
HAL Id: tel-00646718
https://theses.hal.science/tel-00646718

Submitted on 30 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyse faciale avec dérivées Gaussiennes
John Alexander Ruiz Hernandez

To cite this version:
John Alexander Ruiz Hernandez. Analyse faciale avec dérivées Gaussiennes. Mathématiques générales
[math.GM]. Université de Grenoble, 2011. Français. �NNT : 2011GRENM039�. �tel-00646718�

https://theses.hal.science/tel-00646718
https://hal.archives-ouvertes.fr


THÈSE
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Alpes

et de l’Ecole Doctorale de Mathématiques, Sciences

et Technologies de l’Information

Facial Analysis with Gaussian
Derivatives
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Facial Analysis with Gaussian Derivatives

Abstract:

In this thesis, we explore the use of multi-scale Gaussian Derivatives as an
initial representation for detection, recognition and classification of human faces
in images. We show that a fast, O(N), binomial pyramid algorithm can be used
to provide Gaussian derivatives with identical sampled impulse responses at scale
factors of

√
2. We then show that a vector of such derivatives at multiple scales and

derivative orders for each pixel can be used as basis for algorithms for detection,
classification and recognition that meet or exceed state of the art performance with
reduced computation cost. Furthermore, the use of integer coefficients and O(N)
complexity in computation and memory requirements make such an approach
suitable for real time applications running in embedded image processing on
mobile devices.

We test this representation using three classic problems of facial image analysis:
Face detection, face recognition and age estimation. For face detection, we
investigate multi-scale Gaussian derivatives as an alternative to Haar wavelets for
use with a cascade of linear classifiers learned with the Adaboost algorithm, as
made popular by Viola and Jones. We show that the pyramid representation can
be use to optimize the detection process by adapting the position of derivatives in
the cascade. In these experiments we are able to show that we can obtain similar
detection performance levels (as measured by ROC curves) with an important
reduction in computation cost. For face recognition and age estimation, we
show that multi-scale Gaussian derivatives can be used to compute a tensorial
representation that retains the most important facial information. We show
that when combined with Multilinear Principal Component Analysis and Kernel
Discriminative Common Vectors (KDCV) can lead to an algorithm that are similar
to competing techniques for face recognition at reduced computational cost. For
age estimation from facial images, we show that our tensorial representation using
multi-scale Gaussian derivatives can be used with a relevance vector machine to
provide age estimation at performance levels that are similar to state of the art
methods.

Keywords: Gaussian derivatives, Face detection and Recognition, Age estima-
tion, Half-Octave Gaussian Pyramid, Facial analysis





Analyse Faciale avec les Dérivés Gaussiennes

Résumé: Dans cette thèse, nous explorons l’utilisation des dérivées Gaussiennes
multi-échelles comme représentation initiale pour la détection, la reconnaissance
et la classification des visages humains dans des images. Nous montrons qu’un
algorithme rapide, O(N), de construction d’une pyramide binomiale peut être
utilisé pour extraire des dérivées Gaussiennes avec une réponse impulsionnelle
identique à un facteur d’échelle

√
2. Nous montrons ensuite qu’un vecteur

composé de ces dérivées à différentes échelles et à différents ordres en chaque pixel
peut être utilisé comme base pour les algorithmes de détection, de classification et
de reconnaissance lesquels atteignent ou dépassent les performances de l’état de
l’art avec un coût de calcul réduit. De plus l’utilisation de coefficients entiers,
avec une complexité de calcul et des exigences mémoires en O(N) font qu’une
telle approche est appropriée pour des applications temps réel embarquées sur
des systèmes mobiles.

Nous testons cette représentation en utilisant trois problèmes classiques d’analyse
d’images faciales : détection de visages, reconnaissance de visages et estimation
de l’âge. Pour la détection de visages, nous examinons les dérivées Gaussi-
ennes multi-échelles comme une alternative aux ondelettes de Haar pour une
utilisation dans la construction d’une cascade de classifieurs linéaires appris
avec l’algorithme Adaboost, popularisé par Viola and Jones. Nous montrons
que la représentation pyramidale peut être utilisée pour optimiser le processus
de détection en adaptant la position des dérivées dans la cascade. Dans ces
experiences nous sommes capables de montrer que nous pouvons obtenir des
niveaux de performances de détection similaires (mesurés par des courbes ROC)
avec une réduction importante du coût de calcul. Pour la reconnaissance de
visages et l’estimation de l’âge, nous montrons que les dérivées Gaussiennes multi-
échelles peuvent être utilisées pour calculer une représentation tensorielle qui
conserve l’information faciale la plus importante. Nous montrons que combinée
à l’Analyse Multilinéaire en Composantes Principales et à la méthode Kernel
Discriminative Common Vectors (KDCV), cette représentation tensorielle peut
mener à un algorithme qui est similaire aux techniques concurrentes pour la
reconnaissance de visages avec un coût de calcul réduit. Pour l’estimation de
l’âge à partir d’images faciales, nous montrons que notre représentation tensorielle
utilisant les dérivées de Gaussiennes multi-échelles peut être utilisée avec une
machine à vecteur de pertinence pour fournir une estimation de l’âge avec des
niveaux de performances similaires aux méthodes de l’état de l’art.

Mots-Clés: Gaussian derivatives, Face detection and Recognition, Age estima-
tion
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Introduction

La démonstration d’une méthode rapide et fiable pour la détection de visages par

Paul Viola et Michael Jones (Viola and Jones, 2001) a provoqué une révolution

dans la vision par ordinateur. Le succès du détecteur de visages de Viola et Jones

est le résultat de la combinaison d’un très large ensemble de caractéristiques

de l’image avec une cascade de classificateurs linéaires obtenues en utilisant

l’algorithme du AdaBoost. Alors que la combinaison du coût algorithmique faible

et disposent d’un grand ensemble d’images intégrale est très attractif, la nature

binaire des ondelettes de Haar qui en résulte est intuitivement troublante. Traits

binaires sont notoirement sensibles aux petites variations dans la position de

l’image ainsi que le flou de l’image.

Le point de départ de cette enquête a été d’examiner l’utilisation de multi-

échelle Gaussien fonctionnalités dérivées comme une alternative aux ondelettes

de Haar comme une caractéristique d’image réglée pour la détection de visage.

Tout comme les ondelettes de Haar peut être calculée avec la vitesse O (N)

l’algorithme image intégrale, les dérivés de Gauss peut être l’informatique peut

être calculée à partir d’un rapide O (N) invariant d’échelle algorithmes pyramide

binomiale. Comme avec les ondelettes de Haar, un ensemble potentiellement

important de dérivés d’image peuvent être obtenus à chaque position de l’image

par des dérivés de l’informatique sur une gamme d’échelles et des orientations

et des ordres sur instruments dérivés. Contrairement aux ondelettes de Haar,

caractéristiques gaussiennes dérivés ont une sensibilité beaucoup plus faible

aux petits changements dans la position et l’échelle des motifs d’image, ce qui

permettra éventuellement d’offrir une représentation plus stable. Par ailleurs, la

similitude des produits dérivés gaussienne multi-échelle des champs réceptifs

dans le cortex visuel suggèrent pertinence comme un ensemble de fonctionnalités

objectif image générale, non seulement pour la détection, mais pour le suivi de la

reconnaissance et la fonctionnalité.

Nos premières expériences ont démontré que les dérivés multi-gaussienne peut

fournir une robustesse améliorée pour faire face à des variations d’orientation,

position et l’échelle, tout en offrant des taux de détection des caractéristiques simi-

laires à Haar à un coût réduit de calcul global. Ce succès nous a amené à explorer

l’utilisation de fonctionnalités telles pour la reconnaissance faciale et estimation

de l’âge. Notre conclusion de ces expériences sont que des caractéristiques multi-

échelle Gaussien effectivement fournir un ensemble caractéristique générale et ro-

buste qui sont pratiques pour une variété de problèmes difficiles de vision par or-

dinateur.
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Introduction

Chapter Contents
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Goals and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Principal Contributions of this study . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

THE demonstration of a fast and reliable method for face detection by Paul
Viola and Michael Jones (Viola and Jones, 2001) has provoked a revolution

in computer vision. The success of the Viola-Jones face detector is the result of
the combination of a very large set of inexpensive image features with a cascade
of linear classifiers obtained by using the the AdaBoost algorithm. While the
combination of low algorithmic cost and large feature set of integral images is
highly attractive, the binary nature of the resulting Haar wavelets is intuitively
troubling. Binary features are notoriously sensitive to small shifts in image
position as well as image blurring.

The starting point for this investigation has been to examine the use of multi-
scale Gaussian derivative features as an alternative to Haar wavelets as a image
feature set for face detection. Just as Haar wavelets can be computed with the fast
O(N) integral image algorithm, Gaussian derivatives can be computed with the
fast O(N) scale invariant binomial pyramid algorithm. As with Haar wavelets, a
potentially large set of image derivatives can be obtained at each image position
by computing derivatives over a range of scales and orientations and derivative
orders. In contrast to Haar wavelets, Gaussian derivative features have much
lower sensitivity to small changes in position and scale of image patterns, thus
potentially providing a more stable representation. Furthermore, the similarity of
multi-scale Gaussian derivatives to the receptive fields in the visual cortex suggest
suitability as a general purpose image feature set, not only for detection but for
recognition and feature tracking.

Our initial experiments have demonstrated that multiscale Gaussian derivatives
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can provide improved robustness to variations in face orientation, position and
scale, while providing detection rates similar to Haar features at a reduced overall
computational cost. This success has led us to explore the use of such features for
face recognition and age estimation. Our conclusion from these experiments are
that multi-scale Gaussian features do indeed provide a general and robust feature
set that are practical for a variety of challenging computer vision problems.

1.1 Scope

Despite the highly developed ability of humans to obtain information from visual
observation of faces, facial image analysis remains a very challenging task for
computer vision. Over the last few decades, researchers in computer vision have
explored a variety of approaches to obtain information from facial images. While
most approaches have proven highly sensitive to image noise, illumination and
view position, the occasional successes have often signaled the emergence of
important new paradigms for computer vision. For example, the demonstration
by Kanade (1973, 1977) that relative positions of facial structures such as eyes,
mouth and nose could provide discriminant features for recognition was cited as a
demonstration of the importance of geometric reconstruction in computer vision.
The emergence of the EigenFaces technique of Turk and Pentland (1991b) not only
demonstrated the feasibility of using computer vision for recognizing faces from
large data bases, but triggered a shift towards appearance based techniques for
computer vision. The success of color histogram based methods for face detection
led to a widespread investigation of histograms of features (Schiele and Crowley,
1996) ultimately leading to the widely popular SIFT (Lowe, 2004) and HOG (Dalal
and Triggs, 2005) feature sets. Of course, the adaptation of Haar wavelets and
the AdaBoost learning algorithm for face detection (Viola and Jones, 2001) has
driven resurgence of the use of machine learning for computer tasks of all sorts. In
summary, facial image analysis has been, and remains, a laboratory for promising
approaches for image analysis.

1.2 Goals and Motivations

In this doctoral thesis, we examine the use of multiscale Gaussian Derivatives as
an initial image representation for three problems in facial image analysis: face
detection, face recognition and age estimation. Our starting intuition has been that
such a representation may provide a robust and highly discriminative feature set
for facial analysis. The principal result of this investigation is a demonstration that
multiscale Gaussian derivatives computed with a Half-Octave Gaussian pyramid
can provide a powerful feature set for detection and classification.

Historically, much of the research on facial image analysis has been motivated
by applications in security and visual surveillance. The FERET facial recognition
benchmark (Phillips et al., 2000) has provided a widely popular competition for
highly specialized algorithms, while attracting large amounts of media attention,
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publications and research money. Progress in this area has primarily exploited the
highly controlled nature of mug-shot face images, although some recent progress
has been made for recognition in uncontrolled environments.

Image facial analysis has also been explored in the context of human computer
interaction (Crowley and Coutaz, 1996), as an additional perceptual modality for
aiding speech (Mcgurk and Macdonald, 1976), as well as a the basis for much
research in affective computing (Picard, 1997; Littlewort et al., 2011). However,
the unconstrained nature the viewing environments for such applications have
tended to hamper progress and inhibit applications.

The success of the Viola Jones method was rapidly translated to widespread use
of face detection in digital cameras, and more recently in cell phones and other
mobile devices. An enormous variety of applications are currently emerging on
mobile devices, including such uses as face tracking for 3D rendering, emotion
recognition, augmented reality and visual attention estimation.

Finally, automatic estimation of age from facial images has been explored for
applications that include, Age-Specific Human Computer Interaction (ASHCI)
(Lanitis. et al., 2004; Ramanathan et al., 2009), security (Ramanathan et al., 2009;
Ramanathan and Chellappa, 2006), missing individuals retrieval (Ramanathan
et al., 2009; Lanitis et al., 2002), internet access control for minors (Guo et al., 2008b;
Lanitis. et al., 2004), surveillance monitoring of alcohol or cigarettes vending
machines (Geng et al., 2007; Guo et al., 2008a), appearance prediction across
aging (Suo et al., 2010), and targeting of advertising (Guo et al., 2008a).

In most of these domains, the problem of facial image analysis is made difficult
by at least five factors: variations in illumination, variations in facial orientation
and distance, facial expressions, age variations and occlusions (Abate et al.,
2007; Zhao et al., 2003). Many approaches that combine robust feature sets and
dimensionality reduction techniques have been proposed to deal with one or a
combination of these factors. Thus a technique that can provide robust image
description in the presence of these five factors has great potential impact.

1.3 Principal Contributions of this study

This thesis contributes to the scientific research on computer vision by demonstrat-
ing new methods for the following three tasks: face detection, face recognition and
age estimation from images.

• We propose a new facial image analysis technique that uses the multi-scale
Gaussian derivatives as a unique image representation. In general, different
images representation are used for different facial analysis tasks (detection
and recognition). In this thesis, we demonstrate that the Gaussian scale
computed with a Half-Octave Gaussian Pyramid may be used as unique
image representation.

• For the task of face detection, we propose the use of a cascade of classifiers
using Gaussian derivatives computed with a half-octave binomial pyramid.
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In addition, we propose a speed-optimized cascade framework which takes
into account the Gaussian derivative’s computational complexity and local
appearance information as well to select its adequate position in the cascade.

• Use of Gaussian derivatives up to the fourth order are considered in a
cascade of classifiers. Despite its high sensitivity to noise, experiments show
that inclusion of higher order derivatives improves detection rates.

• We propose a new metric to compute computational load based on the
number of requests to the image representation which is more suitable for
evaluating feature performance in face detection.

• we perform several experiments for comparing the performance between
Gaussian derivative features and Haar-like features when the input image
is modified by different transformations such as contrast, noise and rotation.
Such transformations are similar to those found in real life applications as
video surveillance and biometric.

• we propose a new tensorial representation based in Gaussian derivatives.
In this representation LBP is used to build a new image representation and
MPCA (Multilinear Principal Component Analysis) is applied for reducing
the dimension of the feature space. Two different tensorial frameworks are
proposed and its advantages and drawbacks are discussed further in this
thesis.

• Finally, we combine different machine learning methods with our tensorial
representation for improving results in Face recognition and Age estimation.
In this scope, face recognition is addressed as a classification problem using
Kernel Discriminative Vectors to improve recognition rates. On the other
hand, Age estimation is addressed as a regression problem using Relevance
Vector Machines (RVM).

1.4 Thesis Outline

In the following, the content and experimental results of each chapter are summa-
rized.

• Chapter 2 summarizes references which have been sources of inspiration for
different aspects of the thesis. In particular, we discuss three main topics in
facial analysis: Face detection, Face recognition and Age estimation.

In Face Detection, four categories of approaches are presented: Knowledge-
based methods, feature invariant approaches, template matching methods,
and appearance-based methods. In this scope, we focus on the appearance
based methods using cascades of classifiers. On the other hand, we studied
different machine-learning methods used in the state-of-the-art for training
an efficient cascade of classifiers.
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In Face Recognition, we explain appearance-based models, specially those
that project the image into a more discriminative space with a suitable
dimensionality. This models have been widely used by the face recognition
community in the past years.

In Age Estimation from facial images, we review the five different ap-
proaches commonly used: Anthropometric, Active Appearance, Age-Manifold,
Feature-based and Aging simulation models. In this thesis Feature-based
approaches are of special interest.

• Chapter 3 is devoted to the discussion of different feature sets computed
from the Gaussian scale space. In this scope Gaussian derivatives are
explained using two different domains, space and frequency. In spatial-
domain, the different equations for ”steering” the Gaussian derivatives are
presented. In frequency-domain, the Fourier transform of the Gaussian
derivatives is explained for showing the advantages and drawbacks when
higher derivative orders are considered.

Later in the chapter, we explore the filters based on Gaussian derivatives,
specially attention is given to the Gaussian Jet of second order and its norm,
Laplacian of Gaussian (LoG) and the Gradient magnitude.

At the end of the chapter, a highlight of the Half-octave Gaussian pyramid
is presented as a fast way to compute Gaussian derivatives. This chapter
is complemented by the extensive explanation of the pyramid algorithm
described in the appendix A.

• Chapter 4 applies the Gaussian derivatives for detecting faces using cascades
of classifiers. Formally, we present a speed-cascade optimization based in the
computational cost of Gaussian derivatives and the captured information
necessary to perform an adequate detection process. In this process lower
and non computational expensive derivative orders are considered in the
first nodes in the cascade where the most highly computational load is
presented, the position of derivatives in the cascade is chosen taking into
account the detection rate in the current node.

All the concepts presented in this chapter are supported by experiments
performed in the well know MIT-CMU face database and the challenging
FDDB face dataset. Experiments have shown the advantages and drawbacks
of Gaussian derivatives in face detection. Besides results in computational
load and detection rate when different image transformations as rotation,
Gaussian noise, contrast and blurring are also conducted to show the
advantages of Gaussian derivatives in the face detection process.

– In the MIT+CMU face data-set results using Gaussian derivatives are
competitive or inferior to the state art approaches in face detection,
nevertheless this data set is composed of low quality and scanned
images that affects the performance of Gaussian derivatives features
to detect faces. Results in the FDDB(Face Detection Data Set and
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Benchmark) show that Gaussian derivatives features outperform Haar-
features in almost 4% of difference in the detection rate. We want
to emphasize that FDDB is a challenging data-set with real world
conditions (see sections 4.5.2 and 4.6.2 ).

– In the sensitive test data set, Gaussian derivatives features show a high
invariance to rotation and blurring variations, but low invariance to
noise presence in the images, this is due to the presence of higher
derivative orders (see sections 4.5.1 and 4.6.1).

– In computational load, optimized cascades of Gaussian derivatives
features computed using a half-octave Gaussian pyramid exhibit a
reduction in computational load (almost 30%) over the non optimized
version using the same feature set and the Haar-features computed
using the integral images (see sections 4.5.3 and 4.6.3).

• Chapter 5 develops a tensorial framework based in Histograms of Gaussian
Binary Maps for facial analysis. The chapter defines and discusses the
different steps to build a tensorial representation taking into account the
different possible dimensions as orientation, position and scale. In this
chapter, we also consider two different tensorial architectures, the first
considers each one of derivative orders as a separate tensor and the second
considers the correlation between derivatives when the order is added
as supplementary dimension in the final tensor. In addition Multilinear
Principal Component Analysis is presented as an algorithm to reduce the
dimensions in a tensor without loss of 3-D structure due to vectorization and
also as a statistical method for capturing the most discriminative information
from each considered dimension in the tensors.

• Chapter 6 describes as Tensorial representations of Gaussian derivatives
(Tensors of HBGM) are applied to the face recognition problem. In this
chapter Multilinear Principal Component Analysis is used for reducing
the feature space dimension and Kernel Discriminative Common vectors
(KDCV) is used to improve the recognition results. In more detail this chap-
ter is divided in three main parts, the first one makes a briefly presentation of
KDCV. In the second part only derivatives of first and second order are used
in our tensorial representation. This part of the thesis was related with our
first results in tensorial representations and only the final vector yT was used
at this time. In the last part of this chapter three well know types of features
based in Gaussian derivatives are considered in our tensorial representation:
Mag(gradient magnitude), LoG (Laplacian of Gaussians) and γ (the third
component of the second local order Gaussian jet norm).

In all the chapter, three Public available face data-sets (Feret, Yale and Yale B
+ Extended Yale) are used to validate the approach.

– Experiments in the FERET face data-set using Gaussian derivatives
features of first and second order show that our approach is competitive
(similar performances) with others state of the art approaches that use
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more complicated feature sets (see section 6.4.1). In addition results in
the Yale dataset using Gaussian derivatives features up to the second
order in a tensorial fashion outperform other approaches in almost 1%
(see section 6.4.2). Finally results in the Yale B + Extended Yale can be
observed in section 6.4.3, this results reveals a high invariance of our
method to illumination variations.

– Results in the FERET dataset using Mag(gradient magnitude), LoG
(Laplacian of Gaussians) and γ (the third component of the second local
order Gaussian jet norm) as well as its computational cost are presented
in sections 6.5.4 and 6.5.1 respectively, once again Gaussian derivatives
achieve comparative or superior results with other approaches in the
state-of-the-art. Besides we compare also the performance of each
resulting vector using the two tensorial configurations proposed in this
thesis (see sections 6.5.2 and 6.5.3). Finally results in the Yale B +
Extended Yale dataset are presented in section 6.5.5.

• Chapter 7 extends the application of Tensorial representations to the age
estimation problem using gaussian derivatives features. In particular, this
chapter addresses the problem of age estimation as a regression problem
using the vectors yT and yF (see section 7.4) as inputs for training a regressor
using Relevance Vector Machines. To address the problem of age estimation
from faces, we use gaussian derivatives up to the fourth order for getting
important aging facial characteristics that can not be described using only
Gaussian derivatives of lower order. Two public available datasets (FG-net
and MORPH aging datasets ) are used to show the quality of the approach to
solve this problem. The results are competitive whit the last state-of-the-art
methods proposed in the facial analysis field (see sections 7.5 and 7.6).

• Chapter 8 concludes the principal results and lists perspectives of the thesis.





Détection et reconnaissance de visages

Ce chapitre résume les références qui ont été source d’inspiration pour les

différents aspects de la thèse. En particulier, nous discutons de trois thèmes

principaux dans l’analyse du visage : Détection des visages, reconnaissance des

visages et l’estimation de la vieillesse.

En détection de visages, quatre catégories d’approches sont présentées : les

méthodes fondées sur le savoir, la fonction invariante des approches, des méthodes

modèle correspondant, et l’apparence des méthodes basées sur. Dans ce cadre,

nous signalons spécialement dans les méthodes utilisant les cascades apparence en

fonction des classificateurs. En revanche, nous avons exposé différentes méthodes

d’apprentissage machine utilisée dans le state-of-the-art pour la formation d’une

cascade de classifieurs efficaces.

En reconnaissance des visages, nous expliquons l’apparence des modèles,

spécialement ceux. Que le projet de l’image dans un espace plus discriminante

avec une dimension appropriée Cette modèles ont été largement utilisés par la

communauté de reconnaissance faciale dans les années passées.

En estimation de l’âge à partir des images faciales, nous exposons les cinq

différentes approches couramment utilisées : anthropométriques, Apparence Ac-

tive, l’âge du collecteur, orienté fonction et de modèles de simulation du vieillisse-

ment. Dans cette thèse Feature approches fondées sur des intérêts particuliers.
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FROM a biological approach, facial analysis is an important processes developed
by the human visual system in specific zone of the brain. From birth moment,

humans have an innate reflex to attend to faces as a source of information for
survival. Facial proportions and expressions are important to identify origin,
emotional tendencies, state of health and vital social information.

A problem that seems simple for humans is in fact very challenging for
computers. Research to identify what visual information the human visual system
uses to represent a face has been conducted in (Valentin et al., 1997; O’Toole et al.,
2000; Sinha et al., 2006). Researchers in computer vision have proposed a variety
of approaches to extract the same information from facial images acquired under
unconstrained conditions such as sensor noise, variations of viewing distance and
illumination conditions.
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This chapter which reviews the most important advances in facial analysis
techniques is organized as follows. In section 4.2, we discuss the face detection
process as a first module of an automatic face verification system (see figure 2.1)
with relevance in human computer interaction. In section 2.2 an overview of the
automatic face recognition process is developed. Facial age estimation is explained
in section 2.3. In complement a complete state-of-the-art with the most important
approaches in face perception.

2.1 Face Detection

One of the most important techniques that enables human-computer interaction
(HCI) is face detection. In general facial analysis algorithms such as face recogni-
tion, face alignment, facial expression tracking/recognition, age estimation, head
pose tracking and many more, face detection is the first and key step as shown in
figure 2.1. It is expected that when computers can really understand the human
face, the computers are going to understand people’s intentions and the human-
computer interaction will be naturally as in human-human interactions.

Many research teams have worked in face detection, and as consequence hun-
dreds of approaches have been published. Some of them have been materialized
with success in commercial products as laptops, mobile phones, digital cameras
and surveillance systems. Most works in face detection have been well explained
in surveys (Yang et al., 2002; Hjelmas and Low, 2001) and recently in (Zhang and
Zhang, 2010). Based on these, face detection research could be classified in four
categories: Knowledge-based methods, feature invariant approaches, template
matching methods, and appearance-based methods. Each one of this categories
is explained in the next subsections.

2.1.1 Knowledge-based methods

A first way to detect faces on image is using a set of simple rules that describe with
accuracy the human-face proportions from facial images. The rules are provided
by a human expert, for example, the center of a facial image has uniform intensity
values as well as a considerable intensity difference with the borders and also some
morphological considerations like a human-face has always two eyes, a noise and
a mouth. A well-know work of this type was proposed by Yang and Huang (1994).

Image 

Representation

for detecting 

faces 

Face Detection

Facial analysis

(Age, Recognition, 

Gender, Emotion...)

Figure 2.1: Automatic face verification system
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In their approach, they applied a set of simple rules at different locations in a
hierarchy of images with different resolutions as shown in figure 2.2.

The principal inconvenience of this approach is the difficulty to find an effective
set of rules. Methods based on this approach also tend to exhibit poor generaliza-
tion in the detection process due to high variations in pose, illumination and face
expression that require a separated set of rules for each case.

2.1.2 Feature invariant methods

The main objective of this methods is to find a set of facial structure features
invariant to pose and lighting variation. Examples of such features are the skin
color and texture (Ruan and Yin, 2009).

A first method that uses the facial morphological structure is proposed by Han
et al. (1997). They extracted eye-analogue segments, and choose a set of candidate
regions by taking into account facial geometric constraints between eyes, nose,
mouth and eye-brows. Finally a neural network is applied over each region to
verify if it is a face or not. Their research showed that the most discriminative
features in the human face are the eyes; this assumption was corroborated later
by Gourier et al. (2004).

After facial structure as feature, Amit et al. (1998) proposed a two-level classifica-
tion model, the first level used a spatial configuration of facial edges extracted with
a simple edge detector, then a simple detector is trained using Classification And
Regression Trees (CARTs). Such detectors retain the most discriminative facial
edges and detect frontal-faces.

Color skin is also an important feature in face detection, Garcia and Tziritas
(1999) used the skin color as invariant features as did Schiele and Waibel (1995)
and Crowley and Berard (1997). First a wavelet decomposition is performed over
specific regions represented by the color spaces YCbCr and HSV (figure 2.3a).
Restrictions in shape and surface are imposed to discriminate some candidate
regions, followed by a probabilistic measure derived from the Bhattacharrya
distance is applied to chose the candidate regions that contains a face or not
(figure 2.3b).

Sahbi and Boujemaa (2002) computed a set of facial candidate regions using a
simple color segmentation process as show in figure 2.4. They detect the most

Figure 2.2: Hierarchy of resolution images proposed by (Yang and Huang, 1994). Each square cell consists
of n× n pixels in which intensity of each pixel is replaced by the average intensity of the pixels in that cell.
(Courtesy of Yang et al. (2002))
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(a) (b)

Figure 2.3: (a) Wavelet decomposition performed over a facial candidate region. (b) Final regions after take
into account restrictions and probabilistic metrics (Courtesy of Garcia and Tziritas (1999))

important candidate region using a neural network trained to recognize human
skin color, finally a Gaussian model then is applied to chose the regions that
correspond to a face.

While feature invariant methods show an invariance to pose, methods based on
skin color are affected by changes in illumination color and intensity, image noise
and occlusions. Methods based in facial edges can be affected by shadows, giving
some non desired facial edges.

2.1.3 Template matching methods

In Template Matching methods a standard face-template is correlated with can-
didate regions, and correlation scores are computed individually for each facial
component (nose, mouth, eyes etc). A candidate region is validated as a face by
aggregating their scores.

Template methods can be illustrated by the method proposed by Heiselet et al.
(2001). In their method they use a hierarchy of support vector machines trained
specifically to detect each facial component. SVMs were trained using a set of
synthetic facial images. Finally each facial component is correlated with a template
using a simple classifier that verifies spatial organization of each facial feature in
the facial candidate. The overall system is presented In figure 2.5

Keren et al. (2000) proposed Antifaces, a set of multi-template detectors based
in a very simple set of filters. The main idea of this method is that a candidate
image region is passed through a sequential set of detectors based on templates.
In each detector, the candidate image is correlated by an inner-product with an
optimized template to compute the correlation score, used to determine if the
candidate region should pass to the next detector or not.

A recent template method was proposed by Hall and Crowley (2004). They
used a template computed with a histogram in log-polar space. As first steep
a bank of Gaussian derivative filters is applied at multiple scales and locations.
A K-means algorithm is then used to detect the most important facial features in
multiple clastons.1 Those are expressed in a gray level image to finally perform the

1The word clastons is referred by the authors as the binary images from the clustering process.



2.1. Face Detection 17

Figure 2.4: Diagram of skin region selection proposed by Sahbi and Boujemaa (2002) (Courtesy of Sahbi and
Boujemaa (2002))

Figure 2.5: Example of facial template and Overall face detection system proposed by Heiselet et al. (2001)
(Courtesy of Heiselet et al. (2001))

detection process computing the distance between the log-polar histogram in the
candidate image and a template log-polar facial histogram. The complete model
is summarized in figure 2.6

In spite of the simplicity of this type of method for detection, a good definition
of template remains challenging in the case of multi-view face detection because a
template is necessary for each face pose.

2.1.4 Appearance-based methods

As was observed in the preceding sections, face detection methods, the definition
of a face model is a challenging task that sometimes requires the support of a
human expert to define a set of rules or a template that correctly models human
facial variations. In this scope, appearance-based methods try to capture the
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Figure 2.6: Overall face detection system proposed by Hall and Crowley (2004). (Courtesy of Hall and
Crowley (2004))

most representative variations from a set of example images. To capture such
variations in an automatic way without human-intervention, researchers in this
field have used machine learning and statistical analysis methods such as Principal
Component Analysis, Neural Networks, Support Vector Machines and the well
known Adaboost with its variations.

Linear Subspace Methods

The use of Linear Sub-space methods for face detection by Turk and Pentland
(1991b) used Principal Component Analysis to compute a set of facial representa-
tive images called Eigenfaces from a set of images containing faces and non-faces.
Each computed eigenface is clustered taking into account its type of class (face or
non-face), then detection process is performed computing the distance between
the candidate image region represented as eigenface and each one of computed
clusters. Finally, the set of distances computed from a candidate image is defined
as ”face map” and a face is located in its local minimum.

Distributions functions have been used to construct face detectors. One of the
most representative examples from this type was proposed by Sung and Poggio
(1998). They used a distribution function to model the differences between faces
and non-faces. To do this, each image in the training set is normalized to a
dimension of 19 × 19 pixels and then represented as a vector. Next, each one
of those vectors is grouped in six clusters for faces and six for non-faces. In
the detection process, two distances are computed between the clusters and the
different regions in the candidate image, to finally run the classification process
between faces and non-faces with a multilayer perceptron.

Neural Networks

Neural networks have been explored as method to detect faces. A seminal work on
this approaches was reported by Agui et al. (1992). They developed a hierarchical
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model with two levels. In the first level two parallel neural networks take as
inputs the intensity values of the candidate region and its filtered values computed
with a Sobel filter. In the second level, the values computed by the first level are
considered as well as the standard deviation and the ratio between black and white
pixels in the binary version of the input image. Detection process is performed
based in the output values from the second level.

A first multi-view face detector was proposed by Rowley et al. (1998), its method
is composed by two consecutive neural networks. The first network is trained
to determine the orientation of the input image. The second neural network is
trained with frontal-face images of size 20x20 and determines if the input image
corresponds to a face or not, taking into account the output information from the
first layer.

Garcia and Delakis (2004) have developed a method using a neural-network
architecture called a convolutional neural network. Two different types of layers
are present in this architecture: convolutional and classification layers. In the
convolution layers, a succession of convolutions with a set of Gaussian receptive
fields is applied over the input image, once the candidate image has passed across
all these layers, the final classification in face or non-face is performed in a neural-
network composed by two layers.

Finally in recent work, Osadchy et al. (2007) have proposed a method to
detect faces and estimate pose based in a convolutional network trained using
an Energy-Based model. The convolution neural network is trained for mapping
the input images in a low-dimensional manifold, where the different poses are
easily separable and parameterized by some typical facial pose parameters (e.g.
pitch, yaw and roll). Then the detection process is performed by thresholding the
distance between the projected input image and the parameterized manifold.

Support Vector Machines

Another machine learning method widely used in face detection as well as object
recognition is Support Vector Machines (SVM). Use of SVM for detecting faces was
proposed by Osuna et al. (1997). They trained a SVM using images of size 19x19
pixels. In the training set, two different classes are present, faces and non-faces.
Each training image is transformed in a vector of 391 components corresponding
to original intensity values. The resulting vector provides a feature space for use
by a SVM with only 1000 support vectors to classify between faces and non-faces.

Maydt and Lienhart (2002) trained a SVM using as high-dimensional feature
space provided by an image decomposition in Haar wavelets (Papageorgiou
et al., 1998). The training process is similar to (Osuna et al., 1997). Waring and
Liu (2005) used SVM with a feature set composed by spectral histograms from
filtered versions of the input image using Gabor filters, gradients and Laplacian of
Gaussian(LoG).
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Figure 2.7: Energy model and neural network architecture proposed by Osadchy et al Osadchy et al. (2007)
(Courtesy of Osadchy et al. (2007))

Adaboost-based Methods

Adaboost is an iterative machine learning method proposed by Freund and
Schapire (1997). Adaboost selects a set of weak classifiers, whose aims to minimize
the classification training error on a particular distribution of training samples. At
each iteration, adaboost updates the weight of each training sample such that the
misclassified samples get more weight in the next iteration.

A real time and highly effective face detector was proposed by Viola and Jones
(2001, 2004). They have demonstrated that a rapid and robust object detector can
be constructed using a cascade of linear classifiers learned with Adaboost. As a
feature set they used Haar-like features (Papageorgiou et al., 1998), such features
can be computed quickly and efficiently with an Integral image by a simple sum
of values in a rectangle subset of a grid. A very large number of descriptors (180
000 for a 24× 24 image) can be computed with such image representation.

In face detection, the cascade of linear classifiers is successively applied to all
image sub-windows. The first layer has a small number of weak classifiers that
reject a pre-defined percentage of negative sub-windows and detect nearly 100%
of the positive sub-windows in the image. The next layer is then trained to
reject the same percentage of negative sub-windows and detect nearly 100% of
positive sub-windows using the sub-windows that were improperly classified by
the previous layer. This procedure is repeated to provide a cascade of classifiers
that increasingly concentrate on a reduced number of difficult sub-windows. This
technique allows an improvement in the detection speed with excellent detection
and false positives rates. More details about face detection with cascades of linear
classifiers are explained in chapter 4.

Inspired by the method of Viola and Jones, many researchers have explored new
strategies to improve cascade’s performance. Three approaches have been used to
improve detection performances:
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• Training cascades with a new set of features to improve linear classifiers and
deal with illumination problems. Some extensions derive from the original
haar features proposed by Viola and Jones are rotated-haar features (Lien-
hart et al., 2003) (figure 2.8a) and Haar-like features for multi-view face
detection (Li et al., 2002; Xiao et al., 2004) (figure 2.8b). Feature sets based
in Local Binary Pattern (LBP) and Gabor features are also popular, some
examples of them are Haar Local Binary Patterns (Roy and Marcel, 2009),
Locally assembled Binary features (Yan et al., 2008a), Anisotropic Gaussian
Filters (Meynet et al., 2007) (figure 2.9a), Gabor features (Huang et al., 2005b)
(figure 2.9b), Gabor Features computed with an Integral Image (Xiaohua
et al., 2009) and Region Covariance (Tuzel et al., 2006; Pang et al., 2008).

• Optimizing the cascade learning methods. Chen and Chen (2008) proposed
meta-stages trained with SVMs to improve detection average and discard
more quickly negative examples. Brubaker et al. (2008) improved the
cascade’s learning using the characteristic points in the Receptive Operation
Curves (ROC). Wu et al. (2008) proposed Linear Asymmetric Classifiers
(LAC) to deal with the asymmetries problems for training cascades of
classifiers in face detection.

• Improving adaboost as feature selector for detecting faces. Eigenboost-
ing (Grabner et al., 2007), Kullback-Leibler boosting (Liu and Shum, 2003),
Vector boosting (Huang et al., 2005a), Floatboost (Li and Zhang, 2004)
and FFS (Forward Feature Selection) Wu et al. (2008) are examples of
improvements in the original adaboost method.

Face detection by appearance is the most used type of method by the computer
vision community, this is due to its superior performances compared to other
methods and the high improvement in computational power, which has made
possible to develop complicated machine learning algorithms in real time.

We will return to the problem of face detection with cascades of linear classifiers
and adaboost in chapter 4.

2.2 Face Recognition

Automatic face recognition has emerged as an active field of research driven by the
promise of applications in security surveillance, access control, human-computer
interaction, and many other domains. Face recognition includes two different
topics:

• Face Identification: An unknown image of a face or probe image is
compared against every record in a database (Gallery) and the face iden-
tification system attempts to answer the question ”Who is X?”. This type of
comparison is called a ”one-to-many” search (1:N).



22 Chapter 2. Detection and Recognition of Faces

(a)

+2

−2 −2 −1

−1+1 +1

+1

+1dx

dy

dx

dy

d
′

x

dx

d
′

x

dy

(b)

Figure 2.8: Haar-like feature sets.(a)Original Feature set proposed by Viola and Jones (2001) and oriented
Haar-like features proposed by Lienhart et al. (2003). (b)Sparse features represented in granular space
proposed by Li et al. (2002)

(a)

(b)

Figure 2.9: (a)Anisotropic Gaussian Filters proposed by Meynet et al. (2007) (Courtesy of Meynet et al.
(2007)). (b)Facial images based in Gabor filter as proposed by Huang et al. (2005b)(Courtesy of Huang et al.
(2005b))

• Face Verification: A claimed identity must be validated based on the image
of a face, and either accepting or rejecting the identity claim, in this case the
system try to answer the question ”Is this X?”. This type of comparison is
called a ”one-to-one” search (1:1).

Face recognition systems have been generally accepted by the public. However,
limited reliability of face recognition systems continues to inhibit its widespread
deployment.

Performances of an automatic face recognition system can be affected by five
factors: illumination variations, pose changes, facial expression, age variations and
occlusions (Abate et al., 2007; Zhao et al., 2003). Many approaches that combine
robust feature sets and dimensionality reduction techniques have been proposed
to deal with one or a combination of these factors.
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As illustrated by (Abate et al., 2007; Zhao et al., 2003) face recognition methods
are generally classified in three different types of approaches: Feature-based,
Appearance-based and Discriminitive-space-based methods.

2.2.1 Feature-based methods

In this methods, important facial features as eyes, nose, mouth are first extracted
taking into account their spatial position and appearance as well, then this
information is used in a structured-based classification.

A very early work (perhaps the first) feature-based classification system was
developed by Kanade (1977). This system used fiducial-facial angles and distances
between the eye corners, mouth extrema, chin-top and nostrils.

In a more recent work proposed by Ashraf et al. (2008), facial information is
modeled as a set of patches computed from different viewpoints (see figure 2.10).
Patches are initially aligned by a data-driven framework and then compared with
a aligned version of the gallery set using a probabilistic model.

Feature based methods consider geometric shape of face that could be important
in the recognition process. The inconvenience of this approach is that facial
features have to be reliable extracted. In many cases, this can be more challenging
than face recognition process itself.

2.2.2 Appearance-based methods

This kind of methods considers the whole facial image as input to the facial
recognition system. Usually facial information is considered as only intensity
values or described using a set of robust features as Gabor filters, color spaces
etc. Finally facial information is projected into a more discriminative space, where
the face recognition process can be performed.

A representative approach that uses pixel intensity values as facial information
was developed by Turk and Pentland (1991a), they proposed a facial image rep-
resentation computed with Principal Components Analysis. Such representation
encodes facial appearance by a set of images called eigenfaces. First a set of
training images is vectorized to obtain a matrix of data where each column
corresponds to an example in the training set. Finally Principal Component
Analysis is performed using this matrix and eigenfaces are computed from the
resultant eigenvectors. An example of Eigenfaces is shown in figure 2.11

A two dimensional version of PCA was proposed by Yang et al. (2004), the main
difference between eigenfaces and this method is that facial images do not need
to be transformed in vectors and the covariance matrix necessary for computing
PCA is constructed directly using the original images. The covariance matrix is
calculated taking into a count the variations on each dimension separately.

He et al. (2005), proposed Laplacianfaces. The main difference between Lapla-
cianfaces and Eigenfaces is that Laplacianfaces preserves the local structure by
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Figure 2.10: Viewpoint face recognition by patches proposed by Ashraf et al. (2008). (Courtesy of Ashraf
et al. (2008)). The patches from the probe image are compared with the gallery set using a probabilistic model

an adjacent graph and uses Laplacian Beltrami operator to find the eigenvectors
whose preserves 3D structure of the original input images.

The use of original image intensities in face recognition is easy to implement and
can be adapted to work in real time however such representations are very sensi-
tive to illumination changes and noise in the image, which are normally present
in real-world conditions. To avoid such problems, new facial representations that
are invariant to illumination conditions and image noise have been proposed by
the object recognition community. Many of the most successful representations in
face recognition uses Gabor filters combined with LBP (Local Binary Patterns).

In face recognition field, Local Binary Pattern (LBP) has been proposed by Ojala
et al. (1996). An example of a LBP is shown in figure 2.12. LBP assigns a
label to each pixel of the image by thresholding the 3 × 3 neighborhood of
each pixel with the center pixel value and considering the result as a binary or
decimal number. This operator encodes a set of facial micro-patterns from the
neighborhood appearance.

Other facial representation that uses Gabor filters is developped by Zhang
et al. (2005). They propose Histogram Sequence (LGBPHS) that combines the
magnitude part of Gabor feature with the LBP operator (Ahonen et al., 2006).

In a more recent publication, Zhang et al. (2007) have explored encoding the face
image with a Global Gabor Phase Pattern (GGPP) and a Local Gabor Phase Robust
Pattern (LGPP). These features are computed taking into account variations in
orientation for the Gabor wavelets at a given scale (or spatial frequency).

Tan and Triggs (2007) have explored a fusion of Gabor and LBP features to
improve recognition in complicated illumination conditions. First Gabor filters
with different scales and orientation are applied to the input images, at the same
time LBP is also applied, to finally combine them by a kernel method to improve
recognition rates.
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(a)

(b)

Figure 2.11: Example of eigenfaces proposed by Turk and Pentland (1991a). (a) Original dataset (b) First
twenty eigenfaces from the original dataset.

(a)

(b)

Figure 2.12: Local Binary Pattern proposed for recognizing faces by Ahonen et al. (2006). (a) Original dataset
(b) Result images after applying LBP operator in the original dataset.

Discriminative-space methods

Appeareance-based methods use higher-dimension feature spaces where not all
the dimensions are necessary in the face recognition process and made it not
suitable for real time applications. A common approach to deal with this problem
is to project the image into a more discriminative space with a suitable dimension
for fast face recognition. Another approach is to project the original image space
to an implicit higher dimensional feature space where the recognition process
could be considered as linearly separable. Some examples of discriminative-
space methods are Gabor-based kernel PCA (Liu, 2004), Discriminative Common
Vectors (Cevikalp et al., 2005, 2006), Kernel Locality Preserving Projections with
Side Information (KLPPSI) (An et al., 2008), MLASSO (Pham and Venkatesh, 2008)
and Volterrafaces (Kumanr et al., 2009)(see figure 2.16)

We find two main disadvantages in the preceding approaches. The first is that
they use computationally expensive features such as Gabor wavelets. The second
problem is that dimensional reduction techniques operate over a feature space of
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one or two-dimensions. In the case of higher order space feature, this space must
be reshaped into vectors. Vectorization breaks the natural structure and correlation
in the original feature space (Lu et al., 2008).

2.3 Age Estimation from facial images

Human faces are an important non-verbal source of information for human
interaction. In addition to expressions of emotion, the human face communicates
gender, ethnic origin and age Ramanathan et al. (2009).

Automatic estimation of age from facial images has been used for: Age-
Specific Human Computer interaction (ASHCI) (Lanitis. et al., 2004; Ramanathan
et al., 2009), security (Ramanathan et al., 2009; Ramanathan and Chellappa, 2006),
missing individuals retrieval (Ramanathan et al., 2009; Lanitis et al., 2002), internet
access control for minors (Guo et al., 2008b; Lanitis. et al., 2004), and surveillance
monitoring of alcohol or cigarettes vending machines (Geng et al., 2007; Guo et al.,
2008a), appearance prediction across aging (Suo et al., 2010), and targeting of
publicity (Guo et al., 2008a).

Despite the number of potential applications, automatic image-based age esti-
mation remains a challenging problem. Compared with other facial variations,
aging effects are very dependent on genetics (Guo et al., 2008b), life style,
location of residence (Guo et al., 2009) and weather conditions (Lanitis et al.,
2002). Furthermore, males and females age differently, and the apparent effects
of aging are often masked by makeup and facial accessories (Suo et al., 2010).
Accommodating the influence of individual differences to provide a general
method for estimating age based on facial images remains an open problem.

Most automatic image-based age estimation systems are composed by combin-
ing two components (Lanitis et al., 2002): an image representation and an age
estimation process. The age estimation process can be formulated as a multi-
classification problem (Lanitis. et al., 2004) where each age is considered a separate
class, a regression problem where an approximative age-function is computed
from a set of training images (Guo et al., 2009, 2008a) or an hybrid version that
combines classification and regression methods (Guo et al., 2008b).

For image representation, five different approaches are commonly used: An-
thropometric, Active Appearance, Age-Manifold, Feature-based and Aging simu-
lation models.

2.3.1 Anthropometric models

These models use cranio-facial information to determine an approximate age. An
example of this type of models is proposed by Kwon and Vitoria Lobo (1999). They
categorize ages in three different types: babies, young adults and seniors. Facial
features as eyes, nose, mouth, chin, virtual-top of the head and the sides of the face
are located, then using these positions a set of ratios is computed to distinguish
between the three categories above mentioned. The main inconvenient with these
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Figure 2.13: Training and patch images used by Kumanr et al. (2009) to project the original feature space in
other more discriminative space using volterra kernels(Courtesy of Kumanr et al. (2009))

methods is the imprecision of the age estimation process (more categorization
than estimation) due to facial feature localization. In addition these methods do
not use skin information ( texture information ) useful for distinguishing between
adulthood and old ages.

2.3.2 Active Appearance Models (AAMs)

Active Appearance Models (Cootes et al., 1998) are constructed from a set of
training images with hand-made landmarks. Such landmarks are combined with
the intensity image values to learn a statistical model that takes into account shape
and texture. Originally AAMs have been proposed for matching tracking and
recognition. More recently they have been widely used for an image analysis of
aging. For example, Geng et al. (2007) have described the AGing pattErn Subspace
(AGES) that uses AAMs as face models to create sequences of individual aging
images sorted in time order to make a representative subspace. For an unseen
face image, age is determined by the position of its projection in the subspace that
can reconstruct the facial image with minimum reconstruction error as show in
figure 2.14.

AAMs models have been widely used in age estimation from facial images, but
its principal inconvenience is the use of a hand-made marked image database to
compute the model.
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(a) (b)

Figure 2.14: AGing pattErn Subspace (AGES) proposed by Geng et al. (2007). (a) Feature extraction from
a time-ordered sequence of facial images. (b) Reconstruction of empty sub-space position to estimate age.
(Courtesy of Geng et al. (2007))

2.3.3 Age-Manifold models

Age-manifold models project facial images in a low-dimensional space in where
facial changes due to age can be determined with a higher precision than the
original space. For example, Guo et al. (2008a) proposed to learn an optimal-
subspace using an adequate space projection algorithm. In their experiments,
AAMs were used as an image representation and three different projection
algorithms ( Principal Component Analysis, Locally Linear Embedding and Or-
thogonal Locality Preserving Projection (OLPP) (Cai et al., 2006) ) were compared
to compute the optimal age manifold. Age is estimated in the optimal manifold
using an adjusted version of support vector machines as regresor.

2.3.4 Aging simulation models

With an Age simulation model, a statistical model is applied to an input image
to simulate its complete facial aging process. Scherbaum et al. (2007) learned a 3-
D aging-face-model from 3D scans of teenagers and adults using support vector
regression (figure 2.15). This model considers shape and texture to apply the aging
transformation whereas their model is well suited to children and adults but does
not work well for older people.

Figure 2.15: Age simulation example using the model proposed by Scherbaum et al. (2007). A 3-D face model
of a boy is transformed into a face at an appropriate target age, then the image is rendered in an appropriate
image-background. (Courtesy of Scherbaum et al. (2007))
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Suo et al. (2010) have described the use of a Markov process using a sparse graph
representation trained with a large annotated face dataset. In a first level of graph,
this method describes the appearance of the face and the hair. In a second level
facial details are refined using an AAM (Active Appearance Model) trained with
90 landmarks. In the third and last level, six different wrinkle zones are modeled
using Gabor wavelets and geometrical position.

2.3.5 Feature-Based models

Feature-based models describe facial aging structure with a set of discriminant
texture features. For example Guo et al. (2009), developed an age estimation system
based in two consecutive bio-inspired units. The first type of units S1 corresponds
to receptive fields at the mammalian visual cortex (cells of Hubbel and Wiesel).
These are modeled using a bank of Gabor filters with different orientations and
bandwidths. A second set of units called C1 corresponding to cortical complex
cells which are modeled using a non-linear operator applied over the S1 units.
Finally PCA is applied to reduce the feature-space dimension.

Three main advantages of feature-based models are:

• Their invariance to illumination variations and noise in the images.

• Absence of facial-landmarks in the training set used to build the model
(Only textural information is used).

• Age-Manifolds models can be used in addition to Feature-based models to
improve age estimation process.

The main inconveniences of these methods are

• The required large aging database that can be hard to collect.

• The high computational cost of the filter bank used to compute the facial
model.

2.4 Summary and Proposed Solution

Without giving a comprehensive overview, the chapter summarized facial analysis
algorithms which are of special interest for this thesis. Face detection, face
recognition and age estimation have been emphasized as important modules
used in Human-Machine Interfaces (HMI), security systems and law enforcement
applications.

In face detection, approaches based in appearance, specially those that uses
cascades of simple classifiers have showed a superior performance in terms of
speed and performance compared with others in the literature. In this scope, Haar-
like features have been widely used by their fast computation with an integral
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Figure 2.16: Age simulation example using the model proposed by Suo et al. (2010). An input image is
progressively transformed in a set of unseen facial ages. (Courtesy of Suo et al. (2010))

image representation, besides these are not robust to handling faces under extreme
light conditions and their use in real-word conditions requires a normalization by
the intensity covariance of each test window.

Many researches have focused their researches in finding new types of feature
sets robust to such variations without applying special-corrections of illumination.
Following this line, in this thesis we propose to use cascade of simple classifiers
using Gaussian derivatives computed with a half-octave pyramid. In addition, we
propose Heterogeneous-cascade of classifiers as a new cascade architecture that
takes into account the Gaussian derivatives’s computational complexity and local
appearance information as well to select its adequate position in the cascade.

In face recognition and age estimation, special attention has been fixed in
appearance-based models. As it was described above, image representations used
in appearance-models must be able to capture discriminative facial information
which is important to distinguish a subject’s identity and infer his/her age. To
address this problem we propose to use a new feature tensorial representation
based on binary Gaussian feature maps. This representation retains multi-
dimensional spatial structure used to compute the facial representation. In
addition, the binary Gaussian feature maps used in the tensors construction can be
computed with a half-octave pyramid, which unifies the complete facial analysis
using a unique computer vision tool as shown in figure 2.17.

The following chapters explain our solutions. In chapter 3, we present a
theoretical introduction of Gaussian derivatives features. In chapter 4, we
present the cascade of simple classifiers using Gaussian derivatives features. In
addition, chapter 4 describes a new framework to train speed-optimized cascades
of classifiers. In chapter 5, a theoretical explanation of the Histogram-Tensorial
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Gaussian representations is exposed in details. Finally in chapter 6 and chapter 7,
tensorial representations are applied to the face recognition and the age estimation
respectively.
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Les Dérivés Gaussiens comme descripteurs d’images

Ce chapitre est consacrée à la discussion des différents caractéristiques calculées à

partir de l’espace d’échelle gaussienne. Dans cette aspect, Gaussien dérivés sont

expliquées en utilisant deux domaines différents, le domaine de l’espace et le

domaine de la fréquence. Dans le domaine de l’espace, les différentes équations

pour roter les dérivés gaussiens sont présentées. Dans le domaine fréquentiel,

la transformée de Fourier des dérivés gaussiennes est expliquée pour montrer

les avantages et les inconvénients lorsque les dérivés d’ordre supérieur sont

considérés.

Plus tard dans le chapitre, nous explorons les filtres basés sur les dérivés

Gaussianes, spécialement le Jet gaussienne de second ordre et sa norme, le

Laplacien de Gaussienne (LOG) et la magnitude du gradient.

A la fin du chapitre, nous présentons la pyramide des demi-octave gaussienne

comme un moyen rapide de calculer les dérivées gaussiennes. Ce chapitre est

complété par l’explication détaillée de l’algorithme de la pyramide décrite dans

l’annexe A
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THE choice of feature set is an important part of the design of any recognition
system. Feature sets should be selected to accommodate factors such as object

classes under consideration, the sensor (camera) characteristics and the application
scenario (indoor/outdoor). In this scope, human faces belong to an special class
of 3-D objects that need a set of features robust to variations due to factors as
illumination, pose, facial expression, aging, etc.

In this thesis, we explore a facial analysis framework that uses Gaussian deriva-
tives as a local facial feature which can be calculated locally and robustly with
respect to image noise, image blur and scale changes. Feature spaces calculated
from Gaussian derivatives are widely used in invariant object recognition (Yokono
and Poggio, 2004; Schiele and Crowley, 2000), face recognition (Wright and Hua,
2009), image tracking and scene reconstruction (Lowe, 2004; Tola et al., 2009;
Winder and Brown, 2007).

This chapter is organized as follows, section 3.1 introduces the Gaussian Linear
Scale space. An overview of Gaussian derivatives up to the fourth order, their
”steerability” with respect to the image plane and their analysis in the frequency
space will be presented in section 3.2, in the same way Gaussian local jet, second
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local Gaussian jet norm and basic image features will be explained as well. Finally
theoretical analysis of the half-octave Gaussian pyramid is presented in section 3.3.

3.1 Gaussian Scale Space

The term Scale Space was introduced by Witkin (1984) to describe the blurring
properties of one dimensional signals. Koenderink and van Doom (1987) applied
this concept to images using the assumptions of causality, isotropy and homogene-
ity for revealing that the scale space must be essentially governed by the isotropic
diffusion equation dI

dσ = c∇2 I which shows that many physical phenomena can be
described using the Gaussian kernel:

G(x, y, σ) =
1

2σπ
e
− x2+y2

2σ2 (3.1)

Where σ is the size of the support in terms of the second moment (or variance).

Crowley and Stern (1984); Crowley and Sanderson (1987); Burt and Adelson
(1983) present the first notions for computing the scale space using a pyramidal
representation and finally Lindeberg (1994) formalized the concept of the discrete
Gaussian scale space.

Following the above mentioned, the Gaussian scale space can be computed as
follows:

I(x, y, σ) = G(x, y, σ) ∗ I(x, y) = 1
2σπ e

− x2+y2

2σ2 ∗ I(x, y)
(3.2)

Where I(x, y, σ) is the Gaussian scale-space representation of the image I(x, y)
and ”∗” is the convolution operator. An example of scale space is showed in
figure 3.1.

3.2 The Gaussian Derivatives

In Neuroscience, the classical receptive field of a sensory neuron is a region of
space in which the presence of a stimulus will alter the firing of that neuron. For
mammals, receptive fields have been identified for neurons of the auditory system,
the somatosensory system, and the visual system. Young et al. (2001) have reported
that receptive fields in the visual cortex can be well modelled using Gaussian
derivative operators up to fourth order.

To describe Gaussian derivatives, we introduce a particular notation which will
be used in the next chapters of this thesis. Let ~v(θ) = (cos(θ) sin(θ)), be the
directional vector that describes the desired orientation θ for a Gaussian derivative
of nth order. In addition, we define the x-axis parallel to ~v(0◦), which corresponds
to θ = 0 . The y-axis is defined by θ = 90◦ and is therefore parallel to ~v(90◦).
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σ = 0 σ = 1 σ = 2

σ = 4 σ = 8 σ = 16

Figure 3.1: Gaussian scale space representation at different values of σ. Image details are eliminated when the
scale value increases. (image from http: // th. physik. uni-frankfurt. de/ ~ jr/ physlist. html )

Following this notation, Gaussian derivatives of nth order at any orientation θ
are described by:

Gn,θ(x, y, σ) =
∂n

∂n~v
G(x, y, σ) (3.3)

3.2.1 Steering Gaussian Derivatives

Freeman and Adelson (1991) have shown how a basis set of Gaussian derivatives
can be ”steered” to a desired orientation by weighting the derivative terms with
the appropriate sine and cosines terms. This basis set is defined as follows:

Gxmyn(x, y, σ) =
∂m+n

∂mx∂ny
G(x, y, σ) m, n ∈ Z ≥ 0 (3.4)

where m and n correspond to derivative orders in x and y axis respectively, an
example of these basis is shown in figure 3.2.

Consequently, Gaussian derivatives up to fourth order at any orientation θ,
expressed in equation 3.3 can be defined in terms of their basis expressed in
equation 3.4 using Freeman and Adelson’s method as follows:



38 Chapter 3. Gaussian Derivatives as Image Descriptors

Gx(x, y,σ) Gy(x, y,σ)

G
x
2(x, y,σ) Gxy(x, y,σ) Gy2(x, y,σ)

G
x
3(x, y,σ) Gx2y(x, y,σ) Gxy2(x, y,σ) Gy3(x, y,σ)

Gy4(x, y,σ)Gx3y(x, y,σ) Gx2y2(x, y,σ)G
x
4(x, y,σ) Gxy3(x, y,σ)

Figure 3.2: Impulse responses for steering basis of Gaussian derivatives computed at σ =
√

2

G1,θ(x, y, σ) = cos(θ)Gx(x, y, σ) + sin(θ)Gy(x, y, σ)

G2,θ(x, y, σ) = cos2(θ)Gx2(x, y, σ)− 2 sin(θ) cos(θ)Gxy(x, y, σ)

+ sin2(θ)Gy2(x, y, σ)

G3,θ(x, y, σ) = cos3(θ)Gx3(x, y, σ)− 3 sin(θ) cos2(θ)Gx2y(x, y, σ)

+3 sin2(θ) cos(θ)Gxy2(x, y, σ)− sin3(θ)Gy3(x, y, σ)

G4,θ(x, y, σ) = cos4(θ)Gx4(x, y, σ)− 4 cos3(θ) sin(θ)Gx3y(x, y, σ)

+6 sin2(θ) cos2(θ)Gx2y2(x, y, σ)− 4 cos(θ) sin3(θ)Gxy3(x, y, σ)

+ sin4(θ)Gy4(x, y, σ)

(3.5)

Gaussian derivatives of first order capture information about changes of the
surface normal and measure the intensity of edges. The second order Gaussian
derivatives are good descriptors for image features such as bars, blobs and corners.
Higher order Gaussian derivatives are more sensitive to image noise and only
provide useful information in cases where the second order derivatives are strong.
On the other hand, they are highly selective to specific-local structures in the image
and can be useful to detect and recognize faces and to describe small facial changes
due to aging.
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3.2.2 Frequency-domain interpretation

Gaussian derivatives are not only used by their selectivity to a specific orientation
and frequency, to show this in this section, Gaussian derivatives will be analyzed
using the frequency domain. For the sake of simplicity and without loss of
generalization 1D Gaussians derivatives will be considered.

The Fourier transform of the Gaussian in the x-axis is written as follows:

G (ωx, σ) = F {G(x, σ)} = e−
σ2ω2

x
2 (3.6)

where ωx is the frequency variable. From equation 3.6 and taking into account
Fourier transform properties, it is possible to define the Fourier transform for the
Gaussian derivatives:

Gxnx (ωx, σ) = F
{

∂nx

∂xnx
G(x, σ)

}

= (−ωx)
nx F {G(x, σ)}

(3.7)

The Gaussian filter is a low pass filter and the derivatives are band-pass filters.
Differentiating the equation above with respect to ωx and computing the extrema
one, it is possible to determine the center frequency ω0 of the nth (spatial)
derivative.

d

dωx
Gxnx (ωx, σ) =

(

nx −ω2
xσ2

)

nx ωnx−1
x e−

σ2ω2
x

2 = 0

ω0 = ±
√

nx

σ

(3.8)

This equation states that the center frequency is coupled both with scale value σ
and to the order of the derivative, this is illustrated in figure 3.3. As the order of the
derivative increases, so does its center frequency and therefore, higher derivatives
enhance higher level of spatial detail.

3.2.3 Filters based in Gaussian derivatives

Based in Gaussian derivatives up to the second order, it is possible to compute a
set of invariant filters which are invariant to illumination variations and can be
easily computed using the Half-Octave Gaussian Pyramid algorithm. This filter
set has been used with success in texture, object and pixel classification (Griffin
et al., 2009; Lillholm and Griffin, 2008; Crosier and Griffin, 2008).

Mag(x, y, σ) =

√

(Gx(x, y, σ))2 +
(

Gy(x, y, σ)
)2

(3.9)
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Figure 3.3: Normalized power spectra for Gaussian derivatives up to fourth order computed at σ = 1, 2, 4
and 8. Gaussian derivatives act like band-pass filters

LoG(x, y, σ) =
(

Gx2(x, y, σ) + Gy2(x, y, σ)
)

(3.10)

γ(x, y, σ) = σ2

√

1

4

(

G2
x(x, y, σ)− G2

y(x, y, σ)
)2

+ Gxy(x, y, σ)2 (3.11)

where Mag corresponds to the gradient magnitude which is invariant to rotation
changes and is computed with Gaussian derivatives of first order, LoG is the well
known Laplacian of Gaussians operator, proposed by Lindeberg (1994) and γ is the
third component of the second local order Gaussian jet norm, proposed by Griffin
(2007). The main advantage of these filters is their invariance to strong changes in
illumination present in facial analysis, specially in the face recognition application.

3.2.4 The Gaussian Jet

Koenderink and van Doom (1987) argue that the local visual appearance in an
image neighborhood can be represented by a local Taylor series expansion of
the neighborhood, computed using local Gaussian derivatives. The coefficients
of this series constitute a feature vector, referred to as the ”Local Jet” that
compactly represents image appearance and can be used for indexing, matching
and recognition. Romeny et al. (1993) have shown that invariance to scale
and orientation can be obtained when the local jet is computed using Gaussian
derivatives.

It be Ixmyn(x, y, σ) an image filtered with a Gaussian derivative:
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Ixmyn(x, y, σ) =

(

∂m+n

∂mx∂ny
G(x, y, σ)

)

∗ I(x, y)

=
∂m+n

∂mx∂ny
(G(x, y, σ) ∗ I(x, y))

=
∂m+n

∂mx∂ny
I(x, y, σ)

(3.12)

From the equation above, the Gaussian jet of kth order is defined as follows:

~jk(x, y, σ) =
(

I(x, y, σ), Ix(x, y, σ), Iy(x, y, σ), ...., Ixmyn(x, y, σ)
)

~jk(x, y, σ) ∈ ℜ (k+1)(k+2)
2 with m + n = k

(3.13)

The Second Local Order Gaussian Jet Norm

A mathematical definition of norm for a second order Gaussian jet (k = 2) has been
proposed by Griffin (2007). This norm is defined as the minimum of scale space
norms from a set of profiles measured by the jet at a given point in the image and
is defined as:

∥

∥

∥

~j2(x, y, σ)
∥

∥

∥
=

(

σ2(I2
x+I2

y)+ 1
4 σ4

(

I2
x2+I2

y2

)

+ 1
4 σ4

(

(

I
x2−I

y2

)2
+4I2

xy

)

)
1
2 (3.14)

The Second Order Gaussian Jet norm satisfies all the mathematical charac-
teristics of a jet norm. In particular, it is unaffected by adding a constant to
image intensities (Griffin, 2007) and thus can avoid problems due to changes in
illumination .

3.3 The Half-Octave Gaussian Pyramid

Computing a scale invariant version of Gaussian derivatives for a M = N ×
N pixels image requires computing second order derivatives of the image at
log2(N) scales. A linear complexity pyramid algorithm for this calculation has
been known since the 1980’s (Crowley and Parker, 1984). The result of this
algorithm is a half-octave Gaussian Pyramid. An integer coefficient version of
this algorithm (Crowley and Riff, 2003) has been demonstrated using repeated
convolutions of the binomial kernel [1 2 1]. Implementations that compute such
pyramids on real time exist for the current generation of computer stations, to
demonstrate it, average time for the pyramid construction in several sizes of
images is recorded and reported in table 3.1

The Gaussian pyramid for an M = N × N pixels image can be computed in
O(M) operations using cascade convolution with re-sampling (Crowley and Stern,
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128× 128 256× 256 512× 512 1024× 1024 320× 240

Average construction time (ms) 0.507 2.181 9.072 36.852 2.233

Table 3.1: Average (10.000 runs) pyramid construction time for five different input data sizes (in pixels), on
an Intel R©Pentium R©, 2.80 Ghz

1984). This algorithm involves alternatively convolving with a Gaussian support,
and re-sampling the resulting image with a sample distance of

√
2. The effect of

cascade convolution is to sum the variances of the filters, so that the cumulative
variance is σ2

k = 2k and the resulting standard deviation is σk = 2
k
2 .

Interleaving re-sampling with convolutions decreases the number of image
samples while expanding the distance between samples. This has the effect of
dilating the Gaussian support without increasing the number of samples used for
the Gaussian, effectively increasing the scale. Aliasing is avoided (or minimized)
by the fact that the image has been low-pass filtered by previous convolutions. The
result is an algorithm with linear algorithmic complexity (i.e. O(M)) producing a
discrete representation of scale space with 2M total samples.

Let Pk(x, y, σ) be the kth pyramid image. The input image P(x, y, 0) is initially
convolved with a filter of σ0 = 1 to produce an initial image P0(x, y, 1).

k = 0 → P0(x, y, 1) = P(x, y, 0) ∗G(x, y, 1) (3.15)

where ”∗” is the convolution operator. The pyramid image (k = 1) is produced
by a convolution with the same low-pass filter, resulting in a cumulative scale
factor of σ1 =

√
2.

k = 1 → P1(x, y,
√

2) = P(x, y, 1) ∗G(x, y, 1) (3.16)

Each successive image in the pyramid is computed by convolving an expanded
Gaussian with a sampled image as described by the following recurrence equation:

Pk(x, y,
√

2
k
) = S√

2
k

{

Pk−1(x, y,
√

2
k−1

)
}

∗ E√
2

k {G(x, y, 1)} (3.17)

where S√
2

k{�} is the ”diagonal” resampling operator and E√
2

k{�} is an diagonal

expansion operator defined as follow:

S√
2

k

{

Pk−1(x, y,
√

2
k−1

)
}

=

{

Pk−1(x, y,
√

2
k−1

) if (x + y)2 mod (2k−1)

0 otherwise

(3.18)
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E√
2

k {G(x, y, 1)} =







G

(

x+y

2
k
2

,
x−y

2
k
2

, 1

)

if (x + y)2 mod (2k−1)

0 otherwise

(3.19)

The k = 0 image may be discarded or used for estimating a Laplacian image for
k = 1 if required. Because the k = 1 image has been smoothed with a Gaussian
low-pass filter of scale σ = 2, re-sampling with a sample distance of

√
2 will result

in an aliasing of less 1% (Crowley and Riff, 2003).

Computing Gaussian Derivatives

Gaussian Derivatives are easily calculated in the x and y axis directions from
the images in the pyramid by differences of adjacent pixels(for more details see
appendix A).

3.4 Summary

This chapter summarizes Gaussian derivatives from a theoretical and practical
scope. An overview of Gaussian scale space has been presented in section 3.1. In
section 3.2, Gaussian derivatives were explained and their equations for steering
them were presented. Moreover an analysis in frequency space was performed
to justify the use of Gaussian derivatives up to the fourth order for face image
detection and analysis. Furthermore a set of filters computed from the Gaussian
derivatives up to second order and the Gaussian jet were presented.

In, Section 3.3, the Half-Octave Gaussian pyramid was introduced. Implemen-
tations of this pyramid make it possible to compute Gaussian derivatives at video
rate and allow their use in real-world applications as face detection.





Détection de visages avec les Dérivés Gaussiennes

Le chapitre est consacre a l’explication de comme appliquer les dérivés de Gauss

pour la détection de visages avec une cascades de classificateurs. Formellement,

nous présentons une algorithme d’optimisation pour la cascade, basée dans le

coût de calcul des dérivés de Gauss et l’information capture pour chaque dérivée.

Dans ce processus, les dérivés dont son coût de calcul est réduit seront considérés

dans les premiers nœuds de la cascade où la charge de calcul est plus fortement

présente, la position des dérivés dans la cascade est choisi en tenant compte du

taux de détection dans le nœud actuel.

Tous les concepts présentés dans ce chapitre validées par les expériences

réalisées dans les bien connu base de données MIT-CMU et l’ensemble de données

FDDB. Des expériences ont montré les avantages et les inconvénients des dérivés

de Gauss dans la détection de visage. Outre les résultats de la charge de calcul et

le taux de détection lors de transformations de l’image différente que la rotation,

un bruit gaussien, le contraste et le flou sont également menées pour montrer les

avantages des dérivés de Gauss dans le processus de détection de visage.

- Dans le MIT + visage CMU ensemble de données des résultats en utilisant

des dérivés de Gauss ne sont pas supérieurs aux approches de l’art l’Etat dans la

détection de visage, néanmoins cet ensemble de données est composé de faible

qualité et des images numérisées qui affecte les performances de Gauss dérivés

fonctionnalités pour détecter les visages . Résultats dans le visage FDDB ensemble

de données montrent que les caractéristiques des dérivés gaussiens surpasser

Haar-fonctions dans presque 4 % de différence dans le taux de détection. Nous

tenons à souligner que FDDB est un visage difficile jeu de données avec les

conditions du monde réel (voir les sections 4.5.2 et 4.6.2).

- Dans le test ensemble de données sensibles, gaussien caractéristiques des

dérivés montrent une invariance à la rotation élevée et les variations de flou,

mais l’invariance faible pour la présence de bruit dans les images, cela est dû à

la présence d’ordres supérieurs dérivés (voir les sections 4.5.1 et 4.6.1).

- En charge de calcul, des cascades optimisée des fonctions gaussienne cal-

culée dérivés de Pentecôte une pyramide demi-octave gaussien présentent une

réduction de la charge de calcul (près de 30%) sur la version non optimisée en

utilisant les fonctionnalités et les mêmes calculées Haar-whit caractéristiques de la

images intégrales (voir les sections 4.5.3 et 4.6.3).
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4.1 Motivation

APractical method for real time face detection has been proposed by Viola and
Jones (2001). Their approach is based on two ideas:
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• The use of integral images to obtain an extremely large space of image
features based on difference of boxes (Haar like features).

• The use of a cascade of linear classifiers learned using Adaboost.

The combination of these two techniques has led to the first real time face
detector widely used in real world applications such as digital cameras and smart-
phones.

Unfortunately Haar features are sensitive to image plane orientation and low
resolution images. This constraints limits their use in real world scenarios where
the state-of-the-art face detectors based on those features are still not working
properly (Jain and Learned-Miller, 2010; Zhang and Zhang, 2010).

To address this problems we propose to use a cascade of Gaussian derivative
features up to the fourth order computed in real time with a half octave Gaussian
pyramid. In addition, we propose a speed-cascade optimization based in the com-
putational cost of Gaussian derivatives and the captured information necessary to
perform an adequate detection process.

The chapter is organized as follows: a theoretical background about cascade
of classifiers and its training is exposed in section 4.2; in section 4.3, Gaussian
derivatives are presented as a feature set for training cascades of classifiers. A
cascade framework for training speed-optimized cascades of Gaussian derivatives
features is presented in section 4.4 and experimental results are presented in
sections 4.5 and 4.6. Finally section 4.7 closes the chapter with some concluding
remarks.

4.2 Theoretical Background

4.2.1 The cascade Architecture

A cascade of classifiers is organized as a cascade of classification stages. The
algorithm hypothesizes the existence of a face at a particular reference position
(x, y) and scale s in the image. The reference position is used to specify a set of
image features that are sent to the cascade of linear classifiers.

The cascade of linear classifiers is composed of a number of stages. Each stage
combines the vote of a small set of weak classifiers h = (h1, h2, . . . , hT) in a strong
classifier H(z):

H(z) =

{

+1 i f ∑
T
i=1 aihi(z) ≥ b

−1 otherwise
(4.1)

with:

hi(z) =

{

+1 i f pj f j(z) < pjτ

−1 otherwise
(4.2)
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Where ai are the node weights, b is the node’s threshold, pj is the parity
coefficient (-1 or 1) which indicates the inequality’s direction and τ is the weak-
classifier’s threshold. Each weak classifier provides a yes/no decision based on
a single image feature f j(z) evaluated relative to the reference position and scale.
The committee of weak classifiers at each stage can vote to reject the hypothesis
at the reference position and scale, or to pass the hypothesis to a next more
computational expensive stage.This procedure is repeated to provide a cascade
of classifiers that increasingly concentrate to reduce the number of difficult sub-
windows as shown in figure 4.1.

From this description,the final detection rate of a cascade of classifiers D is
computed as the product of detection rates in each node, the same is valid for
the final false positive rate F as shown in the next equation:

D =
r

∏
i=1

di F =
r

∏
i=1

f alsei (4.3)

Where di corresponds to the detection rate in the node i and f alsei corresponds
to the false positive rate in the node i.

4.2.2 Training a cascade of classifiers

Training a cascade of classifiers requires solving an optimization problem where
each stage must detect almost all the positive instances (faces) and reject a
considerable percentage of negative ones (non-faces). The first layer has a
small number of weak classifiers that reject a pre-defined percentage of negative
examples and detect nearly 100% of the positive ones in the training dataset. The
next layer is then trained to reject the same percentage of negative examples and
detect nearly of 100% of positive examples using the detected false positives as a
result to apply the current cascade in a bootstrapping image dataset. This process
is summarized by Wu et al. (2008) in the algorithm 1

The Node-learning step in the algorithm 1 is composed by two algorithms used
in in the experimental section to train the cascades :

• Adaboost (Freund and Schapire, 1997) to find out the best weak classifiers
from a high dimensional feature set.

At each iteration, Adaboost procedure gets a new weak classifier taking into
account the classification error in a weighted distribution of the training set,
such distribution is updated at each iteration giving more importance at
the set of training examples misclassified by the precedent weak classifier
(higher weights are giving to these examples) thus focusing on the examples
that are hard to classify.

The principal advantage of Adaboost is that the training error converges
exponentially towards zero and the generalization performance grows at
each iteration when the null training error is reached by the algorithm.
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reject sub− window(Non Face)

H1(z) H2(z) H3(z) H4(z) Hn(z)

Input Image Output Image

Figure 4.1: Overview of the cascade architecture. At each stage, the classifier either rejects the sample and the
process stops, or accepts it and the sample is forwarded to the next stage

Algorithm 1 The cascade framework (Wu et al., 2008)

{Giving a set of positive examples P , a set of initial negative examples N and a
set of bootstrapping negative examples D.}.
{Giving a training learn goal G}.
{The output is a cascade H = (H1, H2, H3, . . . , Hn)}
i ← 0,H ← 0
repeat

i ← i + 1
Node Learning { Learn Hi using P and N , add Hi to H}
Remove correctly classified non-face patches from N
Run the current cascade H onD, add any false detection toN untilN reaches
the same size as the initial set.

until The learning goal G is satisfied

• LAC (Linear Asymmetric Classifier) (Wu et al., 2008) that guarantee an
optimal linear strong classifier (see equation 4.1) to accomplish the node-
learning goal, keeping the best trade-off between performance and compu-
tational cost. LAC is the result of solving the next asymmetric node learning
optimization:

max
a 6=0,b

Pr
x∼(x̄,Σx)

{

aTx ≥ b
}

s.t. Pr
y∼(ȳ,Σy)

{

aTy ≤ b
}

= β
(4.4)

Assuming a normal distribution (β = 0.5) in aTy term, the solution for the
above equation is:
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x̄ =

nx

∑
i=1

h(xi)

nx
, ȳ =

ny

∑
i=1

h(yi)

ny

Σx =

nx

∑
i=1

(h(xi)− x̄) (h(xi)− x̄)T

nx

Σy =

ny

∑
i=1

(h(yi)− ȳ) (h(yi)− ȳ)T

ny

(4.5)

a = Σ−1
x (x̄− ȳ) , b = aT ȳ

Where nx is the number of positive examples (faces), ny is the number of
negative examples (non-faces), xi are the positive examples (faces) and yi

the negative ones (non-faces)

4.2.3 Detecting faces with a cascade of classifiers

To detect faces with a cascade of classifiers, the most well known method is to use
a sliding window which is moved using a step size ∆x,y across multiples scales and
locations. The size of the sliding window or the size of the features in the cascade
can be modified by a factor s (usually fixed between 0.7071 and

√
2) in order to

detect faces at different sizes. In each visited location, the cascade is applied to
verify the presence of a face.

4.2.4 Computational Cost of cascade classifiers

A first measure to provide quantitative evaluation of run-time computational cost
was proposed by Viola and Jones (2004). This measure computes computational
load as the expected number of applied features. If the nodes i = 1, . . . , N pass
fractions pi of the search windows to the next node at a cost of Mi features for the
node i, then the expected computational cost or load T is giving by:

E[T] =
N

∑
i=1

Mi

i−1

∏
j=1

pj (4.6)

Later, Brubaker et al. (2008) proposed an extension of this equation which
computes the entire computational cost of deciding a sub-window for the node,
including the cost of features belonging to previous nodes.

E[Ti] = ri

i

∑
k=1

Mk (4.7)
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Algorithm 2 Detecting faces with a cascade of classifiers using a sliding window

{The input is an image I with dimensions (Iwidth, Iheight) }.
{Giving a cascade of classifiersH trained with a feature set F }.
{Giving a scale factor s and an initial size of sliding window (wwidth, wheight)}.
{Giving an step size ∆x,y}
{The output is a list L containing the positions (xd, yd) and sizes of detected
faces}
i ← 0, L ← ∅, (wtempWidth, wtempHeight)← (wwidth, wheight)
compute the image representation IR of the input image I
repeat

Run the cascade H on IR with a step size ∆x,y and record all the detect
positions in a temporal list L.
if s < 1 then

i ← i + 1
resize I by a scale factor si

ItempWidth ← Iwidth ∗ si

ItempHeight ← Iheight ∗ si

compute the image representation IR of the resized image I
else

i ← i + 1
resize the features in the cascade H by a scale factor si

wtempWidth ← wwidth ∗ si

wtempHeight ← wheight ∗ si

∆x,y ← [s∆x,y]
until {
if s < 1 then

(ItempWidth < wwidth) ∧ (ItempHeight < wheight)
else

(wtempWidth > Iwidth) ∧ (wtempHeight > Iheight)
}
merging similar detections in the list L to obtain a single detection per face

where:

ri = (1− pi)
i−1

∏
j=1

pj (4.8)

Where E[Ti] is the expected computational load for a stage i in the cascade, Mk is
the number of features in the node k and ri is the fraction of the decided sub-windows
in the node i.

Brubaker et al. (2008) defined the decided sub-windows in a node i as the sub-
windows that it does not pass on, either by rejecting the sub-window as a non-face,
or by accepting the instance as a face, if the node is the terminal one.

As shown in equation 4.7 the computational load is calculated based on the
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number of features applied by a layer. To extend more this concept and compare
cascades with different types of features, we propose to use the number of requests
per layer Rk.

E[Ti] = ri

i

∑
k=1

Rk (4.9)

A request is defined as a simple memory access made by the cascade to the image
representation (e.g. integral image, Half-Octave pyramid), multiple requests may
be necessary to compute a simple feature in a k node of the cascade.

For example, for computing Ix (see apendix A) in a specific position and scale
(x, y, σ), three requests to the half-octave Gaussian pyramid are necessary. In
the case of higher order derivatives such as Ix3 five requests are required. The
examples before mentioned are related only with σ available values in integer
levels of the pyramid, in the case of non-integers values, more requests could
be necessary. For more details about the number of requests in the half-octave
pyramid and the integral image, please see the Apendix A.

Computational load can be also expressed in a single image as a function of
image location (Fleuret and Geman, 2002). Starting from a black background, the
pixel intensities are modified proportionally to the number of requests applied to
that window. For smallest sub-windows, intensity is concentrated in the central
pixel of the window; for larger sub-windows, intensity is extend over a central
region with an area proportional to the sub-window analyzed.

4.2.5 Evaluation datasets

Two public available face datasets were used in our experiments to compute all
our ROC curves: MIT+ CMU and FDDB face datasets.

Sensitivity testing dataset

To analyse the performance of a cascade of classifiers when the input images are
under the effects of some transformations commonly present in real-world images,
we conducted an experiment using a sensitivity testing dataset. To do this, we
select a set of 20 images (see figure 4.2a) from different subjects present in the
Labelled Faces in the Wild dataset(LFW) (Wolf et al., 2009; Huang et al., 2007). All
the used images were normalized to a size of 250× 250 pixels. Notice than we use
the LFW images proposed by Wolf et al. (2009) in which the faces were rectified
in orientation and position with commercial face alignment software. Finally a
set of image-transformations are applied in the normalized images, the applied
transformations are:

• Rotation Each image is rotated sequentially by an angle varying between -25
and +25 degrees with a step of 3 degrees (see figure 4.2b).
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• Blurring : A Gaussian smoothing filter with scales ranging from 0 to 10 is
applied to each image (see figure 4.2c).

• Noise: Gaussian white noise with mean 0 and standard deviation between 0
and 0.2 is added to each image(see figure 4.2d).

• Contrast: For each image, the pixel intensities Ip are modified as stated by
Ip = αIm + (1− α)Ip, where Im is the mean intensity of the image and α is a
parameter varying from -2 to 1.0. (see figure 4.2e).

CMU + MIT dataset

The MIT+CMU face dataset was introduced by Rowley et al. (1998) for testing,
Some image examples of this dataset are shown in figure 4.3.

The first version of this test set contained 23 images with a total of 155 very low-
resolution faces. The complete set contains 130 images with 507 faces. However,
some of these annotated faces are manually drawn and these are counted as false
detections in some publications.

In our experiences we used the complete face dataset and a detected face is
considered as valid if the face sub-window contains all the fiducial points given
in the ground-truth and its size is not twice larger than the minimum square that
contains all the fiducial points.

The MIT+CMU dataset is one of the most widely used face datasets. Never-
theless, images contain artifacts that are not characteristic of those found in most
real-world applications. Thus, we need to conduct experiments with a realistic
dataset, such a dataset must contain images taken under real-world conditions
presented for example in a surveillance system or a normal multimedia device as
a mobile-phone cam or a digital camera. To deal with this problem we conduct
more experiments in a new challenging face dataset with a much larger number
of faces and more accurate annotations for the face regions than the MIT+CMU
dataset.

Face detection and dataset benchmark (FDDB)

The FDDB (Jain and Learned-Miller, 2010) is a new challenging data-set of face
images with a much larger number of faces and more accurate annotations for
the face regions than previous datasets. Some examples of this dataset are shown
in figure 4.4, the images in this dataset contain large variations in pose, lighting,
background and appearance.

The FDDB dataset contains:

• 2845 images with a total of 5171 faces.

• A wide range of difficulties includes occlusions, difficult poses, and low
resolution and out-of-focus faces.
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(a) Original sensitive dataset

(b) Rotation

(c) Blurring

(d) Gaussian White Noise

(e) Contrast

Figure 4.2: Example images from the sensitive test dataset (images modified from LFW (Wolf et al., 2009;
Huang et al., 2007))

Figure 4.3: Example images from the MIT + CMU face dataset

Figure 4.4: Example images from the FDDB face dataset
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• An effective specification of face regions as elliptical regions.

Two different experimental protocols have been used:

• 10 fold cross-validation: A 10 fold cross-validation is performed using a fixed
partitioning of the data set into ten folds. The cumulative performance is
reported as the average curve of the ten ROC curve computed in each fold.

• Unrestricted Training: Data outside the FDDB data set is permitted to be
included in the training set. The ten folds are separately used as validation
sets to obtain ten different ROC curves. The cumulative results are reported
as mentioned for the 10 fold cross-validation.

The ten-fold testing as well as the implementation-software of the algorithms for
matching detections and annotations are publicly available1. From this software,
a detection is scored taking into account the next equation:

S(di, lj) =
area(lj) ∩ area(di)

area(lj) ∪ area(di)
(4.10)

Two different types of ROC curves could be computed using the above men-
tioned score. The first one is the discrete score curve, where only the detection
scores superior to 0.5 are used an the second is the continuous score curves where
all the possible detections scores are included.

4.2.6 Cascade-Training Setup

To train all the cascades employed in this thesis, we use a training set containing
5000 example face images and 5000 initial non-face examples, all of size 24× 24
pixels. A set of 4832 face images are used for validation purposes. We used
approximately 2,284 million non-face patches to bootstrap the non-face examples
between nodes. We require that every node have 50 percent false positive rates
and the cascade training process is terminated when there are not enough non-
face patches to bootstrap. In order to make the face detector run at video speed,
the first node uses only seven features, we use more features as the node index
increases (the last node used 200 features).

4.3 Gaussian Derivatives as a feature set

The choice of feature set has important impact on detection rate as well as the
scan speed in the final cascade. We have explored a feature space composed
by derivative orders up to four. Derivatives are computed at four different
orientations θ = {0, π/4, π/2, 3π/4} in a 24 × 24 pixel window for all the real

1http://vis-www.cs.umass.edu/fddb
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sample positions available in a Gaussian pyramid of three levels σ =
{√

2, 2, 2
√

2
}

. The final set of Gaussian derivatives features available in our experiments is 8064
derivatives.

To test the performance of Gaussian derivatives features, we define four dif-
ferent feature sets as show in Table 4.1. We train four cascades (one for each
feature set) using the algorithms and the training sets explained in preceding
sections. Each cascade has 21 nodes, except for the cascade trained with the
feature set number 3 that has 22. From each trained cascade, we measure the node
performance as the false negative rate in the validation set for each node in each
cascade and we show the results in the Figure 4.5. The experiment demonstrates
that adding high-order Gaussian derivatives improves performance. In this case,
detection outperforms higher orders in the first three nodes and then for deeper
nodes the Gaussian derivatives up to fourth order dramatically improve the node-
performances.

The node performance measure is useful because it directly compares the ability
of each feature set to achieve the node-learning goal with a small number of
features per node and number of nodes in the cascade.

4.3.1 Experimental Protocols

We conducted several experiments to demonstrate the performance of Gaussian
derivatives compared to Haar-features in the face detection problem, the experi-
ments are divided as follows:

• Sensitivity analysis: we made a sensitive testing dataset, where transfor-
mations are applied in the images for conducting experiments to evaluate
their influence in the cascade performance (detection rate), We applied all the
cascades in our experiments to each image in the transformed dataset. For
the transformation parameters listed in section 4.2.5, we record the detection
rate over the set of images and the number of eventual false positives. The
results are reported in sections 4.5.1 and 4.6.1.

• Comparative results in test datasets: The performance of the cascade is
commonly measured by a ROC (Receptive Operator Curve) calculated with
an evaluation dataset. In all our experiments we resize the sliding window

Feature Set Derivative Orders Total

1 Only First Order 1792

2 First + Second Orders 4032

3 First + Second + Third Orders 5824

4 All Available Orders 8064

Table 4.1: Four different feature sets using different Gaussian derivative orders at pyramid levels of σ =
{√

2, 2, 2
√

2
}

and orientations θ = {0, π/4, π/2, 3π/4}
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Figure 4.5: Node performances for the four cascades trained with the feature sets show in the table 4.1. The
node error decreases when the derivative order rises, specially for deeper nodes in the cascade. Notice also that
the cascade trained using the feature set 4 has only 21 nodes which show a high performance of the features to
reach the fixed node detection and positive rates

by a factor s = 1.20 which is a common used value in face detection
benchmarks. Finally, we compare all our results with a cascade of Haar-like
features to show the performance of our approach compared with the state-
of-the-art methods (details about Haar-features in appendix A). The results
are reported in section 4.5.2 and 4.6.2.

• Computational load: For all our cascades, we analyze the computational
load in the FDDB face dataset, using an scale factor s = 0.833. The
computational load is calculated as is explained in section 4.2.4 and we report
the results in sections 4.5.3 and 4.6.3.

All the cascades tested in this thesis were trained with the same conditions and
training set parameters described above and all the evaluations are performed
with strictly identical parameters.

4.4 Speed-optimized Cascades of Gaussian Derivatives

In the preceding section, we have observed the effects of adding Gaussian
derivative features up to fourth order in the cascade framework. We have observed
that a strong improvement is obtained in the deeper nodes of the cascade. At
the same time, higher order derivatives have a slightly higher computational cost.
Thus for performance reason, it is better that they be used only in deeper levels of
the cascade.

From this assumption, many researchers have proposed to combine different
feature types in the same cascade to improve the detection speed. Meynet et al.
(2007) proposed use in the first five nodes Haar-like features and in the final nodes
they used anisotropic Gaussian filters. Xiaohua et al. (2009) use Haar-like features
in the first nodes and then an approximation of Gabor filters computed from an
integral image.

Despite the detection speed improvement different image representations must
be computed and this could be a trade-off not desired in embedded systems due
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to memory space retained for each of they during the detection process in a single
image. We have explored the use of a new optimized cascade framework that uses
always the same image representation, in our case the scale space representation
computed by the Gaussian pyramid.

Our cascade framework takes advantage from the information captured for
each derivative in order to keep the performance of the cascade. Experiments
performed have showed that Gaussian derivative features of first order retain edge
information, second orders retain blob shapes and superior orders retain detailed
information that could be used to distinguish a face.

From the preceding premise, we can expect that Gaussian derivatives features
of lower order are going to perform well in the first nodes when not much
information is necessary to discriminate a face and features of lower computational
cost are expected due to high quantity of windows to analyze. In other way higher
orders could be useful in only deeper nodes where the difference between a face
and a background image becomes more difficult and the quantity of windows
is minimal to apply computational expensive features. A graphical example is
shown in figure 4.6.

To deal with this, we propose a new Optimized cascade framework that uses
the mathematical and computational properties of Gaussian derivatives features
to improve detection speed without considerable lost of performance. The
algorithm 3 summarizes our approach to train speed-optimized cascades.

Algorithm 3 The speed-optimized cascade framework

{Giving a set of positive examples P , a set of initial negative examples N , a set
of positive validation examples V and a set of bootstrapping negative examples
D.}.
{Giving a training learn goal G}.
{Giving a training learn goal per layer GL}.
{Giving an ensemble of p feature sets F =

(

F1, F2, F3....Fp

)

}.
{The output is a cascade H = (H1, H2, H3, ..., Hn) }
i ← 0,H ← 0,p ← 1
repeat

i ← i + 1
Node Learning { Learn Hi using P , Fp and N , add Hi to H}
Run the current node Hi on V to compute di

while di < GL do

p ← p + 1
Node Learning { Learn Hi using P , Fp and N , add Hi to H}

Remove correctly classified non-face patches from N
Run the current cascade H onD, add any false detection toN untilN reaches
the same size as the initial set.

until The learning goal G is satisfied

To test the viability of our approach for keeping the detection performance, we
train four different cascades fixing the parameter p from the algorithm 3 to p =
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Figure 4.6: Graphical example of our speed-optimized cascade framework for different values of p. The
distribution of features in each node of the cascade takes in consideration the computational cost of each
derivative order

Figure 4.7: Accumulative error rate across
the cascade nodes using p = {1, 2, 3, 4}
in the speed-optimized cascade training
framework. Adding higher derivative order
decreases the error rate, specially after the
node number 5.
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{1, 2, 3, 4}, then we compute the accumulative error rate across the cascade nodes
and we report the results in Figure 4.7.

4.5 Experimental Results with non-optimized cascades

This section presents all the comparative experimental evaluation using a non
speed-optimized cascade of Gaussian derivative features and a cascade of Haar
features, both of them trained using Adaboost + LAC.

4.5.1 Sensitivity Results

The results in the sensitivity test data set are shown in figure 4.8.

The sensitivity of rotation can be observed in figure 4.8a, in this case Gaussian
derivatives outperform Haar features cascades. In effect, the detection rate for
cascades of Gaussian derivatives is 100% for angles between -13 and +5 degrees
and decreases significantly for larger rotations. On the other hand Haar features
are very sensitive to rotation variations with only a detection rate of 100%
for angles between -3 and +3 degrees. The number of false positives for this
experiment was zero in all the cases.

The results of the influence of blurring are reported in figure 4.8b. One can
observe that the detection rate if still 100% for an standard deviation of 8.3 and
decreases slowly after. Compared with a cascade of Haar features which has still
a detection rate of 100% for an standard deviation of 5 and then decreases quickly.
Any false positive was noticed in this experiment.

Tolerance to contrast is reported in figure 4.8c, as we can see cascades of
Gaussian derivatives has competitive results compared with the Haar-features
cascade. Notice that in our cascade no intent to normalize illumination was
performed. Experiments using illumination normalization showed no noticeable
improvements.

The influence to noise is reported in figure 4.8d. Despite the robustness to noise
of Gaussian derivatives cascade, the cascade of Haar features outperform with
100% of detection rate (any false positive) for all the standard deviation values
used in the Gaussian noise, compared with the cascade of Gaussian derivatives
that has 100% of detection rate for values lower than 0.028 (one false positive for a
value of 0.06) and decreases slowly as the noise increases. This results are due to
the variability to noise of higher order Gaussian derivatives (up to fourth order),
this problem was explained in section 3.2.2,

4.5.2 Results on test data sets

In order to compare our approach with other state-of-the-art methods, we consider
reported results in the MIT+CMU face data and we show the results in figure 4.9
and table 4.2. As we can see, Gaussian derivatives do not achieve a very good
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Figure 4.8: Results of comparing a non-optimized cascade of Gaussian derivatives with a cascade of Haar
features in the sensitivity testing dataset. In this experiment Gaussian derivatives showed a high invariance
to rotation angle (a) and blurring (b) in the other hand a high invariance to image noise is exhibit by Haar
features
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performance compared with the state-of-the-art face detectors. In this scope, we
obtain almost 6 % of detection rate difference with a low number of false positives
and 4% of difference with a bigger number of false positives.

This results confirm the sensitivity to noise when Gaussian derivatives of higher
order are used. We can observe the following faults in the testing data set as:

• Our cascade was trained to deal with a high resolution facial images that
can be found in recent multimedia systems as mobile phones and digital
cameras. The MIT+CMU face data set is composed images that were scanned
from newspapers and are not a representative example of images obtained
from modern digital cameras.

• Aliasing in some images of the data set due to a low-quality scanning
process. In effect, Aliasing is rarely seen with digital cameras, because digital
cameras almost always use intentional blurring in front of the CCD to avoid
aliasing. In our case artefacts caused by aliasing are increased due to high-
frequencies presence.

To confirm the problems founded in the MIT+CMU face data set, we have tested
our cascade using the FDDB face dataset and we show the results In figure 4.10.
For this data set the evaluation was performed using the discrete and continuous
scores as is shown in figures 4.10a and 4.10b respectively. In this case, the cascade
of Gaussian derivative features outperform the cascade of Haar features with
almost a 8% of difference in the detection rate (area under the ROC). Results in
this data set confirms the high-precision and selectivity of Gaussian derivatives
features to locate a face in an image.

4.5.3 Results in computational load

Results comparing the computational load of a non-optimized cascade of Gaussian
derivatives with a cascade of Haar features are reported in figure 4.11. Despite the

False Positives

Method 6 10 31 46 50 65 78 95 167

Viola and Jones (2004) - 0.783 0.852 - 0.888 0.898 0.901 0.908 0.918

Garcia and Delakis (2004) - 0.905 0.915 - - 0.923 - - 0.931

Osadchy et al. (2007) - - - - - 0.830 - - -

Li and Zhang (2004) - 0.836 0.902 - - - - - -

Luo (2005) 0.866 0.874 0.903 - 0.911 - - - -

Schneiderman (2004) 0.897 - - 0.957 - - - - -

Rowley et al. (1998) - 0.832 0.86 - - - - - 0.901

Haar features (Wu et al., 2008) - - 0.906 0.915 0.917 0.920 0.923 0.926 0.933

Gaussian Derivatives - 0.833 0.859 0.869 0.870 0.874 0.878 0.883 0.906

Table 4.2: A comparison of detection rates on the CMU+MIT data set for several standard detectors
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Figure 4.10: Performance comparison of a non-optimized cascades of Gaussian derivatives features with a
Haar-features cascade in the FDDB face dataset. As we can see, the non-optimized cascade of Gaussian
derivatives outperform in this dataset.
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Figure 4.11: Computational Load comparison between a cascade of Haar features and a non-optimized cascade
of Gaussian derivatives. The number of accumulative requests (b) for a cascade with Gaussian derivatives is
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fast computation of Haar features using integral image and the superior number
of decisions taken in earlier nodes, the cascade of Gaussian derivatives, requires
fewer requests to the pyramid to accomplish a better task in the FDDB face
dataset (see figure 4.11b); as a consequence the computational load required for
the cascade of Gaussian derivatives is less than the Haar-features cascade in the
nodes in the cascade (see figure 4.11c). Also notice than the cascade of Gaussian
derivative features has only 21 layers compared to 22 in the Haar features cascade
which is an advantage in memory requirements for storing the cascade in possible
embedded systems where the amount of available memory is limited.

In figure 4.12, we report an example of computational load as a function of image
position, notice than the sub-window positions with a level of intensity higher
have required more requests and as consequence more computational load to be
discriminated by the cascade.

4.6 Experimental Results with speed-optimized cascades

This section presents all the comparative experimental evaluation using a speed-
optimized cascade framework.

4.6.1 Sensitivity Results

In figure 4.13, we report the comparative results in the sensitivity testing data set
using different values of p.

The results of sensitivity to rotation are shown in figure 4.13a. In this ex-
periment, the optimized cascades continues to operate in the same range of
orientations as the non-optimized version with a range of -12 to +8 degrees
(detection rate of 100%). Clearly the speed-optimized cascades are not influenced
by the variations in rotation.

The sensitivity of blurring using the speed-optimized cascade framework can
be observed in figure 4.13b, notice than cascades trained using p = 2 have a

(a) Original Image (b) Cascade of Haar-features (c) Non-optimized cascade

Figure 4.12: Computational load shown as function of image location: a) Image Original, b)with a cascade
of Haar features and c) with a non-optimized cascade of Gaussian derivatives. notice than the sub-window
positions with a level of intensity higher have a high computational load. In the case of Gaussian derivatives
features the computational load is reduced as we can see by its intensity levels (c)
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better performance with almost a 100% of detection rate for standard deviations
lowers than 9 (any false positive was reported for the optimized cascades in this
experiment).

Analysis to contrast variations are reported in figure 4.13c, once again, the
speed-optimized cascade trained using a value of p, outperform with a detection
rate of 100% for values of α lower than 0.5. Any false positive was perceived in
this experiment.

Finally, the influence to noise is reported in figure 4.13d, as we can see the
cascade trained using p = 2 outperform the rest of optimized cascades with
a detection rate of 100% for standard deviations of Gaussian noise lower than
0.05. In this experiment, one false positive was detected at 0.06 for the optimized
cascades with values of p = 1 and 2 and other one was detected at 0.05 with a
value of p = 3.

4.6.2 Results on test data sets

In figure 4.14, we present the results of performance using the MIT+CMU face
data set, as we can see, the cascades trained using the speed optimized framework
continues to operate satisfactorily compared with the non-optimized cascades, in
terms of detection rate and false positive rate.

In figure 4.15, results of detection performance for optimized cascades in
the FDDB data set are reported using both scores continuous and discrete (see
figures 4.15a and 4.15b respectively). In both cases the optimized cascades work
with a similar performance than non-optimized cascades.

4.6.3 Results on computational load

In figure 4.16, we report the results of computational load for the speed-optimized
cascades. In all cases, despite the similar number of requests made at the pyramid
(see figure 4.16b), the optimized cascades increases the number of decision taken
(see figure 4.16a), specially in earlier nodes where the number of sub-windows
to visit is higher and the number of features is lower. In this experiment is also
remarkable how the computational load for the optimized cascades is decreased
in almost a half compared with the non-optimized cascades (see figure 4.16c), from
the precedent results, we can expect an improvement in detection speed in almost
twice compared with the non-optimized cascades. Notice also as the number of
nodes necessary to accomplish the learning constraints decreases in one for the
optimized cascades trained using p = 2. Finally, an example of computational
load as function of image is shown in figure 4.17, clearly optimized cascades
outperform non-optimized cascades in terms of necessary requests to the Gaussian
pyramid.
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Figure 4.13: Results of comparing different optimized cascades of Gaussian derivatives in the sensitivity
testing dataset. No considerable differences in performance between the non-optimized and the optimized
model were noticed.

4.7 Discussion and Conclusion

In this chapter, we have shown that Gaussian derivatives features can be used
to efficiently detect faces in images. Despite the excellent performance of state-
of-the-art face detectors in the MIT+CMU face dataset, we shown that Gaussian
derivatives outperform in more realistic data sets as the FDDB face data set where
the images are similar to these used in our days. In addition, we demonstrate
the invariance of cascades of Gaussian derivatives features to image variations as
rotation, blurring, noise and contrast using the sensitivity test data set and we
have compared all our results with these obtained with a cascade of Haar features
which is considered the base line for the face detection approaches.

Furthermore, we have proposed a new speed optimized cascade framework that
considered the computational cost of Gaussian derivatives to assign them a correct
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Figure 4.14: Performance comparison of optimized-speed cascades of Gaussian derivatives features in the
CMU+MIT face dataset
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Figure 4.15: Performance comparison of speed-optimized cascades of Gaussian derivatives features in the
FDDB face dataset

node position in the cascade. (higher order derivatives are positioned in the last
nodes where the number of sub-windows is minimum), besides the captured type
of information captured for each derivative order is also considered. We have
proved with an extensive experimental evaluation that this optimization improves
detection speed in almost twice compared with a non-optimized cascade version.
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Figure 4.16: Computational Load comparisons in the optimized-cascade framework for different values of p
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Figure 4.17: Computational load shown as function of image location for different values of p in the speed-
cascade framework
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(a)

(b)

Figure 4.18: Example of detections using a non-optimized cascade of Gaussian Derivatives. (a) MIT+CMU
and (b) FDDB face dataset



Tenseurs d’Histogrammes de representations Gaussiennes

Dans ce chapitre nous proposons un modelé tensoriel basé en Histogrammes

des cartes binaires Gaussiennes pour l’analyse du visage. Le chapitre définit et

analyse les différentes étapes pour construire une représentation tensorielle en

tenant compte les différentes dimensions possibles comme l’orientation, position

et l’échelle. Dans ce chapitre, nous considérons aussi deux différentes architectures

tensorielles, la première considère chacun des ordres de dérivés comme un tenseur

séparée et le second considère la corrélation entre les dérivés lorsque l’ordre des

dérives est ajouté en tant que dimension supplémentaire dans le tenseur finale.

Finalement dans le chapitre, l’analysé multilinéaire en composantes Principales

est présenté comme un algorithme permettant de réduire les dimensions d’un

tenseur sans perte de son structure 3-D en raison de la vectorisation et aussi comme

une méthode statistique pour capturer les informations les plus discriminants de

chaque dimension considérée dans les tenseurs.
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5.1 Motivation

AS seen in chapter 2(figure 2.1), after a face has been detected, an image
representation must be computed for extracting information from the face, to

do this, many of the most successful approaches in face recognition (Zhang et al.,
2005, 2007; Tan and Triggs, 2007) and aging estimation (Guo et al., 2009) use a space
of features based in Gabor Wavelets. These features are combined using statistical
tools such as Principal Component Analysis (PCA) (Turk and Pentland, 1991a),
Orthogonal Laplacian faces (Fu and Huang, 2008), Discriminative Common
Vectors (Cevikalp et al., 2005, 2006), Kernel Locality Preserving Projections with
Side Information (KLPPSI) (An et al., 2008), MLASSO (Pham and Venkatesh, 2008)
and Volterrafaces (Kumanr et al., 2009).
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We find two main disadvantages in the preceding approaches. The first is that
they use computationally expensive features such as Gabor wavelets. The second
problem is that dimension reduction techniques operate over a feature space of one
or two-dimensions. In the case of higher order space feature, this space must be
reshaped into vectors. Vectorization breaks the natural structure and correlation
in the original feature space (Lu et al., 2008).

To deal with these problems, we have explored the use of a simple set of
Gaussian Jet maps calculated with a linear complexity half-octave Gaussian
pyramid. Finally, we use a tensorial representation to conserve the spatial
structure of the computed feature space and we apply Multilinear Principal
Component Analisys (MPCA) (Lu et al., 2008) to reduce the dimensionality in a
tensorial fashion.

The rest of the chapter is developed as follows, we present an overview of
Multilinear Principal Component analysis in Section 5.2. In Section 5.3, we explain
Histograms of Gaussian Binary Maps while section 5.4 presents our tensorial
representation. Section 5.5 provides two different methods to apply MPCA in our
tensorial representation and some conclusions are presented in Section 5.6.

5.2 Theoretical Background

Tensorial algebra is a huge field in mathematics and physics with a well-developed
theory which is out of the scope of the thesis. Nevertheless in the next sections,
we are going to present the necessary theoretical background for constructing
tensorial representations using Gaussian derivatives.

5.2.1 What is a Tensor?

A Tensor is a multidimensional array, More formally, an N-way or Nth-order tensor
is an element of the tensor product of N vector spaces, each of which has its own
coordinate system. A first-order tensor is a vector, a second-order tensor is a
matrix, and tensors of order three or higher are called higher-order tensors. Some
examples of real world applications that use tensorial representations include:

• Image Sequences (2D + time)

– Video

– Ultrasound

– Satelite

• Volumes (3D)

– Magnetic Resonance (MR)

– Computer Tomography (CT)

• Volume Sequences (3D + time)
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– Magnetic Resonance (MR)

In computer vision, tensorial representations have been used with success in
gait recognition (Lu et al., 2008; Tao et al., 2007), face recognition (Geng et al., 2011;
Yang et al., 2004; Yan et al., 2007b) and visual contents analysis. In this thesis we are
going to use tensorial representations only as way to represent feature information
without loss of 3-D structure. In computer vision, tensorial representations have
been used to represent a sequence of images in its natural space rather than use
them for keeping the information structure in a multidimensional feature space.

5.2.2 Multilinear Principal Component Analysis (MPCA)

Multilinear Principal Component Analysis was proposed by Lu et al. (2008) as
an algorithm of dimensional reduction for tensorial objects. In the category of
multilinear subspace learning, MPCA is considered as a tensor-to-tensor projection
where the initial tensor is projected to another tensor which contains the most
discriminative information captured in the initial tensor. In this section MPCA
will be explained and its algorithm exposed.

Let {Xl ∈ R
I1
⊗

R
I2 ... ⊗

R
IN , l = 1, . . . , L} a set of L tensors examples of Nth-

order each one. The main objective of MPCA is to find a set of N projection
matrices {Ũ(n) ∈ R

In×Pn , Pn < In, n = 1, . . . , N}, such that a projected tensor
{Yl ∈ R

P1
⊗

R
P2 ... ⊗

R
PN , l = 1, . . . , L} with Ũ(n) captures most of the variations

observed from the original set of tensor samples1 To solve this, Lu et al. (2008)
propose the algorithm 4

Once the projected tensors Ym have been calculated, each one is rearranged
in a vector yl , ordered in descending order taking into account the computed
covariance values in the projected set and only d components by vector are
retained with d ≤ L.

In all our experiments we used a Matlab R© implementation of the MPCA
algorithm provided by Lu et al. (2008)2

5.3 Histograms of Binary Gaussian Feature Maps

For the specific task of image classification, a robust representation of image infor-
mation is desirable. This representation must be invariant to illumination varia-
tions and should not be excessively expensive in computational cost. Histograms
of Binary Gaussian Feature Maps (HGBM) provide such a robust representation and
can be used to provide a visual alphabet (Lillholm and Griffin, 2008).

The overall framework to compute HBGM is illustrated in figures 5.2 and 5.1,
following the next sequence of operations:

1Vectors are denoted by lowercase boldface letters, matrices by uppercase boldface, tensors by
calligraphic letters,

⊗

denotes the Kronecker product and the n-mode product of a tensor A by a
matrix U is denoted by A×n U.

2http://www.dsp.utoronto.ca/ haiping/index.php
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Algorithm 4 MPCA algorithm proposed by Lu et al. (2008)

{Giving a set of tensor samples {Xl ∈ R
I1
⊗

R
I2 ... ⊗

R
IN , l = 1, . . . , L}}

{The output is a set of low-dimensional representations {Yl ∈
R

P1
⊗

R
P2 ... ⊗

R
PN , l = 1, . . . , L}}

Step 1 (Preprocessing): Center the input samples as {X̃l = Xl − X̃ , l = 1, . . . , L}
where X̃ = 1

L ∑
L
l=1 Xl is the sample mean.

Step 2 (Initialization): Calculate the eigen-decomposition of Φ
n∗ = ∑

L
l=1 X̃l(n) ·

X̃T
l(n) and set Ũ(n) to consist of the eigenvectors corresponding to the most

significant Pn eigenvalues, for n = 1, . . . , N.
Step 3 (Local Optimization):

• Calculate {Ỹl = X̃l ×1 Ũ(1)T ×2 Ũ(2)T
. . .×N Ũ(N)T

, l = 1, . . . , L}

• Calculate ΨY0
= ∑

L
l=1 ‖Ỹl‖2

F (the mean Ỹl is all zero since X̃l is centered)

• for k = 1 : K do

for n = 1 : N do

Set the matrix Ũ(n) to consist of the Pn eigenvectors of the matrix
Φ

n = ∑
L
l=1(Xl(n) − X̃(n)) · Ũ

Φ(n) · ŨT
Φ(n) · (Xl(n) − X̃(n))

T where

Ũ
Φ(n) = Ũ(n+1) ⊗ Ũ(n+2) ⊗ . . .

⊗

Ũ(N) ⊗ Ũ(1) ⊗ Ũ(2) ⊗ . . .
⊗

Ũ(n−1)

corresponding to largest Pn eigenvalues
Calculate {Ỹl , l = 1, . . . , L} and ΨYk

if (ΨYk
−ΨYk−1

) < η then

break and go to step 4

Step 4 (Projection): The feature tensor after projection is obtained as {Ỹl =
Xl ×1 Ũ(1) ×2 Ũ(2) . . .×N Ũ(N)}

1. From an input normalized image a Half-Octave Gaussian Pyramid denoted
here by PYR is build at different levels {σ1, σ2, σ3, . . . , σK}.

2. Gaussian features Maps are computed using a bank of t Gaussian Filters (see
chapter 3) fixed at different orientations (θ1, θ2, · · · , θm) and computed using
the above pyramid (same values of σ), this operation is denoted here by:

{

F(1,θ1:m)

(

PYR(σ(1:K))

)

, F(2,θ1:m)

(

PYR(σ(1:K))

)

, . . . ,

F(t,θ1:m)

(

PYR(σ(1:K))

)} (5.1)

3. A Local Binary Pattern (LBP) Ojala et al. (1996); Ahonen et al. (2006) is applied
over each Gaussian Map to assign a label to each pixel of the image by
thresholding the 3× 3 neighborhood of each pixel with the center pixel value
and considering the result as a binary or decimal number. All the steps
above mentioned are illustrated in figure 5.1. Gaussian Binary maps will
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be denoted in the rest of the thesis as follows:

{

Mσ1:K

(1,θ1:m)
, Mσ1:K

(2,θ1:m)
, . . . , Mσ1:K

(t,θ1:m)

}

(5.2)

4. We divide each BGM into non-overlapping N rectangular sub-regions with
specific size and positions {P1, P2, P3, . . . , PN} following the next considera-
tions:

• As the dimension of each level in the Gaussian pyramid is not equal, it
is necessary to divide each Binary map corresponding to a level in the
pyramid in a sub-set of sub-regions as follows:

{

Mσ1

(1:t,θ1:m)
, Mσ2

(1:t,θ1:m)
, . . . , MσK

(1:t,θ1:m)

}

≡
{{

M
1:Pn1

(1:t,θ1:m)

}σ1

,
{

M
1:Pn2

(1:t,θ1:m)

}σ2

, . . . ,
{

M
1:PnK

(1:t,θ1:m)

}σK
}

With
K

∑
k=1

nk = N

(5.3)

• finally each sub-region is ranged in a single set denoted by:

{

MP1

(1:t,θ1:m)
, MP2

(1:t,θ1:m)
, . . . , MPN

(1:t,θ1:m)

}

(5.4)

then a set of histograms with an specific number of bins is computed for each
sub-region (see figure 5.2) and denoted as follows:

{

h
(

MP1:N

(1,θ1:m)

)

, h
(

MP1:N

(2,θ1:m)

)

, . . . , h
(

MP1:N

(t,θ1:m)

)}

(5.5)

These histograms encode the most relevant textural and spatial information
in manner that is robust to illumination changes.

5.4 Tensorial Representations

In previous works, such histograms were calculated and concatenated to form a
single vector (Tan and Triggs, 2007; Zhang et al., 2007; Wu and Rehg, 2008). The
inconvenience of this approach is the large size of the final vector as well as the loss
of information due to concatenation in only one single vector as each histogram
has been calculated in a specific position, for a specific orientation resulting in
a loss of the natural 3-D feature space organization. To avoid this, we propose
to organize the histograms in a Tensor, thereby conserving the 3-D structure of
HBGM, an example of such tensor is shown in figure 5.3.

The tensor corresponding to Gaussian feature t can be denoted by Tt ∈
R

N×M×bins where N corresponds to number of positions in the construction of
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Figure 5.1: A set of Gaussian filters is computed from the input pyramid then LBP is applied to obtain Binary
Gaussian Jet Maps
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Figure 5.2: Each local binary map is divided into non-overlapping rectangular sub-regions with a specific
size. A set of histograms is then computed for each sub-region
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histograms, M to the number of orientations used to compute the t feature and
bins, the number of bins in the computed histogram.

Using this third-order tensor the original feature space is preserved and could
be used as an image representation suitable for object recognition and facial
analysis, however, the amount of information is still high to be considered in an
eventual process of recognition. Following the above idea, it is desirable to find an
algorithm for reducing the amount of information available in our feature space, in
the next section this idea will be developed using Multilinear Principal Component
Analysis.

5.5 Fusing Tensors with MPCA

Recognition in a high-dimensional tensor representation can suffer from:

• ”curse of dimensionality”, in effect the number of elements in a tensor can
be its use intractable in real time applications.

• Wu and Rehg (2008) experimentally demonstrated the correlation in neigh-
boring pixels for Census Transform histograms. This correlation can be
interpreted as redundant information. In a similar manner, our tensorial
representation computed using LBP is redundant, this may be seen in
the correlation between, orientations, bins and positions in our tensorial
representations.

To reduce this correlation while conserving the feature spatial distribution of
tensors, we propose the use of Multilinear Principal Component Analysis (MPCA)
as suggested by Lu et al. (2008). Their method determines a multilinear projection
that captures most of the original tensorial input variation and supplants existing
heterogeneous solutions such as the classical PCA and its 2-D variant 2-D PCA.

Let L the number of tensor samples of each type of feature t and d the number
of retained components after applying MPCA, then following this scope, we can
apply MPCA in two different ways:

5.5.1 Individually Tensors

MPCA is applied over each tensor {T1, T2, . . . , Tt} separetly as shown in figure 5.4a
to obtain the vectors {y1, y2, . . . , yt}. Finally the resultant vectors are concatenated
to form a single vector yF ∈ R

t·d, where d ≤ L.

Using this architecture, The features are considered independently without
taking into account their class, in particular, Gaussian derivatives of different
orders are considered as separate classes without taking into account any possible
correlation in the captured information.
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5.5.2 Merged Tensors

The tensors {T1, T2, . . . , Tt} are concatenated to form an unique tensor of fourth
order as shown in the next equation:

TT = [T1, T2, . . . , Tt]

TT ∈ R
P×m×bins×t

(5.6)

MPCA is then applied to this tensor TT to obtain a vector yT ∈ R
d, with d ≤ L.

The above process is illustrated in figure 5.4b.

In this architecture, the correlation between feature-classes is considered and the
resultant vector is smaller, however the tensor-order increases in one order making
the MPCA process more complex

5.6 Summary

We have introduced a new image representation model that uses a simple set of
Gaussian filters calculated effectively with a Half-Octave Gaussian pyramid and a
tensorial representation that conserves the natural structure of the feature space
described for such filters. Two algorithmic structures for fusing tensors using
MPCA have been proposed. Each one of these structures will be applied in sub
sequent chapters to solve the problem of face recognition and age estimation show-
ing the performance of these representations to describe human facial appearance.
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Figure 5.4: Fusing tensors with MPCA. (a) MPCA is applied at each tensor and then the resulting vectors
are fused into one. (b) The tensors are fused into one before applying MPCA





Reconnaissance de visages avec les tenseurs des HBGM

Décrit comme des représentations tensorielles basées sur des dérivés gaussienne

(tenseurs de HBGM) sont appliquées au problème de reconnaissance de visage.

Dans ce chapitre, l’analyse multilinéaire en composantes principales est utilisé

pour réduire la dimension spatiale du tensor et Kernel Discriminative Common

Vectors (KDCV) est utilisé pour améliorer les résultats de reconnaissance. De façon

plus détaillée ce chapitre est divisé en trois parties principales, la première fait

une présentation brève des KDCV. Dans la deuxième partie les dérivés de premier

et second ordre sont utilisés dans notre représentation tensorielle. Cette partie

de la thèse a été liée aux résultats de notre première représentation tensorielle

et seulement le vecteur final yT a été utilisé. Dans la dernière partie de ce

chapitre trois types de caractéristiques basées dans les dérivés gaussiens sont

considérés dans notre représentation tensorielle: Mag (magnitude du gradiente),

log (Laplacien de Gaussiennes) et γ (la troisième composante de la norme du

Gaussian Jet).

Dans tout le chapitre, trois publics disponibles face à des ensembles de données

(Feret, Yale et de Yale B + Extended Yale) sont utilisés pour valider l’approche.

-Expériences dans le visage FERET ensemble de données en utilisant les car-

actéristiques des dérivés de Gauss montrent premier et second ordre que notre

approche est compétitive (performances similaires) avec l’état d’autres approches

de l’art de l’usage que les ensembles de fonctionnalités plus complexes (voir la

section 6.4.1). En plus des résultats dans l’ensemble de données de Yale en

utilisant des dérivés gaussiens fonctions jusqu’à la deuxième commande de façon

tensorielle surpasser d’autres approches dans près de 1 % (voir la section 6.4.2).

Enfin les résultats dans le Yale Yale B + étendues peuvent être observées dans

la section 6.4.3, ce résultat révèle une invariance élevé de notre méthode à des

variations d’illumination.

-Résultatsdans le jeu de données en utilisant FERET Mag (magnitude de

gradient), log (Laplacien de Gaussiennes) et γ (le troisième volet de la seconde

locales afin de Gauss norme jet) ainsi que son coût de calcul sont présentés dans les

sections 6.5.4 et 6.5.1 respectivement, une fois encore les dérivés gaussiens obtenir

des résultats comparatifs ou supérieure à d’autres approches dans le state-of-the-

art. En outre nous comparons également les performances de chaque vecteur

résultant en utilisant les deux configurations tensoriel proposé dans cette thèse

(voir les sections 6.5.2 et 6.5.3). Enfin les résultats dans le Yale B + données

étendue de Yale sont présentés dans la section 6.5.5.
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6.1 Motivation

THIS chapter describes the design and implementation choices made in the
development of our face recognition system using Histograms of Binary

Gaussian maps (HGBM) in a tensorial representation. As mentioned in chapter 5
our tensorial representation conserves the 3D feature space structure and considers
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multiple types of features, these properties before mentioned are desirable in the
complicated process of facial analysis, specially this of face recognition.

To explain our proposed solution for recognizing faces, we organized as follows,
In section 6.2, we present a review of Kernel Discriminative Common vectors
as a method to improve recognition performance. In sections 6.2.2 through 6.3,
we describe two different architectures for recognizing faces and we present
our experimental set up for testing HBGM in these proposed architectures.
Experimental results using different types of features computed with a half-octave
pyramid are presented in sections 6.4 and 6.5. Finally we present some conclusions
in section 6.6.

6.2 Theoretical Background

6.2.1 Kernel Discriminative Common Vectors (KDCV)

In face recognition, the discriminative power of each final vector yT or yF can
be improved by projection onto an optimal discriminative space with a KDCV
Cevikalp et al. (2006) (Kernel Discriminative Common Vector). This kernel method
has been proved with success in Tan and Triggs (2007). The characteristic equation
for the KDCV is:

ltest =
(

UΛ1/2V
)T

ktest ltest ∈ ℜt (6.1)

Where Λ is the diagonal matrix with non-zero eigenvalues, U, the associated
matrix of normalized eigenvectors, V is the basis for the null space of the
projected within-class scatter matrix and ktest is a vector with entries K(yt

i , ytest) =
〈φ(yt

i), φ(ytest)〉, where φ(yt
i) are the mapped training samples in a high dimen-

sional space and K() is a typical kernel, for details see Cevikalp et al. (2006); Tan
and Triggs (2007).

The Discriminative Common Vectors with Kernels (KDCV) method can be
summarized in the algorithm 5

6.2.2 Experimental datasets

Three public available face data sets were used to test our face recognition
methods, these data sets are the FERET , Yale and Yale B+ Extended Yale B.

6.2.2.1 FERET Dataset

The FERET database (Phillips et al., 2000) was collected in 15 sessions between
August 1993 and July 1996, and it contains a total of 14,126 images from 1,199
individuals with views ranging from frontal to left and right profiles. The face
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Algorithm 5 Kernel Discriminative Common Vectors (Cevikalp et al., 2006).

{Giving a Matrix Φ = [φ(x1
1)φ(x2

1) . . . φ(x1
N1
)φ(x2

1) . . . φ(xC
NC
)] whose columns

are the transformed training samples in a higher dimensional space ℑ}.
{ Let the within-class scatter matrix SΦ

W , the between class scatter matrix SΦ
B and

the total scatter matrix SΦ
T computed from the Φ training set}

1. project the training set samples Φ onto a more discriminative space R(SΦ
T )

(defined as the null space of the total scatter matrix) through the Kernel
PCA. Let

K̃ = K− 1MK− K1M + 1MK1M = UΛUT

Where Λ is the diagonal matrix of nonzero eigenvalues, U is the matrix of
normalized eigenvectors associated to Λ , M the number of total samples
and 1M ∈ RM×M is a matrix with entries 1

M . Here the kernel matrix K ∈
RM×M is given by K = ΦTΦ =

(

Kij
)

i=1,...,C
j=1,...,C

, where each matrix Kij ∈

RNi×Nj is defined as

Kij = (k
ij
mn)i=1,...,C

j=1,...,C
= 〈φ(xi

m), φ(x
j
n)〉 = k(xi

m, x
j
n)m=1,...,Ni

n=1,...,Nj

where k(·) represents the kernel function

2. Compute the new total within-scatter matrix on the new reduced space as
follows:

S̃Φ
W = Λ

1
2 UTK̃W K̃T

WUΛ
1
2

where K̃W = (K − 1MK)(I − G) and G = diag[G1, . . . , GC] ∈ RM×M is
a block-diagonal matrix and each Gi ∈ RNi×Ni is as matrix with all its
elements equal to 1

Ni

3. Find vectors that span the null space of S̃Φ
W by eigen-decomposition

solving the equation VT S̃Φ
WV = 0

4. {The output are the matrices V, Λ and U}

Figure 6.1: Examples of images from the FERET data set
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Figure 6.2: Example of images from the Yale face database

images were collected under relatively unconstrained conditions. The same
physical setup and location was used in each session to maintain a degree
of consistency throughout the database. However, since the equipment was
reassembled for each session, images collected on different dates have some minor
variation. Sometimes, a second set of images of an individual was captured on
a later date, resulting in variations in scale, pose, expression, and illumination of
the face. Furthermore, for some people, over two years elapsed between their first
and last capturing in order to study changes in a subject’s facial appearance over
a year. An example of images from the FERET data set are shown in figure 6.1

The testing protocol in the FERET data set is performed using four probe sets:
the ’fb’ set contains faces with variation in expression, the ’fc’ set with lighting
variation and the ’dup I’ and ’dupII’ sets contain variation dues to aging of the
subject. We used the FERET distributed training set plus the gallery images ’fa’
to train the KDCV. As shown in Tan and Triggs (2007), the addition of the gallery
increases the dimensionality of the final discriminative space. We have compared
our results with the best results in the FERET’97 test Phillips et al. (2000) and
the published results in Zhang et al. (2007, 2005); Tan and Triggs (2007); Lui and
Beveridge (2008). The rank-1 recognition rates of different methods on the FERET
probe sets are show in Table 1. To our knowledge, the results in Tan and Triggs
(2007) and Lui and Beveridge (2008) are the most recent state-of-the-art with the
FERET database.

6.2.2.2 Yale Face Dataset

The Yale face data set 1 was constructed at the Yale Center for Computational
Vision and Control to evaluate robustness to variations in facial expression.

The YALE face database contains 165 images of 15 individuals under various
facial expressions (with glasses, happy, without glasses, normal, sad, sleepy,
surprised and wink) and lighting conditions (center, right and left light). Some
example images are shown in figure 6.2.

6.2.2.3 Yale B + Extended Yale B

The Yale B + Extended Yale B (Georghiades et al., 2001) 2 is composed of two
different testing data sets. The Yale face dataset B contains images obtained

1The Yale Face Dataset, http://cvc.yale.edu/projects/yalefaces/yalefaces.html, Ac-
cessed: April 2009

2http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
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from 10 individuals. Images are captured under 64 different lighting conditions
from 9 pose views and are divided into 5 subsets according to the ranges of the
illumination angles between the light source direction and the camera axis. An
example of images from this data set is shown in figure 6.3. The extended Yale-
B dataset contains 16128 images of 28 human subjects captured under the same
condition as Yale B. In our experiments, we use only the frontal face images from
these two databases.

6.3 Face Recognition Architectures

Two different methods using tensors of HGBM are proposed, the first one use the
vector yF and the last one uses yT. In both cases, one of these vectors is considered
as input to a trained KDCV kernel method and its output is compared with a
gallery set using a simple Nearest Neighborhood algorithm. The general diagram
for the methods before mentioned is presented in figure 6.4

To calculate histograms, we used a sub-region size of 16× 16 pixels (a border
of 8 pixels in each image is left untested for faces to avoid problems related with
image borders), removing two bins corresponding to values of 0 and 255 per each
histogram. The remaining bins are grouped to form a 127 bin histogram. To
compute the orthogonal matrix in the MPCA method for all our experiments, we
used the FERET distributed training set and we retained only 1000 entries (l=1000)
per tensor. After applying MPCA, each final vector y1, y2 and y3 as well as yT and
yF is normalized to an unit standard deviation.

The final two architectures for recognizing faces are shown in figure 6.4 The
discriminative power of each vector yt or y f can be improved using KDCV, in this

case, we used a Gaussian kernel k(x, y) = e−‖x−y‖2/q with a scale parameter q
chosen experimentally to obtain the best results (the value of q is reported in each
experiment). Finally the discriminative vector calculated by KDCV is classified
into one of the vectors in the gallery set using the nearest neighbor rule and a
cosine distance.

Figure 6.3: Example of images from the Yale B + Extended Yale B dataset
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 {T1 +MPCA} . . . {Tt +MPCA}HBGM y1 . . . yt  
Concatenate Vectors in

yF

KDCV+ Nearest 
Neighborhood

Gallery

Subject's ID

(a)

 [T1 . . . Tt] → Tt +MPCAHBGM
KDCV+ Nearest 
Neighborhood

Gallery

yT Subject's ID

(b)

Figure 6.4: Face recognition architectures proposed in this thesis using tensors of HBGM. (a)concatenated
vectors then KDCV+NN. (b) concatenated tensors then MPCA and finally KDCV+NN

6.3.1 Preprocessing of face images for recognition

In this research, only gray-level facial images are considered without taking color
information into account. First, all color images are transformed to gray-level
images by taking the luminance component in the Y CbCr color space. Then,
all face images are rotated and scaled so that the centers of the eyes are placed
on specific pixel position using the manually annotated coordinate information of
eyes. Next, the image is cropped and normalized to 128× 128 pixels, followed by
histogram equalization, and image intensity values are normalized to have zero
mean and unit standard deviation. Finally, each image is represented with 256
gray levels (eight bits) per pixel.

6.4 Results using First and Second Order Derivatives

In this experiments Gaussian Binary maps (see chapter 5) are obtained by com-
puting Gaussian derivative features of first and second order at four different
orientations θ = {0, π

4 , π
2 , 3 π

2 } at 6 levels from the half-octave pyramid, corre-

sponding to σ = {
√

2, 2, 2
√

2, 4, 4
√

2, 8}. We used also the feature maps from the
0th order Gaussian pyramid. This descriptor provide a textural description that
complements the information given by Gaussian Derivatives Features. We denote
this feature as follows:

F(1,θ={0, π
4 , π

2 ,3 π
2 }) = G1,θ

(

x, y, σ = {
√

2, 2, 2
√

2, 4, 4
√

2, 8}
)

F(2,θ={0, π
4 , π

2 ,3 π
2 }) = G2,θ

(

x, y, σ = {
√

2, 2, 2
√

2, 4, 4
√

2, 8}
)

F(3,θ={0}) = G(x, y, σ = {
√

2, 2, 2
√

2, 4, 4
√

2, 8})
(6.2)

The total number of Gaussian maps calculated in this experiment is 66. For
Gaussian derivatives features of first order we compute 24 Gaussian maps (4
orientations and 6 levels), for Gaussian derivatives features of second order we
compute 30 Gaussian maps (4 orientations, 6 levels plus the maps of Gxy) and
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finally we use 6 Gaussian maps resultant from original scale space in the first six
levels of the pyramid.

To build the HGBM, we separate the Gaussian derivatives above mentioned in
three different tensors defined as follows:

• T1 ∈ R
118×4×127 →Histograms of Binary Gaussian derivative features of first

order,

• T2 ∈ R
118×5×127 → Histograms of Binary Gaussian derivatives features of

second order plus the maps for Gxy,

• T3 ∈ R
118×127 → Histograms of Binary maps from the original Gaussian

scale space.

From the above tensors, we conducted experiments in the FERET, Yale and Yale
B + Extended Yale data sets using only the output vector yT.

6.4.1 Results in the FERET face dataset

The rank-1 recognition rates of different methods on the FERET probe sets are
show in Table 6.1 . To our knowledge, the results in Tan and Triggs (2007) and Lui
and Beveridge (2008) are the most recent state-of-the-art with the FERET database.
Our results with the FERET database are statistically equivalent (with a difference
of ±0.01 ) or better to the most recent state-of-the-art results on this dataset. Note
that most of the methods described in Zhang et al. (2007) Zhang et al. (2005)
and Lui and Beveridge (2008) use the Gabor wavelets to generate their maps.
These wavelets have a much higher algorithmic complexity and overall computing
cost that is not improvable. On the other hand, our Gaussian derivatives features
calculated with the half-octave pyramid to generate feature maps Crowley and
Riff (2003), can be provided with a fast linear complexity algorithm, and are thus
much more suitable for real applications.

FERET Probe Sets

Method fb fc DupI DupII

Best Results (Phillips et al., 2000) 0.96 0.82 0.59 0.52

LGBPHS Weighted (Zhang et al., 2005) 0.98 0.97 0.74 0.71

HGPP Weighted (Zhang et al., 2007) 0.97 0.99 0.80 0.78

Gabor+LBP KDCVM (Tan and Triggs, 2007) 0.98 0.98 0.90 0.85

GRM-Local (Lui and Beveridge, 2008) 0.98 0.98 0.80 0.84

yT(G1, G2, G) + KDCV 0.98 0.98 0.90 0.85

Table 6.1: The Rank-1 Recognition Rates of Different Algorithms on the FERET Probe Sets
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6.4.2 Results in the YALE dataset

In this experiment, Images with a neutral facial expression are used as gallery
set. We augment the gallery set with images without glasses to train the Kernel
DCV and and We used the same Orthogonal matrix used in the precedent dataset.
The remaining images are used as a probe set to compare our results with the
results presented in (Cevikalp et al., 2005; Yang et al., 2004). The rank-1 recognition
rates of different methods on the YALE dataset are shown in the Table 6.2 Clearly
the results of the proposed method are better than the best results reported in
Cevikalp et al. (2005) and Yang et al. (2004), demonstrating reliability of our
method under changes in facial expression.

6.4.3 Results in the Yale B + Extended Yale B Face Dataset

The images with the most neutral illumination( denoted as A+000E+00 in this data
set) are used as gallery set. To train the Kernel DCV we take the images in the
gallery set and a randomly selected image from the first subset. We did not test our
method with the challenging subset 5 and We used the same Orthogonal matrix
used in the precedent dataset. The rank-1 recognition rates of different methods
on the Yale B + extended Yale B dataset are show in the Table 6.3. In this case we
outperformed the published results in Xie et al. (2008) for the subset number 3
and we have the same results for the subsets 1 and 2. Note that while the results
reported in Xie et al. (2008) are for different methods of illumination normalization,
we do not normalize the images for changes in illumination and our method does
not try to specifically solve this problem.

6.5 Results using Mag, LoG and γ

In this experiments Gaussian Binary maps (see chapter 5) are obtained by com-
puting Mag(gradient magnitude), LoG (Laplacian of Gaussians) and γ (the third
component of the second local order Gaussian jet norm) at 4 levels from the half-
octave pyramid, corresponding to σ = {

√
2, 2, 2

√
2, 4}. We denoted these features

as follows:

Method Recognition Accuracy

Eigenfaces (Cevikalp et al., 2005) 76.0%

2DPCA (Yang et al., 2004) 84.2%

Fisherfaces (Cevikalp et al., 2005) 96.0%

DCVM (Cevikalp et al., 2005) 97.3%

yT(G1, G2, G) + KDCV 98.2%

Table 6.2: The Rank-1 Recognition Rates of Diferent Algorithms on The YALE Face Dataset
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Subset Number

Method 1 2 3 4

LTV (Xie et al., 2008) 100.0% 99.8% 79.4% 76.1%

RLS(LOG-DTC) (Xie et al., 2008) 100.0% 100.0% 87.1% 87.6%

yT(G1, G2, G) + KDCV 100.0% 100.0% 94.7% 60.1%

Table 6.3: The Rank-1 Recognition Rates of Different Algorithms on The YALE B+EXTENDED YALE-B
Face Dataset

F(1,θ={0}) = Magθ

(

x, y, σ = {
√

2, 2, 2
√

2, 4}
)

F(2,θ={0}) = LoGθ

(

x, y, σ = {
√

2, 2, 2
√

2, 4}
)

F(3,θ={0}) = γθ(x, y, σ = {
√

2, 2, 2
√

2, 4, })
(6.3)

The total number of Gaussian maps calculated in this experiment is 12, an
example of such maps with different conditions of illumination is shown in
figure 6.5.

To build the HGBM, we separate the Gaussian derivatives above mentioned in
three different 2nd order tensors defined as follows:

• T1 ∈ R
116×127 → Histograms of Binary Gaussian maps of Mag,

• T2 ∈ R
116×127 → Histograms of Binary Gaussian maps of LoG,

• T3 ∈ R
116×127 → Histograms of Binary Gaussian maps of γ.

6.5.1 Computational Cost

To evaluate the computational cost, we recorded the average CPU time for each
step in the algorithm using a 2.0 GHz dual core PC. Each algorithm was applied
to over 2000 images selected randomly from the FERET dataset as shown in table.
6.4. Notice that the average CPU time is less than 2 seconds in a non-optimized
MATLAB R© implementation.

6.5.2 Performance of y1, y2 and y3

In order to quantify the discriminative power of each Gaussian map in this
experiment, we compute the tensorial representation from each Gaussian binary
map as shown in section 5.4 and then we apply MPCA to obtain y1, y2 and y3. This
procedure was done for each probe set of the FERET dataset, and the results of
recognition accuracy versus dimensionality reduction and the cumulative match
curves are shown in figures 6.6 and 6.7. This figure indicates that y1 with a lower
dimension outperforms in the sets fb and dupI I but have a poor discriminative
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(a) (b)

Figure 6.5: Binary Gaussian maps at different scales (each column) of two images with different conditions

of illumination ( (a) and (b) ), the three last rows correspond to Magθ

(

x, y, σ = {
√

2, 2, 2
√

2, 4}
)

,

LoGθ

(

x, y, σ = {
√

2, 2, 2
√

2, 4}
)

and γθ(x, y, σ = {
√

2, 2, 2
√

2, 4, }) respectively

Table 6.4: CPU average times of each step in
our face recognition method using Mag, LoG
and γ

Pipeline Step CPU Time (s)

Half-Octave Pyramid 0.003

Mag 0.30

Log 0.52

γ 0.60

T1, T2 and T3 0.10 (each)

MPCA Projection 0.01

Total Time 1.86

power in the set fc. These results show a certain robustness to age variation but
a weakness related to illumination variations. Vectors y2 and y3 outperform other
vectors with a highly score for the subset fc. This result shows good robustness
with illumination variations and with age variations. Finally for the subset dupI I

all the vectors perform similarly with a little advantage for y3. These results also
show a highly complementarity for each binary Gaussian map according to the
type of variation on the image. This assumption is tested in the next experiment.

6.5.3 Discriminant Capacity of yT and yF

We have experimentally evaluated the performance of each face recognition
algorithm without KDCV. In this case we sought to compare the results of
concatenating the tensors and then MPCA or applying MPCA to each tensor
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Figure 6.6: Cumulative Match Curves for the vectors y1, y2 and y3 using Mag, LoG and γ on the four
FERET probe sets (a) fb (b) fc, (c) DupI and (d)DupI I

and then concatenating the vectors yn. We computed the vectors yF and yT as
it described in section 5.5, over each probe set in the FERET dataset. The results
of recognition accuracy versus dimensionality reduction are shown in figure 6.8.
These observations show that in the case of lower dimensions m ≤ 600 vector
YT outperforms YF in all the sub-sets, but for higher dimension m ≥ 600 both
vectors provide similar performances. In other hand, in figure 6.9 the performance
of yF and yT show a similar behavior in all the four subsets with a low superior
performance for yT in all the four probe sets.

6.5.4 Results in the FERET face dataset

We have evaluated the proposed method using all four FERET probe sets. To train
KDCV we used the distributed training set plus the gallery images ”fa”, as shown
in Tan and Triggs (2007). The addition of the gallery increases the dimensionality
of the final discriminative space. We employed a small set of randomly created
training and test sets to compute the best Gaussian parameter q. These datasets
were only used for parameter selection and were not employed for further tests.
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Figure 6.7: Rank-1 recognition accuracy versus dimensionality reduction with MPCA for the vectors y1 , y2

and y3 using Mag, LoG and γ on the four FERET probe sets (a) fb , (b)fc, (c)dup I and (d)dup II.

We have compared our results with the best results in the FERET’97 test Phillips
et al. (2000) and the published results in Zhang et al. (2007, 2005); Tan and Triggs
(2007); Lui and Beveridge (2008). The rank-1 recognition rates of different methods
on the FERET probe sets are show in Table 6.5. To our knowledge, the results in Tan
and Triggs (2007) and Lui and Beveridge (2008) are the most recent state-of-the-art
results with the FERET database.

6.5.5 Results in the Yale B + Extended Yale B Face Dataset

We test also our face recognition architectures using the yale B + extended Yale
datasets to show the invariance to illumination of our method. We used the same
Orthogonal matrix used in the precedent dataset and the same Gaussian parameter
q. In this dataset, each experiment was repeated 10 times for 10 random choices
of the training set for KDCV. All images other than the training set were used for
testing, this testing procedure is the same used in Cai et al. (2007); Hua et al. (2007);
An et al. (2008); Fu and Huang (2008); Kumanr et al. (2009). We have reported
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Figure 6.8: Cumulative Match Curves for the vectors yT and yF using Mag, LoG and γ on the four FERET
probe sets (a) fb (b) fc, (c) DupI and (d)DupI I

FERET Probe Sets

Method fb fc DupI DupII

Best Results (Phillips et al., 2000) 0.96 0.82 0.59 0.52

LGBPHS Weighted (Zhang et al., 2005) 0.98 0.97 0.74 0.71

HGPP Weighted (Zhang et al., 2007) 0.97 0.99 0.80 0.78

Gabor+LBP KDCVM (Tan and Triggs, 2007) 0.98 0.98 0.90 0.85

GRM-Local (Lui and Beveridge, 2008) 0.98 0.98 0.80 0.84

yF(Mag, Log, γ) + KDCV (q = 28322) 0.98 0.94 0.88 0.82

yT(Mag, Log, γ) + KDCV (q = 18818) 0.99 0.99 0.91 0.86

Table 6.5: The Rank-1 Recognition Rates of Different Algorithms on the FERET Probe Sets
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Figure 6.9: Rank-1 recognition accuracy versus dimensionality reduction with MPCA for the vectors yT and
yF using Mag, LoG and γ on the four FERET probe sets (a) fb (b) fc, (c) DupI and (d)DupI I

the results in table 6.6. The best two results for a particular training set size
are highlighted in bold and compared with the learning-based face recognition
methods. As far as we know, the results in Kumanr et al. (2009) are the most recent
state-of-the-art results in the Yale + extended Yale dataset.

6.6 Summary and Conclusion

We have introduced a new method for recognizing faces that uses a simple set of
Gaussian maps and a tensorial representation that conserves the natural structure
of the feature space. Two algorithmic structures for face recognition system have
been compared one using the concatenated vector yF and other using yT, in both
cases the features used are shown an improvement in performance for an specific
case as illumination or age variations, besides with the tensorial representation
and MPCA is possible to generate an only vector that gather such performances.
We have discussed the advantages and disadvantages of each step in these two
approaches and have conducted a set of experiments to show the utility of each
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component in the algorithm, in the experimental scope, we observe a clearly
improvement of recognition rate when yT is used.

Our proposed tensorial representation using Gaussian maps is competitive
with state-of-the-art methods that use similar techniques with more complicated
features such as Gabor maps Zhang et al. (2005, 2007); Tan and Triggs (2007); Lui
and Beveridge (2008) in all the probe sets from the FERET dataset. We have also
shown that neither face recognition algorithm needs correction in illumination to
outperforms other methods Hua et al. (2007); Cai et al. (2007); An et al. (2008); Fu
and Huang (2008); Kumanr et al. (2009) in the challenging Yale B + Yale extended
data set and finally we shown a certain invariance to expression in the results
reported using the Yale data set.
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Train Set Size

Method 5 10 20 30

ORO (Hua et al., 2007) - - - 9.0

SR (Cai et al., 2007) - 12.0 4.7 2.0

RDA (Cai et al., 2007) - 11.6 4.2 1.8

KLPPSI (An et al., 2008) 24.74 9.93 3.15 1.39

CTA (Fu and Huang, 2008) 16.99 7.60 4.96 2.94

Eigenfaces (Fu and Huang, 2008) 54.73 36.06 31.22 27.71

Fisherfaces (Fu and Huang, 2008) 37.56 18.91 16.87 14.94

Laplacianfaces (Fu and Huang, 2008) 34.08 18.03 30.26 20.20

Volterrafaces (Linear) (Kumanr et al., 2009) 6.35 2.67 0.90 0.42

Volterrafaces (Quad) (Kumanr et al., 2009) 13.0 3.98 1.27 0.58

yF(Mag, Log, γ) + KDCV (q = 28322) 6.94 1.12 0.36 0.33

yT(Mag, Log, γ) + KDCV (q = 18818) 6.61 0.90 0.32 0.32

Train Set Size

Method 2 3 4 40

MLASSO (Pham and Venkatesh, 2008) 58.0 54.0 50 -

SR (Cai et al., 2007) - - - 1.0

RDA (Cai et al., 2007) - - - 0.9

Volterrafaces (Linear) (Kumanr et al., 2009) 26.23 18.23 9.33 0.34

Volterrafaces (Quad) (Kumanr et al., 2009) 40.81 20.47 14.42 0.43

yF(Mag, Log, γ) + KDCV (q = 28322) 32.18 16.46 10.08 0.17

yT(Mag, Log, γ) + KDCV (q = 18818) 32.42 16.26 9.73 0.19

Table 6.6: The Rank-1 average recognition error rates on the Yale B + Extended Yale B dataset with different
training set sizes



Estimation de l’âge avec les HBGM

Étend l’application des représentations tensorielles au problème de l’estimation

de l’âge en utilisant les caractéristiques des dérivés gaussien. En particulier, ce

chapitre aborde le problème de l’estimation de l’âge comme un problème de

régression en utilisant les vecteurs yT et yF (voir la section 7.4) comment entrées

pour la modélisation d’un régresseur en utilisant des Machines a vecteurs de

pertinence (RVM). Pour résoudre le problème de l’estimation de l’âge du visage,

nous utilisons des dérivés gaussiens jusqu’à le quatrième ordre pour obtenir des

important caractéristiques faciales qui décrivent le processus de vieillissement et

qui ne peuvent pas être décrits en utilisant uniquement des dérivés gaussiens

d’ordre inférieur.

Deux ensembles de données disponibles au public (FG-net et MORPH) sont

utilisés pour montrer la qualité de l’approche pour résoudre ce problème. Les

résultats sont compétitifs avec le dernier état de l’art des méthodes proposées dans

le domaine de l’analyse faciale (voir les sections 7.5 et 7.6).
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7.1 Motivation

AS described in section 2.3, faces are an important source of information which
has been considered in Human-Computer Interfaces (HCI), law-enforcement

applications and video surveillance. Between all this information, we can find the
aging information. Facial age estimation is a complicated problem which has been
highly studied by the computer vision community. Solutions have been proposed
using advanced machine learning algorithms, Active Appearance Models and
template matching. In this chapter age estimation problem has been addressed
using Histograms of Binary Gaussian Maps (HBGM) representation explained in
chapter 5 and Relevance Vector Machines as regressors. In age estimation from
faces, HBGM provides a robust facial representation capable of encoding aging
information in two ways: in appearance using Binary Gaussian Maps and in shape
using tensorial representations, both of them combined using Multilinear principal
Component Analysis, provide a robust facial feature.
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7.2 Theoretical Background

7.2.1 Relevance Vector Machines (RVM) as regressor

The relevance vector machine has been proposed by Tipping (2001) to adapt the
main ideas of Support Vector Machines (SVM) to a Bayesian context. Experimental
results using RVM as regression have been shown to be as accurate and sparse as
SVMs. The main advantage of RVMs is that they do not require a complicated set-
up of free parameters found in SVM. Such set-up requires a long cross validation
process or using kernel optimizations as it is described by Lampert (2009).

The objective of RVMs as regressors is to learn a vector of weights w which
allows a mapping between an input vector x and output training target ti defined
as follows:

ti = wTφ(xi) + ε i (7.1)

where φ(x) corresponds to a kernel function that maps xi in a non-linear sub-
space and ε i corresponds to a gaussian noise with zero mean and variance σ2.

For finding the weights w, The RVM algorithms uses the Gaussian prior

P (w | α) = ∏
N
i=0N

(

0, α−1
i

)

where αi describes the inverse variance (or rele-

vance) of each wi and N is the number of training samples. Using the premise
above mentioned, it is possible to express the posterior probability over all the
unknown parameters as follows:

P
(

w,α, σ2 | t
)

= P
(

w | t,α, σ2
)

P
(

α, σ2 | t
)

(7.2)

where P
(

w | t,α, σ2
)

∽ N (m, Σ) with mean m = βΣΦ
T, covariance Σ =

(

A + βΦ
T

Φ
)−1

, A = diag (α) and β−1 = σ2.

Finally, to evaluate m and Σ, it is necessary to find the hyper-parameters αi and
β, for doing this, we need to solve the next log-marginal likelihood which has been
developed using the second part from the precedent equation.

ln P (t | α, β) =
N

2
ln β− 1

2

(

βtT
t−m

T
Σ
−1

m

)

− 1

2
ln |Σ| − N

2
ln (2π)+

1

2

N

∑
i=1

ln αi

(7.3)

This likelihood can be maximized using the the evidence approximation proce-
dure presented in Tipping (2001), giving the next solutions:

αi =
γi

m2
i

(7.4)

β =
N − Σiγi

|t−Φm|2
(7.5)
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The algorithm 6, summarizes the training procedure for the Relevance Vector
Machines.

Algorithm 6 Relevance Vector Machines (Tipping, 2001). (courtesy of Fletcher
(2010))

{Giving a set of N training vectors x, and a vector t represents all the individual
training points ti corresponding to xi}.
{Select a suitable kernel function φ for the data set and relevant parameters. Use
this kernel function to create the design matrix Φ }
{Establish a suitable convergence criteria for α and β, e.g. a threshold value
for change δThresh between one iteration’s estimation of α and the next δ =

∑i=1

(

αn+1
i − αn

i

)

}
{Establish a threshold value αThresh which it is assumed an αi is tending ton
infinity upon reaching it}
{Choose starting values for α and β}
while δ > δThresh do

Calculate m = βΣΦ
T and Σ =

(

A + βΦ
T

Φ
)−1

Update αi =
γi

m2
i

and β = N−Σiγi

‖t−Φm‖2

Prune the αi and corresponding basis functions where αi > αThresh

The output are the hyper-parameters α ,β and m

7.3 Age estimation using RVM

To estimate age from faces, we have used the architectures shown in figure 7.1. In
both cases the resulting vector, after applying MPCA, was used as input to train
a regressor. When a candidate facial image is present, first we apply our tensorial
transformation mentioned in chapter 5, then once the final vectors are computed,
we try to determine its correct age using the learned regression function. In the
follow sections, we going to show that our tensorial representations can encode
the necessary facial information for determining the age of a subject using the
trained regression function. In all of our experiments, the images were cropped
using manually located eye positions and normalized in size to 64× 64 pixels. The
Binary Gaussian Receptive Maps are calculated in a half-octave Gaussian pyramid
with four levels (σ =

√
2, 2, 2

√
2 and 4). A border of 4 pixels in each pyramid level

is left untested for faces to avoid problems related with image borders.

To calculate histograms, we used a sub-region size of 8 × 8 pixels, removing
two bins corresponding to values of 0 and 255 per each histogram. The remaining
bins are grouped to form a 127 bin histogram. We used the publicly available
MATLAB R© implementation of the RVM algorithm provided by Tipping (2001)1.
After applying MPCA, each final vector is normalized to unit standard deviation.

For the RVM algorithm we used a Gaussian kernel k(x, y) = e−‖x−y‖2/q with a scale

1http://www.vectoranomaly.com/downloads/downloads.htm
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parameter q determined using a tuning dataset chosen randomly from the training
dataset (the value of q is reported in each experiment and is the only one fixed by
tuning).

The performance of age estimation is measured by the mean absolute error
(MAE) and the cumulative score (CS).

• The MAE is defined as the average of the absolute errors between the
estimated ages and the ground truth ages MAE = ∑

N
k=1 | ˆAgek − Agek|/N,

where Agek is the ground truth age for the test image k, ˆAgek is the estimated
age, and N is the total number of test images. MAE is only an indicator
of average performance for age estimators, it does not provide enough
information of how accurate the estimators might be.

• The accuracy can be estimated by the cumulative score (CS) that is defined

as CS (j) =
Ne≤j

N × 100, where Ne≤j is the number of test images on which the
estimator makes an absolute error non-higher than j years.

7.3.1 Experimental Datasets

We have performed several experiments to compare different approaches for
estimating age from facial images. Two publicly available databases have been
used in our experiments: The FG-NET database 2 and the MORPH (Ricanek and
Tesafaye, 2006) database. Some examples of images from these datasets are shown
in figures 7.2 and 7.3.

7.3.1.1 FG-NET Aging Dataset

The FG-NET (Face and Gesture Recognition Research) Aging Database contains
1,002 face images of 82 subjects from multiple races with age ranges from 0 to 69
years. Each image in the database has 68 labeled facial landmarks characterizing
shape features not used in our approach. Since the images were retrieved from
real-life albums of different subjects, aspects as illumination, head pose, facial
expressions etc. are uncontrolled in this dataset.

Leave-One-Person-Out (LOPO) mode is used for testing our approaches in the
FG-NET database. In this mode, the images of one person are used as the test set
and those of the others are used as the training set. After 82 folds each subject has
been used as a the test set once and the final results are calculated based in the
result of each fold.

7.3.1.2 MORPH Aging Dataset

The MORPH Aging Database contains 1,724 face images of 515 subjects. In our
experiment with this database, we use the same testing protocol used by Geng et al.

2The FG-NET aging database, http://www.fgnet.rsunit.com/, Accessed: April 2010
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(a)

(b)

Figure 7.1: Age estimation architectures proposed in this thesis using tensors of HBGM. (a)concatenated
vectors(yT) then RVM. (b) concatenated tensors then MPCA (yF)and finally RVM

(2007). The images on these dataset are only used to test the algorithms trained on
the FG-NET database. In addition, because all subjects in the FG-NET database
are Caucasian descent, only the 433 images of Caucasian descent in the MORPH
database are used as the test set.

7.4 Comparing yT and yF performances

Our first experiment investigates the performance of each type of configuration for
the age estimation problem. We compared the configurations showed in figure 7.1
on the FG-NET database and we report the results in table 7.1. Different orienta-
tions and Gaussian derivative orders were tested to obtain the best configuration.

Figure 7.2: Sample images of different individuals from the FG-NET dataset
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Figure 7.3: Sample images of different individuals from the MORPH dataset

We used orientations between 0 and π and derivative orders up to fourth, giving
the next bank of Gaussian derivative filters used in our age estimation experiments
for computing the Histograms of Gaussian Binary Maps (HGBM).

F(n,θ∈[0,π]) = Gn,θ

(

x, y, σ = {
√

2, 2, 2
√

2, 4}
)

with n = {1, 2, 3, 4} (7.6)

Using this filter bank, we are able to compute four diferent tensors:

Tn ∈ R
32×orientations×127 n = {1, 2, 3, 4} (7.7)

Experimental results show that the best performance can be achieved with
8 orientations (0, π/7, 2π/7, 3π/7, 4π/7, 5π/7, 6π/7 and π) and four derivative
orders, organized in a yF configuration, the second best result was achieved with 6
orientations (0, π/5, 2π/5, 3π/5, 4π/5 and π) and three derivative orders in a yT

configuration. The best results were highlighted in the table 7.1 and used in the
following experiments.

7.5 Results in the FG-NET database

We compared the two best tensorial configurations of table 7.1 with the most
relevant results of the state-of-the-art in age estimation. In table 7.2, we report
the results for seven different age groups between 0 and 69 years. In this table
we observed that our method outperforms other methods for age groups 40 - 59
and 20-29 years. For other age groups, our method is competitive and sometimes
superior with competing approaches in age estimation. The experiments the
robustness of our method to textural changes that occur in the periods from
adulthood to old age.

In the FG-NET database, the MAEs of our method are 5.16 for the yT configura-
tion and 4.96 for the yF configuration. Comparisons with alternative approaches
are reported in table 7.3. Our results are comparable with the latest state-of-the-art
methods in automatic age estimation in the FG-NET database.

Comparisons of cumulative scores (CS) on the FG-NET database are shown
in Figure 7.4a. We can observe that despite the MAE results for our methods,
our approaches outperforms state-of-the-art methods in low age error levels
(Error level ≤ 4), with almost 5% of improvement in accuracy CS≤4 = 73%, in
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yT + RVM

n = {1, 2, 3} n = {1, 2, 3, 4} n = {3, 4}

Orientations

θ = {0 : π
5 : π} 5.25 (q = 28.72) 5.25 (q = 29.58) 5.53 (q = 29.58)

θ = {0 : π
7 : π} 5.16 (q = 30.82) 5.23 (q = 30.82) 5.48 (q = 30.82)

yF + RVM

n = {1, 2, 3} n = {1, 2, 3, 4} n = {3, 4}

Orientations

θ = {0 : π
5 : π} 5.23 (q = 50.00) 5.17 (q = 66.33) 5.49 (q = 38.73)

θ = {0 : π
7 : π} 5.18 (q = 50.00) 4.96 (q = 66.33) 5.46 (q = 38.73)

Table 7.1: MAEs on the FG-NET database for different tensorial configurations

Method

Range # img. yT + RVM yF + RVM BIF (Guo et al., 2009)

0-9 371 3.14 3.19 2.99

10-19 339 4.05 3.90 3.39

20-29 144 4.72 4.29 4.30

30-39 70 10.08 9.17 8.24

40-49 46 14.15 13.76 14.98

50-59 15 22.06 20.06 20.49

60-69 8 33.12 32.25 31.62

Total 1002 5.16 4.96 4.77

Method

Range # img. RUN (Yan et al., 2007a) QM (Lanitis. et al., 2004) MLP (Lanitis. et al., 2004)

0-9 371 2.51 6.26 11.63

10-19 339 3.76 5.85 3.33

20-29 144 6.38 7.10 8.81

30-39 70 12.51 11.56 18.46

40-49 46 20.09 14.80 27.98

50-59 15 28.07 24.27 49.13

60-69 8 42.50 37.38 49.13

Total 1002 5.78 7.57 10.39

Table 7.2: MAE (years) at different age groups on FG-NET.
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Method MAE(Years)

QM (Lanitis. et al., 2004) 6.55

MLPs (Lanitis. et al., 2004) 6.98

RUN (Yan et al., 2007a) 5.78

BM Yan et al. (2008b) 5.33

LARR (Guo et al., 2008a) 5.07

PFA (Guo et al., 2008b) 4.97

BIF Guo et al. (2009) 4.77

yT+RVM 5.16

yF+RVM 4.96

Table 7.3: MAE (years) comparisons on FG-NET

addition for high error levels our method has an CS≤10 = 88% similar to BIF Guo
et al. (2009) (CS≤10 = 89%) that as far as we know the best result in the FG-NET
dataset.

7.6 Results in the MORPH(test) Database

More experiments were conducted on the MORPH(test) aging database. From the
results in the table 7.4, the MAEs results of our method are 6.19 and 6.76 for yF

and yT respectively, those results outperforms the AGES method Geng et al. (2007)
in almost two years of difference and other methods like SVM and WAS with a
difference of almost three years.

The CS curves on the MORPH database are shown in Figure 7.4b. Our method
outperforms other methods in error levels for all of the age groups with an
CS≤10 = 84% against the AGESlda method Geng et al. (2007) with a CS≤10 = 78%.

Method MAE(Years)

WAS (Geng et al., 2007) 9.32

SVM (Geng et al., 2007) 9.23

AGES (Geng et al., 2007) 8.83

AGESlda (Geng et al., 2007) 9.32

yT+RVM 6.77

yF+RVM 6.19

Table 7.4: MAE (years) comparisons on MORPH (Test Set)
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7.7 Summary and Conclusion

In this chapter, we have introduced a method to recognize the age through
facial images. This method uses HBGM as image representation and Relevance
Vector Machines as regressor. For finding the most adapted configuration for the
age estimation task, different derivative orders were used in our two proposed
tensorial representations. In this point our results have shown that using Gaussian
derivatives up of the fourth order improve the results considerably in both
configurations. In other hand we have shown experimentally than our tensorial
configurations are suited for modeling facial age information which is used in the
regression process. Besides the main problem encountered in facial age estimation
using regresion methods is the difficulty in constructing a suitable set of training
images whose represent the age progression in different subjects. Finally, we
have compared our method with previous state-of-the-art approaches in aging
estimation.
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Conclusions et perspectives

Conclut les principaux résultats et liste les perspectives de la thèse.
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IN this thesis we have explored the use of multiscale Gaussian derivative as an
initial representation for the detection, recognition and classification of faces in

images. The results of our investigation show that multiscale Gaussian derivatives
can provide a rich image description that robustly capture the appearance of
faces in images, supporting a variety of different techniques for detection and
recognition. In particular, we have shown that this representation can be used
to obtain detection and recognition rates that are comparable to the best state
of the art algorithms with significant reductions in computational cost and a
computational structure that is suitable for embedded applications on mobile
devices.

8.1 Principal results

Among the principal results of this investigation, we can list:

• Multiscale Gaussian derivatives computed at half-octave scale intervals
can provide a powerful intial representation for detection, recognition and
classification.

• Including Gaussian derivatives features of up to fourth order can be used to
improve detection results with real-world images..

• A Tensorial representation can be constructed from multiscale derivatives
and used for both Face Recognition and Age estimation.



116 Chapter 8. Conclusion and perspective

• A half-octave pyramid representation can be used to construct an efficient
variable density sampling algorithm for fast face detection.

Throughout this thesis we have been careful to provide the mathematical and
theoretical justification for our approach.

In chapter 4, we proposed the use of a cascade of simple classifiers using Gaus-
sian derivatives features up to fourth order. We show that Gaussian derivatives
features are suitable for face detection in real-world images specially those were
the detection precision is fundamental, this idea was confirmed by the results in
the FDDB and MIT+CMU datasets.

In addition a new speed-optimized cascade framework was proposed. This new
framework takes into account the computational load of each Gaussian derivatives
to chose their position in an specific node in the cascade. Our experiments using
this framework have shown that using Gaussian derivatives features of first and
second order in the first layers and higher order for deeper nodes improves the
speed of the cascade in almost twice compared with the classical approach using
all derivative orders in the first node.

A set of experiments are presented to show the robustness of Gaussian deriva-
tives to different image conditions present in real-world applications, in this case
Gaussian derivatives features variations in rotation, contrast and lighting.

In chapter 5, we introduce a new tensorial model using Gaussian derivative
maps, Local Binary Patterns(LBP) and Kernel Discriminative common Vectors
(KDCV). Two different tensorial representations were explored and all the math-
ematical background in reduction dimensions for multilinear representations was
explained (Multilinear Principal Component Analysis).

In chapter 6, we have explored Face Recognition as a first application for the
proposed tensorial representation. As principal result Tensorial models using
Gaussian derivatives provides a robust representation invariant to illumination
conditions as we observe in the results with the Yale B + Extended Yale B dataset.
Besides, results using the Feret dataset showed that our tensorial representation
is competitive with state-of-the-art approaches in the challenging Feret dataset.
Finally, In chapter 7, age estimation was also studied as an application in
tensorial representations, In this scope, tensorial representation encodes facial
age information using Gaussian derivatives up to fourth order. Although the
complexity of the age estimation problem, our results in the FG-NET and MORPH
datasets have showed that our proposed tensorial representation combined with
Relevance Vector Machines is a reliable solution that could be implemented in real
world applications without a high computational cost.

8.2 Perspectives

Several interesting questions remains open, some of which provide potentially
interesting pathways for future work. These are discussed in the following section:
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• Can multiscale Gaussian derivatives be used for action unit detection for

Emotion Recognition from faces. Initial experiments suggest that Gaussian
derivatives can be used to construct a new kind of feature based in first
and second order derivatives mixed in a complex conjugate form G1 + G2 j.
First experiments with this approach appear promising, we are about to
initiate a more complete set of experiments. A related question concerns the
contribution that higher order derivatives can bring to emotion recognition
from facial action unit detection.

• Gender Recognition as an extension of the cascade of classifiers, Gender
recognition can be solved using Gaussian derivatives in a cascade frame-
work. Our future aim is to train some extra-nodes after the face detection
process. Such nodes will be trained to recognize gender (male or female).
In addition, it could be interesting to analyze more deeply which or whose
derivative order could perform the best in gender recognition where finest
facial details are necessary to distinguish between genders.

• Face Recognition across ages, in this thesis face recognition was considered
as a problem where the age of the people is not an important variable.
Moreover, face recognition across ages remains an important problem in
facial analysis. In this scope, aging information could be introduced as
a new dimension in the tensorial representation. This new dimension in
conjunction with MPCA will retain the most common facial features that
could be invariant of transformation due to age.

• Statistical learning methods for tensorial representations is the special
interest, in effect extracting the most discriminative information from a
tensor could be advantageous when the feature space is composed of a
big number of dimensions. On the other hand, when some information
is missing it is not possible to construct a discriminative tensorial repre-
sentation (i.e. age estimation datasets where for a particular subject all
their images are not available or missed) that can be used in multi-class
learning problem. In this case, the statistical tensorial framework allows us to
complete such information using the information provided by other subjects
in the database. In the future, we would like to address this problem, taking
into a account precedent approaches that use Multilinear Subspace Analysis
with missing values (Geng and Smith-Miles, 2009; Geng et al., 2011).
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View Invariant Gaussian derivative features are computed by interpolation from
samples provided by a multi-resolution binomial pyramid.

The binomial pyramid calculation produces K resampled copies of the input
buffer at an exponentially sequenced progression of smoothing scales, where K is
based on the extracted window size, and W and H are the width and height of the
window.

K = 2 log2(min{W, H}) (A.1)

In practice, the final 5 pyramid levels, with sizes of 8 × 8 and smaller, are
generally discarded because they are dominated by boundary effects. However,
in our analysis below, we will consider the entire pyramid composed of K levels.
The computational requirements for the last 5 levels are trivial.

Each image in the pyramid has a
√

2 reduction in resolution (due to smoothing)
and a

√
2 increase in the distance between samples. The increase in sample

distance exactly compensates the growth of the impulse response. As a result, the
sampled impulse responses from each level of the pyramid are identical copies,
providing for scale invariant feature description.

For a window size of N = W × H pixels, the K levels of the pyramid produce
P = 2N pixels. These pixels can be used to synthesize the Gaussian impulse
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response for any position, orientation or scale over the range of positions and
scales recorded in the pyramid.

A.1 The pyramid algorithm

The pyramid algorithm is a repetition of k identical SIMD computations. Each
stage involves resampling with a distance of

√
2 followed by convolution with a

Binomial filter of standard deviation σ0. Our analysis and experiments (shown
below) indicate that σ0 = 1 provides an acceptable level of smoothing to avoid
distortion from aliasing.

The effect of cascade convolution is to sum the variances of the filters, so
that the cumulative variance is σ2

k = 2k and the resulting standard deviation is
σk = 2k/2. Interleaving resampling with convolutions decreases the number of
image samples while expanding the distance between samples. This has the effect
of dilating the Gaussian support without increasing the number of samples used
for the Gaussian, effectively increasing the scale. Aliasing is avoided because the
images have been low-pass filtered by previous convolutions. The result is an
algorithm with linear algorithmic complexity (i.e. O(N)), that gives a discrete
representation of scale space with P = 2N total samples at a total cost of three
convolutions operations per pixel. The exact cost of a convolution operation
depends on how the convolution is implemented, according to a tradeoff between
silicon surface and computation time. For example, convolution with the kernel
filter B4(x, y) used below can be implemented as separable convolutions in the
row and column directions using 2 passes in each direction (row and column) with
[1, 2, 1], at a total cost of 8 adds and 4 shifts per pixel, followed by a normalization
implemented by shifting to the right 1 bit.

The pyramid is computed by initially convolving the image window with an
integer coefficient binomial filter, followed by a repeated (cascade) computation
with pipeline of pyramid stage. After the first stage, each successive stage begins
by resampling the input image window to select every second column of every
second row. The pyramid repeats until the resampled images are reduced to a
single pixel.

Analysis, backed by experimental verification, has shown that σ = 1 provides
the smallest kernel filter with insignificant aliasing. This corresponds to the
Binomial filter B4(i, j).

B4(i, j) =



















1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1



















(A.2)

The image is initially convolved with a filter of σ2
0 = 1 to produce an initial image
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Window Buffer

2D Binomial Convolution

2D Binomial Convolution

 Resample

Stage 2

 Resample

2D Binomial Convolution

Pyramid

Buffer

2D Binomial Convolution

 Resample

· · ·

Figure A.1: The O(N) cascade convolution pyramid algorithm

P(x, y, 0).

k = 0 ⇒ P(i, j, 0) = P(i, j) ∗ B4(i, j) (A.3)

where ∗ is the convolution operator. The pyramid image (k = 1) is produced by
a convolution with the same low pass filter, resulting in a cumulative scale factor
of σ2

1 = 2 giving σ1 =
√

2

k = 1 ⇒ P(i, j, 1) = P(i, j, 0) ∗ B4(i, j) (A.4)

For even numbered stages, diagonal sampling suppresses every second pixel
starting with even columns on even rows and odd columns on odd rows, as shown
in figure A.2. For k even, the operator eliminates every second row.

++++

++++

++++

++++

+ +

+ +

+ +

+ +

◦ ◦

◦ ◦

◦

◦◦

◦

S√

2
{·}

P (x, y) S√

2
{P (x, y)}

Figure A.2: The
√

2 resampling Opera-
tor, S√2{·}, selects even columns of even

rows and odd columns of odd rows.
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S√
2

k {P(x, y)} =
{

P(x, y) i f (x + y) Mod 2k = 0

0 otherwise
(A.5)

The resulting pixels are stored in a rectangular buffer of size

(

W

2
(k−1)

w

, H

2
k
2

)

. The

one pixel shift to the right for even rows is implicit.

For odd stages the binomial filter must be mapped onto the diagonal sample
grid shown below. This is accomplished by the diagonal expansion operator,
E√2{·}, shown in figure A.3.

E√
2

k {B4(i, j)} =
{

B4(i, j) i f (i + j)2 Mod 4 = 0

0 otherwise
(A.6)

Each successive image in the pyramid is computed by convolving an expanded
Gaussian with a sampled image as described by the following recurrence equation
(k refers to pyramid level):

P(i, j, k) =

{

P(i/2, j/2, k1) ∗ B4(i, j) i f k is odd

S√2{P(i, j, k1)} ∗ E√2{B4(i, j)} otherwise
(A.7)

The k = 0 image may be discarded or used for estimating a Laplacian image for
k = 1 if required. Because the k = 1 image has been smoothed with a Binomial
low-pass filter of scale σ1 =

√
2, resampling with a sample distance of

√
2 will

result in an aliasing of less than 1% of signal energy.

The resulting pyramid is composed of K resampled copies of the image buffer
smoothed with an exponential progression of sample rates. For a buffer of N
pixels, the total number of pyramid pixels is P = N(1+ 1/2+ 1/4+ 1/8+ 1/16+
· · · ) = 2N.

For each of the K images, the distance between pixels is:

Sk = 2(k−1)/2 (A.8)

For odd levels, these samples sit on Cartesian positions (i, j), in a Wk by Hk

where

Figure A.3: The
√

2 expansion operator,
E
√

2{·}, maps rows of a filter onto
diagonals, increasing sample distance by√

2, illustrated here for the 3 × 3 filter
B2(i, j).
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Figure A.4: Illustration of diagonal sam-
pling with levels k=1, 2, 3, 4 from a
diagonally sampled pyramid. The symbol
”+” represents image samples. Each image
has half the pixels of the previous image.

for odd k : Wk =
W
sk

for odd k : Hk =
H
sk

(A.9)

For any pixel P(i, j, k) in an odd level, the corresponding position in the image
window from which the pyramid was constructed by the following formula :

for odd k : x = i · 2 (k−1)
2 y = j · 2 (k−1)

2 (A.10)

For even k, the samples are arrayed on a 2-sample grid, as shown in right side
images of figure A.4. In this case, samples may be represented in a rectangular
array with the same number of rows as the previous level, but half of the number
of columns.

for even k : Wk =
Wk−1

2 = W

2
(k−2)

2

for even k : Hk = Hk−1 = W

2
k
2

(A.11)

The samples on even rows are implicitly shifted to the right by 1 column
compared to odd rows. Thus for even rows

for even k : x = i · 2k/2 + (i + j) Mod 2(k−1)/2

for even k : y = j · 2(k−1)/2
(A.12)

This can be stored in a P = 2N sample data structure as shown in the figure A.5.
Note that although 14 bits are needed during the cascade convolution, once the
pyramid has been constructed, samples may be represented with 8 bits per color.



124 Appendix A. Gaussian Derivatives with the Half-Octave Gaussian Pyramid

Figure A.5: The pyramid buffer is
composed of P = N(1 + 1/2 +
1/4 + 1/8 + · · · ) = 2N samples. N pixel image buffer P = 2N pixel pyramid buffer

k = 1 k = 2

k = 3 k = 4

k = 5

k = 6

(a) First Order (b) Second Order

(c) Third Order (d) Fourth Order

Figure A.6: Impulse responses of Gaussian derivatives up to the fourth order computed with a Half-Octave
Gaussian Pyramid

A.2 Gaussian Derivative Feature Calculation

With Discrete Scale space, for any point i, j at level k, the derivative may be
computed as a difference of adjacent samples. Because of the distance between
samples and the kernel size the weighting is different for a same derivative on odd
and even numbered level. Some examples of Gaussian derivatives computed with
a half-octave Gaussian pyramid are shown in figure A.6.
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• 1st Order derivatives

Gx(i, j, kodd) = 1
2 (P(i− 1, j, kodd)− P(i + 1, j, kodd))

Gx(i, j, keven) = 1
2
√

2
(P(i− 1, j, keven)− P(i + 1, j, keven))

Gy(i, j, kodd) = 1
2 (P(i, j− 1, kodd)− P(i, j + 1, kodd))

Gy(i, j, keven) = 1
2
√

2
(P(i, j− 2, keven)− P(i, j− 2, keven))

(A.13)

• 2nd Order derivatives

Gx2(i, j, kodd) = P(i + 1, j, kodd)− 2 ∗ P(i, j, kodd)

+P(i− 1, j, kodd)

Gx2(i, j, keven) = 1
2 (P(i + 1, j, keven)− 2P(i, j, keven)

+P(i− 1, j, keven))

Gy2(i, j, kodd) = P(i, j + 1, kodd)− 2P(i, j, kodd)

+P(i, j− 1, kodd)

Gy2(i, j, keven) = 1
2 (P(i, j + 2, keven)− 2P(i, j, keven)

+P(i, j− 2, keven))

Gxy(i, j, kodd) = 1
4 (P(i + 1, j + 1, kodd)− P(i + 1, j− 1, kodd)

−P(i− 1, j + 1, kodd) + P(i− 1, j− 1, kodd))

Gxy(i, j, keven) = 1
8 (P(i + 1, j + 2, keven)− P(i + 1, j− 2, keven)

−P(i− 1, j + 2, keven) + P(i− 1, j− 2, keven))

(A.14)

• 3rd Order derivatives

Gx3(i, j, kodd) = 1
2 (P(i− 2, j, kodd)− 2P(i− 1, j, kodd)

+2P(i + 1, j, kodd)− P(i + 2, j, kodd))

Gx3(i, j, keven) = 1
4
√

2
(P(i− 2, j, keven)− 2P(i− 1, j, keven)

+2P(i + 1, j, keven)− P(i + 2, j, keven))

Gy3(i, j, kodd) = 1
2 (P(i, j + 2, kodd)− 2P(i, j + 1, kodd)

+2P(i, j− 1, kodd)− P(i, j− 2, kodd))

Gy3(i, j, keven) = 1
4
√

2
(P(i, j + 4, keven)− 2P(i, j + 2, keven)

+2P(i, j− 2, keven)− P(i, j− 4, keven))

(A.15)

• 4th Order derivatives
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Gx4(i, j, kodd) = P(i− 2, j, kodd)− 4P(i− 1, j, kodd)

+6P(i, j, kodd)− 4P(i + 1, j, kodd)

+P(i + 2, j, kodd)

Gx4(i, j, keven) = 1
4 (P(i− 2, j, keven)− 4P(i− 1, j, keven)

+6P(i, j, keven)− 4P(i + 1, j, keven)

+P(i + 2, j, keven))

Gy4
(i, j, kodd) = P(i, j− 2, kodd)− 4P(i, j− 1, kodd)

+6P(i, j, kodd)− 4P(i, j + 1, kodd)

+P(i, j + 2, kodd)

Gy4(i, j, keven) = 1
8 (P(i, j− 4, keven)− 4P(i, j− 2, keven)

+6P(i, j, keven)− 4P(i, j + 2, keven)

+P(i, j + 4, keven))

(A.16)

A.3 Oriented Derivatives

Derivatives along diagonal direction
(

θ = π
4

)

can be computed using diagonal
diferences without extra computational costs since sample are stored in memory.

• 1st derivative at π
4

G1, π
4
(i, j, kodd) = 1

2
√

2
(P(i− 1, j, k + 1odd)− P(i + 1, j− 1, kodd))

G1, π
4
(i, j, keven) = 1

2 (P(i + (j&1)− 1, j + 1, keven)

−P(i + (j&1), j− 1, keven))
(A.17)

• 2nd derivative at π
4

G2, π
4
(i, j, kodd) = 1

2 (P(i− 1, j + 1, kodd)− 2P(i, j, kodd)

+P(i + 1, j− 1, kodd))

G2, π
4
(i, j, keven) = P(i + (j&1)− 1, j + 1, keven)− 2P(i, j, keven)

+P(i + (j&1), j− 1, keven)

(A.18)

Where:

(j&1) =

{

j + 1 if j is even

0 otherwise
(A.19)
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A.4 Scale Interpolated Derivative

For arbitrary positions on the original image (x, y) and arbitrary scale s, derivative
values may be computed by interpolating between derivative values at samples.
Gaussian derivatives for scale values between powers of

√
2 can be computed

using linear interpolation between adjacent levels in the pyramid.
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