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Goals of the talk

To present facets of my field of research.

To focus on some specific results.

To discuss future directions.

1 Euclidean lattices: definitions and algorithmic problems.

2 Reducing lattice bases efficiently.

3 Paying more to get nicer bases.

4 Fast lattice-based cryptography.

5 Open problems.
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Euclidean lattices

Lattice ≡
{∑

i≤n xibi : xi ∈ Z
}
,

where the n linearly independent bi ’s
are called a basis.

Bases are not unique, but can be
obtained from each other by integer
transforms of determinant ±1:
[
−2 1
10 6

]
=

[
4 −3
2 4

]
·
[
1 1
2 1

]
.

Lattice reduction:

find a nice basis, given an arbitrary one.
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Lattice invariants and lattice reduction

Minimum:
λ(L) = min (‖b‖ : b ∈ L \ 0).

Lattice determinant:
det L = | det(bi)i |, for any basis.

Minkowski theorem:
λ(L) ≤ √n · (det L)1/n.

Lattice reduction:
Find basis with small Hermite Factor:

HF(B) :=
‖b1‖

(det L)1/n
.
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Why do we care about lattice reduction?

Finding a basis with small HF allows one to solve:

SVPγ

Given a basis of L, find b ∈ L with

0 < ‖b‖ ≤ γ · λ(L).

For small γ and large n:
Cryptanalysis of lattice-based cryptosystems.

For large γ but huge bit-size:
Cryptanalyses of variants of RSA, factorisation of rational
polynomials, integer relation detection, etc.
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Several types of lattice reductions

HKZ BKZk LLL

Hermite
factor

√
n ≃ kn/(2k) ≃ 2n

Run-time∗ 2O(n) 2O(k) × Poly(n) Poly(n)
∗Neglecting arithmetic costs

• HKZ = Hermite-Korkine-Zolotareff (19th c.).

• LLL = Lenstra-Lenstra-Lovász (’82).

• BKZ = Block Korkine-Zolotareff (Schnorr’87)

Two main contradicting goals:

◮ Decrease the complexity bounds.

◮ Exploit hardness to devise cryptographic primitives.
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Road-map

1 Euclidean lattices: definitions and algorithmic problems.

2 Reducing lattice bases efficiently.

3 Paying more to get nicer bases.

4 Fast lattice-based cryptography.

5 Future directions.
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Fast and decent reduction: LLL

LLL is the main (only?) algorithm for finding lattice bases
of decent quality: HF ≤ 2n.

But text-book LLL is amazingly slow.

Damien Stehlé Euclidean lattices: algorithms and cryptography 14/10/2011 8/32



Introduction Faster LLL-reduction Stronger reductions Cryptography Future directions

Fast and decent reduction: LLL

LLL is the main (only?) algorithm for finding lattice bases
of decent quality: HF ≤ 2n.

But text-book LLL is amazingly slow.
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Fast and decent reduction: LLL

LLL is the main (only?) algorithm for finding lattice bases
of decent quality: HF ≤ 2n.

But text-book LLL is amazingly slow.

Using MAGMA V2.16:

> n := 25; B := RMatrixSpace(Integers(),n,n)!0;

> beta := 2000; for i:=1 to 25 do

> B[i][i]:=1; B[i][1]:=RandomBits(beta);

> end for;

> time C := LLL(B:Method:=‘‘Integral’’);

Time: 11.700
> time C := LLL(B);

Time: 0.240
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Our contributions to fast LLL reduction

Costly component: underlying QR/Gram-Schmidt.

Floating-point arithmetic is well-suited for these [Odlyzko’82].
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Our contributions to fast LLL reduction

Costly component: underlying QR/Gram-Schmidt.
Floating-point arithmetic is well-suited for these [Odlyzko’82].

⇒ Disclose and exploit links between
lattice reduction algorithms and numerical linear algebra.

• Chang, S. and Villard. Perturbation Analysis of the QR factor R in the Context

of LLL Lattice Basis Reduction. Math. Comp.’11.
• Morel, S. and Villard. H-LLL: Using Householder inside LLL. ISSAC’09.
• Novocin, S. and Villard. An LLL-reduction algorithm with quasi-linear time

complexity. STOC’11.
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LLL-reduction is not perturbation-friendly

Algorithmic principle: Only the top-most digits contain
information, so compute using only these!

Difficulty: LLL-reducedness is not stable under truncations.

[
1 2100 + 240

−1 2100 − 240

]
⇒

[
1 2100

−1 2100

]

Not reduced Reduced
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LLL-reduction is not perturbation-friendly

Algorithmic principle: Only the top-most digits contain
information, so compute using only these!

Difficulty: LLL-reducedness is not stable under truncations.
[

1 2100 + 240

−1 2100 − 240

]
⇒

[
1 2100

−1 2100

]

Not reduced Reduced

Tool: Sensitivity analysis of the R-factor.

B = Q · R and ∆B small
non-singular orthogonal up-triangular

⇓
B +∆B =(Q +∆Q) · (R +∆R) and ∆Q,∆R small?
non-singular orthogonal up-triangular
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A perturbation-friendly LLL-reduction

Let cond(R) = ‖|R ||R−1|‖. We have:

max
‖∆ri‖
‖ri‖

<
∼ cond(R) · max

‖∆bi‖
‖bi‖

.

To get meaningful reasults, use precision > log2 cond(R).

B is LLL-reduced ⇒ cond(R) = 2O(n).

Perturb-friendly? allow for columnwise inaccuracy in R .
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A perturbation-friendly LLL-reduction

Let cond(R) = ‖|R ||R−1|‖. We have:

max
‖∆ri‖
‖ri‖

<
∼ cond(R) · max

‖∆bi‖
‖bi‖

.

To get meaningful reasults, use precision > log2 cond(R).
B is LLL-reduced ⇒ cond(R) = 2O(n).
Perturb-friendly? allow for columnwise inaccuracy in R .
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Lowering the bit-complexities

Hybrid approach (L2 & H-LLL):

Exact basis B and approximate R-factor.

Totally numeric approach (L̃
1
):

Approximate basis B and approximate transforms.

Control granted by gradual feeding [Belabas’04]:
Move from (almost) reduced to reduced.
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Lowering the bit-complexities

Hybrid approach (L2 & H-LLL):

Exact basis B and approximate R-factor.

Totally numeric approach (L̃
1
):

Approximate basis B and approximate transforms.

Control granted by gradual feeding [Belabas’04]:
Move from (almost) reduced to reduced.

[LLL’82] L2/H-LLL L̃
1

Complexity∗ n5+εβ2+ε n4+εβ2 n5+εβ1+ε

Precision nβ 1.6n/0.8n ?
∗ n =dim, β = logmax ‖bi‖, ε ≈ 0, with n = O(β).
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Road-map

1 Euclidean lattices: definitions and algorithmic problems.

2 Reducing lattice bases efficiently.

3 Paying more to get nicer bases.

4 Fast lattice-based cryptography.

5 Future directions.
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HKZ and BKZ reductions cost more

> n := 62; B := RMatrixSpace(Integers(),n,n)!0;

> beta:=1000; for i:=1 to n do

> B[i][i]:=1; B[i][1]:=RandomBits(beta);

> end for;

> time C := LLL(B:Delta:=0.999);

Time: 1.470
> time D := HKZ(C);

Time: 3389.650
> RealField(3) ! Sqrt( Norm(C[1])/Norm(D[1]) );

1.69
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HKZ and BKZ reductions cost more

> n := 62; B := RMatrixSpace(Integers(),n,n)!0;

> beta:=1000; for i:=1 to n do

> B[i][i]:=1; B[i][1]:=RandomBits(beta);

> end for;

> time C := LLL(B:Delta:=0.999);

Time: 1.470
> time D := HKZ(C);

Time: 3389.650
> RealField(3) ! Sqrt( Norm(C[1])/Norm(D[1]) );

1.69

The time and output norm gaps grow exponentially with
respect to the dimension n.

One can trade quality for time, using BKZ reduction.
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Our contributions to strong reductions

Several known algorithms for HKZ-reduction.
Most practical one: Kannan-Fincke-Pohst.

Several known trade-offs between HKZ and LLL.
Most practical one: Schnorr-Euchner BKZ.

⇒ Measure cost and progress with the R-factor diagonal.

(rii)i≤n = (‖b∗
i ‖)i≤n is everything.

• Hanrot and S. Improved Analysis of Kannan’s Shortest Lattice Vector

Algorithm. CRYPTO’07.

• Hanrot, Pujol and S. Analyzing Blockwise Lattice Algorithms using Dynamical

Systems. CRYPTO’11.
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A static analysis for HKZ

Kannan’s HKZ algorithm consists in:

lower-dimensional HKZ reductions,
computations of shortest lattice vectors.

Shortest vectors via Kannan-Fincke-Pohst: intertwinned
enumerations of all short points of projected lattices.

Gaussian heuristic: |L ∩ B| ≈ vol(B) / det(L).

Let B = QR . Enumerating all b ∈ L(B) with ‖b‖ ≤ A costs:

≤ 2O(n) ·
∏

i≤n

max

(
1,

A√
n · rii

)
.

Within Kannan’s HKZ algorithm, this is ≤ nn/(2e) + o(1).
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A dynamic analysis for BKZ

BKZk proceeds by k-dimensional HKZ reductions,
performed circularly on the diagonal of the R-factor.

⇒ Let’s look at the evolution of the rii ’s!

[Madritsch-Vallée’10]: In LLL, the log rii ’s evolve like a sandpile.
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A dynamic analysis for BKZ

BKZk proceeds by k-dimensional HKZ reductions,
performed circularly on the diagonal of the R-factor.

⇒ Let’s look at the evolution of the rii ’s!

[Madritsch-Vallée’10]: In LLL, the log rii ’s evolve like a sandpile.

x5 x6 x7 x8 x9x1 x2 x3 x4

BKZ’s sandpile
xi = log rii
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Analyzing BKZ’s sandpile

A BKZ tour on the sandpile: X ′ <
∼ AX + Γ.

A: successive averages.

Γ: combinations of Hermite constants.
<
∼ : can be made rigorous via amortizing.

Behavior of BKZ ↔ discrete-time affine dynamical system.

After O
(

n3

k2 log(
nβ
ε
)
)
calls to HKZk , BKZk returns C s.t.:

HF(C ) ≤ (1 + ε) · k
n−1

2(k−1)
+ 3

2 .
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Road-map

1 Euclidean lattices: definitions and algorithmic problems.

2 Reducing lattice bases efficiently.

3 Paying more to get nicer bases.

4 Fast lattice-based cryptography.

5 Future directions.
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Lattice-based cryptography

Cryptography: science of securing digital information.

Design methodology: exploit the appearant hardness of
an algorithmic problem to create a computational gap
between valid and malicious parties.

Finding very short bases seems exponentially hard.

Two opposite strategies in lattice-based crypto:

NTRU: Superfast schemes, but heuristic security.

[Ajtai’96,Regev’05,...]: Somewhat inefficient schemes, but
provably as secure as worst-case lattice problems.
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Our contributions to lattice-based cryptography

Context: The rigorous approach becomes more efficient.

Use of polynomial rings and ideal lattices.

[Lyubashevsky-Micciancio’06-’08,Peikert-Rosen’06]: hash functions and
digital signatures with quasi-optimal complexities.

⇒ Use polynomial rings and ideal lattices for encryption.

Fast public key encryption, semantically secure under
(quantum) worst-case hardness assumptions for ideal lattices.

• S., Steinfeld, Tanaka and Xagawa. Efficient Public-Key Encryption Based on

Ideal Lattices, ASIACRYPT’09.

• S. and Steinfeld. Making NTRU as secure as worst-case problems over ideal

lattices, EUROCRYPT’11.
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Damien Stehlé Euclidean lattices: algorithms and cryptography 14/10/2011 23/32



Introduction Faster LLL-reduction Stronger reductions Cryptography Future directions

Our contributions to lattice-based cryptography

Context: The rigorous approach becomes more efficient.

Use of polynomial rings and ideal lattices.

[Lyubashevsky-Micciancio’06-’08,Peikert-Rosen’06]: hash functions and
digital signatures with quasi-optimal complexities.

⇒ Use polynomial rings and ideal lattices for encryption.

Fast public key encryption, semantically secure under
(quantum) worst-case hardness assumptions for ideal lattices.

• S., Steinfeld, Tanaka and Xagawa. Efficient Public-Key Encryption Based on

Ideal Lattices, ASIACRYPT’09.

• S. and Steinfeld. Making NTRU as secure as worst-case problems over ideal

lattices, EUROCRYPT’11.
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The Learning With Errors Problem

ss eA A +

n

m [q]

Find

,unif smallsmall

A ←֓ U(Zm×n
q ) public.

s ∈ Z
n
q small, to be found .

e ∈ Z
m
q : small Gaussian noise, unknown.

(Computational)-LWE [Regev’05]

[Technical conditions on the parameters]

LWE is no easier than finding short bases for arbitrary lattices.
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A structured LWE problem

s eA
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A structured LWE problem

s eA
+

n

m [q]

unif small small

⇓

s e
+

n

m ...

Structured matrices ⇒ faster operations.

Structured matrices ↔ polynomials.

Here: Rq =
Zq[x ]

xn + 1
.

⇒ One-way function, at least as hard to invert
as worst-case problems for ideal lattices.

Ideal lattices ↔ ideals of R =
Z[x ]

xn + 1
.

⇒ With a trapdoor & generic hard-core bits:
PK-encryption with quasi-optimal efficiency.
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Decisional version of Ring-LWE

a uniform in Rq = Zq [x]

xn+1
, known.

s, e ∈ Rq, small and secret.

Comp-RLWE: (a, a · s + e) → s

⇒ Dec-RLWE: (a, a · s + e) ≈c U(Rq × Rq) ?

(Decisional)-RLWE [Lyubashevsky-Peikert-Regev’10]

[Technical conditions on parameters]

If finding short bases for arbitrary ideal lattices is hard, then
(a, a · s + e) is computationally indistinguishable from uniform.
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Using RLWE for NTRU

(Standard) NTRUEncrypt:

Secret key: f , g small and f = 1 [2].

Public key: h = g/f ∈ Rq, heuristically looks uniform.

Enc: M 7→ C = 2hs +M [q], with s small & random.

Dec: fC = 2gs + fM is small ⇒ Take it mod 2.

◮ Use RLWE to make C indistinguishable from uniform!

◮ Difficulty: RLWE hardness result requires h uniform.

◮ Obtained by sampling f , g from discrete Gaussians.
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Using RLWE for NTRU

(Modified) NTRUEncrypt:

Secret key: f , g small and f = 1 [2].

Public key: h = g/f ∈ Rq, heuristically looks uniform.

Enc: M 7→ C = 2(hs + e) +M [q], with s, e small & random.

Dec: fC = 2(gs + fe) + fM is small ⇒ Take it mod 2.

◮ Use RLWE to make C indistinguishable from uniform!

◮ Difficulty: RLWE hardness result requires h uniform.

◮ Obtained by sampling f , g from discrete Gaussians.
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Using RLWE for NTRU

(Modified) NTRUEncrypt:

Secret key: f , g small Gaussian and f = 1 [2].

Public key: h = g/f ∈ Rq, provably is uniform.

Enc: M 7→ C = 2(hs + e) +M [q], with s, e small & random.

Dec: fC = 2(gs + fe) + fM is small ⇒ Take it mod 2.

◮ Use RLWE to make C indistinguishable from uniform!

◮ Difficulty: RLWE hardness result requires h uniform.

◮ Obtained by sampling f , g from discrete Gaussians.

The modified NTRU is secure, and asymptotically efficient.
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Road-map

1 Euclidean lattices: definitions and algorithmic problems.

2 Reducing lattice bases efficiently.

3 Paying more to get nicer bases.

4 Fast lattice-based cryptography.

5 Future directions.
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Faster LLL-type reductions

Target: LLL as fast as matrix multiplication.

Considering the linear algebra contribution to the cost:

We decreased the cost wrt β = logmax ‖bi‖.
There exist strategies to decrease the cost wrt n:
[Schönhage’84,Storjohann’96,Koy-Schnorr’01].

◮ Are these improvements compatible?

Breaking the linear precision barrier:

Current numeric approach: Ω(n) bits of precision.

◮ What can we do with less?
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Faster strong reductions

Sub-exponential HKZ reduction:

Three main types of SVP solvers: [Kannan’83,Fincke-Pohst’83],
[Ajtai-Kumar-Sivakumar’01] and [Micciancio-Voulgaris’10].

All of (at least) exponential complexities.

◮ Can we do better? With polynomial approximation
factors? With heuristics? With quantum computing?

Beating Schnorr’s hierarchy:

BKZ achieves γ ≈ kn/(2k) in time ≈ 2O(k) · Poly(n).
◮ A different hierarchy, relaxing an SVP solver rather than

strengthening LLL?
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The rise of lattice-based cryptography?

Towards practical lattice-based cryptography:

◮ Making crucial primitives extremely fast.

◮ Realizing more functionalities.

Firmer security grounding:

◮ Mount large-scale cryptanalyses to get meaningful
security parameters.

◮ Are lattice problems hard even for ideal lattices?

◮ Are lattice problems quantumly hard?

Damien Stehlé Euclidean lattices: algorithms and cryptography 14/10/2011 31/32



Introduction Faster LLL-reduction Stronger reductions Cryptography Future directions

The rise of lattice-based cryptography?

Towards practical lattice-based cryptography:

◮ Making crucial primitives extremely fast.

◮ Realizing more functionalities.

Firmer security grounding:

◮ Mount large-scale cryptanalyses to get meaningful
security parameters.

◮ Are lattice problems hard even for ideal lattices?

◮ Are lattice problems quantumly hard?
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Thank You!
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