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Introduction

Nowadays, number of applications in the fields of research, medicine, industry or defense

take advantage of coherent sources, mainly thanks to the monochromatic light and the high

power they can deliver. The demand always increases for either ultra-short pulses or high

energy, or the access to different wavelengths. Among the different types of sources, solid-

state lasers suit to a lot of requirements because they are robust and they offer a wide range

of wavelengths, output energies, and pulse durations. Nevertheless, the discrete transitions

of the rare earth elements used as dopant in the active medium limits the number of acces-

sible wavelengths. Optical parametric oscillators (OPOs) overcome this problem since they

deliver wavelengths that result from a frequency conversion in a nonlinear crystal. They

allow to produce monochromatic light over a wide and continuous range of wavelengths

from ultraviolet until infrared light. The generation of light between 3 µm and 12 µm is

of particular interest for spectroscopic and military applications since the atmosphere is

transparent in the 3 − 5 µm and 8 − 12 µm ranges. Even if OPOs are used today in many

commercial devices, they still have drawbacks concerning the nonlinear crystal. First, the

output energies are often limited by the size of the crystal aperture according to the intensity

damage threshold. Secondly, the frequency conversion does not always preserve the pulse

duration due to its limited spectral acceptance, and finally the output power of OPOs emit-

ting light above 3 µm is severely limited because of the lack of well-suited nonlinear crystals.

The present work deals with the study of two nonlinear crystals for the infrared: periodically-

poled 5%MgO:LiNbO3 (5%MgO:PPLN) and CdSiP2. The first one is already widely used

in devices working until a wavelength of 5 µm. However, its refractive indices are not known

with enough accuracy, which is detrimental for the design of OPOs. The second one is a

new material that is promising for parametric generation until a wavelength of 12 µm. Its

exhaustive linear and nonlinear properties are not known yet.

The first chapter presents the theoritical basis of linear and nonlinear optics that is necessary

to the characterization of crystals. The second chapter explains the sphere method, which is

9



the chosen methodology allowing to fully characterize crystals. The third chapter concerns

the measurements of the nonlinear properties of 5%MgO:PPLN: they led to a refinement of

the previous and well established Sellmeier equations; furthermore, the recently proposed

angular quasi-phase-matching scheme was verified by experiments and its relevance was dis-

cussed. The last chapter concerns the measurements of the nonlinear properties of CdSiP2:

the Sellmeier equations were refined, and its potentiality as a new nonlinear crystal for the

infrared is discussed.

The Délégation Générale pour l’Armement provided the funding for this PhD thesis.
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Chapter 1

Linear and nonlinear optical

properties of uniaxial crystals

1.1 Introduction

This chapter gives the theoritical elements which are used in the next chapters. A first part

is devoted to the linear and nonlinear optical properties of uniaxial crystals. The linear

optical properties, based on the dielectric permittivity tensor, describe the propagation

phenomena. The nonlinear optical properties describe quadratic parametric phenomena.

Two ways to maximize the parametric generation efficiency are presented. The first one is

birefringence phase-matching [1] and the second one is angular quasi-phase-matching [2].

1.2 Crystal linear optical properties

The equation that describes the propagation of an electromagnetic wave in a medium is

obtained from Maxwell equations and the constitutive relations of this medium. We assume

here that the medium is a homogeneous, non-conducting and non-magnetic crystal. However

in an anisotropic crystal, the polarization vector ~P is not necessary in the direction of the

electric vector ~E [3]. Then in the linear regime the electric susceptibility is a rank-two

tensor so that each component of ~P at the angular frequency ω is linearly related to the

components of ~E, i.e. [3]:

~P (ω) = ε0χ
(1)(ω) ~E(ω) (1.1)

where ε0 is the free-space permittivity. χ(1)(ω) is called the first-order electric susceptibility

tensor. In this work the imaginary part of χ(1) is neglected since the present study is

11



CHAPTER 1. Optical properties of uniaxial crystals

restricted to the spectral regions where the crystals are transparent.

The wave propagation equation at the circular frequency ω is given by the following equation

[3]:

~∇× ~∇× ~E(ω) =
ω2

c2
~E(ω) + ω2µ0

~P (ω) (1.2)

ω = 2πc/λ where λ is the wavelength and c is the velocity of light in vacuum; µ0 is the

free-space permeability. From inserting Eq. 1.1 in Eq. 1.2 we get:

~∇× ~∇× ~E(ω) =
ω2

c2
ε(ω) ~E(ω) (1.3)

In this equation ε(ω) is the dielectric permittivity tensor of the crystal defined as ε(ω) =

1 + χ(1)(ω). There is an orthonormal frame linked to the crystal in which the dielectric

tensor is diagonal. This particular system is called dielectric frame which axes are called

the principal axes, labeled (x, y, z). In the dielectric frame the dielectric permittivity tensor

can be then written [4]:

ε(ω) =









εx 0 0

0 εy 0

0 0 εz









(1.4)

According to the symmetry of the crystal structure, three optical classes of crystals are

distinguished: the isotropic class is defined by εx = εy = εz, the uniaxial class by εx =

εy 6= εz , and the biaxial class by εx 6= εy 6= εz. The two crystals studied in this work,

i.e. 5%MgO:PPLN and CdSiP2, belong respectively to the trigonal and tetragonal lattice

systems, and thus they belong to the uniaxial class.

The plane wave is a particular solution of Eq. 1.3. At a position ~r and angular frequency

ω, it is given by [5]:

~E(ω,~r, t) = ~e(ω) E(ω,~r) exp[±i~k · ~r] exp[−iωt] (1.5)

where ~e(ω) is the unit vector giving the direction of ~E. E(ω,~r) is the scalar complex

amplitude that verifies E∗(ω,~r) = E(−ω,~r); ~k is the wavevector: +~k · ~r corresponds to a

forward propagation whereas −~k ·~r corresponds to a backward propagation. In an uniaxial

crystal there are two possible amplitudes, ‖~ko‖ and ‖~ke‖, for the wavevector in a given

direction of unit vector ~s:

~ko,e(ω, θ, φ) =
ω

c
no,e(ω, θ, φ) ~s(θ, φ) (1.6)
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CHAPTER 1. Optical properties of uniaxial crystals

(θ, φ) are the angles of spherical coordinates of the direction ~s in the dielectric frame (x, y, z).

At a given angular frequency ω, the refractive indices no(ω, θ, φ) and ne(ω, θ, φ) are respec-

tively the ordinary and the extraordinary refractive indices, defined in an uniaxial crystal

as [3]:

n2
x = εx n2

y = εy n2
z = εz







no = nx = ny

ne = nz











no(θ, φ) = no

ne(θ, φ) =

[

cos2(θ)
n2

o

+
sin2(θ)

n2
e

]

−1/2

(1.7)

no and ne are the principal refractive indices at the frequency ω. The sign of the quantity

ne − no, which defines the birefringence, gives the sign of the optical class of the crystal:

ne > no corresponds to the positive class, whereas ne < no corresponds to the negative

class. The index surface represents the angular distribution of no(θ, φ) and ne(θ, φ) in the

dielectric frame. no(θ, φ) is a sphere while ne(θ, φ) is an ellipsoid. Fig. 1.1 shows the index

surface in the case of a negative uniaxial crystal in a quarter space of the dielectric frame.

The principal refractive indices depend on the circular frequency ω; this dependency is

given by the Sellmeier’s dispersion formula no(ω) and ne(ω) [6]. In an uniaxial crystal, the

components of the ordinary and extraordinary unit electric field vectors ~e o and ~e e are [5]:



















eo
x = − sin(φ)

eo
y = cos(φ)

eo
z = 0

(1.8)



















ee
x = − cos

[

θ ± ρ(θ, ω)
]

cos(φ)

ee
y = − cos

[

θ ± ρ(θ, ω)
]

sin(φ)

ee
z = sin

[

θ ± ρ(θ, ω)
]

(1.9)

with −ρ for the positive class and +ρ for the negative class. ρ(θ, ω) is the double refraction

angle representing the angle between the displacement vector ~D and the electric vector ~E.

Note that in uniaxial crystals, ~ee · ~eo = 0 is always fulfilled.
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z

noo

y

x

y
ne no

Figure 1.1: Index surface of a negative uniaxial crystal in the dielec-
tric frame (x, y, z).

Finally, the energy flux is given by the Poynting vector [3]:

~S(ω) = ~E(ω) × ~H(ω) (1.10)

Its modulus gives the power density expressed in [W · m−2] [3]:

‖~So,e(ω)‖ =
‖~ko,e(ω)‖
2 µ0 ω

‖ ~Eo,e(ω)‖2 cos2[ρ(ω)] (1.11)

Moreover it is important to notice that the Poynting vector and the wavevector do not

necessary have the same direction. The angle between these two vectors is the double

refraction angle, that can be written as:

ρ = arccos

[

~k

‖~k‖
·

~S

‖~S‖

]

(1.12)
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CHAPTER 1. Optical properties of uniaxial crystals

For an ordinary wave, ρ = 0 according to Eq. 1.8: the energy flow thus propagates in

the direction of the wavevector. For an extraordinary wave, ρ 6= 0 in the general case

according to Eq. 1.9, so that the energy flow does not propagate in the direction of the

wavevector. Note that whatever ω, one has ρ(ω) = 0 in any direction of the xy plane of an

uniaxial crystal. The double refraction effect can be detrimental for parametric generation

as explained later.

1.3 Equations of propagation in the nonlinear regime

We consider here the interaction between three electromagnetic waves at the circular fre-

quencies ωi = ω1, ω2 and ω3 verifying the energy conservation:

h̄ω1 + h̄ω2 = h̄ω3 (1.13)

Such an interaction between waves with different circular frequencies is only possible in a

noncentrosymmetric crystal and at high intensities that are accessible with lasers.

The Fourier component of the polarization vector at the circular frequency ωi = ω1, ω2 or

ω3 is [1]:

~P (ωi) = ε0χ
(1)(ωi) ~E(ωi) + ~P (2)(ωi) (1.14)

~P (2)(ωi) is the second order nonlinear polarization defined as [1]:



















~P (2)(ω1) = ε0χ
(2)(ω1) : ~E(ω3) ⊗ ~E∗(ω2)

~P (2)(ω2) = ε0χ
(2)(ω2) : ~E(ω3) ⊗ ~E∗(ω1)

~P (2)(ω3) = ε0χ
(2)(ω3) : ~E(ω1) ⊗ ~E(ω2)

(1.15)

where ”:” is the contraction product and ”⊗” is the tensor product. Eq. 1.15 shows the

three possible processes allowed in a nonlinear crystal: sum-frequency generation between

ω1 and ω2 written SFG (ω3 = ω1 + ω2), difference-frequency generation between ω3 and

ω2 written DFG(ω1 = ω3 − ω2), and difference-frequency generation between ω3 and ω1

written DFG(ω2 = ω3 − ω1). The particular case of sum-frequency generation for which

ω1 = ω2 = ω is called second-harmonic generation and is written SHG (2ω = ω+ω). χ(2)(ωi)

is the second-order electric susceptibility tensor at the frequency ωi. This rank three tensor

has twenty-seven independent elements in the general case [5] and is represented by the
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following matrix:

χ(2) =









χxxx χxyy χxzz χxyz χxzy χxxz χxzx χxxy χxyx

χyxx χyyy χyzz χyyz χyzy χyxz χyzx χyxy χyyx

χzxx χzyy χzzz χzyz χzzy χzxz χzzx χzxy χzyx









(1.16)

The indices x, y, z refer to the dielectric frame. The orientation symmetry imposes some

components to be equal to zero and also relations between the non-zero components of

the tensor χ(2). Furthermore, in case of low absorption at the considered frequencies, the

Kleinman’s conditions reduce more the number of independent non-zero components [5].

According to Eqs. 1.3 and 1.14, the propagation equation of each interacting wave is written

[1]:

~∇× ~∇× ~E(ωi) =
ω2

i

c2
ε(ωi) ~E(ωi) + ω2

i µ0
~P (2)(ωi) (1.17)

where i = 1, 2or3. The three propagation equations are coupled by the Fourier components

of the nonlinear polarization ~P (2)(ω1), ~P (2)(ω2) and ~P (2)(ω3) given by Eq. 1.15, which leads

to a variation of the three complex amplitudes E(ωi) along the direction of propagation. In

the slowly varying envelope approximation, which corresponds to a small variation of the

wave amplitudes over one wavelength λi, it comes in the case of three collinear waves [1]:



















































∂E(ω1)

∂Z
= jκ1E(ω3)E

∗(ω2) exp(j∆k · Z)

∂E(ω2)

∂Z
= jκ2E(ω3)E

∗(ω1) exp(j∆k · Z)

∂E(ω3)

∂Z
= jκ3E(ω1)E(ω2) exp(−j∆k · Z)

(1.18)

Z stands for the spatial coordinate along the direction of propagation of the three waves

described by the unit vector ~s. The parameter ∆k is the phase-mismatch between the

nonlinear polarization ~P (2)(ωi) and the radiated field ~E(ωi), defined in the collinear case

by:

∆k = k(ω3) − k(ω1) − k(ω2) (1.19)
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κi =
πχeff

niλi

, where ni is the refractive index of the wave at λi in the considered direction of

propagation, and χeff is the effective coefficient defined as [5]:

χeff =
∑

ijk

Fijkχijk(ω3) =
∑

jik

Fjikχjik(ω1) =
∑

kij

Fkijχkij(ω2) (1.20)

for SFG (ω3), DFG (ω1) and DFG (ω2) respectively.

Fabc stands for the twenty seven coefficients of the field tensor defined by [5]:

Fijk = Fjik = Fkij = ei(ω3)ej(ω1)ek(ω2) (1.21)

where ei, ej and ek are the Cartesian coordinates of the unit electric field vectors of the

interacting waves. Each of them can correspond to the coordinates of ~e o or ~e e given by Eqs.

1.8 and 1.9. Then the effective coefficient χeff is a linear combination of the components of

χ and F .

1.4 Conversion efficiency

The general solution of the three coupled equations 1.18 are Jacobi’s elliptic functions [1].

The resolution is easier if the variation of two of the three amplitudes can be neglected: it

is the so-called undepleted pump approximation. It corresponds for example to ∂E1/∂Z =

∂E2/∂Z = 0 in the case of SFG(ω3 = ω1 + ω2). Then the power of the generated wave at

ω3 with respect to the length Z = L of the crystal along the direction of propagation under

this approximation becomes [1]:

Pω3(L) ∝ χ2
eff Iω1(0) Iω2(0) L2 sinc2

(

∆k · L
2

)

(1.22)

Eq. 1.22 shows that when ∆k 6= 0 there is a reversal of the energy flow between the

interacting waves every coherence length defined as Lc = π/∆k, as shown in Fig. 1.2. This

situation is not interesting form the conversion efficiency point of view, contrary to the

case where ∆k = 0 for which the generated power reaches a maximum. This interesting

situation can be achieved thanks to different techniques described below.
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)
0k !

 P
 

3
 (

a.
u

.

L 2L 3L 4L 5L 6L0

0k !

Interacting length

Lc 2Lc 3Lc 4Lc 5Lc 6Lc0

Figure 1.2: Evolution of the power of the generated parametric wave
as a function of the interacting length in the cases of non phase-
matching condition (∆k 6= 0) and birefringence phase-matching
(BPM) corresponding to ∆k = 0. Lc is the coherence length of the
considered parametric interaction.

1.5 Birefringence phase-matching

1.5.1 Momentum conservation

The energy transfer between the waves is maximum for ∆k = 0, which corresponds to the

phase-matching between the nonlinear polarization and the radiated field. If this condition

is fulfilled, the energy flow does not alternate in sign and the power of the generated field

grows continuously as the square of the interacting length L according to Eq. 1.22, and as

shown in Fig. 1.2.

Note that from the point of view of the quantum theory of light, the phase-matching

condition corresponds to the total photon-momentum conservation. Moreover, the energy
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conservation given by Eq. 1.13 is always verified and is equivalent to:

1

λ1
+

1

λ2
=

1

λ3
(1.23)

where λi = 2πc/ωi (i = 1, 2, 3) is the wavelength in vacuum of the interacting wave i.

According to Eqs. 1.6 and 1.19, the phase-matching condition can be expressed as a function

of the refractive indices in a considered direction of propagation ~s (θ, φ):

∆kBPM = 2π

[

n(λ3, θ, φ)

λ3
− n(λ1, θ, φ)

λ1
− n(λ2, θ, φ)

λ2

]

= 0 (1.24)

where BPM stands for birefringence-phase-matching. The phase-matching condition would

be always verified in a hypothetical non dispersive medium, where n(λ1) = n(λ2) = n(λ3).

Indeed in this case, Eq. 1.24 reduces to energy conservation (Eq. 1.23). In realistic

situations, any medium is dispersive so that n(λ1) 6= n(λ2) 6= n(λ3). However, birefringency

can be used to compensate the dispersion, since each refractive index can take two possible

values: no(θ, φ) and ne(θ, φ) given by Eq. 1.7. This technique is called birefringence phase-

matching (BPM). Consequently, there are 23 possible combinations of indices in Eq. 1.24

[5].

1.5.2 BPM types

Only three combinations among the 23 are compatible with the wavelength dispersion and

with the momentum and energy conservation [5]. These three possible combinations are

designated as types I, II and III, according to the polarization states of the three frequencies.

They are defined in table 1.1 [7].

Momentum conservation relation
Interaction type

SFG (ω3) DFG (ω1) DFG (ω2)

ω3n
−

3 = ω1n
+
1 + ω2n

+
2 I II III

ω3n
−

3 = ω1n
−

1 + ω2n
+
2 II III I

ω3n
−

3 = ω1n
+
1 + ω2n

−

2 III I II

Table 1.1: Definition of interaction types versus phase-matching re-
lations according to sum-frequency generation (SFG) and difference-
frequency generation (DFG); (n+, n−) = (ne, no) in the case of a pos-
itive uniaxial crystal, and (n+, n−) = (no, ne) for a negative optical
sign.
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To each type corresponds a specific configuration of polarization. As an example for SFG:

(e+
1 , e+

2 , e−3 ) for type I, (e−1 , e+
2 , e−3 ) for type II and (e+

1 , e−2 , e−3 ) for type III. Note that types

II and III are equivalent in the case of second-harmonic generation since ω1 = ω2.

1.5.3 BPM loci

The phase-matching angles, written (θBPM, φBPM), are the solutions of Eq. 1.24. They

define the BPM directions. In uniaxial crystals, there is no influence of the spherical angle

φ on the refractive indices according to Eq. 1.7. As a consequence, the loci of the BPM

directions of types I, II and III are always cones around the z-axis, as represented in Fig.

1.3. However, the angle φ can have an influence on the effective coefficient χeff through the

field factor (Eqs. 1.20 and 1.21) and thus on the power of the generated wave.

z

 

x y
!!

Figure 1.3: BPM loci forming a cone around the z-axis (bold line)
represented in a Wülf diagram. (θ, φ) are the angles of spherical
coordinate in the dielectric frame (x, y, z).

The main drawback of BPM is that it does not allow to access to all the coefficients of the

second order electric susceptibility tensor [5]. In particular in any ferroelectric crystal the

highest coefficient χzzz cannot be purely sollicitated by BPM.
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1.6 Quasi-phase-matching and angular quasi-

phase-matching

1.6.1 Quasi-phase-matching

Another technique enabling to increase the conversion efficiency of a parametric process is

to use a medium having a periodic change in sign of the second-order electric susceptibility,

with a periodicity twice the coherence length of the considered process [1, 8]. This method

is called quasi-phase-matching (QPM) when the direction of propagation of the waves is

along the grating vector, as shown in Fig. 1.4.

z

3
=2Lc

+
- x

y

1
+

-
+

+

+

-

-

x

2

Figure 1.4: Scheme of QPM where Λ is the inverting periodicity
along the x-axis of the dielectric frame (x, y, z). λ3 is the wavelength
of the generated wave verifying the energy conservation condition
λ−1

3 = λ−1
1 + λ−1

2 . Lc is the coherence length of the considered para-
metric process. ”+” and ”-” signs stand for +χeff and −χeff.

By taking an inversion period equal to the coherence length Lc = π/∆k of the considered

parametric interaction, it is possible to keep a constructive interference along the propa-

gation direction, due to the π shift reset from a coherence length to the following one, as

shown in Fig. 1.5. Since the direction of propagation is along x, we get θ = 90◦ and φ = 0◦

and the momentum conservation can be written [1]:

∆kQPM = 2π

[

no,e(λ3)

λ3
− no,e(λ1)

λ1
− no,e(λ2)

λ2

]

− 2π

Λ
= 0 (1.25)

where no and ne are the ordinary and extraordinary principal refractive indices. The ex-

pression of the conversion efficiency corresponding to QPM is given by Eq. 1.22 multiplied

21



CHAPTER 1. Optical properties of uniaxial crystals

by a factor 4/π2 [8], as shown in Fig. 1.5.

 !eff  !eff  !eff+!eff +!eff +!eff
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 Interaction length

Lc 2Lc 3Lc 4Lc 5Lc 6Lc0

Figure 1.5: Evolution of the power of the generated wave as a func-
tion of the interacting length in the cases of non phase-matching
condition (∆k 6= 0), birefringence phase-matching (BPM) and quasi-
phase-matching (QPM). χeff is the effective coefficient of the consid-
ered parametric process. Lc is the coherence length of the considered
parametric interaction.

Thanks to the contribution of the wavevector associated to the periodic structure, it is

possible to choose any of the 8 possible configurations of polarization, given in table 1.2,

whereas BPM only allows three of them [2].
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Momentum conservation relation
Interaction type

SFG (ω3) DFG (ω1) DFG (ω2)

ω3n
−

3 = ω1n
+
1 + ω2n

+
2 + 1/Λeff I II III

ω3n
−

3 = ω1n
−

1 + ω2n
+
2 + 1/Λeff II III I

ω3n
−

3 = ω1n
+
1 + ω2n

−

2 + 1/Λeff III I II

ω3n
−

3 = ω1n
−

1 + ω2n
−

2 + 1/Λeff IV IV IV

ω3n
+
3 = ω1n

+
1 + ω2n

+
2 + 1/Λeff V V V

ω3n
+
3 = ω1n

−

1 + ω2n
+
2 + 1/Λeff VI VIII VII

ω3n
+
3 = ω1n

+
1 + ω2n

−

2 + 1/Λeff VII VI VIII

ω3n
+
3 = ω1n

−

1 + ω2n
−

2 + 1/Λeff VIII VII VI

Table 1.2: Definition of interaction types as a function of the re-
lations of momentum conservation of QPM or AQPM according to
sum-frequency generation (SFG) and difference-frequency generation
(DFG); Λeff is the effective grating period of QPM or AQPM.
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1.6.2 Angular quasi-phase-matching

In a previous work, it was shown that it is possible to generalize QPM by considering any

angle of propagation with respect to the grating vector of the periodic structure. This

general scheme was called angular quasi-phase-matching (AQPM) [2, 9]. In the following,

any direction of propagation ~s is represented by its angles of spherical coordinates (θ, φ) in

the dielectric frame, as shown in Fig. 1.6.

z

+
-

+ +
-

( , )s

x

y

Figure 1.6: Scheme of AQPM in a periodically-poled medium. Λ is
the inverting periodicity along the x-axis. ~s is the unit wave vector
of the interacting waves with the coordinates (θ, φ) in the dielectric
frame (x, y, z).

Then in the configuration of AQPM, the right grating period that has to be considered is

along the ~s vector, as shown in Fig. 1.7; it is expressed by the following equation in the

linear geometry:

Λeff(θ, φ) =

∣

∣

∣

∣

Λ

sin(θ) cos(φ)

∣

∣

∣

∣

(1.26)

Moreover, the refractive indices depend on the direction of propagation as shown in Fig.

1.7. The momentum conservation condition of QPM (Eq. 1.25) can thus be generalized in
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Figure 1.7: AQPM in the direction of propagation ~s with the angles
of spherical coordinates (θ, φ) in a periodically-poled medium. The
two curves correspond to the section of the index surface of a negative
uniaxial crystal defined by the z-axis and the direction u(φ) contained
in the xy plane. no and ne are the ordinary and extraordinary prin-
cipal refractive indices. Λ is the grating periodicity along the x-axis.
Λeff(θ, φ) is the effective grating periodicity along the direction (θ, φ).

the case of AQPM by taking into account the angular tunability of both the grating and

the birefringence, leading to the following equation:

∆kAQPM = 2π

[

n(λ3, θ, φ)

λ3
− n(λ1, θ, φ)

λ1
− n(λ2, θ, φ)

λ2

]

− 2π

Λeff(θ, φ)
= 0 (1.27)

θ and φ are the angles of spherical coordinates of the direction of propagation in the dielectric

frame (x, y, z). λ1, λ2 and λ3 are the wavelengths of the interacting waves; n(λi, θ, φ) with

i = 1, 2, 3 are the corresponding refractive indices in the considered direction (θ, φ). Λeff(θ, φ)

is the effective grating periodicity in the direction (θ, φ) defined by Eq. 1.26: it ranges from

Λ along the x-axis to infinity when the propagation occurs in the yz plane. Note that this

latest case corresponds to BPM, for which there is no grating.

1.6.3 AQPM types

As for QPM, due to the implication of Λeff in Eq. 1.27, AQPM authorizes the 8 possible

refractive indices combinations. These 8 types are defined in the same way as QPM ones
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and are given in table 1.2.

1.6.4 AQPM loci

The determination of the AQPM directions (θAQPM, φAQPM) can be performed by numerically

solving Eq. 1.27, according to the grating period of the medium, the set of considered wave-

lengths and the corresponding refractive indices. In uniaxial media, the loci of directions

corresponding to the eight AQPM types are distributed over cones that can exhibit three

possible topologies as shown in Fig. 1.8 using a Wülf diagram representation [2].

z
T2

 

T2

T1

T3

x y
!!

Figure 1.8: The three possible topologies T1, T2 and T3 of AQPM
loci represented in a Wülf diagram for uniaxial media. θ and φ are
the angles of spherical coordinates of any direction of propagation in
the dielectric frame (x,y,z).

The three AQPM topologies of Fig. 1.8 are different that the one of BPM given in Fig.

1.3, but they are similar to those of BPM in biaxial crystals, which put in emphasis the

breaking of the uniaxial symmetry by the inversion grating [2].

1.7 Acceptances

The interference function sinc2(∆kL/2) of Eq. 1.22 is maximum for ∆k = 0 in a given

direction (θPM, φPM) and at a given set of wavelengths (λ1PM, λ2PM, λ3PM), where the index

PM stands for either BPM, QPM or AQPM phase-matching. It is important to quantify

26



CHAPTER 1. Optical properties of uniaxial crystals

the consequence of a variation of ∆k from 0, due to variations of wavelength λiPM ± dλi

with i = (1, 2, 3), or angles, θPM ± dθ and φPM ± dφ. Note that ∆k can also depend on the

temperature, due to the thermooptical effect. The acceptance bandwidth is defined from

the deviation δξ of the dispersive parameter ξ (ξ = λ, θ, φ) leading to a phase-mismatch

variation ∆k from 0 to 2π/L, where L is the crystal length as shown in Fig. 1.9 [5].

0

1

0.405

PM

P 3

Figure 1.9: Generated power P ω3 as a function of any dispersive
parameter ξ of the refractive indices. ξPM is the value allowing phase-
matching; δξ is the full-width of the curve at 0.405 of the maximum,
corresponding to a phase-mismatch ∆k = 2π/L where L is the crystal
length.

The acceptance bandwidth can be calculated by expanding ∆k in Taylor series about ξ [5]:

2π

L
= ∆k =

∂(∆k)

∂ξ

∣

∣

∣

∣

ξPM

δξ +
1

2

∂2(∆k)

∂ξ2

∣

∣

∣

∣

ξPM

(δξ)2 + . . . (1.28)

The acceptance bandwidth is then given by the product L · δξ: ξ = λi corresponds to

the spectral acceptance relative to λi; ξ = θPM or φPM corresponds to the angular accep-

tances. This approach is relevant for BPM, QPM and AQPM, the corresponding mismatch

parameters ∆k being given by Eq. 1.24, Eq. 1.25 and Eq. 1.27 respectively.
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1.7.1 Spectral acceptance

The BPM or AQPM tuning curves have the same generic appearance given in Fig. 1.10(a)

[2], exhibiting a vertical tangent (point A) corresponding to propagation angle θA. This

situation is of prime importance because the associated spectral acceptance reaches its

maximal value, which is termed as a spectrally non critical phase-matching (NCPM). This

situation is also illustrated in Fig. 1.11 where ∆k is plotted as a function of λ. A spectrally

NCPM corresponds to the cancellation of the first term of the expansion of ∆k in Eq. 1.28,

i.e.:
∂(∆k)

∂λ

∣

∣

∣

∣

λA

= 0 (1.29)

It can be shown that Eq. 1.29 is equivalent to the group velocity matching between two

of the three interacting waves [10]. Thus, at the particular wavelength λA, both the phase

velocities and the group velocities are matched. The value of the spectral acceptance Lδλ

in this case is maximal, given by the following equation according to Eqs. 1.28 and 1.29:

Lδλ =
√

4πL

(

δ2∆k

δλ2

∣

∣

∣

∣

λA

)

−1/2

(1.30)

For applications that require a large spectral bandwidth, it is useful to be able to vary the

particular wavelength λA. In the case of BPM and QPM, there usually exists a unique

wavelength that fulfills both these conditions, that is fixed by the spectral dispersion of

the refractive indices of the crystal. Different schemes have been proposed to enable such

a variation of these particular wavelength: by tailoring the material dispersion thanks to

an appropriate doping level [10], by temperature tuning [11], or by using non-collinear

interactions [12]. It will be shown in the next chapter that AQPM allows an angular

tunability of the non critical wavelength λA.
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Figure 1.10: Typical BPM or AQPM tuning curve in a φ = cte plane
of the crystal (a), and its associated spectral acceptance Lδλ (b). λ
stands for λ1 or λ2 for SFG(λ3), λ3 or λ2 for DFG(λ1), and λ3 or λ2

for DFG(λ2). λPM1 and λPM2 are two particular wavelengths. Point
A corresponds to the wavelength λA and the angle θA for which the
spectral acceptance is maximal. λo

PM1 and λo
PM2 are two wavelengths

corresponding to the same phase-matching angle θo. 29
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Figure 1.11: Phase-mismatch ∆k as a function of λ at θ > θA (a)
and θ = θA (b), where point A, λA, PM1 and PM2 are defined in
Fig. 1.10; δλ corresponds to a phase-mismatch ∆k = 2π/L where L
is the crystal length.

30



CHAPTER 1. Optical properties of uniaxial crystals

1.7.2 Angular acceptances

In the case of BPM in uniaxial crystals, the refractive indices do not vary in φ leading

to an infinite φ angular acceptance bandwidth (Lδφ → ∞). δθ is then the only one to

be considered [5]. The case of AQPM is different, the angular bandwidth in φ being not

infinite anymore as it is explained in the next chapter.

1.8 Conclusion

The theoritical basis given in this chapter are useful for understanding the experimental

work presented in the next chapters.
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Chapter 2

Optical characterization using the

sphere method

2.1 Introduction

This chapter presents the experimental method called the “sphere method”, which was

used to study the exhaustive optical properties of 5%MgO:PPLN and CdSiP2 crystals cut

as spheres. Since the experiment requires a quasi-parallel propagation inside the spheres,

it could not have been carried out without calculations using Gaussian optics detailed

hereafter.

2.2 State of the art

The exhaustive study of the nonlinear optical properties of an anisotropic crystal requires

an access to a maximum of directions of propagation inside the medium with laser beams

able to deliver a range of wavelengths covering the whole transparency range of the studied

material. It would thus require a huge number of parallelepipedic samples cut and polished

in different directions. However, it is often not compatible with the small volume of matter

that is usually available at the first steps of crystal growth. In order to overcome this

difficulty, the “sphere method” was proposed and developed by our group since 1989 [13].

This technique consists in cutting and polishing the crystal as a sphere, which allows laser

beams to propagate in any direction of the crystal while keeping normal incidence. We have

the technical know-how for fabricating spheres of diameter down to less than 4 mm with an

asphericity better than 1%. This technique enables to directly measure any phase-matching
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direction with an accuracy better than 0.5◦, and the associated conversion efficiency, spectral

and internal angular acceptances. The sphere method was successfully applied in the past to

the study of several crystals as KTP [14], RTP [15], KTA [16], RTA [16], CTA [16], YCOB

[17] and Nd:YCOB [18] in their whole transparency range. According to the required

tunability of the incident beam, optical parametric oscillators (OPO) or optical parametric

generators (OPG) are ideal sources to carry out the measurements on the sphere.

2.3 Experimental setup

The optical source we used is a multi-stages parametric source from Excel Technology and

Light Conversion, detailed in Fig. 2.1.

0.355 µm OPG!OPA 0.4  0.71 µm

BBO

LBO

OPG OPA 0.4! 0.71!µm

0.71! 2.4!µm

BBO

0.532 µm

Delay
AGS

DFG 2 12!µm

Nd:YAG

1.064 µm

y

1.064!µm

Nd:YAG

15 ps

40 mJ

10 Hz

Figure 2.1: Scheme of the parametric source used for the sphere
experiments.

The pump is a Nd:YAG laser emitting pulses of FWHM pulse duration of 15 ps at 1.064 µm

with a repetition rate of 10 Hz. The energy per pulse at 1.064 µm is 40 mJ. This beam is

divided in two parts: 10 mJ go directly in the direction of a difference-frequency generation
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(DFG) stage while 30 mJ go first in the direction of an OPG-OPA stage. After doubling

and tripling of 1.064 µm in two BBO crystals, pulses at 355 nm are produced with an en-

ergy of 8 mJ. These pulses are used for pumping the OPG-OPA stage based on a crystal

of LBO of which rotation is motorized and controlled by computer. This OPG-OPA stage

delivers a beam where the signal wavelength λs can be tuned between 0.40 µm and 0.71 µm,

corresponding to a tunability of the idler wavelength between 2.40 µm and 0.71 µm respec-

tively. The energy of these pulses depends on the considered wavelength, and is around

200 µJ. Finally, a DFG between the idler and the pulse at 1.064 µm is realized in a crystal

of AgGaS2 (AGS) thanks to a non collinear interaction in order to produce a tunable wave-

length between 2 µm and 12 µm.

The measurement setup must enable the study of sum-frequency generation (SFG), second-

harmonic generation (SHG) and difference-frequency generation (DFG) in any direction

of the studied crystal cut as a sphere. SFG and DFG require two incident beams with

perfect spatial and temporal overlaps, while SHG measurements only require one incident

beam that is tunable in wavelength. In the first cases, one of the two beams was taken at

1.064 µm, the other one being at the signal or idler wavelength. An example of a typical

experimental setup for DFG is shown in Fig. 2.2.

LBO

OPG OPA He Ne0.355!µm 0.4! 0.71!µm
0.632!µm

BBO

BBO

DFG
polar filter

lens lens
0.532!µm

0.71! 2.4!µm

BBO

Delay
AGS

DFG

/ 2 / 2 

Photo

diode

1.064 µm

2!12 µm

Nd:YAG

/ 2 

polar telescope

Euler circle

15 ps

10 Hz

/ 2 

Delay line1.064 µm

Figure 2.2: Example of the experimental setup aimed at studying
SFG in a sphere between a beam at 1.064 µm and an infrared beam
tunable between 2 and 12 µm.
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The energy of each incident beam was controlled by the association of a half-wave plate

and a Glan-Taylor prism. The polarization state of each beam was then controlled by the

half-wave plates. A telescope using two convergent lenses allowed the radius of the Nd:YAG

beam to be adjusted to the one of the infrared beam, and a delay line allowed to realize

the temporal overlap between the two beams. This temporal overlap was realized prior to

the sphere experiment by replacing the sphere by a nonlinear crystal of RTP in which a

SFG was realized in a way to generate a visible beam. Since pulses of 15 ps have a spa-

tial extension of about 4.5 mm, the precision of the delay line must be in the order of the

millimeter. The spherical crystal to characterize was then placed at the center of an Euler

circle allowing the rotation of the sphere on itself. The mechanism of the Euler circle is

described later in section 2.5. The alignment of the two beams was realized thanks to an

He-Ne laser that was premilinary adjusted to propagate exactly along a diameter of the

sphere. The generated beam was detected by means of different photodiodes according to

the wavelength: the visible and near-IR range until 1 µm was covered by Silicon, the range

1 − 3 µm by InGaAs, the range 3 − 5.5 µm by Nitrogen-cooled InSb, and the far infrared

until 12 µm by Nitrogen-cooled HgCdTe.

The sphere experiment requires a quasi-parallel propagation inside the sphere in order to

get a good precision on the measured direction of propagation. A non parallel beam would

also lead to an overevaluation of the spectral and angular acceptances. A “quasi-parallel”

propagation is usually realized thanks to an entrance lens that focuses the beam at the

front focal point of the sphere. It requires preliminary calculations described hereafter.

2.4 Propagation of Gaussian beams in a sphere

2.4.1 The spherical lens

A crystal cut as a sphere behaves like a spherical lens. The focal length f of a sphere with

a radius r and a refractive index n is given by [6]:

f =
nr

2(n − 1)
(2.1)

For an incident parallel beam and if n < 2, then f > r and the focal point of the sphere is

outside the sphere. At the opposite, n > 2 leads to f < r, so that the focal point is inside

the sphere, which may be detrimental to the crystal according to its optical damage. These
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situations are represented in Fig. 2.3.

(a) (b)

(c)

Figure 2.3: Focalization of a parallel beam by spheres with different
refractive indices: (a) n = 1.5, (b) n = 2.0, (c) n = 3.0.

In any case, it will be important to use a focusing lens in order to control the radius and

location of the beam waist inside the sphere. Note that CdSiP2 and 5%MgO:PPLN have

refractive indices n > 2.

2.4.2 Focusing conditions and Gaussian beam profile inside the

crystal sphere

The proper focusing conditions can be determined by using the Gaussian formalism in the

paraxial approximation [19]. The complex beam parameter q(z) is a complex number which
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characterizes the Gaussian beam at any point z along the axis of the beam. It is calculated

from both the radius of curvature of the phase front R(z) and the beam radius w(z). Its

expression is written:
1

q(z)
=

1

R(z)
− i

λ

πw2(z)
(2.2)

The evolution of q(z) when the beam propagates through several optical systems can be

calculated using the transfer matrices method, where each optical system is described by an

ABCD matrix [20]. Eq. 2.3 allows the resulting beam parameter qf to be calculated for a

given initial beam parameter qi [20]:

qf =
Aqi + B

Cqi + D
(2.3)

Eq. 2.3 allows us to calculate the longitudinal spatial profile of a Gaussian beam through

the considered optical system. The matrices are the same as the ones used for geometric

ray tracing [20]. A propagation inside a medium of refractive index n over a distance z is

then described by [20]:
(

A B

C D

)

=

(

1 z/n

0 1

)

(2.4)

The pass through a spherical dioptre with a radius of curvature R separating two media of

refractive indices n1 and n2 is described by [20]:

(

A B

C D

)

=





1 0
n2 − n1

R
1



 (2.5)

where R < 0 at the entrance of the dioptre, and R > 0 at the exit. We used these matrices

and Matlab for the modelisation of the propagation. It enables to calculate the distance

dopt between the entrance lens and the sphere, leading to a quasi-parallel propagation inside

the sphere with an associated maximal beam radius for which the optical damage is not

overpassed. This optimal configuration is illustrated on Fig. 2.4.

From the numerical data of table 2.1, we calculated the evolution of the minimum beam

radius wmin inside the sphere as a function of the distance d between a ZnSe focusing lens

and the sphere entrance for CdSiP2 and 5%MgO:PPLN.

The corresponding curves at λ = 1.064 µm are given in Figs. 2.5 and 2.6. These figures

38



CHAPTER 2. The sphere method

Lens Crystal spheres
Materials ZnSe 5%MgO:PPLN CdSiP2

Entrance radius of curvature (mm) −139.96 −1.95 −2.495
Exit radius of curvature (mm) ∞ +1.95 +2.495
Thickness (mm) 2.6 3.9 4.99

Refractive index at 1.064 µm n = 2.48
no = 2.22 no = 3.16
ne = 2.15 ne = 3.11

Reference of Sellmeier equations [21] [22] [23]

Table 2.1: Data used for the modelisation of the Gaussian beam
through the optical system made of a ZnSe entrance plano-convex
lens and the studied crystal sphere of 5%MgO:PPLN or CdSiP2.

allow us to determine the optimal distance dopt corresponding to the maximum value of

wmin. The optimal distance dopt is 94.7 mm for CdSiP2 and 95.2 mm for 5%MgO:PPLN at

1.064 µm. Note that since CdSiP2 has a higher refractive index than 5%MgO:PPLN, the

placement of the entrance lens is more tricky as shown in Figs. 2.5(a) and 2.6(a). For

example, if one needs to have wmin > 0.05 mm inside the sphere in order to avoid optical

damage, the optimal distance must belong to an interval of ∆d = 0.8 mm for CdSiP2, ver-

sus 8.9 mm for 5%MgO:PPLN. The situation was not so tough in media of refractive index

n < 2 because there were no risk to focus the beam inside the sphere if the entrance lens

was too far from the sphere (cf Fig. 2.3(a)).

Figs. 2.5(b) and 2.6(b) give the position zmin of wmin inside the sphere, the origin being

taken at the entrance of the sphere. We can distinguish different situations according to the

value of d, which are illustrated in the case of CdSiP2 in Fig. 2.7. First, if d < 93.5 mm, the

beam focuses inside the sphere; point A corresponds to this case, with a beam waist being

located in the first half of the sphere. Then, if 93.5 mm < d < 98 mm, there is no focaliza-

tion inside the sphere, and the minimum beam radius is located either at the entrance or

at the exit of the sphere (point B). Finally, if d > 98 mm, the beam focuses again inside the

sphere, always in the second half (point C).
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dopt

Le

(a)

wopt

(b)

Figure 2.4: Gaussian calculation of the optimal focusing configura-
tion leading to a quasi-parallel propagation inside the crystal sphere.
Le is the entrance lens, d = dopt is the optimal distance between the
lens and the sphere entrance. (a) Scheme of the experiment. (b)
Magnification zoom.
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Figure 2.5: Minimum beam radius wmin (a) and its location zmin (b)
inside the CdSiP2 sphere at the wavelength 1.064 µm as a function
of the distance d between the incident ZnSe lens and the sphere en-
trance. The origin for zmin is chosen at the entrance of the sphere.
D is the diameter of the sphere and the horizontal dashed line corre-
sponds to the center of the sphere. dopt is the optimal distance.
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Figure 2.6: Minimum beam radius wmin (a) and its location zmin

(b) inside the 5%MgO:PPLN sphere at the wavelength 1.064 µm as
a function of the distance d between the incident ZnSe lens and the
sphere entrance. The origin for zmin is chosen at the entrance of the
sphere. D is the diameter of the sphere and the horizontal dashed line
corresponds to the center of the sphere. dopt is the optimal distance.
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(a) (b)

(c)

Figure 2.7: Geometry of the beam at λ = 1.064 µm inside the sphere
of CdSiP2 at different distances d between the entrance lens and the
entrance sphere corresponding to point A (a), point B (b), and point
C (c) of Fig. 2.5.
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The sphere experiments have to be carried out on the whole transparency range of

the studied crystals, i.e. for wavelengths varying from 0.5 µm to 5 µm in the case of

5%MgO:PPLN, and from 0.5 µm to 10 µm in the case of CdSiP2. Due to the dispersion

of the focal lengths of both the entrance lens and the sphere, the optimal distance dopt

strongly depends of the wavelength, as shown in Figs. 2.8(a) and 2.8(b) for CdSiP2 and

5%MgO:PPLN respectively. The optimal distance dopt varies a lot between 1 µm and 2 µm

where the refractive indices dispersion is the strongest.

Using the optimal focusing configuration described above, it is possible to tune wmin by vary-

ing the beam radius winc of the input beam thanks to a telescope. Figs. 2.9(a) and 2.9(b)

show the evolution of wmin as a function of winc in the case of CdSiP2 and 5%MgO:PPLN

respectively at 3 µm. Note that another way to increase the beam radius inside the sphere

would be to reduce the focal length of the entrance lens f , but it was not realizable in our

case because of mechanical obstruction problems with the Euler circle.

The optimal focusing configuration being defined, it is necessary to know the optical damage

threshold expressed in [J/cm2] or [W/cm2], of the studied crystal in order to calculate the

energy of the incident beam(s) that should not be overpassed in order to avoid any damage

inside the sphere. As example, we considered an incident beam at 1.064 µm and a pulse

duration of 15 ps and a repetition rate of 10 Hz as in our experiments. The measurement

of the optical damage threshold of CdSiP2 was done in this work and is presented later in

chapter 4: it is of about 0.3 J/cm2. The optical damage threshold of 5%MgO:PPLN at a

pulse duration of 7 ns is about 3 J/cm2 [24]: according to the square root dependance of

the energy density on the pulse duration [25], the damage threshold at 15 ps is in the order

of 65 J/cm2. Given that the surface of the beam inside the sphere is S = πw2
0 and given

the curves of Fig. 2.9, it is possible to calculate the threshold energy of the incident beam

Eth
inc that must not be overpassed. The result of these calculations are shown in Fig. 2.10

in both cases of CdSiP2 and 5%MgO:PPLN. These curves are of prime importance for the

conception of sphere experiments.
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Figure 2.8: Optimal distance dopt between the lens and the spheres
entrance as a function of the wavelength. (a) Sphere of CdSiP2 of
diameter 4.99 mm; (b) sphere of 5%MgO:PPLN of diameter 3.9 mm.
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Figure 2.9: Evolution of the minimum beam radius wmin inside the
sphere as a function of the incident beam waist radius winc. (a)
Sphere of CdSiP2 of diameter 4.99 mm; (b) sphere of 5%MgO:PPLN
of diameter 3.9 mm.
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Figure 2.10: Maximum allowed energy Eth
inc of the incident beam at

1.064 µm in order to avoid optical damage as a function of the incident
beam radius winc. The hatched zones correspond to the permitted
configurations. The corresponding values of the beam waist radius
w0 inside the spheres are given in Figs. 2.9. (a) Sphere of CdSiP2 of
diameter 4.99 mm; (b) sphere of 5%MgO:PPLN of diameter 3.9 mm.
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It is also important to be sure that the propagation inside the sphere is parallel if one wants

to measure phase-matching directions and angular acceptances with a good accuracy. In

order to know if the propagation is quasi-parallel inside the sphere when d = dopt, it is

necessary to compare the radius of the sphere R with the Rayleigh length zR given by [19]:

zR =
π n w2

0

λ
(2.6)

In our experimental conditions, we have winc ≈ 5 mm, that gives w0 ≈ 0.06 mm for CdSiP2

as well as for 5%MgO:PPLN from the curves of Fig. 2.9. From the radii and the refrac-

tive indices given in table 2.1, we can compute the Rayleigh length as a function of the

wavelength for each crystal sphere, as shown in Fig. 2.11. We see that in both cases, the

condition zR > R is verified over the whole transparency range of the crystal.

As a conclusion, since quasi-parallel propagation is ensured over the whole transparency

ranges of the spheres, the measurements of phase-matching directions and acceptances per-

formed on 5%MgO:PPLN and CdSiP2 using the sphere method with our experimental

conditions will be given with good accuracy, and in a safety way.
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Figure 2.11: Rayleigh lengths zR of the focused beam inside the
CdSiP2 (a) and 5%MgO:PPLN (b) sphere calculated as a function of
the wavelength λ. R is the sphere radius.
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2.5 Goniometry of the Euler circle

We have seen in chapter 1 that the phase-matching angles (θPM, φPM) are defined in the

dielectric frame (x, y, z) of the studied nonlinear crystal. In order to propagate the laser

beams in the crystal sphere at any angle, an Euler circle was used. The goal of this section

is then to explain the way to pass from the angles (α, β, γ) of the Euler circle to the angles

(θ, φ) of the dielectric frame.

The Euler circle is composed of three rotating stages as shown in Fig. 2.12.

Zlab

Y

Z

 

Ylab

! "

X

X

lab

Xlab

N

Figure 2.12: Orientation of the Euler angles (α, β, γ).
(Xlab, Ylab, Zlab) is the laboratory frame. (X, Y, Z) is the frame
associated to the goniometric head on which the crystal sphere is
stuck. The label N stands for the line of nodes.

The Euler angles express the link between the fixed laboratory frame (Xlab, Ylab, Zlab) and

the rotated frame (X, Y, Z) associated to the goniometric head supporting the crystal. The

definition of the angles require to define the line of nodes that is the intersection of the XY

and the XlabYlab planes. The Euler angles are defined as follows [26]:� α is the angle between the X-axis and the line of nodes;
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CHAPTER 2. The sphere method� β is the angle between the Zlab-axis and the Z-axis;� γ is the angle between the line of nodes and the X-axis.

The angular conversion between a direction in the (x, y, z) frame into the (X, Y, Z) frame

can be carried out by means of the transformation matrix M expressed as the product of

three rotation matrices [26]:

M =









cos γ sin γ 0

− sin γ cos γ 0

0 0 1

















1 0 0

0 cos β sin β

0 − sin β cos β

















cos α sin α 0

− sin α cos α 0

0 0 1









(2.7)

As the laser beam keeps a fixed direction in the laboratory frame, its direction can be chosen

arbitrarily: we choose the Xlab-axis in the present work. The direction of the beam in the

laboratory frame is thus given by:

~u|lab =









1

0

0









(2.8)

In the frame (X, Y, Z) of the goniometric head, this direction is given by:

~u|gonio = A ~u|lab =









cos α cos γ − sin α cos β sin γ

− cos α sin γ − sin α cos β cos γ

sin α sin β









(2.9)

This direction can also be expressed in spherical coordinates (θg, φg) in the (X, Y, Z) frame

as follows:

~u|gonio =









sin θg cos φg

sin θg sin φg

cos θg









(2.10)

The two ways of defining ~u|gonio give the correspondance between the Euler angles and the

corresponding angles of spherical coordinates in the (X, Y, Z) frame, i.e.:



















cos α cos γ − sin α cos β sin γ = sin θg cos φg

− cos α sin γ − sin α cos β cos γ = sin θg sin φg

sin α sin β = cos θg

(2.11)
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The systematic experimental procedure to find the phase-matching angles is to vary the θ

angle of the dielectric frame by keeping a fixed φ angle [13]. The β angle was thus fixed

to −π/2. Nevertheless, due to dead zones caused by the mechanical support of the Euler

Xlab

Zlab

 =!"/2

Ylab

#

z
Z

$$

Figure 2.13: Scheme of the Euler circle where the z-axis of the dielec-
tric frame is along the Z-axis of the goniometric head. The direction
of propagation of the laser beam is along the Xlab-axis of the labora-
tory frame.

circle, it was necessary to successively stick the sphere in two different directions on the

gonometric head: (z = Z, x = X, y = Y ) and (y = Z, z = −Y , x = X). In the first case,

illustrated on Fig. 2.13, the dielectric frame (x, y, z) coincides with the goniometric frame,

i.e.:








sin θg cos φg

sin θg sin φg

cos θg









=









sin θ cos φ

sin θ sin φ

cos θ









(2.12)
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According to Eq. 2.11 and Eq. 2.12, we thus have:



















cos α cos γ = sin θ cos φ

− cos α sin γ = sin θ sin φ

− sin α = cos θ

(2.13)

Then it comes:






















θ = arccos(− sin α) =
π

2
− α

φ = arccos

(

cos α cos γ
sin θ

)

= arccos(cos γ) = γ

(2.14)

The second case is illustrated in Fig. 2.14.

Xlab

Zlab

 =!"/2

Ylab

#

y
Z

$$

Figure 2.14: Scheme of the Euler circle where the y-axis of the dielec-
tric frame is along the Z-axis of the goniometric head. The direction
of propagation of the laser beam is along the Xlab-axis of the labora-
tory frame.
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The associated matrices are:









sin θg cos φg

sin θg sin φg

cos θg









=









sin θ cos φ

cos θ

− sin θ sin φ









(2.15)

According to Eq. 2.11 and Eq. 2.15, it comes:



















cos α cos γ = sin θ cos φ

− cos α sin γ = cos θ

− sin α = − sin θ sin φ

(2.16)

Finally, we get:






















θ = arccos(− cos α sin γ)

φ = arccos

(

cos α cos γ
sin θ

)

(2.17)

Then once a particular direction is detected using the Euler circle, formula 2.14 and 2.17

allow this direction to be expressed in the dielectric frame of the crystal.

2.6 Conclusion

The theoritical basis given in this chapter were useful for designing the angular experiments

presented in the next chapters. Indeed, measurements of phase-matching directions neces-

sitated the use of the Euler circle. Moreover, the conditions of quasi-parallel propagation

inside the crystal sphere were permanently applied to the experimental setup, in both cases

of 5%MgO:PPLN and CdSiP2.
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Angular quasi-phase-matching in

5%MgO:PPLN

3.1 State of the art

Quasi-Phase-Matching (QPM) in periodically-poled materials is today the most promising

configuration for achieving efficient three-wave nonlinear parametric interactions [8, 27,

28, 29]. Indeed, it makes possible to use the stronger element χzzz of the second-order

electric susceptibility tensor. Commercial devices are now available, in particular based on

periodically-poled LiNbO3 (PPLN) and periodically-poled KTiOPO4 (PPKTP). The poling

period has to be equal to the coherence length Lc = π/∆k of the considered interaction,

as previously explained in paragraph 1.6 of chapter 1. The calculation of Lc requires a

precise knowledge of the refractive indices of the material at the three involved wavelengths.

For tunable-wavelength devices, a variation of the grating periodicity is then necessary to

compensate the variation of ∆k due to the dispersion of the refractive indices. The three

methods which are generally used to realize this variation are shown in Figs. 3.1(a), 3.1(b)

and 3.1(c). In the two first cases corresponding to Figs. 3.1(a) and 3.1(b), the direction

of the beam is fixed and chosen along a principal axis of the crystal in order to avoid

walk-off. The drawback of the fan-shaped grating is that the the period varies inside the

beam diameter, increasing the spectral bandwidth, and the disadvantage of the multi-

grating scheme is that it does not allow a continuous variation of the wavelength but only a

discrete one due to the jump between a grating and another one. These disadvantages have

been circumvented by using the third scheme given in Fig. 3.1(c) where the periodically-

poled crystal is cut as a cylinder with the revolution axis parallel to the ferroelectric axis
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[30]. Such a geometry allowed any grating period to be addressed by rotating the cylinder

around its revolution axis, the propagation of the beams keeping a normal incidence for any

direction. Recent advances led to a successful poling over few millimeters of 5%MgO:PPLN
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Figure 3.1: The three schemes for tunable devices using QPM. (a)
Fan-shaped gratings, (b) multi-gratings, (c) single grating in a cylin-
der sample. The large arrow represents the fixed laser beam. The
spectral tunability of the generated wave is obtained by translating
the crystal in the cases (a) and (b), or rotating the crystal (c).

slabs, allowing the use of pump laser beams with large aperture, and so with high energy

[31]. These advances enable to increase the output energy of the devices based on QPM, but

they also give us the possibility to test the angular quasi-phase-matching (AQPM) concept

developed in our group and described in section 1.6 of chapter 1. Indeed a thick sample

enables to have a reasonable interaction length at any angle with respect to the grating

vector [2].

This chapter presents the first experiments of AQPM using a sphere of 5%MgO:PPLN

[32]. The measurements of AQPM directions in the case of type I SHG and types I and

II DFG are presented and are used to refine the Sellmeier coefficients of 5%MgO:PPLN.

The benefit of AQPM over the classical techniques is then discussed, especially in term

of spectral acceptance. Finally, the potentialities of AQPM versus the grating period are

summarized.

3.2 Experimental setup

In order to be able to measure any SHG or DFG AQPM direction, we cut a 5%MgO:PPLN

sphere with a diameter of 3.9 mm from a slab (cf. Fig. 3.2) having a grating period
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Λ = 32.2 µm provided by the group of Takunori Taira of the Institute for Molecular Science

(IMS) in Japan. The sphere was polished, oriented and stuck on a goniometric head along

the z-axis or y-axis of the dielectric frame with a precision better than 0.5◦ by using the

Laue method.

(a) (b)

Figure 3.2: Crystal of 5%MgO:PPLN used for the experiment; (a)
slab of thickness 5 mm fabricated at IMS; (b) sphere of diameter
3.9 mm cut at Néel Institute.

The experimental setup was presented in Fig. 2.2 of chapter 2. The sphere being placed at

the center of an Euler circle and by using the focusing configuration described in section 2.4,

it was possible to propagate the laser beams in any direction of propagation of the crystal

by keeping normal incidence. The correpondance between the Euler angles (α, β, γ) and the

angles of spherical coordinates (θ, φ) giving the direction of propagation in the dielectric

frame was calculated thanks to formula 2.12 and 2.15. The focusing lens located at the

entrance side of the sphere ensures a quasi-parallel propagation of the beams inside the

sphere as described in section 2.4.2. The beam emitted by the parametric source, tunable

between 0.4 µm and 10 µm, was used as the fundamental wave for SHG measurements,

or as the injection beam by mixing it with a beam at 1.064 µm for the study of DFG.

Two half-wave plates allowed the incident beams to be polarized according to the chosen

AQPM type defined in table 1.2 of chapter 1. The wavelength was continuously controlled

by a Chromex 250 SM monochromator. SHG or DFG directions were detected when the

associated conversion efficiency was maximal, leading to a measurement of the AQPM angles

with an accuracy of about ±1◦.
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3.3 AQPM directions

The experiments presented below concern SHG and DFG. Although AQPM allows the

eight possible combinations of polarization given in table 1.2, all of these are not necessary

compatible with the momentum conservation relation 1.27 according to the grating period

and the refractive indices at the considered wavelengths. In particular, with our grating

period of 32.2 µm, type IV corresponding to three extraordinary polarized waves is not

possible; it would have required a smaller grating period.

3.3.1 Type I and II second-harmonic generation

In the following, we use the notation SHG (λω, λω, λ2ω) for SHG (λ−1
ω + λ−1

ω = λ−1
2ω ). By

using the incident beam coming from the OPG-OPA stage, we were able to measure the

AQPM tuning curves at T = 22◦C of type I SHG (λo
ω, λo

ω, λe
2ω) and type II ≡ III SHG

(λo
ω, λe

ω, λe
2ω) in the full space and in the full transparency range of 5%MgO:PPLN: indices

(o) and (e) stand for the ordinary and extraordinary polarizations, respectively [32]. The

data of type I SHG are given in Fig. 3.3 in the xz and yz planes, while Fig. 3.4 shows type

II SHG in the xz plane. The curve relative to the yz plane corresponds to BPM since the

direction of propagation is parallel to the domains.

Fig. 3.5 gives the energy of the beam generated by type I SHG at 1.064 µm recorded as a

function of θ in the plane φ = 0◦. According to the uniaxial symmetry, the BPM tuning

curve of type I SHG given in Fig. 3.3 is not specific to φ = 90◦ but it is the same for any

other value of φ. This was verified by the measurement of the phase-matching angles at

the fixed fundamental wavelength λω = 1.064 µm. This measurement presented in Fig. 3.6

well shows that θBPM is the same for any value of φ, which is not the case for AQPM, also

shown in Fig. 3.6. These observations corroborate that the φ angle has no influence on the

BPM phase-matching relation 1.24, leading to a conical distribution of the phase-matching

loci around the z-axis, while the φ angle has an influence on the AQPM phase-matching

relation 1.27.
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Figure 3.3: Measured type I SHG tuning curves of 5%MgO:PPLN
with Λ = 32.2 µm at T = 22◦C; the fundamental wavelength λω is
given as a function of θ at φ = 0◦ and φ = 90◦ [32].

0 10 20 30 40 50 60 70 80 90
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 

  
 (

m
)

  

Figure 3.4: Measured type II SHG tuning curve of 5%MgO:PPLN
with Λ = 32.2 µm at T = 22◦C; the fundamental wavelength λω is
given as a function of θ at φ = 0◦.
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Figure 3.5: Second-harmonic power at 532 nm generated by type I
AQPM and BPM SHG in the xz plane of a sphere of 5%MgO:PPLN.
The angles θAQPM and θBPM correspond respectively to the AQPM
and BPM directions in the considered plane.
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Figure 3.6: Measured curves of BPM and AQPM type I SHG at
λω = 1064 nm in a sphere of 5%MgO:PPLN. The dashed lines are
guides for the eyes.
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3.3.2 Type I and II difference-frequency generation

In the following, we use the notation DFG (λp, λs, λi) for DFG (λ−1
p − λ−1

s = λ−1
i ), where

λp, λs and λi are the pump, signal and idler wavelengths respectively with λp < λs < λi.

The signal wave is defined as the wave that is incident together with the pump wave at

λp = 1.064 µm. The temporal overlap between pump and signal was realized thanks to a

delay line between the two incident beams in order to realize the parametric generation.

By using the experimental setup described in Fig. 2.2, we measured the AQPM tuning

curves at T = 22◦C of type I DFG (λe
p, λ

e
s, λ

o
i ) and type II DFG (λe

p, λ
o
s, λ

e
i ) in the full

space of 5%MgO:PPLN, indices (o) and (e) standing for the ordinary and extraordinary

polarizations respectively [32]. The measurement of types I and II DFG in the xz plane is

presented in Fig. 3.7.
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Figure 3.7: Measured types I and II DFG in a sphere of
5%MgO:PPLN with a pump at 1.064 µm; λ stands for the signal
or idler wavelengths plotted as a function of θ at φ = 0◦.

Type I is obtained by choosing an ordinary polarization for the signal beam since type II

corresponds to an extraordinary polarized signal beam. In both cases, we notice that an

idler beam can be generated in the second atmospheric transparency band.
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3.3.3 Refinement of the Sellmeier equations of 5%MgO:PPLN

From the momentum conservation 1.27, our experimental data are relatively well modelized

by using the following Sellmeier equation with the coefficients of Ref. [22] given in Tab.

3.1:

ni(λ) =

(

Ai +
Bi

λ2 − Ci
− Diλ2

)1/2

(3.1)

where i = (o, e) is relative to the ordinary and extraordinary principal refractive indices.

Sellmeier coefficients Reference [22] Present work [32]
Ao 4.87620 4.89789
Bo 0.11554 0.14720
Co 0.04674 0.02719
Do 0.03312 0.03305
Ae 4.54690 4.52222
Be 0.09478 0.09194
Ce 0.04439 0.07475
De 0.02672 0.03647

Table 3.1: Sellmeier coefficients relative to the ordinary (o) and
extraordinary (e) principal refractive indices of 5%MgO:PPLN at
T = 22◦C.

But the simultaneous fit of all our experimental data allowed us to refine the Sellmeier

equations of this material. We used a non linear least-squares fit, and Eqs. 1.27 and 3.1.

The fit was a numerical calculus using the Levenberg-Marquardt algorithm encoded with

Matlab: it led to a really much better agreement with our experimental data compared

with calcultations from the previous Sellmeier equations of Refs. [22] and [33] as shown in

Fig. 3.8 and 3.9. The corresponding Sellmeier coefficients are given in Tab. 3.1; they are

the best set of coefficients for the considered sample [32]. Since the precision of our angular

measurements is ±1◦, the new refractive indices have a typical accuracy ∆no,e/no,e better

than 10−4 over the entire transparency range of the crystal, which could be easily verified

by numerical calculations using Eq. 1.27.
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Figure 3.8: Type I SHG AQPM tuning curves of 5%MgO:PPLN with
Λ = 32.2 µm; the fundamental wavelength λω is given as a function
of θ at φ = 0◦ and φ = 90◦. Dots stand for experimental data, dashed
lines and dashed doted lines correspond to calculations from Sellmeier
equations of Refs. [22] and [33] respectively and continuous lines are
the fit of the experimental data. Vertical tangents of the curves at
points A and C correspond to spectrally non critical interactions.
Points D and E correspond to the x direction while points D′ and
E ′ correspond to the y direction.
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Figure 3.9: Type I and II DFG AQPM tuning curves of
5%MgO:PPLN with Λ = 32.2 µm with a pump at 1.064 µm; λ stands
for the signal or idler wavelengths plotted as a function of θ at φ = 0◦.
The dots correspond to experimental data, the dashed lines and the
dashed doted lines correspond to calculations from Sellmeier equa-
tions of Refs. [22] and [33] respectively and the continuous lines to
the fit of the experimental data. Points F and G correspond to the
x direction.
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3.3.4 General analysis of the AQPM tuning range of 5%MgO:PPLN

The benefit of AQPM over BPM in term of tuning potentiality can be evaluated in Fig.

3.8 in the case of type I SHG. While BPM allows a tunability of the wavelength from

1.02 µm (dot D’) to 3.88 µm (dot E’), AQPM allows a tunability between 0.96 µm (dot D)

and 5.45 µm (dot E). The maximum tuning range of AQPM is obtained in the xz plane

corresponding to φ = 0◦. It is also interesting to compare this tuning range of AQPM

in the xz plane with the tuning range of the xy plane that could be interesting since the

corresponding walk-off angle is nil. This comparison is shown in Fig. 3.10.
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Figure 3.10: Calculated tuning curves of type I SHG in the xz plane
(a) and in the xy plane (b) of 5%MgO:PPLN with Λ = 32.2 µm.

We notice that AQPM in the xy plane is far less attractive in term of tunability since it does

not enable to realize type I SHG in the range 1.02 − 3.88 µm, which exactly corresponds

to the range accessible by pure BPM. This limitation is due to the fact that there is no

tunability of the birefringence in the xy plane.

The wavelength range between points D and E of Fig. 3.8 is obtained with a grating

period of Λ = 32.2 µm corresponding to the sample we studied, but it can be also interested

to see how this interval evolves as a function of the principal grating period Λ. From our

refined Sellmeier equations given in table 3.1, it is possible to have a reliable full ”picture”

of the tunability of 5%MgO:PPLN [32]. The example of SHG is given in Fig. 3.11 where

the distance between the upper part and the lower part of the curves at a given Λ gives the
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maximum wavelength range which is accessible for a given type by varying the θ angle in

the xz plane.

5 10 15 20 25 30 35
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

 
 (

m
)

  m)

IV

32.2

III

E

D

Figure 3.11: Calculated tuning ranges of types I, II and IV SHG in
the xz plane of 5%MgO:PPLN as a function of the principal grating
period Λ. λω is the fundamental wavelength. Points D and E refer
to particular points of the tuning curve of Fig. 3.8.

Fig. 3.11 shows that types I and II SHG are allowed for any value of Λ, while type IV SHG

(λe
ω, λe

ω, λe
2ω) is possible only if Λ ≤ 24 µm.

Furthermore, we see that it is necessary to have Λ ≤ 13 µm in order to reach λω = 5.5 µm,

which is the infrared cutoff wavelength of the crystal. For more legibility, we did not plot

the curves relative to types V (λo
ω, λo

ω, λo
2ω), VI ≡ VII (λo

ω, λe
ω, λo

2ω) and VIII (λe
ω, λe

ω, λo
2ω)

SHG; type V has a behaviour comparable to the one of type IV, and the other types are

possible only at very small periodicities that are not yet accessible because of technological

difficulties. Fig. 3.11 also shows that type I is the most favourable configuration for a broad

wavelength tuning of the SHG.
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Fig. 3.12 illustrates the case of DFG. It is obtained using Eq. 1.27 and 3.1 and our Sellmeier

coefficients given in Tab. 3.1.
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Figure 3.12: Calculated tuning ranges of types I, II and IV DFG in
the xz plane of 5%MgO:PPLN as a function of the principal grating
period Λ. Points F and G refer to particular points of the tuning
curve of Fig. 3.9.

We see that type I and type II are also the most favourable for wavelength tuning: the

infrared cutoff can be reached with a grating of Λ = 25 µm with type I as against Λ = 16 µm

with type IV. It is also important to note that the larger the grating is, the thicker the sample

can be grown. But the superiority of types I and II must be moderated by the fact that

the corresponding effective coefficient involving dyyy and dzxx is of about seven times lower

than dzzz that correponds to type IV [8], as it will be shown in paragraph 3.5.
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3.4 Acceptances

We have shown that AQPM opens new possibilities in term of acceptances with respect to

BPM and QPM. Measurements were done to prove the interesting properties predicted by

the theory [32, 34].

3.4.1 Spectral acceptance

The spectral acceptance was measured along each determined type I SHG AQPM directions

given in Fig. 3.3. For that we measured the variation of the intensity of the generated wave

as a function of the fundamental wavelength λω. An example of such a measurement is

shown in Fig. 3.13.
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Figure 3.13: Measured AQPM type I second harmonic intensity I2ω

as a function of the fundamental wavelength λω in the direction (θ =
31.4◦, φ = 0◦) of the 5%MgO:PPLN sphere of diameter 3.99 mm and
grating period Λ = 32.2 µm; the AQPM fundamental wavelength is
λω = 2.275 µm.
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Fig. 3.14 shows the measured spectral acceptance along the whole AQPM curve of type I

SHG at φ = 0◦ [32]. In the xz plane, Lδλω exhibits a maximum value of about 0.08 cm · µm
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Figure 3.14: Type I SHG AQPM spectral acceptance measured in
the xz plane (φ = 0◦) and yz plane (φ = 90◦) of a 5%MgO:PPLN
sphere with Λ = 32.2 µm as a function of the fundamental wavelength
λω. The doted line is a guide for the eye. The peak values denoted
by A and C correspond to the vertical tangents of the two tuning
curves of Fig. 3.8.

at λω = 2.02 µm; this particular wavelength corresponds to the vertical slope of the curve

of Fig. 3.8 marked out with dot A. Furthermore, by varying the φ angle from 0◦ to 90◦,

the wavelength associated to the vertical slope reaches λω = 1.8 µm for φ = 90◦, as shown

in Fig. 3.14. In this way, at Λ = 32.2 µm and thanks to a continuous variation of the φ

angle, AQPM type I SHG can exhibit a maximal acceptance over a wide spectral range, i.e.

2.09 µm < λω < 2.22 µm. These experimental results were confirmed by using the refined

Sellmeier equations with the coefficients given in table 3.1, as shown in Fig. 3.15 [34].
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Figure 3.15: Calculated AQPM curves of type I SHG in
5%MgO:PPLN with Λ = 32.2 µm at three different φ angles (a) and
their correponding spectral acceptances (b). Points A, B and C are
three points of the continuum for which the spectral acceptance is
maximal.
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The tuning of the wavelength allowing a maximal spectral acceptance can be well understood

by considering the expression of the AQPM phase-mismatch ∆kAQPM given by Eq. 1.27.

One can distinguish the term ∆kcrystal specific to the crystal, and ∆kgrating depending only

on the grating periodicity [34]:

∆kcrystal = 2π

[

n(λ3, θ)

λ3

− n(λ1, θ)

λ1

− n(λ2, θ)

λ2

]

∆kgrating = 2π

∣

∣

∣

∣

Λ

sin(θ) cos(φ)

∣

∣

∣

∣

(3.2)

Then by expanding ∆k in a Taylor series following Eq. 1.28, it comes:

2π

L
=

(

∂(∆kcrystal + ∆kgrating)

∂λ

)

λAQPM

δλ +
1

2

(

∂2(∆kcrystal + ∆kgrating)

∂λ2

)

λAQPM

(δλ)2 + . . .

(3.3)

The grating term ∆kgrating does not depend on the wavelength, so that:

(

∂∆kgrating

∂λ

)

=

(

∂2∆kgrating

∂λ2

)

= 0 (3.4)

Thus Eq. 3.3 becomes:

2π

L
=

(

∂(∆kcrystal)

∂λ

)

λ

δλ +
1

2

(

∂2(∆kcrystal)

∂λ2

)

λ

(δλ)2 + . . . (3.5)

It is then interesting to come back to the tuning curve of Fig. 3.15. According to Eq. 1.29,

the A,B,C points correspond to a spectral non-criticity, defined by:

(

∂(∆kcrystal)

∂λ

)

λA,B,C

= 0 (3.6)

In these particular situations, the value of the spectral acceptance is maximum. Note that

the crystal contribution ∆kcrystal does not vary as a function of φ since 5%MgO:PPLN is an

uniaxial medium. But ∆kgrating does, as shown by Eq. 1.26. It could then seem paradoxal

to have a variation of the wavelength corresponding to a maximal spectral acceptance, e.g.

λA 6= λB 6= λC , with the φ angle. Actually it is due to the fact that the tuning curves

depend on φ, which comes from the variation of the effective grating period Λeff with φ

according to Eq. 1.26. The same kind of calculations were performed for type II SHG and

types I and II DFG using our refined Sellmeier equations. The corresponding curves are
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plotted in Figs. 3.16 and 3.17 [34].
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Figure 3.16: Calculated AQPM curves of type II SHG in
5%MgO:PPLN with Λ = 32.2 µm at two different angles (a), and
their corresponding spectral acceptances (b). Points A and B are
two points of the continuum for which the spectral acceptance is
maximal.
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Figure 3.17: Calculated AQPM cures of types I and II DFG at three
different φ angles (a), and their corresponding spectral acceptances
(b). Points (A, A′), (B, B′) and (C, C ′) belong to the continuum for
which the spectral acceptance is maximal.
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It is also interesting to study how the interval over which the maximal spectral acceptance

can be tuned evolves with the grating period. The hatched zones in Fig. 3.18 show how

this interval increases as the grating period decreases, and how types I and II exhibit ranges

that are complementary and wider than those of type IV. Such large spectral acceptance

ranges also exist for DFG and are presented in Fig. 3.19.
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Figure 3.18: Fundamental wavelength tuning ranges (continuous
lines) and maximal acceptance domains (hatched zones) of types I,
II and IV AQPM SHG calculated in the xz plane of 5%MgO:PPLN,
as a function of the grating periodicity Λ. Dots A, B, C, D refer to
particular points of the tuning curves of Fig. 3.8.
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Figure 3.19: Signal and idler wavelengths tuning ranges (continuous
lines) and maximal acceptance domains (hatched zones) of types I,
II and IV AQPM DFG calculated in the xz plane of 5%MgO:PPLN,
as a function of the grating periodicity Λ. The pump wavelength is
λp = 1.064 µm. Dots F and G refer to particular points of the tuning
curves of Fig. 3.9.
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3.4.2 Angular acceptances

At the opposite of the spectral acceptance, the angular acceptances Lδθ and Lδφ have a

contribution of the grating coming from both the first and second orders of the Taylor series

expansion, i.e.:
(

∂(∆kgrating)

∂θ

)

θAQPM

= −cos(θAQPM) cos(φAQPM)

Λ

(

∂(∆kgrating)

∂φ

)

φAQPM

=
sin(θAQPM) sin(φAQPM)

Λ

(3.7)

and

(

∂2(∆kgrating)

∂θ2

)

θAQPM

=

(

∂2(∆kgrating)

∂φ2

)

φAQPM

=
sin(θAQPM) cos(φAQPM)

Λ
(3.8)

Furthermore due to the uniaxial symmetry, it comes:

(

∂(∆kcrystal)

∂φ

)

φAQPM

=

(

∂2(∆kcrystal)

∂φ2

)

φAQPM

= 0 (3.9)

Then Lδφ only depends on the grating, while Lδθ is governed by both the refractive in-

dices and the grating. The angular acceptances have been numerically calculated from the

sinc2
(

∆k(θ,φ)·L
2

)

function for type I SHG (Fig. 3.20), type II SHG (Fig. 3.21), type I DFG

(Fig. 3.22) and type II DFG (Fig. 3.23). All the Lδθ acceptances are lower at φ = 0◦ than

at φ = 90◦, showing that the effect of the grating period is not favorable for the angular

bandwidth. Moreover, unlike BPM for which it was infinite, the Lδφ acceptance is limited

to values which are comparable to the Lδθ acceptance.
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Figure 3.20: Angular acceptances of type I SHG in 5%MgO:PPLN
crystal with Λ = 32.2 µm. (a) θ acceptance calculated as a function
of the fundamental wavelength corresponding to the AQPM curves
of Fig. 3.15(a); (b) φ acceptance calculated as a function of the
fundamental wavelength at a given θ angle. L is the length of the
crystal.
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Figure 3.21: Angular acceptances of type II SHG in 5%MgO:PPLN
crystal with Λ = 32.2 µm. (a) θ acceptance calculated as a function
of the fundamental wavelength corresponding to the AQPM curves
of Fig. 3.16(a).; (b) φ acceptance calculated as a function of the
fundamental wavelength at a given θ angle. L is the length of the
crystal.
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Figure 3.22: Angular acceptances of type I DFG in 5%MgO:PPLN
crystal with Λ = 32.2 µm. (a) θ acceptance calculated as a function
of the fundamental wavelength corresponding to the tuning curves of
Fig. 3.17; (b) φ acceptance calculated as a function of the fundamen-
tal wavelength at a given θ angle. L is the length of the crystal.

79



CHAPTER 3. Angular quasi-phase-matching in 5%MgO:PPLN

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.00

0.02

0.04

0.06

0.08

0.10

 ( m)

L.
 (c

m
.rd

)

 = 90°

 = 60°

 = 0°

(a)

1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 ( m)

 L
.

 (c
m

.rd
)

 = 40°

(b)

Figure 3.23: Angular acceptances of type II DFG in 5%MgO:PPLN
crystal with Λ = 32.2 µm. (a) θ acceptance calculated as a function
of the fundamental wavelength corresponding to the tuning curves of
Fig. 3.17; (b) φ acceptance calculated as a function of the fundamen-
tal wavelength at a given θ angle. L is the length of the crystal.
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3.5 Effective coefficient

Even if momentum conservation can be theoritically satisfied for the eight possible combi-

nations of polarization, it was necessary to ensure that the reversal of the crystal structure

in 5%MgO:PPLN gives rise to a reversal of the sign of all the second order electric suscepti-

bility tensor coefficients. The poling causes a 180◦ rotation of the crystal structure around

the x-axis, as shown in Fig. 3.24.

y

z

 y
poling

x

y

x

 z

y

Figure 3.24: Reversal of y-axis and z-axis of 5%MgO:PPLN due to
the rotation of the crystal structure around the x-axis.

The sign of a nonlinear coefficient is changed only if it exhibits an odd number of x, y or

z Cartesian indices. According to this consideration, it appears that the five independent

nonlinear coefficients of 5%MgO:PPLN, i.e. χxxy = χxyx = χyxx = −χyyy, χxxz = χyyz ,

χxzx = χyzy, χzxx = χzyy, χzzz [5], change their sign as the crystal structure is reversed.

In table 3.2 are given the expressions of the effective coefficients of the eight possible con-

figurations of polarization using Eq. 1.20 multiplied by the factor 2/π specific to AQPM

[8, 34], and where the χijk coefficients are replaced by the standard coefficients dijk defined

by dijk = χijk/2 [5].















































dyyy = −dxxy = −dxyx = −dyxx = 2.6 pm/V

dxxz = dyyz = 3.8 pm/V

dxzx = dyzy = 3.8 pm/V

dzxx = dzyy = 3.8 pm/V

dzzz = 21.6 pm/V

(3.10)

Figures 3.25 and 3.26 show the variation of the effective coefficient as a function of the

SHG and DFG AQPM directions calculated from the expressions of table 3.2, the refined
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Type
Effective coefficient deff(ω3 ω1 ω2)

I
2π−1

[

dyyy cos(θ + ρ3) sin(φ)
(

1 − 4 cos2(φ)
)

+ dzxx sin(θ + ρ3)
]

(e o o)
II

2π−1
[

dyyy cos(θ + ρ3) cos(θ + ρ1) cos(φ)
(

4 sin2(φ) − 1
)]

(e e o)
III

2π−1
[

dyyy cos(θ + ρ3) cos(θ + ρ2) cos(φ)
(

4 sin2(φ) − 1
)]

(e o e)

2π−1
[

− dyyy cos(θ + ρ3) cos(θ + ρ1) cos(θ + ρ2) sin(φ)
(

1 − 4 cos2(φ)
)

IV
+dxzx cos(θ + ρ3) sin(θ + ρ1) cos(θ + ρ2) + dxxz cos(θ + ρ3) cos(θ + ρ1) sin(θ + ρ2)(e e e)

+dzxx sin(θ + ρ3) sin(θ + ρ1) cos(θ + ρ2) + dzzz sin(θ + ρ3) sin(θ + ρ1) sin(θ + ρ2)
]

V
2π−1

[

dyyy cos(φ)
(

1 − 4 sin2(φ)
)]

(o o o)
VI

2π−1
[

dyyy cos(θ + ρ1) sin(φ)
(

1 − 4 cos2(φ)
)

+ dxzx sin(θ + ρ1)
]

(o e o)
VII

2π−1
[

dyyy cos(θ + ρ2) sin(φ)
(

1 − 4 cos2(φ)
)

+ dxxz sin(θ + ρ2)
]

(o o e)
VIII

2π−1
[

dyyy cos(θ + ρ1) cos(θ + ρ2) cos(φ)
(

4 sin2(φ) − 1
)]

(o e e)

Table 3.2: Effective coefficients associated to the eight types of
AQPM in 5%MgO:PPLN [34].(ω1, ω2, ω3) are the circular frequencies
of the interacting waves and (ρ1, ρ2, ρ3) are the corresponding double
refraction angles. (o) and (e) refer to the ordinary and extraordinary
polarizations. (θ, φ) are the angles of spherical coordinates of the
direction of propagation. The dijk coefficients are the second order
electric susceptibility tensor coefficients.

Sellmeier equations given in table 3.1, and the values of the dijk coefficients of Eq. 3.10 [8].

We see that the effective coefficient strongly depends on the φ angle, and that it vanishes in

some cases. For example, Fig. 3.25 shows that the effective coefficient is zero at φ = 30◦ in

the case of type I SHG. Furthermore, the values of d2
eff of type I and II SHG or DFG are low

in comparison with the usual type IV for which d2
eff > 400 pm2/V2 along the x direction.
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Figure 3.25: Square of the effective coefficient of type I SHG (a)
and type II SHG (b) for different fundamental wavelengths λω as
a function of the spherical φ angles of the AQPM directions in
5%MgO:PPLN crystal with Λ = 32.2 µm. The dot at φ = 90◦ corre-
sponds to BPM.
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Figure 3.26: Square of the effective coefficient of type I DFG (a)
and type II DFG (b) for different fundamental wavelengths λω as
a function of the spherical φ angles of the AQPM directions in
5%MgO:PPLN crystal with Λ = 32.2 µm. The dot at φ = 90◦ corre-
sponds to BPM.
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3.6 Trade-off between conversion efficiency and accep-

tance bandwidth

Laser pulses that are tunable in wavelength in the femtosecond regime would be of particular

interest for many applications like time-resolved spectroscopy for example. The availability

of high energy femtosecond lasers allows to consider parametric interaction in this time

domain. However, frequency conversion by keeping an ultrashort pulse is a real challenge.

Indeed, achieving phase-matching for all the frequencies requires a large spectral acceptance

since ultrashort pulses have a wide spectral bandwidth. Actually, for bandwidth-limited

Gaussian-shaped pulses, the time-bandwidth product is [35]:

δν · δτ ≈ 0.44 (3.11)

Given the pulse duration δτ , the minimum bandwidth δν that is necessary for maintaining

this duration can be calculated thanks to Eq. 3.11. For example, pulses of 1 ns, 1 ps and

1 fs have respectively bandwidths of 440 MHz, 440 GHz and 440 · 103 GHz. If the pulse has

a wavelength around 1 µm, it correponds respectively to bandwidths of about 1.510−3 nm,

1.5 nm and 1500 nm.

The easiest way to increase the spectral bandwidth of a nonlinear crystal is to reduce its

length since the spectral acceptance is inversely proportional to its length [36]. However,

reducing the length of the nonlinear crystal causes a decrease of the efficiency which is

inversely proportional to the square of the length (according to Eq. 1.22). In conclusion,

while dealing with ultra-short pulses, there is a trade-off between conversion efficiency and

spectral bandwidth.

Section 3.4.1 showed that AQPM exhibits interesting properties in term of spectral band-

width. Now, these properties have to be confronted to the effective coefficients given in

section 3.5.

From ν = c/λ, we can deduce the link between the spectral acceptance Lδλ [cm · µm] and

the spectral bandwidth δν [Hz]:

δν =
c

L λ2
(Lδλ) (3.12)
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Eqs. 3.11 and 3.12 allow to calculate the maximum length of crystal L = Lmax that can be

used without lengthening the pulse duration:

Lmax =
c δτ

0.44 λ2
(Lδλ) (3.13)

According to Eqs. 1.22 and 3.13, and assuming a group velocity matching, we have:

P3ω ∝ deff
2
(

Lmaxδλ
)2

(3.14)

Consequently, the relevant quantity for the present purpose is the product (Lmaxδλ)2deff
2.

Figure 3.27 gives the example of the calculation of (Lmaxδλ)2deff
2 in the case of type I SHG

corresponding to the curves of Figs. 3.15(a) and 3.15(b).
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Figure 3.27: Product [(Lδλ)deff]
2 as a function of different φ an-

gles for type I SHG. deff(θ, φ) is calculated from Table 3.2; θ varies
according to the tuning curves given in Fig. 3.15(a).

It appears that it is more interesting to perform type I SHG in the yz plane, which

corresponds to BPM when the fundamental wavelength λω is below 2.02 µm. But for

2.02 µm < λω < 2.23 µm, it is preferable to use AQPM by taking advantage of the maximal

spectral acceptance continuum ranging below φ = 90◦.
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3.7 Conclusion

The experiments done in a 5%MgO:PPLN sphere with a grating period Λ = 32.2 µm allowed

first to validate the AQPM theory, with in particular the demonstration of a continuum of

directions allowing a giant spectral acceptance. They also allowed us to refine the Sellmeier

equations of this crystal, which is of crucial importance as well for fixed-wavelength appli-

cations as for tunable devices. Furthermore, we have shown that the usual combination of

polarization, called type IV in this work, that solicits the stronger element of the second-

order electric susceptibility, is not necessary the best one in term of spectral acceptance.

There is actually a complicated compromise between efficiency and spectral acceptances.

The main limitation of AQPM is that it requires thick periodically-poled media in order to

have a sufficient interaction length in any direction. The problem of the limited thickness

of the samples is due to the impossibility to overcome the cohercitif field with electric fields

on more than few millimeters. The resolution of this problem could come from a direct

growth from a periodically-poled seed that would conserve the poling during the growth.

This possibility has been demonstrated recently on PPKTP in the group of Néel Institute.

As a perspective, AQPM may also be applied to PPKTP [27], PPLT [28] and PPKN

[37] since they exhibit nonlinear coefficients with the same order of magnitude than those

of PPLN.
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Chapter 4

Optical properties of CdSiP2

4.1 State of the art

4.1.1 Introduction

Nowadays, solid-state lasers allow to cover a wide spectral band from ultraviolet to infrared

light, partly thanks to parametric devices based on frequency conversion in nonlinear crys-

tals. However there are not yet satisfying solutions in order to produce high energetic pulses

in the range of wavelengths 8− 12 µm. This interval corresponds to a transparency band of

the atmosphere, called third band (band III), which is interesting for various applications

like detection of atmospheric pollutants or nerve gases, infrared spectroscopy, communica-

tion between satellites, biomedicine, laser surgery, teledetection, and counter-measure.

With no claim to be exhaustive, this state of the art presents the main characteritics of the

existing sources that already exist in this interval of wavelengths. A first part is dedicated

to fixed-wavelength lasers that emit in the 8-12 µm band, in particular CO2 lasers, lead salt

laser diodes and quantum cascade lasers. A second part is focused on optical parametric

sources that usually consist on the association of a fixed-wavelength laser and a nonlinear

crystal, such sources enabling a broad spectral tunability. The generally-used nonlinear

crystals and the promising ones are then described into details in order to understand the

choice that was done to work on CdSiP2.
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4.1.2 Lasers

Carbon dioxide lasers (CO2 lasers) emit around 10 µm. They can work either in continuous

wave (CW) or in nanosecond regime at very high power, until several kilowatts. They are

widely used for metal cutting, surgery and LIDAR applications. These lasers can also serve

as pump source for parametric processes. In the literature, a lot of nonlinear materials for

the infrared region are characterized by second-harmonic generation (SHG) measurements

of a CO2 laser [38, 39]. In theses examples the power of the CO2 laser varies from 10 watts

CW to 10 kilowatts of peak power in nanosecond regime.

Lead salt laser diodes are made of PbTe, PbSe or PbS. The photons come from a tran-

sition of electrons from the conduction band to the valence band. Since the energy gap

between these two bands is low in such materials, i.e. between 0.1 eV and 0.3 eV, the

associated emission of light occurs in the infrared. The main problem of these lasers is the

necessity to work at cryogenic temperatures in order to be able to work in CW regime, in

particular because of the non radiative Auger recombination [40]. Furthermore, the output

power does not exceed the milliwatt level at wavelenghs ranging between 8 µm and 12 µm.

As a consequence, the lead salt laser diodes are mainly used for spectroscopy.

Since they were invented in 1994, quantum cascade lasers (QCL) have shown better per-

formance than lead salt lasers. QCL are semiconductor lasers that emit in the infrared.

The emission is realized by electronic intersubband transitions in heterostructures. They

have several advantages. First, the energy levels do not depend on the gap of the semi-

conductor itself but depend on the thickness of the layers leading to an easy way to tune

the QCL wavelength. Then it is not the recombination of an electron with a hole that

generate a photon as in a classical diode. Actually in a QCL, a single electron allows to

generate about 30 photons by a phenomenon of cascade. Thus the quantum efficiency is

greater than 100%. QCL show output powers that are greater than lead salt laser diodes.

Beyond 8 µm, an output power of 350 mW has been demonstrated at room temperature

[41]. Another advantage of QCL is that they can emit until terahertz radiation. However

QCL have some drawbacks: the major part of the electric energy is converted into heat,

so that it is difficult for them to emit in CW regime at room temperature [42]. Output

powers are low compared with solid state lasers, in the order of ten milliwatts (15 mW by

Hamamatsu [43]). Finally these lasers are not stricly speaking tunable because one needs

to change the chemical composition of the heterostructure in order to change the wavelength.
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As a conclusion, lead salt laser diodes and QCL are tunable sources in the infrared. They

emit between 8 µm and 12 µm, but there tunability is limited and they do not allow high

peak powers.

4.1.3 Optical parametric sources

4.1.3.1 General considerations

Optical parametric oscillators (OPO) are coherent light sources that present the advantage

to be easily and widely tunable in wavelength, and they are commonly used to generate

waves at wavelengths for which no laser exists. An OPO is based on a nonlinear crystal

placed into an optical cavity allowing the resonance at the signal wavelength (λs) or at the

idler wavelength (λi), these waves being generated by a fixed-wavelength laser called the

pump wavelength (λp) [44, 45]. Oscillation occurs when the pump power reaches a threshold

level, as in a laser. There are different ways of realizing the tunability when λp is fixed. In

the case of BPM, the rotation of the crystal with respect to the pump beam allows a vari-

ation of λs and λp by successively addressing the continuum of phase-matching directions

in the plane perpendicular to the rotation axis. In the case of quasi-phase-matching, the

methods consist in translating a multi-grating sample or translating a fan-shaped grating

or by rotating a cylinder having a single grating as shown respectively in Figs. 3.1(b),

3.1(a), and 3.1(c) of chapter 3. The tunability can also be obtained by varying λp or the

temperature of the crystal.

The main difficulty to overcome in order to realize a phase-matched or quasi-phase-matched

OPO is to find a nonlinear crystal having low absorption at λp and λp/2 in order to resist to

one-photon and two-photons pump absorption respectively. Furthermore, the optical dam-

age threshold has to be high enough to support high peak-power energies. The dimension

of the crystal is also an important criterium for this purpose because the fluence can be

reduced by increasing the beam diameter. Moreover, for an industrial implementation, the

disponibility, the cost and the non toxicity of the crystal also become important parameters.

In this context, it is also important to have a nonlinear crystal where BPM or QPM enable

the pumping by a standard and reliable laser like Nd:YAG emitting at 1.064 µm, fiber lasers

doped with Erbium that generate at 1.55 µm, or the eye-safe OPOs based on KTP that

emit at 1.570 µm.
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The most interesting nonlinear crystals to work within the 8−12 µm region are semiconduc-

tor materials that belong to two families: chalcopyrites (II-IV-V2 and I-III-VI2) and III-V

or II-VI semiconductors. This section is aimed at giving a brief description of the crystals

that are commonly used in commercial sources (AgGaS2, AgGaSe2, ZnGeP2, CdSe), and of

promising crystals (GaN, ZnSe, PPGaN, OPGaAs, CdSiP2). A more exhaustive study of

nonlinear crystals for the infrared can be found in reference [46].

4.1.3.2 AgGaS2 and AgGaSe2

AgGaS2 (AGS) and AgGaSe2 (AGSe) are two interesting compounds because they can be

pumped at 1.064 µm, they are transparent beyond 12 µm, and their nonlinear coefficient is

of about 35 pm/V [47]. They have the drawback to have a low optical damage threshold:

1.4 MW/cm2 for AgGaS2 and 7 MW/cm2 for AgGaSe2 at 2.097 µm, at a pulse duration

of 180 ns [48]. At 1.064 µm, a damage threshold of 11 MW/cm2 was measured [49]. Be-

cause of the the low value of this optical damage threshold, these materials cannot be

used at high power. Nevertheless they are commonly used in industrial tunable sources

from 2 µm to 12 µm. As an example, the Lithuanian company Light Conversion offers

for sale sources based on AgGaS2 that deliver between 10 µJ and 100 µJ over 15 ps from

a difference-frequency generation between a wave at 1.064 µm and a tunable wave coming

from an optical parametric generator based on a LBO crystal.

4.1.3.3 ZnGeP2

ZnGeP2 has a high nonlinear coefficient of 75 pm/V [50] and a high optical damage threshold

of 35 MW/cm2 at 2.93 µm over 100 ns. Its principal drawback is that it cannot be pumped

at less than 2 µm because of a high absorption. Thus OPOs have been realized using as a

pump either Erbium lasers at 2.93 µm [50] or KTP-based OPOs [51] or PPLN-based OPOs

[52]. The devices are tunable between 3.8 µm and 12.4 µm, and the quantum efficiency

reaches 35 % [50].

4.1.3.4 Cadmium selenide

Among all the birefringent crystals, cadmium selenide (CdSe) has been the most studied in

order to realize frequency conversion in the 8-12 µm range. It holds several advantages: its

growth is well controlled, it is transparent from 0.75 µm to 24 µm, its nonlinear coefficient is

comfortable, i.e. 18 pm/V, and its optical damage threshold is high: 40 MW/cm2 for 20 ns
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pulses at 2 µm. In term of tunability, it is possible to cover two disonnected spectral bands:

from 2 µm to 5.5 µm and from 7.5 µm until the infrared cutoff. Even if many OPOs have

been demonstrated, with a generated power reaching 1 W at around 8 µm [53], CdSe has

the huge drawback of not satisfying the phase-matching condition if it is pumped at less

than 1.8 µm because its birefringency is too low in that spectral range. It is thus impossible

to pump CdSe with a common source at 1.064 µm or 1.570 µm.

4.1.3.5 Gallium nitride and periodically-poled gallium nitride

Gallium nitride (GaN) seems also interesting because it is birefingent and has a wide trans-

parency window. Its large bandgap allows him to be transparent until 0.36 µm on the UV

side. However it has few drawbacks. In particular its growth is not well-controlled: it is

tough to obtain thicknesses that excess the millimeter. In addition, its birefringency is low

and it absorbs above 10 µm. The refractive indices of GaN have only been measured on thin

films of few microns and not beyond 5 µm [54, 55]. Moreover the Sellmeier equations can

differ a lot from a sample to another according to the growth method or the doping con-

centration [56]. We found no reference dealing with the measurement of the transparency

window of bulk GaN. The nonlinear coefficient of GaN is equal to 5.3 pm/V when measured

on thin films by a Maker fringes experiment [5]. The principal asset of GaN is to be prone

to intensive research for optoelectronic use [57]. No parametric device has yet been realized

with bulk GaN.

Periodically-poled gallium nitride (PP-GaN) is grown by molecular beam epitaxy (MBE).

As a consequence, the final thickness is limited to few microns. Experiments of second-

harmonic generation have been performed at around 1.66 µm [58]. In these experiments,

9 µW of second-harmonic have been generated from 100 W at 1658.6 nm.

4.1.3.6 Zinc selenide

Zinc selenide (ZnSe) has an excellent transparency, from 0.5 to 20 µm [59]. It is a widely-

used material of the infrared but it is optically isotropic. As a result quasi-phase-matching

must be used. ZnSe has the assets to possess a high nonlinear susceptibility of 75 pm/V

[39] and a high optical damage threshold, between 2 and 5 J/cm2 [59]. In order to realize

the periodical sign inversion of the nonlinear coefficient, it is possible to stick polished slices

by the diffusion bonding technique, each slice being rotated of 180◦ with respect to the

previous one. The problem of this method is technological difficulty of the sticking process
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leading to losses and the interfaces. Quasi-phase-matching by Fresnel reflections has been

tested recently to overcome this problem in ZnSe:Cr [60].

4.1.3.7 Orientation-patterned gallium arsenide

Gallium arsenide (GaAs) is optically isotropic. However it holds interesting characteristics

for parametric optics in the infrared because it is transparent from 0.9 up to 17 µm and has

a very high second order nonlinear coefficient, in the order of 94 pm/V [61]. Moreover the

growth of GaAs is well domesticated, in particular thanks to its use in optoelectronics. Huge

efforts have been done in order to periodically reverse the sigh of the nonlinear coefficient

leading to the so-called orientation-patterned gallium arsenide (OP-GaAs). Indeed since

GaAs is not ferroelectric, it is not possible to reverse the polarity by applying an electric

fiels. The reversal of the structure can be realized either by diffusion bonding as for ZnSe,

with the same drawbacks, or by MBE followed by hybrid vapor phase epitaxy (HVPE). The

drawback of this latest technique is that the thickness remains low, in the order of 0.5 mm.

An OPO tunable from 2.28 to 9.14 µm has been demonstrated [62] as well as an OPG that

generates a continuum from 4.5 to 10.7 µm [63]. Quantum efficiencies reach 54% for output

energies of 3 µJ [62]. An OPO based on OP-GaAs has been newly demonstrated with a

record output power of 0.6 W from 2.4 W of pump power at 2 µm [64].

4.1.3.8 CdSiP2

CdSiP2 is a promising material which has been recently proposed for infrared frequency

conversion [65]. Its strong point is the bandgap energy, of about 2.2 eV, which makes it

transparent until 0.56 µm. On the infrared side, it is transparent up to 10 µm. CdSiP2 is a

negative uniaxial crystal with the same symmetry as KDP. Its nonlinear coefficient reaches

53 pm/V. Thanks to its high birefringency, of about 0.045, an OPO based on CdSiP2

pumped at 1.550 µm could be tunable between 2 µm and 10 µm. Frequency doubling of a

CO2 laser has been realized in CdSiP2 with an efficiency higher than 20% [65]. Recently

an OPO based on CdSiP2 was demonstrated, generating 470 µJ energy over 10 ns at about

6.2 µm [66]. Furthermore the thermal conductivity of CdSiP2 is 13.6 W/mK whereas it is

only 1 W/mK for AGS. Thus we can expect a higher optical damage threshold.
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4.1.4 Conclusion

Table 4.1 shows a comparison between CO2 lasers, quantum cascade lasers and parametric

sources for wavelengths beyond 8 µm [41]. While CO2 lasers are well-suited for cutting and

welding applications thanks to their very high powers, quantum cascade lasers have the

advantage to be compact but are limited in spectral tunability and in power levels. OPOs

are the ideal sources when a wide tunability and a high power are required. Nowadays, for

wavelengths higher than 8 µm, commercial OPOs are based on ZGP and AGS. They don’t

give a great satisfaction because their optical damage threshold is weak, which limits the

output power. Thus it is necessary to pursue the research on new promising materials like

CdSiP2, which is described in the following sections.

Type of source CO2 laser Quantum cascade lasers Parametric sources
Regime CW or quasi-CW CW or quasi-CW depending on the pump
Tunability 9.15 − 9.83 µm 8.4 − 10.4 µm [67] 8 − 12 µm

10.09 − 10.93 µm
Average power 400 W ∼ 500 mW ∼ 1 W

Table 4.1: Comparison between the performances of various laser
sources between 8 µm and 12 µm.

4.2 General characteristics of CdSiP2

CdSiP2 is a II-IV-V2 chalcopyrite semiconductor belonging to the space group 4̄2m. Its

band gap of 2.2 eV makes it transparent in the visible side until 0.56 µm [23]. It is a

negative uniaxial crystal with a birefringence ne − no ≈ −0.05, which is large enough for

realizing difference-frequency generation implying a beam at 1.064 µm or at 1.5 µm. The

growth of CdSiP2 was first realized in the 1970s using a molten tin flux, but the size of

the grown crystals was not sufficient to measure its linear and nonlinear optical properties

[68]. Recently, successful growth of large single crystals of CdSiP2 was achieved using

the horizontal gradient freeze technique (HGF) in the team of Peter Schunemann at BAE

Systems [69]. Infrared absorption spectra have shown a good transparency in the 3− 5 µm

region, and intrinsic multi-phonon peaks at 7.1 µm and 7.65 µm. Furthermore, the nonlinear

coefficient of CdSiP2 was measured using SHG at 4.6 µm by comparison with a ZGP crystal

of the same thickness. These measurements showed a slight superiority of CdSiP2 over

ZGP: d36(CSP) = 84.5 pm/V while d36(ZGP) = 78.9 pm/V [23]. The result is surprising
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since the bandgap of CdSiP2 is higher than the one of ZGP, the nonlinear coefficient usually

decreasing when the bandgap increases. The principal refractive indices no and ne of CdSiP2

were measured using the minimum deviation technique in a 30◦ prism over the wavelength

range 0.66 − 5.0 µm. They led to the following Sellmeier equations [23]:























n2
o = 3.0811 +

6.2791 λ2

λ2 − 0.10452
− 0.0034888 λ2

n2
e = 3.4343 +

5.6137 λ2

λ2 − 0.11609
− 0.0034264 λ2

(4.1)

These Sellmeier equations predict an angular non critical phase-matching at 6.18 µm when

the crystal is pumped at 1.064 µm. This possibility was verified in 2009 with the frabrica-

tion of an OPO producing 470 µJ energy at about 6.2 µm [66].

The goal of the present work is to provide a complete optical characterization of this new

material in order to be able to estimate its full potentialities, especially for the generation

of coherent light in the third atmospheric band.

4.3 Measurement of the transparency window of CdSiP2

The absorption spectrum was measured from the visible to the far infrared thanks to two

different spectrometers. The first part of the spectrum was realized using a UV-Vis-NIR

Cary photospectrometer covering the 0.175 − 3.3 µm range. Two different detectors were

used: a photomultiplier tube from 0.175 to 0.8 µm and a cooled PbS photodiode from 0.8 to

3.3 µm. The second part of the spectrum was realized with a Bruker FT-IR spectrometer

covering the 3 − 20 µm range. The detection was done with a pyroelectric detector made

of deuterated triglycine sulfate (DTGS). The two spectra were connected and the whole

transparency range of CdSiP2 under unpolarized light is shown in Fig. 4.1. In the visible

side, the transparency rises from 5% at 0.62 µm to 40% at 0.74 µm. The band gap energy

Eg can be deduced from:

Eg =
hc

λc

(4.2)

where h ≈ 6.62×10−34 J · s is the Planck constant, c ≈ 3×108 m/s is the speed of light, and

λc is the cut-off wavelength. From the spectrum of Fig. 4.1, λc ranges between 0.62 µm and

0.74 µm, which corresponds from Eq. 4.2 to 1.6 eV and 2.0 eV, close to the 2.2 eV. Since
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CdSiP2 absorbs at 0.532 µm, two-photon absorption will not be avoided while pumping at

1.064 µm. Note that in semiconductors, the band gap energy increases whith decreasing

temperature, so that working at low temperature would lead to a decreasing of the cut-off

wavelength.
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Figure 4.1: Transparency window of CdSiP2

On the infrared side, the transparency decreases from 20% to 5% between 9.3 and 9.7 µm.

Thus, the whole second atmospheric transparency band (3-5 µm) is covered while the third

atmospheric transparency band (8-12 µm) is partly covered.

4.4 Measurement of the optical damage threshold of

CdSiP2

A comparative study between AgGaS2 and CdSiP2 have been realized on the same optical

bench. The two samples were cut with the same thickness of about 1 mm, and they were

polished with the same process and stuck one beneath the other on a translation stage, as

shown in Fig. 4.2. The damage threshold was investigated at 1.064 µm and 1.570 µm corre-

sponding to potential pump wavelengths. The pulse duration was 15 ps and the repetition

rate 10 Hz.
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Figure 4.2: Picture of the samples of AgGaS2 (right) and CdSiP2

(left) stuck one beneath the other for the measurement of the optical
damage threshold.

The fluence was calculated from the measurement of the pulse energy and of the section of

the beam. The energy was continuously controlled thanks to the association of a rotating

half-wave plate and a fixed polarizer; it was recorded with a pyroelectric detector. The

measurement of the surface of the beam was carried out with a pixel-array camera. The

recorded profile of the beam at 1.064 µm is shown on Fig. 4.3 where we see that the beam

profile is not Gaussian. The beam profile at 1.57 µm could not be measured because of

the limitation of the camera which is made of silicon. However, since these two beams

come from the same OPG-OPA stage, we considered they have got the same surface in first

approximation.

The surface was calculated by using the following formula which is generally used in case

of non Gaussian beams:

S(pixels) =

∑

i pi

pmax
(4.3)

where pi is the value of the energy measured on pixel i, and pmax is the value of the energy

of the pixel of maximal energy. The sum is done on all the pixels. The surface of the beam
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Figure 4.3: Transversal section of the laser beam at 1.064 µm
recorded whith a pixel-array camera.

in cm2 is then calculated by the knowledge of the size of one pixel:

S(cm2) = S(pixels) × size pixel( cm2) (4.4)

This calculation led to S = 0.576 cm2 and thus w0 = 1.354 mm from S = πw2
0. The beam

was then focused inside the crystal with a convergent lens. The surface of the beam at

the focal point was calculated from the measurement of the surface before focusing and the

following formula of Gaussian optics:

w′

0 =
λ f

π w0

(4.5)

where λ is the wavelength, w0 is the beam waist radius before the lens, and w′

0 is the beam

waist radius of the beam at the focal point. The focal length f was chosen in order to

ensure that the Rayleigh length zR, given by Eq. 2.6, was larger than the thickness e of the

samples, in order to assume a quasi-parallel propagation inside the crystal. According to

Eqs. 4.5 and 2.6, the condition zR > e writes:

f >

√

π n w2
0 e

λ
(4.6)
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With our samples of thickness e = 1 mm, this condition corresponds to f > 130.3 mm for

λ = 1.064 µm and f > 328.9 mm for λ = 1.570 µm. We chose f = 500 mm for the two

wavelengths.

The method of evaluation of the optical damage threshold was a “10 on 1” method consist-

ing in shooting 10 times at one point of the sample before looking if any damage occured.

The energy of the incident beam is gradually increased until damage is observed. Damage

impacts on the crystals were eyely observed under a microscope.

Damage threshold measurements are shown in Fig. 4.4 where we see that CdSiP2 is in-

ferior than AgGaS2, especially at 1.064 µm. It can be due to two-photon absorption in

CdSiP2 since it absorbs at 0.532 µm, contrary to AGS which is transparent until 0.46 µm.

But we see that CdSiP2 is also worse than AGS at λ = 1.570 µm, and that even if it should

not suffer from two-photon absorption at this wavelength.
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Figure 4.4: Comparison between the optical damage threshold of
CdSiP2 and AgGaS2 at the wavelengths 1.064 µm and 1.570 µm, and
a pulse duration of 15 ps.
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4.5 Measurement of the phase-matching directions

4.5.1 Experimental setup

In order to perform the sphere experiment, as described in chapter 2, it was necessary to

cut and polish CdSiP2 as a sphere. Our initial sample was a parallelepiped of dimensions

6.50×5.15×6.75 mm provided by Peter G. Schunemann of BAE Systems in the framework

of a collaboration. The cutting and polishing process was realized and led to a sphere of

diameter 4.99 mm shown in Fig. 4.5. The asphericity ∆R/R is better than 1%.

Figure 4.5: Picture of the sphere of CdSiP2 of diameter 4.99 mm and
asphericity better that 1% which was used for the sphere experiment.

We were able to determine the phase-matching directions of types I and II SHG, and types

II and III DFG. Note that type I DFG is not compatible with the dispersion of the refrac-

tive indices given by Eq. 4.1. The position of the ZnSe entrance lens was systematically

controlled in order to ensure a quasi-parallel propagation according to the fundamental

wavelength for SHG, and according to the pump wavelength at 1.064 µm for DFG. Further-

more, since the incident beam radius was winc ≈ 5.4 mm, we took care to keep an energy of

the incident beam(s) below Eth ≈ 45 µJ according to the calculation of chapter 2 shown in

Fig. 2.10(a).
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4.5.2 Calculation of the nonlinear coefficients

Before measuring phase-matching directions, it was necessary to study the variation of the

nonlinear coefficient χeff according to the angles of spherical coordinates (θ, φ) of the dielec-

tric frame. In particular, it was shown in chapter 1 that even if the φ angle has no infuence

on the phase-matching directions in an uniaxial crystal, it can have an influence on the

effective coefficient.

Many coefficients of the second order susceptibility vanish due to the crystalline symmetry

4̄2m of CdSiP2 [5]:

χ(2) =









0 0 0 χxyz χxzy 0 0 0 0

0 0 0 0 0 χyxz χyzx 0 0

0 0 0 0 0 0 0 χzxy χzyx









(4.7)

and we have the following equalities between the nonzero coefficients [5]:

χxyz = χyxz ; χxzy = χyzx ; χzxy = χzyx (4.8)

Furthermore, under the Kleinman symmetry approximation, all the 6 nonzero coefficients

are equal [5]. According to Eq. 1.20, and thanks to the expression of the unit electric

field vectors ~e o and ~e e given in Eqs. 1.8 and 1.9, it is possible to calculate the effective

coefficient χeff as a function of θ and φ for types I, II and III SFG. We get under the

Kleinman approximation:

χ
(2)
eff = −χxyz sin(θ − ρ) sin(2φ) for type I SFG

χ
(2)
eff = −χxyz sin

[

2(θ − ρ)
]

cos(2φ) for type II SFG

χ
(2)
eff = −χxyz sin

[

2(θ − ρ)
]

cos(2φ) for type III SFG

(4.9)

The correspondance between the three types of SFG and the three types of DFG were given

in table 1.1. While the θ angle is fixed by the phase-matching condition according to Eq.

1.24, the φ angle must be chosen in such a way that the effective coefficient is nonzero, the

power of the generated wave being proportional to the square of χeff according to Eq. 1.22.

Fig. 4.6 shows the variation of the sin2(2φ) function to which the generated power of type

I SFG is proportional, and the cos2(2φ) one, describing the generated power of type II and

III SFG.

102



CHAPTER 4. Optical properties of CdSiP2

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0 cos2(2 )

 (°)

sin2( )

Figure 4.6: sin2(2φ) and cos2(2φ) functions governing the SFG and
DFG effective coefficient in the range 0 < φ < 90◦.

Due to mechanical obstruction with the Euler circle, it was not possible to access values of

the φ angle exceeding 30◦. Consequenly, we chose to realize the measurements at φ = 30◦

for type I SFG and at φ = 0◦ for types II and III SFG.

4.5.3 Second-harmonic generation

Second-harmonic generation (SHG) measurements were realized at φ = 30◦ for type I SHG

and at φ = 0◦ for type II SHG. The polarization of the incident fundamental beam at λω was

controlled according to the chosen type. A glass filter (BK7) was used in order to cut the

beam at λω before detecting the beam at λ2ω. In order to perform this experiment, it was

necessary to stick the sphere along the y direction on the goniometric head corresponding

to the situation y = Z in section 2.5. The directions of propagation are given in spherical

coordinates (θ, φ) in the dielectric frame, the conversion from Euler angles being done thanks

to Eq. 2.17. The results are shown in Fig. 4.7, where the experiments are compared with

the resolution of the BPM phase-matching relation of Eq. 1.24 using the Sellmeier equations

of Eq. 4.1. Note that there is a good agreement between theory and measurements for both

type I and type II SHG. At θ = 47◦ corresponding to type I SHG at λω = 4.0 µm, we took

advantage of the possibility of varying the φ angle from 0◦ to 45◦ to verify the dependency in

sin2(2φ) of the generated power at λ2ω. The conversion efficiency ν = P2ω/Pω is presented

in Fig. 4.8.
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Figure 4.7: Tuning curves of Type I SHG in the φ = 30◦ plane
and type II SHG in the φ = 0◦ plane. The dots correspond to the
experimental data and the solid line is the calculation by solving Eq.
1.24 with λ1 = λ2 = λω and λ3 = λ2ω, using the Sellmeier equations
given by Eq. 4.1.
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Figure 4.8: Type I SHG conversion efficiency at λω = 4.0 µm as a
function of φ when θ is fixed at 47◦. The dots correspond to the ex-
perimental data and the solid line to the calculated sin2(2φ) function.
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4.5.4 Difference-frequency generation

We are interested here in difference-frequency generation (DFG) involving a pump wave at

λp = 1.064 µm. The signal and idler waves being defined as λp < λs < λi, there are two

possible experiments leading to the determination of the same phase-matching directions:

the signal beam, is mixed to the pump beam and the generated idler beam is detected; or

the idler beam is mixed to the pump beam and the generated signal beam is detected. Note

that in both cases, the three wavelengths are linked by the energy conservation relation

λ−1
p = λ−1

s + λ−1
i . The main difference between the two cases concerns the experimental

setup, λs belonging to the 1.1 − 1.2 µm interval while λi is in the 6 − 10 µm range.

Since the sensibility of our HgCdTe photodiode was not high enough, we chose the con-

figuration with an incident idler beam, so that the detection was performed at λs. The

phase-matching directions measurements are presented in Fig. 4.9. The discrimination be-

tween the different types was done thanks to the polarization of the incident beams.
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Figure 4.9: Tuning curves of type II DFG in the φ = 30◦ plane
and type III DFG in the φ = 0◦ plane. The dots correspond to the
experimental data and the solid line is the calculation by solving Eq.
1.24 using the Sellmeier equations given by Eq. 4.1.

We notice a discrepancy between the measurements and the calculation using the Sellmeier

equations of Eq. 4.1, due to a lack of accuracy in the Sellmeier equations. Fig. 4.9 shows

that types II and III DFG allow phase-matching for wavelengths ranging from 6.2 µm to

9.5 µm. The maximum generated wavelength of 9.5 µm is limited by the transparency win-

105



CHAPTER 4. Optical properties of CdSiP2

dow of CdSiP2.

Type I DFG was not found, as predicted by the Sellmeier equations 4.1.

4.6 Refractive index refinement

The sphere measurements previously described show that the Sellmeier equations given by

Eq. 4.1 are not reliable over the whole transparency range of the material, probably because

they result from a prism experiment up to 5.0 µm. However, by fitting simultaneously all

our SHG and DFG experimental data, we were able to refine the dispersion of the refractive

indices. The wavelength ranges of measurements are given in Fig. 4.10 according to the

different interactions.
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Figure 4.10: Wavelength ranges covered by the experimental data
over which the principal refractive indices no and ne of CdSiP2 were
sollicited.

As an example, data were recorded for type II SHG corresponding to λo
ω +λe

ω = λe
2ω over the

range 4.5 < λω < 6.2 µm: no and ne are thus involved through λω in the range 4.5−6.2 µm,

while ne is involved through λ2ω in the range 2.25 − 3.1 µm. Fig. 4.10 shows that the

measurements allow the infrared range to be well covered from 3 to 9.5 µm for both the

ordinary and the extraordinary indices. However, the wavelengths below 1.064 µm are not

covered.
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The fit of all our experimental data was realized using the Levenberg-Marquardt algo-

rithm encoded with Matlab. Different forms of Sellmeier equations were tested. The best

result was obtained by using the following dual oscillator form:

n2
i = Ai +

Bi λpi

λpi − Ci
+

Di λqi

λqi − Ei
− Fi λ2 (4.10)

where i=(o,e). The fitting curves are given in Figs. 4.11 and 4.12. They show the fit led

to a better agreement, especially for DFG. The corresponding coefficients of Eq. 4.10 are

given in table 4.2.
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Figure 4.11: Types I and II SHG tuning curves of CdSiP2; the fun-
damental wavelength λω is given as a function of θ. Dots stand for
experimental data, dashed lines correspond to calculations from Sell-
meier equations of Eq. 4.1 and solid lines are the fit of the experi-
mental data.
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Figure 4.12: Types II and III DFG tuning curves of CdSiP2 with
a pump at 1.064 µm; λ stands for the idler wavelength, plotted as a
function of θ. Dots stand for experimental data, dashed lines corre-
spond to calculations from Sellmeier equations of Eq. 4.1 and solid
lines are the fit of the experimental data.

Ao 3.8470 Ae 3.3427
Bo 5.4882 Be 5.6907
Co 0.1195 Ce 0.1161
Do 0.0713 De 0.0127
Eo 170.48 Ee 249.06
F o 0.0024 F e 0.0039
po 2.0093 pe 2.0001
qo 2.0853 qe 2.2101

Table 4.2: Sellmeier coefficients relative to the ordinary (o) and ex-
traordinary (e) principal refractive indices of CdSiP2 at T = 22◦C.
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4.7 Spectral acceptance

The spectral acceptance was measured by recording the power of the generated beam as

a function of the wavelength around a phase-matching direction. The example of type II

DFG along the x-direction is shown in Fig. 4.13.
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Figure 4.13: Measured (dots) and calculated (continuous line) varia-
tion of the normalized conversion efficiency η of type II DFG pumped
at λp = 1.064 µm along the x-direction as a function of the wavelength
in the sphere of CdSiP2 of diameter 4.99 mm.

Excluding the small discrepancy of the phase-matching wavelength, for which the gener-

ated power is maximum, we see in Fig. 4.13 that the measured spectral acceptance is much

higher than the calculated one, the experiment giving δλi = 122 nm since the calculus pre-

dicts δλi = 14 nm. There is thus an error of a factor larger than 8 between the measurement

and the calculus. This error could be attribuated to a non parallel propagation of one of

the beams inside the sphere. But in fact, it is probably due to the fact that the sphere was

considerably damaged prior to this measurement, leading to a strong decrease of the effec-

tive interaction length. Then according to Fig. 4.13, one can conclude that only ≈ 0.6 mm

(= 4.99 mm/8) is active.
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The spectral acceptances of SHG and DFG were calculated using our refined Sellmeier

equations. The cases of type II and type III DFG pumped at λp = 1.064 µm is presented

in Fig. 4.14.
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Figure 4.14: Calculated spectral acceptances Lδλi of types II and
III DFG in CdSiP2 pumped at λp = 1.064 µm as a function of the
idler wavelength λi.

Note that the spectral acceptance increases with an increasing wavelength, which can be

directly linked to the derivative dλi/dθ of the tuning curves of Fig. 4.12: the higher dλi/dθ

is, the higher Lδλi is.

4.8 Potentialities of CdSiP2 for parametric devices

The DFG curves presented in Fig. 4.12 directly show the tuning possibility that would

have an OPO based on CdSiP2 and pumped by a Nd:YAG laser at 1.064 µm. By using our

refined Sellmeier equations, we are able to calculate the DFG tuning curves obtained with

other pump wavelengths. We chose λ = 1.57 µm and λ = 2 µm since they correpond to
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classical pump wavelengths [70, 71], the other interest being that they cannot lead to two-

photon absorption according to the gap of CdSiP2. The corresponding curves are presented

respectively in Figs. 4.15 and 4.16.
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Figure 4.15: Calculated types I, II and III DFG tuning curves in
CdSiP2 with a pump wavelength λp = 1.570 µm.

Note that even if it is not interesting for far infrared generation, type I DFG is allowed in

CdSiP2 at these pump wavelengths, which was not the case at λp = 1.064 µm. Fig. 4.16

shows that type II DFG pumped at 2 µm may be interesting for generating ultra broad-

band spectral output between 2.5 µm and 10 µm by using a very narrow angular tunability

around θ = 45◦, which corresponds to a strong spectral non criticity.

However, type III allows a wide tuning range at the two considered pump wavelengths by

tuning the θ angle over 30◦ as shown in Figs. 4.15 and 4.16. It has been shown that such a

large angular tuning associated to a strong angular non criticity can be realized by the use

of a cylindrical crystal [72], the advantage being a weak sensitivity to the possible pointing

fluctuation and to the divergence of the beam.

Figs. 4.12, 4.15 and 4.16 enable the comparison between the potentialities correspond-

ing to the different pump wavelengths. We notice that the higher the pump wavelength is,

the wider the spectral tunability is. As an example, the accessible tunability of type III
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DFG increases from 7.8 − 10 µm for λp = 1.064 µm to 4.4 − 10 µm for λp = 2 µm.
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Figure 4.16: Calculated types I, II and III DFG tuning curves in
CdSiP2 with a pump wavelength λp = 2 µm.

4.9 Conclusion

This experimental study of the optical nonlinear properties of CdSiP2 over its whole trans-

parency range has demonstrated the possibility of generating infrared light until 9.5 µm by

parametric interactions. The material is no more transparent above this wavelength. The

DFG experiments have also demonstrated the possibility of pumping CdSiP2 by a Nd:YAG

laser, which is an important asset that other nonlinear crystals of the infrared, like ZnGeP2

or CdSe, do not have. However, the optical damage threshold of CdSiP2 at 1.064 µm is

below our expectations, leaving the superiority to AgGaS2. The precise knowledge of the

Sellmeier equations of CdSiP2 resulting from this work is of prime importance for the design

of OPOs emitting in the 3 − 9.5 µm range.
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Conclusion

This work was devoted to the experimental study of the optical properties of 5%MgO:PPLN

and CdSiP2, the motivation being the development of coherent optical sources emitting be-

tween 3 µm and 12 µm. The sphere method, that had already shown its ability in the past

few years, was the ideal method in order to carry out an exhaustive study of the phase-

matching properties of these crystals.

On one hand, the angular quasi-phase-matching concept was verified on 5%MgO:PPLN.

It was shown that angular quasi-phase-matching presents advantages over birefringence

phase-matching or classical quasi-phase-matching, as well for the spectral tunability range

as for the spectral acceptance. Furthermore, even if this material was widely used, its re-

fractive indices were not known with good accuracy. The Sellmeier equations resulting from

the fit of all our experiments can be considered as a reference for future works.

On the other hand, parametric generation until 9.5 µm was demonstrated in CdSiP2. Even

if the optical damage threshold in the near infrared was not as good as expected, CdSiP2

remains a good candidate for a continuous spectral tunability in the third atmospheric

transparency band by angular tuning. The Sellmeier equations were refined in order to

calculate phase-matching conditions with accuracy in future devices.

In prospect, the work on angular quasi-phase-matching will be extended to new periodically-

poled materials like MgO:PPLiTaO3 and PPKTP. The group of Néel Institute also plans

to perform an exhaustive study on a GaN cylinder in order to evaluate its potentialities.
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Abstract

This work is devoted to the study of the nonlinear optical properties of 5%MgO:PPLN and CdSiP2,

the motivation being the development of parametric optical sources in the second and third atmo-

spheric transparency bands. These two crystals were cut as spheres in order to perform second

harmonic generation and difference frequency generation in any direction of propagation by keeping

normal incidence. Sphere experiments in 5%MgO:PPLN allowed us to validate at first the theory of

angular quasi-phase-matching (AQPM), a general configuration corresponding to a waves propagation

at any angle with respect to the grating vector. We experimentally confirmed that AQPM enables

to provide wider spectral range and acceptance than birefringence phase-matching. Thanks to these

measurements, it was also possible to refine the Sellmeier equations of 5%MgO:PPLN. The exhaustive

nonlinear properties of CdSiP2 , a new nonlinear crystal, were measured over its whole transparency

range. The possibility to generate wavelengths above 8 µm by difference frequency generation involv-

ing a pump wavelength at 1.064 µm was confirmed. The measurements of phase-matching directions

of second harmonic generation and difference frequency generation allowed the Sellmeier equations

to be refined. Finally, the optical damage threshold of CdSiP2 was measured and compared with

AgGaS2, which is the main competitor for infrared generation above 8 µm. All the results that were

obtained constitute a reliable basis for further studies devoted to the design of new infrared optical

parametric devices.

Key words: infrared parametric generation, angular quasi-phase matching, nonlinear optics

Résumé

Ce travail est consacré à l'étude des propriétés optiques non linéaires de PPLN:5%MgO et CdSiP2, la

motivation étant le développement de sources paramétriques optiques dans les seconde et troisième

bandes de transmission de l'atmosphère. Ces deux cristaux ont été polis sous forme de sphère

pour réaliser des mesures de génération de second harmonique et de génération par différence de

fréquences dans toutes les directions en gardant une incidence normale. Les expériences sur sphère de

PPLN:5%MgO ont d'abord permis de valider la théorie du quasi-accord de phase angulaire (QAPA),

une configuration générale correspondant à une propagation des ondes selon une direction quel-

conque par rapport au vecteur réseau. Nous avons expérimentalement confirmé que le QAPA permet

l'existence d'un domaine spectral plus étendu et de plus grande acceptance spectrale que l'accord

de phase par biréfringence. Toutes ces mesures ont aussi permis d'affiner les équations de Sell-

meier de PPLN:5%MgO. Les propriétés non linéaires exhaustives de CdSiP2, un nouveau cristal non

linéaire, ont été mesurées sur toute sa fenêtre de transparence. La possibilité de générer des longueurs

d'onde au-delà de 8 µm par différence de fréquences impliquant une onde à 1.064 µm a été confirmée.

Les mesures des directions daccord de phase de génération de second harmonique de différence de

fréquences ont permis d'affiner les équations de Sellmeier. Enfin, le seuil de dommage optique de

CdSiP2 a été mesuré et comparé à AgGaS2, qui est son principal concurrent pour la génération

dans l'infrarouge au-delà de 8 µm. Tous les résultats obtenus constituent une solide base pour les

prochaines études consacrées à la conception de dispositifs paramétriques optiques pour l'infrarouge.

Mots clés : génération paramétrique infrarouge, quasi-accord de phase angulaire, optique non linéaire
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