Réseaux Euclidiens : Algorithmes et Cryptographie Soutenance d'HDR

Damien Stehlé

http://perso.ens-lyon.fr/damien.stehle

CNRS/LIP, ENS de Lyon

Lyon, 14 Octobre 2011

Goals of the talk

- To present facets of my field of research.
- To focus on some specific results.
- To discuss future directions.
- Suclidean lattices: definitions and algorithmic problems.
- Reducing lattice bases efficiently.
- Paying more to get nicer bases.
- Fast lattice-based cryptography.
- Open problems.

Euclidean lattices

$$\mathsf{Lattice} \ \equiv \ \left\{ \sum_{i \le n} x_i \mathbf{b}_i : x_i \in \mathbb{Z} \right\},\$$

where the *n* linearly independent \mathbf{b}_i 's are called a basis.

Bases are not unique, but can be obtained from each other by integer transforms of determinant ± 1 :

$$\left[\begin{array}{cc} -2 & 1 \\ 10 & 6 \end{array}\right] = \left[\begin{array}{cc} 4 & -3 \\ 2 & 4 \end{array}\right] \cdot \left[\begin{array}{cc} 1 & 1 \\ 2 & 1 \end{array}\right].$$

Lattice reduction: find a nice basis, given an arbitrary

Euclidean lattices

$$\mathsf{Lattice} \ \equiv \ \left\{ \sum_{i \le n} x_i \mathbf{b}_i : x_i \in \mathbb{Z} \right\},\$$

where the *n* linearly independent \mathbf{b}_i 's are called a basis.

Bases are not unique, but can be obtained from each other by integer transforms of determinant ± 1 :

$$\left[\begin{array}{rrr} -2 & 1 \\ 10 & 6 \end{array}\right] = \left[\begin{array}{rrr} 4 & -3 \\ 2 & 4 \end{array}\right] \cdot \left[\begin{array}{rrr} 1 & 1 \\ 2 & 1 \end{array}\right].$$

Lattice reduction:

find a nice basis, given an arbitrary one.

Euclidean lattices

$$\mathsf{Lattice} \ \equiv \ \left\{ \sum_{i \le n} x_i \mathbf{b}_i : x_i \in \mathbb{Z} \right\},\$$

where the *n* linearly independent \mathbf{b}_i 's are called a basis.

Bases are not unique, but can be obtained from each other by integer transforms of determinant ± 1 :

$$\begin{bmatrix} -2 & 1 \\ 10 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}.$$

Lattice reduction:

find a nice basis, given an arbitrary one.

 $\frac{\mathsf{Minimum}}{\lambda(L)} = \min (\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Lattice determinant: det $L = |\det(\mathbf{b}_i)_i|$, for any basis.

Minkowski theorem: $\lambda(L) \leq \sqrt{n} \cdot (\det L)^{1/n}.$

Lattice reduction:

$$\mathsf{HF}(B) := \frac{\|\mathbf{b}_1\|}{(\det L)^{1/n}}$$

 $\frac{\mathsf{Minimum}}{\lambda(L)} = \min (\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Lattice determinant: det $L = |\det(\mathbf{b}_i)_i|$, for any basis.

Minkowski theorem: $\lambda(L) \leq \sqrt{n} \cdot (\det L)^{1/n}.$

Lattice reduction:

$$\mathsf{HF}(B) := \frac{\|\mathbf{b}_1\|}{(\det L)^{1/n}}$$

 $\frac{\mathsf{Minimum}}{\lambda(L)} = \min (\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Lattice determinant: det $L = |\det(\mathbf{b}_i)_i|$, for any basis.

Minkowski theorem: $\lambda(L) \leq \sqrt{n} \cdot (\det L)^{1/n}.$

Lattice reduction:

$$\mathsf{HF}(B) := \frac{\|\mathbf{b}_1\|}{(\det L)^{1/n}}$$

Minimum: $\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Lattice determinant: det $L = |\det(\mathbf{b}_i)_i|$, for any basis.

Minkowski theorem: $\lambda(L) \leq \sqrt{n} \cdot (\det L)^{1/n}.$

Lattice reduction:

$$\mathsf{HF}(B) := \frac{\|\mathbf{b}_1\|}{(\det L)^{1/n}}$$

 $\frac{\mathsf{Minimum}}{\lambda(L)} = \min (\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Lattice determinant: det $L = |\det(\mathbf{b}_i)_i|$, for any basis.

Minkowski theorem: $\lambda(L) \leq \sqrt{n} \cdot (\det L)^{1/n}.$

Lattice reduction:

$$\mathsf{HF}(B) := \frac{\|\mathbf{b}_1\|}{(\det L)^{1/n}}.$$

Why do we care about lattice reduction?

Finding a basis with small HF allows one to solve:

- For small γ and large *n*:
 - Cryptanalysis of lattice-based cryptosystems.
- For large γ but huge bit-size:

Cryptanalyses of variants of RSA, factorisation of rational polynomials, integer relation detection, etc.

Why do we care about lattice reduction?

Finding a basis with small HF allows one to solve:

- For small γ and large n: Cryptanalysis of lattice-based cryptosystems.
- For large γ but huge bit-size:

Cryptanalyses of variants of RSA, factorisation of rational polynomials, integer relation detection, etc.

Why do we care about lattice reduction?

Finding a basis with small HF allows one to solve:

• For small γ and large n:

Cryptanalysis of lattice-based cryptosystems.

• For large γ but huge bit-size:

Cryptanalyses of variants of RSA, factorisation of rational polynomials, integer relation detection, etc.

	HKZ	BKZ_k	
Hermite factor	\sqrt{n}	$\simeq k^{n/(2k)}$	$\simeq 2^n$
Run-time*	$2^{\mathcal{O}(n)}$	$2^{\mathcal{O}(k)} \times \operatorname{Poly}(n)$	$\operatorname{Poly}(n)$

*Neglecting arithmetic costs

- HKZ = Hermite-Korkine-Zolotareff (19th c.).
- LLL = Lenstra-Lenstra-Lovász ('82).
- BKZ = Block Korkine-Zolotareff (Schnorr'87)

- Decrease the complexity bounds.
- Exploit hardness to devise cryptographic primitives.

	HKZ	BKZ_k	LLL
Hermite factor	\sqrt{n}	$\simeq k^{n/(2k)}$	$\simeq 2^n$
Run-time*	$2^{\mathcal{O}(n)}$	$2^{\mathcal{O}(k)} \times \operatorname{Poly}(n)$	Poly(<i>n</i>)

*Neglecting arithmetic costs

- HKZ = Hermite-Korkine-Zolotareff (19th c.).
- LLL = Lenstra-Lenstra-Lovász ('82).
- BKZ = Block Korkine-Zolotareff (Schnorr'87)

- Decrease the complexity bounds.
- Exploit hardness to devise cryptographic primitives.

	HKZ	BKZ _k	LLL
Hermite factor	\sqrt{n}	$\simeq k^{n/(2k)}$	$\simeq 2^n$
Run-time*	$2^{\mathcal{O}(n)}$	$2^{\mathcal{O}(k)} \times \operatorname{Poly}(n)$	Poly(<i>n</i>)

*Neglecting arithmetic costs

- HKZ = Hermite-Korkine-Zolotareff (19th c.).
- LLL = Lenstra-Lenstra-Lovász ('82).
- BKZ = Block Korkine-Zolotareff (Schnorr'87)

- Decrease the complexity bounds.
- Exploit hardness to devise cryptographic primitives.

	HKZ	BKZ _k	LLL
Hermite factor	\sqrt{n}	$\simeq k^{n/(2k)}$	$\simeq 2^n$
Run-time*	$2^{\mathcal{O}(n)}$	$2^{\mathcal{O}(k)} \times \operatorname{Poly}(n)$	Poly(<i>n</i>)

*Neglecting arithmetic costs

- HKZ = Hermite-Korkine-Zolotareff (19th c.).
- LLL = Lenstra-Lenstra-Lovász ('82).
- BKZ = Block Korkine-Zolotareff (Schnorr'87)

- Decrease the complexity bounds.
- Exploit hardness to devise cryptographic primitives.

- Euclidean lattices: definitions and algorithmic problems.
- **2** Reducing lattice bases efficiently.
- Paying more to get nicer bases.
- Fast lattice-based cryptography.
- Future directions.

Fast and decent reduction: LLL

- LLL is the main (only?) algorithm for finding lattice bases of decent quality: HF ≤ 2ⁿ.
- But text-book LLL is amazingly slow.

Fast and decent reduction: LLL

- LLL is the main (only?) algorithm for finding lattice bases of decent quality: HF ≤ 2ⁿ.
- But text-book LLL is amazingly slow.

Fast and decent reduction: LLL

- LLL is the main (only?) algorithm for finding lattice bases of decent quality: HF ≤ 2ⁿ.
- But text-book LLL is amazingly slow.

```
Using MAGMA V2.16:
```

```
> n := 25; B := RMatrixSpace(Integers(),n,n)!0;
> beta := 2000; for i:=1 to 25 do
> B[i][i]:=1; B[i][1]:=RandomBits(beta);
> end for;
> time C := LLL(B:Method:=''Integral'');
Time: 11.700
> time C := LLL(B);
Time: 0.240
```

Our contributions to fast LLL reduction

- Costly component: underlying QR/Gram-Schmidt.
- Floating-point arithmetic is well-suited for these [Odlyzko'82].

Our contributions to fast LLL reduction

- Costly component: underlying QR/Gram-Schmidt.
- Floating-point arithmetic is well-suited for these [Odlyzko'82].
- \Rightarrow Disclose and exploit links between lattice reduction algorithms and numerical linear algebra.

- Chang, S. and Villard. *Perturbation Analysis of the QR factor R in the Context of LLL Lattice Basis Reduction.* Math. Comp.'11.
- Morel, S. and Villard. H-LLL: Using Householder inside LLL. ISSAC'09.
- Novocin, S. and Villard. An LLL-reduction algorithm with quasi-linear time complexity. STOC'11.

Our contributions to fast LLL reduction

- Costly component: underlying QR/Gram-Schmidt.
- Floating-point arithmetic is well-suited for these [Odlyzko'82].
- \Rightarrow Disclose and exploit links between lattice reduction algorithms and numerical linear algebra.

- Chang, S. and Villard. *Perturbation Analysis of the QR factor R in the Context of LLL Lattice Basis Reduction*. Math. Comp.'11.
- Morel, S. and Villard. H-LLL: Using Householder inside LLL. ISSAC'09.
- Novocin, S. and Villard. An LLL-reduction algorithm with quasi-linear time complexity. STOC'11.

LLL-reduction is not perturbation-friendly

Algorithmic principle: Only the top-most digits contain information, so compute using only these!

Difficulty: LLL-reducedness is not stable under truncations.

LLL-reduction is not perturbation-friendly

Algorithmic principle: Only the top-most digits contain information, so compute using only these!

Difficulty: LLL-reducedness is not stable under truncations.

$$\begin{bmatrix} 1 & 2^{100} + 2^{40} \\ -1 & 2^{100} - 2^{40} \end{bmatrix} \implies \begin{bmatrix} 1 & 2^{100} \\ -1 & 2^{100} \end{bmatrix}$$

Not reduced Reduced

LLL-reduction is not perturbation-friendly

Algorithmic principle: Only the top-most digits contain information, so compute using only these!

Difficulty: LLL-reducedness is not stable under truncations.

$\begin{bmatrix} 1\\ -1 \end{bmatrix}$	$2^{100} + 2^{40} \\ 2^{100} - 2^{40}$	\Rightarrow	$\begin{bmatrix} 1\\ -1 \end{bmatrix}$	2^{100} 2^{100}]
No	t reduced		Red	uced	_

Tool: Sensitivity analysis of the R-factor.

A perturbation-friendly LLL-reduction

Let
$$cond(R) = ||R||R^{-1}|||$$
. We have:

$$\max \frac{\|\Delta \mathbf{r}_i\|}{\|\mathbf{r}_i\|} \lesssim \operatorname{cond}(R) \cdot \max \frac{\|\Delta \mathbf{b}_i\|}{\|\mathbf{b}_i\|}.$$

- To get meaningful reasults, use precision $> \log_2 \operatorname{cond}(R)$.
- B is LLL-reduced \Rightarrow cond $(R) = 2^{\mathcal{O}(n)}$.
- Perturb-friendly? allow for columnwise inaccuracy in *R*.

A perturbation-friendly LLL-reduction

Let
$$cond(R) = |||R||R^{-1}|||$$
. We have:

$$\max \frac{\|\Delta \mathbf{r}_i\|}{\|\mathbf{r}_i\|} \lesssim \operatorname{cond}(R) \cdot \max \frac{\|\Delta \mathbf{b}_i\|}{\|\mathbf{b}_i\|}.$$

- To get meaningful reasults, use precision $> \log_2 \operatorname{cond}(R)$.
- B is LLL-reduced \Rightarrow cond $(R) = 2^{\mathcal{O}(n)}$.
- Perturb-friendly? allow for columnwise inaccuracy in *R*.

A perturbation-friendly LLL-reduction

Let
$$cond(R) = ||R||R^{-1}||$$
. We have:

$$\max rac{\|\Delta \mathbf{r}_i\|}{\|\mathbf{r}_i\|} \lesssim \operatorname{cond}(R) + \max rac{\|\Delta \mathbf{b}_i\|}{\|\mathbf{b}_i\|}.$$

- To get meaningful reasults, use precision $> \log_2 \operatorname{cond}(R)$.
- B is LLL-reduced \Rightarrow cond(R) = $2^{\mathcal{O}(n)}$.
- Perturb-friendly? allow for columnwise inaccuracy in R.

Lowering the bit-complexities

Hybrid approach $(L^2 \& H-LLL)$:

• Exact basis *B* and approximate R-factor.

Totally numeric approach (\widetilde{L}^{1}) :

- Approximate basis *B* and approximate transforms.
- Control granted by gradual feeding [Belabas'04]: Move from (almost) reduced to reduced.

Lowering the bit-complexities

- Hybrid approach $(L^2 \& H-LLL)$:
 - Exact basis *B* and approximate R-factor.

Totally numeric approach (\widetilde{L}^1) :

- Approximate basis *B* and approximate transforms.
- Control granted by gradual feeding [Belabas'04]: Move from (almost) reduced to reduced.

Lowering the bit-complexities

Hybrid approach $(L^2 \& H-LLL)$:

• Exact basis *B* and approximate R-factor.

Totally numeric approach (\widetilde{L}^1) :

- Approximate basis *B* and approximate transforms.
- Control granted by gradual feeding [Belabas'04]: Move from (almost) reduced to reduced.

	[LLL'82]	L^2/H -LLL	\widetilde{L}^1
$Complexity^*$	$n^{5+arepsilon}eta^{2+arepsilon}$	$n^{4+arepsilon}eta^2$	$n^{5+arepsilon}eta^{1+arepsilon}$
Precision	nβ	1.6 <i>n</i> /0.8 <i>n</i>	?
* $n = \dim_{i} \beta = \log \max \ \mathbf{b}_{i}\ , \epsilon \approx 0$, with $n = \mathcal{O}(\beta)$.			

- Euclidean lattices: definitions and algorithmic problems.
- Reducing lattice bases efficiently.
- **Oracle Paying more to get nicer bases.**
- Fast lattice-based cryptography.
- Future directions.

HKZ and BKZ reductions cost more

- > n := 62; B := RMatrixSpace(Integers(),n,n)!0;
- > beta:=1000; for i:=1 to n do
- > B[i][i]:=1; B[i][1]:=RandomBits(beta);

> end for;

> time C := LLL(B:Delta:=0.999);

Time: 1.470

```
> time D := HKZ(C);
```

- Time: 3389.650
- > RealField(3) ! Sqrt(Norm(C[1])/Norm(D[1])); 1.69

HKZ and BKZ reductions cost more

- > n := 62; B := RMatrixSpace(Integers(),n,n)!0;
- > beta:=1000; for i:=1 to n do
- > B[i][i]:=1; B[i][1]:=RandomBits(beta);

> end for;

> time C := LLL(B:Delta:=0.999);

Time: 1.470

```
> time D := HKZ(C);
```

```
Time: 3389.650
```

- > RealField(3) ! Sqrt(Norm(C[1])/Norm(D[1])); 1.69
 - The time and output norm gaps grow exponentially with respect to the dimension *n*.
 - One can trade quality for time, using BKZ reduction.
Our contributions to strong reductions

- Several known algorithms for HKZ-reduction. Most practical one: Kannan-Fincke-Pohst.
- Several known trade-offs between HKZ and LLL. Most practical one: Schnorr-Euchner BKZ.

 \Rightarrow Measure cost and progress with the R-factor diagonal.

$(r_{ii})_{i\leq n} = (\|\mathbf{b}_i^*\|)_{i\leq n}$ is everything.

- Hanrot and S. *Improved Analysis of Kannan's Shortest Lattice Vector Algorithm.* CRYPTO'07.
- Hanrot, Pujol and S. Analyzing Blockwise Lattice Algorithms using Dynamical Systems. CRYPTO'11.

Our contributions to strong reductions

- Several known algorithms for HKZ-reduction. Most practical one: Kannan-Fincke-Pohst.
- Several known trade-offs between HKZ and LLL. Most practical one: Schnorr-Euchner BKZ.
- \Rightarrow Measure cost and progress with the R-factor diagonal.

$(r_{ii})_{i\leq n} = (\|\mathbf{b}_i^*\|)_{i\leq n}$ is everything.

- Hanrot and S. *Improved Analysis of Kannan's Shortest Lattice Vector Algorithm.* CRYPTO'07.
- Hanrot, Pujol and S. Analyzing Blockwise Lattice Algorithms using Dynamical Systems. CRYPTO'11.

Our contributions to strong reductions

- Several known algorithms for HKZ-reduction. Most practical one: Kannan-Fincke-Pohst.
- Several known trade-offs between HKZ and LLL. Most practical one: Schnorr-Euchner BKZ.
- \Rightarrow Measure cost and progress with the R-factor diagonal.

$$(r_{ii})_{i\leq n} = (\|\mathbf{b}_i^*\|)_{i\leq n}$$
 is everything.

- Hanrot and S. Improved Analysis of Kannan's Shortest Lattice Vector Algorithm. CRYPTO'07.
- Hanrot, Pujol and S. Analyzing Blockwise Lattice Algorithms using Dynamical Systems. CRYPTO'11.

A static analysis for HKZ

- Kannan's HKZ algorithm consists in:
 - lower-dimensional HKZ reductions,
 - computations of shortest lattice vectors.
- Shortest vectors via Kannan-Fincke-Pohst: intertwinned enumerations of all short points of projected lattices.

Gaussian heuristic: $|L \cap \mathcal{B}| \approx \operatorname{vol}(\mathcal{B}) / \operatorname{det}(L)$.

Let B = QR. Enumerating all $\mathbf{b} \in L(B)$ with $\|\mathbf{b}\| \le A$ costs: $\le 2^{\mathcal{O}(n)} \cdot \prod_{i \le n} \max\left(1, \frac{A}{\sqrt{n} \cdot r_{ii}}\right).$ Within Kannan's HKZ algorithm, this is $\le n^{n/(2e)} + o(1)$.

A static analysis for HKZ

- Kannan's HKZ algorithm consists in:
 - lower-dimensional HKZ reductions,
 - computations of shortest lattice vectors.
- Shortest vectors via Kannan-Fincke-Pohst: intertwinned enumerations of all short points of projected lattices.

Gaussian heuristic: $|L \cap \mathcal{B}| \approx \operatorname{vol}(\mathcal{B}) / \operatorname{det}(L)$.

Let B = QR. Enumerating all $\mathbf{b} \in L(B)$ with $\|\mathbf{b}\| \le A$ costs: $\le 2^{\mathcal{O}(n)} \cdot \prod_{i \le n} \max\left(1, \frac{A}{\sqrt{n} \cdot r_{ii}}\right).$ Within Kannan's HKZ algorithm, this is $\le n^{n/(2e)} + o(1)$.

A static analysis for HKZ

- Kannan's HKZ algorithm consists in:
 - lower-dimensional HKZ reductions,
 - computations of shortest lattice vectors.
- Shortest vectors via Kannan-Fincke-Pohst: intertwinned enumerations of all short points of projected lattices.

Gaussian heuristic: $|L \cap \mathcal{B}| \approx \operatorname{vol}(\mathcal{B}) / \operatorname{det}(L)$.

Let B = QR. Enumerating all $\mathbf{b} \in L(B)$ with $\|\mathbf{b}\| \le A$ costs: $\le 2^{\mathcal{O}(n)} \cdot \prod_{i \le n} \max\left(1, \frac{A}{\sqrt{n} \cdot r_{ii}}\right).$ Within Kannan's HKZ algorithm, this is $\le n^{n/(2e)} + o(1)$.

- BKZ_k proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R-factor.
- \Rightarrow Let's look at the evolution of the r_{ii} 's!
- [Madritsch-Vallée'10]: In LLL, the log r_{ii} 's evolve like a sandpile.

- BKZ_k proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R-factor.
- \Rightarrow Let's look at the evolution of the r_{ii} 's!
 - [Madritsch-Vallée'10]: In LLL, the log r_{ii} 's evolve like a sandpile.

- BKZ_k proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R-factor.
- \Rightarrow Let's look at the evolution of the r_{ii} 's!
 - [Madritsch-Vallée'10]: In LLL, the log r_{ii} 's evolve like a sandpile.

- BKZ_k proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R-factor.
- \Rightarrow Let's look at the evolution of the r_{ii} 's!
 - [Madritsch-Vallée'10]: In LLL, the log r_{ii} 's evolve like a sandpile.

- BKZ_k proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R-factor.
- \Rightarrow Let's look at the evolution of the r_{ii} 's!
 - [Madritsch-Vallée'10]: In LLL, the log r_{ii} 's evolve like a sandpile.

- BKZ_k proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R-factor.
- \Rightarrow Let's look at the evolution of the r_{ii} 's!
 - [Madritsch-Vallée'10]: In LLL, the log r_{ii} 's evolve like a sandpile.

- BKZ_k proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R-factor.
- \Rightarrow Let's look at the evolution of the r_{ii} 's!
 - [Madritsch-Vallée'10]: In LLL, the log r_{ii} 's evolve like a sandpile.

- BKZ_k proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R-factor.
- \Rightarrow Let's look at the evolution of the r_{ii} 's!
 - [Madritsch-Vallée'10]: In LLL, the log r_{ii} 's evolve like a sandpile.

- BKZ_k proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R-factor.
- \Rightarrow Let's look at the evolution of the r_{ii} 's!
 - [Madritsch-Vallée'10]: In LLL, the log r_{ii} 's evolve like a sandpile.

- BKZ_k proceeds by k-dimensional HKZ reductions, performed circularly on the diagonal of the R-factor.
- \Rightarrow Let's look at the evolution of the r_{ii} 's!
 - [Madritsch-Vallée'10]: In LLL, the log r_{ii} 's evolve like a sandpile.

Analyzing BKZ's sandpile

A BKZ tour on the sandpile: $X' \lesssim AX + \Gamma$.

- A: successive averages.
- Γ: combinations of Hermite constants.
- \lesssim : can be made rigorous via amortizing.

Behavior of BKZ \leftrightarrow discrete-time affine dynamical system.

After
$$\mathcal{O}\left(\frac{n^{\beta}}{k^{2}}\log(\frac{n\beta}{\varepsilon})\right)$$
 calls to HKZ_{k} , BKZ_{k} returns C s.t.:
 $\mathrm{HF}(C) \leq (1+\varepsilon) \cdot k^{\frac{n-1}{2(k-1)} + \frac{3}{2}}.$

Analyzing BKZ's sandpile

A BKZ tour on the sandpile: $X' \lesssim AX + \Gamma$.

- A: successive averages.
- Γ: combinations of Hermite constants.
- \lesssim : can be made rigorous via amortizing.

Behavior of BKZ \leftrightarrow discrete-time affine dynamical system.

After $\mathcal{O}\left(\frac{n^3}{k^2}\log(\frac{n\beta}{\varepsilon})\right)$ calls to HKZ_k , BKZ_k returns C s.t.: $\mathrm{HF}(C) \leq (1+\varepsilon) \cdot k^{\frac{n-1}{2(k-1)} + \frac{3}{2}}.$

Analyzing BKZ's sandpile

A BKZ tour on the sandpile: $X' \lesssim AX + \Gamma$.

- A: successive averages.
- Γ: combinations of Hermite constants.
- \lesssim : can be made rigorous via amortizing.

Behavior of BKZ \leftrightarrow discrete-time affine dynamical system.

After
$$\mathcal{O}\left(\frac{n^{3}}{k^{2}}\log(\frac{n\beta}{\varepsilon})\right)$$
 calls to HKZ_{k} , BKZ_{k} returns C s.t.:
 $\mathrm{HF}(C) \leq (1+\varepsilon) \cdot k^{\frac{n-1}{2(k-1)} + \frac{3}{2}}.$

- Euclidean lattices: definitions and algorithmic problems.
- Reducing lattice bases efficiently.
- Paying more to get nicer bases.
- Sast lattice-based cryptography.
- Future directions.

- Cryptography: science of securing digital information.
- Design methodology: exploit the appearant hardness of an algorithmic problem to create a computational gap between valid and malicious parties.
- Finding very short bases seems exponentially hard.

- NTRU: Superfast schemes, but heuristic security.
- (a) a social indicient schemes, but provolution as worst-case lattice problems.

- Cryptography: science of securing digital information.
- Design methodology: exploit the appearant hardness of an algorithmic problem to create a computational gap between valid and malicious parties.
- Finding very short bases seems exponentially hard.

- NTRU: Superfast schemes, but heuristic security.
- [Ajtai 96, Regev 05...]: Somewhat inefficient schemes, but provably as secure as worst-case lattice problems.

- Cryptography: science of securing digital information.
- Design methodology: exploit the appearant hardness of an algorithmic problem to create a computational gap between valid and malicious parties.
- Finding very short bases seems exponentially hard.

- NTRU: Superfast schemes, but heuristic security.
- [Ajtai'96,Regev'05,...]: Somewhat inefficient schemes, but provably as secure as worst-case lattice problems.

- Cryptography: science of securing digital information.
- Design methodology: exploit the appearant hardness of an algorithmic problem to create a computational gap between valid and malicious parties.
- Finding very short bases seems exponentially hard.

- NTRU: Superfast schemes, but heuristic security.
- [Ajtai'96,Regev'05,...]: Somewhat inefficient schemes, but provably as secure as worst-case lattice problems.

Our contributions to lattice-based cryptography

Context: The rigorous approach becomes more efficient.

- Use of polynomial rings and ideal lattices.
- [Lyubashevsky-Micciancio'06-'08,Peikert-Rosen'06]: hash functions and digital signatures with quasi-optimal complexities.

$\Rightarrow\,$ Use polynomial rings and ideal lattices for encryption.

Fast public key encryption, semantically secure under (quantum) worst-case hardness assumptions for ideal lattices.

- S., Steinfeld, Tanaka and Xagawa. *Efficient Public-Key Encryption Based on Ideal Lattices*, ASIACRYPT'09.
- S. and Steinfeld. *Making NTRU as secure as worst-case problems over ideal lattices*, EUROCRYPT'11.

Our contributions to lattice-based cryptography

Context: The rigorous approach becomes more efficient.

- Use of polynomial rings and ideal lattices.
- [Lyubashevsky-Micciancio'06-'08,Peikert-Rosen'06]: hash functions and digital signatures with quasi-optimal complexities.
- \Rightarrow Use polynomial rings and ideal lattices for encryption.

Fast public key encryption, semantically secure under (quantum) worst-case hardness assumptions for ideal lattices.

- S., Steinfeld, Tanaka and Xagawa. *Efficient Public-Key Encryption Based on Ideal Lattices*, ASIACRYPT'09.
- S. and Steinfeld. *Making NTRU as secure as worst-case problems over ideal lattices*, EUROCRYPT'11.

Our contributions to lattice-based cryptography

Context: The rigorous approach becomes more efficient.

- Use of polynomial rings and ideal lattices.
- [Lyubashevsky-Micciancio'06-'08,Peikert-Rosen'06]: hash functions and digital signatures with quasi-optimal complexities.
- \Rightarrow Use polynomial rings and ideal lattices for encryption.

Fast public key encryption, semantically secure under (quantum) worst-case hardness assumptions for ideal lattices.

- S., Steinfeld, Tanaka and Xagawa. *Efficient Public-Key Encryption Based on Ideal Lattices*, ASIACRYPT'09.
- S. and Steinfeld. *Making NTRU as secure as worst-case problems over ideal lattices*, EUROCRYPT'11.

Introduction

The Learning With Errors Problem

- $A \leftarrow U(\mathbb{Z}_q^{m \times n})$ public.
- $\mathbf{s} \in \mathbb{Z}_a^n$ small, to be found .
- $\mathbf{e} \in \mathbb{Z}_a^m$: small Gaussian noise, unknown.

(Computational)-LWE [Regev'05]

[Technical conditions on the parameters]

LWE is no easier than finding short bases for arbitrary lattices.

Damien Stehlé

Euclidean lattices: algorithms and cryptography

Introduction

The Learning With Errors Problem

- $A \leftarrow U(\mathbb{Z}_q^{m \times n})$ public.
- $\mathbf{s} \in \mathbb{Z}_q^n$ small, to be found .
- $\mathbf{e} \in \mathbb{Z}_q^m$: small Gaussian noise, unknown.

(Computational)-LWE [Regev'05]

[Technical conditions on the parameters]

LWE is no easier than finding short bases for arbitrary lattices.

Damien Stehlé

Euclidean lattices: algorithms and cryptography

Introduction

The Learning With Errors Problem

- $A \leftarrow U(\mathbb{Z}_q^{m \times n})$ public.
- $\mathbf{s} \in \mathbb{Z}_q^n$ small, to be found .
- $\mathbf{e} \in \mathbb{Z}_q^m$: small Gaussian noise, unknown.

(Computational)-LWE [Regev'05]

[Technical conditions on the parameters]

LWE is no easier than finding short bases for arbitrary lattices.

Damien Stehlé

Damien Stehlé

- Structured matrices \Rightarrow faster operations.
- \bullet Structured matrices \leftrightarrow polynomials.

• Here:
$$R_q = \frac{\mathbb{Z}_q[x]}{x^n + 1}.$$

⇒ One-way function, at least as hard to invert as worst-case problems for ideal lattices.

• Ideal lattices \leftrightarrow ideals of $R = \frac{\mathbb{Z}[x]}{x^n + 1}$

⇒ With a trapdoor & generic hard-core bits: PK-encryption with quasi-optimal efficiency.

- Structured matrices \Rightarrow faster operations.
- Structured matrices \leftrightarrow polynomials.

Here:
$$R_q = rac{\mathbb{Z}_q[x]}{x^n + 1}.$$

 \Rightarrow One-way function, at least as hard to invert as worst-case problems for ideal lattices.

• Ideal lattices \leftrightarrow ideals of $R = \frac{\mathbb{Z}[x]}{x^n + 1}$.

With a trapdoor & generic hard-core bits: PK-encryption with quasi-optimal efficiency

- Structured matrices \Rightarrow faster operations.

Here:
$$R_q = rac{\mathbb{Z}_q[x]}{x^n + 1}.$$

 \Rightarrow One-way function, at least as hard to invert as worst-case problems for ideal lattices.

• Ideal lattices \leftrightarrow ideals of $R = \frac{\mathbb{Z}[x]}{x^n + 1}$.

 \Rightarrow With a trapdoor & generic hard-core bits: PK-encryption with quasi-optimal efficiency.

Decisional version of Ring-LWE

- a uniform in $R_q = \frac{\mathbb{Z}_q[x]}{x^n+1}$, known.
- $s, e \in R_q$, small and secret.

Comp-RLWE:
$$(a, a \cdot s + e) \rightarrow s$$

 \Rightarrow Dec-RLWE: $(a, a \cdot s + e) \approx^{c} U(R_q \times R_q)$?

(Decisional)-RLWE [Lyubashevsky-Peikert-Regev'10]

[Technical conditions on parameters] If finding short bases for arbitrary ideal lattices is hard, then $(a, a \cdot s + e)$ is computationally indistinguishable from uniform.
Decisional version of Ring-LWE

- a uniform in $R_q = \frac{\mathbb{Z}_q[x]}{x^n+1}$, known.
- $s, e \in R_q$, small and secret.

Comp-RLWE:
$$(a, a \cdot s + e) \rightarrow s$$

 \Rightarrow Dec-RLWE: $(a, a \cdot s + e) \approx^{c} U(R_q \times R_q)$?

(Decisional)-RLWE [Lyubashevsky-Peikert-Regev'10]

[Technical conditions on parameters] If finding short bases for arbitrary ideal lattices is hard, then $(a, a \cdot s + e)$ is computationally indistinguishable from uniform.

Decisional version of Ring-LWE

- a uniform in $R_q = \frac{\mathbb{Z}_q[x]}{x^n+1}$, known.
- $s, e \in R_q$, small and secret.

Comp-RLWE:
$$(a, a \cdot s + e) \rightarrow s$$

 \Rightarrow Dec-RLWE: $(a, a \cdot s + e) \approx^{c} U(R_q \times R_q)$?

(Decisional)-RLWE [Lyubashevsky-Peikert-Regev'10]

[Technical conditions on parameters] If finding short bases for arbitrary ideal lattices is hard, then $(a, a \cdot s + e)$ is computationally indistinguishable from uniform.

(Standard) NTRUEncrypt:

- Secret key: f, g small and f = 1 [2].
- Public key: $h = g/f \in R_q$, heuristically looks uniform.
- Enc: $M \mapsto C = 2hs + M$ [q], with s small & random.
- Dec: fC = 2gs + fM is small \Rightarrow Take it mod 2.
- Use RLWE to make *C* indistinguishable from uniform!
 Difficulty: RLWE hardness result requires *h* uniform.
 Obtained by sampling *f*, *g* from discrete Gaussians.

(Standard) NTRUEncrypt:

- Secret key: f, g small and f = 1 [2].
- Public key: $h = g/f \in R_q$, heuristically looks uniform.
- Enc: $M \mapsto C = 2hs + M$ [q], with s small & random.

• Dec:
$$fC = 2gs + fM$$
 is small \Rightarrow Take it mod 2.

Use RLWE to make C indistinguishable from uniform!
 Difficulty: RLWE hardness result requires h uniform.
 Obtained by sampling f, g from discrete Gaussians.

(Standard) NTRUEncrypt:

- Secret key: f, g small and f = 1 [2].
- Public key: $h = g/f \in R_q$, heuristically looks uniform.
- Enc: $M \mapsto C = 2hs + M$ [q], with s small & random.
- Dec: fC = 2gs + fM is small \Rightarrow Take it mod 2.
- Use RLWE to make C indistinguishable from uniform!
 Difficulty: RLWE hardness result requires h uniform.
 Obtained by sampling f, g from discrete Gaussians.

- Secret key: f, g small and f = 1 [2].
- Public key: $h = g/f \in R_q$, heuristically looks uniform.
- Enc: $M \mapsto C = 2(hs + e) + M[q]$, with s, e small & random.
- Dec: fC = 2(gs + fe) + fM is small \Rightarrow Take it mod 2.
- Use RLWE to make C indistinguishable from uniform!
 Difficulty: RLWE hardness result requires h uniform.
 Obtained by sampling f, g from discrete Gaussians.

- Secret key: f, g small and f = 1 [2].
- Public key: $h = g/f \in R_q$, heuristically looks uniform.
- Enc: $M \mapsto C = 2(hs + e) + M[q]$, with s, e small & random.
- Dec: fC = 2(gs + fe) + fM is small \Rightarrow Take it mod 2.
- Use RLWE to make C indistinguishable from uniform!
 Difficulty: RLWE hardness result requires h uniform.
 Obtained by sampling f, g from discrete Gaussians.

- Secret key: f, g small and f = 1 [2].
- Public key: $h = g/f \in R_q$, heuristically looks uniform.
- Enc: $M \mapsto C = 2(hs + e) + M[q]$, with s, e small & random.
- Dec: fC = 2(gs + fe) + fM is small \Rightarrow Take it mod 2.
- ► Use RLWE to make *C* indistinguishable from uniform!
- Difficulty: RLWE hardness result requires h uniform.
- Obtained by sampling f, g from discrete Gaussians.

- Secret key: f, g small Gaussian and f = 1 [2].
- Public key: $h = g/f \in R_q$, provably is uniform.
- Enc: $M \mapsto C = 2(hs + e) + M[q]$, with s, e small & random.
- Dec: fC = 2(gs + fe) + fM is small \Rightarrow Take it mod 2.
- ► Use RLWE to make *C* indistinguishable from uniform!
- Difficulty: RLWE hardness result requires h uniform.
- Obtained by sampling f, g from discrete Gaussians.

(Modified) NTRUEncrypt:

- Secret key: f, g small Gaussian and f = 1 [2].
- Public key: $h = g/f \in R_q$, provably is uniform.
- Enc: $M \mapsto C = 2(hs + e) + M[q]$, with s, e small & random.
- Dec: fC = 2(gs + fe) + fM is small \Rightarrow Take it mod 2.
- ▶ Use RLWE to make *C* indistinguishable from uniform!
- Difficulty: RLWE hardness result requires h uniform.
- Obtained by sampling f, g from discrete Gaussians.

The modified NTRU is secure, and asymptotically efficient.

- Euclidean lattices: definitions and algorithmic problems.
- Reducing lattice bases efficiently.
- Paying more to get nicer bases.
- Fast lattice-based cryptography.
- Future directions.

Target: LLL as fast as matrix multiplication.

Considering the linear algebra contribution to the cost:

- We decreased the cost wrt $\beta = \log \max \|\mathbf{b}_i\|$.
- There exist strategies to decrease the cost wrt *n*: [Schönhage'84,Storjohann'96,Koy-Schnorr'01].
- Are these improvements compatible?

Breaking the linear precision barrier:

• Current numeric approach: $\Omega(n)$ bits of precision.

What can we do with less?

Target: LLL as fast as matrix multiplication.

Considering the linear algebra contribution to the cost:

- We decreased the cost wrt $\beta = \log \max \|\mathbf{b}_i\|$.
- There exist strategies to decrease the cost wrt *n*: [Schönhage'84,Storjohann'96,Koy-Schnorr'01].
- Are these improvements compatible?

Breaking the linear precision barrier:

- Current numeric approach: $\Omega(n)$ bits of precision.
- What can we do with less?

Target: LLL as fast as matrix multiplication.

Considering the linear algebra contribution to the cost:

- We decreased the cost wrt $\beta = \log \max \|\mathbf{b}_i\|$.
- There exist strategies to decrease the cost wrt *n*: [Schönhage'84,Storjohann'96,Koy-Schnorr'01].
- Are these improvements compatible?

Breaking the linear precision barrier:

• Current numeric approach: $\Omega(n)$ bits of precision.

• What can we do with less?

Target: LLL as fast as matrix multiplication.

Considering the linear algebra contribution to the cost:

- We decreased the cost wrt $\beta = \log \max \|\mathbf{b}_i\|$.
- There exist strategies to decrease the cost wrt *n*: [Schönhage'84,Storjohann'96,Koy-Schnorr'01].
- Are these improvements compatible?

Breaking the linear precision barrier:

- Current numeric approach: $\Omega(n)$ bits of precision.
- ▶ What can we do with less?

Sub-exponential HKZ reduction:

- Three main types of SVP solvers: [Kannan'83,Fincke-Pohst'83], [Ajtai-Kumar-Sivakumar'01] and [Micciancio-Voulgaris'10].
- All of (at least) exponential complexities.
- Can we do better? With polynomial approximation factors? With heuristics? With quantum computing?

- BKZ achieves $\gamma \approx k^{n/(2k)}$ in time $\approx 2^{\mathcal{O}(k)} \cdot \operatorname{Poly}(n)$.
- A. different biorarchy, relaxing an SVP solver rather than strengthening LLL?

Sub-exponential HKZ reduction:

- Three main types of SVP solvers: [Kannan'83,Fincke-Pohst'83], [Ajtai-Kumar-Sivakumar'01] and [Micciancio-Voulgaris'10].
- All of (at least) exponential complexities.
- Can we do better? With polynomial approximation factors? With heuristics? With quantum computing?

- BKZ achieves $\gamma \approx k^{n/(2k)}$ in time $\approx 2^{\mathcal{O}(k)} \cdot \operatorname{Poly}(n)$.
- A different hierarchy, relaxing an SVP solver rather than strengthening LLL?

Sub-exponential HKZ reduction:

- Three main types of SVP solvers: [Kannan'83,Fincke-Pohst'83], [Ajtai-Kumar-Sivakumar'01] and [Micciancio-Voulgaris'10].
- All of (at least) exponential complexities.
- Can we do better? With polynomial approximation factors? With heuristics? With quantum computing?

- BKZ achieves $\gamma \approx k^{n/(2k)}$ in time $\approx 2^{\mathcal{O}(k)} \cdot \operatorname{Poly}(n)$.
- A different hierarchy, relaxing an SVP solver rather than strengthening LLL?

Sub-exponential HKZ reduction:

- Three main types of SVP solvers: [Kannan'83,Fincke-Pohst'83], [Ajtai-Kumar-Sivakumar'01] and [Micciancio-Voulgaris'10].
- All of (at least) exponential complexities.
- Can we do better? With polynomial approximation factors? With heuristics? With quantum computing?

- BKZ achieves $\gamma \approx k^{n/(2k)}$ in time $\approx 2^{\mathcal{O}(k)} \cdot \operatorname{Poly}(n)$.
- A different hierarchy, relaxing an SVP solver rather than strengthening LLL?

The rise of lattice-based cryptography?

Towards practical lattice-based cryptography:

- ► Making crucial primitives extremely fast.
- Realizing more functionalities.

Firmer security grounding:

- Mount large-scale cryptanalyses to get meaningful security parameters.
- ► Are lattice problems hard even for ideal lattices?
- Are lattice problems quantumly hard?

The rise of lattice-based cryptography?

Towards practical lattice-based cryptography:

- ▶ Making crucial primitives extremely fast.
- Realizing more functionalities.

Firmer security grounding:

- Mount large-scale cryptanalyses to get meaningful security parameters.
- ▶ Are lattice problems hard even for ideal lattices?
- ► Are lattice problems quantumly hard?

Thank You!

Damien Stehlé