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Abstract

Diffusion MRI (dMRI) is a powerful tool for inferring the architecture of the cerebral

white matter in-vivo and non-invasively. Based on model assumptions, reconstructed

diffusion functions can provide sub-voxel resolution microstructural information of

the white matter superior to the resolution of the raw diffusion images. In the com-

monly used Diffusion Tensor Imaging (DTI) the diffusion function is modelled by a

second order tensor. However, since it is limited in regions with fiber inhomogeneity,

recent research has produced numerous reconstruction techniques that infer the fiber

layout in the underlying white matter with greater accuracy. These techniques rep-

resent the diffusion function by complex shaped spherical functions. In this thesis we

address two problems – first we examine one such reconstruction technique closely,

and second we propose a generic way of extracting geometric features from a wide

class of reconstructed diffusion spherical functions to characterize the white matter.

In this thesis we make a number of contributions. First we examine, Generalized

DTI, which uses Cartesian tensors of order higher than two to model the diffusion

profile (the diffusion coefficient along multiple spatial directions) in regions with fiber

inhomogeneity. We propose two independent methods for estimating fourth order dif-

fusion tensors with a positive diffusion profile, which is an important consideration

since negative diffusion is non-physical. Then we propose an analytical approxima-

tion for estimating the diffusion propagator (the probability density function describ-

ing the diffusion process) from tensors of order higher than two, which allows us to

measure both a modified diffusion profile and the propagator, which contain comple-

mentary information, from regions with fiber inhomogeneity. The analytical formu-

lation allows us to efficiently estimate the propagator which is needed to infer the

underlying fiber layout. Finally we propose a generic method for extracting the max-

ima from a wide class of diffusion spherical functions (functions on a sphere), since

these indicate the fiber layout in the white matter. We also extract other geomet-

ric features from these complex shaped spherical diffusion functions to propose new

biomarkers for characterizing the white matter. To illustrate the maxima-extraction,

we also propose extensions to well known deterministic tractography methods where

we apply maxima extraction to complex shaped orientation distribution functions

(ODFs) to trace fibers through regions with fiber crossings.
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Résumé

Cette thèse traite du problème de la modélisation du signal en IRM de Diffusion et à

son exploitation pour caractériser au mieux le réseau de fibres de la matière blanche

cérébrale. Nous examinons d’abord l’IRM du Tenseur de Diffusion Généralisé, qui

utilise des tenseurs Cartésiens d’ordre supérieur à deux pour modéliser le signal de

Diffusion. Nous proposons deux méthodes indépendantes pour estimer des tenseurs

d’ordre 4 avec un profil de diffusion positive. Ensuite, nous proposons une approxi-

mation analytique du propagateur de diffusion de tenseurs d’ordre supérieur à deux,

ce qui nous permet de mesurer à la fois un profile de diffusion modifié et le propaga-

teur, qui contiennent des informations complémentaires. Finalement, nous proposons

une méthode permettant d’extraire les maxima d’une large classe de fonctions de dif-

fusion sphériques, que l’on peut obtenir à partir du propagateur reconstruit. Ces

fonctions sont utilisées pour nous indiquer finement les directions des fibres dans la

substance blanche. Nous analysons et extrayons les caractéristiques géométriques

de ces fonctions sphériques et exploitons ces résultats pour proposer de nouveaux

biomarqueurs pour la caractérisation de la substance blanche cérébrale. Enfin, nous

exploitons l’extraction des maxima de ces fonctions pour généraliser deux méthodes

de tractographie déterministe afin de permettre la gestion des singularités comme

celles qui correspondent aux fibres qui se croisent.
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CHAPTER 1

INTRODUCTION

CONTEXT

Diffusion MRI (dMRI) with its ability to measure the translational diffusion of water

molecules is a powerful tool for inferring the architecture of the cerebral white matter

in-vivo and non-invasively. Diffusion weighted images (DWIs) measure the diffusion

of water molecules along particular directions and dMRI reconstruction algorithms

incorporate this partial directional information into integrated diffusion functions.

As the length scale of the Brownian motion of water molecules contained in the

brain is comparable to the scale of the coherent structures of the axons constituting

the white matter, diffusion is a sensitive probe of the white matter’s microstructure

and reconstructed diffusion functions can therefore reveal microstructural details

superior to the resolution of the raw DWIs. However, since the current resolution

achieved by DWIs is orders of magnitude coarser than the true scale of an axon, the

reconstructed diffusion functions are affected by partial voluming effects from sub-

voxel resolution axonal microstructures and can at best represent the dominant axon

fiber structure. Nonetheless, where invasive methods such as dissection, injection of

tracers and indirect observation of changes in response due to sustained injuries or

pathologies used to be the only way of studying the brain in the past, today dMRI from

its ability to quantify the anisotropic diffusion of water molecules presents a unique

non-invasive, although indirect, perception into the fibrous cerebral white matter.

Diffusion Tensor Imaging (DTI) is the most commonly used dMRI reconstruction tech-

nique, where the reconstructed diffusion function is represented by an ellipsoid pa-

rameterized by a second order Cartesian tensor, called the diffusion tensor. DTI’s

popularity can be attributed to its simple mathematical formulation and acquisition

requirements and to its elegant physical interpretation of its diffusion function for

inferring the microstructure of the cerebral white matter. However, due to its as-

sumption that the underlying microstructure is homogeneous, DTI is inaccurate in

regions with microstructural heterogeneity.
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To overcome this limitation of DTI, other dMRI reconstruction techniques have been

proposed recently, which attempt to infer heterogeneous white matter microstruc-

tures with greater accuracy. These “high order models” stem from the mathematical

and physical models of the diffusion process, namely the phenomenological approach

of Fick and the random walk model proposed by Einstein. These have given rise to

methods that estimate the apparent diffusion coefficient (ADC) with greater accuracy

and the q-space formalism, which relates the diffusion signal to the diffusion prop-

agator or the probability density function by a Fourier Transform. While the high

order ADC models measure the inherent diffusion coefficient and capture the effects

of microstructural heterogeneity in the q-space, the high order diffusion propagator

models capture these effects in the real space.

In this thesis, we address a number of important problems related to these high

order dMRI reconstruction techniques. The starting point of this thesis is the Gen-

eralized DTI (GDTI) reconstruction approach, which uses Cartesian tensors of order

higher than two (higher order tensors: HOTs) to model the ADC in regions with mi-

crostructural heterogeneity with greater accuracy than DTI. We study the problem of

estimating HOTs with positive diffusion profiles or ADCs, since negative diffusion is

non-physical. We show the relevance of the problem and the usefulness of the positiv-

ity constraint from the improved results of two independent solutions for estimating

HOTs with positive diffusion profiles.

Next we address the important problem of estimating the high order diffusion prop-

agator from HOTs, since the ADC represents the effects of microstructural hetero-

geneity in the q-space. To infer the microstructure of the cerebral white matter, it is

therefore necessary to estimate the diffusion propagator, which quantifies the effects

of the microstructural heterogeneity in the real space. We propose an analytical ap-

proximation of the propagator from a modified GDTI model HOTs, and we show that

it is possible to infer the underlying microstructure, such as axon fiber directions,

from the angular structure of the approximations.

Finally, we address the pertinent problem of extracting the complex information re-

covered by the high order models, which is contained in their reconstructed diffusion

functions. This is a significant problem since geometric features of a wide class of dif-

fusion functions have physical interpretations, such as for inferring the microstruc-

ture, or for characterizing the anisotropy of the cerebral white matter. We propose a

complete method for the exact detection of all the maxima of a wide class of spherical

diffusion functions, which we show can be used for correctly inferring the axon fiber

directions and therefore also for tracing fibers. We also propose a sub-voxel resolution

anisotropy measure for this class of spherical diffusion functions, to characterize the

cerebral white matter in a detail commensurate with the information revealed by the

high order models.
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The underlying mathematical framework connecting the contributions of this the-

sis is the symmetric high order Cartesian tensor. The spherical projection of the

Cartesian tensor or the projection of the tensor’s multilinear form on a sphere, pro-

vides a substitute framework for the Spherical Harmonic basis, which has come into

almost standard use in current high order dMRI reconstruction techniques. There-

fore, this thesis with its predisposition towards Cartesian tensors, provides a signifi-

cant alternate outlook and approach through Cartesian coordinates to the popularly

used spherical coordinates in dMRI. This is an important consideration, since just as

the spherical coordinates simplify the computation of angular characteristics of the

underlying white matter, such as the angular moments of the diffusion propagator,

which reveal the axon fiber directions, the Cartesian coordinates simplify the compu-

tation of Cartesian characteristics, such as the Cartesian moments or cumulants of

the diffusion propagator, which can be used to quantify the anisotropy of the white

matter.

OUTLINE

This thesis begins by exploring the physical context of the problem – the brain. Then

it presents the principles of the non-invasive modality of dMRI. Finally it presents

the problems related to high order dMRI reconstruction techniques that we have ad-

dressed and our solutions. This thesis contains the following chapters. An illustration

of the flow of the chapters is presented in Fig-1.1.

Chapter-2 The introductory chapter is dedicated to the brain, which forms the phys-

ical basis of our problem of study. It presents an overview of the brain’s anatomy, rel-

evant microscopic neural tissue, and important macroscopic cerebral tissue organiza-

tion, namely the major white matter pathways. These are central for understanding

the diffusion of water molecules in the brain, and for understanding the usefulness

of dMRI in studying the brain.

Chapter-3 This chapter presents the fundamentals of nuclear magnetic resonance

(NMR), diffusion NMR (dNMR) and reviews a number of reconstruction techniques in

dMRI that are used to infer the microstructure of the cerebral white matter. A major

contribution of this chapter is in its observation of how the ways of modelling dif-

fusion has influenced the reconstruction techniques in dMRI. This chapter presents

the two ways of modelling diffusion, namely Fick’s phenomenological approach and

Einstein’s random walk approach, and develops on these to show how they lead to

the two ways for modelling the dNMR signal, namely the Stejskal-Tanner formula-

tion and the q-space formalism. These two ways of modelling the dNMR signal play

pivotal roles in dMRI, since almost all dMRI reconstruction techniques employ either

of these signal models, or both, for reconstructing a diffusion function from the signal

to infer the microstructure of the white matter. The dMRI reconstruction techniques

3



Diffusion NMR and MRI
Chapter 3

Phenomenological Approach q-space Formalism

Cartesian Tensors

EAP Approximation
Chapter 5

Geometric Features
from Spherical Diffusion

Functions &
Tractography

Chapter 6

Positive ADC Modelling
Chapter 4

The Brain,
Chapter 2

Figure 1.1: Organization of the thesis.

that are reviewed in the final part of this chapter are therefore presented under this

light. Finally the review of techniques reveals the current trend towards spherical co-

ordinates and the Spherical Harmonic basis, which motivates the work in this thesis

with an alternate Cartesian coordinate approach to dMRI.

Chapter-4 This chapter addresses the problem of estimating a 4th order Cartesian

tensor from the GDTI model with a positive diffusion profile since negative diffu-

sion is non-physical. We propose two independent methods, namely a Riemannian

approach based on the algebra of 4th order tensors, and a polynomial parameteriza-

tion approach based on Hilbert’s theorem on ternary quartics (TQ). We show that the

Riemannian approach guarantees positive definite diffusion but solves a more con-

strained problem than implied by the GDTI model, while the TQ approach solves the

correct problem but guarantees only non-negativity. However, in practice the results

of the Riemannian approach are similar to the TQ approach and due to numerical

computations we never find zero diffusion from the TQ approach. The relevance of

the problem is motivated from the improved results.

Chapter-5 This chapter addresses the problem of estimating the higher order dif-

fusion propagator from HOTs. Although the GDTI HOTs estimate the ADC with

greater accuracy than DTI, since the ADC describes the effects of microstructural

heterogeneity in the signal domain or the q-space, it is necessary to compute the dif-

4



fusion propagator, which describes the effects of the microstructural heterogeneity

in the real space, to infer the geometry of the underlying microstructure. Therefore,

while the GDTI model is based on the Stejskal-Tanner formulation of the signal, in

this chapter we also employ the q-space formalism to leverage the Fourier Transform

relationship between the diffusion signal and the diffusion propagator, and we pro-

pose an analytical approximation of the diffusion propagator from a modified GDTI

model using 4th order tensors. We show that the approximation converges well to the

true diffusion propagator and since it is analytical it is fast and can be implemented

efficiently. From the results, we show that it is possible to infer the microstructure

from the angular structure of the approximate diffusion propagator.

Chapter-6 In this chapter we address the problem of extracting the geometric in-

formation recovered by the higher order models. In DTI the diffusion information is

represented by a diffusion ellipsoid or a 2nd order tensor, where it is straightforward

to interpret its geometry from the eigen-decomposition of the tensor. However, in the

higher order models, the diffusion information is generally represented by a generic

function on the sphere. We propose a complete method for detecting the maxima of a

wide class of spherical functions, since the maxima often represent underlying fiber

directions. We show, therefore that this method can be used for tracing fibers through

regions with fiber crossings by extending the standard Streamline tractography and

also the Tensorline tractography to work with generic spherical diffusion functions.

We also extract further geometric features from these spherical functions and propose

a sub-voxel resolution anisotropy measure to characterize the cerebral white matter.

Chapter-7 The last chapter concludes the thesis by summarizing the problems we

have addressed and their solutions we have proposed. In this chapter we also present

perspectives and directions for developing future research, namely in further explor-

ing the problems that can be addressed and solved by the Cartesian coordinate ap-

proach to dMRI.
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2.1
INTRODUCTION

The seat of consciousness and intelligence, the brain has tenaciously de-

sisted generations of probing investigators, jealously guarding its secrets over cen-

turies from inquisitive minds. Only bit by bit has it revealed the mysteries on “how

it functions”, and “how it is constructed”. Twofold are the difficulties in investigating

the brain – its sheer complexity, its sophisticated design, and the permanent damage

that a direct investigation would cause to the control-center regulating the function-

ing of the body and hosting the perception of consciousness, resulting almost certainly

in an irreversible modification of cognition or even in the death of the subject.

Our current knowledge about the brain is the result of enduring and accumulated

research, primarily from dissections of the post-mortem brain – both human and an-

imal and from experiments on animal brains, since only in these cases are invasive

investigations possible or ethically accepted. A great deal about the functional char-

acteristics of the brain has also been learned by observing animals and humans who

have sustained injuries to their brains, either through accidents or diseases. This is

changing with the advent of modern non-invasive and in-vivo imaging techniques of

the human body such as Magnetic Resonance Imaging (MRI). While Functional MRI

(fMRI), a specialized modality of MRI, addresses the brain on “how it functions”, Dif-

fusion MRI (dMRI), another specialized modality of MRI and the central topic of this

thesis, is well suited for addressing “how it is connected”.

This chapter is dedicated to a quick perusal of the brain – its general structure

and organization, the tissues constituting it, and in highlight, it’s major neuronal

pathways interconnecting its various regions. This chapter aims to provide a con-

text for understanding the general physical problem dMRI attempts to solve. The

contents of this chapter have been collected from the following various sources

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], and from the Internet.

2.2
THE NERVOUS SYSTEM

The role of the human nervous system is to coordinate the functions of the

body, both basic or unconscious, and intricate and deliberate. It gathers information

on the internal and external environment from its sensory receptors, integrates the

information to determine the appropriate response, and sends out signals to muscles

and glands to actuate the response. At the most fundamental level, the nervous sys-

tem propagates signals from one cell to others. This is done chiefly in two ways. Nerve

cells can either transmit electrochemical waves or action potentials along wire-like

axons interconnecting them to send out signals to specific target cells from one point

to another, or they can engage the endocrine system to activate glands that release

hormones into the internal circulation that diffuse to distant cells like a broadcast

system. At the global level, the nervous system not only regulates voluntary and in-
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voluntary bodily functions such as breathing, the beating of the heart, blood pressure,

body temperature, movement of muscles and the limbs, but also makes possible more

advanced and elaborate modes of perception and communication such as awareness,

emotions, languages, ideas and abstraction of concepts, transmission of cultures and

other expressions of cognition, behaviour and features of society.

The nervous system is subdivided anatomically into the central nervous system (CNS)

and the peripheral nervous system (PNS), and functionally into the somatic nervous

system (SNS) and the autonomic nervous system (ANS). The CNS is comprised of the

brain and the spinal cord and is responsible for all the central processing. The PNS

is an extension of the CNS, and consists of cranial and spinal nerves emerging from

the brain and the spinal cord respectively, that connect the CNS to sensory receptors,

muscles and glands. Functionally the SNS is comprised of all the structures of the

CNS and the PNS that convey sensory or afferent signals consciously or unconsciously

from extremities to the CNS such as vision, pain, touch, muscle tone, etc., and those

that convey motor control or efferent signals from the CNS to voluntary or striated

muscles. The ANS on the other hand is comprised of structures of the CNS and

the PNS that convey afferent input from internal organs to the CNS, and those that

convey efferent signals from the CNS to involuntary or smooth muscles, such as the

cardiac muscles, and glands.

2.2.1 The Brain: Anatomy

The brain is the primary building block of the nervous system and its central process-

ing unit. The adult human brain on an average weighs 1500g. It is a soft and delicate

organ that is encased within the thick bones of the cranium and is wrapped in three

layers of membranes known as the meninges. The brain floats in the cerebrospinal

fluid (CSF), a transparent colourless fluid, which also fills the open chambers in the

brain or the ventricular system, and spaces in and around the brain. The CSF brings

nutrients to the brain, removes wastes, provides an immunological protection, and

supports the brain mechanically through buoyancy. It acts as a “water-jacket” or a

“shock-absorber” cushioning the brain against sudden jolts and head movements. The

buoyancy also reduces the weight of the brain sixty-fold to about 25g, thus protecting

its soft tissue from being crushed under its own weight.

Described simply, the brain is anatomically subdivided into the cerebrum, the brain-

stem, and the cerebellum. The cerebrum, the top-most part of the brain, is constituted

of two large lateral hemispheres known as the cerebral hemispheres, and the dien-

cephalon. The surface of the cerebral hemispheres is constituted of grey matter and

is topographically highly folded or wrinkled and is marked by the formation of slit-

like fissures or valleys known as sulci and raised ridges between these fissures known

as gyri. The mid-line or the longitudinal fissure separates the two hemispheres. The
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Figure 2.1: (a) The divisions of the brain, adapted from [7]. (b) The four major lobes

of the cerebral cortex [6].

cerebral hemispheres are each divided into four lobes roughly separated by important

sulci. These are the frontal lobe, the parietal lobe, the occipital lobe, and the temporal

lobe. The frontal lobe is involved in high level thinking, planning, decision-making,

and execution of movements. The parietal lobe is important in sensory perceptions

such as touch and pressure, and also helps in spatial orientation and information

processing. The occipital lobe is the visual centre of the brain and processes the infor-

mation from the eyes. The temporal plays a key role in auditory processing and the

storing of memory.

The diencephalon is mainly constituted by the thalamus and the hypothalamus,

which are deep brain structures located just below the cerebral hemispheres and

above the midbrain which is a part of the brainstem. The thalamus is a crucial

centre for integrating and relaying motor and sensory information to the cerebral

hemispheres for higher processing. It is critical for cognition and awareness. The hy-

pothalamus regulates functions such as hunger, thirst, pain, and pleasure. One of its

most important functions is to link the CNS to the endocrine system via the pituitary

gland. Its influence is widespread and is even involved with emotions and behavior.

The brainstem is the bottom-most part of the brain and connects the brain to the

spinal cord. It has three major parts – the midbrain, the pons, and the medulla

oblongata. The brainstem regulates the most basic functions of the body such as

consciousness, the sleep-wake cycle, and respiratory and cardiovascular control.

The cerebellum is located at the back of the head, between the cerebrum and the

brainstem, behind the medulla and the pons. Its role is in controlling balance, pos-

ture, storing learned movements, and in synchronizing contractions of muscles to

smooth out responses by regulating muscle tensions.

Functionally speaking, the top-most part of the brain is the most complex and has

the greatest influence on conscious action. Moving lower into the brain, the parts
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become increasingly primitive and are responsible for more basic functions that re-

quire less conscious control. However, all these parts have to intercommunicate to

coordinate their actions for the correct overall functional responses. This communi-

cation is possible due to a network of connectivities with highly organized structures

that constitute the so called white matter of the brain. Inferring the structure of this

white matter non-invasively is the central problem that dMRI attempts to resolve.

2.2.2 Building Blocks: The Neuron

At a microscopic scale the brain is a network of neurons containing on an average

100 billion (1011) neurons, each connected to about 1000 other neurons, totalling ap-

proximately to 100 trillion (1014) synaptic connections, wired together by 150,000 –

180,000 km of nerve fibers with diameters in the range of 0.3µm – 10µm. These

humongous numbers can be fully comprehended when compared to other similarly

humongous numbers. It is estimated (very roughly) that the number of atoms in the

Figure 2.2: Top left: the neuron. Adapted from Wikipedia (Neuron). Top right: an

oligodendrocyte creating myelin sheath to wrap the axon. Adapted from Wikipedia

(Oligodendrocyte). Bottom: Electron-micrograph of axons from the Corpus Callosum.

Cross section view. Myelin sheaths appear as dark bands around paler axons. Ax:

axon, *: small axons that aren’t myelinated, scale-bar: 1µm. Adapted from [5].
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observable universe is of the order of 1080, the number of stars in the observable uni-

verse is of the order of 1020, and the number of stars in our galaxy, the Milky Way, is

of the order of 1011. Indeed, with the number of neurons comparable to the number

of stars in our galaxy, interconnected by microscopic wiring with a total length of a

hundred thousand kilometers, the brain is highly a complex and sophisticated organ.

The neuron is an electrically excitable cell capable of processing and transmitting

information by electrochemical signalling. It is the fundamental processing unit of

the brain. The brain is primarily constituted of neurons and glial cells which support

and maintain neurons. The neurons have a cell body containing a nucleus, dendrites,

which are short filaments attached to the body that branch out forming a tree-like

structure, and a single long axon, a cable-like fiber extending from the neuronal body

and ending in branched out synaptic terminals. The dendrites receive electrochemical

stimuli from adjacent neurons via the synaptic terminals of their axons, and act as

input sources for the neuronal cell body. The cell body processes this information and

is then capable of retransmitting a signal via the axon. The signal travels along the

axon and is transmitted via synapses at its terminals to dendrites of adjacent and

connected neurons.

Axons extend over distances that can be exceedingly long when compared to their

diameter of a few microns. In the human brain this can reach up to a meter, which

is a difference of six orders of magnitude. However, bare axons are poor transmitters

of electrochemical signals due to leakage. Special glial cells called oligodendrocytes

wrap the axons in a fatty substance known as myelin to considerably improve both

the efficiency and the speed of the transmission. The insulation or myelin sheaths

are created in regular lengths and are separated by tiny gaps known as nodes of Ran-

vier. Such axons are known as myelinated axons. A loss of myelin or demyelination

disrupts signal transmission and can result in functional pathologies of the brain.

Myelin, which is whitish in colour, imparts a whitish tinge to myelinated axons.

Neurons differ from other cells by the fact that they don’t replicate themselves.

Therefore, not only do injuries to the brain and degenerative pathologies result in

a permanent loss of affected neurons, but even the process of aging results in a pro-

gressive loss of neurons and axons. Between the age of twenty years and ninety years

there is a loss of 9.5% of the total neurons and a loss of 40 – 50% of the total length

of all the myelinated axons.

dMRI can non-invasively infer the highly organized structures formed by axons

traversing the brain interconnecting its various regions. Therefore, dMRI is a suit-

able tool for studying the demyelination and degeneration of axons due to injuries,

pathologies and aging.
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Figure 2.3: Grey & white matter and the ventricles in a coronal slice. (a) adapted

from www.healcentral.org. (b) T1 image adapted from the Whole Brain Atlas.

2.2.3 Grey Matter

At a macroscopic scale the brain is made up of grey matter and white matter. Grey

matter is constituted of neuron cell-bodies, dendrites, synapses, and glial cells. It is

grey brown in colour due to the capillary blood vessels and the neuronal cell-bodies.

White matter is constituted of myelinated axons and oligodendrocytes. Since grey

matter is constituted mainly of neuronal cells, grey matter regions are the processing

centres of the brain. The topographies of both grey matter and white matter are

highly organized.

The largest, most important and most complex formation of grey matter is the surface

of the cerebral hemispheres known as the cerebral cortex. The extensive wrinkling

or folding of this surface increases the area of the cortex threefold and about two

thirds of the grey matter of the cerebral cortex is buried in the sulci of the cerebral

hemispheres. The cerebral cortex handles the most complex or highest processes of

the brain. Evolutionarily speaking it is the most recently developed part of the brain,

and its topographic complexity has increased over time. For example in rodents and

small mammals the cerebral cortex is smooth, and it develops sulci in primates and

larger mammals.

Other important regions of grey matter include the basal ganglia which are located

deep within the cerebrum, and connected to the cerebral cortex and the thalamus.

The various grey matter nuclei of the basal ganglia – the caudate nucleus, putamen,

globus pallidus, and substantia nigra, are involved in voluntary motor control, eye

movements, cognition and emotions. There exist other important grey matter regions

such as nuclei in the thalamus and the hypothalamus, the surface of the cerebellum

or the cerebellar cortex, etc.
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Figure 2.4: Commissural fibers. (a) top view of the Corpus Callosum (CC), adapted

from [11]. (b) Divisions of the CC, adapted from www.healcentral.org. (c) The CC and

the anterior commissure, adapted from www.humannervoussystem.info.

2.2.4 White Matter

While the grey matter is made up of the neuronal cell bodies, the myelinated ax-

ons originating from these neurons constitute the white matter, which gets its colour

and name from the colour of the myelin sheaths. The myelinated axons interconnect

various grey matter structures, and traverse the brain in highly organized conglom-

erations or pathways. While the surface of the cerebral hemispheres is the cerebral

cortex, a grey matter structure, much of the volume beneath is formed by these white

matter pathways interconnecting different regions of the cortex, and connecting the

cortex to other grey matter structures such as deep brain nuclei, the cerebellum,

and the spinal cord. These pathways give white matter a coherent and fibrous qual-

ity from the microscopic to the macroscopic scale. This forms the physical basis of

dMRI’s usefulness and suitability for studying the connectivity of the brain.

Figure 2.5: Short and long association fibers. Short or “U”-fibers, the cingulum, the

superior longitudinal fasciculus (SLF), and the inferior longitudinal fasciculus (ILF).

(a) Adapted from [6]. (b) Adapted from [11].
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The abundantly present water molecules in the white matter diffuse in a very par-

ticular fashion within this medium. The coherent fibrous structure of white matter

hinders diffusion perpendicular to its filaments and fibers, while the diffusion paral-

lel to these structures is left relatively unaffected. In other words as water molecules

diffuse in white matter due to thermally driven Brownian motion, they probe its fi-

brous structure. Since dMRI is sensitive to the diffusion of water molecules, it can

be used to measure this constrained or anisotropic diffusion in white matter, which

makes it possible to indirectly perceive the fine microstructure of the medium and to

non-invasively infer the white matter pathways.

The major white matter pathways can be classified into three groups.

Commissural Fibers The commissural or transverse fibers (Fig-2.4) connect mir-

roring and different sites between the two cerebral hemispheres. The most important

commissural structure is the corpus callosum (CC), which is also the largest white

matter structure. It contains about three hundred million fibers. The CC is divided

into the rostrum, the genu, the body, and the splenium from anterior to posterior.

Commissural fibers traversing the CC in the genu and curving into the frontal lobe

make up the forceps anterior (minor). Similarly fibers traversing in the splenium and

curving into the occipital lobe make up the forceps posterior (major). Another impor-

tant commissural structure is the anterior commissure (AC). The CC and the AC are

responsible for inter-hemispheral communication.

Association Fibers The association fibers (Fig-2.5) connect regions of the cerebral

cortex within the same hemisphere. Short association fibers, also known as “U”-

fibers connect adjacent gyri, going around the sulcus separating them. These lie

immediately beneath the grey matter of the cerebral cortex. Long association fibers

Figure 2.6: Projection fibers. (a) The corona radiata (CR), the anterior thalamic ra-

diation (ATR), and the corticospinal tract (CST). Adapted from [11]. (b) The effer-

ent/motor (red: CST) fibers and the afferent/sensory (blue) fibers. Adapted from [6].
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Figure 2.7: Region with three fiber bundles crossing. CST: vertically in the plane.

CC: diagonally in the plane. SLF: perpendicular to the plane. Figures adapted from,

left: www.healcentral.org, right: www.humannervoussystem.info.

travel greater distances to connect distant cortical regions. Some of such important

association fibers are the cingulum, the superior longitudinal fasciculus (SLF), and

the inferior longitudinal fasciculus (ILF).

Projection Fibers The projection fibers (Fig-2.6) consist of efferent and afferent

fibers connecting the cerebral cortex to the cerebellum, the spine and subcortical

grey matter areas such as the thalamus, and the basal ganglia. Functionally, the

main efferent fibers are the motor fibers originating from the pyramidal motor cells

of the cerebral cortex, that run down and converge in the internal capsule and travel

further down the brainstem to the spine. These comprise the important corticospinal

tract (CST) also known as the pyramidal tract. Structurally, the projection fibers are

widely diffused just under the cerebral cortex before converging in the internal cap-

sule. This important fanning structure is known as the corona radiata (CR). The CR

is comprised of both efferent and afferent fibers, and handles nearly all the traffic to

and from the cerebral cortex. Structures like the anterior thalamic radiation (ATR)

connect the nuclei in the thalamus to cerebral cortex of the frontal lobe.

It must be noted that these white matter pathways or fiber tracts or simply fibers

often criss-cross, resulting in geometrically complex microstructures at a scale much

finer than the resolution of dMRI. This is therefore an important physical consider-

ation in dMRI, and correctly inferring the geometry in regions with fiber-crossings

is addressed as a central problem. In this respect, Fig-2.7 presents a region with

fiber crossings that will be often scrutinized in this thesis. The region of interest

highlighted in the coronal slice contains crossing fibers from three major pathways.

Descending vertically in the plane is the CST, traversing diagonally in the plane from

above the ventricles to the cerebral cortex are the lateral radiations of the CC, and

within the central region of interest is the SLF perpendicular to the plane.
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2.3
SUMMARY

In this introductory chapter we briefly presented the brain with the goal of

providing a physical context of the problem dMRI attempts to solve. We presented an

overview of the brain’s anatomy, relevant microscopic neural tissue, and important

macroscopic cerebral tissue organization, namely the major white matter pathways.

These are central for understanding the diffusion of water molecules in the brain,

and for understanding the usefulness of dMRI in studying the brain.

At a macroscopic scale, the brain is primarily constituted of grey matter and white

matter. While the grey matter contains the neuronal cell bodies and forms the main

information processing centers of the brain, white matter is made up of the axons

originating from the neurons, which interconnect various grey matter regions and

form information carrying pathways with highly coherent fibrous structures from

the microscopic to the macroscopic scale. These fibrous microstructures of the white

matter form the physical basis for dMRI’s usefulness in studying the brain. The

Brownian motion of the water molecules contained in the brain is hindered in the

white matter by these fibrous structures in a particular fashion. While the diffusion

of water molecules is greatly hindered perpendicular to these structures, the diffusion

parallel to these structures is relatively less affected. In other words the diffusing

water molecules probe the white matter’s microstructure. Therefore, since dMRI is

sensitive to the diffusion of water molecules, it is used to measure the constrained or

anisotropic diffusion of water molecules in the white matter, to infer its major axon

fiber bundles non-invasively.

However, since the white matter axon fibers criss-cross in many regions, the cerebral

white matter often contains complex structures constituted of multiple coherent mi-

crostructures at a scale that is orders of magnitude finer than the resolution achieved

by current dMRI. Although the coherence or homogeneity of the multiple microstruc-

tures in such regions is visible at the fine length scale of the axons themselves, the

homogeneity is lost at the resolution achieved by dMRI and such regions appear to

contain heterogeneous microstructures. Therefore, the problem of accurately infer-

ring the geometry of the microstructure in regions with fiber crossings is of central

importance in dMRI. This problem is also at the heart of this thesis.
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3.1
INTRODUCTION

Only in the last century, has physics, mathematics, and technology pro-

gressed enough to be en par with the complex and involved problem of understand-

ing the brain that has perplexed people so far. New and non-invasive approaches now

provide an unprecedented power to see within this delicate organ while it functions

and without harming the process of life.

Magnetic Resonance Imaging (MRI) is one such sophisticated technique, which allows

to examine the brain (and also the entire body) non-invasively. At the core of MRI

is the phenomenon of nuclear magnetic resonance (NMR). The NMR experiment can

detect a number of different properties of a sample. For example it can detect the

Brownian motion or the diffusion of the particles in the sample. This sensitivity to

diffusion and the measurement of the diffusion properties from an NMR experiment

is at the heart of diffusion MRI, which allows one to infer from the diffusion proper-

ties, the microstructure of the brain’s white matter in-vivo and non-invasively.

This chapter is focussed on the fundamentals of NMR and diffusion NMR, and on

diffusion MRI reconstruction algorithms, which are employed to infer the cerebral

white matter’s microstructure. This chapter opens with the NMR phenomenon and

the ingenious spin-echo experiment, which forms the foundation of diffusion NMR.

Then it presents diffusion NMR to show how diffusion can be measured from NMR,

with an emphasis on the two ways of modelling diffusion, namely the phenomenolog-

ical approach of Fick and the random walk model proposed by Einstein, since these

have greatly influenced the development of diffusion NMR. These have given rise

to two complementary approaches for modelling the diffusion NMR signal, namely

the Stejskal-Tanner signal model, and the q-space formalism. Finally this chapter

presents a number of diffusion MRI reconstruction algorithms, starting from the clas-

sical technique of diffusion tensor imaging, and then exploring various other “higher

order” approaches, which attempt to describe the microstructure of the cerebral white

matter with greater accuracy.

A brief history of NMR and MRI The scientific heritage of NMR and MRI is re-

flected by the list of Nobel laureates who contributed to their developments. The

theoretical underpinnings that made NMR possible were proposed in 1924 by Wolf-

gang Pauli who suggested a new quantum degree of freedom that later came to be

known as spin. He formulated the mathematical theory by 1927, and was awarded

the Nobel prize in physics in 1945 for his contributions. The concept of spin implies

that atomic nuclei bearing spins exhibit magnetic moments. The fact that protons

exhibit magnetic moments had already been discovered in 1922 by Otto Stern prior

to the concept of spin. Stern was awarded the Nobel prize in physics in 1943. Pauli’s

theory was verified in 1938 by Isidor Rabi in molecular beams. From his experiments

Rabi was able to both detect the effects of spin and measure the gyromagnetic ratio
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that is the characteristic signature of an atomic nucleus due to its spin. His experi-

ments also established the concept and the technique of NMR for manipulating spins.

Rabi was awarded the Nobel prize in physics in 1944.

In 1946 Felix Bloch [12] and Edward Mills Purcell [13] independently extended the

techniques established by Rabi. They successfully demonstrated the magnetic reso-

nance effect in liquids and solids. Bloch and Purcell shared the Nobel prize of 1952

in physics, and NMR was established. In his seminal paper of 1950 [14] Erwin Hahn

proposed the spin echo experiment, which used a combination of 90o and 180o elec-

tromagnetic or radio frequency pulses to filter out effects of magnetic field inhomo-

geneities in the measurement of the transverse signal. Further works of Herman

Carr and Purcell in 1954 [15] led to the full development of the radio frequency pulse

technique introduced by Hahn. This formed the foundations of NMR.

It must be noted at this point that both the papers of Hahn [14] and Carr & Pur-

cell [15] critically point out the observed effects of diffusion of the spin bearing nu-

clei in magnetic resonance experiments with a succession of radio frequency pulses.

Although these papers generally perceive the diffusion effect as an unfortunate phe-

nomenon resulting in a loss of signal, Carr & Purcell [15] in fact demonstrate that

diffusion can be directly measured from NMR and go on to actually measure the dif-

fusion constant of water at 25oC. This forms the corner-stone of diffusion NMR.

Although NMR became a well established technique for studying various materials, it

took almost three decades since the experiments of Bloch and Purcell in 1946, for MRI

to be invented. NMR by itself is capable of examining a single spin ensemble or a tiny

region of a sample, but it can’t image the whole sample to recreate a 2D slice or a 3D

volumetric image necessary to study entire biological samples like the human body.

Paul Lauterbur in 1973 [16] proposed the use of magnetic gradient fields to spatially

encode the positions or voxel regions of the spin ensembles. This was a remarkable

invention, which made it possible to reconstruct entire slice or volumetric images

from NMR data. Spatial encoding was improved in terms of frequency encoding by

Richard Ernst in 1978, and phase encoding by Bill Edelstein in 1980 using pulsed

gradients. In 1977 Peter Mansfield [17] developed the mathematical framework for

rapidly switching gradients for spatial encoding, greatly speeding up the process of

reconstructing images of an entire biological sample. This is known as echo planar

imaging (EPI). Lauterbur and Mansfield were jointly awarded the Nobel prize in

medicine in 2003 for making MRI possible. Thus modern MRI was developed from

the phenomenon of NMR coupled with the method of spatial encoding.

OUTLINE

This chapter is divided into three parts dedicated respectively to NMR, diffusion

NMR and diffusion MRI. Section-3.2 presents the semi-classical description of NMR
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and the spin-echo experiment proposed by Hahn (section-3.2.1), which forms the cor-

ner stone for the diffusion NMR experiment. Section-3.3 presents diffusion NMR

and shows how diffusion can be measured from the NMR experiment. Section-3.3.1

discusses the two main approaches for modelling diffusion mathematically, namely

Fick’s phenomenological approach and Einstein’s random walk model. Sections-3.3.3

& 3.3.2 attempt to show how these two complementary approaches to diffusion, one

macroscopic and one microscopic, have influenced the development of diffusion NMR.

Finally, section-3.4 presents modern diffusion MRI reconstruction techniques where,

using the diffusion NMR experiment, the diffusion measured from anisotropic me-

dia is employed to infer the microstructure of the media. A number of approaches

are presented, starting from the classical diffusion tensor imaging, to more recent

state-of-the-art algorithms that make use of complex models and functional bases to

improve the results of diffusion tensor imaging.

3.2
NUCLEAR MAGNETIC RESONANCE

The principles of NMR are based on spin, a fundamental quantum charac-

teristic possessed by electrons, protons, and neutrons, like electrical charge or mass.

Spins come in multiples of 1/2 and can be positive or negative. In grouped particles,

e.g. atomic nuclei, opposite spin-signs can pair up to eliminate the total spin of the

group. But the net spin of unpaired particles or atomic nuclei imparts a magnetic

dipole moment. In other words such particles or such atomic nuclei can be influenced

by an external magnetic field. In the presence of a strong magnetic field B0 with

magnitude B0, the magnetic dipole moment vector or the spin vector of the particle

or nucleus aligns itself with B0 and precesses around it with an angular frequency

known as the Larmor frequency:

ω0 = γB0,

where γ is the gyromagnetic ratio, characteristic of the particle or the nucleus. How-

ever, this cannot be observed for individual particles or nuclei. The effect is detectable

when it becomes pronounced in the presence of an ample collection of spin bearing

particles or nuclei with the same gyromagnetic ratio. From a macroscopic perspective,

when such a collection is subjected to a magnetic field, the randomly oriented individ-

ual magnetic dipole moment vectors align themselves along B0, to form a resultant

ensemble magnetic dipole moment vector M, which phenomenologically satisfies:

dM

dt
= γM × B0. (3.1)

Although spin is a quantum characteristic, the macroscopic perspective with the re-

sultant magnetic dipole moment vector M, is a semi-classical description.

Of particular interest is the hydrogen nucleus 1H, which is found abundantly in na-

ture, accounts for 99.98% of all hydrogen atoms, and also constitutes water. 60% of
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the human body and 78% of the brain is water. Therefore, 1H is a natural spin bear-

ing nucleus of choice for MRI. 1H is an unpaired proton with a net spin of 1/2, and

has a gyromagnetic ratio of γ = 42.58 MHz/T.

A macroscopic scale or an ensemble perspective is adopted to describe MRI instead

of the quantum formulation because of its simplicity. From this point of view, MRI

is explained in terms of the resultant ensemble magnetization vector M. Under the

influence of the external magnetic field B0, the initially randomly distributed indi-

vidual spins in the ensemble, align themselves along B0. There are two available

energy configurations or states. These are the low and high energy states depending

upon whether the individual spin magnetization vectors point along the magnetic

field or opposite to it. Laws of thermodynamics ensure that the number of spins N+

in the low energy configuration slightly outnumber the number of spins N− in the

high energy configuration. However, this implies that the magnitude of the net mag-

netization vector M is only a fraction of what it would have been had all the spins

been pointing along the same direction. This natural distribution of spins along or

opposite B0 is known as the thermal equilibrium state.

The NMR signal is generated by exposing the ensemble of spins precessing along B0

to an oscillating magnetic field or an electro-magnetic (radio-frequency: RF) pulse.

This is known as the excitation phase. The energy absorbed by the low energy config-

uration spins from this pulse tilts the magnetization vector M away from B0 towards

the high energy configuration. The oscillation of the secondary magnetic field ensures

that the spins (and hence M) continue to precess around B0 even tilted away from

it – along the surface of a cone. Once the RF pulse is switched off, the spins begin

to recover their alignment with the main magnetic field B0, and to return to their

low energy configuration or the thermal equilibrium. This is known as the relaxation

phase. The signal is created as the spins precess tilted away from B0, and it decays

as the spins relax, dissipating the absorbed energy.

This process can be better understood and put in a mathematical framework by con-

sidering the external magnetic field B0 to be aligned with the Z-axis. The XY-plane

is then known as the transverse plane, and the net magnetization vector M can be

separated into the longitudinal component Mz, along the Z-axis (or B0), and the

transverse component Mxy, in the transverse plane. Or the net magnetization vector

M can be written in terms of its components [Mx,My,Mz]
T . In this framework the low

energy configuration is along the positive Z-axis, while the high energy configuration

is along the negative Z-axis. {X,Y,Z} is known as the laboratory frame of reference

and is considered fixed. Under the influence of B0, the initial net magnetization vec-

tor M has magnitude M0, and is equal to its longitudinal component Mz, while its

transverse component Mxy is null.

The excitation phase can be understood by considering a rotating frame of reference.
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Under the influence of B0, as the spins precess at the Larmor frequency, it is possible

to envisage a rotating frame of reference {X’, Y’, Z’ (= Z)}, with the Z’-axis aligned

with the Z-axis of the fixed frame of reference. This rotating frame is taken to rotate

clockwise with the spins at the Larmor frequency. In other words in the rotating

frame of reference, the precessing spins appear static. Applying a secondary magnetic

field in the rotating frame of reference along the X’-axis, in the transverse plane, has

the effect of tilting the net magnetization vector M away from B0 and towards the

transverse plane, which is half way to the high energy configuration. In the fixed

frame of reference this is seen as the net magnetization vector M spiralling down

towards the transverse plane while precessing at the Larmor frequency. In either of

the reference frames this implies that the magnitude of the longitudinal component

Mz decreases, while the magnitude of the transverse component Mxy increases.

In practice, this can be achieved by passing an alternating current through a coil

aligned with the X-axis of the fixed frame of reference. When the current in the coil

alternates at the Larmor frequency ω0, the coil generates an oscillating magnetic field

along the X-axis that appears static to the precessing spins. Or the precessing spins

perceive the oscillating magnetic field as a static magnetic field in the rotating frame

of reference. This secondary magnetic field is known as the B1 magnetic field or the

RF pulse. The angle of the tilt experienced by the net magnetization vector M due to

B1 depends on the magnitude and time of exposure of the RF pulse. A 90o RF pulse

tilts M into the transverse plane and zeros out its longitudinal component. A 180o

RF pulse flips M completely around and points it along its opposite direction.

The relaxation phase begins when the RF pulse or the secondary magnetization field

is turned off. The RF pulse has the effect of disturbing the thermal equilibrium in-

duced by the primary magnetization vector B0. As it is turned off the spins begin to

relax and to return to their thermal equilibrium. The relaxation can also be seen in

terms of its longitudinal and transverse components. However, these are governed by

different phenomena and are characterized by different time signatures.

T1 Relaxation The longitudinal relaxation is known as the T1 relaxation since it

is described using a time signature denoted T1. The T1 relaxation occurs as the spin

ensemble radiates the energy it had absorbed from the RF pulse to the surround-

ing thermal reservoir or lattice and regains its thermal equilibrium with the lattice.

Therefore, the T1 relaxation is also known as the spin-lattice relaxation. In this pro-

cess the spins realign themselves with B0. In terms of the net magnetization vector

M, this implies that the longitudinal component Mz progressively regains its ini-

tial magnitude M0, while the transverse component Mxy progressively becomes null

again. Phenomenologically this is described by:

dMz

dt
= −(Mz −M0)

T1
, (3.2)
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where T1 is a time constant representing the time signature T1.

T2 Relaxation The transverse relaxation involves the phenomenon of the spins

regaining their thermal equilibrium amongst themselves, and is characterized by

the time signature T2. Therefore it is also known as the spin-spin relaxation or the

T2 relaxation. In the transverse plane this is interpreted by the spins losing their

initial coherence. From an initial coherent transverse magnetization vector Mxy, they

progressively dephase as they radiate the energy they had absorbed to neighbouring

spins. Phenomenologically this is described by:

dMxy

dt
= −Mxy

T2
, (3.3)

where T2 is a time constant that differs from T1 and represents the time signature

T2. Transverse relaxation is, however, a complex phenomenon. Although theoret-

ically B0 is supposed homogeneous, in reality minor inhomogeneities exist. These

inhomogeneities are relevant enough to also contribute to spins dephasing in the

transverse plane, though this is not a true relaxation. Transverse relaxation is there-

fore a combination of spin-spin relaxation and field inhomogeneity dephasing. The

pure spin-spin relaxation time is known as T2. The combined transverse relaxation

time is known as T2∗.

Bloch Equations The Bloch equations are a coupled set of three differential equa-

tions that combine the effects of NMR and describe the evolution of the net magne-

tization vector M over time. These are macroscopic and phenomenological equations

that include the effects of Larmor precession and T1 and T2 relaxations. Combining

Eqs-3.1, 3.2, and 3.3, they are written in the fixed frame of reference in terms of the

relaxation time constants as:

dMx(t)

dt
= (γM(t) × B(t))x − Mx(t)

T2
(3.4)

dMy(t)

dt
= (γM(t) × B(t))y −

My(t)

T2

dMz(t)

dt
= (γM(t) × B(t))z −

Mz(t) −M0

T1
,

where B(t) = B0 + B1(t) is the total external magnetic field. These can also be

rewritten in a vector form as:

dM(t)

dt
= γM(t) × B(t) +




− 1
T2

0 0

0 − 1
T2

0

0 0 − 1
T1


M(t) +




0

0
M0
T1


 . (3.5)

The signal is generated in a receiver coil in the transverse plane when the spins

precess tilted away from the Z-axis. When the magnetic moment vectors of the spins
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are tilted to say the transverse plane and precess around the Z-axis, they generate an

alternating current in the receiver coil at the Larmor frequency. This can be seen as

the converse of the spin excitation phase where a coil in the transverse plane was used

with a current alternating at the Larmor frequency to tilt the spins. The frequency

of the signal current is ω0 and its amplitude reflects the amount of magnetization

of the spin ensemble. Hence, since the 1H nucleus is chosen for imaging in MRI,

the excitation RF pulse is generated at the Larmor frequency of the 1H nucleus.

Therefore, the magnitude of the signal generated from the NMR experiment reflects

the density of the 1H nucleus, or the amount of water in the tissue.

3.2.1 Spin Echo

Diffusion NMR is derived from the spin echo experiment that was conceived by Er-

win L Hahn [14]. It combines a pair of RF pulses of different amplitudes to remove

the effects of field inhomogeneities or T2∗ from the signal. Hahn put forth the idea

that following a 90o RF pulse that tilts the net magnetization vector to the trans-

verse plane, the dephasing that follows caused by the field inhomogeneities, could

be refocused using a second RF pulse of 180o, thus removing the effects of the field

inhomogeneities.

Again this can be understood simply in the rotating frame of reference. In this frame

of reference, after the 90o RF pulse, the spins precessing in the transverse plane

should appear static. However, due to field inhomogeneities, as the spins begin to

dephase, some would appear to speed up (or move ahead clockwise in the rotating

frame of reference), while some would slow down (or fall back anti-clockwise in the

Figure 3.1: Spin Echo pulse sequence showing the Free Induction Decay (FID) af-

ter the 90o RF pulse and the Echo signal after the 180o RF pulse. Adapted from

Wikipedia (Spin Echo Signal).
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rotating frame of reference). This transverse dephasing is known as the free induction

decay (FID) and causes the signal to decay faster than pure T2 effects. However the

application of a second RF pulse of 180o has the effect of flipping the individual spins

in the transverse plane such that the “slow” spins that had fallen behind the rotating

frame of reference are flipped ahead of it, while the “fast” spins that had moved ahead

are flipped behind the rotating frame of reference. Indeed, the 180o RF pulse causes

the spins to refocus after a certain length of time as the fast spins catch up with the

slow spins, which regenerates the signal. This is known as the echo and it is free of

the T2∗ effects due to field inhomogeneities (Figure-3.1). It must be noted, however,

that the echo regenerates the signal completely only under the assumption that none

of the spins in the ensemble have moved. If they move then the 180o RF pulse doesn’t

completely invert the spin and this results again in signal decay. However, this is not

due to field inhomogeneities. As noted by Hahn [14] and Carr & Purcell [15], this is

due to the translational motion of diffusion. This forms the basis of diffusion NMR.

The time between the 90o RF pulse and the echo is known as the echo time (TE),

and it is twice as long as the time between the 90o and the 180o RF pulses. In case

this sequence is repeated, the time between consecutive sequences is known as the

Figure 3.2: Concept of spin echo refocussing in the rotating frame of reference {X’=x,

Y’=y, Z’=z}. (A) Green vector is the net magnetization vector M, initially aligned with

the Z’-axis under the influence of the external magnetic field. (B) 90o RF pulse tilts

(orange arrow) M on to the transverse plane. (C) & (D) Spins dephasing due to local

field inhomogeneities. Slow spins fall back, while the fast spins move ahead in the

transverse plane. (E) 180o RF pulse (orange arrow) flips the spins around such that

now the slow spins are ahead and the fast spins are behind. (F) Refocussing begins as

the fast spins begin to catch up the slow spins from behind. The echo begins to form.

(G) The spins are completely refocussed. This is the centre of the echo and the signal

is free of the effects of field inhomogeneities. From Wikipedia (Spin Echo Concept).
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repetition time (TR). In fact, due to the low sensitivity of NMR, spin echo experiments

are repeated a number of times and their signals added to improve the signal-to-noise

(SNR) ratio. By adding the result of repeated experiments the signal adds coherently

while the noise adds in random phase, improving the total SNR.

3.3
DIFFUSION NMR

Diffusion NMR (dNMR) is a modality of NMR that is sensitive to the Brown-

ian motion of the particles in a sample. The dNMR experiment can therefore be used

to measure the diffusion properties of the underlying sample. This makes dNMR

central to diffusion MRI. At the heart of dNMR is the diffusion process, and under-

standing diffusion helps to understand how it can be measured from NMR. It leads to

the critical improvements that were made by Stejskal & Tanner to the original spin

echo experiments of Hahn and Carr & Purcell that opened up the domain of dNMR.

This section presents the principles of dNMR and shows how diffusion can be mea-

sured from NMR. It opens by examining the two mathematical ways for modelling dif-

fusion, namely the phenomenological equations of Fick and the random walk model

for Brownian motion proposed by Einstein. This explains the two pronged approach

for modelling dNMR, namely the Stejskal-Tanner formulation for the signal and the

q-space relationship between the signal and the diffusion probability density func-

tion. This also reveals the influence of these two approaches on diffusion MRI re-

construction techniques, namely the methods such as diffusion tensor imaging that

estimate the apparent diffusion coefficient and the methods such as diffusion spec-

trum imaging that estimate the diffusion probability density function.

3.3.1 Diffusion

Diffusion is a process of mass transport that describes the random spreading of

molecules or particles generally in the presence of a concentration gradient. The pro-

cess of diffusion was observed, studied and mathematically described over the entire

19th century. It was initially observed in three different forms, namely heat diffusion

in the presence of a temperature gradient, molecular diffusion in the presence of a

concentration gradient, and Brownian motion, which occurs even in the absence of

any gradients. These, apparently very different phenomena – the first, concerning

the spreading of energy in a solid medium, the second, concerning the spreading of

molecules from a region of high concentration to a region of low concentration in flu-

ids, and the third, concerning the random motion of molecules and particles in fluids

due to the ambient temperature – can all be described by the same diffusion equa-

tion. However, while today their correspondence is widely accepted, establishing this

connection wasn’t always an easily demonstrable task.
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Historically, diffusion has been both observed in experiments and mathematically

described in theory, in two ways – a phenomenological view point and a molecular-

kinetic theory of heat view point with a “random-walk” model for the diffusing parti-

cles. The phenomenological view point corresponds to Fourier’s and Fick’s laws of dif-

fusion for heat and for particles in a concentration gradient, while the random-walk

model corresponds to Einstein’s description of Brownian motion. This two pronged

approach to diffusion, has also influenced dNMR and diffusion MRI, and has led to a

two fold approach for describing it mathematically – namely the Bloch-Torrey equa-

tions, which is a phenomenological solution, and the q-space formalism, which arises

from the Brownian motion of spin bearing particles.

Phenomenological approach The phenomenological equations of diffusion were

proposed by Joseph Fourier in 1822 to describe the diffusion of heat in solids, and

then adapted by Adolf Fick in 1855 to describe the diffusion of molecules in fluids in

the presence of a concentration gradient [18]. Fick derived his “laws of diffusion” from

Fourier’s laws by analogy, while attempting to describe the experiments conducted by

Thomas Graham in 1831 on the diffusion of gases. These laws describe the molecular

transfer or diffusion that takes place in a system from regions of high concentration

to regions of low concentration due to the concentration gradient. In 1D, Fick’s first

law relates the rate of transfer of the diffusing substance per unit area, or flux, to the

concentration gradient causing the diffusion:

J = −D∂C
∂x

, (3.6)

where J is the flux with units (mol/m2s), D is the diffusion coefficient with units

(m2/s), C is the concentration with units (mol/m3), and x is the spatial length pa-

rameter measured in meters. Accounting for the conservation of mass during the

diffusion process, which implies:

∂C/∂t = −∂J/∂x,

and combining with Eq-3.6, gives Fick’s second law:

∂C

∂t
= D

∂2C

∂x2
, (3.7)

when the diffusion coefficient D is constant locally. Fick’s second law describes the

change of the concentration field over time due to the diffusion process. Eq-3.7, which

relates the time derivative of the concentration to the second order spatial derivative

of the concentration is known as the diffusion equation – it describes diffusion phe-

nomenologically.

In higher dimensions, e.g. 3D, Fick’s laws are written as:

J = −D∇C, (3.8)

∂C

∂t
= D∇2C. (3.9)
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D being a scalar quantity in Eqs-3.8 & 3.9 is an indication that diffusion is equal in

all directions. This is known as isotropic diffusion. However, certain media such as

crystals, textile fibers, etc. can be inherently anisotropic and can favour diffusion in

a certain spatial direction while hindering it in others. This results in anisotropic

diffusion, which is described by replacing the scalar diffusion coefficient D by a gen-

eralized diffusion tensor D in Fick’s laws [18]:

J = −D∇C, (3.10)

∂C

∂t
= ∇ · (D∇C). (3.11)

Diagonalizing the diffusion tensor D into its eigenvalues and eigenvectors provides a

local orthogonal coordinate system that indicates the preferential diffusion direction

favoured by the anisotropy of the underlying material. This is the budding idea that

indicates that diffusion can be considered as a probe of the underlying medium’s

microstructure. Isotropic diffusion can be understood as a special case of anisotropic

diffusion when D = DI, where I is the identity matrix. The idea of the diffusion

tensor is central to dMRI, since the fibrous quality of the cerebral white matter also

exhibits directional anisotropy.

Random-walk approach Though Fick’s laws are concerned with the diffusion of

molecules from regions of high concentration to regions of low concentration, they

essentially describe the evolution of the concentration gradient over time and space,

and aren’t concerned with the movements of the molecules themselves. This descrip-

tion of diffusion emerged with Albert Einstein in 1905 when he related the molecular-

kinetic theory of heat to the observations made by Robert Brown in 1828. Brown had

noted the perpetual erratic motion of pollen grains suspended in water while observ-

ing them under a microscope. This erratic movement came to be known by his name

as Brownian motion. When Einstein proposed [19] that due to the thermal kinetic

Figure 3.3: Diffusion. (a) Concentration gradient at the macroscopic scale leads to

the phenomenological Fick’s laws of diffusion. (b) Random-walk model of Brownian

motion at a microscopic scale, adapted from Wikipedia (Brownian motion).
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energy of molecules, particles suspended in a liquid large enough to be observed un-

der a microscope would exhibit random movements governed by the probabilistic law

he derived, his idea was quickly recognized to be the theoretical description of Brow-

nian motion. It turned out that the probabilistic law of Brownian motion derived

by Einstein also satisfied the diffusion equation. This provided the final link and

showed that diffusion was driven by the thermal kinetic energy of molecules due to

the ambient temperature, implying that diffusion, in the form of Brownian motion

also occurred in the absence of a temperature or a concentration gradient. The spe-

cial case of diffusion when the suspended particles belong to the liquid is known as

self diffusion.

Essentially, the particles move erratically because they incessantly collide with the

other particles in the system, which continuously changes their motion. To describe

this erratic movement of a large number of particles, Einstein adopted the proba-

bilistic approach of a random walk model. In 1D, this is modelled using two prob-

ability density functions (PDFs) – f(x, t), the probability of finding a particle at the

position x at a time t, and P (∆x,∆t), the probability of finding a particle at a dis-

tance ∆x from its initial position after a time ∆t. P (∆x,∆t) is a special case of the

transition probability P (x|x′, ∆t), which is the probability of a particle initially at

x′ migrating to x during the time ∆t. P (x|x′, ∆t) = P (∆x,∆t) when the transition

probability is translationally invariant, or when the movement of a particle during

a time step is independent of the movements of the other particles and also of its

own position and movements in the past. P (∆x,∆t) is also symmetric, such that

P (∆x,∆t) = P (−∆x,∆t). Then f(x, t) and P (∆x,∆t) are related by [19, 20]:

f(x, t+∆t) =

∫ ∞

−∞
f(x−∆x, t)P (∆x,∆t)d(∆x). (3.12)

Expanding the LHS, f(x, t+∆t), in the powers of ∆t using a Taylor expansion around

t, and similarly expanding f(x − ∆x, t) in the RHS, in the powers of −∆x using a

Taylor expansion around x, and keeping only the smallest non-zero terms, the limit

as ∆t→ 0 is the diffusion equation:

∂f(x, t)

∂t
= D

∂2f(x, t)

∂x2
, (3.13)

where:

D =
1

∆t

∫
∆x2

2
P (∆x,∆t)d(∆x) =

〈
(∆x)2

〉

2∆t
,

where 〈·〉 signifies the expected value. It is evident that 2∆tD is the variance of the

displacement ∆x if its mean is zero. Comparing Eqs-3.7 & 3.13 compares the phe-

nomenological approach to the random-walk approach, and shows that the diffusion

coefficient is the variance.

The free diffusion solution The solution to the diffusion equation (Eqs-3.7 &

3.13) can be computed under given initial or boundary conditions. A number of such
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solutions for various initial and boundary conditions can be found in [18]. Consider-

ing only the initial condition f(x, 0) = δ(x), where δ is the Dirac delta function, and

using the random-walk terminology, the solution to the diffusion equation is [19]:

f(x, t) =
1√

4πDt
e

−x2

4Dt ,

which is a Gaussian distribution with zero mean and a variance of 2Dt. This leads

to the important result in diffusion found by Einstein, which states that the mean

squared displacement of a particle undergoing diffusion is:
〈
x2
〉

= 2Dt.

However, of greater interest than f(x, t), is P (∆x,∆t), the Green’s function of the

diffusion equation. Under the same initial condition f(x, 0) = δ(x), the transition

probability turns out to be:

P (∆x,∆t) =
1√

4πD∆t
e

−∆x2

4D∆t .

The Green’s function is independent of the position x, and states that the displace-

ment ∆x is also governed by a Gaussian distribution. This is of greater interest than

f(x, t), since dMRI measures the total displacement of molecules rather than their

positions.

Similarly in 3D the random-walk is described by:

f(x, t+∆t) =

∫ ∞

−∞
f(x −∆x, t)P (∆x, ∆t)d∆x (3.14)

Again a similar expansion of the LHS and the RHS as in the 1D case reveals the

diffusion equation in 3D:

∂f(x, t)

∂t
= ∇ · (D∇f(x, t)), (3.15)

where [20]:

D :=
1

2∆t




〈
(∆x)2

〉
〈∆x∆y〉 〈∆x∆z〉

〈∆y∆x〉
〈
(∆y)2

〉
〈∆y∆z〉

〈∆z∆x〉 〈∆z∆y〉
〈
(∆z)2

〉


 . (3.16)

In this case 2∆tD is the covariance tensor. Comparing Eqs-3.11 & 3.15 compares the

phenomenological approach to the random-walk approach in 3D, and shows that the

diffusion tensor in the former can be seen as the covariance tensor in the latter.

The same initial condition f(x, 0) = δ(x) leads to the transition probability (Green’s

function):

P (∆x, ∆t) =
1

(4π∆t)3/2|D|1/2
exp

(
−∆xTD−1∆x

4∆t

)
, (3.17)

which is an oriented Gaussian parameterized by the covariance tensor. The random-

walk Eq-3.14, satisfying the diffusion equation Eq-3.15 can be considered isotropic

when D = DI. Otherwise, it is anisotropic, and the diagonalisation of D provides
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a local orthogonal coordinate system that indicates the direction favoured by the

random-walk or the diffusion.

Eq-3.17 is the solution to the 3D diffusion equation for only an initial condition and

without any boundary conditions. It is, therefore, known as free diffusion. Including

boundary conditions to solve the diffusion equation can account for restrictions, but

would change the solution. Free diffusion is, therefore, described by a Gaussian PDF

or a Gaussian propagator.

3.3.2 Diffusion from NMR: A Phenomenological Approach

As seen earlier, Hahn was the first to note the effects of diffusion in NMR in his spin

echo experiment [14]. Carr & Purcell further measured the diffusion coefficient for

the first time in NMR from their modification to Hahn’s experiment by employing a

temporally constant magnetic gradient field and by modelling the diffusion of spin

bearing particles with discrete jumps [15] . However, the continuous description was

formulated by Torrey in 1956. He modified the phenomenological differential equa-

tion of Bloch by adding to it Fick’s diffusion equation (Eq.3.9) [21]. This came to be

known as the Bloch-Torrey equation for describing the net magnetization vector M

(without flow):

∂M

∂t
= γM × B +




− 1
T2

0 0

0 − 1
T2

0

0 0 − 1
T1


M +




0

0
M0
T1


+D∇2M, (3.18)

where Fick’s law is employed to describe the self diffusion of the net magnetization,

and D is the diffusion coefficient.

About a decade later, in 1965, Stejskal & Tanner designed the pulsed gradient spin

echo (PGSE) experiment by modifying Hahn’s spin echo experiment with two iden-

tical magnetic gradients around the 180o RF pulse to encode the transverse phase

of the diffusing spin bearing particles [22, 23] (Fig-3.4). This made it easier to mea-

sure the decay in the transverse signal due to diffusion, and from there the diffusion

coefficient. The PGSE experiment established the field of dNMR.

In the PGSE experiment the first gradient G of duration δ spatially encodes the phase

of the individual spins (by dephasing them by an amount dependent on their posi-

tion), and the effects of this gradient are undone by the second identical gradient

after the 180o RF pulse which flips the spins around (implying an effect −G from

the second gradient). This results in a complete recovery of the signal since the mag-

nitude of transverse magnetization vector Mxy depends on the phase coherence of

the individual spins. However, if the individual spins move due to diffusion during

the period ∆, between the two pulsed gradients, then the effects of the second gradi-

ent isn’t the exact opposite of the first gradient (−G) that was used to encode their
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phases. This leads to a partial phase incoherence – resulting in a reduced transverse

magnetization Mxy, implying a loss in the spin echo signal. Since the signal decay is

related to the rate of diffusion or the diffusion coefficient, measuring the signal decay

makes it possible to measure the diffusion coefficient.

Mathematically this can be described by considering only the external magnetic field

B0 and the diffusion encoding gradient G(t), both along the Z-axis. In the absence

of the RF pulses, the total magnetic field experienced by a spin in position r is B =

[0, 0, B0+r ·G(t)]T . The transverse magnetization vector Mxy can be computed for the

PGSE experiment from the Bloch-Torrey equation by considering its complex form

M+ = Mx + iMy, where i is the imaginary number [22, 24, 20]:

∂M+

∂t
= −iγB0M+ − M+

T2
− iγr · G(t)M+ +D∇2M+. (3.19)

Transforming to a frame of reference rotating at the Larmor frequency ω0 = γB0, and

allowing for the T2 decay, by replacing:

M+(r, t) = ψ(r, t) exp (−iω0t− t/T2) ,

the Bloch-Torrey equation simplifies to [22, 24, 20]:

∂ψ

∂t
= −iγr · Gψ +D∇2ψ. (3.20)

Further simplifying ψ(r, t) by separating the effects of diffusion into the function A(t)

from the solution without diffusion:

ψ(r, t) = A(t) exp (−iγr · F(t)) ,

Figure 3.4: The pulsed gradient spin echo (PGSE) sequence. Two identical gradients

are applied around the 180o RF pulse of Hahn’s spin echo experiment. This encodes

the transverse phase of the diffusing spin bearing particles. It then becomes easier

to measure the decay of the signal due to diffusion.
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where [20]:

F(t) =

∫ t

0
G(t′)dt′ − 2H

(
t− TE

2

)∫ TE
2

0
G(t′)dt′, (3.21)

with H(x) the Heaviside function which is equal to 1 for x > 0 and 0 otherwise,

implying that the sign of G(t′) is inverted for the gradient after the 180o RF pulse,

leads to the first order differential equation [22, 20]:

dA

dt
= −γ2D|F|2A.

Its solution can be found by integrating from t = 0 to t = TE, which yields Stejskal-

Tanner’s formulation of the PGSE signal decay due to diffusion when G(t) = G = gg,

where g = |G| and g = G/|G| [22, 20]:

S = S0 exp

(
−γ2δ2g2

(
∆ − δ

3

)
D

)
= S0 exp (−bD) , (3.22)

where S = A(TE) is the magnitude of the signal decay due to diffusion, S0 = A(0)

is the magnitude of the signal in the absence of a diffusion encoding gradient, and

b = γ2δ2g2
(
∆ − δ

3

)
is the b-value. This, therefore, makes it possible to measure the

diffusion coefficient D from a PGSE and a regular spin-echo experiment in NMR.

In the same year, Stejskal further considered diffusion in anisotropic media by em-

ploying the anisotropic Fick’s equation (Eq-3.11) instead of the isotropic equation

(Eq-3.9), in the Bloch-Torrey equation (Eqs-3.18, 3.19), which introduces the diffu-

sion tensor D [23]:

∂M+

∂t
= −iγB0M+ − M+

T2
− iγr · G(t)M+ + ∇ · D∇M+. (3.23)

Solving as shown in the case of the isotropic diffusion, he was able to show the modi-

fied Stejskal-Tanner equation incorporating the diffusion tensor in anisotropic media

[23, 20]:

S = S0 exp

(
−γ2

∫ TE

0
F(t′)TDF(t′)dt′

)
, (3.24)

S = S0 exp

(
−γ2δ2g2

(
∆ − δ

3

)
gTDg

)
= S0 exp

(
−bgTDg

)
, (3.25)

where the second equation is again when G(t) = G = gg.

However, Stejskal in this seminal paper fell short of providing a method for mea-

suring the diffusion tensor from NMR, which could have preempted diffusion tensor

imaging by almost three decades. But he did show the following relationship, which

laid the foundations for the q-space formalism – under the assumption when δ → 0,

but with δG finite, which implies a true “pulsed” gradient [23]:

S(G,∆) = S0

∫
P0(r0)

∫
P (r|r0,∆) exp (iγδ(r − r0) · G) drdr0, (3.26)

where P (r|r0,∆) is the transition probability of a spin bearing particle starting at r0

and migrating to r after the diffusion time interval ∆, and where P0(r0) is the initial

spin density.
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3.3.3 q-space Formalism: A Random Walk Approach

After a Fickian or phenomenological treatment of the self diffusing net magnetiza-

tion, again diffusion can be viewed from a probabilistic or random-walk model driven

by the thermal kinetic energy of the spin bearing particles.

The PGSE experiment (Fig-3.4) spatially encodes or labels the transverse phase of

the spins using the first gradient, which results in a deliberate dephasing of the

transverse magnetization. The purpose of the second gradient after the 180o RF pulse

is to undo the effects of the first gradient and rephase the transverse magnetization.

However, if the spins diffuse away from their position between the two gradients,

then the transverse magnetization isn’t entirely rephased after the second gradient,

resulting in a loss of the transverse signal. This can be described by using a random-

walk approach for the spin bearing particles.

Under the assumption δ ≪ ∆, which is known as the narrow gradient pulse (NGP)

condition, which implies that the spins are static during the application of the diffu-

sion encoding gradients G(t), the dephasing accrued by a spin in the initial position

r0 during the first gradient is [24]:

φ1 = γ

∫ δ

0
G(t) · r0dt = γδG · r0,

when G(t) = G = gg. Similarly the dephasing accrued by the spin, now in the

position r due to diffusion, during the second gradient is:

φ2 = γ

∫ ∆+δ

∆
G(t) · rdt = γδG · r.

Since the second gradient is applied after the 180o RF pulse, which flips the spins

around, the net phase shift accrued by a spin is φ = φ2−φ1 = γδG · (r−r0). Of course,

if the spins hadn’t diffused and had remained static during the period ∆ (between

the gradients), then the net phase shift would have cancelled out. In other words the

amount of net phase shift is proportional to the diffused distance (r − r0).

The NGP condition δ ≪ ∆ can also be interpreted in the way Stejskal proposed it

δ → 0, with δG finite. Although in practice the NGP condition can never be achieved,

it provides a powerful insight into the process of measuring diffusion from NMR.

The complex signal generated by individual spins with a net phase shift φ is exp(iφ) =

exp [iγδG · (r − r0)] [25, 24]. However, the spin echo signal E(G,∆) is the averaged

net signal from the spin ensemble, or it is the expected value of the complex signal

given the probability of spins starting at r0 and diffusing to r in the time ∆. This

probability is the product of the probabilities f(r0, 0), of finding a spin initially at r0,

and P (r|r0,∆), of a single spin starting at r0 and diffusing to r in time ∆. The product
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f(r0, 0)P (r|r0,∆) introduces the random-walk model for the spin bearing particles

diffusing from r0 to r, and [25]:

E(G,∆) =

∫
f(r0, 0)

∫
exp [iγδG · (r − r0)]P (r|r0,∆)drdr0. (3.27)

This form of the signal corresponds to the equation (Eq-3.26) derived by Stejskal

[23], with f(r0, 0) as the spin density P0(r0). This also indicates that in the absence

of diffusion encoding gradients:

E(0, t) = 1. (3.28)

In practice E(G,∆) is obtained by dividing the echo signal amplitude from a PGSE

experiment with diffusion gradients by the echo signal amplitude from a Hahn spin

echo experiment without gradients E(G,∆) = S(G)/S0.

This leads to the q-space formalism by defining a reciprocal space q where [25]:

q :=
γδG

2π
. (3.29)

Inserting q in Eq-3.27 gives the q-space signal:

E(q,∆) =

∫
f(r0, 0)

∫
exp [i2πq · (r − r0)]P (r|r0,∆)drdr0. (3.30)

Assuming the transition probability P (r|r0,∆) to be translationally invariant or that

the movement of a spin is independent of the movements of the other spins and also

of its own position and movements in the past – as in a random-walk, implies that

P (r|r0,∆) = P (∆r,∆), which is the diffusion propagator. Also since in a random-walk

the movement of all the particles is independent and identical, and since the complex

signal and the diffusion propagator for a spin only depend on the spin displacement

∆r = (r − r0), it is useful to consider the ensemble average propagator (EAP), which

describes the average probability of any spin in the ensemble diffusing by ∆r during

the time ∆t [25]:

P (∆r, ∆t) =

∫
P (∆r, ∆t)f(r0, 0)dr0. (3.31)

Combining Eqs-3.30 & 3.31 gives the main result of the q-space formalism [25]:

E(q, t) =

∫
P (∆r, t) exp (i2πq ·∆r) d∆r, (3.32)

which establishes an inverse Fourier Transform relationship between the EAP,

henceforth denoted P (r), and the normalized echo signal, henceforth denoted E(q).

This Fourier relationship between the ensemble average diffusion propagator and the

diffusion NMR signal ushers in the paradigm change that diffusion can be viewed

more than just an intrinsic property, but also as a probe of the microstructure of the

underlying medium. This becomes apparent when the medium is anisotropic and has

a complex microstructure, which is the case in cerebral white matter where numerous

37



fiber bundles criss-cross at a resolution much finer than the view of dMRI. However,

it is interesting to see how the diffusion coefficient or the diffusion tensor can be

measured from the q-space formalism. It provides an insight into “free” diffusion.

The case of free diffusion The q-space formalism can also be used to measure

the diffusion coefficient (or the diffusion tensor) just like the phenomenological ap-

proach. This can be achieved by adopting the probabilistic interpretation of the in-

verse Fourier Transform of the EAP (Eq-3.32). Since the EAP is real and symmetric,

in probability theory its inverse Fourier Transform E(q), is the characteristic func-

tion of P (r) [24, 26]. Therefore, the cumulant generating function (CGF) of P (r),

which gives its cumulants, is:

ln (E(q)) =

∞∑

n=1

K
(n)
j1j2···jn

Gj1Gj2 · · ·Gjn

(iγδ)n

n!
, (3.33)

where K
(n)
j1j2···jn

are the coefficients of the nth order cumulant tensor K(n),

Gjk
are the components of the gradient vector G constituting q, and the re-

peated indices indicate summation over their entire range K
(n)
j1j2···jn

Gj1Gj2 · · ·Gjn =
∑

j1,j2,··· ,jn
K

(n)
j1j2···jn

Gj1Gj2 · · ·Gjn . In 1D, the cumulant tensors become the scalar cu-

mulants kn.

Since free diffusion is described by a Gaussian distribution (Eq-3.17), and since a

Gaussian distribution only has two non-zero cumulant tensors K
(1)
G &K

(2)
G , namely

the mean and the covariance tensors, Eq-3.17 implies:

K
(1)
G = 0,

K
(2)
G = 2∆tD. (3.34)

Comparing the Fickian diffusion equation (Eq-3.11) to the random-walk diffusion

equation (Eq-3.15) reveals that the diffusion tensor can be seen as the covariance

tensor K
(2)
G or 2∆tD, a correspondence that had also been established in section-3.3.1

and in [27].

Therefore, if the EAP P (r) is considered to be Gaussian (free diffusion), then the

expansion of its CGF (Eq-3.33) has only two cumulant terms K(1) = K
(1)
G = 0 and

K(2) = K
(2)
G = 2∆tD, which is the diffusion tensor. However, this implies that the

echo signal EF (q) for anisotropic free diffusion is:

EF (q) = exp
(
−γ2δ2∆Dj1j2Gj1Gj2

)
≈ exp

(
−bgTDg

)
, (3.35)

where the value of ∆t is ∆, and the approximation b ≈ γ2δ2g2∆ reflects the NGP

condition δ ≪ ∆ which implies that (∆− δ/3) ≈ ∆. When D = DI, it reveals the echo

signal for isotropic free diffusion:

EF (q) ≈ exp(−bD). (3.36)
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These equations can be used to measure the diffusion coefficient (or the diffusion

tensor) from the q-space formalism.

The random-walk approach or the q-space formalism to formulate the signal for free

anisotropic diffusion reveals an interesting insight into “free” diffusion. Free dif-

fusion was named so because its solution (Eq-3.17) was derived from only an initial

condition and no boundary conditions. But indeed what is the reason for “anisotropy”,

if not the effect of boundaries hindering the diffusion process? This apparent contra-

diction is reconciled from the expansion of P (r)’s CGF (Eq-3.33). By understanding

that “free” diffusion in heterogeneous media corresponds to only the first two terms

in the expansion (Eq-3.34), it becomes clear that free diffusion is in fact a low order

spatial approximation of the true diffusion [28]. In other words the effects of bound-

ary conditions on the propagator-solution of the diffusion equation would be reflected

by the cumulants of order higher than two in the expansion of the EAP’s CGF.

Further, under the NGP condition, the correspondence between the signal for free

diffusion in the q-space formalism and the signal from Stejskal-Tanner’s formulation

using the phenomenological approach Eqs-3.22 & 3.36 (1D) and Eqs-3.25 & 3.35 (3D),

indicates the consistency between the two approaches. It also shows that under the

NGP condition, the Stejskal-Tanner signal formulation or the phenomenological ap-

proach corresponds to the free diffusion or a Gaussian solution to the Fick’s diffusion

equation considered in the Bloch-Torrey equation. This was in fact noted by Stejskal

in [23]. Therefore, under the NGP condition, the Stejskal-Tanner signal formulation

does not consider boundary conditions for diffusion.

The phenomenological approach to dNMR (Stejskal-Tanner’s modified signal Eq-

3.25), and the random-walk approach to dNMR (Fourier relationship Eq-3.32 & free

diffusion signal Eq-3.35) are complementary descriptions for dNMR. The phenomeno-

logical approach can deal with various forms of diffusion encoding gradients G(t),

while the random-walk approach or q-space formalism assumes a NGP, which in prac-

tice cannot be achieved. In this sense the phenomenological approach is more general

than the q-space formalism. However, under the NGP condition, the phenomenolog-

ical approach corresponds to free diffusion. Boundary conditions would have to be

included for it to be solved correctly in anisotropic media. However, when diffusion

is being used as a probe for the medium’s microstructure, boundary conditions are

unknown, and this would present a handicap. In this respect, the q-space formalism

is more general, since it presents a generic diffusion propagator that only depends

on the signal, and that can be used to infer the medium’s microstructure. In other

words, under the NGP condition and other than in free diffusion, when inferring the

microstructure of the underlying medium, the q-space formalism solves a direct prob-

lem, while the phenomenological approach or Fickian approach can be used to solve

an inverse problem.
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3.4
DIFFUSION MRI

Although Stejskal in [23] formulated the signal for anisotropic diffusion us-

ing a diffusion tensor (DT), the reason he fell short of providing a method for esti-

mating the DT is perhaps because he was involved with dNMR. In such experiments

it was generally possible to re-orient the experimental setup to align the primary

anisotropy direction with the laboratory frame, sufficing it to measure the diffusion

coefficient in only three directions [29, 5].

This however changed with MRI and dMRI, when large anisotropic specimen that

couldn’t be rotated in the scanner began to be imaged. Imaging such specimen, e.g.

cerebral white matter tissue, or the entire brain, revealed that the diffusion coeffi-

cient measured in such specimen depended upon the direction of the diffusion en-

coding gradient. In other words the dMRI signal decay was different along different

gradient directions. Or again such dMRI images revealed different contrasts as the

diffusion encoding gradient was rotated. These dMRI images were called diffusion

weighted images (DWIs). DWIs were at first cryptic because while they revealed

the diffusion coefficient, they clearly also indicated that the underlying tissue was

highly anisotropic, but they did not provide a method for inferring the preferential

directions of this anisotropy. The diffusion coefficients computed from these DWIs us-

ing Stejskal-Tanner’s isotropic signal decay formulation S = S0 exp (−bD) (Eq-3.22)

were called the apparent diffusion coefficient (ADC), since these changed in the highly

anisotropic tissue depending on the direction of the diffusion encoding gradient. This

limitation of the DWI’s, and of Stejskal-Tanner’s isotropic signal formulation, shifted

the interest from measuring only the diffusion coefficient to inferring the preferential

diffusion anisotropy directions, or to using diffusion as a probe to infer the tissue’s mi-

crostructure. This brought forth a whole new meaning to Stejskal’s DT formulation,

and it’s measurement from dMRI, since its diagonalisation provided a local coordinate

system that was a good indicator of the preferential diffusion anisotropy directions or

the underlying medium’s microstructure.

Figure 3.5: Diffusion Weighted Images (DWIs) of the brain acquired along different

gradient encoding directions showing different contrasts.
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This section presents modern dMRI reconstruction techniques, which are employed

to infer the microstructure of the cerebral white matter. Beginning with the classical

diffusion tensor imaging, this section first presents techniques based on Stejskal-

Tanner’s formulation for the signal. These techniques based on Fick’s diffusion equa-

tions attempt to estimate the ADC with greater accuracy than DTI. Then this section

presents techniques based on the q-space formalism, which leverage the Fourier rela-

tionship between the signal and the diffusion propagator. These techniques estimate

either the entire propagator or its characteristics to infer the microstructure of the

white matter with greater accuracy than DTI.

3.4.1 Diffusion Tensor Imaging

Diffusion tensor imaging (DTI) was introduced by Basser et al. [30, 31] in 1994,

which for the first time provided a method for measuring the DT from dMRI and

for inferring the local tissue microstructure from the DT. Starting from Stejskal’s

equation (Eq-3.24), Basser et al. defined the b-matrix, which also accounted for the

imaging gradients in addition to the pure diffusion encoding gradients [30, 31]:

b = γ2

∫ TE

0
F(t′)F(t′)Tdt′, (3.37)

where F(t) is defined as in Eq-3.21. They formulated the PGSE echo signal to be:

S = S0 exp (−tr(bD)) , (3.38)

where tr(A) represents the trace of the matrix A. This simplifies to Stejskal’s for-

mulation (Eq-3.25) S = S0 exp
(
−bgTDg

)
in the absence of the imaging gradients, or

under the consideration that the imaging gradients are small compared to the diffu-

sion encoding gradients, which is mostly true [20]. Otherwise, the b-matrix has to be

computed from the dynamics of the imaging and the diffusion encoding gradients.

DTI Estimation D is a covariance tensor, therefore, it is symmetric and positive

definite. This implies that there are six unknowns to be estimated from the DTI

signal in Eq-3.38. Therefore, at least six DWIs, acquired along linearly independent

and non-coplanar gradient directions, and a non diffusion weighted or Hahn spin echo

(S0) image is required to measure the six unknown coefficients of D. The linearized

version of Eq-3.38 provides the simplest scheme for doing this [30, 31]:

ln

(
S

S0

)
= −bijDij . (3.39)
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Figure 3.6: Microstructure from DTI. Coherent fibers can be inferred from the ellip-

soid of the diffusion tensor (DT). The DT also provides a local coordinate system that

indicates the preferential diffusion anisotropy directions.

In practice, often more than six DWIs are used to account for acquisition noise. In

the case of N DWIs, the linearized equation for the signal is written in a matrix form:




− ln(S1/S0)

− ln(S2/S0)

− ln(S3/S0)
...

− ln(SN/S0)




=




b111 2b112 2b113 b122 2b123 b133
b211 2b212 2b213 b222 2b223 b233
b311 2b312 2b313 b322 2b323 b333
...

...
...

...
...

...

bN11 2bN12 2bN13 bN22 2bN23 bN33







D11

D12

D13

D22

D23

D33




, (3.40)

X = Bd. (3.41)

The easiest option for solving this is to use the least squares optimization dopt =

argmind||X − Bd||2, which translates to the Moore-Penrose pseudo-inverse solution:

d = (BTB)−1BTX.

Due to its linear form which only involves matrix manipulations, this solution is ex-

tremely rapid. However, it doesn’t account for the signal noise or of the distortion

to the noise it introduces while taking the logarithms of the signal in the lineariza-

tion process. Due to DTI’s popularity and maturity as a technique of probing tissue

microstructures, a number of sophisticated solutions exist for measuring D from the

dMRI signal. These range from Basser’s original weighted least squares approach

[30] which accounts for the logarithmic distortion of the signal noise, to non-linear

optimization approaches that account for signal noise, spatial smoothing, and also

for constraining the DT to be positive definite [32, 33, 34, 35, 36, 37, 1].

Microstructure from DTI The consistency between the phenomenological ap-

proach and the q-space formalism, under the NGP condition, implies that the propa-

gator describing the diffusion measured by DTI is the Gaussian PDF (Eq-3.17):

P (∆x, t) =
1

(4πt)3/2|D|1/2
exp

(
−∆xTD−1∆x

4t

)
.
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This is an oriented Gaussian parameterized by the DT D, or its inverse. The ori-

entation of the PDF can be deduced from the eigen-decomposition of the DT. The

eigenvalues and eigenvectors of D form a local coordinate system that indicates the

preferential diffusion direction orienting the Gaussian PDF. In other words it indi-

cates the diffusion direction favoured by the microstructure of the medium. This

preferential orientation of the microstructure can be visually represented by the el-

lipsoid represented by D whose implicit quadratic form is [31]:

xTD−1x

2t
= 1. (3.42)

Since D is symmetric it can be diagonalized D = WTΛW, where W are its orthonor-

mal eigenvectors and Λ is a diagonal matrix whose diagonal elements are its eigen-

values. The canonical form of the diffusion ellipsoid defined by D−1 emerges in the

coordinate frame of its eigenvectors:

(
x′√
2λ1t

)2

+

(
y′√
2λ2t

)2

+

(
z′√
2λ3t

)2

= 1.

To infer the microstructure of the cerebral white matter from DTI, the fundamental

assumption is that the coherent fiber bundle structures formed by the axons hinder

the perpendicular diffusion of water molecules (spin bearing 1H atoms) more than

the parallel diffusion. Therefore, the elongation and orientation of the DT are good

indicators of these coherent structures or fiber bundles locally. The eigenvector cor-

responding to the largest eigenvalue, the major eigenvector, indicates the main fiber

direction, while the other eigenvectors and eigenvalues indicate diffusion anisotropy

in the perpendicular plane.

Scalar Measures The microstructure of the medium or the white matter can be fur-

ther characterized from a number of rotationally invariant scalar measures derived

from the DT that reveal diffusive properties of the underlying tissue. Two such scalar

measures are of primary importance since they are often used as bio-markers. The

first is mean diffusivity (MD) which is λ = tr(D)/3 [38].

Fractional anisotropy (FA) is the other measure which describes the amount of

anisotropy presented by the microstructure. It too is derived from the eigenvalues

of D [38]:

FA =

√
3

2

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2

λ2
1 + λ2

2 + λ2
3

.

There also exist a number of other scalar measures [39].

Tracing Fibers from DTI When DTI is performed on the brain, the DT in every

voxel is a local indicator of coherent structures or fiber bundles in the cerebral white

matter. However, the process of reconstructing the global structures of fiber bundles

by connecting the local information is known as fiber tracing or tractography. Trac-

tography graphically reconstructs the connectivity of the cerebral white matter by
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Figure 3.7: Diffusion Tensor Imaging (DTI). (a) DTI ellipsoids from an axial slice of

the brain, with zoom. (b) Fractional Anisotropy (FA). (c) Colour FA where the colour

components RGB represent the unit major eigenvector of the diffusion tensor e1 =

[r, g, b]T weighted by FA. Or the colours indicate the preferential diffusion anisotropy

directions.

integrating along the direction indicated by the local geometry of the DT. It is a tool

that is unique in the sense that it permits an indirect dissected visualization of the

brain in-vivo and non-invasively [40]. The underpinnings of tractography are also

based on the fundamental assumption of dMRI mentioned above, i.e. that the dif-

fusion of water molecules is hindered to a greater extent perpendicular to coherent

fiber bundle structures than parallel to these. Therefore, following the geometry of

the local DT and integrating along reveals the continuous dominant structure of the

fiber bundle. Tractography became possible once DTI was established.

Of the many tractography algorithms, the continuous deterministic tractography is

a widely used scheme that was proposed for DTI [41]. It considers a fiber tract as

a 3D space curve parametrized by its arc-length, r(s), and describes it by its Frenet

equation:

dr(s)

ds
= t(s) = ǫ1(r(s)), r(0) = r0 (3.43)

where t(s) the tangent vector to r(s) at s is equal to the unit major eigenvector ǫ1(r(s))

of the DT at r(s). This implies that fiber tracts are locally tangent to the major

eigenvector of the DT.

Integrating the differential equation Eq.3.43 generates individual fiber tracts start-

ing from seed voxels r0. There exist various schemes for numerical integration, for

estimation of a spatially continuous tensor field from a discrete DTI tensor field, and

for stopping the integration process heuristically [41]. These influence the quality of

the fibers that are traced from the DTI.
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3.4.2 ADC & Generalized DTI

The usage of the ADC was prevalent even before the advent of DTI. It was defined

from Stejskal-Tanner’s isotropic signal formulation (Eq-3.22):

S = S0 exp (−b.ADC) .

The diffusion coefficient measured from Eq-3.22 in anisotropic media was named the

ADC since its value changed depending upon the direction in which it was measured,

or equivalently on the direction of the diffusion encoding direction. The ADC was

replaced by DTI since DTI could express a more complex ADC than the previous

scalar value, namely the ADC in DTI is described by the spherical function:

ADC = gTDg.

However, interest returned to the ADC, when it was realized that the complexity

of the cerebral white matter’s microstructure was sometimes beyond the scope of

DTI or the free diffusion Gaussian propagator. Since the fiber bundles in the white

matter criss-crossed at a resolution finer than that of dMRI, the DT was only an

average description of the true microstructure. Therefore, when fiber bundles crossed

Figure 3.8: Microstructural complexities in the cerebral white matter due to the criss-

crossing of fibers at a resolution finer than that of dMRI. Regions with isotropic

diffusivity, regions with simple unidirectional anisotropic diffusivity, and regions

with complex multi-directional anisotropic diffusivity. From [3], with original figures

adapted from [42] and from Brain Museum.
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within a voxel, even though they presented locally, within the voxel, two independent

preferential directions of anisotropy, the DT perceived this as isotropy, and failed to

discern the independent preferential directions of anisotropy.

This can be understood in two ways. Mathematically, the preferential direction indi-

cated by a DT can be understood from either its eigen-decomposition or equivalently

from its quadratic form describing its ellipsoid Eq-3.42. Since the quadratic form

is nothing but a 2nd order homogeneous polynomial, it is clearly limited to only a

pair of antipodally symmetric maxima. The presence of additional anisotropy direc-

tions makes the quadratic form more isotropic. From a physical view point, as seen

previously, Gaussian diffusion or free diffusion was derived from the diffusion equa-

tion without boundary conditions. However, in the presence of such boundaries or

criss-crossing fibers, Gaussian diffusion is a low order spatial approximation of the

true diffusion when viewed from the q-space formalism. Therefore, DTI is inherently

limited in voxels with complex fiber bundle configurations, such as crossings.

However, this microstructural complexity could be seen in the ADC. Returning in-

terest in the ADC brought along the novel concept of general spherical functions de-

scribed mathematically by different functional bases to describe the richer geometries

of the microstructure probed by diffusion. Frank introduced the Spherical Harmonic

(SH) basis for the first time in 2002 to model the ADC [43]. Although the ADC was

soon abandoned since, SHs turned out to be an invaluable contribution to the field of

dMRI. Similarly Ozarslan [44] and Liu [45] introduced Cartesian higher order tensors

(HOTs) for modelling the ADC.

ADC was soon abandoned because although it was sensitive to complex fiber con-

figurations, it wasn’t well suited for inferring these fiber directions. Unlike DTI,

it wasn’t a good indicator of the medium’s microstructure since its maxima weren’t

aligned with the preferential anisotropy directions [46]. However, before q-space be-

came popular in dMRI, two methods generalizing the DTI-ADC, D(g) = gTDg, were

proposed to overcome its shortcoming.

GDTI1 GDTI1 (so called in this thesis) was proposed by Ozarslan in 2003 [44].

Essentially it considers a modified Fick’s second law Eq-3.9, generalized such that the

diffusion coefficient is replaced by a spherical function parameterized by a Cartesian

HOT, in the Bloch-Torrey equation (Eq-3.19). The generalized diffusion term in the

Bloch-Torrey equation is:

∂M+

∂t
= D

(n)
j1j2···jn

gj1gj2 · · · gjn∇2M+,

where D
(n)
j1j2···jn

are the coefficients of an nth order tensor D(n), gjk
are the components

of the unit gradient vector g = G/|G| when the gradient vector is G, and the repeated
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indices indicate summation over their entire range. Solving the Bloch-Torrey equa-

tion along the lines of Stejskal and Tanner gives a generalized Stejskal-Tanner signal

formulation, which in the absence of imaging gradients is [44]:

− ln

(
S

S0

)
= b ·D(n)

j1j2···jn
gj1gj2 · · · gjn ,

where b is the b-value. This shows that the generalized ADC is the spherical diffusion

function that was used to modify Fick’s law:

D(g) = D
(n)
j1j2···jn

gj1gj2 · · · gjn .

Since negative diffusion is non-physical, naturally the HOT D(n), parameterizing the

ADC, is of even order. D(n) is also symmetric, such that its coefficients are invariant

under any permutations of the indices. When n = 2 this becomes the DTI-ADC:

D(g) =
3∑

i=1

3∑

j=1

Dijgigj = gTDg.

This forms an alternate basis to the SH basis for modelling complex ADCs.

Interestingly, when viewed under the NGP condition, which is not a requirement

of this method, it reveals that to account for complex microstructures, this method

doesn’t really consider boundary conditions. It accounts for complex microstructure

by using a spherical diffusion function that reflects the form of the complex ADC.

However, under the q-space formalism the ADC (or the signal) is in the Fourier space

of the EAP. Therefore, the spherical diffusion function describes the effects of complex

microstructures in the Fourier domain.

GDTI2 GDTI2 (so called in this thesis) was proposed by Liu also in 2003 [45]. This

is perhaps the first approach that attempted to recover the diffusion EAP using basis

functions to describe the signal and the EAP. This is of utmost value in the q-space

formalism, since a correct choice of basis functions in the signal domain can lead to

an analytical form for the Fourier Transformed EAP. This lies at the heart of modern

q-space techniques. However, the complex fashion in which GDTI2 compares the

phenomenological Bloch-Torrey equation to the q-space formalism in the case of non-

free diffusion to achieve its results, is perhaps an indicator of the phase when dMRI

transitioned from the phenomenological approach to the q-space formalism, which

was also referred to as “higher order descriptions” in the dMRI terminology.

GDTI2 employs both the q-space formalism and the phenomenological approach.

Therefore, it assumes the NGP condition. From the q-space perspective it relies on

the CGF of the EAP (Eq-3.33). In the phenomenological approach, GDTI2 like GDTI1

doesn’t consider boundary conditions for the diffusion equation, and instead modifies
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the diffusion equation itself. In the derivation of the diffusion equation in the random-

walk model, the passage from Eq-3.14 to Eq-3.15 was made by considering only the

smallest non-zero terms in the Taylor expansions of Eq-3.14. GDTI2 modifies this by

considering all the terms in the Taylor expansion of the spatial component, i.e. the

RHS of Eq-3.14. This leads to the diffusion equation:

∂C

∂t
=

∞∑

n=2

[
D

(n)
jji2...jn

∇(n)
j1j2...jn

C
]
,

where D
(n)
j1j2...jn

are the coefficients of an n-th order three dimensional Cartesian dif-

fusion tensor D(n), the repeated indices indicate summation over their entire range,

and by an abuse of notation:

∇(n)
j1j2...jn

C =
∂(n−1)C

∂xj2∂xj3 . . . ∂xjn

.

Using this diffusion equation in the Bloch-Torrey equation and again solving along

the lines of Stejskal and Tanner gives another generalized Stejskal-Tanner equation,

which in the presence of imaging gradients has the form:

ln

(
S

S0

)
=

∞∑

n=1

[
inD

(n)
j1j2...jn

b
(n)
j1j2...jn

]
,

where b
(n)
j1j2...jn

are the coefficients of the nth order b(n)-tensor which is a generaliza-

tion of the b-matrix.

Comparing this to the CGF expansion of the EAP in Eq-3.33, where in both the ex-

pansions only the even terms are non-zero (since for the CGF expansion, the EAP is

considered symmetric, and for the random-walk formulation expansion, the transi-

tion probability is considered symmetric), reveals their similarity and leads to:

K
(n)
l1l2...ln

= (−1)nn!D
(n)
l1l2...ln

(
∆ − n− 1

n+ 1
δ

)

≈ (−1)nn!D
(n)
l1l2...ln

∆, (3.44)

where the approximation is due to the assumed NGP condition.

What this procedure reveals is that the cumulant tensors in the q-space formalism

can be measured from the higher order diffusion tensors in the modified phenomeno-

logical formulation under the NGP condition. However, since the NGP condition is

assumed it is already possible to measure the cumulant tensors directly from the

CGF of the EAP in Eq-3.33, which connects the signal to the cumulant tensors. The

process of generalizing the diffusion equation is a remnant from the pre-q-space days

of dMRI.

Interestingly GDTI2 then reconstructs the EAP analytically from the cumulant ten-

sors using a Gram-Charlier approximation:

P (r) ≈ N(0,K(2)) ×
(

1 +
K

(4)
j1j2j3j4

4!
Hj1j2j3j4(r) + ...

)
, (3.45)
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where N(0,K(2)) is the Gaussian distribution with zero mean and covariance tensor

K(2), and Hj1j2j3j4(r) are the components of the n-th order Hermite tensor H(n)(r).

3.4.3 Diffusion Spectrum Imaging

Diffusion spectrum imaging (DSI) introduced by Wedeen et al. [47, 28] in 2000, was

the first dMRI method that applied the q-space formalism to measure or estimate

the EAP in biological tissue. The forte of the q-space formalism, where diffusion

could reveal more than just the intrinsic properties like the diffusion coefficient, and

show how it could probe the complex microstructure of the underlying tissue, became

quickly apparent. Crossing fiber microstructures were clearly revealed by the geo-

metric forms of the measured EAPs, or their characteristics. Such EAPs clearly rep-

resented non-free diffusion and were non-Gaussian. DSI was based on the Fourier

Transform relationship between the signal and the EAP described in Eq-3.32. Al-

though in practice it couldn’t satisfy the NGP condition required by the q-space for-

malism, DSI essentially imaged the q-space densely and reconstructed the EAP via

a fast Fourier Transform (FFT). In fact, δ ≈ ∆ in the DSI experiments conducted

in [47, 28, 48]. Nonetheless, the angular results produced by such DSI experiments

clearly spoke in favour of q-space imaging – as seen in [49].

DSI, however, considered the modulus Fourier Transform:

P (r) =

∫
|E(q)| exp (−i2πq · r) dq,

in place of the true Fourier Transform, justifying that in the case of pure diffusion the

Figure 3.9: DSI diffusion PDFs from [47]. Corticospinal tract (orientations sup.-inf.)

and pontine decussation (left-right).
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modulus Fourier Transform is equal to the true Fourier Transform. This was done to

counter biological motion such as cardiac pulsation, which tended to contaminate the

phase of the signal.

Initially visualizing iso-surfaces of the estimated EAP [47], DSI techniques later in-

troduced the orientation distribution function (ODF), to emphasize the angular re-

sults, which indicated underlying fibers. Two ODFs were used, namely [48]:

ΨSA(u) =

∫

R+

P (ru)r2dr, u = r/|r|, (3.46)

and the one introduced by Tuch [28]:

ΨT (u) =

∫

R+

P (ru)dr, u = r/|r|. (3.47)

However, DSI had severe acquisition setbacks. To correctly estimate the EAP, the

q-space had to be densely sampled, and also at very high b-values. The DSI sampling

scheme was a Cartesian grid inside a sphere in q-space, where both the radius of the

sphere – the maximum b-value, and the number of grid-points – the number of ac-

quisitions played important roles in determining the accuracy of the estimated EAP.

For example in [47, 48], the maximum b-value was in the range of 20,000 s/mm2, and

the number of acquisitions were more than 500. In comparison, DTI acquisitions are

done for b-values of 1000 s/mm2, and only require a minimum of 6 acquisitions. These

demanding requirements played unfavourably for DSI, since its clinical viability was

near impossible.

However, DSI was the proof of concept for q-space imaging, which quickly became the

popular approach for dMRI, and gave rise to a plethora of techniques for estimating

complex EAPs or their characteristics like the ODF. These q-space techniques were

developed to overcome the acquisition limitations of DSI.

3.4.4 Other Methods

A selected number of popular approaches are presented here that have been used

in dMRI for inferring the underlying microstructure or fiber distribution. Some are

based on the q-space formalism while others aren’t, some are model based while oth-

ers are model-free.

Multi-Tensor model The multi-tensor method is a model based approach intro-

duced by Tuch et al. [46] as a direct extension to DTI to overcome its inherent limita-

tion in regions with fiber heterogeneity. Simply put it considers the EAP to be a sum
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of free diffusion Gaussian processes, implying the signal to be:

E(g) =

n∑

j=1

fj exp
(
−bgTDjg

)
,

where g = G/|G| when G is the diffusion encoding gradient, n are the number Gaus-

sian distributions comprising the EAP or equivalently the number of fibers or ori-

ented free diffusion subsets, fj the corresponding weights, such that their sum is

unity, thus ensuring the PDF property of the Fourier Transform of this signal, and

Dj are the DTs characterizing the anisotropies or orientations of the Gaussian dis-

tributions. The straightforwardness of this formulation, however, hides a number of

technical difficulties. First, unlike the DTI signal, this signal cannot be linearized in

the unknowns of the DTs {Dj}. Therefore, a non linear gradient descent optimization

approach has to be adopted to measure the DTs. However, such methods are inher-

ently unstable. Next, the number of fibers have to be predefined (usually chosen as

2), and this can render the estimation scheme numerically unstable, especially when

the actual fiber population is smaller than the predefined number of fibers – leading

to spurious results. Various improvements and specializations in the form of con-

straints, regularizations, and automatic selection of the number of fibers have been

proposed [5] (and references therein).

However, this model is often used as the ground truth for the signal, the EAP and the

ODF in synthetic data experiments, since all these have simple analytical forms.

Diffusion Kurtosis Imaging Diffusion Kurtosis Imaging (DKI) was proposed by

Jensen et al. [50] to quantify and measure the EAP’s departure from the Gaussian

distribution. DKI uses a 2nd order 3D Cartesian tensor to measure the ADC or the

covariance of the unknown EAP and a 4th order 3D Cartesian tensor to measure the

excess kurtosis, which measures the unknown EAP’s departure from the Gaussian

distribution. DKI is closely related to GDTI2. Both estimate the higher order cumu-

lants of the EAP and use the expansion of the CGF (Eq-3.33). Therefore, DKI also

relies on the q-space formalism. But GDTI2 and DKI differ in two respects. While

GDTI2 estimates the cumulants – only the second and the fourth cumulants in prac-

tice, to reconstruct the EAP, DKI estimates the second and the fourth cumulants to

measure the departure of the EAP from the Gaussian distribution. Also DKI doesn’t

employ the phenomenological approach like the modified Fick’s equations used by

GDTI2, and measures the higher order cumulants directly from the signal using the

CGF expansion of the EAP using the q-space formalism.

In DKI the CGF expansion of the EAP is truncated to the fourth order, which includes

only the second and the fourth cumulants of the EAP (Eq-3.33):

ln (E(q)) = −(γδg)2

2!
K

(2)
j1j2

gj1gj2 +
(γδg)4

4!
K

(4)
j1j2j3j4

gj1gj2gj3gj4 ,
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where the gradient vector G = gg, g = G/|G|, and the repeated indices again indicate

summation over their range. However, DKI measures the excess kurtosis, which is

defined as the standardized fourth order cumulant k̃4 = k4/k
2
2 in 1D. It’s equivalent

in 3D is defined along particular gradient directions g, as K̃4(g), the projection of the

fourth order cumulant K(4) along g divided by the squared projection of the second

order cumulant K(2) along g:

K̃4(g) =
K

(4)
j1j2j3j4

gj1gj2gj3gj4(
K

(2)
j1j2

gj1gj2

)2 =

(
tr(K(2))/3

)2 ·W (4)
j1j2j3j4

gj1gj2gj3gj4(
K

(2)
j1j2

gj1gj2

)2 ,

where [50] defines W
(4)
j1j2j3j4

as the coefficients of the kurtosis tensor W(4). Replacing

the fourth order cumulant tensor K(4) by the kurtosis tensor W(4), and the second

order cumulant tensor K(2) by the covariance matrix 2∆D, where D is the diffusion

tensor, in the CGF expansion allows to estimate the diffusion tensor and W(4) from

the signal [50]:

ln (E(q)) = −b ·D(2)
j1j2

gj1gj2 +
b2 (tr(D)/3)2

6
·W (4)

j1j2j3j4
gj1gj2gj3gj4 ,

which allows to measure the excess kurtosis or the departure from the Gaussian

distribution along any direction.

QBI Q-Ball Imaging (QBI) was proposed by Tuch [28, 51] spurred by the facts

that DSI had severe acquisition requirements, and that the DSI result of interest

wasn’t the estimated EAP itself, but rather its radial projection – the ODF, which

emphasized angular details. His idea was to retrieve the same angular result with

reduced acquisition requirements. His initial attempt was the model based multi-

tensor approach which was stricken with instabilities induced by the assumed model.

Therefore, he proposed QBI, a model free method that sampled q-space only on a

sphere or q-shell with fixed q-radius with high angular resolution. Such high angular

resolution diffusion imaging is known as HARDI.

QBI like DSI is based on the q-space formalism and shows promising results, al-

though like DSI, in practice it cannot satisfy the NGP condition [28]. However, QBI

became a forerunner to a plethora of q-space methods that attempted to reconstruct

the EAP or its characteristics from partial sampling of the q-space. QBI, itself maps

spherical acquisitions in q-space to the ODF – a spherical function in real space.

QBI is based on the Funk Radon transform (FRT), which is a mapping from a sphere

to a sphere G : S2 → S2. To a point on the sphere, called the pole, the FRT of a

spherical function f , assigns the value of the integral of the spherical function along

the equator on the plane that has for normal the vector connecting the centre of the

sphere to the pole (Fig-3.10):

G[f(u)](u) =

∫

S2

f(u)δ(uTw)dw,
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q-space signal real-space ODF

Figure 3.10: The Funk Radon Transform of a spherical function f , assigns the value

of the integral of the spherical function along the equator on the plane that has for

normal the vector connecting the centre of the sphere to the pole.

where u,w ∈ S2. Using the Fourier slice theorem, Tuch was able to show that the

FRT of the signal acquired on a q-sphere was equal to the ODF in Eq-3.47 blurred by

a zeroth-order Bessel function, where the blurring or the width of the Bessel function

was inversely proportional to the radius of the acquisition q-sphere.

QBI, therefore, made it possible to reconstruct the angular result of DSI, i.e. the

ODF, with fewer acquisitions and without assuming any models. QBI was further

boosted by [52, 53, 54], where an analytical solution was proposed independently by

the authors, by using the SH basis. It was shown that the SHs are the eigenfunctions

of the FRT [54]. Aganj et al. [55] recently proposed an analytical solution to QBI

using SHs to compute the ODF in Eq-3.46, under a mono-exponential assumption of

the signal. The ODF in Eq-3.46 takes into account the solid angle factor during the

radial integration, therefore, it is a true marginal density function of the EAP, and is

called the ODF-SA henceforth. This solution was also proposed by Vega et al. in [56].

The ODF in Eq-3.47 proposed by Tuch on the other hand doesn’t account for this solid

angle, and therefore needs to be numerically normalized after estimation [51]. It is

henceforth referred to as the ODF-T. Typically the ODF-SA produces sharper peaks

than the ODF-T.

PAS-MRI PAS-MRI proposed by Janson and Alexander [57] attempts to recover a

certain characteristic of the EAP called the persistent angular structure (PAS) from

the dMRI signal. Since QBI like acquisitions often sampled q-space densely on a

sphere, it seemed natural like in QBI to try and recover angular properties of the

EAP – the PAS, rather than its radial information. Therefore, assuming that the

angular and the radial parts of the EAP are independent:

P (r)PAS =
1

r2
0

p̂(r̂)δ(|r| − r0),

where p̂ is the PAS, and r̂ = r/|r|, the PAS for the radius r0 is estimated by best fitting

the Fourier Transform of P (r)PAS to the measured q-space signal. This was done us-

ing a maximum entropy cost function and a non-linear iterative algorithm. Although
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the original implementation was slow, this was improved upon by the realization that

recovering the PAS could be reformulated as a spherical deconvolution problem [58].

Spherical Deconvolution Spherical Deconvolution (SD), proposed by Tournier et

al. [59] attempts to infer directly the fiber orientation distribution function (fODF),

which is the distribution of the underlying fibers, from the signal, without involving

either the EAP or the ODF. Essentially this approach considers the signal to be the

convolution of the fODF with the signal from a single fiber on the sphere [5]:

E(q) =

∫

S2

f(u)R(q,u)du,

where u is a unit-norm vector, f(u) is the fODF, and R(q,u) is the signal from a single

fiber oriented along u also called the “response function”. Therefore, the fODF is re-

covered from the signal by deconvolving it with the response function. This deconvo-

lution can be computed by simple matrix manipulations when the signal is described

in the SH basis and the response function in the rotational harmonics basis.

The SD method, however, assumes the same response function model for all the un-

derlying fibers, which can be estimated directly from the signal in voxels with very

high anisotropy. However, there also exist a number of other models for estimating

the response function [3]. SD is also highly sensitive to signal noise, and when high

order SHs are considered, it produces spurious peaks and also negative values on

the sphere, which are non-physical. A number of methods to improve this by using

constraints and regularizations have also been proposed to improve SD [3, 5] (and

references therein).

3.4.5 EAP Estimation

A number of methods have been recently proposed for recovering the complete EAP

in dMRI. Like DSI, these methods make use of the q-space formalism, which relates

the EAP to the diffusion signal via a Fourier Transform. However, unlike DSI which

proceeds by sampling the q-space densely, which is its major disadvantage, these

recent methods employ functional bases to model the q-space signal resulting in a

continuous signal function from relatively few q-space samples, when compared to

the requirements of DSI. These methods differ from each other in the way the sig-

nal is modelled using the functional basis of their choice, and in their choices of the

functional bases used to represent the signal function.

Since the relationship between the EAP and the signal is a Fourier Transform, which

was a hurdle crossed by DSI using a numerical fast Fourier Transform (FFT), choos-

ing the functional bases rightly can help in solving the Fourier Transform analyti-

cally, by understanding that the Fourier Transform is a linear operator. This was in
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fact highlighted by the GDTI2 approach, where the standard polynomial basis (with

cumulants as coefficients) was used to model the signal, and the EAP was analyti-

cally computed in the Hermite polynomial basis (with again the same cumulants as

coefficients). Therefore, choosing the functional bases rightly facilitates the Fourier

Transform passage.

However, while GDTI2 inherently modelled the signal in the Cartesian coordinate

system, and solved the Fourier Transform in the Cartesian coordinate system, these

recent methods are all expressed in the spherical coordinate system, to separate the

angular diffusion profile from the radial diffusion profile. Further, all these methods

(except DOT) make use of the SH basis to fit the angular part of the continuous

signal function, since the SH basis is a complete orthonormal basis for L2 integrable

functions on the sphere, and also since in the spherical coordinates, the SHs are

eigenfunctions of the angular part of the Fourier Transform – implying an easy and

analytical angular transformation. The DOT uses the SH basis to fit the angular part

of the signal’s logarithm.

DOT The diffusion orientation transform (DOT) was proposed by Ozarslan et al.

[60] as an analytical method for transforming the diffusivity (ADC) profile to proba-

bility profiles or the EAP. The DOT addresses a geometrically complex ADC profile in

the SH basis, therefore the signal has the form:

E(q) = e−bD(g),

where g = G/|G| when G is the gradient encoding direction, and D(g) is the ADC

profile in the SH basis. This continuous signal function is used to compute its Fourier

Transform in the spherical coordinates which provides an analytical solution for

spherical profiles of the EAP also in spherical coordinates. Therefore, the DOT signal

model is based on the ADC, and its signal function is a mono-exponential decay which

was also generalized to a multi-exponential decay.

DPI Diffusion propagator imaging (DPI) was proposed by Descoteaux et al. [61],

where the signal was written in the solid harmonics basis which are the general

solutions of Laplace’s equation in spherical coordinates:

E(q) = E(qu) =

∞∑

j=0

[
cj
ql+1

+ djq
l

]
Yj(u) for q > 0,

where cj and dj are the coefficients which fit the signal to this functional form, and

Yj are real and symmetric SHs. The solid harmonics are generalizations of the SHs.

However, this signal model implies that the signal satisfies Laplace’s equation, im-

plying a heat diffusion like behaviour of the signal in q-space. Such an assumption is,
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however, not verifiable physically. But using boundary conditions provided by mul-

tiple q-shells, since Laplace’s equation requires boundary conditions to be solved, it

is possible to fit a continuous signal function to the signal samples. This functional

basis also admits an analytical Fourier Transform in the spherical coordinates, mak-

ing it possible to estimate the EAP analytically, when the signal is described in this

functional basis.

SHORE The simple harmonic oscillator based reconstruction and estimation

(SHORE) of the EAP was proposed by Ozarslan et al. [62], where for the first time a

complete orthogonal function basis was used to estimate the signal function from the

signal samples. Since the basis used is complete for L2 integrable functions in R3,

the signal is model free and is treated as is. The orthogonal basis used by SHORE is:

Φjlm(u, qg) = i−l
√

4π(2π2u2q2)l/2 exp
(
−2π2u2q2

)
L

l+1/2
j−1 (2π2u2q2)Ylm(g),

where u is a tuning parameter, L
l+1/2
j−1 (·) is the Associated Laguerre polynomials and

Ylm(·) is the SH. While the SHs form a complete orthogonal basis on the sphere, the

Associated Laguerre polynomials form a complete orthogonal basis on [0,∞). Since

this basis has also an analytical Fourier Transform in spherical coordinates, the sig-

nal written in this basis also leads to an analytical expression for the EAP.

SPFI Closely related to the SHORE method is the method proposed by Assemlal

et al. in [63]. This method proposes another basis, very similar to the SHORE basis,

to estimate the signal function from the signal samples. This basis too is orthogonal

and complete:

Ψnlm(u, qg) =

[
2n!

u3/2Γ(n+ 3/2)

]1/2

exp

(−q2
2u

)
L1/2

n

(
q2

u

)
Ylm(g),

where again u is a tuning parameter, and Ylm(·) is the SH. However, in this basis,

L
1/2
n (·) is the generalized Laguerre polynomial. Again since this basis is complete, es-

timating the signal in this basis requires no model assumptions and signal samples

are treated as is for fitting. Although Assemlal et al. did not propose an analytical

Fourier Transform for this basis, Cheng et al. proposed an analytical Fourier Trans-

form in spherical coordinates in [64]. He called this the spherical polar Fourier imag-

ing (SPFI). Therefore, again an analytical estimation of the EAP can be computed by

fitting the signal in this basis.

3.5
SUMMARY

This chapter presented the fundamentals of the NMR phenomenon, the dif-

fusion NMR experiment, and reviewed a number of diffusion MRI reconstruction al-

gorithms. The NMR experiment can recover several different physical properties
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from samples which contain spin bearing particles by simply applying a set of mag-

netic fields and gradients. This forms the core of the non-invasive nature of MRI.

However, NMR can only examine a tiny region of a sample or a single spin ensemble

and cannot image an entire biological specimen. This is made possible by the spatial

encoding technique of MRI, which allows to spatially encode various juxtaposed re-

gions or spin ensembles where NMR can be applied independently. This is done in

MRI again using magnetic gradients. Therefore, this allows MRI to examine entire

biological specimen, like the brain or the body, in-vivo and non-invasively.

One of the properties that NMR can be sensitized to is the Brownian motion of the

spin bearing particles in a sample. Therefore, NMR can be used to measure the

diffusion properties of a sample by modelling the diffusion of the spin bearing par-

ticles in the sample. Since diffusion has been historically modelled in two different

ways, namely the Fick’s phenomenological laws of diffusion and Einstein’s random

walk model of Brownian motion, the diffusion NMR signal is also modelled in two

ways, namely the Stejskal-Tanner formulation and the q-space formalism. These ap-

proaches provide complementary ways to measure the diffusion properties of a sam-

ple from the NMR experiment, which have strongly influenced the development of

diffusion MRI reconstruction techniques.

However, diffusion of water molecules, which are spin bearing particles, in a biolog-

ical specimen is an intricate phenomenon since biological tissues are composed of

complex microstructures. This microstructure causes diffusion to be anisotropic in

biological tissues. This leads to the idea that diffusion can be viewed as more than

just an intrinsic property of a sample, but can be further interpreted as a sensitive

probe of the sample’s microstructure. Therefore, measuring the anisotropic diffusion

from a sample makes it possible to infer the microstructure of the sample. This is

the principle behind diffusion MRI, where diffusion measured from juxtaposed spin

ensembles using the diffusion NMR experiment and the spatial encoding of MRI, is

employed to infer the complex microstructure of the cerebral white matter in-vivo

and non-invasively.

Diffusion tensor imaging was the first diffusion MRI technique that was proposed

to infer the tissue microstructure. It is the most commonly used technique since its

mathematical framework is simple, it has few acquisition requirements and has a

number of powerful and practical applications. However, it is limited in regions with

microstructural heterogeneity. Many “higher order” techniques have been therefore

proposed recently in diffusion MRI to overcome this limitation of diffusion tensor

imaging, and to infer the microstructure of the cerebral white matter with greater

accuracy.

A trend for using the spherical coordinates emerges from the (incomplete) review of

recent higher order dMRI reconstruction techniques. This can be seen in the exten-
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sive usage of the SH basis either for estimating characteristics of the diffusion EAP,

e.g. in the analytical solution of QBI, PAS-MRI, SD, or for the estimation of the com-

plete EAP, like in the methods in section-3.4.5. This is perhaps due to the importance

given to recovering underlying axon fiber directions. These fiber directions corre-

spond to angular properties, e.g. angular profiles of the EAP and angular marginal

moments of the EAP, which are easier to compute in the spherical coordinates.

In this respect, the techniques presented in this thesis, contribute to an important

alternate approach to dMRI using Cartesian coordinates. While the spherical coor-

dinates simplify the computation of angular properties, the Cartesian coordinates

simplify the computation of Cartesian properties like the “cumulants” of the EAP, as

can be seen from DKI. The Cartesian properties are relevant since these can also be

used to characterize the white matter, such as its anisotropy. Finally, as shown in

GDTI2, and as will be shown in chapters-4 & 5, the Cartesian approach can also be

used to infer the underlying axon fiber directions.
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4.1
INTRODUCTION

Diffusion Tensor Imaging (DTI) [30, 31] has become the de facto standard

today in diffusion MRI (dMRI) for investigating the complex microstructure of the

cerebral white matter in-vivo and non-invasively. Its tremendous popularity is due to

its simplicity in acquisition requisites and elegance in interpretation, which makes it

easy to implement the technique and infer the white matter microstructure, in partic-

ular the underlying fiber orientations. Based on Fick’s phenomenological anisotropic

diffusion equation, the DTI signal for the diffusion gradient G, is described by the

modified Stejskal-Tanner equation parameterized by the diffusion tensor D [23]:

S = S0 exp
(
−bgTDg

)
,

where b = γ2δ2g2
(
∆ − δ

3

)
, g = |G|, and g = G/|G|. In DTI, the apparent diffusion

coefficient (ADC) is modelled by the spherical function:

D(g) = gTDg.

However, in spite of its usefulness, it is well known that DTI is inherently limited

in regions with heterogeneous fiber distributions, such as in fiber-crossings. In such

regions DTI can neither accurately model the complex shape of the resulting ADC,

nor correctly infer the underlying fiber bundle layout.

Generalized DTI (GDTI1: section-3.4.2) [44], was proposed to overcome this limi-

tation by modelling the complex shaped ADC with greater accuracy using Cartesian

tensors of order higher than two, the so called higher order (diffusion) tensors (HOTs).

GDTI1, like DTI, is also based on Fick’s phenomenological laws of diffusion, where

the diffusion tensor is replaced by a spherical diffusion function parameterized by a

HOT, or as its projection on to the unit sphere. The GDTI1 signal along the gradient

direction G is similarly described by:

S = S0 exp


−b

3∑

j1=1

3∑

j2=1

. . .
3∑

jk=1

Dj1,j2...jk
gj1gj2 . . . gjk


 , (4.1)

where, Dj1,j2...jk
are the coefficients of the kth order, three dimensional, diffusion HOT

D(k), and gji
are the components of the unit gradient vector g. The complex shaped

ADC is described in GDTI1 by:

D(g) =
3∑

j1=1

3∑

j2=1

. . .

3∑

jk=1

Dj1,j2...jk
gj1gj2 . . . gjk

. (4.2)

Since g is a unit norm vector, it can also be described by the two parameters θ ∈ [0, π]

and φ ∈ [0, 2π) as g = [sin θ cosφ, sin θ sinφ, cos θ]T = [gx, gy, gz]
T , which shows that the

ADC or the spherical diffusion function is the projection of D(k) on to the unit sphere.
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This form of the diffusion function helps derive certain properties of the diffusion

HOT which greatly simplifies the GDTI1 model [44]. First, when k is odd :

D(−g) = −D(g).

However, since negative diffusion is non-physical, this implies that k can only be even,

or only even ordered HOTs are of interest in modelling the ADC. Second, although

a kth order 3D HOT can have 3k independent coefficients, since only its projection

along a vector g is of interest – D(k) has to be symmetric – or its coefficients should

be equal under any permutation σ, of the coefficient indices:

Dj1,j2...jk
= Dσ(j1,j2...jk).

This reduces the number of independent coefficients of the kth order HOT to a more

tractable:

Nk =
(k + 1)(k + 2)

2
. (4.3)

In other words, to describe the ADC more accurately using GDTI1, it is required to

estimate from the diffusion signal the coefficients of a 3D symmetric HOT of even

rank, such that the diffusion function or the estimated ADC is positive.

The independent coefficients of the kth order diffusion HOT are in practice estimated

using the least squares (LS) approach [44] in a fashion almost identical to the ap-

proach for estimating the six coefficients of the diffusion tensor in DTI (section-3.4.1,

Eq-3.41). The LS approach, although, rapid, since it involves only linear matrix oper-

ations, does not guarantee that the estimated HOT will result in a positive diffusion

function even when k is considered even. In other words, the reason for considering

k to be even, i.e. the estimated ADC should be positive, is not satisfied by the LS

estimation process.

In this chapter we present two estimation approaches for measuring, in particular

4th order, diffusion HOTs from the diffusion signal that guarantee that the estimated

ADC or the diffusion function is positive. In the first method, we take recourse to the

fact that 3D symmetric 4th order tensors can be rewritten through a mapping as 6D

symmetric 2nd order tensors. This makes it possible to reformulate the problem of

estimating a 4th order tensor with a positive diffusion profile, to a problem of esti-

mating a 2nd order tensor with a positive diffusion profile, albeit in 6D. We solve this

problem by applying the Riemannian framework developed for symmetric positive

definite (SPD) tensors of order 2, for estimating DTI diffusion tensors with positive

diffusion profiles.

In the second method, we base ourselves on the polynomial interpretation of HOTs.

Therefore, the diffusion function D(g) is re-interpreted as a homogeneous polynomial

in the components of the unit norm gradient vector g. This allows for a powerful

parameterization of the diffusion signal, which ensures that the estimation process
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guarantees a 4th order HOT with a positive diffusion profile. This parameterization

comes from the properties of ternary quartics, which was first pointed out in [65, 66].

Also it has been proposed in [67] that the affine invariant Riemannian metric may

not be well suited for diffusion data. The polynomial parameterization, therefore,

provides an alternative approach for estimating 4th order diffusion tensors with pos-

itive diffusion profiles, which employs the Euclidean metric that is better suited for

handling diffusion data [67].

4.2
A RIEMANNIAN APPROACH FOR SYMMETRIC POSI-
TIVE DEFINITE 4TH ORDER DIFFUSION TENSORS

The problem of estimating a diffusion tensor from the signal, which satisfies the

positive diffusion profile has been extensively considered in DTI. Negative diffusion,

which is non-physical, can also be a problem while estimating a 2nd order diffusion

tensor D, which happens when the DTI-ADC gTDg < 0, for some gradient direc-

tion g. This can occur since the LS estimation process (section-3.4.1, Eq-3.41) doesn’t

guarantee that the diffusion tensor will have a positive diffusion profile. This condi-

tion requires a dedicated mathematical framework which constraints the estimation

process to only diffusion tensors D such that gTDg > 0, ∀g ∈ S2.

An adequate framework for such an estimation was proposed by identifying the ap-

propriate set of 2nd order tensors that satisfy the positive quadratic form, namely

Sym+
n , the set of SPD matrices, which satisfy xT Σx > 0, ∀x ∈ Rn\{0}, and Σ ∈ Sym+

n .

In other words, if the estimation process were to only operate in the space of Sym+
3

(in the case of DTI, n = 3), then the estimated diffusion tensor would satisfy the

positive diffusion profile. The mathematical framework that was proposed, which al-

lows to do this consists of an affine invariant metric of Sym+
n , the Riemannian metric

[35, 36, 37, 1], and a similarity invariant metric of Sym+
n , the Log-Euclidean metric

[68], which naturally confine operations on SPD matrices, such as geodesic computa-

tion, to the space of Sym+
n .

Deriving an equivalent Riemannian metric for the space of 4th order diffusion tensors

would, however, be far more involved due to the increase in order or the multi-linear

property of HOTs. Nonetheless, such a metric would be the right framework to use in

the estimation process of the 4th order diffusion tensor, since it would ensure that the

estimated HOT satisfies the positive diffusion profile. However, given the symmetry

condition of a diffusion HOT, this problem can be simplified by reformulating the dif-

fusion profile of a 4th order HOT (Eq-4.2) to a bilinear form dependent on a 2nd order

tensor. Mathematically, this would convert the problem to the case of estimating a

2nd order tensor in Sym+
n , like in DTI. However, the conversion from a symmetric 4th

order 3D tensor, results in a symmetric 2nd order tensor in 6D [69, 70]. Therefore,

we would have to consider the space of Sym+
6 instead of the space of Sym+

3 .
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In this section, we propose to use this approach of transforming a symmetric 3D 4th

order Cartesian diffusion tensor to a symmetric 6D 2nd order tensor, and of applying

the Riemannian metric of the space Sym+
6 , to estimate a 4th order diffusion tensor

from the signal with a positive diffusion profile in GDTI1 [71].

4.2.1 Algebra of 2nd Order Tensors

To understand the algebra of 4th order tensors, which is required to manipulate these

entities, and to transform them to isometrically equivalent 2nd order tensors, we

start with 2nd order tensors, which are well studied and intuitively easy to under-

stand. Much of the following formulation of Cartesian 2nd and 4th order tensors

in an Euclidean space can be found in [69, 70], where, essentially a tensor is used

interchangeably with the matrix of a linear transformation.

Given an n dimensional inner product space (vector space with an inner product)

V , an nD 2nd order tensor A = A(2) is defined as the n × n matrix of the linear

transformation:

A : V → V, st x → Ax, x ∈ V.

The transpose of the linear transformation, with matrix AT , can be defined from the

inner product of V as: 〈
x,ATy

〉
= 〈Ax,y〉 , ∀x,y ∈ V.

The space of linear transformations from V to V , itself forms a vector space, which

can be called Lin(V ) = {A : V → V }. The transpose of A can be used to define a

natural inner product on Lin(V ):

〈A,B〉 := tr(ATB) =
∑

i,j

AijBij , A,B ∈ Lin(V ).

If V is Rn, then Lin(V ) is Rn×n, and it is isomorphic to Rn2
. Therefore a tensor A

in Rn×n can be written as a vector a, in Rn2
. Furthermore, the isomorphism is an

isometry, since:

〈a,b〉 = 〈A,B〉 ,

where the first inner product is the natural inner product of the vector space Rn2
,

and the second inner product is the newly defined inner product of Lin(V )= Rn×n.

A symmetric linear transformation A from V to V , can be defined from the transpose

of its corresponding 2nd order tensor, as A = AT , which in terms of its components

can be described by Aij = Aji. It is then possible to decompose a 2nd order tensor

(or linear transformation) into its symmetric and skew-symmetric parts by As =

(A + AT )/2 and Aa = (A − AT )/2 respectively, such that A = As + Aa.

Finally the space of symmetric linear transformations Sym(V ) = {A ∈ Lin(V )|A =

AT }, forms a subspace of Lin(V ). Since, an nD symmetric 2nd order tensor has n(n+
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1)/2 independent coefficients, if V is Rn, then Sym(V ) is isomorphic to Rn(n+1)/2, and

this mapping can be established in such a fashion that it is also an isometry, just like

in the case of Lin(V ), or 〈as,bs〉 = 〈As,Bs〉, for as,bs ∈ Rn(n+1)/2 andAs, Bs ∈ Sym(V ).

An example for such an isometric mapping when n = 3, can be established between a

symmetric 3D 2nd order tensor B, and b, a vector or a 6D 1st order tensor:

b = [Bxx, Byy, Bzz,
√

2Bxy,
√

2Bxz,
√

2Byz]
T , (4.4)

where Bij are the coefficients of B.

4.2.2 Algebra of 4th Order Tensors

The background for understanding the algebra of 4th order tensors is formed by the

definition of the inner product, the isometric mapping to vectors (1st order tensors) of

higher dimensions, and the symmetry properties, in particular Sym(V ), of the space of

2nd order tensors or Lin(V ). In an analogous way, we will define 4th order tensors as

linear transformations from a vector space onto itself, define an inner product for the

vector space of these linear transformations, study their symmetries, and establish an

isometric mapping from the linear transformations to a vector space of lower order

and higher dimension, which will allow us to manipulate 4th order tensors as 2nd

order tensors.

The algebra of 4th order tensors can be described by proceeding in exactly the way as

done above for 2nd order tensors, but with Lin(V ) as the vector space in place of V .

Let an nD 4th order tensor A = A(4) be defined as the n × n × n × n transformation

array of the linear transformation:

A : Lin(V ) → Lin(V ), C → AC =
∑

k,l

AijklCkl, C ∈ Lin(V ).

Since an inner product for Lin(V ) exists, it can be used to define the transpose of the

linear transformation, with the transformation array AT , as:

〈
D,ATC

〉
= 〈AD,C〉 , ∀C,D ∈ Lin(V ).

Again the space of linear transformations from Lin(V ) to Lin(V ) forms a vector space,

which can be called Lin(V ) = {A : Lin(V ) → Lin(V )}, and again the transpose of A

can be used to define an inner product on Lin(V ):

〈A,B〉 := tr(ATB) =
∑

ijkl

AijklBijkl, A,B ∈ Lin(V ).

If V is Rn, then Lin(V ) is Rn×n, and Lin(V ) is Rn×n×n×n, which is isomorphic to

Rn4
. Therefore an nD 4th order tensor can be written as a vector in Rn4

. However,

of greater interest is that Lin(V ) is also isomorphic to Rn2×n2
, which implies that an
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nD 4th order tensor A can be written as an n2D 2nd order tensor A. Furthermore,

this isomorphism is also an isometry:

〈A,B〉 = 〈A,B〉 .

Symmetries of 4th order tensors present a richer set of possibilities than the symme-

try of 2nd order tensors, since a number of symmetries can be defined by applying

different “symmetry rules” on the four coefficient indices. Indeed, we shall present

the major symmetry, the minor symmetry and the total symmetry. Total symmetry

is, however, the symmetry of interest to us, which in the mathematical approach to

tensors is the definition of symmetry of a HOT, where the coefficients of the HOT re-

main unchanged under any permutation of the coefficient indices. This is also the

symmetry condition required by the diffusion HOT in GDTI1, as implied by its prop-

erties. However, this symmetry is best called total symmetry (or complete symmetry

or super-symmetry), to differentiate it from the other possible symmetries that are

derived from physics and that carry important physical interpretations.

We shall, however, not present such physical interpretations here, but content our-

selves with counting the number of independent coefficients of a 4th order tensor

under the various symmetries. To do this we will require the formula for counting

the number of ways of choosing m elements from n elements without order and with

repetition (combination):

Sm,n =

(
n+m− 1

m

)
.

Major symmetry of an nD 4th order tensor A is defined by the index symmetry

rule Aij,kl = Akl,ij . To count the number of independent coefficients of A, which

satisfies major symmetry, we consider the isometrically equivalent n2D 2nd order

tensor A, which has only two indices I = ij and J = kl. Therefore, major symmetry

of A can be translated as the index symmetry rule of A as ÂIJ = ÂJI , where Âo1o2

are the coefficients of A, which implies that A = AT . Therefore, the number of

independent coefficients of A, which satisfies major symmetry, is:

NM =
n2(n2 + 1)

2
.

Note that major symmetry for A, corresponds to the regular notion of symmetry for

the 2nd order tensor A. Therefore, symmetry properties of A, such as decomposition

into a symmetric part and a skew symmetric part and eigen-decomposition, can be

attributed to the 4th order tensor A by isomorphism. Major symmetry also corre-

sponds to the notion of symmetry induced by the definition of the transpose of a 4th

order tensor, or a linear transformation from Lin(V ) to Lin(V ).
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Minor symmetry of an nD 4th order tensor A is defined by the index symmetry

rule Aij,kl = Aji,kl = Aij,lk. To count the number of independent coefficients of A,

which satisfies minor symmetry, the index rule can be seen as first choosing 2 index

values {ij} from n index values without order and with repetition, and then again

choosing 2 index values {lk} under the same condition. However, since {ij} and {lk}
don’t swap, their mutual order is important. Therefore, the number of independent

coefficients of A, which satisfies minor symmetry is:

NM =

(
n+ 2 − 1

2

)2

=
n2(n+ 1)2

4
.

The number of independent coefficients of an nD 4th order tensor with combined

major and minor symmetries can be computed by combining the reasonings of the

individual counts. First choose 2 index values {ij} = I or {lk} = J from n index values

without order and with repetition, which gives
√
NM . Then choose 2 index values

{IJ} from these
√
NM index values without order and with repetition. Therefore,

the number of independent coefficients of A, which satisfies both major and minor

symmetries is:

N(M+M) =

( √
NM + 2 − 1

2

)
.

Total symmetry or just symmetry, is defined for an nD 4th order tensor A by the

index symmetry rule Aijkl = Aσ(ijkl), where σ(ijkl) is any permutation of the indices

{ijkl}. This is the symmetry satisfied by any HOT in the GDTI1 model, which implies

from Eq-4.3, that the number of independent coefficients for a 3D kth order GDTI1

HOT is Nk. However, the number of independent coefficients of an nD 4th order

tensor A, which satisfies total symmetry can also be counted as the number of ways

of choosing 4 index values from n possible index values, therefore:

NT =

(
n+ 4 − 1

4

)
.

If we consider k = 4, it implies Nk = 15, and if we consider n = 3, it implies NT = 15.

This establishes the consistency between Nk and NT .

Any 4th order tensor A satisfying major and minor symmetries can be decomposed

in a unique manner into a totally symmetric 4th order tensor As and its asymmetric

part Aa such that A = As +Aa. The coefficients of the totally symmetric part and the

asymmetric part can be computed from [69]:

As
ijkl = 1

3 (Aijkl +Aikjl +Ailkj)

Aa
ijkl = 1

3 (2Aijkl −Aikjl −Ailkj) .
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These, alongwith the definition of the inner product between two 4th order tensors

can be used to show that:

〈As,Ba〉 = tr(AsBa) = 0. (4.5)

These symmetries greatly reduce the number of independent coefficients of an nD 4th

order tensor from the total number of possible independent coefficients, which is n4.

Of particular interest are the 4th order tensors which satisfy both major and minor

symmetries. These form a subspace of Lin(V ), called:

Sym(M+M)(V ) = {A : Lin(V ) → Lin(V )|A satisfies major & minor symmetries},

which is isometrically isomorphic to R
N(M+M) .

When n = 3, NM = 36, and N(M+M) = 21. Therefore, Sym(M+M)(V ) is isomorphic

to R21, which is the space of symmetric 6D 2nd order tensors. An example of an

isometric isomorphism that can be established in this case between a 3D 4th order

tensor A(M+M) and a 6D 2nd order tensor A is [72]:

A =




Axxxx Axxyy Axxzz

√
2Axxxy

√
2Axxxz

√
2Axxyz

Axxyy Ayyyy Ayyzz

√
2Ayyxy

√
2Ayyxz

√
2Ayyyz

Axxzz Ayyzz Azzzz

√
2Azzxy

√
2Azzxz

√
2Azzyz√

2Axxxy

√
2Ayyxy

√
2Azzxy 2Axyxy 2Axyxz 2Axyyz√

2Axxxz

√
2Ayyxz

√
2Azzxz 2Axyxz 2Axzxz 2Axzyz√

2Axxyz

√
2Ayyyz

√
2Azzyz 2Axyyz 2Axzyz 2Ayzyz




, (4.6)

where Aijkl are the independent coefficients of A(M+M). This map, along with the

map in Eq-4.4, which transforms a symmetric 2nd order tensor to a vector or a 1st

order tensor, allows us to isometrically rewrite the effects of a linear transformation

A(M+M) in Sym(M+M)(V ) on a symmetric linear transformation Bs in Sym(V ), as a

matrix vector product when n = 3:

A(M+M)B
s = A(M+M)b

s, (4.7)
〈
Ds,A(M+M)B

s
〉

= dsT

A(M+M)b
s. (4.8)

However, since diffusion HOTs from the GDTI1 model have to satisfy total symmetry,

we are interested in the space of 3D 4th order tensors, which satisfy total symmetry.

These also form a subspace of Lin(V ), called:

SymT (V ) = {A : Lin(V ) → Lin(V )|A satisfies total symmetry},

which is isometrically isomorphic to R15, since NT = 15 when n = 3. Although R15

corresponds to the space of symmetric 5D 2nd order tensors, the isometry to sym-

metric 6D 2nd order tensors (Eq-4.6) can be modified to represent SymT (V ), with the

added equalities:

Axxyy = Axyxy; Axxzz = Axzxz; Ayyzz = Ayzyz

Axxyz = Axyxz; Ayyxz = Axyyz; Azzxy = Axzyz.
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Applying these equalities to A in Eq-4.6, is equivalent to decomposing the 3D 4th or-

der tensor A(M+M), with major and minor symmetries, into its totally symmetric part

As
(M+M)

[69]. In other words, an isometry from SymT (V ) to the space of symmetric

6D 2nd order tensors can be established by considering the totally symmetric part of

the equivalent 3D 4th order tensor with only major and minor symmetries.

The final isometry between SymT (V ) and the space of symmetric 6D 2nd order ten-

sors is the transformation that converts a 3D 4th order diffusion tensor from the

GDTI1 model to an isometrically equivalent symmetric 6D 2nd order tensor. This

allows us to use the Riemannian metric on the space of Sym+
6 , to estimate the 4th

order diffusion tensor with a positive diffusion profile.

4.2.3 Riemannian Framework for Symmetric Positive Definite

Matrices

Second order tensors that satisfy the positive quadratic form required by the diffusion

profile of the tensor, are the set of symmetric matrices whose bilinear form is always

positive, i.e. the set of SPD tensors or Sym+
n . We consider only the set of symmetric

tensors, since the symmetry is implied by the physical problem. The space Sym+
n ,

however, isn’t complete under the metric induced by the natural inner product defined

on the space, which is 〈A,B〉 = tr(ATB) = tr(AB), ∀A,B ∈ Sym+
n . In fact Sym+

n

is known to be an open cone under this metric, also known as the Euclidean metric,

whose closure is Symn[36], where Symn corresponds to Sym(V ) defined in the section

above when V = Rn. Therefore, to operate exclusively in Sym+
n , it is either required

to explicitly consider a constraint, like in optimization, which confines the operation

artificially to Sym+
n , or it is required to consider Sym+

n as a manifold with its own

metric, which can be computed from the geometry of the manifold, and which, there-

fore, renders Sym+
n complete – thus naturally confining every operation to Sym+

n .

This metric, which depends on the geometry of Sym+
n , is known as the Riemannian

metric and it associates a new inner product to each point of Sym+
n . The manifold

Sym+
n with the new metric is known as a Riemannian manifold. In the following, we

present briefly the salient features of the Riemannian framework for Sym+
n , which

can be found in greater detail in [36, 37, 1].

More generally, a Riemannian manifold M is a real differentiable manifold in which

each tangent space is equipped with an inner product, a Riemannian metric, which

varies smoothly from point to point. This smooth variation of the tangent planes and

their inner products over the manifold, allows to generalize a number of pointwise

concepts to a finite neighbourhood. For example, given a smooth curve α(t), t ∈ [0, 1],

on the manifold, it is possible to compute at each point of the curve x = α(tx), its

tangent α′(tx), in the tangent space at x, TxM, and the norm of the tangent ||α′(tx)||,
which is induced by the inner product of TxM. Therefore, integrating the norm of
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Vector Space Riemannian manifold

subtraction −→xy = y − x W = logx(y)

addition y = x+ −→xy y = expx(W )

distance ||y − x|| ||W ||x
gradient descent xt+ǫ = xt − ǫ∇C(xt) xt+ǫ = expxt

(−ǫ∇C(xt))

Table 4.1: Comparison of vector operations in a vector space with the equivalent

operations in a Riemannian manifold [73].

the tangent vector along the curve, it is possible to define a length for the curve.

This can be used to define the distance between two points in M as the minimum

length of all the curves joining the two points. The distance renders the manifold

into a metric space, and the minimum length curve is known as the geodesic. When

the geodesic corresponding to the distance exists in the Riemannian manifold, the

manifold is known as geodesically complete. It can also be shown that this implies

metric completeness, which is the result of the Hopf-Rinow theorem.

Conversely, given a point x of the manifold M, and a tangent vector W in TxM, there

exists a unique geodesic Γx,W (t), such that Γx,W (0) = x and Γ′
x,W (0) = W. In other

words, there exists a unique geodesic that passes through x, and at x has the tangent

vector W . The exponential map projects the tangent vector W from TxM to a point

along the geodesic on M such that expx(W ) = Γx,W (1) = y, y ∈M . The inverse of this

map is known as the log map and it projects a point y ∈ M on to a tangent vector in

the tangent space at x by W = logx(y), W ∈ TxM. When M is geodesically complete,

it implies that the exponential map at x is defined on the entire tangent space TxM.

However, even then the exponential map is injective only in a local neighbourhood of

x in TxM. In this neighbourhood, expx establishes a local diffeomorphism from TxM
to a neighbourhood of x in M, and TxM is a kind of “linearization” of the manifold M.

Or, intuitively, in this neighbourhood geodesics in M correspond to tangent vectors

in TxM. The points where the exponential map fails are known as the tangential cut

locus, and their image by the exponential map is the cut locus.

The concepts of vectors in an Euclidean space can be extended locally to Riemannian

manifolds with the help of the local tangent spaces, the geodesics and the exponential

and the log maps. This is summarized in Table-4.1 [73].

A Riemannian metric for Sym+
n can be defined, when the metric is considered to be

affine invariant, or invariant under the action of the linear group GLn, where the

group action is φ : S → ASAT , A ∈ GLn,S ∈ Sym+
n . This invariance defines an

inner product for each tangent space, where the tangent space of Sym+
n at any point

S ∈ Sym+
n is identically equal to Symn [35]. Therefore, the affine invariant inner
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product in TSSym+
n = Symn, is [73]:

〈X,Y 〉S =
〈
S− 1

2XS− 1
2 ,S− 1

2Y S− 1
2

〉
Id

= tr
(
S− 1

2XS−1Y S− 1
2

)
, X, Y ∈ Symn,

where S− 1
2 & S−1 exist since S is a SPD tensor, and Id is the n× n identity matrix.

The geodesic in Sym+
n at Id, with the tangent vector W is given by [73]:

ΓId,W (t) = exp (tW ) .

Therefore, by the affine invariance property of the Riemannian metric, the geodesic

at any point S ∈ Sym+
n with the tangent vector X is:

ΓS,X(t) = S
1
2 Γ

Id,
“
S
−

1
2 XS

−
1
2

”S
1
2 = S

1
2 exp

(
tS− 1

2XS− 1
2

)
S

1
2 .

The matrix or tensor exponentials can be computed from the Taylor expansion of the

exponential function, which forms a well defined matrix polynomial. This polyno-

mial is further simplified to the operation of only considering the exponentials of the

eigenvalues of the matrices, since the matrices considered are all symmetric.

The geodesic defines the exponential and the log maps in TSSym+
n , for W ∈ TSSym+

n

and C ∈ Sym+
n :

expS(W ) = S
1
2 exp

(
S− 1

2WS− 1
2

)
S

1
2 , logS(C) = S

1
2 exp

(
S− 1

2 CS− 1
2

)
S

1
2 .

The exponential map can be used along with the formulation of the gradient descent

in Table-4.1 to design the appropriate gradient descent operation in the Riemannian

manifold of Sym+
n :

St+1 = ΓSt,∇f(St)(−ǫ) = S
1
2
t exp

(
−ǫ · S− 1

2
t ∇f(St)S

− 1
2

t

)
S

1
2
t , (4.9)

where f(S) : Sym+
n → R is the objective function that needs to be optimized, and ∇f

is the gradient of f in the Riemannian manifold Sym+
n , which is defined ∀S ∈ Sym+

n

by the directional derivative 〈∇f,X〉S in the tangent plane TSSym+
n . This can be un-

derstood as following backwards at every iteration the geodesic with the Riemannian

gradient of the objective function as its tangent vector.

Therefore, the Riemannian metric of Sym+
n allows us to design a gradient descent

algorithm that guarantees to confine the 2nd order tensor estimated in each iteration

to Sym+
n . In other words the Riemannian gradient descent allows us to find a solution,

to the minimization of a function of SPD 2nd order tensors, in Sym+
n .

4.2.4 Estimating a SPD 4th Order Diffusion Tensor

We now connect the dots and show how to use the isometric map, between totally

symmetric 4th order tensors and 6D 2nd order tensors, along with the Riemannian
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metric on Sym+
6 , to estimate the 4th order diffusion tensor in the GDTI1 model with

a positive profile. First we re-write the diffusion function in Eq-4.2, which is written

in terms of the coefficients of the kth order tensor D(k) and of the unit gradient vector

g, in the tensor terminology when k = 4:

D(g) = 〈D,G〉 , where G = g ⊗ g ⊗ g ⊗ g (4.10)

= 〈B,DB〉 , where B = g ⊗ g (4.11)

=
〈
b, D̂b

〉
= bT D̂b, (4.12)

where D = D(4) is the 4th order diffusion HOT in GDTI1, G is a totally symmetric 4th

order tensor computed from the outer products “⊗” of the gradient vector, similarly

B is a symmetric 2nd order tensor computed from the outer products of g, b is the

vector form of B using the isometric map from Eq-4.4, and D̂ is the symmetric 6D

matrix form of D using the isometric map from Eq-4.6. The first two equalities can

be derived from the coefficients’ equation in Eq-4.2, and the third equality can be

derived from Eqs4.7 & 4.8. Therefore, the diffusion signal from the GDTI1 model

(Eq-4.1) when k = 4, can be written in tensor form as:

S = S0 exp
(
−bbT D̂b

)
. (4.13)

In this form, the problem of estimating the 4th order diffusion tensor D, from the

signal, with a positive diffusion profile can be solved by estimating the 2nd order

tensor D̂, from the signal, in Sym+
6 .

The objective function we minimize to estimate D̂ from N diffusion weighted images

(DWIs) is the linearized form of the modified GDTI1 Stejskal-Tanner equation:

E(D̂) =
1

2

N∑

i=1

(
1

b
ln

(
Si

S0

)
+ bT

i D̂bi

)2

.

To estimate D̂ in Sym+
6 , we have to consider the Riemannian manifold of Sym+

6 , and

the appropriate gradient descent in that manifold, namely Eq-4.9. This requires

computing the gradient of E(D̂) in that manifold, which at every point in Sym+
6 is

defined from the directional derivatives in the corresponding tangent plane.

To compute ∇E(D̂) at D̂, we therefore consider a geodesic ΓbD,W
(t) originating from

D̂ with the tangent vector W = Γ′
bD,W

(0) at D̂ in the tangent space TbDSym+
6 . The

derivative of E(D̂) along the geodesic ΓbD,W
(t) is therefore the directional derivative

of E(D̂) along W . Therefore, computing the derivative d
dtE(ΓbD,W

(t)), and equating it

to the directional derivative
〈
∇E(D̂),W

〉
bD

, it is possible to compute the gradient of
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E(D̂) at D̂ in the manifold Sym+
6 [1]:

∇E(D̂) =

N∑

i=1

(
1

b
ln

(
Si

S0

)
+ bT

i D̂bi

)
· (D̂bi)(D̂bi)

T ,

= D̂

[
N∑

i=1

(
1

b
ln

(
Si

S0

)
+ bT

i D̂bi

)
· (bib

T
i )

]
D̂, (4.14)

where the second equality comes from the fact that D̂ ∈ Sym+
6 . Therefore, ∇E(D̂) ∈

Symn, which is the tangent space at D̂. Therefore, it is now possible to plug this

gradient into Eq-4.9 to compute the appropriate gradient descent in the Riemannian

manifold Sym+
6 :

D̂t+1 = D̂
1
2
t exp

(
−ǫ · D̂

1
2
t

[
N∑

i=1

(
1

b
ln

(
Si

S0

)
+ bT

i D̂bi

)
· (bib

T
i )

]
D̂

1
2
t

)
D̂

1
2
t . (4.15)

Minimizing the objective function E(D̂) in this way, it is possible to estimate D̂ in

Sym+
6 from the diffusion signal. Since D̂ is isometrically equivalent to a 4th order

tensor D with major and minor symmetries, D is guaranteed to have a positive diffu-

sion profile. Finally we extract the totally symmetric part of D to compute the totally

symmetric 4th order GDTI1 diffusion tensor Ds, which, due to the Riemannian esti-

mation framework, is also guaranteed to have a positive diffusion profile.

4.2.5 Experiments and Results

We test the Riemannian approach for computing 4th order tensors by first conduct-

ing experiments on synthetic data, where the ground truth ADC is known. On this

simulated data, we compare the Riemannian approach to two other methods for es-

timating the 4th order GDTI1 diffusion tensor, namely the standard Euclidean LS

approach and a spherical harmonics (SH) basis approach. Then we test the Rieman-

nian approach on a biological phantom data created from excised rat spinal cords,

and on two in-vivo human cerebral datasets.

We generate the synthetic dataset using the multi-tensor model described in

Appendix-A.0.1, where we use the diagonal tensor D = diag(1390, 355, 355) × 10−6

mm2/s for the profile of a single fiber, and D = diag(700, 700, 700) × 10−6 mm2/s for

the profile of an isotropic voxel. Crossing fibers are simulated with equal volume

fractions for each fiber. The purpose behind using the multi-tensor model is that it is

easy to compute both the signal and the ADC analytically from this model [3]. There-

fore, we use the ground truth ADC from the model as the reference for comparing

the diffusion function generated by the 4th order GDTI1 diffusion tensor estimated

from the synthetic signal using a particular estimation method. We use this compar-

ison between the ground truth ADC and the estimated diffusion function to guage
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the estimation method. In this way, we compare the Riemannian approach to two

other methods of estimating a 4th order GDTI1 diffusion tensor that do not enforce

the positive diffusion profile constraint.

As the first method we use the Euclidean LS approach with the linearized version

of the modified GDTI1 Stejskal-Tanner equation, which requires only computing the

Moore-Penrose pseudo-inverse of the measurements’ matrix. As the second method,

we use the SH basis to estimate the diffusion function as proposed in [74]. However,

we consider only a real and symmetric sub-basis of SHs like in [75, 76], since the ADC

is real and symmetric. Estimating the diffusion profile in this modified SH basis can

also be achieved by a linear LS fitting, which requires only matrix manipulations. It

is, therefore, efficient and fast. But, this LS fitting in the SH basis also doesn’t guar-

antee that the estimated diffusion function has a positive profile. We then convert

the modified SH basis expansion to a symmetric HOT basis description. It has been

shown in [44, 75], that the truncated real symmetric SH basis of maximal rank-l is

bijective to a symmetric lth order HOT. In other words, when the rank of the SH ba-

sis is equal to the order of the HOT, both of these form equivalent bases for functions

defined on the sphere. This is described further in section-6.2.1. Therefore, by choos-

ing l = 4, we estimate a 4th order GDTI1 diffusion tensor from a rank-4 SH basis

estimation via a simple linear transformation. We call this the SH to HOT approach.

To compare these approaches, we generate a number of test voxels with various fiber

configurations, namely isotropic voxels, single fiber voxels, two-fiber voxels, and three

fiber voxels, where the multi-fiber voxels simulate fibers crossing perpendicularly.

These configurations and the underlying fiber directions are generated randomly for

each test voxel, and we store the ground truth ADCs for later comparison. We corrupt

the signal generated from these voxels by adding Rician noise with known signal-to-

noise-ratio (SNR), and from the noisy signal we estimate 4th order diffusion tensors

using the three approaches. Finally we compare the diffusion functions generated by

the estimated 4th order diffusion tensors to the ground truth ADC to evaluate the

effects of noise, in the signal, on the three methods. We compare the ground truth

ADC and the diffusion functions by first min-max normalizing them on the sphere

and then considering the mean squared difference (or error) along discrete directions.

We choose the directions from an icosahedral discretization of the sphere, with 642

vertices on a hemisphere.

We conduct this experiment for two different b-values, with a range of SNR values for

each. For the b-value of 1000 s/mm2, we generate 100 test voxels, where the random

configurations consist of 36 isotropic voxels, 24 single fiber voxels, 20 two-fiber voxels

and 20 three-fiber voxels. For the b-value of 3000 s/mm2, we also generate 100 test

voxels, where the random configurations consist of 25 isotropic voxels, 23 single fiber

voxels, 28 two-fiber voxels, and 24 three-fiber voxels. The mean squared difference

and the standard deviations of the squared difference of the min-max normalized
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ADCs for the three methods in these tests are presented in Fig-4.1. It is clear that a

positive diffusion profile constraint has a beneficial influence on the estimated ADC

in the presence of signal noise.

Next we test the three approaches, the Euclidean LS, the SH basis, and the Rieman-

nian methods for positive diffusion function profiles by conducting experiments on

an in-vivo human cerebral dataset. The dataset is described in Appendix-A.0.4. We

consider a masked region from this dataset, with 249352 voxels of interest. For these

voxels, we estimate the 4th order GDTI1 diffusion tensors from the 41 DWIs, using

the three approaches. We then evaluate the diffusion profiles from these estimated

tensors along 81 pairs of directions on a sphere for negative diffusion. The results

are described in Table-4.2. The Riemannian approach is the only method, which

guarantees positive diffusion, since it takes into account the positivity constraint by

identifying the space of 4th order tensors with positive multi-linear forms, and using

the appropriate metric.

Figure 4.1: Synthetic Dataset. Comparing the effects of signal noise on the Rie-

mannian, the Euclidean least squares (LS), and a spherical harmonic (SH) basis ap-

proaches for estimating a 4th order GDTI1 diffusion tensor. The graphs compare the

squared difference of the min-max normalized ground truth ADC and the similarly

normalized estimated diffusion functions. A positive diffusion profile constraint has

a beneficial influence on the estimated ADC when the signal is noisy.

(81 dirs) LS SH RM

Positive 181757 249263 249352

Negative 67595 89 0

Table 4.2: Real dataset. The estimated diffusion functions from 249352 4th order

GDTI1 tensors checked for positive diffusion profile on a set of 81 pairs of directions

distributed evenly on a sphere. The Riemannian approach is the only method, which

guarantees positive diffusion.
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Figure 4.2: Synthetic Dataset. (a) The diffusion function and (b) the diffusion proba-

bility density function or ensemble average propagator (EAP) computed from 4th or-

der GDTI1 diffusion tensors, which were estimated using the Riemannian approach.

Although, the shape of the ADC or diffusion function that is estimated by a 4th or-

der GDTI1 diffusion tensor is more complex and accurate than the ADC of the DTI

model, it is well known that the geometry of the higher order ADC doesn’t corre-

spond to the underlying fiber bundle directions. The fiber bundle directions can be

inferred from the diffusion displacement probability density function P (r), or the

ensemble average propagator (EAP). Under the q-space formalism, it is possible to

compute the EAP from the diffusion signal, E(q) = Si(q)
S0

, from a Fourier Transform

P (r) =
∫
E(q) exp

(
−2πiqT r

)
dq [25]. Therefore, to detect the underlying fiber bundle

directions, we compute the EAP, by assuming the q-space formalism, and by evalu-

ating the Fourier Transform of the signal generated from the estimated 4th order

GDTI1 diffusion tensors, using Eq-4.1. Fig-4.2, shows the results on a synthetic

dataset that was also generated using the multi-tensor model of Appendix-A.0.1.

Both the ADC or the diffusion functions and the computed EAPs are shown, where

the underlying 4th order GDTI1 diffusion tensors were estimated from the synthetic

signal using the Riemannian approach.

We test the EAP computation from 4th order diffusion tensors further on the in-

vivo dataset from the previous experiment (Appendix-A.0.4). This experiment is con-

ducted to evaluate the effect of negative diffusion profiles, or rather the absence of a

positive diffusion constraint, on the computed EAP. Therefore we compute the EAP

from the 4th order tensors estimated by the Euclidean LS approach, which doesn’t

apply the positive diffusion profile constraint, and from the tensors estimated by the

Riemannian framework, which automatically confines the estimation process to 4th

order tensors with a positive diffusion profile. The results are presented in Fig-4.3,

where the EAP P (r), has been evaluated for the constant displacement radius of

|r| = 17 µm. Note that no spatial regularization was used in any of the computations.
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The improvement in the results in the Riemannian approach is only from the posi-

tivity constraint. This shows the impact of the positivity constraint in estimating the

4th order diffusion tensor on the computation of the EAP. This indicates the need for

applying this positivity constraint, and the usefulness of the Riemannian framework.

We also compare the computation time for estimating the 4th order diffusion ten-

sors that have been visualized in Fig-4.3, since, applying the Riemannian framework

naturally increases the complexity in the estimation process. The simplicity and effi-

ciency of the Euclidean LS method is in fact one of its main supporting factors. For the

visualization of Fig-4.3, we computed 987 4th order tensors. On our computer, a Dell

D630 Latitude laptop with Intel(R) Core(TM)2 Duo CPU @ 2.20GHz and 2GB RAM,

the Euclidean LS method estimated these tensors in about 6 s, while the Riemannian

approach took about 35 s. Although this is a six fold increase in the estimation time

for the Riemannian approach, it is still tractable.

Next we conduct an experiment on a biological phantom data that was produced

from excised rat spinal cords. Only two cords were used to create a fiber crossing

configuration with known physical directions. The phantom dataset is described in

Appendix-A.0.2. In this experiment we estimate 4th order GDTI1 diffusion tensors

from the phantom dataset using the Riemannian approach. We then compute the

EAPs from the tensors to validate the coherence of their geometry with the known

layout of the phantom, and to see if it is possible to infer the underlying fiber bundle

directions. For the sake of comparison we also present the result of the orientation

distribution function (ODF) computed from the analytical q-ball estimation technique

in [55], which is an angular marginal distribution of the true and unknown EAP un-

der a mono-exponential decay model that corresponds to the GDTI1 model. The ODFs

were directly estimated from the signal using the approach in [55].

The results are presented in Fig-4.4. The geometry of the EAPs computed from the

4th order tensors are coherent with the underlying phantom model, and also agree

with the geometry of the ODFs. It is interesting to note that since the ODFs are

angular marginal distributions of the true EAPs, the radial information of the true

EAPs has been marginalized out by a radial integration. Therefore, although the

ODFs’ angular structures resemble the angular structures of the EAPs computed

from the 4th order tensors, the ODFs do not reveal anything about the magnitude of

diffusion due to the heterogeneous structure of the underlying tissue. This is visible

in the EAPs computed from the tensors from the size or volume of the displacement

probability at a constant displacement radius. Also as seen by comparing (b) and (c)

in Fig-4.4, it is possible to recover sharper angular details from the EAP by increasing

the displacement radius from |r| = 17 µm to 20 µm.

Finally, we conduct a similar comparison between the EAP computed from the 4th or-

der GDTI1 diffusion tensor, and the ODF, on another in-vivo human cerebral dataset.
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Figure 4.3: In-vivo Human Cerebral Dataset. Effects of positive diffusion profile

constraint seen on the EAPs computed from 4th order GDTI1 diffusion tensors that

were estimated using the Euclidean LS approach, which doesn’t apply any positivity

constraint, and the Riemannian approach, which naturally confines all tensor com-

putations to the space of 4th order diffusion tensors with positive diffusion profiles.

Note that no spatial regularization was used in any of the computations. The im-

provement in the results of the Riemannian approach is only due to the positivity

constraint. The tensors were estimated from the dataset in Appendix-A.0.4.

The dataset is described in Appendix-A.0.3, and the 4th order tensors were estimated

from this dataset using the Riemannian approach, while the ODFs were estimated

directly from the signal. The results are presented in Fig-4.5, which shows a region

of interest on a coronal slice where three major fiber bundles are known to intersect.

These are the cortico-spinal tract, the corpus callosum, and the superior longitudinal
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Figure 4.4: Biological Phantom Dataset. (a) The layout of the two excised rat spinal

cords that constitute the phantom, and the zoom region. (b) The EAP P (r), computed

from 4th order GDTI1 diffusion tensors, evaluated for |r| = 17 µm. (c) The EAP P (r),

evaluated for |r| = 20 µm. (d) ODFs, estimated from an analytical q-ball approach,

such that they represent the angular marginal distributions of the true and unknown

EAPs. The 4th order diffusion tensors were estimated from the signal using the

Riemannian approach. The ODFs were estimated directly from the signal.

fasciculus. Again we note the agreement between the geometry of the EAPs computed

from the 4th order tensors, and the ODFs, which are the angular marginal distribu-

tions of the true and unknown EAPs. We also note the lack in radial information in

the ODFs, which is visible in the EAPs from their size or volume.

4.2.6 Discussion

The GDTI1 model was proposed to overcome the inherent limitation of the popular

DTI, in regions with heterogeneous fiber configurations. GDTI1 can describe the com-

plex shaped ADC in such regions with greater accuracy by using Cartesian tensors

of order higher than two to model Fick’s diffusion equation. The ADC or the diffusion

function is represented by a homogeneous polynomial parameterized by the coeffi-

cients of the HOT in GDTI1. However, a general kth order HOT in 3D can have a

large number of independent coefficients, with an upper limit of 3k. But this can be

greatly simplified from the physical design of the problem. Since, only the spherical
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Figure 4.5: In-vivo Human Dataset. (a) EAPs computed from 4th order GDTI1 dif-

fusion tensors that were estimated using the Riemannian approach. (b) ODFs that

were estimated directly from the signal, and which are the angular marginal distri-

butions of the true and unknown EAPs. The coronal slice presents a region of interest

where three major fiber bundles, namely the cortico-spinal tract, the corpus callosum

and the superior longitudinal fasciculus, intersect.

profile of the HOT is of relevance, only totally symmetric HOTs can satisfy the GDTI1

model. Similarly, since negative diffusion is non-physical, only even ordered HOTs

can be considered. This reduces the number of independent coefficients that need to

be estimated from the GDTI1 model significantly. However, although negative diffu-

sion is non-physical, the generally used Euclidean LS approach does not guarantee

an estimated diffusion HOT with a positive diffusion profile.

In this section, we proposed a Riemannian framework for estimating a 4th order

GDTI1 diffusion HOT, which guarantees a positive diffusion profile. By studying the

algebra and symmetries of HOTs when the order is 4, we first remapped 3D 4th order

tensors satisfying major and minor symmetries to symmetric 6D 2nd order tensors

using an isometrically isomorphic map. This transformed the problem of estimating a

4th order tensor satisfying a positive diffusion profile, to estimating a 6×6 symmetric

matrix that is positive definite. We then applied the Riemannian framework that

was developed to estimate symmetric positive definite 2nd order diffusion tensors

to the space of 6D symmetric matrices to confine all matrix operations to the space

of symmetric positive definite matrices. Using this framework, and the appropriate

gradient descent method, we estimated symmetric positive definite 6×6 matrices, or

equivalent 4th order tensors with major and minor symmetries and positive diffusion
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profiles from the diffusion signal. Finally, by extracting the totally symmetric part of

this 4th order tensor with only major and minor symmetries, we estimated the totally

symmetric 4th order GDTI1 diffusion tensor with a positive diffusion profile.

We motivated the need for considering tensors with positive diffusion profiles by con-

ducting experiments on synthetic and on real in-vivo data. On the synthetic data we

compared the diffusion profiles of the estimated 4th order diffusion tensors against

the known ground truth ADC, where the tensors were estimated using methods that

don’t guarantee a positive diffusion profile and the Riemannian approach, which in-

herently satisfies this condition. The positive influence of the Riemannian approach

on the estimated ADC became clear when we tested for various SNRs and different

b-values. On the real in-vivo human cerebral data, we computed the EAPs from the

signal generated by the estimated 4th order tensors, and compared the EAPs visually

when the tensors were estimated using an Euclidean LS approach and the Rieman-

nian approach. Clearly again the improved results of the Riemannian approach in-

dicated the contribution of the positive diffusion constraint in the computation of the

EAP and the usefulness of the Riemannian framework. Computationally, although

the Riemannian approach represents a more complex approach, the estimation time

for about 1000 tensors was tractable.

We then conducted experiments on a biological phantom data and another in-vivo

human cerebral data, where we evaluated the geometry of the EAPs computed from

the 4th order tensors that were estimated using the Riemannian approach. We found

the geometry of the EAPs to be in coherence with the phantom layout, which allows

to infer the underlying fiber directions. We also compared these EAPs to ODFs that

represent the angular marginal distribution of the true and unknown EAPs, when the

ODFs were directly estimated from the signal. We found that the angular structure

of the EAPs was in agreement with the angular structure of the ODFs. However, the

ODFs didn’t contain any radial or diffusion magnitude information, which was also

visible in the computed EAPs from their size and volume. We found similar results on

another in-vivo human cerebral data, where we again compared the computed EAPs

to ODFs, where the EAPs were computed from 4th order tensors that were estimated

from the diffusion signal using the Riemannian approach.

4.3
A TERNARY QUARTIC APPROACH FOR SYMMETRIC

POSITIVE SEMI-DEFINITE 4TH ORDER DIFFUSION

TENSORS

In this section, we revisit the problem of estimating a symmetric higher order Carte-

sian tensor with a positive diffusion profile from the GDTI1 model, using a polyno-

mial approach. In this approach we consider the polynomial interpretation of HOTs

instead of considering the algebra of HOTs, and look at a polynomial solution to the
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positivity problem. In particular, we consider 4th order GDTI1 diffusion tensors,

where the diffusion function of such tensors can be seen as trivariate homogeneous

polynomials of degree 4 in the coefficients of the gradient vector. In this class of

polynomials, also known as ternary quartics, we consider the positive semi-definite,

or non-negative diffusion profile constraint, which is slightly weaker in theory, but

almost equivalent to the positive diffusion profile constraint in practice. Relying on

Hilbert’s theorem on non-negative ternary quartics [65, 66], we propose a parame-

terization of the 4th order GDTI1 diffusion tensor, which allows us to estimate such

tensors with non-negative diffusion profiles from the signal. We test this approach on

synthetic data, biological phantom data and in-vivo human cerebral data, to motivate

the need for a positive or a non-negative diffusion profile constraint, and to demon-

strate the applicability of this approach on real data. Finally, this approach is based

on the Euclidean metric, which, as proposed in [67], is better suited for diffusion data,

than the previously used affine invariant Riemannian metric.

Polynomials form an alternate way of expressing the multi-linear form of HOTs. This

expression was indicated in the original GDTI1 paper [44], but was used for applying

the positivity constraint for the first time in [65]. To make the relationship between

the coefficients of a HOT and the coefficients of a homogeneous polynomial more evi-

dent, the diffusion function of GDTI1 (Eq-4.2) was rewritten in [65] as:

D(g) =
∑

m+n+p=k

Dm,n,p g
m
1 g

n
2 g

p
3 , (4.16)

where Dm,n,p are the coefficients of the kth order tensor D(k) by a re-arrangement of

the indices.

In this form, it is clear that the diffusion function, which was considered as the pro-

jection of the of a kth order HOT on to a unit sphere, is a trivariate homogeneous poly-

nomial of degree k in the three coefficients of the unit gradient vector g = [g1, g2, g3]
T ,

where the coefficients of the polynomial are the coefficients of the HOT. Since D(g) is

a homogeneous polynomial of even degree, the problem of a positive diffusion profile

on the unit sphere, D(g) > 0, ∀g ∈ R3 st. ||g|| = 1, is equivalent to the problem of

finding a polynomial D(x) > 0, ∀x ∈ R3/{0}. This is exactly the same equivalence

that was used in DTI, where the problem of positive diffusion from a second order

tensor, gTDg > 0, ∀g ∈ S2, was recast as the problem of finding a positive definite

second order tensor, xTDx > 0, ∀x ∈ R3/{0}, which entailed the Riemannian frame-

work for Sym+
3 . Therefore, in this section we consider a method of estimating the

coefficients of a positive polynomial from the diffusion signal, to estimate a GDTI1

HOT with a positive diffusion profile.

It is interesting to note at this juncture, when k = 4, how the Riemannian approach

presented in the previous section compares to the polynomial formulation. When

k = 4, the goal of the polynomial formulation, as we have just seen, is to find a

81



trivariate homogeneous polynomial of degree 4, D4(x), where the coefficients of the

polynomial are the coefficients of the 4th order GDTI1 diffusion tensor D(4), such

that:

D4(x) > 0, ∀x ∈ R3/{0}.

In comparison, the Riemannian approach, using an isometric map, tries to find a

symmetric 6D 2nd order tensor D̂ in Sym+
6 :

cT D̂c > 0, ∀c ∈ R6/{0},

where the coefficients of the totally symmetric 4th order GDTI1 diffusion tensor can

be extracted from the coefficients of D̂. However, although, this quadratic form re-

sembles the diffusion profile from a totally symmetric 4th order tensor, bT D̂b (Eq-

4.12), estimating D̂ in Sym+
6 isn’t equivalent to the problem of computing a 4th order

GDTI1 diffusion tensor D(4), with a positive diffusion profile. This can be seen from

the isometrically equivalent inner product formulation of the quadratic form:

〈C,DC〉 > 0, ∀C ∈ Sym3/{0}.

The positive diffusion profile constraint on the other hand only implies the condition:

〈B,DB〉 > 0, where B = g ⊗ g,

which can be seen in Eq-4.11. Since the 2nd order tensor B in the diffusion profile

is only of rank-1, it is rank deficient, whereas in general the 2nd order tensor C, in

the quadratic form would include both full rank, and rank deficient tensors. In other

words, the positive quadratic form condition is much stronger than the positive dif-

fusion profile constraint. Therefore, although the positive quadratic form constraint

would entail the positive diffusion profile constraint, the solutions found from this ap-

proach – the Riemannian approach, would only belong to a subset of all the solutions

possible from only the positive diffusion profile constraint.

This can also be seen through examples, shown in [65, 66], by inspecting the isometric

map in Eq-4.6 which transforms a 4th order tensor into a 2nd order tensor. When this

6×6 matrix is positive definite it cannot represent valid totally symmetric 4th order

tensors whose homogeneous polynomials are of the type P (g) = ag4
1 + bg4

2 + cg4
3, or

P (g) = (ag2
1+bg2

2)
2+cg4

3, etc., because these require the matrix to be semi-definite [66].

Since, the Riemannian framework pushes such matrices away to an infinite distance

from the estimation tensor D̂, the solutions found by the Riemannian estimation only

form a subset of all the solutions that are possible.

In our experiments on synthetic data, this translates to a swelling effect in the ADCs

and the EAPs estimated by the Riemannian approach when compared to the poly-

nomial formulation for estimating 4th order GDTI1 HOTs, which we propose in this

section. However, the overall angular structure is preserved. Similar effects are seen
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in the results of tests conducted on phantom and in-vivo data. These results are

presented in section-4.3.2.

We now return to the problem of estimating a positive trivariate homogeneous poly-

nomial of degree k from the signal. A particular aspect of this problem has been ad-

dressed in [77], which describes a framework for estimating symmetric GDTI1 HOTs

of any even order k and with a positive definite diffusion profile on a unit sphere. This

paper proposes that any polynomial (the GDTI1 HOTs) that is positive definite on a

unit sphere can be written as sums of squares of polynomials of lower order:

P (k)(x) =

M∑

i=1

Q
(k/2)
i (x),

where k is even, P (k)(x) denotes a multi-variate polynomial of degree k, {Q(k/2)
i (x)}

denote M multi-variate polynomials of degree k/2, and only an upper bound is known

for M . Therefore, in [77], the authors propose to estimate the coefficients of the

polynomials Q
(k/2)
i (x) from the signal to estimate a polynomial P (k)(x) (or a GDTI1

HOT) with a positive definite diffusion profile.

Since M is not known exactly, the authors in [77] proceed by oversampling M , or

rather densely sampling the space of possible polynomials of lower order Q
(k/2)
i (x).

It is claimed that increasing the density of the sampling increases the accuracy of

the decomposition of P (k)(x). However, it also increases the number of unknown

coefficients of the set {Q(k/2)
i (x)}, which need to be estimated from the signal. The

authors then propose heuristically measured approximations M ′ for M , for different

values of k, from tests on synthetic data. However, even such approximations M ′,

which can only be mathematically inexact and can at best depend on the synthetic

data, result in a much larger number of unknowns to be estimated from the signal

than the number of coefficients of the original polynomial which is positive definite

on a unit sphere and of degree k (or kth order HOT).

When we have to deal with the general problem of estimating a positive homogeneous

polynomial of degree k using similar decompositions into sums of squares of polyno-

mials of lower degree, we are, however, restricted to only certain specific classes of

non-negative multi-variate polynomials. To our knowledge, decompositions of poly-

nomials into sums of squares of lower order polynomials only deal with non-negative

polynomials and not positive definite polynomials [78]. Furthermore, [78] provides

examples of non-negative polynomials that cannot be written as sums of squares of

lower order polynomials, which implies that not all non-negative polynomials can be

decomposed into sums of squares of lower order polynomials. The same article [78]

also elaborates on Hilbert’s theorem, which identifies all the classes of non-negative

multi-variate polynomials that can always be decomposed as sums of squares of lower

order polynomials. Such polynomials are, however, all of degree four or less.
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In fact, Hilbert’s theorem states that degree 4 trivariate polynomials that are non-

negative and homogeneous, can always be written as a sum of squares of quadratic

homogeneous polynomials, where the number of terms in the sum is also known and

is exactly three (M = 3) [78]:

Theorem (Hilbert): If P (x, y, z) is homogeneous, of degree 4, with real coefficients

and P (x, y, z) ≥ 0 at every (x, y, z) ∈ R3, then there are quadratic homogeneous

polynomials f, g, h with real coefficients, such that:

P = f2 + g2 + h2. (4.17)

Trivariate polynomials of degree 4 are known as ternary quartics. All other classes

of non-negative polynomials that can be decomposed into sums of squares of lower

order polynomials are all of degree less than four [78].

In this section, we, therefore, turn to Hilbert’s theorem on non-negative, or posi-

tive semi-definite (PSD) ternary quartics, for a parameterization of the GDTI1 HOT

when it is of order 4, to estimate 4th order diffusion tensors with a non-negative diffu-

sion profile. Since such tensors are symmetric and non-negative, these are known as

symmetric positive semi-definite (SPSD) tensors. Hilbert’s theorem on non-negative

ternary quartics was first used in [65] and later in [66] to the same end – that of

estimating 4th order diffusion tensors from the GDTI1 model with a non-negative

diffusion profile. [65] and [66] proposed two different parameterizations of the 4th

order tensor. We revisit this problem and propose a third parameterization [79].

As a final remark, we note that by adopting the polynomial formulation for the GDTI1

HOT, we have gained over the Riemannian framework proposed in the previous sec-

tion from the fact that we address the exact problem of estimating a diffusion HOT

with a positive diffusion profile, whereas the Riemannian approach addressed a more

constrained problem. However, given the results on polynomials, namely Hilbert’s

theorem on ternary quartics, we concede to the Riemannian approach by the fact

that we can only address the problem of a non-negative diffusion profile with the

polynomial formulation, whereas the Riemannian approach addressed the positive

definite diffusion profile constraint. However, we shall consider this a “negligible”

loss, since in practice, due to numerical computations, we have never come across a

diffusion profile that is exactly zero even along a single direction.

4.3.1 Estimating a SPSD 4th Order Diffusion Tensor

The basic approach behind all three “ternary quartic” methods, namely the two in

[65, 66] and the one proposed here, is the same. The idea is to consider the diffu-

sion profile of a 4th order GDTI1 tensor as a homogeneous trivariate polynomial in

the coefficients of the gradient vector g (Eq-4.16), and to apply Hilbert’s theorem on
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non-negative ternary quartics to rewrite it as a sum of squares of three quadratic ho-

mogeneous polynomials. Therefore, by estimating the coefficients of these quadratic

homogeneous polynomials from the signal, it is possible to reconstruct the 4th order

diffusion tensor by computing its coefficients from the coefficients of the quadratic

forms, a process also known as the Gram-matrix approach [65, 80], such that the es-

timated 4th order tensor has a PSD diffusion profile. The three methods differ from

each other in the way they parameterize the quadratic homogeneous polynomials to

estimate their coefficients from the diffusion signal.

In [65], the diffusion profile of a 4th order GDTI1 tensor is written as:

D(g) = (vTc1)
2 + (vTc2)

2 + (vTc3)
2, (4.18)

= vTCCTv, (4.19)

= vTGv, (4.20)

where v = [g2
1, g

2
2, g

2
3, g1g2, g1g3, g2g3]

T contains the monomials formed by the coeffi-

cients of the gradient vector g, vTci are the three quadratic forms from Hilbert’s

theorem, and G is known as the Gram matrix. The column vectors ci contain the

coefficients of the quadratic forms, which have to be estimated from the signal,

C = [c1|c2|c3] is a 6×3 matrix, which assembles these coefficients to compute the

rank deficient or PSD 6×6 Gram matrix, which is used to compute the coefficients of

the 4th order diffusion tensor from the coefficients of the quadratic forms. This en-

sures that the 4th order diffusion tensor estimated from the signal has a non-negative

diffusion profile.

The authors in [65] use the Eq-4.19 to parameterize the ternary quartic decomposi-

tion by Hilbert’s theorem, and estimate C from the DWIs, and compute the 4th order

tensor from G. However, this parameterization is problematic since it produces an in-

finite solution space, which can be seen by decomposing C into two blocks C = [A,B]T

where A and B are 3×3 matrices. Then CO, for any 3×3 orthogonal matrix O, also

results in the same Gram matrix, since CO(CO)T = CCT = G. In other words, in

this parameterization, C is unique only up to the equivalent class of orthogonal ma-

trices O(3). But as C is estimated from the DWIs from a minimization problem, such

an infinite space of solutions can result in the optimization algorithm getting stuck

in a degenerate subspace of the solution space, without ever being able to minimize

its objective function.

In [65], the authors overcome this degenerate subspace issue by considering the

QR-decomposition (or RQ-decomposition) of the 3×3 submatrix A of C, where Q

is an orthogonal matrix and R is an upper triangular matrix. This implies that

C = [RQ,B]T = [R,BQT ]TQ. Therefore, CCT = [R,BQT ]TQ · QT [R,BQT ] =

[R,BQT ]T · [R,BQT ], which effectively quotients out the orthogonal group from the

computation of the Gram matrix G and resolves the issue of the infinite degenerate

subspace.
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In the paper [66], the authors overcome this same issue in Eq-4.19 by applying certain

constraints on C from the properties of the Gram matrix, to remove the ambiguity

of the class of orthogonal matrices O(3). Since the rank of the rank deficient Gram

matrix is known apriori from Hilbert’s theorem to be three, they identify and isolate

the positive definite part of the PSD Gram matrix using a modified Iwasawa decom-

position [81], which is then parameterized uniquely by a Cholesky decomposition. In

other words, they first collect the rank-3 positive definite part of G into a 3×3 matrix

W, and then decompose W using a Cholesky decomposition as W = LLT . This effec-

tively equates the 3×3 matrix A, from the paragraph above, where C = [A,B]T , to the

triangular matrix with positive diagonal elements L. In short, this procedure deter-

mines a unique C in the infinite space of solutions {CO} from the previous approach,

and removes the ambiguity of the class of orthogonal matrices O(3). Therefore, the

authors in [66] effectively estimate C = [L,B]T from the DWIs. Furthermore, the

Cholesky decomposition also distinguishes C from −C, although both result in the

same Gram matrix. The authors then use this uniqueness property of C to design a

spatial regularization of the field of estimated 4th order diffusion tensors as a func-

tion of C.

We propose a third parameterization for the ternary quartic decomposition of

Hilbert’s theorem that naturally has no ambiguity from the class of orthogonal matri-

ces O(3), and therefore, is unique and can be solved easily. We essentially use Eq-4.18

to parameterize the Hilbert decomposition, and we estimate the ci directly from the

DWIs and assemble these afterward to reconstruct C. From there we follow the same

procedure as the two other methods, and reconstruct the Gram matrix and compute

the coefficients of the 4th order diffusion tensor.

Materials and Methods From Hilbert’s theorem on non-negative ternary quartics

we write the diffusion function of a 4th order diffusion tensor as D(g) = ψ2
1(g) +

ψ2
2(g) + ψ2

3(g), where:

ψi(g) = aig
2
1 + big

2
2 + cig

2
3 + 2αig1g2 + 2βig1g3 + 2γig2g3, (4.21)

= [ai, bi, ci,
√

2αi,
√

2βi,
√

2γi] (4.22)

·[g2
1, g

2
2, g

2
3,
√

2g1g2,
√

2g1g3,
√

2g2g3]
T , (4.23)

= xT
i v (4.24)

are the quadratic forms. Note that we have modified the form of the vector v by

multiplying certain terms by
√

2 , this is a minor difference in the notation convention

from [65, 66]. Each quadratic form is known if its six unknown coefficients in xi can

be estimated from the DWIs. Therefore, the diffusion profile can be written as a

86



function of the unknowns to be estimated as:

D(x1,x2,x3) = xT
1 vvTx1 + xT

2 vvTx2 + xT
3 vvTx3, (4.25)

= [xT
1 ,x

T
2 ,x

T
3 ]




vvT 0 0

0 vvT 0

0 0 vvT







x1

x2

x3


 (4.26)

= XTVX. (4.27)

Comparing Eq-4.27 to Eq-4.19 provides an insight into the simplicity of the modifica-

tion that we have proposed by considering the coefficients of the quadratic forms as

the unknowns. Eq-4.19 can be interpreted as the projection of CCT along the 6D vec-

tor v, however, since v is known, and the unknowns are in C, this is like projecting

the squares of the unknowns along a known vector. On the other hand in Eq-4.27, we

rightly identify the unknowns as x, and consider the projection of the known monomi-

als of the coefficients of the gradient vector along the unknown vector. This naturally

resolves the ambiguity of the orthogonal matrices in Eq-4.19. Furthermore, it is easy

to reconstruct C by writing C = [x1,x2,x3], and to recompute the Gram matrix once

the unknowns coefficients of the quadratic forms have been estimated separately.

To estimate the unknown coefficients xi of the homogeneous quadratic forms from a

set of DWIs, we minimize the objective function based on the modified and linearized

Stejskal-Tanner equation:

E(X) =
1

2

N∑

i=1

(
1

b
log

(
Si

S0

)
+ XTViX

)2

, (4.28)

where N is the number of DWIs and Vi corresponds to the monomials from the gra-

dient direction gi. Although here we use the linearized form of the Stejskal-Tanner

equation, it is equally possible to use the non-linear form. The gradient of the objec-

tive function with respect to the unknowns X is computed to be:

∇E(X) =

N∑

i=1

(
1

b
log

(
Si

S0

)
+ XTViX

)(
Vi + VT

i

)
X. (4.29)

In our implementation we use the well known Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method [82], which is a sophisticated quasi-Newton optimization algorithm

for non-linear problems.

Finally we compute the 15 independent coefficients Aijkl of the 4th order GDTI1 diffu-

sion tensor A(4) from the coefficients of the Gram matrix G, by using Eq-4.20, which

equates D(g), the multi-linear form of A(4), to the quadratic form of the Gram ma-

trix. We use a mapping very similar to the one presented in [65, 80], where the
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inverse mapping, i.e. G in terms of Aijkl is given by:

G =




Axxxx a b 1
4Axxxy

1
4Axxxz d

a Ayyyy c 1
4Ayyxy e 1

4Ayyyz

b c Azzzz f 1
4Azzxz

1
4Azzyz

1
4Axxxy

1
4Ayyxy f 1

4(Axyxy − 2a) 1
8(Axyxz − 4d) 1

8(Axyyz − 4e)
1
4Axxxz e 1

4Azzxz
1
8(Axyxz − 4d) 1

4(Axzxz − 2b) 1
8(Axzyz − 4f)

d 1
4Ayyyz

1
4Azzyz

1
8(Axyyz − 4e) 1

8(Axzyz − 4f) 1
4(Ayzyz − 2c)




,

(4.30)

where {a, b, c, d, e, f} are six free parameters that determine the rank of the matrix.

In this case, since the rank of G is known to be three, the free parameters are

determined from the construction of the Gram matrix, i.e. G = CCT . Therefore

these can be used to compute the coefficients Aijkl.

In comparison to the approach in [66], since we estimate all the coefficients of the

three quadratic forms without any constraints, in effect we estimate 18 unknowns

from which we recover the 15 unknowns of the 4th order diffusion tensor. This ac-

tually leaves us three degrees of freedom that can be applied as suitable constraints.

Also this approach doesn’t distinguish between C and −C. However, since we only

deal with the estimation problem of the 4th order diffusion tensor, and do not execute

any further operations like spatial regularization as a function of C this isn’t impor-

tant since both C and −C give the same Gram matrix, and hence the same 4th order

tensor. But if such were desired, the three degrees of freedom could be explored, to

distinguish between C and −C. This is a problem we haven’t yet addressed.

4.3.2 Experiments and Results

We first conduct experiments on a synthetic dataset, where the ground truth ADC

is known, to compare the non-negative ternary quartic approach, denoted henceforth

as the “Ternary Quartic” (TQ) approach, to the Euclidean LS and the SH to HOT ap-

proaches, which estimate 4th order GDTI1 diffusion tensors without any positive or

non-negative diffusion profile constraints. We then experiment on a biological phan-

tom data and two in-vivo human cerebral datasets, where we test for non-negative

diffusion and computation time. We also compare the EAPs computed from the esti-

mated 4th order tensors on these datasets. Although we do not extensively compare

the Riemannian approach to the Ternary Quartic approach, we however, visualize

the EAPs computed from the Riemannian approach alongwith the EAPs computed

from the Ternary Quartic approach for a visual inspection.

First on a synthetically generated data we compare the diffusion profiles of 4th order

tensors estimated from the Ternary Quartic approach, which ensures a non-negative

diffusion profile, to the diffusion profiles of tensors estimated using the Euclidean
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Figure 4.6: Synthetic Dataset. Comparing the effects of signal noise on the Ternary

Quartic, the Euclidean least squares (LS), and a spherical harmonic (SH) basis ap-

proaches for estimating a 4th order GDTI1 diffusion tensor. The graphs compare the

squared difference of the min-max normalized ground truth ADC and the similarly

normalized estimated diffusion functions. A non-negative diffusion profile constraint

has a positive influence on the estimated ADC when the signal is noisy.

LS approach and the SH to HOT approach, which don’t account for any positivity or

non-negativity constraints. Since we know the ground truth ADC of the synthetic

dataset, we use it as the benchmark, and compare the diffusion functions of all the

tensors estimated using the different methods to the ground truth ADC.

We generate the synthetic dataset using the multi-tensor model described in

Appendix-A.0.1, where we use the diagonal tensor D = diag(1390, 355, 355) × 10−6

mm2/s for the profile of a single fiber, and D = diag(700, 700, 700) × 10−6 mm2/s for

the profile of an isotropic voxel. Crossing voxels are simulated with equal volume

fractions for each fiber, where all crossings are perpendicular. We generate 100 test

voxels with random fiber configurations, i.e. isotropic voxels, single fiber voxels, two

fiber voxels and three fiber voxels, and with random fiber directions. From these test

voxels, we generate the diffusion signal using the two b-values of 1000 s/mm2 and

3000 s/mm2, and we add a range of Rician noise to the signal. The noise free ADC of

the multi-tensor model is easy to compute, and we call this the ground truth ADC.

We estimate 4th order GDTI1 diffusion tensors from this synthetically generated

noisy signal using the Ternary Quartic, the Euclidean, and the SH to HOT ap-

proaches. We then compute the mean and the standard deviation of the squared

difference or error between the min-max normalized ground truth ADC and the min-

max normalized spherical profiles of the estimated 4th order tensors along 642 pairs

of directions from an icosahedral discretization of the sphere. This is done to evaluate

the impact of noise in the signal on the estimation process. The mean and standard

deviation of the squared error are presented in Fig-4.6. In these experiments, the

random fiber configurations in the 100 test voxels consisted of 25 isotropic voxels, 27
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single fiber voxels, 22 two fiber voxels, and 26 three fiber voxels for the b-value of

1000 s/mm2. For the b-value of 3000 s/mm2 there were 20 isotropic voxels, 37 single

fiber voxels, 24 two fiber voxels, and 19 three fiber voxels. It is clear, that although

the non-negativity constraint is slightly weaker than the positive definite constraint,

this constraint on the diffusion profile nonetheless has a positive influence on the

estimation process when the signal is noisy.

At this juncture, before conducting further experiments on phantom data and in-

vivo human data, we visually compare the Riemannian approach, which guarantees

a positive definite diffusion profile but solves a more constrained problem, to the

Ternary Quartic approach, which guarantees only a positive semi-definite diffusion

profile but solves the problem in the correct space. We again generate a synthetic

dataset using the multi-tensor model, where we simulate two fiber bundles crossing

perpendicularly. The profile for the single fiber is taken from the diagonal tensor

D = diag(1700, 300, 300) × 10−6 mm2/s, and crossing voxels are generated using equal

fiber volume fractions. The signal is generated for a b-value of 3000 s/mm2. The

diffusion profiles of the estimated 4th order GDTI1 tensors and the EAPs computed

thereof are presented in Fig-4.7.

We notice that the ADCs and the EAPs of the Ternary Quartic approach are a little

sharper than the Riemannian counterparts. It can be surmised that this is due to

the fact that the Riemannian approach cannot estimate certain types of 4th order

tensors that can have positive or non-negative diffusion profiles, since these tensors

require to have a semi-definite representation in the symmetric 6D 2nd order tensor

formulation used by the Riemannian estimation. Such semi-definite 6D 2nd order

tensors are, however, pushed to an infinite distance from the estimation tensor by the

Riemannian metric. Nonetheless, the overall angular structure of the two methods

remain comparable.

We now return to testing the Ternary Quartic method. In the next experiment, we

test the Ternary Quartic method on the in-vivo human cerebral dataset described

in Appendix-A.0.4 for non-negative diffusion. In this dataset we consider exactly

the same masked region with 249352 voxels of interest that we had considered for

(81 dirs) LS SH RM TQ

Positive 181757 249263 249352 249352

Negative 67595 89 0 0

Table 4.3: Real dataset. The estimated diffusion functions from 249352, 4th order

GDTI1 tensors checked for positive diffusion profile on a set of 81 pairs of directions

distributed evenly on a sphere. The Ternary Quartic and the Riemannian approaches

are the only methods, which guarantee non-negative diffusion.
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Figure 4.7: Synthetic Dataset. Comparing the diffusion profiles and the EAPs from

the Riemannian approach and the Ternary Quartic approach. (a) ADC Riemannian.

(b) ADC Ternary Quartic. (c) EAP Riemannian. (d) EAP Ternary Quartic. The Rie-

mannian approach guarantees positive diffusion, but solves a more constrained prob-

lem. The Ternary Quartic approach guarantees only a positive semi-definite diffu-

sion, but solves the problem in the correct space.

the Riemannian approach, and we estimate 4th order GDTI1 diffusion tensors us-

ing the Ternary Quartic approach. We then evaluate the diffusion profiles of these

tensors along 81 pairs of directions on a sphere for negative diffusion. We include

the results of the Euclidean LS approach, the SH to HOT approach and the Rieman-

nian approach to summarize the results from all the methods. These are presented

in Table-4.3. The Ternary Quartic and the Riemannian methods are the only ap-

proaches that guarantee positive diffusion. We note here that in these tests we also

explicitly checked for zero diffusion. However, although the Ternary Quartic method

guarantees only non-negative diffusion, we never came across zero diffusion. This is

understandable, since in practice, due to numerical computations, the possibility of

computing exactly zero diffusion is rare. As stated earlier, we therefore consider the

non-negative condition only “negligibly” weaker than the positive definite constraint.

On this human cerebral dataset, we also compute the EAPs from the estimated 4th

order tensors by computing the Fourier Transform of the signal generated by the

estimated tensors using Eq-4.1. To evaluate the impact of the non-negative con-

straint in the estimation of the tensors on the EAPs computed from these tensors,

we compare the EAPs computed from the 4th order tensors estimated using the Eu-
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Figure 4.8: In-vivo Human Cerebral Dataset. Effects of the non-negative and the pos-

itive definite constraints that are guaranteed by the Ternary Quartic approach and

the Riemannian approach are evaluated on the EAPs computed from the estimated

tensors. EAPs computed from tensors estimated using the Euclidean LS approach,

which doesn’t consider any constraints, are shown for comparison. No spatial regu-

larization was used. The improvement in the results is only due to the non-negativity

constraints. The dataset used is described in Appendix-A.0.4.
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(987 tensors) LS Rm TQ

Estimation 6s 35s 102s

Table 4.4: Real dataset. Comparison of the time for estimating 987, 4th order diffu-

sion tensors that are visualized in Fig-4.8.

clidean LS method, which doesn’t consider any constraints. For comparison, we also

include the results of the Riemannian method. The results are presented in Fig-

4.8. No spatial regularization was used in either the estimation of the 4th order

tensors or in the computation of the EAPs. The improved results are only due to the

non-negativity and positivity constraints applied by the Ternary Quartic and the Rie-

mannian methods. The result from the Ternary Quartic method confirms the result

of the Riemannian method, which implies that applying a non-negative or positive-

definite constraint in the estimation process of the 4th order tensors greatly improves

the results. However, these constraints also entail increased computational complex-

ity. To evaluate this we present the estimation time of the 987 4th order diffusion

tensors in Table-4.4 whose EAPs were visualized.

Next, we conduct an experiment on the biological phantom described in Appendix-

A.0.2 to evaluate the geometry of the EAPs computed from 4th order tensors esti-

mated using the Ternary Quartic approach. The phantom was produced using two

excised rat spinal cords that were embedded in agar to produce a crossing fiber con-

figuration. Since the layout of this phantom is known, we evaluate the concurrence

of the EAPs’ geometry with this phantom’s layout. In the previous section, we had in-

cluded the ODFs, which represent the angular marginal distribution of the true and

unknown EAPs, as a comparison to the EAPs computed from the tensors estimated

using the Riemannian approach. In this experiment, we include the latter – the EAPs

computed from tensors estimated using the Riemannian approach as a comparison

to the EAPs computed from tensors estimated using the Ternary Quartic approach.

The results are presented in Fig-4.9. The EAPs computed from the tensors estimated

using the Ternary Quartic method have geometries or angular structures that are co-

herent with the underlying phantom layout, indicating that it is possible to infer the

fiber directions correctly. The geometry of the EAPs computed from the tensors esti-

mated using the two different methods also seem to be in overall agreement. These

seem to match both in terms of angular structure and radial size.

Finally, we conclude the experiments, by computing the EAPs from tensors estimated

using the Ternary Quartic method from the in-vivo human cerebral dataset described

in Appendix-A.0.3. For comparison we include the EAPs computed from tensors esti-

mated using the Riemannian method. The results are presented in Fig-4.10, where a

region of interest on a coronal slice is shown. This is the same region of interest that

was chosen in the previous section, where for comparison we had shown the ODFs
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Figure 4.9: Biological Phantom Dataset. (a) The layout of the phantom created using

two excised rat spinal cords. (b) EAPs computed from 4th order tensors estimated

using the Riemannian approach for comparison. (c) EAPs computed from 4th order

tensors estimated using the Ternary Quartic approach. The EAPs were evaluated at

the constant probability radius of |r| = 17 µm.

Figure 4.10: In-vivo Human Cerebral Dataset. EAPs computed from 4th order diffu-

sion tensors estimated from the signal using (a) the Riemannian approach, and (b)

the Ternary Quartic approach. The coronal slice shows a region of interest where

three major fiber bundles are known to intersect. These are the cortico-spinal tract,

the corpus callosum, and the superior longitudinal fasciculus.

estimated from the signal. In this region of interest three major fiber bundles are

known to cross. These are the corpus callosum, top and left, the cortico-spinal tract,

left and top to down, and the superior longitudinal fasciculus, traversing the plane
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near the centre. Note the general agreement in shape, both angular structure and

radial size, between the EAPs computed from the 4th order tensors estimated using

the two different methods.

4.3.3 Discussion

In this section we presented an alternate approach for estimating 4th order GDTI1

diffusion tensors with a positive diffusion profile from the signal. In this approach we

adopted the polynomial interpretation of HOTs, and reframed the problem of estimat-

ing tensors with positive diffusion as a problem of estimating positive polynomials

from the signal. However, since results on polynomials only consider non-negative

polynomials and not strictly positive polynomials, we had to consider the slightly

weaker problem of estimating polynomials or tensors with non-negative diffusion

profiles from the signal. However, in implementation, this turned out to only be a

negligible concession, since due to numerical computations, computing exactly zero

diffusion was a rarity. This approach also employed the Euclidean metric, which, as

suggested in [67], is perhaps better suited for diffusion data than the affine invariant

Riemannian metric.

Our proposed method for estimating non-negative homogeneous polynomials from

the signal is based on Hilbert’s famous theorem on non-negative ternary quartics,

where he showed that non-negative ternary quartics could be written as a sum of

three squares of homogeneous quadratic polynomials. Since this result is only for

degree 4 homogeneous polynomials, our approach only considers estimating 4th order

diffusion tensors with non-negative diffusion profiles. This is done by estimating the

coefficients of the three quadratic forms from the signal, and then by computing the

coefficients of the 4th order diffusion tensor from Hilbert’s sum of squares, which in

practice involves the Gram matrix.

Our approach is in the class of two other approaches that also use the result on

ternary quartics. The three methods differ in the way the coefficients of the quadratic

forms are estimated from the signal. We estimate all the coefficients separately in a

vector form, while the two other methods estimate the coefficients in a matrix form.

The matrix form leads to an ambiguity in the parameterization that results in an

infinite solution space. However, this is overcome by one of the matrix methods by

a QR-decomposition and by the other matrix method by an Iwasawa decomposition

followed by a Cholesky parameterization of the leading minor of the matrix. Our

formulation on the other hand naturally overcomes such ambiguities and is straight-

forward to implement. However, we estimate 18 unknowns from the signal, and

then compute the 15 independent coefficients of the 4th order tensor from these un-

knowns. This implies three degrees of freedom that can be explored to apply further

constraints. An interesting lead to follow is to try and distinguish between the 18 un-
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knowns and their negative counterparts, since both result in the same 15 coefficients

of the 4th order diffusion tensor.

In comparison to the family of Ternary Quartic methods, the only other approach for

estimating 4th order GDTI1 diffusion tensors with a positive diffusion profile from

the diffusion signal is the Riemannian approach we presented in the previous sec-

tion. While, the Ternary Quartic approach can only deal with a non-negative diffu-

sion, the Riemannian approach in comparison can deal with the stronger formulation

of a positive definite diffusion profile. However, as it was discussed here, and shown

in other papers, the Riemannian approach deals with the positivity constraint in a

more constrained space than implied by the 4th order tensor model, whereas the

Ternary Quartic approach solves the problem of non-negative diffusion in the correct

space. In our experiments on synthetic data, we observed sharper angular profiles

from the Ternary Quartic approach when compared to the results of the Rieman-

nian approach, and suspected that this was due to the over-constraint of the latter

approach. However, this needs to be investigated further before it can be confirmed.

We conducted experiments on synthetic data with known ground truth diffusion pro-

files, where we compared the Ternary Quartic approach to methods of estimating

the 4th order diffusion tensor that do not take into consideration any constraints

on the diffusion profile, to evaluate the impact of noise in the signal on the estima-

tion process of the diffusion tensors. These experiments showed the importance of

considering constraints like non-negativity on the diffusion profile, while estimating

diffusion tensors of order 4 from noisy signals. This was in conformity with the exper-

iments conducted in the previous section, which showed that the positivity constraint

implied by the Riemannian method had a benevolent influence on the estimated ten-

sors and their diffusion profiles. Further experiments on in-vivo human cerebral data

again confirmed this, since only the Riemannian approach and the Ternary Quartic

approach were able to estimate 4th order tensors with positive diffusion profiles. Both

the standard Euclidean LS approach and the SH to HOT approach estimated tensors

with negative diffusion profiles although negative diffusion is non-physical. Further-

more, the impact of non-negative and positive constraints on the diffusion profile on

the EAPs computed from the tensors was shown in the in-vivo data experiment. This

again indicated the importance of the non-negativity and the positivity constraints.

Finally we conducted experiments on a biological phantom with a known layout to

consider the coherence of the geometry of EAPs computed from 4th order tensors

estimated using the Ternary Quartic approach with the underlying fiber directions.

The geometry of the EAPs was in concurrence with the underlying phantom layout,

and also in agreement with the EAPs computed from tensors estimated using the

Riemannian approach. This confirmed that it is possible to infer the underlying fiber

directions from the angular structure of the EAPs computed from 4th order tensors

estimated using the Ternary Quartic approach.
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4.4
DISCUSSION AND CONCLUSION

In this chapter, we considered the GDTI1 model, which was proposed to

accurately estimate the complex profile of the ADC in dMRI, in regions with hetero-

geneous fiber configurations. In such regions the popular DTI fails to correctly model

the ADC. In GDTI1 Cartesian tensors of order higher than two were used to attain

greater accuracy in the modelling of complex shaped ADCs. GDTI1 HOTs of order k

were assumed to be symmetric since only their projections along vectors were used in

the ADC modelling, and were assumed to be of even order since negative diffusion is

non-physical. However, in spite of this design, the normal and standard method for

estimating GDTI1 HOTs from the signal, namely the Euclidean LS approach doesn’t

guarantee an estimated HOT with a positive diffusion profile. Euclidean LS esti-

mation, although linear and efficient can result in estimated HOTs with negative

diffusion profiles.

In this chapter, we proposed two different approaches for estimating 4th order GDTI1

diffusion tensors with positive diffusion profiles and non-negative diffusion profiles

respectively. In the first method, we considered the algebra of 4th order tensors to

map symmetric 3D 4th order tensors to symmetric 6D 2nd order tensors. We then

applied the Riemannian framework for the space of Sym+
6 , to estimate 4th order

diffusion tensors with strictly positive or positive definite diffusion profiles. In the

second method, we considered the polynomial interpretation of the multi-linear form

of HOTs, to reformulate the problem of estimating a HOT as a problem of estimating

a polynomial. In the case of 4th order diffusion tensors, we were able to use Hilbert’s

theorem on non-negative ternary quartics to parameterize 4th order tensors as a sum

of squares of quadratic forms. By estimating the coefficients of the quadratic forms,

we were able to reconstruct 4th order diffusion tensors with non-negative diffusion

profiles from the signal.

The Riemannian method we proposed, ensures a positive definite diffusion profile, but

solves a problem more constrained than implied by the model. This can be understood

from the fact that the 3D 4th order tensors were estimated in Sym+
6 , as 6D 2nd order

tensors, which implies that the Riemannian method ensures that the multi-linear

form of the 4th order tensor is positive definite for all symmetric 3D 2nd order tensor.

However, the GDTI1 model implies that the multi-linear form of the 4th order tensor

needs to be positive definite for only rank deficient 3D 2nd order tensors of maximal

rank one. Therefore, the Riemannian method ensures a positive diffusion profile, but

the solution space is more constrained than the true solution space.

The second method we proposed – the Ternary Quartic method solves the problem

in the correct space due to the appropriate polynomial parameterization. However,

since the known polynomial results, e.g. Hilbert’s theorem on ternary quartics, only

guarantee non-negativity, this method considers the theoretically weaker problem of
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a positive semi-definite or a non-negative diffusion profile. But this method also uses

the Euclidean metric, which, as has been suggested in [67], is perhaps better suited

for computing with diffusion data than the affine invariant Riemannian metric.

From the implementation and the results, we found that the shape of the ADCs and

EAPs computed from tensors estimated using the Riemannian method to be simi-

lar to the shape of the ADCs and EAPs computed from tensors estimated using the

Ternary Quartic method. We did, however, remark a swelling in the shapes of the

tensors estimated using Riemannian method, which we suspected was the result of

the over constraint. A more detailed analysis is, therefore, necessary to identify the

sub-space spanned by the Riemannian approach, and also the quantify the impact

of this sub-space on the estimated results. Finally, in the tests for negative diffu-

sion profiles, we never came across zero diffusion from tensors estimated using the

Ternary Quartic method, which is probably due to numerical computations. There-

fore, we concluded that the concession of the weaker non-negativity constraint to be

negligible in practice.

We experimented on synthetic and in-vivo human cerebral data using both the Rie-

mannian framework and the Ternary Quartic approach to motivate the need for a

positive or non-negative diffusion profile constraint. Both synthetic data experiments

and in-vivo data experiments clearly indicated the gains of applying such constraints.

We also presented the computation time to evaluate the increased complexity, and

found this to be tractable. Finally we conducted tests on a biological phantom data

with a known layout to evaluate whether it was possible to infer the underlying fiber

directions from the geometry of the EAPs computed from the tensors estimated us-

ing the two approaches presented in this chapter. Our experiments indicated that

this could be answered in the affirmative and that the geometry of the EAPs com-

puted from the tensors estimated using the Riemannian framework and the Ternary

Quartic approach could reveal the underlying fiber directions.
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5.1
INTRODUCTION

Generalized Diffusion Tensor Imaging (GDTI1: section-3.4.2), was proposed

to model the apparent diffusion coefficient (ADC) recovered by diffusion MRI (dMRI)

when imaging the diffusion of water molecules in heterogeneous media like the cere-

bral white matter. Essentially, GDTI1 [44] uses higher order Cartesian tensors

(HOTs) to model the spherical profile of the ADC. However, although the complex

shape of the ADC reflects the complex geometry of the underlying tissue, it is well

known that the geometry of the ADC doesn’t correspond to underlying fiber direc-

tions [46]. This can be understood from the q-space formalism, where it can be seen

that the ADC and the diffusion signal are in the Fourier domain of the diffusion EAP,

which describes the probability of the diffusing particles. The geometry of the EAP is

a direct indicator of the microstructure of the underlying tissue or fiber bundles.

But GDTI1 was proposed because it overcomes the limitation of diffusion tensor imag-

ing (DTI) [30], which is inadequate at modelling the signal from regions with multiple

fiber configurations. The HOT that is used in GDTI1 to model the spherical profile of

the ADC, can model the signal and the ADC in such situations with greater accuracy.

Therefore, the GDTI1 approach has been of considerable interest and has seen var-

ious developments. In particular a number of contributions were made to estimate

4th order HOTs in GDTI1 under the constraint of a positive diffusion profile, since

negative diffusion is non-physical [65, 83, 66, 79].

However, in spite of the interests in HOTs to describe complex shaped ADCs, the

tissue microstructure can only be inferred from the shape of the EAP. However, to

compute the EAP from the HOT model of the ADC in GDTI1 is no easy task [84].

That is perhaps the reason why the GDTI1 approach has been overtaken by other

methods that estimate the EAP or its characteristics directly from the signal, such as

QBI, PAS-MRI, DOT, SD etc. [28, 85, 59, 58, 60, 86, 87].

In this section, we propose a modification to the original GDTI1 model under the

q-space formalism, which allows us to compute a closed-form approximation of the

EAP using Hermite polynomials. In this modified model we still estimate HOTs from

the signal, but these HOTs don’t represent the spherical profile of the ADC anymore.

The HOTs are used to describe the signal over the entire q-space. We show that this

approximation converges well to the true EAP. Also, we are still able to apply the

constraint of a positive diffusion profile in our modified model while estimating the

HOT from the signal before computing the EAP approximation. Finally since the

solution is analytical, it is fast and can be implemented efficiently.

We first test this approach on a synthetically generated dataset that simulates cross-

ing fibers. We compare the computation time of this method with a numerical discrete

Fourier Transform scheme to recover the EAP from the original GDTI1 model. We

show that with our modified approach we are able to recover the underlying fiber
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layout and gain considerably in computation time. This is of relevance in visualiza-

tion. We also conduct experiments on in-vivo human cerebral data to illustrate the

applicability of this approach on real data.

5.2
MATERIALS AND METHODS

We recall the signal E(q) = S(q)
S0

, in GDTI1 [44] is modelled using a kth

order tensor D(k), which describes the spherical or angular profile of the ADC:

E(q)k = exp


−4π2q2t

3∑

j1=1

3∑

j2=1

· · ·
3∑

jk=1

D
(k)
j1j2...jk

gj1gj2 . . . gjk




= exp


−4π2q2t

∑

m+n+p=k

D(k)
mnpg

m
1 g

n
2 g

p
3


 , (5.1)

where q = γδG/2π when G is the gradient vector, t = (∆ − δ/3), and gj are the compo-

nents of the unit gradient vector g = G/|G|. The second equality is a reinterpretation

of the first by a rearrangement of the indices [65]. k = 4 gives the 4th order diffusion

tensor model. We also recall that in the q-space formalism, the diffusion signal and

the EAP are related by the Fourier Transform [25]:

P (r) =

∫
E(q) exp

(
−2πiqT r

)
dq.

The q-space formalism entails the condition that δ ≪ ∆, implying that t ≈ ∆.

For k = 2, E(q)2 is the DTI model, whose Fourier Transform P (r)2 is well known to

also be a Gaussian, which corresponds to the free diffusion EAP (section-3.3.1). We

denote by P (r)i the EAP computed from the Fourier Transform of E(q)i. However,

for general k > 2, closed-forms for the Cartesian Fourier Transform of E(q)k are

hard to compute, since in Cartesian coordinates E(q)k isn’t separable in q1, q2, q3, the

components of q. In [84], where a method for recovering the EAP from GDTI1 is

proposed, P (r)k is computed numerically by evaluating E(q)k more or less densely in

q-space and by computing its fast Fourier Transform.

In this section, we propose to modify the original GDTI1 model by making Eq-5.1

separable in the Cartesian coordinate. This is done by realizing that GDTI1 in fact

uses two orders k1 and k2 for the radial and the angular components respectively:

E(q)k1,k2 = exp


−4π2qk1αt

∑

m+n+p=k2

D(k2)
mnpg

m
1 g

n
2 g

p
3


 (5.2)

= exp


−4π2qk1−k2αt

∑

m+n+p=k2

D(k2)
mnpq

m
1 q

n
2 q

p
3


 , (5.3)

where in GDTI1 k1 = 2 and k2 = k. In this formulation α is a constant with units

m2−k1 that makes the exponent unit-free when k1 6= 2, and q = |q|. The first equality
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is written in the components of the unit gradient vector g, while the second equality

is in the components of the reciprocal space vector q. This reformulation of GDTI1,

allows E(q) to become separable in q1, q2, q3 when k1 = k2 = k.

Although the original formulation of GDTI1 uses a Cartesian HOT, it was in truth

written in spherical coordinates since the HOT D(k), was evaluated only along the

unit gradient vector g. Alternately the spherical coordinates also become evident

from the two separate orders k1, k2, for the radial and the angular parts. By equat-

ing the two orders k1 = k2, our modification converts the signal formulation to the

Cartesian coordinates and recouples the radial and the angular parts. The HOT is

now evaluated over the entire q-space. This reformulation allows us to compute an

analytical Fourier Transform of E(q)k,k in the Cartesian coordinates.

It should be noted that the DOT method proposed in [60] computes the Fourier Trans-

form of the GDTI1 model in spherical coordinates. However, in the DOT, the Carte-

sian HOT is replaced by the spherical harmonic (SH) basis to describe the complex

shaped ADC, since the SHs are easier to manipulate in the spherical coordinates, and

since they transform well under the Fourier Transform in spherical coordinates.

Interestingly, in spite of this reformulation, the signal in Eq-5.3 still retains a mono-

exponential form parameterized by the diffusion HOT D(k2), like in the original for-

mulation. In Eq-5.1 the negative logarithm of the signal is b ·ADC, where b = 4π2q2t.

In the modified model, if we denote b′ = 4π2αt, then:

ln (E(q)k,k) = −b′ · ÂDC = −b′
∑

m+n+p=k

D(k)
mnpq

m
1 q

n
2 q

p
3 .

This makes it evident, that we can again estimate the HOT D(k) from the diffusion

signal in such a way, that its diffusion profile is positive, i.e. ÂDC > 0. Here, the

diffusion profile ÂDC is no longer a function on the sphere, but rather a function on

the entire q-space. However, from this equation, we also see that when k = 4, the

methods that were developed to estimate a HOT with a positive diffusion profile for

the GDTI1 model in Eq-5.1, can all be directly applied to the modified model in Eq-

5.3, to estimate D(4) with a positive diffusion profile constraint. Therefore, using the

modified model in Eq-5.3, it is possible to estimate a 4th order HOT from the signal,

which satisfies a positive diffusion profile, before computing the EAP from this HOT.

Our solution for the EAP from the modified HOT model pivots around the following

property of the Fourier Transform:

F{xnf(x)} =

(
i

2π

)n dn

dtn
F{f(x)}(t),

where F stands for the Fourier Transform. If we employ g(x) = e−2π2x2
for f(x), then

its Fourier Transform is G(t) = F{g(x)}(t) = 1√
2π
e

−t2

2 . However, the derivatives of
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the Gaussian function G(t), generate the Hermite polynomials −dn

dtn e
−t2

2 = Hen(t)e
−t2

2 .

Therefore:

F{xne−2π2x2}(t) =

(
i

2π

)n

Hen(t)
1√
2π
e

−t2

2 . (5.4)

The generalization to 3D is simple since the Gaussian function is separable in the

variables.

To leverage this property of the Fourier Transform, and those of the Gaussian func-

tion, for computing a closed-form approximation of the EAP from E(q)k,k, i.e. its

Fourier Transform P (r)k,k, we propose to expand E(q)k,k as a multivariate polyno-

mial multiplied by a 3D Gaussian function:

E(q)k,k ≈
(∑

Cl,s,uq
l
1q

s
2q

u
3

)
exp

(
−2π2β(q21 + q22 + q23)

)
,

where β is a constant with units m2 to render the exponent unit free, and the new

coefficients Cl,s,u in the polynomial expansion, contain the imaging parameter b′, and

the coefficients of the HOT D(k). If this expansion were possible, then E(q)k,k would

become separable in q1, q2, q3.

Such an expansion can be achieved from a few manipulations and a Taylor expansion:

E(q)k,k = exp
((

−4π2αt
∑

D(k)
mnpq

m
1 q

n
2 q

p
3

)
+ 2π2β(q21 + q22 + q23)

)
×

exp
(
−2π2β(q21 + q22 + q23)

)

= h(q) exp
(
−2π2β(q21 + q22 + q23)

)
,

where the summation in the first equality is over m,n, p such that m + n + p = k,

as denoted in Eq-5.3, and h(q) = exp
((
−4π2αt

∑
Dmnpq

m
1 q

n
2 q

p
3

)
+ 2π2β(q21 + q22 + q23)

)
.

Since h(q) is an exponential function eX(q), we define hn(q) as the nth order Taylor

expansion of h(q) in the variables q1, q2, q3. Therefore hn(q) is a trivariate polynomial

of degree n− 1 plus an error term of degree n. Ignoring the error term, hn(q) has the

required form hn(q) =
∑

l+s+u<nCl,s,uq
l
1q

s
2q

u
3 . Therefore we can define the nth order

approximation of the signal:

E(q)
(n)
k,k = hn(q) exp

(
−2π2β(q21 + q22 + q23)

)

=

(
∑

l+s+u<n

Cl,s,uq
l
1q

s
2q

u
3

)
exp

(
−2π2β(q21 + q22 + q23)

)
. (5.5)

Since hn(q) is the Taylor’s expansion of an exponential function h(q), hn(q) converges

to h(q) uniformly over all R3 as n is made large. Therefore E(q)
(n)
k,k converges to

E(q)k,k uniformly over R3 as n is made large.

As E(q)
(n)
k,k is separable in q1, q2, q3, it is possible to compute a closed form for its

103



Cartesian Fourier Transform, which is also separable. Using the property in Eq-5.4:

P (r)
(n)
k,k =

1

(2πβ)
3
2

exp

(−1

2β
(r21 + r22 + r23)

)
×

(
∑

l+s+u<n

il+s+uCl,s,uHel(r1)Hes(r2)Heu(r3)

)
. (5.6)

For large n, the approximation P (r)
(n)
k,k converges to the true EAP P (r)k,k. In practice

we use n = 5, 7, 9.

We thus find a closed-form approximation of the EAP from the modified HOT model of

the ADC in GDTI1. The solution is a polynomial multiplied by a Gaussian. Therefore,

the polynomial can be interpreted as the correction to the free diffusion Gaussian

EAP due to the complex heterogeneous medium.

An alternate explanation to this method, can be found from Eqs-5.5 & 5.6, which

avoids modifying the GDTI1 model. Eqs-5.5 & 5.6 resemble closely the formulation of

the signal in the expansion of the cumulant generating function (CGF) (Eq-3.33), and

the approximation of the EAP in GDTI2 using the Gram-Charlier series (Eq-3.45)

[45]. While in the CGF expansion, the signal is expanded in the standard polynomial

basis with the cumulants as the coefficients, in Eq-5.5 the signal is in fact expanded

in a subset of the standard polynomial basis. Since the Fourier Transform of a mono-

mial multiplied by a Gaussian is a Hermite polynomial multiplied by a Gaussian, the

EAP is approximated in GDTI2 in the Hermite polynomial (tensor) basis, with again

the cumulants as the coefficients using the Gram-Charlier series. Likewise in Eq-

5.6, the EAP is approximated in the Hermite polynomial (tensor) basis. A difference

between this method and GDTI2 lies in the fact that while GDTI2 uses the entire

polynomial (Hermite polynomial) basis to expand the signal (EAP), this method uses

only a subset of these bases. Therefore, the coefficients Cl,s,u are no longer the cu-

mulants. Or, in other words, if the entire polynomial basis had been used here, then

Cl,s,u would have become the cumulants. Also, the coefficients Cl,s,u aren’t estimated

directly from the signal, though they can be from Eq-5.5, but are computed from the

coefficients of the HOT D(k) and the Taylor expansion in Eq-5.5. Therefore, changing

the order n of the approximation has an effect on the approximated EAP, since it adds

or subtracts terms in Eq-5.6. However, as shown in the experiments, this does not

affect the direction of the peaks of the approximate EAP. This interpretation shows

that this method also belongs to the same family as GDTI2.

We program an efficient implementation of the proposed method through symbolic

computation. Using MapleTM, and assuming Eq-5.3, we expand E(q)k,k into a Taylor

series in the variables q1, q2, q3 up to predefined orders n = 5, 7, 9. This expansion

automatically computes for us the new coefficients Cl,s,u from the coefficients of the

HOT D(k) (Eq-5.5). The EAP approximation P (r)
(n)
k,k, is then generated by again com-

puting the Fourier Transform of E(q)
(n)
k,k symbolically. The expansion of the EAP is
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then converted to C-code using MapleTM, which is compiled. This routine therefore

takes as input the imaging parameters, namely t, and the coefficients of D(k) that are

estimated from the diffusion signal. α, β are taken to be equal to 1.

5.3
EXPERIMENTS AND RESULTS

Although we developed the theory for arbitrary k = k1 = k2, for the follow-

ing experiments we consider k = 4, i.e. E(q)4,4 and P (r)
(n)
4,4 . This is because, as we

have seen, for E(q)4,4 we can employ HOT estimation techniques to guarantee that

the 4th order HOT has a positive diffusion profile (ÂDC > 0). In all the following

the 4th order HOT D(4) is estimated from Eq-5.2, with k1 = k2 = 4 using the method

described in [79]. The estimation in [79] is described for Eq-5.1, which depends on the

b-value b = 4π2q2t. We adapt this to Eq-5.2 by replacing the b-value by the imaging

parameters 4π2αt and the ADC by the ÂDC.

We test the approach first on synthetic data, and then on in-vivo human cerebral data.

The synthetic data is generated using the multi-tensor model described in Appendix-

A.0.1. We use D = diag(1700, 300, 300) × 10−6 mm2/s, for the profile of a single fiber,

and D = diag(700, 700, 700) × 10−6 mm2/s for the profile of an isotropic voxel. The

diffusion signals are generated with a single shell acquisition scheme based on a b-

value of 3000 s/mm2. The gradient directions are considered isotropically spread out

on the sphere along 81 encoding directions. Since the dataset is generated from the

fixed b-value, we let t = 50 ms, which allows us to compute q.

In the synthetic data experiment, we consider two fiber bundles crossing or overlap-

ping in a way that makes them converge and diverge. This changes their crossing

angle in the region where they cross. The voxels outside the fiber bundles are gen-

erated using the isotropic diffusion profile. The layout of the synthetic data fibers,

and the result of the estimated EAP approximations of order 7, from the 4th order

HOT, P (r)
(7)
4,4, are presented in Fig-5.2. We see that the angular profiles of the EAP,

evaluated at |r| = 20 µm, are well aligned with the original fiber bundle layout – their

peaks correspond. In the two zooms, we take a closer look at some of the voxels in

the crossing regions. In the top zoom we see that the peaks of the angular profile of

Figure 5.1: Spherical profiles of (a) the ÂDC estimated from the modified GDTI1 with

a 4th order tensor and (b) the EAP approximation P (r)
(7)
4,4 with increasing |r| from 12

µm to 20 µm.
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Figure 5.2: Synthetic dataset experiment. Left: Fiber bundle layout. Centre: P (r)
(7)
4,4.

Right: Zoom into the regions with crossings – top: the changing angle between the

fiber bundles is detected, bottom: three types of voxels, isotropic, single fiber, two

fibers.

the EAP detect the changing angle between the converging or diverging fiber bun-

dles. In the bottom zoom we see the three different types of voxels recovered by the

EAP, namely the isotropic, the single fiber, and the two fibers crossing. Although the

isotropic voxels also have peaks, the peaks of the EAPs representing crossings are far

sharper.

Speed is of great utility in visualization. The closed-form of P (r)
(n)
4,4 makes it com-

putationally efficient, especially since the expression for a fixed n can be hard coded

and compiled. In the synthetic data experiment we compare this approach to a nu-

merical Fourier Transform of the GDTI1 model. For visualization and comparison

we consider the whole slice, which is partially seen in Fig-5.2, with 30 × 30 voxels.

For the implementation of the numerical Fourier Transform we evaluate the GDTI1

model (Eq-5.1) on a 21 × 21 × 21 Cartesian grid. We evaluate the numerically com-

puted EAP on a coarse spherical mesh with 162 vertices. The computation time on

our computer was 526 s. We then compute P (r)
(7)
4,4, but this time on a finer spherical

mesh with 2562 vertices. The computation time on the same computer was 73 sec.

Despite the finer mesh, P (r)
(7)
4,4 is about seven times faster than the regular discrete

Fourier Transform. On the coarse mesh with 162 vertices, the computation time for

P (r)
(7)
4,4 was about 10 s.

Fig-5.3 shows the effect of the Taylor expansion order n on the EAP approximation.

The six images are zooms into a region where the two fiber bundles converge and

cross. In the top row we present P (r)
(n)
4,4 , with n = 5, 7, 9 evaluated for the probability

radius |r| = 16 µm. Increasing n adds more terms to the EAP approximation in Eq-

5.6, which adds more corrections to the approximation, making it converge better to
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Figure 5.3: Effects of the approximating order n and the probability radius |r|. In

top-row |r| is fixed and we vary n. In bottom row n is fixed and we vary |r|. Top row:

|r| = 16 µm: (a) P (r)
(5)
4,4, (b) P (r)

(7)
4,4, (c) P (r)

(9)
4,4. Bottom row: n = 7

(
P (r)

(7)
4,4

)
: (d) ≡ (b)

|r| = 16 µm, (e) |r| = 18 µm, |r| = 20 µm.

the true EAP. As the approximation P (r)
(n)
4,4 , is corrected, it shows sharper peaks and

narrower crossings for n = 9, than n = 5, for the same probability radius. However,

this also increases the computation time. But the peaks of the lower order approx-

imations seem to be well aligned with the higher order approximations. In other

words, the peaks maintain their angular alignment, although they lose sharpness

and the EAP loses angular resolution, and narrow crossings become harder to dis-

cern. However, the angular resolution can be recovered, and the peaks “sharpened”

in the lower order approximations by increasing the probability radius, which saves

computing time. This is shown in the bottom row, where we show P (r)
(7)
4,4 for the prob-

ability radius varying from |r| = 16 µm. . . 20 µm. These experiments reveal that the

effect of the Taylor expansion order n is to underestimate the EAP in the approxima-

tion. Therefore, we use the order 7 approximation P (r)
(7)
4,4, as a good trade-off between

convergence to the true EAP and computation time.

For the in-vivo human cerebral data, we use the dataset described in Appendix-A.0.3.

However, in this case we make certain assumptions about the imaging parameters.

This dataset was acquired using a twice refocussed Reese sequence [88], and not a

standard PGSE sequence, with gradient durations δ1 = 12.03 ms, δ2 = 19.88 ms,

δ3 = 21.76 ms, δ4 = 10.15 ms. As suggested in [89], Reese sequence parameters are

sometimes adapted to the standard PGSE parameters with δ = δ1 + δ2, and ∆ as the

time between the start of δ1 and the start of δ3. However, since the application times
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Figure 5.4: Real data. Coronal slice with the P (r)
(7)
4,4. The main zoom contains regions

where three fiber bundles, namely the CC, the CST, and the SLF, intersect. The

upper secondary zoom highlights the crossing between the CC and the cingulum due

to partial voluming. The lower secondary zoom shows the main voxels, with three

peaks that correspond to the crossing between the CC, the CST, and the SLF.
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of δi were unknown, we assume q2 = b, which implies 4π2t = 1.

Fig-5.4, shows a coronal slice from the in-vivo dataset, where three fiber bundles are

known to cross. In the plane horizontally and diagonally is the corpus callosum (CC),

top to bottom is the cortico-spinal tract (CST) and going through the plane is the

superior longitudinal fasciculus (SLF). The 4th order HOTs were approximated from

this dataset. In Fig-5.4 are shown the estimated order 7 approximations P (r)
(7)
4,4 of the

EAP. The zooms highlight the crossings between the major fiber bundles. In the main

zoom is the region where the three fibers, the CC, the CST and the SLF, intersect each

other. In the upper secondary zoom the crossing between the CC and the cingulum

is highlighted, which occurs due to partial voluming. In the lower secondary zoom is

seen the main voxels with three peaks, which correspond to the crossing between the

three fiber families – the CC, the CST and the SLF.

5.4
DISCUSSION AND CONCLUSION

GDTI1 was developed to model complex ADC profiles which was an inherent

shortcoming of DTI. GDTI1 uses HOTs of order k to model a complex ADC geometry.

However, the shape of the ADC doesn’t correspond to the underlying fiber directions.

The microstructure of the tissue can be inferred from the geometry of the EAP, where

in the q-space formalism the EAP and the diffusion signal are related by the Fourier

Transform. But it’s not easy to compute the EAP, P (r)k, from the HOT model of the

signal E(q)k in GDTI1.

We overcome this hurdle by modifying the ADC model of GDTI1, which allows us to

approximate E(q) by a multivariate polynomial approximation, and by proposing a

novel closed-form approximation of P (r) using Hermite Polynomials. The solution is

a polynomial times a Gaussian, therefore the polynomial can be interpreted as the

correction to the Gaussian EAP due to the inhomogeneous medium. An alternate

explanation can be used to explain this method, where the signal is expanded in the

polynomial basis, and the EAP is expressed in the Hermite polynomial basis, which

establishes the similarity of the proposed method to GDTI2. Also, since the solution

is analytical, it is fast, and the approximation converges well to the true EAP.

In case of an order 4 HOT, this method can be directly adapted to the methods

proposed for estimating 4th order diffusion tensors with positive diffusion profiles.

Therefore, it is possible to estimate a 4th order HOT with a positive diffusion pro-

file using this modified model before approximating the EAP. The experiments show

that estimating only the 15 coefficients of a 4th order HOT are enough to reveal the

underlying fiber bundle layout. However, this is dependent on the order of the Tay-

lor expansion used. Although the order of the expansion doesn’t change the angular

alignment of the peaks of the approximate EAP, it does affect its angular resolution

or its capability of discerning narrow crossings. Increasing the order, increases the
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corrections to the approximation, which improves this angular resolution. However,

it also increases the computation time. The angular resolution can be recovered in

lower order approximations, by increasing the probability radius, which saves com-

putation time. However, this overall effect indicates, that the truncation in the Taylor

expansion has the effect of underestimating the true EAP in the approximation.
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OVERVIEW

Spherical functions play a pivotal role in diffusion MRI for representing sub-voxel-

resolution microstructural information of the underlying tissue. This information is

encoded in the geometric shape of the spherical function. In this chapter we use a

polynomial approach to extract geometric characteristics from spherical functions in

diffusion MRI , such as the maxima, the minima and the saddle-points. We then

use tools from differential geometry to quantify further details such as principal

curvatures at the extrema. We propose new bio-markers like the Peak Fractional

Anisotropy and Total Peak Fractional Anisotropy, to represent this rich source of in-

formation for characterizing cerebral white-matter. Finally as an application of our

approach, we apply maxima-extraction to perform tractography, where we extend the

standard Streamline tractography, and also the Tensorline tractography to work with

generic spherical diffusion functions. We illustrate our method on the Orientation

Distribution Function (ODF) estimated from synthetic and real data.

6.1
INTRODUCTION

In diffusion MRI (dMRI), while diffusion weighted images (DWIs) measure

the diffusion of water molecules along single given directions, the reconstructed and

integrated image is often represented as values on a sphere or as a spherical function

in every voxel. The shape or geometric characteristics of these antipodally symmetric

spherical diffusion functions (SDFs) provide a sub-voxel resolution microstructural

information of the underlying tissue superior to the resolution of the raw DWIs. How-

ever, since the current spatial resolution, typically 2.5 mm3 [90], of dMRI is coarse

compared to the true scale of an axon, which is of the order of 1 µm, the SDF repre-

sents at best the average or dominant fiber direction of the underlying tissue locally,

and is affected by partial voluming effects.

The geometric characteristics of several of these reconstructed SDFs have direct

physical interpretations. The simplest example is DTI, where the spherical func-

Figure 6.1: A spherical diffusion function (SDF) reconstructed from DWIs acquired

along a set of gradient directions. The maxima of the ODF, an example of an SDF,

indicate fiber bundles. It is, therefore, important to correctly estimate the maxima of

these SDFs.
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tion is an ellipsoid whose elongation indicates fiber bundle directions [30, 31]. The

spectral decomposition of the diffusion tensor into its eigenvalues and eigenvectors

represents the ellipsoid’s geometry. These and derived scalars indicate tissue micro-

architecture such as the dominant fiber direction, parallel and perpendicular diffu-

sion, mean diffusion and Fractional Anisotropy (FA). However, DTI is limited in re-

gions where multiple fibers cross, converge or diverge.

Therefore, a number of reconstruction techniques with SDFs with richer geometries

and multiple peaks capable of discerning complex fiber configurations, such as cross-

ings, have been recently proposed in dMRI. Some of these were presented in section-

3.4. It is common to analytically represent an SDF in the spherical harmonic (SH) ba-

sis, such as analytical Q-Ball Imaging, or the orientation distribution function (ODF)

[52, 53, 54], PAS-MRI [85], Spherical Deconvolution [59], or the DOT [60] to name

a few. Another basis of choice is the symmetric tensor (ST) basis constrained to the

sphere – DTI or GDTI1 (sec-3.4.2) for example [30, 44].

However, unlike in DTI, there exists no simple method for extracting all the geometric

characteristics from these SDFs with multiple extrema. Since the maxima of certain

SDFs indicate the underlying fiber directions, which is important in tractography, a

number of algorithms have been proposed to extract only these. Examples consist of

simple discrete mesh searches [3] and various optimization approaches [57, 59]. But

these methods are all heuristic. Mathematically systematic approaches detecting the

maxima and quantifying other geometric characteristics are few [91, 92, 93].

The discrete mesh search approach [3] heuristically searches for local maxima on a

discretized version of the SDF by considering the SDF’s values on the vertices of a

discrete mesh of the sphere. Naturally, the precision of the maxima found by this

approach is dependent on the refinement of the mesh. However, its execution time is

also dependent on the mesh refinement. In other words, a finer mesh or discretiza-

tion of the sphere improves the solution found by the finite search and is closer to the

“correct” maximal direction which is the solution of the continuous spherical func-

tion, but it also increases the searching time of the algorithm quadratically [93]. In

[3] typically an icosahedral tessellation of order 5, i.e. 1281 mesh vertices on a hemi-

sphere, is used to execute the discrete mesh search, which corresponds to an angle of

∼ 4o between vertices [3].

Numerical optimization techniques such as Newton-Raphson gradient descent in [59]

and Powell’s method in [57], on the other hand solve a continuous optimization prob-

lem to locate a maximum direction. However, such approaches are inherently limited

to being local since the optimization is a local search, and are, therefore, dependent on

the initialization. The SDFs have complex shapes, aren’t convex (except for the case

of the ellipsoid, which is trivial), and have many maxima. Therefore, different ini-

tial solutions could lead to different local basins of extrema, and a heuristic approach
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would be necessary to restart the optimization routine for locating all the maxima

of the SDF. For example, solutions from the finite difference search could be used to

initialize and restart the optimization routine, which could then refine and improve

the precision of the maximal directions.

In this chapter we present a homogeneous polynomial approach for extracting nu-

merous geometric characteristics of an SDF. First we present a method for accurately

extracting the maxima of any non-parametrically represented SDF described either

in the SH basis or the ST basis. This is neither a heuristic approach, like a discrete

mesh search, nor a local search like optimization. It guarantees that all the maxima

are bracketed analytically, and then refined numerically to any degree of precision

based on standard numerical schemes. This ensures that we can accurately extract

all the maxima of an SDF without overlooking any. This approach can be considered

the limiting case of the discrete mesh search with a complete mathematical frame-

work like in an optimization approach, since it operates on the continuous SDF and

locates its extrema based on the criterion ∇(SDF) = 0. But it is not dependent on

initialization.

Next, using tools from differential geometry, we compute further geometric details

like the principal curvatures at the maxima of the SDFs. While the maxima are a

first order description, the principal curvatures provide a second order information,

which can describe the “shape” of each maxima. To represent all this information in

an integrated fashion, we propose the peak fractional anisotropy (PFA) measure to

characterize each maxima of the SDFs. The PFA can be understood to be a kind of

FA for each peak characterizing its geometry. We also propose the Total-PFA, which

is a sum of all the PFAs of all the maxima of the SDF to characterize the entire SDF.

Finally as an application of the polynomial maxima extraction, we perform tractogra-

phy on synthetic and real data. In the process we extend the classical DTI Streamline

tractography [41]. We adapt the Streamline tractography to the multiple maxima

that can be discerned by complex SDFs in regions with fiber crossings, allowing us

to trace through such regions with greater accuracy than in DTI tractography. We

also extend the well known Tensorline tractography [94, 95] to complex SDFs, to

smooth out local kinks, which can make the fiber tracks unnaturally “wriggly” in

plain Streamline tractography due to acquisition noise and partial voluming that

make the estimated SDF field spatially irregular.

We illustrate all this on the diffusion ODF, both the ODF-T [51, 54] (Tuch), and the

ODF-SA [55] (solid angle). The ODF-SAs are known to have sharper peaks and bet-

ter angular resolution than the ODF-Ts. Both ODFs are non-parametric SDFs repre-

sented in the SH basis and are good generic SDFs for applying the maxima extraction

method. However, this is only for illustration, and this approach can be performed

on any other kind of SDF as mentioned earlier. We first experiment on synthetic
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data generated from a multi-tensor model, then on in-vivo human cerebral data [96].

Using the modified Streamline and Tensorline tractography on the human dataset,

we show marked improvements in detecting lateral radiations of the corpus callosum

(CC).

6.2
MAXIMA EXTRACTION

Extracting the geometric characteristics of a generic SDF described either

in the SH or the ST basis, can be broken down into three steps. First we represent

the SDF as a homogeneous polynomial (HP) constrained to a sphere. Second, we

formulate a constrained polynomial optimization problem for identifying all the sta-

tionary points or extrema of the SDF. Since the optimization problem can be seen as

a root finding problem for a system of polynomials, we solve this system using a novel

polynomial system solver instead of employing a local optimization approach. This

solver allows us to analytically bracket all the real roots of the polynomial system

without depending on an initial solution, and refine the roots numerically to a high

precision to accurately detect all the extrema of the SDF. Third, we classify the ex-

trema as maxima, minima and saddle-points and compute their principal curvatures

to completely quantify all the extrema of the SDF.

6.2.1 From SHs to Tensors or Homogeneous Polynomials

The SHs form a complex complete orthonormal basis for square integrable functions

on the unit sphere. Therefore, any SDF can be expanded in the infinite SH basis or

approximated to any accuracy by a truncated series:

SDF =
∑

l,m

clmY
m
l (θ, φ), (6.1)

where Y m
l (θ, φ) are the SHs, clm are the coefficients, and θ ∈ [0, π], φ ∈ [0, 2π). The SH

of order l and degree m is defined as:

Y m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pm

l (cos θ)eimφ, (6.2)

where m ≤ |l|, and Pm
l (x) are the associated Legendre polynomials. Henceforth, for

practical purposes, we shall only consider a truncated SH expansion. A modified,

real, and symmetric SH basis is popularly used in dMRI to describe SDFs, since the

diffusion function is real and assumed to be symmetric [3]:

Yj(θ, φ) =





√
(2)·Re(Y

|m|
l (θ, φ)) if m < 0

Y m
l (θ, φ) if m = 0√
(2)· (−1)m+1Im(Y m

l (θ, φ)) if m > 0

,
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where j = (l2 + l + 2)/2 +m, and Y −m
l (θ, φ) = (−1)mY

m
l (θ, φ), the complex conjugate

of Y m
l (θ, φ). Henceforth, we will refer to the modified basis when referring to the SH

basis.

An alternate basis for describing a symmetric spherical functions is the ST basis,

which is based on Cartesian higher order tensors (HOT). In 3D an SDF in the ST

basis can be approximated by a HOT or order-n by [44]:

SDF =

3∑

j1=1

3∑

j2=1

· · ·
3∑

jn=1

D
(n)
j1j2···jn

gj1gj2 · · · gjn ,

where D
(n)
j1j2···jn

are the coefficients of the HOT D(n), and gjk
are the components of the

unit norm vector g = [sin θ cosφ, sin θ sinφ, cos θ]T = [gx, gy, gz]
T . This HOT represen-

tation can be rewritten in other forms by rearranging the terms:

3∑

j1=1

3∑

j2=1

· · ·
3∑

jn=1

D
(n)
j1j2···jn

gj1gj2 · · · gjn =
∑

r+s+t=n

D
(n)
r,s,tg

r
xg

s
yg

t
z

=
N∑

j=1

µjDj

n∏

p=1

gj(p),

where the first equality is from [65], which clearly indicates that a ST or order-n can

be seen as a homogeneous polynomial of degree-n. The second equality is from [44],

where the monomials
∏n

p=1 gj(p) = gr
xg

s
yg

t
z, with r+s+ t = n are factored together with

their multiplicities µj , and Dj are the N independent coefficients of the ST, (N =

(n+ 1)(n+ 2)/2). Therefore, a ST basis with a HOT of order-n is a rearranged form of

a homogeneous polynomial (HP) with degree-n. In other words an SDF described in

the ST basis, is basically written as a HP constrained to a sphere.

The passage from SHs to HPs constrained to a sphere can be understood from the

spherical harmonic transform (SHT). The SH coefficients needed to describe an SDF,

written as a HP, in the modified SH basis (Eq-6.1) can be calculated from the SHT:

ck =

N∑

j=1

Djµj

∫

Ω

n∏

p=1

gj(p)Yk(θ, φ)dΩ. (6.3)

Since the SHT doesn’t depend on the coefficients of the HP (or HOT) Dj , the SHT of

the SDF can be seen as a dot product between the vector of unique HP coefficients

and the vector of SHTs of the monomials. Therefore, computing m SH coefficients in

the truncated SH expansion can be written as a matrix vector multiplication:

C = Md,

where C = [c1, c2, · · · cm]T , d = [D1, D2, · · ·Dn]T , and:

M =




µ1

∫
Ω

∏n
p=1 g1(p)Y1(θ, φ)dΩ . . . µN

∫
Ω

∏n
p=1 gN(p)Y1(θ, φ)dΩ

...
. . .

...

µ1

∫
Ω

∏n
p=1 g1(p)Ym(θ, φ)dΩ . . . µN

∫
Ω

∏n
p=1 gN(p)Ym(θ, φ)dΩ


 .
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Therefore, there exists a linear transformation between the truncated SH basis and

the HP basis. Further when m = n, M is a n × n square matrix that is invertible.

Therefore, when the rank of the truncated SH expansion is equal to the degree of the

HP, the two bases are linearly bijective, or they describe the same space of spherical

functions. One can move between them by computing the transformation matrix M.

This was shown in [44, 75].

In other words, any SDF written either in the ST basis or the truncated SH basis can

be rewritten equivalently in a HP polynomial basis constrained to the sphere, via a

linear transformation.

6.2.2 Solving a Polynomial System

The problem of finding the maxima of an SDF written in either the SH basis

or the ST basis can therefore be reformulated as a problem of optimizing a HP,

P(x = [x1, x2, x3]
T ), constrained to a sphere (||x||2 = 1):

maxx P(x) subject to ‖x‖2
2 − 1 = 0. (6.4)

The maximization problem could have been very well formulated in the spherical

coordinates (SH basis). It would have then also had the advantage of being uncon-

strained. But the reason for converting to the constrained HP basis or to a Cartesian

coordinate system is because we don’t solve Eq-6.4 as an optimization problem, which

is a local method and dependent on an initial solution. Instead we re-write it as a

system of polynomials and use a novel polynomial system solver to recover all the

extrema of P(x) at once.

Figure 6.2: A spherical diffusion function (SDF) can be represented in three equiv-

alent bases – spherical harmonics, symmetric tensor constrained to the sphere, or

homogeneous polynomial (HP) constrained to the sphere. As a constrained HP it is

possible to compute its stationary points to extract the maxima of the SDF.
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Using Lagrange Multipliers, Eq-6.4 can be rewritten as an unconstrained functional:

F(x, λ) = P(x) − λ (‖x‖2
2 − 1). (6.5)

From optimization theory, the maxima x∗ (and its corresponding λ∗) of the SDF would

have to satisfy ∇F(x∗, λ∗) = 0:

∂F(x∗, λ∗)
∂x1

=
∂F(x∗, λ∗)

∂x2
=
∂F(x∗, λ∗)

∂x3
= ‖x∗‖2

2 − 1 = 0. (6.6)

Eq-6.6 is a system of HPs, {Qk(X = [x, λ]T )}, which implies that X∗ = (x∗, λ∗) is a root

of this system. Since the SDF is a real function, only the real roots of this system are

of interest. Therefore, the maxima of the SDF can be extracted by finding the real

roots of the polynomial system {Qk(X)} = 0. However, the condition ∇F(x̃, λ̃) = 0

identifies all the stationary points or extrema of the SDF. Therefore, once the real

roots of {Qk(X)} are identified, they would have to be categorized into the maxima,

minima, and saddle-points of the SDF.

To find the real roots of the polynomial system {Qk(X)}, we use the subdivision

method for polynomial systems proposed and implemented by B. Mourrain & J.P.

Pavone, described in [97]. This method makes use of the Bernstein basis and its

geometric properties to analytically bracket all the real solutions of a system of poly-

nomials inside a pre-defined domain of the problem space, R4. The solutions or roots,

once bracketed, are then refined numerically using standard 1D root-solvers to any

degree of precision.

The Bernstein polynomial basis is used to provide a constructive proof of Weierstrass

approximation theorem, which states that a continuous function on the interval [a, b]

can be uniformly approximated by polynomial functions. In other words each of the

polynomials in the system {Qk(X)} can be accurately approximated in the Bernstein

polynomial basis. In 1D, on the interval [a, b], the Bernstein basis of degree-d are the

d+ 1 Bernstein polynomials:

Bi
d(x; a, b) =

(
d

i

)
1

(b− a)d
(x− a)i(b− x)d−i,where i = 0..d.

A univariate polynomial can be decomposed in this basis in the same interval with

coefficients Bi, as:

f(x) =
d∑

i=0

BiB
i
d(x; a, b).

By extension, using the tensor product “×”, of the Bernstein basis in each dimension,

a multivariate polynomial, with four variables in our case, can be decomposed in the

Bernstein basis in a domain [a1, b1] × [a2, b2] × [a3, b3] × [a4, b4], as:

Q(X) =

d1∑

i1=0

d2∑

i2=0

d3∑

i3=0

d4∑

i4=0

Bi1,i2,i3,i4 Bi1
d1

(x1; a1, b1) × Bi2
d2

(x2; a2, b2)×

Bi3
d3

(x3; a3, b3) × Bi4
d4

(x4 = λ; a4, b4) . (6.7)
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In our case, Q(X) = Qk(X), and the initial domain for each polynomial in the system

can be easily defined. Since the HP representing the SDF is constrained to the unit

sphere, the initial domain of all the Q(X)’s can be [−1, 1] × [−1, 1] × [−1, 1] × [−K,K],

for very large K. The system of HPs is converted to the Bernstein basis using exact

arithmetic to avoid loss of precision. This operation is required only once, since later

operations are performed only in the Bernstein basis.

The subdivision method uses the following properties of the Bernstein basis to find

the roots of a system of Bernstein polynomials {Qk(X)} [97].

De Casteljau’s algorithm: De Casteljau’s algorithm, is a fundamental algorithm that

can subdivide the Bernstein representation of a univariate polynomial f(x) into two

Bernstein sub-representations in two sub-domains of the initial domain. This can be

done repeatedly to sub-divide and refine a domain in 1D.

Descartes’ theorem: Moreover, for a univariate polynomial in the Bernstein basis,

Descartes’ theorem states:

Theorem: the number of real roots of f(x) =
∑
BiB

i
d(x; a, b) in ]a, b[ is bounded by the

number of sign changes of {Bi}, V ({Bi}), and is equal modulo 2.

In other words, if the number of sign changes V ({Bi}) = 0 then f(x) has no real roots

in the interval ]a, b[, if V ({Bi}) = 1 then f(x) has one real root, and if V ({Bi}) > 1 then

either f(x) has no real roots or it has a number of real roots ]a, b[. The end points a & b

can be trivially tested to consider the interval [a, b]. This forms an exclusion test that

is zero when f(x) has no real roots in the interval [a, b]. Therefore, using Descartes’

theorem and De Casteljau’s algorithm, it is possible to reject intervals that don’t

contain any roots of f(x) and progressively refine intervals that contain the roots. In

other words, it is possible to analytically identify and subdivide intervals to bracket

the real roots, of f(x). Once a root has been bracketed or isolated, and the bracketing

interval is small enough, or V ({Bi}) = 1, any standard numerical one dimensional

root-finder of choice can be used to refine the real root with high precision.

Projection Lemma: For any multivariate Bernstein polynomial Q(X) (Eq-6.7), let the

following functions be defined:

mj(Q;xj) =

dj∑

ij

min(0≤ik≤dk,k 6=j)Bi1,i2,i3,i4B
ij
dj

(xj ; aj , bj)

Mj(Q;xj) =

dj∑

ij

max(0≤ik≤dk,k 6=j)Bi1,i2,i3,i4B
ij
dj

(xj ; aj , bj).

Lemma: For any X in the domain of definition, and for any dimension j = 1..4,

mj(Q;xj) ≤ Q(X) ≤Mj(Q;xj).
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From the lemma, the 1D Bernstein polynomials mj(Q;xj), and Mj(Q;xj), can be seen

as sandwiching the projection qj(X), of Q(X), along the jth dimension. This implies

that if X̃ were a root of Q(X) on a domain, then its jth coordinate x̃j would be sand-

wiched by the roots of mj(Q;xj) and Mj(Q;xj) in that domain. Conversely, if in a

certain domain, mj(Q;xj) and Mj(Q;xj) don’t have any roots by Descartes’ theorem,

then Q(X) doesn’t have any roots in that domain either. This way Descartes’ exclu-

sion test can be extended to a multivariate Bernstein polynomial.

Further, it is possible to partially extend Descartes’ exclusion test to a system of

multivariate Bernstein polynomials Q(X) = {Qk(X)} by defining:

m̂j(Q;xj) = sup{mj(Qk;xj); k = 1..4},
M̂j(Q;xj) = inf{Mj(Qk;xj); k = 1..4}.

This implies that if the 1D Bernstein polynomials m̂j(Q;xj) and M̂j(Q;xj) don’t have

roots by Descartes’ theorem along the jth dimension of a domain, then the system

{Qk(X)} has no roots in the domain.

Combining De Casteljau’s algorithm and the powerful exclusion test allows to ana-

lytically subdivide and reject sub-domains by applying them along every dimension

of the domain. This can be done in such a fashion that the rejected sub-domains are

guaranteed to not contain any real roots of the polynomial system {Qk(X)} (Eq-6.6).

Once the intervals that were not rejected along every dimension are small enough,

they are numerically refined to locate the roots along those dimensions in those in-

tervals. However, theoretically, these roots (along given dimensions) are only roots of

the projections qj(X) and may not be a root X̃ of Q(X). An additionally test would

be required to reject solutions to the above subdivision process that may not be real

roots of the polynomial system {Qk(X)}. In practice, however, we have never come

across such solutions, but simply testing for ∇F(X̃) = 0 would provide such a test.

This is the essence of the subdivision method, however, the implementation in [97]

also considers other aspects such as pre-conditioning and a reduction step to render

the root finding more efficient and precise.

6.2.3 Categorizing the Extrema

Once all the stationary points of the polynomial system {Qk(X)} or the extrema of the

SDF have been quantified with high precision, these would have to be categorized into

maxima, minima and saddle-points to identify the maxima of the SDF, which indicate

fiber directions. This is done using the Bordered Hessian test [98].

Bordered Hessian In unconstrained multi-dimensional optimization theory a

point x̃, is considered an extremum of the functional F(x), when it satisfies ∇F(x̃) = 0.
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The extremum can be then categorized by evaluating the Hessian of the functional

at the extremum HF(x̃). If HF(x̃) is positive definite, then x̃ is a local minimum, if

HF(x̃) is negative definite, then x̃ is a local maximum, and if HF(x̃) has non-zero

eigenvalues with mixed signs, then x̃ is a saddle-point.

In constrained optimization, which is our case, the Hessian test is extended to the

Bordered Hessian test to account for the constraints. Given an n dimensional func-

tional P(x) to be maximized, subject to a set of m constraints g(x), the general La-

grangian functional is:

F(x,λ) = P(x) + λ
Tg(x).

The Bordered Hessian of this functional is defined as:

HF(x,λ) =

[
0m×m ∇g(x)m×n

∇g(x)T
n×m HF(x,λ)n×n

]

(m+n)×(m+n)

, (6.8)

where the Hessian of the Lagrangian functional is bordered by the Jacobian of the

constraints ∇g(x), and padded by a corner-block of zeros. In our case n = 3 andm = 1,

therefore, the Bordered Hessian is a 4 × 4 matrix. The Bordered Hessian is rank

deficient and cannot satisfy the definiteness conditions of the Hessian test. However,

an extremum, X̃ = (x̃, λ̃), of the constrained optimization can be categorized using

the following alternating sign tests [98]:

(−1)m det(HrF(X̃)) > 0 strict minimum,

(−1)r det(HrF(X̃)) > 0 strict maximum, (6.9)

r = m+ 1, ..., n,

where : HrF =

[
0m×m ∇gm×r

∇gT
r×m HFr×r

]

(m+r)×(m+r)

. (6.10)

We consider an extremum to be a saddle-point, when it satisfies neither of the sign

tests. This allows us to categorize an extremum as a maximum, or a minimum or a

saddle-point.

Principal Curvatures There are other ways of categorizing an extremum X̃ into a

maximum, or a minimum. It can be done, for example, using differential geometry as

proposed in [91] by computing the principal curvatures κ1, κ2 at the extremum. The

extremum is then categorized from the signs of κ1, κ2:

• Elliptical point (κ1 ·κ2 > 0): when κ1, κ2 have the same sign, the surface is locally

convex.

– Maximum (κ1 > 0, κ2 > 0): when both κ1, κ2 are positive the surface is

locally a maximum.
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– Minimum (κ1 < 0, κ2 < 0): when both κ1, κ2 are negative the surface is

locally a minimum.

• Hyperbolic point (κ1 · κ2 < 0): when κ1, κ2 have opposite signs, the surface is

locally a saddle-point.

• Parabolic point (κ1 · κ2 > 0): when either κ1 or κ2 or both are zero, the surface is

locally parabolic along the direction of the non-zero principal curvature. When

both κ1, κ2 are zero the parabolic surface becomes planar.

The principal curvatures of a 2D surface S, described by its Cartesian parametric

form S(u, v), embedded in R3 can be computed from differential geometry [99]. The

curvature of the surface S, at any point p(u0, v0), can be intuitively understood as the

rate of change of the normal vector to the surface at the point. This is described by

the Gauss map, which defines a function on the normal vector, its derivative – the

“shape operator”, which measures the rate of change of this function or the normal

vector, and whose eigenvectors are the principal curvatures, and the first & second

fundamental forms, which help to compute the shape operator.

The Gauss map is a function from the surface S to the sphere S2 – it maps the unit

normal vector n, at p, to the parallel normal vector N(p), in S2, N : S → S2. In other

words N(p) = n. N(p) can be computed from two non-collinear vectors in the tangent

plane of S at p, TpS. In fact the partial derivatives of S, Su = ∂S(u, v)/∂u and Sv =

∂S(u, v)/∂v, define a local coordinate system of TpS, and N(p) = Su × Sv/||Su × Sv||.
Since N(p) = n, TN(p)S

2 = TpS.

Further, < n,n >= 1, implies that < nu,n >=< nv,n >= 0, where <,> represent the

inner product, and the subscripts indicate partial derivatives. Therefore, the gradient

of N(p) is in the tangent space TpS. This implies that the derivative of the Gauss map

is a function from the tangent space of S at p, to the corresponding tangent space on

the sphere dN : TpS → TN(p)S
2. The shape operator is defined as S = −dN.

The first fundamental form represents the metric in the tangent space induced by the

curvature, it defines the inner product in the tangent plane at p, I : TpS × TpS → R.

It is represented by the symmetric matrix:

I =

[
E F

F G

]
,

where E =< Su, Su >, F =< Su, Sv >, G =< Sv, Sv >. The inner product between any

two vectors in the tangent plane can therefore be computed as < x, y >= xT Iy.

The second fundamental form defines the inner product II(w) = − < dN(w), w >,

w ∈ TpS, and can be represented by the symmetric matrix:

II =

[
L M

M N

]
,
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where L =< nu, Su >, M =< nu, Sv >=< nv, Su >, and N =< nv, Sv >, therefore,

II(w) = −wT IIw. In practice, however, it is easier to compute the second partial

derivatives of the surface rather than the derivatives of the normal. This can be used

from the fact that < n, Su >=< n, Sv >= 0, (since Su & Sv are in the tangent plane),

which implies that L =< n, Suu >, M =< n, Suv >=< n, Svu >, and N =< n, Svv >.

The matrix of the shape operator, or the Gauss map’s derivative, can be computed

from the first and the second fundamental forms:

dN = −S = −II · I−1 =
1

EG− F 2

[
MF − LG LF −ME

NF −MG MF −NE

]
. (6.11)

These are known as the Weingarten equations in matrix form. The principal curva-

tures of S at p are the eigenvectors of S computed at p. These can be derived from the

trace 2H, and the determinant K of S, where:

H =
GL− 2FM + EN

2(EG− F 2)
, (6.12)

K =
LN −M2

EG− F 2
, (6.13)

where in terms of the eigenvalues of S, H = (κ1 + κ2)/2, and K = κ1 · κ2. Therefore,

H is known as the mean curvature and K is known as the Gaussian curvature of the

surface. Therefore:

κ1 = H +
√
H2 −K, (6.14)

κ2 = H −
√
H2 −K, (6.15)

where κ1 ≥ κ2. The principal curvatures of a surface S at p, can be therefore computed

from the coefficients E,F,G,L,M,N , of the first and the second fundamental forms,

which depend on the partial derivatives of S: Su, Sv, Suu, Suv, Svv, evaluated at p.

This can be used to compute the principal curvatures of the SDF at an extremum.

Computing the principal curvatures is easier in the SH representation (Eq-6.1) of the

SDF by considering θ = u, φ = v, instead of the HP or ST representations. But Eq-6.1

is the parametric representation of the SDF in spherical coordinates, and would have

to be transformed to Cartesian coordinates:

SDFsph = [θ, φ, r(θ, φ)]T ⇔
SDFCart = r(θ, φ)[sin θ cosφ, sin θ sinφ, cos θ]T ,

(6.16)

where r(θ, φ) is the value of the SDF at (θ, φ), and SDFCart is the surface S whose

curvatures we want to compute.

The partial derivatives of SDFCart can be computed in terms of r(θ, φ), and are sim-

plified by the fact that the curvatures are being calculated only at an extremum
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X̃ = [θ̃, φ̃, r(θ̃, φ̃)]T , where ∇S = 0 (Eq-6.6), implying rθ(θ̃, φ̃) = rφ(θ̃, φ̃) = 0. Then

the coefficients of the first and the second fundamental forms are:

E = r2, L = rθθ − r,

F = 0, M = rθφ,

G = r2 sin2 θ, N = rφφ − r sin2 θ,

(6.17)

where r = r(θ, φ). Since r(θ, φ) is in the SH basis, following are the partial derivatives

of SHs that can be computed from Eq-6.2 and the recursions they satisfy [100]:

(Y m
l )θ = −flm

sin θ

[
(l + 1) cos θPm

l − (l −m+ 1)Pm
l+1

]
eimφ,

(Y m
l )φ = (im)Y m

l ,

(Y m
l )θθ = flm

sin2 θ
[(l + 1 + (l + 1)2 cos2 θ)Pm

l

−2 cos θ(l −m+ 1)(l + 2)Pm
l+1 + (l −m+ 1)(l −m+ 2)Pm

l+2]e
imφ,

(Y m
l )θφ = −imflm

sin θ

[
(l + 1) cos θPm

l − (l −m+ 1)Pm
l+1

]
eimφ,

(Y m
l )φφ = −m2Y m

l ,

(6.18)

where:

flm =

√
(2l + 1)(l −m)!

4π(l +m)!
.

Therefore, by combining Eqs-6.17,6.18, it is possible to compute the principal curva-

tures κ1, κ2 at an extremum of an SDF described in the SH basis. However, it should

be noted that the spherical coordinates (Eq-6.16) have an ambiguity along the Z-axis,

where θ = 0 and φ can take on any value in its domain. Therefore, computing the

partial derivatives of the SHs along the Z-axis or in its close neighbourhood would be

numerically unstable. This can be verified from Eq-6.18, where partial derivatives

with respect to θ are all divided by sin θ, which tends towards zero as θ → 0. There-

fore, if an extremum is along or close to the Z-axis, the SH representation of the SDF

would have to be rotated to take the extremum away from the Z-axis.

6.2.4 Experiments and Results

To test the proposed maxima extraction method, we use the ODF-T as the SDF.

We consider a rank-4 SH expansion of the ODF-Ts and estimate these from various

datasets. We conduct experiments on synthetic data generated from a multi-tensor

model (sec-3.4.4), and on human cerebral data from [96]. The datasets are described

in Appendix-A.

We use the synthetic dataset to test the precision and accuracy of our maxima extrac-

tion method. The synthetic dataset is generated with D = diag(1390, 355, 355) × 10−6

mm2/s, for the single fiber profile, with a b-value of 3000 s/mm2. No noise is added to

the signal since the maxima extraction method plays no role in the estimation process

of the SDF, it considers the SDF as is, and isn’t affected by how it was estimated. It
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ang(d, d
′

)o ||∇F(d
′

)|| ||∇F(d)||
m v m v m v

1-Fib 0.01 4.22e-05 2.07e-11 1.5e-21 4.9e-04 9.17e-08

2-Fib90o 0.025 3.85e-05 5.58e-11 1.76e-21 3.6e-03 2.48e-06

Table 6.1: (m=mean, v=variance). Measuring the precision of the maxima extraction

on synthetic dataset. ||∇F(d
′

)|| indicates the amount of error in the maxima extrac-

tion process. ||∇F(d)|| indicates the amount of error in the estimation of ODF-Ts in

the rank-4 SH basis. The first error is orders of magnitude smaller than the second

error. This indicates the precision of the maxima extraction process.

only solves ∇F = 0 (Eq-6.6), where F describes the SDF, in our case the ODF-T, in a

constrained HP basis. The test for precision is therefore based upon this criterion.

The idea is to use a set of known ground truth directions {di} to generate the synthetic

DWI signals and estimate the ODF-Ts from these DWIs. It is then possible to extract

the maxima of these ODF-Ts, which give another set of directions {d′

k}. Ideally, {di}
should be identical to {d′

k}. We therefore proceed to comparing {d′

k} to {di}. This is

only possible when k = i. When the two sets are comparable, we pair the computed

directions with the ground truth directions such that their difference is minimized.

Then we first compute the angle between di and d
′

i in degrees which we denote as

ang(di, d
′

i)
o. If this angle is non zero, we proceed to quantify the errors.

Let the ODF-Ts be described in the constrained HP basis by the Lagrangian func-

tional F(x). Therefore, the values of ||∇F(di)|| and ||∇F(d
′

i)|| indicate the error of {di}
and {d′

k} not satisfying the extremum criterion ∇F = 0. However, these quantify two

different errors. Since, {d′

i} are the stationary points of F(x), the value of ||∇F(d
′

i)||
indicates the amount of error in the maxima extraction process, i.e. the conversion to

the Bernstein basis, and the performance of the subdivision algorithm. Computing

||∇F(di)|| on the other hand indicates the amount of error in the problem formulation

process, i.e. the estimation of the ODF-Ts in the rank-4 SH basis, and the conversion

to the constrained HP basis of degree-4.

To compute these errors that quantify the precision of the maxima extraction process,

we construct test cases with two types of fiber configurations and repeat the tests

randomly one hundred times for each configuration. In the first configuration we

consider only a single fiber in the voxel. In the second configuration we consider

two fibers crossing perpendicularly in the voxel with equal weights. However, the

ground truth directions are generated randomly for each test. From these repeated

tests we generate statistics on ang(di, d
′

i)
o, ||∇F(di)||, and ||∇F(d

′

i)||. For the crossing

fiber configuration, since two maxima are extracted, we only keep the greatest error

between these two maxima.
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The results are presented in Table-6.1. In all the tests the correct number of maxima

were extracted (i = k). First from ang(d, d
′

)o, which is of the order of 0.1o, it is already

obvious that the maxima extraction is numerically very precise – the extracted max-

ima are very good representatives of the ground truth fiber directions. Next, from the

criterion ∇F = 0, which was solved to find the maxima of the SDF (ODF-T), it is clear

that the maxima computation process, represented by the error ||∇F(d
′

)||, is numer-

ically far more precise than the combined ODF-T estimation and conversion to the

HP basis process, represented by the error ||∇F(d)||. In fact the first error is orders of

magnitude smaller than the second error. Therefore, the maxima extraction not only

brackets the extrema of the SDF analytically, but also extracts these extrema with

high precision.

For the synthetic data we also illustrate the extraction of all the extrema and their

classification using the Bordered Hessian. This is shown in Fig-6.3. We consider

here three types of fiber configurations. These are the single fiber, two fibers cross-

ing perpendicularly and three fibers crossing perpendicularly. In each of the cases

the extrema are extracted from the ODF-T model of the SDF. These extrema are

then classified as maxima, minima and saddle-points and are displayed using dif-

ferent colours. It is interesting to see that in the 1 fiber and 2 fiber cases, all the

maxima, even the unimportant ones are correctly found. This is the expected be-

haviour of the subdivision method. However, in practice these maxima would have

to be heuristically thresholded. The colour of the glyphs represent local anisotropy,

with red indicating high anisotropy (or large function value – local maximum), and

blue indicating low anisotropy (or small function value – local minimum). The ex-

trema are colour coded with the maxima in thick yellow, minima in thin green, and

saddle-points in fine blue.

Figure 6.3: Extrema extraction & categorization from synthetic data. a) 1-fiber b)

2-fibers c) 3-fibers. Glyph-colour: red indicates high anisotropy (local maximum),

blue indicates low anisotropy (local minimum). Line-colour: thick-yellow: Maxima,

thin-green: Minima, fine-blue: Saddle points
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Finally we present the results of maxima extraction on the in-vivo cerebral dataset.

In this case we consider both the ODF-T and the ODF-SA SDF models, since ODF-

SAs are known to be sharper than ODF-Ts. Therefore, we expect more crossings

detected by the ODF-SA than by the ODF-T. We estimate both ODFs from the real

dataset and consider rank-4 SH expansions. Only the maxima are extracted and

shown in Fig-6.4. This shows a coronal slice, which is known to have fiber bundles

crossing from three families – the corticospinal tract (CST), vertically in the plain,

the corpus callosum (CC), horizontally and diagonally in the plain, and the superior

longitudinal fasciculus (SLF), perpendicular to the plain (section-2.2.4, Fig-2.7).

In the left column of Fig-6.4 are the ODF-Ts, and in the right column are the ODF-

SAs. Clearly the ODF-SAs have sharper peaks and a greater number of crossings.

The top row shows a zoomed region, and a single voxel with all its extrema classified

(with the same colour code as above). The bottom row shows the entire coronal slice,

with only the maxima extracted from the ODFs. The glyph colour of the ODFs in

the zoom follow the same colour code as above. Without this colour code, it is hard

to make out the extrema of the ODF-T, which is highly smooth, or almost isotropic

in comparison to the ODF-SA. But, as indicated by the extrema detection, it too has

Figure 6.4: Real Data Crossings: Maxima from ODF-T (left-column) & ODF-SA

(right-column) in rank-4 SH basis. Top-row: Zoomed region with ODFs and their

maxima, and one voxel with an ODF and its classified extrema. Bottom: Coronal

slice where the CST, the CC, and the SLF cross. Maxima from the ODFs shown by

red lines. ODF-SAs have sharper peaks and detect more crossings than ODF-Ts.

127



three peaks, which is also indicated by the glyph colour code.

6.2.5 Discussion

We have shown a way of extracting the extrema, of classifying them as maxima,

minima and saddle-points, and also of computing the principal curvatures at the ex-

trema, for a very general class of SDFs expressed either in the SH basis or the ST

basis. While the extrema were detected using an analytical bracketing method by

the subdivision method in the Bernstein basis, they were then refined by standard

1D numerical solvers to a high degree of precision. This whole process was tested on

synthetically generated multi-tensor data with known ground truth directions. These

experiments confirmed that not only could the extrema be detected analytically, im-

plying that none would be missed, but also that they could be extracted with high pre-

cision. Further, we also presented visually the correct classification of these extrema

as maxima, minima and saddle-points. Finally we tested the maxima extraction on

in-vivo cerebral data with both the ODF-T and the ODF-SA models. Although the

ODF-SA has sharper peaks and detects a greater number of crossings, the maxima

extraction was able to detect extrema from highly smooth ODF-Ts.

6.3
PEAK FRACTIONAL ANISOTROPY

Although we showed in the previous section how to compute the principal

curvatures at the extrema, we didn’t use this information. We now proceed to an

application of the principal curvatures at the maxima of an SDF. The extrema ex-

tracted from an SDF, represent first order descriptions of the SDF’s shape, while the

principal curvatures represent second order descriptions, and can further describe

the shape of the extrema. This is a rich source of geometric information about any

SDF. We propose the peak fractional anisotropy (PFA) measure to represent this in-

formation in an integrated fashion to characterize the extrema (maxima) of an SDF.

We also characterize the entire SDF by the Total-PFA, which sums the PFA measures

describing each maxima of the SDF over all the maxima of the SDF.

There are other methods in dMRI that use the principal curvatures of a peak of an

SDF to quantify its shape. Seunarine et al. [101] proposed the peak anisotropy (PA)

that measures the anisotropy of the cross-section of every peak of an SDF. It is com-

puted as the FA of the shape operator S (section-6.2.3). In other words PA measures

the spread of the peak since it computes the FA of the principal curvatures. Seunar-

ine et al. use this measure of spread, on the peaks of the ODF-T and the PAS-MRI,

in probabilistic tractography as a means of extracting more information from a peak,

like fiber direction probabilities, than just its maximal direction.

Bloy and Verma in [91] experimentally study the relationship between the mean cur-
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vature H, of a peak in the case of a single peak (SDF with only one maximum), and

the FA of the tensor D that parameterizes the anisotropic free diffusion Gaussian

EAP (Eq-3.17), which is used to generate the synthetic signal that is used to estimate

the SDF. In their example, they consider the ODF-T.

In comparison to PA and mean curvature, the PFA we propose measures the

anisotropy of an entire peak of an SDF. The PFA of a peak of a generic SDF can

be compared conceptually to a geometric approach for extracting scalar bio-markers

like the FA from DTI. While in DTI, FA was computed from the eigenvalues of the

diffusion tensor, the PFA of a peak assigns to it a scalar value computed from its

function value (maxima value) and principal curvatures, which describes the overall

shape of the peak.

Since the PFA measures the anisotropy of each peak, the Total-PFA, which sums the

PFAs of each peak of an SDF, is a quantity that measures the “starriness” of the

SDF. In other words, Total-PFA emphasizes local anisotropy (of each peak) rather

than overall anisotropy of the SDF. This differentiates Total-PFA from measures like

generalized anisotropy (GA) [102] and generalized fractional anisotropy (GFA) [51].

Since GA and GFA both compute scalar indices of complex shaped SDFs from the

variance of the SDFs function values, they are both insensitive to local elongations. In

fact, they are invariant to the shuffling of the function values and can therefore have

the same measure for different shapes when the shapes contain the same function

values [103].

6.3.1 Materials and Methods

To compute the anisotropy of a peak of an SDF from its function value and principal

curvatures, the idea is to fit to a peak an ellipsoid that can match the function value

and principal curvatures of the peak. By parameterizing the fitted ellipsoid by three

unknowns – its eigenvalues, it is then possible to compute the FA of this ellipsoid,

which we designate as the PFA. Various models are possible for computing the PFA.

We call the simplest PFA the ellipsoid PFA (PFAe). Essentially, as just explained,

we fit a canonically described ellipsoid at every maximum, such that the ellipsoid’s

principal radius equals the maximum’s function value, and its principal curvatures

equal the principal curvatures of the SDF at the maximum. This allows us to compute

the eigenvalues, or principal radii, of the ellipsoid. The PFA is the FA of this ellipsoid.

This is the PFAe corresponding to the maximum-peak.

Since we decided to illustrate these methods on two particular SDF models, namely

the ODF-T and the ODF-SA, we propose two other PFAs, each corresponding to the

underlying SDF model. If we consider anisotropic free diffusion, where the EAP is

the oriented Gaussian (Eq-3.17), parameterized by the covariance tensor D, then it is
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possible to compute the ODF-T and the ODF-SA of this EAP analytically. Let these

analytical ODFs be known as the FD-ODF-T and the FD-ODF-SA, where FD indi-

cates free diffusion. These are also parameterized by the covariance tensor D. When

D is taken in its canonical representation, it only has three parameters, namely its

eigenvalues along the coordinate axes. In such a case, it is simple to compute the func-

tion value and the principal curvatures of the analytical FD-ODF-T and FD-ODF-SA.

By matching these to the maximum function value, and the principal curvatures of

the peak of the SDF under consideration, it is possible to fit an FD-ODF-T or an

FD-ODF-SA to the peak, and to estimate D.

Naturally, the model of the analytical ODF has to match the model of the SDF, i.e. if

the SDF were an ODF-T, we match a FD-ODF-T to each of its peaks, and similarly

if the SDF were an ODF-SA, we match a FD-ODF-SA to each of its peaks. The FA

of the covariance tensor D estimated in this fashion for a peak, defines the PFA of

that peak based on the model. In other words if the SDF were an ODF-T, then the

corresponding PFA for every peak is the PFA-T, and if the SDF were an ODF-SA,

then the corresponding PFA for every peak is the PFA-SA.

We now compute these forms analytically. First we consider the PFAe. The canonical

form of an ellipsoid is

(
x

λx

)2

+

(
y

λy

)2

+

(
z

λz

)2

= xTDx = 1,

where x = [x, y, z], and D = diag(λx, λy, λz). We consider this ellipsoid to be elon-

gated along the X-axis, or λx > λy, λz. In this case, the maximum function value and

principal curvatures of this ellipsoid can be computed to be:

κ1 =
λx(3λz − 2λx)

λz
; κ2 =

λx(3λy − 2λx)

λy
;

F =
1

λx
. (6.19)

To fit an ellipsoid to the maximum value F̃ and principal curvatures κ̃1, κ̃2 of a peak

of an SDF, it is necessary to solve the above equations for λx, λy, λz:

λx =
1

F ;

λy =
2

F(3 − κ1F)
; λz =

2

F(3 − κ2F)
. (6.20)

These formulae can be used to fit an ellipsoid to a peak of an SDF, and to compute the

PFAe of the peak.

Next we consider the PFA-T. The analytical formula for the FD-ODF-T parameterized

by a canonically represented covariance tensor D = diag(λx, λy, λz) is found to be

[104]:

ΨT (x, y, z) =
1

Z

√
1

x2

λx
+ y2

λy
+ z2

λz

, (6.21)
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where all the constants have been absorbed into Z, the normalizing constant, since

the ODF-T isn’t a true marginal distribution, and ΨT (x, y, z) = r(θ, φ) from the dis-

cussion on principal curvatures (section-6.2.3). The maximum function value and

principal curvatures can again be computed analytically when ΨT is elongated along

the X-axis. The quantities are found to be:

κ1 =
Z
√
λx

λy
; κ2 =

Z
√
λx

λz
; F =

√
λx

Z
. (6.22)

Eq-6.22 implies that the λi can be computed uniquely only up to the constant Z. But

since scaling the eigenvalues doesn’t change the FA, we can fix Z = 1 and solve for

λx, λy, λz:

λx = F2;

λy =
F
κ1

; λz =
F
κ2
. (6.23)

These can be used for fitting a FD-ODF-T to each peak of any ODF-T, when its func-

tion value and principal curvatures F̃ , κ̃1, κ̃2, are known, making it possible to com-

pute the peak’s PFA-T from the λi.

Finally we consider the PFA-SA. The analytical formula for the FD-ODF-SA param-

eterized by the canonically represented covariance tensor D = diag(λx, λy, λz) can be

computed to be:

ΨSA(x, y, z) =
1

4π
√
λxλyλz


 1

x2

λx
+ y2

λy
+ z2

λz




3
2

. (6.24)

Again ΨSA(x, y, z) = r(θ, φ) from the discussion on principal curvatures (section-

6.2.3). Since this is a true marginal distribution, it doesn’t have a normalizing con-

stant. The formulae for the maximum function value and principal curvatures can

again be computed analytically when ΨSA is elongated along the X-axis. We find:

κ1 =
4πλy(3λx − 2λz)

λx

√
λyλz

; κ2 =
4πλz(3λx − 2λy)

λx

√
λyλz

F =
λ

3/2
x

4π
√
λxλyλz

, (6.25)

Interestingly, Eq-6.25 indicates that the function value and principal curvatures, at

the maximum of a FD-ODF-SA, remain unchanged if the λi of the covariance tensor

are multiplied by a constant. Therefore, again, Eq-6.25 can be solved for λx, λy, λz

only up to a scaling factor. However, since that doesn’t change the computed FA, we

consider the solution set:

λx = 1;

λy =
3

κ2F + 2
; λz =

3

κ1F + 2
. (6.26)
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These can be used for fitting a FD-ODF-SA to each peak of any ODF-SA, and to

compute the PFA-SA of the peak from the λi.

The maxima extraction process and the computation of the principal curvatures allow

us to naturally characterize each peak of an SDF from the various PFAs. We simply

extend this characterization to the entire SDF by considering a weighted sum the

PFAs for all its peaks. We designate this the Total-PFA (Total-PFAe, Total-PFA-T

and Total-PFA-SA):

TotalPFA =
N∑

i=1

Fi · PFAi.

Since the Total-PFA is a summation of all the local anisotropy measure from each

peak, it is therefore an integrated measure of the overall peakedness of an SDF. It

indicates how star-like the shape of the SDF is.

6.3.2 Experiments and Results

Although the PFA measures the anisotropy of each peak of an SDF from its function

value and principal curvatures, to characterize the underlying cerebral tissue from

the SDF’s shape, this huge set of information has to be categorized between voxels

and presented in a uniform fashion. However, since not all the SDFs in the voxels of

a reconstructed dMRI image have the same number of peaks, it isn’t straightforward

to compare peaks of neighbouring SDFs.

It is possible to compare and visualize the primary or the most significant maxi-

mum of each SDF. The primary maximum indicates the major fiber bundle direction.

Therefore, it is possible to visualize this direction and its coherency from the max-

imum’s direction and its PFA. The more coherently the underlying fiber bundle is

structured, the higher is the PFA, indicating greater anisotropy. The more fanned

out is the fiber bundle structure, the lower the PFA, indicating lower anisotropy.

But this representation only conveys partial information of an SDF since it discards

the information on its other peaks. Therefore, nothing can be said about the complex-

ity of the underlying tissue’s microstructure. However, since the Total-PFA integrates

the anisotropy from all the peaks of an SDF into a single scalar, which measures

the starriness or the peakedness of an SDF, it is well suited to characterize the mi-

crostructure complexity. But it must be noted, that the individual peak information

can be handy in other situations, such as in tractography. The estimated covariance

tensor D from the fitted ellipsoid (or FD-ODF-T or FD-ODF-SA) can be used to define

probabilities and uncertainties along each peak.

We conduct experiments on the in-vivo cerebral dataset, and we consider both the

ODF-T and ODF-SA models, since they’re known to have peaks with different shapes.

The ODF-SA has sharper peaks than the ODF-T, and it also detects a greater number

132



Figure 6.5: (a) FA, (b) GFA from ODF-T, (c) GFA from ODF-SA. FA measures

anisotropy in DTI, however, DTI cannot detect crossings and loses anisotropy in re-

gions with crossings. GFA is defined for SDFs with complex shapes, which can detect

crossings. But since GFA is a measure based on the variance of the function’s values,

it cannot detect local anisotropies. Therefore, GFA presents a very similar contrast to

FA – which is high in white matter and low in grey matter, but is also low in regions

known to have crossings.

of crossings. However, the ODF-SA is also more sensitive to signal noise than the

ODF-T. From the in-vivo cerebral dataset we estimate the ODF-Ts and the ODF-

SAs, extract their maxima, and compute the PFA-T and PFA-SA of the two SDF

images. We don’t consider the PFAe scalar measure, since in these experiments the

SDF models are known. PFAe can be useful on generic SDFs. Summing the PFAs for

each peak, we also compute for the two SDF images their Total-PFA-T and the Total-

PFA-SA respectively. Finally we also compute the GFA to compare against the results

of the Total-PFA. The results are presented on coronal slices where there are known

crossings between the CST and the CC in the plain, and the SLF going through the

plain.

Figure 6.6: (a) Colour coded DTI major eigenvector, weighted by FA. (b) Colour coded

ODF-T primary maximum, weighted by corresponding PFA-T. (c) Colour coded ODF-

SA primary maximum, weighted by corresponding PFA-SA. In the colour code red

represents X-axis, green represents Y-axis, blue represents Z-axis. The colour code

indicates the direction of the eigenvector/maximum.
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Figure 6.7: Total-PFA and GFA. Top-row: ODF-T, Bottom-row: ODF-SA. 1st column:

GFA from (a) ODF-T and (e) ODF-SA. 2nd column: Total-PFA – (b) Total-PFA-T

from ODF-T (f) Total-PFA-SA from ODF-SA. 3rd column: Number-of-maxima from

(c) ODF-T and (g) ODF-SA. Total-PFA measures the starriness or peakedness of an

SF and emphasizes local sub-voxel anisotropy. Green arrow indicates regions with

no crossings (dark in 3rd col.) but high local anisotropy (bright in Total-PFA) like

the CC and the CST. Red arrow indicates regions with many crossings (bright in 3rd

col.) and with high local anisotropy (bright in Total-PFA) like where the CC, CST and

SLF intersect. However, these regions have low GFA values. Orange arrow indicates

regions with high crossings (bright in 3rd col.) but with low local anisotropy (dark in

Total-PFA). These regions also have low GFA values. The ODF-SAs corresponding to

the bottom-row can be seen in Fig-6.8.

First we compare the GFA to the FA. FA is defined for DTI, which has limitation

in regions with fiber crossings. Therefore, it is known that FA is low in regions of

the white matter where crossing fibers are present, even though the tissue has high

anisotropy locally in multiple directions. GFA is defined on complex shaped SDFs

that can detect such crossing fibers. However, since the GFA is computed from the

variance of the SDF’s function values, it too is insensitive to local anisotropy. This is

seen in Fig-6.5, where the GFA is computed from both the ODF-T (b) and the ODF-

SA (c). A DTI estimation was also computed from the in-vivo human dataset, which

allows us to compute the FA (a). It is seen in Fig-6.5 that the GFA has a very similar

contrast to the FA, in spite of the fact that ODF-Ts and ODF-SAs detect crossings

(Fig-6.7).
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Next we compare the primary maximum extracted from the ODF-Ts and ODF-SAs to

the major eigenvector from DTI. This is shown in Fig-6.6. The eigenvector/maximum

directions are colour encoded, where red indicates a direction along the X-axis, blue,

along the Y-axis, and green, along the Z-axis. In Fig-6.6, (a) is the eigenvector from

DTI weighted by the FA scalar measure, (b) is the primary maximum of ODF-T

weighted by the corresponding PFA-T scalar measure, and (c) is the primary max-

imum of the ODF-SA weighted by the corresponding PFA-SA scalar measure. The

overall colouring is similar between the three images, implying that the major eigen-

vector and the primary maxima agree. But the contrasts are different, since they

represent different anisotropy measures.

Finally the results of Total-PFA are presented in Fig-6.7. Three types of scalar mea-

sures are presented in this figure to highlight the sensitivity of Total-PFA. The first

column is the GFA, the second column is the Total-PFA, and the third column is an

image where the contrast is the number of maxima in the ODF-Ts and ODF-SAs. The

first row contains the results from ODF-Ts, and the second row contains results from

ODF-SAs. The arrows indicate regions that highlight the sensitivity of Total-PFA.

The green arrows indicate regions where the ODF models have only a single max-

imum (dark in the number-of-maxima image: 3rd column), and where these single

maxima display high anisotropy (bright in the Total-PFA: 2nd column). These are

typically in the CC and the CST, and are also bright in the GFA (1st column). The

orange arrows indicate regions where the ODF models have multiple peaks (bright

in the 3rd column), and where these multiple maxima have low anisotropy (dark in

the Total-PFA: 2nd column). These regions are dark in the GFA too (1st column). The

red arrows indicate regions where the ODF models again have multiple peaks (again

bright in the 3rd column), but this time these multiple maxima have high anisotropy

(bright in the Total-PFA: 2nd column). However, these regions appear dark in the

GFA (1st column), just like the regions indicated by the orange arrows in the GFA.

These are typically regions with crossing fibers – like where the CC, the CST and the

SLF intersect. Therefore, these are regions that tend to have high local anisotropy.

The ODF-SAs corresponding to the Total-PFA results in Fig-6.7, bottom-row, can be

seen in Fig-6.8.

This shows that Total-PFA, with its emphasis on sub-voxel local anisotropy can high-

light regions of the underlying tissue that have complex microstructures. Since Total-

PFA sums the PFAs of all the peaks of an SF, where the PFAs measure the individual

anisotropy of the peaks, Total-PFA is able to discern between regions with multi-

ple peaks and low peak anisotropies, which should intuitively correspond to globally

isotropic SFs, and regions with multiple peaks and high peak anisotropies, which are

regions with high local anisotropies along multiple directions. Such regions occur

when fibers cross, and where the SDFs have pronounced star-like shapes
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Figure 6.8: The ODF-SAs corresponding to the Total-PFA results shown in Fig-6.7

(bottom row).

6.3.3 Discussion

While the extrema represent a first order description of an SDF, the principal cur-

vatures at the extrema provide second order information that further describe the

extrema. In case of the maxima or peaks of an SDF, these geometric measures can

be used to formulate an integrated measure of anisotropy for the peaks individually.

This is called the PFA. Various types of PFAs can be computed. The simplest is the

ellipsoid PFA that can be used for any SDF. For particular SDF models, such as the

ODF-T and the ODF-SA, it is possible to compute more detailed PFAs – like the PFA-

T and the PFA-SA. The PFA of a peak of an SDF, can be conceptually compared to the

FA of a diffusion tensor.

Summing PFAs over the peaks of an SDF, it is possible to compute the Total-PFA.

Again depending upon the PFA type, it is possible to compute the Total-PFAe, the

Total-PFA-T and the Total-PFA-SA. Intuitively, the Total-PFA is a measure that em-

phasizes local sub-voxel anisotropy. In other words it measures the “starriness” or

the peakedness of an SDF. In experiments conducted on in-vivo cerebral data, this

is highlighted by the fact, that Total-PFA is able to discern between regions where

SDFs have multiple peaks but with low peak anisotropy, and regions where SDFs

have multiple peaks with high peak anisotropy.

When an SDF has multiple peaks with low peak anisotropy, it intuitively corresponds

to global isotropy of the SDF’s shape. The SDF has bumps, but is very rounded. When

an SDF has peaks with high anisotropy, be it only a single peak or multiple peaks,

the SDF’s shape is intuitively highly non-spherical – elongated in the case of a single

peak, and star-like in the case of multiple peaks. Therefore, Total-PFA can be thought

of as a scalar that measures the sphericity of an SDF.
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6.4
TRACTOGRAPHY

We have seen so far a way of extracting various geometric characteristics

from a wide class of SDFs. However, SDFs in dMRI represent local voxel level infor-

mation. This can be integrated spatially to reveal global structures in the cerebral

white matter. As an application to our proposed method for maxima extraction, we

perform tractography, to reconstruct such structures.

Tractography graphically reconstructs the connectivity of the cerebral white-matter

by integrating along the direction indicated by the local geometry of the SDF. It is

a modern tool that is unique in the sense that it permits an indirect dissected vi-

sualization of the brain in-vivo and non-invasively [40]. The underpinnings of trac-

tography are also based on the fundamental assumption of dMRI – the diffusion of

water molecules is hindered to a greater extent perpendicular to coherent fiber bun-

dle structures than parallel to these. Therefore, following the geometry of the local

diffusion function and integrating along reveals the continuous dominant structure

of the fiber bundle. However, in spite of the gain due to its non-invasive nature, trac-

tography can only infer such structures indirectly. Therefore, tractography is acutely

sensitive to the local geometry and the error is cumulative. The correct estimation of

the local geometry is crucial.

Deterministic tractography is a well established tool that has seen considerable suc-

cess in researching neurological disorders [90]. Deterministic tractography begins

from a seed point and traces along the dominant fiber direction by locally connect-

ing the “fibers” or mathematically becoming tangent to these. Classically the major

eigenvector of the diffusion tensor in DTI represent these “fibers” [105, 41, 95]. How-

ever, since DTI is ambiguous and cannot accurately describe the fiber directions in

regions with complex fiber configurations, DTI tractography, in spite of its successful

usage, is known to be prone to errors. Hence the trend in recent years to extend trac-

tography to complex shaped SDFs that describe the underlying fiber directions more

accurately [28, 48, 106].

Probabilistic tractography was proposed to address the reliability of deterministic

tractography which remains sensitive to a number of parameters. The concept and

output of probabilistic tractography is, however, subtly different from determinist

tractography. While the latter attempts to find the connectivity between two regions,

the former measures the likelihood that two regions are connected, or it provides a

connectivity confidence. Given the capabilities and ambiguities of dMRI acquisition

and reconstruction schemes of today, due to partial voluming, noise, etc., probabilistic

tractography provides a more complete statement. However, in spite of this determin-

istic tractography has proved useful, and there exist probabilistic schemes that rely

on deterministic tracking to compute confidence measures, such as in the probabilis-

tic bootstrapping tractography on fODFs [107]. Therefore, improving deterministic
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tractography is an important problem.

In this section we propose a deterministic tractography scheme based on the polyno-

mial approach presented earlier for accurately extracting the maxima of any non-

parametrically represented SDF. We extend the Streamline tractography and the

Tensorline tractography, which were defined for DTI, to a generic class of SDFs that

can have complex geometries capable of detecting fiber crossings. We illustrate our

modified Streamline and Tensorline tractographies on ODF-SAs, and show improve-

ments in detecting the lateral radiations of the CC, by tracing through regions where

the CC intersects the CST and the SLF.

6.4.1 Materials and Methods

We adapt the Streamline tractography [41] to the multiple maxima that can be dis-

cerned by complex SDFs in regions with fiber crossings, allowing us to trace through

such regions with greater accuracy than in DTI tractography. We also extend the well

known Tensorline tractography [94, 95] to complex SDFs, to smooth out local kinks

that can make the fiber tracks unnaturally “wriggly” in plain Streamline tractogra-

phy due to acquisition noise and partial voluming which make the estimated SDF

field spatially irregular. This is important, since a spatially irregular SDF field can

cause kinks in the fiber important enough to violate the curvature threshold and stop

the tracking algorithm.

Streamline tractography The continuous version of Streamline tractography [41]

defined for DTI, considers a fiber tract as a 3D space curve parametrized by its arc-

length, r(s), and describes it by its Frenet equation:

dr(s)

ds
= t(s) = ǫ1(r(s)), (6.27)

where t(s) the tangent vector to r(s) at s is equal to the unit major eigenvector ǫ1(r(s))

of the diffusion tensor at r(s). This implies that fiber tracts are locally tangent to the

dominant eigenvector of the diffusion tensor at every spatial position. The differen-

tial equation Eq-6.27 along with the initial condition r(0) = r0 means that starting

from r0, a fiber can be traced by continuously integrating Eq-6.27 along the direction

indicated locally by the major eigenvector of the diffusion tensor at that point.

However, integrating Eq-6.27 requires two things – first, a spatially continuous ten-

sor (or SDF) field, and second, a numerical integration scheme. [41] proposed two

approaches for estimating a spatially continuous tensor field from a discrete DTI

tensor field, namely approximation and interpolation. They also proposed the Eu-

ler’s method, the 2nd order Runge-Kutta method, and the adaptive 4th order Runge

Kutta method as numerical integration schemes. Finally, for stopping they proposed

four criteria – the tracts are within the image volume, the tracts are in regions with
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FA value higher than a threshold, the curvature of a tract is smaller than a thresh-

old, and that a tract is better aligned with the major eigenvector in the next spatial

location than any of the two other eigenvectors.

We adapt this tractography algorithm to SDFs with multiple maxima by modifying

Eq-6.27 to:
dr(s)

ds
= ηθmin

(r(s)), r(0) = ηmax(0) (6.28)

where ηi(r(s)) are all the unit maxima vectors of the SDF extracted by our method at

r(s), ηmax is the unit maximum vector whose function value is the largest amongst all

the ηi, and ηθmin
is the unit maximum vector in the current step that is most collinear

to the unit maximum vector followed by the integration in the previous step. Eq-

6.28 and the initial condition state that at the starting point we begin integrating

along the dominant maximum direction, and at each consecutive step we first extract

all the maxima of the SDFs and choose the maximum direction most collinear to

the maximum direction from the previous integration step, to move forward in the

integration.

To choose the maximum direction most collinear to the previously chosen maximum

direction, we compute the dot product between the previously chosen maximum di-

rection and all the maxima of the current step, and consider the absolute values of

the dot products. Hence, the maximum chosen for the next integration direction is

the maximum whose absolute value of its dot product with the previously chosen

maximum direction is the largest. Also to avoid erratic forward and backward steps

during the integration, if the value of the dot product is negative, we flip the unit

maximum direction to point it consistently along the fiber direction, just like in [41].

Since we require a continuous field of SDFs for integrating Eq-6.28, we consider the

Euclidean interpolation of the SDFs, which is a simple interpolation of the coeffi-

cients of the SDFs in the SH basis [3], and is equivalent to the L2-norm interpolation

of the SDFs, since the SHs form an orthonormal basis. For the numerical integra-

tion scheme we employ the 2nd order Runge-Kutta method due to its robustness and

simplicity with an integration step of length 0.5mm.

For stopping we only use two criteria – the tracts are within the image volume,

and tracts aren’t allowed with high curvature, or the radius of curvature of tracts

is smaller than 0.87mm. Currently we don’t employ any stopping criteria based on

anisotropy indices because such indices such as GFA for complex SDFs show similar

contrasts to FA, and therefore have low values in regions with fiber crossings.

Tensorline tractography Since Streamline tractography traces fibers that are al-

ways tangent to the maxima of the local SDF, these fibers can be unnaturally “wrig-

gly”. Due to acquisition noise the estimated discrete SDF field is generally spatially

irregular. Thus closely following the local maximum can cause the fiber to wriggle.
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This effect can be important enough to violate the curvature criterion and cause the

tracking algorithm to abort. Furthermore, partial voluming effects can also cause

certain SDFs to lack maxima along the fiber direction, especially in voxels with fiber

crossings, even when neighbouring SDFs may have maxima well aligned with the

fiber direction. This can cause the tracking algorithm to suddenly deviate to another

fiber track, violating again the curvature criterion.

DTI Tensorline tractography was proposed to specifically address these issues [94,

95]. ǫ1 in Eq-6.27 was replaced by:

vout = fǫ1 + (1 − f)((1 − g)vin + gD·vin), (6.29)

where f, g are user defined weights, vin,vout are the incoming and outgoing tangents

respectively, D is the local diffusion tensor with ǫ1 its unit major eigenvector, and

D·vin is the tensor deflection (TEND) [95] term. This implies that locally the fiber

isn’t completely tangent to the major eigenvector, but is the weighted sum of the ma-

jor eigenvector, the TEND term where the entire diffusion tensor globally influences

the fiber direction from the previous step vin, and vin itself, which acts as an inertial

factor to maintain the fiber’s general trend. This smooths away unnatural kinks, and

also helps to plough through regions with uncertainty, where D is oblate or spherical.

With general SDFs, D doesn’t exist, but the SDFs have more complex geometries

that are meant to better resolve the angular uncertainties in regions with crossings,

implying that the TEND term can be ignored. Note that with the approach for mea-

suring PFA for each peak, it is possible to measure an ellipsoid characterized by a

symmetric positive definite 3× 3 matrix D that can be used to compute an equivalent

to the TEND term. But we do not consider this for the moment. Therefore, we adapt

the Tensorline tractography to general SDFs with multiple maxima by replacing ηθmin

in Eq-6.28 by:

vout = fηθmin
+ (1 − f)vin, (6.30)

with f a user defined weight, and with vin,vout as defined above. Again vin acts like

an inertial factor to maintain the fiber’s general trend, and Eq-6.30 smooths away

kinks and helps to navigate regions with SDFs affected by partial voluming.

6.4.2 Experiments and Results

In the experiments we conduct for testing tractography with the maxima extraction

we have proposed, we consider the ODF-SA model and the Tensorline algorithm.

The ODF-SA model is used since it detects a greater number of crossings and its

peaks are much sharper than the ODF-T model. These qualities are useful while

tracing through regions that have known crossing fiber configurations. Also we use

the Tensorline algorithm since it is a generalization of the Streamline tractography,
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Figure 6.9: Synthetic dataset with fiber bundles converging and diverging. Left:

Overlapping fiber layout. Centre: ODF-SAs estimated from dataset with seed voxel

in grey. Right: zoom in seed voxels.

and is better suited while tracing through SDF images that haven’t been spatially

smoothed, which is our case. For comparison we also present DTI Streamline and

Tensorline tractography.

We first conduct tests on a synthetic dataset, designed to have two overlapping fiber

bundles first converge and then diverge. This is a more complex scenario than pure

crossings, since converging and diverging creates a range of crossing angles between

the two bundles. Such cases are hard to deal with because as the fibers progressively

converge, the crossing angle is progressively reduced, until sooner or later the cross-

ing angle is below the angular threshold of the SDF model. When this happens the

SDF model, i.e. ODF-SA can no longer discern two fiber bundles, and therefore has

only one peak that points between the two converging fibers.

The synthetic dataset is generated using the multi-tensor model (Appendix-A.0.1),

where the profile for a single fiber is taken to be D = diag(1700, 300, 300) × 10−6

mm2/s, for the single fiber profile, with a b-value of 3000 s/mm2. We compare DTI

Tensorline tracking and ODF-SA Tensorline tracking on this dataset. The ODF-SAs

were estimated in a truncated rank-4 SH basis.

We also conduct tests on the in-vivo human cerebral dataset (Appendix-A.0.3). Again

we consider ODF-SAs in a rank-4 SH basis and also DTI, which we estimate from

this dataset. We use the Tensorline tractography on both these SDF models. We

track specifically from seeds within the CC. It is well known that due to the impor-

tant crossings between the lateral radiations of the CC and the CST it is difficult to

track the lateral radiations of the CC. We use the ODF-SA and our modified track-

ing algorithm to specifically recover these lateral radiations of the CC. We also track

the SLF which crosses the lateral radiations of the CC and the CST to validate our

tracking method in regions where three fiber bundles cross.
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In all the Tensorline tractography tests that were conducted we used the following

weight factors. DTI Tensorline tractography was performed with f = 0.3 and g =

0 (Eq-6.29). These weights imply that the TEND term was ignored and only the

inertia term vin played a role. These weights were chosen to make the DTI Tensorline

tracking comparable to the ODF-SA Tensorline tracking. The ODF-SA Tensorline

tracking was performed with f = 0.3 (Eq.6.30).

The tractography results in the synthetic dataset are presented in Figs-6.9 & 6.10.

Fig-6.9 shows the layout of the synthetically generated fiber bundles that overlap. By

converging and diverging, they generate a range of crossing angles between the two

fiber bundles. The estimated ODF-SA image is shown with the tractography seed

voxels highlighted with a grey background. A zoom into the seed voxels clearly shows

the changing crossing angles detected by the ODF-SAs.

Figure 6.10: DTI and ODF-SA Tensorline fiber tracking on synthetic data. DTI fibers

bend in regions with crossings, while ODF-SA fibers cross.

Figure 6.11: DTI Streamline and Tensorline tractography from seed regions inside

the CC. Since the lateral radiations of the CC cross the CST in the CR, it is known

that DTI Streamline tractography cannot recover these lateral radiations. DTI Ten-

sorline tractography performs better and traces some fibers from the lateral radia-

tions.
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Fig-6.10 shows the results from the DTI Tensorline and the ODF-SA Tensorline trac-

tographies. In the DTI tractography it is clear that there are no crossings. The

tracked fibers bend or curve along their paths to account for the reduced anisotropy

in the diffusion tensors in the regions with crossings (as seen in Fig-6.9). ODF-SA

Tensorline tractography clearly shows fibers crossing between the two bundles. How-

ever, it too shows some bending and curving of its traced fibers. This happens where

the converging and diverging fiber bundles create crossing angles that are below the

threshold of the ODF-SA’s angular resolution (as see again in Fig-6.9).

In the in-vivo dataset, we first conducted DTI Streamline and Tensorline tractogra-

phy experiments for comparison. The results are presented in Fig-6.11. The tracking

is seeded in regions within the CC. It is clear that DTI Streamline in unable to trace

fibers through the regions where the CC crosses the CST in the corona radiata CR.

None of the lateral radiations of the CC are recovered. In comparison DTI Tensorline

tractography performs considerably better. A number of radial projections are recov-

ered, showing that indeed Tensorline tractography is able to plough through regions

with crossings.

ODF-SA Tensorline tractography with the proposed maxima extraction method is

shown in Fig-6.12. It too was seeded in the same regions within the CC. Clearly ODF-

Figure 6.12: ODF-SA Tensorline tractography with the method of maxima extraction

proposed in this chapter. Tracking was seeded in the CC like in Fig-6.11. A much

richer distribution of the lateral radiations of the CC are traced through the region

of crossings, where the CC intersects the CST in the CR.
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Figure 6.13: ODF-SA Tensorline tractography with the method of maxima extraction

proposed in this chapter. Three fiber bundles are traced, starting from different seed

regions. Red: seeds in the CC (left-right). Blue: seeds in the CST (superio-inferior).

Green: seeds in the SLF (anterio-posterior). Zoom into crossing region in Fig-6.14.

SA Tensorline tractography is capable of tracing through the intersections between

the CC and the CST. A much richer distribution of lateral radiations of the CC are

recovered than in the DTI tractography experiments. The capacity of ODF-SA Ten-

sorline tractography to trace through regions with crossings is further highlighted in

Fig-6.13. Three fiber bundles that criss-cross are traced by seeding the tractography

in different regions. In red are the fibers traced from seeds within the CC (left-right).

In blue are the fibers traced from seeds within the CST (superio-inferior). In green

are the fibers traced from seeds within the SLF (anterio-posterior). These three fiber

Figure 6.14: ODF-SA Streamline tractography with the method of maxima extraction

proposed in this chapter. Zoom into the region where three fiber bundles cross. Red:

CC (left-right). Blue: CST (superio-inferior). Green: SLF (anterio-posterior).
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bundles intersect each other within the same region – a region that has been closely

scrutinized in this chapter. In the section-6.2.4 we extracted the maxima of ODF-Ts

and ODF-SAs within this region to show the presence of multiple maxima. In the

section-6.3.2 we showed that the Total-PFA revealed this region to have a high num-

ber of crossings and high local anisotropy. In Fig-6.14 we see a zoom into this region

with the results of the ODF-SA Tensorline tractography, where we clearly see the

three fiber bundles – the CC, the CST and the SLF crossing.

6.4.3 Discussion

As an application of the polynomial approach for maxima extraction, we performed

tractography on SDFs with complex shapes, namely the ODF-SA. To do this, we

adapted the deterministic DTI Streamline and Tensorline tractography algorithms to

SDFs that can detect crossings and can have multiple maxima. ODF-SA Tensorline

tractography was chosen since ODF-SAs have sharp peaks which help to detect fiber

bundle crossings, and since the Tensorline algorithm helps smooth out local kinks in

the traced fibers that result from spatially irregular SDF estimation due to signal

noise.

Experiments were conducted on a synthetically generated dataset and on the in-vivo

human cerebral dataset. For comparison we also performed DTI Streamline and Ten-

sorline tractography. From seed regions within the CC, DTI Streamline tractography

wasn’t able to recover the lateral radiations of the CC because of the crossing between

the CC and the CST in the CR. A number of these radiations were recovered by the

DTI Tensorline tractography. The best result was achieved by the ODF-SA Tensor-

line tractography where a rich distribution of lateral radiations were recovered. By

also tracking from seed regions within the CST and the SLF, we were able to trace

fibers through a region where all three fiber bundles – the CC, the CST, and the SLF,

cross.

6.5
CONCLUSION

In dMRI, the partial and directional diffusion information in DWIs is inte-

grated into a single function which represents diffusion in every voxel. This function

reflects the microstructure of the underlying tissue. In the case of the cerebral white

matter, this function reflects the underlying fiber bundle layout. This diffusion func-

tion is most often represented as a spherical diffusion function (SDF) whose geometry

can be used to infer the underlying microstructure.

In this chapter we proposed a method for extracting many geometric features from

SDFs. We proposed a polynomial approach for extracting all the extrema of a wide

class of SDFs with complex shapes described either in the SH basis or the ST basis.
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The extrema were bracketed analytically, ensuring that none were missed, and they

were refined numerically, ensuring high precision in the results. The extrema were

identified on the criterion of optimization theory, without any dependence on an ini-

tial solution. Therefore, the proposed approach is neither heuristic like a finite search

on a discrete mesh, nor local, as is optimization. We also classified the extrema into

maxima, minima and saddle points.

We further computed the principal curvatures at the extrema, and proposed the PFA

to characterize the maxima of an SDF, which indicate fiber directions. We also pro-

posed the Total-PFA which measures the peakedness or starriness of an SDF to char-

acterize the complexity of the underlying tissue’s microstructure. Using the Total-

PFA, we were able to differentiate between regions (SDFs) with multiple peaks with

low local anisotropy that indicates overall isotropy, and regions (SDFs) with multiple

peaks with high local anisotropy that indicates sub-voxel level directional anisotropy.

As an application of the maxima extraction, we also performed tractography. We

extended Streamline and Tensorline tractography to SDFs with multiple maxima,

and were capable of recovering lateral radiations of the CC that cross the CST. We

were also able to successfully track fibers through regions where three fiber bundles

cross, namely the CC, the CST and the SLF.
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CHAPTER 7

CONCLUSION

In this thesis we addressed a number of problems related to high order diffusion

MRI (dMRI) reconstruction techniques. These techniques attempt to infer the mi-

crostructure of the cerebral white matter with greater accuracy than the popularly

used diffusion tensor imaging (DTI). Although DTI has almost become the de facto

dMRI reconstruction technique due to its mathematical simplicity, modest acquisition

requirements and elegant interpretation, which has lead to powerful and practical

applications, DTI is limited in regions with microstructural heterogeneity. Therefore,

numerous higher order reconstruction techniques have been recently proposed in

dMRI. Currently these techniques are gaining in popularity and are seeing increased

applications, since they recover greater details of information from the complex mi-

crostructure of the cerebral white matter. Our contributions can be summarized as

follows.

• We first examined the Generalized DTI (GDTI) model, which uses Cartesian

tensors of order higher than two to model the apparent diffusion coefficient

(ADC) in regions with microstructural heterogeneity with greater accuracy than

DTI, and addressed the problem of estimating 4th order tensors with a positive

diffusion profile, since negative diffusion is non-physical. We proposed two in-

dependent methods for achieving this.

– The first method we proposed was based on the algebra of 4th order tensors,

where we mapped symmetric 3D 4th order Cartesian tensors to symmetric

6D 2nd order Cartesian tensors by studying the symmetry properties of

the 4th order tensors. This isometrically isomorphic map allowed us to

apply the Riemannian metric for the space of symmetric positive definite

(SPD) 6×6 matrices to these 6D 2nd order tensors to confine all matrix

operations to SPD matrices. This allowed us to estimate 4th order GDTI

diffusion tensors with positive diffusion profiles.

– The second method we proposed was based on the polynomial interpre-

tation of higher order tensors (HOTs), where using Hilbert’s theorem on
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ternary quartics we were able to parameterize the estimation of 4th order

GDTI diffusion tensors to guarantee non-negative diffusion profiles.

Comparing the two methods theoretically we observed that the Riemannian ap-

proach ensured positive definite diffusion profiles, but solved a problem more

constrained than implied by the GDTI model, while the ternary quartic ap-

proach solved the correct problem, but only ensured non-negativity. However,

from the experiments we observed that the results of the Riemannian approach

were similar to the results of the ternary quartic approach and that due to nu-

merical computations we never came across exactly zero diffusion in the diffu-

sion profiles of the tensors estimated using the ternary quartic approach.

• Next we addressed the problem of estimating the high order diffusion propa-

gator from HOTs, since the ADC modelled by HOTs in the GDTI model de-

scribes the effects of the microstructural heterogeneity in the signal space or

the Fourier space (q-space). Therefore, it is necessary to compute the diffusion

propagator from these HOTs to infer the geometry of the microstructure, since

the propagator represents the effects of the microstructural heterogeneity in the

real space.

– We proposed an analytical approximation of the propagator from a modified

GDTI model. We showed that the approximation converges well to the

true diffusion propagator and since it is analytical, it is fast and can be

implemented efficiently. We also showed from the results that it is possible

to infer the geometry of the microstructure from the angular structure of

the approximate propagator.

• Finally we addressed the problem of extracting the complex information re-

covered by the higher order models by interpreting the geometry of their re-

constructed diffusion functions. The diffusion functions of higher order dMRI

models are often represented as generic functions on the sphere whose com-

plex shapes indicate sub-voxel resolution geometric details of the underlying

microstructure.

– We first proposed a complete method for the exact detection of all the max-

ima for a wide class of spherical functions, since the maxima often indicate

fiber directions.

– We showed that this could be used to trace fibers through regions with

crossing fiber configurations.

– Further, by extracting more geometric features from these spherical func-

tions, we proposed a sub-voxel resolution anisotropy measure, which we

named the peak fractional anisotropy (PFA). By integrating the PFA for

all the maxima of an individual spherical function, we also proposed the

Total-PFA for characterizing the cerebral white matter.
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All our contributions were based on the uniting underlying mathematical framework

of Cartesian tensors. Cartesian tensors provide an alternate function basis to the

popularly used Spherical Harmonic (SH) basis for describing reconstructed diffusion

functions. This is an important alternative. While the SH basis with its spherical co-

ordinate approach is better suited for describing angular functions and angular char-

acteristics of the underlying white matter, like the angular moments of the diffusion

propagator, which reveal axon fiber directions, the Cartesian tensors or multivariate

polynomials provide a Cartesian coordinate approach to the problem, and these are

better suited for computing Cartesian characteristics such as moments or cumulants

of the diffusion propagator, which can be used to quantify the anisotropy of the white

matter. The angular profile of the Cartesian tensors can also reveal fiber directions.

In addition to this Cartesian coordinate approach for estimating the EAP, in collab-

oration with Jian Cheng and other colleagues, we have also proposed an analytical

spherical coordinate approach for estimating the EAP by modelling the diffusion sig-

nal and the EAP in two complete orthonormal bases that form Fourier Transform

pairs in the spherical coordinates. The use of this Fourier basis-pair to analytically

estimate the EAP in the spherical coordinates is called the spherical polar Fourier

imaging (SPFI: section-3.4.5) [64, 108]. This Fourier basis-pair can also be used to

estimate the ODF analytically, which we have proposed in [109, 110]. Finally we

have also proposed a Riemannian framework for computing on ODFs described in

any complete orthogonal basis [111, 112].

In collaboration with Julien Cohen-Adad and other colleagues, we have also con-

tributed in developing Q-Ball metrics and comparing these against DTI metrics for

assessing the integrity of a spinal cord after injury and for identifying lesions. Exper-

iments were conducted on cat spinal cords and results were presented in [113, 114].

Perspectives:

Cartesian tensors provide a multivariate polynomial basis for describing the diffusion

signal and the propagator in a Cartesian coordinate system. This relates the diffusion

propagator to the diffusion signal via the Cartesian form of the Fourier Transform,

which is separable, is considerably better studied and easier to manipulate than the

spherical form of the Fourier Transform. However this is the approach taken by all

recent dMRI reconstruction techniques that attempt to estimate the diffusion prop-

agator from the signal (section-3.4.5). There are only few reconstruction techniques

which take advantage of the Cartesian Fourier Transform, e.g. Generalized DTI 2

(GDTI2) (section-3.4.2), the approach proposed in [115] and the approach we have

proposed in chapter-5. Diffusion Kurtosis Imaging (DKI) (section-3.4.4) is also closely

related, since it models the diffusion signal in the multivariate polynomial basis.
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All these methods have, however, mathematically incomplete formulations. They ei-

ther do not consider a complete functional basis or an orthogonal functional basis.

These two properties are highly desirable. GDTI2 and DKI theoretically consider

the complete multivariate polynomial basis (with cumulants as coefficients) for mod-

elling the signal. However, since in practice a truncated basis is required, (order four

in both the cases), the fact that the multivariate polynomial basis isn’t orthogonal

implies that the estimated coefficients or the “cumulants” are necessarily biased or

influenced by the other coefficients. This raises the problem of estimating the cumu-

lants correctly. We have begun addressing this problem and preliminary results were

presented in [116]. The methods in [115] and in chapter-5 do not consider complete

functional bases for modelling the signal, which restricts the types of signal functions

that can be estimated in these incomplete functional bases.

Therefore, the Cartesian approach with the multivariate polynomial basis opens up a

rich set of problems for choosing the right basis for correctly estimating the required

parameters from the diffusion signal (such as cumulants). The Cartesian approach

has promising possibilities, since both the Cartesian Fourier Transform and the field

of multivariate polynomials are historically well studied domains.
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APPENDIX A

DATASETS

A.0.1 Synthetic dataset

To conduct controlled experiments with known ground truths, we use a multi-tensor

approach to generate synthetic DWIs [106]. The EAP corresponding to a single fiber

is taken to be an anisotropic free diffusion Gaussian distribution, parametrized by a

covariance tensor D = diag(λx, λy, λz) in its canonical coordinates. D is rotated using

rotation matrices to orient the fiber in space. We generate the signal DWIs for the

single fiber by considering the q-space formalism and taking the Fourier Transform of

the Gaussian EAP, which results in the anisotropic Stejskal-Tanner signal equation

(Eq-3.25). Multiple crossing fibers are simulated by considering an EAP that is the

weighted sum of free diffusion Gaussians, where each Gaussian represents a fiber

oriented in space. The signal DWIs for a multi-fiber or crossing-fiber is derived easily

in the same fashion as S(gi) =
∑N

k=1wke
−bgT

i Dkgi , such that
∑

k wk = 1, Dk = RT
k DRk

with R a rotation matrix, S(gi) represents the DWI along the ith gradient direction,

and N are the number of fibers crossing in the voxel.

A.0.2 Biological Rat phantom dataset

The biological phantom [117] was created at the McConnell Brain Imaging Center

(BIC), McGill University, Montréal, Canada. MR images were acquired on a 1.5T

Sonata MR scanner using a knee coil. It was created from two excised Sprague-

Dawley rat spinal cords embedded in 2% agar. The acquisition was done with a single-

shot spin-echo planar sequence with twice-refocused balanced gradients, designed to

reduce eddy current effects. The dataset was acquired with 90 gradient directions,

on a single q-shell with a b-value of 3000 s/mm2, q = 0.35 µm−1, TR= 6.4 s, TE= 110

ms, FOV 360 x 360 mm2 , 128 x 128 matrix, 2.8 mm isotropic voxels and four signal

averages per direction. The SNR of the S0 image was estimated to be approximately

70 for the averaged phantom, and around 10 for the cord at b-value of 3000 s/mm2.
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A.0.3 In-vivo Human dataset, Max Planck Institute (MPI),

Leipzig, Germany

This in-vivo human cerebral dataset [96] was acquired with a whole-body 3T Siemens

Trio scanner, with an 8-channel array head coil and maximum gradient strength of 40

mT/m. The DWIs were acquired using spin-echo echo planar imaging (EPI) (time rep-

etition [TR] = 12 s, echo time [TE] = 100 ms, 128 x 128 image matrix, FOV = 220×220

mm2, 72 slices with 1.7mm thickness (no gap) covering the whole brain). The dif-

fusion weighting was isotropically distributed along 60 encoding directions, with a

b-value of 1000 s/mm2. Seven images without any diffusion weightings were placed

at the beginning of the sequence and after each block of ten DWIs as anatomical ref-

erence for offline motion correction. Random variations in the data were reduced by

averaging 3 acquisitions, resulting in an acquisition time of about 45 minutes. The

SNR in the white matter of this S0 image was estimated to be approximately 37.

The motion correction for the DWIs was combined with a global registration to T1

anatomy images. The gradient direction for each volume was corrected using rota-

tion parameters. The registered images were interpolated to the new reference frame

with an isotropic voxel resolution of 1.72 mm.

A.0.4 In-vivo Human dataset, NeuroSpin/CEA, Paris, France

This human brain dataset was acquired on a 1.5T scanner using 41 gradient direc-

tions, with a b-value of 700 s/mm2 with TR = 1.9 s,TE = 93.2 ms, 128 x 128 image

matrix, 60 slices, with voxel dimensions of 1.875mm x 1.875mm x 2mm. This dataset

is from a public HARDI database that can be found in [118].
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