Réseaux Euclidiens : Algorithmes et Cryptographie Soutenance d'HDR

Damien Stehlé

http://perso.ens-lyon.fr/damien.stehle

CNRS/LIP, ENS de Lyon

Lyon, 14 Octobre 2011

Goals of the talk

- To present facets of my field of research.
- To focus on some specific results.
- To discuss future directions.
(1) Euclidean lattices: definitions and algorithmic problems.
(2) Reducing lattice bases efficiently.
(3) Paying more to get nicer bases.
(Fast lattice-based cryptography.
© Open problems.

Euclidean lattices

$$
\text { Lattice } \equiv\left\{\sum_{i \leq n} x_{i} \mathbf{b}_{i}: x_{i} \in \mathbb{Z}\right\},
$$

where the n linearly independent \mathbf{b}_{i} 's are called a basis.
 transforms of determinant ± 1

Lattice reduction:

find a nice basis, given an arbitrary one

Euclidean lattices

$$
\text { Lattice } \equiv\left\{\sum_{i \leq n} x_{i} \mathbf{b}_{i}: x_{i} \in \mathbb{Z}\right\},
$$

where the n linearly independent \mathbf{b}_{i} 's are called a basis.

Bases are not unique, but can be obtained from each other by integer transforms of determinant ± 1 :

$$
\left[\begin{array}{cc}
-2 & 1 \\
10 & 6
\end{array}\right]=\left[\begin{array}{cc}
4 & -3 \\
2 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]
$$

Euclidean lattices

$$
\text { Lattice } \equiv\left\{\sum_{i \leq n} x_{i} \mathbf{b}_{i}: x_{i} \in \mathbb{Z}\right\},
$$

where the n linearly independent \mathbf{b}_{i} 's are called a basis.

Bases are not unique, but can be obtained from each other by integer transforms of determinant ± 1 :

$$
\left[\begin{array}{cc}
-2 & 1 \\
10 & 6
\end{array}\right]=\left[\begin{array}{cc}
4 & -3 \\
2 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]
$$

Lattice reduction:
find a nice basis, given an arbitrary one.

Lattice invariants and lattice reduction

Minimum:

$\lambda(L)=\min (\|\mathbf{b}\|: \mathbf{b} \in L \backslash \mathbf{0})$.

Lattice invariants and lattice reduction

Minimum:
$\lambda(L)=\min (\|\mathbf{b}\|: \mathbf{b} \in L \backslash \mathbf{0})$.
Lattice determinant: $\operatorname{det} L=\left|\operatorname{det}\left(\mathbf{b}_{i}\right)_{i}\right|$, for any basis.

Lattice invariants and lattice reduction

Minimum:
$\lambda(L)=\min (\|\mathbf{b}\|: \mathbf{b} \in L \backslash \mathbf{0})$.
Lattice determinant: $\operatorname{det} L=\left|\operatorname{det}\left(\mathbf{b}_{i}\right)_{i}\right|$, for any basis.

Lattice invariants and lattice reduction

Minimum:
$\lambda(L)=\min (\|\mathbf{b}\|: \mathbf{b} \in L \backslash \mathbf{0})$.
Lattice determinant: $\operatorname{det} L=\left|\operatorname{det}\left(\mathbf{b}_{i}\right)_{i}\right|$, for any basis.

Minkowski theorem:
$\lambda(L) \leq \sqrt{n} \cdot(\operatorname{det} L)^{1 / n}$.

HF(B)

Lattice invariants and lattice reduction

Minimum:
$\lambda(L)=\min (\|\mathbf{b}\|: \mathbf{b} \in L \backslash \mathbf{0})$.
Lattice determinant: $\operatorname{det} L=\left|\operatorname{det}\left(\mathbf{b}_{i}\right)_{i}\right|$, for any basis.

Minkowski theorem:
$\lambda(L) \leq \sqrt{n} \cdot(\operatorname{det} L)^{1 / n}$.
Lattice reduction:
Find basis with small Hermite Factor:

$$
\operatorname{HF}(B):=\frac{\left\|\mathbf{b}_{1}\right\|}{(\operatorname{det} L)^{1 / n}} .
$$

Why do we care about lattice reduction?

Finding a basis with small HF allows one to solve:

SVP $_{\gamma}$

Given a basis of L, find $\mathbf{b} \in L$ with

$$
0<\|\mathbf{b}\| \leq \gamma \cdot \lambda(L) .
$$

$$
\begin{aligned}
& \text { For small } \gamma \text { and large } n \text { : } \\
& \text { Cryptanalysis of lattice-based cryptosystems. } \\
& \text { For large } \gamma \text { but huge bit-size: } \\
& \text { Cryptanalyses of variants of RSA, factorisation of rational } \\
& \text { polynomials, integer relation detection, etc. }
\end{aligned}
$$

Why do we care about lattice reduction?

Finding a basis with small HF allows one to solve:

SVP $_{\gamma}$

Given a basis of L, find $\mathbf{b} \in L$ with

$$
0<\|\mathbf{b}\| \leq \gamma \cdot \lambda(L) .
$$

- For small γ and large n :

Cryptanalysis of lattice-based cryptosystems.
 polynomials, integer relation detection, etc.

Why do we care about lattice reduction?

Finding a basis with small HF allows one to solve:

SVP $_{\gamma}$

Given a basis of L, find $\mathbf{b} \in L$ with

$$
0<\|\mathbf{b}\| \leq \gamma \cdot \lambda(L) .
$$

- For small γ and large n :

Cryptanalysis of lattice-based cryptosystems.

- For large γ but huge bit-size:

Cryptanalyses of variants of RSA, factorisation of rational polynomials, integer relation detection, etc.

Several types of lattice reductions

	HKZ	$B K Z_{k}$	$L L L$
Hermite factor	\sqrt{n}	$\simeq k^{n /(2 k)}$	$\simeq 2^{n}$
Run-time*	$2^{\mathcal{O}(n)}$	$2^{O(k)} \times \operatorname{Poly}(n)$	$\operatorname{Poly}(n)$

*Neglecting arithmetic costs

- $H K Z=$ Hermite-Korkine-Zolotareff (19th c.).

Several types of lattice reductions

	HKZ	BKZ	LLL
Hermite factor	\sqrt{n}	$\simeq k^{n /(2 k)}$	$\simeq 2^{n}$
Run-time*	$2^{\mathcal{O}(n)}$	$2^{O(k)} \times \operatorname{Poly}(n)$	$\operatorname{Poly}(n)$

*Neglecting arithmetic costs

- HKZ $=$ Hermite-Korkine-Zolotareff (19th c.).
- LLL $=$ Lenstra-Lenstra-Lovász ('82).

Several types of lattice reductions

	HKZ	BKZ_{k}	LLL
Hermite factor	\sqrt{n}	$\simeq k^{n /(2 k)}$	$\simeq 2^{n}$
Run-time *	$2^{\mathcal{O}(n)}$	$2^{\mathcal{O}(k)} \times \operatorname{Poly}(n)$	$\operatorname{Poly}(n)$

*Neglecting arithmetic costs

- $H K Z=$ Hermite-Korkine-Zolotareff (19th c.).
- LLL = Lenstra-Lenstra-Lovász ('82).
- BKZ $=$ Block Korkine-Zolotareff (Schnorr'87)

Several types of lattice reductions

	HKZ	BKZ_{k}	LLL
Hermite factor	\sqrt{n}	$\simeq k^{n /(2 k)}$	$\simeq 2^{n}$
Run-time	$2^{\mathcal{O}(n)}$	$2^{\mathcal{O}(k)} \times \operatorname{Poly}(n)$	$\operatorname{Poly}(n)$

*Neglecting arithmetic costs

- $H K Z=$ Hermite-Korkine-Zolotareff (19th c.).
- LLL = Lenstra-Lenstra-Lovász ('82).
- BKZ $=$ Block Korkine-Zolotareff (Schnorr'87)

Two main contradicting goals:

- Decrease the complexity bounds.
- Exploit hardness to devise cryptographic primitives.

Road-map

(1) Euclidean lattices: definitions and algorithmic problems.
(2) Reducing lattice bases efficiently.
(3) Paying more to get nicer bases.
(4) Fast lattice-based cryptography.
(5) Future directions.

Fast and decent reduction: LLL

- LLL is the main (only?) algorithm for finding lattice bases of decent quality: $\mathrm{HF} \leq 2^{n}$.

Fast and decent reduction: LLL

- LLL is the main (only?) algorithm for finding lattice bases of decent quality: $\mathrm{HF} \leq 2^{n}$.
- But text-book LLL is amazingly slow.

Fast and decent reduction: LLL

- LLL is the main (only?) algorithm for finding lattice bases of decent quality: $\mathrm{HF} \leq 2^{n}$.
- But text-book LLL is amazingly slow.

Using MAGMA V2.16:
> n := 25; B := RMatrixSpace(Integers(), n, n)! 0 ;
> beta := 2000; for i:=1 to 25 do
$>\quad \mathrm{B}[\mathrm{i}][\mathrm{i}]:=1$; $\mathrm{B}[\mathrm{i}][1]:=$ RandomBits (beta) ;
$>$ end for;
> time C := LLL(B:Method:='(Integral'");
Time: 11.700
> time C := LLL(B);
Time: 0.240

Our contributions to fast LLL reduction

- Costly component: underlying QR/Gram-Schmidt.
- Floating-point arithmetic is well-suited for these [Odlyzko'82].

Our contributions to fast LLL reduction

- Costly component: underlying QR/Gram-Schmidt.
- Floating-point arithmetic is well-suited for these [Odlyzko'82].
\Rightarrow Disclose and exploit links between lattice reduction algorithms and numerical linear algebra.

The LLL Algorithm
mantion

Our contributions to fast LLL reduction

- Costly component: underlying QR/Gram-Schmidt.
- Floating-point arithmetic is well-suited for these [Odlyzko'82].
\Rightarrow Disclose and exploit links between lattice reduction algorithms and numerical linear algebra.

- Chang, S. and Villard. Perturbation Analysis of the $Q R$ factor R in the Context of LLL Lattice Basis Reduction. Math. Comp.'11.
- Morel, S. and Villard. H-LLL: Using Householder inside LLL. ISSAC'09.
- Novocin, S. and Villard. An LLL-reduction algorithm with quasi-linear time complexity. STOC'11.

LLL-reduction is not perturbation-friendly

Algorithmic principle: Only the top-most digits contain information, so compute using only these!

LLL-reduction is not perturbation-friendly

Algorithmic principle: Only the top-most digits contain information, so compute using only these!

Difficulty: LLL-reducedness is not stable under truncations.

$$
\begin{array}{cc}
{\left[\begin{array}{cc}
1 & 2^{100}+2^{40} \\
-1 & 2^{100}-2^{40}
\end{array}\right]} \\
\text { Not reduced } & \Rightarrow \\
{\left[\begin{array}{cc}
1 & 2^{100} \\
-1 & 2^{100}
\end{array}\right]} \\
\text { Reduced }
\end{array}
$$

LLL-reduction is not perturbation-friendly

Algorithmic principle: Only the top-most digits contain information, so compute using only these!

Difficulty: LLL-reducedness is not stable under truncations.

$$
\left.\begin{array}{cc}
{\left[\begin{array}{cc}
1 & 2^{100}+2^{40} \\
-1 & 2^{100}-2^{40}
\end{array}\right]} & \Rightarrow \\
\text { Not reduced }
\end{array} \quad \underset{ }{\left[\begin{array}{ccc}
1 & 2^{100} \\
-1 & 2^{100}
\end{array}\right]} \begin{array}{c}
\text { Reduced }
\end{array}\right]
$$

Tool: Sensitivity analysis of the R-factor.

$\underset{\text { non-singular }}{B}$	$=$$Q$ orthogonal	R up-triangular	and	ΔB small
	\Downarrow			
$B+\Delta B$	$=\underset{\text { non-singular }}{(Q+\Delta Q) \cdot(R+\Delta R)}$	and	$\Delta Q, \Delta R$ small?	

A perturbation-friendly LLL-reduction

Let $\operatorname{cond}(R)=\left\|\left|\left|R\left\|R^{-1} \mid\right\|\right.\right.\right.$. We have:

$$
\max \frac{\left\|\Delta \mathbf{r}_{i}\right\|}{\left\|\mathbf{r}_{i}\right\|} \lesssim \operatorname{cond}(R) \cdot \max \frac{\left\|\Delta \mathbf{b}_{i}\right\|}{\left\|\mathbf{b}_{i}\right\|} \text {. }
$$

A perturbation-friendly LLL-reduction

Let $\operatorname{cond}(R)=\| \| R\left\|R^{-1} \mid\right\|$. We have:

$$
\max \frac{\left\|\Delta \mathbf{r}_{i}\right\|}{\left\|\mathbf{r}_{i}\right\|} \lesssim \operatorname{cond}(R) \cdot \max \frac{\left\|\Delta \mathbf{b}_{i}\right\|}{\left\|\mathbf{b}_{i}\right\|} .
$$

- To get meaningful reasults, use precision $>\log _{2} \operatorname{cond}(R)$.
- B is LLL-reduced $\Rightarrow \operatorname{cond}(R)=2^{\mathcal{O}(n)}$.
- Perturb-friendly? allow for columnwise inaccuracy in R.

A perturbation-friendly LLL-reduction

Let $\operatorname{cond}(R)=\left\|\left|\left|R\left\|R^{-1} \mid\right\|\right.\right.\right.$. We have:

$$
\max \frac{\left\|\Delta \mathbf{r}_{i}\right\|}{\left\|\mathbf{r}_{i}\right\|} \lesssim \operatorname{cond}(R) \cdot \max \frac{\left\|\Delta \mathbf{b}_{i}\right\|}{\left\|\mathbf{b}_{i}\right\|} .
$$

- To get meaningful reasults, use precision $>\log _{2} \operatorname{cond}(R)$.
- B is LLL-reduced $\Rightarrow \operatorname{cond}(R)=2^{\mathcal{O}(n)}$.
- Perturb-friendly? allow for columnwise inaccuracy in R.

Lowering the bit-complexities

Hybrid approach ($\mathrm{L}^{2} \& H-L L L$):

- Exact basis B and approximate R -factor.

Lowering the bit-complexities

Hybrid approach (L² \& H-LLL):

- Exact basis B and approximate R -factor.

Totally numeric approach (\sim^{1}):

- Approximate basis B and approximate transforms.
- Control granted by gradual feeding [Belabas'04]:

Move from (almost) reduced to reduced.

Lowering the bit-complexities

Hybrid approach (L² \& H-LLL):

- Exact basis B and approximate R -factor.

Totally numeric approach (\widetilde{L}^{1}):

- Approximate basis B and approximate transforms.
- Control granted by gradual feeding [Belabas'04]: Move from (almost) reduced to reduced.

	$[$ LLL'82 $]$	$\mathrm{L}^{2} / \mathrm{H}-\mathrm{LLL}$	$\widetilde{\mathrm{L}}^{1}$
Complexity *	$n^{5+\varepsilon} \beta^{2+\varepsilon}$	$n^{4+\varepsilon} \beta^{2}$	$n^{5+\varepsilon} \beta^{1+\varepsilon}$
Precision	$n \beta$	$1.6 n / 0.8 n$	$?$

${ }^{*} n=\operatorname{dim}, \quad \beta=\log \max \left\|\mathbf{b}_{i}\right\|, \varepsilon \approx 0$, with $n=\mathcal{O}(\beta)$.

Road-map

(1) Euclidean lattices: definitions and algorithmic problems.
(2) Reducing lattice bases efficiently.
(3) Paying more to get nicer bases.
(3) Fast lattice-based cryptography.
(5) Future directions.

HKZ and BKZ reductions cost more

> n := 62; $\mathrm{B}:=$ RMatrixSpace(Integers(), $\mathrm{n}, \mathrm{n})!0$;
> beta:=1000; for i:=1 to n do
> B[i][i]:=1; B[i][1]:=RandomBits(beta);
$>$ end for;
> time C := LLL(B:Delta:=0.999);
Time: 1.470
> time D := HKZ(C);
Time: 3389.650
> RealField(3) ! Sqrt(Norm(C[1])/Norm(D[1]));
1.69

HKZ and BKZ reductions cost more

$>\mathrm{n}:=62 ; \mathrm{B}:=$ RMatrixSpace(Integers(), $\mathrm{n}, \mathrm{n})!0$;
> beta:=1000; for i:=1 to n do
> B[i][i]:=1; B[i][1]:=RandomBits(beta);
$>$ end for;
> time C := LLL(B:Delta:=0.999);
Time: 1.470
> time D := HKZ(C);
Time: 3389.650
> RealField(3) ! Sqrt(Norm(C[1])/Norm(D[1]));
1.69

- The time and output norm gaps grow exponentially with respect to the dimension n.
- One can trade quality for time, using BKZ reduction.

Our contributions to strong reductions

- Several known algorithms for HKZ-reduction. Most practical one: Kannan-Fincke-Pohst.
- Several known trade-offs between HKZ and LLL. Most practical one: Schnorr-Euchner BKZ.

Our contributions to strong reductions

- Several known algorithms for HKZ-reduction. Most practical one: Kannan-Fincke-Pohst.
- Several known trade-offs between HKZ and LLL. Most practical one: Schnorr-Euchner BKZ.
\Rightarrow Measure cost and progress with the R-factor diagonal.

$$
\left(r_{i i}\right)_{i \leq n}=\left(\left\|\mathbf{b}_{i}^{*}\right\|\right)_{i \leq n} \text { is everything. }
$$

Our contributions to strong reductions

- Several known algorithms for HKZ-reduction. Most practical one: Kannan-Fincke-Pohst.
- Several known trade-offs between HKZ and LLL. Most practical one: Schnorr-Euchner BKZ.
\Rightarrow Measure cost and progress with the R-factor diagonal.

$$
\left(r_{i i}\right)_{i \leq n}=\left(\left\|\mathbf{b}_{i}^{*}\right\|\right)_{i \leq n} \text { is everything. }
$$

- Hanrot and S. Improved Analysis of Kannan's Shortest Lattice Vector Algorithm. CRYPTO'07.
- Hanrot, Pujol and S. Analyzing Blockwise Lattice Algorithms using Dynamical Systems. CRYPTO'11.

A static analysis for HKZ

- Kannan's HKZ algorithm consists in:
- lower-dimensional HKZ reductions,
- computations of shortest lattice vectors.
- Shortest vectors via Kannan-Fincke-Pohst: intertwinned enumerations of all short points of projected lattices.

A static analysis for HKZ

- Kannan's HKZ algorithm consists in:
- lower-dimensional HKZ reductions,
- computations of shortest lattice vectors.
- Shortest vectors via Kannan-Fincke-Pohst: intertwinned enumerations of all short points of projected lattices.

Gaussian heuristic: $\quad|L \cap \mathcal{B}| \approx \operatorname{vol}(\mathcal{B}) / \operatorname{det}(L)$.

A static analysis for HKZ

- Kannan's HKZ algorithm consists in:
- lower-dimensional HKZ reductions,
- computations of shortest lattice vectors.
- Shortest vectors via Kannan-Fincke-Pohst: intertwinned enumerations of all short points of projected lattices.

Gaussian heuristic: $\quad|L \cap \mathcal{B}| \approx \operatorname{vol}(\mathcal{B}) / \operatorname{det}(L)$.
Let $B=Q R$. Enumerating all $\mathbf{b} \in L(B)$ with $\|\mathbf{b}\| \leq A$ costs:

$$
\leq 2^{\mathcal{O}(n)} \cdot \prod_{i \leq n} \max \left(1, \frac{A}{\sqrt{n} \cdot r_{i i}}\right) .
$$

Within Kannan's HKZ algorithm, this is $\leq n^{n /(2 e)}+o(1)$.

A dynamic analysis for BKZ

- $B K Z_{k}$ proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R-factor.

A dynamic analysis for BKZ

- $B K Z_{k}$ proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R-factor.
\Rightarrow Let's look at the evolution of the $r_{i j}$'s!

A dynamic analysis for BKZ

- $B K Z_{k}$ proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R-factor.
\Rightarrow Let's look at the evolution of the $r_{i i}$'s!
- [Madritsch-Vallée'10]: In LLL, the $\log r_{i j}$'s evolve like a sandpile.

A dynamic analysis for BKZ

- BKZ_{k} proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R -factor.
\Rightarrow Let's look at the evolution of the $r_{i i}$'s!
- [Madritsch-Vallée' 10]: In LLL, the $\log r_{i j}$'s evolve like a sandpile.

A dynamic analysis for BKZ

- BKZ_{k} proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R -factor.
\Rightarrow Let's look at the evolution of the $r_{i i}$'s!
- [Madritsch-Vallée' 10]: In LLL, the $\log r_{i j}$'s evolve like a sandpile.

A dynamic analysis for BKZ

- BKZ_{k} proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R -factor.
\Rightarrow Let's look at the evolution of the $r_{i i}$'s!
- [Madritsch-Vallée' 10]: In LLL, the $\log r_{i j}$'s evolve like a sandpile.

A dynamic analysis for BKZ

- BKZ_{k} proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R -factor.
\Rightarrow Let's look at the evolution of the $r_{i i}$'s!
- [Madritsch-Vallée' 10]: In LLL, the $\log r_{i j}$'s evolve like a sandpile.

A dynamic analysis for BKZ

- BKZ_{k} proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R -factor.
\Rightarrow Let's look at the evolution of the $r_{i i}$'s!
- [Madritsch-Vallée' 10]: In LLL, the $\log r_{i j}$'s evolve like a sandpile.

A dynamic analysis for BKZ

- $B K Z_{k}$ proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R-factor.
\Rightarrow Let's look at the evolution of the $r_{i i}$'s!
- [Madritsch-Vallée'10]: In LLL, the $\log r_{i i}$'s evolve like a sandpile.

A dynamic analysis for BKZ

- BKZ_{k} proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R -factor.
\Rightarrow Let's look at the evolution of the $r_{i i}$'s!
- [Madritsch-Vallée' 10]: In LLL, the $\log r_{i j}$'s evolve like a sandpile.

Analyzing BKZ's sandpile

A BKZ tour on the sandpile: $X^{\prime} \lesssim A X+\Gamma$.

- A : successive averages.
- Г: combinations of Hermite constants.
- \lesssim : can be made rigorous via amortizing.

Behavior of BKZ \leftrightarrow discrete-time affine dynamical system

Analyzing BKZ's sandpile

A BKZ tour on the sandpile: $X^{\prime} \lesssim A X+\Gamma$.

- A: successive averages.
- Г: combinations of Hermite constants.
- \lesssim : can be made rigorous via amortizing.

Behavior of BKZ \leftrightarrow discrete-time affine dynamical system.

Analyzing BKZ's sandpile

A BKZ tour on the sandpile: $X^{\prime} \lesssim A X+\Gamma$.

- A : successive averages.
- Г: combinations of Hermite constants.
- \lesssim : can be made rigorous via amortizing.

Behavior of BKZ \leftrightarrow discrete-time affine dynamical system.

After $\mathcal{O}\left(\frac{n^{3}}{k^{2}} \log \left(\frac{n \beta}{\varepsilon}\right)\right)$ calls to $\mathrm{HKZ}_{k}, \mathrm{BKZ}_{k}$ returns C s.t.:

$$
\operatorname{HF}(C) \leq(1+\varepsilon) \cdot k^{\frac{n-1}{2(k-1)}+\frac{3}{2}} .
$$

Road-map

(1) Euclidean lattices: definitions and algorithmic problems.
(2) Reducing lattice bases efficiently.
(3) Paying more to get nicer bases.
(3) Fast lattice-based cryptography.
(5) Future directions.

Lattice-based cryptography

- Cryptography: science of securing digital information.
- Design methodology: exploit the appearant hardness of an algorithmic problem to create a computational gap between valid and malicious parties.

Lattice-based cryptography

- Cryptography: science of securing digital information.
- Design methodology: exploit the appearant hardness of an algorithmic problem to create a computational gap between valid and malicious parties.
- Finding very short bases seems exponentially hard.

Lattice-based cryptography

- Cryptography: science of securing digital information.
- Design methodology: exploit the appearant hardness of an algorithmic problem to create a computational gap between valid and malicious parties.
- Finding very short bases seems exponentially hard.

Two opposite strategies in lattice-based crypto:

- NTRU: Superfast schemes, but heuristic security.

Lattice-based cryptography

- Cryptography: science of securing digital information.
- Design methodology: exploit the appearant hardness of an algorithmic problem to create a computational gap between valid and malicious parties.
- Finding very short bases seems exponentially hard.

Two opposite strategies in lattice-based crypto:

- NTRU: Superfast schemes, but heuristic security.
- [Ajtai'96,Regev'05,...]: Somewhat inefficient schemes, but provably as secure as worst-case lattice problems.

Our contributions to lattice-based cryptography

Context: The rigorous approach becomes more efficient.

- Use of polynomial rings and ideal lattices.
- [Lyubashevsky-Micciancio'06-'08,Peikert-Rosen'06]: hash functions and digital signatures with quasi-optimal complexities.

Our contributions to lattice-based cryptography

Context: The rigorous approach becomes more efficient.

- Use of polynomial rings and ideal lattices.
- [Lyubashevsky-Micciancio'06-'08,Peikert-Rosen'06]: hash functions and digital signatures with quasi-optimal complexities.
\Rightarrow Use polynomial rings and ideal lattices for encryption.
Fast public key encryption, semantically secure under (quantum) worst-case hardness assumptions for ideal lattices.

Our contributions to lattice-based cryptography

Context: The rigorous approach becomes more efficient.

- Use of polynomial rings and ideal lattices.
- [Lyubashevsky-Micciancio'06-'08,Peikert-Rosen'06]: hash functions and digital signatures with quasi-optimal complexities.
\Rightarrow Use polynomial rings and ideal lattices for encryption.
Fast public key encryption, semantically secure under (quantum) worst-case hardness assumptions for ideal lattices.
- S., Steinfeld, Tanaka and Xagawa. Efficient Public-Key Encryption Based on Ideal Lattices, ASIACRYPT'09.
- S. and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices, EUROCRYPT'11.

The Learning With Errors Problem

The Learning With Errors Problem

- $A \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$ public.
- $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ small, to be found .
- $\mathbf{e} \in \mathbb{Z}_{q}^{m}$: small Gaussian noise, unknown.

The Learning With Errors Problem

- $A \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$ public.
- $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ small, to be found .
- $\mathbf{e} \in \mathbb{Z}_{q}^{m}$: small Gaussian noise, unknown.

(Computational)-LWE [Regev'05]

[Technical conditions on the parameters]
LWE is no easier than finding short bases for arbitrary lattices.

A structured LWE problem

A structured LWE problem

A structured LWE problem

- Structured matrices \Rightarrow faster operations.
- Structured matrices \leftrightarrow polynomials.
- Here: $R_{q}=\frac{\mathbb{Z}_{q}[x]}{x^{n}+1}$.

A structured LWE problem

- Structured matrices \Rightarrow faster operations.
- Structured matrices \leftrightarrow polynomials.
- Here: $R_{q}=\frac{\mathbb{Z}_{q}[x]}{x^{n}+1}$.
\Rightarrow One-way function, at least as hard to invert as worst-case problems for ideal lattices.
- Ideal lattices \leftrightarrow ideals of $R=\frac{\mathbb{Z}[x]}{x^{n}+1}$.

A structured LWE problem

- Structured matrices \Rightarrow faster operations.
- Structured matrices \leftrightarrow polynomials.
- Here: $R_{q}=\frac{\mathbb{Z}_{q}[x]}{x^{n}+1}$.
\Rightarrow One-way function, at least as hard to invert as worst-case problems for ideal lattices.
- Ideal lattices \leftrightarrow ideals of $R=\frac{\mathbb{Z}[x]}{x^{n}+1}$.
\Rightarrow With a trapdoor \& generic hard-core bits: PK-encryption with quasi-optimal efficiency.

Decisional version of Ring-LWE

- a uniform in $R_{q}=\frac{\mathbb{Z}_{q}[x]}{x^{n}+1}$, known.
- $s, e \in R_{q}$, small and secret.

Comp-RLWE:

$(a, a \cdot s+e) \quad \rightarrow$ S

Decisional version of Ring-LWE

- a uniform in $R_{q}=\frac{\mathbb{Z}_{q}[x]}{x^{n}+1}$, known.
- $s, e \in R_{q}$, small and secret.

$$
\begin{array}{lccc}
\text { Comp-RLWE: } & (a, a \cdot s+e) & \rightarrow & s \\
\Rightarrow \text { Dec-RLWE: } & (a, a \cdot s+e) & \approx^{c} & U\left(R_{q} \times R_{q}\right) ?
\end{array}
$$

Decisional version of Ring-LWE

- a uniform in $R_{q}=\frac{\mathbb{Z}_{q}[x]}{x^{n}+1}$, known.
- $s, e \in R_{q}$, small and secret.

$$
\begin{array}{lccc}
\text { Comp-RLWE: } & (a, a \cdot s+e) & \rightarrow & s \\
\Rightarrow \text { Dec-RLWE: } & (a, a \cdot s+e) & \approx^{c} & U\left(R_{q} \times R_{q}\right) ?
\end{array}
$$

(Decisional)-RLWE [Lyubashevsky-Peikert-Regev'10]

[Technical conditions on parameters]
If finding short bases for arbitrary ideal lattices is hard, then $(a, a \cdot s+e)$ is computationally indistinguishable from uniform.

Using RLWE for NTRU

(Standard) NTRUEncrypt:

- Secret key: f, g small and $f=1[2]$.
- Public key: $h=g / f \in R_{q}$, heuristically looks uniform.

Using RLWE for NTRU

(Standard) NTRUEncrypt:

- Secret key: f, g small and $f=1[2]$.
- Public key: $h=g / f \in R_{q}$, heuristically looks uniform.
- Enc: $M \mapsto C=2 h s+M$ [q], with s small \& random.
- Dec: $f C=2 g s+f M$ is small \Rightarrow Take it $\bmod 2$.

Using RLWE for NTRU

(Standard) NTRUEncrypt:

- Secret key: f, g small and $f=1[2]$.
- Public key: $h=g / f \in R_{q}$, heuristically looks uniform.
- Enc: $M \mapsto C=2 h s+M$ [q], with s small \& random.
- Dec: $f C=2 g s+f M$ is small \Rightarrow Take it $\bmod 2$.
- Use RLWE to make C indistinguishable from uniform! Difficulty: RLWE hardness result requires h uniform

Using RLWE for NTRU

(Modified) NTRUEncrypt:

- Secret key: f, g small and $f=1[2]$.
- Public key: $h=g / f \in R_{q}$, heuristically looks uniform.
- Enc: $M \mapsto C=2(h s+e)+M$ [q], with s, e small \& random.
- Dec: $f C=2(g s+f e)+f M$ is small \Rightarrow Take it $\bmod 2$.
- Use RLWE to make C indistinguishable from uniform! Difficulty: RLWE hardness result requires h uniform Obtained by sampling f, g from discrete Gaussians

Using RLWE for NTRU

(Modified) NTRUEncrypt:

- Secret key: f, g small and $f=1[2]$.
- Public key: $h=g / f \in R_{q}$, heuristically looks uniform.
- Enc: $M \mapsto C=2(h s+e)+M$ [q], with s, e small \& random.
- Dec: $f C=2(g s+f e)+f M$ is small \Rightarrow Take it $\bmod 2$.
- Use RLWE to make C indistinguishable from uniform!
- Difficulty: RLWE hardness result requires h uniform.

Obtained by sampling f,g from discrete Gaussians

Using RLWE for NTRU

(Modified) NTRUEncrypt:

- Secret key: f, g small and $f=1[2]$.
- Public key: $h=g / f \in R_{q}$, heuristically looks uniform.
- Enc: $M \mapsto C=2(h s+e)+M$ [q], with s, e small \& random.
- Dec: $f C=2(g s+f e)+f M$ is small \Rightarrow Take it $\bmod 2$.
- Use RLWE to make C indistinguishable from uniform!
- Difficulty: RLWE hardness result requires h uniform.
- Obtained by sampling f, g from discrete Gaussians.

Using RLWE for NTRU

(Modified) NTRUEncrypt:

- Secret key: f, g small Gaussian and $f=1$ [2].
- Public key: $h=g / f \in R_{q}$, provably is uniform.
- Enc: $M \mapsto C=2(h s+e)+M$ [q], with s, e small \& random.
- Dec: $f C=2(g s+f e)+f M$ is small \Rightarrow Take it $\bmod 2$.
- Use RLWE to make C indistinguishable from uniform!
- Difficulty: RLWE hardness result requires h uniform.
- Obtained by sampling f, g from discrete Gaussians.

Using RLWE for NTRU

(Modified) NTRUEncrypt:

- Secret key: f, g small Gaussian and $f=1$ [2].
- Public key: $h=g / f \in R_{q}$, provably is uniform.
- Enc: $M \mapsto C=2(h s+e)+M$ [q], with s, e small \& random.
- Dec: $f C=2(g s+f e)+f M$ is small \Rightarrow Take it $\bmod 2$.
- Use RLWE to make C indistinguishable from uniform!
- Difficulty: RLWE hardness result requires h uniform.
- Obtained by sampling f, g from discrete Gaussians.

The modified NTRU is secure, and asymptotically efficient.

Road-map

(1) Euclidean lattices: definitions and algorithmic problems.
(2) Reducing lattice bases efficiently.
(3) Paying more to get nicer bases.
(4) Fast lattice-based cryptography.
(5) Future directions.

Faster LLL-type reductions

Target: LLL as fast as matrix multiplication.
Considering the linear algebra contribution to the cost:

- We decreased the cost wrt $\beta=\log \max \left\|\mathbf{b}_{i}\right\|$.
- There exist strategies to decrease the cost wrt n : [Schönhage'84,Storjohann'96,Koy-Schnorr'01].

Faster LLL-type reductions

Target: LLL as fast as matrix multiplication.
Considering the linear algebra contribution to the cost:

- We decreased the cost wrt $\beta=\log \max \left\|\mathbf{b}_{i}\right\|$.
- There exist strategies to decrease the cost wrt n : [Schönhage'84,Storjohann'96,Koy-Schnorr'01].
- Are these improvements compatible?

Faster LLL-type reductions

Target: LLL as fast as matrix multiplication.
Considering the linear algebra contribution to the cost:

- We decreased the cost wrt $\beta=\log \max \left\|\mathbf{b}_{i}\right\|$.
- There exist strategies to decrease the cost wrt n : [Schönhage'84,Storjohann'96,Koy-Schnorr'01].
- Are these improvements compatible?

Breaking the linear precision barrier:

- Current numeric approach: $\Omega(n)$ bits of precision.

Faster LLL-type reductions

Target: LLL as fast as matrix multiplication.
Considering the linear algebra contribution to the cost:

- We decreased the cost wrt $\beta=\log \max \left\|\mathbf{b}_{i}\right\|$.
- There exist strategies to decrease the cost wrt n : [Schönhage'84,Storjohann'96,Koy-Schnorr'01].
- Are these improvements compatible?

Breaking the linear precision barrier:

- Current numeric approach: $\Omega(n)$ bits of precision.
- What can we do with less?

Faster strong reductions

Sub-exponential HKZ reduction:

- Three main types of SVP solvers: [Kannan'83,Fincke-Pohst'83], [Ajtai-Kumar-Sivakumar'01] and [Micciancio-Voulgaris'10].
- All of (at least) exponential complexities.

Can we do better? With polynomial approximation factors? With heuristics? With quantum computing?

Faster strong reductions

Sub-exponential HKZ reduction:

- Three main types of SVP solvers: [Kannan'83,Fincke-Pohst'83], [Ajtai-Kumar-Sivakumar'01] and [Micciancio-Voulgaris'10].
- All of (at least) exponential complexities.
- Can we do better? With polynomial approximation factors? With heuristics? With quantum computing?

Faster strong reductions

Sub-exponential HKZ reduction:

- Three main types of SVP solvers: [Kannan'83,Fincke-Pohst'83], [Ajtai-Kumar-Sivakumar'01] and [Micciancio-Voulgaris'10].
- All of (at least) exponential complexities.
- Can we do better? With polynomial approximation factors? With heuristics? With quantum computing?

Beating Schnorr's hierarchy:

- BKZ achieves $\gamma \approx k^{n /(2 k)}$ in time $\approx 2^{\mathcal{O}(k)} \cdot \operatorname{Poly}(n)$.
\qquad

Faster strong reductions

Sub-exponential HKZ reduction:

- Three main types of SVP solvers: [Kannan'83,Fincke-Pohst'83], [Ajtai-Kumar-Sivakumar'01] and [Micciancio-Voulgaris'10].
- All of (at least) exponential complexities.
- Can we do better? With polynomial approximation factors? With heuristics? With quantum computing?

Beating Schnorr's hierarchy:

- BKZ achieves $\gamma \approx k^{n /(2 k)}$ in time $\approx 2^{\mathcal{O}(k)} \cdot \operatorname{Poly}(n)$.
- A different hierarchy, relaxing an SVP solver rather than strengthening LLL?

The rise of lattice-based cryptography?

Towards practical lattice-based cryptography:

- Making crucial primitives extremely fast.
- Realizing more functionalities.
security parameters
\qquad
\square

The rise of lattice-based cryptography?

Towards practical lattice-based cryptography:

- Making crucial primitives extremely fast.
- Realizing more functionalities.

Firmer security grounding:

- Mount large-scale cryptanalyses to get meaningful security parameters.
- Are lattice problems hard even for ideal lattices?
- Are lattice problems quantumly hard?

Thank You!

