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Goals of the talk

@ To present facets of my field of research.
@ To focus on some specific results.

@ To discuss future directions.

© Euclidean lattices: definitions and algorithmic problems.
© Reducing lattice bases efficiently.

© Paying more to get nicer bases.

© Fast lattice-based cryptography.

© Open problems.
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Introduction

Euclidean lattices

Lattice = {>_,.,xb;:x €Z}, |

where the n linearly independent b;'s X
are called a basis.
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Introduction

Euclidean lattices

Lattice = {Zign xb; 1 x; € L},

where the n linearly independent b;'s
are called a basis.

Bases are not unique, but can be
obtained from each other by integer
transforms of determinant +1:

wel-lr T

Lattice reduction:

find a nice basis, given an arbitrary one.

®
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Introduction

Lattice invariants and lattice reduction

Minimum:

ML) = min (b] : b € L\ 0). »: {
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Introduction

Lattice invariants and lattice reduction

Minimum:
A(L) = min (||b]| : b€ L\ 0).

Lattice determinant:
det L = | det(b;);|, for any basis. ® L2
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Introduction

Lattice invariants and lattice reduction

Minimum:

ML) = min (b : b e L\ 0). 1 S
/
i
/

Lattice determinant:
det L = | det(b;);|, for any basis. °

Minkowski theorem:
ML) < +/n-(det L)l/”.

/
—
¥

Lattice reduction: \
Find basis with small Hermite Factor:

[[by | e ¢
(det L)V/n”

¥
. 4

HF(B) :=

— @
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Introduction

Why do we care about lattice reduction?

Finding a basis with small HF allows one to solve:

Given a basis of L, find b € L with

0 < |[bl| <~-A(L).
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Introduction

Why do we care about lattice reduction?

Finding a basis with small HF allows one to solve:

Given a basis of L, find b € L with

0 < |[bl| <~-A(L).

@ For small v and large n:
Cryptanalysis of lattice-based cryptosystems.
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Introduction

Why do we care about lattice reduction?

Finding a basis with small HF allows one to solve:

Given a basis of L, find b € L with

0 < |[bl| <~-A(L).

@ For small v and large n:
Cryptanalysis of lattice-based cryptosystems.

@ For large v but huge bit-size:
Cryptanalyses of variants of RSA, factorisation of rational
polynomials, integer relation detection, etc.
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Introduction

Several types of lattice reductions

Hermite
factor vn
Run-time* | 29"

*Neglecting arithmetic costs

e HKZ = Hermite-Korkine-Zolotareff (19th c.).
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Introduction

Several types of lattice reductions

HKZ LLL
Hermite
factor vn ~ 2
Run-time* | 20(") Poly(n)

*Neglecting arithmetic costs

e HKZ = Hermite-Korkine-Zolotareff (19th c.).
e LLL = Lenstra-Lenstra-Lovasz ('82).
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Introduction

Several types of lattice reductions

HKZ BKZ, LLL
Hermite
~ fn/(2k) ~ On
factor vn ~ k ~ 2
Run-time* | 20( | 20() x Poly(n) | Poly(n)

*Neglecting arithmetic costs

e HKZ = Hermite-Korkine-Zolotareff (19th c.).
e LLL = Lenstra-Lenstra-Lovasz ('82).
e BKZ = Block Korkine-Zolotareff (Schnorr'87)
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Introduction

Several types of lattice reductions

HKZ BKZ, LLL

Vvn ~ kn/(2k) ~ 2"

Hermite
factor

Run-time* | 20( | 20() x Poly(n) | Poly(n)

*Neglecting arithmetic costs

e HKZ = Hermite-Korkine-Zolotareff (19th c.).
e LLL = Lenstra-Lenstra-Lovasz ('82).
e BKZ = Block Korkine-Zolotareff (Schnorr'87)
Two main contradicting goals:
» Decrease the complexity bounds.
» Exploit hardness to devise cryptographic primitives.
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Faster LLL-reduction

Road-map

© Euclidean lattices: definitions and algorithmic problems.
© Reducing lattice bases efficiently.

© Paying more to get nicer bases.

© Fast lattice-based cryptography.

© Future directions.
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Faster LLL-reduction

Fast and decent reduction: LLL

@ LLL is the main (only?) algorithm for finding lattice bases
of decent quality: HF <2".
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Faster LLL-reduction

Fast and decent reduction: LLL

@ LLL is the main (only?) algorithm for finding lattice bases
of decent quality: HF <2".

o But text-book LLL is amazingly slow.

Using MAGMA V2.16:

>n := 25; B := RMatrixSpace(Integers(),n,n)!0;
> beta := 2000; for i:=1 to 25 do

> B[i] [i]:=1; B[i] [1] :=RandomBits(beta);

> end for;

> time C := LLL(B:Method:=‘Integral’’);

Time: 11.700

> time C := LLL(B);

Time: 0.240

Damien Stehlé Euclidean lattices: algorithms and cryptography 14/10/2011



Faster LLL-reduction

Our contributions to fast LLL reduction

@ Costly component: underlying QR/Gram-Schmidt.
@ Floating-point arithmetic is well-suited for these [0dlyzko'82].
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Faster LLL-reduction

Our contributions to fast LLL reduction

@ Costly component: underlying QR/Gram-Schmidt.
o Floating-point arithmetic is well-suited for these [0dlyzko'82].

= Disclose and exploit links between
lattice reduction algorithms and numerical linear algebra.

Algorithm
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Faster LLL-reduction

Our contributions to fast LLL reduction

@ Costly component: underlying QR/Gram-Schmidt.
o Floating-point arithmetic is well-suited for these [0dlyzko'82].

= Disclose and exploit links between
lattice reduction algorithms and numerical linear algebra.

The LLL Algorithm

e Chang, S. and Villard. Perturbation Analysis of the QR factor R in the Context
of LLL Lattice Basis Reduction. Math. Comp.'11.
Morel, S. and Villard. H-LLL: Using Householder inside LLL. ISSAC'09.
Novocin, S. and Villard. An LLL-reduction algorithm with quasi-linear time
complexity. STOC'11.
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Faster LLL-reduction

LLL-reduction is not perturbation-friendly

Algorithmic principle: Only the top-most digits contain
information, so compute using only these!
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Faster LLL-reduction

LLL-reduction is not perturbation-friendly

Algorithmic principle: Only the top-most digits contain
information, so compute using only these!

Difficulty: LLL-reducedness is not stable under truncations.

1 2100 + 240 1 2100
_1 9100 _ 540 = _1 o100

Not reduced Reduced
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Faster LLL-reduction

LLL-reduction is not perturbation-friendly

Algorithmic principle: Only the top-most digits contain
information, so compute using only these!

Difficulty: LLL-reducedness is not stable under truncations.

1 2100 + 240 1 2100
_1 9100 _ 540 = _1 ol00
Not reduced Reduced

Tool: Sensitivity analysis of the R-factor.

B = Q . R and AB small

non-singular  orthogonal up-triangular

B+AB =(Q+AQ)-(R+AR) and AQ,AR small?

non-singular  orthogonal up-triangular

Damien Stehlé
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Faster LLL-reduction

A perturbation-friendly LLL-reduction

Let cond(R) = |||R||R7Y|||. We have:

i MAr]
el

|Ab]]

< cond(R) - max
Ibil
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Faster LLL-reduction

A perturbation-friendly LLL-reduction

Let cond(R) = |||R||R7Y|||. We have:
i MAr]
el

@ To get meaningful reasults, use precision > log, cond(R).
o Bis LLL-reduced = cond(R) = 2°(".

@ Perturb-friendly? allow for columnwise inaccuracy in R.

|Ab]
Ibil

< cond(R) - max
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Faster LLL-reduction

A perturbation-friendly LLL-reduction

Let cond(R) = |||R||R|||. We have:

by
o]

Ar;
X HH rH” < cond(R) - max
Fi

@ To get meaningful reasults, use precision > log, cond(R).
@ B is LLL-reduced = cond(R) = 2°(",
@ Perturb-friendly? allow for columnwise inaccuracy in R.

y
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Faster LLL-reduction

Lowering the bit-complexities

Hybrid approach (L? & H-LLL):

@ Exact basis B and approximate R-factor.
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Faster LLL-reduction

Lowering the bit-complexities

Hybrid approach (L? & H-LLL):

@ Exact basis B and approximate R-factor.

~1
Totally numeric approach (L ):
@ Approximate basis B and approximate transforms.

@ Control granted by gradual feeding [Belabas'04]:
Move from (almost) reduced to reduced.
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Faster LLL-reduction

Lowering the bit-complexities

Hybrid approach (L? & H-LLL):
@ Exact basis B and approximate R-factor.

~1
Totally numeric approach (L ):
@ Approximate basis B and approximate transforms.

@ Control granted by gradual feeding [Belabas'04]:
Move from (almost) reduced to reduced.

~1

sy | L?/H-LLL L
Complexity* | n®tep2te | pttep2 | poteplte
Precision nB 1.6n/0.8n ?

* n=dim, B =logmax|lbj||, €~ 0, with n=0(B).
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Stronger reductions

Road-map

© Euclidean lattices: definitions and algorithmic problems.
© Reducing lattice bases efficiently.

© Paying more to get nicer bases.

© Fast lattice-based cryptography.

© Future directions.
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Stronger reductions

HKZ and BKZ reductions cost more

n := 62; B := RMatrixSpace(Integers(),n,n)!0;
beta:=1000; for i:=1 to n do
B[i] [i]:=1; B[i] [1] :=RandomBits(beta);
end for;
time C := LLL(B:Delta:=0.999);
Time: 1.470
> time D := HKZ(C);
Time: 3389.650
> RealField(3) ! Sqrt( Norm(C[1])/Norm(D[1]) );
1.69

V V. V V V
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Stronger reductions

HKZ and BKZ reductions cost more

n := 62; B := RMatrixSpace(Integers(),n,n)!0;
beta:=1000; for i:=1 to n do
B[i] [i]:=1; B[i] [1] :=RandomBits(beta);
end for;
time C := LLL(B:Delta:=0.999);
Time: 1.470
> time D := HKZ(C);
Time: 3389.650
> RealField(3) ! Sqrt( Norm(C[1])/Norm(D[1]) );
1.69

@ The time and output norm gaps grow exponentially with
respect to the dimension n.

V V. V V V

@ One can trade quality for time, using BKZ reduction.
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Stronger reductions

Our contributions to strong reductions

@ Several known algorithms for HKZ-reduction.
Most practical one: Kannan-Fincke-Pohst.

@ Several known trade-offs between HKZ and LLL.
Most practical one: Schnorr-Euchner BKZ.
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Stronger reductions

Our contributions to strong reductions

@ Several known algorithms for HKZ-reduction.
Most practical one: Kannan-Fincke-Pohst.

@ Several known trade-offs between HKZ and LLL.
Most practical one: Schnorr-Euchner BKZ.

= Measure cost and progress with the R-factor diagonal.

(ri)i<n = (|Ibf|])i<n is everything.
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Stronger reductions

Our contributions to strong reductions

@ Several known algorithms for HKZ-reduction.
Most practical one: Kannan-Fincke-Pohst.

@ Several known trade-offs between HKZ and LLL.
Most practical one: Schnorr-Euchner BKZ.

= Measure cost and progress with the R-factor diagonal.

(ri)i<n = (|Ibf|])i<n is everything.

e Hanrot and S. Improved Analysis of Kannan'’s Shortest Lattice Vector
Algorithm. CRYPTO'07.

e Hanrot, Pujol and S. Analyzing Blockwise Lattice Algorithms using Dynamical
Systems. CRYPTO'11.
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Stronger reductions

A static analysis for HKZ

@ Kannan's HKZ algorithm consists in:
o lower-dimensional HKZ reductions,
@ computations of shortest lattice vectors.
@ Shortest vectors via Kannan-Fincke-Pohst: intertwinned
enumerations of all short points of projected lattices.
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Stronger reductions

A static analysis for HKZ

@ Kannan's HKZ algorithm consists in:

o lower-dimensional HKZ reductions,
@ computations of shortest lattice vectors.

@ Shortest vectors via Kannan-Fincke-Pohst: intertwinned
enumerations of all short points of projected lattices.

Gaussian heuristic:  |[L N B| ~ vol(B) / det(L).
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Stronger reductions

A static analysis for HKZ

@ Kannan's HKZ algorithm consists in:

o lower-dimensional HKZ reductions,
@ computations of shortest lattice vectors.

@ Shortest vectors via Kannan-Fincke-Pohst: intertwinned
enumerations of all short points of projected lattices.

Gaussian heuristic:  |[L N B| ~ vol(B) / det(L).

Let B = QR. Enumerating all b € L(B) with ||b|] < A costs:

A
< 20() :
< Hmax( - )

i<n
Within Kannan's HKZ algorithm, this is < n"/(2¢) + o(1),
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Stronger reductions

A dynamic analysis for BKZ

@ BKZ, proceeds by k-dimensional HKZ reductions,
performed circularly on the diagonal of the R-factor.
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Stronger reductions

A dynamic analysis for BKZ

@ BKZ, proceeds by k-dimensional HKZ reductions,
performed circularly on the diagonal of the R-factor.

= Let's look at the evolution of the r;'s!
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Stronger reductions

A dynamic analysis for BKZ

@ BKZ, proceeds by k-dimensional HKZ reductions,
performed circularly on the diagonal of the R-factor.

= Let's look at the evolution of the r;'s!
@ [Madritsch-valiée'10]: In LLL, the log r;;'s evolve like a sandpile.
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Stronger reductions

A dynamic analysis for BKZ

@ BKZ, proceeds by k-dimensional HKZ reductions,
performed circularly on the diagonal of the R-factor.

= Let's look at the evolution of the r;'s!
@ [Madritsch-valiée'10]: In LLL, the log r;;'s evolve like a sandpile.

BKZ's sandpile

xj = log rj;

X1 Xo X3 X4 X5 Xe X7 Xg Xo
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Stronger reductions

A dynamic analysis for BKZ

@ BKZ, proceeds by k-dimensional HKZ reductions,
performed circularly on the diagonal of the R-factor.

= Let's look at the evolution of the r;'s!
@ [Madritsch-valiée'10]: In LLL, the log r;;'s evolve like a sandpile.

BKZ's sandpile

..................... x; = log ri;

X1 Xo X3 X4 X5 Xe X7 Xg Xo
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A dynamic analysis for BKZ

@ BKZ, proceeds by k-dimensional HKZ reductions,
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Stronger reductions

A dynamic analysis for BKZ

@ BKZ, proceeds by k-dimensional HKZ reductions,
performed circularly on the diagonal of the R-factor.

= Let's look at the evolution of the r;'s!
@ [Madritsch-valiée'10]: In LLL, the log r;;'s evolve like a sandpile.

BKZ's sandpile

xj = log rj;

X1 Xo X3 X4 X5 Xe X7 Xg Xo
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Stronger reductions

Analyzing BKZ's sandpile

A BKZ tour on the sandpile: X’ < AX +T.

@ A: successive averages.
@ [: combinations of Hermite constants.

@ < : can be made rigorous via amortizing.

~
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A BKZ tour on the sandpile: X’ < AX +T.

@ A: successive averages.
@ [: combinations of Hermite constants.

@ < : can be made rigorous via amortizing.

Behavior of BKZ < discrete-time affine dynamical system.
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Stronger reductions

Analyzing BKZ's sandpile

A BKZ tour on the sandpile: X’ < AX +T.

@ A: successive averages.
@ [: combinations of Hermite constants.

@ < : can be made rigorous via amortizing.

~

Behavior of BKZ < discrete-time affine dynamical system.
After O (7 |og(%)) calls to HKZ,, BKZ, returns C s.t.:

HF(C) < (1+¢)- k@D T3,

14/10/2011
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Cryptography

Road-map

© Euclidean lattices: definitions and algorithmic problems.
© Reducing lattice bases efficiently.

© Paying more to get nicer bases.

© Fast lattice-based cryptography.

© Future directions.
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Cryptography

Lattice-based cryptography

@ Cryptography: science of securing digital information.
@ Design methodology: exploit the appearant hardness of
an algorithmic problem to create a computational gap

between valid and malicious parties.
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Cryptography

Lattice-based cryptography

@ Cryptography: science of securing digital information.

@ Design methodology: exploit the appearant hardness of
an algorithmic problem to create a computational gap
between valid and malicious parties.

@ Finding very short bases seems exponentially hard.
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Cryptography

Lattice-based cryptography

@ Cryptography: science of securing digital information.

@ Design methodology: exploit the appearant hardness of
an algorithmic problem to create a computational gap
between valid and malicious parties.

@ Finding very short bases seems exponentially hard.

Two opposite strategies in lattice-based crypto:
@ NTRU: Superfast schemes, but heuristic security.
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Cryptography

Lattice-based cryptography

@ Cryptography: science of securing digital information.

@ Design methodology: exploit the appearant hardness of
an algorithmic problem to create a computational gap
between valid and malicious parties.

@ Finding very short bases seems exponentially hard.

Two opposite strategies in lattice-based crypto:
@ NTRU: Superfast schemes, but heuristic security.

@ [Ajtai'96,Regev'05,..]: Somewhat inefficient schemes, but
provably as secure as worst-case lattice problems.
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Cryptography

Our contributions to lattice-based cryptography

Context: The rigorous approach becomes more efficient.
@ Use of polynomial rings and ideal lattices.

@ [Lyubashevsky-Micciancio'06-'08,Peikert-Rosen’06]: hash functions and
digital signatures with quasi-optimal complexities.

Damien Stehlé Euclidean lattices: algorithms and cryptography 14/10/2011



Cryptography

Our contributions to lattice-based cryptography

Context: The rigorous approach becomes more efficient.

@ Use of polynomial rings and ideal lattices.
@ [Lyubashevsky-Micciancio'06-'08,Peikert-Rosen’06]: hash functions and
digital signatures with quasi-optimal complexities.

= Use polynomial rings and ideal lattices for encryption.

Fast public key encryption, semantically secure under
(quantum) worst-case hardness assumptions for ideal lattices.
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Cryptography

Our contributions to lattice-based cryptography

Context: The rigorous approach becomes more efficient.
@ Use of polynomial rings and ideal lattices.

@ [Lyubashevsky-Micciancio'06-'08,Peikert-Rosen’06]: hash functions and
digital signatures with quasi-optimal complexities.

= Use polynomial rings and ideal lattices for encryption.

Fast public key encryption, semantically secure under
(quantum) worst-case hardness assumptions for ideal lattices.

e S, Steinfeld, Tanaka and Xagawa. Efficient Public-Key Encryption Based on
Ideal Lattices, ASIACRYPT'09.

e S. and Steinfeld. Making NTRU as secure as worst-case problems over ideal
lattices, EUROCRYPT'11.

14/10/2011
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Cryptography

The Learning With Errors Problem

A A |s+ e Edz
unif , small small
m || [d]
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Cryptography

The Learning With Errors Problem

A A |s+ e Edz
unif , small small
m || [d]

o A< U(Z7*") public.
@sc ZZ small, to be found .
oec ZZ’: small Gaussian noise, unknown.
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Cryptography

The Learning With Errors Problem

A A |s+ e Edz
unif , small small
m || [q]

o A< U(Z7*") public.
@sc ZZ small, to be found .
oec ZZ’: small Gaussian noise, unknown.

(Computational)-LWE [Regev'05]

[Technical conditions on the parameters]
LWE is no easier than finding short bases for arbitrary lattices.
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Cryptography

A structured LWE problem

unif

mi| [q]

+

small

e

small

Damien Stehlé
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Cryptography

A structured LWE problem

+

unif | small |small
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Cryptography

A structured LWE problem

n
+ . .
Alls e @ Structured matrices = faster operations.
unif | small - |small @ Structured matrices <+ polynomials.
m|| [q] /5%
@ Here: R, = L.
x"+1
\
n
+
s |e
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Cryptography

A structured LWE problem

Jr
A lls
unif | small
mi| [q]
U
n
+
S

Damien Stehlé

e @ Structured matrices = faster operations.

small @ Structured matrices <+ polynomials.

Zq|x
o Here: R, = L.
x"+1
= One-way function, at least as hard to invert
as worst-case problems for ideal lattices.
Z[x]

e o |deal lattices <> ideals of R = )
x"+1
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Cryptography

A structured LWE problem

+ : .
Alls e @ Structured matrices = faster operations.
unif | small - |small @ Structured matrices <+ polynomials.
m|| [q] /5%
o Here: R, = L.
x"+1
= One-way function, at least as hard to invert
, Y as worst-case problems for ideal lattices.
+ . . Z|x
s |e o ldeal lattices <+ ideals of R = L

x4+ 1

= With a trapdoor & generic hard-core bits:
PK-encryption with quasi-optimal efficiency.
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Cryptography

Decisional version of Ring-LWE

. : zZ
@ a uniform in R, = —XZ’J[:E,

@ s,e € R, small and secret.

known.

Comp-RLWE:  (a,a-s+e) — s
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Cryptography

Decisional version of Ring-LWE

Zqg[X]
x"4+1"
@ s,e € R,, small and secret.

@ a uniform in Ry = known.

Comp-RLWE:  (a,a-s+e) — s
= Dec-RLWE: (a,a-s+e) = U(RyxRy)?
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Cryptography

Decisional version of Ring-LWE

Zqg[X]
x"4+1"
@ s,e € R, small and secret.

@ a uniform in Ry = known.

Comp-RLWE:  (a,a-s+e) — s
= Dec-RLWE: (a,a-s+e) = U(RyxRy)?

( Decisional )- RLWE [Lyubashevsky-Peikert-Regev'10]

[Technical conditions on parameters]
If finding short bases for arbitrary ideal lattices is hard, then
(a,a- s+ e) is computationally indistinguishable from uniform.
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Cryptography

Using RLWE for NTRU

(Standard) NTRUEncrypt:
@ Secret key: f,g small and f =1 [2].
@ Public key: h= g/f € Ry, heuristically looks uniform.
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Cryptography

Using RLWE for NTRU

(Standard) NTRUEncrypt:
@ Secret key: f,g small and f =1 [2].
@ Public key: h= g/f € Ry, heuristically looks uniform.

Enc: M — C =2hs+ M [q], with s small & random.
@ Dec: fC = 2gs + fM is small = Take it mod 2.
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Cryptography

Using RLWE for NTRU

(Standard) NTRUEncrypt:
@ Secret key: f,g small and f =1 [2].
@ Public key: h= g/f € Ry, heuristically looks uniform.

® Enc: M — C =2hs+ M [q], with s small & random.
@ Dec: fC = 2gs + fM is small = Take it mod 2.

» Use RLWE to make C indistinguishable from uniform!
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Cryptography

Using RLWE for NTRU

(Modified) NTRUEncrypt:
@ Secret key: f,g small and f =1 [2].
@ Public key: h= g/f € Ry, heuristically looks uniform.

® Enc: M— C =2(hs+ e)+ M [q], with s, e small & random.
@ Dec: fC = 2(gs + fe) + fM is small = Take it mod 2.

» Use RLWE to make C indistinguishable from uniform!
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Cryptography

Using RLWE for NTRU

(Modified) NTRUEncrypt:
@ Secret key: f,g small and f =1 [2].
@ Public key: h= g/f € Ry, heuristically looks uniform.

® Enc: M— C =2(hs+e)+ M [q], with s, e small & random.

@ Dec: fC = 2(gs + fe) + fM is small = Take it mod 2.

» Use RLWE to make C indistinguishable from uniform!
» Difficulty: RLWE hardness result requires h uniform.
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Cryptography

Using RLWE for NTRU

(Modified) NTRUEncrypt:
@ Secret key: f,g small and f =1 [2].
@ Public key: h= g/f € Ry, heuristically looks uniform.

® Enc: M— C =2(hs+ e)+ M [q], with s, e small & random.
@ Dec: fC = 2(gs + fe) + fM is small = Take it mod 2.

» Use RLWE to make C indistinguishable from uniform!
» Difficulty: RLWE hardness result requires h uniform.
» Obtained by sampling f, g from discrete Gaussians.
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Cryptography

Using RLWE for NTRU

(Modified) NTRUEncrypt:
@ Secret key: f, g small Gaussian and f =1 [2].
@ Public key: h=g/f € Ry, provably is uniform.

® Enc: M— C =2(hs+ e)+ M [q], with s, e small & random.
@ Dec: fC = 2(gs + fe) + fM is small = Take it mod 2.

» Use RLWE to make C indistinguishable from uniform!
» Difficulty: RLWE hardness result requires h uniform.
» Obtained by sampling f, g from discrete Gaussians.
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Cryptography

Using RLWE for NTRU

(Modified) NTRUEncrypt:
@ Secret key: f, g small Gaussian and f =1 [2].
@ Public key: h=g/f € Ry, provably is uniform.

® Enc: M— C =2(hs+e)+ M [q], with s, e small & random.

@ Dec: fC = 2(gs + fe) + fM is small = Take it mod 2.

» Use RLWE to make C indistinguishable from uniform!
» Difficulty: RLWE hardness result requires h uniform.
» Obtained by sampling f, g from discrete Gaussians.

The modified NTRU is secure, and asymptotically efficient. |
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Future directions

Road-map

© Euclidean lattices: definitions and algorithmic problems.
© Reducing lattice bases efficiently.

© Paying more to get nicer bases.

© Fast lattice-based cryptography.

© Future directions.
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Future directions

Faster LLL-type reductions

Target: LLL as fast as matrix multiplication.

Considering the linear algebra contribution to the cost:
@ We decreased the cost wrt 5 = log max||b;||.

@ There exist strategies to decrease the cost wrt n:
[Schonhage’84,Storjohann’96,Koy-Schnorr'01].
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@ We decreased the cost wrt 5 = log max||b;||.

@ There exist strategies to decrease the cost wrt n:
[Schonhage’84,Storjohann’96,Koy-Schnorr'01].

» Are these improvements compatible?
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Future directions

Faster LLL-type reductions

Target: LLL as fast as matrix multiplication.

Considering the linear algebra contribution to the cost:
@ We decreased the cost wrt 5 = log max||b;||.

@ There exist strategies to decrease the cost wrt n:
[Schonhage’84,Storjohann’96,Koy-Schnorr'01].

» Are these improvements compatible?

Breaking the linear precision barrier:

@ Current numeric approach: €(n) bits of precision.
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Future directions

Faster LLL-type reductions

Target: LLL as fast as matrix multiplication.

Considering the linear algebra contribution to the cost:
@ We decreased the cost wrt 5 = log max||b;||.

@ There exist strategies to decrease the cost wrt n:
[Schonhage’84,Storjohann’96,Koy-Schnorr'01].

» Are these improvements compatible?

Breaking the linear precision barrier:
@ Current numeric approach: €(n) bits of precision.
» What can we do with less?
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Future directions

Faster strong reductions

Sub-exponential HKZ reduction:

@ Three main types of SVP solvers: [Kannan'83,Fincke-Pohst'83],
[Ajtai-Kumar-Sivakumar’'01] and [Micciancio-Voulgaris'10].

@ All of (at least) exponential complexities.
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Faster strong reductions

Sub-exponential HKZ reduction:

@ Three main types of SVP solvers: [Kannan'83,Fincke-Pohst'83],
[Ajtai-Kumar-Sivakumar’'01] and [Micciancio-Voulgaris'10].

@ All of (at least) exponential complexities.

» Can we do better? With polynomial approximation
factors? With heuristics? With quantum computing?
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Future directions

Faster strong reductions

Sub-exponential HKZ reduction:

@ Three main types of SVP solvers: [Kannan'83,Fincke-Pohst'83],
[Ajtai-Kumar-Sivakumar’'01] and [Micciancio-Voulgaris'10].

@ All of (at least) exponential complexities.

» Can we do better? With polynomial approximation
factors? With heuristics? With quantum computing?

Beating Schnorr's hierarchy:

@ BKZ achieves v ~ k"/(k) in time ~ 29() . Poly(n).
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Future directions

Faster strong reductions

Sub-exponential HKZ reduction:

@ Three main types of SVP solvers: [Kannan'83,Fincke-Pohst'83],
[Ajtai-Kumar-Sivakumar’'01] and [Micciancio-Voulgaris'10].

@ All of (at least) exponential complexities.

» Can we do better? With polynomial approximation
factors? With heuristics? With quantum computing?

Beating Schnorr's hierarchy:
@ BKZ achieves v ~ k"/(k) in time ~ 29() . Poly(n).

» A different hierarchy, relaxing an SVP solver rather than
strengthening LLL?

Damien Stehlé
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Future directions

The rise of lattice-based cryptography?

Towards practical lattice-based cryptography:
» Making crucial primitives extremely fast.

» Realizing more functionalities.
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Future directions

The rise of lattice-based cryptography?

Towards practical lattice-based cryptography:
» Making crucial primitives extremely fast.

» Realizing more functionalities.

Firmer security grounding:

» Mount large-scale cryptanalyses to get meaningful
security parameters.

» Are lattice problems hard even for ideal lattices?
» Are lattice problems quantumly hard?
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Future directions

Thank Youl
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