
HAL Id: tel-00646664
https://theses.hal.science/tel-00646664v2

Submitted on 31 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EnTiMid : Un modèle de composants pour intégrer des
objets communicants dans des applications à base de

services
Grégory Nain

To cite this version:
Grégory Nain. EnTiMid : Un modèle de composants pour intégrer des objets communicants dans des
applications à base de services. Génie logiciel [cs.SE]. Université Rennes 1, 2011. Français. �NNT : �.
�tel-00646664v2�

https://theses.hal.science/tel-00646664v2
https://hal.archives-ouvertes.fr

No d’ordre : 4406 ANNÉE 2012

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

École doctorale Matisse

présentée par

Grégory NAIN
préparée à l’unité de recherche

INRIA - Centre Rennes Bretagne Atlantique
Institut National de Recherche en Informatique et Automatique

EnTiMid : Un modèle

de composants

pour intégrer des

objets communicants

dans des applications

à base de services

Thèse soutenue à Rennes
le 5 Décembre 2011

devant le jury composé de :

Daniel THOUROUDE
Professeur, IETR / Université de Rennes 1 / Président
Elisabetta DI NITTO
Professeur, Politecnico di Milano / Rapporteuse
Didier DONSEZ
Professeur, Université Joseph Fourier - Grenoble 1 /
Rapporteur

Romain ROUVOY
Maître de conférences, Université de Lille 1 /
Examinateur

Jean-Marc JÉZÉQUEL
Professeur, Université de Rennes 1 /
Directeur de thèse

Olivier BARAIS
Maître de conférences, Université de Rennes 1 /
Co-directeur de thèse

No d’ordre : 4406 ANNÉE 2012

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

École doctorale Matisse

présentée par

Grégory NAIN
préparée à l’unité de recherche

INRIA - Centre Rennes Bretagne Atlantique
Institut National de Recherche en Informatique et Automatique

EnTiMid: A flexible

component model to

integrate smart devices

in service-based

applications for Ambient

Assisted Living

Thèse soutenue à Rennes
le 5 Décembre 2011

devant le jury composé de :

Daniel THOUROUDE
Professeur, IETR / Université de Rennes 1 / Président
Elisabetta DI NITTO
Professeur, Politecnico di Milano / Rapporteuse
Didier DONSEZ
Professeur, Université Joseph Fourier - Grenoble 1 /
Rapporteur

Romain ROUVOY
Maître de conférences, Université de Lille 1 /
Examinateur

Jean-Marc JÉZÉQUEL
Professeur, Université de Rennes 1 /
Directeur de thèse

Olivier BARAIS
Maître de conférences, Université de Rennes 1 /
Co-directeur de thèse

Remerciements

Je voudrais commencer par remercier messieurs Jean-Marc JEZEQUEL et Olivier BARAIS
pour leur soutient et leur confiance au cours de ces années passées dans l’équipe TRISKELL.
Je remercie aussi l’ensemble des membres de l’équipe TRISKELL que j’ai pu croiser entre
Mars 2008 et Décembre 2011, qui m’ont permis de travailler dans une équipe dynamique
et chaleureuse, et ont rendu célèbre les "Barbeuk chez Greg".

Un grand merci à ma famille qui a cru en mes capacités et en ma réussite, même
dans mes moments de doutes.
Merci à mes amis qui n’ont pas non plus manqué à leur rôle essentiel de soutient au
cours de la thèse.

Une pensée particulière pour "Jules" qui a rendu la période de rédaction plus facile.

Ce n’est pas parce que c’est de la science que ça doit être chiant. G.N.
Science is fun.

Acknowledgment

The research leading to these results has received funding from the European Commu-
nity’s Seventh Framework Programme FP7/2007-2013 under grant agreement 215483
(S-Cube).

Contents

1 Résumé de thèse 1
1.1 Rappel du contexte . 1
1.2 Résumé des exigences . 2
1.3 Étude des approches existantes . 4
1.4 Vue d’ensemble de la contribution . 4
1.5 Adéquation de la contribution . 6
1.6 Intégration à l’état de l’art . 7
1.7 Bénéfices immédiats . 7

1.7.1 Simplification du développement de composants 7
1.7.2 Création d’applications par assemblage 8
1.7.3 Viabilité et précision . 8
1.7.4 Intégration simplifiée d’objets et de services 8

1.8 Limitations identifiées . 9
1.8.1 Description structurelle . 9
1.8.2 Paramètres de ports . 9
1.8.3 Des vérifications basiques . 9
1.8.4 Gestion de la variabilité . 10
1.8.5 Absence de test sur des plate-formes embarquées 10

1.9 Contribution au réseau d’excellence Européen S-Cube 10
1.9.1 Le réseau d’excellence S-Cube . 10
1.9.2 Contribution . 11

I Context, Requirements and State-of-the-Art Review 13

2 Introduction 17
2.1 Ambient Assisted Living . 17

2.1.1 The origins . 17
2.1.2 The concept . 18

2.2 Home Automation . 19
2.2.1 Application domains . 19
2.2.2 Technologies . 20

2.3 Identification of requirements . 21
2.4 Scope of this work . 24

i

ii CONTENTS

2.5 Contribution of this thesis . 25

3 State-of-the-Art Review 27
3.1 Background on AAL and Home Automation 27

3.1.1 Projects in AAL . 27
3.1.2 European research . 29
3.1.3 Home automation in projects . 29
3.1.4 Home Automation details . 30

3.1.4.1 Communication Media 30
3.1.4.2 Transport Protocols . 31
3.1.4.3 Application Protocols 34

3.2 General purpose approaches . 37
3.2.1 (Web)Service-Oriented Architectures 37

3.2.1.1 Internet Of * and the Cloud 37
3.2.1.2 Architectural principles 39
3.2.1.3 OSGi . 41
3.2.1.4 Enterprise Service Bus 42

3.2.2 Component models . 43
3.2.2.1 Description . 43
3.2.2.2 Darwin . 43
3.2.2.3 Koala . 44
3.2.2.4 Fractal . 45

3.2.3 Component Models for SOA . 46
3.2.3.1 Description . 46
3.2.3.2 SCA . 46
3.2.3.3 FraSCAti . 47
3.2.3.4 iPOJO . 48

3.3 Domain-specific approaches . 49
3.3.1 Description . 49
3.3.2 Projects . 49

3.3.2.1 uMiddle . 49
3.3.2.2 SOPRANO . 50
3.3.2.3 Gaïa Framework . 50
3.3.2.4 DiaSuite . 51
3.3.2.5 Habitation . 52
3.3.2.6 Wired Application Description Language 52
3.3.2.7 PervML . 53
3.3.2.8 AutoHome . 53
3.3.2.9 WComp . 54
3.3.2.10 Niagara . 55

4 Synthesis 57
4.1 Good properties identified . 57
4.2 Points of contribution . 59

CONTENTS iii

II Thesis and Achievements 61

5 Contribution 65
5.1 Global ideas . 65

5.1.1 Being inspired by electronics . 65
5.1.2 Making it possible . 65
5.1.3 Keeping end-users in mind . 66

5.2 Overview of the contribution . 66

6 Details on strata 69
6.1 Device Interoperability . 69

6.1.1 Use of drivers . 70
6.1.2 Functional interfaces . 70
6.1.3 Event-based approach . 71
6.1.4 Example . 71
6.1.5 Threat to validity . 73
6.1.6 Summary . 73

6.2 Component Model . 75
6.2.1 Making software components closer to electronic components . . 75
6.2.2 Meta-Model description . 76
6.2.3 Concrete example . 79
6.2.4 Implementation and Model Relationship 80
6.2.5 Implementation independence . 84
6.2.6 Link with the interoperability layer 85
6.2.7 Main advantage of this component model 86
6.2.8 Summary . 86

6.3 Model@Runtime and Reasoning Engine 86
6.3.1 Check to validate . 87
6.3.2 The Model@Runtime engine work 91

6.4 Service-Oriented Runtime Architecture 94
6.5 Wrappers . 96
6.6 Summary . 97

7 Outcomes 99
7.1 Implementation . 99
7.2 Impact on the development process . 100

7.2.1 Component development . 100
7.2.2 Application design . 101

7.3 Metrics . 101
7.4 Classification . 102

7.4.1 Lifecycle . 103
7.4.2 Constructs . 103
7.4.3 Extra-Functional Properties . 104
7.4.4 Domains . 104

iv CONTENTS

III Validation 105

8 Validation in the context of an AAL project 109
8.1 Context of the study: the IDA project 109
8.2 Use case and issues to address . 110
8.3 Experimental setup . 112

8.3.1 Delta Dore equipment . 113
8.3.2 KNX equipment . 113
8.3.3 Other equipment . 114

8.4 Interoperability issue . 114
8.4.1 Test Environment . 114
8.4.2 Resolution Protocol . 114
8.4.3 Results . 116

8.5 Evolution issue . 116
8.5.1 Test Environment . 116
8.5.2 Resolution Protocol . 116
8.5.3 Results . 117

8.6 Adaptation issue . 117
8.6.1 Test Environment . 118
8.6.2 Resolution Protocol . 118
8.6.3 Results . 119

8.7 Openness issue . 120
8.7.1 UPnP export . 121

8.7.1.1 Test Environment . 121
8.7.1.2 Resolution Protocol . 121
8.7.1.3 Results . 123

8.7.2 DPWS export . 123
8.7.2.1 Test Environment . 123
8.7.2.2 Resolution Protocol . 124
8.7.2.3 Results . 124

8.8 Threats to validity . 125
8.8.1 Internal threats . 125

8.8.1.1 Variability management 125
8.8.1.2 Scalability . 125
8.8.1.3 Safety and Security . 125

8.8.2 External threats . 125
8.8.2.1 Validity of the scenario, real deployment 125
8.8.2.2 Communications with smart devices 126

8.9 Conclusion . 126

IV Conclusion and Perspectives 127

9 Conclusion 131

CONTENTS v

9.1 Reminder of Context . 131
9.2 Summary of requirements . 132
9.3 Survey of existing approaches . 133
9.4 Outline of the contribution . 134
9.5 Adequateness of the contribution . 135
9.6 Conservativeness . 135
9.7 Immediate benefits . 137

9.7.1 Development of components made easier 137
9.7.2 Simple creation of applications 137
9.7.3 Sustainability and precision . 137
9.7.4 Seamless integration of IoT and IoS 137

9.8 Limitations identified . 138
9.8.1 Behavioral description . 138
9.8.2 Port parameters . 138
9.8.3 Too weak checkers . 139
9.8.4 Variability management . 139
9.8.5 Improvements for embedded platforms 139

9.9 Contribution to the S-Cube NoE . 139
9.9.1 The S-Cube Network of Excellence 139
9.9.2 Contribution . 140

10 Perspectives 141
10.1 In research . 141

10.1.1 IDA, second phase . 141
10.1.2 End User Programming . 141

10.1.2.1 Which description language ? 141
10.1.2.2 Fuzzy Logic and Learning Algorithms 142

10.1.3 Distribution and Pervasiveness 142
10.1.4 Architecture Synthesis . 143

10.1.4.1 Dynamic Software Product Lines for the management
of variability . 143

10.1.4.2 How can the behavior be descibed? 144
10.1.5 Kevoree . 144
10.1.6 Open Control/Command Operating System 145

10.2 In industry . 145
10.2.1 Public events . 146
10.2.2 Industrial perspectives . 147

V Appendix 149

A ITI Project 151
A.1 Presentation and Goals of the project 152

A.1.1 Phase 1 . 152

vi CONTENTS

A.1.2 Phase 2 . 152
A.1.3 Phase 3 . 154

A.2 Environment of tests . 154
A.2.1 Population under test . 154
A.2.2 Equipments . 154

A.3 Protocol of test . 154
A.4 Threats to validity . 155
A.5 Results and conclusion . 155

Acronyms 160

Bibliography 161

Table of figures 170

Summary 174

Chapitre 1

Résumé de thèse

Ce chapitre offre un résumé de la thèse défendue dans ce document. Pour ce faire,
une introduction au contexte de ce travail, permettra de mettre en évidence les besoins
que la contribution de cette thèse s’est attachée à combler. Puis, la contribution est
décrite et discutée en termes d’adéquation aux besoins. Enfin, une mise en évidence des
bénéfices immédiats et de quelques limitations identifiées termine ce chapitre.

1.1 Rappel du contexte

Le vieillissement de la population Européenne a incité la communauté à rechercher
des solutions pour accompagner ce changement. Dans ce contexte, plusieurs problèmes
doivent être considérés de front. D’abord, le domaine de la santé souffre d’une pénurie de
main d’œuvre, qui pourrait résulter en une dégradation générale de la qualité des soins.
Par ailleurs, les places en centres hospitaliers ou maisons de retraites sont limitées, et
pourraient arriver à saturation dans les années à venir. De plus, les séjours hospitaliers
coûtent chère, indépendamment de la pathologie, et les aides financières à ce niveau
tendent à être limitées.
Plusieurs projets ont déjà été lancés pour de tenter de répondre à ces problématiques.
Le programme collaboratif Européen Ambient Assisted Living(AAL) a été créé pour
favoriser et financer des projets, ce qui met en évidence l’intérêt de l’Europe pour les
avancées dans ce domaine. Le projet Innovation Domicile Autonomie(IDA), initié par
la métropole Rennaise, s’inscrit parfaitement dans ce cadre. Il vise une évaluation de
la pertinence d’utiliser des Technologies de l’Information et de la Communication(TIC)
pour aider les personnes âgées.
Après un état des lieux précis, en termes de besoin des personnes âgées, le projet s’est
efforcé de mesurer la pertinence et l’adéquation de différentes technologies industrielles,
afin d’assister les personnes dans leurs domiciles. Entre autres, les technologies de la
domotique ont été évaluées afin de faire ressortir leurs potentiels apports dans l’accom-
pagnement à domicile. Rapidement, les études ont montré qu’une unique solution ne
peut pas être mise en place dans tous les cas. Chaque personne à des exigences et des
besoins différents, qui imposent que les solutions soient adaptées à chacun. Aussi, les

1

2 Résumé de thèse

industriels admettent ici leurs limites, où là fabrication de produits personnalisés pour
chaque utilisateur est trop coûteuse.

Dans ce domaine, les solutions techniques imaginées ont besoin de systèmes logi-
ciels pour combler le vide, entre les produits finis issus du marché de la domotique, et
les solutions personnalisées. Pour remplir leur mission, ces systèmes logiciels doivent
satisfaire à plusieurs exigences

1.2 Résumé des exigences

L’interopérabilité est la première exigence que les systèmes logiciels ont à prendre
en compte. En effet, les solutions proposées pour améliorer et favoriser le confort des
personnes âgées dans leurs logements, peuvent être composées de multiple produits pro-
venant de divers fabricants. Chaque produit prenant part à la solution, s’atèle à répondre
à un des besoins de la personne de la façon la plus précise possible, rapprochant ainsi
la proposition globale de la proposition idéale. Cependant, les éléments de la solution
doivent aussi être capables de communiquer les uns avec les autres, afin de rendre un
service global. Mais la diversité des constructeurs fait de l’interopérabilité des produits
un problème de taille.
La définition d’une interface de communication, universelle à tous les composants du
système, pourrait résoudre ce problème, mais requière une réingénierie de l’ensemble des
produits pour les rendre compatibles. En conséquence, aucun produit actuellement sur
le marché ne pourrait être utilisé. Tant que les solutions seront non limitées en termes
de produits, cette proposition ne sera pas applicable, et l’interopérabilité restera une
préoccupation majeure.

L’adaptation et l’évolution sont aussi des facultés essentielles pour ces systèmes.
Les systèmes logiciels travaillant à partir d’objets ou d’équipements, liés à des actions
du quotidien, doivent prendre en considération l’environnement dans lequel ils s’exé-
cutent. Ils doivent être capables de s’adapter aux changements pendant leur exécution,
afin de maintenir des niveaux de services et de fonctionnalités suffisant. Évidemment,
ces adaptations ne doivent pas nécessiter de redémarrage du système, qui rendrait in-
disponible les fonctions d’alerte ou d’alarme par exemple.
Par ailleurs, les besoins, les usages, les protocoles et les technologies évoluent. Des
fonctionnalités précédemment installées peuvent devenir inutiles, alors que d’autres de-
viennent nécessaires. La sécurité, la fiabilité du système, les protocoles peuvent être
améliorés et mis à disposition dans de nouvelles versions, qui seront à prendre en compte
sans avoir à ré-implémenter le système entier. Enfin, les systèmes logiciels doivent, dans
ce domaine, être capable de supporter des évolutions futures non prévues au moment
du déploiement, comme l’installation de nouveaux services ou fonctionnalités.

Les contrôles distants peuvent être nécessaires pour des questions de maintenance,
de vérification de l’état de la maison par des professionnels accrédités, ou réaliser des

Résumé des exigences 3

actions à distance pour assister la personne sur des problèmes ponctuels.

L’ouverture doit permettre à des applications tierces, d’accéder aux fonctionnalités
ou aux produits disponibles dans le système. En effet, la passerelle de communication
avec les réseaux KNX, par exemple, n’admet qu’une seule connexion à la fois. Il est donc
nécessaire de rendre les produits et fonctionnalités disponibles à d’autres applications,
afin de ne pas verrouiller les accès. Par ailleurs, cette ouverture au monde extérieur
permet à des applications tierces de se connecter aux produits, et rendre des services
à valeur ajoutée, sans avoir besoin de connaître l’organisation interne du système de
gestion d’accès aux périphériques. L’ouverture permet donc d’enrichir l’application par
des contributions externes apportant des fonctionnalités "intelligentes" supplémentaires.

La distribution est une préoccupation que l’on retrouve au cœur de tout sys-
tème domotique largement déployé. La dispersion des équipements dans l’habitat mais
aussi la dispersion des déploiements à l’échelle d’une ville rendent nécessaire la prise en
compte des challenges des grands systèmes distribués.

La gestion de la variabilité est une préoccupation liée au fort besoin de per-
sonnalisation des solutions. En effet, l’ensemble des options déployées sur les systèmes
à l’échelle d’une ville, peut devenir complexe. De plus, les évolutions ne sont pas uni-
formément déployées à l’échelle d’une ville, menant alors à une grande diversité de
combinaisons de versions de protocoles, et d’assemblages de produits.
Des outils doivent donc être mis à disposition par ces systèmes, pour assister les ingé-
nieurs et techniciens dans la fabrication et la maintenance de solutions. Des outils d’aide
à la décision basés sur une liste d’exigences et de produits disponibles pourraient, par
exemple, être d’une aide précieuse.

La sûreté est un élément important dans les systèmes domotiques. Ces systèmes
ont la responsabilité de gérer une partie de la maison, afin d’améliorer la vie de ses oc-
cupants. Un niveau de service minimum doit être garanti afin que les personnes aidées
par ces systèmes ne se retrouvent pas bloquées en cas d’urgence par exemple.

La sécurité est une autre préoccupation que l’on retrouve dans la construction de
solutions domotiques. En effet, les accès au système doivent être sécurisés afin d’éviter
qu’il soit contrôlé par des personnes non autorisées. Le compromis difficile est toujours
de rendre cette sécurité transparente pour les personnels habilités.

L’acceptabilité et l’accessibilité de ces systèmes par tous les utilisateurs sont des
facultés à prendre en compte, particulièrement dans le cadre d’une aide à domicile pour
des personnes âgées ou dépendantes. Ces systèmes logiciels sont utilisés à la fois par
les aidants à domicile, et par les personnes âgées, et pour ni l’une ni l’autre le système
ne doit être perçu comme une contrainte supplémentaire dans leur métier ou leur vie.
Enfin, les personnes âgées doivent pouvoir rester maître de leur environnement, et donc,
garder la main sur le système et ses actions.

4 Résumé de thèse

1.3 Étude des approches existantes

Parmi l’ensemble des exigences listées dans la section 1.2, l’étude des approches
existantes ici résumée, s’est concentrée sur les aspects d’interopérabilité, d’adaptation,
d’évolution, d’ouverture et de gestion de la variabilité.

De nombreuses approches s’intéressant à la résolution de problèmes d’interopéra-
bilité, d’adaptation ou de contrôle distant pour différentes applications, sont détaillées
dans la littérature scientifique.
D’une manière générale, les approches s’appuyant sur des architectures à base de ser-
vices [All11, Cha04] semblent être adaptées pour résoudre des problèmes d’adaptation
dynamique et d’interopérabilité, mais manquent clairement de moyens de description
de l’architecture du logiciel pendant son exécution. Ils apportent aussi des mécanismes
essentiels pour faire face aux apparitions et disparitions de produits, de par le fait qu’un
service peut être démarré ou arrêté à tout instant.
Les architectures s’appuyant sur le paradigme de composants logiciels [GMK02, RvdLKM00,
BCL+06], offrent pour leur part un niveau d’abstraction interessant pour représenter
les produits domotiques. Cependant, les ports de communication des composants sont
souvent définis par l’intermédiaire d’interfaces de programmation qui rendent impos-
sible certaines connections non prévues à l’avance, sans ajout de connecteurs ad-Hoc.
Toutefois, le mélange de l’approche à composant, et l’approche des architectures à
base de services, identifié comme des composants pour les architectures orientées ser-
vices [sca, MRRS10, EHL07], parait être l’approche qui réponde le mieux aux besoins
identifiés ; là où les architectures à base de services offrent des solutions pour l’adap-
tation dynamique, les architectures à composants proposent un niveau d’abstraction
interessant pour les produits domotiques, et des outils de description de l’architecture.
De façon orthogonale à toutes ces approches, les méthodes et techniques issues de l’in-
génierie dirigée par les modèles, offrent des outils de manipulation et de gestion des
éléments de systèmes, tant au cours du design que de l’exécution. Ils semblent apporter
une réponse appropriée à la gestion de la variabilité, à la description des systèmes.

Toutes les approches et outils considérés dans cette étude sont reportés dans le
tableau 1.1 présenté en section 1.5, qui présente une synthèse des points forts de chaque
outils ou approche, par rapport aux exigences identifiées.

1.4 Vue d’ensemble de la contribution

Inspirée par les réalisations dans le domaine de l’électronique, cette thèse contribue
à améliorer la flexibilité des systèmes logiciels tout en maintenant un haut niveau de
fiabilité. Les contributions se font à trois niveaux.

Vue d’ensemble de la contribution 5

(1) Un nouveau modèle de composants qui améliore la flexibilité des applications et
permet la connexion de composants hétérogènes

(2) Des outils issus de l’ingénierie logicielle dirigée par les modèles (IDM), pour créer,
éditer, simuler et valider la structure et le comportement des assemblages de composant
avant leurs (re-)déploiements

(3) Un environnement d’exécution construit sur les bases d’une architecture logicielle
orientée service, supportant les propriétés d’adaptation, d’évolution et d’ouverture re-
quises par le nouveau modèle de composants.

L’implémentation de cette contribution, appelée EnTiMid, se compose de plusieurs
éléments. Présentés sous forme de couches, ces éléments s’affairent chacun à résoudre
une préoccupation particulière dans le problème global.

La couche d’Interopérabilité des produits est responsable de la communication
avec les produits physiques, et avec leurs représentants dans le modèle de composants.
Ces communications sont assurées par un ensemble de pilotes, chargés de la commu-
nication avec les produits, et de communications basées sur des messages asynchrones,
qui permettent une connexion de composants réputés incompatibles.

La couche Modèle de composants apporte les abstractions nécessaires à la re-
présentation et à la manipulation des produits par un architecte logiciel. Elle offre un
moyen de décrire de façon unifiée les actions possibles sur les composants (et donc sur
les produits), et les informations disponibles, à travers le paradigme de ports. Dans ce
modèle, les ports des composants peuvent être de deux sortes : synchrones (ports de ser-
vice) ou asynchrones (ports de messages). Construit à partir des abstractions communes
des modèles de composants de la littérature, ce modèle est conservé à l’exécution offrant
une couche de réflexion à l’exécution sur lequel les outils de vérification et de simulations
peuvent être facilement branchés. Les spécificités d’implémentation des composant sont
effacées par le modèle de composant. Ainsi, les simulations et vérifications de conformité
des assemblages peuvent être réalisées de façon uniforme. L’indépendance du modèle
permet de mener ces tests sans conséquence aucune sur le logiciel en train de s’exécu-
ter. Cette couche contribue à la sécurité du système, à la gestion de la variabilité et
aux mécanismes adaptations en apportant des outils pour chacun de ces domaines. Des
outils ont aussi été développés afin de garantir, en permanence, la cohérence entre les
implémentations et leurs représentants dans le modèle.

Les Wrappers prennent en charge la publication des produits présents dans le sys-
tème, sur des protocoles de niveaux applicatif comme DPWS ou UPnP. Ces publications
automatiques ouvrent la solution à des protocoles applicatifs existants et futures, sans
nécessiter une réingénierie complète du système. Souvent trop gourmands en ressources
pour être directement embarqués dans les produits eux-mêmes, cette couche permet
d’offrir gratuitement aux produits une présence sur ces réseaux applicatifs.

L’Environnement d’exécution orienté services complète la contribution en ap-

6 Résumé de thèse

portant le support d’exécution du modèle de composants. Il donne vie aux capacités des
différentes couches en supportant les adaptations et évolutions pendant l’exécution.

1.5 Adéquation de la contribution

Le contexte de l’aide à domicile de personnes âgées, la description du domaine de
la domotique, et l’état de l’art, ont permis d’extraire une liste d’exigences identifiées
comme essentielles pour qu’un système logiciel soit utilisable dans ce contexte. Le ta-
bleau 1.1 détaille les forces de chacune des approches considérées face à ces exigences.
La dernière ligne du tableau présente la contribution de cette thèse, et montre ainsi ses
forces comparées aux mêmes préoccupations.

Interop. Openness
Dynamic

Adaptation

Static

Evolution

Variability

Management

Safety &

Security

G
en
er
ic

A
pp

ro
ac
he
s

OSGi [All11] + + +
ESB [Cha04] + + +
Darwin [GMK02] + + +
Koala [RvdLKM00] + + +
Fractal [BCL+06] +
SCA [sca] + + +
FraSCAti [MRRS10] + + + + +
iPOJO [EHL07] + + +

D
om

ai
n-
Sp

ec
ifi
c

A
pp

ro
ac
he
s

uMiddle [NT07]
SOPRANO [WSO+10] + +
Gaïa [RHC+02] + + +
Dia Suite [CBC10] + + + +
Habitation [JRS+09] + +
WADL [CDT08] + + +
PervML [MPC06] + + + + +
AutoHome [BDLM11] + + +
WComp [FHL+11] + + +
Niagara [Tri08] + +
EnTiMid + + + +

Table 1.1 – Adéquation de la contribution aux exigences

Dans la contribution de cette thèse, le problème de l’interopérabilité est la préoc-
cupation principale de la couche d’interopérabilité des produits, assistée par la couche
apportant le modèle de composant. L’ouverture est assurée par les wrappers au niveau
des protocoles d’application, et par les drivers au niveau des constructeurs de produits.
Les capacités d’adaptation pendant l’exécution et d’évolution sont rendues possibles par
la couche de Model@Runtime et l’environnement d’exécution construit à partir d’une

Intégration à l’état de l’art 7

architecture orientée services. Le contrôle distant est offert au travers des wrappers et
du model@runtime. La gestion de la variabilité, quant à elle, est facilitée par la pré-
sence du modèle pendant l’exécution, mais les outils restent insuffisants pour résoudre
complètement le problème.

1.6 Intégration à l’état de l’art

Au cours de l’étude de l’état de l’art et des approches, de bonnes propriétés ont été
identifiées. La contribution de cette thèse est conservative par rapport à ces propriétés.

Le modèle de réflexion indépendant proposé dans le domaine de l’ingénierie
des modèles, est rendu disponible par la couche Model@Runtime. Ce modèle abstrait de
l’architecture pendant l’exécution est indépendant et synchronisé avec l’environnement
d’exécution. Cette indépendance permet la création de raisonneurs capables de proposer
des changements, et de vérifier la validité de ces derniers avant qu’ils soient réellement
appliqués.
La gestion externalisée des liaisons entre les composants est imposée par la couche
de Model@Runtime, et rendue possible par le modèle de composant, ainsi que par les
drivers de la couche d’interopérabilité qui ne peuvent pas présumer d’une utilisation
spécifique des composants. Cette explicitation des liaisons permet l’adaptation de l’ar-
chitecture, ç-à-d la modification connexions, ou même les composants, pendant l’exé-
cution. La nécessaire indépendance des composants pour permettre l’interopérabilité et
les adaptations, renforce aussi l’intérêt d’extraire les dépendances.
Le déploiement à chaud fût conservé grâce au choix fait de construire les dévelop-
pements de l’environnement d’exécution sur une plateforme orientée services. Il était
nécessaire de conserver cette propriété indispensable pour le support de l’adaptation,
ou le faire évoluer, en déployant de nouveaux composants sans redémarrage.
L’isolation close entre les types de composants et les instances est aussi une mesure
aidant à garantir l’interopérabilité, et la gestion indépendante des différents éléments
composant l’application. En effet, les produits physiques ayant chacun des cycles de vie
indépendants, il fallait que le système puisse les gérer de façon indépendante aussi.
L’ouverture, identifiée comme bonne propriété, le fût aussi comme une exigence in-
contournable pour ce type de systèmes. Ainsi, cette bonne propriété est aussi conservée.

1.7 Bénéfices immédiats

1.7.1 Simplification du développement de composants

Les outils développés en support de la contribution de cette thèse offrent une as-
sistance au développement des composants. Le modèle de composant impose que les
développeurs respectent certaines bonnes propriétés comme l’isolation close, ou l’exter-
nalisation des dépendances, ce qui rend la maintenance et les évolutions plus simples.
L’extraction automatique du modèle des composants à partir du code, et les mécanismes

8 Résumé de thèse

de synchronisation raccourcissent le temps entre l’expression des exigences et la fabri-
cation de la solution, et préviennent de beaucoup d’erreurs.
En outre, la gestion du typage et les autorisations de connections entre composants
étant traités au niveau du modèle, le durcissement(pour prévenir d’erreurs) ou l’alège-
ment(pour permettre une connection particulière) des règles de vérifications se fait en
ajoutant ou retirant des règles au niveau de l’éditeur, ou de la platefore d’exécution,
sans necessiter de modification des implémentations.

1.7.2 Création d’applications par assemblage

Le modèle de composant et les outils de modélisation apportent un support à la
création d’assemblages de composants, et donc, d’applications. Les librairies de com-
posants créées par les développeurs peuvent être importées dans les éditeurs, afin que
les composants soient intégrés et connectés. Les connections port-à-port permettent de
connecter deux ports, quels que soient leurs noms ou utilités, si les outils de vérifications
personnalisables valident ou non la pertinence de l’assemblage.
Par ailleurs, les développeurs de produits domotiques, familiers des composants électro-
niques, sont familiarisés avec le paradigme de composants de par sa proximité du modèle
électronique. Cette rapide prise en main permet aux ingénieurs et techniciens de créer
des applications personnalisées pour répondre strictement aux besoins de chaque per-
sonne.

1.7.3 Viabilité et précision

La possibilité de faire évoluer une configuration à chaud offrent au système la capa-
cité de suivre les évolutions de la pathologie ou des technologies sans avoir à reconstruire
le système complet. Ainsi, il est possible de créer un système logiciel finement adapté à
des besoins à un instant, et de le faire évoluer par la suite avec un coût limité.

1.7.4 Intégration simplifiée d’objets et de services

Le modèle de composant proposé dans cette thèse permet la connexion de com-
posants hétérogènes, non prévus pour fonctionner ensembles. L’hétérogénéité de ces
composants peut être due à leurs constructeurs, aux protocoles qu’ils utilisent, aux mé-
dia de communication, mais aussi due à l’objet qu’ils représentent. Plusieurs services
rendus à travers Internet ont été incorporés, enveloppés dans des composants, et per-
mettent par exemple, à une application d’accéder à un agenda en ligne ou un service
de météo. Une gestion horaire de l’allumage d’un éclairage peut par exemple être défini
en connectant le composant gérant la lumière à celui d’un Google Agenda. Dans ce cas,
un rendez-vous dans l’agenda symboliserait la période d’allumage de l’éclairage.

Limitations identifiées 9

1.8 Limitations identifiées

1.8.1 Description structurelle

Le modèle de composant proposé dans la contribution de cette thèse facilite la
description structurelle de l’architecture d’un système, alors que les gens sont plus enclin
à décrire le comportement qu’ils attendent d’un système logiciel. En plus du modèle de
composant (et donc de la description structurelle de la solution), un outil permettant
de décrire le comportement attendu de l’assemblage devrait être proposé. Dans ces
conditions, un utilisateur final pourrait être capable de modifier le comportement du
système sans avoir à s’occuper de la structuration des composants internes.
Le principal challenge réside dans le fait que le comportement global du système peut
être décrit en plusieurs morceaux. En effet, les gens seront capables de décrire ce que le
système doit faire si une alarme se déclenche, si la porte s’ouvre ou s’il fait froid, mais
n’auront pas une vision globale du comportement du système, et des conséquences de
chacun de ces petits comportements. Les différents comportements peuvent par ailleurs
interagir les uns avec les autres et amener le système dans des états incohérent.
Enfin des utilisateurs non experts du domaine, et les utilisateurs finaux ne le sont pas a
priori, n’expriment que le comportement nominal attendu. A partir de cette description,
des outils doivent analyser les points probables de défaillances ou d’erreurs, et tenter
d’y parer.

1.8.2 Paramètres de ports

Les mises en œuvre de différents modèles de composant classiques ont été exclus des
solutions envisageables pour cette thèse, parce que la spécification de leurs ports par
une interface logicielle était trop stricte pour le domaine considéré. Trop stricte, parce
que les méthodes et les paramètres de ces méthodes, s’ils ne sont pas parfaitement ali-
gnés, empêchent toute connexion sans l’intervention de connecteurs ad-Hoc. Le modèle
de composant proposé dans cette thèse n’a pas complètement résolu ce problème. Il a
été remonté au niveau du modèle, le rendant plus simple à gérer.
Si le problème d’alignement des paramètres n’a pas été vraiment traité dans cette thèse,
il a cependant été identifié et des solutions apparaissent dans la littérature scientifique
par l’utilisation de connecteurs [MB05], pouvant avoir des comportements plus com-
plexes qu’un simple appel de méthode ou envoie de message. Des mécanismes de map-
ping, de synthèse de connecteurs ou de re-nommage, par exemple, peuvent être imaginés
pour résoudre l’alignement [CBJ10].

1.8.3 Des vérifications basiques

L’expérimentation n’a pas nécessité la mise en œuvre de vérifications complexes des
modèles. Seulement quelques vérifications structurelles sur le modèle ont été implémen-
tées pour rechercher des cycles de dépendances bloquantes pour la gestion du cycle de
vie par exemple. Beaucoup des points de vérifications n’ont pas été complétés, parce
qu’ils sont dépendants de règles métiers. A chacune des étapes de vérification, les outils

10 Résumé de thèse

s’intéressent à différents aspects de la validation de l’application, et n’ont donc pas les
mêmes besoins d’information pour prendre leur décision. Comme il est probable que le
modèle ne contienne actuellement pas toutes les informations nécessaires pour chacune
des étapes de vérification, l’approche vise à permettre l’extensibilité de ce modèle par
ajout de méta-données nécessaires à la vérification de propriétés.

1.8.4 Gestion de la variabilité

Le problème de la variabilité n’a pas été complètement adressé, parce qu’un petit
ensemble de composants était suffisant pour tester les fonctionnalités dans le cas général.
L’expérimentation, elle aussi, a été réalisée à partir d’un ensemble de composant qui a pu
être géré. Dans la perspective d’un déploiement réel, les variations des configurations
vont imposer la création d’outils d’aide à la gestion de ces variations. Des réflexion
utilisant le développement à base d’aspects, les lignes de produits logiciels et l’ingénierie
des modèles pour traiter la question de la variabilité ont déjà été menés dans le cadre
du projet DiVA par exemple [MFB+08].

1.8.5 Absence de test sur des plate-formes embarquées

Dans le contexte de l’aide à domicile de personnes âgées, le choix a été fait de
conduire les expérimentations sur un ordinateur tout-en-un, équipé d’un écran tactile.
Ce PC était doté de capacités de calcul et de mémoire supérieurs à la plupart des plate-
formes embarquées. Dans un déploiement en environnement réel, il se peut que l’écran
tactile ne soit ni nécessaire ni souhaitable pour remplir des fonctions d’automatisation,
et qu’une plateforme d’exécution embarquée suffise. Des études en cours tendent à mon-
trer la validité de la solution sur des plateformes ARM munies d’un Linux embarqué et
d’une machine virtuelle embarqué comme JamVm ou Oracle Embedded.

1.9 Contribution au réseau d’excellence Européen S-Cube

1.9.1 Le réseau d’excellence S-Cube

Figure 1.1 – S-Cube Re-
search Framework

Cette thèse a été menée dans le cadre du Réseau d’Ex-
cellence Européen S-Cube. S-Cube 1 est un réseau d’excel-
lence Européen en Logiciels, Services et Systèmes. Ce réseau
d’excellence a pour ambition de coordonner la recherche
européenne sur les services logiciels. En connectant la re-
cherche à l’industrie, et en unifiant des recherches multi-
disciplinaires, S-Cube cherche à développer des méthodes
d’ingénierie des services, agiles et globales, et spécifier les
principes et techniques d’adaptation des services.
Ce réseau d’excellence a été financé par le programme de re-
cherche Européen (FP7) ’Coordination’, sous le thème des

1. http ://www.s-cube-network.eu/

Contribution au réseau d’excellence Européen S-Cube 11

Technologies de la Communication et de l’Information (ICT). En plus d’offrir un fort
support pour les collaboration et des opportunités de mobilité entre les instituts de
recherches Européens, S-Cube a financé plusieurs thèses de doctorat pour les différentes
couches de la vue globale présentée en figure 1.1

1.9.2 Contribution

La contribution de cette thèse s’inscrit dans les travaux du groupe de travail 1.2 :
Adaptation and Monitoring Principles, Techniques and Methodologies for Service-based
Systems de l’activité de recherche collaborative(JRA) 1 : Engineering and Adaptation
Methodologies for Service-based Systems

L’objectif général du JRA1 est de "concevoir un ensemble de principes intégrés, de
techniques et de méthodologies pour la conception, l’adaptation et la surveillance d’ap-
plications basées sur les services, tout en garantissant la qualité du système de bout
en bout, et sa conformité au contrat de service", d’après la description du travail d’S-
Cube 2.
La contribution de cette thèse comporte un modèle de composant qui : implique de
nouvelles méthodes et techniques d’ingénierie, permet l’adaptation d’applications ba-
sées sur des services, et offre des moyens de réaliser des vérifications de la conception
au déploiement pour assurer la qualité de service.

Plus précisément, la contribution de cette thèse s’inscrit dans le groupe de travaille
JRA-1.2, qui cherche à définir de nouveaux principes et techniques pour l’adaptation et
la surveillance d’applications orientées services, globalement sur l’ensemble des couches.
Si EnTiMid ne s’intéresse pas à priori aux problématiques de surveillance, il permet de
résoudre les questions d’adaptation.

Du point de vue du projet S-Cube, EnTiMid peut aussi être considéré comme une
brique logicielle permettant l’adaptation des couches d’infrastructure ou de composition
et coordination de services, couches présentés sur la figure 1.1.

2. DoW Amendment 4, December 6th, 2010

12 Résumé de thèse

Part I

Context, Requirements and
State-of-the-Art Review

13

15

Every person I work with knows something better than me.
My job is to listen long enough to find it and use it.

Jack Nichols

The European population is getting older due to a conjunction of two factors. First,
the decrease of births reduced the part of youth in the population. The second factor
is the soon arrival of post-war "baby-boom" people to the age of retirement. Both of
these factors imply a radical change in the age pyramid, and in the socio-economical
environment of European countries. A consequence of this ageing of the population is
an emergence of needs and requirements to face this global evolution.

Over the past few years, home automation technologies have been tending to democ-
ratize. More and more technical solutions are proposed to automate shutters, garage
doors or lightning in houses. These facilities improved the quality of life of the European
population. Now they sound like an interesting tool that could help and offer support
to elderly people in their home.

As an introduction, chapter 2 presents the Ambient Assisted Living and Home
Automation domains, in order to extract some general requirements and outline the
contribution of this thesis.
After this introduction, a state-of-the-art review in AAL projects, Home Automation,
and software engineering approaches is carried out in chapter 3. Chapter 4 ends this
first part with a summary of the state of the art, and announces the contribution of
this thesis.

16

Chapter 2

Introduction

Home Automation and the Ambient Assisted Living(AAL) domains have been of
major influence on this work. Home Automation technologies offered a plethora of tech-
nical solutions with various constraints, while AAL brought substantial real life material
in terms of requirements, needs, or use cases.
This introduction chapter presents these domains in sections 2.1 and 2.2. This presen-
tation enables section 2.3 to list some general requirements identified in these domains.
Section 2.4 defines the scope of this work before section 2.5 outlines the contribution of
this thesis.

2.1 Ambient Assisted Living

2.1.1 The origins

37,00

38,00

39,00

40,00

41,00

1999 2001 2003 2005 2007 2009

37,70
38,00

38,30
38,60

38,90
39,20

39,50
39,80

40,10
40,30

40,60

Figure 2.1: Median Age of EU Pop-
ulation - Source Eurostat

According to Eurostat 1, the median age of
European Union (27 countries) population has
been growing regularly. From a median age
of 37.7 years in 1999, it increased to 40.6
years in 2009 as shown on figure 2.1. It
is a fact; the European population is getting
older each year. This ageing of the pop-
ulation is the result of the combination of
several factors, among which are the ageing
of baby-boomers, and the decrease of birth
rates.

The "Baby Boom"
During the Second World War the birth rate stagnated, resulting in a similar number of
births from 1939 to 1945. This stagnation is visible in figure 2.2, at the level of people
aged between 64 and 70. The "Baby Boom" describes the rapid and strong increase

1. http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home

17

18 Introduction

in the number of births that occurred after the Second World War, thus between 1945
and 1968. Actually, 4.9 million people were born in 1944 in the EU, 7.6 million were
born in 1968 (+35.8%). People born during the "Baby Boom" are now (in 2011) 43 to
68 years old, and will soon retire.

Decrease in birth rates
As can be noticed in figure 2.2, a decrease in birth rates began at the end of the sixties.
From 7.664 million persons born in 1968, the number of births fell to 5.061 million in
2002 (-33.4%). In [Bos98], Xavier Bosch explains that this phenomenon is due to a
multitude of factors such as an increase in the use of contraception, the raise of the
number of single people, or the increase in the percentage of women in the workforce.

84
79
74
69
64
59
54
49
44
39
34
29
24
19
14
9
4

Figure 2.2: Age Pyramid EU (27) in
2009. - Blue: M, Green: F - Source
Eurostat

Europe will soon have to face the in-
crease in the retired portion of the popula-
tion, and a simultaneous decrease in young
people entering working life. By 2050, the
number of people over 65 in the EU will
have increased by 70%, and the number
of people over 80 will have grown by 170
%.

In order to be ready on time, governments
must address the economic and social implica-
tions of an ageing population. They must pre-
pare for increasing demands on healthcare, as a
rapidly ageing society heralds growing popula-
tions with chronic diseases, disabilities, and in-
creasing health needs.

2.1.2 The concept

The Ambient Assisted Living Joint Programme [joi] defines the concept of Ambient
Assisted Living (AAL) through 6 dimensions.
Autonomy By increasing the autonomy, the self-confidence and the mobility of elderly
people, AAL tends to extend the length of time people can live in their preferred envi-
ronment.
Activities Maintaining physical or intellectual exercise helps elderly people to remain
in good health, and prevents a decrease in capacities.
Assisting individuals at risk, by promoting a better and healthier lifestyle.
Securing support and maintaining the network around the individual, including family,
friends and social activities, to enhance security and prevent social isolation.
Supporting carers, families and care organizations in their everyday activities.
Streamlining the use of resources dedicated to elderly people, by increasing their effi-

Home Automation 19

ciency and productivity.

There are many solutions to address these dimensions. Automation of some tasks can
enforce autonomy, and the use of mechanical aids can improve mobility. Social workers
and health professionals can propose activities, support and assistance. Unfortunately,
healthcare associations or companies have difficulty in hiring people for these jobs.
Indeed, qualified people are not numerous enough, and financial constraints are strong
in this domain.

A solution, in assisting both helped people and helpers, could be to use Home
Automation technologies in conjunction with ICTs and human interventions. Section
2.2 presents this domain.

2.2 Home Automation

In 1962, William Hanna and Joseph Barbera created the Jetsons cartoon family. In
this carton, George and Jane were living in the Skypad Apartments in Orbit City with
their children Judy and Elroy. Their housekeeping robot, Rose, handled all chores not
done by the numerous automated appliances triggered with some push-buttons. Apart
from the fact that it is just a fiction cartoon, it describes well the idea of smart homes
or home automation. Let us get into a bit more detail about home automation, and see
why it is still not applied in everyone’s home.

2.2.1 Application domains

Home automation has for too long been perceived as it was presented in the Jetsons:
a set of costly, useless, funny pieces of technology.
Personal home theaters, multi-room media systems, smart colored lighting controllers
will always exist and make a good showcase of what is possible. Besides, the use of more
utility-oriented home automation is soaring. Home or building automation technologies,
among others, ease the management of lighting control, shutter control, heating, ven-
tilation, air conditioning, energy management, metering, monitoring, alarm/intrusion
systems, household appliances, audio/video and lots more. However, people are not
ready to pay for the automation of tasks they can execute by themselves.
Widely used in industry buildings and plants, the automation of the lighting or heating
systems has brought substantial savings of energy and money. This industrial expe-
rience makes it possible to imagine the benefits of installing such systems in homes.
The minimization of power consumption with a maximization of welfare is acceptable,
even dreamed of by everybody. By extension, alarm systems, automatic garage doors
and shutters can also be managed this way, rendering a global and coherent service to
inhabitants.

20 Introduction

2.2.2 Technologies

The devices encountered in home automation originate from different business do-
mains. M. Nagy says in [MAO+09] that "A major problem is inherent heterogeneity
[...] with respect to nature of components, standards, data formats, protocols, [...]".
Indeed, it can be a problem from many aspects, but it is also a set of tools waiting to
be connected.

Communication Media
Four main communication media can be differentiated in home automation technolo-
gies: the Bus, the Radio, the Power Line Communication (PLC) and Infrared. Devices
use these communication media to communicate with each other, and offer a technical
functionality. The choice of a medium is linked to the constraints to be addressed. For
instance, a Bus link is highly reliable, but requires the wiring of the entire house. On
the other hand, Radio communications do not need any additional wiring, but are less
reliable and batteries have to be changed regularly.

Plethora of protocols
Historically, there is no specific home automation brand or manufacturer. It all comes
from different trades such as electricity or Heating Ventilation Air-Conditioning (HVAC)
control. According to the specific needs of their domains, each home automation manu-
facturer has developed a specific communication protocol for its devices to operate with
each other. They also use several communication media to carry the communications.
A consequence of that is the huge number of devices, protocols and media available
on the home automation market, illustrated in section 3.1.4. Technical solutions pro-
posed by the Home Automation domain are so numerous, that there may be a solution
for each need, in almost each domain. Nevertheless, due to this great diversification,
no common management tool exists so far, resulting in expensive mono-manufacturer
closed solutions, or no solution at all.
Even if home automation technologies have existed for many years, no real standard
has been released. Imposing a global standard, as was the case for the IP protocol for
example, seems to be the best way to address such an issue. Each domain has created
its communication protocol adapted to each business concern. Thus, finding a common
protocol, used and understood by all devices from all domains, appears to be a very
difficult task. And even if one finally emerges, developers will still have to deal with
legacy devices using proprietary protocols.
Moreover, the old way manufacturers think adds to the complexity of the problem. They
still think that a closed world (I mean non-public protocol specifications) is a world that
can be controlled. Indeed, it is true, but it is also a world that fewer and fewer peo-
ple want to enter, because they are afraid of the captivity imposed by such solutions.
Captive systems are often well tested, because of the restricted number of available
devices, but there is also a risk for these components of being removed from the market
one day. In these conditions, people could not replace these components with compati-
ble others, and are thus really concerned with the sustainability of the adopted solution.

Identification of requirements 21

2.3 Identification of requirements

The domain of Home Automation requires a new breed of technology to easily man-
age installations and answer specific needs. The lack of such a tool, able to operate any
home automation technology and create solutions for specific needs of elderly people,
makes the adoption and use of these technologies marginal. This absence of a tool may
be due to the complexity and number of requirements inherent to home automation
systems. This section aims to identify a set of required properties for a software tool to
be adopted by manufacturers, installers and users.

The requirements presented in this section have been identified in [NBFJ09]. This
section completes the list and elaborates on them.

Interoperability
Interoperability is described as the ability for systems to operate with each other. Even
if ’system’ is quite a generic word and encompasses lots of things, the idea behind inter-
operability is simple. Given two or more systems, how can one ensure that each of them
is operable with another one? For instance, if I have a light management system and
another one for shutters, how can I guarantee that systems will be able to communicate
in order to be of use for the user?
A closed environment, in which all devices come from the same manufacturer, avoids
the problem. A communication interface, common to all components, also deals with
the issue. Interoperability becomes a complex problem when the environment is open
and when several technical concerns have to be handled in a single place (lighting and
heating management for instance).
In the context of AAL, each solution will be uniquely deployed, because each patient,
each helped person has specific needs due to his environment or illness. Indeed, spe-
cialists in this domain will select different technical artifacts or services, according to
each person’s needs. Those solutions will have to cooperate with each other in a single
system, to perfectly meet the user’s needs, whoever their manufacturer or whatever
their communication protocol may be.

Openness
Openness means making all offered functionalities available for third party applications,
or different uses other than the one initially imagined. In closed systems, customers are
limited to the functionalities and evolutions proposed by the solution’s manufacturer.
If the system deployed was built specifically for a customer, any evolution is very costly.
Keeping the system open to external contributions may reduce the number of demands
for costly system modifications or add-ons. In any case, it is also an open door for new
unforeseen appliances adding smart behavior to a reliable set of functionalities.
This is a clear challenge in computer sciences, and in general when considering com-

22 Introduction

munications and interactions between objects or systems. For instance, Melison et al.
propose in[MRRS11] to extend the Service Component Architecture (SCA) specifica-
tion to introduce new bindings to handle new communication for pervasive or social
use. This ability of extension opens the solution to future evolutions. The definition
of a home-made interface fulfilling the requirements is easier than fitting into a good
practice or a standard that does "almost what we want but not completely".
Openness is a strong requirement in home automation systems, as it has been in com-
puters. Today, a computer manufacturer would not create a specific connection port,
compatible with no other computer, unless he wants to create a new captive market.

Adaptation
In a perfect world, devices never fail, services are always available and the Internet is
always available. As demonstrated every day, the world we are living in is not perfect.
Software systems, or systems dealing with objects or services linked to everyday life
actions, have to take their execution environments into consideration. They should be
able to dynamically adapt to changes around them while they are running, in order to
maintain a given level of services or functionality as long as possible. These adaptations
should not require any reboot of the system, because a reboot could make all in-house
functionalities unavailable. Lastly, an adaptation is not intended to add or remove any
system functionality permanently. Otherwise, it is an evolution.
Execution policies or system reactions must be easily modifiable, in order to take into
account any change in the user’s requirements. For instance, depending on the level
of dependency of an elderly person, the system may completely, partially or not at all
automate the management of certain household functions such as heating or shutter
management. This type of change in system behavior has to be made simple and oper-
able by any authorized person, even with no specific skill in this domain.
Most of all, these changes during runtime must not affect the execution of basic secu-
rity functions (such as emergency call handling), neither in their behavior, nor in their
execution during adaptation.
Adaptations do not only concern technical elements, but also the user himself. All users
are different. While some may be interested in new technologies, others are completely
agnostic. When some are able to remember and learn how the system behaves, others
may experience some memory losses. Where some have vision disorders, others expe-
rience hearing limitations. Software systems should be able to take into account these
disabilities and adapt to their evolutions and to users’ requirements.

Evolution
Evolution in the context of home automation and/or assisted living is a key require-
ment. Needs or uses are changing, protocols and technologies also. Some functionalities
may finally be required, whereas others can become useless and need to be uninstalled.
Security or communication protocols can be improved and deployed in new versions
that have to be taken into account without needing to re-implement the entire system.
Moreover, systems deployed in a house or a building, in charge of its management and
the comfort of its inhabitants, have to be designed to serve during the entire lifetime

Identification of requirements 23

of the building (even if hardware changes may be required). Therefore, they must be
ready to accommodate future and unforeseen evolutions such as the installation of new
services/functionalities for example.

Variability Management
No house or building is like any other. This is because of structural or ground speci-
ficities, because of a particular user’s need or just because no one would like to have
exactly the same house as his neighbor. Thus, each installation will have specific devices
deployed, using specific versions of protocols, and providing several functionalities. The
development, by hand, of a specific control system for each installation is completely
out of the question. It would be too costly and error prone. A global management tool
should exist to deal with the inherent variability of such systems.
People responsible for designing a solution for an installation query should have some
tools at their disposal to help them in choosing devices to install, or to assist them in
selecting devices from all the catalogs of all manufacturers.

Remote Control
More and more, people want to remotely access their belongings. This is also true for
their homes. They would like to be able to remotely check the lights status, run a bath
or switch on the alarm system that they forgot.
In the context of building management facilities, specialized companies have different
solutions to check the state of a building system. They either have remote access to
all systems, or they check locally by hand. The local solution is no longer viable in
the context of our society. Systems deployed to control buildings or homes should have
remote access possibilities (under access control and agreement) to allow for remote
diagnosis, corrections, or evolution actions from a control center.

Distribution
Today’s systems work more and more with or on different execution platforms, and
communicate more with each other. This is particularly true for home automation.
For redundancy reasons and service level insurance a building and even a house can be
equipped with multiple, independent, but connected controllers. These controllers can
share the different functions to balance the loads on platforms, or offer a connection
to a specific, locally-connected device. When a running platform fails, other platforms
aware of its job can stand in temporarily, until the original controller is back in op-
eration. Also, devices are becoming smarter and may make decisions by themselves.
As a consequence, decisions and control could be distributed to several smart pieces of
equipment.

Safety & Security
As presented in the context of this work, safety and security are very important re-
quirements for home automation systems. Indeed, they themselves have to be safe and
secured to be able to play their role in difficult situations and improve the security
and safety of people and goods. A minimum service level has to be guaranteed, for

24 Introduction

inhabitants not to remain stuck in the house in the case of an emergency. Moreover,
the access policies of the system have to be sufficient to avoid unauthorized access, and
simple enough not to become a constraint for authorized carers.
Several tools such as simulators, tests, or model checking, can be used to check and
improve the reliability and the safety of such systems.

Acceptability & Accessibility
In the domain of home automation, deployed solutions, whatever their nature, have to
take into consideration interactions with all inhabitants. Whether they are children,
teenagers, young workers, parents, retired or old people, all of them must be able to
interact with the system. Checks have to be performed on all solutions proposed, to
ensure all users can control, or obtain information from the system and keep control.

New requirements for software are emerging from the accessibility of home automa-
tion technologies. The evolution of the software during the building’s lifetime, its adap-
tation to cope with changes in its execution environment and the huge variability of
technologies and protocols to be guaranteed to inter-operate, are triggering new chal-
lenges for software engineering.

2.4 Scope of this work

The list of requirements presented in the previous section could be completed. A
particular situation can bring many other issues for software engineering.
This thesis focuses only on a subpart of these requirements and aims to propose a solu-
tion to conjunctively address interoperability, adaptation, openness, evolution, variabil-
ity management and, partially, safety and security issues. The first goal of this thesis
was to end up with a working solution able to cope with this sub-list of requirements.
Other ones will be addressed in future works. As for safety and security issues, the work
realized in this thesis partially addresses the problem, since questions about privacy and
information security concerns have been decided as out of scope. The focus was more
about ensuring consistency of assemblies and a fail-safe system.

Contribution of this thesis 25

2.5 Contribution of this thesis

Software can no longer be built on a once-off basis. Customizable, reliable and per-
sonalized solutions have to be deployed in the short terms to meet changes in users’
needs or in the environment at any time. Moreover, the specificities of each installation
make it very hard to create a unique piece of software able to cope with all technologies,
concerns (such as energy consumption) or unpredictable evolutions.

In the electronics domain, the number of components and their always-possible con-
nectivity have offered technicians and engineers the means to create various solutions.
Even many years after their assembly, electronic devices can still be repaired or com-
pleted with new features. The proposal made in this thesis is to take advantage of the
electronic way of doing to improve the flexibility of software systems while keeping a
high level of safety and security.
To this end, the contribution of this thesis can be described from three aspects:

- A constraint-relaxed component model that leverages the software flexibility, by
offering ways to connect any component to any other. This aspect addresses interoper-
ability issues and evolution requirements

- Modeling tools to create, modify and simulate component assemblies, check their
consistency and validity before their (re-)deployment at runtime. Safety and security,
as much as variability management are requirements covered by this aspect of the
contribution.

- An execution environment built over a service-oriented runtime, to support the
proposed component model and cope with adaptation and evolution requirements at
runtime.

26 Introduction

Chapter 3

State-of-the-Art Review

The review proposed in this chapter is made if three sections.
Section 3.1 starts with a description of the Ambient Assisted Living domain from which
social requirements have emerged, and it presents some projects on this topic. It then
introduces some home automation technologies, their use and goals in several projects.
The overview of these two domains makes it possible to sense more precisely the needs
for a new breed of software for these domains.
Section 3.2 then presents several general purpose software approaches and tools that
have been considered for the resolution of the problem targeted. Each of them is evalu-
ated against the requirements identified in the introduction. However, general purpose
approaches seem not to be specialized enough to meet the requirements of the AAL and
home automation domains.
For this reason, section 3.3 evaluates some selected domain-specific approaches with
respect to the same requirements as for general purpose ones.
Finally, the review made in this chapter is summarized in chapter 4 which uses this
basis to specify the contribution of this thesis.

3.1 Background on AAL and Home Automation

Ambient Assisted Living is a hot topic in Europe. Several projects have been led
to address different aspects and try to cover the needs inherent to a home-keeping
situation. This section introduces some of them.

3.1.1 Projects in AAL

The Ambient Assisted Living (AAL) Joint Programme 1 is a collaborative associ-
ation of twenty European Union Member States, plus three Associated States. They
group together the AAL Association, whose main objective is to enhance the quality of
life of elderly people, through the use of Information and Communication Technology
(ICT). Their main activity is to found R&D projects in the AAL domain and to publish

1. http://www.aal-europe.eu

27

28 State-of-the-Art Review

annual calls for project proposals.
The total budget planned for the AAL Joint Programme is e700 million, half of which
is to be funded by public resources (AAL Partners plus the European Commission) and
the other half by private participating organizations. According to the 13th article of
the EC decisions 743/2008/EC [otEU], funding from the European Commission is taken
from the budget allocated to the ICT theme of ’Cooperation’ under the FP7 Specific
Programme of the same name. Thus, the AAL-JP is set to last from 2008 to 2013, to
correspond to the FP7 dates.

The ASK-IT project 2 ran from 2004 to 2008, and aimed at providing Ambient
Intelligence to support and promote the mobility of impaired people [WSV+07]. It laid
to the development of a software framework, and a set of tools for mobility. Among
other things, a Domestic Module has been created to support the provision of seamless
home environment management, to the mobility-impaired traveler on the move.

In a slightly similar approach, the SOPRANO project 3 intends to design an ICT
system to foster the comfort and safety of elderly people in their everyday life. In
this project, a strong effort is made to measure the acceptability of the solutions. SO-
PRANO [SML+10] aims to maximize the acceptability of the services, especially in
populations vulnerable to loss of independent living. This is achieved by ensuring con-
trol of the environment by users, where they so wish and by using extended user-centered
design techniques.

INHOME IST Project 4 is also an interesting project in this context. Completed
in December 2008, its goal was to enhance the autonomy and the safety of elderly people
at home [VAMC08]. It led to the development of a set of services such as activity mon-
itoring, home environment management, task scheduling, flexible AV stream handling,
and hence, flexible access to household appliances.

As for, the GUIDE project 5, it endeavors to provide a framework [CCQS05], a
user model toolbox and a handbook, along with graphical user interface components,
in order to ease the creation of graphical user interfaces answering the special needs of
elderly people.

All these projects try to improve the comfort, safety and security of elderly people
by means of technical aids. Home Automation is a vast field that offers many solutions
to ease or help in the realization of everyday tasks that can become difficult with ageing.
Basic elements of this domain have been introduced in section 2.2.

2. http://www.ask-it.org/ (march 2011)
3. http://www.soprano-ip.org/ (march 2011)
4. http://cordis.europa.eu/fetch?ACTION=D&CALLER=PROJ_IST&RCN=80489 (march 2011)
5. http://www.guide-project.eu/ (march 2011)

Background on AAL and Home Automation 29

3.1.2 European research

The European ’Cooperation’ Programme of the FP7 is quite a good representation
of European countries’ current concerns and research themes. According to the FP7
factsheet[Com], e32.365 million are allocated to different themes. The major theme,
which is allocated 28.72% of the FP7 ’Cooperation’ funds, is ICT. In second position
with 19.07% comes the health theme. Third and fourth positions are Transport and
Nano-Productions respectively, with 13.18% and 11.03%, followed by the Energy and
Environment themes consuming 7.25% and 5.67% of the overall budget.
Thus, three of the top five concerns of Europe are ICT, Health, and Energy and the En-
vironment (assuming Energy and the Environment can be grouped as a unique theme).

Using ICT to improve the quality of life of people is an idea that can be identified in
the background of several projects throughout the world. Section 3.1.3 presents some
of them with a focus on those using home automation technologies.

3.1.3 Home automation in projects

Information reported in this section has been partly collected from a talk by Luc
Balanger, director of the Communication Networks department at FFIE (French pro-
fessional association of electrical engineering companies).

Asian countries have developed strong market sensitivity to video games. Some
TV channels are even specialized in the live transmission of gaming parties, involv-
ing professional and sponsored gamers. Over the past few years, several studies and
news programs have reported a kind of addiction of a portion of the population to
video games. In particular, A. Faiola in [Fai06] states that about 2.4% of 9 to 39
year-old South Koreans are believed to be suffering from game addiction, according to
a government-funded survey. Another 10,2% of them were found to be obsessed with
playing electronic games.
Some home automation manufacturers are working on products to make the game more
real. The goal is to give gamers the sensation of being in the game, and playing as a
first person, using for instance 7.1 speaker systems or 3D visualization devices. This
aspect of home automation is clearly entertainment oriented.

The United States is also concerned by video game addiction of youth. However,
home automation does not target this domain, but a much more prominent one in the
US. The safety and security of people and goods has been a huge market in the United
States since the 9-11 events, as explained by Terrell E. Arnold, a retired Senior For-
eign Service Officer of the United States Department of State in [Arn]. Also called the
"fear" market, American people are investing a lot of money to feel safe. In this field,
video security cameras can be deployed in homes, for inhabitants to be able to remotely
see what is happening. Presence simulation is a must in this kind of systems, feigning
somebody’s presence in the home by automatically switching on and off lights when

30 State-of-the-Art Review

inhabitants are away.

In Japan, safety and security are also two important requirements and necessities,
but not for the same reasons. As recently demonstrated, nature is not kind in Japan.
Volcano, earthquakes and tsunamis are real dangers. The JEITA House Project 6 made
it possible to automatically secure the house when an earthquake is detected. For in-
stance, the solenoid valve controlling the arrival of gas in the house is switched off when
an alert is received. This security has been enabled by the use of home devices able to
communicate with each other, or with the centralized house manager. The JETI project
also had an orientation toward improving the comfort of people. Asian people are fond
of multifunction toilets or showers, and more generally, pay a strong attention to their
well-being and health. A centralized house manager can improve the well-being of in-
habitants by making everyday devices smarter. Manufacturers in this domain design
their products to be more and more connected, and full of high-technology features.
Moreover, each device is given a specific address making it possible to remotely control
almost everything in the house. For example, it is possible to remotely run a bath using
a smart phone for it to be ready when the resident is back home.

Home automation has a bad reputation, due to several advertisements that promoted
useless functions. It thus has been considered as a costly, useless technology, for people
fond of high technologies. Nevertheless, home automation technologies have quietly
grown, and are today very rich in terms of communications, functionalities and uses.

3.1.4 Home Automation details

The evolution of concerns and needs in the home automation domain has led man-
ufacturers to adapt their products over the years. As a consequence, lots of products
communicating through many different media are available today. According to their
manufacturers, and to their domains of use, devices also come with their own trans-
portation protocols making their diversity even greater. This section briefly presents a
non-exhaustive list of protocols and media used by home automation products to high-
light the complexity of this domain with relation to the huge variability of solutions.

3.1.4.1 Communication Media

Communication Bus The bus is physically a wire, a link between devices respon-
sible for transporting data packets from a source to a destination. When a data packet
is sent, every device connected to the bus receives the packet. Most of the time, devices
ignore the packets, unless the destination address of the packet is the device’s address.
Ethernet is probably the most famous ambassador of this communication medium.

6. http://www.eclipse-jp.com/jeita

Background on AAL and Home Automation 31

PLC is a special kind of bus. The main idea of this communication medium is to
reuse existing cable infrastructure to avoid adding a new specific communication cable.
As the most common cable present in all houses is the power line, this technology injects
data into the power line by modulating in a carrier wave. All transceivers plugged into
the line can then decode the data from the carrier wave modulations. This communi-
cation medium tends to be more and more used, as it offers great data transfer rates
and does not impose any new wiring.

Radio The radio medium is widely used, thanks to its wireless property. Radio de-
vices are quite complicated to design, because of the trade off between energy consump-
tion and protocol reliability. However their deployment is easy, and does not require a
major work. Many manufacturers use the free ISM radio band. As a consequence, the
ISM frequencies are noisy, and protocols have to secure their communications.

Infrared The infrared communication medium is employed for specific appliances.
Indeed, there can be a lot of noise coming from the natural light disturbing the receivers.
Since this medium is based on an optical link (using infra-red), both transmitter and
receiver have to face each other. This is a strong limitation that makes the use of this
medium difficult in home automation. In fact, devices are rarely facing each other.
Nevertheless, it still is a good medium for a human-computer interface such as a remote
control. Users can give orders to the system using a remote control, thanks to receivers
disposed in many places around the house.

Links between media It is sometimes necessary to use a combination of different
media to cover requirements from both the users and the infrastructure of the solution.
As a consequence, manufacturers have developed families of devices, which use several
communication media. They also created products to transfer orders/communication
frames from one media to another, so that all their products can obtain the information.

3.1.4.2 Transport Protocols

io-homecontrol R© is a two-way radio technology and a proprietary protocol. Orga-
nized in an association, a dozen of industrial manufacturers provide products compatible
with io-homecontrol. Partners of this association are Honeywell, Niko, Somfy, Velux,
Groupe Atlantic, Assa Abloy, Ciat, Renson, WindowMaster, SecuYou and Overkiz. This
technology is embedded in house equipment such as roof windows, vertical windows,
roller shutters, gates, garage doors, front doors, alarm systems, lighting, ventilation,
heating systems, etc. A single control can monitor and pilot all the io-homecontrol
compatible equipment in the house.

IOBL In One By Legrand is a proprietary protocol used by Legrand (a French elec-
trical component manufacturer). Legrand offers many devices able to interact with each
other. These devices control lights, shutters, or heating systems. Being proprietary, no

32 State-of-the-Art Review

other device manufacturer offers compatible products. IOBL products are able to send
and receive orders from infrared medium or PLC.

X2D Delta Dore is historically a French heating system manufacturer. This com-
pany has extended its activities to home automation and alarm systems, for home and
building control. For their products to communicate, they have developed a commu-
nication protocol called X2D, using radio, bus and PLC media. Just as IOBL, the
protocol is private, and no other manufacturer offer compatible products.

X10 is a communication protocol for low cost home automation products. Sensors
and actuators send data frames over PLC or radio to a maximum of 256 addresses,
with no acknowledgement. It is thus impossible to know if an order has reached its
destination, and there can be only one order at a time on the network.
This protocol is quite limiting in term of number of devices, and guarantee of service,
but it works and is pretty cheap compared to other product families. Moreover, tech-
nical specifications are available.

Z-Wave is a wireless technology to remotely control home appliances, entertain-
ment products, and access systems, running in the 868MHz ISM band. Grouped into
the Z-Wave Alliance 7, 160 manufacturers offer interoperable products in these domains,
using this closed protocol. Based on a mesh topology, Z-Wave data frames can transit
through several devices around the house to reach their destination. This is an inter-
esting faculty to overpass radio obstacles and ensure delivery.

ZigBee is an open standard addressing low-cost, low-power M2M wireless networks.
It was released by the IEEE in 2003 and over 300 manufacturers have since then joined
the ZigBee Alliance. Working on 2.4GHz, 900MHz and 868MHz, ZigBee has been de-
signed to be able to work in hostile radio environments. Network topology can be
point-to-point, infrastructure or mesh, and accepts up to 65,000 nodes. Wireless prod-
ucts compatible with the ZibBee specifications target remote control, home automation
or sensing domains.

6LoWPAN is the name of a working group at the Internet Engineering Task Force
(IETF). This group aim to reduce the memory footprint of IP frames (and principally
IPV6 frames) for the protocol to be used in devices and networks with low power avail-
ability. This protocol would make it possible to use the powerful IP routing mechanisms,
in sensor networks or distributed embedded applications, making them operable from
any classical IP network. Specifications of 6LoWPAN can be found as RFC 4944 8 and
RFC 4919 9.

7. http://www.z-wavealliance.org/
8. http://tools.ietf.org/html/rfc4944
9. http://tools.ietf.org/html/rfc4919

Background on AAL and Home Automation 33

HomePlug is an alliance of industrial companies. The goal of this alliance is to
enable and promote the use of PLC networks and products. Industrials involved in this
group take places at each level of the value chain, from service and content providers
to software/hardware design. This alliance is and has been involved in several IEEE
Standard definition processes. HomePlug took part in the definition of the HomePlug
AV [All05] (IEEE 1901.2010), tend to launch a new certification program for the Low-
Frequency Narrow Band Powerline Communications standard 10 (IEEE P1901.2), and
support the elaboration of the IEEE P1905 standard which aims at providing a common
abstraction layer to several existing home network technologies.

Dash7 Alliance aims to promote the adoption and use of the ISO 18000-7 11 stan-
dard. This group of 20 members (as of Nov. 2011), encourages the development of
compatible products, educates the market to this technology and certifies products ca-
pabilities. Dash7 is a wireless long range and low power technology. It supports IPv6,
P2P messaging and encryption using 128-bit AES or public key. Dash7 operates in the
433 MHz ISM band with a dynamically adaptable data rate between 28 Kbps and 200
Kbps.

European Eib/KNX consortium The KNX Association 12 was founded in May
1999, by the members of the EIBA (European Installation Bus Association), EHSA
(European Home Systems Association) and BCI (BatiBUS Club International) associa-
tions. Its mission is to develop and promote the KNX standard so that it is recognized
as "The worldwide standard for home and building control". The KNX standard has
been designed to enable the control of applications in industrial, commercial and resi-
dential buildings worldwide.
KNX has been approved as a European Standard (CENELEC EN 50090 and CEN EN
13321-1), an International Standard (ISO/IEC 14543-3), a Chinese Standard (GB/Z
20965) and a US Standard (ANSI/ASHRAE 135). It groups about 7000 KNX certified
products from 200 member companies, installed by more than 30,000 KNX partner in-
stallers in 100 countries.
KNX is designed to automate and control lights, shutters and heating systems in homes
and buildings.

LonMark Intl. Echelon Corporation 13 is an international company that targets a
worldwide transformation of the electricity grid into a smart grid. To achieve this task,
Echelon developed LonWorks, a family of products able to interact with each other using
the LonTalk protocol. The promotion of LonWorks products to end-users, manufactur-
ers and integrators is ensured by the LonMark Intl. 14 organization. This organization
is also responsible for giving guidelines and help to manufacturers, integrators and end-

10. http:grouper.ieee.org/groups/1901/2/
11. http://webstore.iec.ch/preview/info_isoiec18000-7%7Bed3.0%7Den.pdf
12. http://www.knx.org
13. http://www.echelon.com
14. http://www.lonmark.org

34 State-of-the-Art Review

users to build or simply use LonMark certified products. Lastly, its role is to ensure
the interoperability of all products, by verifying that each of them meets the LonMark
guidelines to operate on a LonWorks network. The LonTalk protocol designed by Ech-
elon is currently recognized as an international standard (ISO/IEC 14908), a European
standard (EN14908) and a Chinese standard (GB/Z 20177.1-2006). In February 2009,
over 700 organizations joined LonMark.
LonWorks products are mainly used for technical building management concerning lights
and HVAC (Heating, Ventilation and Air Conditioning).

BACnet Developed under the auspices of the American Society of Heating, Refrig-
erating and Air-Conditioning Engineers (ASHRAE), BACnet 15 is a Data Communica-
tion Protocol for Building Automation and Control Networks. It has been released as
an American national standard, a European standard, a national standard in more than
30 countries and an ISO global standard. The protocol is supported and maintained by
ASHRAE Standing Standard Project Committee 135, divided into 13 working groups.
These groups work to integrate issues from various building aspects from "Objects and
Services" cooperation to elevator or lighting management. In February 25, 2011, 503
Vendor IDs were issued from all over the world.

3.1.4.3 Application Protocols

Universal Plug & Play(UPnP)
Universal Plug & Play (UPnP) 16 is an application level protocol which aims to ease the
connection and use of electronic devices, based on a discovery-search mechanism. As a
UPnP-Device joins the UPnP network, it sends an XML description file to all UPnP
Control Points. This description provides other devices on the UPnP network with
information such as manufacturer, device type, device model or the unique identifier
of the device (UUID). The services offered by a UPnP device are also specified in its
description. Each service conforms to a type, a set of UPnP actions that the service
renders. Providing such information to other devices on the network makes it possible
to use the functionalities of the device without having to install anything (thanks to
the standardization of the descriptions and method call mechanisms).
UPnP is particularly used for multimedia management. The Digital Living Network Al-
liance(DLNA) extended the UPnP-AV specifications, to provide commonalities in media
descriptions, format negotiation and connections between media servers and renderers.

Device Profile for Web Services (DPWS)
DPWS [JMS05] could be considered as a next generation UPnP. If the goals are the
same, DPWS uses WebServices as a transportation mechanism whereas UPnP uses sim-
ple XML over IP. DPWS is still based on the concept of services, devices, operations
and parameters. It includes numerous extension points, allowing for seamless integra-

15. http://www.bacnet.org
16. http://www.upnp.org

Background on AAL and Home Automation 35

tion of device-provided services in enterprise-wide application scenarios.

DNS-SD 17 is a service advertisement and discovery mechanism that relies on
the DNS standard. It uses DNS packet formats, servers and programming interfaces
for browsing for services. DNS-SD is compatible but not dependent on Multicast
DNS(mDNS). This standard is used, for instance, by the Apple Bonjour protocol for
locating printers, other computers or different services such as media sharing. Some
projects such as iDo 18 uses this protocol in a home automation context.

SIP
Session Initiation Protocol (SIP) is a protocol for initiating, modifying, and terminat-
ing an interactive user session that involves multimedia elements such as video, voice,
instant messaging, online games and virtual reality. Developed by the IETF MUSIC
Working Group, it was initially published in 1996 as RFC 2543 and updated by the
RFC 3261 in 2002. SIP aims to ease the establishment of communications between
multimedia devices using two protocols: RTP/RTCP and SDP. When RTP is used to
transport voice data in real time (the same as H.323 protocol), the SDP protocol is used
to negotiate the participant capabilities, codification type, etc. SIP has been designed
in conformance with the Internet model and all the logic is stored in end devices (except
the routing of SIP messages).
SIP can establish sessions for features such as audio/videoconferencing, interactive gam-
ing, or home appliances over IP networks. It is based on requesting and answering mes-
sages and can reuse many concepts from previous standards such as HTTP and SMTP.

XMPP
The Extensible Messaging and Presence Protocol (XMPP) 19 is a protocol for real-
time communication such as instant messaging, voice and video calls, collaboration or
lightweight middleware communications. The core technology of XMPP was invented
by Jeremie Miller in 1998 and formalized by the IETF in 2002 and 2003 in RFCs.
The latest RFC reviews for XMPP are RFC 6120, 6121 and 6122 published in 2011.
The XMPP community continues to define various XMPP extensions through an open
standards process run by the XMPP Standards Foundation. An active community of
open-source and commercial developers produces a wide variety of XMPP-based soft-
ware.

The complexity of the home automation domain clearly appears from this presen-
tation. Taken individually, each product, transportation protocol, or medium is quite
easy to handle. The complexity is due to the huge number of possible solutions for a
given problem and to the difficulty of becoming aware of all the benefits and drawbacks
offered by each solution.
Home automation can be used in various contexts, such as assisted living or energy

17. http://www.dns-sd.org/
18. http://hw-server.com/ido-smart-automation-everyone
19. http://xmpp.org/ (May 2011)

36 State-of-the-Art Review

saving. Professionals in these domains are not aware of the possibilities offered by home
automation technologies and home automation engineers are not familiar with each do-
main’s problems.
Tools are required to simplify variability management and conciliate home automation
technologies with domain-specific problems to bring new solutions.

General purpose approaches 37

3.2 General purpose approaches

The ageing of the European population and the complexity of home automation tech-
nologies require a software tool, able to ease the creation of user-specific, installation-
specific software, using home automation devices to provide a personalized service.
The development of this tool should rely on an approach adapted to the problem we
are trying to resolve here. This section surveys several general purpose approaches and
tools, to evaluate their position in relation to our requirements.

The survey starts with an overview of Internet of * concepts together with service-
oriented architectures. Afterwards, this section presents tools and approaches from
the component-base engineering field. This presentation ends with approaches that
conciliate services and components; namely component-base architectures for service-
oriented applications. Each of these three parts is organized the same way: it firstly
describes the general idea of the approach and then details some tools implementing
the approach.

3.2.1 (Web)Service-Oriented Architectures

3.2.1.1 Internet Of * and the Cloud

The Internet we know aims at sharing information and facilitating interactions and
communications between people or computers.

In an article [DFD+09] extracted from the book "Towards the future of Internet",
Domingue et al. reports a chart from the web site ProgrammableWeb.com, presenting
the number of available APIs (services offered through the web) in fifteen categories.
These numbers extracted in November 2008 are reproduced in the chart presented in fig-
ure 3.1a. Just next to this figure, another chart (fig 3.1b) presents the current numbers
from the same web site, for the same categories, but three years later. If the repartition
has not significantly evolved, the total number of available APIs considerably grown
form 612 in 2008 to 2589 in 2011 (plus 423%).
With the evolution of Internet technologies, the services offered through Internet are
getting more and more numerous and rich.

Internet Of Services
Synergy is probably the best word to describe the Internet Of Services (IoS) goal. Many
services are now available on the Internet, such as hotel bookings, flight reservations or
car rental. IoS aims to orchestrate the interactions of existing services to create new
services more integrated, and dedicated to a task or a user. The goal is to create, for
instance, a "Travels booking service" which aggregates the booking of a flight, hotel
and car in a unique process.

Among all the "things" able to provide services, everyday life objects are also get-
ting enriched with abilities to communicate through Internet-based technologies.

38 State-of-the-Art Review

Blogging
18Government

21Email
24

Enterprise
27

Photo
33

Telephony
34

Search
34

Music
36

Shopping
38

Messaging
38

Video
40

Finance
42

Social
46

Reference
53

Internet
57

Mapping
71

(a) APIs, 2008

Blogging
50

Government
135Email

95

Enterprise
160

Photo
122

Telephony
172

Search
128

Music
129

Shopping
180 Messaging

126
Video
120

Finance
165

Social
286

Reference
206

Internet
332

Mapping
183

(b) APIs, 2011

Figure 3.1: Data from [DFD+09] and actualized from ProgrammableWeb.com

Internet Of Things
Stemming from the evolution of electronic devices, the Internet Of Things (IoT) re-
lates to an approach in which objects of everyday life have reached a sufficient level of
maturity to interact one with each other. This interaction gives them the ability to act
differently according to the situation ’sensed’ with a stronger added value. Still in its
infancy, the IoT is looking for software tools to develop and describe these interactions,
as much as the services rendered.
Software components are quite suitable for virtualizing everyday life objects, and service-
oriented computing is suitable for describing and implementing interactions. Software
solutions developed in the future would probably merge both of these approaches. As
long as it can be considered that a component offers services to other components, the
collaboration of services and components produces promising results.

Information, devices and services are now able to communicate through the Internet,
and render more and more integrated services to users. This strong integration requires
all these services to be able to self-locate their dependencies, with no need for the user
to set up technical properties (i.e.: server IP address, tcp port, etc...).

The Cloud
Surfing on the service wave, hardware providers, software providers and others are of-
fering more and more "things" as a service. Among others, Software as a Service (SaaS)
and Platform as a Service (PaaS) are the two main paradigms showing that everything
can now be provided as a service.
The Cloud could be defined as the Internet of tomorrow. As everything is being served

General purpose approaches 39

as a service, there is no more need to precisely locate services. Do you need a printer?
Ask the cloud for the closest printer from you, and just use it. Might you need a lawyer?
Ask the cloud for the best of them, and have a video-conference with him.
This approach makes it possible to obtain the hardware configuration you need, just-
in-time, to run your software as a service. You will never know where your software is
really run, but it will run in the cloud.

These principles are built on top of software architectures which basic elements
are services or resources. Therefore, these approaches for building software are called
Services-Oriented and Resource-Oriented architectures.

3.2.1.2 Architectural principles

In [Pap03], M. Papazoglou defines Service-Oriented Architecture as "a way of re-
organizing software applications and infrastructure into a set of interacting services".
Services are able to describe themselves and realize computations for applications or
other services, from a simple method execution to a complex business process. Services
are offered by service providers which are responsible for the supply and support of their
services. Clients of these services can be either applications or individuals, internally to
the organization or from outside.
Possibly distributed over Internet, services must be Technology Neutral to be provided
and used whatever the context, Loosely coupled to not rely on any specific context of
use, and support Location Transparency by registering their location and description in
directories such as UDDI, to allow clients to call the service regardless of its location.

SOA vs. WSOA
In the Software Services community, service-oriented architecture is often used instead
of web services-oriented architecture. However, there is a clear separation to respect
between service-oriented architectures and web service.
Then, if a service is accessible through the Internet, this service is called web-service,
and is a particular case of a service. Then service-oriented software can use this service
as it would any other.
In conclusion, a service-based application does not necessarily use web-services and may
even use no web service at all; there are other means of creating software based on ser-
vices.

Web-Services
A Web Service renders a service, using the Internet as a support. Web services are
composed of methods that can be called by clients. Customers do not have to care
about how the service is given and can just use it.

The use of Web Services is based on a "search and use" mechanism. Service providers
are responsible for the registration of their services into a Universal Description Dis-
covery and Integration (UDDI) directory. When a client wants to use a service, he

40 State-of-the-Art Review

first searches in a service directory. Each registered service comes with a description,
which helps clients in their service selection process. The real call to the service is made
directly from the client to the server. Figure 3.2 illustrates this mechanism.

register (W
SDL)

sea
rchre

su
lts

 (W
SD

L)

use (SOAP)

answer (SOAP)

Service Consumer

UDDI

Service Provider

Figure 3.2: WebService Architecture

Registrations and descriptions of ser-
vices in the UDDI are based on a descrip-
tion language for web services called Web-
Service Description Language (WSDL).
The description of a service informs users
about the list of operations offered, pa-
rameters, and types of objects manipu-
lated. Dynamic discovery and use of ser-
vices are enabled this way.
Communications between clients, servers
and UDDI instances use a unique carriage
protocol called SOAP. SOAP has been
based on XML descriptions in order to
make use of HTTP, SMTP, and other ap-
plication protocols as carriers.

Although this approach provides mechanisms for dynamic search and use with pre-
cise descriptions, the amount of data exchanged and the complexity of the SOAP mes-
sage structure can become an issue. Resource-limited platforms may not be able to
embed a SOAP parser, or have a power supply designed to send a large amount of
communication data. To cope with this problem, Resource-Oriented Architectures have
been proposed.

Resources-Oriented Architectures

In his doctoral dissertation in 2000 [Fie00], Roy Fielding introduced the term and
idea of Representational State Transfer (REST).
REST has been designed to lighten transfers of information through web-based com-
munications. Instead of heavy serializations of concrete program objects, REST ar-
chitectures are share representations of these objects using XML for instance. These
representations handle all coherent and meaningful information for the request (resp.
answer) to be processed by the server (or client). REST defines only four standard
CRUD [YWDJ98] operations to manage resources.
GET is to retrieve the resource pointed by the called url. POST asks the server to
add the information contained in the request (hence a resource representation) to the
resources pointed at the requested url. The PUT operation is used to create or en-
tirely replace a resource, based on the representation contained in the request. Finally,
DELETE requests the server to delete the specified resource.
URLs of REST servers handle information about the resource concerned by a request.

General purpose approaches 41

For instance, a GET request on a URL such as http://myMedia.org/ would be answered
with an XML representation of the entire media library; a POST containing informa-
tion about a new book, called on the http://myMedia.org/books would result in the
addition of this book in the book library. As a final example, a DELETE request on
http://myMedia.org/books/2517 should remove the book whose unique identifier is 2517
from the book collection.
For its transportation, REST was initially described in the context of HTTP but is not
limited to that protocol. Supported by an application-level transfer protocol, REST is
thus development-technology agnostic.

Thanks to the appearance of these two paradigms, ideas emerged about connecting
software systems and everyday life objects. The presence of registries or auto-discovery
mechanisms also led to an abstraction of the details of the physical location. These
interconnections finally brought new paradigms known as the Internet of *.

3.2.1.3 OSGi

OSGi [All11] is an association created in 1999 aimed to provide facilities for soft-
ware integration and development. To achieve this task, the association released a set
of specifications defining what any runtime implementation should do to reach a given
service level. These specify which minimum set of services a runtime must offer to be
compliant with the level.
In OSGi, services are given and contained in deployments units called bundles. Each
bundle contains a Manifest file giving information about the runtime dependencies, the
classes offered and some other information about what the bundle needs to run. Bun-
dles can be installed, updated or removed at any time and their services can be started
and stopped, with no need to restart the runtime platform.
Services are defined by Java interfaces (for Java runtime implementations), and are
stored in the runtime context. Thus, any client on the platform who needs a service
can search in the context registry for the service they need. Service method calls are
locally handled inside a JVM, which makes this service-oriented runtime much faster
than web service-based applications.

In OSGi, relations between bundles are never made explicit. Worse still, relations
between bundles can be due to service dependencies that are just hard-coded and can
only be changed by rebuilding and redeploying the bundle. In a static application, with
few updates in time, this is not a real problem. Moreover, there are very few reflec-
tion primitives and thus, interactions between bundles can hardly be traced or even
made explicit. OSGi do not address issues of interoperability, variability management
nor safety and security. The registry mechanism is a good point concerning openness,
and adaptations and evolutions of applications are simplified by the native lifecycle
management of OSGi. In a word, OSGi lacks of a clear means of visualization of the
architecture while running, but makes a very good base.

42 State-of-the-Art Review

The table below is completed for each approach or tool, and presents strengths and
weaknesses in a synthetic way. Individual tables are merged altogether in section 4 as
a synthesis.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ + +

3.2.1.4 Enterprise Service Bus

Enterprise Service Bus (ESB) refers to a business middleware family for service-
oriented applications. This middleware acts as the only mediator of services in the
enterprise, by providing a runtime environment for deploying business services. Legacy
software can be integrated as services into the business service orchestration. These are
declared as any other service, within the scope of the ESB runtime. The specifications
have been successfully implemented in several frameworks such as OpenESB by Sun-
Microsystems, ServiceMix by Apache Foundation, or Petals by OW2.
Java Business Integration (JBI) or JSR 208 is an industrial Java standard developed
to ease the integration of software systems over Service-Oriented Architectures. It uses
an ESB as a basis to define a component model. It has been designed to reuse Java
technologies such as WebServices, BPEL or JMS, and thus avoid new specific develop-
ments. In JBI, components have an independent life-cycle and communicate through
their services over normalized message middleware. In fact, this middleware acts as an
abstraction layer for communications and eases the integration. JBI components are
split into two categories:
Service Engine Components are directly hosted by the JBI runtime environment,
and are in charge of message processing, routing or orchestration of services. They
cannot communicate outside of this scope.
Binding Components expose or consume standard JBI services, and perform the
bindings with external non-standard software.
The packaging as components is described in the framework like this: service descrip-
tions are encapsulated into Service Units, which are then encapsulated into deployable
business components called Service Assemblies.

The message middleware makes JBI a serious candidate in terms of interoperability
of components. Openness is offered by the Binding Components, and evolutions are
natively supported thanks to its service-oriented nature. Besides its good properties,
there is no clear separation between types and instances of services/components. More-
over, no introspection of services is offered and interconnections between components
are not explicitly expressed, and sometimes even hard-coded inside the components.
This lack of clarity in the component interdependencies makes it impossible to dynam-
ically replace components and/or reason about the system’s state. This approach does
not target the resolution of variability management or safety and security issues.

General purpose approaches 43

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ + +

3.2.2 Component models

3.2.2.1 Description

Douglas McIlroy first introduced the notion of software component in 1968 at the
NATO conference. This new paradigm defends a mass reuse of existing components
and the creation of software as assemblies of components.
As described in [MT00], component models are made of three essential elements. A
Component represents a computational unit and can realize an entire application or
a single method. Components have a type and expose interfaces to collaborate with
other components. This collaboration is enabled by component Connectors, in charge of
the communication between the application’s components. These connectors are typed
and can have different behaviors, roles in the application, and can make use of various
techniques to support components’ interactions. Finally, a Configuration describes a
particular assembly of components and connectors, and specifies the component-base
software system.
The next section provides a brief list of component models.

3.2.2.2 Darwin

In [GMK02] Ioannis Georgiadis and al. present a component model to describe self-
organizing software architectures of distributed systems. In this model, components are
defined by component types and can have multiple runtime instances. Instances can be
statically specified at design time, or created on demand at runtime. Usually, compo-
nents provide and require services. The provision or requirement is made through typed
ports. These types are specified by the interface of the service they offer. Components
are connected by their ports; ports that have to be of the same kind. The semantics of
bindings is a classical service call. Components can be assembled into composite com-
ponents. Their specifications describe the instances used and how they are connected.
At runtime, component instances embed a view of the global configuration and a man-
ager handling the architecture constraints, in charge of maintaining the configuration
view synchronized with the system state.

The clear separation of types and instances is a plus. Runtime creation of instances
can help in adapting the runtime to the environment. The configuration view synchro-
nized with the runtime is a very interesting property. The use of Java class loading to
change utility functions used by the policy manager is a good way to runtime evolution.
If the typing of ports is helpful to guarantee the consistency of an application model,
the typing at the implementation level can act against the interoperability property, but

44 State-of-the-Art Review

enforce the safety of the system. Bindings have a clear semantic, but cannot use other
communication links than the one they have been designed to use (Java RMI in this
case). It is a limitation. The adaptation policies (in case of binding loss or component
arrival for instance) are hard coded and distributed in each instance. Thus they cannot
be easily changed at runtime.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ + +

3.2.2.3 Koala

The Koala component model has been designed to handle the increasing diversity
and complexity of embedded software and decrease development costs. Rob van Ommer-
ing and al. explain in [RvdLKM00] that a way to achieve this is to model the software
architecture and reuse existing software components rather than re-implementing the
wheel. In their approach, a clear separation is made between component development
and system configuration. It means that component developers cannot make any as-
sumption about the context of use of each component and designers cannot change
component behavior.
Components can require services provided by other component’s ports. A configuration
describes an assembly of components. It handles the model of the application. To help
in describing system assembly, Koala offers compound components in which instances
to be deployed and their interactions (bindings) are described. In this case, an action on
a port of the compound component may have to be forwarded to internal components
(e.g.: for initialization). To eliminate the ordering problem, Koala introduced Modules
to handle one-to-many, many-to-one or many-to-many bindings. They are in charge of
propagation and have a pre-defined treatment.

The clear separation between component development and assembly creation (for a
particular application) is the key to success. Composition mechanisms are also welcome
to cope with diversity management and promote the reuse of existing components to
create value-added compound components. Here again, connection ports are typed and
should conform to a specific interface. This is an advantage for securing the software but
may cause problems in future evolutions, in terms of interoperability. Koala introduced
modules to handle specific communications between components and act like a proxy.
They could have gone a bit further by systematically using modules to specify each
connection. This information could help in solving issues, or in specifying the system
more precisely.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ + +

General purpose approaches 45

3.2.2.4 Fractal

Fractal [BCL+06] is a modular and extensible component model to design, imple-
ment, deploy and reconfigure various systems and applications. Famous implementa-
tions of Fractal are Julia and AOKell (Java), Cecilia (C), FractNet (.NET) and FracTalk
(SmallTalk).
The Fractal component model supports the definition of primitive and composite com-
ponents. Each Fractal component consists of two parts: a controller, which exposes the
component’s interfaces, and content, which can be either a user class or other compo-
nents in composite components. The model makes the bindings between the interfaces
provided or required by these components explicit, as well as the hierarchic composition
(including sharing).
Primitive components contain the actual code and composite components are only used
as a mechanism to deal with a group of components as a whole, while potentially hid-
ing some of the features of the subcomponents. Primitives are actually standard Java
classes (in the Java distributions of Fractal) conforming to some coding conventions.
Fractal does not impose any limit on the levels of composition, hence its name.
All interactions between components pass through their controller. The model thus
provides two mechanisms to define the architecture of an application: bindings between
interfaces of components, and encapsulation of a group of components into a compos-
ite. By default, Fractal proposes 6 controllers that may be present in components:
Attribute, Name, Binding, Content, Lifecycle and Super Controller.
DigiHome[RHT+10] is a communication middleware built with Fractal. Its main objec-
tive is to offer a support for REST communications, and complex event processing, in
a context of home automation.

Reflective execution platforms like Fractal or OpenCOM [BCU+04] do not provide a
clear distinction between the reflection model and the reality. Modifying the reflection
model implies a modification in the runtime. If this offers a means for adapting the
runtime, there is no means to anticipate the effect of a reconfiguration, before actually
executing it. Nor is there means to execute what-if scenarios to evaluate different pos-
sible configurations, etc. This point is a drawback from a safety viewpoint. This lack
of an explicit and independent reflection model imposes that most of the verifications
must be carried out while reconfiguring. Pre-condition on reconfiguration actions, as
proposed by Léger [LLC07], are checked and roll-backs are performed if something goes
wrong. In addition, component models such as Fractal are slightly opaque with respect
to the outside world, making openness and reuse by third party applications compli-
cated if not anticipated in advance. Lastly, the dynamicity of an application running
over Fractal is compromised, because the deployment of new component’ types can not
be carried out without restarting.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+

46 State-of-the-Art Review

3.2.3 Component Models for SOA

3.2.3.1 Description

By nature, Service-Oriented software is dynamic and its architecture is not always
easy to figure out. Indeed, the services used and the connections between software
elements are never known prior to the execution because of the late binding princi-
ple. The late binding principle relates to the fact that a service to be used is searched
and selected just before its call. Component models for Service Oriented Application /
Architecture (SOA) have been invented to try to make the description of this kind of
application more explicit. They merge well-known software component techniques with
new services ideas, and tend to conciliate the best of each approach.

Components, as defined by component models, provide services to other components
through their ports. Components’ ports are defined by an API. Services, from service-
oriented architectures are intended to be used in orchestrations to create value-added
applications.
Since both of these concepts offer services, new component models have been designed
to merge both paradigms. This section presents some famous implementations of these
component models.

3.2.3.2 SCA

SCA 20 provides a component model for both the composition of services and for
the creation of service components. SCA is a model that aims to encompass different
programming languages, frameworks and environments commonly used to build com-
ponents and services, such as Web Services, Messaging systems and Remote Procedure
Call (RPC) for communication purposes. Its goal is to setup a single and common way
to access and assemble service-based applications.
SCA can be presented through four major parts of the specification.

Specifications

Assembly defines how components are packaged as services and how they can be
combined into composites that perform a particular task. Composite components can be
used as classical service components, which simplifies their reuse. Assembly in SCA also
defines how components and composites are connected. Functional service properties,
such as data encryption, or authentication, are described outside the service business
code, which saves developers’ valuable time. Indeed, it enables the modification of the
connections or the properties, without changing the business code.

Client and Implementation Model defines how services are packaged and ac-
cessed in various languages. API implementations in Java, BPEL, C++, Javascript or
the Spring Framework, offer means to package a service or access any SCA service. For

20. http://www.osoa.org/

General purpose approaches 47

development concerns, it means that there is only one interface and packaging method
to learn to provide and use any SCA service. This interface makes it possible to access
to the component using Web services, JMS, JCA and EJBs natively. Here again, service
properties are described outside the code, to make changes much easier.

Policy Framework is aimed at offering means for the definition of security, au-
thentication, quality of service, and other important policies of a service. In fact, the
SCA Policy Framework makes use of the WS-Policy and WS-Policy Framework open
standards, as a support to describe policies. This way, descriptions of policies such as
"any data sent to this service must be encrypted" or "the user of this service must
be authenticated" are made available. Here again, policies can be defined outside the
business code of the service.

Bindings specify the mechanisms that can be used to access or connect a compo-
nent. Bindings can be implemented using Web services, JMS, JCA, EJBs or any other
communication way. Keeping the consistency of the approach, bindings are defined
outside the component business code.

SCA is a standard, a set of definitions describing how such a system should behave.
Thus, it imposes certain types of implementation, in order to guarantee the presence of
mechanisms for openness, evolution or remote control.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ + +

3.2.3.3 FraSCAti

FraSCAti [MRRS10] is an implementation of the SCA specifications. It is certainly
the closest approach to what is required. Components can be composed into composite
components. Communications between components are made using services and several
communication media can be used. These elements make FraSCAti a serious candidate
to address openness and remote control concerns.
In the past months, efforts have been spent on integrating FraSCAti and OSGi, which
have improved its faculties of evolution. In terms of interoperability, FraSCAti offers
mechanisms for the connection of services, but does not directly address the integration
of smart devices. Thus, interoperability of components in our context is still compro-
mised by the use of APIs, for the definitions of services rendered and required, by ports.
If two components have not been designed to be connected, an ad-hoc connector has to
be created.
The FraSCAti script tool enables reconfiguration and adaptation of component assem-
blies. But adaptations are limited to the manipulation of binding and component in-
stances, whose types are available on the platform. New instances can be created, new
bindings can be set, but no new types can be installed using FraSCAti Script.
The variability of FraSCAti itself is managed using a Software Product Line(SPL). Each
runtime instance of FraSCAti is a product of the SPL. Thus, features of FraSCAti can

48 State-of-the-Art Review

be deployed on demand. However, this variability management concerns only the inter-
nal features of FraSCAti, and an external tool is still required to handle the variability
of applications made with FraSCAti.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ + + +

3.2.3.4 iPOJO

iPOJO [EHL07] is the Apache service-oriented component runtime built on top of
OSGi SOA platforms. iPOJO is the natural evolution of the Service Binder mechanism
introduced by Cervantes et al. in [CH04]. The iPOJO framework merges the advantages
of component- and service-oriented paradigms. Specifically, application functionalities
are implemented following the component paradigm. Each component is fully encap-
sulated, self-sufficient, and provides server and client interfaces as services. An iPOJO
component is actually managed by a reusable container, which provides common mid-
dleware functionalities. Each component container can be configured with a different
set of middleware services.
The iPOJO component model focus on providing management facilities for pervasive
applications based on component model, and a service-oriented runtime. This general
purpose component model for service oriented architectures provides a solid base for
domain specific extensions and developments.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ + +

Domain-specific approaches 49

3.3 Domain-specific approaches

General purpose approaches make it possible to design and implement software so-
lutions for many problems. But this flexibility comes with a complexity due to the
knowledge required to be able to develop or just use these approaches.

Domain-specific approaches tend to reduce this complexity to a minimum, by pro-
viding tools on top of general purpose approaches adapted to a specific domain of use. In
this section, several tools built upon this principle are reviewed to list their advantages
and disadvantages.

3.3.1 Description

Model Driven Engineering (MDE) is an approach that promotes the use of an ab-
stract representation of a piece of software, before its actual realization. From this
abstract view, tools and methods make it possible to automate the final software gener-
ation, tests and validations across pre-defined requirements. Models are human under-
standable representations of reality. They can handle information about structure, data
exchange, communication links, or some building constraints of a piece of software.
Domain-Specific Language (DSL) are another means of abstraction and description of
software systems. Dedicated to a specific domain, they can be graphical, textual or
both. They are designed to restrict the concepts manipulated to the ones from the
application domain. This approach makes it easier for domain specialists to express a
software system architecture and behavior, by using their own terminology.

The goal of these tools is to provide a sufficient level of abstraction to make soft-
ware development easier, more flexible, with an enhanced level of reliability, and shorter
time-to-market.
The rest of this section presents several approaches built around the concepts of MDE
and/or DSL, that simplify the creation of applications in the domain of home automa-
tion and/or pervasive computing.

3.3.2 Projects

3.3.2.1 uMiddle

Nakazawa et al propose a framework that bridges remote smart spaces called D-
uMiddle in [NT07]. This makes it possible for a device to interact with another, over
the Internet. This is made available by four distinct features of D-uMiddle. Firstly,
a local mapper mechanism abstracts sensor nodes into common representations. Sec-
ondly, a mechanism translates data transmission protocols from a node-specific one to
a D-uMiddle common one. Thirdly, a remote mapper mechanism creates proxies of
sensor nodes from remote smart spaces in the local space. Fourthly, a transport module
enables devices to receive data over IPv4 NATs network. The consumer devices, as a

50 State-of-the-Art Review

result, can use sensor nodes in remote smart spaces without depending on their own
protocols and semantics, and without being burdened by the complicated IPv4 NATs.

D-uMiddle brings a solution for connecting remote smart spaces, with no need for
a developer to care about transportation. Remote control of equipment is thus made
possible for free. Nevertheless, it does not supply tools to handle variability, adaptation
or evolution of a deployed system, and nothing is specified about the securization of the
connection.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

3.3.2.2 SOPRANO

SOPRANO (Service-Oriented Programmable Smart Environments for Older Euro-
peans) was an Integrated European Project, which successfully ended in April 2010. Its
main achievement was the release of openAAL [WSO+10], a framework built on top of
an OSGi execution platform. OpenAAL helps in getting information from devices, and
acting on them from a higher level of abstraction. Its framework integrated a context
manager, able to give a virtual view of all devices, a process manager in charge of mak-
ing decisions for any change in the context, and a composer, dealing with the actual
services for interaction with the real environment.

OpenAAL proposes a solution to efficiently built applications ready to evolve with
needs and able to adapt to changes in context. However, no attention is paid to the
variability management, remote control or interoperability of devices. Nothing is said
about safety of security.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ +

3.3.2.3 Gaïa Framework

Gaïa [RHC+02] is presented as a meta-operating system for ubiquitous computing,
built on top of a classical operating system. Its goal is to detach itself from the het-
erogeneity and complexity associated to ubiquitous environments. Gaïa is composed of
a Kernel, responsible for the runtime management of applications and a Framework to
build these applications. An application runs in an Active Space, a physically-limited
space where services and devices are available for ubiquitous computing.
Each Gaïa instance is specifically configured for the active space it manages. To allow
for describing Gaïa applications for several active spaces, Olympus[RCAM+05] proposes
a high-level DSL working with virtual entities. From an Olympus application model,

Domain-specific approaches 51

the underlying Gaïa OS takes responsibility for mapping each virtual entity to a service,
or device, available in the active space.
It has been implemented in CORBA and can be ported to other communication mid-
dleware architectures such as SOAP or RMI.

The interoperability of services and devices is ensured by the common set of basic
services. Adaptations and evolutions are made possible by the Component Management
Core of Gaïa which can dynamically load, transfer, create or destroy components or ap-
plications. Remote control is made available by the underlying CORBA platform, in
the implementation described. Variability management of components or applications,
safety and security, and openness of the solution are not targeted by this work.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ + +

3.3.2.4 DiaSuite

DiaSuite 21 is a software tool suite designed to ease the creation of pervasive and/or
distributed applications. DiaSuite [CBC10] is composed of several elements. DiaSpec is
the Architecture Description Language (ADL) of the suite, used to describe the appli-
cations at a convenient level of abstraction. From this description, DiaGen automates
the code generation of the application, and DiaSim provides the support for the test,
simulation and validation of the generated application. As an example, Bertrand et al.
present in [BCJ+10] how they used the SIP protocol as a generic communication bus
for a pervasive application developed with DiaSuite tools.
This tool suite has been augmented with Pantagruel 22, a visual DSL created to support
the development of pervasive applications. A first step when using Pantagruel aims at
defining the entities involved in the future application domain. In a second step, entities
of the application are orchestrated in order to define the logic of the application. A last
step generates an application code, compatible with the DiaSuite tools. Details about
this tool are available in [DMC09].

These tools meet the demands of a tool chain to develop pervasive applications from
a high-level description. Code generation and the simulation environment are very good
tools to improve the efficiency of the development process and the reliability of the code,
as much as facing the variability of solutions. Designed to ease the development of per-
vasive applications, these tools do not address issues about variability management,
application evolutions or adaptations.

21. http://phoenix.inria.fr/projects/diasuite
22. https://pantagruel.bordeaux.inria.fr/

52 State-of-the-Art Review

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ + + +

3.3.2.5 Habitation

Habitation is a methodology, a set of tools to address the specific requirements of
home automation application development and design. In [JRS+09], Jimenez et al.
describe how the combination of a DSL, and an MDE approach eases the creation of
solutions in this domain. Habitation proposes three main tools. A catalog of functional
units centralizes elements that can be reused in various applications. Home automation
devices are composed of several functional units. The second tool is a workspace in
which elements of the catalog can be placed to define a specific application. Called the
application view, this tool aims to provide tools for the assembly work and make it
accessible for non-domain experts. The last tool is a kind of engine, which translates
from the model and DSL description, to a technology-specific configuration file.

The approach proposed by Habitation is very promising and sounds helpful in pro-
viding non-expert users with tools having a sufficient level of abstraction to be user
friendly. However, Habitation only addresses pre-deployment design issues and does
not deal with issues such as evolutions, adaptations and safety and security issues.
Such as DiaSuite, Habitation remains an good approach to face the variability issue,
while improving the efficiency of the development process.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ +

3.3.2.6 Wired Application Description Language

Wired Application Description Language(WADL) is a language designed to ease the
description of dynamic applications, and provide an explicit view of the relations be-
tween elements. In [CDT08] authors present how WADL has been used in the creation
of a dynamic sensor-based application.
WADL has been implemented on OSGi(see section 3.2.1.3) and relies on the WireAd-
min service offered by the execution platform. In this implementation, wires between
producers of information and consumers are dynamically created or deleted, according
to the elements available in the system. Wires are specified by two filters. Each filter
is used to make a selection among all available services, and capture producers’ (or
consumers’) services required for the wire.

WADL provides a tool to explicit the architecture of dynamic applications, which
is often difficult to extract because of the runtime evolutions. By nature, this approach
copes with the adaptation requirement. The interoperability is realized by the use of a

Domain-specific approaches 53

Producer/Consumer pattern. Evolution is supported by the filters that can be flexible
enough to admit future evolutions. Issues on openness, variability management and
safety and security are not treated in this approach.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ + +

3.3.2.7 PervML

Muños et al. present PervML in [MPC06, MSCP06] in the context of the man-
agement of a pervasive meeting room. PervML is a Model Driven Approach designed
to ease the development of pervasive systems. This language separates the analyst’s
view, describing the requirements of the system at a high level of abstraction, from the
architect’s view, where devices and implementation details are specified.
This abstract model of the system is then used in a tool chain which ends up with an
executable OSGi(see section 3.2.1.3) code. This tool chain, detailed in [MP06], firstly
transforms the platform independent PervML model to an OSGi dependent model, and
then generates the executable Java code.
PervML and the associated generation tool chain are available as a plugin for Eclipse
[CSMP07].
In [SVP10], authors explain how they introduced system evolution capabilities to adapt
the generated systems to changes in user behavior. Their solution uses a context model,
to detect specific situations, and a task model describing the jobs to be executed for
each detected context.

PervML offers a suitable solution. Developed to be executed on an OSGi platform,
it offers adaptation, evolution, openness and interoperability mechanisms. As presented
in [CGFP09], PervML also targets the variability management issue. So far, a draw-
back of this approach is that people have to be familiar with UML to model a pervasive
application. Also, the use of a pre-defined set of service interfaces described in the
framework may become a barrier for the flexibility of the solution. Safety and security
issues are not addressed by this work.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ + + + +

3.3.2.8 AutoHome

In [BDLM11], Bourcier et al. present AutoHome as an autonomic management
framework for pervasive home applications. AutoHome is described as a middleware
that extends the iPOJO component model, to create a framework to host autonomic
home applications. Using this approach, authors aim to separate the design and devel-

54 State-of-the-Art Review

opment of the application itself, from autonomic management components. They aim
to enable the development of autonomic management functions, ease their integration
with the applications, and finally, deploy the resulting autonomic application on exe-
cution environments shared with other applications. As a consequence, an application
on top of AutoHome has the following architectural elements: middleware offering an
autonomic service-oriented component and a context facility, a runtime that includes
monitoring and reconfiguration abilities, a set of service-oriented applications which
represent pervasive components to be autonomously managed, and a set of managers
organized in a hierarchy.

AutoHome makes it possible to include, within the application itself, specialized
components that monitor and react on component or platform events. However, this
solution does not seem to offer means for variability management, or interoperability
between components, and does not consider safety or security aspects.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ + +

3.3.2.9 WComp

WComp[FHL+11, TLR+09] is a component model designed to support ubiquitous
computing. It tries to address issues introduced by the mobility of devices, their het-
erogeneity and the dynamicity of the execution environment in this domain. To cope
with these problems, WComp federates three paradigms. Event-Based Web Services,
firstly, that plays an important role in facing the heterogeneity of devices, as much as
the dynamicity, the extensibility and scalability of a ubiquitous system. Secondly, a
Lightweight component-model (called SLCA) is introduced and used to compose event-
based Web services, and expose a new service. The third paradigm used concerns the
adaptation and makes use of the Aspect of Assembly concept. These aspects define
adaptations on assemblies using structural descriptions. Adaptation are thus not spe-
cific to particular service assemblies and can be composed.

WComp offers several mechanism for adaptations, evolutions and interoperability,
and does not seem to address openness, variability management and safety or security
concerns. Finally, it looks like the type system of the components rely on the imple-
mentation language type system, which can limit the reuse and interoperability.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ + +

Domain-specific approaches 55

3.3.2.10 Niagara

NiagaraAX is a software framework and a development environment that leverage
the accessibility of a device toward an Internet access. The normalization proposed by
NiagaraAX of the behavior and data gathered from several devices, enables the imple-
mentation of seamless, Internet-connected, web-based systems, whatever their manufac-
turer or communication protocol. This normalization has been enabled by the Niagara’s
unique, patented component model that transforms the data from diverse external sys-
tems into uniform software components. These components share the foundation for
building applications to manage and control the devices.

NiagaraAX eases the creation of applications integrating services and devices, by
providing a framework for the development of drivers and applications. Built as a
service-oriented architecture, this framework promotes the interoperability of devices
and openness of solutions through Internet-based communications. NiagaraAX does
not target issues about adaptations of the software or its evolution at runtime. Safety
and security are not part of this work.

Interoperability Openness
Dynamic

Adaptation

Static

Evolution
Variability Management Safety & Security

+ +

56 State-of-the-Art Review

Chapter 4

Synthesis

Scientific literature abounds with proposals using different approaches to cope with
interoperability, adaptation or remote control concerns in several applications.
Generally, service-based propositions sound helpful in targeting the interoperability of
devices, but clearly lack description of the running application once deployed. They
bring essential ideas to properly handle the arrival and departures of elements, since a
service can be started and stopped at any time.
Component-based architectures provide an ideal abstraction level that meets the re-
quirements for a virtual representation of home automation devices. However, the
specialized interfaces used as descriptions for ports, may prevent the realization of un-
predicted connections.
Using components for SOA is certainly the best approach for our concerns. Bridging
components and services makes the benefits balance out the drawbacks of each.
Transversally, model-driven engineering methods and techniques come with a lot of
tools for virtual element manipulations. They seem handy for runtime management of
devices, for the description of software systems and for variability management.

Table 4.1 summarizes the advantages and the disadvantages of the approaches de-
scribed in the State-of-the-art Review.

4.1 Good properties identified

All throughout existing approaches, some good design properties have been col-
lected. These properties are not sufficient to address all our issues, but are still nec-
essary to properly cope with challenges. Some of these properties had been suggested
in [NBFJ09] to cope with the requirements.

Reflexive Model
Coming from the MDE domain, the goal is to obtain and keep synchronized, an explicit
and independent model reflecting the architecture living at runtime. This model makes

57

58 Synthesis

Interop. Openness
Dynamic

Adaptation

Static

Evolution

Variability

Management

Safety &

Security

G
en
er
ic

A
pp

ro
ac
he
s

OSGi [All11] + + +
ESB [Cha04] + + +
Darwin [GMK02] + + +
Koala [RvdLKM00] + + +
Fractal [BCL+06] +
SCA [sca] + + +
FraSCAti [MRRS10] + + + + +
iPOJO [EHL07] + + +

D
om

ai
n-
Sp

ec
ifi
c

A
pp

ro
ac
he
s

uMiddle [NT07]
SOPRANO [WSO+10] + +
Gaïa [RHC+02] + + +
Dia Suite [CBC10] + + + +
Habitation [JRS+09] + +
WADL [CDT08] + + +
PervML [MPC06] + + + + +
AutoHome [BDLM11] + + +
WComp [FHL+11] + + +
Niagara [Tri08] + +

Table 4.1: Summary of existing approaches

it possible to reason about the application state and perform any required operation
with no risk for the running system due to decoupling. An adaptation engine, for in-
stance, is thus able to select, test and validate an adaptation scenario on the model,
before actually performing the adaptation on the running system [LLC07]. Component-
based execution systems often offer introspection capabilities making it possible to build
this kind of model.

Externalized coupling
For a system to be handled in the right way, interactions between its composing ele-
ments have to be explicit. Component Models and DSL offer a means of description for
these interactions. A clear and explicit description of the relation between components
gives a better understanding, and makes the analysis of the system much more accu-
rate. It leads to better adaptation decisions, taking into account concurrency problems
or dependency cycles for instance.
Moreover, this externalization and the description of interactions and dependencies en-
force the independence of the elements composing the system. It also improves the
flexibility of the system, thanks to the possibility of modifying of the resolution and
connection policies with no need to deal with business components.

Points of contribution 59

Hot deployment
The possibility for a service to be dynamically deployed or removed during the run-
time of a system is an essential principle to be considered while dealing with flexibility,
adaptations and evolutions. The execution platform must therefore, support dynamic
deployments and adaptations of the application during runtime with no restart. This
is a basic facility offered by SOA execution environments.

Loose coupling
Component Models promote the loose coupling principle, meaning that all components
must have independent life cycles, and no execution dependencies with each other (in
term of libraries). This is necessary to enable and ease the replacement of elements in
a system. Indeed, inter-component dependencies may imply a huge alteration of the
system to replace a single component, just because it depends on other components. It
may also result in a more complex computational process of impacts for a change, or
worse, an impossibility for the system to evolve or be adapted.

Openness
Interoperability and openness to third party applications/contributions are the reasons
why service-oriented architectures have been designed. Their goal is to offer services
in a standardized way, to allow them to be used by any other system: any third party
application must be able to use the services offered. The Internet of Services makes use
of interface descriptions and registries to expose services to the world.

4.2 Points of contribution

In the electronics domain, the number of components and their always-possible con-
nectivity have offered technicians and engineers the means to create various solutions.
Even many years after their assembly, electronic devices can still be repaired or com-
pleted with new features. The proposal made in this thesis is to take advantage of the
electronic way of doing to improve the flexibility of software systems while keeping a
high level of safety and security.
To this end, the contribution of this thesis can be described from three aspects :

- A new component model that improves the flexibility of software systems, by
offering means of connecting any component to any other. This aspect addresses inter-
operability issues and evolution requirements.

- Modeling tools to create, modify and simulate component assemblies, check their
consistency and validity before their (re-)deployment at runtime. Safety and security,
as much as variability management are requirements covered by this aspect of the
contribution.

- An execution environment built over a Service-Oriented runtime, to support the
proposed component model, cope with adaptation requirements and evolutions at run-
time, and validate the proposal

60 Synthesis

Part II

Thesis and Achievements

61

63

A Scout is never taken by surprise:
he knows exactly what to do when anything unexpected happens.

Sir Robert Baden-Powell

The study of the state-of-the-art in software engineering has highlighted the lack
of a software solution to address all requirements identified in the context of home au-
tomation for Ambient Assisted Living. According to this observation, the goal of this
thesis is to fill this gap by providing such a tool.

This section presents the achievements of this thesis. While the first chapter gives
information about some central themes that drove this work, chapter 6 details the
contribution. Then chapter 7 brings some information about the implementation and
places the contribution in a classification framework.

64

Chapter 5

Contribution

5.1 Global ideas

All throughout the work on this thesis some recurrent ideas drove both the search
for solutions and the development of the proof of concept.

5.1.1 Being inspired by electronics

Variability, interoperability and adaptation are qualifiers that appear regularly in
electronics. Indeed, any integrated circuit has to be able to operate with any other.
Signals exchanged between components may have to be adapted, in order for the signal
to reach the shape required by the receiver. Various solutions using many different
electronic components can be envisioned to fulfil a need. People in this domain had to
find and deploy tools, such as data-sheets or simulators, to eliminate these constraints.
This thesis was strongly inspired by this domain to come to a solution. The link between
electronics solutions and the contribution of this thesis is stressed all throughout this
section.

5.1.2 Making it possible

Scientific discoveries and advances are often due to hazardous reactions, unpredicted
situations, and even due to errors. The software engineering tools of today limit run-
time failures by cutting down the design elements to a set in which the interactions are
well known. This mode of protection makes it difficult to design new systems, by using
existing components in an unexpected way. Research or engineering phases must not
be limited by these concerns.
This discussion can be compared with debates about static or dynamic typing in pro-
gramming languages [Tra09, Tra10]: where static typing brings safety, it looses the
flexibility of dynamic type systems.
This thesis work paid a strong effort in making type checking and validations policies
highly flexible and customizable. It allows researchers and engineers to loosen check-
ing rules, or deactivate validations to eliminate typing problems, and concentrate on

65

66 Contribution

experimenting new behaviors.

5.1.3 Keeping end-users in mind

Products are too often released to be sold, without end-users tests. As a result,
these products may be considered too expensive or useless. From beginning to end,
the solutions offered by this thesis have been designed for targeted users. Tools and
methods were adapted to reduce the gap between how people are intended to behave
and the way they actually use the solution.
Two populations of users have been particularly considered. The first population is the
community of engineers and technicians which requires some tools to ease their work.
Secondly is the system user population, such as carers and elderly people, who just
want to be able to interact with the system. In both cases, it calls for the tools and
the system to be highly intuitive. Intuitiveness has been improved by presenting the
system to elderly people and by using the tools to design solutions.

5.2 Overview of the contribution

The contribution of this thesis is threefold. (1) A new component model, (2) tools
to handle models, and (3) a runtime environment. To go into detail, these elements are
presented as interacting layers. Each of them targets a particular concern and their syn-
ergistic collaboration makes the solution. The different layers are visible in figure 5.1,
which provides an overview of the contribution.

!"#$%&"'(#%")*"+,-.)/0",

1"$%&",2)*"#34"#56%7%*8,

93043)")*,:3+"7,

;#544"#<,

:3+"7=-.)/0", 9>"&?"#<,

Figure 5.1: Overview of the EnTiMid layers

Device Interoperability addresses the mandatory need for interoperability. It is
responsible for communication with real devices and their representatives in the Com-
ponent Model.

The Component Model involves structures and methods, to handle abstract rep-
resentations of real devices. It provides a unified description of available ports, param-

Overview of the contribution 67

eters, and any other useful information for the Model@Runtime layer to work in good
conditions. It enables the creation of tools to cope with variability, interoperability and
safety concerns.

The Model@Runtime & Checkers layer concerns the necessary tools to ease the
management of the system. The implementation specificities of components are invis-
ible at this level, thanks to the Component Model layer. Simulations and checks can
be safely performed at this level of abstraction, with no consequences on the running
application. Model@Runtime enables the management of the system while running,
and helps in dealing with variability management. Checkers offers tools for validation
and improvements for the safety of the solution.

The Wrappers layer takes responsibility for publishing the devices present in the
system, on application level networks. This ability opens our solution to existing and
future, protocols and evolutions. Often too heavy to be embedded, this layer offers the
devices, for free, an access through application level protocols.

The Service Oriented Runtime completes the contribution, by offering an execu-
tion environment for the new component model. It brings "life to the Model@Runtime"
by providing the support for dynamic adaptations and evolutions while running.

Each level participates in meeting the requirements identified in chapter 2.3. Ta-
ble 5.1 shows what concern is addressed by each layer. Separately, each layer does not
satisfy all needs, but their collaboration does.

Takes part in Interoperability Openness Adaptation Evolution
Variability

Management

Safety &

Security

Model@Runtime + + + +
Wrappers + +
Component Model + + +
Device Interop. +
Service-Oriented
Runtime

+ +

Table 5.1: Mapping layers to requirements

This contribution has been implemented. The runtime, called EnTiMid, has been
developed on top of an OSGi platform. By the way, EnTiMid is a compound word from
the Breton "En Ti", which means "In house", and "Mid", for Middleware. It is thus
the middleware in the house. The component model has been developed using classical
modeling techniques. Tools have been created to enable all functionalities.
Chapter 6 details each layer of this contribution.

68 Contribution

Chapter 6

Details on strata

Like a geologist, this chapter dissects the contribution layer by layer. For each stra-
tum composing the proposal, a section gives details on the roles taken on by the layer,
its achievements, and its interactions with other strata.

The first section starts with the description of the Device Interoperability layer,
which takes an essential role in the contribution since it enables heterogeneous connec-
tions. Section 6.2 then details the different concepts present in the component model,
their interactions, and describes how the synchronization between component imple-
mentations and models is guaranteed. Section 6.3 explains how the Model@Runtime
and Reasoning layer takes advantage of the component model to offer a great flexibility
and multiple points for checking the conformance. The runtime environment chose is
briefly presented is section 6.4, while section 6.5 introduces the Wrappers layer.

6.1 Device Interoperability

!"#$%&"'(#%")*"+,-.)/0",

1"$%&",2)*"#34"#56%7%*8,

93043)")*,:3+"7,

;#544"#<,

:3+"7=-.)/0", 9>"&?"#<,
The Device Interoperability layer is proba-

bly the most important layer of the approach,
since it answers the first requirement. Variability
management, adaptations, or evolutions, would
be compromised if only two devices were not
able to communicate. Interoperability of devices
is a central concern. It offers a foundation on
which other layers can be built. This section
presents how this interoperability has been real-
ized.

In the domain of home automation, communication protocols used by manufacturers
and their devices are not compatible. This incompatibility makes any direct interaction
of devices coming from different brands impossible. To overcome this barrier, some
manufacturers have worked in a consortium to define a unique communication protocol

69

70 Details on strata

for their respective products to be compatible. However, some of their products code
Boolean values on a single bit, while others code it on a byte. Again, two products may
not be operable with each other.
In [BRLM09] Bromberg et al. propose to automatically generate gateways between pro-
tocols, in order to address this issue. But building protocol-to-protocol translators solves
the problem only partially, because the number of translators exponentially explodes
with the number of protocols. Nevertheless, this proposition seems very interesting
for an automatic generation of translators, from specific protocols to a higher-level of
abstraction model.

6.1.1 Use of drivers

To realize this abstraction, drivers have been developed. A driver makes the link
between real world devices and their virtual representation in a software system. Thus,
they take on two responsibilities. In one way, they convert from vendor-specific com-
munication messages to actions on their virtual representative. They also translate in
the other way, actions on virtual elements into vendor-specific messages.
Secondly, drivers provide the virtual structures for each product they are able to inter-
act with. All implementations specific to a given manufacturer are thus contained in
drivers, or separate libraries. This makes the core system completely independent from
devices’ implementation specificities.

This independence implies the creation of a common structure, for the system to be
able to properly handle devices in a good abstraction level.

6.1.2 Functional interfaces

This common structure may take the form of a set of programming interfaces. Each
interface could specify a set of methods for a specific functionality. Then, drivers just
have to provide objects, decorated with some interfaces, selected according to the abil-
ities of each device. This set of programming interfaces has been created. A survey of
devices functions has allowed us to extract the minimum set of common methods for
each function as presented in figure 6.1 for instance. Once the set is defined, a library
containing all interfaces was compiled and included in the framework.
The first experiments were promising. Interoperability was almost solved, but several
drawbacks were rapidly identified while using this approach in real use cases. The set
of interfaces is only extensible by augmentation of the framework. The development of
a device driver could have fail because the required function interface was not available
in the library. Moreover, direct method calls are not appropriate if the system has to
consider a dynamic environment, in which objects unpredictably appear and disappear.
In this case, object-oriented development using synchronous method calls becomes quite
hazardous. Finally, if for any reason a component implementing the LightControler in-
terface has to be plugged into a shutter, the operation is not feasible without an ad-hoc
adapter (illustrated in figure 6.1). Interoperability was not solved.

Device Interoperability 71

Figure 6.1: Functional Interfaces

6.1.3 Event-based approach

Real-life events can occur in any order, at any time, in any context. Moreover, de-
vices are more and more mobile and can dynamically join or quit the system. In order
to address this dynamicity, we made use of event-based mechanisms. Message-Oriented
Middleware (MOM) offers a simple, and efficient means of communications, using the
publish/subscribe principle. Event consumers subscribe to a topic they are interested
in, and event producers just have to publish on the right topic. Thus, producers do not
care about the presence of consumers.
To be able to use this approach, physical devices have been considered from two per-
spectives. Sensors sense real life and human actions. Their role is to feed the system
with events coming from real life. They are producers of events. Consuming these
events, Actuators act on real life, using real-life equipment. They carry out orders such
as switching on the lights, or opening or closing the shutters. Components are not
limited to a unique role, and can both consume and produce events.

Actuators propose two main methods. getAvailableActions() returns a list of ac-
tions that can be carried out on the device. If a light can answer [on,off], a shutter
could answer [up,down,stop]. For each action, actuators wait for messages on a specific
topic. For a sensor to ask for an action to be realized, it must know the corresponding
topic. getTopicFor(String action) aims at providing the topic and the parameters that
can be accepted for a given action in form of a Message.

Sensors maintain a list of messages for each event they sense. An On/Off switch
maintains two lists of messages: one for each action. The messages stored also embed
the topic on which they have to be published, for the action to be carried out. When
an action is sensed, each message stored for this action is sent on its topic.

6.1.4 Example

For instance, figure 6.2 shows the configuration phase for the connection of a switch
and a light. The Configurator retrieves the message to be sent to switch on the light.

72 Details on strata

Figure 6.2: Configuration Phase

This message is added to the list of the "on" sensed value of the switch. Later, when
the "on" button is pressed, all messages stocked in the list are sent. When an actuator
recognizes its "on action message", it forwards the order to the real light.

This mechanism allowed us to eliminate asynchronous aspects. It also allowed any
sensor to control any actuator, since they do not have to know each other to be able to
work together. The action carried out and the value sensed do not have to necessarily
be the same. Thanks to the mechanism of messages, it is possible to send the "on"
message to the light when "down" is sensed by a shutter command.

Let us consider a home with a switch to trigger a departure scenario, operable on
the KNX network. This scenario switches off all lights and closes shutters. In the
considered example, there are only two shutters and one light. The first shutter was
motorized when the house was built and works on a KNX network. The second shutter
was added afterwards and as the owners did not want to make holes in the walls, they
chose a shutter engine communicating with the command by radio frequencies. Lastly,
lights are controlled by Legrand equipment. All these elements are visible on the left of
figure 6.3.
The interoperation of all these elements is described in the case of a departure scenario
activation. Numbers on the figure present the sequence of actions.
1- An inhabitant presses the button. This action is sensed, and generates a message on
the KNX network.
2- This message is read by the driver and translated into a message for the EnTiMid
system.
3- The driver then selects the virtual representation of the device responsible for the
message and activates the sending of stored messages.

Device Interoperability 73

Driver
KNX

Driver
Delta
Dore

Driver
Legrand

Departure

1
2

3

4

4

4

5

5

5

6

6

6

M o d e lH o m e

Figure 6.3: Example of Interoperability

4- Its activation causes all connected elements to be activated in parallel.
5- On receiving the message, each model representative of a real product asks its driver
to send an order to the real product.
6- The driver executes the query and sends the order.
In this example, various devices with various actions are connected together. A switch
that senses a departure is connected to two down actions on two different components
and one off port. Interactions between components are possible thanks to the exchange
of messages.

6.1.5 Threat to validity

Interoperability was tested and validated with a restricted set of devices. Since
the main goal of this thesis is not about making any device interoperable, the study
was conducted with a set of representative technologies mixing different communications
media, different appliances and multiple manufacturers, in order to prove the feasibility.

6.1.6 Summary

The Device Interoperability layer enables products from any manufacturer to work
with any other product, in any imaginable way, by just implementing a driver. The use
of this method is however limited by the non-availability of action lists at design time.
Each device provides information about the actions it supports, but a method has to
be called. Since method calls cannot be done at design time, the only way to obtain
available actions is to go and seek them in the implementation code.
The sequence diagram, presented in figure 6.2, describes a part of the work that a piece
of program has to execute to set up the application’s behavior. The sequence cannot be
implemented definitively, since the application may have to be adapted and to evolve

74 Details on strata

while running. The configuration has to be expressed another way, to be modifiable,
and to ease the reading and understanding of the behavior.

Both of these issues require a tool. It has to be able to provide information about
the devices at design time, and it has to support and help device assembly design. This
tool, a new component model, is made available by the Component Model layer.

Component Model 75

6.2 Component Model

!"#$%&"'(#%")*"+,-.)/0",

1"$%&",2)*"#34"#56%7%*8,

93043)")*,:3+"7,

;#544"#<,

:3+"7=-.)/0", 9>"&?"#<,On top of the Device Interoperability layer,
a tool is required to make devices’ abilities and
their interactions explicit. This tool has to take
into account the sporadic apparition of devices.
Component models have been identified as good
candidates to take on this role. They are very
good representatives of real life devices, since
they can use or provide services. Their inter-
faces(as lists of actions used or provided) are
made explicit. Their life cycle is very helpful to catch the dynamicity of the devices’
presence. Finally, the concept of components in software engineering is very close to
electronic components. Device manufacturers and software developers have here a com-
mon discussion base, a common language.
As presented in the state of the art, component models are often too strict and prevent
components from connecting with non-identical interfaces. This restriction could com-
promise the interoperability gained by the Device Interoperability level, whereas this
layer just aims to simplify the configuration and management.

This section is organized as follows: section 6.2.1 emphazes the relation between the
proposed component model and electronic components. This relation is illustrated in
section 6.2.3. The mechanisms responsible for the synchronization of model and code are
presented in section 6.2.4. Lastly, section 6.2.6 describes how the Device Interoperability
integrates with this layer.

6.2.1 Making software components closer to electronic components

When talking about components, electronic ones are probably the first kind of com-
ponent to come to mind for a lot of people. An electronic component, as shown in the
bottom left part of figure 6.4, is a black box surrounded by pins. The shape of the pins
is standard and allows components to be connected to any board. Neither the pins nor
the board have the ability to refuse the connection of two components. This absence of
constraints allows electronic components to be used in a large variety of contexts. They
can be connected to a multitude of other components to create appliances. This is the
perfect description of the behavior required for a software component.
Nevertheless, software components’ ports are generally specialized by a programming
interface (API). Thus, unlike electronic components’ pins, their shapes are not stan-
dard. The goal of this specialization is to ensure the alignment of services. However,
this is a too strong limitation in our context.

In electronics, components admit only three kinds of ports (pins).
Input Ports collect all necessary information from the outside, for the component to
do its job. At the same time, they can trigger the execution of an associated task.

76 Details on strata

LM211

oleanvalueOf(Z)Ljava/lang/Boolean;getDictionary()Ljava/util/
HashMap;java/util/HashMapkeySet()Ljava/util/Set;java/util/Setiterator()

va/util/Iterator;hasNext()Znext()Ljava/lang/Object;java/lang/
SystemoutLjava/io/PrintStream;append-(Ljava/lang/String;)Ljava/lang/
StringBuilder;get&(Ljava/lang/Object;)Ljava/lang/Object;-(Ljava/lang/
Object;)Ljava/lang/StringBuilder;toString()Ljava/lang/String;java/io/

rintStreamprintln(Ljava/lang/String;)Vjava/lang/ObjectgetClass()Ljava/
lang/Class;java/lang/ClassgetNamejava/util/logging/Logger getLogger.

(Ljava/lang/String;)Ljava/util/logging/Logger;java/awt/
ColorREDLjava/awt/Color;(Ljava/awt/Color;)V

FakeSimpleLight.class

 Semiconductor Components Industries, LLC, 2005
July, 2005 − Rev. 5

1 Publication Order Number:
LM211/D

LM211, LM311

Single Comparators
The ability to operate from a single power supply of 5.0 V to 30 V or

!15 V split supplies, as commonly used with operational amplifiers,
makes the LM211/LM311 a truly versatile comparator. Moreover, the
inputs of the device can be isolated from system ground while the
output can drive loads referenced either to ground, the VCC or the VEE
supply. This flexibility makes it possible to drive DTL, RTL, TTL, or
MOS logic. The output can also switch voltages to 50 V at currents to
50 mA, therefore, the LM211/LM311 can be used to drive relays,
lamps or solenoids.

Features
• Pb!Free Packages are Available

Figure 1. Typical Comparator Design Configurations

Split Power Supply with Offset Balance Single Supply

Ground−Referred Load

Load Referred to Positive Supply Strobe Capability

−

Output

VEE

Inputs

VCC

RL

1

2

3

4

5
6

78

5.0!k

3.0!k

VCC

VCC

VCC

VCC

VCC

Output

Output

Output

Output

Output

RL

RL

RL

RL

RL

Inputs

Inputs

Inputs

Inputs

Inputs

VEE

VEE

VEE

VEE

VEE

2

3

2

3

2

3

2

3

2

3

4

4

4

4

4

7
8

1

Input polarity is reversed when
GND pin is used as an output.

7

1

8

8

7

6
1

1.0!k

TTL Strobe

1

7
8

Load Referred to Negative Supply

1

7

8

Input polarity is reversed when
GND pin is used as an output.

−

+

+

+

+

+

+

−
−

−

−

GND

Inputs

VEE

VCC

Output

Balance/Strobe

Balance

(Top View)

1

2

3

4

8

7

6

5

PIN CONNECTIONS

+

−

See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.

ORDERING INFORMATION

http://onsemi.com

PDIP−8
N SUFFIX
CASE 626

1
8

SOIC−8
D SUFFIX
CASE 7511

8

MARKING
DIAGRAMS

x = 2 or 3
A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G = Pb−Free Package
! = Pb−Free Package

1

8

LM311AN
AWL

YYWWG

LMx11
ALYW

!

1

8

DataSheet Model

<?xml version="1.0" encoding="ASCII"?>
<art2:ContainerRoot xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:art2="http://art/2.0">
 <typeDefinitions xsi:type="art2:ComponentType" name="FakeSimpleSwitch"
deployUnit="//@deployUnits.0"
factoryBean="org.entimid.fakeStuff.devices.FakeSimpleSwitchFactory"
bean="org.entimid.fakeStuff.devices.FakeSimpleSwitch" requiredLibs="//@deployUnits.1"
startMethod="start" stopMethod="stop">
 <required name="log" ref="//@typeDefinitions.1"/>
 <required name="on" ref="//@typeDefinitions.1"/>
 <required name="off" ref="//@typeDefinitions.1"/>
 <required name="onoff" ref="//@typeDefinitions.2"/>
 </typeDefinitions>
 <typeDefinitions xsi:type="art2:MessagePortType"
name="org.kermeta.art2.framework.MessagePort"/>
 <typeDefinitions xsi:type="art2:ServicePortType"
name="org.entimid.framework.service.OnOffService">
 <operations name="on" returnType="//@dataTypes.0"/>
 <operations name="off" returnType="//@dataTypes.0"/>
 </typeDefinitions>

Figure 6.4: Electronic Parallel: Datasheets

Typical examples are the A and B input values of a comparator.
Output Ports release the data resulting in the execution of a task. The C result value
of a comparator and the tick of a timer, are two illustrations of this kind of port.
Parameter Ports are used to set specific values for an instance. They specialize the
behavior of the instance for a specific context. An example could be the clock port of
a microchip, which can be set to several frequencies according to the application it is
involved in.

The component model created was strongly inspired by electronic components. In-
deed, InputPorts and OutputPorts have been implemented as presented in figure 6.5a.
They have been divided into synchronous and asynchronous kinds, to handle both
object-based method call handling, and message-based communications between com-
ponents.

6.2.2 Meta-Model description

This section details the elements of the component model, presented in 6.5b.

ComponentType

The ComponentType meta-class carries the component description specification.
Ports of the component are describes in collections; provided for input ports, required

Component Model 77

Component
Type

Synch.	 Asych.	

InputPort	

OutputPort	

Parameter	

Timer
START

STOP
TIME_OUT

RESTART du
ra

tio
n

(a) Component Type (b) Meta-Model Excerpt

Figure 6.5: Extraction of a part of the component model architecture

for output ports. The component type also contains a dictionary which declares param-
eters, and their default values, that can be specialized for each component instance.

Ports

To keep close to existing component models and promote compatibility, the compo-
nent model makes use of classical terms in its implementation. As a consequence, Input-
Ports are implemented as provided ports and OutputPorts as required ports, as shown
in figure 6.5b. For their part ParameterPorts have been implemented as <key,value>
dictionaries.

ParameterPorts This kind of port is used to specialize component behavior. For
example, the Timer component uses a delay parameter that represents the amount of
time to be spent before the time-out occurs. A component can have multiple parameters.
They are uniquely named in the component’s scope, and can be optional or mandatory.
All parameters a component admits are listed in a dictionary at model level. At runtime,
each parameter port is instantiated as a setter method, which only admits a dictionary
as parameter. Indeed, each parameter port has its own setter method. Both keys and
value types are Strings. This ensures the transmission of parameters in a unified way.
Each component is responsible for the conversion from the String to the real type of its
parameters.
To keep the link with electronic components, the method is the pin, and the dictionary
describes the shape of the signal to be sent (voltage, intensity, shape of the signal).

InputPorts A component can provide several facilities to other components. This
is illustrated by the Timer on figure 6.5a which offers start, stop, and restart actions.
In classical software component models, the timer component would have provided a
single synchronous port with the three start, stop, and restart methods. These methods

78 Details on strata

LM211

oleanvalueOf(Z)Ljava/lang/Boolean;getDictionary()Ljava/util/
HashMap;java/util/HashMapkeySet()Ljava/util/Set;java/util/Setiterator()

va/util/Iterator;hasNext()Znext()Ljava/lang/Object;java/lang/
SystemoutLjava/io/PrintStream;append-(Ljava/lang/String;)Ljava/lang/
StringBuilder;get&(Ljava/lang/Object;)Ljava/lang/Object;-(Ljava/lang/
Object;)Ljava/lang/StringBuilder;toString()Ljava/lang/String;java/io/

rintStreamprintln(Ljava/lang/String;)Vjava/lang/ObjectgetClass()Ljava/
lang/Class;java/lang/ClassgetNamejava/util/logging/Logger getLogger.

(Ljava/lang/String;)Ljava/util/logging/Logger;java/awt/
ColorREDLjava/awt/Color;(Ljava/awt/Color;)V

FakeSimpleLight.class

Comprehensible
representation

 Semiconductor Components Industries, LLC, 2005
July, 2005 − Rev. 5

1 Publication Order Number:
LM211/D

LM211, LM311

Single Comparators
The ability to operate from a single power supply of 5.0 V to 30 V or

!15 V split supplies, as commonly used with operational amplifiers,
makes the LM211/LM311 a truly versatile comparator. Moreover, the
inputs of the device can be isolated from system ground while the
output can drive loads referenced either to ground, the VCC or the VEE
supply. This flexibility makes it possible to drive DTL, RTL, TTL, or
MOS logic. The output can also switch voltages to 50 V at currents to
50 mA, therefore, the LM211/LM311 can be used to drive relays,
lamps or solenoids.

Features
• Pb!Free Packages are Available

Figure 1. Typical Comparator Design Configurations

Split Power Supply with Offset Balance Single Supply

Ground−Referred Load

Load Referred to Positive Supply Strobe Capability

−

Output

VEE

Inputs

VCC

RL

1

2

3

4

5
6

78

5.0!k

3.0!k

VCC

VCC

VCC

VCC

VCC

Output

Output

Output

Output

Output

RL

RL

RL

RL

RL

Inputs

Inputs

Inputs

Inputs

Inputs

VEE

VEE

VEE

VEE

VEE

2

3

2

3

2

3

2

3

2

3

4

4

4

4

4

7
8

1

Input polarity is reversed when
GND pin is used as an output.

7

1

8

8

7

6
1

1.0!k

TTL Strobe

1

7
8

Load Referred to Negative Supply

1

7

8

Input polarity is reversed when
GND pin is used as an output.

−

+

+

+

+

+

+

−
−

−

−

GND

Inputs

VEE

VCC

Output

Balance/Strobe

Balance

(Top View)

1

2

3

4

8

7

6

5

PIN CONNECTIONS

+

−

See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.

ORDERING INFORMATION

http://onsemi.com

PDIP−8
N SUFFIX
CASE 626

1
8

SOIC−8
D SUFFIX
CASE 7511

8

MARKING
DIAGRAMS

x = 2 or 3
A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G = Pb−Free Package
! = Pb−Free Package

1

8

LM311AN
AWL

YYWWG

LMx11
ALYW

!

1

8

Comprehensible
representation

Figure 6.6: Electronic Parallel: Components

would have been defined in the StartStopRestart API.
Synchronous ports (also called ServicePorts in the model) act the usual way: they are
typed by an API, and are based on method calls. Thus, our component model is able
to support the common software-component behavior. However, this is not the way of
designing components that we encourage. Indeed, the API is typed by the programming
language type system, and this typing may prevent components from being connected
because of a mismatch. We want to elevate the typing from the language to the model,
and resolve the typing at a higher-level of abstraction.
Asynchronous ports, handled as MessagePorts in the component model (fig 6.5b), are
much more interesting for the promotion of component connectivity. Each method/ac-
tion a component offers is accessible through a dedicated port. Each port is uniquely
named in the scope of the component. In the same way, electronic components have
one pin for each action and actions are triggered when the value changes from 0 to 1
for instance, on the corresponding pin.
To mimic this behavior, all asynchronous InputPorts are implemented as a Command
design pattern. They have a unique method public void process(Dictionary<String,
String>). The uniqueness and standardization of the method are mandatory to ensure
the connectivity.
Just as an electronic component, actions in our component model can have parameters.
Coded in the shape of the input signal passed through an input pin in electronics, our
InputPorts admit a dictionary of <key, value> parameters. Like ParameterPorts, this
dictionary only allows pairs of Strings. These values are specific to each execution and
may change form one call to another. In figure 6.5, START, STOP and RESTART are
all InputPorts. The parameters used on the start or restart activation are transferred
through the TIME_OUT OutputPort to the connected component.

Component Model 79

OutputPorts The main role of an OutputPort is to forward or release information.
For instance, in figure 6.5a when the timer delay is over, the TIME_OUT port is acti-
vated and thus the connected InputPort (if any) also is. In case the activated InputPort
is synchronous, the result of its activation is returned by the called method. This is
a blocking behavior, and may not be adapted to events coming from real life. If the
activated port is a MessagePort, the result of its execution (if any) is given though a
dedicated OutputPort.

All this results in a parallel between electronic and software components as shown by
figure 6.6. Input(provided) ports are displayed on the left side, and Output (required)
ports are on the right.

Channel

A Channel connects two or several ports. Channels can be of different types, and
are instantiated just as components are. Channels are providing communications to
components. These communications can be realized with several protocols, politics and
media. According to the situation, one can make use of a channel that sends messages
in sequence, or of one sending in parallel. Channels can create the link using TCP or
UDP sockets, RS232 serial connection, or a REST request. Channels are handling the
communication semantic and method between components.
Being defined outside the component, developers can make no assumption about the
media or protocol that will be used, or the kind of component on the other side. This en-
forces the development of well defined standalone components and promote their reuse.

Service Ports

Service ports come with the description of their operations (name, returned value)
and a description of the operations’ parameters (names and types). These information
are used by channels, modeling tools and runtime platforms. Channels can play a
role of mediation between not exactly aligned services descriptions. Modeling tools
use these description to perform checks on component assemblies and authorize au not
components’ connections. Finally, runtime platforms can check the alignment, and may
refuse any connection that violates a pre-defined connection rule.
These checks are detailed in section 6.3.1.

6.2.3 Concrete example

This example shows how a real product is implemented in this component model.
The RMG4S, on the left side of figure 6.7, is a KNX product by Theben 1. This product
can control up to four 230V lights or sockets. Its virtual representative has 8 message
input ports, two (i.e.: on, off) for each controllable element. When a physical event
changes the state of an output of the product (somebody switches on the light using

1. http://www.theben.de/en

80 Details on strata

Figure 6.7: Example Model

the dedicated switch), the state is propagated to any connected device, through the
corresponding port of the component.
In addition, a KnxEnv input port allows the driver to circulate real-life events. On the
other hand, an output port KnxNetwork is used to send events from the model element
to the real product through the driver. The last output port is a logging port.
Thus, to switch on the light that is physically connected to the first module of this
product, one just has to activate the m1_on port. The component then asks its driver
to send a message to the real device to make it power up its first module.
On the other hand, when the state of a module is physically changed, a message is sent
from the driver to the component. The component then activates the m1_state (for
instance), to inform any connected component about the change.
If the application proposes a graphical user interface, the on (resp. off) port of the
component is activated when the user presses the graphical button. On activation, the
driver sends the order to the real product, which reacts and sends information about its
state change. The driver catches the information, and sends it to the graphical interface
for update, through the dedicated output port of the component.

The component model makes our software equivalent to electronic components
DataSheets. Assembly constraints, mandatory parameters on ports, component be-
havior, and many other pieces of information on components can be expressed in the
model. This abstract description of the component has no effect on the runtime imple-
mentation (just as DataSheets have no effect on black-box components by the way).

6.2.4 Implementation and Model Relationship

The development of a component (i.e.: a virtual representative of a physical device)
can be achieved in two ways. According to its preferences, the developer can make the
model of what he wants, and ask for code generation. This approach is called Model
First. The model can also be extracted directly from annotations decorating the im-
plementation code made by the developer. This is called Code First. The code first

Component Model 81

Listing 6.1: Java class POJO annotation
@Provides ({

@ProvidedPort(name = "start", type = PortType.MESSAGE),
@ProvidedPort(name = "stop", type = PortType.MESSAGE),
@ProvidedPort(name = "restart", type = PortType.MESSAGE) })

@Requires ({
@RequiredPort(name = "timeOut", type = PortType.MESSAGE),
@RequiredPort(name = "logger", type = PortType.MESSAGE) })

@DictionaryType ({
@DictionaryAttribute(name = "time", default="3000") })

@Library(name="EnTiMid - Framework")
@ComponentType
public class Timer extends AbstractComponent {

private TimerThread timer;
private long time = 3000; // default value

public Timer () {}
public Timer(f ina l long time) { this (); this .time = time; }

public long getTimeOut () { return this .time; }
public void setTimeOut(long value) {

i f (value > 0) { this .time = value; }
}

@Port(name = "stop")
public void stopTimer(Message m) {

i f (timer != null) { timer.reset (); }
getPortByName("logger", MessagePort. class). process("Timer("+time+"):: STOP");

}

@Ports ({ @Port(name = "restart"), @Port(name = "start") })
public void restartTimer(Message m) {

i f (timer != null) { timer.reset (); }
timer = new TimerThread ();
timer.start ();
getPortByName("logger", MessagePort. class)

.process("Timer("+time+"):: STARTED");
}

@Start
public void start () {

time = Integer.valueOf(getDictionary (). getValue("time")). intValue ();
getPortByName("logger", MessagePort. class). process("Start Timer");

}

@Stop
public void stop() {

getPortByName("logger", MessagePort. class). process("Stop Timer");
}

@Update
public void kevUpdate () {

time = Integer.valueOf(getDictionary (). getValue("time")). intValue ();
getPortByName("logger", MessagePort. class). process("Updating Timer");

}

82 Details on strata

approach differs from a reverse engineering approach, in the sense that the model is
extracted from annotations in the code, and not from the implementation code itself.
These two approaches are not exclusive. The model of a component can evolve, there-
fore impacting its implementation. Respectively, if a change is made to the code, it
has to be reproduced at the modeling level. In other words, the consistency between
implementation and model has to be guaranteed.

To illustrate the description, listing 6.1 shows the complete implementation class of
a Timer component. This listing is organized as follows: on the first lines are annota-
tions on the class that describe the component shape. Just after, the class definition
comes with private attributes, object builders, then getters and setters. Next, methods
render the services offered by the component. Life-cycle management methods are at
the end of the class.

Component shape
The first annotations on the class inform about the Input, Output and Parameter ports.
As explained in section 6.2.1, InputPorts are implemented as provided ports. Common
actions that can be carried out on a timer (start, stop, restart) are listed under these
terms.
This Timer implementation offers two outputs, visible as Required Ports. A log port,
which sends information about the internal behavior of the component, and a time_out
port activated when the countdown ends.
The Timer admits a parameter. This parameter sets the delay between the start and
the activation of the time_out port. This parameter appears in a dictionary.
The @Library indicates that the component is part of the virtual library of components
called "EnTiMid - Framework". In edition tools, all components of the same library
are presented under the same package of components. A library of components can be
defined using several deployment units.
The last annotation tags the class as a component type implementation. This anno-
tation is mandatory for the compilation tools to consider the class as a component type.

Port mappings
Once described, input ports have to be linked to the method implementing the action.
In the example, one may remark that a port can be bound to at most one method, but
a method can be reached from several ports (1 method can be mapped on n ports).
Indeed, the behavior of a start and a restart of a timer are implemented the same way.
Classical solutions could have been to remove one action or to copy-paste the method.
From a user perspective (sect. 5.1.3), a Timer should be able to be started and restarted
which implies not to removing the port. Thanks to this multiple mapping, the user will
be satisfied with no redundancy of code.
Moreover, the transfer of the annotation from one method to another, changes the
method called when a port is activated. This change is completely transparent for as-
semblies already using the component, since the annotation is not modified. This is a
great ability that enables changes in the implementation and method names, with no

Component Model 83

change in the component interface.
Finally, a component can offer the same service through both Service and Message port.
Using the same mechanism, the same method can be called in both cases.

Life cycle
Start and Stop life cycle methods are mandatory. They are called when an instance
is started (resp. stopped). Stateless components may just ignore these methods, but
stateful ones may use these to persist their state.
The update method is used to inform a component that one of its parameters has
changed.

Code first
Meta-information, concerning the component model, is introduced in the code using
annotations. This method for including meta-information in the code has already been
used in tools such as Fraclet[RM09]. A developer familiar with the annotation set, or
in charge of the migration of existing components, may directly define the model in the
code.
As in a classical development process, the new implementation code has to be compiled
to incorporate the changes in binaries. Our component model takes advantage of the
compilation phase to extract the model from the annotations. A visitor goes all over
compiled classes and selects the @ComponentType decorated classes. Then sub-visitors
navigate into the code to create the model.
At the end of the compilation process, the newly-computed model is added into the
compilation result. i.e. the model is included as an XML file into the .jar that results
from the compilation. Model consistency with the latest code version is guaranteed this
way.

Model First
Writing component type code, plus the annotations, may become a complicated task.
A non-familiarized person may experience difficulties in placing all the annotations re-
quired to describe its component. The model-first approach aims at providing tools to
graphically (or textually) describe the component first, and then ask for the implementa-
tion to be generated. This method is made available by the use of tools such as graphical
DSL, textual DSL or generic meta-modeling languages such as Kermeta [MFJ05]. Mod-
els bring a more intuitive approach for the description of a component.
Once the developer is done with its component’s model, the generation tool is acti-
vated. If the implementation class of the component does not already exist, a new file
is created. This file contains the skeleton of the component implementation. The code
generation reaches its limits when the body of methods has to be created. The behavior
of methods is the only part to be completed by hand by the developer. Otherwise, the
class is already decorated with all annotations, and ports are mapped by default on
generated methods.
When an implementation class already exists, the generation process is slightly more
complex. In fact, a temporary model is extracted from the existing code and an Ab-

84 Details on strata

stract Syntax Tree (AST) of the code is created. The AST describes the code using a
tree structure containing objects. Each object stands for a method, an argument, an
attribute, etc. A comparison is made between the model created by the user, and the
model extracted from the existing code. Each difference is analyzed, and modifications
are made on the AST. The final code is generated from the modified AST.
The model-first approach helps somewhat in linking the model and the code. In any
case, the resulting code still needs a developer to complete the new methods created,
to remove dead code and to optimize the mappings.

Thanks to these mechanisms, models of components are available while the system
is not running. Their conformance with the actual implementation is guaranteed by
construction. This model abstraction makes it possible to create and exploit tools from
MDE.

6.2.5 Implementation independence

As previously presented, the model of a component is independent from the actual
implementation. Listing 6.2 illustrates this independence. Indeed, the FakeSimpleLight
component declares a onoff provided port that renders a OnOffService. The OnOffSer-
vice class is a Java interface containing two methods on and off, a kind of contract the
component ensures this port is compliant with. However, the implementation class of
the component does not actually implements the interface.

Listing 6.2: Implementation independence
@Provides ({

@ProvidedPort(name = "on", type = PortType.MESSAGE),
@ProvidedPort(name = "off", type = PortType.MESSAGE),
@ProvidedPort(name = "onoff", className = OnOffService. class)

})
@ComponentType
public class FakeSimpleLight extends AbstractFakeStuffComponent {
@Ports ({
@Port(name = "on", method = "process"),
@Port(name = "onoff", method = "on")})

public void lightOn(Object o) {
[...]

}

@Ports ({
@Port(name = "off", method = "process"),
@Port(name = "onoff", method = "off")})

public void lightOff(Object o) {
[...]

}
[...]

}

Each method of the OnOffService is bind on a method of the component’s implemen-

Component Model 85

tation by mean of a Port annotation. Since the component does not implement the
OnOffService interface, the Java compiler can not check that all methods are present.
This check is thus performed while parsing the annotations for the extraction of the
model, before the actual compilation.

6.2.6 Link with the interoperability layer

The actual implementation of the component model is slightly different from the view
developers can have of components. The connection between two components(channel)
is graphically a line linking two ports (see the top of figure 6.8). The line represent a
channel, dependent of the channel type selected in the library at design time. Since
ports can be synchronous or asynchronous, the runtime cannot handle port connections
in the same way. The activation of an output port implies different behaviors according
to its type. A message output port will send messages on topics to activate the linked
input ports, but a service port has to start a method call.

onOutput
Proxy

offOutput
Proxy

onInput
Proxy

offInput
Proxy

Figure 6.8: Link between the interoperability layer and component connections

This complexity is hidden from developers in both the code and the model view of
the components, by the use of proxies behind the concept of channels. At runtime, a
proxy is generated for each port connected to another component’s port, as illustrated
in the bottom of figure 6.8.
If the port is a message port, the proxies use messages and topics to communicate with
each other. When an output port is activated, its proxy generates and sends a mes-
sage on a pre-defined topic. On the other hand, a proxy listens to this topic only, and
activates the input port on which it is connected when a message arrives. Activations
are carried out with a Command design pattern, from the output port to activate the
proxy, and from the proxy to the input port. The mechanism is thus transparent from
the developer’s viewpoint: an input port must provide a command pattern, an output
port activates a command pattern.

86 Details on strata

The mechanism of proxies has also been implemented to handle the method calls
of service ports. Links between components’ ports are thus handled in a uniform way.
The introduction of proxies makes it possible to use other means of communication (in
the case of distribution issues for instance), and enables some adaptation mechanisms.

6.2.7 Main advantage of this component model

The main advantage of this component model is the location of the type checking.
The typing of components was completely relaxed in the implementation to eliminate
interoperability problems due to the implementation language type system. The typ-
ing was moved to the model level, where checks and changes in rules are made much
simpler. This contribution paves the way for a pluggable type system [PACJ+08, Bra04].

6.2.8 Summary

This new component model answers the need for a tool to make the abilities of
devices and their interactions explicit at design runtime. Annotations in the code is a
convenient way to integrate the component model into the implementation code, and
ensure the synchronization between the model and the implementation. The compo-
nent model also eases the reading and understanding of an application, since all links
between components are made explicit.

The component model imposes that the configuration is completely defined, but it is
not responsible for its deployment. A gap from the component assembly to the sequence
of commands to set up the application at runtime still has to be filled.
Since the component model has been made flexible to allow all possible connections, any
connection is possible, but some may not be desirable. Just as in electronics, assemblies
are constrained by components’ specificities. If electronic boards allow all possible con-
nections, components have constraints to be respected in order to assert their behavior.
Assemblies have to be verified and simulated, to prevent any undesirable interactions.

To eliminate these two issues, the Model@Runtime approach and model checkers
have been used in EnTiMid. Model checkers enable verifications of component assem-
blies at several steps of the development, while the model@runtime takes responsibility
for bridging runtime elements and the component model. These two elements of the
proposal make the Model@Runtime and Reasoning Engine layer.

6.3 Model@Runtime and Reasoning Engine

Model@Runtime and Reasoning Engine 87

!"#$%&"'(#%")*"+,-.)/0",

1"$%&",2)*"#34"#56%7%*8,

93043)")*,:3+"7,

;#544"#<,

:3+"7=-.)/0", 9>"&?"#<,The Component Model layer provides a level
of abstraction from the implementation specifici-
ties. It offers a unified model view of components
and their constraints and enables the creation of
management tools. Reasoning engines, checkers,
and models@runtime abilities can be used to ease
the creation of component-based applications.
The first requirement targets the validation of as-
semblies, prior to their real deployment. This
checking step is described in section 6.3.1. Section 6.3.2 presents an overview of the use
made of Models@Runtime techniques in this approach.

SIM
ULATE

Model C
heck

Figure 6.9: Electronic Parallel: Simulation

6.3.1 Check to validate

In electronics, the components’ assembly has to be approved. Its conformance in
relation to components and applications-specific constraints has to be guaranteed. This
validation prevents assemblies from having any computable damage. This conformance
check is often carried out by simulations, based on components’ specifications described
in their documentation. Figure 6.9 shows once again the parallel between the electronic
approach and ours, where electronic simulations are replaced by model checking in our
context.

In a classical software engineering process, conformance checking is done at 1) de-
sign time by the developer, 2) compilation time automatically, and 3) by running tests
on the application built. The modeling approach offers a way to perform more precise
checks, targeting more specific concerns, at several moments between the design and
deployment phases.

88 Details on strata

!"#"$%&'"()*
+"(,*-%.*

!"&$%/'"()*

0"1"2#"*-%.*
!"&$%/'"()*

!"&$%/'"()*

344"'5$/*
6%,"$*

!" 7*8*

9*:*

Figure 6.10: Checkpoint positions in the assembly deployment chain

Checking methods presented here have been written in Kermeta [MFJ05]. Kermeta is
a modeling and aspect oriented programming language. Its underlying metamodel con-
forms to the EMOF standard. It is designed to write programs which are also models,
to write transformations of models (programs that transform a model into another), to
write constraints on these models, and to execute them. Once written, there rules have
been compiled and integrated in the model editor and in the runtime platform.
Figure 6.10 displays the different moments where checks can be performed and illus-
trates what can be checked at each moment. These steps are detailed in the following
paragraphs.

1. Developer’s actions
The assembly tool can monitor developers’ actions. During the design phase,
checkers can verify that only authorized operations are executed by the developer.
When an inappropriate action is carried out, the triggering of warnings and errors
can improve the development process. Thanks to this information, developers can
immediately correct their code and learn from their mistakes. The earlier errors
are detected and corrections made, the more the impact on the global solution is
reduced. Also, developers’ profiles could be created and associated with different
checking policies according to the developers’ expertise. This provides a fine-
grained checking process for the design of applications.
Listing 6.3 illustrates this by checking that for each channel, all connected ports
are of type Service, or Message, but not both.

2. Assembly constraints
The structure of an assembly can be constrained by rules, due to runtime con-
straints, or due to the framework used. These rules are neither specific to the
developer, nor to the targeted business. A general policy could impose assemblies
to be composed with at least two communication components. This constraint

Model@Runtime and Reasoning Engine 89

Listing 6.3: Example checking developpers’ actions
operation checkBindingsHomogeneity(model:ContainerRoot)
: Sequence <CheckerViolation > i s do
var violations : Sequence <CheckerViolation >
model.hubs.each { channel |
var bindingsOnChannel : Sequence <MBinding >
bindingsOnChannel := model.mBindings.select{mb |
mb.hub.equals(channel)

}
var synchBindings : Sequence <MBinding >
var asynchBindings : Sequence <MBinding >
bindingsOnChannel.each { binding |
i f binding.port.portTypeRef.isKindOf(ServicePortType) then

synchBindings.add(binding)
else

asynchBindings.add(binding)
end

}
i f (not synchBindings.isEmpty) and (not asynchBindings.isEmpty) then

var violation : CheckerViolation in i t CheckerViolation.new
violation.message :=
"Ports of both Service and Message kinds are connected to the same channel:"
+ channel.name
violations.add(violation)

end
}

result := violations
end

aims at keeping continuity in the communication service in case of failure. Valu-
able for all applications created by the company, this rule is shared by all software
development projects.
The method presented in Listing 6.4 checks that for each component instance, all
mandatory ports are connected to a channel.

Listing 6.4: Example checking assembly constraints
operation checkMandatoryConnections(model: ContainerRoot , node : ContainerNode)
: Sequence <CheckerViolation > i s do
var violations : Sequence <CheckerViolation >
node.components.each { component |
component.required.each { port |
i f (not port.portTypeRef.optional) and port.isBind then

var concreteViolation : CheckerViolation in i t CheckerViolation.new
concreteViolation.message :=
"Required port (" + port.eContainer.asType(ComponentInstance).name
+ "." + port.portTypeRef.name
+ ") is not bind"
concreteViolation.addTargetObject(port)
violations.add(concreteViolation)

end
}

}
result := violations

end

90 Details on strata

3. Business Rules
An application created to control a plane has different constraints compared to a
watering management system. Each application domain can require that special
rules are considered. This checkpoint is placed just before the model deployment.
The validation of conformance at this moment avoids the sending of corrupted
models to the runtime.
The rule presented in Listing 6.5 verifies that for each channel, all connected ports
have the same name.

Listing 6.5: Example checking identical port names
operation checkPortsEquality(model:ContainerRoot)
: Sequence <CheckerViolation > i s do
var violations : Sequence <CheckerViolation >
model.hubs.each { channel |
var bindingsOnChannel : Sequence <MBinding >
bindingsOnChannel := model.mBindings.select{ mb |
mb.hub.equals(channel)

}
var portName : String in i t ""
bindingsOnChannel.each { binding |
i f portName.equals("") then

portName := binding.port.portTypeRef.name
else
i f not binding.port.portTypeRef.name.equals(portName) then

var violation : CheckerViolation in i t CheckerViolation.new
violation.message := "Connection not authorized."

violations.add(violation)
end

end
}

}
result := violations

end

4. Platform Rules
A platform is a system composed of both software and hardware. The compo-
sition of the execution platform may impact the development, or deployment of
a component-based application. The role of this check is to verify that all con-
straints inherent to the platform choice are respected. As checks are performed
at the model level, they can be realized by the runtime platform itself, with no
consequence on the running application. For instance, a model can be rejected if
one of the components requires a serial connection, and the runtime hardware of
the platform has none.
The Listing 6.6 ensures no channel is using the SerialConnectionChannel, proba-
bly because the hardware does not have any serial port. Modeling the platform
resources could enable to move these checks to before deployment and thus gain
time.

5. Check deployment commands
If the model of the assembly successfully passes all checkpoints, it is ready for de-
ployment. The last step of checking consists in the first step of Models@Runtime
mechanisms. The deployment of a component assembly is split into several com-

Model@Runtime and Reasoning Engine 91

Listing 6.6: Example checking pre-deploy constraints
operation serialConnectionCheck(model:ContainerRoot)
: java::lang::util::List <CheckerViolation > i s do
i f model.getChannels. exists { channel |
channel instanceOf SerialConnectionChannel

}. isEmpty then
var concreteViolation: CheckerViolation in i t CheckerViolation.new
concreteViolation.setMessage(
"SerialConnection not supported. (" + channel.getName + ")"

)
concreteViolation.setTargetObjects(channel)
violations.add(concreteViolation)

end
result := violations

end

mands. This last verification ensures that all commands are executable before
running the sequence. This phase is handled by the Models@Runtime engine. Its
job consists in (1) defining the best way to go from the current system assembly to
the new assembly received, and (2) supervising the migration. This is explained
in section 6.3.2.

6.3.2 The Model@Runtime engine work

In his PhD Thesis [Mor10], Morin presented the concepts of a Model@Runtime en-
gine. The Model@Runtime engine is responsible for several actions. First of all, it has
to constantly maintain a model view of the running system. Secondly, when a new
model is asked to be deployed, the Model@Runtime engine plans the migration (i.e.:
identifies and sequences the necessary primitive commands). Lastly, it supervises the
run of the migration command sequence, in order to roll back to the previous stable
state in case of failure.
The next paragraphs provide an overview of the engine work, in order to ease the com-
prehension of solution in its entirety.

Identify and validate the changes
After validation, the first task is to identify the differences between the model represent-
ing the running system (source model) and the target model the system must switch
to, as illustrated in figure 6.11. During the comparison, the next 7 types of primitive
commands can be found. 1. start and stop components. 2. add and remove compo-
nents. 3. add and remove bindings. 4. update components. The steps to go from
the current configuration to the required one are specified by primitive commands that
represent atomic differences between the two configuration models. The comparison
system only deals with abstract commands, to allow a change of the component man-
agement policy. The real commands are instantiated (not yet executed) according to
the actual policy, during the model comparison.

92 Details on strata

Reflection
Model (source)

Target
Model

Removed Kept /
Updated

Added

Migration

Figure 6.11: Identifying differences between the source and the target configurations.

Planning the execution sequence
These commands are stored in a collection and ordered according to a heuristic [ADN+10,
BPKP10] that ensures a safe migration from the current to the target configuration.
Before actually executing the commands, the list is parsed to verify that all the com-
mands can be executed. For example, for all AddComponent commands, the presence
of the specific component factory is checked, to ensure all components can actually be
added without any problems. Doing this kind of verification for all commands ensures
that the command execution will execute properly. If a command is detected as non-
executable, a report clearly describes the problem, and no command at all is executed.
This way, the system is always kept consistent.

Roll-back abilities In case the migration fails, each command is decorated with
a roll-back equivalent command. Thus, each command executed before the failure can
be cancelled. Moreover, a second protection in place consists in keeping the old model
in memory. If everything goes wrong, it is always possible to restart from scratch, and
migrate back to the old model.

Specificities of components and services
Because of an adaptation, some links (bindings) between components may appear or
disappear, for the system to act differently. In the case of classic components, adding or
removing bindings is realized by setting or unsetting a variable. Generally, a component
missing one mandatory binding is stopped, because it cannot run any longer. However,
in the case of service-based systems such as EnTiMid, the component may still offer its
services to third-party applications, and thus, should not always be stopped. In other
words, a "light component", a virtual representation of a real light, may not be bound
to any other component, but might still serve another application for the control of this
light.
Other behavioral constraints can require more complex actions than just a set or an
unset. For instance, if an alarm has been triggered and if the user does not process this

Model@Runtime and Reasoning Engine 93

alarm, the system must be able to propagate the information somewhere else for the
alarm to be treated. The removal of a communication link is structurally correct, but
the link may take part in an operation being treated, and so, it has to be kept until the
end of the action.

As previously explained, real commands for the migration are instantiated according
to the current policy of the running system. Real commands can also be specialized for
each runtime they have to be applied on. In our context, atomic commands have been
instantiated to address a service-oriented runtime. Indeed, this runtime has offered all
the facilities required by our approach. This is detailed in section 6.4.

94 Details on strata

6.4 Service-Oriented Runtime Architecture

For the proposed approach to efficiently cope
with dynamic evolutions, the underlying runtime
environment is required to offer dynamic abili-
ties. As explained in [DNGM+08], the concept
of service has emerged as a good candidate to
cope with the dynamicity of adaptive systems.
The adoption of this concept led to the devel-
opment of technologies, standards, and methods
to build service-based applications. Since the
Service-Oriented paradigm insists on the perva-
siveness of services, it imposes service-based applications to properly handle this re-
quirement. Indeed, services can appear and disappear at any time, and applications
built upon these principles have to take these constraints into account.

The OSGi Alliance [All11], a ’consortium of technology innovators’, has released a
set of specifications that define a service-oriented platform, and its common services.
This Service-Oriented Runtime has been selected to support commands that require
adding or removing component instances and types(binaries), during the execution.

Dynamicity in OSGi
The OSGi kernel is a standard container-provider to build service-oriented software sys-
tems. It implements a cooperative model where applications can dynamically discover
and use services, provided by other applications running inside the same kernel. It
provides a continuous computing environment. Applications can be installed, started,
stopped, updated, and uninstalled, without a system restart. It offers a remote man-
agement model for applications that can operate unattended or under the control of a
platform operator. Finally it embeds an extensive security model, so that applications
can run in a shielded environment. According to these specifications, an application is
then divided into several bundles. A bundle is a library component in OSGi terms. It
packages services that are logically related. It imports and exports Java packages, and
offers or requires services. Services are implementations of Java interfaces.

Modularity
Each OSGi bundle is designed to reach the highest level of independence, giving the
software enough modularity to allow partial service updates, additions or removals.
This programming style allows software-builders to deploy the same pieces of software
for all of their clients, either professionals or private individuals and then simply adapt
the services installed. Moreover, the services running on the system can be changed
during execution.

Component Types, Instances and Bundles

Service-Oriented Runtime Architecture 95

Described in section 6.3.2, the Model@Runtime engine creates an ordered sequence of
commands when it receives a new model to deploy. Each command of the list is then
translated into an OSGi command.
In EnTiMid, component types are contained in OSGi bundles. These bundles are only
used as deployment units and do not provide any service. They just embed components.
When an addComponent command is parsed, the runtime checks if the component
type is available in the environment. If not, the bundle containing the type is down-
loaded and installed. Once the component type is available, a new instance can be
created.
Component instances are also mapped on bundles because of their independent life-cycle
management. Indeed, start or stop component commands are directly translated to
start and stop bundle OSGi commands.

Figure 6.12: Instance creation tool chain

The creation of an instance is realized as presented on figure 6.12. From the model
(step A), a new instance is queried by the Model@Runtime engine(step B) to an in-
stance creator. This instance creator can be a Java code generator, an XML generator,
or whatever. The instance creator then asks for the bytecode generator to compile the
instance. This compilation can be realized with ASM 2 for Java code, handled by Spring
for an XML file, etc. Step D consists in packaging the bytecode in a bundle. Step E
makes it available for the runtime platform. The last step installs the instance bundle
in the system.

Mapped on OSGi bundles, component instances can offer services to other compo-
nents in the component model, or to other bundles on the OSGi platform. This facility
makes it possible to dynamically expose instances on application-level protocols. This
role is supported by the Wrappers layer described in section 6.5.

2. http://asm.ow2.org

96 Details on strata

6.5 Wrappers

!"#$%&"'(#%")*"+,-.)/0",

1"$%&",2)*"#34"#56%7%*8,

93043)")*,:3+"7,

;#544"#<,

:3+"7=-.)/0", 9>"&?"#<,
The wrappers layer takes advantage of the

component model layer, which makes it possible
to dynamically and automatically wrap devices
into several current and future application level
protocols. For instance, UPnP, DPWS or Dig-
ital Living Network Alliance (DLNA) are such
kinds of protocols. Their implementations is of-
ten too heavy to be implanted into the devices
themselves. The role of this layer is thus to export
all devices for free, on several protocols. Rather
than offering an automatic publication mechanism to a selected protocol, the wrappers
layer offers a means to publish any component to any protocol. Each component can
thus be accessible using as many protocols as there are wrappers. This approach has
been presented in [NDBJ08].

Component Model versus Third party
Wrappers need to obtain information about the devices present in a given deployment.
This information can be retrieved in two ways.
(1) The wrapper is designed as a component. As a consequence, it can monitor the
current model of the running system by asking the Model@Runtime layer. Any change
in the model implies that the wrapper check new devices and removed ones. Another
benefit of this approach is that a wrapper is considered as a classical component. The
model can thus manage it as any other component.
(2) The wrapper is built as a third party application, running on the same platform.
In this case, the wrapper monitors registrations of services in the OSGi context. Each
time a device registers a service, this service is made accessible through the protocol
handled by the wrapper. This approach has two drawbacks. Firstly, the export and
use of services are not visible in the model. A device can thus be removed while in use
through an application protocol. Secondly, the life cycles of the services exported on
the application protocol depend on the registration and unregistration of the device’s
services. Since no dependency is expressed in the model, the life-cycle management of
exported services has to be handled ’by hand’ by the wrapper.

Reversed drivers
A wrapper is created for each application level protocol. Just as for devices’ drivers,
the deployment of a wrapper is required for each application protocol to be addressed.
Each wrapper monitors the current application to detect addition or removal of devices.
For each device, the wrapper takes on the role of a proxy and handles communications
to and from the application level protocol.

Summary 97

6.6 Summary

The model used by the Model@Runtime engine has been augmented with the intro-
duction of the component model described in section 6.2.
The service-oriented architecture of the runtime makes it possible to cope with evo-
lutions and adaptations, since bundles can be installed and updated with no need to
restart the system. These facilities are exploited by the Model@Runtime layer, which
comes with tools and methods to address the evolutions, variability, adaptations and
safety of the application. However, these properties could not have been used with-
out the creation of a new component model inspired by electronic components. This
component model improves flexibility and enables the connection of heterogeneous com-
ponents, while keeping a high level of reliability thanks to checkers. The Device Inter-
operability and Wrappers layers provide abstractions of manufacturers’ specificities and
free publications on application level protocols respectively, to promote interoperability
and openness.

98 Details on strata

Chapter 7

Outcomes

This chapter aims at providing a bit more details about the outcomes of this thesis
in terms of implementation and tools. The first section gives quite general information
about the implementation of this component model and provides some metrics. The
second and last section of this chapter classifies the component model according to the
classification proposed by Crnkovic in [CCSV07].

7.1 Implementation

The ideas presented in this thesis have been tested and improved in several situa-
tions and contexts thanks to an implementation.

EnTiMid has grouped together all separated layers to provide a first running im-
plementation of the component model and tools. Because of the context, EnTiMid
targets the creation and realization of software applications in the domain of Home
Automation. However, ideas presented in this thesis are more general and applicable in
other domains such as Machine-To-Machine or automotive industry.
The arrival of a new PhD student in the team incited to rethought and rebuild the
software solution.

Kevoree has inspired and integrated ideas developed in this thesis and in EnTiMid,
to create a more general purpose software development environment. This generaliza-
tion enables the use of these ideas in several projects and implementation in the team.
It also allows for future specializations or extensions of this work. As for EnTiMid, it
has been re-factored to specialize Kevoree for a use in the domain of HomeAutomation.

EnTiMid concentrates in integrating new ideas like Models@Runtime and the flexi-
ble component model. Thus, an iterative process on top of an OSGi platform led to the
creation of a new component model with its implementation. However, this implemen-
tation allowed us to change, drop, refactor our code to validate our ideas, which could
have been more difficult by extending existing platforms.

99

100 Outcomes

If the implementation is home-made, the structure of components in our component
model is close to existing models, making it possible to develop extensions to integrate
the contributions of this thesis to existing models.

7.2 Impact on the development process

The use of EnTiMid impacts the development process at several levels. To describe
this impact, this section details the elements manipulated and the tools available for
different development phases.

Assembly
Editor

Java IDE

Code

Implementation

Model

Code2Model
+

Compilation

Component Model Editor

Model2Code

Runtime

Checker

Assembly

Checker

Assembly

Assembly

Figure 7.1: EnTiMid development chain

7.2.1 Component development

Since the component model is highly permissive, component developers cannot make
any assumption on the context of use of the component. Components are thus required
to be well protected against wrong usages, bad or missing parameters.
The use of annotations to describe the model and map ports and methods, makes eas-
ier the migrations of code, refactorings and evolutions of implementations. The model
of a component described by the annotations can be different from its actual imple-

Metrics 101

mentation, because several ports can be mapped on a single method. Moreover, if a
component offers a service port (implementing a specific interface), the component’s
implementation class does not have to (but still can) implement the interface of the
provided service. The only required thing is to map all methods of the service interface
to operation in the code.
These mappings provide flexibility to component models and their implementations.

The compilation chain, represented on figure 7.1 by the "Code2Model" box, auto-
matically checks for mandatory life-cycle methods and verifies that all methods of all
ports are actually mapped on implementation methods. In the same time, the chain
extracts the models of the components by parsing the annotations. These models are
then embedded in the archive containing the sources compiled in the same compilation
process. This guaranties the model-code consistency by construction.

As presented on top of figure 7.1, a component editor can be used to create or
modify an existing component model. This model of component is then synchronized
with the code thanks to a tool, "Model2Code engine", which generates a component’s
implementation skeleton or updates the annotations in an existing code.

7.2.2 Application design

In a design process, the component model of EnTiMid and the assembly tools make
it possible to connect heterogeneous components, such as actual devices, functions, or
services available through internet. Since the model is very flexible and permissive,
designer can try and deploy any combination of components, unless checkers in the as-
sembly tool or in the runtime reject the model. The bottom of figure 7.1 illustrates this.

According to the domain of application, checkers can be specialized to avoid assem-
blies identified as leading to failures. Moreover, checkers can be adapted to the current
user of the application and give more authorizations to an engineer, and more restric-
tions to the end-user for instance.

Finally, runtime checkers have to be specialized to reject models requiring resources
not available on the platform (serial port connections for instance).

In case an adaptation or an evolution is required, the model of the running system
is always available and can be collected directly from the runtime. Once updated, the
model of the system can be sent to the runtime for a adaptation of the actually running
application.

7.3 Metrics

The table 7.1 provides some lines of code metrics of Kevoree and EnTiMid. These
metrics have been measured on Kevoree 1.5.0-SNAPSHOT and EnTiMid 3.0.0-SNAPSHOT

102 Outcomes

on the 23rd November 2011. The counting was realized using Cloc 1 by considering only
files contained in the src folder of each project. Thus generated code has not been
counted. A Maven 2 plugin recursively launched the counting on sub-modules of a top-
project, and aggregated the results.

Project Scala Java Total Part Value
Kevoree-Core 8143 344 8487 11,54% 979,3
Kevoree-Tools 8483 6255 14738 22,22% 3274,65
Kevoree-Extra(ecore) 1275 126 1401 50% 700,5
EnTiMid-Core 0 445 445 85% 378,25
EnTiMid-Tools 82 315 3197 75% 2397,75
EnTiMid-Library 0 2065 2065 80% 1652
EnTiMid-Extra 0 1091 1091 85% 927,35

Table 7.1: Lines of code metrics of Kevoree and EnTiMid

Kevoree and EnTiMid have been implemented in mixed Java and Scala languages.
The table provides an indication of my participation in the different projects of the
implementation. The complement has been realized in collaboration with other PhD
students of the team.
The core of Kevoree embeds the implementation of the meta-model, a loader, a serial-
izer, a cloner and some utility classes grouped in a framework used for both runtime
management and design of components.
Kevoree-Tools contains a graphical editor for components and assemblies, model and
code synchronization tools and the definition of a scripting language to ease the man-
agement of models.
Since, Kevoree can be seen as a generalization of EnTiMid, the most important part
of development in EnTiMid was paid in creating component libraries and extra APIs
wrapping, specialized for home automation technologies and devices. For demonstration
purposes, several additional tools had also been realized.

7.4 Classification

Crnkovic proposed in [CCSV07] a classification framework "to increase the under-
standing of concepts and easier differentiate component models". This section aims
at classifying the component model of this thesis according to this classification. Four
dimensions are considered in [CCSV07]. Each dimension is presented in a separated
subsection.
The tables presented here have been extracted (for existing component models) from the
Crnkovic classification, and completed to integrate EnTiMid. The component models
selected for this extraction are also present in the state-of-the-art section.

1. http://cloc.sourceforge.net/
2. http://maven.apache.org/

Classification 103

7.4.1 Lifecycle

Component
Models Modeling Implementation Packaging Deployment

EJB N/A Java EJB-Jar files At run-time

Fractal

ADL-Like
Language(Fractal
ADL, Fractal IDL)

Annotations(Fractlet)

Java(in Julia, Aokell)
C/C++(in Think)

.Net lang(in FracNet)

File system based
Repository At run-time

OSGi N/A Java Jar-files
(bundles)

At run-time and
at compilation

EnTiMid
Graphical and
Textual ADL,

Annotations(CDL)
Java, Scala Jar-files(bundles)

Repositories
At run-time and
at compilation

Table 7.2: The Lifecycle dimension

EnTiMid proposes several tools for editing components and applications. Develop-
ments can be done in Java and/or Scala, and deployments (based on OSGi mechanisms)
are realized using Jar files and repositories. This deployment can be done while the sys-
tem is running.

7.4.2 Constructs

Component
Models Interface type Provides/Require

distinction
Distinctive
Features

Interface
Language

Interface
Levels

EJB Operation-based No N/A

Java
Programming
Language +
Annotations

Syntactic

Fractal Operation-based Yes

Component
Interface,
Control
Interface

IDL, Fractal
ADL, Java, C,
Behavioral
Protocol

Syntactic,
Behavior

OSGi Operation-based Yes Dynamic
Interfaces Java Syntactic

EnTiMid Port-based Yes
Types

Specified in
Interfaces

Java,
Annotation,

other

Syntactic,
Semantic

Table 7.3: The Constructs dimension - Interface Specifications

Each port in EnTiMid can be specified independently, making interfaces types port-
based. The model also differentiates between provided and required ports. The types
of ports are specified in the component model and their parameters also, which is a
particularity. The language to describe the interface can be Java(for services ports) or
just annotations (for message ports). In case of message ports, they handle the semantic
of the call; otherwise it is a syntactic interface level.

Interaction style between components depends on the channel used. The channel
supports the interaction and can act as a blocking service call, as a trigger or even with
some callback mechanisms. Thus communications can be synchronous or asynchronous
according to the channel chosen. Bindings are made explicit by the concept of channels.

104 Outcomes

Component
Models Interaction Styles Communication Type Binding Type

Exogenous Hierarchical

EJB Request Response Synchronous,
Asynchronous No No

Fractal Multiple Interaction Styles Synchronous,
Asynchronous Yes Delegation,

Aggregation
OSGi Request Response, Triggering Synchronous No No

EnTiMid Multiple Interaction Styles Synchronous,
Asynchronous Yes Delegation

Table 7.4: The Constructs dimension - Interaction

In case of a composition, the behavior of the binding is dependent of the implementation
of the composite component. As of today, the unique composition mechanism available
in EnTiMid is the inheritance, and can be considered as a delegation in this case.

7.4.3 Extra-Functional Properties

Component
Models Management of EFP Properties Specification

Composition
and Analysis

support
EJB Exogenous System wide(D) N/A N/A

Fractal Exogenous per collaboration(C) Ability to add properties (by
adding "property" controllers) N/A

OSGi Endogenous per collaboration(A) N/A N/A

EnTiMid Exogenous System wide(D) Metrics<key,value> values
updated at run-time

Handled by
pluggable
reasoners

Table 7.5: The Extra-Functional Properties dimension

Working with a model at run-time makes it possible to dynamically get the value of
a metric on a running component. Metrics are specified on and updated by components
in the model. Theses metrics are <key,value> pairs and can represent any interesting
data on the component behavior. Their analysis can be performed locally or remotely
by reasoner capable of making a decision from a given model extracted from the running
system.

7.4.4 Domains

Component
Models General Purpose Specialized Generative

EJB X
Fractal X X
OSGi X

EnTiMid X X

Table 7.6: The Domains dimension

Dedicated to the domain of Home Automation and AAL, EnTiMid is clearly spe-
cialized. Kevoree, on its side, can be considered as more generic.

Part III

Validation

105

107

Winners compare their achievements with their goals, while losers compare their
achievements with those of other people.

Nido Qubein

EnTiMid was tested on a realistic use-case scenario, in which all previously-listed
properties were stressed. This scenario, defined in collaboration with partners of an
AAL project, is presented this chapter 8.

108

Chapter 8

Validation in the context of an AAL
project

As one of the IDA project’s partners, we proposed EnTiMid as a flexible integra-
tion tool, for the different types of equipment offered by industrialists. EnTiMid has
been considered and evaluated on a scenario, collaboratively defined with the partners of
the project. It has been designed to underline the properties required for such a system.

The first section of this chapter introduces the project and its context and details the
scenario used as a validation for EnTiMid. Sections 8.4 to 8.7 describe the evaluation
of a set of properties: the environment setup, the procedures, and the results for an
evaluated property. Section 8.8 lists some threats to the validity of this study. The
conclusion and perspectives of these experiments is presented in section 8.9.

8.1 Context of the study: the IDA project

The first phase of the Innovation Domicile Autonomie (IDA) 1 project took place
from June 2008 to June 2010, in the City of Rennes and the greater Rennes area(France).
This local AAL project was funded by the Regional Council of Brittany to investigate
issues resulting from the ageing of the population, and its socio-economic impact. More
precisely, the IDA project involved conducting an inquiry about the use of ICT to help
elderly people in their everyday life at home. To this end, the project involved:

Association for care at home ASSAD du Pays de Rennes
Industrialists Custos, Delta Dore, Urmet Captive, Spartime, i–Pocarte, Domtis,

Ordimemo, Intervox Systems, Laudren, Solem
Social housing authority Archipel Habitat
Installers Marsollier Domotique, Lepage Electronique
Project ownership assistance ARELIA

1. http://www.ida-autonomie.fr/

109

110 Validation in the context of an AAL project

Research institutes INRIA (National Institute of Research in Computer Science
and Control), the University of Rennes 1, the University of Rennes 2, LOUSTIC
(Information and Communication technology Observation Laboratory), IETR
(Rennes Electronics and Telecommunications Institute), CRPCC (Psychology,
Cognition and Communication Research Center)

Public administrations Rennes Metropole, Conseil General d’Ille et Vilaine, Ville
de Rennes, CCI Rennes, Critt Santé, MEITO

Elderly people Anonymous individuals for tests.
The conclusions of the project have been compiled in [ASS10].

The "ASSAD du Pays de Rennes" Association, leader of this project, employs 450
persons among which, nurses, home care assistants, technicians, etc. The association
helps more than 3,000 persons, in 17 towns in the south and east of Rennes.

Although the IDA was not funded by the European AAL program the assisted (el-
derly) person was project-centred, and the six dimensions described in section 2.1.2
appeared in the background all throughout the project. The ASSAD association took
care of this point.
EnTiMid had been presented as a system for the integration of the several devices eval-
uated in the project. Indeed, the objective of IDA was to measure how ICT could foster
the autonomy of elderly people at home and support the activity of carers. In this
context, we proposed EnTiMid as an integration platform, able to deal with various
devices and services, and promote the deployment of solutions adapted to each person’s
needs.

Interested in the proposition, collaborative work had been engaged within the IDA
project. With the help of the ASSAD, Delta Dore, Custos, Arelia, and the LOUSTIC,
among the most active, a scenario was defined to put EnTiMid in context.
This case study was designed to be as close as possible to real life conditions. The
story was introduced by the ASSAD association. Products were proposed by Delta
Dore. The evolutions were gathered from past experiences of the ASSAD, Custos and
the LOUSTIC. This scenario was set up to evaluate EnTiMid on a realistic case, with
the same devices as those actually deployed. It stresses several issues to measure how
EnTiMid would cope with them.
The following part of this section presents the story and the evaluation context of
EnTiMid. The way EnTiMid addressed the problems is described for each issue in a
separate section.

8.2 Use case and issues to address

The scenario used for the evaluation of EnTiMid is presented in this section. It
involves an elderly person called Mrs P., several members of her family, and different
devices selected in collaboration with other partners in order for the evaluation to be

Use case and issues to address 111

realized with real products and in the closest conditions to reality.

The scenario is presented here with names of persons and real products for the sake
of clarity.

The scenario is about Mrs P. She is seventy-eight. She has two children and five
grandchildren. Mrs P. begins to experience some difficulties in walking and moving. To
improve her safety, her daughter proposed that she moves to an equipped flat.
Among other equipment, the flat is basically equipped with an alert system, which trig-
gers a voice call to a care center when a button is pressed on a remote control. But Mrs
P. is not comfortable with this equipment and would prefer a more generic remote con-
trol. She also would like the alert to be sent to her daughter, instead of to the care center.

1

2?night
Reasoner

3

4

Figure 8.1: Solution elements for Mrs P.

The remote control, on the top left corner of figure 8.1, is a one-button command
from Delta Dore (a French manufacturer of home automation devices). This remote
control has been designed to be universal for any receiver product from the Delta Dore
catalog. A 3G-communication stick (Icon 225) is used to send alerts to Mrs P.’s daugh-
ter. Then a Nabaztag rabbit helpfully provides feedback to Mrs P. when she asks for
help from her daughter.
The connection of these three items raises interoperability problems (symbolized by
the bullet number one), which are detailed and answered in section 8.4.

After some months of use, Mrs P. asks for the system to automatically switch on
the lights, when an alert is sent. Luckily, the flat is already equipped with devices that
enable the control of lights. The light control is made available by a RMG4S device
from Theben (on the bottom right of figure 8.1, working on a KNX network. Section 8.5
presents how EnTiMid enabled this evolution.

Following this evolution, the behavior of the lights was sub-optimal, because the
lights were switched on whatever the period of the day. To eliminate this issue, an
adaptation mechanism(bullet 3), described in section 8.6, was deployed. The sensing

112 Validation in the context of an AAL project

of daylight was realized by a KNX weather station outside the house. This weather
station is visible on the bottom left corner of figure 8.1.

One day, her son came with a new touch screen device. This touch screen would
allow Mrs P. to easily access the Internet and have video calls with her children and
grandchildren. The touch screen is able to control devices over UPnP and DPWS net-
works. In order to allow the control of home devices with this touch screen, the solution
deployed is required to be UPnP and/or DPWS compliant. This requirement stresses
the need for openness. Section 8.7 elaborates about the mechanisms used to answer
the fourth bullet of figure 8.1.

In order to evaluate the answers of EnTiMid in this scenario, and since a real deploy-
ment cannot be realized, a test environment with real devices was set up. Just before
the description of the solutions offered by EnTiMid, the different elements composing
this environment are presented in section 8.3.

8.3 Experimental setup

The test environment of this study was realized with equipment provided by indus-
trial partners of the IDA project for one part, and funded by the HID platform, financed
by a European Regional Developments Fund for the other part. It is mainly composed
of two home mock-ups, one with Delta Dore devices exclusively, the other with KNX
devices exclusively and an MSI Top touch-screen PC, as visible in figure 8.2.

Figure 8.2: Equipments available for the study

Experimental setup 113

8.3.1 Delta Dore equipment

The Delta Dore mock-up, visible on the left side of picture 8.2, was set up with
devices from heating, alarm, security and automatism functional domains. Here is the
description of all the elements.

– A DRIVER 210 CPL + TYDOM 520 heating controller, on the bottom left corner
of the mock-up, controls two heater receivers: a TC51089 PLC receiver, and a
RF660FP radio receiver.

– The big black box on the top right corner of the mock-up is a TYXAL CSX40
alarm, which collects information from several sensors. A DOFX smoke sensor,
and two MiniCOX door sensors, visible on the left side of the alarm. The last
sensor is a DFX water leak sensor (green object on the table, under the mock-up).

– One TYXIA 442 light dimming transceiver, and a TYXIA 411 timed power switch,
both hidden behind the rabbit.

– Not visible in the picture, two remote controls. One TYXIA 110 with a single
ON/OFF button, and a TYXIA 141 with four.

All these elements use the X2D protocol, owned by of Delta Dore, to communicate
on both PLC and radio media. Since the protocol is not public, Delta Dore lent us a
research and development product, able to communicate in both ways (listen and act)
on the X2D network.

8.3.2 KNX equipment

The second mock-up, on the right side of the picture, is made of KNX compatible
products only, mainly from the manufacturer Theben and some from Siemens.

– On the top right corner of the KNX mock-up is an outdoor weather station. This
weather station gives information about the wind, the rain, the temperature, and
the light value. This information can be provided whether periodically or when a
value changes slightly.

– Just under the weather station, on the left, the LUNA 113 is a light sensor for the
outside. On its right, an AMUN 7160 provides information about temperature,
humidity and CO2 rates inside the house.

– Going down the right side comes the VARIA 826 WH KNX, which is an am-
bient controller. It allows for changes in the heating regulation values, reading
information from the weather station and many other appliances.

– The four switches, in the bottom right corner of the mock-up, are controlled by a
TA 4.

– The electric panel includes three other devices. An RMG4s device controls the
four power sockets, at the very bottom of the panel, with a On/Off behavior only.
Above this device, a DMG 2 controls the dimming of the two sockets on its right.

114 Validation in the context of an AAL project

– Hardly visible on the top of the panel, a Siemens EIB/IP N148/21 gateway makes
it possible to access the KNX network through an IP connection. Helped by the
Calimero 2 framework, it enables a programmatic control on all the devices, and
allows the user to listen for events on the KNX network.

8.3.3 Other equipment

The link between all of these devices is made by EnTiMid, but it still requires an
environment for its execution. Several other devices are available in this experimental
setup.

– An all-in-one PC MSI Wind Top, with a touch screen, an Intel Atom 230@1.6GHz
CPU, 1Gb RAM and Ubuntu 9.10 (Linux kernel: 2.6.31-17-generic) for the oper-
ating system.

– An Icon 225 3G USB modem, used only for sending short text messages
– A Nabaztag:tag, the big rabbit in the picture, able to synthesize a voice from a

text, and used to provide feedback to the user. A Nanoztag with a Mir:ror (little
grey rabbit and round blue base) are used as an Radio Frequency IDentification
(RFID) tag and an RFID reader respectively.

– An Ethernet router to connect the KNX mock-up and the touch-screen.

8.4 Interoperability issue

The first problem that the story of Mrs. P emphasises, is the connection of three
heterogenous devices.

8.4.1 Test Environment

To evaluate EnTiMid on this issue, we made use of the Tyxia 110 remote control from
the Delta Dore mock-up, the 3G modem to send text messages and the Nabaztag:tag
rabbit to provide feedback to the end user.
Nothing in EnTiMid was already available to access these products.
The MSI Top touch-screen was used for the deployment of the test.

8.4.2 Resolution Protocol

Driver creation
Each product used in this test is from a different manufacturer. Thus, three drivers had
to be created, as described in section 6.1.1 of the contribution.

The driver enabling the use of the Tyxia 110 makes use of the gateway offered by
the manufacturer, making it possible to listen on the X2D network. This gateway was
delivered with a Java API, which simplified the creation of the driver. Indeed, the driver
just consists of the creation of a listener and of a class to handle the implementation and

2. http://calimero.sourceforge.net

Interoperability issue 115

the model of the remote control device. The Tyxia 110 component has a unique output
port pressed, and can be customized to specify the parameters to be sent through the
output port when the button is pressed.

The second element, the 3G modem was considered as a simple modem. The se-
quence of AT commands to be sent to the modem, to send a short text message, was
collected from the modem documentation. With the help of a serial communication
library in Java (RxTx), the component was implemented, and decorated with modeling
annotations. The Icon 225 component representative offers a unique input port send.
This port admits one parameter: the text of the message to send. The receiver’s phone
number is given as a parameter to the component.

The Nabaztag:tag rabbit is the last element in this test and is used to provide
feedback to the final user. The web-service API of the Nabaztag rabbit provides a
Text-To-Speech facility that can generate and return an MP3 file. Indeed, the rabbit
is able to either, directly synthesize a voice from a text or generate a file containing
the voice synthesis, for it to be played later by the rabbit. The component standing in
for the rabbit thus proposes a generate input port. The action of this port is to call
the text-to-speech facility with the text passed through the port as a parameter. The
generated MP3 file is then returned through an output port called generated. A second
input port, play, can be used to ask the rabbit to read a text or an MP3. If a text is
given in parameter, the synthesis is made on the fly.

Figure 8.3: Components used in the interoperability experiment

Connection of the elements

An instance of each element of the assembly is created in the model. The Tyxia
110 is customized to send two parameters through its output port on activation: the
text "Your request has been sent to your daughter." for the rabbit, and "Your mother
is requesting a call from you." for the Icon 225.
This message with the two parameters is forwarded to a dispatcher, which triggers in
parallel the send input port of the Icon 225 instance, and the play input port of the
Nabaztag. Each component collects the parameter it is interested in and carries out the
required action.

116 Validation in the context of an AAL project

8.4.3 Results

At first sight, the connection of a generic remote control, an electronic rabbit, and a
short message modem is not that obvious. Industrial partners of the project were baffled
by this requirement, because it implied that they develop an ad-hoc device. This is not
viable when targeting a provision of specialized solutions for each person’s needs.

In this example, three drivers had to be developed to be able to get components
in the model. Each driver can now be augmented to provide more products from
each manufacturer. The development of drivers, once done, is never to be done again.
Components can also be reused in other contexts, because of their independence and
the avoidance of direct connections. For future applications, this signifies a great gain
in time.

8.5 Evolution issue

The evolution in this use case is due to a change in Mrs P.’s needs. She wants
the lights to be automatically switched on when she presses the remote control. This
requirement is related to a feeling of safety when lights are on at night.

8.5.1 Test Environment

This evaluation makes use of the previous devices involved in the interoperability
evaluation.
In addition, the RMG4s of the KNX mock-up is integrated in the application as illus-
trated in figure 8.4.

8.5.2 Resolution Protocol

No KNX product had been used for the moment. So, the first task was to create
the driver to control KNX equipment and obtain a model representative for the RMG4s
(presented in figure 6.7 a few pages back). Once the component is ready, it has to be
deployed.
Thanks to the Model@Runtime layer, the technician responsible for the addition of
the new functionality retrieves the current model of the running application, using a
TCP/IP remote access. He then adds an instance of RMG4s and connects all on input
ports to the dispatcher already present. In this configuration, all lights controlled by
the RMG4s are lit when the Tyxia 110 button is pressed, in addition to the text being
sent and the rabbit speaking.

For the last step, the technician sends back the model to the runtime of EnTiMid
in the home. Once all checks are passed, the runtime downloads the newly-created
component type and its driver, in order to create and connect the instance. All this

Adaptation issue 117

Figure 8.4: Components used in the evolution experiment

procedure is transparent for Mrs P., who is called just before and after the operation to
keep her informed. The OSGi runtime prevents any service interruption.

8.5.3 Results

Again, a driver had to be created as well as a component to handle the RMG4s.
Thanks to the Model@Runtime engine, the technician was able to collect the model and
modify it. He then asked the runtime for the deployment of the new model. Realized
through a TCP/IP connection, this evolution could have been realized remotely. This
ability reduces the disturbance for the helped person, and can reduce the time from the
query to the realization.
For this experiment, the communication with the runtime used a TCP/IP connection,
which may not be that easy in real life.

8.6 Adaptation issue

The behavior of the lights was sub-optimal after the deployment of the evolution.
Indeed, the lights were switched on, whatever the period of the day, every time the
remote control was pushed. To remedy this issue, an adaptation mechanism (presented
in [NFM+10]) was deployed. This mechanism changes the configuration of the system,
according to the external lighting value sensed by a KNX outdoor weather station.

118 Validation in the context of an AAL project

8.6.1 Test Environment

In addition to the previous equipment, selected for interoperability experiments and
evolution concerns, the outdoor KNX weather station is now included in the configura-
tion.

8.6.2 Resolution Protocol

The driver for KNX products already exists. The unique thing to implement is a
component representative for the weather station.

The Model@Runtime engine offers means to connect reasoners. A reasoner is able to
modify (or ask for the modification of) the running system configuration. The decision
is made locally according to some contextual information. This information can be as
simple as a value change, or as complex as an aggregation of events. For this evaluation,
a reasoner has been created to modify the connections of the RMG4S according to the
period of the day.

The system is currently composed of five components. A TYXIA_110 remote con-
trol, a dispatcher connected to a 3G USB stick to send texts, and to a Nabaztag rabbit
to inform Mrs P. In addition, the RMG4S makes it possible to control the lights. At
night, this configuration is the one required. During the day, the RMG4S should not
be activated, and the connections with the dispatcher have to be removed.

The weather station has been added to the system as described in section 8.5. Fig-
ure 8.5 presents a view of the system with the meteo station integrated.

To be able to perform execution time bench testing, the experiment including the
reasoner was deployed from scratch. The MSI Top was cleaned of any previous binary
element and restarted. The deployment was then realized as follows:

Initial Deployment The initial deployment is realized during the day. The model
deploys only the remote control, the rabbit, the USB stick, the dispatcher, and the
weather station. In this configuration, the elderly person can ask for help by pressing
the Tyxia 110 button, just as before, but no light is switched on.

At night The reasoner adapts the system to the new conditions. It changes the
model by adding an RMG4S instance and all necessary connections to the dispatcher.

Day When the day returns, the reasoner removes the connections and the instance
of RMG4S.

Adaptation issue 119

Figure 8.5: Components used in the adaptation experiment

8.6.3 Results

Figure 8.6 presents the execution times measured while a sequence of reconfigura-
tions of the system was run. This sequence consisted of five steps. After the initial
deployment (State 1), the scenario iterates night states (State 2 and State 4) and day
states (State 3 and State 5) during the next two days.

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

1	 2	 3	 4	 5	

Reconfigura2on	

Comparison	

Figure 8.6: Time (in ms) spent in Configuration Comparison and Actual Reconfigura-
tion

120 Validation in the context of an AAL project

As the worst case scenario has been considered, the system is initially empty. Start-
ing from scratch, all components need to be deployed during the initial configuration.
In particular, all the component types have to be downloaded and checks have to be
performed on the entire model. It explains the rather long reconfiguration time of step
1: 2.5 seconds.

The first reconfiguration (day → night, step 2) implied the deployment of an in-
stance of RMG4S and the creation of bindings. As this component has never been used
before, its component type is not present and has to be downloaded. All other compo-
nents already deployed are reused. The downloading and deployment of the component
type, plus the instance creation and its bindings to the dispatcher, are realized in less
than 400 ms.

The next 3 reconfigurations (night → day → night) are much faster. Step 3 sim-
ply consists in unbinding and removing the RMG4S component. Step 4 is similar to
step 2. Component types are not uninstalled. The RMG4S component type is thus
immediately available for an instance creation. Step 5 is similar to step 4. The actual
reconfiguration time of these steps is less than 100 ms.

For each reconfiguration, a model comparison is performed by the Model@Runtime
engine, prior to the real deployment. This comparison detects changes and creates
the commands’ sequence for the transition. This model comparison takes an almost
constant time of 400 ms. Executed before the actual reconfiguration, the comparison
delays the reconfiguration of the system, but does not impact the duration of dynamic
reconfiguration.

8.7 Openness issue

As presented in section 8.2, the system was required to expose the devices on both
UPnP and DPWS networks. The next two sections describe how components have been
automatically wrapped to be available on these networks. They report an actualized
version of the work presented in [NDBJ08].

The aim of these wrappers is to make the devices installed on EnTiMid, available
for third party applications or other control devices, through several application-level
protocols. It is thus just a mean to share the access to some devices and may not
provide all the functions of each device.
UPnP and DPWS could have been implemented as home automation network tech-
nologies rather than just wrapping protocols, which would have provided full access to
devices’ functionalities.

Openness issue 121

8.7.1 UPnP export

UPnP [upn] is based on a discovery-search mechanism. As a UPnP-Device joins the
UPnP network, it sends an XML description file to all UPnP-ControlPoints. This file
presents the device with information such as manufacturer, device type, device model,
or its UUID. Most of times a UPnP-Device is self-contained.
It is able to describe itself and the services it publishes on the network. The description
structure, visible on the upper part of figure 8.7, is organized as follows.
UPnP specifications allow devices to contain other devices (called embedded devices).
In this case, the container (called the rootDevice) takes the responsibility for publishing
information about itself and each device it embeds.
Each service a device can offer has to be described in a separated file. This file char-
acterizes all the UPnP-Actions the service renders, and all the UPnP-State Variables
used by these actions. UPnP-Actions can admit parameters. These parameters have a
direction (in or out), a name, and a related StateVar. UPnP-StateVars handle informa-
tion such as value types, or lists of allowed values for a parameter.

8.7.1.1 Test Environment

This experiment required some devices to be deployed on the runtime for them to
be exported. We chose to fix the system in the night state of the previous experiment,
thus with a maximum of devices present in the system.
This test also required a third party tool to act as a UPnP external control point. This
was the touch screen provided by Mrs P.’s son. Since EnTiMid was deployed on the
MSI Top, we made use of a toolkit from Intel: "Intel R© Tools for UPnP Technologies
(Build 2777)". This toolkit is no longer maintained and is only available for Windows.

8.7.1.2 Resolution Protocol

Mapping UPnP devices to EnTiMid devices
Although EnTiMid devices and UPnP devices are quite similar, they are not exactly
aligned in their structures. However, the mapping (blue arrows in figure 8.7) was quite
natural. EnTiMid devices were mapped on UPnP devices.
EnTiMid devices can provide two kinds of ports: service and messages ports. NB: only
input ports are considered here. Services ports are composed of operations. This kind of
ports was associated with its UPnP equivalent, namely Service for the port, and Action
for the operations. The closest UPnP element to handle message ports from EnTiMid
is the concept of Actions. Indeed, a message port provides only one service/action. As
a consequence, there are as many services as there are message ports created. Each
service proposes a single action, which connects to the message port.

Generation of description files
In EnTiMid, each component is described by a model. The model is a graph of objects
at runtime and is serialized in an XML file. The generation of the XML description file

122 Validation in the context of an AAL project

Device Service

Embedded
Device

Action Param

StateVar

UPnP

EnTiMid
Device Port

MessageService

Operation

Figure 8.7: Mapping UPnP-EnTiMid

for UPnP is thus quite natural.
The service descriptions are the first files to be generated. For each EnTiMid service,
a new file is created. Operations of the service are then described in the UPnP formal-
ism. Not all operations are described, due to a sometimes complex translation between
EnTiMid and UPnP runtimes. In any case, all simple methods are included in the
description. In the same way, a new service file is created for each message port. The
service takes the name of "<port>on<component>" for the services to be differenti-
ated. Each service of this kind is composed of a unique action whose name is identical
to the one of the port.
Afterwards, a separate description file is created for each component available on the
system. The description of a device in UPnP is threefold. The first part provides
general information about the product such as the name of the manufacturer, a brief
description, the model type, the model number, or its serial id. If not available in the
model, these elements are automatically generated, or completed with default values.
The second part contains the list of the services a device provides. This description
makes reference to the service description files previously generated. The last part con-
tains information about the embedded devices. For each of them, the two previous parts
have to be specified.

When a UPnP-ControlPoint starts, it broadcasts a query for descriptions of devices
available on the network. The UPnP wrapper then sends the description files of all
devices and services provided in response.

Runtime elements
The generation of description files is necessary, but not sufficient for UPnP queries to

Openness issue 123

be forwarded to the real device. Indeed, no connection was made between the real
runtime component standing for the devices and the UPnP network. To cope with this
issue, virtual abstract EnTiMid components are created at runtime. Each real device
exported on the UPnP network is linked to an abstract component responsible for the
handling of communications between the real device and the network requests. These
abstract components only have output ports. i.e.: an output port is specially created
on the abstract device to be connected to each input port of the real device exported
on the UPnP network.
Then, queries are routed by the UPnP exporter to the abstract component in charge
of the concerned device. The abstract component activates the input port of the real
device according to the request.

8.7.1.3 Results

Once the wrapper is deployed on the MSI Top, the Nabaztag rabbit, the 3G USB
stick and the RMG4S were all made available through the UPnP network. Indeed, we
were able to view and act on these devices from a remote PC equipped with Windows,
and the Intel UPnP toolkit.
The low number of tools that accept the discovery of self-describing UPnP devices can
be a limitation for the use of this wrapper.

8.7.2 DPWS export

DPWS [JMS05] defines a minimal set of implementation constraints, to enable se-
cure Web Service messaging, discovery, description and eventing on resource-constrained
devices. Its objectives are similar to those of UPnP. The difference is that DPWS is
fully aligned with Web Services technology and is designed to work upon a web-service
transportation protocol. It also includes numerous extension points, to allow for seam-
less integration of device-provided services in enterprise-wide application scenarios.
From a conceptual point of view, the DPWS structure is close to that of UPnP, de-
scribed in figure 8.7. Consequently, the mechanisms to map EnTiMid devices and their
DPWS representative follow the same idea. Nevertheless, the generation process is dif-
ferent. Publications to the DPWS network have been realized thanks to the WS4D
project [ZBB+07]. In their approach, each DPWS-compatible device has to extend an
abstract DPWS device, proposed by the framework they provide. The reason is that
this abstract component handles all web service-specific communication concerns. The
creation of a virtual component is not sufficient in this case. A source code has to be
generated.

8.7.2.1 Test Environment

Since UPnP and DPWS are very close in terms of needs for devices to be exported,
the same set of devices was selected for this experiment.

124 Validation in the context of an AAL project

As for UPnP, we made use of an external tool to check that the export of devices was
made properly. The experiment was carried out using a second PC equipped with a
DPWS explorer 3 to list and act on published devices.

8.7.2.2 Resolution Protocol

DPWS devices creation
For each device, service and operation, a Java class has to be generated. According
to the element they represent, classes must extend HostedService for services, Host-
ingService for devices and Action for operations. Parameters are instances of the class
Parameter. Luckily, all these classes still can be generated with an automated process.
To achieve the code creation, the JET Framework has been used. Templates of DPWS
files were set up and they are used at runtime to produce Java classes.
More than just Java classes, the generated files are also implementations of new compo-
nent types. These types are the wrappers of real devices for DPWS. These components
are thus responsible for the direct connection between model elements and DPWS con-
trollers.

Compilation and use
The generation process produces Java classes, but no binary code. These classes still
have to be compiled to be useful at runtime. The decision was made to embed the JDT
compiler provided by Eclipse. As a result, the bundle to export devices through DPWS
is a bit heavy. The compilation is also resource-consuming for quite a small computer
device. Once compiled, these classes are packaged into a bundle, which is then deployed
on the OSGi runtime.
Classes are then handled just as classical components. The tool asks for new compo-
nents to be added in the runtime, and they are bound to the device they export.

8.7.2.3 Results

This approach allowed to publish installed devices and act on them using the DPWS
Explorer tool. Another approach involving external computing resources has been pro-
posed to perform the class generation. The idea is to send a model of the devices to be
generated, and get back a complete bundle containing the required component types.
Altough this solution only requires to extract the mechanism, it has not been realized
yet and is part of a future work.

3. http://ws4d.e-technik.uni-rostock.de/dpws-explorer/

Threats to validity 125

8.8 Threats to validity

8.8.1 Internal threats

8.8.1.1 Variability management

Variability management, described as being an important issue in home automation
for assisted living is not addressed in this experiment. Indeed, the scenario considers a
unique deployment, for a single person, in a single home. A second round of definitions
of a more global scenario may have stressed this requirement for variability management.
Nevertheless, a lot of work has been carried out to try to cope with this issue, such as an
approach using Aspect-Oriented Modeling presented in [MBNJ09]. Other perspectives
to address this question are presented in section 10.1.4.

8.8.1.2 Scalability

The scenario did not highlight any issues about the distribution or scalability of the
solution for deployment on a town-wide or even a countrywide scale. This scalability
validation will be addressed in the future with real deployments.
The MSI Wind Top, on which the experiments have been led, may not be the unique
platform on which to test EnTiMid and a large-scale vision scenario would have high-
lighted this.

8.8.1.3 Safety and Security

Voluntarily, we decided to distance ourselves from access security and privacy con-
siderations. Not because they are not essential, but because they impose such heavy
constraints that the search for a technical solution may have been compromised. Now
that the system is clearly designed and that the proof of concept has been validated,
work to secure communications and data has to be realized prior to any real deployment.

Concerning safety, our experimentations did not require complex checks on models.
Only simple structural checks, to find cycles for instance, were implemented and used.
In our approach, type checkers and validation policies have been designed to be cus-
tomized according to the application domain and its constraints. Thus, their complete
definition would have been useless in the context of the experiment. In the case of real
deployments, they have to be completed to verify that no configuration identified as a
case of failure is asked for deployment.

8.8.2 External threats

8.8.2.1 Validity of the scenario, real deployment

The experimentation scenario, even when defined in collaboration with several play-
ers in the AAL domain may not consider all cases. The interface between people coming

126 Validation in the context of an AAL project

from a technical field and people coming from social field is quite difficult to find. Be-
cause people in social activities are not aware of what it is possible to do with technolo-
gies and because industrialists are not aware of the everyday problems the dependency
of persons can raise, the discussions can rapidly come to a dead end.
The scenario validated for this study was accepted by all sides, but may be limited by
the comprehension each side had of the problem.

EnTiMid has been instantiated and validated on a virtual case. A real deployment
would have highlighted other issues, other constraints not addressed in this evaluation.
This real deployment is part of the perspectives for this work.

8.8.2.2 Communications with smart devices

Gateways are essential for us to be able to communicate with smart devices. For
instance, the bi-directional communication with Delta Dore devices was made possible
by an R&D product. Otherwise, the TYDOM 350, an embedded web server, is the only
device they commercialize to act on their devices. This one only enables users to act on
devices through a web page interface. This product does not detect any event on the
X2D network; it just acts on devices (with no acknowledgement by the way).
EnTiMid is not able to use any device without a means of communication with it.

8.9 Conclusion

An experimentation using real devices was set up by a collaborative work of the
project’s partners to evaluate EnTiMid on a scenario as realistic as possible. Made
with the background of each partner, this scenario was designed to stress several issues
identified on this kind of integration systems.
EnTiMid passed the main requirements highlighted by the scenario and required for
such systems to be deployed. This validation comfort the idea of making EnTiMid an
integration platforms to offer customized solutions for each person’s needs.
Some limitations due to the lack of real and large scale deployment have been identified.
These limitations will probably be addressed by the project of the company in charge
of promoting this technology in the industry.

Part IV

Conclusion and Perspectives

127

129

The law of unintended consequences pushes us ceaselessly through the years, permitting
no pause for perspective.

Richard Schickel

This last part wraps up the thesis. The first chapter summarizes by going back over
the context and requirements, recalls the contribution and emphasizes its adequateness
in relation to the requirements. After which, a short section discusses the benefits and
limitations identified in this thesis.
The second chapter of this part shapes some perspectives of scientific development for
this contribution, while the last chapter presents industrial perspectives.

130

Chapter 9

Conclusion

This chapter globally summarizes the work carried out for this thesis. Starting from
the requirements, this chapter goes through the contribution, discusses its appropriate-
ness to the context and ends by highlighting some benefits and drawbacks.

9.1 Reminder of Context

The ageing of the European population prompted the community to search for so-
lutions to support this evolution. In this context, several issues have to be addressed in
parallel. Firstly, the domain of health care suffers from a manpower shortage that could
result in a decrease in the health service quality. Secondly, places in health care centers
are not indefinitely extensive and centers will shortly reach their maximum capacities.
Finally, a day spent in health care centers, or hospitals, is quite expensive and funding
is limited.
Several projects have been started to try to address these issues. The Ambient Assisted
Living (AAL) joint program has been created to promote such projects and emphasize
the interest of Europe in advances in this domain. The Innovation Domicile Autonomie
(IDA) project, initiated by the City of Rennes and the Greater Rennes Area, fits into
this scheme with an evaluation of how the use of Information and Communication Tech-
nologies (ICT) can help to cope with these problems.
After a precise assessment of elderly people’s needs, this project measured the adequate-
ness of several industrial solutions to help and support elderly people at home. Among
others, home automation technologies have been analyzed to work out their possible
contribution to this problem. Rapidly, the survey demonstrated that a unique solution
cannot be applied in all cases. Each person has different needs and requirements, which
implies that the solutions need to be adapted for each deployment. Also, manufacturers
reach their limits when a device has to be specialized for each user.

The technical solutions designed in this context require some software systems to
bridge the gap between mass market home automation devices and customized solutions.
To meet certain needs, these software systems must cope with several requirements.

131

132 Conclusion

9.2 Summary of requirements

Interoperability is the first requirement software systems have to cope with. In-
deed, solutions proposed to improve elderly people’s comfort at home may be composed
of multiple products, from different manufacturers. Each device taking part in a so-
lution addresses a particular need of the person and makes the solution closer to the
ideal one. In any case, elements of the solution have to communicate with each other
to render a global service, but the diversity of manufacturers makes the interoperability
of devices a real problem.
The definition of a common communication interface for all components of the system
could solve the problem, but it requires that all devices are re-engineered to implement
this communication interface. With this approach, all products already available cannot
be used, because they will never implement this interface. Since the solution must not
be limited in terms of usable products, it avoids the definition of a global communica-
tion interface.

Adaptation and Evolution are the two main concerns to deal with in this do-
main. Software systems dealing with objects or services linked to actions of everyday
life, have to take into account the environment in which they are being executed. They
should be able to dynamically adapt to changes while running, in order to maintain a
level of services, or functionalities. These adaptations should not require any restart of
the system, since it would disable all functionalities for the time of restart. This is a
real problem considering the trasmission of a request for assistance.
Needs, uses, protocols and technologies are changing. Some functionalities may finally
be required, whereas others can become useless and need to be uninstalled. Security
or communication protocols can be improved and deployed in new versions that have
to be taken into account without needing to re-implement the entire system. Software
systems must be ready to accept future and unforeseen evolutions, such as the installa-
tion of new services/functionalities.

Openness and Remote Control are intended to make all functionalities of the
software system available for third party applications. Indeed, the connection of some
products may require that the system is accessible through a specific application pro-
tocol. This availability offers means to connect to the system with no need to be aware
of its internal organization. The only interest is on using the functionalities or devices.
It is an open door for new unforeseen appliances and for external contributions. Each
one can take part in adding a smart behavior on top of a reliable set of functionalities.
Remote control may be required for a carer to remotely check if everything is doing well.
It may also help in supporting remote-assisted management of the home for instance,
or to remotely deploy new appliances or maintain the system.

Variability Management and Distribution issues are linked to the need for
customization of solutions, and to the dispersion of deployments. Since solutions for
elderly people have to be customized to best fit their needs, the set of options of the

Survey of existing approaches 133

system may become barely manageable. Some deployments may require high computa-
tion power, whereas others may run on tiny execution platforms. Moreover, evolutions
of services or protocols may not be applied to all running systems at the same time,
making the management of versions even more complex. All these elements lead to a
huge number of configurations and to complex variability management.
Software systems have to be aware of these problems and offer tools in order to help
system designers and technicians. Decision-helping tools should be created to support
the design of software systems based on requirements and available devices.

Safety & Security is a very important concern for home automation systems. It
is even more important when the system is aimed at improving the quality of life of
dependent people. A minimum service level has to be guaranteed, for inhabitants not
to remain stuck in the house in the case of an emergency for instance. Moreover, access
to the system has to be secured to disallow anonymous control, but not tedious for
authorized people in a normal use case.

Acceptability & Accessibility are issues that must be addressed, particularly
when a software system takes responsibility for part of the home management. The
AAL domain is a complex environment in which solutions must support the activity of
elderly people and help carers in their work. For both of them, the system must not be
perceived as a new constraint, or considered as stigmatizing. People must accept the
solution deployed in their home and have to be reassured that they will keep a hand on
things that could happen.

9.3 Survey of existing approaches

Among all the requirements listed in section 9.2, the survey of existing approaches
concentrated on interoperability, adaptation, evolution, openness and variability man-
agement.

Scientific literature abounds with proposals using different approaches to cope with
interoperability, adaptation or remote control concerns in several applications. Gener-
ally, service-based propositions [All11, ?] sound helpful in targeting the interoperability
of devices, but clearly lack description of the running application once deployed. They
also bring essential ideas to properly handle the sporadic appearance of elements, since
a service can be started and stopped at any time.
Component-based architectures [GMK02, RvdLKM00, BCL+06] provide an ideal ab-
straction level to meet the requirements for a virtual representation of home automation
devices. However, components’ ports are often defined by an API. This strict definition
may disallow some connection unforeseen at design time, without the help of ad-hoc
connectors.
Using components for SOA [sca, MRRS10, EHL07] is certainly the best approach for

134 Conclusion

our concerns, since the benefits of the first balance out the drawbacks of the second.
Transversally to any approach, model-driven engineering methods and techniques come
with a lot of tools for virtual element manipulations. They seem handy for runtime
management of devices, for the description of software systems, and for variability
management.

All the approaches, tools, and frameworks considered in this survey have been re-
ported in table 9.1. This table synthesizes the strengths and weaknesses of each ap-
proach in relation to the requirements identified.

9.4 Outline of the contribution

Inspired by achievements in electronics this thesis contributes to improving the flexi-
bility of software systems, while maintaining a high level of reliability. The contribution
is threefold.

(1) A new component model, which improves flexibility to enable the connection of
heterogenous components.

(2) Tools from model-driven engineering, to create, edit, simulate and validate the
structure and behavior of component assemblies, prior to their (re-)deployment.

(3) A runtime environment built on top of a service-based architecture, to support
evolutions, adaptations and openness required by the proposed component model.

The implementation of this contribution called EnTiMid is composed of several ele-
ments. Each of them, presented as a layer, addresses a particular concern of the global
problem.

Device Interoperability takes responsibility for the communication with real de-
vices and between their virtual representatives in the Component Model layer. A mix
of drivers (to connect the real to the virtual world), and asynchronous message-based
communications, enables the connection of components previously marked as not com-
patible.

The Component Model layer brings up the necessary structures and methods
to handle the virtual representation of real devices. It provides a unified description
of possible actions and available information, using the paradigm of ports. In this
model, ports can be of two kinds: synchronous (service ports) or asynchronous (mes-
sage ports). This component model helps to provide a detailed view of components,
with precise information for the Model@Runtime layer to work properly. Tools have
been made available to ensure the synchronization of models and implementation codes
of components.

The Model@Runtime & Checkers layer involves necessary tools to ease the
management of the system. Specificities of components’ implementations are invisible

Adequateness of the contribution 135

at this level, thanks to the Component Model layer. Simulations and checks can be
safely performed at this level of abstraction, with no consequences on the running ap-
plication, since the model view is synchronized but independent from the execution.
Model@Runtime & Checkers contribute to enabling management of the system at run-
time, to offering tools for checks and validations, to improving the safety of the solution,
and help in dealing with the variability of the system.

The Wrappers layer takes responsibility for publishing the devices present in the
system, on application level networks. This ability opens our solution to existing and
future protocols. Often too heavy to be embedded in basic devices, this layer makes all
devices available on application level protocols for free.

Service-Oriented Runtime comes to completes the contribution by providing an
execution environment for the new component model. It brings life to theModel@Runtime
by supporting dynamic adaptations and evolutions while running.

9.5 Adequateness of the contribution

The AAL context, the home automation domain description and the state of the art,
led to an extraction of a list of requirements. These requirements have been stressed
as the essential abilities a software system should be able to provide to be used in
this context. The table 9.1 recalls the table presented in chapter 4, in which all existing
approaches were presented, and where their participation with relation to each identified
concern had been reported.
The last line completes this table with EnTiMid, and shows that it fits most of these
requirements.

The Device Interoperability layer, helped by the Component Model, addresses the
interoperability requirement. Openness is ensured by wrappers, for application level
protocols, and by drivers for future manufacturers. Adaptation at runtime and evolu-
tions are made available by the use of Model@Runtime techniques and the OSGi runtime
for supporting the implementation of this contribution. Variability management is sim-
plified by the presence of a model, but tools are still insufficient to properly cope with
this issue. Finally, remote control is possible thanks to 1) the Model@Runtime for
remote adaptations or evolutions, 2) the wrappers for remote application level control.

9.6 Conservativeness

During the state-of-the-art survey, some good properties were identified. The con-
tribution of this thesis is moderate in relation to these properties.

136 Conclusion

Interop. Openness
Dynamic

Adaptation

Static

Evolution

Variability

Management

Safety &

Security

G
en
er
ic

A
pp

ro
ac
he
s

OSGi [All11] + + +
ESB [Cha04] + + +
Darwin [GMK02] + + +
Koala [RvdLKM00] + + +
Fractal [BCL+06] +
SCA [sca] + + +
FraSCAti [MRRS10] + + + + +
iPOJO [EHL07] + + +

D
om

ai
n-
Sp

ec
ifi
c

A
pp

ro
ac
he
s

uMiddle [NT07]
SOPRANO [WSO+10] + +
Gaïa [RHC+02] + + +
Dia Suite [CBC10] + + + +
Habitation [JRS+09] + +
WADL [CDT08] + + +
PervML [MPC06] + + + + +
AutoHome [BDLM11] + + +
WComp [FHL+11] + + +
Niagara [Tri08] + +
EnTiMid + + + +

Table 9.1: Adequateness of the contribution

The Reflexive Model proposed by MDE is still available. The Model@Runtime
layer is responsible for this ability and keeps an explicit and independent model reflect-
ing the architecture living at runtime synchronized. This model allows for the creation
of reasoners, able to perform changes on the model, with no immediate impact on the
running system, until the model reaches conformity.

Externalized coupling is provided by the Model@Runtime by enforcing the elic-
itation of links between components. Moreover, the presence of drivers imposes the
components to be created with no idea about their usage. This externalized coupling
makes it possible for reasoners to dynamically change component connections, and even
components directly. The enforcement of the component independence requirement, to
allow interoperability, also takes part in ensuring the externalization from the compo-
nent implementation.

Hot deployment is natively supported by the OSGi runtime execution environ-
ment used for EnTiMid. Indeed, for reasoners to be able to adapt the system with
new components, or for evolutions to be easily deployed, EnTiMid had to preserve this
property in the final solution.

Immediate benefits 137

Close Isolation enforcement is imposed by the device interoperability layer and
the entire EnTiMid system. Types and instances are handled separately and all in-
stances have independent life cycles since real devices can evolve independently.

Openness was identified as a good property, but also as a key requirement, which
has been addressed in this contribution, and explained in the validation.

9.7 Immediate benefits

9.7.1 Development of components made easier

The tools coming with this contribution aims at supporting the development of
components. The component model forces developers to respect properties such as close
isolation, or externalization of component couplings and makes the maintenance and the
evolutions easier. The use of annotations in the component code and the availability
of a code generator also simplify the everyday work of component developers. The
code generator and the synchronization mechanism bring significant gains in terms
of prevention of errors, time consumption and shorten the time elapsed from a new
requirement to the solution.

9.7.2 Simple creation of applications

Thanks to the component model and modeling tools, the creation of applications
is made very simple. Libraries of components can be imported into editors and com-
ponents are assembled and connected using drag-and-drop interactions. If checkers so
authorize, connections from port to port make it possible to connect any port to any
other, whatever their roles or actions.
Designers of home automation devices are already familiar with this way of connecting
things, since the model is very close to that of the electronic components. The design
of a solution customized to meet a person’s specific needs is thus quite quick and simple
for engineers and technicians.

9.7.3 Sustainability and precision

The adaptation and evolution abilities of EnTiMid improve the sustainability of
deployed solutions. Present by default in the system, they offer the support for the
evolution of both technologies and elderly people’s pathologies, with no need to change
the entire system. This way, a software system created to meet specific needs at a time,
can be changed with a very limited cost, which makes the solution always precise and
sustainable.

9.7.4 Seamless integration of IoT and IoS

The new component model enables the connection of heterogeneous components not
designed to be working together. The heterogeneity can be due to the difference of man-

138 Conclusion

ufacturer, protocol used, or media used, but can also be due to the object they represent.
Several services available through the Internet have been wrapped into components, to
enable the application to access a service such as an on-line calendar, a weather service,
a picture-sharing service and even a famous social networking service. The component
model enables seamless connection of a Google Calendar from the Internet to a light
component for instance. The effect of such a connection could be to switch off the light
when no appointments are specified.

9.8 Limitations identified

9.8.1 Behavioral description

The component model eases the structural description of a software system when
people are very familiar with the description of its behavior. In addition to the com-
ponent model (thus the structural description), it would be helpful to have a second
tool to check and describe the behavior of the system. In this condition, an end user
could be able to change the behavior of the system, without dealing with the structural
description.
If the answer has not been provided yet, it may be because the problem is not simple
once the behavior of the system can be described in several pieces. Indeed, thinking
in a functional way makes people define how the system must behave when the door
opens, or when an alarm is triggered, but with no consideration about the consequences
on its global behavior. Moreover, the structural and the behavioral descriptions have
interactions with each other.
Lastly, as non-experts of the domain, the description people can make of how the sys-
tem must behave never takes errors or failures into account. From a linear description,
erroneous paths have to be guessed and tested [OP97].

9.8.2 Port parameters

Classical component models have been excluded in this thesis, because of the too
strict specification of ports, making it impossible to connect two ports if their APIs are
not aligned. But the problem of alignment has not completely disappeared in our com-
ponent model. It has been moved from the implementation to the virtual representative
of each component. Thus, the alignment of parameters passed through the ports has to
be resolved at model level, before deployment.
Although this problem has not been addressed in this thesis, it has already been identi-
fied and scientists have already proposed some solutions under terms such as component
connectors, which can have complex behaviors (cf Beugnard et al. in [MB05]). Mech-
anisms such as renaming or mappings [CBJ10] of parameters could be implemented to
cope with this issue.

Contribution to the S-Cube NoE 139

9.8.3 Too weak checkers

Our experimentations did not require complex checks on models. Only simple struc-
tural checks, such as cycle detections, were implemented and used. Many checkers had
not been completed since they were related to the business targeted. In the case of
real deployments, they have to be completed to verify that no configuration marked as
failing is asked for deployment.
Used at different steps, the checkers are different and they address various aspects of the
application. Thus, the information, required to be able to perform each check properly,
depends on what has to been checked. Since no complete checker had been implemented,
the information currently available in the model could be too poor for checkers to work.

9.8.4 Variability management

Variability issues have not been completely addressed, since a small set of compo-
nents is sufficient for testing. Also, the number of components in the IDA experimenta-
tion was small enough to be handled manually. In the perspective of real deployments,
the variations of configuration will impose the creation of tools to help in facing this
huge variability.

9.8.5 Improvements for embedded platforms

In the context of the IDA project, the choice has been made to deploy EnTiMid on a
touch screen PC. This PC has high computational power and lots of memory compared
to some more embedded platforms. But the deployment of a touch screen PC may not
be necessary in all cases and some more embedded devices may be sufficient to automate
some tasks. In any case, the runtime of EnTiMid requires that a Java virtual machine
is deployed on the platform first and thus providing enough power for the JVM to run.

9.9 Contribution to the S-Cube NoE

9.9.1 The S-Cube Network of Excellence

Figure 9.1: S-Cube Re-
search Framework

S-Cube 1 is a European Network of Excellence (NoE)
in Software, Services and Systems (S3). This NoE aims
at making European research the leader in the software-
services revolution. By connecting research to industry,
and unifying multidisciplinary researches, S-Cube aims to
develop agile and holistic service engineering methods, and
to specify principles and techniques of service adaptation.
This European NoE has been funded by the European FP7
’Coordination’ Research Programme under the ICT theme.
Along with strong collaboration and mobility opportunities

1. http://www.s-cube-network.eu/

140 Conclusion

beyond European research centers, S-Cube has funded several PhD theses in different
layers of the S-Cube "BigPicture" (fig. 9.1).

The skills of excellence of the INRIA Triskell team in which this theses was con-
ducted, are dedicated to ease, and improve, software development methods, by the
use of components, services, models and validations. Thanks to this team orientation,
Triskell is involved in the S-Cube NoE, which has brought funding for two PhD theses.
The research leading to the results presented in this theses has received credits from the
European Community’s Seventh Framework Programme FP7/2007-2013 under grant
agreement 215483 (S-Cube).

9.9.2 Contribution

The contribution of this thesis is aligned with the Work Package 1.2 : Adaptation
and Monitoring Principles, Techniques and Methodologies for Service-based Systems of
the Joint Research Activity(JRA) 1 : Engineering and Adaptation Methodologies for
Service-based Systems

The general objective of the JRA-1, is to "devise an integrated set of principles, tech-
niques and methodologies for engineering, adapting and monitoring hybrid service-based
applications, while guaranteeing end-to-end quality provision and SLA conformance",
according to the S-Cube description of work 2.
This thesis provides a new component model that: implies new engineering techniques
and methodology, enables the adaptation of hybrid service-based application and offers
means to perform checks and verifications to ensure the quality of services.

More precisely, the contribution of this thesis takes part in the JRA-1.2 work pack-
age, which aims to define novel principles and techniques for cross-layer monitoring and
adaptation of Service-based Applications. If EnTiMid does not address monitoring is-
sues, it actually copes with adaptation requirements.

From the S-Cube perspective, EnTiMid can be considered for handling adaptations
of the infrastructure, or of the composition and coordination layer (see figure 1.1).
Coupled with other layers, it can take part in the cross-layer adaptation mechanism.

2. DoW Amendment 4, December 6th, 2010

Chapter 10

Perspectives

10.1 In research

The contributions of this thesis leave some questions open, and have opened some
doors. Therefore, the perspectives of this work aim at investigating and answering
questions that have not been yet addressed, or go one step beyond into new uses of this
contribution.

10.1.1 IDA, second phase

Conclusions from the experimentation led in the context of the IDA project shaped
a promising future for the use of such tools, in the AAL domain. Even if the maturity
of EnTiMid and the objective of the first phase of the project did not allow testing of
EnTiMid in a real deployment situation, the protagonists (industrialists, carers, social
workers and elderly people) have shown an interest in the provision of customized solu-
tions for each person.
Currently, the second phase if the IDA project is being set up. Hopefully, it will be the
moment for EnTiMid to perform the last checks and to validate both the scalability
and variability management, on real deployment.

10.1.2 End User Programming

End User Programming [KAB+11] relates to the ability for anybody to program
something. For instance, when a user programs the hours of start and stop of the heat-
ing system, he is actually programming. In the context of the IDA project and following
the idea that inhabitants must be able to keep control of things in their homes, end
user programming sounds like a very promising, but yet challenging perspective.

10.1.2.1 Which description language ?

Software developers like to be able to use the keyboard only. A graphical user inter-
face, with drag-and-drop interactions to create assemblies, will probably not meet the

141

142 Perspectives

requirements of this kind of population. For them, a textual language seems to be the
simplest thing.
On the other hand, inhabitants do not all have skills in programming languages, and
especially not elderly people. They would probably express their requirements for the
behavior of the system in another way. The question is which one.

We had a range of description tools at our disposal, from a textual domain-specific
language to a visual language composed of icons and boxes, linked with arrows. A solu-
tion for this problem probably lies somewhere in between these two extreme proposals
and is surely not unique. Indeed, for the same system, an elderly person will probably
be lost in a textual language and an engineer may be frustrated at being unable to
express himself as usual.

The validity of the behavior described is also challenging. End users may not have
a global vision of the system and thus may ask for a behavior that could lead the sys-
tem to failure. Secondly, people naturally express the nominal behavior, without being
concerned about possible deviations of this behavior. To address this problem, tools
have to be proposed to check the validity of the nominal behavior and track and check
any possible variation in the scenario.

The unique and universal language for describing how things have to behave will
probably never exist. Because each user has a different kinship with technologies, sys-
tems should offer several edition tools, out of which the end user selects the handiest
for him.

10.1.2.2 Fuzzy Logic and Learning Algorithms

In the hypothesis that people are able to describe a behavior of a function, how
could they know about the limits of values? In other words, if a user is defining a
behavior for the light, how could he know the minimum and maximum values that the
light sensor can sense ?
The fuzzy logic paradigm [CBBJ08, Men01] proposes to use terms and non-fixed values
in decision algorithms. Indeed, a fixed value is never appropriate because a regulation
value must be modifiable. This paradigm makes it possible to work with terms and
rough values only, because thresholds are computed at runtime. During the execution,
users can act on these thresholds by telling the system about good or bad situations.
Quite close to ideas of artificial intelligence, this approach could be coupled with some
learning mechanisms, to go a bit further and re-simplify description of an application
behavior.

10.1.3 Distribution and Pervasiveness

The distribution of applications brings several interesting facilities, such as load bal-
ancing, or redundancy to cope with failures of system elements. This question has not

In research 143

been properly addressed in this thesis, but may rapidly become a limitation. Moreover,
working with devices brings EnTiMid close to the ideas of pervasive computing. In
this domain, objects’ interactions are controlled by invisible nested software systems.
Invisible for users, these systems have to self-reconfigure to take into account changes
in their environments.

In the perspective of a large-scale deployment, distribution and pervasiveness can
both come out as key requirements for some deployments. In [DDNDM07], Devescovi
et al. propose algorithms for the self-organization of autonomic systems using the Self-
Let approach. According to the presentation web page 1, a SelfLet is a "self-sufficient
piece of software which is situated in some kind of logical or physical network, where
it can interact and communicate with other SelfLets". This definition is very close to
the definition of a smart device and SelfLets could be included in devices and device-
controllers, such as firmware, to ease their integration.
This approach could foster the distribution of EnTiMid on several nodes, help to pre-
vent system failures, balance the load of resource-consuming components, or ease the
connection of smart devices.

10.1.4 Architecture Synthesis

The architecture synthesis goal is to assist in the creation of an application. Feature
diagrams and automatic derivations into products, templates and wizards guiding the
developer through the steps of product design, are two examples of tools enabling the
synthesis of architectures.

10.1.4.1 Dynamic Software Product Lines for the management of variabil-
ity

Not really addressed in the contribution, nor experimented in the validation, the
management of variability in the domain of AAL and Home Automation is still a real
problem. Luckily, the omnipresence of the model in all steps of the application-making
process enables the use of well-known modeling tools to help in handling variability.

As proposed in [Mor10], Aspect-Oriented Programming, coupled with Software
Product Lines can be used to address this problem. Product Lines, a well-known vari-
ability management tool for supply chains, has been transposed into the software domain
under the name of Software Product Line (SPL). Large scale productions such as that
of cars handles the variability of customers’ requests using these product lines.
A product line consists of a base product that can be augmented with options selected
by the customer. Software systems with a huge number of variable elements, such as
component-based applications, can be defined the in the same way. The base function-
alities of the software are described in the base product and specific options are plugged
in according to the customer selection. The problem is that these tools have been set

1. http://selflet.sourceforge.net/

144 Perspectives

up to ease the one-shot creation of a product.

Dynamically-adaptive software systems are able to dynamically evolve after their
creation, and SPLs are no longer sufficient to help in handling the description of things
that can be changed at runtime. To cope with this issue, Dynamic Software Product
Line (DSPL) have been proposed. They enable the description of variation points dur-
ing the execution of an application and make it possible to identify the exchangeable
elements. The work carried out by Carlos Cetina et al. in this domain, presented in
[CGFP09], is very close to what we want to achieve and reflects our future work.

10.1.4.2 How can the behavior be descibed?

In EnTiMid, mapping components to leaf features in the DSPL makes it very sim-
ple to describe the desired configuration of the software at a high level of abstraction.
Nevertheless, components in EnTiMid are developed with a strong effort to respect the
close entity principle and they do not know, or depend on each other. As a consequence,
the DSPL can only support the description of the number of components, their types
and the different options in the case of reconfiguration; in short, the structure of the
assembly. Nowhere can the interactions between components be specified.

While still in its infancy, we proposed in [INPJ09] an approach combining DSPL
and Business Process Modeling. It enables the description of both architecture and
behavior, by a combination of two modeling tools. Once coupled, these two models
describe the structure of the application and its required behavior, which makes it pos-
sible to generate the entire system with connected components. As work in progress,
this approach still has to be experimented in more depth.
Cassou et al. recently presented another approach to this problem of describing in-
teractions. In [CBCL11], they introduce a "behavioral contract". These contracts are
aimed at offering means to express the set of allowed interactions between components
and describe both data and control-flow constraints. The integration of this idea with
EnTiMid may be studied in future work.

10.1.5 Kevoree

EnTiMid, as an achievement of this thesis, has been highlighted as an interesting
approach to address some identical issues in other domains.

For the principles of this contribution to be used in other contexts, EnTiMid has re-
cently been re-designed to become the customization of a more generic tool, specialized
for home automation and AAL. Its name is Kevoree 2. The core mechanisms of adap-
tation, evolution, etc. have been moved into Kevoree in order to make them available

2. http://kevoree.org

In industry 145

for use cases other than home automation.

Whereas EnTiMid is responsible for providing a set of services and components for
Home Automation and AAL, Kevoree offers a set of tools for the component model.
These include a framework to ease the implementation of components, a graphical edi-
tor to create component assemblies and a specialized runtime.
The development of Kevoree is actually part of the work in progress in the context of
another thesis, which explores different improvements. For instance, questions about
distribution and meanings of links between components.

Kermeta is a DSL optimized for metamodeling engineering. Developed in the
TRISKELL team, it provides an integrated environment for Model-Driven engineering
activities. Initially developed as a set of plugins for Eclipse, a work in progress is trying
to make it run using the Kevoree tools.

Arduino is an open-source electronics prototyping platform based on flexible, easy-
to-use hardware and software. It is intended for artists, designers, hobbyists and any-
one interested in creating interactive objects or environments, according to the man-
ufacturer’s web page. Recent developments shaped the idea of using Kevoree and the
component model to ease sketches and the deployment of applications on Arduino plat-
forms.

10.1.6 Open Control/Command Operating System

The component model of this contribution has been designed to allow for the connec-
tion of heterogeneous components. Inspired by electronics, the elements to be modeled
and connected just need to be expressed in terms of components with inputs and out-
puts. Since almost all automated systems can be expressed this way, almost all systems
can be modeled using the component model proposed in this contribution.
The independence of the model in relation to real devices-specificities enables the de-
scription of any application/system. Thus, EnTiMid could take on the role of a universal
control/command operating system, since the only difficult point is to develop the driver
in charge of the interface between the real world and the component level. If a driver
for an application can be created, EnTiMid can help in controlling it.

10.2 In industry

The contribution of this thesis interests several audiences. The general public is
curious to know about how computer science can help in improving elderly people’s
quality of life at home, since EnTiMid was initially designed for the Ambient Assisted
Living context. Everyone has or has had a family member who could have been helped
by such a proposal. Industrialists are more interested in the good properties of the
contribution. Since device manufacturers are familiar with electronic components, they
easily understand how this component model works.

146 Perspectives

Figure 10.1: Science festival presentation

Starting from the validation scenario, in just 3 years a demonstration of EnTiMid has
been set up and presented in more than 10 public and scientific events. This demon-
stration stressed the adaptation aspect of the contribution in an AAL context.

10.2.1 Public events

Public events are an opportunity for the general public to discover what issues sci-
entists are trying to resolve and how they do it. On the other hand, these meetings
are also an opportunity for scientists to collect feedback on their work, from uninitiated
persons. Uninitiated, in the sense that they are thinking about the problem for the first
time. The questions asked are often very interesting, prompting you to step back from
the details and to consider the proposal from a more global view.

The most important presentation was probably the science festival held in 2009 in
Rennes, where EnTiMid had been selected to represent the INRIA laboratory. The
science festival, Fêtes de la Science 3 in French, is a national event lasting for 3 days.
From Friday to Sunday inclusive, scientists present their everyday work, explain the
problems solved, or the phenomenon involved in some experiments.

During the first day, the festival admits only primary and middle school children.

3. See the videos (in French) at http://videos.rennes.inria.fr/fete-sciences-2009/index.html

In industry 147

Visits are organized by groups and presenters have to explain their work to people aged
from 7 to 15 years. This day is the most difficult day of the all festival. Not because the
questions are complicated to answer, but because the explanation must be understood
by everyone. This first day did not bring a lot of useful comments, or in any case, less
than the two other days.

On Saturday and Sunday, the festival is open, for free, to families and anybody in-
terested in sciences. These two days were a hard test for EnTiMid and full of interesting
discussions with people. Indeed, EnTiMid had to run from 8am to 8pm without failure,
disregarding touch-screen stress due to children’s fingers, and in spite of the unpredicted
use cases requested live by visitors.
It was the place for EnTiMid to become enriched by new ideas, remarks, or people’s
experiences in facing elderly people’s dependency problems. For the entire duration of
the festival, no once did somebody say that EnTiMid was useless, meaningless, or that
the use case was not realistic. "It is not always that simple in real life" is the only
remark we got.

Open days of the University of Rennes 1, or the opening celebration of the ESIR,
the newly created engineering school of the University of Rennes 1, have also been two
moments for exchanges with a large audience. Concerned by the studies, visitors’ ques-
tions during these two events were more precise and more focused on what had been
realized and how.
These demonstrations were sources of very interesting ideas to improve EnTiMid.

Public presentations are very good opportunities to sense how the contribution ex-
posed is perceived by anonymous people. None of them had a negative vision of the
work, some had doubts and others asked about how to buy it. In my opinion it validates
the utility of this contribution as perceived by people.

EnTiMid has also been used as support for a demonstration called "Leveraging
Models From Design-time to Runtime. A Live Demo" described in[MNBJ09].

10.2.2 Industrial perspectives

The success of EnTiMid has generated some industrial contacts. Several companies
were interested in the abilities of this software to adapt and evolve at runtime. Most of
them, close to the home automation domain, saw in EnTiMid a great opportunity to
enrich their products. But EnTiMid was just a proof of concept, a prototype of research
not ready to be deployed in the industry. This is partly the reason why EnTiMid was
not selected to be deployed in homes, in the IDA project.

Aware of this problem, a project of developing EnTiMid, to make it ready for use in
the industry had been submitted to the Regional Council of Brittany and accepted. This
project funded the work of an engineer for one year, whose task was twofold. Firstly,

148 Perspectives

to redevelop some parts of the contribution for it to be more stable, and secondly, to
support the promotion of EnTiMid in the industry. The development methods of En-
TiMid have been clarified and a second demonstration has been set up to focus more
on the core functionalities and less on the home automation/AAL aspect.

In addition, a project of company creation is currently in progress and should end
with the creation of a structure in charge of the promotion and support of EnTiMid in
the next few months. It was also a part of the development engineer’s work to support
the creation of this spin-off.

Part V

Appendix

149

Appendix A

ITI Project

The ITI(Intuitive Touch-screen Interface)
project was a collaborative project involving the
INRIA, and the LOUSTIC laboratory, in the
global context of the IDA project. The LOUS-
TIC 1 is a laboratory of observation of the use of Information and Communication
Technologies(ICT), which measures people reactions with relation to a given technol-
ogy. Tests of artefacts are realized by volunteers, belonging to a pre-defined part of
the population. According to the product under test, several measurements can be
performed such as time spent to find an information, eye-tracking, reactivity of the
product, etc.

EnTiMid is designed to allow dynamic and unpredicted changes in terms of com-
ponents or services. Any end-user oriented control interface for an EnTiMid running
system have to be able to deal with these changes at runtime. In this context, the cre-
ation of a universal Graphical User Interface(GUI) sounds like a complicated task. To
cope with this problem, the idea of an automatic generation of Graphical User Interface
(GUI) has been proposed. From this perspective, devices have been imagined able to
provide an abstract description of the graphical controls they require.
In addition, GUI can be constraint by users’ preferences, or needs in terms of font size for
a an elderly person, or a nurse. The idea is to adapt the graphical user interface during
the execution. Some work, presented in[BBB+11], has already been engaged in this way.

If the automatic generation of GUI appeared as a really interesting field of research,
the amount of work to achieve a first proof of concept appeared to be huge. Therefore,
it has been decided to first sketch an application GUI, adapted to elderly people, before
actually performing the generative work. The sketch of this GUI, and the measurement
of its usability by elderly people was the goal of the ITI project. It also validates that
the GUI of this contribution is acceptable, and accessible, for elderly people, which are
part of requirements listed in section 2.3.

1. http://www.loustic.net/

151

152 ITI Project

The results presented in this chapter have been extracted from the internship re-
port [CC09] of E. Colas and N. Courtais, who actually realised the tests.

A.1 Presentation and Goals of the project

In the AAL context, people must be able to interact with the assisting system. Since
a great part of the end-users in this context are elderly people, the control interface of
any solution built with EnTiMid must be adapted. The adaptation of an interface to the
elderly population can concern some ergonomic aspects, but questions about graphisms
were treated as a secondary goal. The main concern was about the navigation method
to be implemented. In the domain of home automation control interface, two methods
of navigation can be applied. The first consists in selecting the location first, then the
function to be considered. On the other hand, the function is selected first and the zone
concerned after. Thus, the leading question of the project was: Is it more convenient
for people to navigate by Zone then Function, or by Function then Zone ?
To answer this question, and design a relevant GUI sketch, the project had been split
into three phases.

A.1.1 Phase 1

This phase did consist in designing the graphical interface, according to well know
ergonomics rules [BS93]. In this phase, attention was paid to the size of each element
(buttons, text, labels, etc.), for them to be easily readable, and for the information
not to be lost in useless decorative elements. At the end of this phase, two graphical
interfaces were released. The first was implementing the Function/Zone navigation
mode; the second, the Zone/Function one.
Figure A.1 presents the graphical user interfaces created in this phase. Three screenshot
of the Function/Zone proposition are visible on the first line of the figure, while the
bottom left screenshot displays one of the three Zone/Function screen. All the widgets
used are shown on the bottom right part of the figure.

A.1.2 Phase 2

Phase 2 aimed at presenting the interfaces to elderly people. Measures have been
realized on their first reactions with relation to the navigation mode they preferred,
and on their ability to use the controls and retrieve information from the system. The
second phase improved the graphical interfaces in terms of controls, and information
presentation, for these elements to be of minimum influence on the answers to the
navigation question.
The main improvements concerned the widgets themselves. The light widget has been
reduced to a single light bulb, which aspect clearly indicates the state of the light, and a
touch of the bulb toggle the state of the light. This improvement is visible at the bottom

Presentation and Goals of the project 153

! ! !

!

!

! !! !!

Figure A.1: Results of the first phase

of figure A.2. No change has been made on shutter widgets, but the temperature widget
was simplified, by the removal of the plus and minus buttons, since elderly people just
pressed on the thermometer.
The figure only shows Function/Zone interfaces, but the modifications on widgets have
also been realized on the Zone/Function interface the same way.

!

! !

!!

Figure A.2: Improved interfaces, result of the second phase

154 ITI Project

A.1.3 Phase 3

This last phase resumed the tests with elderly people, using the improved user
interfaces.

A.2 Environment of tests

A.2.1 Population under test

Altogether, 20 persons from 72 to 97 years old, with a median age of 82 years old,
participated to the test within four groups. The tests were realized in two different care
centres for elderly people, during their activity time.

A.2.2 Equipments

– The main equipment was a MSI Top "all-in-one" touch-screen PC, on which the
two interfaces had been deployed.

– For measurement concerns, the "CamStudio" software was installed on the PC to
record the actions of the user on the GUI, and a camera filmed the activity of the
person.

– A slideshow, made of three slides, was used to present the touch-screen pc, and
how to use it.

– Several questionnaires were set up to collect different information, and guide the
tests: personal information(age, sex, school level, etc.), skills and fears with rela-
tion to computers, seven scenarios to measure interfaces, and a last questionnaire
about how they felt during the test, and how they perceived EnTiMid and its
interfaces. These questionnaires, in French, are available in the report [CC09].

A.3 Protocol of test

1. First of all, people are asked to answer the first questionnaire about personal
information, and the one about their skills and fears.

2. Once the first questionnaires is answered, the slideshow is played in interaction
with the elderly person. Guided by the test driver, the person has to move forward
the slides, by pressing a button on the touch-screen, in order for the person to
familiarize with this technology.

3. The next step is a short training on the user interface under test. In a couple
of minutes, the test driver presents the different controls, how to use them, what
they can be used for, and where to find important information such as the current
location.

4. The real test phase of the protocol is then engaged. The person is asked to realize
a sequence of seven actions. These actions ask whether to act on the interface, or
to get an information from the system.

Threats to validity 155

5. The questionnaire about their feelings, and the use of these interfaces, is filled at
the end of each test.

A.4 Threats to validity

The study had been led with only 20 elderly people. It is not sufficient to validate
the GUI for a large-scale deployment, but it is for a preliminary work.
Moreover, the part of the population targeted by the IDA project is considered to be
able to stay at home with a little help. These persons are thus living at home, and not
in a care centre for elderly people. The conditions in which this study was led can thus
be considered as too strict with relation to the real part of population targeted by the
project.

A.5 Results and conclusion

The table A.1 presents the results of the tests. The time values displayed are all in
seconds, and represent the average values of execution of each task. The total execution
time column reports the average time necessary for people to complete the seven tasks
of questionnaire. The other columns are the average time of execution, used to answer
the particular questions of the questionnaire for each widget.

Total
Execution
Time(s)

Heating
Widget

Shutter
Widget

Light
Widget

Function/Zone Phase 1 620,83 96 35,3 12,3
Phase 2 238,75 14,25 16,75 6,25

Zone/Function Phase 1 697 74 44,5 8
Phase 2 429,6 37,4 36,8 8

Table A.1: Efficiency of use with relation to interfaces types

Significant improvement from Phase 1 to Phase 2
The total average execution time has been reduced of 62% in the Function/Zone mode,
and 38% in the other mode thanks to the widgets improvements.

Function/Zone better than Zone/Function ?
The answer is YES. The Function/Zone navigation mode is more efficient than the
Zone/Function mode. Whatever the phase of the project, people have always been
faster using the Function/Zone mode, according to the data collected. This can be due
to the radical change that occurs when passing from a function to another, which is not
the case when changing of zone. Indeed, in each zone the widgets are the same, and
only a label changes. All the widgets are changing from a function to another, making
it easier to understand what is the current function, and then, identify where to activate

156 ITI Project

this function.

I would like to highlight the huge difference in execution time, between the Phase
1 - Zone/Function interface, and the Phase 2 - Function/Zone interface. It is a gain of
458,25 seconds, thus 7 minutes 38 seconds.
As a conclusion, the ITI project helped in validating three things. (1) It is more efficient
to use a Function/Zone navigation than a Zone/Function. (2) The widgets are now
ready. (3) The sketched application GUI can be used by elderly people on a touch-
screen device, which answers the accessibility and usability requirement.

Results and conclusion 157

158 ITI Project

Acronyms

AAL Ambient Assisted Living. 18, 21, 27, 28, 104, 109, 110, 133, 135, 152
ADL Architecture Description Language. 51
AST Abstract Syntax Tree. 83, 84

DLNA Digital Living Network Alliance. 96
DPWS Device Profile for Web Services. 34, 96, 112, 120, 123
DSL Domain-Specific Language. 49, 51, 52, 58, 83, 145
DSPL Dynamic Software Product Line. 144

ESB Enterprise Service Bus. 42

GUI Graphical User Interface. 151, 154–156

HVAC Heating Ventilation Air-Conditioning. 20

ICT Information and Communication Technology. 27–29, 109, 110
IDA Innovation Domicile Autonomie. 109, 139, 141
IoS Internet Of Services. 37
IoT Internet Of Things. 38

JBI Java Business Integration. 42

MDE Model Driven Engineering. 49, 52, 57, 84, 136
MOM Message-Oriented Middleware. 71

PaaS Platform as a Service. 38
PLC Power Line Communication. 20, 31–33, 113

RFID Radio Frequency IDentification. 114
RPC Remote Procedure Call. 46

SaaS Software as a Service. 38
SCA Service Component Architecture. 22, 46, 47

159

160 Acronyms

SIP Session Initiation Protocol. 35

SOA Service Oriented Application / Architecture. 46, 48, 57, 59

SPL Software Product Line. 143, 144

UDDI Universal Description Discovery and Integration. 39, 40

UPnP Universal Plug & Play. 34, 96, 112, 120, 123

WSDL WebService Description Language. 40

Bibliography

[ADN+10] Françoise André, Erwan Daubert, Grégory Nain, Brice Morin, and Olivier
Barais. F4Plan: An Approach to build Efficient Adaptation Plans. In
7th International ICST Conference on Mobile and Ubiquitous Systems
(MobiQuitous’10), Sydney, Australia, December 2010. short paper.

[All05] HomePlug Powerline Alliance. Homeplug av white paper. White paper,
HomePlug Alliance, 2005.

[All11] The OSGi Alliance. Osgi service platform core specification, release 4.3,
2011. http://www.osgi.org/Specifications/HomePage Sept. 2011.

[Arn] Terrell E. Arnold. Terrorism and the fear market. http://www.rense.
com/general49/fear.htm Sept. 2011.

[ASS10] ASSAD. Les travaux ida - phase 1. Technical report, IDA,
Juin 2010. http://www.ida-autonomie.fr/file/ida-rapport_juin%
202010.pdf Sept. 2011.

[BBB+11] Arnaud Blouin, Morin Brice, Olivier Beaudoux, Grégory Nain, Patrick
Albers, and Jean-Marc Jézéquel. Combining Aspect-Oriented Modeling
with Property-Based Reasoning to Improve User Interface Adaptation.
In ACM SIGCHI Symposium on Engineering Interactive Computing Sys-
tems, pages 85–94, Pise, Italie, June 2011.

[BCJ+10] Benjamin Bertran, Charles Consel, Wilfried Jouve, Hongyu Guan, and
Patrice Kadionik. SIP as a Universal Communication Bus: A Method-
ology and an Experimental Study. In International Conference on Com-
munications (ICC’10), pages 1 –5, Cape Town South Africa, 05 2010.

[BCL+06] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The fractal component model and its support in
java: Experiences with auto-adaptive and reconfigurable systems. Softw.
Pract. Exper., 36:1257–1284, September 2006.

[BCU+04] Gordon Blair, Geoff Coulson, Jo Ueyama, Kevin Lee, and Ackbar Joolia.
Opencom v2: A component model for building systems software. In
IASTED Software Engineering and Applications, USA, 2004.

[BDLM11] Johann Bourcier, Ada Diaconescu, Philippe Lalanda, and Julie A. Mc-
Cann. Autohome: An autonomic management framework for pervasive

161

http://www.osgi.org/Specifications/HomePage
http://www.rense.com/general49/fear.htm
http://www.rense.com/general49/fear.htm
http://www.ida-autonomie.fr/file/ida-rapport_juin%202010.pdf
http://www.ida-autonomie.fr/file/ida-rapport_juin%202010.pdf

162 BIBLIOGRAPHY

home applications. ACM Trans. Auton. Adapt. Syst., 6:8:1–8:10, Febru-
ary 2011.

[Bos98] Xavier Bosch. barcelona investigating the reasons for spain’s falling birth
rate. The Lancet, 352(9131):887, 9 1998.

[BPKP10] Pyrros Bratskas, Nearchos Paspallis, Konstantinos Kakousis, and
George A. Papadopoulos. Applying utility functions to adaptation plan-
ning for home automation applications. In Information Systems Devel-
opment, pages 529–537. Springer US, 2010.

[Bra04] Gilad Bracha. Pluggable type system. In OOPSLA04 Workshop on Re-
vival of Dynamic Languages, 2004.

[BRLM09] Yérom-David Bromberg, Laurent Réveillère, Julia Lawall, and Gilles
Muller. Automatic generation of network protocol gateways. In Jean Ba-
con and Brian Cooper, editors, Middleware 2009, volume 5896 of Lecture
Notes in Computer Science, pages 21–41. Springer Berlin / Heidelberg,
2009.

[BS93] J.M. Christian Bastien and Dominique L. Scapin. Ergonomic criteria for
the evaluation of human-computer interfaces. Technical Report RT-0156,
INRIA, June 1993.

[CBBJ08] Franck Chauvel, Olivier Barais, Isabelle Borne, and Jean-Marc Jezequel.
Composition of qualitative adaptation policies. In Proceedings of the
2008 23rd IEEE/ACM International Conference on Automated Software
Engineering, ASE ’08, pages 455–458, Washington, DC, USA, 2008. IEEE
Computer Society.

[CBC10] Damien Cassou, Julien Bruneau, and Charles Consel. A Tool Suite to
Prototype Pervasive Computing Applications (Demo). In Proceedings of
the 8th IEEE Conference on Pervasive Computing and Communications
(PERCOM’10), pages 1–3, Mannheim Germany, 2010. IEEE Computer
Society Press.

[CBCL11] Damien Cassou, Emilie Balland, Charles Consel, and Julia Lawall. Lever-
aging Software Architectures to Guide and Verify the Development of
Sense/Compute/Control Applications. In Proceedings of the 33rd Inter-
national Conference on Software Engineering (ICSE’11), pages 431–440,
Honolulu, United States, 2011. ACM.

[CBJ10] Mickael Clavreul, Olivier Barais, and Jean-Marc Jézéquel. Integrat-
ing Legacy Systems with MDE. In ICSE’10: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering and ICSE
Workshops, volume 2, pages 69–78, Cape Town, Afrique Du Sud, 2010.

[CC09] Elsa COLAS and Nicolas COURTAIS. Intervention pour optimiser
l’ergonomie d’une interface tactile intuitive facilitant le maintien à domi-
cile des personnes handicapées et les personnes âgées dépendantes. Tech-
nical report, Université Rennes 2, LOUSTIC, Juillet 2009.

BIBLIOGRAPHY 163

[CCQS05] Paolo Ciccarese, Ezio Caffi, Silvana Quaglini, and Mario Stefanelli. Archi-
tectures and tools for innovative health information systems: The guide
project. International Journal of Medical Informatics, 74(7-8):553 – 562,
2005. MedInfo 2004.

[CCSV07] Ivica Crnkovic, Michel Chaudron, Séverine Sentilles, and Aneta Vulgar-
akis. A classification framework for component models. In Proceedings
of the 7th Conference on Software Engineering and Practice in Sweden,
October 2007.

[CDT08] Humberto Cervantes, Didier Donsez, and Lionel Touseau. An architec-
ture description language for dynamic sensor-based applications. In Con-
sumer Communications and Networking Conference, 2008. CCNC 2008.
5th IEEE, 2008.

[CGFP09] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. Autonomic
computing through reuse of variability models at runtime: The case of
smart homes. Computer, 42:37–43, 2009.

[CH04] Humberto Cervantes and Richard S. Hall. Autonomous adaptation to
dynamic availability using a service-oriented component model. In Pro-
ceedings of the 26th International Conference on Software Engineering,
ICSE ’04, pages 614–623, Washington, DC, USA, 2004. IEEE Computer
Society.

[Cha04] David A. Chappell. Enterprise service bus, 2004.

[Com] European Commission. Fp7 tomorrow’s answers start today. http://ec.
europa.eu/research/fp7/pdf/fp7-factsheets_en.pdf Sept. 2011.

[CSMP07] Carlos Cetina, Estefania Serral, Javier Munoz, and Vicente Pelechano.
Tool support for model driven development of pervasive systems. In Pro-
ceedings of the Fourth International Workshop on Model-Based Method-
ologies for Pervasive and Embedded Software, MOMPES ’07, pages 33–
44, Washington, DC, USA, 2007. IEEE Computer Society.

[DDNDM07] Davide Devescovi, Elisabetta Di Nitto, Daniel Dubois, and Raffaela Mi-
randola. Self-organization algorithms for autonomic systems in the selflet
approach. In Proceedings of the 1st international conference on Auto-
nomic computing and communication systems, Autonomics ’07, pages
26:1–26:10, ICST, Brussels, Belgium, Belgium, 2007. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications En-
gineering).

[DFD+09] John Domingue, Dieter Fensel, John Davies, Rafael González-Cabero,
and Carlos Pedrinaci. Towards the Future Internet - A European Research
Perspective, chapter The Service Web: a Web of Billions of Services, pages
203–216. IoS Press, 2009.

[DMC09] Zoé Drey, Julien Mercadal, and Charles Consel. A Taxonomy-Driven Ap-
proach to Visually Prototyping Pervasive Computing Applications. In 1st

http://ec.europa.eu/research/fp7/pdf/fp7-factsheets_en.pdf
http://ec.europa.eu/research/fp7/pdf/fp7-factsheets_en.pdf

164 BIBLIOGRAPHY

IFIP Working Conference on Domain-Specific Languages, volume 5658,
pages 78–99, Oxford United Kingdom, 2009.

[DNGM+08] Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou,
and Klaus Pohl. A journey to highly dynamic, self-adaptive service-based
applications. Automated Software Engineering, 15:313–341, 2008.

[EHL07] Clement Escoffier, Richard S. Hall, and Philippe Lalanda. iPOJO: an
extensible service-oriented component framework. Services Computing,
IEEE International Conference on, 0:474–481, 2007.

[Fai06] Anthony Faiola. When escape seems just a mouse-click away - stress-
driven addiction to online games spikes in s. korea. Washington Post
Foreign Service, May 2006.

[FHL+11] Nicolas Ferry, Vincent Hourdin, Stéphane Lavirotte, Gaëtan Rey, Michel
Riveill, and Jean-Yves Tigli. Ubiquitous Computing, chapter 8 - WComp,
a Middleware for Ubiquitous Computing, pages 151–176. InTech, Febru-
ary 2011.

[Fie00] Roy Thomas Fielding. Architectural styles and the design of network-
based software architectures. PhD thesis, University Of California, Irvine,
2000. AAI9980887.

[GMK02] Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-organising software
architectures for distributed systems. In Proceedings of the first workshop
on Self-healing systems, WOSS ’02, pages 33–38, New York, NY, USA,
2002. ACM.

[INPJ09] Paul Istoan, Grégory Nain, Gilles Perrouin, and Jean-Marc Jézéquel. Dy-
namic software product lines for service-based systems. In 9th IEEE Inter-
national Conference on Computer and Information Technology, Xiamen,
CHINA, October 2009.

[JMS05] François Jammes, Antoine Mensch, and Harm Smit. Service-oriented de-
vice communications using the devices profile for web services. In MPAC
’05: Proceedings of the 3rd international workshop on Middleware for
pervasive and ad-hoc computing, pages 1–8, New York, NY, USA, 2005.
ACM.

[joi] Ambient assisted living joint programme. http://www.aal-europe.eu/
about-us Nov. 2011.

[JRS+09] Manuel Jimenez, Francisca Rosique, Pedro Sanchez, Barbara Alvarez,
and Andres Iborra. Habitation: A domain-specific language for home
automation. IEEE Software, 26:30–38, 2009.

[KAB+11] Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Mar-
garet Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry
Lieberman, Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary
Shaw, and Susan Wiedenbeck. The state of the art in end-user software
engineering. ACM Comput. Surv., 43:21:1–21:44, April 2011.

http://www.aal-europe.eu/about-us
http://www.aal-europe.eu/about-us

BIBLIOGRAPHY 165

[LLC07] Marc Léger, Thomas Ledoux, and Thierry Coupaye. Reliable dynamic
reconfigurations in the fractal component model. In ARM ’07: Proc of
the 6th international workshop on Adaptive and reflective middleware,
pages 1–6, Newport Beach, CA, 2007. ACM.

[MAO+09] Nagy Michal, Katasonov Artem, Khriyenko Oleksiy, Nikitin Sergiy, Szyd-
lowski Michal, and Terziyan Vagan. Automation Control - Theory and
Practice, chapter Challenges of Middleware for the Internet of Things.
InTech, December 2009.

[MB05] Selma Matougui and Antoine Beugnard. How to implement software con-
nectors? a reusable, abstract and adaptable connector. In Lea Kutvonen
and Nancy Alonistioti, editors, Distributed Applications and Interopera-
ble Systems, volume 3543 of Lecture Notes in Computer Science, pages
1065–1069. Springer Berlin / Heidelberg, 2005.

[MBNJ09] Brice Morin, Olivier Barais, Gregory Nain, and Jean-Marc Jezequel. Tam-
ing dynamically adaptive systems using models and aspects. In Proceed-
ings of the 31st International Conference on Software Engineering, ICSE
’09, pages 122–132, Washington, DC, USA, 2009. IEEE Computer Soci-
ety.

[Men01] Jerry M Mendel. Uncertain Rule-Based Fuzzy Logic Systems: Introduc-
tion and New Directions, volume 2. Prentice-Hall, 2001.

[MFB+08] Brice Morin, Franck Fleurey, Nelly Bencomo, Jean-Marc Jézéquel, Arnor
Solberg, Vegard Dehlen, and Gordon Blair. An aspect-oriented and
model-driven approach for managing dynamic variability. In In Pro-
ceedings of ACM/IEEE 11th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 08), Toulouse, France,
October 2008.

[MFJ05] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving
executability into object-oriented meta-languages. In S. Kent L. Briand,
editor, Proceedings of MODELS/UML’2005, volume 3713 of LNCS, pages
264–278, Montego Bay, Jamaica, October 2005. Springer.

[MNBJ09] Brice Morin, Grégory Nain, Olivier Barais, and Jean-Marc Jézéquel.
Leveraging Models From Design-time to Runtime. A Live Demo. In 4th
International Workshop on Models@Run.Time (at MODELS’09), Denver,
Colorado, USA, Oct 2009.

[Mor10] Brice Morin. Leveraging Models from Design-time to Runtime to Support
Dynamic Variability. PhD thesis, Université Rennes 1, Septembre 2010.

[MP06] Javier Muñoz and Vicente Pelechano. Applying software factories to per-
vasive systems: A platform specific framework. In 8th International Con-
ference on Enterprise Information Systems (ICEIS 2006), May 2006.

[MPC06] Javier Muñoz, Vicente Pelechano, and Carlos Cetina. Implementing a
pervasive meetings room: A model driven approach. In International

166 BIBLIOGRAPHY

Workshop on Ubiquitous Computing (IWUC 2006), Cyprus, pages 13–
20, May 2006.

[MRRS10] Rémi Mélisson, Daniel Romero, Romain Rouvoy, and Lionel Seinturier.
Supporting Pervasive and Social Communications with FraSCAti. In 3rd
Workshop on Context-aware Adaptation Mechanisms for Pervasive and
Ubiquitous Services (DisCoTec’10), Amsterdam, Pays-Bas, June 2010.

[MRRS11] Rémi Mélisson, Daniel Romero, Romain Rouvoy, and Lionel Seinturier.
An SCA-based approach for Social and Pervasive Communications in
Home Environments. Scientific Annals of Computer Science, XXI:151–
173, 2011.

[MSCP06] Javier Muñoz, Estefania Serral, Carlos Cetina, and Vicente Pelechano.
Applying a model-driven method to the development of a pervasive meet-
ing room. ERCIM News, (65):44–45, April 2006.

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and compar-
ison framework for software architecture description languages. IEEE
Transactions on Software Engineering, 26(1):70–93, January 2000.

[NBFJ09] Grégory Nain, Olivier Barais, Régis Fleurquin, and Jean-Marc Jézéquel.
Entimid : un middleware aux services de la maison. In 3ème Conférence
Francophone sur les Architectures Logicielles (CAL’O9), Nancy, France,
March 2009.

[NDBJ08] Grégory Nain, Erwan Daubert, Olivier Barais, and Jean-Marc Jézéquel.
Using mde to build a schizophrenic middleware for home/building au-
tomation. In Proceedings of the 1st European Conference on Towards a
Service-Based Internet, ServiceWave ’08, pages 49–61, Berlin, Heidelberg,
2008. Springer-Verlag.

[NFM+10] Grégory Nain, François Fouquet, Brice Morin, Olivier Barais, and Jean-
Marc Jézéquel. Integrating IoT and IoS with a component-based ap-
proach. In Procedings of the 36th EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications (SEAA 2010), Lille, France,
2010.

[NT07] Jin Nakazawa and Hideyuki Tokuda. A middleware framework for sharing
sensor nodes among smart spaces. In Fourth International Conference on
Networked Sensing Systems (INSS ’07), pages 171 –178, june 2007.

[OP97] A. Jefferson Offutt and Jie Pan. Automatically detecting equivalent mu-
tants and infeasible paths. Software Testing, Verification and Reliability,
7(3):165–192, 1997.

[otEU] Official Journal of the European Union. Decision n. 743/2008/ec of the
european parliament and of the council. ftp://ftp.cordis.europa.eu/
pub/fp7/art169/docs/aal.pdf Sept. 2011.

[PACJ+08] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins,
and Michael D. Ernst. Practical pluggable types for Java. In Proceedings

ftp://ftp.cordis.europa.eu/pub/fp7/art169/docs/aal.pdf
ftp://ftp.cordis.europa.eu/pub/fp7/art169/docs/aal.pdf

BIBLIOGRAPHY 167

of the 2008 International Symposium on Software Testing and Analysis
(ISSTA’08), pages 201–212, Seattle, WA, USA, July 22–24, 2008.

[Pap03] Mike P. Papazoglou. Service-oriented computing: Concepts, characteris-
tics and directions. In Proceedings of the Fourth International Conference
on Web Information Systems Engineering, Roma, Italy, WISE ’03, pages
3–13, Washington, DC, USA, December 2003. IEEE Computer Society.

[RCAM+05] Anand Ranganathan, Shiva Chetan, Jalal Al-Muhtadi, Roy H. Campbell,
and M. Dennis Mickunas. Olympus: A high-level programming model for
pervasive computing environments. IEEE International Conference on
Pervasive Computing and Communications (PerCom’05), 0:7–16, 2005.

[RHC+02] Manuel Román, Christopher Hess, Renato Cerqueira, Roy H. Campbell,
and Klara Nahrstedt. Gaia: A middleware infrastructure to enable active
spaces. IEEE Pervasive Computing, 1:74–83, 2002.

[RHT+10] Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel
Nzekwa, Romain Rouvoy, and Frank Eliassen. Restful integration of
heterogeneous devices in pervasive environments. In Distributed Applica-
tions and Interoperable Systems (DAIS’10), volume 6115 of Lecture Notes
in Computer Science, pages 1–14. Springer Berlin / Heidelberg, 2010.

[RM09] Romain Rouvoy and Philippe Merle. Leveraging component-based soft-
ware engineering with fraclet. Annals of Telecommunications, 64:65–79,
2009.

[RvdLKM00] RobVanOmmering, Frank van der Linden, Jeff Kramer, and Jeff Magee.
The koala component model for consumer electronics. IEEE Software
Computer, 33(3), pages 78–85, March 2000.

[sca] Sca specifications. http://www.osoa.org.

[SML+10] Andrew Sixsmith, Sonja Mueller, Felicitas Lull, Michael Klein, Ilse Bier-
hoff, Sarah Delaney, Paula Byrne, Sandra Sproll, Robert Savage, and
Elena Avatangelou. Intelligent Technologies for Bridging the Grey Digi-
tal Divide, chapter A User-Driven Approach to Developing AAL Systems
for Older People:The SOPRANO Project, pages 30–45. IGI Global, 2010.

[SVP10] Estefanía Serral, Pedro Valderas, and Vicente Pelechano. Supporting run-
time system evolution to adapt to user behaviour. In Proceedings of the
22nd international conference on Advanced information systems engineer-
ing (CAiSE’10), pages 378–392, Berlin, Heidelberg, 2010. Springer-Verlag.

[TLR+09] Jean-Yves Tigli, Stéphane Lavirotte, Gaëtan Rey, Vincent Hourdin,
Daniel Cheung-Foo-Wo, Eric Callegari, and Michel Riveill. Wcomp mid-
dleware for ubiquitous computing: Aspects and composite event-based
web services. Annals of Telecommunications, 64:197–214, 2009.

[Tra09] Laurence Tratt. Dynamically typed languages. Advances in Computers,
77:149–184, 2009.

http://www.osoa.org

168 BIBLIOGRAPHY

[Tra10] Laurence Tratt. A modest attempt to help prevent unnecessary static /
dynamic typing debates. Technical report, Bournemouth University, UK,
2010.

[Tri08] Tridium. Niagaraax. Communications Magazine, IEEE, 46(12):22, de-
cember 2008.

[upn] The UPnP Forum. http://www.upnp.org.

[VAMC08] Dimitrios Vergados, Alevizos Alevizos, Anargiros Mariolis, and Michael
Caragiozidis. Intelligent services for assisting independent living of elderly
people at home. In Proceedings of the 1st international conference on
PErvasive Technologies Related to Assistive Environments, PETRA ’08,
pages 79:1–79:4, New York, NY, USA, 2008. ACM.

[WSO+10] Peter Wolf, Andreas Schmidt, Javier Parada Otte, Michael Klein, Sebas-
tian Rollwage, Birgitta König-Ries, Torsten Dettborn, and Aygul Gab-
dulkhakova. openAAL - the open source middleware for ambient-assisted
living (AAL). In AALIANCE conference, Malaga, Spain, March 11-12,
2010.

[WSV+07] Marion Wiethoff, Sascha Sommer, Sari Valjakka, Karel Van Isacker, Dion-
isis Kehagias, and Evangelos Bekiaris. Specification of information needs
for the development of a mobile communication platform to support mo-
bility of people with functional limitations. In Constantine Stephani-
dis, editor, Universal Access in Human-Computer Interaction. Ambient
Interaction, volume 4555 of Lecture Notes in Computer Science, pages
595–604. Springer Berlin / Heidelberg, 2007.

[YWDJ98] Joseph W. Yoder, Quince D. Wilson, Mcdonnell Douglas, and Ralph E.
Johnson. Connecting business objects to relational databases. In Pattern
Languages of Programs(PLOP’98), Monticello, Illinois, USA, volume 5,
pages 51–89, August 1998.

[ZBB+07] Elmar Zeeb, Andreas Bobek, Hendrik Bohn, Steffen Prueter, Andre Pohl,
Heiko Krumm, Ingo Lück, Frank Golatowski, and Dirk Timmermann.
Ws4d: Soa-toolkits making embedded systems ready for web services. In
3rd International Conference on Open Source Systems, Embedded Work-
shop on Open Source Software and Product Lines, Limerick, Ireland,
2007.

List of Figures

1.1 S-Cube Research Framework . 10

2.1 Median Age of EU Population - Source Eurostat 17
2.2 Age Pyramid EU (27) in 2009. - Blue: M, Green: F - Source Eurostat 18

3.1 Data from [DFD+09] and actualized from ProgrammableWeb.com . . . 38
3.2 WebService Architecture . 40

5.1 Overview of the EnTiMid layers . 66

6.1 Functional Interfaces . 71
6.2 Configuration Phase . 72
6.3 Example of Interoperability . 73
6.4 Electronic Parallel: Datasheets . 76
6.5 Extraction of a part of the component model architecture 77
6.6 Electronic Parallel: Components . 78
6.7 Example Model . 80
6.8 Link between the interoperability layer and component connections . . 85
6.9 Electronic Parallel: Simulation . 87
6.10 Checkpoint positions in the assembly deployment chain 88
6.11 Identifying differences between the source and the target configurations. 92
6.12 Instance creation tool chain . 95

7.1 EnTiMid development chain . 100

8.1 Solution elements for Mrs P. 111
8.2 Equipments available for the study . 112
8.3 Components used in the interoperability experiment 115
8.4 Components used in the evolution experiment 117
8.5 Components used in the adaptation experiment 119
8.6 Time (in ms) spent in Configuration Comparison and Actual Reconfig-

uration . 119
8.7 Mapping UPnP-EnTiMid . 122

9.1 S-Cube Research Framework . 139

10.1 Science festival presentation . 146

169

170 LIST OF FIGURES

A.1 Results of the first phase . 153
A.2 Improved interfaces, result of the second phase 153

VU :
Le Directeur de Thèse

(Nom et Prénom)

VU :
Le Responsable de l’Ecole Doctorale

(Nom et Prénom)

VU pour autorisation de soutenance

Rennes, le

Le président de l’Université de Rennes 1

Guy CATHELINEAU

VU après soutenance pour autorisation de publication :
Le Président de Jury,

(Nom et Prénom)

Résumé

Les systèmes logiciels tendent à se doter de facultés d’adaptation, d’évolution et
d’ouverture. Ces capacités requièrent une grande flexibilité et dynamicité de l’environ-
nement d’exécution, ainsi que de nouveaux outils d’assistance à la fabrication de ces
systèmes. En électronique, des outils ont été déployés pour faire face à l’hétérogénéité et
au nombre de composants, ainsi qu’aux besoins d’adaptation de produits existants à de
nouvelles technologies. L’ouverture de la documentation et des spécifications a permis
une grande richesse de solutions venant tant de bricoleurs que d’industriels. Inspiré par
l’électronique, cette thèse contribue à l’amélioration de la flexibilité des systèmes logi-
ciels tout en conservant un haut niveau de fiabilité. Les apports se font à trois niveaux.
(1) Un nouveau modèle de composants qui offre une grande flexibilité et permet la
connection de composants hétérogènes.
(2) Des outils issus de l’ingénierie des modèles, pour créer, modifier, simuler et valider
la structure et le comportement des assemblages de composants avant leur déploiement.
(3) Un environnement d’exécution bati sur une architecture à base de services, pour
supporter les évolutions, les adaptations et l’ouverture requises par le modèle de com-
posant proposé.
Cette thèse a été validée sur un cas concret dans un projet d’aide à domicile. Dans
ce domaine, les systèmes logiciels doivent être adaptables et flexibles, pour répondre
aux évolutions des besoins et pathologies des personnes âgées. Les bénéfices acquis de
l’utilisation de cette approche dans ce contexte ont prouvé la pertinence de cette thèse.

Abstract

Software systems tend to acquire capabilities of adaptation, evolution and openness.
These abilities require the execution environment to be highly flexible and dynamic, and
require new tools to handle these abilities. In electronics, tools have been set up to cope
with the huge heterogeneity and number of components, and the adaptation of existing
products to new technologies. Openness of documentations and specifications in this
area led to a wealth of solutions made by industrials or individuals fond of electronics.
Inspired by electronics’ achievements this thesis contributes in improving the flexibility
of software systems while maintaining a high level of reliability. The contribution is
threefold. (1) A new component model, which improves flexibility to enable connection
of heterogeneous components. (2) Tools from model driven engineering, to create, edit,
simulate and validate the structure and behavior of component assemblies prior to their
(re-)deployment. (3) A runtime environment built on top of a service-based architecture
to support evolutions, adaptations and openness required by the proposed component
model.
This thesis has been validated on a use case from an Ambient Assisted Living project.
In this domain, software systems have to be adaptive and flexible, to fit the needs and
pathology evolutions of elderly people. Although there still is a long way to go, the
benefits gained from the use of this approach in this context proved the relevance of
this thesis.

	Résumé de thèse
	Rappel du contexte
	Résumé des exigences
	Étude des approches existantes
	Vue d'ensemble de la contribution
	Adéquation de la contribution
	Intégration à l'état de l'art
	Bénéfices immédiats
	Simplification du développement de composants
	Création d'applications par assemblage
	Viabilité et précision
	Intégration simplifiée d'objets et de services

	Limitations identifiées
	Description structurelle
	Paramètres de ports
	Des vérifications basiques
	Gestion de la variabilité
	Absence de test sur des plate-formes embarquées

	Contribution au réseau d'excellence Européen S-Cube
	Le réseau d'excellence S-Cube
	Contribution

	I Context, Requirements and State-of-the-Art Review
	Introduction
	Ambient Assisted Living
	The origins
	The concept

	Home Automation
	Application domains
	Technologies

	Identification of requirements
	Scope of this work
	Contribution of this thesis

	State-of-the-Art Review
	Background on AAL and Home Automation
	Projects in AAL
	European research
	Home automation in projects
	Home Automation details
	Communication Media
	Transport Protocols
	Application Protocols

	General purpose approaches
	(Web)Service-Oriented Architectures
	Internet Of * and the Cloud
	Architectural principles
	OSGi
	Enterprise Service Bus

	Component models
	Description
	Darwin
	Koala
	Fractal

	Component Models for SOA
	Description
	SCA
	FraSCAti
	iPOJO

	Domain-specific approaches
	Description
	Projects
	uMiddle
	SOPRANO
	Gaïa Framework
	DiaSuite
	Habitation
	Wired Application Description Language
	PervML
	AutoHome
	WComp
	Niagara

	Synthesis
	Good properties identified
	Points of contribution

	II Thesis and Achievements
	Contribution
	Global ideas
	Being inspired by electronics
	Making it possible
	Keeping end-users in mind

	Overview of the contribution

	Details on strata
	Device Interoperability
	Use of drivers
	Functional interfaces
	Event-based approach
	Example
	Threat to validity
	Summary

	Component Model
	Making software components closer to electronic components
	Meta-Model description
	Concrete example
	Implementation and Model Relationship
	Implementation independence
	Link with the interoperability layer
	Main advantage of this component model
	Summary

	Model@Runtime and Reasoning Engine
	Check to validate
	The Model@Runtime engine work

	Service-Oriented Runtime Architecture
	Wrappers
	Summary

	Outcomes
	Implementation
	Impact on the development process
	Component development
	Application design

	Metrics
	Classification
	Lifecycle
	Constructs
	Extra-Functional Properties
	Domains

	III Validation
	Validation in the context of an AAL project
	Context of the study: the IDA project
	Use case and issues to address
	Experimental setup
	Delta Dore equipment
	KNX equipment
	Other equipment

	Interoperability issue
	Test Environment
	Resolution Protocol
	Results

	Evolution issue
	Test Environment
	Resolution Protocol
	Results

	Adaptation issue
	Test Environment
	Resolution Protocol
	Results

	Openness issue
	UPnP export
	Test Environment
	Resolution Protocol
	Results

	DPWS export
	Test Environment
	Resolution Protocol
	Results

	Threats to validity
	Internal threats
	Variability management
	Scalability
	Safety and Security

	External threats
	Validity of the scenario, real deployment
	Communications with smart devices

	Conclusion

	IV Conclusion and Perspectives
	Conclusion
	Reminder of Context
	Summary of requirements
	Survey of existing approaches
	Outline of the contribution
	Adequateness of the contribution
	Conservativeness
	Immediate benefits
	Development of components made easier
	Simple creation of applications
	Sustainability and precision
	Seamless integration of IoT and IoS

	Limitations identified
	Behavioral description
	Port parameters
	Too weak checkers
	Variability management
	Improvements for embedded platforms

	Contribution to the S-Cube NoE
	The S-Cube Network of Excellence
	Contribution

	Perspectives
	In research
	IDA, second phase
	End User Programming
	Which description language ?
	Fuzzy Logic and Learning Algorithms

	Distribution and Pervasiveness
	Architecture Synthesis
	Dynamic Software Product Lines for the management of variability
	How can the behavior be descibed?

	Kevoree
	Open Control/Command Operating System

	In industry
	Public events
	Industrial perspectives

	V Appendix
	ITI Project
	Presentation and Goals of the project
	Phase 1
	Phase 2
	Phase 3

	Environment of tests
	Population under test
	Equipments

	Protocol of test
	Threats to validity
	Results and conclusion

	Acronyms
	Bibliography
	Table of figures
	Summary

