2
log i+ C2,
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for some universal constants C1 and C2.
Let f(x) = ln 2

4 log2 x+ 1
2 log x. Let I = [exp(1), β]. As f is concave on I, we have f(x) ≤ f(β2 )+f ′(

β
2 )(x−

β
2 ) for all x ∈ I (for sufficiently large β). We have f(β2 ) ≤ f(β)− ln 2

2 log β +C3 and |f ′(β2 )−
log β
β−1 | ≤ C4

β for
some universal constants C3, C4. Since x 7→ log2 x is continuous and bounded on [1, exp(1)], we obtain, for
any x ∈ [1, β]:

f(x) ≤ f(β)− ln 2

2
log β +

log β

β − 1
(x− β

2
) + C5

= f(β) +
log β

β − 1
(x− β) + 1− ln 2

2
log β + C6,

for some universal constants C5, C6. The same holds for the yi’s (for i ≤ β), as yi ≤ f(i) + C2:

yi ≤ yβ +
log β

β − 1
(i− β) + 1− ln 2

2
log β + C7,

for some universal constant C7.
A change of variable gives the following inequality on the xi’s for i ≥ n− β + 1:

xi − xn−β+1 ≤
(
n− i
β − 1

− 1 + ln 2

2

)
log β +O(1).

It can be proved by induction that it also holds for all i ≤ n (as in the first part of the proof of
Lemma 5). ut

C Additional details for the proof of (9)

Using the following explicit value for P−1

P−1 =




1
−1 2
−2 3

. . . . . .
−n+ 1 n



,

it can be checked that:

Ã
(α)
ij =





1 if i = j with i < α or i ≥ α+ β − 1
α−1
i

(
1− i−α+1

β

)
if i ∈ [α, α+ β − 2] and j = α− 1

(α+β−1)(i−α+1)
βi if i ∈ [α, α+ β − 2] and j = α+ β − 1

0 otherwise,

g̃
(α)
i =

{
β−i+α−1

i logΓβ(i− α+ 1) if i ∈ [α, α+ β − 2]
0 otherwise.

If i ≤ α− 1 or i ≥ α+ β − 1, then µ(B
(α))

i = (Ã(α) ·µ(B(α−1)) + g̃(α))i = µ
(B(α−1))
i . If α ≤ i ≤ α+ β − 2,

we have (noting µ(B)
I = 1

|I|
∑

i∈I log ‖b∗i ‖ for any I ⊆ [1, n]):

iµ
(B(α))
i = (α− 1)µ

(B(α))
α−1 + (i− α+ 1)µ

(B(α))
[α,i]

≤ (α− 1)µ
(B(α−1))
α−1 + (β − i+ α− 1) logΓβ(i− α+ 1) + (i− α+ 1)µ

(B(α−1))
[α,α+β−1]

= (1− i− α+ 1

β
)(α− 1)µ

(B(α−1))
α−1 + (β − i+ α− 1) logΓβ(i− α+ 1) +

(α+ β − 1)(i− α+ 1)

β
µ
(B(α−1))
α+β−1 .

This completes the proof of (9). ut
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ubx|~W�HvH°5���³°LvH�zt¡�µ~�} y|�5t
²;~Hx|��y��¡vH�zt¶�wv�x��5}5th�z��~W�2y|�Lt¶vHu5u5x|~¡·b�g{#v�y|t¶qb�5~Hxzy|th��y¸ th�Vy|~Wx
¹ºx|~�°L��th{'��}��z~H{1t���yzx|�5�Vy|�5x|th�»�gv�yzy|�g�Vth�h�T�¡vH����t¡�»�F�bt¡vH�º�gv�yzy|�g�Vth�h�T��}w�btVx
y|�5t�vW�z�z�L{1uby|�g~H}dy|�wv�yoy|�Lt<�gvWyzy|tMx;���otV·buZ~H}Lth}ey|�gvH�����1�wv�x��Ay|~��z~����lt>th�lth}d²<��y|�#v
�e�wvW}ey|�L{��h~�{1u5�5y|tVx¡��²;t�vH���L��th�lt�m;¹T�<�¼�zth�h�5x|��y½�1vH��vH��}L��y<�z�5°ZtV·buZ~�}5th}ey|�FvW�ZvWyz�
y�vW�M¤C�h�L²<��y|�¿¾[�e�wvW�z����À�~Hu5y|��{#vH�fvH���b{1uby|~Hy|���
uZtVxz�]~Wx|{#vH}5�ht�Áw��� n �g�<y|�Lt
�ztV�h�5x|��y��uLvWx�vH{1tMy|tVx¡�w°Z~Wy|�µ¤ltV�b��v�x|t�~W�)°L��yz�¼�gtV}L�Hy|� eO(n) vH}L�³y|�Lt�vH{1~Wxzy|��Âht¡�µ�h~���y|��~H�°Z~Wy|�1th}L�Vxz�buby|�g~H}#vH}L�1�5th�Vxz�buby|�g~H}1vWx|t eO(1) uZtVx�{1th�z�|vH�Ht�°5��y¡�CÃ��5x��h~H}L��yzx|�L�M�y|��~�}�vH�LvHuby|�>y|�5t
yzx�vHuP�5~e~Wx�~H}LtV�[²�vh� �X�L}5�Vy|��~�}µ~H�oÄ�th}eyzxz�¿ÅMÆ>Ç�ÈgÉ¢¾¼q5£<Ã
m�Ê ��Ë�ÀM�
°LvH�zt¡�³~H}�y|�5t
Ìft¡v�x|}L��}L���Í��y|� Îºxzx|~Hx|�<u5x|~H°L��th{ �ey|~d��yzx|�5�Vy|�5x|t¡�#�gvWyzy|���hth�h�ZÃ��5x
{#vW�g}�y|th���L}L���¡vW�)y|~e~H���Av�x|t#vH}¿vH�LvHuby�vWy|��~�}�~H�<�2Ï�y�vH�ÐÊ ��yzx�vHuP�5~e~Wx¶¤ltV�»��tV}LtVx�v��
y|��~�}�vW�g�H~Hx|��y|�L{:¾Ð¥zm;��Ìf¹<Ê  H lÀ�vW}w�»vdx|tV�¼��}Cy|tMx|u5x|tVy�v�y|�g~H}»~H��p�th�Hth�ZÊ ���e�wvW}Cy|�5{
x|t¡�b�L�Vy|��~H}Ñ°ZtMy�²;tVth}�y|�Lt�Òo~��5}w�bt¡��s�����y�vH}5�ht�s�th�h~C�5��}5��ubx|~�°5�gtV{:vW}w���|vH{d�
u5�g��}5�d�z�L~Wxzy��gv�yzy|�g�Vt¶��th�Vy|~Hx|�h�

Ó ÔLÕ>ÖZ×PØ
Ù�Ú¶Û¢ÖPÜ|Ø>Õ
Ý)@eKMKMD]Þ�EWß�àT@5_�E�\©ÞWáMâwãZK U jbáh@CãTNLâdNT@5_oàfEHEWG áV@bãPD]\ZOFâ#\PEWäbEHO U ãPDXGPj�DXG³KMNPE�O]@b_�K;Y[EWk´âbEH@báV_ R DFGZß_�ãPDXáVEH\1àwâdKMNTE�àPáVEH@baLKMNPá U `Pj5N1áME�_�`TOgK U Yfå<æzKV@CDwDXG!ç�èbè5édêFçWë R k
N U Þ U GT_|KVáM`fÞ¡KME�\#@ U GPE�ß�k�@lâY[`PGTÞ¡KVD U G#k
DFKMN�@lä5EWáh@Cj5E�ßzÞW@b_ME�_MEHÞW`PáVDgK|âAãPá U äl@bàPOXâ¶áVEWO]@eKME�\dK U KMNPE�k U áV_�K�ßzÞW@5_�E<Þ U B ãPOXE�ìZDgK|â
U YºNT@Cáh\ O]@eK�KVDXÞWE�ãPá U àPOXEWBµ_Hí5c�NPE�@eK�KVáV@5Þ¡KVDFä5EWGPE�_M_ U YºOX@CK�KMD]Þ�EWß�àf@b_MEH\ Þ�áVâwãZK U jbáh@CãPNwâ©_�KMEHB _Y[á U B�DFKV_»ãTá U äe@CàTOFE¿_MEHÞ�`TáMDFK|â±jb`f@Cáh@CGLKMEHEH_ R k�EWOXO¶_�KM`T\PDFE�\´KMNPE U áVE�KMD]ÞW@bO
`PGT\ZEHáMãTDFGPGTDFGPjL_ R_�DXB ãPOFD]Þ�DFK|âî@bGT\îã U KMEWGLKVDX@bO�E�ï»Þ�DXEWGTÞWâñð¼å<æzKV@bD½ò _ U GPE�ß�k�@lâ�Y[`PGfÞ¡KMD U GóD]_1@�B @CKMáVDgìwß�äbE�Þ¡K U áB©`POFKMDXãPOXDXÞH@eKMD U G U äbEHá1@!_MBµ@COXO;ôTGPDFKME ôTEHOX\Tõ R @CGf\Ñ@CO]_ U KVNPEµ@CãPãf@CáVEWGLKd_MEHÞW`PáVDgK|âJ@bj5@CDXGT_�K
ö `f@CGLKM`PB÷@eKMKV@5Þhaw_Hífc�NTE#Bµ@CDXGÑÞ U B³ãTOFEWìwDFK|â�@b_V_�`PB ãZKVD U G¿DX_�KMNPE�NT@Cáh\ZGPE�_M_ U Y>@CãTãPá U ìZDFßB @CKME�äbEWáh_MD U GT_ U YºKVNPEAIwN U áMKMEH_�K>ø�E�Þ¡K U á>ù<á U àTOFEHB÷ð SVP

õ¡íwc�NPE
GapSVPγ(n)

ãPá U àPOXEWBÞ U Gf_�D]_|Kh_
DXG R j5DFä5EWG¿@ OX@CK�KVDXÞWE U Y<\ZDXB EWGT_MD U G n
@bGT\¿@µ_VÞW@CO]@Cá

d R áVEWãPOXâwDFGTj ú�û�I�DFY;KMNPEHáMEE�ìZDX_�KV_�@�G U GZß�üHEWá U O]@eKMKMD]Þ�E
äbE�Þ¡K U á U YfG U áVB ≤ d
@CGf\�ýdþ7DFY.@bOFOwG U GZß�üHEWá U O]@eKMKMD]Þ�E�äbE�Þ¡K U áh_NT@läbE³G U áVB ≥ γ(n)d

í)c�NPE»Þ U B ãPOXE�ìZDFK|â U Y GapSVPγ(n)

DXGTÞ�áVEH@5_�E�_Ak
DgKVN
n R àT`ZK©\ZE�ßÞ�áVEH@b_MEH_>k
DgKVN

γ(n)
íZå¶OgKVN U `Pj5NµKMNTE�O]@eKMKMEWá�D]_>à¢EWOXDXEWäbE�\µK U à¢E�EWìwã U GTEWGLKMD]@CO¢DFG n

Y U á�@CGwâã U OFâwG U B³D]@CO γ(n) R B DXGPDXB³DXüWDXGPj©KMNPE¶\PEWjbáVEWE U Y γ(n)
DX_>äbEHáMâ�DFB ã U áMKV@CGLK>DXG»ãPáh@bÞ�KMD]Þ�E R K U@COXO U k�KVNPE1`T_ME U Y;@ ãPáV@5Þ¡KVDXÞH@COº\ZDXB³EHGT_MD U G n

Y U á�@³jbDXäbEHG�_MEHÞW`PáVDgK|âµOXEWä5EWO�í



ÿ����������	��
���������������������������������	 !���"�#��$��&%�c�NTE¿ôTáh_|K»ãPá U äe@CàPOXâñ_MEHÞW`PáME�O]@eKMKMD]Þ�E�ßàT@b_MEH\#ÞWáMâwãZK U _MâZ_|KVEWB k�@5_2ãPá U ã U _MEH\#àLâ1å<æzKV@CDZ@bGT\©?�k U áMa³ê 'eë R @bGT\1áVEWOXDFE�\ U G³@�äe@CáVD]@CGLK
U Y GapSVP

DXG�@báMàPDFKMáh@CáVâ OX@CK�KVDXÞWEH_1ð[DFK�D]_�G U k awG U k
G�K U @CO]_ U áVEWOXâ U G GapSVP
êXçHèCëÐõ�í

Iw`PàT_ME ö `PEHG5K»k U áVaZ_©ãTá U ã U _�E�\ñB U áVE�E�ï»Þ�DXEWGLK»@COFKMEHáMGf@eKMDXäbE�_�ê '(' R '() R è R�*!+ ë�í�c�NPEJÞW`PáMßáMEHG5Kµ_�KV@eKVE U Y�KMNTE�@bá�K�ê è R�*,+ ë�D]_ @î_VÞhNPEHB³E!k
DgKVN ãT`PàPOXDXÞ.-lãPáVDFäe@CKME�a5EWâÍOXEWGPjbKMN Õ(n2)@CGT\�EHGTÞ�áVâwãZKMD U G	-C\ZEHÞWáMâwãZKVD U G�KMNPá U `Pj5NPãP`ZK U Y Õ(n)
àPDFK U ã¢EWáh@eKVD U GT_
ã¢EWá�B³E�_M_V@Cj5E1àPDFKHí/�KV_¶_MEHÞW`PáVDgK|â�áMEHOFDXEH_ U G�KMNTE ö `T@CGLKV`PB�k U áh_�K�ßzÞW@b_MEANT@Cáh\ZGPE�_M_ U Y GapSVP eO(n1.5)

DXGJ@CáMß
àPDgKVáV@báMâ�OX@CK�KMD]Þ�E�_WíPc�NTE#_�E�Þ�`PáVDgK|â!ÞW@CG�à¢E©\ZE�ß ö `T@CGLKV`PB DFüHEH\�@eK�KMNPE©E�ìZãfEHGT_ME U Yoà U KVN�DFGZßÞ�áVEH@b_MDXGPj

γ(n)
@CGT\!\ZEHÞWáME�@b_MDFGPj©KMNPEdEWïµÞWDFEHGTÞ�â RwU á�áMEHOFâwDXGPj U G!@�GPEWk @CGT\�OFE�_M_�_�KM`T\PDFE�\ãPá U àPOXEWB�ê *,+ ë�í#/zGÍãf@Cáh@COXOFEHO;K U KMNTE»ãPá U äl@bàPOXâJ_�E�Þ�`PáVE»_MÞhNTEWB EH_ R KMNPEHáMEµNf@läbEµ@CO]_ U à¢EWEHGNPEW`PáVD]_|KVDXÞ�ãPá U ã U _M@bOX_»êFç5ç R ç * ë�í0/zG±ãT@bá�KVDXÞW`PO]@Cá R `PGPOXDXabE»KVNPE!@bà U ä5E�_VÞhNPEWB EH_©k
NPD]ÞhN±`T_ME`PGT_�KMáV`TÞ¡KV`PáME�\ñáh@CGf\ U B O]@eKMKMD]Þ�EH_ R KMNPE¿ý�c S21 EHGTÞ�áVâwãZKMD U G´_MÞhNTEWB EîêXç * ë
E�ìZãPO U DFKV_³KMNTEãPá U ãfEHá�KVDFE�_ U Y43658769:;589"7�<�=0O]@eKMKMD]Þ�E�_#K U @bÞhNTDFEHäbE»NPDXjbN E�ï»Þ�DXEWGfÞ�âók
DgKVNñáVEH_MãfE�Þ¡K�K U abEWâOFEHGPjCKVNÑð

Õ(n)
àPDFKV_hõ�@CGT\µEHGTÞ�áVâwãZKMD U G�-e\ZE�Þ�áVâLãPKMD U G»Þ U _|Kdð Õ(1)

àPDgK U ã¢EWáh@eKVD U GµãfEHá�B E�_|ß_M@bjbEdàPDFKhõ¡í 1 GZY U á�KV`PGT@CKMEWOXâ R DgKh_¶_MEHÞ�`TáMDFK|â»áVEWBµ@CDXGT_�NPEH`PáMD]_�KMD]Þ1@CGT\�DFK�k�@5_
@CG�DXB³ã U áMKV@bGLK
U ã¢EWG¿ÞhNT@COXOXEWGPj5E¶K U ãTá U äwD]\ZE1@�ãTá U äe@CàTOFâ»_MEHÞW`PáME1_VÞhNPEWB Edk
DFKMN¿Þ U B³ãf@Cáh@CàPOXE�EWï»Þ�DXEWGTÞWâbí>? �$	@!���	�A��B���	�0 #�CB��	D0��E?���GF� 	$�EIH����"����ÿ&�����#���	��(%KJ¿DXÞHÞ�D]@CGTÞWD U ê * )Cë�DFGLKVá U ß\Z`TÞ�E�\»KVNPE1Þ�O]@b_V_ U Yo_�KMáV`TÞ�KM`PáVEH\L:NM!:;OQPR:dO]@eKMKMD]Þ�EH_ R k
NPD]ÞhN!Þ U áVáME�_�ã U GT\»K U DX\PEH@CO]_�DFG�ã U OXâ5ßG U B D]@COAáMDXGPj5_ Z[x]/(xn − 1) R @bGT\�ãPáVEH_MEWGLKME�\7KMNTEîôfáV_�K!ãPá U äe@CàPOXâ7_�E�Þ�`PáVE U GPE�ß�k�@lâY[`PGTÞ¡KVD U G¿àT@b_MEH\ U G�KMNPE#k U áh_�K�ßzÞW@b_MEANT@Cáh\ZGPE�_M_ U Y�KVNPE#áVEH_�KMáVDXÞ�KMD U G U Y Poly(n)

ß
SVP

K UÞ�âZÞ�OXDXÞ#OX@CK�KMD]Þ�E�_Wíoð¼c�NPE©ãPá U àPOXEWB γ
ß
SVP

Þ U GT_MDX_�KV_¶DFGJÞ U B ãP`ZKVDFGPj!@ G U GZß�üWEHá U ä5EHÞ¡K U á U Y@¿jbDXäbEHGÍOX@CK�KMD]Þ�E R k
N U _�E�G U áVB D]_�G U B U áVE KMNT@bG γ
KVDFB E�_©O]@CáVjbEWá#KMNT@bGóKMNPE!G U áVB U Y@î_MN U áMKME�_|K G U GZß�üHEWá U O]@eKMKMD]Þ�E�äbE�Þ¡K U áHí�õ�å�K³KVNPE¿_M@bB E�KVDFB E R KVNT@CGTaw_�K U DFKV_µ@bOFj5EWàPáh@CD]Þ_|KVáM`TÞ�KM`PáVE R KMNPD]_ U GPEWß�k�@lâ#Y[`PGfÞ¡KMD U G�EWGeæ U âZ_<NTDFj5NµE�ï»Þ�DXEWGTÞWâµÞ U B ãT@báV@bàPOXE�K U KVNPE�ý�c SK1_MÞhNPEHB Eîð

Õ(n)
EHäe@COX`T@eKVD U GÍKMDXB E�@bGT\ñ_�K U áV@bjbE�Þ U _�Khõ¡í�Iw`Pàf_�E ö `TEWGLKMOXâ R Ý2âw`Pàf@b_MNPEWäZ_MaLâ@CGT\GJ¿D]ÞWÞWDX@bGTÞ�D U êXç.S�ë�@CGT\óDXGT\ZEHãfEHGT\ZEWGLKVOFâ0ù;EWDXabEWáMK�@bGT\ S
U _MEWG7ê * èCë�_�N U k�E�\îN U k K UB U \ZDFY[âTJJDXÞHÞ�D]@CGTÞWD U ò _�Y[`PGTÞ�KMD U G!K U Þ U GT_�KMáV`TÞ¡K�@CG�E�ï»ÞWDFEHG5K�@bGT\�ãTá U äe@CàTOFâµ_MEHÞ�`TáME1Þ U OFOXDFß_�D U G�áME�_�D]_�KV@CGLK�NT@b_MN!Y[`PGTÞ¡KVD U G2í�U U á�KMNTDX_ R KMNTEWâ�DXGLKMá U \Z`TÞ�E�\»KVNPE1B U áVEdjbEWGTEWáh@COºÞ�O]@b_V_ U YPR=!<AVWOCO]@eKMKMD]Þ�E�_ R k
NTDXÞhN»Þ U áVáME�_�ã U GT\#K U D]\ZE�@CO]_�DFG ã U OXâwG U B D]@COPáVDFGTj5_ Z[x]/f(x)

í5c�NTE¶Þ U OgßOFD]_�D U GµáVEH_MD]_|Kh@CGTÞWE
áMEHOFDXEH_ U G KMNTE�NT@Cáh\ZGPE�_M_ U YºKMNTE�áME�_|KVáMD]Þ¡KVD U G U Y Poly(n)
ß
SVP

K U D]\ZEH@bOOX@CK�KMD]Þ�E�_ ð¼ÞW@bOFOXEH\ Poly(n)
ß
Ideal-SVP

õ¡í2c�NPE @läbEHáV@bjbE�ßzÞW@5_�E1Þ U OXOFD]_�D U GPß½ôTGf\ZDFGTj!ãPá U àTOFEHBDX_�@AGT@CKM`Páh@COZÞ U B ãP`ZKV@CKMD U GT@bOwãPá U àPOXEWB ÞW@bOFOXEH\ Ideal-SIS R k
NTDXÞhN³NT@b_oà¢EWEHG _MN U k
G©K U àfE@b_�NT@Cáh\Ñ@5_�KVNPE k U áV_�K�ßzÞW@5_�E1DXGT_�KV@CGfÞ�EH_ U Y Ideal-SVP
í.ù<á U äe@CàPOXâJ_MEHÞ�`TáME�E�ï»Þ�DXEWGLK1_�DXjCßGT@eKV`PáMEµ_VÞhNPEWB E�_AY[á U B DX\PEH@CO�O]@eKMKMD]Þ�E�_1NT@läbE @CO]_ U à¢EWEHGîãTá U ã U _�E�\ñêXç +TR çYX R ç�é R ç�ZCë R àP`ZKÞ U Gf_|KVáM`TÞ�KMDXGPj�E�ï»Þ�DXEWGLK#ãPá U äe@CàPOXâJ_MEHÞ�`TáME ãP`PàTOFD]Þ abEHâJEWGTÞWáMâwãZKVD U GÑY[á U B DX\ZE�@CO�O]@eKMKMD]Þ�EH_k�@5_
@CG�DFGLKMEHáME�_|KVDFGTj U ãfEHG!ãTá U àPOFEHB�í[ �0 \ #����0�6�0�!%�]îE�\ZE�_MÞWáMDXàfE�KMNPE�ôTáh_�K�ãPá U äe@CàPOXâG^�ùºå�ß�_MEHÞW`PáME�ãP`PàTOFD]Þ�a5EWâóEWGfÞ�áVâLãPßKMD U G¿_MÞhNTEWB Edk
N U _MEA_MEHÞW`PáVDgK|â»áVEWOXDXEH_ U G!KMNTE1NT@Cáh\ZGPE�_M_ U Y�KMNPE1k U áh_�K�ßzÞW@b_ME¶DXGT_�KV@bGTÞ�E�_ U Y

Õ(n2)
ß
Ideal-SVP

@bj5@CDXGT_�K©_�`TàfEWìwã U GTEWGLKMD]@CO ö `f@CGLKM`PB @CK�KV@5ÞhaZ_Wí0/�K @bÞhNPDXEWä5EH_#@5_�âwB ãZß
K U KVDXÞH@COXOFâ U ãZKVDFBµ@CO�EWï»Þ�DXEWGTÞWâ	_2KMNPE ãP`PàTOFD]ÞY-eãPáMDXäe@eKVE³a5EWâJOXEWGTjCKMNóD]_ Õ(n)

àPDFKV_1@bGT\îKMNPE
@CB U áMKMDXüWE�\ EHGTÞ�áVâwãZKMD U G�-e\ZE�Þ�áVâLãPKMD U G7Þ U _�K»D]_ Õ(1)

àPDFK U ã¢EWáh@eKVD U GT_ ã¢EWá�B E�_M_V@Cj5E�àTDgKð[EWGfÞ�áVâLãPKMDXGPj
Ω̃(n)

àPDFKV_¿@CK U GTÞWE R @eKJ@ Õ(n)
Þ U _|K¡õ¡í�þ�`Pá¿_MEHÞW`PáMDFK|â�@b_V_M`PB ãZKMD U G DX_KMNT@CK

Õ(n2)
ß
Ideal-SVP

ÞW@bGPG U K³àfE�_ U OFä5EH\óàwâÍ@CGwâÍ_�`TàfEWìwã U GTEWGLKMD]@CO>KMDXB³E ö `T@CGLKV`PB@COXj U áVDFKMNPB R k
NPD]ÞhN!D]_
áVEH@5_ U GT@CàPOXEAjbDXäbEWG�KMNPE�_|Kh@eKMEWß U YÐß½KVNPE1@CáMK
OX@CK�KMD]Þ�E1@bOFj U áVDgKVNPBµ_dê '5éeë�íý U KVEµKMNf@eK©KVNPD]_#D]_©_�KMá U GPj5EWádKMNf@CG±_�KV@CGf\P@Cáh\0ãP`PàPOXDXÞ�abEHâîÞ�áVâwãZK U jbáh@CãPNwâÑ_MEHÞW`PáVDgK|â0@b_�ß



_�`PB ãZKVD U GT_Hí�þ�GñKVNPE U KMNTEWá NT@CGf\ R Þ U G5KVáV@báMâ0K U B U _|K U YAãP`PàPOXD]Þ!a5EWâ±ÞWáMâwãZK U jbáh@CãTNLâ ROX@CK�KMD]Þ�EWß�àf@b_MEH\JÞWáMâwãZK U jbáh@CãTNLâ!@COXO U k�_�_�E�Þ�`PáVDgK|â¿@bj5@CDXGT_�K�_M`PàfEWìZã U GPEWGLKMD]@CO ö `T@CGLKV`PB @eK�ßKV@bÞhaZ_Hífþ�`Pá�Bµ@CDXG!KVEHÞhNPGTDXÞH@CO.K UwU OºDX_
@³áVE�ß�DFGLKMEHáMãTáMEWKV@eKVD U G U Y S EHjbEWä.ò _ ö `f@CGLKM`PB�áME�\Z`TÞ�ßKMD U G�ê '('eëZà¢E�K|k�EWEWG³KVNPEa` U `PGT\PEH\³?¶D]_|Kh@CGTÞWE�?¶E�Þ U \ZDXGPjdãPá U àPOXEWB ð BDD
õ;@CGT\ _V@CB ãPOXDFGTj

_�N U á�K�O]@eKMKMD]Þ�E
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1 (L̂) ¸�¹ <�kVWºW< DL,s(x) ≤ 2−n+1 »



£&��¤¥¤¥�m©¼§N¨ª©	©#¬a£~��¤¤¥��©0¡R¦"½®t³.¡}¾KPgºW<Nf¿V,f
n ¶ =,Pgxµ<;f�36PRnWf�VWO2OqVW5·5·PR:�< L ¸?¹ <Àk�V,º.<

Prx∼DL,s [‖x‖ > s
√

n] ≤ 2−n+1 »
ÁN���������R���;���8�!�� (¡�/|\ZE�@COoOX@CK�KMD]Þ�E�_d@CáVE�@�_�`Pàf_�EWK U Y<OX@CK�KMD]Þ�E�_Ak
DgKVNÑKVNPE³Þ U B ãP`ZKh@eKVD U GT@COXOFâDFGLKMEHáME�_|KVDFGTj�ãPá U ã¢EWáMK|â U YTà¢EWDXGPjdáVEWO]@eKME�\1K U ã U OXâwG U B D]@CO]_)äwD]@�_�KMáV`TÞ¡KV`PáVEH\#Bµ@CKMáVDXÞWEH_Hílc�NTE
n
ß�\ZDXB EWGT_MD U GT@bO�äbEHÞ�K U á�ß�Bµ@eKMáVDFìJãPá U \Z`fÞ¡K�Þ U _�KV_ Õ(n)

@CáVDgKVNPB E�KMD]Þ U ã¢EWáh@eKVD U GT_dDXGT_|KVEH@5\
U Y O(n2)

íLÝ2E�K
f ∈ Z[x]

@1B U GTDXÞ
\ZEHjbáVEWE n
ã U OFâwG U B DX@bO½í!U U á>@bGwâ g ∈ Q[x] R KVNPEWáVE�D]_<@`PGPD ö `TE�ãT@bDFá (q, r)

k
DFKMN
deg(r) < n

@CGf\
g = qf + r

í"]îE1\ZEHG U KVE r
àLâ

g mod f
@CGT\

DX\ZEHGLKMDFY[â
r
k
DgKVN KMNPE¶äbEHÞ�K U á r ∈ Qn U Y.DgKh_>Þ U EWï»Þ�DXEWGLKV_Hí,]0E¶\ZE�ôfGPE rotf (r) ∈ Qn×n @5_KMNPE�B @CKMáVDgì k
N U _�E�á U k�_<@báME�KVNPE xir(x) mod f(x)

ò _ R Y U á 0 ≤ i < n
í!]0E¶EWìwKMEWGf\ KMNT@CK

G U Kh@eKMD U G»K U KVNPE¶Bµ@CKMáVDXÞWEH_ A U äbEHá Q[x]/f R àwâµ@CãPãTOFâwDXGPj rotf
Þ U B ã U GPEHG5KMß�k
D]_MEbí5ý U KVEKMNT@CK

rotf (g1)rotf (g2) = rotf (g1g2)
Y U á
@CGwâ g1, g2 ∈ Q[x]/f

íZc�NPEd_|KVáMEHGPjCKVNT_ U Y U `PáÞ�áVâLãPK U j5áV@bãPNPD]ÞdÞ U Gf_|KVáM`TÞ�KMD U GT_
\PEWã¢EWGT\ U G�KMNPE©ÞhN U D]Þ�E U Y f
í/�Kh_ ö `T@bOFDFK|â�D]_ ö `T@CGLKVDgôTE�\àLâ�DgKh_
E�ìZãT@bGT_�D U G!Y¼@bÞ�K U ádð¼k�E#@5\P@CãPK�KVNPE#\ZEWôTGPDFKMD U G U Y�êFçWS�ëºK U KVNPEdû<`TÞWOFD]\ZEH@bG�G U áVB»õ6_

EF(f, k) = max

{‖g mod f‖
‖g‖ | g ∈ Z[x] \ {0} @bGT\

deg(g) ≤ k (deg(f) − 1)

}
,

k
NPEWáVE�k�E�DX\ZEHGLKMDFôTEH\#KMNPE�ã U OXâLG U B DX@bO g mod f
ð[áVEH_Mã2í

g
õ)k
DFKMN�KMNPE
Þ U EWïµÞWDFEHGLKV_�äbEHÞ�K U áHíý U KVE KMNT@CK©DFY deg(g) < n R KMNPEHG ‖rotf (g)‖ ≤ EF(f, 2) · ‖g‖ í#]0E»k
DXOFO>Þ U GTÞWEWGLKMáh@eKVEU G�KMNTE#ã U OFâwG U B DX@bOX_ x2k

+ 1 R @COFKMN U `Pj5N�B U _|K U Y U `Pá�áME�_�`POFKV_¶@CáVE#B U áVE1jbEWGTEWáh@CO�í�]îEáME�ÞW@COXO2_ U B EdàT@b_MDXÞAãPá U ã¢EWáMKMDXEH_ U Y x2k

+ 1
ð½_�EHEµêÂSlëºY U á�KMNTE1OX@5_|K U GTE�õ¡í

£&��¤¥¤¥�Ã±�¡|d�<;5
k ≥ 0

VWf�=
n = 2k »�Ä k<Nf f(x) = xn + 1

Pª3�Pg767o<A=W9:;PRÅNOÆ<}Pgf
Q[x] »Ç6583G<�ÈNs�V,f�36PRnWf�ÉNV!:;5tn,7GPª3 ≤

√
2 »�Ê OÂ3;n ¸ ÉNn,7ËVWf�M g =

∑
i<n gix

i ∈ Q[x]/f ¸À¹ <k�VWºW<
rotf (g)T = rotf (ḡ) ¹ k<N7�< ḡ = g0 −∑1≤i<n gn−ix

i » ´09"765gk<N76x}nW7o< ¸ P É q
Pª3Vcs�76Pgxµ<m369:AkÌ5gkVW5

2n|(q − 1) ¸ 5gk<Nf f
k�VW3

n
OÍPgf	<AVW7�ÉNV!:;5tn,7A3mPgf

Zq [x] » ´&Pgf	VWOgOÍM ¸P É
k ≥ 2

V,f	=
q
Pª3pV|s	76Pgx}< ¹ Pg5�k q ≡ 3 mod 8 ¸ 5�k�<;f f = f1f2 mod q ¹ k�<;7o<µ<AV!:Ak fiPª3|Pg767�<�=,9:NPRÅ;Oq<pPgf
Zq [x]

V,f	=T:�V,fLÅA< ¹ 76Pg585r<Nf fi = xn/2 + tix
n/4 − 1 ¹ Pg5gk ti ∈ Zq

»
Ý2E�K

I
àfE�@CGµD]\ZEH@bO U Y Z[x]/f R D�í E5í R @1_�`Pàf_�EWK U Y Z[x]/f

ÞWO U _�E�\³`PGT\ZEHá�@b\T\ZDgKVD U Gµ@CGT\B©`POFKMDXãPOXDXÞH@eKMD U GÍàwâ0@CGwâÑEHOFEHB³EHGLK U Y Z[x]/f
í�/�K�Þ U áVáME�_�ã U GT\T_¶K U @¿_M`PàPO]@eK�KVDXÞWE U Y Zn íå�G

f
ß�PR=(<AVWO0OqV,585·PR:A<#D]_
@ _�`TàPOX@CK�KVDXÞWE U Y Zn KVNT@eK¶Þ U áVáME�_�ã U GT\T_<K U @CG�DX\ZE�@CO I ⊆ Z[x]/f

í
Îc�"ÏW���R�"�����R�(��Ð�ÏWÑ�Ò��8��¤¥ !¡<c�NTE!B U _�K³Y¼@CB U `T_�O]@eK�KVDXÞWE!ãTá U àPOFEHB DX_

SVP
í��ADFä5EWGñ@

àT@b_MDX_ U Yo@ O]@eKMKMD]Þ�E L R DFK¶@CDXBµ_
@eK
ôTGT\PDFGPj»@ _MN U áMKME�_|K�äbE�Þ¡K U á
DXG L \ {0} í"/�K¶ÞH@CG�àfE1áVE�ßOX@CìwE�\©àwâ©@5_�awDXGPj�Y U á<@�G U GZß�üWEHá U äbE�Þ¡K U áoKMNT@CK�DX_�G U O U GTjbEWá�KMNf@CG γ(n)
KVDFB E�_<@d_ U OF`ZKVD U GK U SVP R Y U á�@�ãPáVEH_VÞ�áVDFà¢EH\�Y[`PGfÞ¡KMD U G γ(·) í.c�NPE�àfE�_|KAã U OFâwG U B³D]@CO)KMDXB E�@COXj U áMDFKMNTB ê Z R'(XlëZ_ U OXäbEH_ γ ß SVP U GPOXâdY U á;@¶_MOXDFj5N5KVOFâ1_M`Pà¢E�ìZã U GPEWGLKVDX@bO γ í�]�NTEWG γ

D]_oã U OFâwG U B³D]@COLDXG n RKMNPEHGÑKVNPEµB U _�KdEWï»Þ�DXEWGLK#@COXj U áVDFKMNPB4ê ZCë<NT@5_A@bGîEWìZã U GPEWGLKMD]@CO;k U áh_|KMß�ÞH@b_ME�Þ U B ãPOXE�ìZDgK|âà U KMNÑDXGJKVDFB E @CGT\Ñ_�ãT@5Þ�E5í�/�Y>k�E³áME�_|KVáMD]Þ¡K�KVNPE _�EWK U Y>DFGTãP`ZKdOX@CK�KMD]Þ�E�_�K U D]\ZE�@COoOX@CK�KMD]Þ�E�_ Rk�E U àZKV@bDFG±KMNPE!ãPá U àPOXEWB Ideal-SVP
ð¼áME�_�ã2í

γ
ß
Ideal-SVP

õ R k
NTDXÞhN±D]_#DXB ãPOXDXÞWDgKVOFâÍãT@CßáV@bB³EWKMEHáMDXüWE�\Ñàwâó@¿_�E ö `TEWGTÞWE U Y�ã U OFâwG U B³D]@CO]_ f U Y�jbá U k
DFGTj�\PEWjbáVEWE�_Wí2ý U @COXj U áMDFKMNPBDX_µawG U k
G´K U ãfEHá�Y U áMB G U GZß�GPEHjbOXDFj5DFàPOXâ±à¢E�KMKMEWá»Y U á Ideal-SVP
KMNT@bG Y U á SVP

í�/�K�D]_
àfEHOFDXEWä5EH\ÍKVNT@eK G U _�`Pà¢E�ìZã U GPEHGLKMD]@CO ö `f@CGLKM`PB @bOFj U áVDgKVNPB _ U OFä5EH_#KMNPE�Þ U B³ãT`ZKV@CKMD U GT@bOäl@báMD]@CGLKh_ U Y SVP U á Ideal-SVP

DXG!KVNPEdk U áV_�K
ÞW@b_MEbíPc�NTEH_MEAk U áh_�K�ßzÞW@b_ME¶ãTá U àPOFEHBµ_�ÞH@CGàfE1áVEH\Z`fÞ�EH\�K U KVNPEdY U OXO U k
DFGPj @läbEHáV@bjbEWß�ÞH@b_ME
ãPá U àPOXEWBµ_ R DXGLKMá U \Z`TÞ�E�\�DXGóêFçWë�@CGf\Ñê èeë�í



ÓT��Ôv���R���RÑ	�Õ¦�¡ Ä k�<�Ö	xµV,OgO�Ç6f�5t<th�<N7×Ö�nWOÍ9"58PRn,fes	7on(ÅNOq<;x ¹ Pg5�kØsVW7oV,xµ<;5r<N7A3 q(·) ¸ m(·) ¸
β(·) Ù SISq,m,β Ú Pª3mV.3�ÉNnWOgOÆn ¹ 3;ÛÀ¾KPgºW<Nf n

V,f	=ÜV¥x}VW5·76PÍÈ
G
3NV,xas�Oq<A=¥9"f�P ÉNnW76x�OQMPgf

Zm(n)×n
q(n) ¸�Ý f	= e ∈ Zm(n) \ {0} 369:�kG5gkVW5 eT G = 0 mod q(n) Ù 5�k�<ØxµnY=W9"OQ9�3ØÅA< ¶Pgf�hL5rV�Þ(<Nfß:AnWx?s�n,f	<;f5 ¶r¹ Pª3N< Ú V,f	= ‖e‖ ≤ β(n) »�Ä k<ÀÇ;=(<AVWO~Ö�x}VWOgO¢Ç6f5r<th(<;7}Ö#nWOQ9"5·PRnWfs	7on(ÅNOq<;x ¹ Pg5�kàsVW7�VWx}<N5r<N7A3 q, m, β

VWf�=
f Ù Ideal-SISf

q,m,β Ú Pª3eVW3?ÉNnWOgOqn ¹ 3;Û�¾KPgºW<Nf nVWf	=
m
snWOQMWf�nWx�PRVWOÂ3

g1, . . . , gm
:�kn.3;<NfË9"fP ÉNn,76xpOQMuV,f	=àPgf�=!<rs�<;f	=(<Nf�58OQMcPgf

Zq [x]/f ¸Ý f	= e1, . . . , em ∈ Z[x]
f	nW5�VWOgO�áY<;7on�369:�kµ5gkVW5 ∑

i≤m eigi = 0
Pgf

Zq [x]/f
V,f	= ‖e‖ ≤

β ¸&¹ k�<;7o< e
Pª345gk<�ºW<A:N5rnW7×n(ÅN5rVWPgf�<A=ØÅ;MØ:�n,f	:AVW5r<;f	VW5·Pgf�hØ5�k�<�:�nY<8âÜ:;PR<Nf�5R3×nãÉ45gk<

ei ä 3 »
c�NPE�@Cà U äbE ãPá U àTOFEHB _©ÞW@CGÍà¢E»DXGLKMEWáVãPáVE�KVEH\Í@b_#OX@CK�KMD]Þ�E�ãPá U àPOXEWBµ_Wí�/�Y G ∈ Zm×n

q
RKMNPEHG KVNPE±_ME�K

G⊥ = {b ∈ Zm | bT G = 0 mod q} DX_¿@bG m
ß�\PDFB EWGf_�D U GT@bOdOX@CK�ßKMD]Þ�E»@CGf\î_ U OXäwDFGPj SIS

Þ U áMáVEH_Mã U GT\P_�K U ôfGT\ZDXGPjJ@�_�N U á�KdG U GZß�üHEWá U ä5EHÞ�K U ádDXGóDgK�í�IwDXB�ßDFO]@CáVOFâ R Ideal-SIS
Þ U GT_MDX_�KV_JDFG ôTGf\ZDFGTj @�_�Bµ@bOFO�G U GZß�üWEHá U EHOFEHB³EHGLKÑDFG KVNPE Z[x]/f

ß
B U \Z`TOFE M⊥(g) = {b ∈ (Z[x]/f)m | 〈b, g〉 = 0 mod q} R k
NPEHáME g = (g1, . . . , gm)

íW/�K
ÞW@CG�àfEA_�EHEWG�@5_>@1O]@eKMKMD]Þ�E¶ãTá U àPOFEHB àLâ @CãTãPOFâwDXGPj#KVNPE rotf

U ãfEHáV@CK U á�í5ý U KVE�KMNf@eK>KVNPE mU Y SIS
DX_

n
KMDXB EH_³OX@báMj5EWá1KVNT@CG±KMNPE

m U Y Ideal-SIS
í;Ý2âw`PàT@5_�NPEHäZ_�awâó@CGT\¥JJDXÞHÞ�D]@CGZß

Þ�D U êXç.Slë�áME�\Z`TÞ�E�\ Ideal-SVP
K U Ideal-SIS

í2c�NPEµ@CãTãPá U ìZDXBµ@eKMD U GJY¼@bÞ¡K U áh_ADFG7êXç.S�ë<@báMEjbDXäbEWG¿DXG�KMEHáMBµ_ U Y�KMNTE#DFGPôTGPDFK|â�G U áVB�í	U U á U `Tá�ãP`PáVã U _�E�_ R DgKADX_¶B U áVE1GT@eKV`PáV@bO2K U `T_MEKMNPE�û<`TÞ�OXD]\ZEH@bGÑG U áMB�ífc U @lä U D]\�O U _�DXGPj�@ √
n
Y¼@bÞ¡K U á�àLâ¿_MDFB ãPOXâ¿@CãPãTOFâwDXGPjµKMNTE�G U áMBE ö `PDXäl@bOFEHGTÞ�E¶Y U áVB©`PO]@ R k�E�B U \PDgY[â KVNPE�ãTá UwU Y U Y<êFçWS�ë�í!]0EA@bOX_ U @5\P@CãZK�DgK�K U NT@CGf\ZOFE�KMNTEÞW@b_ME
k
NPEHáME�KVNPE

Ideal-SIS
_ U OXäbEHá�NT@b_�@1_�`Pà¢E�ìZã U GPEHGLKMD]@COXOFâ _�Bµ@bOFOT_M`TÞHÞ�EH_V_�ãPá U àf@CàPDXOFDFK|â R@eK�KMNPE#Þ U _�K U Y;@CG�@b\P\ZDFKMD U Gf@CO.Y¼@bÞ�K U á U Y Õ(

√
n)
DFG�KVNPE

SVP
@bãPãPá U ìwDXBµ@eKVD U GµY¼@bÞ�K U á�í

å�æ ��Ñ�ÏW��¤ç¦�¡pÖ�9Ys(s�nW3N<À5gkVW5
f
Pª3µPg767o<A=W9:;PRÅ;Oq<ànWºW<N7

Q » d�<;5 m = Poly(n)
V,f	=

q =

Ω̃(EF(f, 3)βm2n)
ÅA<�Pgf�5t<th�<N7A3 »�Ê snWOQMWf�nWx�PRVWO ¶ 5·Pgxµ< Ù 7�<63·s » 369ÅA<oÈNsnWf	<;f5·PRVWO ¶ 58Pgx}< Ú V,O ¶h(n,76Pg5gk"xè3;nWOÍº�Pgf�h

Ideal-SISf
q,m,β ¹ Pg5�kTs�7on!ÅAV(ÅNPgOQPg5·M 1/Poly(n) Ù 7o<63·s » 2−o(n) Ú :AVWfÜÅ�<9�3N<A=Ã5tnÃ3;nWOÍº.<

γ ¶ Ideal-SVP
PgfusnWOQMWf�nWx�PRVWO ¶ 5·Pgx}< Ù 7o<63·s » 369ÅA<oÈNsnWf	<;f5·PRVWO ¶ 58Pgx}< Ú ¹ Pg5�k

γ = Õ(EF2(f, 2)βmn1/2) Ù 7o<N3·s » γ = Õ(EF2(f, 2)βmn) Ú »
c�NPE#ãPá U àPOXEWB LWE

DX_A\Z`T@bO)K U SIS
DXGJKVNPE�_MEWGf_�E1KVNT@eKADgY

G ∈ Zm×n
q

DX_¶KMNTE
SIS
ß

B @CKMáVDgì R KVNPEWG LWE
DXGwä U OFä5EH_�KMNPE»\P`T@CO U Y>KVNPEµOX@CK�KVDXÞWE G⊥ í0]0EµNT@lä5E Ĝ⊥ = 1

q L(G)k
NPEWáVE
L(G) = {b ∈ Zm | ∃s ∈ Zn

q , Gs = b mod q} í
ÓT��Ôv���R���RÑ	�¿©#¡ Ä k�<�d�<AVW76f�Pgf�h¿iTPg5�kul2767on,7A3?s�7on!Å;Oq<;x ¹ Pg5�kØsVW7oV,xµ<;5r<N7A3 q, m

V,f	=ÃV=WPª365876PRÅ;9"5·PRnWf
χ
nWf

R/[0, q) Ù LWEq,m;χ Ú Pª3KVW3�ÉNnWOgOÆn ¹ 3;Û�¾KPgº.<;f n ¸ V?x}VW5·76PÍÈ G ∈ Zm×n
q3NV,xas�Oq<A=}9"f�P ÉNnW76x�OQMØVW5�7�VWf	=(nWx�VWf�=

Gs + e ∈ (R/[0, q))n ¸v¹ k<N7�< s ∈ Zn
q

Pª3�:�kn.3;<Nf9"fP ÉNnW76x�OQMÃV,5�7oV,f	=(nWxéVWf	=u5gk<Ø:AnYnW7o=,Pgf	VW5r<N3TnêÉ
e ∈ (R/[0, q))m V,7o<ØPgf	=!<rs<Nf�=!<;f5·OQM3NV,xas�Oq<A=4ÉA7on,x

χ ¸#Ý f	= s »�Ä k<�Ç;=(<�V,O�d�<AVW76f�Pgf�h�iePg5�kelK767onW7A3?s	7on(ÅNOq<;x ¹ Pg5�k}s�V,7oVWx}< ¶5t<;7A3
q, m ¸ VL=WPª365·76PRÅN9"5·PRnWf χ

n,f
R/[0, q)

VWf�=
f Ù Ideal-LWEf

m,q;χ Ú Pª3À5gk<}3;VWx}<àV.3V!ÅAnWºW< ¸ <oÈ�:A<ts�5~5�k�V,5 G = rotf (g) ¹ Pg5gk g
:�kn.3;<Nfm9"fP ÉNn,76xpOQMØPgf

(Zq [x]/f)m »
]îE1k
DXOFOº`f_�EdKVNPEdY U OXO U k
DXGPj³áME�_�`TOgKh_ U G!KMNPE LWE

@bGT\
Ideal-LWE

OX@CK�KVDXÞWEH_Hí
£&��¤¥¤¥�uë�¡|d�<;5

n, m
VWf	=

q
ÅA<�Pgf5r<th(<;7A3 ¹ Pg5�k q

s	76Pgx}< ¸ m ≥ 5n log q
VWf�=

n ≥ 10 »Ä k<Nf�ÉNn,7|V,OgO0ÅN9"5�VKÉA7oV(:N5·PRnWf ≤ q−n nêÉ�5gk< G ä 3�Pgf Zm×n
q ¸v¹ <ak�VWºW< λ∞

1 (L(G)) ≥ q/4VWf	=
λ1(L(G)) ≥ 0.07

√
mq »



£&��¤¥¤¥�m²0¡|d�<;5
n, m

VWf	=
q
ÅA<�Pgf5r<·h�<;7A3 ¹ Pg5gk q = 3 mod 4

s	76Pgx}<4VWf	=
m ≥ 41 log qVWf	=

n = 2k ≥ 32 »|Ä k�<;fØÉNnW7ØV,OgO&ÅN9"5�V�ÉA7oV!:;58PRn,f ≤ q−n nãÉp5�k�<
g ä 3µPgf (Zq [x]/f)m ¸¹ <�kVWºW< λ∞

1 (L(rotf (g))) ≥ q/4
VWf�=

λ1(L(rotf (g))) ≥ 0.017
√

mnq »
ì í Ü�Ù�Ü�Õa�¯�¯î³×��vï#Ù�Ø�Ø<×7Ü�Õ

Ideal-SIS

/zGóKMNPD]_©_MEHÞ�KMD U Gók�E»_MN U k N U k'K U NPD]\ZE�@�KVáV@bã¢\ ULU á1DFGóKVNPE»ãPá U àTOFEHB Ideal-SIS
íoå�æzß

KV@CD�ê * ë�_MN U k�EH\0N U k K U _MDXB©`POFKV@bGPE U `T_�OXâÑj5EWGPEHáV@CKME»@±ð SIS
õ#B @CKMáVDgì

A ∈ Zm×n
q

@bGT\
@ñðÐKVáV@bã¢\ ULU áhõ1àT@b_MDX_ S = (s1, . . . , sm) ∈ Zm×m U Y
KVNPE!O]@eKMKMD]Þ�E A⊥ = {b ∈ Zm :
bT A = 0 mod q} R k
DFKMN�KMNPEdY U OFO U k
DXGPj�ãTá U ãfEHá�KVDFE�_;_
çbí
c�NPE#\ZD]_|KVáMDXàP`ZKVD U G U Y A

D]_
Þ�O U _MEAK U KMNTE1`PGPDFY U áVB�\ZD]_|KVáMDXàP`ZKVD U G U äbEWá Zm×n
q

í
* í
c�NPE1àT@5_�D]_�äbE�Þ¡K U áV_ s1, . . . , sm

@báME1_MN U áMKHí
S EHÞWEWGLKMOXâ R å¶OFk�EWG¿@CGf\�ù;EWDXabEHá�K1êÂXlë2DXB ãPá U ä5EH\!å�æzKV@bD½ò _
Þ U GT_�KMáV`TÞ¡KVD U G!DXG�KVNPE#_MEWGT_MEAKMNT@CKKMNPEJÞWáME�@eKME�\ñàf@b_MDX_ NT@5_µ_�N U áMKMEWá ä5EHÞ¡K U áh_;_ ‖S‖ = Õ(n log q)
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Þ U GLKV@CDXGT_ h′
j

DXG7KMNTEÑO]@b_�K�á U k1í�c�NPEWG R
G = B−1 · W Þ U GLKV@CDXGT_�á U k�_ h′

j

Y U á j = 1, . . . , m1
íPc�NTEABµ@CKMáVDgì

P = [p1; . . . ; pm1 ]ãPDXÞhaZ_
@bOFOºá U k�_ h′
1, . . . , h

′
m1

DFG
G
àwâ�_�EWK�KVDFGPj

pj = eκj ∈ Rm2
0

í



c�NPE#G U áMB U Y S
D]_

max{‖S1‖, ‖S2‖} R k
NPEHáME S1 = [V |P ]
@CGT\

S2 = [D|B]
í�U U á_�DXB ãPOFD]Þ�DFK|â R k�E U GPOFâ!Þ U Gf_�D]\ZEWá�KVNPE©ÞH@b_MEAk
NTEWáVE f = xn + 1

í"/zG�KMNTE1jbEWGTEWáh@COºÞW@5_�E R KMNPEà U `PGT\ U G ‖S‖ DXGLä U OXäbE�_�@bG�EWìwKMáh@ EF(f, 2)
Y¼@5Þ¡K U áHí]îE NT@lä5E#KMNf@eK ‖BG‖2 = ‖W‖2 ≤ n R _MDFGTÞWE©KVNPEµEWGLKVáMDXEH_ U Y h′

j

@báME³@COXO
0
EWìPÞ�EWãPK

U GPEdk
NPD]ÞhN�DX_�EHDgKVNPEWá hi∗,j
U á q − 1

í�ð�EHGTÞ�E R k�E U àZKV@bDFG�KMNf@eK
‖S2‖2 ≤ ‖D‖2 + ‖B‖2 ≤ (3

√
nr +

√
n)2 + 5 ≤ (4

√
nr + 3)2.

/�K�DX_ U àLäwD U `T_�KVNT@eK ‖P‖ ≤ 1
íPå
\P\ZDFKMD U Gf@COXOFâ R k�EdNT@lä5E¶KVNT@eK ‖PR‖2 ≤ nr

ífc�NPEWáVE�Y U áME(_
‖S1‖2 ≤ ‖V ‖2 + ‖P‖2 ≤ (

√
nr + 1)2 + 1 ≤ (

√
nr + 2)2,

k
NPDXÞhN¿Þ U B ãPOXE�KME�_�KMNPE1ãTá UwU Y U Y;c�NPE U áMEHB * í ut

� 	
×TØ&�
LWE

ÖZØ
SIS

]îE0_�N U k:KVNT@eK�@CGwâñEWïµÞWDFEHGLK�@COXj U áMDFKMNTB _ U OXäwDFGPj LWE
k
DFKMN _ U B EJG U GZß�GPEWj5OFDXjbDXàPOXEãPá U àT@CàTDFOXDgK|âñB @lâñàfEJ`f_�E�\ àwâñ@ ö `T@bGLKM`PB B @5ÞhNPDXGPE�K U E�ï»ÞWDFEHG5KVOFâ´_ U OFä5E SIS

k
DgKVN
G U GZß�GPEHjbOXDFj5DFàPOXE
ãPá U àT@bàPDXOFDFK|âbíCå Þ�áV`TÞ�D]@COPãTá U ãfEHá�K|â U Y.KMNPE�áVEH\P`TÞ¡KVD U GµDX_;KVNT@eK>KMNPE�B @CKMáVDgì`PGT\ZEHáMOXâwDFGPj!KMNTE

SIS
@bGT\

LWE
DFGf_|Kh@CGTÞWEH_ADX_dãTáME�_�EHáMä5EH\ºí.c�NPD]_1@COXO U k�_�KMNTE³áVEH\P`TÞ¡KVD U GK U áMEHBµ@CDXG!äe@COXD]\!k
NTDFOXE1k U áMawDXGPj U G Ideal-SIS

@bGT\
Ideal-LWE

í
å�æ ��Ñ�ÏW��¤ ±0¡�d�<;5

q, m, n
ÅA<ÀPgf�5t<th�<N7A3 ¸ V,f	= α ∈ (0, 1) ¹ Pg5�k n ≥ 32 ¸ Poly(n) ≥

m ≥ 5n log q
VWf�=

α < min
(

1

10
√

ln(10m)
, 0.006

) » Ö�9Ys(s�nW3N<a5gkVW5�5gk<N7�<?<�È!Pª36583bV,feV,O h(n ¶76Pg5gk"x¯5�k�V,5�3;nWOÍº.<N3
LWEm,q;Ψαq

PgfØ5·Pgx}<
T
VWf�= ¹ Pg5�k�s�7on!ÅAV(ÅNPgOQPg5·M ε ≥ 4m exp

(
− π

4α2

) »Ä k<Nfà5�k�<;7o<4<�È!Pª36583�Vpw;9VWf�589"x�V,O h(n,76Pg5gk"x�5�k�VW5�3;nWOÍº.<N3
SIS

m,q;
√

m
2α

Pgfà58Pgx}< Poly(T, n)VWf	= ¹ Pg5gk�s	7�n!ÅAV!Å;PgOQPg5·M ε3

64 − O(ε5) − 2−Ω(n) »ØÄ k�<Ã7o<6369"OQ5×3658PgOgObk�nWOÆ=.3 ¹ k�<;fÌ7�<ts�OqV!: ¶Pgf�h
LWE

ÅNM
Ideal-LWEf VWf�= SIS

Å;M
Ideal-SISf ¸ ÉNnW7 f = xn+1 ¹ Pg5�k n = 2k ≥ 32 ¸

m ≥ 41 log q
V,f	=

q ≡ 3 mod 8 »
]�NPEWG

α = O(1/
√

n) R KMNPEîáME�\Z`TÞ�KMD U G @bãPãPOXDFE�_�EHäbEWG7K U @ _�`Pà¢E�ìZã U GPEHGLKMD]@COd@COFßj U áVDFKMNPB÷Y U á LWE
ð[k
DFKMNó_�`fÞWÞ�E�_M_dãTá U àT@CàPDXOXDgK|â ε = 2−o(n) õ R KVáV@bGT_�Y U áVB³DXGPj!DgK#DXGLK U @_�`Pà¢E�ìZã U GPEHGLKMD]@CO ö `T@CGLKM`TB @COXj U áVDFKMNPB Y U á SIS

ð[k
DFKMN _�`TÞHÞ�E�_M_�ãPá U àT@bàPDFOXDFK|â ε = 2−o(n) õ¡íc�NPE<áVEH\Z`TÞ�KMD U Gdk U áVaw_.@bOX_ U Y U á2O]@CáVjbEHá α = O(1/
√

log n) R àP`PK)DFGdKVNPD]_)ÞW@5_�E U GPOFâA@CãPãTOFDXEH_K U ã U OXâLG U B DX@bOP@COXj U áMDFKMNPBµ_oY U á LWE
ð[k
DFKMN»_M`TÞWÞWEH_V_;ãPá U àT@bàPDFOXDFK|â ε = Ω(1/Poly(n))

õ¡í
c�NPE�áVEH\Z`TÞ�KMD U GµD]_<Bµ@b\PE U YºK|k U Þ U B³ã U GTEWGLKV_Hí(UoDXáV_�K R k�E¶@báMj5`PE�KMNf@eK�@bG»@COXj U áMDFKMNPB_ U OFäwDXGPj LWE

ãPá U äwDX\ZE�_¶@bGÑ@COXj U áMDFKMNPB:KVNT@eK1_ U OFä5EH_�@�Þ�EHá�Kh@CDXGJà U `PGT\PEH\Ñ\PDX_�KV@bGTÞ�E³\ZE�ßÞ U \ZDXGPjdãPá U àPOXEWB R k
NPEHáME�KMNTE
EWáVá U áoä5EHÞ�K U á�D]_;G U áMBµ@COXOXâ©\ZD]_|KVáMDXàP`ZKVEH\ºí,/zGµ@1_MEHÞ U GT\³_|KVEWã Rk�E1_MN U k�KVNT@eK S EHjbEHä¢ò _ ö `T@CGLKM`TB�@COXj U áMDFKMNTB ê ' *ZR Ý2EHB B @µ'TíFç�ZCë)ÞW@bG!`f_�E1_M`TÞhN�@bG¿@COFßj U áVDFKMNPB K U Þ U Gf_|KVáM`TÞ�K�_�Bµ@COXO2_ U OX`ZKMD U GT_�K U SIS
í

ë�¡8¦ �0ÏWÑ	¤
LWE

��Ñ
BDD

å�G¿@COXj U áMDFKMNPB _ U OXäwDFGTj LWE
@bOFO U k�_�`T_�K U _ U OXäbE R Y U á�Þ�EHá�Kh@CDXG!O]@eKMKMD]Þ�EH_ R @³äe@CáVDX@CKMD U G U YKMNPEÀ` U `TGT\ZEH\0?�DX_�KV@bGTÞ�E»?�EHÞ U \PDFGPj¿ãTá U àPOFEHB�í#/zGîKVNT@eK1äe@CáVD]@eKMD U G U Y BDD R KMNTEµEWáVá U áäbEHÞ�K U á�D]_�_V@CB ãPOXEH\�@bÞHÞ U áh\ZDXGPj�K U @ _�ã¢EHÞWDgôTE�\�\ZDX_�KMáVDXàP`ZKMD U G)í



ÓT��Ôv���R���RÑ	�ß±0¡ Ä k�<�s�7on!Å;Oq<;x BDDχ ¹ Pg5�kbs�V,7oVWx}<;5t<;7K=,Pª365876PRÅ;9"58PRn,f χ(·) Pª32V.3�ÉNn,OgOqn ¹ 3;Û¾2PgºW<;fGV,f
n ¶ =WPgx}<Nf3APRn,f	V,O�OÆVW5·58PR:A< L

VWf	=àVTºW<�:;5rnW7
t = b + e ¹ k<N7�< b ∈ L

V,f	=
e
Pª3=WPª365876PRÅ;9"5r<�=LV!:A:AnW7�=WPgf�hG5tn

χ(n) ¸ 5�k�<µh(nYVWO2Pª3Ø5rn Ý f	= b » i�<Ø3;VWMu5�k�V,54Vm7oV,f	=(nWx�Pqá�<A=VWO h�nW76Pg5�k�x A 3;n,OQº.<N3
BDDχ

ÉNn,7ÃV¥OqV,585·PR:A<
L ¹ Pg5gkß369:�:A<N3A3×s�7on!ÅAV!Å;PgOQPg5·M ≥ ε

P É ¸ ÉNn,7EWäbEHáMâ
b ∈ L ¸ nWfàPgf,s	9"5 t = b +e ¸ V,O h(n,76Pg5gk"x A 7o<;589"76f3

b ¹ Pg5gk�s�7on!ÅAV!Å;PgOQPg5·M ≥ ε
n,º.<;75gk<p:Ak�n,PR:�<µnãÉ

e
VWf�=À5�k�<×7oVWf�=!n,xpf�<63A3×nêÉ A »

U U áAKVEHÞhNPGPD]ÞW@bO;áME�@b_ U GT_ RfU `PádáME�\Z`TÞ�KMD U GÑk
DXOXO�áME ö `TDFáVE³@!áh@CGT\ U B DFüHEH\ BDDχ
@COXj U ßáMDFKMNPB k
N U _ME�à¢EWNf@läLD U `TáAD]_dDXGT\ZEWã¢EWGf\ZEWGLK U Y�KMNPEµ_ U OX`ZKMD U G0äbE�Þ¡K U á b R EWä5EWG0k
NPEWGîKMNPEEWáVá U á�ä5EHÞ�K U á�D]_�ôPìZEH\ºífc�NPDX_�D]_
Bµ@b\PEAãTáME�Þ�D]_�Edà¢EWO U k1í

ÓT��Ôv���R���RÑ	��ë�¡ Ê 7oV,f	=!n,xpPqáY<A=¥V,O h(n,76Pg5gk"x A 3;nWOÍº�Pgf�h
BDDχ

ÉNn,7àOqVW5·58PR:A<
L
Pª3T3;VWPR=5tnàÅA<»_�KMá U GPj5OFâ�_ U OF`PKMD U GZß�DFGf\ZEWã¢EWGT\PEWGLK Ù Ö�Ö�Ç Ú P É ¸ ÉNn,7µ<;ºW<N76M Ý È�<A=T<;767on,7pºW<A:N5rnW7 e ¸ 5�k�<s	7on(Å�V(ÅNPgOÍPg58M Ù nWºW<N7�5�k�<�7oV,f	=!n,xpf�<63A3�nãÉ A Ú 5gkVW5 ¸ h!Pgº.<;fGPgfWs�9"5 t = b + e ¹ Pg5�k b ∈ L ¸VWO h�nW76Pg5�k�x A 7o<;5·9"76f�3

b
Pª34Pgf	=(<ts<Nf�=!<;f5bnêÉ

b »
]îEó_�N U k KMNT@CK�DFY�k�E0NT@läbE0@CG @bOFj U áVDgKVNPB KMNT@CK�_ U OXäbE�_ LWEm,q;Ψαq

R KMNPEHG k�EÞW@CG�Þ U GT_�KMáV`TÞ�K�@CG�@bOFj U áVDgKVNPB _ U OFäwDXGPj BDDναq

Y U á�_ U B³EÑOX@CK�KMD]Þ�E�_WíKJ U áME U äbEWá R KMNTEÞ U Gf_|KVáM`TÞ�KME�\ BDD
@COXj U áVDFKMNPB D]_�IPI�/¡í

£&��¤¥¤¥�m°0¡|d�<;5
q, m, n

ÅA<�Pgf5r<th(<;7A3mVWf�=
α ∈ (0, 1) ¸�¹ Pg5gk m, log q = Poly(n) »Ö�9Ys!sn.3;<×5gkVW5~5gk<N7o<p<oÈ(Pª365834V,fLVWO h(n,76Pg5gk"x A 5�k�V,5&3;nWOÍº.<N3

LWEm,q;Ψαq

PgfÃ5·Pgxµ<
T
VWf	=

¹ Pg5gkas�7on!ÅAV!Å;PgOQPg5·M ε ≥ 4m exp
(
− π

4α2

) »vÄ k�<;f}5gk<N7o<?<oÈ(Pª365R3 S ⊆ Zm×n
q

nêÉ�s	7�n�snW765·PRnWf ≥
ε/2

V,f	=uV,fGÖÖ"Ç}VWO h�nW76Pg5�k�x A′ 369:�km5�k�V,5?P É G ∈ S ¸ VWO h�nW76Pg5�k�x A′ 3;nWOQºW<N3 BDDναqÉNnW7
L(G)

Pgfu5·Pgx}<
T + Poly(n)

VWf�= ¹ Pg5�kps	7�n!ÅAV!Å;PgOQPg5·M ≥ ε/4 »

27onYnêÉ » /�Y G ∈ Zm×n

q

@bGT\
s ∈ Zn

q

@CáVE�_V@CB ãPOXEH\J`TGPDgY U áMB OXâÑ@CGf\JDFY>KMNTE Þ UwU áh\ZDFGf@eKME�_
U Y e @CáVE�_V@CB ãPOXEH\!@bÞWÞ U áh\ZDXGPj1K U Ψαq

R KVNPEWG A ôTGf\P_ s
k
DgKVN!ãPá U àf@CàPDXOFDFK|â ≥ ε U ä5EWá�KMNPEÞhN U D]Þ�E�_ U Y G, s

@bGT\
e
@CGf\¿@»_|KVáMDXGPj

w U Y<DXG5KVEWáVGT@CO)áV@bGT\ U B:àPDFKV_Hí¢c�NTDX_¶DFB ãPOXDFE�_�KVNT@eKKMNPEHáME1EWìwD]_�KV_
@ _�`TàT_�EWK S U Y�KMNPE G
ò _ U Y;ãPá U ã U áMKMD U G ≥ ε/2

_�`fÞhN!KVNT@eK
Y U á�@CGwâ G ∈ S R@COXj U áVDFKMNPB A _M`TÞWÞWEWE�\P_<k
DFKMN!ãPá U àT@CàPDXOXDgK|â ≥ ε/2 U äbEWá>KMNPEAÞhN U D]Þ�E�_ U Y s R e @bGT\ w
í"U U á@CGwâ

G ∈ S R k�EdNT@lä5E Prs,e,w[A(Gs + e, w) = s] ≥ ε/2
í

þ�GÑDXGPãP`ZK
t = b + e R @COXj U áMDFKMNTB A′ k U áVaZ_�@5_¶Y U OFO U k�_�_¢DFK#_M@bB ãPOFE�_ s

`PGPDFY U áVB³OXâDFG
Zn

q � DFKÑÞ U B ãP`PKMEH_ t′ = t + As R k
NPD]ÞhN D]_ U Y�KMNPE0Y U áVB t′ = Gs′ + qk + e Rk
NPEWáVE
k ∈ Zm � DFK»ÞW@COXO]_ A U G t′ mod q

@bGT\ÍôTGf\P_
s′ ð[k
DFKMN´ãPá U àT@CàTDFOXDgK|â ≥ ε/2

õ �DgKAKMNPEHGîÞ U B ãP`ZKVEH_ e′ = t′ − Gs′ mod q
@CGf\¿áMEWKM`PáVGT_

t − e′ í2Iw`PãPã U _ME©KVNT@eK A _M`TÞ�ß
Þ�EWE�\P_ R D�í Ebí R k�E³NT@läbE s = s′ íºc�NPEHG e′ = e mod q

í 1 _�DXGPj!KMNPEµ_�KV@CGf\P@Cáh\�KV@bDFO;à U `PGf\
U GîKMNPE»Þ U GLKMDXGw` U `T_4�d@b`T_M_MD]@CGî@bGT\ÑKMNPE O U k�EHáAà U `TGT\ U G ε

k�E U àPKV@CDXGîKMNT@CK e
NT@5_d@

Þ U B ã U GPEHGLK U YTBµ@CjbGTDgKV`T\ZE ≥ q/2
k
DgKVN�ãPá U àf@CàPDXOFDFK|â ≤ m exp(−π/(2α)2) ≤ ε/4

ílc�NPE
@COXj U áVDFKMNPB KVNL`f_�_�`fÞWÞ�EHEH\P_�k
DFKMN�ãPá U àf@CàPDXOFDFK|â ≥ ε/2 − ε/4 = ε/4

í ut
]îEîG U k _�N U k:KVNT@eK�@CG @bOFj U áVDgKVNPB _ U OXäwDFGTj BDDναq

ÞH@CG�à¢EÑ`f_�E�\7K U _ U OFä5EJ@
ö `f@CGLKMDXüWE�\îä5EWáh_�D U G U Y�DFKHíoc�NPD]_ ö `T@CGLKVDFü�@eKMD U GóD]_1áVE ö `PDXáME�\ÑY U á#KVNPE ö `T@CGLKV`PB ãf@CáMK U Y
U `PádáVEH\Z`TÞ�KMD U G2í2c�NTE³DXGLKM`PDFKMD U G0à¢EWNPDXGT\îKMNPE ãPá UwU Y�DX_�KMNf@eK1KMNTE \PDX_VÞ�áVE�KVDFü�@eKMD U GîjbáVDX\ÑDX__ U ôTGPEµðÐKVNPEdãT@Cáh@CB EWKMEWá R

ÞH@CG�à¢E#ÞhN U _�EHG»E�ìwKMáVEWB EHOFâµO]@CáVjbElõ�KVNT@eK�@eK�KVNPEdOFEHäbEWO U Y)KMNTEjbáVDX\�KMNPE#\PDX_�KMáVDFàT`ZKMD U G νs
O UwU aw_�Þ U GT_�KV@bG5K�í



£&��¤¥¤¥���¡|d�<;5
s > 0

VWf	=
L
ÅA<µVWf

n ¶ =WPgx}<;f�36PRnWf�VWO » Ö�9Ys(s�nW3N<p5�k�V,525�k�<;7o<µ<�È!Pª36583pVWfÖÖ�Ç�VWO h�nW76Pg5�k�x A 5�k�VW5v3;n,OQº.<N3
BDDνs

ÉNn,7
L
PgfT5·Pgxµ<

T
VWf	= ¹ Pg5�k|s�7on!ÅAV(ÅNPgOQPg5·M ε »&Ä k<Nf5gk<N7o<µ<�È(Pª3A583pVWf

R ¸&¹ k�nW3;<}ÅNPg5 ¶ Oq<;f�h!5gkuPª3Ks�n,OQMWf	n,xpPRV,OvPgf T, n, | log s| VWf�=À5�k�<}Å;Pg5 ¶ 36PqáY<nêÉp5gk<�h!PgºW<NfÅAV.36Pª3�nãÉ
L ¸ VWf�=àVWfLÖÖ"ÇpV,O h(n,76Pg5gk"x A′ 5�k�V,5K3Nn,OQºW<63 BDDDL/R,s

¹ Pg5�k�PgfV}5·Pgxµ<bs�n,OQMWf	n,xpPRV,O�Pgf
log R

V,f	= ¹ Pg5gkµs	7on(ÅAV!Å;PgOQPg58M ≥ ε − 2−Ω(n) »
å�KºKMNPD]_2ã U DXGLK R k�E�NT@lä5E;@bG R U YLàPDFK�ß�OXEWGPjbKMN1ã U OXâLG U B DX@bOeDFG T, n, | logα| @bGT\1@CG#IPI"/@COXj U áVDFKMNPB B k
DFKMNóáV`PGZß�KMDXB³E ã U OXâwG U B D]@CO;DFG log R

KVNT@eK©_ U OXäbE�_ BDDDL(G)/R,αq

R Y U á
@CGwâ

G
DXG#@�_�`TàT_�EWK S ⊆ Zm×n

q
U YZãPá U ã U á�KVD U G ≥ ε/2 R k
DFKMN1ãTá U àT@CàPDXOXDgK|â ≥ ε/4−2−Ω(n)

U äbEWá;KVNPE
áh@CGT\ U B'ÞhN U DXÞWEH_ U Y e @CGf\³KMNPE
DXGLKMEWáVGT@bOPáV@bGT\ U B³GTEH_V_ w
í!/zG³KMNTE
Y U OXO U k
DXGPjdk�E@b_V_�`PB E¶KMNT@CK U G�DXGPãP`ZK t = b + e R @bOFj U áVDgKVNPB B U `PKMãP`ZKh_ e

k
NPEHG!DFK�_M`TÞHÞ�EWE�\P_ R áh@eKVNPEWáKMNT@bG
b
í,]0E�DXB³ãTOFEHB³EHGLK B ö `T@bGLKM`PB OXâ�@b_oY U OFO U k�_�_lKMNPE ö `T@bG5KV`PB'@bOFj U áVDgKVNPB BQ

Bµ@CãT_
KMNPE#_�KV@CKME |e〉 |b + e〉 |w〉 K U KMNPE#_�KV@CKME |e − B(b + e, w)〉 |b + e〉 |w〉 í

ë�¡g© ÷I��� þ �8������Ï.Ð�ÏW���������RÑ	�ßÑ	ø��Ø��ù	�����Æ ��#�������Y��¤ Ï.�������!���8Ñ��
]îE1ôfáV_�K�áME�ÞW@bOFO S EHjbEHä¢ò _ ö `T@CGLKV`PB�áVEH\P`TÞ¡KVD U Gîê ' *PR Ý2EHB³Bµ@}'TíFç�ZCë�í"/�K¶`T_MEH_
@ áh@CGT\ U B³ßDFüHEH\

BDD U áh@bÞ�OXE Bwc KMNT@CK�ôfGT\P_�KMNPE1ÞWO U _�E�_|K�äbEHÞ�K U á�DXG!@�jbDXäbEHG»OX@CK�KVDXÞWE L
K U @©j5DFä5EWGKV@CáVjbEWK�äbEHÞ�K U á R @5_�O U GPj1@b_;KVNPE�KV@báMj5E�K�D]_�k
DgKVNPDXG»@dãPáME�_MÞWáMDXà¢EH\³\ZDX_�KV@bGTÞ�E d < λ1(L)

2
U Y Lð¼@b_o@Cà U äbE R k�E�@5_M_M`PB E<KVNT@eK Bwc áVE�KV`PáMGf_2KVNPE�EHáMá U á)äbEHÞ�K U áhõ�í�/�K;áMEWKM`PáVGT_o@¶_V@CB ãPOXE<Y[á U BKMNPE©\PDX_�KMáVDFàT`ZKMD U G DbL,

√
n√
2d

í�]îE©DFB ãPOXEWB EWGLK U áV@5Þ�OXE Bwc @5_�@ ö `T@CGLKV`PB U áV@5Þ�OXE Bwc
Q

@5_
@Cà U äbEbí�]0E#@b_V_�`TB³E Bwc

Q

@bÞHÞ�EWãPKV_�áh@CGT\ U B DXGPãP`ZKh_ U YoOFEHGPjCKVN `
í

çbí�IwE�K
R
K U à¢E4@ O]@CáVjbE4Þ U GT_�KV@CGLK @CGT\ àP`PDXO]\�@ ö `T@bGLKM`PB _�KV@CKME4k
NPD]ÞhN

DX_�k
DFKMNPDXG
`2
\ZD]_�KV@CGfÞ�E

2−Ω(n) U Y KVNPE G U áVB @bOFDXüWE�\ _|Kh@eKVE Þ U áMáVEH_Mã U GT\ZDXGPjK U ∑
w∈{0,1}`

∑
x∈ L

R ,‖x‖<d ρ d√
n
(x) |x〉 |x mod L〉 |w〉 í* í
å�ãPãTOFâ�KVNPE BDD U áV@5Þ�OXE Bwc

Q

K U KMNTE³@bà U ä5E©_|Kh@eKVE#K U áMEHB U äbEdKMNTE�EHG5Kh@CGPj5OFEHB EWGLK@CGT\ U àZKV@bDFG @d_|Kh@eKME
k
NTDXÞhN D]_;k
DgKVNPDFG `2
\ZD]_�KV@CGfÞ�E

2−Ω(n) U YfKVNPE
G U áMBµ@COXDXüWEH\�_|Kh@eKVEÞ U áMáVEH_Mã U GT\ZDXGPj�K U ∑
x∈ L

R ,‖x‖<d ρ d√
n
(x) |0〉 |x mod L〉 |w〉 í'Pí
å�ãPãTOFâ´KMNTE ö `T@CGLKV`PB U U `TáMDXEWáµKVáV@bGT_�Y U áVB U äbEHá Zn

R

K U KMNPE0_�E�Þ U Gf\7áMEHjbD]_|KVEWáµK U
U àZKh@CDXG @´_|Kh@eKMEÑKMNT@CK�D]_!k
DgKVNPDFG `2

\PDX_�KV@bGTÞ�E
2−Ω(n) U Y#KVNPEîG U áVB @bOFDXüWE�\�_|Kh@eKVE

Þ U áMáVEH_Mã U GT\ZDXGPj�K U ∑
x∈bL,‖x‖< n

d
ρ√

n
d

(x)
∣∣∣x mod (R · L̂)

〉 í
ZTíbJ¿EH@5_�`TáME;KVNPE<O]@eK�KVEWáºK U�U àPKV@CDXG1@�äbE�Þ¡K U á b̂ mod R·L̂ í 1 _MDXGPja`�@CàT@bD½ò _2@COXj U áMDFKMNTB ê éCë RáME�Þ U ä5EWá b̂

@bGT\ U `ZKMãP`PK�DFKHí"/�Kh_�\PDX_�KMáVDFàT`ZKMD U G!DX_�k
DFKMNPDXG!_�KV@CKMD]_|KVDXÞH@COº\ZD]_|Kh@CGTÞWE 2−Ω(n)

U Y DbL,
√

n√
2d

í
]îE1G U k áMEHãPOX@5Þ�EAKMNTE1ãfEHá�Y[E�Þ¡K U áh@bÞWOFE Bwc

Q

àLâ!@CG�DFB ã¢EWáMY[EHÞ�K U GPE5í
£&��¤¥¤¥�Ã«�¡�Ö	9Ys!sn.3;< ¹ <ØVW7o<ph,PgºW<NfÜVWf n ¶ =WPgx}<;f�36PRnWf�VWO¢OqV,585·PR:A< L ¸ sVW7oV,xµ<;5t<;7A3 R >

22nλn(L)
VWf�=

s < λ1(L)

2
√

2n
¸ VWf�=4VWf�ÖÖ"Ç~V,O h(n,76Pg5gk"x B 5�k�VW5�3;n,OQº.<N3

BDDD L
R

,s
ÉNn,7

L ¹ Pg5gk769"f ¶ 5·Pgxµ< T
VWf	=À369:A:�<N3A3&s�7on!ÅAV(ÅNPgOQPg5·M

ε »aÄ k�<;fm5�k�<;7o<�<oÈ(Pª36583�VTwN9V,f5·9"x�V,O h(n,76Pg5gk"x R¹ k�PR:Akn,9"5Qs�9"5R3ÀVàºW<�:;5rnW7 b̂ ∈ L̂ ¹ k�n.3;<à=WPª365·76PRÅN9"5·PRnWfËPª3 ¹ Pg5�k�Pgfß=WPª365rVWf�:�< 1 − ε2/2 +
O(ε4) + 2−Ω(n) nêÉ DbL, 1

2s

» ÇN5 Ý fPª3ok�<N34PgfÃ5·Pgxµ<bs�n,OQMWf	n,xpPRV,O�Pgf T + log R »




27onYnêÉ » c�NPE ö `T@CGLKM`TB @COXj U áMDFKMNTB R D]_ S EHjbEHä¢ò _J@bOFj U áVDgKVNPB�@Cà U äbEók
DFKMN�ãT@báV@bB³EWßKMEWá
d =

√
2ns < λ1(L)

2
R k
NPEHáME Bwc

Q

D]_µáVEWãPO]@bÞWEH\´àwâ±KMNTE ö `T@CGLKM`TB�DXB³ãTOFEHB³EHGLKV@eß
KMD U G BQ

U Y B í0]0E#æ|`T_�K³_V@lk'KMNT@CK©DgY
KVNPE BDDDL/R,s
U áh@bÞ�OXEµk�@b_#_M`TÞWÞWEWE�\ZDFGTjJk
DgKVN

ãPá U àT@CàTDFOXDgK|â 1−2−Ω(n) R KMNTEWG1KVNPE U `ZKMãP`PK)äbE�Þ¡K U á b̂ k U `POX\�Y U OFO U kÍ@�\ZD]_|KVáMDXàP`ZKVD U G1k
N U _ME_|Kh@eKMD]_�KMD]ÞW@CO2\PDX_�KV@bGTÞ�EdK U DbL, 1
2s

k U `PO]\!à¢E 2−Ω(n) íTc U k U áMa»@bá U `PGT\�KMNPE1áVE ö `PDXáMEHB EWGLKKMNT@CK³KVNPE U áh@bÞWOFE�_�`TÞHÞ�EHEH\P_³k
DFKMN U äbEWáVk
NPEHOFB DXGPjÑãPá U àf@CàPDXOFDFK|â R k�E!`T_ME�KMNPE�G U KMD U G U YKMáh@bÞ�E
\ZD]_�KV@CGfÞ�E
à¢E�K|k�EWEWG K|k U ö `T@CGLKM`TB'_�KV@eKVEH_ R k
NPD]ÞhN DX_<@bGµ@b\P@bãZKV@CKMD U G U Y¢KMNPE�_|Kh@eKMD]_�ßKMD]ÞW@CO2\PDX_�KV@bGTÞ�E ð¼_MEWE ê * X R ^�N2íPèCëÐõ�íPc�NPEAKMáh@bÞWEA\ZD]_�KV@CGfÞ�EAàfEWK|k�EHEWG!K|k U ð[ãP`TáMElõ ö `T@bGLKM`PB_|Kh@eKME�_ |t1〉
@CGT\ |t2〉

DX_
δ(|t1〉 , |t2〉) =

√
1 − | 〈t1|t2〉 |2 íW/�Kh_;B U _�K;DXB ã U á�Kh@CGLK;ãPá U ãfEHá�K|âDX_>KMNT@CK>Y U á�@CGwâ³jbEHGPEWáh@COXDFüHEH\³B EH@5_�`PáVEWB EHG5KAð[ù�þ�ø�JÑõ R DFY D1

ð¼áME�_�ã2í
D2
õ<DX_>KMNPE�áME�_�`TOgKMß

DFGPj¶ãPá U àT@CàTDFOXDgK|âd\ZD]_|KVáMDXàP`ZKVD U G#k
NPEHG#_|Kh@CáMKMDXGPj
Y[á U B |t1〉
ð¼áME�_�ã2í |t2〉 õºKMNPEHG ∆(D1, D2) ≤

δ(|t1〉 , |t2〉)
ífÝ2EWK |t1〉

\ZEHG U KVE1KMNTE©_|Kh@eKVE#@eK�KVNPE#EWGf\ U Y>ILKMEHã *³U Y S EHjbEWä.ò _
@COXj U áMDFKMNPBk
NPEWG k�E�`T_ME Bwc R @CGf\±OXE�K |t2〉
\PEWG U KME!KMNPE�_|Kh@eKVE�KVNT@eK k�E U àPKV@CDXG @CK©KVNPE�EWGT\ U YILKMEHã * k
NPEHG�k�Ed`T_ME B í�]0E1`PãPã¢EWá�à U `TGT\ δ(|t1〉 , |t2〉)

@5_�Y U OXO U k�_HíIwDFGfÞ�E Bwc(x mod L, w) = x
Y U á ‖x‖ < d R k�EÑNT@lä5E�KMNT@CK |t1〉

D]_!k
DgKVNPDFG
`2\ZDX_�KV@bGTÞ�Eµð½@CGT\�NPEHGTÞ�EdKVáV@5Þ�Ed\ZDX_�KV@bGTÞ�Elõ

2−Ω(n) U Y)KMNTE1G U áVBµ@COXDFüHEH\�_|Kh@eKME

|t′1〉 = 2−`/2
∑

w∈{0,1}`

∑

x∈ L
R

√
Dd

L/R,s(x) |0〉 |x mod L〉 |w〉 ,

k
NPEWáVE
Dd

L/R,s

\ZEWG U KME�_.KMNPE�G U áVBµ@COXDFüHEH\d\ZD]_|KVáMDXàP`ZKVD U G U àZKh@CDXGPEH\dàwâ�KMáV`PGTÞH@eKMDXGPj DL/R,sK U äbE�Þ¡K U áh_ U YoG U áVB < d
í¢þ�G�KMNPE U KMNPEHá
NT@CGf\ R Y U á�KVNPE1DXB³ã¢EWáMY[EHÞ�K U áh@bÞWOFE B R k�EdNT@lä5EKMNT@CK |t2〉

DX_
k
DFKMNTDFG�KMáh@bÞWE1\ZDX_�KV@bGTÞ�E
2−Ω(n) U Y)KVNPE1G U áMBµ@COXDXüWEH\�_�KV@eKVE

|t′2〉 = 2−`/2
∑

w∈{0,1}`

∑

x∈ L
R

√
Dd

L/R,s(x) |x − B(x mod L, w)〉 |x mod L〉 |w〉 .

Ý2E�K
SB = {(x, w) ∈ L

R × {0, 1}` | ‖x‖ < d
@CGf\ B(x mod L, w) = x} íý U KVDXÞWE KMNT@CK R DFY (x, w) 6∈ SB R KVNPE _�KV@eKVEH_ |x − B(x mod L, w)〉 |x mod L〉 |w〉@CGT\ |0〉 |x′ mod L〉 |w′〉 @CáVE U áMKMN U j U GT@COºY U áA@bOFO (x′, w′)
í�UT`PáMKMNPEHáMB U áVE R DFY (x, w) ∈

SB R KMNPE�_�KV@eKVEH_ |0〉 |x mod L〉 |w〉 @CGf\ |0〉 |x′ mod L〉 |w′〉 @CáVE U á�KVN U j U GT@bO�Y U á@COXO
(x′, w′) 6= (x, w)

k
DFKMN ‖x′‖ < d R àfE�ÞW@C`f_�E�KVNPE Bµ@bãPãPDXGPj x 7→ x mod
L
D]_'çWßVç U äbEWá x U Y±G U áMB < d < λ1(L)/2

íT/�K Y U OXO U k�_ KMNf@eK | 〈t′1|t′2〉 | =∑
(x,w)∈SB 2−`Dd

L/R,s(x)
íjð�EHGTÞ�E R | 〈t′1|t′2〉 | D]_ E ö `f@CO�K U KMNPE�ãPá U àT@CàTDFOXDgK|â pKMNT@CK B(x mod L, w) = x R�U äbEWá³KVNPE¿ÞhN U D]Þ�E�_ U Y x

Y[á U B KMNPE¿\ZD]_�KMáVDFàP`PKMD U G Dd
L/R,s@CGT\

w
`PGPDFY U áVB³OXâ�áh@CGf\ U B DXG {0, 1}` í�`�â!Ý2EWB Bµ@ *ZR `f_�DXGPj³KMNPEdY¼@5Þ¡K�KMNf@eK d >

√
ns Rk�E
NT@lä5E

p ≥ p̂−2−Ω(n) R k
NTEWáVE p̂
DX_;KVNPE�Þ U áMáVEH_Mã U GT\ZDXGPjAãPá U àT@bàPDFOXDgK|â©k
NPEWG x

DX_>_M@bB�ß
ãPOFE�\µY[á U B DL/R,s

í�UoDXGT@COXOXâ R k�E�NT@läbE p̂ =
∑

x DL/R,s(x) Prw[B(x mod L, w) = x]
í`�â�KVNPE�_�KMá U GPj!_ U OF`ZKVD U GZß�DFGT\PEWã¢EWGT\ZEHGTÞ�E U Y B R k�E#NT@lä5E Prw[B(x mod L, w) = x] =

Prw[B(b + x, w) = x]
Y U áA@CGwâ�ôTìwE�\ b ∈ L

í.c�NPEHáMEWY U áVE R p̂ DX_�KMNPE³_�`TÞHÞ�E�_M_¶ãPá U àT@CàTDFOFßDgK|â U Y B DXGñ_ U OFäwDXGPj BDDDL/R,s

R _ U p̂ ≥ ε
àwâó@b_V_�`TB³ãPKMD U G2íoþ�ä5EWáh@COXO R k�E»Þ U GTÞ�OX`T\ZE

KMNT@CK
δ(|t1〉 , |t2〉) ≤

√
1 − ε2 + 2−Ω(n) R @bGT\¿NPEHGTÞ�E©KMNPE U `ZKVãP`ZK U Y R DX_�k
DFKMNPDXGî_�KV@Cß

KMD]_|KVDXÞH@CO)\ZD]_�KV@CGfÞ�E
1 − ε2/2 + O(ε4) + 2−Ω(n) U Y DbL, 1

2s

R @5_
Þ�O]@CDXB³E�\ºí ut
c U ãPá U äbE
c�NPE U áVEWB¼' R k�E�@CãPãTOFâ Ý2EHB³Bµ@1èAK U KMNPE¶OX@CK�KMD]Þ�E�_ L(G)

Y U á G ∈ S R k
DFKMN@COXj U áVDFKMNPB B í	U U áAKMNT@CK R k�E�GPEHEH\ÑK U EWGT_M`PáVE#KVNT@eKdKMNTE�Nwâwã U KMNPE�_�D]_ αq < λ1(L(G))

2
√

2m

DX_



_M@CKMD]_|ôTE�\ºí�UTá U B Ý)EWB Bµ@bZ©ð¼áME�_�ã2í�Ý2EHB³Bµ@?X
DFG1KVNPE�ÞH@b_ME U Y Ideal-LWE
õ R k�E<awG U k0KVNT@eKk
DgKVN©ãPá U àT@bàPDXOFDFK|â 1−2−Ω(n) U äbEHá2KVNPE�ÞhN U D]Þ�E U Y G DXG Zm×n

q
R k�E�Nf@läbE λ∞

1 (L(G)) ≥ q
4@CGT\

λ1(L(G)) ≥ 0.07
√

mq
í�U U á�_�`TÞhNmý j UwU \ºò G ò _ R KMNTE1NLâwã U KVNPEH_MDX_ αq < λ1(L(G))

2
√

2m

DX_
_M@CKMD]_|ôTE�\ R _MDFGTÞWE α < 0.006

íwc�NPE1_�EWK S ′ U Y)KVNPE G
ò _�DXG S Y U á
k
NPDXÞhN!KMNf@eK�Þ U GT\ZDFKMD U G�DX__M@CKMD]_|ôTE�\©áVEWãTáME�_�EHG5Kh_;@�ãTá U ã U á�KVD U G ≥ ε/2−2−Ω(n) U Y Zm×n

q

íbIw`PãPã U _ME
G U k±KVNT@eK G ∈
S ′ í2Ý2EWB Bµ@�è�_MN U k�_¶KMNT@CK1k�EµÞW@bGJôTGf\0@!äbE�Þ¡K U á s ∈ G⊥ = qL̂(G)

KVNT@eKdY U OFO U k�_�@\ZDX_�KMáVDXàP`ZKMD U G�k
N U _�Ed\ZD]_|Kh@CGTÞWE¶K U DG⊥, 1
2α

DX_
∆ = 1 − ε2

32 + O(ε4) + 2−Ω(n) íPc�NT@bGPaZ_
K U Ý2EHB³Bµ@5_�ç�@bGT\ * ð½_�DXGTÞWE G ∈ S @CGT\

α ≤ 1/(10
√

ln(10m)) R KMNPE¿Nwâwã U KMNTEH_MDX_U Y¶Ý2EHB B @ñç�D]_�_V@eKVDX_�ôTE�\Tõ R k�E»NT@läbE�KMNT@CK�k
DFKMN ãPá U àT@CàTDFOXDgK|â ≥ 1 − 2−Ω(n) − ∆ =
ε2

32 − O(ε4) − 2−Ω(n) R KVNPE�áMEWKM`PáVGPEH\ s
D]_µ@ÑG U GZß�üHEWá U ä5EHÞ¡K U á U Y G⊥ k
N U _ME!G U áMB

DX_ ≤
√

m
2α

í	J¿`TOgKVDFãPOXâwDFGTj�àwâ�KVNPE©ãTá U àT@CàPDXOXDgK|â ≥ ε/2 − 2−Ω(n) KMNT@CK G ∈ S ′ jbDXäbE�_
KMNTEÞ�O]@CDXB³E�\!_M`TÞHÞ�EH_V_�ãPá U àT@bàPDXOFDFK|â�@CGf\!Þ U B ãPOXE�KME�_�KMNPE1ãTá UwU Y U Y�c�NPE U áMEHB�ZTí ut

� �î×��Kï¶ÖZØ��<×��vï���Ü�Û���ï?ï��MÜ�Û��oÖPÜ|Ø>Õ��
]îE�G U k `T_�E#KMNPE�áME�_�`POFKV_ U Y>IwE�Þ¡KMD U Gf_?'»@bGT\àZµK U Þ U GT_|KVáM`fÞ¡K¶EWïµÞWDFEHGLK�Þ�áVâwãZK U jbáh@CãPNPD]ÞãPáMDXB DgKVDFä5EH_�àT@b_MEH\ U G»D]\ZEH@bOfO]@eKMKMD]Þ�E�_Wíwc�NPD]_>DXGTÞ�OX`T\ZE�_<KVNPE�ôTáV_�K�ãTá U äe@CàTOFâ _�E�Þ�`PáVE�O]@eKMKMD]Þ�E�ßàT@b_MEH\�ãP`PàPOXD]Þ¡ß�abEWâ1EHGTÞ�áVâwãZKMD U G _VÞhNPEWB E�k
DgKVN @5_�âwB ãZK U KMD]ÞW@bOFOXâ U ãPKMDXB @bOZEWGTÞWáMâwãZKVD U G�@bGT\\ZEHÞWáMâwãZKVD U G�Þ U B ãP`ZKh@eKMD U G�Þ U _|Kh_ U Y Õ(1)

àTDgK U ãfEHáV@CKMD U GT_�ã¢EWá�B EH_V_V@CjbEAàPDFKHí

²#¡8¦ ���¥�!�R�����µÐv��Òv�R�8��� �	�"!Ë�����!Ï#!#Ð��Y�RÑ	�ß �� æ ��¤�
þ�`PáÑ_VÞhNPEWB EÍD]_JÞ U GT_|KVáM`fÞ¡KME�\ DFG K|k U _|KVEWãT_Hí�UoDXáV_�KMOXâ R k�EÍ`T_MEóKMNPE LWE

Bµ@CãPãTDFGPj
(s, e) 7→ G · s + e mod q

@5_�@bGÍDFGCæ|EHÞ¡KVDFä5E�KVáV@bã¢\ ULU á U GTE�ß�k�@lâÑY[`PGTÞ¡KVD U G R k
DgKVN±KVNPEKMáh@Cã.\ UwU á<à¢EWDXGPj#KVNPE�Y[`TOFOFß�\PDFB EWGf_�D U GT@bOf_ME�K U YºäbEHÞ�K U áV_�DXG G⊥ Y[á U B IwE�Þ¡KMD U GÀ' R @bGT\ KMNTE
U GPEWß�k�@lâwGPEH_V_¶à¢EWDXGPj¿@b_dNf@Cáh\Ñ@b_ Ideal-SIS

ð½@CGT\îNPEWGfÞ�E
Ideal-SVP

õAàwâÑc�NTE U áVEWB�'Tí
c�NPDX_AD]_d@CGÑEWï»Þ�DXEWGLKAD]\ZE�@CO;OX@CK�KVDXÞWE³@bGT@CO U j5`PE U Y�_ U B³E�KMáh@Cã.\ UwU á¶Y[`PGTÞ�KMD U GT_dãPáVEH_MEWGLKVEH\DFGîê è R�*,+ ëTY U á�@báMàTDgKVáV@báMâ�OX@CK�KMD]Þ�E�_WíPIwE�Þ U GT\ZOXâ R k�EA@CãPãTOFâ³KMNTE4� U OX\PáMEHDXÞhNZßzÝ2EHäwDFGµNT@báV\TÞ U áVEY[`PGTÞ¡KVD U G�àT@b_MEH\ U G�c U EWãTOFDFKMüdBµ@eKVáMD]Þ�E�_�êXç�) R IwEHÞbí * íÂXlëºK U U `Pá�KMáh@Cã.\ UwU á�Y[`PGTÞ�KMD U G R @bGT\i�þ S KVNPE
B EH_V_M@bjbE�k
DFKMN KMNTE
NT@Cáh\PÞ U áME�àPDFKV_�K U1U àPKV@CDXGµ@1_�EHBµ@CGLKMD]ÞW@bOFOXâ©_MEHÞ�`TáME�EWGfÞ�áVâLãPßKMD U G2íwc U©U àZKh@CDXG KMNPE Õ(1)

@CB U áMKMDXüWE�\³àPDgK
Þ U B ãPOFEWìZDgK|â³ãfEHá>B EH_V_V@CjbE
àTDgK R k�E�`T_ME Ω̃(n)NT@Cáh\PÞ U áMEAàPDFKV_ R k
NPD]ÞhN!DXGT\Z`fÞ�EH_¶@³_M`Pà¢E�ìZã U GPEHG5KVDX@bOºO U _M_�DXG�KMNPE#_MEHÞW`PáVDgK|âµáVEH\Z`fÞ¡KMD U G)íþ�`PáµKMáh@Cã.\ UwU á»Y[`PGTÞ¡KVD U G�Y¼@CB DXOFâ Id
ß
Trap

D]_�\PE�ôTGPE�\7DFGjU�DXjb`TáMEÍç5í~U U á!_MEHÞW`PáMDFK|âãT@Cáh@CB E�KVEWá
n = 2k R k�EAôPì f(x) = xn + 1

@CGT\
q = Poly(n)

@©ãPáVDXB³E1_V@eKVDX_�Y[âwDFGPj
q ≡

3 mod 8
í�UPá U B÷Ý2EHB³Bµ@T' R DgK�Y U OXO U k�_�KMNT@CK f

_�ãTOFDFKV_�B U \P`PO U q
DXG5K U K|k U DXáMáVEH\Z`fÞ�DXàPOFEY¼@bÞ¡K U áh_ U YP\ZEHjbáVEWE n/2

í6]0E>_ME�K
σ = 1 R r = 1+log3 q = Õ(1)

@bGT\
m = (dlog qe+1)σ+

r = Õ(1)
í�]0Ed\PE�ôTGPE R = Zq [x]/f

íPc�NPEAY U OXO U k
DFGPj³OXEWB Bµ@�EHGT_M`PáME�_�KMNPE#Þ U áVáME�Þ¡KMGTEH_V_
U YoKMNPE©_VÞhNPEHB³Eµð[KMNPD]_�D]_
EH_V_MEWGLKMD]@COXOFâ�DX\ZEHGLKMD]ÞW@CO2K U ê *,+PR IZEHÞCíZTíXç�ë[õ�@CGT\�@b_V_MEWáMKV_�KMNT@CK�KMNTEEWäe@COX`T@eKVD U G�@bGT\!DFGwäbEHáV_MD U G»Y[`TGTÞ¡KVD U GT_�ÞW@bG!à¢E1DXB³ãTOFEHB³EHGLKMEH\�EWïµÞWDFEHGLKMOXâbí
£&��¤¥¤¥�G¦"½�¡|d�<N5

q > 2
√

mnL
VWf�=

α = o(1/(L
√

log n)) »pÄ k�<;fcÉNnW7cVWf�M s ∈ RVWf	=?ÉNnW7
e
3;V,xas�Oq<A=aÉA7on,x

Ψαq ¸ 5�k�<�PgfºW<N7A36PRnWfGVWO h(n,76Pg5gk"x�7�<�:An,º.<;7A3
(s, e) ¹ Pg5�kps�7on!ÅAV ¶ÅNPgOQPg5·M

1−n−ω(1) n,º.<;7�5gk<�:�knWPR:A<×nãÉ e » ´09"765gk<N76x}nW7o< ¸ 5gk<4<NºWVWOQ9V,58PRn,fÃVWf�=�PgfºW<N7A36PRnWfVWO h�nW76Pg5�k�xp3&ÉNnW7
hg

:AV,fmÅA<�Pgx?s	Oq<;x}<Nf�5t<A= ¹ Pg5gkc769"f ¶ 5·Pgxµ< Õ(n) »



$&%('")*' ¬�5«,+ ).- 0/21 ) ®H«,+43 )65 +X«,7Í«V¬W"8:9;3�3w¬e¯ p��5}�y|�5t�vH����~Wx|��y|�5{ �Fx|~�{ £;�LtV~Hx|th{'�C�L�L���
��}5� f = xn + 1, n, q, r, σ, m vH����}Lu5�5y|�h�Lqb�5uLuZ~��zt���y<�z�L�h�htVt¡�5�h�b¥½y�x|tMy|�5x|}L� g ∈ (Zq[x]/f)m

¾]�X�L}5�Vy|��~�}���}w�btV·LÀ»vW}w��v0yzx�vWuP�5~e~Hx!�]�5�g���[x�vH}5¤ �ztMy S ~W�©�g��}5t¡vWx|���7��}L�5thuZth}L�5th}ey��lth�My|~Hx|�
��} rotf (g)⊥ ⊆ Zmn×mn

q
²<��y|� ‖S‖ ≤

√
2(4

√
nr + 3) =: L ¾]²;t
�wv¡�lt L = eO(

√
n) ÀM�$=< 1 ) ®�«,+>3 )?'A@ "BC1f5«,+43 ) ¯ Ä����lth}Í�]�5}L�Vy|��~�}±��}w�btV· g ��²ot��bt�Dw}5tµy|�Lt»yzx�vHuP�5~e~Wx �]�5}L�Vy|��~H}

hg : Zn
q × Zmn

q → Zmn
q
vH�<�]~H���g~¡²<�h�fÃ�}��g}5uL�by s �5}L���]~Wx|{1���©x�vH}L�5~H{��g} Zn

q
vH}L� e ∈ Zmn

q�|vW{1uL��t¡���Fx|~�{ Ψαq
¾[�5t�DL}Lt¡��vH�<y|�Lt�x|~��5}w�b�g}5�1~H� Ψαq

y|~dy|�Lt
�h��~��ztV��y���}ey|th��tVx��lth�My|~HxMÀM�b²;t
�V~�{1uL�by|t�vW}w��x|tVy|�bx|}fÁ c = hg(s, e) := rotf (g) · s + e mod q �$=< 1 ) ®�«,+>3 ) + )�@E' ¬Wª,+43 ) ¯ Ä����ltV} c = hg(s, e) vH}L�Ayzx�vHuP�5~e~Wx S �e�h~H{1uL�by|t d = ST ·c mod qvW}w� e′ = S−T ·d ¾Ð��} Q ÀM�emo~�{1u5�5y|t u = c−e′ mod q vW}w� s′ = (rotf (g1))

−1 ·u1 mod q �²<�5tVx|t u1
�V~�}L�z����y|�>~H�.y|�5tFDLx|��y n �h~e~Hx��b��}wvWy|tV��~W� u �5p�tMy|�5x|} (s′, e′) �

< + - ¯#GL¯ £;�5t�yzx�vHuP�b~e~Hx<�]�5}L�Vy|��~�}��ÐvH{1����� Id � Trap �
c�NPE U GTE�ß�k�@lâwGPE�_M_ U Y Id ß Trap D]_�E ö `TDFäe@COXEWGLK»K U KVNPEÑNT@báV\PGPEH_V_ U Y LWEm,q;Ψαq

íUP`PáMKMNPEHáMB U áME R @bG#DFGf_|Kh@CGTÞWE U Y LWEm,q;Ψαq

ÞH@CG#à¢E�EWï»Þ�DXEWGLKMOXâ#Þ U GLä5EWáMKME�\dàLâ1á U `TGT\ZDXGPjK U @CG�DXGT_|Kh@CGTÞWE U Y LWEm,q;Ψαq

íTc�NPD]_
ãPá U äbE�_�Ý)EWB Bµ@�çbçbí
£&��¤¥¤¥�G¦	¦	¡ Ê fMÜVW5·5tV(:�Þ(<N7�V;h�VWPgf3A5Ø5gk<Ln,f	< ¶r¹ VWMWf�<63A3�nãÉ Id ¶ Trap Ùt¹ Pg5�kGs�V,7oVWx}< ¶5t<;7A3

m, α, q Ú ¹ Pg5gk�769"f ¶ 5·Pgxµ< T
V,f	=L369:A:A<63A3ps	7on(ÅAV!Å;PgOQPg58M

ε
s	7�nWºYPR=!<N3mVWfjV,O h(n,76Pg5gk"xÉNnW7

LWEm,q;Ψαq ¹ Pg5�kc769"f ¶ 58Pgx}< T
V,f	=µ369:A:A<63A32s	7�n!ÅAV!Å;PgOQPg5·M

ε »
`�â�Þ U B©àTDFGPDXGPj U `Pá!KMáh@Cã.\ UwU á!Y[`PGTÞ�KMD U G k
DgKVN KVNPEG�dÝ'Nf@Cáh\PÞ U áME¿Y[`TGTÞ¡KVD U G'êXç�) RIwEHÞbí * íÂXlëºk�E1jbE�K�KVNPE1EWGTÞWáMâwãZKVD U G�_VÞhNPEHB³E U Y�UoDFj5`PáVE * í

$=H�'JI&-K'�).' ¬�L«,+43 ) ¯�L ~Wx;�zth�h�bx|��y��1uLvWx�vH{1tMy|tVx n �ex|�L}1y|�5t��Hth}LtVx�v�y|��~�}�vH����~Wx|��y|�5{ ~W� Id � Trapy|~��HtVy<vH} hg
vH}L�©v�yzx�vWuP�5~e~Hx S �e��t<�¡vH}©�C�gtM²0y|�LtMDLx|��yo�h~�{1uZ~H}Lth}ey�~H�Ty|�Lt��5~H{#vH��}1~H� hgvW�
v#�z�L°L�ztMy�~H� Z`I

2
�]~Hx `I = O(n log q) = eO(n) �PÄ�th}LtVx�v�y|t r ∈ Z`I+`M

2
�5}L���]~Wx|{1���»vH}L�

�bt�Dw}5t¶y|�5td£¢~etVuL����y|Âd{#vWyzx|��· MGL ∈ Z`M ×`i
2

¾[vW�g��~¡²<��}L�³�]vH��y�{��L��y|��uL�����¡vWy|��~�}N �H�POXÀ�²<�5~��zt
i y|�©x|~�² ��� [ri, . . . , r`I+i−1]

�w£;�5t
uL�5°L�����
¤ltV�#��� (g, r) vW}w�©y|�5t��zth�Vx|tMy�¤�tV�©�g� S �
$=QF) ®�¬ I 8¢«,+43 ) ¯ Ä��g��th} `M

�¼°L��y {1th�z�|vW��t M ²<��y|� `M = n/ log n = eΩ(n) vH}w�Íu5�L°L�����¤�tV� (g, r) �C�|vH{1u5�gt (s, e) ²<��y|� s ∈ Zn
q
�5}L���]~Wx|{�vH}L� e �|vW{1uL��t¡�1�Xx|~�{ Ψαq

�bvH}w�#th�HvH���wv�y|t
C1 = hg(s, e) �lmo~�{1uL�by|t C2 = M ⊕(MGL ·s) �W²<�LtMx|t<y|�5t�u5x|~C�b�L�Vy MGL ·s ���2�h~�{1u5�5y|t¡�~��ltMx Z2

�wvW}w� s ���<�b��tV²ot¡�³vW��v���yzx|�g}5�d~��ltVx Z`I
2
�Lp>tVy|�5x|}©y|�Lt��V�gu5�LtVxzy|tM·by (C1, C2)

�
$=RS' ®�¬ I 8¢«T+43 ) ¯ Ä����lth} �V�gu5�LtVxzy|tM·by (C1, C2)

vH}w�©�zth�Vx|tVy�¤ltV� (S, r) �L��}C�ltVxzy C1
y|~d�h~H{1uL�by|t

(s, e) �z�L����y|�LvWy hg(s, e) = C1
�LvH}L�©x|tVy|�bx|} M = C2 ⊕ (MGL · s) �

< + - ¯VUP¯ £;�Lt
�zth{#vW}Cy|���¡vW�������zth�h�bx|t
th}L�Mxz�5uby|��~�}³�z���LtV{1t Id � Enc �
å�æ ��Ñ�ÏW��¤ ë�¡ Ê fMpÇ WYX ¶,Z 
 Ê V,585rV!:AÞ!<;7pV�h(V,Pgf�365

Id ¶ Enc ¹ Pg5�ku769"f ¶ 58Pgx}< T
VWf�=À369: ¶:�<N3A3|s	7on(ÅAV!Å;PgOQPg58M

1/2 + ε
s	7on,º�PR=(<63cVWf¿VWO h(n,76Pg5gk"x�ÉNnW7

Ideal-LWEf
m,q;Ψαq

¹ Pg5�k769"f ¶58Pgx}<
O(23`M n3ε−3 · T )

VWf�=µ369:A:A<63A32s	7on(ÅAV!Å;PgOQPg58M
Ω(2−`M n−1 · ε) »


27onYnêÉ » c�NPEµ@eK�Kh@bÞha5EWádÞW@CG0à¢E»Þ U Gwä5EWáMKMEH\¿K U @c�dÝ Nf@Cáh\PÞ U áME©Y[`PGTÞ¡KVD U GÍ\ZDX_�KMDXGPj5`PDX_MNPEHáKMNT@CK R jbDXäbEHG C1 = hg(s, e) R MGL
R @CGf\ `M

àPDFK#_|KVáMDXGPj
z R Y U á s

_V@CB ãPOXEH\Ñ`PGPDFY U áVB³OXâDFG
Zn

q
R e

_V@CB ãPOXEH\�Y[á U B Ψαq
R @CGT\ MGL

Þ U GT_�KMáV`TÞ¡KVEH\�@b_!DXG�KMNPEîabEHâ´j5EWGPEHáV@CKMD U GãPá U ÞWEH\Z`PáVE R \ZD]_|KVDFGPj5`PD]_�NPE�_)k
NTE�KMNTEWá z D]_)`TGPDgY U áMB OXâdáV@bGT\ U B ð¼DFGT\PEWã¢EWGT\ZEHGLK U Y s @bGT\ e
õ

U á z = MGL ·s í./�K;NT@b_�áV`PGZß�KMDXB³E T
@CGf\#@b\Zäe@bG5Kh@Cj5E

ε
í�c�NPE�áVEH_M`POgK�Y U OXO U k�_)àwâ#@CãPãPOXâwDFGTjÝ2EWB Bµ@ * íÂXZí +PR ù<á U ã U _�DFKMD U G * íÂXZíQSµ@bGT\Jù<á U ã U _MDFKMD U G * í XPí '�DFG´êXç�)eë�í.ý U KVE³KMNT@CKAk�E³\ UG U K�GPEWE�\µK U jbDXäbE
KVNPEAäbEHÞ�K U á e

@5\P\ZDFKMD U GT@bOFOXâ�K U s
@5_>DXGPãP`ZK�K U KMNPE4�dÝ¿Y[`TGTÞ¡KVD U G R @b_ eDX_
`TGPD ö `PEHOFâ!\ZE�KVEWáVB³DXGPE�\ U GTÞ�E s

D]_�jbDXäbEHG0ð¼k
DgKVN U äbEWáVk
NPEHOFB DXGPj�ãTá U àT@CàPDXOXDgK|âPõ¡í ut



`�â�`T_�DXGPjµÝ2EHB B @�çY)³@bGT\�c�NPE U áMEHB _dç R ' @CGT\eZ R k�EdjbEWK U `Pá
Bµ@CDXG�áME�_�`POFKHí
[ Ñ�ÏWÑ��8�R�"Ï#!j¦�¡ Ê fMuÇ\W�X ¶,Z 
 Ê VW5·5rV!:AÞ!<;7ÃV;h�VWPgf3A5}<;f	:;76M�s	5·PRnWf¿3;:Ak�<;xµ<

Id ¶ Enc ¹ Pg5gk769"f ¶ 5·Pgxµ< 2o(n) VWf�=|369:A:�<N3A3�s�7on!ÅAV(ÅNPgOQPg5·M 1/2+2−o(n) s	7�nWºYPR=!<N3�V×w;9VWf�589"x¯V,O h�nW76Pg5�k�xÉNnW7
Õ(n2) ¶ Ideal-SVP ¹ Pg5gk f(x) = xn + 1

VWf�=
n = 2k ¸b¹ Pg5�kL769"f ¶ 5·Pgx}< 2o(n) VWf	=nWºW<N7 ¹ k<NOQx�Pgf�hT369:A:A<63A32s	7�n!ÅAV!Å;PgOQPg5·M » ´09"765gk<N76x}nW7�< ¸ 5�k�<×3;:Ak�<;xµ< Id ¶ Enc <;f	:;76M�s	583�V,f	==!<A:N76M�s�5R3

Ω̃(n)
ÅNPg583 ¹ Pg5gk"Pgf Õ(n)

Å;Pg5KnAs�<;7oVW5·PRnWf3 ¸ VWf�=}Pg583?Þ(<;M.3?kVWºW< Õ(n)
ÅNPg583 »

²#¡g© ����Ï.� æ ��ÏT�"Ð�Ð��8�R�(�"���8Ñ��� 
þ�`Pá#áVEH_M`POgKh_1NT@lä5E»_�EHäbEWáh@CO U KMNPEHá©@CãTãPOFD]ÞW@CKMD U GT_ R @5\P@CãZKVDFGTj¿äl@báMD U `f_daLG U k
GóÞ U GT_�KMáV`TÞ�ßKMD U GT_�Y U á
`PGT_�KMáV`TÞ¡KV`PáME�\�OX@CK�KMD]Þ�E�_�K U D]\ZEH@bOºOX@CK�KVDXÞWEH_ R @b_
_M`PB B @báMD]_MEH\!àfEHO U k1í[][ ÷à©K�A ����!��ÏW�¯�����,Ï#!#Ð����RÑ	�~¡#ù;EWDXabEWáMKÍê *!+ ë�\PEWáVDFä5EH\ @Ì^b^�å * ßz_MEHÞ�`TáMEóEWGfÞ�áVâLãPKMD U G_MÞhNPEHB E�Y[á U B KMNPEdG U GZß�_�KMáV`TÞ�KM`PáVEH\�äl@báMD]@CGLK U Y�KMNPEdKVáV@bã¢\ ULU á>Y[`TGTÞ¡KVD U G!Y¼@bB DFOXâ Id

ß
TrapY[á U B UoDXjb`PáVE¶ç R `f_�DXGPj�KVNPE�Y[áV@bB³EHk U áMa U Y2ê 'Pç R '!ZCëbY U á�àT`PDFO]\ZDXGPj�@4^b^�å * ß�_MEHÞW`PáVE>_MÞhNTEWB EY[á U B�@µÞ U OFOXEHÞ�KMD U G U Y�DXGeæ|EHÞ�KMDXäbEdKVáV@bã¢\ UwU á
Y[`PGTÞ�KMD U GT_�KVNT@eK�DX_�_�E�Þ�`PáVEd`PGT\ZEHá�Þ U áMáVEWO]@eKVEH\ãPá U \Z`fÞ¡K�ð¼D½í Ebí RTU GPE�ß�k�@lâwGPE�_M_�D]_
ãPáVEH_MEWáVäbE�\�DFY>_�EHäbEHáV@bOfY[`TGTÞ¡KVD U GT_¶@báME1EHäl@bOF`f@eKME�\ U G�KMNTE_M@bB³E1DXGPãP`PKhõ¡í¢c�NPE#@CãTãPá U @bÞhN U Y�ê *!+ ë�ÞH@CG�àfE©@bãPãPOXDFE�\!K U Id ß Trap R `T_�DXGPj KVNPE#E ö `T@bOFDFK|âàfEWK|k�EHEWG

Ideal-LWEkm
@bGT\�KMNTE#ãPá U \P`TÞ¡K U Y k DXGT_�KV@CGfÞ�EH_ U Y Ideal-LWEm

R B©`POFKMDXãPOXENT@Cáh\PÞ U áME³àPDFKV_#@5_dDFG Id
ß
Enc R @CGT\0DXGT_|Kh@CGLKMD]@eKVDFGTj!KVNPEµáVE ö `PDXáME�\Ñ_�KMá U GPj5OFâ¿`PGPY U áVjbEH@bàPOXE_�DXjbGT@CKM`PáVE1k
DFKMN¿KVNPE

Ideal-SVP
ß�àf@b_MEH\�_MÞhNTEWB E U Y
êXç + ë�í	`�â�ÞhN UwU _MDXGPj k = Õ(n)

ð[KMNPE
àPDgKMß�OXEWGTjCKMN U Y�KMNPEAäbEHáMDFôfÞW@CKMD U G»a5EWâ DXGîêXç + ëÐõ>@CGT\ α = Õ(n−3/2) R k�E U àZKh@CDXG!@}^b^�å * ß_�E�Þ�`PáVE³_VÞhNPEHB³E�KMNf@eK1EWGTÞWáMâwãZKh_

Ω̃(n)
àTDgKh_dk
DgKVNPDFG

Õ(n2)
àPDFK U ã¢EWáh@eKVD U GT_�@bGT\îk
N U _ME_�E�Þ�`PáVDgK|â�áMEHOFDXEH_ U G�KVNPE1E�ìZã U GPEHG5KVDX@bO ö `T@CGLKM`TB NT@Cáh\ZGPE�_M_ U Y Õ(n4)

ß
Ideal-SVP

íå ÏW�"Ð&��Ñ0Ñ�Ï\ ��8ù����"����ÏW�� !¡×�AEHG5KVáMâû<N5àVWO » ê èeë³jbDXäbEÍ@�Þ U GT_|KVáM`fÞ¡KMD U G U Y @´KVáV@bã¢\ UwU á_�DXjbGT@CKM`PáVEóð[DXG KVNPE¿áh@CGT\ U B U áh@bÞWOFE�B U \PEWOÐõ�Y[á U B�@CGwâÍY¼@bB³DXOXâ U YdÞ U OXOXDX_MD U GZß�áME�_�D]_|Kh@CGLKãPáMEHDFBµ@bjbEÑ_V@CB ãPOXEH@bàPOFEJY[`PGTÞ¡KVD U GT_óð[ù�I�UT_hõ¡í�c�NPEHâ7_MN U k÷N U k÷K U _V@CB ãPOXEÑãPáVEWDXBµ@CjbE�_
U Y fG(x) = xT G R k
NPEWáVE G ∈ Zm×n

q
R `T_MDFGTjJ@�Y[`POXOgßz\ZDXB³EHGT_MD U GT@CO>_ME�K U Y
_�N U á�K#ä5EHÞ�ßK U áh_#DXG G⊥ ív`�âó@CãPãTOFâwDXGPjJKVNPDX_©K U G = rotf (g)

@CGT\ñ`T_�DXGPj¿KVNPE!KMáh@Cã.\ UwU á©j5EWGPEHáV@CßKMD U G�@COXj U áVDFKMNPB Y[á U B IwE�Þ¡KVD U Ge' R k�E U àZKh@CDXG�@�ù�I"Uñk
N U _MEdÞ U OXOXDX_MD U G�áVEH_MDX_�KV@bGTÞ�EAáVEWOXDFE�_
U G Ideal-SIS R @CGT\©NPEWGTÞWE Ideal-SVP R @CGT\#KMNw`T_;@A_|KVáM`TÞ�KM`PáVEH\©äe@CáVDX@bG5K U YPKVNPE�KMáh@Cã.\ UwU á_�DXjbGT@CKM`PáVEd_MÞhNPEHB E U Y�ê èeë R k
DFKMN Õ(n)

ä5EWáVDgôfÞH@eKVD U G»KMDXB E#@CGT\�_MDFj5GT@eKV`PáVE�OXEWGPjbKMN2íÁNÓ=��Ò�� ������8���������RÔ��(�"���8Ñ��~¡KUPá U B O]@eK�KVDXÞWE�ß�àT@b_MEH\ _�DXjbGf@eKM`TáME�_ R k�E�\PEWáVDFä5ET/|?¶ß�àf@b_MEH\DX\ZEHGLKMDFôfÞW@CKMD U Góð�/ê`2/�õ�@CGT\T/|?¶ß�àT@5_�E�\!_MDXjbGT@CKM`PáVE³ðR/ê`
IPõ¡íTå¶ãPãPOXâwDFGPj KVNPE#_�KV@CGf\P@Cáh\�_�KMáh@eKMßEWjbâ R k�E�Þ U GT_�KMáV`TÞ�K�O]@eK�KVDXÞWE�ß�àT@b_MEH\u/ê`~/�_MÞhNPEHB EH_¶@5_�Y U OFO U k�_�_¢c�NPE³Bµ@b_�KMEHá¶jbEHGPEWáh@eKVEH_�@abEWâµãf@CDXá U Y�@�OX@CK�KMD]Þ�EWß�àf@b_MEH\�_MDXjbGT@CKM`PáVE�_VÞhNPEWB E R _V@lâ (G, S) � û>@5ÞhN!`T_MEWá U àZKV@bDFGT_>Y[á U BKMNPE�Bµ@b_�KMEHá;@d_MN U áMK;äbEHÞ�K U á e
_M`TÞhN#KVNT@eK

eT G = H(id) R k
NPEHáME H
D]_�@AáV@bGT\ U B U áh@bÞ�OXE �c�NPE�ãTá U ä5EWá¶ãTá U ä5EH_
K U KVNPE³äbEWáVDFôTEWá¶KMNT@CKdNTE.-e_MNPE�NT@b_A@!_MN U á�KAäbEHÞ�K U á e

KVNPá U `Pj5NJKMNTEJ¿DXÞHÞ�D]@CGTÞWD U ß�ø<@5\ZNT@bG±ãPá U K U Þ U OAê * ZCë�í;c�NTDX_ Þ U B©àPDXGT@CKMD U GñâwDXEWO]\P_ Þ U GTÞ�`PáVáVEWGLKMOXâÍ_�E�Þ�`PáVE/ê`~/#_VÞhNPEHB³E�_#àT@5_�E�\ U G Õ(n2)
ß
SVP

@bGT\
Õ(n2)

ß
Ideal-SVP

DFG±KMNPE�áV@bGT\ U B U áV@5Þ�OXEB U \ZEHO½í;å¶_#KMNPEeJ¿ø ãPá U K U Þ U O>DX_©k
DgKVGPEH_V_©DXGT\ZD]_�KMDXGPjb`PD]_MNT@CàPOXE R k�E!ÞW@CGó`T_ME»KVNPEØUoD]@eK�ßIwNT@CB DXá
NPEW`TáMD]_|KVDXÞ³ê + ë�@bGT\�\ZEWáVDFä5EdOX@CK�KMD]Þ�EWß�àf@b_MEH\À/ê`
I�_VÞhNPEWB EH_HíÁNÓ=��Ò�� ����������!Ï^!#Ð����8Ñ���§ãÁ`_��|³W¡�/�K�D]_
_�N U k
G�DXGîê èeëºKVNT@eK�KMNTEA`TGT_|KVáM`fÞ¡KM`TáME�\�äe@CáVD]@CGLK
U Y>KVNPEµ@Cà U äbE©KMáh@Cã.\ UwU ád_�DXjbGT@CKM`PáVE ÞW@CGîàfE `T_MEH\î@b_�KMNTE³D]\ZEHG5KVDgK|âÑabEWâ¿EWìwKMáh@bÞ¡KVD U GJY U á@CGØ/ê`�û7_MÞhNTEWB EbíZc�NPD]_�áME ö `PDFáVEH_�@Øý \Z`f@CO�òZäbEWáh_MD U G U Y Id ß Enc R DFG�k
NPD]ÞhN�KVNPEdãP`PàPOXD]Þ�a5EWâ



DX_ U Y¶KMNPE�Y U áVB (g, u) R k
NPEHáME u = H(id)
DX_�KMNTE!NT@5_�NTEH\±D]\ZEHG5KVDgK|â R @CGT\±KMNPE¿_MEHÞ�áVE�KabEWâ!DX_�KMNPE³_�DXjbGf@eKM`TáME U Y id R D½í Ebí R @µ_�N U á�K�ãPáMEHDFBµ@bjbE U Y u

`TGT\ZEWá
fg(x) = xT rotf (g)

í]îEµÞ U GT_�KMáV`TÞ¡KAKMNPEeý�\Z`T@bO½òºEHGTÞ�áVâwãZKMD U G0@b_ (C1, C2)
k
NPEHáME

C1 = hg(s, e)
@bGT\

C2 =
T`(rotf (u)·s)+M R k
NTEWáVE M ∈ Z`

q

Þ U GLKV@bDFGf_¢KMNPE<B E�_M_V@Cj5E;@bGT\ T`(rotf (u)·s)
\ZEHG U KVEH_KMNPE³ôTáh_|K

`
Þ UwU áh\ZDFGf@eKME�_ U Y rotf (u) · s mod q

í0`�âJ@b\T@CãZKVDFGPj!KMNTE³áVEH_M`POFKV_ U Y¶êFçY'eë R k�E_�N U k KMNf@eK T`(rotf (u) ·s)
DX_�@CG E�ìZã U GPEHGLKMD]@COXOFâLßz_�E�Þ�`PáVE�jbEWGTEWáVDXÞ�NT@báV\PÞ U áVE�Y[`PGTÞ¡KVD U GµY U á`PGPDFY U áVB u ∈ Zn

q
R k
NPEWG ` = o(n)

í¢c�NPD]_¶@bOFO U k�_
`T_�K U ãTá U ä5E�KVNPE×/|ý�?�ßã^�ùºå _MEHÞW`PáMDFK|â
U YoKMNPE1áVEH_M`POFKMDXGPjp/ê`�û�_VÞhNPEWB EdàT@b_MEH\ U G�KVNPE1NT@Cáh\ZGPE�_M_ U Y Ideal-SVP

í
÷��^�0��Ñ þ �R����ù	��¤¥������ (¡]0EAKMNT@bGPaT^�NPáVDX_�ù;EWDXabEHá�K
@CGT\�þA\ZEH\ S EWj5EWä Y U á�NTEWOXãZY[`PO2\ZD]_|ßÞ�`T_V_�D U Gf_Wíwc�NPE�ôfáV_�K�@b`ZKMN U á>k�@b_�ãT@bá�KVOFâµ_M`PãPã U áMKMEH\»àLâ KVNPEdÝ)@ S EH\På å¶ý S jbáh@CGLK R KMNTE_�E�Þ U Gf\A@b`ZKMN U á2àwâ�@bJÑ@bÞ ö `T@báMDXE 1 GPDXäbEHáV_MDFK|â S E�_�E�@CáhÞhN�UTEWOXO U k�_MNPDXã ð8Jba S U�õº@bGT\1å S ^?¶D]_MÞ U äbEHáMâØ�Aáh@CGLK�?¶ù~)bè + S!S,',Z R @CGf\»KVNPEdY U `PáMKMN¿@b`ZKMN U á�àLâ ^ å ^ û>ý�ða/AçHèCßrX(X * )Tçbí
�Ü��c��)×��)Õ¶Û����
���¶�!�f�2Ï�y�vH�Ð�1Ä�th}LtVx�v�y|��}L�³�LvWx����g}5��y�vH}5�hth�
~H�;�Fv�yzy|���htdu5x|~H°L��th{1�d¾ÐtM·by|tV}w�5th�!vW°L��yzx�vH�MyMÀM�d¥�}dfehg,i Å|ÅhjVkml�nVo gqpsrutwvsxzy^{#{�| �5uwvW��th�� �  $ �h��Ëb�Z��m��!�T�¡ H ��C��C�¶�!�5�2Ï�y�vH�Ð��Ä�th}5tVx�vWy|��}5�d�wv�x�����}L��y�vW}L�hth��~W�.y|�Lt��z�L~Wxzy�°LvH�z����u5x|~H°L��th{ �º¥½} dfehg,i Å|ÅhjVkml�nVo gqp

}Px;~M�ud�y^{#{#{ �5�l~H�g�5{1tA�¡�P�^�1~W� �u��x�r �5uwvW��th��� $  b�PqCu5x|��}L�HtVx¡�T�¡ � H b�� �¶�!�w�)Ï½y�vH�.vW}w�µm��Ls�²;~Wx|¤Z�;�´u5�L°5�g���V�¼¤ltM���Mxz�5uby|~����b��y|th{ ²<��y|� ²;~Wx|��yz�¼�¡vH�zt�rWv¡�ltVx�vH�HtV�¼�¡vH�zt
th�C�5����vW�gtV}L�ht��2¥½} dfehg,i Å|ÅhjVkmlAnVo g2p�r;twvsxzyV{#{A� �5uwvW��th���HËP� $ �W  � �P�>m��!�¢�¡ H #�e��5�¶�!�5�2Ï�y�vH�Ð�5p¶�J�
�5{#vWx¡�bvH}L��sA�5qC����vW¤b�5{#vWx¡�.� �z��th�lt
vW����~Hx|��y|�5{ �]~Hx<y|�5t��z�L~Wxzy|th��y>�gvWyzy|���ht
��th�Vy|~Hx<ubx|~�°5�gtV{ �2¥�} dfehg,i Å|ÅhjVkml�nVo gqp�r;twvsx�J�#�#y �5uwvW��th�����C� $ �b�¡�C�P�>m��!�P�W���b�H�� ��¦b�.�>��²oth}�vW}w��m��.¹.th��¤ltMxzy¡�©Ä�th}LtMx�vWy|��}L� �z�5~Hxzy|tVx�°LvH�zth�
�X~Hx¶�wv�x���x�vH}L�5~H{ �gvWyzy|���hth�h�©¥�}dfehg,i Å|ÅhjVkml�nVo gqpsrutJ~Yx�r=�J�#�V{ �ZÌTn
m�qP�LqCu5x|��}L�HtVx¡�Z�W���H b��b��Ì2��Ò;vW°wvW�[��Ã�}ÍÌf~��J�H�zÂ�Êo�gvWyzy|���ht»x|t¡�5�5�Vy|��~�}ÍvW}w�îy|�5tµ}Lt¡v�x|th��y³�gv�yzy|�g�Vt!uZ~H�g}ey©u5x|~H°L��th{ �x�gP��� kmlwÇHÆ gVe k i ÇH�Z�CÁg� $ � � �.�h �Ë��C�

�C�
¥�� L �ºÒo�gvH¤�t��ºqZ�ºÄ�vW~5�.vH}w�!p¶�¢m��2�³�5���g��}T�³Îº·buL�����h��y��ÐvH�My|~Hx|��Â¡vWy|��~H}Ñ~W� x2k

+ 1 ~��ltVx Fp²<��y|� ubx|��{1t p ≡ 3 mod 4 � ~w�^� É ~ È neÉ.k4l]�wl�neÉ�� x�gV��� É2ÇPlEj x�gV�F� ���5Á ËH  $  P�5�.�h � ��C�Ëb����� L �Fv�y;vW}w���¶��qb�LvH{1��x¡�"��~¡²Ñy|~�u5x|~��lto�e~H�5x|�zth��� $ u5x�vH�My|�g�hvH�L�z~H���5y|��~�}5�)y|~��g�bth}ey|��DL�¡vWy|��~H}vW}w�
�z����}LvWy|�5x|tou5x|~�°5��th{1�h�e¥�} dfehg,i Å|Å�jPkmlAnVo g2p�x�e\�\� Æ gYy^{^�A| �H�l~H�g�5{1t��H� � ~H� �;��x�r ��uwvW��th�
�hË�� $ �¡ P�5�TqCu5x|��}L�HtVx¡�T�¡ �ËH�b� b�¶m��ºÄ�th}eyzxz�e�¢m��2¹.th��¤ltVxzy¡�¢vH}L� ¸ � ¸ vW�g¤C�5}Cy�vW}wv�y|�wvH}T��£fx�vHuP�b~e~Hx|���]~Hx��wv�x����gvWyzy|���hth��vH}L�
}5tV² �Vxz�bu5y|~H�Hx�vHu5�L���1�h~H}L��yzx|�L�My|�g~H}L�h��¥�} dweqg,i Å|ÅhjVkml�nVo gqp�rutwvsx��J�#�V� �.uwvW��th�#�¡ ^� $ �H���C��>m��!�w�H�H��Ëb��h�b�¶Ã��eÄ�~��g�bx|tV�g���f�;� gP� lKjlÇHÆCk g l"o g2pYx�e\� � Æ g n e Ç ���A� �5�l~����L{1t�¥z¥ $ Ò;vW�z���
��u5uL�����¡vWy|��~�}5�h�¢m;vH{d�°bx|�g�5��t���}L���ltMx|�z��y½��¹2x|th�z�h�Z�H�H�b����H���¶Ã��CÄ�~��g�bx|th�����f�5qZ�bÄ�~��g�b²;vH�z�ztVx¡�5vW}w�©qP����vH��th�C�Ð�.¹2�L°5���g�M�½¤�tV�d�Vxz�buby|~����b��y|th{1�2�Xx|~�{ �gvWyzy|���ht
x|th�5�L�My|�g~H}µu5x|~H°L��th{1�h�<¥�} dweqg,i Å|ÅhjVkml�nVo gqp�x�e\� � Æ g=yV{#{A� �Z��~����L{1td�¡�H V�©~H� �;��x�r �ZuwvW��th�
�H��� $ � � ���TqCu5x|��}L�HtVx¡�T�¡ � ^�C��¡�C��¦b�w��~P�P��y|th��}f�;¦5��¹2��uL�LtMx¡�;vW}w�ó¦5�w���;qb�����ltVx|{#vH}T�ñn�£;p���Á�v�x|�g}5�¿°wvW�zt¡�óuL�5°L�����µ¤ltV�
�Mxz�5uby|~����b��y|th{ �f¥�} dweqg,i Å|ÅhjVkml�nVo gqp ~¡��tur]}h}h} �e��~����L{1t¶�T�e� � ~H� �u��x�r �buwvW��th���H�^� $ �HË�ËC�qCu5x|��}L�HtVx¡�P�¡ H �Ëb�� � ��£�����~H��th}L��y|th��}T�w���L� vW�5x|tVx¡�wvH}w�³¦5�Zq¡Ïq¢��5��}f�;mo~�{1u5�gtMy|t��h�gvH�z�z�£Dw�hvWy|��~�}»~H�2°5���g��}5t¡vWx��wv�x��b�
�V~Hx|t<�]�L}5�Vy|��~�}5�h�P¥�} dfehg,i Å|Å�jPkmlAnVo gqpYx�e\� � Æ g��J�#��¤ �l�l~����L{1t � � � ��~W� �;��x�r �luwvW��th��� � $  b�H�qCu5x|��}L�HtVx¡�L�H�H�V�5����5�����T��vh²�vW�M�5�Ð�,�d�¡£.vW}wvW¤�vC��vH}L�F�d�,¥�vW�lvh²�vC�Cmo~H}L�h�bxzx|th}ey|�����zth�h�bx|t��g�bth}ey|��DL�¡vWy|��~H}
�z�M�5th{1th�
°LvH�zt¡�ñ~�}ñy|�Lt�²o~Hx|��yz�¼�¡vH�ztJ�LvWx��5}5th�z�µ~H�d�Fv�yzy|���ht¿u5x|~H°L��th{1�h� ¥½} dfehg,i Å|ÅhjVkmlAnVo gqp¦~ o�kC§
Ç i�e �\� Æ �J�^�V� �w��~����L{1t �V�#� �d~H� �;��x�r �LuLvH��tV� � ��� $ � ËH b�fqCu5x|��}L�HtVx¡�L�H���HËb�



� � � ¸ �HÌT�b�L°LvH�z�LtV�b�z¤e�e�bÌfvWyzy|���htV�¼°wvW�zt¡�A�g�5tV}Cy|�£DL�¡vWy|��~�}��z�M�5th{1th�º�zth�V�5x|t��L}L�5tVx)vW�Vy|���lt�v�yzy�vH��¤b�h�
¥½} dfehg,i Å|ÅhjVkmlAnVo gqp¨d�©�x&�J�#�V� �l�l~H�g�5{1tf��  �  
~W� �u��x�r �HuwvW��th�<�¡��� $ �,�H C�bqbubx|�g}5��tVx¡�l�H�H��ËC��h�b� ¸ ��ÌP�5�5°wvW�z�Lth�C�z¤e�e� tEgVª Ç e jVo dwe Ç i ÆCk i Ç�È � ÇWÆÐÆCk i Å�§C«�ÇPohÅhj x�e\� � Æ g n e Ç ����� � ¹2�Ls y|�LtV�z�g�h�
��}L���ltVx|�z��y½�#~H��m;vH�����]~Wx|}L�gvb�Pq5vH}³s���th��~b�Z�W����ËC��,�C� ¸ �bÌT�b�L°LvH�z�5th�C�z¤C�1vH}w�#sA�L�³���h�h�gvH}5�h��~5�oÄ�th}5tVx�vH����Âht¡�©�h~�{1uLvH�Vy�¤C}LvHuL�|vW�M¤C�<v�x|t��h~��������z��~�}
x|tV�z�g��y�vW}ey¡��¥½} dweqg,i Å�ÅhjVk4lAnVo gqps}Px;~M�ud��J�^�#| ¬ �P�l~����5{1t��l� � �#~W� �u��x�r �ZuLvH��tV���T�V� $ � �^� �qCu5x|��}L�HtVx¡�L�H�H���b��hËb� ¸ �bÌT�b�L°LvH�z�5th�C�z¤C�1vH}w�©sA�L�³���h�h�gvH}5�h��~5�������b{1u5y|~Wy|���¡vH�����#t�1�h��th}ey<�gvWyzy|���htM�½°LvH�zt¡�³�5������y�vH�
�z���H}wvWy|�bx|th�h� ¥�} dfehg,i Å|Å�jPkmlAnVo gqp®twx�x¯�J�#�P� �<�l~����5{1t°�l V��Ëî~W� �;��x�r ��uwvW��th� � � $ � �b�qCu5x|��}L�HtVx¡�L�H�H��Ëb��h b� ¸ �HÌT�b�L°LvH�z�LtV�b�z¤e��vW}w�¶sA�e�³���h�V�FvW}L�h��~b�TÃ�}A°Z~H�L}w�bt¡�¶�5����y�vH}5�ht<�5th�V~C�5��}L�b���5}L�g�e�Lto�z�5~Hxzyz�
tV��y��lth�Vy|~Wx|�h�.vW}w��y|�5tA{1��}L��{��L{'�5����y�vH}5�ht1u5x|~H°L��th{ �d¥½} dfehg,i Å|ÅhjVkmlAnVo g2p]x�e �\� Æ g°�J�#�^{ �
��~����L{1t � �#�V�A~H� �;��x�r �LuLvH��tV�¡� � � $ �l�C���fqCu5x|��}L�HtVx¡�Z�W���H b��W�b�
s��f�³�g�V�h�gvH}L�V�g~b��Ä�th}LtMx�vH����Âht¡���h~H{1uwvW�Vy
¤C}wvWuL�|vH��¤C�h�T�V�b�h���g�A�Fv�yzy|���hth�h�ºvW}w�»t�1�h��th}ey�~H}LtV�
²;vh�©�X�L}5�Vy|��~�}L�h� x�gV� �K� Æ¼ÇHÆCk g lwÇ�È x�gP�F� ÈgÅh±Vk]Æ � �¢�h�5¾C�lÀMÁ � � � $ �5�H���¢�H�H�#�e��e���
s��Z�³���h�h�gvW}L�h��~©vH}L�µqP�wÄ�~��g�b²;vH�z�ztVx¡� x�gV�F� ÈgÅh±VkXÆ �]g2p È�ÇWÆÐÆCk i Å �Kehg^� ÈgÅ � oV²�Ç i�e\� � Æ g n e Ç ��� k i� Å e o � Å i ÆCkm³HÅM�w�
���e²;tVx>���¡vH�5th{1���
¹ºx|th�z�h�Z�H�����C��H�C�
s��>�³���h�h�gvH}5�h��~óvH}L�ñÃ��<p�th�Hth�Z� ��~Hx|��yz�¼�¡vH�zt�y|~Ñv���tVx�vH�HtV�¼�¡vH�zt�x|th�5�L�My|�g~H}L��°wvH�zth�ñ~H}
��vH�5�z�z�FvW}µ{1t¡vH�z�bx|th�h� rJ}h~¡´¶µ É x�gV�F�K� Æ½Ég� � �C¾���ÀMÁ �H�^� $ � �l�e�¢�H���^�C�� � �
s��Z�³���h�h�gvW}L�h��~�vH}w�»Ã��5p>th��th�Z� d�g o|Æ·§�¸ � ÇVlLÆ �A�¶x�e\�\� Æ g n e Ç �J�A� �T���wvWu5y|tVx�Ì¢v�yzy|�g�VtV�¼°wvH�zth�
m�xz�buby|~��Hx�vWuL�e�e�)qCu5x|��}L�HtVx¡�Z�W���HËb��`�5�
s��>�³���h�h�gvH}5�h��~ÍvH}L�´qZ� ¸ vH�5�LvH}f� qCy�vWy|����y|���¡vW�¶ÂVtVx|~H�¼¤C}L~¡²<��t¡�5�Ht�u5x|~e~W�]� ²<��y|�ñt�1�h��th}ey
ubx|~��ltVx|�hÁZÌfvWyzy|���ht¶u5x|~H°L��th{1�>vH}L� {1~Hx|t���¥½} dweqg,i Å�ÅhjVk4lAnVo gqp(x�e\�\� Æ g��J�#�P¹ �Z�l~H�g�5{1t¶�^�H�H 
~W� �u��x�r �5uwvW��th���HË�� $ �H �ËC�Tqbubx|��}L��tMx¡�Z�W��� � �� � �¶�!�¡�¶�¡n��gtV�g�ztV}�vW}w��¥���Ì)�Wmo�C�LvH}L�b�;¸ � ÇVl5Æ �A�ºx�gV�F�"� Æ¼ÇWÆCk g l#ÇVlKj�¸ � ÇVlLÆ �A��} l pTgVe\� ÇHÆCk g lL�
m;vW{A°bx|�F�b��t���}L���ltVx|�z��y½�³¹ºx|th�z�h�Z�H���H�b��W�b� ¸ �w»A�>¹ºvW}f� r Æ e ��i Æ �Ae Åhj � ÇHÆ e k i Å o!ÇVlEj �Jg È � l gV� kÐÇ�È o�� � l"k ¼oÅhjbo �P� Å e4p ÇVo|Æ³Ç�È n gVe k]Æ �A� o��
qCu5x|��}L�HtVx>vH}L�³Òo��x|¤C�K½W�L�ztVx¡�Z�H�H�b����V�C�¶m��e¹.th��¤ltVxzy¡�fÌf��{1��y|�o~H}#y|�5t<�wvWx��b}Lth�z��~H�f�gvWyzy|���ht�ubx|~�°5�gtV{1����} `p

}L~Hx|{1�h� x�gP�F�K� Æ¼ÇHÆCk g lZÇ�Èx�gP�F� ÈgÅh±Vk]Æ � �w�b¾��`�HÀMÁ � ��� $ �^� ���¢�W����ËC��WËb�¶m��e¹.th��¤ltVxzy¡�T¹2�L°L�����V�¼¤ltV���Vxz�bu5y|~H���b��y|th{1�º�Xx|~�{�y|�Lt�²o~Hx|��yz�¼�¡vH�zt��z�L~Wxzy|th��yo��th�Vy|~Hx�u5x|~H°L��th{ �
¥½} dfehg,i Å|ÅhjVkmlAnVo g2p�r;twvsx¾�A�#�^{ �5uwvW��th� �^�V� $ � �e�e�P�>m��!�Z�W���� C��W b�¶m��T¹.tV�g¤�tVxzy
vW}w�»�¶�Zp>~��ztV}f�
Î�1�h��th}ey��h~��������z�g~H}5�[x|th�z����y�vH}ey¶�wvW�z�L��}L�1�Fx|~�{'²o~Hx|��yz�¼�¡vW�zt1vH���
�z�5{1u5y|��~�}5�;~�}³�V�b�h���g�
�gv�yzy|�g�Vth�h�o¥½} dfehg,i Å|ÅhjVkmlAnVo g2pStwx�x�J�#�#| �LuLvH��tV�¶��� � $ �¡�H�b�T�W�����C�� �b�¶m��;¹.th��¤ltVxzy¡� ¸ � ¸ vW�g¤C�5}Cy�vW}wv�y|�wvH}T��vH}w�0Ò��o��vWy|tVx|�h�´�'�Xx�vW{1tV²;~Wx|¤î�X~Hx�t�1�h��th}ey�vH}L�
�V~�{1uZ~��|vW°L��t»~�°5�g���C��~��5��yzx�vH}5���]tVx¡��¥½} dfehg,i Å|Å�jPkmlAnVo gqp�x�e �\� Æ g®�J�#�V� �;�l~����L{1t � � � �¿~W��;��x�r �LuLvH�Hth� �^� � $ � �C���fqCu5x|��}L�HtVx¡�w�H���HËb�� ���¶m��º¹.th��¤ltVxzy1vW}w�JÒ��º��vWy|tVx|�h��Ìf~��z����yzx�vHuP�5~e~Wxd�]�5}L�Vy|��~H}L�dvW}w��y|�LtV��xdvHu5uL�����¡vWy|��~�}5�h�¿¥�}dfehg,i Å|ÅhjVkml�nVo gqpsrutwvsxb�J�#�V� �5uwvW��th���¡Ë^� $ �¡ ��C�P�>m��!�P�W����ËC�� �C�¶Ã��hp�th�Hth�Z�bÃ�}��gvWyzy|���hth�h�W��t¡vWx|}5��}L��²<��y|�¶tVxzx|~Hx|�h��x�vW}w�5~H{ ����}LthvWx2�h~C�bth�h�HvH}w�
�Vxz�buby|~��Hx�vWuL�e�e�
Îº·Cy|th}w�bt¡�»�ltVx|�z��~�}�~W�sN �^� O��Lv�y|t¡��� vh���C�.�H�H�� b�º�¢��vW���FvW°L��t#vWy�y|�5td��p�Ì®¿AÀ^ÀVÁ¨ÂqÃ#Ã`Ä#Ä#Ä�Å
Æ^Ç ÅÈÀ�ÉPÊ�Å2É Æ ÅhËVÌ#Ã�Í^ÎVÏ#Ð^Ï#ÑAÃb��V� �¶Ã��hp�th�Hth�Z�bÃ�}��gvWyzy|���hth�h�W��t¡vWx|}5��}L��²<��y|�¶tVxzx|~Hx|�h��x�vW}w�5~H{ ����}LthvWx2�h~C�bth�h�HvH}w�
�Vxz�buby|~��Hx�vWuL�e�e�
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���� ����� ��������

������ ������1 ��� ��� ���������2

1 ����� ����������� ��� ��� ����� ����� ��� ����� ������ ������
�� ����� ��������� ����� ���� ����� ��� �������

����������������������� � ��������������������������������������
2 ������ ��� �������� ��������� � ���������� ��� �������������

���������� �� ���������� ��������� ����������� ��� ����� ���������
����������������������� � ����������������������������������

��������� ������������ �������� �� ���� �� ��������� ������ ��� ����
������� �� ��� ������� ����� ������������� ���������� ������� ��� ����
����� ���������� ��������� ���������� ����������� ��� ����������� ������
����� �� ������� ��������� ����� ���� �� � ��������� ����������� �� ����
���������� ��� ������������ ����� ���������� �������� �������� ����� ���
������������� ������ ���� ��������� ������ �� ��� ��������� �� ��� �������
����� �� ���� ��� �� ������ ����������� �� ���� �� �������� ������ ��
��� �������� ������ ����� ��� ������� ������� �������� �� ��������
���������� ������� ��������� ���������� �� � ������ �� �������� ������� ��
���� ���������� ������ ��� ���� ������������ �� �� ���� ���� �� ��� ���
���� ��� ����������� ��� �������� �� ��������� ���� �������� ����������
���� ��� ������ ���� ����� �� ����� ������ �� ������������� �����������������
���� ������� ���� ��� ������� ��� �������� ���� ������� ���� ��� �������
������ �������� �� ��� R-LWE ��������

��������� ������������� ������������� ����� �������� ���������

� ������������

������������ ������� �� ��������� ������ ��� ���������� ��� ���� ���������
�� ��� ��������� ���� ������� ����� �������� ��� ����������� ������ �� ����������
���� ��� ���������� ���� Zq[x]/(x

n − 1) ��� n ����� ��� q � ����� �������� ��
��� ������� �������� ���� �������� �� ����� �� ��������� �� � ������� ����
��������� �������� ���� �� ��� ������� ����������� ��� ���� ������� ���� ��
�������� ������������ ��������� � �������� ���������� �� ��� ��������� ��������
������� ������� ������� ����� �� ����� �� ���� ��� �� ���������� ������� �� ���
���� �� ����� �� �������� ��� ����������� ��������� ��������� �����������

�� ��������� ���������� �� � ���������� ����������� �� ��� ���������� �������
����� �� ������� ������������� ��� �������� ��������� ���� ����� ����� ��� ��������
������� �� �������� �� ��� ��������� �� ��� ���� ����� �������� ����� �� �� ����
����� ���������� �� ��� ���� ������ ������������ ���������� ���������� �����
����� ������



�� �������� �� � ������ ������ �� ������� ��� ��������� ������������ ��
����������� ��� �������� ����������� ���� �� �������� ������ ������������� �����
�������� ��� �������� ���� ���������� �� ���������� �� ���� ���� ������� ���
������� ���������� �� ������������ ��������� ���� ������� �� � �������������������
���� �������� ���� �� �� ���� �� ����� �� ������� ������� ���������� �������� ���
���� ���� ��������� ������� ������������ ������� �� ��� �������� �� �� ��� �����
������� �������� ������� �SIS�� ������� ����� ������������ �� ���� ���� ��� ���
������������ �� ���� �� ��� �������� ���� ������ ������� �LWE� �� ����� �����
LWE �� ���� ���� �� ��� ������� ����������� ������� �������� ��������� ������
�� ���� ��� ���������� ������� �� ����� ��� ��� ������ �� ������������� ����������
�� ��� ���� ��� ������ ���� ������������� ������� ���� ���� ���������� ���� ���
�������� �� ������ �� ��� ��� ��� ��� ���� ���� ���� �������� ������� ��������
��� ���������� �������� �� ������� ���������� ����� ������� ��� ��� ��� ���
���� ���������� �������� �������������� ���������� �������� ������� �����������
��� ���� ���� ��� ��� �� �� ����� ������� ��� ��� ������� ���� �����

��� ���� �������� �� ������������ ����� �� LWE ��� SIS �� ��� ������� ���
�������� � ��� ��������� �������� � ������ ������ ������ ���� Zq ��� � ����� q�
����� ��������� �� ������ �� ��� �������� ���������� ������������� ��� ����� ���
���� ������������ ���� ����� �� �� �� ����� ��������� ���� ������� �� ��� �����
���� ���������� �� ����� ���������� ���� ��������� �� ����������� SIS �� ����������
�������� ����� ���������� � ���������� �� ������������ ���������� ��� ����������
������� �� � ����������� �� � �������� ������� ������� �� ��� ������� ������ ��
������ ��������� ��� ��������� �� ������������ �������� ������ ��� �� ��������������
�� ����� �� ���������� �� ��� ���� Zq[x]/(x

n−1)� ����� n �� ��� ��������� �� ���
���������� �������� ��� q �� � ����� ������ ������������ ������������ ����� �� �
������ �� ��������� ��������� ���� ���������� ���� ���������� ������������ �� n�
�������� ������ ������������ ��� ���������� ���� ��� ����� ��������� �� ������
��� ���� �� Zq[x]/Φ ���� � Φ ���� �� ����������� ���� ��� ���������� ������� ���
���� ����� ���������� ������ Φ = xn + 1 ��� n � ����� �� 2�� ��� ��������� ����
�������� ��� ������ ������������������� ����� ��� ������� �������� �� ��� �����
��� ������������ �������� ������ Ideal-SIS� ��� ������ ��� ������ ������ �� ����� ��
���� �� ��� ������������ �� �������� ���������� ������� �������� �� � ������� �����
�� �������� ������� ����� ���������� �� ����� ������ �� ��� ���� ���������� � ������
����� ������� �� LWE� ����� ���� ������ �� ���� �� Ideal-SIS ������ � �������
����������� ��� ������� ��� ��� ������ �� �� �������������� ������� ����������
���������� ������� �� �� ����������� ���������� ����� ������������ �� ��� ����
�������� � ���� ������� �� LWE� ������ R-LWE� ����� ����� ���������� ������ ���
���� ������� ���� �������� ������������� ��������������

��� �������� ��� ���� �������� ��� ���������� ��������������� �� �����������
�������� �������� � ������������� ������� ����� �� ��� ��������� ������� �� ��� ���
����� �� ���� � ����� �� ���� ��� �������� ��� �������� �� ����� ���� ��� ���� ��
����� ����� ��� ������������ �� ���� ������ �� ������� ���� �������� �� ����� ����
� ���� ����������� �� ����������� �� ����������� �������� ��� ������� �����
���� �� �������� ���������� �������� ���� ����� �������� ���� Φ = xn+1 ���� n �
����� �� 2�� ��� ����������� ������������ ��� ���������� ������ �� ������



���� ��� ���� ���� �� ���� ����� �� �� ������� � ��� ����������� ��������� ���
��� �������� �� ����������� �� ��� ���������� ������ �� ����� �� ������ ����
��� ������������� �� ��������� ������� �� ���������� ��� ��������� �� �������� ���
�������� ��� ����� �������� ������� �� ��� ����� ������������� �������� ��� ������
�������� ���������� �� �������� ������� ��������� ������� ��������� �������� �����
�� ��� �� ��� ����� �� ��� ������� �����

��� ���� ������������ �� ��� ����������� ��� �������� �� ��� ��� ����������
���������� ��� ������ ��� �������� �� ��� ������ ����������� �� ������� < n ���
���������� �� ��������� �� ���� c� ��� � ����� �������� c ����������� c ∈ {2, 3}��
��� ������ ��� �� ����� �������� �� Zq[x]/(x

n−1) ���� ����������� �� ���������
�� �� �� ��� ������������ � ������ ��������������������� �������� ����� ���� ���
������ ��� ������ �� ��������� ����������� �� ��� ����� ����� �� ��� �� ��������
�� ������ ��� ������� �� ��� �� ���� ���� �� �� ������������� �� ��� ����� ��� ��
����� ����� ��� ����� ��� ������� ��� ������������� ����������������� �����
����� ��������� ��� ���������� ��� ����������� �������� �� R-LWE� �� ������� �
������ ��� ������������ ������������� ����� �� �������� �� ������ ��� ������ ���
����������� ��������� �� � �������� �������� ���� �������� ��������� ≈ q1/2� ��
��������� ����������� ����� ����� �� �� ����������� ��������� �� � ��� ����������
������ ��� ��� ���� Rq := Zq[x]/(x

n + 1) ���� ��� ���������� xn + 1 ����� n
� ����� �� 2� ��� n ������� ������ ����� q� ����� a1, . . . , am ������� �� Rq�
�� ����� ����

�
i≤m siai �� �� ������ ������������� ����� ����������� �������� ��

����������� ���� ����� ������ si�� ��� ����� m� ���� ���� � ������� ����������
����� ��� �� �������� ���� �� ��������� ��������� �������� ��������� ��
������������� ������� ��� ����� ����� �� ���������� �������� �� ��� ����������
������������ ������ ����� �� ������ ��� �� ������������������� ��������� �� ����
�� ���� ��� si�� �� �� ���������� �� Rq ���� ����������� �� ��� ������ ��� �� ���
���� si�� �� ���� ������ ��������� �� � �������� ��������� ��� ������ ��� ������
�� �� �� ��� �����������

����� ���������� �� ����������� ��� ��� �������� ������ �������

��� R���� �� ��� ���� Z[x]/(xn−1) ���� n ������ ��� q �� � ����������� �������
����������� ������ � ����� �� � ����� �� 2 �� ��� ���� ����� �� ��������� �� n��
�������� ��� p ∈ R���� ���� ����� ����������� �������� ���� q ��� ���� ���� ���
��������� ����� R����/p �� ����� ����������� ��� ��� ���� p ∈ {2, 3} �� p = x+2��

��� ����������� ������ ��� �� � ���� �� ����������� (f, g) ∈ R2
����

����
��� ������� �������� ���� ����� ���������� ����������� �� ������ ��� ���� �����
����� ���������� ������ ����� ���������� ��� �������� ���������� ���������
��� ��� ������ f ���� ���� f = 1 mod p �� ������� ������ ���� �� �� ������ g ���
F ���� ���������� �� {0, 1} ��� ��� f = 1 + p · F �� ���� ���� ������������ ���
���������� f �� ���������� ������ q ��� ������ p� ��� �� ���� �� ��� ����� ���
���������� �� h = pg/f mod q ����������� ��� ��� ���������� ������� �� �����������
�� ������� � ������� M ∈ R����/p� ��� ������� � ������ ������� s ∈ R����
�� ����� ��������� ���� ��� �������� ��� ���������� C = hs+M mod q� ���
��������� ��������� ������ ��� ����� �� ��� ������ ��� �� ��������



• ������� fC mod q� �� C ��� �������� ���������� ���� ����� pgs+ fM mod
q� ����� p, g, s, f,M ���� ����� ����������� �� ��� �� �������� ���� �����
��������� ������ q ��� �������� �������������� �� pgs+ fM ��� R������

• ������ ��� ������ ������ p� ���� ������ ������� fM mod p�
• �������� ��� ������ �� ��� �������� ���� �� ��� ������� �� f ������ p �����

���� ������� ������� �� f = 1 mod p��

���� ���� ��� ���������� ������� �� �������������� ��� ���� ���������� ������
��� ����� ��� ���� ���� �� ����������� �������� �� �� �������� �� �����������
�������� ��� ���������� ����� ������������ ��� ���� �� ��������� �� �����������

�� ����� �� ������� ������������ �� ���� � ��� ������������ �� ��� ��������
����������� ������ �������� ��� ������������ ���� ��� ����� ������������

�� �� ������� R���� �� R = Z[x]/(xn+1) ���� n � ����� �� 2� �� ���� �������
��� �������������� �� xn + 1 ��� ��� ���� ���� R �� ��� ���� �� �������� �� �
���������� ������ �����

�� �� ������ � ����� q ≤ Poly(n) ���� ���� f = xn + 1 mod q ��� n ��������
������ ������� ������ q = 1 mod 2n�� ���� ������ �� �� ��� ��� ������ �� ��������
��������� ��� R-LWE ���� ���� Rq := R/q ���� ������ ��� ���� �� ���� p = 2�

�� �� ������ f ��� g ���� �������� ��������� ���� R� ��������� ��� �������
���� ��� ��� ���������� ��Rq� �� ���� ���� f/g mod q �� ����������� ���������
����������� ���� ��� ��� �� ���������� �������� �� Rq� �� ��� ���� ������ f =
pf � + 1 ���� f � ������� ���� � �������� ��������� �� �������� �����������

�� �� ��� � ����� ����� ���� e �� ��� ����������� C = hs + pe +M mod q�
���� s ��� e ������� ���� ��� R-LWE ����� ������������� ���� ������ ��
�� ������ ��� �������� ���� ��� �������� �� � ������� �� R-LWE ������ ��
������� �� ��� ������� �� LWE ���� ��� ��� ������

���� �� �������� ��� ���� ��������

��� ����� �� ���������� �� ��� �������� �� ����� Z[x]/Φn ���� Φn = xn+1 ���� n
� ����� �� 2� �� ������� �������� �� ���� ���� ���� ��� ����� ��� ���� ����������
�� ��� ������ �� n ��� ��� ���� �� ����� ��� ������ ��� ������� ������ �����
�������� ���� ��������� ��� R-LWE ������� �� ����� �� �� ���� ���� Φn ��
���������� ����� �� ����� �� �������� ��������� �� ���������� ����������� �� �����
� ����� �� 2 ������� �� ����� ��� ����� ���������� �� R-LWE ���� �������� ���
��� ����������� �� ��� ������� ������� �� ������� ��� ������� ��� ������ �� ����
��� ���� ������� ����� ���� ����� �� ����������� �� ����������� ������ ����� ��
��� ���������� ����� �� ����� ����� ������ Φn = (xn − 1)/(x − 1) ���� n ������
�� ����� ��� ����� �������� �� ��� ���� ����� ���� ��� ����� ���� �� ���� ��
���� ���� ��� �������� ������� ���� �� ��� ���� �������

�� ����������� ���� ������� �� �� ������ � ��� ������ ������� �� ��� ������
�� ��� �������� ������ ����� ����������� ��� �������� ������� �������� ���������
��� ��������� �� �������� ���������� ����� �� ��������� �������� ��������� ��� ���
���������� SVP �� ����� �������� �� ��� ������������ �������� �� R-LWE�Ideal-SIS
�� ���� ���� �� � ������ �����



��� ������� �� ����������� ���� �������� � ��������� ������ ����� ��
� ������� ������� ��� ������� �� �������� ������� ���� ��� �� ���� ����� ���
����������� ��� ���� ������������ ���� ������ ��� �������������� ���� � ������
�� ������������� ��� ������� ���� ��� ������ ������ �� � ���� �� ��������� ��
��������� � ������� �� �������� ���� �������������� ������� �� ��� ����������
�������� �� �������� �������� ���� ����� ��������� �� ��� ������ ������ ������
��� ������������ ������� ��� �������� ��� ���������� ��� ������ ��� ���
��������� ������ ���� �� ���� ��������

���� ������������ �������� �������� ����������� ������ ��� ���� ��� ���
��������� ���������� �� � ������ ���� �������� �� ���� ������ � �������� ����� �����
��� ������� ������� �������� �� �������� ���������� �������� ���� ����� ����
����� ����� ��� �������� �������� ��� ��� ������� ����������� ������ ������

���������� ��� ���������� Ω(n) ��������� ���� ��� �O(n) ��� ����������� �����
��������� �������� ������� 2g(n)����� �������� ��� ��� g(n) ���� �� Ω(log n) ���
o(n)� �������� ��� ���������� �������� �� Poly(n)�Ideal-SVP ������� 2O(g(n))�
���� ������� ����������� ��� ������ ���������� �� �������� �� �� ����� ��� ���
g(n) = o(n)� �������� �������� ���� ���� �� ��� �� ����������� �� ������ 2g(n)�

���� ������� ����� ���������� ��� ���������� O(g(n)) ��������� ���� ��� �O(n) ���
����������� ����� ��� ������� �������� �� 2Ω(g(n))�Ideal-SVP ������� 2O(g(n))�
���� ������� ����������� ��� ������ ���������� �� ����� �� �� ������� ����
g(n) = �Ω(

√
n) ������ ������ ���� �������� ��� ���������� �������� ��� ��������

��� ������� �� ��� ����� ����� �������� ������ ������ ����������� ���������
��� ���������������� ������� ���� ����� ���������� �� ���������� ��� ������ ���
�������� ���� �� �� ������� �������� ��� �� ����� �� ������ ���� ��� �������
������������� �� ���� ���������

��������� �� ������ �� ρσ(x) ������ νσ� ��� �������� n������������ �����
���� �������� ������ ������������� ���� ������ 0 ��� �������� σ� ����� ρσ(x) =
exp(−π�x�2/σ2) ������ νσ(x) = ρσ(x)/σ

n�� �� ������ �� Exp(µ) ��� ��������
���� ������������ �� R ���� ���� µ ��� �� U(E) ��� ������� ������������ ����
� ����� ��� E � �� D1 ��� D2 ��� ��� ������������� �� �������� ������ E� �����
����������� �������� �� Δ(D1;D2) =

1
2

�
x∈E |D1(x)−D2(x)|� �� ����� z ←� D

���� ��� ������ �������� z �� ������� ���� ��� ������������ D�

� � ��� ���������� �������

� ����������� ������� �� � ��� �� ��� ���� L =
�

i≤n Zbi� ����� ��� bi�� ���
�������� ����������� ������� �� Rn� ��� ������� n �� ������ ��� ������� ����������
��� ��� bi�� ��� ������ � ����� �� L� ��� ������� λ1(L) ������ λ∞1 (L)� �� ���
��������� ������ �������� ���� �� ��� �������� ������ �� L \ 0� �� B = (bi)i
�� � ����� ������ �� L� ��� ����������� �������������� �� B �� ��� ��� P(B) =
{
�

i≤n cibi : ci ∈ [0, 1)}� ��� ������ | detB| �� P(B) �� �� ��������� �� ���
������� L ����� �� ������ �� detL� ����������� ������� ������ ���� λ1(L) ≤√
n(detL)1/n� ���� ���������� ��� k��� ������� λk(L) ��� k ≤ n �� ������ ��

��� �������� r ���� ���� L �������� ≥ k �������� ����������� ������� �� ���� ≤ r�
��� ���� �� L �� ��� ������� �L = {c ∈ Rn : ∀i, �c, bi� ∈ Z}�



��� � ������� L ⊆ Rn� σ > 0 ��� c ∈ Rn� �� ����� ��� ������� ��������

������������ �� ������� L� ��������� σ ��� ������ c �� DL,σ,c(b) =
ρσ,c(b)
ρσ,c(L) � ���

��� b ∈ L� �� ���� ���� ��� ��������� c ���� �� �� 0� �� ������ ��� ���������
�� DL,σ,c �� ��� M ⊆ L ���� ����������� � ������������ �� ������� DM,σ,c(b) =
ρσ,c(b)
ρσ,c(M) � ��� δ > 0� �� ����� ��� ��������� ��������� ηδ(L) �� ��� �������� σ > 0

���� ���� ρ1/σ(�L \ 0) ≤ δ� �� ��������� ��� ����� σ ����� �� �� ��� DL,σ,c ��
������ ���� � ���������� ��������� �� ���� ��������� �������� δ = 2−n�

����� � ����� ��� ������ ��� ��� ��������� ������� L ⊆ Rn ��� δ ∈ (0, 1)� ��
���� ηδ(L) ≤

�
ln(2n(1 + 1/δ))/π · λn(L)�

����� � ����� ��� ������ ��� ��� ��������� ������� L ⊆ Rn ��� δ ∈ (0, 1)� ��

���� ηδ(L) ≤
�
ln(2n(1 + 1/δ))/π/λ∞1 (�L)�

����� � ����� ��� ������ ��� ��� ��������� ������� L ⊆ Rn� c ∈ Rn� δ ∈ (0, 1)
��� σ ≥ ηδ(L)� �� ���� Prb←�DL,σ,c

[�b� ≥ σ
√
n] ≤ 1+δ

1−δ2
−n�

����� � ����� ���� ������ ��� L� ⊆ L ⊆ Rn �� ��������� ��������� ��� ��� c ∈
Rn� δ ∈ (0, 1/2) ��� σ ≥ ηδ(L

�)� �� ���� Δ(DL,σ,c mod L�;U(L/L�)) ≤ 2δ�

����� � ����� ��� ������ ����� ������ � ��������������� ��������� ���� �����
�� ����� ��� ����� (bi)i �� ��� ������� L ⊆ Zn ��� σ = ω(

√
log n)max �bi� ������

σ = Ω(
√
n)max �bi��� ��� ������� ������� ���� � ������������ ����� �����������

�������� �� DL,σ �� ���������� ������ ������������� ������ ���� ������� �� n�

��� ���� ������ ������� ������� �� SVP� ����� � ����� �� � ������� L� �� ����
�� ������ � �������� ������ �� L \ 0� �� ��� �� ������� �� γ�SVP �� ������
��� � �������� ������ ���� �� �� ������ ���� γ(n) ����� � �������� �� SVP�
��� � ���������� �������� γ(·)� �� �� �������� ���� �� �������������� �������
��������� ������ ��� ������������� �������� �� γ�SVP �� ��� ����� ����� ���
��� γ ≤ Poly(n)� ��� �������� γ ����� �� ����� �� �� ���������� �� ����������
���� �� ������������ �� �� ���������������� ������� �� ��� �������� ����� �����

����� �������� ��� ��������� ������ ������

����� ��������� ��� n � ����� �� 2 ��� Φ = xn + 1 ������ �� �����������
���� Q�� ��� R �� ��� ���� Z[x]/Φ� �� ���������� ����� I �� R �� � ������ �� R
������ ����� �������� ��� �������������� �� ��������� �������� �� R� �� �������
����������� �� ��� ������� �� ����� ����������� �� ��� ���� �� ����� I �= 0
����������� �� � ��������� ���������� �� Zn� �� ��� ���� ���� I �� ���� � �������
��� �� ������ �� ����� ������� ��� Φ �� � ���������� �� Zn ���� ����������� ��
� �������� ����� I ⊆ R� ��� ��������� ���� N (I) �� ��� ����������� �� ���
�������� ����� R/I� �� �� ����� �� det I� ����� I �� �������� �� � �������� ���
�������� ����� I �� R �������� λn(I) = λ1(I)� �� ��� ���������� �� ����� �������
���� ���������� ����� �� � Φ������ ��������

�� ����������� SVP ������ γ�SVP� �� ��������� ���� ��� ����� ��������� ��
������ Ideal-SVP ������ γ�Ideal-SVP�� ��� ������ �� ���������� ������������� ��



��� �������� �� ����������� Φn = xn + 1� ����� n �� ���������� �� ������ �� 2�
�� ��������� �� ����� �� ������� �������������� ������ ��� �γ��Ideal-SVP ����
��� �γ��SVP�

���������� �� ��� ���� R� ��� v ∈ R �� ������ �� �v� ��� ��������� ����
��� � �������� �� ����� ��� �������������� ��������� ������ γ×(R) �� γ×(R) =

maxu,v∈R
�u×v�
�u�·�v� � ��� ��� ������ �� Φ� �� ���� γ×(R) =

√
n ���� ��� �� ������

����� Φ �� ��� 2n��� ���������� ����������� ��� ���� R �� ������� ��� �����
��� ����� ������ ��� ���� �� ��������� �� ��� ���������� ���� Q[ζ] ∼= Q[x]/Φ =: K�
����� ζ ∈ C �� � ��������� 2n��� ���� �� ������ �� ������ �� (σi)i≤n ���
��������� ������� ����������� �� ��� ������ σi : P �→ P (ζ2i+1) ��� i ≤ n�
��� ��� α �� Q[ζ]� �� ����� ��� T2����� �� T2(α)

2 =
�

i≤n |σi(α)|
2 ��� ���

��������� ���� �� N (α) =
�
i≤n |σi(α)|� ��� �������������������� ����������

����� N (α)2/n ≤ 1
nT2(α)

2� ����� ��� ��� ���������� ���������� ����� �� ��� ����
��������� ��� ���������� ���� ���� ���� �� ��� ��������� ������ �� α ����
��������� �� �� ������� �� K� �������� �α� = 1√

n
T2(α)� �� ���� ��� ��� ����

���� ��� ��� α ∈ R� �� ���� |N (α)| = det �α�� ����� �α� �� ��� ����� �� R
��������� �� α� ��� ����������� �� ���� ��� �� ��� ��� ���������� �����������
�������� ���������

��� q �� � ����� ������ ���� ���� Φ ��� n �������� ������ ������� ������ q
������ q = 1 mod 2n�� Φ =

�
i≤n Φi =

�
i≤n(x − φi) mod q� ��� Rq = R/qR =

Zq[x]/Φ� ����������� ������� �� ���������� ������������ ������� ���� ���������
���� ������ ������ ������������ �������� ������� ������� ���� ��� �������� ���� q
�� Poly(n)� ��� ���� ����� ��� ���� ����� �� �������� ���� ����� ���� �������
������ ����� �� �� O(n5.2)� ��� ������ ������������ �� ��� ����� φi �� ri� ����� r
�� � ��������� (2n)��� ���� �� ����� ������ q� ���� ������� ���� ��� �������
��������� ������� �� Rq �������� � ������� ���� �������� ������� ����������
��� ���� �������������� �� �������� �� Rq ��� �� ��������� ������ O(n log n)
��������� ��� ��������������� ������ q ���� ��� ��� ��� ���� ��� ������

��� R-LWE �������

��� s ∈ Rq ��� ψ � ������������ �� Rq� �� ����� As,ψ �� ��� ������������ ��������
�� �������� ��� ���� (a, as+e) ���� (a, e) ←� U(Rq)×ψ� ��� ���� �������� ����
������ ������� �R-LWE� ��� ���������� �� ������������ �� ��� ���� ��� �����
���� ��� ������� ����� ������������� ψ� ����� ��� �������� ��������� �� ����� ����
������� ��� ��� ��� ������� ����� ��� ��������� ����� �� �� ���������� ��� ����
��� ������� ��� ����� ���� ����� ��� ��� ��� �� �������� �� ������������ �����

��� ����� ������������� ψ ���� �� ��� ��� �� ���������� �� ����� ����������
�� ����� ���� ��� ������� ���� � ������ �� ������������� Υα ���� �� ��� ������
��� σ ∈ Rn ���� �������� ������������ �� ����� ��� ����������� �������� ρσ

�� ��� ��� ������ �� ����������� ��������� (ρσ1 , . . . , ρσn)� ����� σi = σi+n/2
��� 1 ≤ i ≤ n/2� �� �� ���� �� ����� R-LWE �� ��� ���������� ����������
�� R ������ ���� ���� ��� ��������� ������ H� �� ����� �� ����� � ������ ������
��������� �� ��� ������ ���������� �� ����� � ������ ���� ρ�σ �� � ������



���� ρσ� ���������� ���� ����� ��� ������ �� 1√
2

�
1 1
i −i

�

⊗Idn/2 ∈ Cn×n� ��� ����

��� �� V = 1
n

�
ζ−(2j+1)k

�
0≤j,k<n

� ���� ���� ������ �������������� �� ������ V

����������� �� � ������� �������� ������� ���������� ��� ��� �� ���������
�� O(n logn) �������������� ���������� ���������� ���� ��� ������������ ����
��������� �� �� ����������� ��������� ������� �� ��� ���������� ��� ��������� ����
� ��������� �� p = Ω(log n) ����� ���� ��� �������� ������ ������ fl(y) ������
��� �fl(y)−y� ≤ C ·(log n)·2−p ·�y�� ����� C �� ���� �������� �������� ��� y ��
��� ������ ���� ����� �� �������� ���� ����� ������������� �� ����� �� ���� ���
����� ��� �������� �� ��� ����� � ������ ���� ρ�σ �� �������� ������� � ������
���� ρ�σ ���� �������� ����� < 1/n2� �� �� �� ������ �������� 1/n2 �� ��� ������
�� ��� ����������� ��������� ���� �������� ���������� ����� �� �� � ������� �������
��� ���� ������ �� ������ q� �������� � ������������ ������� ���� Υα ��� α ≥ 0
�� ������ �� ρ�σ� ����� σi =

�
α2q2 + xi ���� ��� xi�� ������� �������������

���� ��� ������������ Exp(nα2q2)�

�������� ���� ρ�σ ��� �� ��������� �� ���� �O(n)� �������� ���� Υα ���

���� �� ��������� �� �������� ���� �O(n)� ��� ��� ������������ �� ������� �� �
�������� ���� ������� � ��������� ��� �� ��������� < 1� ������������ �� ��� ���
������������� ������������� ��� ����� ����������� ���� ������� ������� ������
������ ��� ������� M �� �� ��������� �� �������

����� �� ������ ���� αq ≥
√
n� ��� ��� r ∈ R� �� ���� Pry←�Υα

[�yr�∞ ≥

αqω(logn) · �r�] ≤ n−ω(1)�

������ �� ����� Υα ������� �� Υα� ��� ������� ��� ��������� ���� ���� ρ�σ �� ρ�σ�
������� �� ��� ����� �� ��� ��������� ������������ �� ������ �� ����� ��� ������
���� Υα ������� �� Υα� ��� y ←� Υα� ��� �������� σ �������� σk =

�
α2q2 + xk�

���� ��� xk�� ������� ������������� ���� ��� ������������ Exp(nα2q2)� ��
���� maxσk ≤ αq

√
nω(

√
log n) ���� ����������� 1−n−ω(1)� �� ����� y = y�+η�

����� ��� ���� ������� y� ∈ K �� ������� ���� ρ�σ� ��� �������� ������� ����
� ������ z ���� ρσ� ��� η ∈ K �� ��� ����� �� �������� y� ∈ K �� y ∈ R�
���� �η�∞ ≤ 1/2� ���� �yr�∞ ≤ �y�r�∞+ �ηr�∞� ����� ��� �������� ��������

���� ��� ������ ���� ��� �� ������� �� �ηr�∞ ≤
√
n

2 �r�� �� ��� ����� ���
���� ����� ��� ��������� ������ �� y� ��� ��� ��������� ������

1
√
2
(z1 + izn/2+1, . . . , zn/2 + izn, z1 − izn/2+1, . . . , zn/2 − izn).

��� (r(k))k �� ��� ��������� ������ �� r� ���� ��� ��������� ������ �� y�r
�� (y�(k)r(k))k� ��� ��������� �� xj �� y�r ��

1

n

�

0≤k<n

ζ−(2j+1)ky(k)r(k) =
2

n
�




�

0≤k<n/2

ζ−(2j+1)ky(k)r(k)





=

√
2

n

�

0≤k<n/2

�
�
(ζ−(2j+1)kr(k))(zk+1 + izn/2+k+1)

�
.



��� k�� ������� �� ��� ���� ��� ������� � ������ ��� �� ���� 0 ��� ��������
��������� |r(k)|σk� ���������� ��� ��������� �� xj �� yr ������� � ������ ���
�� �������� ��������� ≤ 1

nT2(r)maxσk� ����� �� ≤ 1√
n
αqω(

√
log n) · T2(r) =

αqω(logn) · �r� ���� ����������� 1 − n−ω(1)� ����� αq ≥
√
n� �� ��� �yr�∞ +

�ηr�∞ ≤ αqω(logn) · �r� ���� ����������� 1− n−ω(1)� �� �������� ��

�� ��� ����� ��� ���������� �� R-LWE�

��������� �� ��� ���� �������� ���� ������ ������� ���� ���������� q, α
��� Φ �R-LWEΦq,α� �� �� �������� ��� ψ ←� Υα ��� s←� U(Rq)� ����� ������ ��
�� ������ O ���� �������� ������� �� Rq × Rq� ����������� ������� O �������
������� ���� As,ψ �� ���� U(Rq ×Rq)� ��� �������������� ��������� ������ ��
1/Poly(n) ������ 2−o(n)� ���� ��� ���������� �� ��� ������ ��� ���������� ��
��� ������� ��� ��� �������� ���������� �� ��� ����������

��� ��������� ������� ��������� ���� R-LWE �� ����� �������� ���� ���
���������� γ�Ideal-SVP ������ �� ��������� ������ ����� ������� ����������
��� ����� γ� �� ��� �������� �������� �� ������������ �� ��� ����� �� ��� ������
�� ������� ���� ��� �� ����� �� ��� ������ O �� ������� �� � �������� ������ ��
��� ���� �� ��� ������������� ���� ��� ������ ���� ����� ���� ������� ������ ����
e←� ψ ←� Υα� ��� ���� �� ���� ������� Ideal-SVP ������������� ������ γ� ����
������ ����� �� ���� �������� ��� ������� ����������� ��� �� ���������� ���
�������� ����������

������� � �������� ���� ������ ������ ���� αq = ω(n
√
logn) ������

Ω(n1.5)� ���� α ∈ (0, 1) ��� q = Poly(n)� ����� ������ � ���������� �����������
���� ������ ��������������� ������� ��������� ���� γ�Ideal-SVP �� R-LWEq,α�
���� γ = ω(n1.5 log n)/α ������ Ω(n2.5)/α��

��� ���������� ���� ���� �� ��� ����� ����������� ��� ��� ��� �� ��� �������
���� �������������� �������� �� �������� ��� ������� ��� �� ��� ����� ������
��� ��� �� Rq ������ ���� R∨q := R∨/q ����� R∨ �� ��� ���������� ����� ��

���� R∨q = 1
nRq�� ��� ��� ���������� �� ��� ����� �� ������� ������� �� �� �� ���

���� ��� ������ �� ��� ����������� ��������� ��� ��� ������� ������� ���� ���
����� � ������ ������ ��� ��������� ���� ���� �������������� ������������ ��� ���
�������� ��� �� ��������� �� ��� ������ ������� ����������� �� ��� ������ ������

�������� �� R-LWE� ��� s ∈ Rq ��� ψ � ������������ �� Rq� �� ����� A×s,ψ
�� ��� ������������ �������� �� �������� ��� ���� (a, as + e) ���� (a, e) ←�
U(R×q ) × ψ� ����� R×q �� ��� ��� �� ���������� �������� �� Rq� ���� q = Ω(n)�
��� ����������� ��� � ������� ������� �� Rq �� ����� ���������� �� ���������������
��� ���� R-LWE ������� ���� ���� ���� As,ψ ��� U(Rq×Rq) ��� ������������
�������� �� A×s,ψ ��� U(R×q ×Rq)� �� ���� R-LWE× ��� ������ ��������

������������ ��������� �� ��� ��� �� ��� �� ��������� �� ����� ��� ����� s
��� ���� �� ������ ���� ��� ����� ������������ ������� ��������� ��� ��������
����� �� ���� R-LWE×HNF ��� ������������� ����������� �� R-LWE� �� ������
��� ��������� ��� ������������� ������ �� ��������� A ��� ����� R-LWE×HNF�
�� ��� A �� ����� R-LWE×� ��� ��������� �� �� ��������� ������� ((ai, bi))i



���� ������� ((a−1
1 ai, bi − a−1

1 b1ai))i� ����� ��������� �� ��������� �� R×q � ����

�������������� ���� A×s,ψ �� A×−e1,ψ� ��� U(R×q ×Rq) �� �������

� ��� ������� �� ������ q���� ��������

�� ���� �������� �� ������� ������ ���������� ������ ��� ��� ���� Rq� ��� ����
�������� �� ���� ����� ��� �������� �� R���������

��� ������� ������� ��� ���� ������ ��������

��� a ∈ Rmq � �� ����� ��� ��������� �������� �� R��������� ��� I �� ���������
����� �� Rq�

a⊥(I) := {(t1, . . . , tm) ∈ R
m : ∀i, (ti mod q) ∈ I ���

�

i

tiai = 0 mod q},

L(a, I) := {(t1, . . . , tm) ∈ R
m : ∃s ∈ Rq, ∀i, (ti mod q) = ai · s mod I}.

�� ���� ����� a⊥ ��� L(a) �� a⊥(Rq) ��� L(a, �0�) ������������� ��� ������
�� Rq ��� �� ��� ���� IS :=

�
i∈S(x − φi) · Rq = {a ∈ Rq : ∀i ∈ S, a(φi) = 0}�

����� S �� ��� ������ �� {1, . . . , n} ���� φi�� ��� ��� ����� �� Φ ������ q�� ��
����� I×S =

�
i∈S(x− φ−1

i ) ·Rq�

����� �� ��� S ⊆ {1, . . . , n} ��� a ∈ Rmq � ��� S = {1, . . . , n} \ S ��� a× ∈

Rmq �� ������ �� a×i = ai(x
−1)� ���� ������������ ���� ���� �� mn������������

�������� �� ����������� R ��� Zn��

�a⊥(IS) =
1

q
L(a×, I×

S
).

������ �� ���� ����� ���� 1
qL(a

∗, I×
S
) ⊆ �a⊥(IS)� ��� (t1, . . . , tm) ∈ a⊥(IS)

��� (t�1, . . . , t
�
m) ∈ L(a∗, IS)� ����� ti =

�
j<n ti,jx

j ��� t�i =
�

j<n t
�
i,jx

j ���
��� i ≤ m� ��� ���� �� �� ���� ����

�
i≤m,j≤n ti,jt

�
i,j = 0 mod q� ���� �� �������

���� �� ������� ���� ��� �������� ��������� �� ��� ����������
�

i≤m ti(x)t
�
i(x

−1)

�� 0 ������ q� �� ���� ������ �� ���� ����
�

i≤m ti(x)t
�
i(x

−1) mod q = 0 ��� Rq��

�� ��������� �� ��� t�i��� ����� ������ s ∈ Rq ���� ���� (t�i mod q) = a×i · s + b�i
��� ���� b�i ∈ I

×

S
� �� ���� ��� ���������� ������ q�

�

i≤m

ti(x)t
�
i(x

−1) = s(x−1) ·
�

i≤m

ti(x)ai(x) +
�

i≤m

ti(x)b
�
i(x

−1).

���� ���� �� ��� ����� ���� ���� �������� �� 0 �� Rq� ����� �������� ��� �������
����������

�� �������� ��� ������ �� ������ �� ���� ���� �L(a×, I×
S
) ⊆ 1

qa
⊥(IS)� �� ���

�� ���� �� ����������� ��� �������� �� L(a×, IS) ������������� �� s = 1� ��



��� �� ��� ������� �� ��������� ����� ������� �� L(a, IS)

�� ���� ���� ��� a ←� U((R×q )
m)� ��� ������� L(a, IS) �� ��������� ��������

�� ������� ��������� ����� ������� ��� ��� ������� ����� ����� ���� �������

���� ���������� �� ��� ��������� ����� ����� det(L(a, IS))
1

mn = q(1−
1
m )

|S|
n

��� ���� det(L(a, IS)) = q(m−1)|S| ������� ����� ��� qn+(m−1)(n−|S|) ������ ��
L(a, IS) �� ��� ���� [0, q − 1]mn�� ���� ���� ��� ����� ����� ���������� ���

��������� ����� �� |S|
n ���������� 1� ��� ������� ������������� ������ �� |S|

n
����� ������� ≈ 1− 1

m � ������������ ��� ��� ������������� �� ���� �� ����� ����

����� ���� |S|
n = 1−ε ��� ���� ����� ε� ����� ��� ����� �� ����� �� ����� ������

����� �� ��� n ≥ 8 �� � ����� �� 2 ���� ���� Φ = xn + 1 ������ ���� n ������
������� ������ ����� q ≥ 5� ����� ��� ��� S ⊆ {1, . . . , n}� m ≥ 2 ��� ε > 0�
�� ���� λ∞1 (L(a, IS)) ≥

1√
n
qβ� �����

β := 1−
1

m
+

1−

�

1 + 4m(m− 1)
�
1− |S|

n

�
+ 4mε

2m

≥ 1−
1

m
− ε− (m− 1)

�

1−
|S|

n

�

,

������ ���� ����������� ≤ 2n(q − 1)−εn ���� ��� ��������� ������ ������ �� a
�� (R×q )

m�

������ ������ ���� Φ =
�
i≤n Φi ��� �������� ������ ������� Φi� �� ��� �������

��������� �������� �� ���� ���� Rq ������ R×q � �� ������������ �� (Zq)
n

������ (Z×q )
n� ��� ��� ����������� t �→ (t mod Φi)i≤m� ��� gIS =

�
i∈S Φi� �� ��

� ������ |S| ��������� �� IS �

��� p ������ ��� ����������� ����� ��� ���������� �� a� ���� L(a, IS) ��������
� �������� ������ t �� ������� ���� < B� ����� B = 1√

n
qβ � �� ����� ����� p

�� ��� ����� ������ ������� ��� ������������� p(t, s) = Pra[∀i, ti = ais mod IS ]
���� ��� �������� ������ ��� t �� ������� ���� < B ��� s ∈ Rq/IS � ����� ��� ai��
��� ������������ �� ���� p(t, s) =

�
i≤m pi(ti, s)� ����� pi(ti, s) = Prai [ti =

ais mod IS ]�

���� �� ��� ������ ���� gcd(s, gIS ) = gcd(ti, gIS ) ��� �� �������������� ��
�� ������� �� Z×q �� �� ���� �� ��� ��� ����� ����� ������ j ≤ n ���� ���� ������
ti mod Φj = 0 ��� s mod Φj �= 0� �� ti mod Φj �= 0 ��� s mod Φj = 0� �� ����
������ �� ���� pi(ti, s) = 0 ������� ai ∈ R

×
q � �� ��� ������ ���� gcd(s, gIS

) =
gcd(ti, gIS

) =
�
i∈S� Φi ��� ���� S� ⊆ S �� ���� 0 ≤ d ≤ |S|� ��� ��� j ∈ S��

�� ���� ti = ais = 0 mod Φj ���������� �� ��� ����� �� ai mod Φj � ����� ���
j ∈ S \ S�� �� ���� s �= 0 mod Φj ��� ����� ������ � ������ ����� �� ai mod Φj
���� ���� ti = ais mod Φj � �������� ��� ��� j /∈ S� ��� ����� �� ai mod Φj ���
�� ��������� �� Z×q � ��� �������� ����� ��� (q−1)d+n−|S| ��������� ai�� �� R×q ����

���� ti = ais mod IS � ���� ����� �� pi(ti, s) = (q − 1)d−|S|�



�� ���� �� ���� ������ ���� ��� ����������� p ��� �� ����� ������� ���

p ≤
�

0≤d≤|S|

�

h =
�

i∈S� Φi

S� ⊆ S
|S�| = d

�

s ∈ Rq/IS

h|s

�

t ∈ (Rq)m

∀i, 0 < �ti�∞ < B
∀i, h|ti

�

i≤m

(q − 1)d−|S|.

��� h =
�
i∈S� Φi �� ������ d� ��� N(B, d) ������ ��� ������ �� t ∈ Rq ����

���� �t�∞ < B ��� t = ht� ��� ���� t� ∈ Rq �� ������ < n− d� �� �������� ���
������ ��� N(B, d) ��������� �� d�

������� ���� d ≥ β ·n� ���� �� ����� ���� N(B, d) = 0� ������� ��� t = ht�

��� ���� t� ∈ Rq ������� �� ��� ����� �h, q� �� R ��������� �� h ��� q� ���
��� �������� t ∈ �h, q�� �� ���� N (t) = N (�t�) ≥ N (�h, q�) = qd� ����� ���
���������� �� ������� ��� ����� �t� �� � ��������� ��������� �� �h, q�� ��� ��� ����
�������� �� ������� deg h = d� �� ������� ���� ��� �������������������� ����������
���� �t� = 1√

n
T2(t) ≥ N (t)1/n ≥ qd/n� �� ����������� �� ������ �� ��������

���� �t�∞ ≥ λ∞1 (�h, q�) ≥ 1√
n
qd/n� �� ��� ���� d/n ≥ β ������� ���� �t�∞ ≥ B�

�� ���� N(B, d) = 0�
������� ��� ���� d < β ·n� ���� �� ����� ���� N(B, d) ≤ (2B)n−d� �������

����� ��� ������ �� h �� d� ��� ������ t ������ �� ��� n− d ��������� ����������
�� t �� ������� �� ��� ������ t� ������ �� ��� n− d ��������� ���������� �� t� ��
� ����� ���������� (n− d)× (n− d) ������ ����� �������� ���������� ��� �����
�� 1� ����� ���� ������ �� ������������ ������ q �� ��� ������� ���� t� �� t ��
����������� ���� �������� ��� ������

����� ��� ����� ������ �� N(B, d)� ��� ���� ���� ��� ������ �� ������� �� S
�� ����������� d �� ≤ 2d� ��� ��� ���� ���� ��� ������ �� s ∈ Rq/IS ���������
�� h =

�
i∈S� Φi �� q|S|−d� ��� ����� ����� �� p �������

p ≤ 2n max
d≤β·n

(2B)m(n−d)

(q − 1)(m−1)(|S|−d)
.

���� ��� ������ �� B� �� ���� 2B ≤ (q − 1)β ����� �� ������� �� n ≥ 8, q ≥ 5
��� β ≤ 1�� � ��������������� ����������� ���� ����� �� ��� ������� �����
����� �� p� ��

��� �������� ���������� ������

�� ��� ����� ��� ���������� �� ������������ �� (m+1)������� ���� (R×q )
m×Rq ��

��� ���� (a1, . . . , am,
�

i≤m tiai)� ����� ��� ai�� ��� ����������� ��� ���������

������ �� R×q � ��� ��� ti�� ��� ������ ���� ���� ������������ �� Rq ������������
�� �������� ���� ����� ����������� ��������� �� ����� �� ���� ��� �������� �� ���
������ ������������ �� ��� ������� ������������ �� (R×q )

m×Rq ��� ���������� �� ���
����������� �������� �������� (ti)i≤m �→

�
i≤m tiai� ��� ��� ���� �����������

�� ��� ������������ ���������� �� ��� ���� ����� m = 2�
��� ���������� ������ �� ���� ��� ���� ������� ���� ��� ai�� ��� ��������� ����

��� �� ��� ����� ���� Rq� ��� ��� ti�� ��� ��������� ������ �� ��� ������



�� �������� �� Rq ���� ���������� �� ��������� ≤ d ��� ���� d < q� �� ����

����� ��� ���������� ����� ���� ���� �� Ω(
�
nq/dm)� �������������� ���� �����

�� �������������� ��� ����� m ��� q� ����� ��� m = O(1) ��� q = Poly(n)� ��
���� �� ������������� ����� �� n� ��� ����� �� ��� m log d = Ω(n)� ����� ���
�������� ����� �� ��������� ������������� ���������� ���� ��� ai�� ��� ������
��������� ���� ��� ����� ���� Rq� ��� ������ ���������� �� ��� ���� ������ ����
���� ����������� ���������� ������ ���� �� ������� Rq �������� n ������ ������
�� ���� qn−1 = |Rq|/q� ��� ��� ����������� ≈ n/qm ���� ��� �� ��� ai�� ���� ����
��� ���� ����� ������ ������

�
tiai �� ���� �� ������� �� ��� ������ ������ ��

�������������� ��� ����� m� �� ���������� ���� �������� �� �������� ��� ai�� �� ��
������� �� R×q � ��� �� ������ ��� ti�� ���� � �������� �������� ������������� ��
���� � ���������� ����� ������������� ����� �� n ���� ��� m = O(1)� �� �����
�� �������� ������� �� ���� ���� �� ���� ��� ���� ��� ������������ �����������
���������� ����� �� ��� ��������� ��������� �� ��� ���������� ��������� ����
���� ��� ��� ���������� ������ ��� �� ���� ������ ��� Ideal-SIS �������� ������
����� �� ���� ��� ��� ���� ��������� ��� ������ �� � ����� ��������� q� �� ���� �����
���� ��� ���������� ������ ���� ���� ��� �� ����� ������ ������� �����������
���� ��������� ���������� �������� ��� �������������� ��������� �������� ��
�������� ���������� �������� ���� ����� ���������

������� �� ��� n ≥ 8 �� � ����� �� 2 ���� ���� Φ = xn+1 ������ ���� n ������
������� ������ ����� q ≥ 5� ��� m ≥ 2� ε > 0� δ ∈ (0, 1/2) ��� t ←� DZmn,σ�

���� σ ≥
�
n ln(2mn(1 + 1/δ))/π ·q

1
m +ε� ���� ��� ��� ������ � �������� ≤ 2n(q−

1)−εn �� a ∈ (R×q )
m� �� ���� ηδ(a

⊥) ≤
�
n ln(2mn(1 + 1/δ))/π · q

1
m +ε� ��� ���

�������� �� ���������� ��
�

i≤m tiai �� ≤ 2δ� �� � ������������

Δ

�
�
a1, . . . , am,

�

i≤m

tiai

�
; U

�
(R×q )

m ×Rq

�
�

≤ 2δ + 2n(q − 1)−εn.

���� ����� ���� ������� ��� �� ��������� ���������� �� ������ � ����� ����
����� ε > 0� ������� �� ������ �� ����� ��� �������� ��������� σ ��� ����
��� �������� ������ �� ����������� ���� � ���� δ ������ �� ������ ������
δ ≈ 2n(q − 1)−εn�� �� �� ����������� ������ ��� ����������� �������� ����� ������
������� ������������� ��� �������� ��������� ����������� �����

��� ���� a ∈ (R×q )
m� ��� Da ������ ��� ������������ ��

�
i≤m tiai ����� t

�� ������� ���� DZmn,σ� ���� ���� ��� ����� ����������� �������� �� �������
1

|R×q |m

�
a∈(R×q )m Δa� ����� Δa �� ��� �������� �� ���������� �� Da� �� ����� ���

�������� �� ��������� ������ �� ���� � �������� ����� Δa ≤ 2δ� ��� ��� ������
� �������� ≤ 2n(q − 1)−εn �� a ∈ (R×q )

m�
���� ��� ������� t �→

�
i tiai ������� �� ����������� ���� ��� ��������

����� Zmn/a⊥ �� ��� ����� ����� ���� a⊥ �� ��� ������ �� t �→
�

i tiai�� ���
������ �� Rq� ������ �� ��� ������������� �� ��� ai��� ���������� ��� �����������
�������� Δa �� ����� �� ��� �������� �� ���������� �� t mod a⊥� �� ����� �� ��
���� Δa ≤ 2δ �� σ �� ������� ���� ��� ��������� ��������� ηδ(a

⊥) �� a⊥ ⊆ Zmn�
�� ����� ����� ηδ(a

⊥)� �� ����� ����� �� ����� ������� ��� ���� �� �����



�������� ��� ������� �� ��� ���� ������� �a⊥ = 1
q · L(a

×)� ����� a× ∈ (R×q )
m

�� �� ���������� �������������� ���� a�
��� ��������� ������ �� � ������ ����������� �� ������� �� �� � ��� �� ����

���� � ������� �� ������ S = ∅ ��� c = 0�

����� �� ��� n ≥ 8 �� � ����� �� 2 ���� ���� Φ = xn + 1 ������ ���� n ������
������� ������ ����� q ≥ 5� ��� S ⊆ {1, . . . , n}� m ≥ 2� ε > 0� δ ∈ (0, 1/2)�
c ∈ Rmn ��� t ←� DZmn,σ,c� ����

σ ≥
�
n ln(2mn(1 + 1/δ))/π · q

1
m +(m−1)

|S|
n +ε.

���� ��� ��� ������ � �������� ≤ 2n(q − 1)−εn �� a ∈ (R×q )
m� �� �����

Δ
�
t mod a⊥(IS); U(R/a

⊥(IS))
�
≤ 2δ.

� � ������� ��� ���������� ���������

�� ��� ��� ��� ������� �� ��� �������� ������� �� ������� q���� �������� ��
������ � ��� ���������� ��������� ��� ������������ ����� ��� ��������� ������
��� ������� � ������������ ��� ����� Ideal-SVP ������� �� R-LWE�

��� ������������� ��� ���������� ���������

��� ��� ��� ���������� ��������� ��� ����������� �� ����� �� ���� �� ��� ������
��� ����������� f ��� g ��� ��������� �� ����� ��� ������ �� ��� ������� �� ����
����� ��������� ���� ����� ��� ��� �� ��������� �� ���� ��� ������ �����������
��� ���������� ������ q� ��� ������ �� ��� ������� ��� ��� ������� ������ ����
�������� ���������� ��� ����� ��� ����������� �������� ��� �� ���� �������������
������ ��� ������ �� ��� ������� �� ���� ������������� ������ ������������ �� ���
�� ������� ���� ��� ���������� �� �������� ���������� ��� ���� �������� ����
��� ��� �� ����� �� ���� ��� ��� �� ���� ������ �� ���� � ������� ��������
�������� ��������

�� �������� � ����� ������ �������� ��������� σ� �� ��� ����� ��� �������
�� ��� �������� ������� ��� ������ ��� ������������������ �� ��� ������ ���� ��
������ f �� ��� ���� p · f � + 1 �� ���� �� ��� ������� 1 ������ p� ������ ���
���������� ������� �� ����������� ���� ������� ��� �� ��� �������� �����������
�������� �� ������ ���� ��� ��������� ��������� �� f �� ���� � �� ���������� ��
��� ��������� (f � mod q) �∈ R×q − p−1� ����� p−1 �� ��� ������� �� p �� R×q �

��� ��������� ������ ������� ���� ��� ���� ����������� ������ �� �����������
��� ��� ���������� ��������� ���������� �� �������� ���������� �����

����� ��� ��� n ≥ 8 �� � ����� �� 2 ���� ���� Φ = xn+1 ������ ���� n ������
������� ������ ����� q ≥ 5� ��� σ ≥

�
n ln(2n(1 + 1/δ))/π · q1/n� ��� �� �����

����� δ ∈ (0, 1/2)� ��� a ∈ R ��� p ∈ R×q � ���� Prf �←�DZn,σ
[(p · f � + a mod q) �∈

R×q ] ≤ n(1/q + 2δ)�



������� n, q ∈ Z� p ∈ R×
q � σ ∈ R�

������� � ��� ���� (sk, pk) ∈ R×R×
q �

�� ������ f � ���� DZn,σ� ��� f = p · f � + 1� �� (f mod q) �∈ R×
q � ���������

�� ������ g ���� DZn,σ� �� (g mod q) �∈ R×
q � ���������

�� ������ ������ ��� sk = f ��� ������ ��� pk = h = pg/f ∈ R×
q �

���� �� ������� ��� ���������� ��������� ��� ������������

������ �� ��� �� ����� ��� ����������� ���� p · f � + a ������� �� I := �q, Φk�
�� 1/q+2δ� ��� ��� k ≤ n� ��� ������ ���� ������� ���� ��� ������� ���������
������� ��� ��� ����� ������ �� ���� N (I) = q� �� ���� λ1(I) ≤

√
nq1/n�

�� ����������� �������� ����� I �� �� ����� �� R� �� ���� λn(I) = λ1(I)� ���
����� � ����� ���� σ ≥ ηδ(I)� ����� � ���� ����� ���� f mod I �� ������
�������� ≤ 2δ �� ���������� �� R/I� �� �� ���� p · f � + a = 0 mod I ����
������������� f � = −a/p mod I� ���� ����������� ≤ 1/q + 2δ� �� ��������� ��

�� � ����������� �� ��� ����� ����� �� ��� ��������� ������������ �� ����
��� ��������� ������� ����� ������� ���� ��� ��������� ������ ��� �� ������

����� ��� ��� n ≥ 8 �� � ����� �� 2 ���� ���� Φ = xn+1 ������ ���� n ������
������� ������ ����� q ≥ 8n� ��� σ ≥

�
2n ln(6n)/π ·q1/n���� ������ ��� �������

����� f, g �������� �� ��� ��������� �� ���� � �������� ���� ����������� ≥ 1−2−n+3�

�f� ≤ 2n�p�σ ��� �g� ≤
√
nσ.

�� deg p ≤ 1� ���� �f� ≤ 4
√
n�p�σ ���� ����������� ≥ 1− 2−n+3�

������ ��� ����������� ����� ����� �� ����� ���� ��� ����������� �� ��� ����
����� ������� ���������� ������� �� ��� ��������� ������������ ��� ������ �������
�� ��������� ������� � ��� ��� ��

��� ������ ��� ����������

�� ��� ��������� �� ���� �� ��� ����������� f � ��� g ��� ������������� �������
���� ��� �������� �������� ������������ DZn,σ ���� σ ≥ Poly(n) · q1/2+ε ��� ��
��������� ε > 0� ��� ���������� ��� ���������� �� R×q − p−1 ��� R×q � �������������
�� ������ �� D×

σ,z ��� �������� �������� DZn,σ ���������� �� R×q + z�
���� �� ����� ��� ������ �� ������� � �� ���� ���� ��� ����������� ���������

�� ���������� �� � �������� �� ��� ������������� (z+ p ·D×
σ,y) ��� z ∈ Rq ��� y =

−zp−1 mod q� ���� �������� ��� ���� �� ��� ������ ��� h = pg/f mod q ��������
�� ��� ��������� �� ���� ��

������� �� ��� n ≥ 8 �� � ����� �� 2 ���� ���� Φ = xn+1 ������ ���� n ������
������� ������ ����� q ≥ 5� ��� ε > 0 ��� σ ≥ 2n

�
ln(8nq) ·q

1
2+2ε� ��� p ∈ R×q �

yi ∈ Rq ��� zi = −yip
−1 mod q ��� i ∈ {1, 2}� ����

Δ

�
y1 + p ·D×

σ,z1

y2 + p ·D×
σ,z2

mod q ; U
�
R×q

�
�

≤ 23nq−�εn�.



������ ��� a ∈ R×q � �� ����� Pra = Prf1,f2 [(y1+pf1)/(y2+pf2) = a]� ����� fi ←�

D×
σ,zi

��� i ∈ {1, 2}� �� ��� �� ���� ���� |Pra − (q − 1)−n| ≤ 22n+5q−�εn� · (q −
1)−n =: ε� ��� ��� ������ � �������� ≤ 22n(q−1)−εn �� a ∈ R×q � ���� �������� �����
��� ������� ������ ��� �������� �� a ∈ R×q ���� ���� |Pra − (q − 1)−n| ≤ ε� ��
����� �� ��� �������� �� a = (a1, a2) ∈ (R×q )

2 ���� ���� |Pra − (q − 1)−n| ≤ ε��
����� Pra = Prf1,f2 [a1f1 + a2f2 = a1z1 + a2z2]� ���� �� ������� a1f1 + a2f2 =
a1z1+a2z2 �� ���������� �� (y1+pf1)/(y2+pf2) = −a2/a1 ��� R×q �� ��� −a2/a1

�� ��������� ������ �� R×q ���� a ←� U((R×q )
2)�

�� ������� ���� (f1, f2) = (z1, z2) =: z �������� a1f1 + a2f2 = a1z1 + a2z2�
��� ����� ��� ��� �� ��������� (f1, f2) ∈ R �� ��� ������ �������� �� z + a⊥×�
����� a⊥× = a⊥ ∩ (R×q + qZn)2� ����������

Pra =
DZ2n,σ(z + a⊥×)

DZn,σ(z1 +R×q + qZn) ·DZn,σ(z2 +R×q + qZn)
.

�� ��� ��� ��� ���� ���� ��� ��� t ∈ a⊥ �� ���� t2 = −t1a1/a2 ��� �����
−a1/a2 ∈ R

×
q � ��� ���� �������� t1 ��� t2 ���� ������ �� ��� ���� ����� IS �� Rq

��� ���� S ⊆ {1, . . . , n}� �� ������� ���� a⊥× = a⊥\
�
S⊆{1,...,n},S �=∅ a⊥(IS)� ����

������� �� ���� R×q + qZn = Zn \
�
S⊆{1,...,n},S �=∅(IS + qZ

n)� ����� ��� ����������
��������� ���������� �� �������

DZ2n,σ(z + a⊥×) =
�

S⊆{1,...,n}

(−1)|S| ·DZ2n,σ(z + a⊥(IS)), ���

∀i ∈ {1, 2} :DZn,σ(zi +R×q + qZn) =
�

S⊆{1,...,n}

(−1)|S| ·DZn,σ(zi + IS + qZn).���

�� ��� ���� �� ��� ������ �� ���� ����� ������ ��� � �������� ≤ 22n(q − 1)−εn

�� a ∈ (R×q )
2�

DZ2n,σ(z + a⊥×) = (1 + δ0) ·
(q − 1)n

q2n
,

∀i ∈ {1, 2} : DZn,σ(zi +R×q + qZn) = (1 + δi) ·
(q − 1)n

qn
.

����� |δi| ≤ 22n+2q−�εn� ��� i ∈ {0, 1, 2}� ��� ����� �� |Pra−(q−1)−n| �������
�� � ������� ������������

�������� ���� �� ���� ����� ����� z ∈ Z2n� �� ���� ���� ��� S ⊆ {1, . . . , n}��

DZ2n,σ(z+a⊥(IS)) =
ρσ(z + a⊥(IS))

ρσ(Z2n)
=
ρσ(z + a⊥(IS))

ρσ(z + Z2n)
= DZ2n,σ,−z(a

⊥(IS)).

��� ��� ����� �� ��� ���� |S| ≤ εn� �� ����� ����� � ���� m = 2�
����� |S|/n+ ε ≤ 2ε� ��� ����� � ���������� �� σ ������ ���� δ := q−n−�εn��
�� ���� |R/a⊥(IS)| = det(a⊥(IS)) = qn+|S|� ������� ����� a ∈ (R×q )

2� �����

��� qn−|S| �������� �� a⊥(IS) �� [0, q−1]2n� �� �������� ���� |DZ2n,σ,−z(a
⊥(IS))−



q−n−|S|| ≤ 2δ� ��� ��� ������ � �������� ≤ 2n(q − 1)−εn �� a ∈ (R×q )
2 ���������

������������� �� � �������� ������ �� (R×q )
2 ��� ���� �������� S��

��� � ���� �� ��� ���� |S| > εn� �� ������ S� ⊆ S ���� |S�| = �εn�� ����
�� ���� a⊥(IS) ⊆ a⊥(IS�) ��� ����� DZ2n,σ,−z(a

⊥(IS)) ≤ DZ2n,σ,−z(a
⊥(IS�))�

�� ����� ���� S� ��� ����� ������ ��� ����� |S|� �� ������ DZ2n,σ,−z(a
⊥(IS)) ≤

2δ + q−n−�εn��
�������� �� ����� ������ �������� ��� � �������� ≤ 22n(q−1)−εn �� a ∈ (R×q )

2�

�
�
�
�DZ2n,σ(z + a⊥×)−

n�

k=0

(−1)k
�
n

k

�

q−n−k
�
�
�
� ≤ 2n+1δ + 2

n�

k=�εn�

�
n

k

�

q−n−�εn�

≤ 2n+1(δ + q−n−�εn�).

�� �������� ���� |δ0| ≤
q2n

(q−1)n 2
n+1(δ+ q−n−�εn�) ≤ 22n+1(δqn+ q−�εn�)� ��

���������

�������� ���� ��� ��� ������ �� δ1 ��� δ2� �� ��� � ������� ��������� ��� i ∈
{1, 2}� ��� zi ���� ��� �� ������� ���� ���� ��� z ���� �� ���� �� ������� ����
��� ��� S ⊆ {1, . . . , n}� �� ���� det(IS + qZ

n) = q|S| ��� ������ �� �����������
�������� λ1(IS+qZ

n) ≤
√
n ·q|S|/n� ��������� ����� IS+qZ

n �� �� ����� ��������
�� ���� λn(IS + qZn) = λ1(IS + qZn) ≤

√
n · q|S|/n� ����� � ����� ���� σ ≥

ηδ(IS + qZn) ��� ��� S ���� ���� |S| ≤ n/2� ���� δ := q−n/2� ���������� ��
����� �� ��� ���� �� S� �� ���� |DZn,σ,−zi(IS + qZn)− q−|S|| ≤ 2δ�

��� � ���� �� ��� ���� |S| > n/2� �� ������ S� ⊆ S ���� |S�| = n/2� ��
����� ���� S� ��� ����� ������ ��� ����� |S|� �� ������ DZn,σ,−zi(IS + qZn) ≤
DZn,σ,−zi(IS� + qZn) ≤ 2δ + q−n/2�

�������� �� �����

�
�
�
�
�
DZn,σ(zi +R×q + qZn)−

n�

k=0

(−1)k
�
n

k

�

q−k

�
�
�
�
�
≤ 2n+1δ + 2

n�

k=n/2

�
n

k

�

q−n/2

≤ 2n+1(δ + q−n/2),

����� ����� �� ��� ������� ����� �� δi ������ ε < 1/2�� ���� ��������� ��� �����
�� ��� �������� ��

� ����������� ���������

����� ��� ��� ������� ������ �� �������� � ����������� �� ����������� ���
����� �� ��� ������� � �������� ����� ����� � ���������� �������� �����������
�� ��� Φ = xn + 1 ���� n ≥ 8 � ����� �� 2� R = Z[x]/Φ ��� Rq = R/qR
���� q ≥ 5 ����� ���� ���� Φ =

�n
k=1 Φk �� Rq ���� �������� Φk���

�� ����� ��� ������� ����������� ������ ���� ���������� n, q, p, α, σ ��
�������� ��� ���������� n ��� q ����� ��� ����� R ��� Rq� ��� ��������� p ∈
R×q ������ ��� ��������� ������� ����� �� P = R/pR� �� ���� �� � ����������
���� ������� ���������� ���� ������� �� q� ��� �� ��� ���� ���� �� ������� N (p) =



|P| = 2Ω(n) �� ���� ���� ���� ��� �� ������� �� ����� ������� ������� �� ����
�� ��� �������� ����������� ������ ��� p = 3 ��� p = x + 2� ��� �� ��� �����
����� q �� ������ �� ��� ���� ������ p = 2� �� �������� ������ ��� pxi��� �� ���
����� ��� ������� �� p ��

�
0≤i<n εix

ip� ���� εi ∈ (−1/2, 1/2]� ����� ��� ����
���� R = Z[x]/(xn+1)� �� ��� ���� ������ ���� ��� ������� �� P �� �� �������
�� R ���� ������� ���� ≤ (deg(p)+1) ·�p�� ��� ��������� α �� ��� R-LWE �����
������������ ���������� �������� ��� ��������� σ �� ��� �������� ��������� �� ���
�������� �������� ������������ ���� �� ��� ��� ���������� ������� ���� ������� ���

• ��� ����������� ��� ��� ��������� �� ���� � ��� ������ sk = f ∈ R×
q ����

f = 1 mod p� ��� pk = h = pg/f ∈ R×
q �

• ����������� ����� ������� M ∈ P� ��� s, e ←� Υ α ��� ������ ���������� C =
hs + pe + M ∈ Rq�

• ����������� ����� ���������� C ��� ������ ��� f � ������� C� = f ·C ∈ Rq ���
������ C� mod p�

���� �� ��� ���������� ������ �����������(n, q, p, σ, α)�

��� ����������� ���������� ��� ��� ������ ��� ���������� ������

����� ��� �� ω(n1.5 log n)α deg(p)�p�2σ < 1 ������ ω(n0.5 log n)α�p�2σ < 1
�� deg p ≤ 1� ��� αq ≥ n0.5� ���� ��� ���������� ��������� �� �����������

�������� M ���� ����������� 1− n−ω(1) ���� ��� ������ �� s, e, f, g�

������ �� ��� ���������� ���������� �� ���� C � = p · (gs+ ef)+ fM mod q� ���
C �� = p · (gs+ ef) + fM �������� �� R ���� ������ q�� �� �C ���∞ < q/2 ����
�� ���� C � = C �� �� R ��� ������ ����� f = 1 mod p� C � mod p = C �� mod p =
M mod p� ����� ��� ���������� ��������� ��������� �� ���� ������ �� ���� ��
����� ����� �� ��� ����������� ���� �C ���∞ > q/2�

���� ����� ��� �� ���� ���� ���� ����������� ≥ 1− 2−n+3 ���� f ��� g
���� ��������� ����� ≤ 2n�p�σ ������ 4

√
n�p�σ �� deg p ≤ 1�� ���� �������

���� �pf�, �pg� ≤ 2n1.5�p�2σ ������ 8
√
n�p�2σ�� ���� ����������� ≥ 1− 2−n+3�

���� ����� �� ���� pfe ��� pgs ���� ������� ����� ≤ 2αqn1.5ω(log n) · �p�2σ
������ 8αq

√
nω(logn) · �p�2σ�� ���� ����������� 1− n−ω(1)� ��������������

�fM�∞ ≤ �fM� ≤
√
n�f��M� ≤ 2 · (deg(p) + 1) · n2�p�2σ (����� 8n�p�2σ).

����� αq ≥
√
n� �� �������� ���� �C ���∞ ≤ (6+2deg(p)) ·αqn1.5ω(log n) ·�p�2σ

������ 24αqn0.5ω(log n) · �p�2σ�� ���� ����������� 1− n−ω(1)� ��

��� �������� �� ��� ������ ������� �� �� ���������� ��������� ���� ���
���������� R-LWE×HNF� ���������� ��� ���������� �� ��� ������ ��� �� R×q �����
���� ��� ��� ��� ������������� �� p �� Rq�

����� ��� ������� n �� � ����� �� 2 ���� ���� Φ = xn+1 ������ ���� n ������
������� ������ ����� q = ω(1)� ��� ε, δ > 0� p ∈ R×q ��� σ ≥ 2n

�
ln(8nq) ·

q
1
2+ε� �� ����� ������ �� ������� ������ ������� ����������� ���� ���� ��



���� T ��� ��� ������� ����������� 1/2+δ� ���� ����� ������ �� ��������� �������
R-LWE×HNF ���� ���������� q ��� α ���� ���� �� ���� T � = T + O(n) ��� ���
������� ����������� δ� = δ − q−Ω(n)�

������ ��� A ������ ��� ����� ������� ������ ���������� �� ��������� ��
��������� B ������� R-LWE×HNF ���� ���� �� �������� ����� ������ O ���� �������
���� ������ U(R×q × Rq) �� A×s,ψ ��� ���� ���������� ������ s ←� ψ ��� ψ ←�

Υα� ��������� B ���� ����� O �� ��� � ������ (h�, C �) ���� R×q × Rq� �����
��������� B ���� A ���� ������ ��� h = p · h� ∈ Rq� ���� A ������� ���������
�������� M0,M1 ∈ P� ��������� B ����� b←� U({0, 1})� �������� ��� ���������
���������� C = p · C � + Mb ∈ Rq� ��� ������� C �� A� ����������� ���� A
������� ��� ����� b� ��� b� ��������� B ������� 1 �� b� = b ��� 0 ����������

��� h� ���� �� B �� ��������� ������ �� R×q � ��� ��������� �� �� ��� ������
��� h ����� �� A� ������ �� ��� ������������� �� p ������ q� ����� �� ������� ��
��� ������ ��� ����� �� A �� ������ ����������� �������� q−Ω(n) �� ��� ������ ���
������������ �� ��� ������� ������� ��������� ����� C � = h · s+ e ���� s, e←� ψ�
��� ���������� C ����� �� A ��� ��� ����� ������������ �� �� ��� ������� �������
�������� �� O ������� ������� ���� A×s,ψ� ���� A �������� ��� B ������� 1 ����

����������� ≥ 1/2 + δ − q−Ω(n)�
���� �� O ������� ������� ���� U(R×q ×Rq)� ����� ����� p ∈ R×q � ��� �����

�� p ·C � ��� ����� C� �� ��������� ������ �� Rq ��� ����������� �� b� �� �������
���� B ������� 1 ���� ����������� 1/2� ��� ������� ��������� �� B �������� ��

�� ��������� ������� �� ��� �� ���� ������� � �� ������ ��� ���� �������

������� �� ������� n �� � ����� �� 2 ���� ���� Φ = xn+1 ������ ���� n ������
������� ������ ����� q = Poly(n) ���� ���� q

1
2−ε = ω(n3.5 log2 n deg(p)�p�2)

������ q
1
2−ε = ω(n4 log1.5 n deg(p)�p�2)�� ��� ��������� ε ∈ (0, 1/2) ��� p ∈ R×q �

��� σ = 2n
�
ln(8nq) · q

1
2+ε ��� α−1 = ω(n1.5 logn deg(p)�p�2σ)� �� ����� ������

�� ������� ������ ������� �����������(n, q, p, σ, α) ����� ���� �� ���� T =
Poly(n) ��� ��� ������� ����������� 1/2 + 1/Poly(n) ������ ���� T = 2o(n) ���
������� ����������� 1/2 + 2−o(n)�� ���� ����� ������ � Poly(n)����� ������ 2o(n)�

����� ������� ��������� ��� γ�Ideal-SVP ���� γ = O(n4 log2.5 n deg(p)�p�2q
1
2+ε)

������ γ = O(n5 log1.5 n deg(p)�p�2q
1
2+ε)�� ��������� ��� ���������� ���������

�������� ���� ����������� 1−n−ω(1) ���� ��� ������ �� ��� ���������� �����������

�� ��� ���� ����� deg p ≤ 1� ��� ���������� �� q ��� ��������������� ������

��������������� ������� �� ������� � ��� �� ������� �� q
1
2−ε = ω(n2.5 log2 n ·

�p�2) ������ q
1
2−ε = ω(n3 log1.5 n · �p�2)� ��� ��� ��������� Ideal-SVP �������

������� ������ ��� �� �������� �� γ = O(n3 log2.5 n · �p�2q
1
2+ε) ������ γ =

O(n4 log1.5 n · �p�2q
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