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Résumé (format long)

Introduction

Un nombre important d’expériences étudiant les bases neurales de la cognition

spatiale chez le rongeur souligne le rôle majeur de la formation hippocampique

(voir Arleo and Rondi-Reig, 2007 pour une revue). Cette région limbique

est impliquée dans l’apprentissage spatial depuis que des neurones sélectifs à

une position — nommés cellules de lieu hippocampiques (O’Keefe and Nadel,

1978) — ont été découverts au moyen d’enregistrements électrophysiologiques

chez des rats se déplaçant librement. Ces neurones participent très certainement à

l’encodage de représentations spatiales dans un système de coordonnées allocen-

triques (c’est-à-dire centrées sur le monde). Cependant deux autres composants

sont nécessaires pour accomplir une navigation flexible (c’est-à-dire pour planifier

des détours et/ou des raccourcis) : la représentation du but et la planification de

séquences d’actions dirigées vers un objectif (Poucet et al., 2004). Il a été proposé

que l’hippocampe encoderait des représentations topologiques (prenant en compte

la connectivité entre les différentes positions de l’environnement) adaptées à

l’apprentissage de séquences d’actions (voir Poucet et al., 2004). Cepen-

dant, d’autres études expérimentales suggèrent l’existence d’un système extra-

hippocampique de planification de l’action partagé parmi de nombreuses régions

(voir Knierim, 2006 pour une revue). Cette hypothèse postule une cognition spa-

tiale distribuée dans laquelle (i) l’hippocampe prendrait part à la planification des

actions en transmettant des représentations spatiales redondantes aux aires asso-

ciatives supérieures, (ii) un réseau cortical élaborerait des représentations plus ab-

straites et compactes du contexte spatial (prenant en compte les informations de

motivation, les contraintes cout de l’action / risque, et les séquences temporelles

des réponses comportementales dirigées vers un but).



Le cortex préfrontal (CPF) pourrait jouer un rôle central dans la construc-

tion d’une carte cognitive et la planification d’actions, comme suggéré par des

études lésionnelles (e.g., Granon and Poucet, 1995). Le CPF reçoit des projec-

tions directes depuis des structures sous-corticales (par exemple l’hippocampe,

l’amygdale, et l’aire ventrale tegmentale), et des connexions indirectes depuis les

ganglions de la base à travers les boucles baso-thalamo-corticales (Jay and Witter,

1991; Kita and Kitai, 1990; Thierry et al., 1973; Uylings et al., 2003). Ces pro-

jections fourniraient au CPF un contexte multidimensionnel allant au delà d’une

représentation purement spatiale en incluant des entrées émotionnelles et motiva-

tionnelles, une modulation dépendante de la récompense, et des signaux associés

aux actions (Aggleton, 1992; Schultz, 1998; Uylings et al., 2003). Le CPF sem-

ble donc bien adapté pour (i) traiter des informations spatiales multiples (Jung

et al., 1998), (ii) encoder les valeurs motivationnelles associées aux évènements

spatiaux-temporaires (Poucet et al., 2004), et (iii) prendre des décisions supra-

modales (Otani, 2003). En outre, le CPF pourrait être impliqué dans l’intégration

des évènements dans le domaine temporel (Fuster, 2001), ce qui est pertinent pour

l’organisation temporelle des les réponses comportementales, et pour l’encodage

de mémoires rétrospectives et prospectives (Fuster, 2001).

Les cartes corticales sont formées par des circuits locaux répétitifs composés

de différents neurones, les colonnes corticales (pour une revue voir Mountcastle,

1997). En résumé, les colonnes corticales, peuvent être divisées en six couches

principales incluant: la couche I, contenant principalement des axones et des den-

drites; la couche IV, recevant des entrées sensorielles depuis des structures sous-

corticales; Les couches II-III, spécialisées dans les connexions cortico-corticales

et la couche VI, envoyant ses sorties aux aires sous-corticales du cerveau. Les

propriétés anatomo-fonctionnelles des colonnes corticales ont été largement ex-

aminées (Mountcastle, 1997, voir également Horton and Adams, 2005; Rakic,

2008 pour des discussions sur ce concept). Le CPF présente la même organisa-

tion (Gabbott and Bacon, 1996b; Gabbott et al., 2005). De plus des études neu-

roanatomiques ont indiqué que les populations de neurones formant les colonnes

seraient divisées en plusieurs minicolonnes, composées d’une population neu-

ronale fortement interconnectée (Buxhoeveden and Casanova, 2002). Cette or-

ganisation colonnaire permettrait un traitement efficace de l’information (Mount-

castle, 1997).
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Modélisation du cortex préfrontal pour la planifica-

tion spatiale

Vue générale du modèle

L’approche présentée ici vise à relier l’organisation en colonne à la prise de

décision à l’aide d’une architecture neuronale très simplifiée. L’hypothèse

sous-jacente est que le réseau du CPF peut médier une éparsification de

la représentation hippocampique des lieux (HP ) pour encoder des cartes

topologiques et servir à la planification d’actions orientées vers un but. Lors

de l’exploration, les cellules de HP deviennent sélectives à des positions al-

locentriques grâce à l’intégration d’informations visuelles et d’intégration de

chemin (voir Sheynikhovich et al., 2009). Le modèle exploite les caractéristiques

anatomiques des projections excitatrices de l’hippocampe vers le CPF (Jay and

Witter, 1991) pour transmettre la représentation redondante de l’espace d’état S

depuis HP vers le réseau de colonnes du CPF, où une représentation éparse des

couples état-action S × A est apprise (Figure 1A). Dans une colonne, chaque

minicolonne devient sélective à une paire spécifique état-action (s, a) ∈ S × A,

où les actions a ∈ A représentent les directions de mouvement allocentrique des

transitions entre deux états s, s′ ∈ S. Chaque colonne est donc composé d’un

population de minicolonnes qui représentent l’ensemble des paires état-action

(s, a1 · · · aN) ∈ S × A effectuées par l’animal à un lieu s.

Encodage de cartes topologiques par un réseau de colonnes

Chaque colonne dans le modèle (Fig. 1B) a une structure très simplifiée com-

posée de trois unités s, p, v et d’une population de minicolonnes, dont chacune

est composée de deux unités de q et d. Ces unités représentent des populations

de neurones pyramidaux des couches supragranulaires II-III (unités p, v, q) ou in-

fragranulaires V-VI (unités s, d). Durant l’exploration, les neurones s deviennent

sélectifs à des lieux et leur activité de population encode une représentation com-

pacte de l’espace d’état. Dans chaque colonne, un neurone v code l’information

de but associée à un état spécifique, alors que les neurones q codent la relation

entre les actions et le but. Les neurones q et v rétropropagent un signal de but par

l’intermédiaire du réseau cortical et leur décharge est corrélée avec la distance au
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Figure 1: Vue générale de l’architecture du modèle (A) et de sa connectivité (B).

but. Les neurones p propage un signal antérograde codant le chemin sélectionné

d’une position donnée vers le but. Les neurones d intègrent des informations spa-

tiales et de récompense et entrent en compétition pour la sélection de la meilleur

action locale. Leur activité déclenche une commande motrice (direction allo-

centrique de mouvement). La connectivité inter- et intra-colonne (Fig. 1B) im-

plique des projections plastiques et non-plastiques, respectivement, dont les ef-

ficacités synaptiques sont modélisés par des matrices de poids w ∈ [0, 1]. Pen-

dant l’exploration et la découverte de la topologie de l’environnement, les projec-

tions plastiques sont modifiées par un apprentissage non-supervisé Hebbien pour

encoder soit des nouveaux états (e.g., wsh) soit des associations antérogrades et

rétrogrades entre états voisins (e.g., wpd et wqv).

Planification de la navigation par propagation de signaux lié à

la récompense

Lors de l’exploration, des signaux motivationnels modulent l’activité des neu-

rones v (Fig. 1B), ce qui permet à des colonnes spécifiques de devenir sélectives

au but. Le signal de récompense transmis par les projections wm simule une mo-

tivation physiologique possiblement induite par les neurones dopaminergiques de

l’aire tegmentale ventrale (Schultz, 1998) ou de l’amygdale (Aggleton, 1992). Un
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processus de diffusion d’activation inspiré par l’arbre d’appel de Burnod (1988)

permet l’exploitation des informations topologiques pour déterminer les trajec-

toires optimales vers le but. Le signal de motivation suscite l’activité du neu-

rone v dans la colonne correspondant à l’emplacement du but. Cette activité est

alors retropropagée par le biais d’associations inverses médiée par les projections

latérales wqv (Fig 1B). Lorsque ce signal de but retropropagé atteint la colonne

sélective pour la position actuelle, la coı̈ncidence de l’activité de s et q déclenche

la décharge des neurones d. L’activation de d, à son tour, entraı̂ne la propaga-

tion d’un signal antérograde à travers les projections wpd et codant le chemin

orienté vers le but. Les décharges successives de neurones p et d permettent

au signal de chemin de se propager vers l’avant jusqu’à la colonne de but. Un

mécanisme compétitif (winner-take-all) sélectionne localement la meilleur action

motrice a ∈ A associée au neurone d le plus actif, et extrait les trajectoires vers le

but.

Il convient de noter que les projections wqv atténuent l’activité retropropagée :

plus le nombre de relais synaptiques est petit, plus le signal de but reçu par les

neurones q de la colonne correspondant à la position actuelle est fort. Ainsi,

l’intensité du signal de but à un endroit donné est corrélé avec la distance au

but. En d’autres termes, le réseau de colonnes encode une information métrique

liée au but permettant de sélectionner le plus court chemin vers la récompense.

Les animaux peuvent prendre des raccourcis vers un objectif à travers des régions

non visitées de l’environnement, une capacité qui souvent associée à une car-

tographie métrique complexe (voir Trullier et al., 1997; Kubie and Fenton, 2009

pour des revues). La représentation apprise par le modèle encode suffisamment

d’informations métriques pour déduire des raccourcis dans des situations simples

semblables à celles testées avec des animaux (Chapuis et al., 1983; Poucet et al.,

1983; Poucet, 1993; Etienne et al., 1998), en utilisant un mécanisme d’addition

vectorielle (Etienne et al., 1998) des actions formant la trajectoire planifiée.

Traitements corticaux récurrents pour la cartographie

topologique multi-échelle

Le modèle apprend des représentations hiérarchiques de l’espace d’état en util-

isant des interactions récurrentes entre deux sous-populations de colonnes corti-

cales (Figure 1). La première population C1 reçoit et traite les entrées spatiales
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directes de l’hippocampe. La deuxième population C2 reçoit des informations

d’état déjà transformées depuis les neurones s ∈ C1, mais elle intègre également

un signal proprioceptif φ utilisé pour encoder la probabilité de changements dans

la direction égocentrique de locomotion. En conséquence, la sélectivité des neu-

rones s ∈ C2 est modulée par la présence de caractéristiques structurelles de

l’environnement telles que les allées et les couloirs. La résolution spatiale de la

représentation multi-échelle qui en résulte peut alors s’adapter à la complexité

structurelle du labyrinthe. Le réseau de colonnes C2, qui est appris de même sim-

ilaire au réseau C1, utilise également le mécanisme de diffusion d’activation afin

de planifier des trajectoires orientées vers un but. Après apprentissage, les projec-

tions wvv et wpp permettent à C2 de moduler l’activité des neurones p, v ∈ C1 lors

de la planification (Fig. 1B).

Comportement spatial du modèle

Protocoles expérimentaux

Tâche de détour de Tolman & Honzik

Le labyrinthe classique de Tolman & Honzik (Fig. 2A) se compose de trois

couloirs étroits de différentes longueurs guidant les animaux d’un point de départ à

une zone d’alimentation. L’expérience de Tolman & Honzik visaient à corroborer

l’hypothèse que les rongeurs pourraient prédire les conséquences de trajectoires

alternatives orientées vers un but en présence de couloirs bloqués dynamiquement.

Le protocole expérimental débute par une période d’entrainement durant 168 es-

sais (soit 14 jours avec 12 essais par jour), pendant laquelle les animaux simulés

pouvaient explorer le labyrinthe afin d’élaborer des représentations topologiques

et d’apprendre des politiques de navigation. Pendant le Jour 1, les sujets étaient

autorisés à explorer librement le labyrinthe. Pendant les Jours 2 à 14, un bloc a

été introduit à l’emplacement A (bloc A, Fig. 2A) pour induire un choix entre P2

et P3. Vient ensuite une période de test, durant 7 essais (Jour 15) avec un bloc

à l’emplacement B obstruant la portion de chemin commune à P1 et P2 (Bloc B,

Fig. 2A). Pour évaluer l’invariance de la performance du modèle par rapport à

la taille de l’environnement, nous avons mis en œuvre le protocole expérimental

ci-dessus pour deux échelles différentes du labyrinthe, 1:1 et 4:1.
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Figure 2: Tâches de navigation spatiale utilisées pour tester la capacité à

l’inférence de détour (labyrinthe de Tolman & Honzik, A) et de raccourcis (B).

Tâche de navigation avec raccourcis

Les données expérimentales suggèrent que la sélection de chemin dépend de la

longueur et de la directionnalité des trajectoires disponibles (Poucet, 1993). En

outre, les animaux testés en présence d’un conflit entre longueur et directionnalité

(par exemple avec un plus court chemin qui pointe moins directement vers le but)

ont tendance à préférer le chemin plus court et moins direct lorsque le but est caché

(Chapuis et al., 1983; Poucet et al., 1983). Le labyrinthe de la Figure 2B prend

ces observations en considération. Il se compose de trois couloirs: P1 est le plus

long chemin et ne comporte pas de raccourci; P2 implique un raccourci pointant

directement vers le but; P3 est basé sur un raccourci indirecte, obligeant l’animal

à se détourner du chemin apparemment la plus direct vers le but (la ligne droite

du départ vers le but). Nous avons simulés deux séries d’expériences partageant

le même protocole qui comprend deux phases: une période d’entrainement durant

6 essais, au cours de laquelle des rats simulées pouvaient passer uniquement par

la voie P1 (i.e. les blocs A et B étaient tous deux présent, Fig. 2B), de sorte

que P2 et P3 restent inexplorées; et une période de test durant 1 essai et visant à

évaluer la façon dont les animaux simulés utiliseraient un raccourci nouvellement

disponible. Dans une série d’expériences, les animaux simulés ont été autorisés à

choisir entre P1 et P2 (i.e. raccourci direct, avec le bloc A enlevé), alors que dans

une seconde série d’expériences, les animaux devaient choisir entre P1 et P3 (i.e.

raccourci indirecte, avec le bloc B enlevé) .
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Résultats

Tâche de détour de Tolman & Honzik

Nous avons d’abord examiné les réponses comportementales des n = 40 animaux

simulés résolvant la version 1:1 de la tâche de Tolman & Honzik. le modèle

a reproduit les observations comportementales présentées Tolman and Honzik

(1930a).

Jour 1. Comme dans les résultats de Tolman & Honzik, le modèle a sélectionné

le chemin le plus court P1 significativement plus que les chemins alternatifs P2 et

P3 grâce à la carte spatiale apprise.

Jours 2-14. Le bloc A a forcé les animaux à mettre à jour leur représentation

topologique pour planifier un détour. Conformément à Tolman & Honzik, nous

avons observé un nombre de passages significativement plus important par le plus

court détour P2 comparé à P3.

Jour 15. En accord avec les données de Tolman & Honzik, les animaux simulés

ont agi selon l’hypothèse de l’“insight”, i.e. ils ont préféré le chemin plus long

mais valable P3 au chemin P2. Cette décision s’explique dans le modèle par le

fait que, suite à l’ajout du bloc B, le signal retropropagé de but était bloqué dans

le réseau cortical pour les chemins P1 et P2, entrainant le choix de P3.

Nous avons ensuite testé la robustesse des résultats ci-dessus par rapport à

la taille de l’environnement. Nous avons utilisé une version à l’échelle 4:1 du

labyrinthe de Tolman & Honzik et nous avons comparé les performances entre

n = 40 animaux simulés avec des populations intactes C1, C2 (groupe “contrôle”)

et n = 40 animaux simulés sans population C2 (groupe “sans C2”). Ce dernier

groupe n’a pas la propriété de codage multi-niveaux fournie par les dynamiques

récurrentes entre C1 et C2. Le résultat principal est que, durant les Jours 2-14 et le

jour de test Jour 15, le groupe sans C2 n’a pas réussi à résoudre la tâche de détour,

alors que les animaux du groupe contrôle ont fait face à la plus grande taille de

l’environnement avec succès. Les meilleures performances des sujets témoins

étaient dû au fait que la rétropropagation du signal du but dans le réseau cortical

bénéficiait lors de la planification de la représentation topologique multi-échelle

(et plus compacte) codée par la population C2 et des interactions entre C1 et C2.
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Tâche de navigation avec raccourcis

Dans deux série d’expériences, nous avons étudié les performances de navigation

de n = 40 animaux lors de la résolution d’une tâche comportementale de rac-

courci. Au cours d’un unique essai de test, les animaux simulés de la première

expérience ont eu l’occasion de prendre un raccourci direct (chemin P2 inex-

ploré pendant la phase d’entrainement). Une fraction significative de rats simulés

ont bien sélectionné P2 au lieu de P1 (97, 5%). Les animaux de la deuxième

expérience ont été testés sur un unique essai au cours duquel le raccourci indirect

P3 a été rendu accessible. La majorité des animaux simulés ont sélectionné P3

(95%). Ces résultats sont conformes aux résultats expérimentaux sur le comporte-

ment de navigation par raccourci (Chapuis et al., 1983; Poucet et al., 1983).

Des activités neuronales aux réponses fonctionnelles

Analyses statistiques

Nous avons analysé les décharges des neurones simulés en relation avec des

données électrophysiologiques afin d’élucider le lien entre activité temporelle des

cellules et comportement. Cela a été fait par : (i) la caractérisation des pro-

priétés de sélectivité spatiale de cellules isolées; (ii) la comparaison de la re-

dondance des codes spatiaux de population appris par des animaux simulés, (iii)

la différenciation des propriétés de codage des neurones associés purement à la

récompense (populations q et v) par rapport aux unités purement spatiales (popu-

lation s); (iv) la quantification et la comparaison de la fiabilité des représentations

spatiales neuronales en terme de contenu informatif — i.e. combien peut-on

inférer au sujet de la position de l’animal ou de la phase particulière de la tâche

courante en observant seulement les réponses de neurones ? En plus de relier nos

résultats de simulation aux données expérimentales issues de la littérature, nous

avons étudié la cohérence entre les réponses des neurones du modèle et celles

d’un ensemble d’enregistrements électrophysiologiques du CPF médial de rats

type Long-Evans résolvant une tâche de mémoire spatiale (voir Peyrache et al.,

2009; Benchenane et al., 2010). L’analyse a examiné si les propriétés de codage

des neurones du modèle pouvaient effectivement être observées dans le CPF au

cours de l’apprentissage spatial.
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Résultats

Codage spatial par des neurones isolés ou des populations

Analyse des champs récepteurs de neurones

Pour comprendre comment des neurones pris de manière isolée prennent part à

l’encodage de lieux, nous avons comparé les activités sélective aux lieux de deux

types d’unités du modèle : les cellules de lieux de l’hippocampe (HP ) et les

neurones corticaux s ∈ C1, C2. Nous avons analysé les patrons de décharge pen-

dant que les animaux simulés résolvaient la version 4:1 de la tâche de Tolman &

Honzik. La représentation codée par les unités s ∈ C1 était du même ordre que

l’organisation des champs de lieux des cellules de HP , tandis que l’activité des

neurones s ∈ C2 capturaient certaines propriétés structurelles de l’environnement

(i.e. l’organisation en couloir). La taille moyenne du champ de lieux augmen-

taient considérablement pour les neurones de HP , à C1 et à C2 populations, en

conformité avec les données expérimentales sur la taille des champs récepteurs des

cellules de l’hippocampe et du CPF enregistrées chez des rats résolvant une tâche

de navigation (Hok et al., 2005). Nous avons également caractérisé le traitement

spatial en multi-étapes réalisé par le modèle en termes d’information mutuelle de

Shannon entre réponses d’une unité donnée et l’emplacement spatial. L’activité

des neurones s ∈ C2 encodait, en moyenne, la plus grande quantité d’information

spatiale, suivi par les neurones s ∈ C1 et de HP . Cette relation est due au fait que

plus le champ récepteur est petit, plus la région de l’espace d’entrée pour laquelle

un neurone reste silencieux est grande, et donc moins peut être déduit des entrées

en observant la variabilité de la décharge d’un neurone. Nous avons aussi comparé

les réponses sélectives à un lieu des neurones s ∈ C1 avec les patrons de décharge

des cellules pyramidales enregistrées dans le CPF médian de rats effectuant une

tâche de navigation. Les patrons réels et simulés sont compatibles entre eux en

termes de forme et de ratio signal-bruit des profils de réponse. Ces résultats cor-

roboraient l’hypothèse selon laquelle les neurones s du modèle, purement sélectifs

à des lieux, pourraient trouver leur contrepartie biologique dans des populations

du CPF réelles.
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Analyse des propriétés d’encodage de lieux par population

Comme évoqué précédemment, nous avons modélisé les interactions entre

l’hippocampe et le CPF pour produire des représentations spatiales compactes

adaptées à la planification de la navigation. Le traitement multi-échelle

implémenté a fourni une éparsification progressive du codage spatial par popu-

lation. De manière consistante à des résultats expérimentaux présentés par Jung

et al. (1998), nos unités corticales simulées encodaient des représentations spa-

tiales moins redondant que les cellules de HP . Le taille des populations de neu-

rones codant pour le labyrinthe de Tolman & Honzik a diminué de façon signi-

ficative de HP à C1, puis à C2. Le nature plus éparse du code spatial cortical

a été confirmée par la différence significative des densités spatiales des champs

récepteurs. Finalement, nous avons mesuré le information mutuelle de Shannon

entre les patrons de réponse des populations et lieux. Le code hautement redon-

dant de HP avait le plus grand contenu d’informations spatiales. Bien que moins

redondante, la population de neurones s ∈ C1 encodait environ 85 % de la limite

supérieure théorique, ce qui s’est avéré être adapté pour résoudre les tâches de

comportement. Une perte importante d’information a été observé dans le code de

la population des neurones s ∈ C2. Ceci est cohérent avec le rôle fonctionnel du

réseau cortical C2, qui ne pourrait pas supporter la planification de la navigation

seul, mais qui complète plutôt la représentation fournie par C1 en encodant des

caractéristiques de plus haut niveau de l’environnement.

Encodage de la distance au but

Outre la corrélation spatiale de l’activité des neurones s, le représentation cor-

ticale du modèle encode des informations dépendant de la récompense. Étant

donné un emplacement dans le labyrinthe, plus courte était la longueur du chemin

vers le but, plus grand était le taux de décharge moyen du neurone v appartenant

à la colonne correspondant à cet emplacement. Cette propriété était pertinente

pour le processus de décision guidant le comportement de navigation spatiale du

modèle. Chaque neurone vi ∈ C1 avait une fréquence de décharge préférée fi

qui lui était propre, et corrélée à sa distance au but. L’ensemble des fréquences

préférées fi était uniformément répartis sur tout l’intervalle normalisé [0, 1]. Fait

intéressant, lorsque nous avons analysé l’activité des cellules pyramidales du CPF
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enregistrées, nous avons trouvé un sous-ensemble de neurones, sans corrélation

spatiale, mais avec des fréquences de décharge préférées uniformément réparties.

Finalement, nous avons mesuré l’information mutuelle It entre les phases de la

tâche et les patrons de décharge des neurones v. Les neurones v fournissaient une

quantité significative d’informations liées à la tâche, ce qui signifie que la phase

du protocole pourrait être décodées de façon fiable en observant l’évolution dans

le temps de leurs patrons de décharge.

Encodage de changements dans les contingences action-

récompense

Nous avons étudié comment l’activité des neurones q et d du modèle contribuaient

à la prise de décision. Rappelons que, après apprentissage, chaque minicolonne

corticale (q, d) ∈ C1,2 encodait une paire état-action spécifique (s, a). L’analyse

présentée sur la figure 3 montre l’évolution temporelle de fréquence de décharge

des unités q, d appartenant à la colonne codant pour la première intersection du

labyrinthe de Tolman & Honzik au début de l’Essai 1, Jour 2 (i.e. avec le bloc

A). Pendant le déplacement, l’animal simulé est arrivé au point d’intersection

à t ≃ 4 s. En raison de la politique apprise pendant le Jour 1 (i.e. sans un

bloc dans le labyrinthe), l’unité q1 de la minicolonne associée à l’action menant

à P1 déchargeait à cet instant avec le plus fort taux de décharge, suivie par

l’unité q2 de la minicolonne associée à P2, et enfin par q3 liée à P3 (Figure 3B).

Ainsi, les neurones correspondant d1,2,3, qui combinent les entrées des q1,2,3, re-

spectivement, avec les activités sélective aux lieux des neurones s de la même

colonne, déchargeaient selon le même classement à t ≃ 4 s (Figure 3C). En

conséquence, l’action commandée par d1 a été sélectionné et l’animal simulé a

suivi P1. Toutefois, lorsque le bloc A a été rencontré à t ≃ 5 s, le modèle a mis

à jour la représentation topologique, ce qui a entraı̂né un changement des contin-

gences action-récompense (avec q1 déchargeant moins fortement que q2). Cette

mise à jour d’activité est consistante avec des résultats montrant des changements

soutenus des décharges, très sensibles à une modification des contingences de la

récompense (Mulder et al., 2003; Rich and Shapiro, 2009). Lorsque l’animal s’est

retrouvé de nouveau à l’intersection (à t ≃ 7 s), le neurone d2 a déchargé avec la

plus grande fréquence (Figure 3C) conduisant à la sélection de P2. La sélection

de la meilleur action le jour de test (Jour 15) s’explique par le même principe.
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Figure 3: Analyse de l’évolution temporelle des changements de contingence

action-récompense. (A) Exemple de trajectoire effectuée par les animaux simulés

Les couleurs illustrent les actions distinctes. (B,C) Profiles temporels des taux de

décharge de trois neurones q1, q2 et q3 (resp. d1, d2 et d3) appartenant à la colonne

située à l’intersection et aux minicolonnes représentant les actions a1, a2 et a3.

Les lignes verticales en pointillés indiquent les évènements de prise de décision.

Encodage de séquences de lieux prospectifs

Nous avons analysé les champs récepteurs des unités p lorsque les animaux se

déplaçaient de la position de départ vers le but. Contrairement aux champs

récepteurs symétriques des neurones s, tous les neurones p avaient des profils

de réponse asymétriques (i.e. avec la queue gauche de la distribution plus longue

que la queue droite). L’asymétrie de ces réponses neuronales augmentaient quasi-

linéairement avec le nombre de relais synaptiques formant une trajectoire plan-

ifiée mentalement. Lorsque nous avons analysé les données des enregistrements

du CPF de rats, nous avons également trouvé un sous-ensemble de neurones avec

des courbes de sélectivité asymétriques, dont l’asymétrie semblait être corrélée

à la distance parcourue par l’animal. De plus, les neurones p (et non s) avaient

une fréquence moyenne de décharge positivement corrélée à la distance parcou-

rue vers le but. En accord avec cela, Jung et al. (1998) a fourni des preuves
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expérimentales d’augmentations du taux de décharge neuronal lors de l’approche

d’une récompense. Enfin, une propriété importante des neurones p du modèle est

que leur décharges avaient tendance à anticiper dans le temps l’activité des neu-

rones s. En d’autres termes, les neurones p encodaient une information prospec-

tive sur les lieux prédisant l’état suivant visité par l’animal, ce qui est compatible

avec les données expérimentales sur les enregistrements du CPF rapportées Rainer

et al. (1999).

Nous avons également étudié la nature de la prédiction fournie par l’activité

des neurones p en relation avec les données expérimentales sur le codage neuronal

de l’ordre sériel de séquences planifiées avant que les actions ne soient exécutées

(Averbeck et al., 2002). Dans leur expérience, Averbeck et al. (2002) ont effectué

des enregistrements simultanés des activités de neurones isolés du CPF chez des

singes dessinant des séquences de lignes (i.e. des segments formant des formes

abstraites). Chaque segment était associé à un patron distinct d’activité neuronale,

et la force relative de ces patrons avant le dessin a été montrée comme prédisant

l’ordre sériel de la séquence de segments effectivement dessinés par les singes.

De manière consistante, nous avons constaté que la classement des fréquences

de décharge des neurones p avant l’exécution effective d’une trajectoire planifiée

était un bon prédicteur de l’ordre sériel des états sur le point d’être visité par

l’animal simulé. Cette relation était vraie non seulement au temps t = 0 (c’est à

dire au tout début d’une trajectoire), mais pour chaque temps t, ce qui signifie que

le classement des taux de décharge des neurones p pourrait prédire à tout moment

l’ordre de séquences d’états futurs.

Analyse comparative des patrons d’activité des populations de

neurones préfrontales du modèle et expérimentales

Nous avons tout d’abord rassemblé les neurones non-silencieux s, v, p, q et d

enregistrés dans la version 4:1 de la tâche de Tolman et Honzik. Nous avons

caractérisé la décharge de chaque neurone en mesurant sa fréquence moyenne

de décharge, son écart type, son asymétrie, son kurtosis au cours du temps,

l’information spatiale par potentiel d’action et l’information mutuelle spatiale.

Puis, nous avons effectué une analyse en composantes principales (ACP) sur

l’espace multidimensionnel contenant les valeurs fournies par ces mesures pour

chaque neurone. Nous avons également appliqué un algorithme de catégorisation
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non-supervisé (méthode des k-moyennes, avec k = 3) pour partitionner la dis-

tribution des données. Fait intéressant, les neurones du modèle ayant différents

rôles fonctionnels avaient tendance à occuper des régions distinctes de l’espace

de l’ACP découpées automatiquement par la catégorisation. Par exemple, les neu-

rones v, q ∈ C1, C2, dont la fonction dans le modèle est de propager les informa-

tions de but et encode la distance au but, se trouvaient dans le même groupe. Tous

les neurones avec une activité sélective à un lieu de petite échelle, i.e. les neurones

s, p, d ∈ C1 (et aussi dans p ∈ C2) ont été regroupés dans la même région. Enfin,

les neurones s, d ∈ C2, principalement impliqués dans la construction d’une carte

spatiale et la planification à plus grande échelle ont également été séparés dans un

groupe différent.

Nous avons effectué la même série d’analyses sur un ensemble de données de

neurones du CPF médial enregistrés chez des rats en train de naviguer. Comme

pour les données simulées, la méthode de catégorisation a identifié trois groupes

principaux. Nous avons comparé les groupes du modèle et expérimentaux dans le

but d’examiner si les données réelles et simulées appartenant aux mêmes groupes

partageaient certaines caractéristiques de décharge. En termes d’information spa-

tiale moyenne, nous avons trouvé des distributions similaires non homogènes

pour le modèle et les données réelles. En particulier, un groupe des données

expérimentales et du modèle encodaient un plus grand contenu d’information

spatiale. Le groupe des données du modèle comportait surtout des activités is-

sues de neurones ayant une sélectivité aux lieux s, d, p ∈ C2. En observant

les fréquences moyennes de décharge sur chaque groupe, nous avons aussi ob-

servé un groupe avec des activités réelles et du modèle avaient des fréquences

significativement plus hautes que les autres. Le groupe modèle était principale-

ment composé par des neurones v, q ∈ C1, C2 propageant des informations de

récompense. Enfin, en comparant les valeurs absolue moyenne de l’asymétrie

de champs récepteurs, nous avons trouvé des populations dans le modèle et

expérimentales avec des champs asymétriques. Pris ensemble, Ces résultats in-

diquent que, dans l’ensemble de données expérimentales des enregistrements du

CPF, des sous-populations de neurones existaient avec des propriétés distinctes de

décharge, et que ces sous-populations pourraient être reliées à différents groupes

fonctionnels prédits par le modèle.
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Discussion

Nous avons présenté un modèle centré sur la planification de la navigation médiée

par une population de colonnes corticales préfrontales. Lors de l’exploration d’un

nouvel environnement, le modèle apprend une représentation topologique dans

laquelle chaque lieu est codé par une colonne du néocortex et le renforcement

des synapses entre les colonnes est utilisé pour représenter les liens topologiques

entre les lieux. Lors de la planification de trajectoire vers le but, un mécanisme

de diffusion d’activation produit une propagation de l’activité dans la population

colonne menant à la sélection du plus court chemin vers le but. Nos résultats

de simulation démontrent que le modèle peut reproduire le comportement des

rongeurs précédemment attribué à la capacité des animaux à avoir un “insight”

cognitive, une compréhension de la structure de l’environnement (Tolman and

Honzik, 1930a). En outre, nous montrons que la planification spatiale dans notre

modèle est invariante par rapport à la taille du labyrinthe. Cette propriété repose

sur la capacité du modèle à encoder des cartes cognitives avec une résolution qui

est adaptée à la structure de l’environnement (allées, par exemple). Une autre

propriété du modèle est sa capacité à trouver des raccourcis à travers des parties

inexplorées de l’environnement.

Au niveau neuronal, nous avons caractérisé les activités des neurones du

modèle et comparé celles-ci aux données électrophysiologiques des neurones

CPF réel. Notre analyse des réponses neuronales suggère comment l’interaction

entre l’hippocampe et le cortex préfrontal modélisés peut mener à l’encodage

d’informations multiples pertinentes pour la fonction de planification spatiale, y

compris, par exemple, des corrélats liés à la distance au but. Le modèle four-

nit également un cadre fonctionnel pour l’interprétation de l’activité d’unités

préfrontales observées durant l’exécution de tâches de mémoire spatiale (Watan-

abe, 1996; Jung et al., 1998; Tremblay and Schultz, 1999; Rainer et al., 1999;

Averbeck et al., 2002; Mulder et al., 2003; Hok et al., 2005; Benchenane et al.,

2010). D’un point de vue général, nos résultats sont conformes à l’hypothèse

selon laquelle le contrôle cognitif découle de la maintenance active de patrons

d’activité dans le CPF qui représentent les buts et les moyens pour les atteindre

(Miller and Cohen, 2001).

Le modèle a deux limites en rapport avec la question de la représentation de

but dans les CPF. La première est que le modèle prend des décisions basées sur

- xvi -



un signal de motivation seulement appétitif (i.e. la récompense au niveau du but).

De toute évidence, d’autres variables que la taille de la récompense influent sur

le processus de planification. Par exemple, il existe des résultats indiquant que

les efforts physiques requis pour atteindre le but ou le retard dans la délivrance

de la récompense influencent les décisions comportementales dépendant du CPF

(Rudebeck et al., 2006). La deuxième limitation est que le modèle à l’heure

actuelle ne peut gérer qu’un seul but et ne peut pas estimer les valeurs relatives

de différents buts(Tremblay and Schultz, 1999). Afin de remédier à ces limi-

tations, le mécanisme de diffusion d’activation dans le modèle peut être étendu

pour propager plusieurs signaux motivationnels, les intensités desquels sont pro-

portionnelles à leurs valeurs subjectives. Dans ce cas, un effort ou une récompense

retardée peut être modélisée en ajustant les valeurs relatives des signaux de moti-

vation à différents endroits dans le labyrinthe.

Une autre direction intéressante pour les travaux futurs est d’étudier

l’encodage d’informations liées à la tâche dans le CPF au cours du sommeil.

Bien qu’il soit probable que des informations sont transférées au cours de

l’apprentissage de la tâche, la consolidation de la mémoire au cours du sommeil

semble également jouer un rôle central (Peyrache et al., 2009). En particulier, des

décharges intensives (sharp wave-ripple complexes) dans l’hippocampe semblent

importants pour le transfert de souvenirs labiles de l’hippocampe vers le néocortex

pour le stockage à long terme (Girardeau et al., 2009). Une question clé pour les

approches de modélisation est de comprendre les propriétés computationnelles de

ce mécanisme d’apprentissage.
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Abstract

The interplay between hippocampus and prefrontal cortex (PFC) is fundamental

to spatial cognition. Complementing hippocampal place coding, prefrontal repre-

sentations provide more abstract and hierarchically organized memories suitable

for decision making. We model a prefrontal network mediating distributed infor-

mation processing for spatial learning and action planning. Specific connectivity

and synaptic adaptation principles shape the recurrent dynamics of the network

arranged in cortical minicolumns. We show how the PFC columnar organization

is suitable for learning sparse topological-metrical representations from redun-

dant hippocampal inputs. The recurrent nature of the network supports multilevel

spatial processing, allowing structural features of the environment to be encoded.

An activation-diffusion mechanism spreads the neural activity through the col-

umn population leading to trajectory planning. The model provides a functional

framework for interpreting the activity of PFC neurons recorded during navigation

tasks. We illustrate the link from single unit activity to behavioral responses. The

results suggest plausible neural mechanisms subserving the cognitive “insight”

capability originally attributed to rodents by Tolman & Honzik. Our time course

analysis of neural responses shows how the interaction between hippocampus and

PFC can yield the encoding of manifold information pertinent to spatial planning,

including prospective coding and distance-to-goal correlates.

Keywords: hippocampus, navigation planning, prefrontal cortical minicolumns,

reward-based learning, time course analysis.
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Chapter 1

Introduction

1.1 Motivation

Spatial cognition requires long-term neural representations of the spatiotemporal

properties of the environment (O’Keefe and Nadel, 1978). These representations

are encoded in terms of multimodal descriptions of the animal-environment in-

teraction during active exploration. Exploiting these contextual representations

(e.g. through reward-based learning) can produce goal-oriented behavior under

different environmental conditions and across subsequent visits to the environ-

ment. The complexity of the learned neural representations has to be adapted to

the complexity of the spatial task and, consequently, to the flexibility of the nav-

igation strategies used to solve it (Trullier et al., 1997; Arleo and Rondi-Reig,

2007). Spatial navigation planning —defined here as the ability to mentally eval-

uate alternative sequences of actions to infer optimal trajectories to a goal— is

among the most flexible navigation strategies (Arleo and Rondi-Reig, 2007). It

can enable animals to solve hidden-goal tasks even in the presence of dynami-

cally blocked pathways (e.g. detour navigation tasks, Tolman and Honzik, 1930a).

Experimental and theoretical works have identified three main types of represen-

tations suitable for spatial navigation planning, namely route-based, topological,

and metrical maps (Poucet, 1993; Trullier et al., 1997; Meyer and Filliat, 2003;

Arleo and Rondi-Reig, 2007; Mallot and Basten, 2009). Route-based represen-

tations encode sequences of place-action-place associations independently from

each other, which does not guarantee optimal goal-oriented behavior (e.g. in terms

of capability of either finding the shortest pathway or solving detour tasks). Topo-
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logical maps merge routes into a common goal-independent representation that

can be understood as a graph whose nodes and edges encode spatial locations and

their connectivity relations, respectively (Trullier et al., 1997). Topological maps

provide compact representations that can generate coarse spatial codes suitable

to support navigation planning in complex environments. Metrics-based maps

go beyond pure topology in the sense they embed the metrical relations between

environmental places and/or cues —i.e. their distances and angles— within an

allocentric (i.e. world centered) reference frame (Poucet, 1993). The encoding

of metric information favors the computation of novel pathways (e.g. shortcuts)

even through unvisited regions of the environment. In contrast to the qualitative

but operational space code provided by topological maps, metrical representations

form more precise descriptions of the environment that are available only at spe-

cific locations until the environment has been extensively explored (Poucet, 1993).

However, purely metric representations are prone to errors affecting distance and

angle estimations (e.g. path integration, Etienne and Jeffery, 2004). Behavioral

and neurophysiological data suggest the coexistence of multiple memory systems

that, by being instrumental in the encoding of routes, topological maps and metri-

cal information, cooperate to subserve goal-oriented navigation planning (White

and McDonald, 2002).

In this work we propose a model of a spatial memory system that primarily

learns topological maps. Our main attention is devoted to the following questions:

(i) how can these representations be encoded by neural populations within the

brain ? (ii) what can be inferred thanks to the model about the link between

electrophysiological discharges recorded in the brain and behavior?

1.2 Roadmap of the dissertation

This thesis consists of two main parts. The first part (Chapters 2 and 3) reviews

neurophysiological and behavioral data concerning the biological networks un-

derlying navigation planning in the rat. In the second part (Chapters 4, 5, 6 and

7) we propose a neuromimetic model of spatial planning. Topics treated in each

chapter are:

Chapter 2 reviews anatomical data concerning two main brain structures in-

volved in spatial learning and planning, the hippocampus and the prefrontal cor-
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tex. In particular, subdivisions as well as patterns of afferent and efferent con-

nections are described for each structures. Additionally, we present the columnar

organization found in the prefrontal cortex.

Chapter 3 reviews neurophysiological and behavioral data about the hip-

pocampus and the prefrontal cortex to underline functional differences between

these structures in spatial learning.

Chapter 4 presents a new model of rat planning behavior, with detailed de-

scription of its components and learning algorithms.

Chapter 5 examines results of computer simulations that tested model spatial

performance in several behavioral tasks.

Chapter 6 analyses coding properties of the model neurons and their link with

decision making, in relation with experimental data.

Chapter 7 provides a short descriptions theoretical models adressing naviga-

tion planning in the prefrontal cortex.

Chapter 8 discusses the overall results of the model and summarizes the con-

tributions and possible future developments of this thesis.
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Chapter 2

Anatomy of a distributed network

underlying spatial cognition

Spatial cognition involves the ability of a navigating agent (be it an animal or

an autonomous artefact) to acquire spatial knowledge (e.g., spatio-temporal re-

lations between environmental cues or events), organize it properly, and employ

it to adapt its motor response to the specific context (e.g., performing flexible

goal-oriented behavior to solve a navigation task). Similarly to other high-level

functions, spatial cognition involves parallel information processing mediated by

a network of brain structures that interact to promote efficient spatial behavior

(see Knierim, 2006; Arleo and Rondi-Reig, 2007 for a recent review; Dollé et al.,

2010). In this chapter, we will discuss the anatomical properties of two impor-

tant structures which are though to be involved in declarative spatial memory and

high-level processing of spatial information, namely the hippocampus and the

prefrontal cortex (with a focus on this latter structure). Other brain areas are also

important for navigation. In particular, the basal ganglia are thought to mediate

procedural learning and action selection (Redgrave et al., 1999; Khamassi, 2007);

the amygdala is involved in the processing of emotional and motivational informa-

tion (Aggleton, 1992); the motor cortices and the cerebellum encode motor-related

representations (Georgopoulos et al., 1982; Ito, 2002); finally, the parietal cortex

mediates visuo-motor transformations and egocentric spatial representations (An-

dersen, 1995; Andersen et al., 1997; Nitz, 2006).
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2.1 The hippocampus

In this short review of hippocampal anatomical data we focus on connectivity

between the hippocampus and other brain areas. See (Arleo, 2000; Hok, 2007;

Alvernhe, 2010) for more detailed descriptions.

2.1.1 Subdivisions

The hippocampal formation includes the dentate gyrus (DG), the subiculum (SC)

and the hippocampus proper (or cornu ammonis, CA) composed of four subfields

CA1-CA4 (usually only CA1 and CA3 are considered), see Fig. 2.1A. The hip-

pocampus occupies a large volume in rodent brains.

2.1.2 Connectivity

Hippocampal afferents

Two major types of input enter the hippocampal formation: (i) Inputs from neo-

cortical areas converge through the entorhinal cortex via the perforant path. These

signals carry information coming from most of the unimodal and multimodal as-

sociative areas. As a consequence, the hippocampal formation is the recipient of

highly processed multimodal sensory information (Rolls, 1995). (ii) Inputs from

subcortical areas reach the hippocampus via the fornix fiber bundle. Signals from

the thalamus, the hypothalamus, the brainstem, and the amygdala, are though to

convey arousal, emotional, and autonomic information (Burgess et al., 1999). The

subcortical cholinergic and GABA-ergic inputs from the septal region modulate

the ensemble hippocampal activity (Hasselmo and Bower, 1993).

Intrinsic hippocampal circuit

The highly processed information from neocortical areas reaches the entorhinal

cortex (EC). Entorhinal cells, via the perforant path, project to DG granule cells,

CA3/CA1 cells, and subicular cells (Fig. 2.1B). Furthermore, EC exhibits intrin-

sic recurrent connectivity. The dentate gyrus sends efferents to CA3 via the mossy

fibers. Synaptic projections from DG to CA3 are very selective: each granule cell

projects approximately onto 14 pyramidal cells only (Amaral, 1993). DG has also

intrinsic projections: granule cells generate collateral synapses that terminate on
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A

B

Figure 2.1: Hippocampus of the rat from (Cheung and Cardinal, 2005). (A) Po-

sition of the hippocampus within the brain and coronal sections. (B) Circuitry of

the hippocampus. Transversal section.
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the polymorphic DG region (Amaral and Witter, 1989). CA3 pyramidal cells form

a recurrent network through the Shaffer collaterals, but the latter fiber bundle is

also used to synapse CA1 and subicular cells. CA1 neurons send their output to

entorhinal as well as subicular cells via the angular bundle (Amaral et al., 1991).

Finally, SC projects onto the EC. The hippocampal circuit can be coarsely approx-

imated by a feed-forward loop (Amaral and Witter, 1989): information enters the

loop via EC, proceeds towards DG, then to CA3 and CA1, and finally arrives to

SC which closes the loop by projecting to EC.

Hippocampal efferents

The SC forms the major output of the hippocampal formation (Amaral and Wit-

ter, 1989; Witter, 1993) (nevertheless, CA3 and CA1 regions also send an output

directly to subcortical areas, e.g., the lateral septum; Swanson and Cowan, 1977).

Until the mid-1970s it was thought that the hippocampal output was predomi-

nantly carried by the fornix. More recent studies have shown that an important

pathway for the hippocampal outflow consists of the non-fornical projection to

the deep layers of the entorhinal cortex (dEC). From dEC, information is sent to a

variety of cortical areas (Witter, 1993; Insausti et al., 1997).

2.2 The prefrontal cortex

The prefrontal cortex (PFC) is a part of the frontal lobe, located in the anterior

part of the mammal cortex. Uylings et al. (2003) proposed general criteria for

the definition of the PFC and its comparison between two species, including its

the cytoarchitectonic characteristics (Sec. 2.2.1), and the patterns and the den-

sity of afferent and efferent connections including the neuromodulator distribution

(Sec. 2.2.3). The data presented in this section refer mainly to rats. However it is

important to note that, with respect to all other cortical areas, PFC is particularly

developed in primates and in humans and has come to represent nearly a third of

the cortex (Brodmann, 1895).

- 12 -
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2.2.1 Subdivisions

The rat PFC can be organized in medial, ventral and lateral (sulcal) parts. As

shown on Fig. 2.2, the ventral and lateral parts are formed by the orbitofrontal

cortex (OFC) and the agranular insular cortex (AIC). The medial part is composed

the precentral cortex (PRC also called the frontal area 2 FR2 or agranular medial

cortex AGC), the anterior cingulate cortex (ACC), the prelimbic cortex (PL) and

the infralimbic cortex (IL) (Preuss, 1995; Paxinos and Watson, 1998; Uylings

et al., 2003; Dalley et al., 2004; Vertes, 2006).

As shown in the next sections, the medial PFC of rats could be more generally

divided in a dorsal part (PRC + dorsal ACC or PRC + ACC + dorsal PL) and a

ventral part (ventral ACC + PL + IL or ventral PL + IL + medial OFC) (Vertes,

2006; Heidbreder and Groenewegen, 2003). The dorsal part could be equivalent

to high level sensori-motor areas of the primate (frontal eye field, supplementary

motor area and premotor area), whereas the ventral part could be similar to the

primate areas involved in emotional, motivational and cognitive processing (or-

bital, cingulate and dorsolateral areas) (Condé et al., 1995; Vertes, 2006). More

specifically, some authors suggest a strong homology between rat PL and primate

dorsolateral PFC (Granon and Poucet, 2000).

2.2.2 Layered and columnar organization

Cortical layers.

The PFC share a cytoarchitectonic characteristic with other neocortical areas: var-

ious types of neurones compose its tissues, and are organized into layers parallel

to the pial surface. Layer I mostly contains axons and dendrites. Layers II-III

are called supragranular or superficial layers while layers V-VI are called infra-

granular or deep layers. The most prominent cytoarchitectonic feature of the rat

prefrontal cortex is that it is composed exclusively of agranular cortical areas (i.e.

without a layer IV). In primates, this layer receives the main sensory inputs, either

directly from the thalamus or from columns of cortical areas involved in earlier

stages of sensory processing (Mountcastle, 1997). We will see in Sec. 2.2.3 how

the different layers are involved in afferent and efferent projections of the rat PFC,

but a rather general property is that layers II/III project more strongly to other

cortical areas while layers V/VI project more strongly to subcortical structures.
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BA

Figure 2.2: Rat prefrontal cortex anatomy, from (Dalley et al., 2004). (A) Lateral

view, 0.9 mm from the midline. (B) Unilateral coronal section, approximately

3.5 mm forward of bregma (depicted by the arrow above). The different shadings

represent the three major subdivisions of the prefrontal cortex (medial, ventral

and lateral). Abbreviations: ACg, anterior cingulate cortex; AID, dorsal agranular

insular cortex; AIV, ventral agranular insular cortex; cc, corpus callosum; Cg2,

cingulate cortex area 2; gcc, genu of corpus callosum; IL, infralimbic cortex; LO,

lateral orbital cortex; M1, primary motor area; MO, medial orbital cortex; PrL,

prelimbic cortex; PrC, precentral cortex; VLO, ventrolateral orbital cortex; VO,

ventral orbital cortex.
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Thomson and Bannister (2003) reviewed the inter-laminar connections in adult

mammalian neocortex: clear patterns are emerging from these studies, with ‘for-

ward’ projections from layer IV to III and from III to V targeting both selected

pyramidal cells and interneurons, while ‘back’ projections from layer V to III and

from III to IV target only interneurons.

The composition and thickness of the layers differ according to the subparts of

the PFC, and are progressively organized during development (Eden and Uylings,

1985). Fig. 2.3 illustrates the layered organization for three subparts (ACC, PL

and IL) of the rat PFC (Gabbott et al., 1997). Gabbott et al. (1997) have performed

a quantification of layer thickness and neuronal density for these three subparts

(Fig. 2.4). To give a general idea, cumulated thickness for all layers varied from

∼ 1mm (IL) to ∼ 1.5mm (ACd). The total number of neurons under 1mm of

cortex changed with the same gradient, from ∼ 49000 neurons in IL (85.2 % of

pyramidal cells vs. 14.8 % of inhibitory interneurons) to ∼ 67000 neurons in ACd

(82.8 % vs. 17.2 %).

General principle: functional columns

Lorente de No (1938) introduced the important idea of the “elementary cortical

unit of operation”. He considered the neocortex as consisting of small cylinders

composed of vertical chains of neurons that crossed all cortical layers and that had

specific afferent fibers as their axis. This idea formed the basis of the hypothesis

of the columnar organization of the cerebral cortex that developed later, mainly

after the works of Mountcastle, Hubel and Wiesel (for reviews see Hubel and

Wiesel, 1977; Mountcastle, 1997; Buxhoeveden and Casanova, 2002; Goodhill

and Carreira-Perpinan, 2002). This widely investigated hypothesis states that neu-

rones in many cortical areas of the mammalian brain are arranged into functional

columns (also called macrocolumns or modules) on the basis of their similar phys-

iological response properties (Szentágothai, 1975; Eccles, 1981; Burnod, 1988;

Vogt and Gabriel, 1993; Mountcastle, 2003). The existence of cortical columns

was first reported by Mountcastle (1957), who observed chains of cortical neu-

rones reacting to the same external stimuli simultaneously (“similarity“ however,

can be a difficult concept, especially outside the primary and early sensory cor-

tices; Mountcastle, 2003). In the rat neocortex, columns are believed to be about

300 − 600µm wide and contain around 7500 neurons distributed non-uniformly
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Figure 2.3: Cytoarchitecture of rat mPFC, from (Gabbott et al., 1997). (A) Coro-

nal Nissl-stained section (13.2 mm anterior to bregma) showing the division of the

rat medial PFC into dorsal ACC (ACd), PL, IL and PrCm. (B) Cytoarchitectural

lamination of ACd. (C) Cytoarchitectural lamination of PL and IL cortices. White

matter, wm. Calibration bars: A, 1000µm; B, 500µm; C,500µm.
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across the cortical layers (Markram et al., 2004).

The columnar organization has been suggested to subserve efficient neocorti-

cal computation and information processing. For example, cortical columns have

been compared to complex processing and distributing units that link a number of

inputs to a number of outputs via overlapping internal processing chains (Mount-

castle, 1997). A distributed system is a collection of processing units that are

spatially separate and communicate by exchanging messages. A system is dis-

tributed if the message-transmission delay is a significant fraction of the time be-

tween single events in a processing unit. Given synaptic transmission times in the

neocortex (1–5 ms) and the slow conduction velocity in cortico-cortical axons,

this seems to fit. Some further and important properties of distributed systems are

these (Mountcastle, 1997). (i) Signal flow through such a system may follow any

of a number of pathways in the system. (ii) Action may be initiated at any of a

number of nodal loci within a distributed system. (iii) Local lesions within such

a system may degrade a function, but not eliminate it completely. (iv) Distributed

systems are re-entrant systems, i.e. their nodes are open to both externally induced

and internally generated signals.

The columnar organization is mostly related to the migration of neurons from

the ventricular and subventricular zones into radial columns during development

(Rakic, 1988). This radial migration has been suggested as a mechanism, known

as the radial unit hypothesis (Rakic, 1988), by which the neocortex could expand

enormously during evolution as a sheet of cells with a basically uniform thickness

rather than increasing in size as a globe (reviewed in Rakic, 2002). However ma-

jor issues regarding the basic nature, key features, and functional significance of

the columnar organization remain unclear and often controversial (Rockland and

Ichinohe, 2004; Horton and Adams, 2005). For example, Rakic (2008) stressed

that the size, cell composition, synaptic organization, expression of signaling

molecules, and function of various types of columns are dramatically different

across the cortex, so that the general concept of column should be employed care-

fully. Moreover, studies such as (Jung et al., 2000) have suggested that response

characteristics of neurons within the same cortical column are not as homoge-

neous as previously assumed, so that a balance between a redundant coding of

information (which favors precision) and a heterogeneous coding (higher storage

capacity) is maintain. Anatomically, another problem is that multiple column-
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like structures can be recognized, at different spatial scales ranging from about

10µm to 400 − 1000µm (see Buxhoeveden and Casanova, 2002). The next sec-

tion presents neuroanatomical findings that suggest that functional columns can

be divided into small scale structures, closely related to an anatomical substrates,

and often called structural minicolumns (or microcolumns).

Structural minicolumns

A common definition of the anatomical minicolumn is a basic unit, consisting of

a narrow chain of neurons extending vertically across layers II-VI (Mountcastle,

1997, 2003). It is often described as having common inputs, common outputs, and

as being rather uniform across cortical areas, although some cautions have been

voiced against strong generalizations (Mountcastle, 1997; DeFelipe et al., 2002;

Buxhoeveden and Casanova, 2002; Mountcastle, 2003; Rockland and Ichinohe,

2004; Rakic, 2008). Two main types of structural minicolumns can be found: one

is of vertically oriented rows of cell bodies (Buxhoeveden and Casanova, 2002),

the second is groups of neurons whose apical dendrites form bundles or clusters

(also called pyramidal cell modules, Peters and Kara, 1987).

Vertical pyramidal cell rows. Vertically aligned rows of cell bodies can easily

be discerned in Nissl-stained preparations of many cortical areas for many mam-

mals (e.g. in the human PFC, see Fig. 2.5). The degree of verticality is highly

variable across areas. Even in high-columnar areas like temporal cortex, cellular

columns do not extend from layers II to VI, but rather consist of 15 − 20 aligned

cell bodies over a thickness of 300− 500µm. In human medial prefrontal cortex,

stacks of 15−19 soma have been reported to occur sporadically at different depths

in layers III-VI (Gabbott, 2003).

Dendritic bundles. The fundamental structural subunits within a cortical mod-

ule are thought to be the neurones and synaptic circuitry associated with a single

cluster (bundle) of apical dendrites originating from pyramidal neurones (Peters

and Kara, 1987; Rockland and Ichinohe, 2004). Particularly, pyramidal cell apical

dendrites in layers II-V of the rat PL are not randomly distributed, but are orga-

nized into discrete radially aligned bundles (Fig. 2.6A-B; Gabbott and Bacon,

1996b). On Fig. 2.6C, the centers of clusters surrounding a central cluster have
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Figure 2.4: Cortical depth distributions of laminar neuronal density NV estimates

in areas IL (25), PL (32) and ACd (24b) of rat mPFC, from (Gabbott et al., 1997).

The whole depth of the cortex is presented as 100% with laminar boundaries in-

dicated at the corresponding percentage depths below the pial surface.

Figure 2.5: Vertically organized stack of pyramidal cells in the dorsal ACC of

human, from (Gabbott, 2003). Nissl-stained cell bodies in layers 5 and 6. Note the

long vertical alignment of the stacks. Readily apparent are the relatively somata-

free regions between the columns of stacked cell bodies. Scale bar: 500µm.
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been linked together to indicate the predominant hexagonal packing of dendritic

clusters. Additional groups of dendritic profiles occur between the recognized

clusters (one example is shown encircled). This dendritic bundle organization can

also be observed in monkey and human PFC (Gabbott and Bacon, 1996a; Gabbott,

2003).

The structural subunit of which a single dendritic bundle forms the central

component could be conveniently modeled in the rat PL by an hexagon extending

from white matter to pia through all layers of the cortex (Fig. 2.7A; Gabbott and

Bacon, 1996b; Gabbott et al., 2005; see Fig.A.2 for a schematic representation of

monkey minicolumns). In cross-section, the packing of minicolumns can be mod-

eled ideally as a clustered hexagonal honeycomb lattice parallel to the pial surface

(Fig. 2.7B), with a mean center-to-center distance between bundles of 45µm, a

mean surface area for each minicolumn of 1360µm2, and a minicolumn density

of 735 minicolumns per mm2 (Gabbott and Bacon, 1996b). Each minicolumn

would contain about 63.5 pyramidal neurons (plus inhibitory interneurons) dis-

tributed over the six layers (Fig. 2.7C).

Functions of micro-circuits and inhibitory interneurons. Speculations about

the functional capacity of dendritic bundles have centered on their ability to corre-

late or synchronize the activity between vertically aligned sets of pyramidal cells

in the superficial and deep layers of the cortex in response to afferent input. For

example, Rao et al. (1999) showed that, when recorded simultaneously at the

same cortical site (about 20− 50µm wide), the majority of neighboring neurons,

whether inhibitory interneurons or pyramidal cells, displayed isodirectional tun-

ing, i.e., they shared very similar tuning angles for the sensory and delay phases

of the task (Rao et al., 1999; see also Constantinidis et al., 2001 for a cross-

correlation study between pairs of neighboring neurons). These results support

the interpretation that closely adjacent neurons within the same minicolumn may

share a high proportion of their spatially tuned afferents (Shadlen and Newsome,

1998) and thus form a strong consensus in tuning preferences (a form of neural

averaging) (Zohary et al., 1994). Besides, this suggests that interneurons are also

involved at the first stages of processing afferent information from other brain re-

gions, including cortex, thalamus, hippocampus, amygdala, VTA, and brainstem

structures, possibly through the same monosynaptic projections that innervate the

pyramidal cells (e.g., see Freund and Meskenaite, 1992; Vogt and Gabriel, 1993;
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A
B

C

Figure 2.6: Dendritic bundles in the rat PL, from (Gabbott and Bacon, 1996b).

(A) Micrograph of a section through layers 3 and 5. P and P’ represent pyramidal

neurones. Indicated is the clustering of dendrites ascending through the superficial

layers of the cortex (boxed region in layer 3). c is a capillary. Scale bar: 50µm.

(B) Tangential section at the boundary between layer 3 and 5. Dendritic profiles of

varying size aggregate to form a cluster. Scale bar: 10µm. (C) Light microscope

drawing showing the tangential distribution of dendritic bundles from the middle

of layer 3. Several dendritic bundles are indicated (arrows). A line links centers

of clusters surrounding a central cluster, and an example of additional dendritic

group occurring between the recognized clusters is shown encircled. Scale bar:

100µm.
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A
B

C

Figure 2.7: Schematic representation of minicolumns in the rat PL, from (Gabbott

et al., 2005). (A) Three examples of structural minicolumns extending perpen-

dicular to the pia through all cortical layers. (B) Cross-section representation of

minicolumns ideally packed into a clustered “hexagonal” honeycomb lattice par-

allel with the pia. SA: surface area of each minicolumn (SA). (C) Approximate

number of pyramidal neurons belonging to each layer of a minicolumn. The val-

ues are deducted from the volume of a minicolumn (1360µm2 × 1250µm) and

the density of cell).
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Sesack et al., 1995; Tierney et al., 2004).

GABAergic inhibitory interneurons play a central role in micro-circuits. Un-

like pyramidal cells which project often to other far brain areas, inhibitory in-

terneurons of the neocortex are strongly involved in the shaping of pyramidal cell

responses belonging to the same minicolumn or to adjacent ones. That is why they

are sometimes called “local circuit” neurons. Indeed they can control the balance

between excitation and inhibition (Markram et al., 2004; Silberberg and Markram,

2007), the sharpness of the tuning of pyramidal cells (Rao et al., 2000) as well as

the timing of their responses (Pouille and Scanziani, 2001; Constantinidis et al.,

2002), which could support the synchronization of these pyramidal cells. This

is possible because of the discharges properties of inhibitory interneurons such as

larger and faster EPSPs, a smaller latency and a shorter action potential duration in

interneurons versus pyramidal cells (Dégenètais et al., 2003; Tierney et al., 2004;

Povysheva et al., 2006). As a consequence, it appears that nearby inhibitory neu-

rons are more tightly synchronized than excitatory ones and account for much of

the correlated discharges commonly observed in cortical networks (Constantinidis

and Goldman-Rakic, 2002).

Inhibitory interneurons, which represent a part of 16% of pyramidal cell in-

puts, can have several type of connections with pyramidal cells (Markram et al.,

2004): axonal connection, somatic connection and dendritic connection. Each of

these types of connection have a different influence on the target neuron activity,

respectively the timing of action potential, the gain summation of input currents,

and the perturbation of other dendritic input currents and plasticity (Markram

et al., 2004). In fact this depends on the type of interneurons, which are a het-

erogeneous group of cells whose repartition changes among cortical areas and

among species (DeFelipe et al., 2002; Raghanti et al., 2010). In the rat PFC, sev-

eral subtypes of GABAergic interneurons have been identified by the expression

of defined calcium binding proteins. Kawaguchi and Kubota (1997) has classi-

fied them in three main groups according to their physiological firing patterns

(see also Markram et al., 2004): (i) fast-spiking (basket and chandelier cells), (ii)

late-spiking (neurogliaform cells) and (iii) regular-spiking and burst-spiking non-

pyramidal cells (martinotti, double bouquet and arcade cells). Each cell subtype

have typical morphological properties (e.g., shape of the dendritic tree and pro-

jection site on the target neurons; see Markram et al., 2004). For more details on
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the density of interneuron subtypes in the dendritic bundles of the rat PFC, see

(Gabbott et al., 1997).

Besides the inhibitory effect present within a minicolumn, inhibition can oc-

cur between minicolumns (Rao et al., 1999). Indeed, Thomson and Deuchars

(1997) reported considerable inhibition between interneurons and pyramidal cells

at distances of 50 − 250µm. The differences found by Rao et al. (1999) in con-

sensus of tuning between neighboring minicolumns may therefore provide the

circuit basis for isodirectional inhibition, which serves to sharpen spatial tuning

in a mechanism similar to that proposed for visual cortex (Kisvárday et al., 1994;

Somers et al., 1995; Wörgötter and Koch, 1991). Finally, another inhibition could

act at an even higher scale between set of minicolumns with different selectivity

(cross-directional inhibition) and separated by about 400 − 800µm (Kisvárday

et al., 1994). Rao et al. (1999) propose a simple representation of these multiple

inhibitory effect (Fig. 2.8). Thus, inhibitory interneurons are an important com-

ponent of columnar organization which govern local cortical microcircuitry and

are fundamental for intra- and intercolumnar processing (Raghanti et al., 2010).

Note that lateral interactions between minicolumns are not limited to inhibitory

effects: pyramidal cells send also excitatory collaterals to adjacent and distant

minicolumns (Mountcastle, 1997; Lewis et al., 2002).

2.2.3 Connectivity

“It is evident that each cortical neuron is the focus of input from many other neu-

rons, and on the basis of the available data it is estimated that a single pyramidal

cell in cortex receives its input from as many as 1,000 other excitatory neurons

and as many as 75 inhibitory neurons” (Peters, 2002). We review here the main

afferent and efferent connections of rat PFC neurons.

Intrinsic connections

The subparts of the PFC have strong interconnections which creates local recur-

rent circuits (Reep et al., 1996; Öngür and Price, 2000; Gabbott et al., 2003;

Uylings et al., 2003; Heidbreder and Groenewegen, 2003). These connections

are also topographically organized: ventral parts tend to be connected together,

and dorsal areas with other dorsal areas (Heidbreder and Groenewegen, 2003).
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Figure 2.8: Iso- and cross-directional inhibition in the PFC, from (Rao et al.,

1999). Hypothetical circuit demonstrating isodirectional tuning relationships be-

tween adjacent minicolumns with small differences (∼ 5◦, top) in their directional

preferences and cross-directional relationship between distant, functionally de-

fined columns with a wide difference (∼ 180◦, bottom) in their directional prefer-

ence. The bulk of interactions is considered likely to take place in layer III, where

a large proportion of horizontal connections and interneurons can be found. Bot-

tom inset: autoradiographic visualization of the columnar organization of afferent

input (corresponding to functional columns) to the principal sulcus of the monkey.
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Cortico-cortical connections

“All major sensoria find some form of representation in the prefrontal cortex, how-

ever abstract or compounded” (Nauta, 1971). Indeed inputs from olfactory, gus-

tatory, somatosensory and visual sensory areas have been reported in rats (Reep

et al., 1996; Öngür and Price, 2000). Interestingly, neocortical areas involved

in spatial processing such as the entorhinal, perirhinal and retrosplenial cortices

send also connections to the PFC (Uylings et al., 2003). Particularly, the entorhi-

nal cortex can exert a potent inhibition on PFC pyramidal cells (Valenti and Grace,

2009). The PFC sends in return connections to all these cortices, with its dorsal

part more strongly connected with sensori-motor areas (Vertes, 2006; Heidbreder

and Groenewegen, 2003). Layers II-III of the cortex are mainly responsible for

these cortico-cortical connections to both adjacent and distant cortical zones.

Hypothalamus, brainstem and neuromodulation

By way of hypothalamic projections, the prefrontal cortex has an important in-

fluence on behavioral and autonomic functions. Medial prefrontal projections

to the hypothalamus predominantly arise from the ventrally located cortical ar-

eas (Öngür and Price, 2000; Heidbreder and Groenewegen, 2003; Gabbott et al.,

2005). The orbital and agranular insular prefrontal regions contribute to these

projections, which are topographically organized. The PFC have also extensive

connections with the brainstem, including the midbrain where the ventral tegmen-

tal area (VTA) and the substantia nigra compacta (SNc) can be found (Heidbreder

and Groenewegen, 2003).

Connections between dopaminergic neurons and the PFC. VTA and SNc are

the main dopaminergic inputs to the PFC. While the striatum is the major subcor-

tical target for dopaminergic neurons, the PFC is one of the principal target in the

neocortex. The whole PFC receives projections, but its ventral part is more inner-

vated (Thierry et al., 1973). Again a topographical organization can be observed:

the ventral part of the VTA projects to the dorsal PFC while the dorsal VTA is

connected to the ventral PFC (Deutch, 1993). The dopaminergic projections are

also organized according to the laminar structure of the PFC: SNc neurons have

their terminal synapses in the superficial layers of the PFC (mainly the ACC)

while VTA neurons target the deep layers (Heidbreder and Groenewegen, 2003).
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Finally there is a difference between ventral and dorsal PFC for the processing

of the dopamine. In the latter, dopaminergic transporters are denser, leading to

a higher uptake capacity and a lower gradient of dopamine concentration. Com-

pared to the striatum, the regulation of dopamine is much slower in the PFC (Cass

and Gerhardt, 1995), which may indicate a difference in the temporal scale of the

learning processes subserved by these two structures.

The PFC projects in turn excitatory glutamatergic connections to the VTA

(Murase et al., 1993; Gabbott et al., 2005) and the SNc, so that the PFC may be

able to exert a control over these neural population (Murase et al., 1993; Carr and

Sesack, 2000; Gao et al., 2007). These projections originate mainly from the deep

layers of the ventral PFC (Au-Young et al., 1999). Thus the PFC may control the

release of DA in itself and in other brain structures.

Influence of dopaminergic neurons on the PFC. We will not discuss in de-

tails this complex influence, which is out of the scope of this thesis, but give

some main ideas interesting to the general understanding of the PFC. Dopamine

has been shown to modulate glutamatergic synaptic transmission and long-term

changes in synaptic strength (Pennartz et al., 1994; Law-Tho et al., 1995; Otani

et al., 1998; Laroche et al., 2000; Bao et al., 2001; Seamans and Yang, 2004).

Dopamine transmission plays a prominent role in functions of the prefrontal cor-

tex. For example, as clearly shown in the monkey and the rat, too much or too little

dopamine may be detrimental for working memory, revealing the crucial role of

dopamine transmission in prefrontal neuronal processes related to working mem-

ory (see Fig. A.4; Brozoski et al., 1979; Murphy et al., 1996; Zahrt et al., 1997;

Williams and Goldman-Rakic, 1995).

DA modulates several ionic conductances along the somato-dendritic axis of

pyramidal neurons and may thus contribute to the integration of segregated inputs

(reviewed in Yang et al., 1999; Seamans and Yang, 2004). In addition, through

its effect on local GABAergic interneurons, the mesocortical dopamine system

can also indirectly modulate the excitability of pyramidal cells from their in-

puts and from the activation of recurrent collaterals of pyramidal neurons (Ferron

et al., 1984; Pirot et al., 1992, 1996; Bandyopadhyay and Hablitz, 2007; Tier-

ney et al., 2008). DA can influence neurons in the PFC through their D1 or D2

receptors (Yang and Seamans, 1996; Zheng et al., 1999; Seamans et al., 2001;

Gorelova et al., 2002; Tseng and O’Donnell, 2004; Wang and Goldman-Rakic,
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2004; Kröner et al., 2007; Tseng and O’Donnell, 2007). These receptors are acti-

vated respectively by a low concentration of DA and high concentration (Seamans

and Yang, 2004). Thus the effect of DA are subtle, may maintain a balance be-

tween inhibition and excitation in the PFC (Seamans and Yang, 2004; Goto et al.,

2007), and act at different time scales (Schultz, 2007; Lapish et al., 2007). It

is also interesting to note that the information transfer between mesocortical neu-

rons and the PFC can also be achieved by glutamatergic transmitters. This enables

mesocortical neurons to have a fast influence of the PFC activity, compared to the

slower effect of DA (Seamans and Yang, 2004).

Several roles has been attributed to the influence of DA over the PFC (see Co-

hen et al., 2002 for a review). Dopamine may modulate signal-to-noise ratio (i.e.,

the difference between basal neural discharges and stimulus-induced discharges)

in PFC pyramidal cells. It may also maintain and update salient information in

memory. The underlying assumption is that information storage in the PFC may

be achieved by fixed-point attractor networks (a type of recurrent neural network

whose population activity can have one stable attractor), and the DA may influence

the stability of them to favor maintenance or updating of information (Seamans

and Yang, 2004). According to (Phillips et al., 2004), the magnitude of dopamine

release in the PFC may also be related to the accuracy of memory on a delayed re-

sponse task. Goto and Grace (2008) suggest that DA may modulate the interaction

between retrospective memory coming from the hippocampus and PFC prospec-

tive memory. In fact, dopamine effects may be different according to its release

mode: tonic (slow release) or phasic (fast release) (Schultz, 2002). Indeed, phasic

release has been implied in reward prediction, stimulus novelty coding or novel

action discovery (Schultz, 1998, 2002; Redgrave and Gurney, 2006). Tonic release

is related to the background dopamine concentration, and may be crucial for high-

level functions such as working memory (Williams and Goldman-Rakic, 1995). A

large number of models have been proposed to address many questions related to

the influence of DA on PFC, such as the modulation of pyramidal and inhibitory

neurons, the role in plasticity, the difference between phasic and tonic release, the

active maintenance of information, decision making... (e.g. Ferron et al., 1984;

Servan-Schreiber et al., 1990; Montague et al., 1996; Schultz et al., 1997; Suri

and Schultz, 1999; Brown et al., 1999; Brunel and Wang, 2001; O’Reilly et al.,

2002; Dreher et al., 2002; Tanaka, 2006; Braver et al., 1995, 1997, 1999, 2000;
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Durstewitz et al., 1999, 2000a, 2000b, 2002, 2006; see also Cohen et al., 2002 for

a review).

Other neuromodulatory inputs to the PFC. The PFC receives other

monoaminergic and cholinergic neuromodulators from the brainstem. Seroton-

ergic (5-HT) neurons from the raphe nuclei, noradrenergic (NA, also called nore-

pinephrine) neurons from the locus coeruleus and cholinergic (ACh) neurons from

the caudal part of the basal nucleus send direct projections to the PFC (Heid-

breder and Groenewegen, 2003; Uylings et al., 2003). Similarly to the dopamine,

a unique property of the PFC compared to other neocortical areas is to send in

turn direct connections to these neural populations, mainly from its ventral part.

Serotonin has long been implicated in impulse choice (see Cardinal, 2006 for

a review) and behavioral flexibility, such as reversal learning (reversal of stimulus-

reward associations e.g., Clarke et al., 2004). The prefrontal noradrenergic system

has been involved in novel action-outcome contingencies coding and attentional

set-shifting (Dalley et al., 2004; McGaughy et al., 2008), the active maintenance

of the information about a goal and the rules to achieve it during working mem-

ory task (Rossetti and Carboni, 2005) and the encoding of some aspects of un-

certainty in the general sense of making predictions in a given context (Yu and

Dayan, 2005). Acetylcholine has been associated with locomotor activity (Day

et al., 1991), spatial working memory (Ragozzino and Kesner, 1998), attention

and arousal (Sarter and Bruno, 1997) and the switch between memory systems

during learning (Chang and Gold, 2003).

Striatum and thalamus

The PFC as a whole projects to the ventromedial part of the striatum, including

the nucleus accumbens, the medial part of the caudate nucleus and the ventral part

of the putamen (Sesack et al., 1989; Berendse et al., 1992; Öngür and Price, 2000;

Heidbreder and Groenewegen, 2003; Voorn et al., 2004; Gabbott et al., 2005).

Studies show that projections from the PFC to the striatum are topographically

organized (Fig. 2.9). The ventral part of the PFC projects strongly to the shell

of the nucleus accumbens and to a lesser extent to the medial caudate-putamen.

The dorsal PFC sends connections to the core of the nucleus accumbens and a

more dorsal part of the caudate nucleus. Lateral areas, such as the AIC, project
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to a contiguous ventrolateral part of the striatum. Layers V/VI of the PL and

IL project to the shell, whereas layer II only projects to the core (Ding et al.,

2001). Moreover, another gradient of connections exists according to the depth

of the PFC afferent synapses: PFC superficial layers project to the matrices of the

striatum while the deep layers project to the patches (Gerfen, 1989).

In turn, the PFC does not receive direct connections from the striatum,

but massive topographically-organized projections through the thalamus. More

specifically, there is a gradient along the dorso-ventral areas of the PFC to the

lateral-medial thalamus. The PFC has reciprocal connections with many nuclei

of the thalamus, and particularly with the mediodorsal nucleus (Heidbreder and

Groenewegen, 2003). We have already mentioned PFC-reuniens nuclei interac-

tions. PFC connections to the thalamus originate generally from the layer VI, and

the reciprocal projections from the medio dorsal nucleus target layer III.

In fact, as represented on Fig. 2.10, it is now well-established that the cere-

bral cortex and the basal ganglia are related through multisynaptic striato-pallido-

and striato-nigro-thalamic loop circuits organized in parallel channels, also called

“cortico-basal loops” (Alexander et al., 1986; Uylings et al., 2003; Haber, 2003;

Heidbreder and Groenewegen, 2003). These loops are believed to be the neural

basis of an important information transfer and integration as well as mnemonic

processes such as stimulus-reward, stimulus-response, action-outcome associa-

tion learning and response sequence learning (Uylings et al., 2003).

Amygdala

The amygdala is strongly connected to the PFC, via reciprocal connections (Heid-

breder and Groenewegen, 2003). It sends synapses mainly to IL, the PL, the AIC

and the OFC (Krettek and Price, 1977; Kita and Kitai, 1990). These connections

originate with a higher density from the BLA and reach the PFC mainly in layers

II and V (Bacon et al., 1996). Many neurons in the BLA, and to a lesser extent

other amygdaloid nuclei send collaterals to both the prefrontal cortex and striatum

(Mcdonald, 1991). Projections from the amygdala reach pyramidal cells as well

as interneurons monosynaptically, which enables the amygdala to exert feedfor-

ward excitation and inhibition on the PFC (Bacon et al., 1996; Garcia et al., 1999;

Gabbott et al., 2006).

In return the PFC projects with direct connections to the whole amygdala (Hei-
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Figure 2.9: Cortical and thalamic inputs to the striatum distributed in

dorsomedial-to-ventrolateral zones from (Voorn et al., 2004). The topographi-

cal arrangement of striatal afferents originating in the frontal cortex (upper left),

midline and intralaminar thalamic nuclei (upper right), basal amygdaloid com-

plex (lower left) and hippocampal formation (lower right) are illustrated. Ab-

breviations: ac, anterior commissure; ACd, dorsal ACC; AId, dorsal AIC; AIv,

ventral AIC; CeM, central medial thalamic nucleus; CL, central lateral thalamic

nucleus; (I)MD, (inter)mediodorsal thalamic nucleus; PC, paracentral thalamic

nucleus; PLd, dorsal PL; PLv, ventral PL; PV, paraventricular thalamic nucleus;

SMC, sensorimotor cortex.
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Figure 2.10: Schematic illustrating two potential mechanisms for relaying and

integrating information within the cortico-basal-ganglia circuitry, from (Haber,

2003). Information from distinct cortical regions could be processed separately,

and in parallel through functionally-related neurons (green arrows). Information

from these distinct, parallel pathways could be integrated in two ways: (1) by

spiraling connections between the midbrain dopamine cells and the striatum; and

(2) via thalamo-cortico-thalamic projections.
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dbreder and Groenewegen, 2003). Each subpart of the PFC tends to have a spe-

cific pattern of connectivity with amygdala nuclei (Mcdonald et al., 1996; Gabbott

et al., 2005). Some indirect connections through the reuniens nuclei of the thala-

mus have also been spotted (Zhang and Bertram, 2002).

It should be noted that a particularly strong interaction exists between the

BLA and the OFC (Holland and Gallagher, 2004). Indeed, both of these struc-

tures receive projections conveying high level sensory information. Within the

BLA, these afferent connections overlap projections from the OFC, and con-

versely within the OFC.

Hippocampus

The interactions between the hippocampus and the prefrontal cortex are one of the

important parts of our modeling work. Thus we will give more details about their

properties.

Anatomical characteristics. Ventral CA1 and subiculum part of the hippocam-

pal formation send dense monosynaptic projections to the PFC (Thierry et al.,

2000). Swanson (1981) first demonstrated a direct pathway from the temporal

field CA1 of the hippocampus to the IL. Then, it was shown by Ferino et al. (1987)

that there was also a direct hippocampal projection to the PL originating mainly

from the CA1 field and of the adjacent dorsal and ventral subiculum. Other stud-

ies revealed that this pathway innervates mainly the medial OFC and the PL (Jay

et al., 1989; Jay and Witter, 1991; Condé et al., 1995), but also the AIC (Verwer

et al., 1997) and with a small density the ACC. It is interesting to note that a large

number of hippocampal neurons sending projections to the IL or to the AIC also

have collaterals targeting the entorhinal cortex (Swanson, 1981) and the medial

PFC (Verwer et al., 1997), respectively.

HP-PFC projection fibers first enter the alveus and course dorsally and ros-

trally through the fimbria/fornix. Then, these fibers continue in a rostroventral

direction through the septum and the nucleus accumbens, enter the infralimbic

area, and finally reach the PL/MO areas of the prefrontal cortex (Jay and Witter,

1991). Different patterns of connectivity can be observed between the ventral and

the dorsal PL: in the former terminal arborizations are present in layers II to VI,

whereas they are less dense and only present in layers V to VI in the dorsal part.
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The HP projections are distributed in all layers of the medial OFC, with a slight

preference for deep layers to layer II (Jay and Witter, 1991). The main neuro-

transmitter of the HP-PFC pathway is the glutamate excitatory amino acid which

can activate AMPA and NMDA receptors (although PFC responses seem to result

mainly from the activation of AMPA receptors) (Jay et al., 1992).

It should be noted that indirect but influent connections from the HP to the PFC

(including medial and ventral OFC, ACC, PL, IL and AIC) through the reuniens

nuclei of the thalamus have also been reported (Di Prisco and Vertes, 2006; Vertes,

2006; Vertes et al., 2006). These connections target the layers V/VI of the PFC.

Finally, even if the majority of anatomical studies focus on the pathway between

ventral HP and the PFC, recent electrophysiological data show that electrical stim-

ulations of the posterior dorsal part of CA1 evoke monosynaptic responses within

the PFC (Izaki et al., 2003; Kawashima et al., 2006), which tends to support the

existence of a dorsal HP to PFC pathway.

In return, the PFC does not send direct projections to the HP. However, there

are several indirect pathways available going through parahippocampal structures

such as the entorhinal and the perirhinal cortex (Heidbreder and Groenewegen,

2003), and the reuniens nuclei of the midline thalamus (Vertes, 2006). Indeed,

PL and IL send projections to the reuniens nuclei, which is a major hippocampal

formation afferent. It is monosynaptically connected to CA1, subicular and en-

torhinal pyramidal cells and interneurons (Weel and Witter, 1996, 2000), and the

CA1 field potential generated by its inputs is nearly as important as the CA3 one

(Vertes, 2006). Finally, the reuniens nuclei neuron populations receiving inputs

from the PFC are the one who project to the hippocampus (Vertes et al., 2007).

Thus, it has been proposed that the symmetric connections between the HP, the

reuniens nuclei and the PFC may be responsible to synchronize the HP and the

PFC (Vertes, 2006; Vertes et al., 2007). It is interesting to note that for the primate,

reciprocal connections between the HP and the dorsolateral PFC have also been

exhibited (Goldman-Rakic et al., 1984), which support the homology between the

rat ventral PFC and the primate dorsolateral PFC.

Electrophysiological properties of the HP-PFC pathway. The conduction

time of HP-PFC connections is very short (∼15 ms), with a conduction veloc-

ity of 0.6 m/s and a fiber refractory period of 2.3 ± 0.4 ms (Ferino et al., 1987;

Dégenètais et al., 2003; Tierney et al., 2004). Single-cell extracellular recordings
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of PFC neurons and electrical stimulation of the hippocampus were first used to

determine the influence of the hippocampal formation on the PFC cortex in anes-

thetized rats (Laroche et al., 1990; Jay et al., 1992; Mulder et al., 1997). 42%

of the recorded cells showed an excitatory response (i.e., a single action potential

with a latency of 18 ms) often followed by a prolonged inhibition after a single-

pulse stimulation of the hippocampus.

It was also demonstrated by intracellular recordings that the HP exerts a com-

plex influence on the PFC pyramidal neurones. Indeed their activations consist of

an EPSP-IPSP (excitatory postsynaptic potential - inhibitory postsynaptic poten-

tial) sequence (Thierry et al., 2000). Single-pulse stimulations of cells in the HP

produced early EPSPs after 17,4 ± 7.5 ms in 89% of the recorded PFC neurons,

followed by a prolonged phase of hyperpolarization (266 ± 139 ms). These early

EPSPs caused action potential in 33% of cells. Late EPSPs were also observed

in 35% of the neurons, probably generated by the activation of local excitatory

networks (Thierry et al., 2000; Dégenètais et al., 2003).

The prolonged hyperpolarization observed in intracellular recordings was

composed by a fast and a slow IPSP resulting from the activation of local in-

hibitory networks due to the activation of PFC recurrent collaterals or to the direct

excitatory influence of HP over PFC interneurons (feedforward inhibition through

monosynaptic projections) (Thierry et al., 2000; Gabbott et al., 2002; Tierney

et al., 2004). This feedforward inhibition might be responsible for the pyrami-

dal cell complex responses. A stimulation in the HP produces EPSPs in PFC

pyramidal cells and at the same time in a larger pool of interneurons (Tierney

et al., 2004). Thanks to the temporal properties of PFC inhibitory interneuron re-

sponses, such as a smaller latency (Dégenètais et al., 2003) and a shorter action

potential duration (Tierney et al., 2004), these interneurons can exert an efficient

control over the time window of EPSP summation in pyramidal cells. The pyra-

midal neurons would then have a role of coincident detector (König et al., 1996).

Thus the feedforward inhibition may take part in the synchronization of pyramidal

cell networks within the PFC and between the HP and the PFC in the theta band

(Jones and Wilson, 2005a,b; Hyman et al., 2005; Siapas et al., 2005; Tsujimoto

et al., 2006).

Combined influence of HP and amygdala on PFC. The amygdala, through its

projections to the PFC and the striatum, is also partially involved in the cortico-
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basal loops (Mcdonald, 1991; Heidbreder and Groenewegen, 2003). Interestingly,

neurons in the hippocampal formation (including the entorhinal cortex) send ax-

ons at the same time to the PFC (PL area) and to the amygdala (BLA nuclei)

(Ishikawa and Nakamura, 2006; McDonald and Mascagni, 1997). Moreover, BLA

and HP project in the PL with overlapping synapses, which induces multimodal

responses in PL pyramidal cells: coincident HP and amygdala inputs produced

an increase of discharge, whereas temporally disjoint inputs (e.g. 20-40 msec)

generated an inhibitory effect (Ishikawa and Nakamura, 2003). Taken together,

all these data suggest a strong interaction between the HP, the amygdala and the

PFC. The latter may integrate motivational or emotional information from the

amygdala with contextual information from the HP within a short time windows

(coincident detection).

Modulation of the HP-PFC pathway through the striatum and dopamine

neurons. One particular aspect of these loops is to be able to modulate the HP-

PFC pathway (Fig. 2.11; Thierry et al., 2000). Via the “core” of the nucleus

accumbens, to the substantia nigra pars reticulata projections, to the thalamus and

then to the PFC, the PFC can modulate the excitability of its neurons (Fig. 2.11A).

Interestingly, the CA1/subiculum sends an excitatory input to PL/MO neurons

identified as projecting to the “core” of the nucleus accumbens. This hippocam-

pal excitatory influence on PL/MO neurons innervating the “core” could thus lead

to an activation of the related basal ganglia-thalamo-cortical loop circuits, which

in turn modulate the excitability of prefrontal neurons and, consequently, the in-

fluence of the direct hippocampo-prefrontal pathway. The CA1/subiculum may

also modulate the excitability of prefrontal cortical neurons through the indirect

“shell”-ventral palladium medial-thalamocortical circuit (Fig. 2.11B).

Through direct and indirect pathways, the prefrontal cortex and the hippocam-

pus may modulate the activity of mesencephalic ascending dopaminergic systems

(Fig. 2.11B; Thierry et al., 2000). Through its direct excitatory inputs to dopamine

cells in the VTA, the prefrontal cortex can contribute to the activation of some

dopaminergic ascending neurons and therefore to the level of dopaminergic trans-

mission in their target structures. The VTA/SNC complex does not receive a di-

rect input from the CA1/subiculum; however, via the hippocampal projections to

the “shell,” the CA1/subiculum can indirectly modulate the activity of ascending

dopaminergic neurons. In turn, dopamine transmission in the prefrontal cortex
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interferes with hippocampal inputs (Thierry et al., 2000). Studies have shown that

dopamine and hippocampal terminals are frequently in direct apposition to one

another in the PFC, although they do not establish synaptic contacts onto com-

mon dendritic spines (Carr and Sesack, 1996). A functional interaction between

the mesocortical dopamine system and hippocampal inputs has been shown, us-

ing an electrophysiological approach: a blockade of excitatory responses evoked

in prefrontal neurons by hippocampal stimulation is observed following activation

of the mesocortical dopamine system (Jay et al., 1995b).

In conclusion, the existence of direct connections between the hippocampus,

the prefrontal cortex, and the nucleus accumbens, as well as the existence of reen-

trant circuits involving the nucleus accumbens and directed to the prefrontal cor-

tex, suggest that these structures operate as an integrated unit. Dopamine as-

cending systems which innervate these structures may modulate or “gate” infor-

mation processing at different levels of these circuits. In particular, it has been

shown that tonic and phasic DA release selectively modulates hippocampal and

prefrontal cortical inputs in the striatum through D1 and D2 receptors (Goto and

Grace, 2005). Moreover, Goto and Grace (2008) showed that, depending on the

dopamine receptors activation, PFC either incorporates retrospective information

processed by the hippocampus (D1 activation) or processes its own information

to effect preparation of future actions (D2 activation).

Plasticity and neuromodulation of the HP-PFC pathway. It is known now

that hippocampal to prefrontal cortex synapses are modifiable synapses and can

express different forms of plasticity, including long-term potentiation (LTP) and

long-term depression (LTD) (see Laroche et al., 2000 for a review, see also Otani,

2003 for LTP/LTD induction in PFC slices in vitro). The first evidence for long-

lasting neuronal plasticity of hippocampal to prefrontal cortex synapses came

from studies showing that high-frequency tetanic stimulation of the hippocam-

pus in the anesthetized rat induces a rapid and stable long-term potentiation (LTP)

of the stimulated synapses in the prelimbic cortex (Laroche et al., 1990). In the

awake, freely moving rat, LTP at the hippocampal to prelimbic cortex synapse

results in an enduring increase in synaptic strength which persists for several days

(Jay et al., 1996). In terms of the mechanisms of induction, the activation of the

NMDA receptor is required for the induction of LTP in the hippocampo-prefrontal

cortex pathway (Jay et al., 1995a). Additionally Dégenètais et al. (2003) showed
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A B C

Figure 2.11: Schematic representation of the relationships between the hippocam-

pus, the prefrontal cortex, the nucleus accumbens, the thalamus, the dopamine

neurons of the ventral tegmental area/substantia nigra complex from (Thierry

et al., 2000). (A) Prefrontal cortex-“core” and related basal ganglia circuits. (B)

CA1/subiculum-“shell” and related circuits. (C) Dopaminergic circuits. Broken

and solid lines represent glutamatergic and GABAergic pathways, respectively.

Grey lines represent the dopaminergic pathways. NAcc, nucleus accumbens;

PL/ MO, prelimbic/medial orbital areas; SNC, substantia nigra pars compacta;

SNR, substantia nigra pars reticulata; STN, subthalamic nucleus; Thal, thalamus;

VP(m/l), ventral pallidum (medial/lateral); VTA, ventral tegmental area.
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tetanic stimulation of the hippocampus produced long-term potentiation of the

monosynaptic EPSPs as well as IPSPs.

The mechanisms that lead to this plasticity are complexes because they in-

volve the emotional state of the animal (e.g., its stress level; Jay et al., 2004)

and neuromodulatory effects (e.g., dopamine; (Laroche et al., 2000; Jay et al.,

2004). Indeed, Gurden et al. (1999) showed that the integrity of the mesocorti-

cal dopaminergic system was important for long-term potentiation to occur in the

hippocampal-prefrontal cortex pathway (with a particular role of phasic dopamine

release). In a second experiment, these authors also demonstrated that D1 but

not D2 receptors are crucial for the DA control of the NMDA receptor-mediated

synaptic plasticity for the HP-PFC pathway (Gurden et al., 2000). The complex

aspect of dopamine modulation of plasticity was studied within PFC slice prepa-

rations: high-frequency stimulations of layer V pyramidal cells, which did not

induced synaptic changes alone (Otani et al., 1998), induced LTD if dopamine

was introduced at the same time as the stimulation, but LTP if dopamine was pre-

introduced 12-40 min before (Matsuda et al., 2006) (see also Fig. A.4A about the

influence of DA concentration on LTD/LTP). It is important to note that, in spite

of its strong influence, dopamine is not the only neuromodulator involved in HP-

PFC pathway plasticity: for example serotonin has also been pointed out (Ohashi

et al., 2002).

Summary

The PFC receives a vast range of information through its cortical and subcorti-

cal connections. In particular, it is interesting to note the variety and density of

neuromodulator afferents, which may be implied strongly in the PFC processing

(Cardinal, 2006; Doya, 2008). The dorsal part of the PFC receives projections

mainly from sensorimotor and association cortical areas, whereas the ventral part

is more connected with limbic structures. There is not an abrupt transition in the

ventral/dorsal organization, and for example, Condé et al. (1995) suggested that

the ACC may be an intermediate between the PL and the Fr2. Among the sub-

part of the PFC, the PL seems really important because of the high variety of its

afferents, which is summarized by Vertes (2006) as the “PL circuit”: this brain

area is ideally situated to integrate past and current contextual information (hip-

pocampus), their related emotional and reward values (BLA/MD/VTA) so that the
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best decision can be made. A columnar view of afferent and efferent projections

is presented on Fig. 2.12 (see also A.3 for efferent projections). Afferent con-

nections tend to reach supragranular as well as infragranular layers. However,

efferent projections to subcortical structures appear stronger from the deep layers.

2.3 Conclusion

The high variety of afferents to both the hippocampus and the prefrontal cortex

indicates that these brain structures have an important integrative function. In par-

ticular, the anatomo-functional properties of the PFC seem appropriate to encode

multimodal contextual memories that are not merely based on spatial correlates.

The PFC receives direct projections from sub-cortical structures (e.g., the hip-

pocampus, Jay and Witter, 1991; the thalamus, Vertes, 2006; the amygdala, Kita

and Kitai, 1990; and the ventral tegmental area, Thierry et al., 1973), and indirect

connections from the basal ganglia through the basal ganglia - thalamocortical

loops (Uylings et al., 2003). These projections convey multidimensional informa-

tion onto the PFC, including (but not limited to) emotional and motivational in-

puts (Aggleton, 1992), reward-dependent modulation (Schultz, 1998), and action-

related signals (Uylings et al., 2003). The PFC seems then well suited to process

manifold spatial information.

The presence of loops of connectivity within these structures and with other

brain area suggests that their processing should be highly dynamical, thus integrat-

ing a temporal component. It should be noted that each subparts of the hippocam-

pus and of the prefrontal cortex has different afferent and efferent connectivity

patterns, which may underlie a functional or sensory segregation. A neural path-

way that may be important for spatial cognition is the direct projections from the

hippocampus to the prefrontal cortex. These connections may convey spatial or

contextual information between the structures. Finally, a columnar organization of

the PFC, similarly to other neocortical areas, can subserve important cortical com-

putations. The model presented in Part III accounts for some of these properties:

direct projections from the hippocampus to the prefrontal cortex conveying spa-

tial information, integration of a motivational signal within the PFC (which may

come from the amygdala or dopaminergic neurons, for example) and a columnar

organization subserving spatial learning and planning processes.
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Layer 1

Thalamus

Hippocampus

VTA

SNc

Amygdala

Superficial layers 
II/III

Deep layers 
V/VI

Cortical areas 
(e.g. EC) Cortical areas 

Thalamus

Brainstem
VTA / SNc

Striatum

Amygdala

Hypothalamus

Figure 2.12: Summary of afferent and efferent connections of a PFC minicolumn.

Arrows represent excitatory projections. Note that only a relevant subset of con-

nections is represented on this figure. Moreover subparts of the PFC (in particular

ventral and dorsal parts) have slightly different patterns of afferent and efferent

connections, which is not showed here.
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In the next chapter we review neurophysiological and behavioral data about

the hippocampus and the prefrontal cortex to underline functional differences be-

tween these structures in spatial learning.
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Chapter 3

Role of hippocampus and prefrontal

cortex in navigation planning

Spatial navigation planning involves at least two main components (Poucet et al.,

2004). The two first important abilities are to be able to represent places visited

by the animal as well as one or more goals. The third component can be defined

as the temporal organization of the behavior. In this chapter, we will discuss some

potential similarities and differences of hippocampal and prefrontal involvements

for these functions. Data from electrophysiological recordings, brain imageries

and anatomical lesions will be used to illustrate our review. Some data presented

in this chapter will also be related to human and non-human primates. Indeed,

hippocampus and prefrontal have been studied for a long time in these species, and

because of the plausible functional homologies between primates and rats, it can

thus help to clarify our discussion (Burgess et al., 2002; Granon and Poucet, 2000;

Brown and Bowman, 2002; Uylings et al., 2003; Heidbreder and Groenewegen,

2003).

3.1 Representation of places and goals

3.1.1 Spatial representation

Hippocampal place cells

An extensive body of experimental work has investigated the neural bases of spa-

tial learning capabilities. In particular, extracellular single-cell recordings have



CHAPTER 3. ROLE OF HIPPOCAMPUS AND PREFRONTAL CORTEX IN NAVIGATION PLANNING

largely focused on the properties of pyramidal neurones in the hippocampal for-

mation, that we review in this section. This limbic region has been thought to

mediate spatial memory functions ever since location-sensitive cells, called place

cells, were found in the hippocampus of freely moving rats (O’Keefe and Dostro-

vsky, 1971; see also place cell recordings in humans Ekstrom et al., 2003). A

typical hippocampal place cell discharges strongly when the animal crosses a cell-

specific region of the environment, the place field of the cell, and is usually silent

elsewhere in the environment (Morris et al., 1982) (Fig. 3.1). The place cell pop-

ulation represents a large part of the hippocampal cells, estimated between 40 and

70 % over 1000000 neurons (Muller et al., 2001). These place cells can be found

in the CA1 and CA3 subfields of the dorsal hippocampus (O’Keefe and Dostro-

vsky, 1971), as well as the ventral hippocampus (even if the spatial selectivity is

coarser there, Poucet et al., 1994; Jung et al., 1994).

Place field properties. Several important properties of place fields can be

pointed out (see Arleo and Gerstner, 2000; Hok, 2007; Alvernhe, 2010 for more

details). In a small and simple open field environment, a typical place field can be

approximated by a two-dimensional single-peak Gaussian surface (Muller et al.,

1991; Burgess et al., 1999). However, cells encoding peripheral locations show

crescent-shaped fields hugging the arena walls (Muller et al., 1987). Place cells

may also exhibit multi-peak fields within a single environment (O’Keefe and Con-

way, 1978), particularly in larger scale environments (Fenton et al., 2008; Hen-

riksen et al., 2009). Kjelstrup et al. (2008) have recently shown a scale gradient

of place fields when recording pyramidal neurones along the dorso-ventral axis of

the hippocampus (the size of place fields varied from 50 cm to 10 m when rats

were moving on an 18 m linear track). This gradient property may support the

representation of spatial contexts at different scales, to adapt the spatial code to

the size and/or the complexity of the environment.

As the animal experiences several times a route, CA1 cells tend to asymmet-

rically expand their (initially symmetric) field and to shift their field center back-

wards with respect to the rat’s direction of motion (Mehta et al., 1997; Mehta,

2000). Such an asymmetric expansion property does not persist across differ-

ent environments and across different sessions in the same apparatus. Addition-

ally, whereas place cells have non-directional place fields (i.e., their firing activity

does not depend on head direction) when the animal randomly moves over two-
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dimensional open environments, they may have directional place fields when the

rat moves along fixed trajectories along a corridor or in an openfield (e.g., Muller

et al., 1994; Markus et al., 1995). Finally, establishing a place field representa-

tion in a novel environment takes a relatively short time from a few minutes to 30

minutes (Austin et al., 1993; Wilson and McNaughton, 1993), with a difference

between CA1 and CA3 place cells (Lee et al., 2004).

A dense population code. It is important to note that hippocampal spatial code

is a population code. Place fields are generally a few times larger than the animal’s

size (Burgess et al., 1999), which do not provide a precise single-cell coding.

Also, the activity of individual place cells can be extremely variable from one

run through the firing field to another, a phenomenon referred to as overdisper-

sion (Fenton and Muller, 1998). However, the proportion of active and location-

selective pyramidal cells in the CA1 subfield in a given environment is very large,

about 30− 40 % (Wilson and McNaughton, 1993). This results in highly overlap-

ping place fields, uniformly distributed over the environment (O’Keefe and Con-

way, 1978; Thompson and Best, 1989), which is usually referred to as a dense

spatial representation (Willmore and Tolhurst, 2001). As a consequence, accurate

space decoding may be achieved by taking into account the ensemble, rather than

single-cell, firing activity (Muller et al., 1987; Wilson and McNaughton, 1993;

Brown et al., 1998). Two properties of the place cell population are also interest-

ing to mention. First place cells are not topographically organized: two cells cod-

ing for neighboring locations do not seem to be anatomically adjacent (O’Keefe

and Conway, 1978; Thompson and Best, 1989). Second the spatial relationships

between place cells are not preserved across environments: two cells coding for

neighboring locations in one environment may not code for neighboring locations

in another environment (O’Keefe and Conway, 1978; Thompson and Best, 1989).

A temporal code: theta rhythm and phase precession. The hippocampal elec-

troencephalogram (EEG) exhibits a characteristic pattern depending on the ani-

mal’s ongoing behavior. During locomotor activity (e.g., walking, running, swim-

ming, jumping), exploration, strong attentional demand or paradoxical sleep (also

called REM sleep, rapid eye movement sleep), the hippocampus is timed by a reg-

ular sinusoidal signal of 7−12Hz termed theta rhythm (Green and Arduini, 1954;

Vanderwolf, 1969; Jouvet, 1969; Whishaw, 1972; Fox et al., 1986; O’Keefe and
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Recce, 1993; Skaggs et al., 1996; Buzsáki, 1996). Colgin and Moser (2009) sug-

gest that there may be multiple sources for this theta rhythm: locomotion-induced

rhythm may originate from intrahippocampal networks, whereas rhythm observed

during resting states may be initiated by the septum. Moreover, the frequency of

the theta rhythm varies increases with the speed of the animal (Slawińska and

Kasicki, 1998; Maurer et al., 2005).

The theta oscillation can be described as a cycle, with a phase varying during

time between 0◦ and 360◦. There exists a phase correlation between the theta

rhythm and hippocampal place cell firing (O’Keefe and Recce, 1993; Skaggs et al.,

1996). As the animal goes through the place field of a neuron on a linear path, the

theta phase at which the neuron discharges shifts systematically: every time the rat

enters the field, the neuron starts firing at the same phase late in the theta period.

Then, as the animal runs through the field, the neuron tends to fire earlier and

earlier in the theta cycle. This phase shift phenomenon is termed phase precession.

Such a temporal firing property of a place cell provides more information than the

solely firing rate: measuring the phase allows to estimate the position of the animal

inside the place field of a cell (e.g., Jensen and Lisman, 2000). More precisely,

in an open environment, the spiking activity during the early phase of the theta

cycle seems to code for the position of the animal, while firings during the late

phase represent the direction of travel of the current trajectory (not all available

trajectories) (Huxter et al., 2008).

Main determinants of place cells activity. In order to understand the hip-

pocampal place code, a large number of studies have described the relation be-

tween changes in the environment and potential changes in place cell activities

(e.g., change of location, appearance or disappearance of place fields), a phe-

nomenon called “remapping” (Muller et al., 1987). Remapping may take place

between and within sessions in a given environment whenever the animal per-

ceives a world which is no longer congruous with its internal spatial code (Knierim

et al., 1995). We summarize here the main determinants of place cells activity (see

Arleo and Gerstner, 2000; Hok, 2007; Alvernhe, 2010 for reviews). Hippocampal

place fields strongly depend on distal visual cues (O’Keefe and Conway, 1978) but

to a lower extent on local landmarks (Cressant et al., 1997; Lenck-Santini et al.,

2005). Also, the more stable an allothetic cue is perceived by the animal, the

higher its influence upon place cell dynamics (Knierim et al., 1995). The geome-
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try of an environment, such as its scale (Muller and Kubie, 1987; Kjelstrup et al.,

2008) and its shape (O’Keefe and Burgess, 1996), seems to influence hippocampal

place cell activity directly. Despite their dependence on allothetic signals, place

cells exhibit clean location selectivity even when external cues are absent (e.g. in

darkness, Quirk et al., 1990) or ambiguous (e.g. symmetric environment, Sharp

et al., 1990). This suggests that hippocampal cells are also influenced by idio-

thetic movement-related signals, such as vestibular as well as optical flow signals

(Sharp et al., 1995). An interesting experience-dependent property is that place

fields are influenced after learning by the introduction or removal of a barrier into

the arena (Muller and Kubie, 1987; Rivard et al., 2004; Alvernhe et al., 2008,

2010). However, the influence of the barrier vanishes whenever its height is such

that the animal’s motion is not affected. This suggests that locomotion-related

information is relevant for establishing and maintaining place fields.

Grid and head direction cells. It should be noted that place cells are not the

only examples of neurons with particular discharges properties related to the spa-

tial memory. Recent electrophysiological findings have brought evidence for a

key contribution of the entorhinal cortex (within the hippocampal formation) to

the spatial memory function (Hafting et al., 2005). Indeed, neurones in the medial

entorhinal cortex have been found that exhibit spatially-selective discharges with

multiple receptive fields (in contrast to most place cells) that cover the environ-

ment with regularly spaced hexagonal patterns. It has been suggested that these

neurones, termed grid cells, could mediate the encoding of metric spatial informa-

tion necessary for the path integration process (see McNaughton et al., 2006 for

a review). Complementing the allocentric place responses of hippocampal neu-

rones, head direction cells provide an allocentric representation of the orientation

of the animal (see Wiener and Taube, 2005 for a review). The discharge of these

neurones is highly correlated with the direction of the head of the animal in the az-

imuthal plane, regardless of the orientation of the head relative to the body, of the

animal’s ongoing behaviour and of its spatial location. Each head direction cell

is selective for one specific ‘preferred’ direction, and the preferred directions of a

population of head direction cells tend to be evenly distributed over 360 degrees.
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A spatial code in the PFC?

Based on the anatomical evidence of projections from the HP to the PFC, re-

searchers looked for neurons in the PFC whose discharges were correlated with

the position of the animals. This gave rise to contrasted results. During random

foraging behavior, these kind of discharges were hardly recorded (Poucet, 1997;

Gemmell et al., 2002). Instead PFC neuron discharges were more correlated with

food-searching or exploratory behavior. However, other studies described some

place cell-like activities during navigation task (Jung et al., 1998; Pratt and Mizu-

mori, 2001). More recently, Hok et al. (2005) recorded jointly neurons of the

hippocampus and the prefrontal cortex of navigating rats (Fig. 3.2). They showed

that hippocampal and prefrontal location-selective neurons had different distri-

butions of place fields over the environment (homogeneous versus goal-centered

distributions), and different sizes of place fields (smaller versus larger). These

authors concluded that both hippocampus and prefrontal cortex may be involved

in the representation of different spatial maps with small and coarser granularity,

respectively. Several reasons may explain the lesser spatial selectivity of PFC neu-

rons. The highly integrative function of this area (see its connectivity, Chap. 2.2.3,

and the other electrophysiological recordings described in this chapter) may mask

the spatial aspect of PFC neuron discharges. Another explanation could be that

the PFC is involved in spatial coding in function of the requirement of the task: for

example random search of food may not require a complex spatial representation.

3.1.2 Goal representation

Influence of goals on hippocampal place cell activities

The influence of goals on place cell activities remains controversial. When the

animal switches from a random search of food to a goal-directed search in the

same environment, approximately one third of the place fields move, appear, dis-

appear, or acquire a new directionality (Markus et al., 1995). Several explanations

are possible, one of which is that the position of goals influences the activity of

place cells. Indeed, areas associated with fixed goals in a familiar environment

are overrepresented by CA1 place cells (Breese et al., 1989; Hollup et al., 2001b).

Similarly, in a radial maze task, some place cells stop discharging when visiting

an arm for the second time (i.e. the food has already been eaten) (Hölscher et al.,
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A B

Figure 3.1: Hippocampal place fields. Two samples of CA3 (A) and CA1 (B)

place fields recorded from a freely-moving rat in a square arena. The red region

indicates the area in which the cell is maximally responding. By contrast, when

the animal is visiting a dark-blue region, the cell remains silent. Adapted from

(O’Keefe and Burgess, 1996).

Figure 3.2: Firing rate maps of representative PFC cells with fields in trigger

zone (where the animal waits for food, top row), landing zone (where the food

falls, middle row), or other zones (bottom row). Each firing rate map was built by

using the data from the entire recording session. In all maps, yellow indicates no

firing and blue indicates maximum firing. The environment is a cylinder with a

diameter of 76 cm. Adapted from (Hok et al., 2005).
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2003). Changes in electrophysiological discharges related to the goal could be

observed for about 10 to 20 % of recorded place cells.

However, other authors find no change in place cell activities following a goal

shifting (Speakman and O’Keefe, 1990; Trullier et al., 1999; Lenck-Santini et al.,

2001b) or a modulation of the goal value (Tabuchi et al., 2003). The reasons for

these differences between studies are not well understood. Similarly, Hok et al.

(2007) found no accumulation of place fields near the goal position in a spatial

navigation task (see also Lenck-Santini et al., 2001a). However they observed

for some cells a secondary extra-field activity at the goal site. This activity was

associated with a slow theta rhythm, and not with sharp-waves/ripples events dur-

ing which it is known that reactivation of sequences of place cells occur (see Sec.

3.2.2).

Goal coding in the PFC

The most consistent behavioral correlate identified for prefrontal cortex neurons

was reward-related discharge. Similar to amygdala neurons, prefrontal neurons

changed firing rates in anticipation of encounters with rewards of different mag-

nitudes (Pratt and Mizumori, 2001, see also Watanabe, 1996 for primates). Neu-

rons are also selective for the type of reward the animal receives (Miyazaki et al.,

2004), and for a switch in action-outcome contingencies (Mulder et al., 2003;

Kargo et al., 2007). As already mentioned, Hok et al. (2005) showed that a sub-

stantial proportion of PFC cells had place fields. In fact, the distribution of place

fields was not homogeneous: goal locations were overrepresented. Because such

locations were spatially dissociated from rewards in their protocol, they suggested

that PFC neurons might be responsible for encoding the rat’s goals (see also Feier-

stein et al., 2006).

These studies mainly targeted the PL and IL of the PFC. Even if it is still

subject to debate, the different subparts of the PFC may be involved in differ-

ent reward-related representations. In particular, the OFC may be responsible

to encode the incentive value (a subjective value based on the internal states of

the animal) of the reward in a common currency independent from its position,

physical characteristics and related actions so that it can be compared with other

rewards or to encode the amount of time before reward presentation reflecting the

discounted value of the delayed reward (e.g. for data on primates see Tremblay
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and Schultz, 1999; Roesch et al., 2006; Padoa-Schioppa and Assad, 2006). The

ACC may represent action values in relation to the goal, the uncertainty of the re-

inforcement, the history of obtained rewards or prediction errors about the reward

(see Rushworth et al., 2007; Rushworth, 2008 for reviews).

3.1.3 Hippocampo-frontal electrophysiological interactions

Influence of the hippocampus on prefrontal neurons

Neurons in the prefrontal cortex present a spatial-selective activity, when the an-

imal is engaged in a navigation task. However the nature and the origins of this

activity remain unclear. Anatomical evidence suggests a contribution of the hip-

pocampus (see Sec. 2.2.3). To test this hypothesis, Burton et al. (2009) recorded

PFC neuron activity in normal and hippocampal rats (lesion of the ventral hip-

pocampus after learning) while the animals had to perform a navigation task. An

important result is that neurons in the prefrontal cortex of lesioned animals still

show a spatial-selective activity, and that this activity is present regardless of the

position of the goal in the environment. Two main explanations can be proposed.

It is possible that spatial-selective activity of prefrontal neurons originates from

subicular afferents, consistently with the noisy spatial selectivity found in subicu-

lar neurons (Sharp and Green, 1994). The prefrontal spatial selectivity may also

come from cortico-cortical afferents reinforced during learning and consolidation,

leading to a weaker dependence on hippocampal inputs (see Sec. 3.3.4).

Several experimental works studied the timing relationships between neuronal

activity in the prefrontal cortex and the hippocampal theta rhythm, showing that

prefrontal neurons were phase locked to the hippocampal theta rhythm (Siapas

et al., 2005; Hyman et al., 2005; Jones and Wilson, 2005b). In a spatial alternation

task, Jones and Wilson (2005b) show an increase in phase coherence in the theta

band of prefrontal and hippocampal local field potentials. This phenomenon ap-

pears to be present primarily when the animal must choose the correct arm to visit

while it is in the central segment. Another result from the same experience shows

that this phase coherence is accompanied by a phase precession of the prefrontal

neuron activity in relation to the hippocampal theta rhythm (Jones and Wilson,

2005a). Besides the fact that this is an important result showing the existence of

a phase precession outside the hippocampal formation, this phenomenon appears
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only when the animal is at the end of the central segment, i.e. when it must make

a choice to select the correct arm to visit. More recently, Benchenane et al. (2010)

showed several effects of learning on theta oscillation coherence between HP and

PFC, and on the reorganization of spike timing in PFC neurons. The functions of

these synchronized activity remain to be fully elucidated, but it is suggested that

phase synchronization could be a candidate for large-scale integration between

brain areas, enabling the emergence of coherent behavior and cognition (Varela

et al., 2001).

Influence of the prefrontal cortex on hippocampal place cells

An important issue is to understand to what extent the PFC exert a control on HP

place cells. Kyd and Bilkey (2003) recorded the activity of hippocampal place

cells of PFC lesioned rats, while the animals were randomly searching for food

in their environment. Place cells recorded from prefrontal animals exhibited an

increased information content and a lower overall firing rate compared to control

animals. Place fields did not seem to have different sizes in lesioned rats, but

were unstable over time. In a subsequent study (Kyd and Bilkey, 2005), these au-

thors failed to find the same modulation of hippocampal activity. Nevertheless, it

appears that electrophysiological characteristics of action potentials were altered:

amplitude and width of these potentials were higher in injured animals, and there

were a greater proportion of neurons discharging in bursts. In a second experi-

ment of the same study, modulations observed following lesions of the PFC did

not cause the same effects. In spite of the variability of these results, the authors

identified a general trend for the implications of PFC lesions on hippocampal rep-

resentation, a hypersensitivity of place cell activity in response to environmental

proximal changes, that may be seen as a lack of attention control. More recently,

Hok (2007) re-examined the PFC influence on HP cells. The inactivation of PFC

caused an overall increase of hippocampal network activity. The modulation of

place cell activity was related to an increase of the maximum intra-field firing

frequency (i.e. the alteration was highly spatially focused). Place field size was

increased, but the information content remained unchanged. Moreover, the extra-

field goal-related activity recorded at the goal position (Hok et al., 2007) was not

changed, indicating that the hippocampus received goal information from other

afferents.
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3.2 Retrospective and prospective coding, sequence

representation

The third component of an affective planning system is the ability to predict the

consequence of its actions in order to evaluate the possible alternatives. This

involves past as well as possible future experiences. Hence, we present here data

related to retrospective coding (i.e. neural discharges influenced by past events

and actions) and prospective coding (i.e. neural discharges influenced by future

events and actions). Then we describe correlates of sequence representations,

which could be used to organize retrospective and prospective events.

3.2.1 Retrospective and prospective coding

Hippocampal place cells

The influence of the past or the future on place cell activity is visible in spatial

alternation tasks (in which the goal position alternates between trials or between

blocks of trials). In these experiments, CA1 place cells can indeed discharge at

different frequencies and / or positions on the same section of the maze, depend-

ing on where the animal comes (retrospective coding) and / or according to where

it goes (prospective coding) (Frank et al., 2000; Wood et al., 2000; Ferbinteanu

and Shapiro, 2003; Bower et al., 2005; Dayawansa et al., 2006; Lee et al., 2006;

Shapiro and Ferbinteanu, 2006; Ainge et al., 2007). Prospective or retrospective

coding would affect one to two thirds of recorded place cells, and could be ex-

pressed simultaneously in the population.

However, the retrospective and prospective coding are hard to study. The con-

tent of these prospective / retrospective codes is still under debate: is it only

composed by the start points and / or the goals? Does it encode trajectories ?

Moreover, these codes can not be recorded everywhere in a maze. For example,

when a pause is imposed to the animal at a given position (before an intersection

or in a running wheel), these differential codes can only be recorded at this posi-

tion (Ainge et al., 2007; Pastalkova et al., 2008). Also, prospective / retrospective

codes can not be recorded in every protocols, e.g. in random exploration tasks

(Smith and Mizumori, 2006) and in an alternation task with a unique goal at a

fixed position (Lenck-Santini et al., 2001b; Bower et al., 2005). Finally, the main
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studies have recorded CA1 neurons, hence little is known about similar discharge

properties for CA3 neurons.

Prefrontal neurons

The discovery that a large number of prefrontal cortex neurons increase their rate

of firing preferentially during the delay period in a variety of delay tasks, that they

display sustained discharges during the length of the delay (except in the absence

of a mnemonic load), and that failure of these neurons to maintain their activity

during the delay is associated with errors in performance, has formed the basis

of a neurobiological theory of working memory where the delay-related firing of

cortical neurons is an essential mechanism for holding information on line for the

time necessary to organize behavior (e.g. Batuev et al., 1990 for rats; Fuster and

Alexander, 1971 for primates; see reviews in (Fuster, 1993, 1984, 2001; Goldman-

Rakic, 1987)). We will not discuss here the vast literature about delay activity in

the PFC, but only the fact that this activity may be related to a retrospective and

/ or prospective coding. To test this hypothesis, Baeg et al. (2003) have recorded

simultaneously prefrontal neurons in rats solving a spatial alternation task in 8-

shaped maze. Their recordings show that both retrospective and prospective cod-

ing could be observed within the prefrontal neural population. The strength of

these codes was more and more important as rats learned the task: the correla-

tion of neural discharges with past and future goals increased as well as the size

of the area where these differential codings could be recorded. These results are

consistent with other studies that suggested transformation from retrospective to

prospective coding across the delay period in primate PFC (Rainer et al., 1999;

Hoshi et al., 2000; Takeda and Funahashi, 2002).

3.2.2 Representation of sequences

Hippocampal place cells

Phase precession and sequence coding. An important consequence of the

phase precession phenomenon is that cells with spatially neighboring place fields

will fire at close phases of the theta cycle. When the animal is about to exit the

place field of a cell and at the same time is entering an overlapping place field of

a second cell, the first cell will fire few milliseconds before the second cell. Thus,
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the sequence of place fields crossed by the animal can lead, within each theta

cycle, to an orderly and sequential activation of place cells associated with these

fields (Dragoi and Buzsáki, 2006; Foster and Wilson, 2007; Lisman and Redish,

2009). Theoretical studies have suggested that phase precession and sequential

activation of place cells could be explained by the potentiation of asymmetric

connexions between sequentially visited place cells (Jensen and Lisman, 1996;

Tsodyks et al., 1996). However they are challenged by the fact that NMDA recep-

tor blockade does not abolish phase precession (Ekstrom et al., 2001). Maurer and

McNaughton (2007) have proposed that this hippocampal phase precession may

be caused mainly by entorhinal afferent connexions (as suggested by O’Keefe and

Recce 1993), plus an amplification through synaptic potentiation between place

cells.

Usually, phase precession affects place cells activated by the presence of the

animal in their firing field (or near the center of their field). However, Johnson and

Redish (2007) observed place cell activations (and phase precession) outside of

their firing fields, particularly when the animal makes micro-choices by orienting

its head to the different possible pathways. The authors also showed that the

sequence of activated place cells was correlated with the direction of the animal’s

head (and so with the prediction of places that can be visited in close future),

but does not predict the final choice of the animal. This is consistent with extra-

field sequential activities recorded in place cells of rats running in a wheel at the

decision point of a maze (Pastalkova et al., 2008). These sequences of activations

are one more example of activation of place cells outside their firing fields, in

addition to goal-related activations (see Sec. 3.1.2).

Sharp waves/ripples et sequence reactivations. During sleep, or during some

waking states, the hippocampal EEG shows a pattern of irregular slow waves.

This pattern is occasionally interrupted by large oscillations called sharp waves

(Buzsáki, 1986). These events are associated with bursts of spike activity, lasting

50–120 msec, in pyramidal cells of CA3 and CA1. They are also associated with

short-lasting high-frequency EEG oscillations called ripples, with frequencies in

the range 150–200 Hz in rats. Sharp waves/ripples (SWRs) are most frequent

during sleep, when they occur at an average rate around 1 per second (in rats),

but in a very irregular temporal pattern. SWRs can be observed during waking

states, when the animal is still or not exploring (grooming, eating or drinking).
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Some SWRs have also been recorded during exploratory activity in an open field,

interrupting the theta rhythm (O’Neill et al., 2006; Csicsvari et al., 2007).

As during theta oscillations, sequences of activation of place cells, called re-

activations or replays, appear during SWRs, but in a compressed manner (15-20

times faster than the average actual speed of animals), during slow wave sleep

(Wilson and McNaughton, 1994; Skaggs and McNaughton, 1996; Lee and Wil-

son, 2002; O’Neill et al., 2008) or awake states (Foster and Wilson, 2006; O’Neill

et al., 2006; Csicsvari et al., 2007; Diba and Buzsáki, 2007; Davidson et al., 2009;

Karlsson and Frank, 2009; Gupta et al., 2010). Moreover, the sequences of ac-

tivation of place cells occurring during SWRs can be replayed in reverse order

(reverse replay) or in the same order as actually experienced (forward replay).

Reverse replays have been observed only during wakefulness, while forward re-

plays have been observed during slow wave sleep and or wakefulness (Skaggs

and McNaughton, 1996; Lee and Wilson, 2002; Foster and Wilson, 2006; Diba

and Buzsáki, 2007). Note that temporally structured replay of awake hippocam-

pal ensemble activity has also been recorded during rapid eye movement sleep,

with the particular property that the sequences were not compressed (Louie and

Wilson, 2001).

Reactivations (reverse or forward) may represent trajectories towards or away

from the current position of the awake and still animal (Davidson et al., 2009;

Gupta et al., 2010). Davidson et al. (2009) also showed that the reactivated se-

quences can be long (corresponding to distances over 10 meters in their exper-

iment). In that case, the sequences may be replayed through several successive

SWRs instead of a single SWR. During exploratory behaviors however, it seems

that the reactivation is limited to place cells activated by the presence of the animal

in their firing fields (O’Neill et al., 2006; Csicsvari et al., 2007).

Studies show that cells representing areas associated with reward tend to be

reactivated during SWRs more often than other cell (Singer and Frank, 2009).

Some authors also show that the more frequently coactivated are place cells dur-

ing exploration, the more they will be co-active during the subsequent SWRs,

especially in a new environment or context (Foster and Wilson, 2006; O’Neill

et al., 2008). Other authors show instead that, in familiar surroundings, place cells

whose place fields were sampled more often by animals are not reactivated more

often than others during awake SWRs (Gupta et al., 2010). In fact, these different
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results suggest that the phenomenon of reactivation during SWRs is adapted to

the mnemonic needs of the animal, according to the task, the degree of novelty,

the experience, the attentional demand, ... Finally, it is important to note that, at

least in some cases, reactivation of sequences never experienced by the animal

seem to occur (Gupta et al., 2010). If this last result, which has been observed

to date in only one rat, was confirmed in future studies, it would show that the

nervous system of rats (and in particular the hippocampus) can actually infer new

paths, consistently with the theory of cognitive maps (Tolman, 1948; O’Keefe and

Nadel, 1978), and in agreement with the predictions of the model of Molter et al.

(2007).

Prefrontal neurons

Sequence coding by prefrontal neuron activity has been less studied for rats. The

characteristic delay activity of PFC neurons (Batuev et al., 1990; Baeg et al., 2003)

has been seen as a support to link temporally separated events into behavioral se-

quences, similarly to primates (Fuster, 2001). Consistently, forward replays of

recent memory sequences were recorded in prefrontal cortex during sleep (Euston

et al., 2007). Using an experimental procedure similar to Bower et al. (2005), Eu-

ston and McNaughton (2006) tried to invalidate this sequence coding hypothesis.

All observed modulations of activity during their sequential task could merely be

explained by behavioral variability instead of sequence representation. It is pos-

sible that the complexity of the task was not sufficient to involve an active contri-

bution of the PFC, but this experiment indicates that the role of rat PFC neuronal

activity in sequence coding has still to be clearly demonstrated. The remaining

part of this section will be dedicated to prefrontal neuron discharges in primate,

because of the higher number of available studies.

Prefrontal cortical neurons show correlates with the temporal organization of

action sequences (Procyk et al., 2000; Tanji and Hoshi, 2001; Averbeck et al.,

2002; Mushiake et al., 2006; Shima et al., 2007). Several types of information

can be encoded by single neurons, from the simple position of an action in the

sequence (Averbeck et al., 2003a), to a whole sequence (Averbeck et al., 2006)

and to an abstract category of sequences (e.g. given two actions A and B, AABA

= BBAB = twice the same action then the other action then the first action) (Shima

et al., 2007). Fujii and Graybiel (2003) have shown that macaques prefrontal
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neurons exhibited a phasic activity at the beginning and at the end of the execution

of a motor sequence, which could be seen as markers indicating the boundaries of

a sequence.

Using a task of shape drawing requiring a sequence of movements (several

segments needed to be drawn to form different objects such as a triangle, a

square...), Averbeck et al. (2002) have showed that during the delay before the

execution, the rank of the representation strength of a segment within the PFC

population of neurons predicted the serial position of the segment in the motor

sequence actually executed. In his theory of serial order in behavior, Lashley

(1951) proposed that the neural representation of all serial elements should exist

before acting starts. The results of Averbeck et al. (2002) are consistent with this

proposal, particularly because errors in segment drawing was more likely to oc-

cur when the representations strength of a segment was weak. In two additional

studies, the authors analyzed the contribution of single neurons and neural popula-

tion to sequence coding (Averbeck et al., 2003a,b). Single neurons could encode

the position of a segment, simultaneously with other characteristics such as the

drawn shape, the length of the segment, ... (Averbeck et al., 2003a). Moreover,

they showed that this code was distributed among the recorded population, with

each neuron being broadly tuned to a preferred segment and similar ones (Aver-

beck et al., 2003b). Finally, the neural activity dynamically tracked the monkeys’

uncertainty about the correct sequence of actions (Averbeck et al., 2006), and re-

gardless of whether information was remembered correctly or incorrectly, the pre-

frontal activity veridically reflected the animal’s action plan (Averbeck and Lee,

2007).

Prefrontal neuronal activity was also examined in primate performing a task

of path planning in a virtual maze simulated on a computer (Saito et al., 2005).

During the delay period after the goal presentation, two types of activities have

been identified: one representing the next targeted position in the maze, whereas

the other represented the position of the final goal. It is important to note that

none of these activities reflected motor responses, which would suggest a role

of PFC in sequential behavior organization directed toward a goal, rather than in

the sensorimotor transformations. In a subsequent study, Mushiake et al. (2006)

extended their results: PFC neurons reflected each position to be visited (not just

the first and last position), but not the arm movements controlling the position
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on the screen (as opposed to the activity of neurons in primary motor cortex)

supporting the role of PFC in planning future events. The authors proposed that

the monkeys were engaged in planning the sequence of positions in a retrograde

order (starting from the last motion to capture the goal), in conjunction with a

sequence planning with an anterograde order (Mushiake et al., 2006).

3.3 Relations to navigation planning behavior

Hippocampus and prefrontal cortex are both involved in numerous functions sub-

serving behavior. Here we focus on their functional involvement in planning-

related processes, i.e. spatial and goal-related processing, temporal organization

of behavior, cost-benefit decision making, and the influence of memory consol-

idation on the HP-PFC pathway function. More general consideration will be

discussed in the concluding section of this chapter (Sec. 3.4).

3.3.1 Spatial and goal-related processing

It is tempting to propose that hippocampal place cells form a spatial representation

in allocentric (i.e., world centered) coordinates, thus providing a cognitive map to

support flexible navigation (O’Keefe and Nadel, 1978). In accordance, lesion data

studies have indicated that the hippocampal formation seemed necessary for spa-

tial navigation (see Poucet, 1993; Poucet and Benhamou, 1997 for reviews), for

example in the classical task of the Morris water maze (Morris et al., 1982, 1990;

Sutherland et al., 1983; Sutherland and Rodriguez, 1989; Eichenbaum et al., 1990;

Whishaw and Jarrard, 1995; Bannerman et al., 1999; Steele and Morris, 1999) and

in tasks based on the localization according to the geometrical organization of bea-

cons or walls (McGregor et al., 2004; Rondi-Reig et al., 2006). Moreover, Hollup

et al. (2001a) showed that an intact hippocampus was necessary to recognize the

goal location, indicating that this structure is involved in the distributed network

of brain structures coding for the goal.

It seems also that spatial processing are more related to the dorsal hippocam-

pus than to the ventral, which may be also involved in the resolution of conflicts

based on fear or anxiety (Moser et al., 1993; Hock and Bunsey, 1998; Banner-

man et al., 1999; Trivedi and Coover, 2004). Moreover, selective lesions have

targeted subfields (dentate gyrus, CA1, CA3) of the hippocampus to gain insights
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on their relative contribution in fast learning, pattern completion and separation...

(e.g., Gilbert et al., 2001; Nakazawa et al., 2003; Gold and Kesner, 2005; see also

Alvernhe, 2010 for a short review).

On the other hand, the involvement of the PFC in spatial coding seems to

depend on the requirements and the complexity of the task. Lesion studies tend to

corroborate this hypothesis. Rats with PFC lesions are neither impaired in spatial

learning of a simple navigation task (De Bruin et al., 1994; Granon and Poucet,

1995; Ragozzino et al., 1999; Delatour and Gisquet-Verrier, 2000), nor in spatial

discrimination (Hannesson et al., 2004). However, permanent prefrontal cortical

lesions in rats result in reliable deficits on tasks that require the flexible use of

location information related to the current position or the goal position (Poucet

and Herrmann, 1990; Granon et al., 1996; Gemmell and O’Mara, 1999). Thus, the

PFC seems to be involved in spatial tasks only if complex cognitive processing are

needed. For example, Granon and Poucet (1995) have showed that frontal animals

are impaired only for the most complex version of a navigation task in a morris

water maze, when animals have to reach a platform from four different starting

points. Functional dissociations should also be made between subparts of the

PFC. Heidbreder and Groenewegen (2003) reviewed evidence for a dissociation

between ventral and dorsal PFC for spatial processing. For example, the dorsal

PFC seems more involved in the egocentric component of spatial learning (Kesner

et al., 1989; King and Corwin, 1992; De Bruin et al., 1997), while lesions of

the ventral PFC produces deficits in allocentric but not egocentric spatial tasks

(Corwin et al., 1994).

In humans, damages to the medial temporal lobe (and in particular to the hip-

pocampus, e.g. bilateral temporal lobectomy patient H.M. or degenerative tem-

poral lobe pathologies such as Alzheimer’s disease) produce anterograde and ret-

rograde memory deficits that tend to impair, among others, the ability to learn

spatial navigation tasks (Eichenbaum, 2001). Neuroimaging experiments have

provided support for this hippocampal function, showing for example that the

right hippocampus appeared particularly involved in memory for locations within

an environment (see Burgess et al., 2002 for a review). More recent neuroimaging

studies provide new perspectives for the understanding of the global network in-

teracting to promote spatial navigation (e.g., Spiers and Maguire, 2006, 2007a,b;

Spiers, 2008). These authors used an accurate virtual reality environment repre-
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senting the London city, where taxi drivers had to take customers to the desti-

nation of their choices. Imaging results revealed complex dynamics comprising

focal and distributed, transient and sustained brain activity across several brain

areas including the hippocampus and the prefrontal cortex (Spiers and Maguire,

2006). One important finding was the important involvement of the PFC in goal

representation, in particular the distance to the goal (Spiers and Maguire, 2007a;

Spiers, 2008). Recent data from a patient with PFC lesion strongly support this

role (Ciaramelli, 2008).

3.3.2 Temporal organization of behavior

The rat hippocampal formation would participate to the learning or recall of

sequences of spatio-motor responses (Rondi-Reig et al., 2006), non-spatial se-

quences (Rondi-Reig et al., 2001; Kesner et al., 2002; Fortin et al., 2002; Agster

et al., 2002), and would be particularly necessary when a delay is imposed be-

tween the presentations of information to be linked (Huerta et al., 2000; Lee and

Kesner, 2003; Lee et al., 2005; Farovik et al., 2010).

In humans, monkeys and rats, prefrontal damage results in impaired tem-

poral structuring (i.e. sequencing) of information and mediation of prospective

codes – that is, in the use of past experiences to set up expectancies and anticipa-

tions (e.g., Semmes et al., 1963; Pohl, 1973; Petrides and Milner, 1982; Kesner

and Holbrook, 1987; Kesner, 1989; Shallice and Burgess, 1991; Mogensen and

Holm, 1994; Granon and Poucet, 1995; Chiba et al., 1997; Hannesson et al., 2004;

Gisquet-Verrier and Delatour, 2006). This in turn results in a reduced ability to

plan complex sequences of behavior as a result of a failure to bridge temporally

specific actions (Granon and Poucet, 1995; Fuster, 2001). Note that a ventral-

dorsal PFC dissociation has been proposed for this function (see Heidbreder and

Groenewegen, 2003 for a review).

Thanks to their driving task in a virtual environment, Spiers and Maguire

(2006, 2007b) provide also further neuroimaging details on the distributed net-

work mediating spatial route planning. Both hippocampus and prefrontal cortex

were activated during route planning following a journey request from a customer.

Interestingly, when subjects spontaneously decided to alter their route during nav-

igation (e.g. because of blocked road), the hippocampus did not activate, but the

prefrontal cortex was engaged. In fact, the hippocampus was not significantly
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more active during any other aspect of navigation besides customer-driven route

planning to new destinations, which is a very specific and temporally discrete role

for the human hippocampus in real-world navigation. This result is consistent with

the view that during goal-specified route planning, the hippocampus activates, or

retrieves from elsewhere, the information relating to the relevant region of space

to be navigated from a stored cognitive map of the environment. Throughout the

subsequent navigation, the relevant allocentric spatial information is available to

the hippocampus and other neural structures such as the PFC, and no increased

processing demands are made of the hippocampus. Then, during spontaneous re-

planning, the PFC uses the retrieved spatial information to organize the behavior

in order to cope with the unpredicted events.

3.3.3 Cost-benefit decision making

As has been appreciated for many years in other behavioral sciences such as be-

havioral ecology and economics, animals, including humans, do not just make de-

cisions and select actions on the basis of an expected reward but also weigh up the

potential costs of the different courses of action that might be pursued (Stephens

and Krebs, 1986). Such costs may involve the investment of time or effort, a

willingness to tolerate a risk that a reward may not be forthcoming or to endure

pain in the pursuit of a goal. This diminution of the value of a reward by the cost

incurred to achieve it is known as discounting and has been shown consistently

to influence the way in which animals and humans make choices (Stephens and

Krebs, 1986). If we assume that the basic machinery of motivation is designed to

bias animals towards courses of action that result in more certain, easily obtained

and immediate reward, then the question arises of what mechanisms exist to resist

such temptation when more taxing options may result in greater overall utility.

Using a cost-benefit T-maze paradigm, Walton et al. (2002) demonstrated that

medial frontal cortex is essential for allowing an animal to put in extra work for

greater reward (see Fig. 3.3A). Rats chose between investing effort by surmount-

ing a large barrier to obtain a high reward (HR) or selecting a low reward (LR)

which did not incur any additional response cost. Following lesions of this re-

gion, animals became profoundly cost averse, switching from selecting to climb

the barrier for the HR on the majority of trials pre-surgery to choosing the more

easily obtained LR option on almost all occasions. However, when the response
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costs were equated by adding an identical barrier into the LR arm, meaning that

the rats were now required to put in the same amount of effort to obtain either size

of reward, all animals returned to choosing the HR. This implies that the deficit

was not caused by any gross motor deficits or spatial impairments, but is instead

primarily one concerned with making optimal decisions. Subsequent experiments

have localized this effect to the ACC, not to the adjacent prelimbic cortex nor the

OFC (Walton et al., 2003; Rudebeck et al., 2006). Interestingly, disruption of the

amygdala-ACC pathway lead to the same pattern of behavior, suggesting that ex-

tended interconnected frontal-subcortical circuits are required in order to compare

cost and benefit (Floresco and Ghods-Sharifi, 2007).

While OFC lesions did not make animals cost averse on the T-maze barrier

task, several neuropsychological studies in humans and animals have implicated

the OFC in mediating certain types of cost-benefit decision making, in particular

in aspects of impulsivity and foresight (see Wallis, 2007 for a review). However,

the results from studies of delay-based decision making in humans and rodents

are similarly conflicting, with some showing an increase in impulsive choices

following OFC lesions and other the opposite effect (see Dalley et al., 2004 for

a review). All of these studies were performed in operant boxes, making tricky

direct comparison with the effort-based decision making findings in the T-maze.

To investigate this inconsistency, Rudebeck et al. (2006) also tested animals with

lesions of the OFC on a T-maze delay-based decision making task where they

could choose between a delayed HR or an immediately available LR option (see

Fig. 3.3B). Prior to surgery, all animals preferred to wait for the HR. However,

post-operatively, in contrast to the animals with ACC lesions, the OFC-lesioned

rats became cost-averse, switching to the immediate LR option on the majority

of trials. This was not caused by a general hyperactivity as the same animals

showed no increase in spontaneous locomotor activity. Moreover, as with the

ACC-lesioned animals on the T-maze barrier task, when the costs were equated

by requiring the animals to wait for an identical amount of time for both the HR

and LR options, the OFC group returned to choosing the HR. This again implies

that the increase in impulsive choices was a consequence of an alteration in the

way the costs and benefits of the options were processed rather than being a simple

impairment in spatial or reward magnitude processing.
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Figure 3.3: Experimental apparatus from (Rudebeck et al., 2006). (A) Effort-

based decision-making test apparatus. Rats were placed in the start arm of the

T-maze and allowed to choose between the two goal arms. If rats chose the HRA

containing the wire mesh barrier, they had to climb over it to receive four food

pellets. Choosing the LRA meant they could obtain two food pellets without

climbing a barrier. The same task was used by Walton et al. (2002). (B) Delay-

based decision-making apparatus. Rats were placed in the start arm and chose

between the two goal arms. When rats entered one of the goal arms, Gate A was

immediately inserted, keeping the rat in the goal arm. Gate B was then retracted

after the required delay. Selecting the HRA initially led to ten food pellets after

15 s, whereas the LRA led to only one food pellet immediately.
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3.3.4 Hippocampo-frontal functional interactions and memory

consolidation

Hippocampo-frontal functional interactions

Although few studies have specifically addressed the issue of the role of the

hippocampo-prefrontal cortex pathway, Floresco et al. (1997) showed that discon-

nection lesions produced by transient inactivation of the ventral CA1/subiculum

and the contralateral prelimbic cortex produce a selective impairment of perfor-

mance in the test phase of a spatial delayed nonmatching to position task in the

radial-arm maze. A similar impairment was observed with bilateral inactivation

of the CA1/subicular region, or the prelimbic cortex (Seamans et al., 1995). These

data have strong implications that the hippocampal-prefrontal cortex connection

is involved in a process through which recently acquired spatial information en-

coded in the hippocampus is used to organize responses in a prospective manner

in the prefrontal cortex (Floresco et al., 1997), a conclusion that has also been

reached after detailed analysis of the effects of prefrontal lesions in a variety of

learning tasks (Delatour and Gisquet-Verrier, 1999; Gemmell and O’Mara, 1999).

In a subsequent study, Seamans et al. (1998) showed that blockade of D1 recep-

tors in the PFC resulted in the same behavioral patterns, indicating an important

functional role of dopamine for the hippocampo-frontal pathway. Consistently,

Goto and Grace (2008) recently showed that, depending on the dopamine recep-

tors activation, PFC either incorporates retrospective information processed by

the hippocampus or processes its own information to effect preparation of future

actions.

The finding that synaptic depression of hippocampal-prefrontal cortex path-

way occurs during the delay period of a delayed nonmatching-to-position task,

and that the progress in learning is associated with the establishment of long-term

depression (Burette et al., 2000), have intriguing implications for the concept of

how cortical networks subserve the planning of responses. Depression of synap-

tic transmission observed during the spatial working memory task is functionally

equivalent to a reduction in the potency of synaptic drive exerted by hippocampal

inputs on prefrontal cortex neurons. A background reduction in synaptic efficacy

between the hippocampus and the prefrontal cortex may in fact be a means for in-

creasing signal-to-noise ratio for the transmission of pertinent signals, in particular
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information stored in memory for example by low-resolution spatial information

originating from neurons in the ventral hippocampus (Jung et al., 1994), and this

could be mediated by potentiation of a subset of the population of input synapses

against a background of reduced synaptic transmission.

Memory consolidation

Current theories concerning memory suggest that memories are initially encoded

quickly in the hippocampus, as a simultaneous indexing of the different brain

regions representing the lived experience (McClelland et al., 1995). Among

these theories, the classical theory of consolidation suggests that the hippocam-

pus transfers this learning progressively to the neocortex (including the PFC), by

facilitating the development of some cortico-cortical connections (Marr, 1971;

Squire et al., 1993; McClelland et al., 1995; Frankland and Bontempi, 2005).

Once ”copied” in the neocortex, the information would be less sensitive to hip-

pocampal damage or neglect. Another theory, known as multiple traces suggests

that the hippocampus and the neocortex do not underlie the same forms of mem-

ory, the former encoding episodic or contextual memory and the latter schematic

or semantic memory (Nadel and Moscovitch, 2001; Moscovitch et al., 2006). In-

spired by the two previous theories, the theory of mnemonic transformations sug-

gests that episodic memory is always hippocampal-dependent, and that seman-

tic / schematic memory results from a transformation of hippocampal episodic

memory during its transfer to the neocortex (Winocur et al., 2010a). The theory

of transformation proposes, unlike the classical theory of consolidation, that the

same experience can be encoded simultaneously in both memory forms (episodic

and semantic). The authors also suggest that a person may use one or other of

these representations, and that this choice depends on a flexible mechanism poten-

tially involving the PFC and the ACC (Frankland and Bontempi, 2005; Winocur

et al., 2010a).

When it comes to information useful for navigation, such as topological rep-

resentations, it becomes more difficult to distinguish between episodic (or con-

textual) memory and semantic (or conceptual, schematic) memory. Winocur

et al. (2010b) lesioned partially the hippocampus of rats several weeks after they

learned to navigate in a complex environment containing different goals at fixed

positions. The lesioned animals continues to use distal information to find the
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goals, but were impaired to find the best alternative route leading to the goal when

a blocks was introduced in the maze.

The slow-wave sleep (see Sec. 3.2.2) would have an important role in ex-

change of information between hippocampus and neocortex (Marr, 1971; Buzsáki,

1986; McClelland et al., 1995), by replaying the neural patterns concerning previ-

ously acquired information (Wilson and McNaughton, 1994; Euston et al., 2007;

O’Neill et al., 2008; Peyrache et al., 2009). This replay would induce a change

in the neural substrate of memory traces and take part to memory consolidation.

Consistently, animal performance drop during recall in hippocampo-dependent

tasks if SWRs are blocked by electrical stimulation during the consolidation phase

(after training) (Girardeau et al., 2009), suggesting that SWRs are likely vectors

for hippocampal-neocortical information exchange (Buzsáki, 1989). Among the

cortical areas, the PFC is often implicated in long-term memory consolidation

(Frankland and Bontempi, 2005), particularly for hippocampal-dependent spatial

and contextual information.

3.4 Conclusion

In this concluding section, we present our working hypotheses about the respec-

tive roles of the hippocampus and the prefrontal cortex in navigation planning.

The model described in the next part is based on these hypotheses.

Hippocampal spatial-selective place/grid/head-direction cells are crucial com-

ponents of the neural system subserving the spatial learning function. The spa-

tially selective responses of hippocampal neurones might result from the pro-

jection of contextual (relational) memories onto the two-dimensional locomotion

space of the animal. Therefore, several authors have postulated a role for the

hippocampal formation in a larger class of memories, namely episodic memory,

encoding context-dependent experienced events (e.g., Burgess et al., 2002; Fortin

et al., 2002). However place cells spatial selectivity remains one of the main char-

acteristics of the hippocampal code, and is a convenient paradigm to understand

the role of the hippocampus in the learning of a cognitive representation (Poucet

et al., 2004).

In order to perform flexible goal-directed navigation (e.g., to plan alternative

pathways and/or shortcuts) two others mechanisms are necessary: goal representa-
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tion, and reward-dependent navigation planning (Poucet et al., 2004). The encod-

ing of a goal representation in the hippocampus is still under debate, because of

conflicting evidence (e.g. Speakman and O’Keefe, 1990; Hok, 2007). Moreover,

very few electrophysiological studies investigate the encoding of a topological

map within the hippocampus, subserving spatial planning (e.g. Alvernhe et al.,

2008, 2010). Phase precession, replay of experienced trajectories and recurrent

dynamics generated by the CA3 collaterals may support the learning of behav-

ioral sequences (i.e. routes), but it is not know whether these routes could be

integrated into a topological map within the hippocampus (see Poucet et al., 2004

for a short review of hippocampal models based on this idea; Muller et al., 1996).

On the other hand, the hippocampal space code is likely to be highly redundant

and distributed (Wilson and McNaughton, 1993), which does not seem adequate

for compact topological representations of highly-dimensional spatial contexts.

Our work relies on the hypothesis of a distributed spatial cognition system in

which the hippocampal formation would contribute to navigation planning by con-

veying redundant spatial representations to higher associative areas, and a cortical

network would elaborate more compact representations of the spatial context —

accounting for motivation-dependent memories, action cost/risk constraints, and

temporal sequences of goal-directed behavioral responses (Knierim, 2006; Spiers

and Maguire, 2007b).

Among the cortical areas involved in map building and action planning, the

prefrontal cortex is likely to play a central role. Indeed, prefrontal cortical neurons

show correlates with the temporal organization of action sequence, as well as with

the motivational values associated to spatiotemporal events (e.g. Averbeck et al.,

2002; Hok et al., 2005). Anatomical PFC lesion and imagery studies support the

general view that prefrontal cortex is responsible for the encoding retrospective

and prospective memories, for the temporal organization of the behavior and more

generally for cognitive control, that is to say, the ability to coordinate thoughts

and actions in relation with internal goals (Miller and Cohen, 2001; Fuster, 2001;

Koechlin et al., 2003).

How may location, goal and topological information be represented in a pre-

frontal neural population? How can this information be exploited to plan action

sequences? These questions are addressed in the next chapter describing our

model.
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Chapter 4

A cortical column model for spatial

learning and navigation planning

In this chapter, we introduce our model of spatial navigation planning based on

the columnar organization of the PFC. The first four sections present an overview

of the main bases of the main (topological learning, planning and multilevel map-

ping). The last section gives a lot of equations describing in details the internal

mechanisms of the model.

4.1 Overview of the model

Figure 4.1A shows an overview of the model architecture based on the notion of

cortical column organization. Cortical maps consist of local circuits —i.e. the

cortical columns (Mountcastle, 1957)— that share common features in sensory,

motor and associative areas, and thus reflect the modular nature of cortical orga-

nization and function (Mountcastle, 1997). Cortical columns can be divided in

six main layers including: layer I, which mostly contains axons and dendrites;

layers II-III, called supragranular layers, which are specialized in cortico-cortical

connections to both adjacent and distant cortical zones; layer IV1, which receives

sensory inputs from sub-cortical structures (mainly the thalamus) or from columns

of cortical areas involved in earlier stages of sensory processing; and layers V-VI,

called infragranular layers, which send outputs to sub-cortical brain areas (e.g. to

1According to the cytoarchitectonic properties of the rat medial PFC (Uylings et al., 2003), no

layer IV is considered in the model columns.
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the striatum and the thalamus) regulating the ascending information flow through

feedback connections. Neuroanatomical findings (see Mountcastle, 1997 for a re-

view; see Gabbott and Bacon, 1996b; Gabbott et al., 2005 for anatomical data on

rat PFC) suggest that columns can be further divided into several minicolumns,

each of which consists of a population of interconnected neurons (Buxhoeveden

and Casanova, 2002). Thus, a column can be seen as an ensemble of interrelated

minicolumns receiving inputs from cortical and sub-cortical areas. It processes

these afferent signals and projects the responses both within and outside the corti-

cal network. This twofold columnar organization has been suggested to subserve

efficient computation and information processing (Burnod, 1988; Mountcastle,

1997). Several models have been proposed to study the cortical columnar ar-

chitecture, from early theories on cortical organization (Szentágothai, 1975; Ec-

cles, 1981; Burnod, 1991) to recent computational approaches (e.g. the blue brain

project; Markram, 2006). These models either provide a detailed description of

the intrinsic organization of the column in relation to cythological properties and

cell differentiation or focus on purely functional aspects of columnar operations.

The approach presented here attempts to relate the columnar organization to

decision making and behavioral responses using a highly simplified neural archi-

tecture which does not account for cell diversity and biophysical properties of

PFC neurons. As aforementioned, the underlying hypothesis is that the PFC net-

work may mediate a sparsification of the hippocampal place (HP ) representation

to encode topological maps and subserve goal-directed action planning. As the

simulated animal explores the environment, model HP cells become selective to

allocentric positions through the integration of visual cues and path integration

information (it is out of the scope of this paper to describe the HP cell model,

see Arleo and Gerstner 2000; Arleo et al. 2004; Sheynikhovich et al. 2009 for de-

tailed accounts). The model exploits the anatomical excitatory projections from

hippocampus to PFC (Jay and Witter, 1991) to convey the redundant HP state-

space representation S to the columnar PFC network, where a sparse state-action

code S ×A is learned. Within a column, each minicolumn becomes selective to a

specific state-action pair (s, a) ∈ S×A, with actions a ∈ A representing allocen-

tric motion directions to perform transitions between two states s, s′ ∈ S. Each

column is thus composed by a population of minicolumns that represent all the

state-action pairs (s, a1 · · · aN) ∈ S × A experienced by the animal at a location
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s. This architecture is consistent with data showing that minicolumns inside a col-

umn have similar selectivity properties (Rao et al., 1999) and that some PFC units

encode purely cue information while others respond to cue-response associations

(Asaad et al., 1998).

The model employs the excitatory collaterals between minicolumns (Mount-

castle, 1997; Lewis et al., 2002) to learn multilevel topological representations.

Egocentric self-motion information (provided by proprioceptive inputs) biases the

selectivity properties of a subpopulation of columns to capture morphological reg-

ularities of the environment. Unsupervised learning also modulates the recurrent

projections between minicolumns to form forward and reverse associations be-

tween states. During planning, the spreading of a reward signal from the column

selective for the goal through the entire network mediates the retrieval of goal-

directed pathways. Then, a local competition between minicolumns allows the

most appropriate goal-directed action to be inferred.

The following sections provide a functional description of the model columnar

structure, connectivity and input-output functional properties. A more compre-

hensive account –including equations, parameter settings and explanatory figures–

can be found in Supplementary Material Sec. 4.5.

4.2 Encoding topological maps by a network of

columns

Every column in the model (Fig. 4.1B) has a highly simplified structure consist-

ing of three units s, p, v and of a population of minicolumns, each of which is

composed of two units q and d. The activity of each of these units (see Sec. 4.5)

represents the mean firing rate of a population of pyramidal neurons either in

supragranular layers II-III (p, v, q units) or in infragranular layers V-VI (s, d units).

As exploration proceeds, neurons s become selective to spatial locations and

their population activity encodes compact state-space representations. Within

each column one neuron v encodes goal information related to a specific state,

whereas neurons q encode the relation between actions and goal. Neurones q and

v back-propagate the goal signal through the cortical network and their discharge

correlates to the distance to the goal. Neurones p forward-propagate the selected

path signal (i.e. the planned trajectory) from a given position towards the goal.
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Figure 4.1: Overview of the model architecture and connectivity. (A) Model

hippocampal place (HP) cells are selective to allocentrically-encoded positions.

The prefrontal cortex (PFC) columnar network takes HP cell activities as input

to learn a sparse state-action code S × A reflecting to topological organization

of the environment. The model employs recurrent excitatory collaterals between

minicolumns of two subpopulations (C1 and C2) to implement multilevel spatial

processing capturing morphological regularities of the environment. (B) Each

model column uses three units s, p, v and a population of minicolumns, each of

which is composed of two units q and d. Neurons s receive inputs from HP cells

through wsh synapses to encode spatial locations. Forward and backward associa-

tions between locations are encoded by wpd and wqv connections, respectively, so

that the minicolumn corresponding to the execution of an action in a given place is

linked to the place visited after movement. The model uses a motivational signal

conveyed by wvm synapses to encode goal information. The population of neu-

rons d projects to motor output, where ta winner-take-all competition takes place

to select actions locally. Collateral projections between columns (wss, wpp, wvv

and wqq) together with a proprioceptive signal φ allow the model to implement

multilevel spatial processing.
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Neurones d integrate spatial and reward-related information and compete for local

action selection. Their activity triggers a motor command tuned to a specific allo-

centric motion direction. Inter- and intra-column connectivity (Fig. 4.1B, see also

Sec. 4.5) involves plastic and non-plastic projections, respectively, whose synaptic

efficacies are modeled as scalar weight matrices w ∈ [0, 1]. Plastic synapses are

randomly initialized to low efficacy values within [0, 0.1], i.e. the cortical network

starts with weak interconnectivity. As the simulated animal explores the environ-

ment, plastic projections are modified through unsupervised Hebbian learning to

encode either states or forward and reverse associations between adjacent states

(i.e. environment topology). For instance, whenever the simulated rat moves from

one place to another, collateral projections wpd and wqv (Fig. 4.1B) are updated to

reflect to connectedness between the two places.

4.3 Spatial planning through propagation of

reward-dependent signals

The simulated animal behaves to either improve its representation or follow

known goal-directed pathways (see Sec. 4.5). This exploration-exploitation trade

off is governed by a simple stochastic policy (Arleo et al., 2004). During explo-

ration, motivation-dependent signals modulate the activity of neurons v in layer

II-III of the model (Fig. 4.1B), which allows specific columns to become selective

to reward states. The reward-related signal transmitted by wm projections simu-

lates a physiological drive mediated by either dopaminergic neurons in the ventral

tegmental area (Schultz, 1998) or the amygdala (Aggleton, 1992), both sending

synapses to the prefrontal cortex (Uylings et al., 2003). An activation diffusion

process (Burnod, 1991) supports the exploitation of topological information to re-

trieve optimal trajectories to the goal. The motivation signal elicits the activity

of the v neuron in the column corresponding to the goal location. This reward-

based activity is then back-propagated through reverse associations mediated by

the lateral projections wqv (Fig. 4.1B). When the back-propagated goal signal

reaches the column selective for the current position, the coincidence of s and q

activity triggers the discharge of neurons d. The d activation, in turns, activates

the forward propagation of a goal-directed signal through projections wpd. Since

q neurons are already active, successive discharges of d and p neurons allow the

- 75 -



CHAPTER 4. A CORTICAL COLUMN MODEL FOR SPATIAL LEARNING AND NAVIGATION PLANNING

path signal to spread forward to the goal column. A competitive winner-take-all

scheme, which locally selects the motor action a ∈ A associated to the most active

neuron d, reads out goal-directed trajectories.

It is worth mentioning that projections wqv attenuate the back-propagating ac-

tivity such that the smaller is the number of synaptic relays, the stronger is the goal

signal received by the q neurons of the column corresponding to the current loca-

tion. Thus, the activation diffusion mechanism produces an exponential decrease

of the intensity of the goal signal that propagates along the network of columns.

Since the receptive fields of the model columns tend to be evenly distributed over

the environment, the intensity of the goal signal at a given place does correlate

with the distance to the rewarding location. In other words, the columnar network

encodes goal-related metrical information allowing the shortest pathway to the

target to be selected. Animals can take shortcuts to a goal through inexperienced

regions of the environment, an ability that has often been associated to complex

metrical mapping (see Trullier et al., 1997; Kubie and Fenton, 2009 for reviews).

The representation learned by the columnar network model encodes enough met-

rical information to infer shortcuts in simple situations similar to those tested with

animals (Chapuis et al., 1983; Poucet et al., 1983; Poucet, 1993; Etienne et al.,

1998). In the model, vector addition (Etienne et al., 1998) is approximated by

means of a simple readout mechanism that sums the allocentric motion directions

encoded by the actions of a planned trajectory (Sec. 4.5).

4.4 Recurrent cortical processing for multilevel

topological mapping

The model can learn hierarchical state-space representations by employing recur-

rent projections between columns (Mountcastle, 1997; Lewis et al., 2002). As

shown in Figure 4.1 (but see Sec. 4.5 for more details), this multistage process-

ing can simply be understood in terms of the interaction between two subpopu-

lations of cortical columns. The first population C1 receives and processes direct

spatial inputs from the hippocampus. The second population C2 receives already-

processed state information from neurons s ∈ C1, but it also integrates a puta-

tive proprioceptive signal φ used to encode the probability of steady changes in

egocentric locomotion direction. For instance, the signal φ may indicate a high
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probability of turning by 90◦ at a given location. Since the activity of neurons

s in the population C2 integrates state-related information and motion direction

changes, their selectivity is modulated by the presence of structural features of the

environment such as alleys and corridors. The spatial resolution of the resultant

multilevel representation can then adapt to the structural complexity of the maze.

The C2 columnar network, which is learned similarly to the C1 network,

also supports the activation diffusion mechanism to plan goal-directed trajecto-

ries (Sec. 4.5). After learning, collateral projections wvv and wpp allow C2 to

modulate the activity of neurons p, v ∈ C1 during planning (Fig. 4.1B).

4.5 Details: Columnar model, connectivity layout,

and learning rules

4.5.1 Neuronal model

The elementary computational units of the model are firing-rate neurons i, whose

mean discharge ri ∈ [0, 1] is given by:

ri(t) = f
(

Vi(t)± η
)

(4.1)

where Vi(t) is the membrane potential at time t, f is the transfer function (when

not specified f0(x) = x), and η denotes random noise uniformly drawn from

[0, 0.1]. The membrane potential Vi varies according to:

τi ·
dVi(t)

dt
= −Vi(t) + Ii(t) (4.2)

where τi = 10 ms is the membrane time constant, and Ii(t) is the input synaptic

drive. Eq. 4.2 is integrated by using a time step ∆t = 1 ms. For a given neuron

i receiving inputs from an afferent population J , the synaptic drive Ii(t) is taken

as:

Ii(t) = max
j∈J

{wij · rj(t)} (4.3)

where wij ∈ [0, 1] indicates the synaptic weight of the projection from the presyn-

patic neuron j to the postsynaptic neuron i. See Riesenhuber and Poggio (1999)

and Yu et al. (2002) for plausible neuronal implementations of max operators.
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4.5.2 Column network connectivity

Every column of the model assembles three units s, p, v plus a population of mini-

columns, each composed of two units q and d (Fig. 4.1B).

Intra-column connectivity layout

Neurons s, p respectively in layer V-VI and II-III, project onto units d of layer

V-VI by means of one-to-all non-plastic synapses. Each neuron q in layer II-III

sends a constant one-to-one projection to the corresponding d neuron in the same

minicolumn. Each neuron v in layer II-III receives all-to-one projections from

neurons q in layer II-III of the column (Fig. 4.1B).

The activity of neurons s, p, v, q varies according to Eq. 4.3. The discharge of

every neuron q induces a multiplicative effect on s→ d and p→ d synapses. The

synaptic drive of a d neuron is taken as:

Id(t) = max
{

wds · rs(t) , wdp · rp(t)
}

· wdq · rq(t) (4.4)

where wds = wdp = wdq = K denote the weight matrices of s → d, p → d, and

q → d synapses, respectively.

Inter-column connectivity layout and input-output of the network

Before learning, the connection patterns are general for all columns of the model.

They are adapted during the learning process to specialize the network in two

subpopulations C1 and C2 (Sec. 4.5.3). The model network relies on plastic

connectivity and considers both sub-cortical projections and cortical collaterals

(Fig. 4.1B):

• Neurons s of the model can receive three types of afferent information: (i)

direct spatial inputs from hippocampal place (HP) cells via projections wsh;

(ii) indirect (pre-processed) state-related inputs from other cortical neurons

s via collaterals wss; (iii) putative proprioceptive information φ encoding

changes in motion direction (see below).

• Neurons p receive: (i) recurrent projections wpp from other neurons p of the

network; (ii) collaterals wpd from neurons d of other PFC columns (used to

encode forward associations between places).
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• Neurons q receive: (i) recurrent projections wqq from other neurons q of the

network; (ii) collaterals wqv from neurons v of the network (used to encode

reverse place associations).

• Neurons v receive: (i) sub-cortical motivation-dependent signals via pro-

jections wvm (used during learning to associate a column to a rewarding

location); (ii) collaterals wvv from other neurons v of the network.

• Infragranular neurons d form the outputs of the column and project to

motor-related areas (Mountcastle, 1997). During exploration, each neuron

d becomes selective to a specific (allocentric) motion direction.

4.5.3 Spatial learning: encoding topological representations

The cortical network starts with weak synaptic weights randomly initialized

within [0, 0.1]. As exploration proceeds, all plastic projections wsh, wqv, wpd,

wss, wpp, wqq, wvm and wvv are learned to encode topological maps. As shown

in Fig. 4.1A, the cortical network model performs a two-stage processing of

state-related information. During spatial learning, a subpopulation C1 of corti-

cal columns becomes primarily selective to spatial inputs received directly from

hippocampal place (HP) cells, whereas another subpopulation C2 processes state-

related inputs from recurrent projections from C1. For sake of clarity, we first

describe spatial learning at the level of C1 columns and then at the more abstract

level encoded by C2.

State learning in C1 population (wsh)

At each location visited by the animal at time t the cortical network is updated

if-and-only-if the activity of neurons s of all existing columns is below threshold,

that is:
∑

s∈C1

H
(

rs(t)− ρ
)

= 0 (4.5)

where rs ∈ [0, 1] is the firing rate of neuron s ∈ C1, H is the Heaviside function

(i.e., H(x) = 1 if x > 0, H(x) = 0 otherwise), and ρ = 0.3. If the novelty

condition holds (Eq. 4.5), then a new column becomes selective to that location

by potentiating the projections wsh from all active place cells to the neuron s of
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the column:

wsh = H
(

rh(t)− ρ
)

· rh(t) (4.6)

where rh(t) denotes the firing rates of place cells h ∈ HP. If the location visited

at time t is not novel (i.e. Eq. 4.5 does not hold), a winner-take-all scheme selects

the most active neuron s of the cortical network and an unsupervised Hebbian

learning rule regulates the strength of its hippocampal afferents wsh according to:

∆wsh = α · rs(t) ·
(

rh(t)− wsh
)

(4.7)

where α = 0.2 is the learning rate.

State connectivity learning in C1 population (wpd and wqv)

The model exploits PFC excitatory collaterals (Mountcastle, 1997; Lewis et al.,

2002) to encode the spatial connectivity between places. During exploration, pro-

jections wpd and wqv (Fig. 4.1B) are modified to learn forward and reverse place

associations, respectively. Let c, c′ ∈ C1 denote the columns coding for the rat

position before and after a state transition, respectively. One minicolumn, i.e. a

pair of q and d neurons in c, becomes selective to this transition. In particular,

the neuron d is associated to the locomotion orientation taken by the animal to

perform the transition. The weight wp′d of the projection from d ∈ c to p′ ∈ c′

and the weight wqv′ from v′ ∈ c′ to q ∈ c are modified according to the following

LTP/LTD plasticity rule:

∆wp′d = (1− λ) · (βLTP − wp′d)− λ · βLTD · wp′d (4.8)

where βLTP = 0.9, βLTD = 0.5, and the term (1 − λ) indicates whether the

simulated animal succeeded or failed the transition from c to c′ (λ = 0 or λ = 1,

respectively). If, for example, a new obstacle prevents the simulated rat from

achieving a previously learned transition from column c to c′, then a depression

of the synaptic efficacy wp′d occurs. Note that the learning rule defined by Eq. 4.8

leads to wpd, wvq ∈ [0, βLTP ].

State learning in C2 population (wss, wpp and wvv)

The example of Figure 4.2 illustrates how the cortical network C2 is established

and interconnected to the population C1 during spatial exploration. Recall that the

activity of neurons s2 ∈ C2 is driven by both the collateral excitatory inputs from
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Figure 4.2: Multilevel topological map learning in C1 and C2 populations.

Columns in C1 and C2 populations encode locations at different spatial resolu-

tions. For instance, column c1 ∈ C1 corresponds to the end of the first alley,

whereas c2 ∈ C2 encodes the entire alley before the turn. The model achieves

multilevel state coding thanks to collateral projections ws2s1 between columns in

C1 and C2. When a place transition occurs, lateral connections between columns

selective for previous and next states are updated in C1 population (wp′
1
d1 and

wq1v′1), as well as inC2 population (wp′
2
d2 andwq2v′2). These latter synaptic weights

are modified thanks to the inputs conveyed by wq2q1 and wp′
2
p′
1

projections so that

the activity of q2 ∈ C2 will mirror the activity of q1 ∈ C1, whereas p′2 ∈ C2 will

mirror p′1 ∈ C1. Finally, another set of collateral connections from C2 to C1 pop-

ulation (wp1p2 and wv1v2) enables columns in C2 population to bias the activity in

neurons p and v of C1 population.
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neurons s1 ∈ C1 and the modulatory effect of the putative proprioceptive signal

φ. The latter encodes the probability that a steady and large change in locomotion

direction occurs. For instance, φ ≈ 1 if the animal turns systematically by an angle

greater than a threshold of 15◦ at a given location, whereas φ ≈ 0 if the animal

goes approximately straight. The signal φ modulates the electroresponsiveness of

neurons s2 ∈ C2. In the model, this modulation is implemented at the level of the

transfer function of neurons s2, which is taken as:

f(x) = x · γ(1−φ) (4.9)

with the constant parameter γ = 1.1. Note that f(x) approximates the identity

transfer function f0(x) when φ ≈ 1.

The networkC2 starts with weak connectivity and unsupervised learning mod-

ifies the synaptic weight distributions. The novelty condition to update the C2

network is slightly different from Eq. 4.5 because it takes into account both the

activity of units s2 ∈ C2 and the proprioceptive signal φ:

φ(t) +
∑

s2∈C2

H
(

rs2(t)− ρ
)

= 0 (4.10)

If Eq. 4.10 holds, a new column of C2 becomes interconnected to the most active

column of the network C1 as follows. Let s1 ∈ C1 be the most active unit when

the novelty condition (Eq. 4.10) occurs, and let s2 ∈ C2 indicate the state neuron

of the newly recruited column in C2 (Figure 4.2). The s1 → s2 projection is

potentiated by:

ws2s1 = H
(

rs1 − ρ
)

· rs1 (4.11)

At each time step t, the following learning scheme shapes the interconnections be-

tween the most active column in C1 and the most active column in the population

C2:

∆ws2s1 = η · rs1 · rs2 · H
(

rs1 − ws2s1
)

· (1− φ) (4.12)

∆wv1v2 = 1− wv1v2 (4.13)

∆wp1p2 = 1− wp1p2 (4.14)

whith η = 0.6. A consequence of this encoding scheme is that all C1 columns that

are sequentially activated when the simulated animal moves along a straight path

(e.g. an alley) tend to be interconnected to the same column in C2.
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The activity of neurons v2, p2 ∈ C2 influences the discharge of neurons

v1, p1 ∈ C1 through recurrent connectionswv1v2 , wp1p2 , respectively. In the model,

this is achieved by modulating the transfer function of units v1 ∈ C1 as follows

(the same holds for the transfer function of units p1 ∈ C1):

f(x) = x · γψ (4.15)

where γ is a constant factor set to 1.1 and ψ = H
(

max
v2∈C2

{wv1v2 · rv2}
)

. The term

ψ allows the activity of neurons v1, p1 ∈ C1 to be enhanced in the presence of a

discharge of neurons v2, p2 ∈ C2, respectively. By contrast, f(x) reduces to f0(x)

when no activity from v2, p2 ∈ C2 occurs.

State connectivity learning in C2 population (wpd, wqv, wpp and wqq)

After learning, transitions in the C2 state-space representation are likely to map

steady discontinuities in the environment structure (e.g. a L-turn in an alley of a

maze). The example of Figure 4.2 shows how recurrent projections wqv, wpd, wpp,

and wqq are updated when a state transition occurs in the C2 representation:

• Let c2, c
′

2 ∈ C2 be the columns encoding the states before and after a transi-

tion, respectively.

• Let (q2, d2) ∈ c2 be the minicolumn selective for the c2 → c′2 transition.

• Let c1, c
′

1 be the columns of C1 that are active before and after the transition,

respectively.

• Let (q1, d1) ∈ c1 be the minicolumn selective for the c1 → c′1 transition.

At each time step t the interconnectivity between these units is updated according

to:

∆wp′
2
d2 =

wp′
2
p′
1
· rp′

1

rd2
− wp′

2
d2 (4.16)

∆wq2v′2 =
wq2q1 · rq1

rv′
2

− wq2v′2 (4.17)

∆wp′
2
p′
1

= 1− wp′
2
p′
1

(4.18)

∆wq2q1 = 1− wq2q1 (4.19)
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This mechanism allows the C2 network to adapt its topology while accounting for

the goal-distance information encoded by neuronsC1. Neuron q2 ∈ C2 will mirror

the activity of q1 ∈ C1, whereas p′2 ∈ C2 will mirror p′1 ∈ C1. As a consequence,

the information propagated at the level of the C1 network will also be available

in C2. Thus, planning (see below) can be consistently achieved in parallel by C1

and C2 based on a bidirectional flow of information between these two cortical

populations.

4.5.4 Exploiting the topological representation for planning

Figure 4.3 illustrates a simple example of activation diffusion process mediated

by the columnar network model during planning. A putative motivation signal

first elicits the activity of neurons v in the columns of C1 and C2 associated

to the goal location (Figure 4.3A). The reward-based activity of neurons v is

then back-propagated through the reverse state associations encoded by collat-

erals wvq ∈ C1, C2. Each synaptic relay along the neural pathway formed by wvq

projections attenuates the back-propagating activity (wvq < 1). Thus, the activa-

tion diffusion mechanism produces an exponential decrease of the intensity of the

goal signal that propagates through the network of columns. It is worth noting that

the recurrent dynamics induced by wv1v2 and wq2q1 increases the time constant of

the exponentially decaying propagation (Eqs. 4.15 and 4.16). For example, after

10 synaptic relays the activity of a neuron v ∈ C1 would be rv ≈ 0.35 without re-

current dynamics vs. rv ≈ 0.9 with the C2 modulation (Figure 4.3B). Hence, the

goal-dependent signal can spread over a larger number of columns before reaching

the critical level of neuronal noise.

Since the receptive fields of C1 columns tend to be evenly distributed, the

intensity of the goal signal at a given place encodes the distance to the rewarding

location. The learning rule implemented for collateral weights in C2 (Eq. 4.16)

allows this distance-to-goal coding property to be conserved at the level of the C2

population.

The activity of d neurons integrates this reverse activity flow with the current

state in both C1 and C2 populations (Eq. 4.4). In particular, the occurrence of the

q input is a necessary condition for a neuron d to fire. In the presence of the q

input, either the hippocampal signal relayed by the neuron s or the cortical input

transmitted by neuron p is sufficient to trigger the discharge of a unit d (Eq. 4.4).
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Figure 4.3: Action planning through multilevel activation-diffusion of a goal sig-

nal. (A) A motivation signal induces the activity of neurons v in the goal columns

of C1 and C2 populations (1). The goal information is then back-propagated

through the reverse state associations encoded by neurons v and q in C1 and C2

(2). When the back-propagated goal signal reaches the columns selective for the

current position in bothC1 andC2 populations, the coincidence of the state-related

input conveyed by s neurons and the goal-related input transmitted by q neurons

activates neurons d (3). In turns, neurons d trigger the forward propagation of a

pathway signal through the neurons p and d (4). At each step of the forward prop-

agation, the motor action associated to the most active neuron d can be selected

(e.g. for the first planning step a1 for C1 population and a2 for C2 population)

and the sequence of actions from the current position to the goal can be iteratively

readout. (B) Effect of the top-down modulation exerted by the populationC2 upon

the back-propagating activity at the level of neurons v in C1. We plotted the re-

lation between the number of synaptic relays connecting the columns that form

the planned path from a given place to the goal and the firing rate of the neuron v

belonging to the column representing that place. Each cross indicates the activity

of one neuron v after a given number of synaptic relays. Without any modulation

from the C2 population (exponentially decreasing set of points), the activity of

neurons v drops quickly to the noise level as the length of the planned path in-

creases. With the C2 modulation, the time constant of the decreasing function is

much larger, leading to a better propagation in large environments.
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When the back-propagated goal signal reaches the column selective for the cur-

rent position, the coincidence of the state-related hippocampal input conveyed by

s neurons and the goal-related input transmitted by q neurons activates the neuron

d, which in turns triggers the forward propagation of a pathway signal through

projections wpd. The activity of d neurons also conveys distance-to-reward infor-

mation (because d neurons are partially driven by q neurons). Thus, at each step

of the forward propagation, the motor action associated to the most active neuron

d can be selected and the sequence of actions from the current position to the goal

can be iteratively readout (Figure 4.3A). This sequence of actions is also used to

compute an overall direction between a given position and a target position. In the

general case, vector addition sums the allocentric motion directions encoded by

the actions (the distance traveled for each action is supposed to be unitary), which

can be summarized by:

θ = arg

(

∑

j

rj · e
i·aj

)

= arg

(

∑

j

ei·aj

)

(4.20)

where the complex term rj · e
i·aj represents an action j of distance rj and orien-

tation aj . In the particular case of a sequence with only two actions, this vector

addition can be approximated thanks to Euler formula to provide an intuitive com-

putation of the resultant orientation:

θ = arg
(

ei·a1 + ei·a2
)

= arg

(

2 · cos

(

a1 − a2

2

)

· ei
a1+a2

2

)

=
a1 + a2

2
(4.21)

4.6 Conclusion

This chapter presented our model of the prefrontal cortex. It is based on the

columnar organization of this structure and uses it to learn a joint space-action

representation forming a topological map. A planning mechanism, called activa-

tion diffusion, is emploied to exploit this representation in order to plan detours

and discover shortcuts. Two populations of columns encode two topological maps

of the environment with different scales, to improve the flexibility of the model in

large environments. Within each column, several neurons encode different types

of information relevant for planning such as spatial and goal-related information.

The next chapter examines results of computer simulations that tested model

spatial performance in several behavioral tasks.
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Chapter 5

Spatial behavior of the model

This chapter demonstrate the ability of the model to learn topological representa-

tions and plan goal-oriented trajectories. Performances of the simulated animals

were measured in a detour and a shortcut navigation task.

5.1 Methods

We considered two navigation tasks: the Tolman & Honzik’s detour task and a

novel shortcut task. In both cases, the behavioral responses of simulated rats are

constraint by intersecting alleys, which, in contrast to open field mazes, generate

clear decision points and permit dynamic blocking of goal-directed pathways.

5.1.1 Tolman & Honzik’s detour task

The classical Tolman & Honzik’s maze (Fig. 5.1A) consisted of three narrow al-

leys of different lengths (Paths 1, 2, and 3) guiding the animals from a starting

location to a feeder location. Tolman & Honzik’s experiment aimed at corrobo-

rating the hypothesis that rodents, while undergoing a navigation task, can predict

the outcomes of alternative goal-directed trajectories in the presence of dynami-

cally blocked pathways. We ran a series of numerical simulations to emulate the

experimental protocol originally designed by Tolman & Honzik:

Training period. It lasted 168 trials (that correspond to 14 days with 12 trials

per day), during which the simulated animals could explore the maze to elaborate

topological representations and learn navigation policies. Simulated rats moved
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Figure 5.1: Spatial navigation tasks used to test the capability of infering detours

and shortcuts. (A) The Tolman & Honzik’s maze (adapted from Tolman and

Honzik, 1930a) consists of three pathways (Path 1, Path 2 and Path 3) with dif-

ferent lengths. The original maze fits approximately within a rectangle of 1.20 x

1.55 m. Two blocks can be introduced to prevent animals from navigating through

Path 1 (Block A) or both Path 1 and Path 2 (Block B). The gate near the second

intersection prevents rats from going from right to left. (B) The shortcut maze

includes a main pathway P1, plus one direct shortcut (Path 2) and one indirect

shortcut (Path3). Two blocks A and B are present at the beginning of the task, and

can selectively be removed to test the ability to find direct vs. indirect shortcuts.
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at a speed of 15 cm/s. In the following, we refer to 12 training trials as a “day” of

simulation.

• Day 1. A series of 3 forced runs was carried out in which the simulated rats

were forced to go through P1, P2, and P3 successively. Then, during the

remaining 9 trials, the subjects were allowed to explore the maze freely. At

the end of Day 1, a preference for P1 was expected to be already established

(Tolman and Honzik, 1930a).

• Day 2 to 14. On each trial, a block was introduced at location A (Block A,

Fig. 5.1A) to induce a choice between P2 and P3. Entrances to P2 and P3

were also blocked in order to force the animals to go first to Block A. When

the simulated rats reached block A and returned back to the first intersection,

doors were removed and subjects had to decide between P2 and P3. Every

day, 10 runs with a block at A were mixed with 2 non-successive free runs

to maintain the preference for P1.

Probe test. It lasted 7 trials (Day 15) with a block at location B (Block B,

Fig. 5.1A) to interrupt the portion of pathway shared by P1 and P2. Animals

were forced to decide between P2 and P3 when returning to the first intersection

point. Both training and probe trials ended when the simulated animal reached the

goal, i.e. when it crossed the entrance to the food box.

Multiple maze sizes. To assess the invariance of the model performance with

respect to the size of the environment, we implemented the above experimental

protocol for two different maze scales, 1:1 and 4:1. We took the dimensions of the

simulated mazes so as to maintain the proportions of Tolman & Honzik’s setup.

Behavioral analysis. We employed a population of 40 simulated rats for each

experimental protocol. We quantified the statistical significance of the results by

means of an ANOVA analysis (P < 0.001 was considered significant).

5.1.2 Shortcut navigation task

Experimental evidence suggests that path selection depends on both the length and

the directionality of the available trajectories (Poucet, 1993). In addition, animals

tested in the presence of a conflict between length and directionality properties

(e.g. with the shorter path being less direct to the goal and vice versa) tend to pre-

fer the shorter, yet less direct, path when the goal is hidden (Chapuis et al., 1983;
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Poucet et al., 1983). The maze shown in Figure 5.1B takes these observations

into account. It consists of three pathways: P1 is the longest path and does not

involve any shortcut; P2 involves of a direct shortcut pointing toward the goal; P3

is based on an indirect shortcut, forcing the animal to divert from the apparently

most direct way to the goal (the straight line from start to goal). We simulated two

set of experiments sharing the same protocol consisting of two phases:

Training period. It lasted 6 trials, during which the simulated rats were enabled

to go through pathway P1 only (i.e. blocks A and B were both present, Fig. 5.1B),

so that P2 and P3 sub-pathways remained unexplored.

Probe test. It lasted 1 trial and it aimed at testing how simulated animals would

use a newly available shortcut. In one set of experiment, simulated animals were

allowed to choose between P1 and P2 (i.e. direct shortcut, with block A removed),

whereas in a second experiment animals had to choose between P1 and P3 (i.e.

indirect shortcut, with block B removed).

Behavioral analysis. We employed two populations of 40 simulated rats each for

this protocol (one for the direct shortcut test and the other for the indirect shortcut

test). We used a χ2 test to assess the statistical significance of results (P < 0.001

was considered significant).

For all these experiments we used a robotic software called webots, which

enables the generate a 3D environment where the simulated animals could move

in a physically realistic way.

5.2 Results

5.2.1 Tolman & Honzik’s detour task

We first examined the behavioral responses of n = 40 simulated animals solving

the 1:1 version of Tolman & Honzik’s task (see Sec. 5.1.1 and Figure 5.1A for de-

tails on the experimental apparatus and protocol). The qualitative and quantitative

results shown on Figures 5.2A and B, respectively, demonstrate that the model re-

produced the behavioral observations originally reported by Tolman and Honzik

(1930a).

Day 1. During the first 12 training trials the simulated animals learned the topol-

ogy of the maze and planned their navigation trajectories in the absence of blocks

A and B. Similar to Tolman & Honzik’s findings, the model selected the short-
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est pathway P1 significantly more than alternative paths P2 and P3 (ANOVA,

P < 0.0001; Figures 5.2A,B, left column).

Days 2-14. During the following 156 training trials, a block at location A forced

the animals to update their topological maps dynamically, and plan a detour to

the goal. The results reported by Tolman & Honzik provided strong evidence

for a preference for the shortest detour path P2. Consistently, we observed a

significantly larger number of transits through P2 compared to P3 (ANOVA, P <

0.0001; Figures 5.2A,B, central column).

Day 15. The simulated protocol included 7 probe trials during which the block A

was removed whereas a block at location B was added. This manipulation aimed

at testing the “insight” working hypothesis: after a first run through the shortest

path P1 and after having encountered the unexpected block B, will animals try P2

(wrong behavior) or will they go directly through P3 (correct behavior)? In agree-

ment with Tolman & Honzik’s findings, simulated animals behaved as predicted

by the insight hypothesis, i.e. they tended to select the longer but effective P3

significantly more often than P2 (ANOVA, P < 0.0001; see Figures 5.2A,B, right

column). The patterns of path selection during this task is explained by the ability

of the model to choose shortest paths. When a block is added into the environment,

the goal propagation signal is also blocked at the level of the column network, and

hence the simulated animals choose the shortest unblocked pathways.

We then tested the robustness of the above behavioral results with respect to

the size of the environment. We considered a 4:1 scaled version of Tolman &

Honzik’s maze and we compared the performances of n = 40 simulated animals

with intactC1, C2 populations (“control” group) against those of n = 40 simulated

animals lacking the C2 cortical population (“no C2” group). The latter group

did not have the multilevel encoding property provided by the C1-C2 recurrent

dynamics, (Sec. 4.4). Figure 5.2C compares the average path selection responses

of the two simulated groups across the different phases of the protocol. During

Day 1 (i.e. no blocks in the maze) both groups selected the shortest path P1

significantly more often (ANOVA, P < 0.0001; Figure 5.2C left). However, the

action selection policy of subjects without C2 began to suffer from mistakes due

to the enlarged environment, as suggested by lower median value corresponding

to P1. During Days 2-14 (with block A), the group without C2 did not succeed in

solving the detour task, because no significant preference was observed between
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P2 (shortest pathway) and P3 (ANOVA, P > 0.001; Figure 5.2C center). By

contrast, control animals coped with the larger environmental size successfully

(i.e. P2 was selected significantly more often than P3, ANOVA, P < 0.0001).

During the probe trials of Day 15 (with a block at B but not at A), the group

without C2 was impaired in discriminating between P2 and P3 (ANOVA, P <

0.6756; Figure 5.2C right), whereas control subjects behaved accordingly to the

insight hypothesis (i.e. they selected the longer but effective P3 significantly more

than P2; ANOVA, P < 0.0001). The better performances of control subjects were

due to the fact that back-propagating the goal signal through the cortical network

benefited from the higher-level representation encoded by the C2 population and

from theC1-C2 interaction during planning (see Sec. 4.5.4, Figure 4.3). Indeed, an

intact C2 population allowed the goal signal to decay with a slower rate compared

to C1, due to the smaller number of intermediate columns in C2 (i.e. planning

could benefit from a more compact topological representation).

5.2.2 Shortcut navigation task

In two set of experiments, we studied the navigation performance of n = 40 an-

imals when solving the shortcut behavioral task (Figure 5.3; see also Sec. 5.1.2

for details on setup and protocol). Simulated animals in both experiments under-

went a training period during which they could explore the pathway P1 only (both

block A and B were present). During a single-trial probe test of the first exper-

iment, simulated animals had the opportunity to take a direct shortcut (pathway

P2 unexplored during training, with no block A) to the goal. Figures 5.3A,B (left

column) show that a significant fraction of simulated rats selected P2 instead of P1

(97.5%, χ2 test: P < 0.0001). The animals of the second experiment were tested

on a single-trial probe test in which the indirect shortcut P3 was made available

by removing block B. A majority of simulated animals selected P3 (95%, χ2 test:

P < 0.0001; Figures 5.3A,B right column). These results are consistent to ex-

perimental findings on shortcut navigation behavior by Chapuis et al. (1983) and

Poucet et al. (1983).
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Figure 5.2: Spatial behavior performance in the Tolman & Honzik’s detour task.

Simulation results. Day 1: left column; Day 2-14: central column; Day 15: right

column. (A) Occupancy grids representing path selection results qualitatively. (B)

Mean path selection rate (averaged over 40 simulated animals) in the 1:1 scale ver-

sion of the maze. Note that similar to Tolman and Honzik (1930a) we ignored P1

in Day 2-14 and Day 15 analyses because blocked. (C) Performance of “control”

vs. “no C2” animals in the 4:1 version of Tolman & Honzik’s maze.
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Figure 5.3: Spatial behavior performance in the shortcut navigation tasks. Sim-
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qualitatively. (B) Mean path selection rates averaged over 40 subjects.
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5.3 Conclusion

We presented a model focusing on navigation planning mediated by a popula-

tion of prefrontal cortical columns. During exploration of a new environment,

the model learns a topological representation in which each place is encoded by a

neocortical column and strengthening of synapses between columns is used to rep-

resent topological links between places. During goal-oriented trajectory planning,

an activation diffusion mechanism produces a spread of activity in the column

population leading to selection of the shortest path to the goal. Our simulation

results demonstrate that the model can reproduce rodent behavior previously at-

tributed to the animals’ ability to experience a cognitive “insight” about the struc-

ture of the environment (Tolman and Honzik, 1930a). Moreover, we show that

spatial planning in our model is invariant with respect to the size of the maze.

This property relies on the ability of the model to encode cognitive maps with a

resolution that fits the structure of the environment (e.g. alleys). Another prop-

erty of the model is its ability to find shortcuts through unexplored portions of the

environment.

How does the cortical column population subserve spatial learning and navi-

gation planning? In the next chapter, we analyse coding properties of the model

neurons and their link with decision making, in relation with experimental data.
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Chapter 6

From neural activities to functional

responses

We analyzed the activity patterns of simulated neurons in relationship to electro-

physiological data. This study aimed at elucidating the link between cell activity

and behavior and it stressed the importance of relating the time course profile of

single cell discharges to decision-related behavioral responses. This was done

by: (i) characterizing the spatial selectivity properties of single cell types; (ii)

comparing the density —and other correlated measures such as sparseness and

redundancy— of the spatial population codes learned by simulated animals (we

recall that one of the aims of the cortical column model was to build spatial codes

less redundant than hippocampal place field representations); (iii) differentiating

the coding properties of purely reward-related neurons (q and v populations) vs.

purely spatial units (s population); (iv) quantifying and comparing the reliability

of neural spatial representations (both at level of single cell and population code)

in terms of information content —i.e. how much can we infer about either the

animal’s position or a particular phase of the task by observing neural responses

only?

Besides relating our simulation results to literature experimental data, we stud-

ied the consistency between model neural responses and a set of PFC electrophysi-

ological recordings from navigating rats. In these experiments —carried out at S.I.

Wiener’s laboratory; see detailed methods in Peyrache et al. (2009); Benchenane

et al. (2010)— extracellular recordings were performed from medial PFC pyrami-

dal cells of Long-Evans rats solving a spatial memory task. The analysis presented
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here investigated whether the coding properties of all types of neurons in the cor-

tical network model could actually be observed in the PFC during spatial learning.

6.1 Methods

In order to quantify spatial-related correlates of neural activity, the continuous

two-dimensional input space was discretized by a grid of 5 x 5 cm square regions

(pixels). Let S denote the set of stimuli, i.e. the set of locations s visited by the

simulated animal while solving the task.

Place field area. For each neuron, the mean firing rate associated to each pixel

s was computed by dividing the spike count associated to s by the time spent by

animal in s. The size of a receptive (place) field was then taken as the number of

adjacent pixels with a firing rate above the grand mean rate —i.e. total spike count

divided by the total time spent moving in the maze— plus the standard deviation

(similarly to Muller et al., 1987; Hok et al., 2005).

Spatial density of receptive fields. To assess the redundancy level of a spatial

code —i.e. the average number of units encoding a spatial location s ∈ S— the

following density measure was used:

DS =

〈

∑

j∈J

H
(

rj(s)− η
)

〉

s∈S

(6.1)

where rj(s) is the response of a neuron j ∈ J when the animal is visiting the

location s ∈ S, η denotes the noise level activity, and H is the Heaviside function.

Sparseness and shape of the spatial code. The kurtosis function —i.e. the

normalized fourth central moment of a probability distribution and estimates its

degree of peakedness— was applied to quantify the sparseness across the neural

population and across time (for single neurons) (Willmore and Tolhurst, 2001).

Population kurtosis:

KP (s) =

〈

[

rj(s)− r̄J(s)

σJ(s)

]4
〉

j∈J

− 3 (6.2)
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with r̄J(s) and σJ(s) representing the mean and the standard deviation of the

population activity distribution for a given stimulus s, respectively, was used to

estimate how many neurons j in a population J were, on average, simultaneously

responding to a stimulus s.

Single cell lifetime kurtosis:

KL(j) =

〈

[

rj(s)− r̄j

σj

]4
〉

s∈S

− 3 (6.3)

with r̄j and σj being the mean and the standard deviation of the cell response rj

to the set of stimuli S, respectively, was employed to assess how rarely over time

a neuron j responded to stimuli S.

Single cell skewness: In order to quantify the degree of asymmetry of spatial

receptive fields, we used the skewness measure, defined as the third moment of

the place field firing rate distribution (Mehta, 2000). Given a random variable Xj

with N samples whose distribution matches the shape of the receptive field of the

cell j, the skewness Sk(j) is:

Sk(j) =

〈

[

Xj(i)− X̄j

σXj

]3
〉

i∈N

(6.4)

Spatial information content of the spatial code. An information theoretical

analysis quantified how much information the neural responses r ∈ R conveyed

about spatial locations s ∈ S. Shannon mutual information I(R;S) (Shannon,

1948; Bialek et al., 1991) between neural responses R and spatial locations S was

computed:

I(R;S) =
∑

s∈S

p(s)
∑

r∈R

p(r|s) · log2

(

p(r|s)

p(r)

)

=
∑

s∈S

p(s) · I(R; s) (6.5)

where p(r|s) indicates the conditional probability of recording a response r while

having the simulated rat visiting a region s; p(s) the a priori probability computed

as the ratio between time spent at place s and the total time; p(r) =
∑

s∈S p(s) ·

p(r|s) the marginal probability of observing a neural response r; and I(R; s) is

the stimulus-specific surprise (DeWeese and Meister, 1999; Bezzi et al., 2001).

The continuous output space of a neuron R = [0, 1] was discretized via a binning
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procedure (bin-width equal to 0.1). A correcting term C was subtracted to mutual

information to limit the sampling bias (Panzeri and Treves, 1996):

C =

∑

sR
+
s −R+ − (|S| − 1)

2N ln(2)
(6.6)

where R+
s =

∑

r∈RH(p(r|s)) denotes the number of response bins in which the

occupancy probability p(r|s) > 0; R+ =
∑

r∈RH(p(r)) denotes the number of

response bins where p(r) > 0; |S| is the number of stimuli; N is the number of

stimulus-response pairs (s, r).

While the kurtosis measures the shape of a response distribution, the mu-

tual information quantifies the reliability of the neural spatial representation in

terms of decoding efficacy. Mutual information was computed considering both

the responses of single units j, Ij(R;S), and the neural population responses,

Ipop(R;S). The ratio:

I∗(R;S) =
Ipop(R;S)

∑

j∈J Ij(R;S)
(6.7)

was used to measure the “information sparseness” of a population code, or, con-

versely, the redundancy level of the spatial information content of a neural code.

Finally, for a given neuron j, the Pearson correlation coefficient PC(j) be-

tween the firing rate rj and the stimulus-specific surprise Ij(R; s), was computed

to measure the degree of localization of the spatial code (Bezzi et al., 2001):

PC(j) =

〈(

Ij(R; s)− Īj
)

· (rj(s)− r̄j)
〉

s∈S

σIj · σj
(6.8)

with Īj and σIj being, respectively, the mean and the standard deviation of the

stimulus-specific surprise of neuron j for the set of stimuli S.

Mutual information measures the mean information content over the whole

environment, but it does not quantifies the specificity of the neuronal discharges.

Thus, we employed an additional measure, namely the information per spike Ispike

(Skaggs et al., 1993) defined for a neuron j as:

Ispike(j) =
∑

s∈S

rj(s)

r̄j
· log2

(

rj(s)

r̄j

)

· p(s) (6.9)

Behavioral relevance of neural responses. We estimated the mutual information

It(R;F ) between task-related information (the phase f ∈ F of the protocol, e.g.
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“Day 1”, “Day 2-14” or “Day 15” period) and the firing activity r ∈ R of a given

neural population:

It(R;F ) =
∑

f∈F

∑

r∈R

p(r, f) log2

(

p(r, f)

p(r) p(f)

)

(6.10)

where p(r, f) is the joint probability of observing a population response r when

solving the phase f of the protocol; p(f) indicates the a priori probability com-

puted as the ratio between the length of phase f and the total length of the pro-

tocol; and p(r) =
∑

f∈F p(r, f) is the marginal probability of observing the re-

sponse r ∈ R.

6.2 Results

Here we demonstrate how the modeled neural processes can be interpreted as ele-

ments of a functional network mediating spatial learning and decision making. We

show that the neural activity patterns of all types of neurons in the cortical model

are biologically plausible in the light of PFC electrophysiological data (Watanabe,

1996; Jung et al., 1998; Rainer et al., 1999; Tremblay and Schultz, 1999; Miller

and Cohen, 2001; Averbeck et al., 2002; Mulder et al., 2003; Hok et al., 2005;

Peyrache et al., 2009; Benchenane et al., 2010).

6.2.1 Single cell and population place codes

Analysis of single cell receptive fields

To understand how single neurons took part to place coding, we compared the

location-selective activities of two types of units of the model: hippocampal place

(HP ) cells and cortical neurons s ∈ C1, C2 (Figure 4.1). We analyzed their

discharge patterns while simulated animals were solving the 4:1 version of the

Tolman & Honzik’s task. Figure 6.1A displays some samples of receptive fields

recorded from each of these populations. The representation encoded by units

s ∈ C1 was in register with the place field organization of HP cells (left and cen-

ter panels), whereas the activity of neurons s ∈ C2 (right panel) captured some

structural properties of the environment (i.e. alley organization). As quantified

on Figure 6.1B, the mean size of place fields increased significantly as spatial in-

formation was subsequently processed by HP , C1 and C2 populations (ANOVA,
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P < 0.0001; see also Figure 6.3A for results based on a kurtosis analysis). These

findings are consistent to experimental data on the sizes of receptive fields of hip-

pocampal and PFC cells recorded from rats solving a navigational task (Hok et al.,

2005).

We also characterized the multistage spatial processing of the model in terms

of Shannon mutual information between single unit responses and spatial loca-

tions. As shown on Figure 6.1C, the activity of neurons s ∈ C2 encoded, on

average, the largest amount of spatial information, followed by neurons s ∈ C1

and HP cells (ANOVA, P < 0.0001). This relationship was due the fact that the

smaller the receptive field is, the larger is the region of the input space for which a

neuron remained silent, and then the lesser can be inferred about the entire input

set by observing the variability of the neuron discharge. This result was based on

the computation of the total amount of information, averaged over all positions.

Other authors characterized the spatial locations where cells are most informative,

such as the spatial coherence, which estimates the local smoothness of receptive

fields (Hok et al., 2005), or the local information, which is a well-behaved mea-

sure of a location-specific information (Skaggs et al., 1993; Bezzi et al., 2001).

We also compared the location-selective responses of single neurons s ∈ C1

with the discharge patterns of pyramidal cells recorded from the medial PFC of

navigating rats (see Materials and Methods Sec. 6.1). Figure 6.1D shows three

examples of experimental (top) and simulated (bottom) receptive fields evenly

distributed on a linear alley. Real and simulated patterns are consistent to each

other in terms of both shape and signal-to-noise ratio of the response profiles.

These results corroborated the hypothesis that purely location-selective neurons s

of the model might find their biological counterpart in real PFC populations.

Analysis of population place coding properties

As aforementioned, we modeled the interplay between hippocampus and PFC to

produce compact space codes suitable to support navigation planning. Figure 6.2

shows how the implemented multistage processing (including the C1-C2 recur-

rent dynamics) provided a progressive sparsification of the population place code.

Figure 6.2A qualitatively compares three examples of distributions of receptive

field centers of HP and s ∈ C1, C2 neural populations (left, center and right, re-

spectively). Consistently to experimental findings reported by Jung et al. (1998),
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Figure 6.1: Single cell response analysis. Simulation results and relation to elec-

trophysiological PFC recordings. (A) Examples of receptive fields of model hip-

pocampal place (HP) cells (left), cortical neurons s in C1 (center) and s in C2

(right) when the simulated animals were solving the 4:1 version of Tolman &

Honzik’s maze. White regions denote large firing rates whereas black regions

correspond to silent activity. (B) Mean size of the receptive fields for each neu-

ral population, measured in pixels (i.e. 5 x 5 cm square regions). (C) Mutual

information between single unit responses and spatial input for each population.

(D) Location-selective responses of model single neurons s ∈ C1 functions of the

normalized distance traveled along a section of the linearized trajectory P3 (top

row) and medial PFC pyramidal cells recorded from navigating rats (bottom row).
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our simulated cortical units produced less redundant place representations than

HP cells. The size of neural populations encoding the Tolman & Honzik’s maze

decreased significantly from HP to C1 and then to C2 (ANOVA, P < 0.0001;

Figure 6.2B). The sparser nature of cortical place codes was confirmed by the sig-

nificant difference between spatial densities of receptive fields (Figure 6.2C; see

also Figures 6.3B,C for the results of population kurtosis and information sparse-

ness analyses, respectively).

Finally, we measured the Shannon mutual information between population

response patterns and spatial locations. The highly redundant HP code had the

largest spatial information content (ANOVA, P < 0.0001; Figure 6.2D). Yet,

although less redundant, the population of neurons s ∈ C1 encoded about 85% of

the theoretical upper bound, which proved to be suitable for solving the behavioral

tasks. A significant loss of information content was observed for the population

code implemented by neurons s ∈ C2. This is consistent with the functional role

of theC2 cortical network, which could not support navigation planning alone, but

it rather complemented the C1 representation by encoding higher level features of

the environment.

6.2.2 Goal distance coding

Besides the spatial correlates of s neurons’ activity, the model cortical represen-

tation encoded reward-dependent information. Figure 6.4A shows the correlation

between the firing rate of units v ∈ C1 and the shortest distance-to-goal. The

diagram shows that, given a location in the maze, the smaller the length of the

shortest goal-directed pathway was, the larger was the mean discharge of the v

neuron belonging to the column corresponding to that location. This property

was relevant to the decision making process determining the spatial navigation

behavior reported in Sec. 5.2. When the exponentially decaying frequency of

v units reached the basal neural noise level, the action selection policy reduced

to random search (see the performance of “no C2” simulated animals on Fig-

ure 5.2C, central and right panels). The distance-to-goal coding property of v

neurons called upon their selective responses in the frequency domain. The popu-

lation spectral power of Figure 6.4B (top) demonstrates that each neuron vi ∈ C1

had a unique preferred discharge frequency fi correlated to its distance-to-goal

(Fig. 6.4A). Preferred frequencies fi were uniformly distributed over the normal-
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Figure 6.2: Population place coding analysis. Simulation results. (A) Examples of

distributions of place field centroids for the populations of model HP cells (left),

cortical neurons s in C1 (center) and s in C2 (right), when simulated rats were

solving the 1:1 version of Tolman & Honzik’s maze. (B) Mean number of active

neurones (average over 40 animals) when learning the 4:1 Tolman & Honzik’s

maze (left). Evolution of the number of active neurons during the first 12 trials, i.e.

Day 1 (right). (C) Mean spatial density (averaged over 40 animals) of receptive

fields for each neural population. (D) Mutual information between population

responses and spatial input states.
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Figure 6.3: Additional measures of the location selectivity property of neurons

s in C1 and neurons s in C2. (A) Left: sparseness of single cell responses as

measured by their lifetime kurtosis. The larger the kurtosis is, the larger is the

sparseness. Right: the size of the receptive field (see Fig. 6.1B) is anti-correlated

to the lifetime kurtosis measure. (B) Left: sparseness of the population place code

as measured by the population kurtosis function. Right: the density of receptive

fields (see Fig. 6.2C) is anti-correlated to the population kurtosis measure. (C) The

spatial information sparseness –computed as the ratio between population infor-

mation and the sum of single cell information– demonstrates that the hippocampal

place code is redundant in terms of spatial information content. By contrast, al-

though loosing part of the spatial information, the cortical population achieves a

better coding, maximizing the contribution of each unit to the population code,

particularly for the C2 population. (D) Spatial information Pearson correlation.

Expectedly, the way spatial information is encoded by neurons firing rates is not

different between the three populations: they all have their surprise information

strongly correlated with the strength of the discharge activity.

- 106 -



6.2. RESULTS

ized range [0, 1]. Interestingly, when we analyzed the activity of PFC pyramidal

cells recorded from navigating rats (see Sec. 6.1) we found a subset of neurons

with no spatial correlate but with evenly distributed preferred discharge frequen-

cies (see Figure 6.4B, bottom, for few examples). To summarize, in contrast to

location-selective neurons s of the model, the activity of neurons v had character-

istic discharge frequencies and encoded distance-to-reward information. During

planning (i.e. the “mental” evaluation of multiple navigation trajectories), this

property of v neurons allowed the value of each state to be assessed with respect

to its relevance to goal-oriented behavior, consistently with PFC recordings show-

ing reward-dependent activity patterns (Watanabe, 1996; Tremblay and Schultz,

1999).

Figure 6.4C shows how the activity of neuron v belonging to the column as-

sociated to the first intersection of Tolman’s maze changed according to the task

(phase of the protocol). Recall that the activity of neuron v was anticorrelated to

the shortest distance to the goal among available pathways (Figure 6.4A). Thus,

when at the end of Day 1 (i.e. Trial 12) the system learned to select the shortest

path P1 (no block was present in the maze), neuron v exhibited the largest firing

rate. When path P1 was blocked (e.g. Day 14 Trial 12), the length of the shortest

available pathway (i.e. P2) increased, as indicated by the lower discharge rate of v.

Finally, the distance to the goal was the largest when both P1 and P2 were blocked

(e.g. Day 15 Trial 7). Consequently, the weakest activity of v corresponded to the

available path P3. In order to quantify this coding property, we measured the mu-

tual information It between the phases of the task and the discharge patterns of

neurons v (we took neurons s as a control population). As shown in the inset of

Fig. 6.4C, v neurons (unlike s neurons) provided a significant account of abstract

task-related information, meaning that the phase of the protocol could be decoded

reliably by observing the time course of their discharge patterns.

6.2.3 Coding of action-reward contingency changes

We studied how the activity of neurons q and d of the model contributed to

decision-making. Recall that, after learning, each cortical minicolumn (q, d) ∈

C1,2 encoded a specific state-action pair (s, a). The analysis reported on Figure 6.5

shows the time course of the firing rate of units q, d belonging to the column cod-

ing for the first intersection of Tolman & Honzik’s maze. Figures 6.5 A,B,C focus
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Figure 6.4: Coding of distance-to-goal and task-related information. Simulation

results and relation to experimental PFC recordings. (A) Relation between the

shortest distance of a place to the goal and the firing rate of the neuron v in C1

belonging to the column representing that location. Each cross corresponds to one

neuron v. Beyond a certain distance, the intensity of the back-propagated goal

signal reaches the noise level. As a consequence, neurons v discharges become

uncorrelated with the distance to the goal, and random decisions are made. (B)

Frequency-selective responses of model single neurons v ∈ C1 (top row) and

of medial PFC pyramidal cells recorded from navigating rats (bottom row). (C)

Relation between task-related information (Day 1 Trial 12: end of “no block”

phase, Day 14 Trial 12: end of “block A” phase and Day 15 Trial 7: end of

“block B” phase) and firing rate of the neuron v in C1 belonging to the column

representing the first intersection point. Inset: mutual information between the

phase of the task and single unit responses of s in C1 vs. v in C1.
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on the action selection process taking place at the beginning of Trial 1, Day 2 of

training (i.e. with block A). During the outward journey, the simulated animal ar-

rived at the intersection point at t ≃ 4 s. Due to the policy learned during Day 1 of

training (i.e. without any block in the maze), at t ≃ 4 s the unit q1 of the minicol-

umn associated to the action leading to P1 discharged with the largest firing rate,

followed by unit q2 of the minicolumn associated to P2, and finally by q3 related

to P3 (Figure 6.5B). Thus, corresponding neurons d1,2,3, which combined inputs

from q1,2,3, respectively, with the location-selective activities of neurons s of the

same column, discharged according to the same ranking at t ≃ 4 s (Figure 6.5C).

As a consequence, the action driven by d1 was selected and the simulated animal

proceeded along P1. However, when block A was encountered at t ≃ 5s, the

model updated the topological representation (see Sec. 4.5.3), which resulted in a

change of action-reward contingencies (with q1 firing rate dropping below that of

q2, meaning that the action leading to P2 from the intersection point was now bet-

ter scored, Figure 6.5B). This activity update is consistent with findings showing

sustained discharge changes highly sensitive to a switch in reward contingencies

(Mulder et al., 2003; Rich and Shapiro, 2009). Thus, when during the backward

journey the animal met again the intersection point (at t ≃ 7 s), neuron d2 dis-

charged with the largest frequency (Figure 6.5A, bottom) leading to the selection

of P2.

Similarly, the analysis reported on Figures 6.5 D,E,F shows how the time

course of the relative strengths of the activities of neurons q1,2,3 and d1,2,3 de-

termined action selection at the beginning of the probe test, Trial 1, Day 15 (with

block A removed and block B inserted). Notice the increased q1 firing frequency

at t ≃ 6 s reflecting the re-discovery of the transition blocked at A during Days

2-14 of training.

6.2.4 Coding of prospective place sequences

After a local decision was made (based on the competition between d neurons’

discharges), collateral projections wpd (Figures 4.1B and 4.3A) enabled the cor-

tical network to forward propagate the selected state-action sequence. Figure 6.6

shows how the time course of p neurons’ firing patterns subserved this propagation

process. First, we analyzed the receptive fields of p units as the simulated animal

proceeded from the starting position towards the goal. Figure 6.6A compares the
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Figure 6.5: Time course analysis of action-reward contingency changes. Simula-

tion results. Left column: Day 2 Trial 1 with block at A. Right column: Day 15

Trial 1 with block at B. (A, D) Examples of trajectories performed by simulated

animals when encountering either block A or block B (distinct colors illustrate

distinct actions). (B, E) Time course profile of firing rates of three neurons q1, q2

and q3 belonging to the column encoding the first intersection (and, in particular,

to the minicolumns representing the actions a1, a2 and a3, respectively). Verti-

cal dotted lines indicate decision-making events (according to colored arrows at

the bottom). (C, F) Time course profile of neural activity of three neurons d1,

d2 and d3 belonging to the column representing the first intersection and to the

minicolumns representing the actions a1, a2 and a3, respectively.
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activity profiles of neurons p and s belonging to the same columns (four different

columns are considered in this example). In contrast to the symmetrical receptive

fields of neurons s (see also Figure 6.1), all neurons p had asymmetric response

profiles with negative skews (i.e. with the left tail of the distribution longer than

the right tail). The skewness of these neural responses increased quasi-linearly

with the number of synaptic relays forming a mentally planned trajectory (Fig-

ure 6.6A, top-right inset). When we analyzed PFC data recordings from navigat-

ing rats (see Materials and Methods, Sec. 6.1), we also found a subset of neurons

with asymmetric tuning curves, whose negative skewness seemed to be correlated

to the distance traveled by the animal (Figure 6.6B).

Another difference between neurons p and s of the model was that the peak

discharge frequency of neurons s did not have any significant modulation, whereas

all neurons p had mean peak firing rates positively correlated to the distance trav-

eled towards the goal (Figure 6.6A). Accordingly, Jung et al. (1998) provided

experimental evidence for increased neuronal firing rates during the approach to

a reward. Finally, an important property of neurons p of the model is that their

discharge tended to temporally anticipate the activity of neurons s (Figure 6.6A).

In other words, p neurons encoded prospective place information predicting the

next state visited by the animal. A cross-correlogram analysis showed that p neu-

rons’ activity anticipated the discharge of s neurons by a mean time delay τ ≃ 1.6

s, std=±0.6 s (given a constant velocity of ≃ 15 cm/s). The prospective coding

property of neurons p is consistent with experimental findings on PFC recordings

reported by Rainer et al. (1999).

We further studied the predicting nature of p neurons’ activity in relationship

to experimental data on neural encoding of the serial order of planned sequences

before the action begins (Averbeck et al., 2002). In their experiment, Averbeck

et al. (2002) performed simultaneous recordings of PFC single cell activities from

monkeys drawing sequences of lines (i.e. segments forming abstract shapes).

Each segment was associated to a distinct pattern of neural activity, and the rela-

tive strength of these patterns prior the actual drawing was shown to predict the

serial order of the sequence of segments actually drawn by monkeys (Figure 6.6C

left). Consistently, we found that the ranking of the discharge frequencies of p

neurons before the actual execution of a planned trajectory was a good predictor

of the serial order of the states to be visited by the simulated animal (Figure 6.6C
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right). This relationship not only held at time t = 0 (i.e. at the very beginning of

a trajectory), but for every time t, meaning that the ranking of p neurons’ firing

rates could predict the order of future state sequences at any moment.

6.2.5 Comparative analysis between model and experimental

prefrontal population activity patterns

We studied to what extent the neural populations of the model (i.e. s, v, p, q and

d neurons) could be quantitatively segregated on the basis of a set of statistical

measures. We then compared the results to those obtained by applying the same

clustering analysis to a population of neurons recorded from the medial PFC of

navigating rats (see Materials and Methods Sec. 6.1).

We first gathered all non-silent simulated neurons recorded during the 4:1 ver-

sion of Tolman & Honzik’s task. All types of units (i.e. s, v, p, q, d) were pulled

together in a data set. We characterized each neuron’s discharge by measuring

its mean firing rate, standard deviation, skewness, lifetime kurtosis, spatial infor-

mation per spike and spatial mutual information. Then, we performed a principal

component analysis (PCA) on the multidimensional space containing the values

provided by these measures per each neuron (see Fig. 6.11A for details). Fig-

ure 6.7A shows the resulting data distribution in the space defined by the first

three principal components. Interestingly, model neurons with different functional

roles tended to occupy distinct regions of the PCA space. For instance, neurons

v, q ∈ C1, C2, whose function in the model is to propagate goal information and

code for the distance to the goal, were located within the same portion of the PCA

space (blue and cyan crosses and circles). All neurons s ∈ C1, which primarily

code for spatial locations, were also clustered within the PCA space (red crosses).

Neurons p, d ∈ C1 (and also p ∈ C2), responsible for forward signal propagation

and local decision making, respectively, were aggregated within the same region

(gray and black crosses, and black circles). Finally, neurons s, d ∈ C2, mainly in-

volved in high-level mapping and navigation planning, were also separated from

other units in PCA space (gray and red circles).

Figures 6.7B, C, D display the mean values, averaged over each population

s, d, p, q, v ∈ C1, C2 of the model, of three statistical measures (out of six) used to

perform the PCA. These diagrams can help understanding the data point distribu-

tion of Figure 6.7A. When considering the mean spatial information per spike
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Figure 6.6: Coding of prospective place sequences. Simulation results and rela-

tion to experimental PFC recordings. (A) Comparison of time course shapes of

the responses of four pairs of neurons si and pi belonging to the same column

(i = 1 · · · 4). Inset: correlation between the position of a given column within a

planned path (measured as the path length from the starting column to that given

column) and the skewness of the time course profile of its neuron p activity (black

crosses) or its neuron s activity (gray dots). (B) Asymmetric responses of model

single neurons p ∈ C1 (top row) and of pyramidal cells recorded from the PFC of

navigating rats (bottom row). (C) Sequence order coding carried out by a popula-

tion of monkey PFC neurons (left; data courtesy of Averbeck et al. 2002, copyright

c© by the National Academy of Sciences). Each curve denotes the strength of the

neural activity encoding a specific segment of a planned drawing sequence (the

peak of each curve corresponds to the time when the segment is actually being

drawn). Similarly, a sequence order coding property was observed when record-

ing neurons p in C1 of the model (right). Each curve measures the activity of a

neuron p belonging to a planned trajectory. The peaks of activity represent the

times when places are actually visited.
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(Fig. 6.7B), at least three groups could be observed: neurons whose activity

had nearly no spatial correlate (q, v ∈ C1, C2), neurons conveying intermediate

amounts of spatial information (s, d, p ∈ C1 and p ∈ C2), and neurons with larger

spatial information values (s, d ∈ C2). The mean firing rate parameter (Fig. 6.7C)

allowed two distinct groups to be clearly identified: one with low average firing

(neurons s, p, d ∈ C1, C2), and one with high firing rates (neurons q, v ∈ C1, C2).

Together with Figure 6.7A, this diagram can help understanding why neurons

q, v ∈ C1, C2, which had almost no spatial correlate and very high firing rates

compared to other populations of the model, were well segregated within the same

region of the PCA space (Fig. 6.7A, blue and cyan crosses and circles). Finally,

when comparing the mean skewness values of all neural populations (Fig. 6.7D),

neurons d, p ∈ C1 and p ∈ C2 were pulled apart, according to their distribution in

the PCA space (Fig. 6.7A, gray and black crosses, and black circles). As a control

analysis, we extended the data set used for the PCA by adding a population of

neurons with random Poisson activities. As shown in supplementary Fig. 6.8, the

population of Poisson neurons (light green data points) was well separated from

all model neurons within the space defined by the first three principal components,

suggesting that the variability of model discharge properties could not be merely

explained by a random Poisson-like process.

We then applied an unsupervised clustering algorithm (k-means clustering

method with k = 3) to partition the distribution of data points of Figure 6.7A,

based on the discharge characteristics of model neurons. This blind cluster-

ing analysis (i.e. without any a priori knowledge on neural populations) al-

lowed us to identify three main groups (Fig. 6.9A). The first cluster (blue data

points) corresponded to non-spatial, reward-related neuronal activities (i.e. neu-

rons q, v ∈ C1, C2). The second cluster (green points) represented location-

selective activity (mainly from neurons s, p, d ∈ C1, but also including some

neurons p ∈ C2). The third cluster (red data points) corresponded to location-

selective activity of neurons in the cortical network C2 (i.e. mainly s, d, p ∈ C2).

See supplementary Figure 6.10 for details on the composition of the three identi-

fied clusters.

We performed the same series of analyses on a dataset of medial PFC neurons

recorded from navigating rats (see Materials and Methods, Sec. 6.1). We charac-

terized every recorded activity according to the same set of statistical measures
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Figure 6.7: Principal component analysis of simulated neuronal activities. (A)

Simulated neurons represented within the space defined by the first three prin-

cipal components. (B) Spatial information per spike averaged over each neural

population of the model. (C) Mean firing rate averaged over each neural popula-

tion. (D) Mean absolute skewness average over each population. The color code

is the same used in (A).
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Comparison between model and random population actvities. Two different views

of the same three-dimensional PCA space are shown (A and B, respectively). The

size of the original data set used for the analysis reported on Figure 10 was dou-

bled by adding a population of Poisson neurons. The distribution of the mean

firing rates over the original data set was fitted by the distribution of the mean

firing rates computed over the population of Poisson neurons.
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used for model neurons (i.e. mean firing rate, standard deviation, skewness, life-

time kurtosis, spatial information per spike and spatial mutual information). Then,

we applied a PCA on the resulting high dimensional space containing, per each

neuron, the resulting values of these measures (see Fig. 6.11B for details). Fi-

nally, we used the same unsupervised k-mean clustering algorithm to partition the

data distribution in the space defined by the first three principal components. As

for simulated data, the clustering method identified three main classes (Fig. 6.9;

with red, green, and blue data points corresponding to three subsets of electro-

physiologically recorded activities in the PFC). We then compared model and

experimental clusters (Figs. 6.9C, D, E) in order to investigate whether real and

simulated data points belonging to the same clusters shared some discharge char-

acteristics. In terms of mean spatial information (Figs. 6.9C), we found similar

non-homogeneous distributions between model and real clusters. Both red clus-

ters encoded the largest spatial information content. Recall that the model red

cluster mainly contained activities from location-selective neurons s, d, p ∈ C2

(as quantified in supplementary Figure 6.10B). When looking at mean firing rates

averaged over each cluster (Figs. 6.9D), we found that both real and simulated

activities within the blue clusters had significantly larger frequencies than others.

The model blue cluster was mainly composed by neurons v, q ∈ C1, C2 propa-

gating reward-related information. Finally, when comparing the mean absolute

values of the skewness of receptive fields (Figs. 6.9E), we found both model and

experimental populations with asymetric fields (i.e. non-zero skewness). Model-

wise, the red and green clusters (containing neurons d, p ∈ C1, C2, Figure 6.10B)

had the largest mean skewness. Similarly, experimental red and green subpopula-

tions had larger skewness values than the blue population. Taken together, these

results indicated that, within the data set of experimental PFC recordings, subpop-

ulations of neurons existed with distinct discharge properties, and that these sub-

populations might be related to distinct functional groups predicted by the model.

6.3 Conclusion

On the neural level, we characterized the activities of model neurons and com-

pared them to electrophysiological data from real PFC neurons. Our neural re-

sponse analysis suggests how the interplay between the model hippocampus and
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Figure 6.9: Principal component analysis and unsupervised clustering of simu-

lated and real neuronal activities. (A) Clustering of model activities within the

PCA space. The same color scheme (used to discriminate clusters) is applied

throughout the entire figure. (B) Blind clustering of real PFC recordings repre-

sented in the three first principal components space. (C, D, E) Mean information

per spike, firing rate and skewness for real vs. model subpopulations (i.e. clus-

ters).
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the prefrontal cortex can yield to the encoding of manifold information pertinent to

the spatial planning function, including, for example, distance-to-goal correlates.

The model also provides a functional framework for interpreting the activity of

prefrontal units observed during performance of spatial memory tasks (Watanabe,

1996; Jung et al., 1998; Tremblay and Schultz, 1999; Rainer et al., 1999; Averbeck

et al., 2002; Mulder et al., 2003; Hok et al., 2005; Benchenane et al., 2010). In

general, our results are consistent with the hypothesis that cognitive control stems

from the active maintenance of patterns of activity in the PFC that represent goals

and means to achieve them (Miller and Cohen, 2001).

The next chapter provides a short descriptions theoretical models adressing

navigation planning in the prefrontal cortex.
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Related works

Computational modeling studies have covered many high level functions related

to the PFC, from the gating of information to the working memory, to the mech-

anisms subserving sustained activation of PFC neurons, to decision making and

planning (O’Reilly et al., 2010). Here we focus on models of the neocortex (in-

cluding the PFC) addressing navigation planning.

7.1 Main models

Topological map learning and path planning have been extensively studied in

biomimetic models (see Meyer and Filliat, 2003 for a general review; see also

Schmajuk and Voicu, 2006 for theoretical discussions on hierarchical cognitive

maps). In particular, several studies took inspiration from the anatomical orga-

nization of the cortex and implement planning thanks to an activation-diffusion

(or spreading activation) mechanism which is a neural implementation of a sim-

ple breadth-first graph search mechanism (Lei, 1990; Mataric, 1992). Burnod

(1988) proposed one of the first models of the cortical column architecture, called

“cortical automaton”. He also described a “call tree” process that can be seen

as a neuromimetic implementation of the activation-diffusion principle. Some

subsequent studies employed the cortical automaton concept (Bieszczad, 1994;

Frezza-Buet and Alexandre, 1999), while others used either connectionist archi-

tectures (Lieblich and Arbib, 1982; Schmajuk and Thieme, 1992; Muller et al.,

1996; Franz et al., 1998; Dehaene and Changeux, 1997; Voicu, 2003; Banquet

et al., 2005) or Markov decision processes (Fleuret and Brunet, 2000).
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7.2 Comparison with Hasselmo’s model (2005)

Our approach is similar to that of Hasselmo (2005), who also addressed goal-

directed behavior by modeling the PFC columnar structure. Both Hasselmo’s and

our model architectures employ minicolumns as basic computational units to rep-

resent locations and actions, to propagate reward-dependent signals, and mediate

decision making. Yet, the two models differ in the encoding principles underlying

the learned representations, which generate, consequently, distinct behavioral re-

sponses. In contrast to the topological (actually hybrid topological-metrical) maps

established by our model, Hasselmo’s model builds representations that are closer

to goal-directed route-based maps (i.e. two intersecting routes will not necessar-

ily be merged into a common representation; Trullier et al. 1997). Moreover, the

connectivity layout of Hasselmo’s model permits the encoding of state-response-

state chains provided the presence of a reward signal, whereas our model allows

unreinforced (i.e. latent) spatial learning to occur (Tolman and Honzik, 1930b;

Tolman, 1948; O’Keefe and Nadel, 1978; Gaskin and White, 2007). Within the

reinforcement learning framework (Sutton and Barto, 1998), Hasselmo (2005)’s

model could be understood in terms of model-free temporal-difference learning,

whereas the model presented here would be closer to model-based reinforcement

learning principles, proposed to occur in the PFC (Daw et al., 2005). Finally, in

contrast to Hasselmo (2005)’s work and as explained henceforth, we focus on the

functional relationship between the hippocampus and the PFC in encoding com-

plementary aspects of spatial memory with more emphasis on the time course

analysis of neural responses mediating place coding vs. decision making.

To test his model, Hasselmo uses a discrete squared maze. The agent’s task

consists in reaching a goal thanks to its representation of the environment encoded

with its minicolumns. Both start and goal locations are fixed. Fig. 7.1 shows the

results of both models on 3x3 and 9x9 square maze. Whereas they exhibit almost

the same behaviour in the 3x3 maze, the results obtained in the 9x9 maze show

that the model of Hasselmo triggers less efficient path than ours and thus reaches

the goal a significantly lower number of times. This can be explained by the route-

like navigation provided by Hasselmo’s model (see Fig. 7.1 for a simple example),

which is highly dependent of the exploration performed by the agent.
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Figure 7.1: Comparison of behavioural responses of the model by Hasselmo

(2005) and our model. (A) Results on a 3x3 square maze (Hasselmo, 2005). S =

starting location; G = goal location. Black bars = Hasselmo (2005)’s model. Gray

bars = our model. (B) Results on a 9x9 square maze. Statistics were computed

on n=50 trials, each lasting 2000 time steps. (C) A simple example showing the

difference between a route-based map (Hasselmo, 2005) vs. a topological map

(our model). In Hasselmo’s model, the subparts of the route going from S to G are

not merged. More precisely, the chains made of transitions 1-2 and 5-6 are not in-

tegrated to form the new 1-6 chain. This is only achieved in a topological learning

system like ours. As a consequence, the back-propagating signal in Hasselmo’s

model will trigger the selection of the long route (3-4-5-6), which is suboptimal.
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7.3 Conclusion

Several models have been proposed to address spatial planning. Some of them

pointed out a role for the hippocampus whereas other models were suggesting a

main contribution from the prefrontal cortex. However, to the best of our knowl-

edge, none of these latter models took inspiration from the columnar organization

of the PFC to relate neuronal discharges to the behavior. The model of (Hasselmo,

2005) is based on a network of minicolumns, but does not plan sequences of ac-

tions as we defined. Thus the model presented in the previous chapters is a new

approach to explain planning abilities of rodents, in relation with PFC neuronal

activities.

The next chapter will be the final conclusion. It discusses the overall results

of the model and summarizes the contributions and possible future developments

of this thesis.
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Chapter 8

General discussion

At the beginning of this dissertation we established two main goals of this thesis

work: (i) understanding and modeling neural mechanisms underlying biological

spatial navigation planning; and (ii) inferring links between electrophysiological

discharges recorded in the brain and behavior of the model. In this chapter, we

discuss the achievements of this work. We also discuss our future direction of

research.

8.1 Contributions

We presented a model focusing on navigation planning, mediated by a population

of prefrontal cortical columns. Our simulation results demonstrate that the model

can reproduce rodent behavior previously attributed to the animals’ ability to ex-

perience a cognitive “insight” about the structure of the environment (Tolman and

Honzik, 1930a), invariantly with respect to the size of the maze. This property

relies on the ability of the model to encode cognitive maps with a resolution that

fits the structure of the environment (e.g. alleys). Another property of the model

is its ability to find shortcuts through unexplored portions of the environment. We

also characterized the activities of model neurons and compared them to electro-

physiological data from real PFC neurons. Our neural response analysis suggests

how the interplay between the model hippocampus and the prefrontal cortex can

support the spatial planning function. The model also provides a functional frame-

work for interpreting the activity of prefrontal units observed during performance

of spatial memory tasks.
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8.2 Main assumptions of the model

Our model is based upon two main assumptions. First, the model relies on

the columnar organization of the cortex. The existence of cortical columns is

supported by many experimental studies (Mountcastle, 1997; Buxhoeveden and

Casanova, 2002), although no clear general function has been proposed to explain

their role in cortical processing (Horton and Adams, 2005). In addition, Rakic

(2008) stressed that the size, cell composition, synaptic organization, expression

of signaling molecules, and function of various types of columns are dramatically

different across the cortex, so that the general concept of column should be em-

ployed carefully. In our model, we use the term “column” for a local micro-circuit

composed by neurons processing common spatial information, and we propose

that columnar organization may be a substrate suitable to implement a topological

representation of the environment. Second, our planning model relies on an acti-

vation diffusion mechanism. At the neural level, this mechanism suggests waves

of action potentials through the neocortex. This is not a strong assumption, since

several studies have demonstrated such phenomena as propagating waves of ac-

tivity in the brain (Vogels et al., 2005; Wu et al., 2008). For example, Rubino

et al. (2006) suggested that oscillations propagate as waves across the surface of

the motor cortex, carrying relevant information during movement preparation and

execution.

8.3 Differential roles of PFC and hippocampus in

spatial learning

The successful performance of our model in large environments relies on its abil-

ity to build multiscale environment representations. This is in line with the pro-

posal by McNamara et al. (1989) who have suggested that humans can solve com-

plex spatial problems by building a hierarchical cognitive map, including multiple

representations of the same environment at different spatial scales. Moreover,

animals may be able to chunk available information and build hierarchical repre-

sentations to facilitate learning (Roberts, 1979; Dallal and Meck, 1990; Fountain

and Rowan, 1995; Macuda and Roberts, 1995; Meck and Williams, 1997). Re-

cently, multiscale spatial representations have been identified at the neural level.
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For example in the entorhinal cortex, Hafting et al. (2005) have shown that grid

cells have spatial fields forming a grid of variable resolution. Kjelstrup et al.

(2008) have provided neural recording of place cell activities in a large maze, and

their results support the same multiscale coding property in the hippocampus. In

our model, we suggest that this kind of multiscale representations should also be

found in the neocortical areas such as the prefrontal cortex, commonly associated

with high-level cognitive processes. The role of the PFC in the learning of hier-

archical representations has been proposed before. For example, Botvinick et al.

(2009) reviewed how the hierarchical reinforcement learning framework (Sutton

et al., 1999) could explain the mechanism by which the PFC aggregates actions

into reusable subroutines or skills. The multiscale property is applied there for

actions instead of states as in our approach. From a biological point of view,

recent studies directly pointed out the role of the PFC for hierarchical represen-

tations, with a possible anatomical mapping of the hierarchical levels along the

rostro-caudal axis of the PFC (Koechlin et al., 2003).

In spite of a possible common role for the PFC and the hippocampus in mul-

tiscale spatial coding, our work suggests different roles of the PFC and the hip-

pocampus in the planning process. Namely, we propose that the hippocampus

is more involved in the representation of location (O’Keefe and Nadel, 1978)

and, possibly, route learning (Dragoi and Buzsáki, 2006; Rondi-Reig et al., 2006),

while the PFC is responsible for topological representations and action selection.

From a more general perspective, a route could be seen as an example of navi-

gation from a point to another, or, in non-spatial terms, an episode. In contrast,

the more integrated topological representation would be more similar to a set of

navigation rules. This hypothesis is in accordance with data showing that the

hippocampus would be involved in instance-based episodic memory, whereas the

PFC would be linked to rule learning from examples (Doeller et al., 2005, 2006;

Winocur et al., 2007).

Our model is consistent with recent studies suggesting a role for the PFC in

prospective memory (Goto and Grace, 2008; Schacter et al., 2008). Goto and

Grace (2008) showed that, depending on the dopamine receptors activation, PFC

either incorporates retrospective information processed by the hippocampus or

processes its own information to effect preparation of future actions. This is in

accordance with our model which includes hippocampal information to localize
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itself in the environment, and then propagates reward signal to generate a goal-

directed sequence of action. Moreover, Mushiake et al. (2006) showed that neural

activity in the PFC reflects multiple steps of future events in action plans. They

suggested that animals may be engaged in planning sequences in a retrograde or-

der (starting from the goal to the first motion), in conjunction with a sequence

planning with an anterograde order. At the cognitive level, the activation diffu-

sion planning process provides a capacity of mental simulation of action selec-

tion. Schacter et al. (2008) recently reviewed theories on simulation of future

events and neural structures associated with this cognitive ability. They showed

that the same core network, which plays a role in remembering, is also implied in

mental simulation. This network involves prefrontal as well as medial temporal

regions including the hippocampus, thought to encode prospective and retrospec-

tive memories (Mehta, 2000; Ferbinteanu and Shapiro, 2003).

8.4 From neural activity in the PFC to behavior

The results of the simulation of Tolman and Honzik detour task show that the be-

havior of the model is consistent with an “insight” demonstrated by rats in this

task. The insight, as defined by Tolman and Honzik, is the ability to conceive

that two paths have a common section, and so when a passage through the com-

mon section is blocked, both of these paths are necessarily blocked and a third,

alternative pathway, should be chosen. The realization that a common section ex-

ists leads to two conclusions. First, animals do not act exclusively according to

stimulus-response associations, but use some kind of mental representation of the

environment (Tolman, 1948). For example, in the conditions of the detour task

(Figure 5.1A), the rats chose path 3 without actually testing path 2 during probe

trials and so they did not have a chance to form the correct stimulus-response asso-

ciations to solve the task. In order to choose the correct path 3, rats had to mentally

replay path 2 and realize that it was blocked, suggesting the existence of a spatial

representation. Second, a representation of the environment in terms of routes

is not sufficient to solve the task. Indeed, if after training animals store separate

representations of routes via paths 1-3, then the fact that route 1 is blocked should

not lead to the conclusion that route 2 is also blocked. In summary, the results of

this experiment suggest the existence of a topological graph-like representation in
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which common points (nodes) and common sections (edges) are identified. The

model presented here proposes a plausible way of how such a representation can

be built. In terms of the model, the insight capability in the detour task is medi-

ated by the propagation of the goal signal through the nodes of the spatial graph,

in which the common section of paths 1 and 2 is blocked. In addition, studies

demonstrating the ability of animals to make shortcuts through unexplored por-

tions of the environment suggest that at least some metrical information is present

in mental spatial maps. In our model, this metric information is represented by the

angular differences between the paths originating from a common node. We show

how this information can be used to make novel shortcuts, in agreement with the

results of animal studies (Chapuis et al., 1983; Poucet et al., 1983)

The other important question addressed by the present study is whether the

requirements of the proposed model are consistent with the neural activities ob-

served in the PFC. We show that all types of neurons that are required by the

model, have actually been observed in the PFC. Namely, (i) the state-encoding

s neurons in the model correspond to spatially selective prefrontal neurons with

different receptive field sizes (Figure 6.1D, see also Hok et al., 2005); (ii) the

distance-to-goal, or value, neurons v correspond to the PFC neurons with con-

stant discharge rate (Figure 6.4B), giving rise to the prediction that neurons with

higher (constant) discharge rates can code for locations closed to reward; (iii) the

prospective-coding p neurons in the model correspond to PFC neurons with the

firing rate that increases when the animal moves toward the goal (Figure 6.6B,D,

see also Rainer et al., 1999; Averbeck et al., 2002); and, finally, (iv) neurons q

and d, which together encode state-action values, show activity patterns similar

to strategy-switching neurons observed by Rich and Shapiro (2009). Indeed, the

authors reported that in their task (i.e. strategy switching in a plus-maze) during

the periods before and after reward contingency change, different subsets of PFC

neurons were highly active. This is exactly what was observed in our model. For

example, neurons q1 and d1 that were more active than neurons q2 and d2 before

the contingency change (Figure 6.5B,C, at 4 s) became relatively less active after

the change (Figure 6.5B,C, at 5 s).

The model provided a vantage point to interpret PFC eletrophysiological data

in terms of quantitative clustering of population activity. On the basis of a set of

statistical measures, we performed a principal component analysis on both sim-
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ulated and real data sets of PFC recordings. This study gave rise to comparative

results based on the identification of clusters of characteristic discharge properties.

On the basis of this analysis, we proposed that different clusters correspond to dif-

ferent function in terms of their role in spatial localization and planning, reward

coding, and prospective memory. In particular, our results suggest that neurons

mediating planning in large scale mazes (i.e. belonging to the cortical popula-

tion C2 of the model) could be segregated from other simulated units (red cluster

in Fig. 6.9). A corresponding cluster was found when analyzing real recordings,

corroborating the hypothesis of the presence of neurons with similar discharge

properties in the PFC. In addition, we have identified another cluster of real PFC

activities which contained both pyramidal cell and interneuron responses (∼60%

and ∼40%, respectively). This cluster corresponded to goal propagating neurons

of the model (blue cluster in Fig. 6.9), leading to the prediction that interneurons

may contribute to decision making by participating to the propagation of informa-

tion relevant to the next decision to be taken. Interestingly, in their study of spatial

navigation, Benchenane et al. (2010) showed that the inhibitory action of PFC in-

terneurons onto pyramidal cells is enhanced during periods of high coherence in

theta oscillations between hippocampus and PFC occurring at decision points.

8.5 Extensions of the model and future work

The model can be used to investigate other important questions related to (i) PFC

and its functional specialization subserving cost-benefit decision making, (ii) the

hippocampo-frontal pathway, such as the timing relationships between neuronal

activity in the PFC and the HP theta rhythm or the effect of memory consolidation

on the representation encoded within the PFC. We discuss here how the com-

putational framework provided by the model can be exploited to propose some

hypotheses that we will test in future studies.

8.5.1 Cost-benefit decision making and prefrontal subdivisions

We have shown in Part II that the prefrontal cortex seems particularly well suited

to integrate manifold spatial information so that it could encode multidimensional

contextual representations. This would provide more efficient planning capabil-

ities, employing cost-benefit optimization processes to select the best pathway
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within the action space. As discussed in Sec. 3.3.3, Rudebeck et al. (2006)

used two simple tasks of cost-benefit decision making (Fig. 3.3). They showed

that the ability to choose the larger reward in spite of the effort appeared to be

anterior-cingulate-dependent, not orbito-frontal-dependent, whereas the ability to

choose the large reward in spite of the delay appeared to be OF-dependent, not

AC-dependent. Control rats, AC-lesioned rats and OF-lesioned rats were able to

choose the best option when no cost was imposed, indicating that non-conflicting

decision making may not involve the PFC. This finding provides interesting data

on the functional specialization within the PFC. In order to understand the neural

bases of cost-benefit decision making, we discuss here a possible extension of the

model with a functional subdivision of the PFC and a representation of aversive

signals (effort and delay) conflicting with the reward. In the model presented in

Chap. 4, decision in single-goal environment was based on the propagation of a

distance-to-goal signal. In fact, it is possible to reinterpret this metrical signal.

If we introduce a second goal with a smaller amount of reward, modeled by a

smaller synaptic strength wvm between the motivation and the second goal col-

umn (see Fig. 4.1B), then the propagated signal will not have the same meaning.

It will encode both distance and reward amount. Moreover, distance can be seen

as an effort (running from a place to another is tiresome) or as a delay (running

from a place to another takes time). Based on these ideas, we suggest that the

same model architecture can be used to propagate a cost-benefit signal (a utility

signal) integrating effort, delay and reward size so that the simulated animal can

minimize the costs and maximize the reward at the decision point.

How would ACC and OFC take part in cost-benefit decision making according

to this proposed model? Instead of encoding a distance-to-goal signal through the

lateral weights of our cortical network, we suggest a distributed mechanism with

two separate groups of neurons (i.e., ACC and OFC) the role of which will be

to integrate reward with effort and reward with delay, respectively (Fig. 8.1A).

Tthe ACC population will compute a trade-off between effort and reward, so that

effortful actions leading to high rewards will be favored. The goal signal rR of

the right arm, propagating from the goal column in the PFC network, will be

compared to the effort eR needed to get the right reward (i.e. E(rR, eR)). This

effort-to-goal signalE(rR, eR) will then be propagated to the column representing

the intersection. The same principle will be applied to encode each topological
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transition. The OFC population enables the computation of a delay-to-goal signal

D in a similar way so that long delays leading to high rewards are favored. At the

intersection point, the action leading to the goal with the best effort-reward and

delay-reward trade-off will be selected by the PFC network because its associated

(q, d) neurons will be highly active.

If we lesion the ACC population during the effort-based decision-making

(Rudebeck et al., 2006), the effort-to-goal signal encoded by this population will

not be able to propagate anymore (Fig. 8.1B). The PFC network will only receive

information from the OFC population. Since OFC activity does not account for

the compromise between effort and reward (i.e. D(rL, dL) = D(rR, dR)), it will

be impossible to favor the right arm. As a consequence, the simulated animal will

tend to select the left arm, chosen by a more reactive memory system avoiding ef-

fort. Similar mechanisms would explain the behavioral patterns observed during

the delay-based decision-making task. The mechanism presented above requires

a quantitative description of the integrative signals E and D so that they encode

the best compromise. An important issue is also how these two signals would be

combined. Indeed, what would be the behavior of rats in a T-maze where two

rewards of the same size are situated at the end of each arms, but with the left

arm blocked by a barrier to be climbed and the right arm blocked by doors with

a delay? Another interesting question is whether the population of columns en-

coding the topological representation would be situated in the dorsolateral PFC of

primates. What would be the equivalent structure in rats?

8.5.2 Hippocampo-frontal interactions and memory consolida-

tion

Another interesting direction of future work is to study the hippocampo-frontal

interactions in more details, and in particular the influence of the hippocampus

on PFC activity (see Sec. 3.1.3 and 3.3.4). Our model uses as input simple place

cells which do not encode the presence of barrier in the environment, unlike real

hippocampal place cells (Rivard et al., 2004; Alvernhe et al., 2010). Indeed, intro-

ducing or moving a barrier in an environment involves some remapping effects,

such as place fields appearing, disappearing, or following the barrier. Such cells

would certainly modify the dynamic of the spatial learning in the model, but would

not prevent it from learning topological representations. A question arises from
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Figure 8.1: A distributed model encoding effort-to-goal and delay-to-goal infor-

mation. (A) The topological representation is distributed across three populations.

The PFC column network codes for the states and state transitions. The values of

these transition is terms of effort-to-goal (E) and delay-to-goal (D) are encoded

by the ACC and OFC populations. rR and rL represent the reward value. eR

and eL are the effort to cross the right and left arms, respectively. dR and dL are

the delays to cross the right and left arms, respectively. (B) If the ACC popula-

tion is lesioned, the back-propagated signal from the left and right goal can not

be integrated with effort values anymore. Hence, the PFC network only receives

delay-related information, which are not sufficient to favor the right path, leading

the simulated rat to choose the left arm.
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this issue: how does the PFC deal with remapping within the hippocampus? Does

plasticity along the HP-PFC pathway reinforces only stable configurations of the

place cell activity? A theoretical study of the learning rule governing the long-

term potentiation and long-term depression of wsh synapses should be a useful

approach to address this issue.

The discharge of our place cell and prefrontal populations modeled a firing

rate function. A suitable improvement of the model would be to generate spikes,

or at least a theta rhythm modulating the activity. Introducing a strong temporal

component in the model would enable it to exhibit interesting dynamics. First, it

would be useful to better understand the phase locking phenomenon between the

hippocampus and the prefrontal cortex (see Sec. 3.1.3, Fig. 8.2A). In addition,

it would provide the prefrontal columnar population with an alternative planning

mechanism: instead of spreading firing rates encoding distance-to-goal informa-

tion, spikes could be propagated. In this paradigm, the shortest pathway would be

encoded by the first spike arrived from the goal column to the column representing

the current position. Sequential replay of activity observed in the hippocampus

may provide a stronger support for this spiking mechanism than the firing rate

propagation. Moreover, Bugmann (1997) suggests that an additional potential

advantage of an implementation with spiking neurons is the capability for multi-

criteria planning. Whereas the time of arrival of the first spike would encode the

shortest pathway, the mean firing rate would represent another information such

as costs and benefits, leading to a powerful dual-coding scheme. Finally, spik-

ing discharges by the model prefrontal neurons would be useful to study memory

consolidation.

Research studies suggest that neural patterns, reflecting previously acquired

information, are replayed during sleep (see Sec. 3.2.2; Peyrache et al., 2009;

Benchenane et al., 2010). One possible reason for this is that such replay ex-

changes information between hippocampus and neocortex, supporting consolida-

tion (see Sec. 3.3.4). In particular, sharp wave-ripple complexes in the hippocam-

pus seem prominent for transferring labile memories from the hippocampus to the

neocortex for long-term storage (Girardeau et al., 2009). A key issue for modeling

approaches is to understand computational properties of this learning mechanism.

In a spiking version of the model, sequential replays in the place cell population

would drive replay in the prefrontal population (Fig. 8.2B). This would provide
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a way to rehearse previously learned trajectories, leading to a faster learning of

the HP-PFC connections (wsh) and the lateral connectivity between columns (wqv

and wpd). As expected from the study by Peyrache et al. (2009), neural ensembles

of model neurons activated during the navigation would likely be reactivated dur-

ing sleep. Moreover, blocking this replay mechanism would lead to navigational

impairments in comparison with control animals because of the lower number of

rehearsals (Girardeau et al., 2009). It is currently under debate when the replay of

an experience occurs: do replays favor remote experiences so that they are not for-

gotten or do they focus on recent experiences so that they are learned faster (e.g.

Gupta et al., 2010)? Our modeling approach could be used to interpret available

experimental data and to study how and when hippocampal replays should occur

to optimize learning.
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A

place cells

goalstart

PFC

Strengthen synapseB

Replay

Figure 8.2: Potential studies of the hippocampo-frontal pathway: phase locking

and influence of the sleep. (A) It is suggested that phase coherence in the theta

band of prefrontal and hippocampal local field potentials might be an important

way for information exchange at specific behavioral periods such as the decision

point of a maze (Jones and Wilson, 2005b). A spiking extension of the model

should be of value to explore the implications of this phenomenon. Right: lo-

cal field potential for a place cell population and a prefrontal population (from

Jones and Wilson, 2005b). (B) During sleep, the simulated population of place

cells would reactivate a previous trajectory, leading to a sequential activation of

the selected place cells. In turn, this hippocampal activity would excite the pre-

frontal population, causing a sequential discharge of columns. These sequential

co-activations of model HP and PFC would reinforce a set of synapses relevant to

the navigation planning.
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APPENDIX A. ADDITIONAL MATERIALS RELATED TO THE PREFRONTAL CORTEX

Figure A.1: The PFC, from (Gabbott et al., 2005).
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Figure A.2: Representation of minicolumns of the monkey visual cortex from (Pe-

ters and Sethares, 1996). Diagrams of the arrangements of neurons and their

processes within pyramidal cell modules. For the sake of clarity, only 50%of the

total number of the neurons actually present is depicted. On the left side is a

representation of a pyramidal cell module to show the arrangements of the apical

dendrites of pyramidal cells. The pyramidal cells in layers II/III, IVA, and V are

shown in red, and the pyramidal cells in layer VI are in green. The neurons of

layer IVB and IVC that lack apical dendrites are in grey, while the GABAergic

neurons are represented in orange. On the right side is a representation of three

pyramidal cell modules to show the arrangements of the apical dendrites and their

axons. The axons of the pyramidal cells that aggregate to form the axon bundles

are shown in blue.
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Figure A.3: Efferent projections from the different layers of the PFC, from (Gab-

bott et al., 2005).

- 142 -



LTD

LTP

DA level

weak (acute) stress

strong (acute) stress

chronic stress
slice preparation

normal

Optimal DA level

DA level

W
or

ki
ng

 m
em

or
y/

PF
C

 a
ct

iv
at

io
n

Chronic
Stress

LTD, instead of
LTP, induction

Hypofrontality
(negative symptoms,

depression)

Acute
Stress

LTP induction
Block

Disconnection of
hippocampal-PFC

interaction
(positive symptoms)

A B

Figure A.4: Effect of dopamine level on PFC activation and plasticity, from (Goto

et al., 2007). (A) In the normal condition at a moderate level of DA tone, long-

term potentiation (LTP) is induced with high frequency activation of PFC afferent

fibers such as those arising from the hippocampus and participating in memory-

guided behavior. A brief exposure to stress would increase DA release in the PFC,

and thereby facilitate DA-dependent induction of LTP, whereas if the stress expo-

sure is severe, an excess in DA release could occur, leading to impairment of LTP

(e.g. via stimulation of extrasynaptic DA receptors). In contrast, in the case of

chronic stress, where a significant decrease in DA tone is produced, PFC networks

would preferentially shown LTD. Such a condition is likely to be present in the in

vitro slice preparation, in which the DA tone would be expected to be low. (B)

Acute stress induces excessive DA release, which in turn over-stimulates D1 re-

ceptors in the PFC. As a result, information processing mediated by hippocampal-

PFC interactions, which depends on LTP, would be disrupted. In contrast, atten-

uated DA tone, which could be produced by chronic stress exposure, would also

interfere with proper information processing in the hippocampal-PFC pathway

due to the abnormal induction of LTD. Indeed, this LTD may contribute to sup-

pression of PFC activity (i.e. hypofrontality).
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