
HAL Id: tel-00646893
https://theses.hal.science/tel-00646893v1

Submitted on 30 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model and Metamodel Composition: Separation of
Mapping and Interpretation for Unifying Existing Model

Composition Techniques
Mickaël Clavreul

To cite this version:
Mickaël Clavreul. Model and Metamodel Composition: Separation of Mapping and Interpretation for
Unifying Existing Model Composition Techniques. Software Engineering [cs.SE]. Université Rennes
1, 2011. English. �NNT : �. �tel-00646893�

https://theses.hal.science/tel-00646893v1
https://hal.archives-ouvertes.fr

No d’ordre : 4407 ANNÉE 2011

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

École doctorale Matisse

présentée par

Mickaël CLAVREUL

préparée à l’unité de recherche IRISA – UMR6074
Institut de Recherche en Informatique et Systèmes Aléatoires

Composition de
modèles et de
métamodèles :
Séparation des correspondances

et des interprétations pour unifier

les approches de composition ex-

istantes

Thèse à soutenir à Rennes
le 7 décembre 2011

devant le jury composé de :

Philippe LAHIRE
Professeur à l’Université de Nice – Sophia Antipolis /
Rapporteur

Siobhán CLARKE
Full Professor, Trinity College, Dublin / Rapporteur

Olivier RIDOUX
Professeur à l’Université de Rennes 1 / Examinateur

Olivier BEAUDOUX
Enseignant–Chercheur à l’ESEO / Examinateur

Jean-Marc JÉZÉQUEL
Professeur à l’Université de Rennes 1 / Directeur de thèse

Olivier BARAIS
Maître de Conférence à l’Université de Rennes 1 /
Co-directeur de thèse

Acknowledgements

This thesis is the result of three years of work within the Triskell team which
excellence in both research and atmosphere brings motivation and leads to active
collaborations.

First of all, I would like to thank Jean-Marc Jézéquel who does me the honors to
integrate the Triskell team. His support and efficient advice let me focus on the main
topic of my thesis while I was free to explore alternatives. I am grateful that he lets me
participate to first-class research that helped me to discover a vocation for myself as a
scientist.

I would like also to thank Olivier Barais. While he is a very busy person, he took
the necessary amount of time in helping me put the pieces of my thesis together and
finalize the composition of this thesis.

My thanks go also to Benoit Combemale and Benoit Baudry with whom I partici-
pated in interesting developments of my work. Our discussions were always fruitful
and gave birth to multiple tracks of research that we are still exploring.

I would like to thank the whole Triskell team and their members whom good-nature
participates in the very pleasant work atmosphere.

I would like also to acknowledge in advance Olivier Ridoux that does the honors
to take the chair of the jury along with Philippe Lahire and Siobhán Clarke who had
accepted to review this work.

Within the MOPCOM-I project, I would like to thank the various partners and
especially Christian Nicolas for the interesting feedback on the proposed tools and
approaches.

Last but not least, I would like to thank Olivier Beaudoux about the discussions
that we had at the beginning of these three years of work on the definition of mappings
between models and the specific requirements that exist in the domain of graphical
interfaces.

On a personal basis, I would like to thank my family and my friends for their
support on an everyday basis.

i

Résumé en français

Introduction

Les logiciels font maintenant partie intégrante de notre société. La plupart des
activités telles que l’économie, la finance, le transport ou encore les communications
reposent sur des systèmes logiciels qui permettent de définir, de gérer, de modéliser,
d’améliorer ou encore de mettre en valeur les activités humaines. L’omniprésence de la
technologie amène à la définition de systèmes de plus en plus complexes, ce qui impacte
fortement les techniques traditionnelles de développement logiciel : la composition de
programmes, modules ou fonctions est au cœur de cycles de développement logiciel
contrôlés et éventuellement géographiquement distribués dans lesquels participent de
multiples acteurs.

La gestion voire la diminution de la complexité est une problématique récurrente
à tout raisonnement scientifique. La décomposition d’un problème en sous-problèmes
est la clé pour comprendre une situation donnée et proposer des solutions. Lorsque
qu’une solution est disponible pour chaque sous-problème, on produit une représen-
tation globale de la solution sur laquelle on peut raisonner. Le degré de séparation et
de recomposition de ces sous–problèmes est le principe même de modularité.

L’ Ingénierie Dirigée par les Modèles (IDM) est basée sur le principe d’abstraction qui
imite le raisonnement scientifique dans le sens où, pour produire des logiciels de bonne
qualité, les ingénieurs s’appuient sur des représentations abstraites partielles dédiées
à la résolution d’un problème particulier. L’IDM propose de traiter les modèles comme
des entités de premier ordre et encourage l’utilisation des modèles pour la production
de systèmes et non plus seulement pour la documentation de ces mêmes systèmes.
Les modèles sont alors au centre de processus de développement complexes visant à
rendre le cycle de développement d’un logiciel plus efficace, moins cher et plus sûr.

Bien que l’application des principes de modularité et d’abstraction vise à gérer effi-
cacement la complexité des développement logiciels, les équipes de développement
font face à une augmentation du nombre de représentations partielles à manipuler.
Pour pouvoir raisonner sur la construction, la validation ou encore la vérification
des inconsistances d’un système en développement, il est nécessaire de disposer d’un
moyen de recomposer les représentations partielles entre elles. Cette étape de recompo-
sition est, par nature, complexe et chronophage et sujette à l’introduction involontaire
d’erreurs. Dans le cadre de l’IDM, la composition de modèles est un domaine de
recherche très actif qui s’intéresse à l’automatisation des tâches de recomposition des
représentations partielles, autrement dit, des modèles.

Alors que de plus en plus de techniques sont proposées pour composer des mod-
èles dans des contextes particuliers, la quasi-inexistence de consensus pour comparer
les techniques existantes de composition de modèles et pour identifier des artéfacts
réutilisables entraîne une explosion de l’effort nécessaire pour produire de nouveaux
outils spécifiques de composition de modèles à partir de techniques existantes.

En pratique, il est nécessaire d’identifier les points communs aux techniques de

ii

composition existantes pour non plus définir des opérateurs de composition spéci-
fiques à un usage mais plutôt des opérations de composition paramétrables, s’ap-
puyant sur des opérateurs existants, et traitant un large spectre d’usages.

La contribution principale de cette thèse est de proposer une définition originale de

la composition de modèles comme étant une paire correspondance-interprétation.
Une correspondance définit la similarité entre deux modèles ou plus à partir d’un
ensemble de règles d’alignement entre des «patterns» d’éléments de modèles. Une
interprétation représente à la fois l’intention du processus de composition de modèles
ainsi que les exigences de l’utilisateur en termes de sous-produits de la composition
de modèles. Cette définition de la composition de modèles permet d’identifier des
correspondances et des interprétations réutilisables pour spécifier une multitude de
techniques de composition de modèles. A partir de cette définition, nous proposons un
cadre théorique qui aide à (1) unifier les représentations des techniques existantes de
composition de modèles et à (2) automatiser les processus de développement d’outils
de composition de modèles dédiés.

La pertinence et l’utilisabilité du cadre théorique implique la proposition de deux
sous-contributions supplémentaires :

– Nous proposons un ensemble de catégories pour classer les techniques de

correspondance entre modèles et les interprétations existantes de ces corre-

spondances entre modèles. Ces catégories nous permettent de proposer une
grille de lecture pour l’analyse et la comparaison des techniques existantes de
composition de modèles.

– Nous proposons un langage de modélisation spécifique inspiré des catégories

pour la définition de correspondances génériques entre modèles et pour la

définition d’interprétations. Ce langage de modélisation outille la spécification
et la construction de nouvelles approches pour la composition de modèles.

Les contributions proposées dans cette thèse ont été validées au travers de deux
expérimentations principales : (i)les catégories de correspondances et d’interprétations
ont été comparées en termes de précision et de pertinence à un ensemble significatif
d’approches extraites de la littérature ; (ii)un prototype logiciel a été développé et utilisé
dans le cadre du projet MOPCOM–I du pôle de compétitivité Images & Réseaux de la
région Bretagne. La validation du langage de modélisation ainsi que l’approche globale
de composition de modèles a été mise en œuvre sur un cas d’étude proposé par Tech-
nicolor pour l’intégration de librairies existantes dédiées à la gestion d’équipements
numériques de diffusion vidéo.

Composition de Modèles et Ingénierie des Logiciels

L’état de l’art sur la composition de modèles dans le cadre de l’ingénierie du logiciel
est décrit dans cette thèse au travers d’un processus en quatre étapes illustré en Figure 1.
Nous proposons dans cette section (i)d’explorer l’état de la pratique du développe-
ment de logiciels de manière à faire apparaître comment la modularité, l’IDM et la
composition de modèles participent à la construction de logiciels complexes ; (ii)de

iii

Systematic Literature
Review on Model

Composition Approaches

Overview of the
Triskell team

model composition
approaches

Intuitive definition
of categories for

correspondences and
interpretations

Validation of
categories using a

criterion of precision

1

2

3

4

Modularity,
Abstraction and

Background
in Software
Engineering

Figure 1 – Processus d’exploration de l’état de l’art de la composition de modèles

définir de manière intuitive les concepts principaux de la composition de modèles et
ainsi construire une grille de lecture pour comparer les techniques de composition
de modèles existantes ; (iii)de réaliser une étude systématique de la littérature pour
valider les concepts principaux et ainsi proposer un cadre théorique unifié visant à
améliorer la réutilisation et l’adaptation des techniques de composition de modèles.

Modularité, Abstraction et Composition de Modèles

La construction de modèles dans le cadre de l’IDM conduit à la production de
langages dédiés et de modèles spécifiques qui facilitent la spécification de systèmes
logiciels. Le principe de modularité impose la décomposition des problèmes en divers
modèles qui participent à définir l’ensemble des préoccupations d’un système parti-
culier. De ce fait, la récomposition des modèles est une tâche sujette à l’introduction
d’erreurs, et particulièrement chronophage. La composition de modèles propose des
solutions à ces deux problèmes en automatisant tout ou partie du processus de recom-
position.

Pour illustrer la problématique que nous adressons dans cette thèse qui est la dif-
ficulté de comparer des techniques de composition de modèles et par conséquence
la difficulté de les réutiliser ou de les adapter, nous avons analysé les approches de
composition de modèles proposées par l’équipe–projet Triskell. Nous voulons ainsi
démontrer qu’au sein même d’un groupe de travail partageant la même culture et la
même compréhension de l’IDM, les différences de contexte et d’objectif de chaque tech-
nique de composition de modèles entrave fortement la capitalisation de l’expérience
acquise au travers de ces travaux. Nous voulons également souligner que, bien que
ces techniques de composition de modèles aient des objectifs différents, il est possible
de détecter des points communs tels que :

– Chaque approche compose une paire de modèles.
– Chaque approche utilise un mécanisme de détection d’éléments de modèles

similaires ou équivalents (i.e., appariement)
– Chaque approche propose un mécanisme de composition basé sur les appariements

iv

détectés au préalable.
Au sein même de ces points communs, on observe de la variabilité. Cette variabilité

dépend (i)du résultat escompté du processus de composition, (ii)des caractéristiques
propres au modèles, ou bien (iii)du degré de généricité proposé par ces techniques de
composition de modèles.

Bien qu’inspirées de travaux existants dans la littérature, ces techniques ont été
majoritairement conçues et redéveloppées à partir de nouvelles spécifications et non
adaptées à partir de modules de composition existants, ce qui démontre une fois de
plus la difficulté à identifier les parties communes à un ensemble de techniques de
composition de modèles.

Jeanneret et al. proposent un cadre pour comparer des techniques de composi-
tion [JFB08 ; Jea08] et identifient sur une douzaine d’approches existantes, quels élé-
ments sont composés (quoi ?), où ces éléments devront être ajoutés ou remplacés et
comment le processus de composition s’applique. Bézivin et al. proposent également de
dériver un «...ensemble de définitions de base...» pour la composition de modèles de
façon à créer un consensus sur la terminologie employée [BBDF+06].

En étendant le concept de composition de modèles à un ensemble d’opérations
plus large, communément appelé «gestion de modèles» dans la terminologie de Bern-
stein [Ber03], nous pouvons citer les travaux de Brunet et al. [BCE+06] qui utilisent un
ensemble d’opérations sur les modèles pour comparer les techniques de composition.

On entrevoit aisément, au travers de ces tentatives pour caractériser et classifier les
techniques de composition, que la définition de critères de comparaison ainsi que la
proposition d’une théorie formalisant la composition de modèles et son outillage est
une attente forte dans la communauté des chercheurs en informatique en général, et
des chercheurs en ingénierie des modèles en particulier.

Revue Systématique des Techniques de Composition de Modèles

L’utilisation étendue des langages dédiés pour le développement de logiciels né-
cessite une compréhension accrue des concepts clés de la composition de modèles.
La première étape vers cette compréhension nécessité de capitaliser les connaissances
acquises sur la composition de modèles. Au vu des points communs observés sur un
petit échantillon de techniques de composition et au vu des tentatives de classification
décrites précédemment, nous avons observé que les correspondances entre éléments de
modèles et l’interprétation de ces correspondances influencent les caractéristiques des
techniques de composition de modèles. En conséquence, nous proposons six types de
relations de correspondances (i.e., relations permettant d’identifier des appariements)
ainsi que quinze types d’interprétations de ces correspondances (i.e., la sémantique
d’une relation de correspondance dans un contexte et pour un objectif donné) pour
améliorer la comparaison et la classification des différentes approches ainsi que pour
détecter des modules réutilisables à moindre effort.

La pertinence et la précision de ces deux catégories ont été validées au travers
d’une revue systématique de 88 techniques de composition de modèles existantes
dans la littérature. La revue systématique suit le protocole d’analyse adapté à partir

v

des travaux de Kitchenham [Kit04] et proposé par Biolchini et al. [BMA+05].
En bref, les observations faites sur l’état courant de la pratique dans le domaine

de la composition de modèles corroborent la classification intuitive des types de cor-
respondances et des types d’interprétations. Avec une précision globale de 65% pour
la catégorie de correspondances et un précision de 92% pour la catégorie d’interpré-
tations, nous démontrons que d’une part, toutes les techniques de composition de

modèles peuvent être analysées au travers de leurs correspondances et de leurs

interprétations, et que d’autre part, les catégories proposées sont suffisamment ex-

haustives et précises pour classer toutes les techniques de composition de modèles

considérées.
Le protocole d’expérimentations et la totalité des résultats de l’étude sont présentés

dans le Chapitre 1.

Travaux connexes

En comparant les approches génériques de composition de modèles (cf. Table 1),
nous proposons de traiter dans cette thèse les points suivants :

– Le couplage entre un mapping et une interprétation est généralement très élevé,
ce qui implique de définir de nouvelles relations de correspondances dès que
l’objectif change et ce qui limite fortement l’adaptation et la réutilisation. Une
diminution voire une absence complète de couplage entre un mapping et une
interprétation faciliterait d’autant la réutilisation de ces deux concepts dans des
contextes et pour des objectifs différents.

– Le paramétrage de l’objectif global d’une technique de composition est générale-
ment manuel. Il serait préférable qu’une partie au moins de ce paramétrage
puisse être formalisé de façon à optimiser la construction d’approches génériques
et paramétrables pour la composition de modèles.

Les critères proposés pour comparer les approches génériques de composition sont
détaillés en Section 1.4.4.

vi

GCF

Characteristics

Predefined

Interpretations

for mappings

Coupling Mapping /

Interpretation

Supports

various model

composition

operations

Composition

Process Customization

ATLAS Model Weaver

(AMW) [DFB+05b]

manual medium / high * manual
(Java Methods)

Object–Relational Mapping

(ORM) [GG10]

* medium 1 manual
(Interpreter)

Relation–based Approach

[CNM11]

* high * manual

Canonical Scheme

[BBDF+06]

manual high 1 manual

Model Management

[BHP00]

* high * manual
(Operators)

Kompose

[FFR+07 ; FBF+08]

1 high 1 manual
(Algorithm)

GeKo and SmartAdapter

[MKB+08 ; MPL+09]

1 high 2 manual

ReuseWare [HHJ+08] 1 high * manual
(Combine
two atomic
operations)

Generic Aspect–Oriented

Modeling Framework

[MBJ+07]

manual medium 1 manual

DUALLy [MMP+10] manual medium 1 manual
(State Machines)

Table 1 – Comparison of existing generic model composition frameworks (GCFs)

Un Cadre Théorique pour la Composition de Modèles

Nous proposons une définition originale de la composition de modèles qui s’inspire
de la notion de structure en logique mathématique et de la notion de signe en linguis-
tique. La définition d’un cadre spécifique pour la composition de modèles est une paire
constituée d’un mapping et d’un ensemble d’interprétations de ces mappings.

La définition d’une structure en logique mathématique nous permet de relier les
concepts de mapping et interprétation à une théorie fondée qui sépare concrètement
différents concepts et qui définit explicitement les relations entre ces concepts. La
nature exacte de ces relations entre mapping et interprétation n’est cependant que
partiellement capturée dans l’état courant de la pratique. Nous proposons alors d’u-
tiliser des notions empruntées à la linguistique pour détailler en quoi l’objectif d’une
composition de modèles et en quoi la part d’interaction avec l’humain influencent à
la fois ces relations entre mapping et interprétation, et l’objectif global d’une approche

vii

générique pour la composition de modèles.

A partir de ces deux parallèles, nous proposons une définition de la composition
de modèles comme étant une paire constituée d’un mapping et d’un ensemble d’in-
terprétations pour ces mapppings tel que MC = 〈 MM, I 〉, où MC est la définition
d’un cadre spécifique pour la composition de modèles, MM est un mapping et I est un
ensemble d’interprétations.

Pour répondre à la problématique du couplage entre mapping et interprétation,
nous proposons une théorie unifiée pour la composition de modèles qui définit de
façon formelle les différents types de mappings et les différents types d’interprétations
(cf. Chapitre 2).

La construction d’un opérateur de composition de modèles spécifique à un contexte
de composition particulier est une taĉhe difficile et chronophage. La contribution de
ce chapitre permet d’obtenir une définition formelle des différents types de mappings
et des différents types d’interprétations. La formalisation aide à comprendre la séman-
tique de chaque mapping et de chaque interprétation et facilite ainsi la définition de
nouvelles opérations de composition.

Ce chapitre nous permet également de mettre en exergue les deux étapes de la
définition d’un nouvel opérateur de composition :

– Les utilisateurs sélectionnent une paire d’un mapping et d’un ensemble d’inter-
prétations qui participent à la réalisation de l’objectif de l’opérateur de compo-
sition. Cette paire devient de fait la spécification de l’opérateur.

– Le paramétrage de l’opérateur ainsi défini permet de prendre en compte le
contexte dans lequel l’opérateur de composition sera utilisé. Le contexte fait
référence à la fois aux types de modèles manipulés par l’opération mais aussi
aux spécificités de l’opération de composition qui ne peuvent être capturée par
les interprétations.

La Figure 2 présente ce processus en deux étapes dans le cas particulier du
développement d’un opérateur de fusion («merge ») de modèles. La sélection d’un
mapping et d’une interprétation de ce mapping définit une opération de composi-
tion dont l’objectif général est la fusion de modèles. L’utilisateur doit paramétrer cet
objectif en proposant plusieurs algorithmes. Ces algorithmes permettent l’exécution
de l’opérateur de fusion sur différents formalismes. Sur la Figure 2 par exemple, le
paramétrage permet à partir d’une unique paire d’un mapping et d’un ensemble d’in-
terprétations de proposer une opération de fusion de modèles UML ou ECore, et ce de
manière homogène (les modèles sont conformes au même méta-modèle) ou hétérogène
(les modèles sont conformes à des méta-modèles différents). Bien entendu, le paramé-
trage de l’opération de fusion est réalisée en fonction des exigences de l’utilisateur et
de ces besoins.

viii

Merge

MM

I

Model

Equ Customization

Merge
(UML,UML)

Merge
(UML,ECore)

Merge
(ECore,ECore)

...

Figure 2 – Une paire d’un mapping et d’une interprétation est paramétrée pour définir
plusieurs opérations spécifiques de fusion de modèles.

ModMap : Un Langage de Modélisation pour la Composition

de Modèles

Une approche générique pour la composition de modèles outille un objectif par-
ticulier de composition, représentant concrètement un type d’opérations particulières
entre modèles. Le Chapitre 3 de cette thèse présente l’outil ModMap (MODel MAP-
ping). Cette outil permet de définir des mappings et leur associer des interprétations
pour construire des langages de composition de modèles et des opérateurs de compo-
sition concrets.

L’implémentation de ModMap propose (i)un langage de définition de mappings
entre modèles et/ou méta–modèles ; (ii)une sémantique opérationnelle pour chaque
type d’interprétations ; (iii)une syntaxe concrète graphique qui simplifie la spécification
de mappings et la sélection des interprétations nécessaires ; (iv)une méthodologie pour
construire de nouvelles approches générique de composition de modèles.

La méthodologie pour la construction de nouvelles approches de composition de
modèles s’appuie sur l’architecture de ModMap décrite en Figure 3.

selection
redefinitioninclusion

inclusion

Mapping
Concern

Operational
Semantics

Filter
Concern

Operational
Semantics

Strategy
Concern

Operational
Semantics

Directives
Concern

Operational
Semantics

Operational Semantics

Context-Specific
Model Alignment

Language

Purpose-specific
processing

Specialization1 Specialization2 Specializationn...

Composition Framework

Figure 3 – Processus de définition d’approche de composition de modèles spécifiques.

Le langage de définition de mappings entre modèles et méta-modèles (i.e., langage

ix

d’alignement) est décomposé en quatre préoccupations telles que :

– Mapping est la représentation de mappings entre éléments de modèles (voir
Section 3.2.2.1).

– Filter offre aux utilisateurs la possibilité de proposer des fonctionnalités de filtrage
sur les mappings (voir Section 3.2.2.1).

– Strategy représente les différents types d’interprétations (voir Section 3.2.2.2)
formalisés dans le Chapitre 2 et permet d’associer des interprétations spécifiques
à un mapping.

– Directives représente un ensemble d’opérations atomiques applicables sur les
éléments de modèles (voir Section 3.2.2.2). Ces opérations servent à paramétrer
les interprétations, offrant un moyen aux utilisateurs de paramétrer l’opération
de composition de modèles pour leurs propres besoins.

Mise en œuvre, la méthodologie amène à produire des langages d’alignements
spécifiques pour un objectif de composition donné. La prise en compte du contexte
de composition est représentée par un processus spécifique (i.e., un ensemble d’al-
gorithmes) fourni par les utilisateurs. Chaque algorithme devrait permettre alors de
traiter un cas particulier de l’objectif global de la composition de modèles, lui-même
définit par le langage d’alignement.

L’outil ModMap répond à la problématique du paramétrage de l’objectif d’une ap-
proche de composition de modèles. La construction et le paramétrage d’une approche
générique pour la composition de modèles sont basées sur des modules réutilisables
et combinables entre eux pour traiter un objectif particulier.

Mise en oeuvre et Validation

La validation de notre approche et de l’outil ModMap s’appuie sur deux expérimen-
tations principales : la première consiste à évaluer la capacité de ModMap à redéfinir
des techniques existantes pour la composition de modèles homogènes ; la seconde
consiste à évaluer l’utilisation de ModMap pour des problématiques de composition
différentes telles que l’intégration ou la synchronisation de modèles hétérogènes.

L’intégration de modèles hétérogènes fait partie du cas d’étude proposé par Tech-
nicolor pour l’intégration de librairies existantes dédiées à la gestion d’équipements
numériques de diffusion vidéo. Au travers de ce cas d’étude industriel, nous avons
mis en application les principes de ModMap. L’outil dédié à l’intégration de modèles
fait actuellement l’objet de plusieurs expérimentations sur différentes librairies. L’outil
proposé pourrait également répondre à d’autres problématiques au sein du projet
MOPCOM–I. Des études préliminaires sont en cours avec nos partenaires de France
Télécom ainsi que ceux de Thalès Systèmes Aéroportés.

Les cas d’études ainsi que la validation sont détaillés dans le Chapitre 4.

x

Perspectives

Cette thèse propose un cadre de modélisation outillé qui permet la définition de
mappings et d’interprétations dans le but de construire des opérateurs de composition
spécifiques. Ce cadre de modélisation est une boîte à outils que les experts peuvent
utiliser et paramétrer pour répondre à des problèmes particuliers de composition de
modèles.

Nous pensons que la contribution principale de cette thèse est un pas important
vers la définition d’ opérations de composition paramétrables, s’appuyant sur des
opérateurs existants, et traitant un large spectre d’usages. Dans ce contexte, la contri-
bution de cette thèse ouvre de nouvelles perspectives de recherche.

Extension de la Revue Systématique de Littérature

Dans le cadre de cette thèse, nous avons mis un effort particulier sur la définition
des concepts principaux de la composition de modèles, qui sont les correspondances
et les interprétations. La variabilité de ces deux concepts au sein des techniques de
composition de modèles existantes est présentée dans le Chapitre 1. Les catégories
de correspondances et d’interprétations vont évoluer à mesure que le cadre théorique
sera mis en pratique. En plus de cette évolution liée à l’utilisation du cadre théorique,
nous envisageons trois pistes de recherche supplémentaires.

Influence des Activités de Développement Logiciel

Nous sommes convaincu que les activités de développement logiciel influencent la
définition et la spécification des correspondances et des interprétations. Nous jugeons
utile de poursuivre l’analyse des données issues de la revue systématique pour extraire
des informations sur l’influence de ces activités de développement. Nous pensons que
cette information permettrait de (i)lister les paires de correspondances et d’interpré-
tations pertinentes pour une activité de développement donnée, et ultimement de
(ii)fournir une liste des techniques de composition de modèles qui supportent une
activité de développement particulière. Nous fournissons quelques pistes à ce sujet
dans la revue systématique mais de plus amples analyses sont nécessaires.

Adaptation des Techniques de Composition Existantes

Dans les résultats de la revue systématique de littérature, on observe que certaines
techniques de composition proposent déjà différentes opérations sur un ensemble de
modèles. Dans des cas particuliers, la réutilisation ou l’adaptation de ces techniques
semblent être des pistes intéressantes pour construire de nouvelles opérations de com-
position de modèles.

xi

Complétude de la Classification

La présentation des résultats de la revue systématique de littérature sous la forme
de tables permet de détecter des paires d’un mapping avec une interprétation ainsi que
des paires d’un mapping avec une activité de développement pour lesquelles aucune
approche n’a été identifée. Dans l’optique de fournir une classification complète des
techniques de composition, il serait intéressant d’identifier les raisons pour lesquelles
de telles paires n’ont pas encore été proposées dans la littérature et quels sont les défis
scientifiques sous-jacents.

Composition de Modèles : Une Entité de Premier Ordre pour l’IDM

La composition de modèles dans des environnements d’ingénierie logicielle multi-
vues est une activité clé. Bézivin et al. sont persuadés que les techniques de composi-
tion de modèles devraient être promues au statut d’éléments de premier ordre, tout
comme il a été fait avec les techniques de transformation de modèles [BBDF+06]. En
proposant une sémantique opérationnelle pour Unified Modeling Language (UML),
Siobhá Clarke propose que «les modèles de conception orientés acteurs puisse sup-
porter un nouveau type de concept appelé une relation de composition qui devrait
pouvoir spécifier comment les modèles doivent être composés.» [Cla02, §3, p.6]. Con-
formément à la définition de composition de modèles proposée dans cette thèse et en
accord avec ces deux propositions, nous proposons deux perspectives de recherche
sur ce point précis.

Une Relation «Composable»dans le Meta-Object Facility (MOF)

Les observations proposées dans cette thèse confirment le fait que la composition
de modèles est une technique pertinente pour adresser une large panel d’activités sur
les modèles. La composition de modèles serait alors, au même titre que la transfor-
mation, un concept clé. La prochaine étape vers une définition de la composition de
modèles serait de proposer une représentation à un niveau d’abstraction supérieur de
faç à offrir aux utilisateurs un outil intégré dans leurs modélisations. Cette proposition
revient à créer un nouveau concept dans le meta-meta-modèle Meta-Object Facility
(MOF). En d’autres termes, le concept Property du MOF pourrait intégrer un nouveau
type d’association tel que proposé en Figure 4. Nous pourrions alors lui donner la sé-
mantique suivante qui s’inspire des propositions de sémantiques pour les associations
du MOF [OMG10a, §12.5, p.45] :
Property : :isComposition==true

– Un objet peut être composé avec plusieurs objets
– La composition cyclique est valide : l’ordre de composition est déterminé par

l’implémentation concrète des instances d’associations.
– Chaque association de type composition devrait recevoir une sémantique parti-

culière en utilisant un langage d’action tel que Kermeta [MFJ05 ; JBF10].
La sémantique de cette nouvelle association de composition devrait inclure le

Domain-Specific Modeling Language (DSML) de mappings et d’interprétations présenté

xii

Type

1

Classifier
isAbstract : Boolean = false

Generalization

Feature TypedElement
1

MultiplicityElement
isOrdered : Boolean = false
isUnique : Boolean = false
upper : UnlimitedNatural[0..1] = 1
lower : Integer[0..1] = 1

1

1

1

StructuralFeature

Association

Class

1

Operation
isOrdered : Boolean = false
isUnique : Boolean = false
upper : UnlimitedNatural[0..1] = 1
lower : Integer[0..1] = 1

1

1

1

1

Parameter
direction : ParameterDirectionKind = in

TypedElement

associationmemberEnd

ownerEnd

owningAssociation

0..1
0..1

0..*

2..*

property

/opposite

0..1

0..1

operation
ownedParameter0..1 0..*

class

ownedAttribute0..*

0..1

0..*

class

ownedOperation

0..1

class

/superclass

0..*0..*

specific1

1

0..*0..*
generalization

generalization

raisedException
0..*

0..*
operation

general

1

Property
isDerived : Boolean = false
aggregation : AggregationKind = none
isComposite : Boolean
isId : Boolean = false
isComposition : Boolean = false

1

1

1

1

Figure 4 – Méta-modèle MOF : Classes de EssentialMOF et adaptées à partir de
[OMG10a, §12.2, p.40]

dans le Chapitre
The semantics of the new composition relationship would include the mapping and

interpretation DSML semantics that are presented in 3. Une telle association devrait
alors améliorer la spécification d’opérations de composition sur les modèles et devrait
intégrer cette spécification au sein même de l’activité de conception des systèmes et
des langages.

Composition d’Ordre Supérieur

Une des conséquences directes de la promotion de la composition de modèles à un
niveau d’abstraction supérieur est le fait de pouvoir manipuler cette composition de la
même façon que tous les autres concepts. L’application de la composition de modèles
à un ordre supérieur (HOC) permettrait de composer des compositions de modèles
existantes and le but de faciliter la conception de certains systèmes. Par exemple, une
HOC pourrait définir la composition de deux langages DSML1 et DSML3 à partir de
deux compositions existantes telles que DSML1 avec DSML2 et DSML2 avec DSML3.
Proposer de manipuler des HOC devrait permettre d’ouvrir de nouveaux espaces de
recherche et d’applications pour la génération d’opérations de composition à partir de
techniques existantes.

xiii

ModMap

Extension du Champ d’Application de ModMap

Les résultats préliminaires obtenus dans la validation permettent de généraliser
la définition de la fusion de modèles et de redéfinir quatre techniques existantes avec
un module d’appariement et un module de fusion génériques. Les perspectives sur
ce travail sont doubles : (i)évaluer le passage à l’échelle d’une telle généralisation et
découvrir les limites d’application du cadre théorique ; mettre en place un dépôt de
composants de composition «sur étagère»reutilisables et extensibles pour différentes
opérations sur les modèles.

L’utilisation de ModMap pour l’intégration et la synchronisation de modèles ap-
pelle à poursuivre les expérimentations pour d’autres activités liées au développement
logiciel telles que la dérivation de modèles, l’orchestration de modèles, la vérification
de consistence ou encore la reconfiguration dynamique de systèmes à base de modèles.

Collaborations

Dans le cadre du projet MOPCOM-I and au vu des résultats encourageant de
ModMap sur le cas d’étude de Technicolor, nous envisageons de futures collabora-
tions avec différents partenaires du projet tels que France Télécom et Thales Systèmes
Aéroportés. Des réunions de travail dédiées sont actuellement menées avec nos parte-
naires de France Télécom sur la définition de mappings entre des WebServices et les
fonctionnalités d’un système existante pour automatiser la conception des interfaces
de WebServices. Thales Systèmes Aéroportés propose trois cas d’étude : (i)la définition
de mappings modèle-à-modèle pour la spécification de transformations entre DSML ;
(ii)la définition de mappings entre documents semi-structurés et un DSML pour as-
surer la persistence de données ; (iii)la définition de mappings entre un DSML et une
représentation abstraite de l’environnement pour la conception d’interfaces logicielles.
En supplément des nouvelles expériementations proposées, nous envisageons de con-
tinuer le développement du prototype de façon à permettre son utilisation dans un
contexte plus industriel et nous envisageons de mettre en place des métriques pour
évaluer l’adéquation de ModMap avec des contextes d’utilisation particuliers.

Table of contents

■♥tr♦❞✉❝t✐♦♥ ✶

✶ ▼♦❞❡❧ ❈♦♠♣♦s✐t✐♦♥ ✐♥ ❙♦❢t✇❛r❡ ❊♥❣✐♥❡❡r✐♥❣ ✺

1.1 Modularity in Software Engineering . 5
1.1.1 Modularity . 6
1.1.2 Abstraction and Model–Driven Engineering 7
1.1.3 Modularity, Abstraction and Model Composition 8
1.1.4 A brief Overview of Model Composition Techniques 8

1.1.4.1 Kompose : A Generic Model Composition Tool 9
1.1.4.2 SmartAdapters : A Model Weaver for Variability 9
1.1.4.3 GeKo : A Generic Aspect Oriented Composer 10
1.1.4.4 Semantic-based Weaving of Scenarios 10
1.1.4.5 Discussion . 11

1.1.5 Comparing Model Composition Techniques 11
1.2 Key concepts in Model Composition . 12

1.2.1 Correspondences . 13
1.2.1.1 Operator-based correspondence 13
1.2.1.2 Pattern-based correspondence 13
1.2.1.3 Rule-based correspondence 13
1.2.1.4 Constraint-based correspondence 14
1.2.1.5 Model-based correspondence 14
1.2.1.6 Delta representation-based correspondence 14

1.2.2 Interpretation . 14
1.2.2.1 Overlapping . 15
1.2.2.2 Cross-cutting . 16
1.2.2.3 Interaction . 16
1.2.2.4 Uncategorized Interpretations 18

1.3 Validating the key elements of model composition 18
1.3.1 Systematic Review Protocol . 19

1.3.1.1 Research Objectives . 19
1.3.1.2 Model Composition and Synonyms 21
1.3.1.3 Valuable Information Characterization 21
1.3.1.4 Articles Selection Criteria and Methods 21
1.3.1.5 Study selection . 22

1

2 TABLE OF CONTENTS

1.3.1.6 Study quality assessment 28
1.3.1.7 Data Extraction . 28

1.3.2 Model Composition for Systems Design 29
1.3.2.1 Composition . 30
1.3.2.2 Derivation . 32
1.3.2.3 Orchestration . 34
1.3.2.4 Integration . 36

1.3.3 Model Composition for Validation and Verification 38
1.3.3.1 Model Composition for Checking Consistency 39
1.3.3.2 Model Composition for Checking Correctness 41

1.3.4 Model Composition for Evolution and Maintenance 42
1.3.4.1 Dynamic Reconfiguration 43
1.3.4.2 Refactoring . 44
1.3.4.3 Adaptation . 45
1.3.4.4 Synchronization . 46
1.3.4.5 Reconciliation . 48

1.3.5 Systematic Literature Review Summary 49
1.3.5.1 Kind of Correspondences and Distribution of Articles . 49
1.3.5.2 Interpretation and Distribution of Articles 50
1.3.5.3 Software Activities and Distribution of Articles 58

1.4 Discussion . 61
1.4.1 Are Correspondences and Interpretations Pervasive ? 61
1.4.2 Is Model Composition a Common Operation ? 62
1.4.3 Summary of the Contribution . 62
1.4.4 Overview of Existing Generic Composition Frameworks 63

1.4.4.1 Relationship–based Approach 63
1.4.4.2 ATLAS Model Weaver and Virtual EMF 64
1.4.4.3 Object–Relational Mapping 64
1.4.4.4 Contribution Challenges 65

✷ ❆ ❚❤❡♦r❡t✐❝❛❧ ❋r❛♠❡✇♦r❦ ❢♦r ▼♦❞❡❧ ❈♦♠♣♦s✐t✐♦♥ ✻✼

2.1 Decomposing Model Composition . 67
2.1.1 Model Composition is a Structure 68
2.1.2 Model Composition is a Linguistic Sign 69

2.1.2.1 Variability of a Sign . 70
2.1.2.2 Mapping and Interpretation Coupling 70
2.1.2.3 From Linguistics to Model–Driven Engineering 72

2.2 Towards a Unified Theory for Model Composition 73
2.2.1 Mathematical Symbols and Definitions 73

2.2.1.1 Domain–Specific Modeling Language 73
2.2.1.2 Sets . 74
2.2.1.3 Functions and Relations 74
2.2.1.4 Symbols . 75

2.2.2 Mapping Definition . 75

TABLE OF CONTENTS 3

2.2.2.1 Operator-based Mapping 76
2.2.2.2 Pattern- or Rule- based Mapping 76
2.2.2.3 Constraint-based Mapping 76
2.2.2.4 Model-based Mapping 76
2.2.2.5 Delta-based Mapping . 76

2.2.3 Interpretation Definition . 77
2.2.3.1 “Add” Interpretation . 77
2.2.3.2 “Delete” Interpretation 77
2.2.3.3 Overlapping . 78
2.2.3.4 Cross–Cutting . 79
2.2.3.5 Interaction . 80

2.2.4 Model Composition is a DSML . 80
2.3 Conclusion . 81

✸ ▼♦❞▼❛♣ ✿ ❆ ❋r❛♠❡✇♦r❦ ❢♦r ❯♥✐❢②✐♥❣ ▼♦❞❡❧ ❈♦♠♣♦s✐t✐♦♥ ❆❝t✐✈✐t✐❡s ✽✸

3.1 An Intuitive Process for Building Model Composition Frameworks . . . 83
3.1.1 A Running Example . 83
3.1.2 A Framework for Model Merging 85

3.1.2.1 Selection of a pair of Mapping and a set of Interpretations 85
3.1.2.2 Customization of the Framework 85

3.1.3 Generalization of the Intuitive Process 86
3.2 The ModMap Framework . 87

3.2.1 Architecture Overview . 87
3.2.2 A Language for (meta–)Model Alignment 89

3.2.2.1 Mapping Concern . 89
3.2.2.2 Strategy Concern . 91

3.2.3 A Tool for Building Model Composition Frameworks 94
3.2.3.1 Methodology and Techniques for Operational Semantics 95
3.2.3.2 Operational Semantics for the Mapping Concern 96
3.2.3.3 Operational Semantics for the Strategies Concern 99
3.2.3.4 Operational Semantics for Directives 107

3.2.4 ModMap Concrete Syntax . 108
3.3 Conclusion . 109

✹ ❱❛❧✐❞❛t✐♦♥ ❛♥❞ ❆♣♣❧✐❝❛t✐♦♥ ✶✶✶

4.1 Generalizing Model Merging . 111
4.1.1 Existing Tools for Model Merging 112

4.1.1.1 UML Package Merge . 112
4.1.1.2 Kompose : A Generic Model Composition Tool 113
4.1.1.3 Match and Merge of Statechart Specifications 114
4.1.1.4 Composition of Orchestration of Services with ADORE 117

4.1.2 Capitalization on the Match and Merge Processes 120
4.1.3 Application of the Unified Framework 121

4.1.3.1 Model Composition Framework Customization 121

4 TABLE OF CONTENTS

4.1.3.2 Model–Alignment Language for Model Merging 121
4.1.3.3 Mappings and Matches 122
4.1.3.4 A Unique Algorithm for Matching using Mappings . . . 124
4.1.3.5 A Generic Sum Algorithm 126

4.1.4 Properties of the Merge Implementation 127
4.1.4.1 Discussion . 128

4.2 Interoperability and Heterogeneous Composition 128
4.2.1 Context . 129
4.2.2 Technicolor Distribution and Broadcasting Devices Management 129
4.2.3 Legacy Systems and Translation Issues 130
4.2.4 A Semi–Automated Solution for Integrating Legacy Systems . . . 130
4.2.5 Application of the Unified Framework 131

4.2.5.1 Model Composition Framework Customization 132
4.2.5.2 Model–Alignment Language for Model Integration . . . 132
4.2.5.3 Design Converters for the Integration of MTEP and XMS133
4.2.5.4 Generation of Bidirectional Non Invasive Adapters . . . 136

4.2.6 Evaluation . 136
4.2.6.1 Impact of Automation on Adapters Production 136
4.2.6.2 Comparison of Effort . 137

4.2.7 Discussion . 139
4.3 Bridging the Gap between Structure and Behavior in the context of SOA 140

4.3.1 Service–Oriented Architecture Background 140
4.3.2 Design a Car Crash Crisis Management System 141

4.3.2.1 The Crisis Management System 141
4.3.2.2 The Car Crash Crisis Management 141
4.3.2.3 Domain Model Design 142
4.3.2.4 Business Model Design 142

4.3.3 Challenges and Synchronization Process 143
4.3.4 Identifying Model Divergences . 145

4.3.4.1 Naive Synchronization with Merge 145
4.3.4.2 Divergence Detection Mechanism 146

4.3.5 Application of the Unified Framework 148
4.3.5.1 Model Composition Framework Customization 148
4.3.5.2 Model–Alignment Language for Model Synchronization 148
4.3.5.3 Proposing and Automating Resolution Strategies 149

4.3.6 Propagation of the Resolution Strategies 151
4.3.6.1 Name–Mismatch Strategy 151
4.3.6.2 Concept Enforcing and Concept Usage Strategies 151

4.3.7 Discussion . 153

❈♦♥❝❧✉s✐♦♥ ✶✺✺

I.1 A Decomposition of the Definition of Model Composition 155
I.1.1 Literature Review and Observations 156
I.1.2 Formal Definition of Mappings and Interpretations 156

TABLE OF CONTENTS 5

I.1.3 A Framework for Unifying Model Composition Activities 157
I.1.4 Validation and Experiments . 157

II.2 Perspectives . 158
II.2.1 Extension of the Systematic Literature Review 158

II.2.1.1 Influence of Software Development Activities 158
II.2.1.2 Existing Model Composition Approaches Adaptation . 158
II.2.1.3 Classification Completeness 159

II.2.2 Model Composition as a first–class Entity in MDE 159
II.2.2.1 “Composable” Relationship in MOF 159
II.2.2.2 High-Order Composition 160

II.2.3 Application and Future of ModMap 160
II.2.3.1 Extending the scope of application of ModMap 160
II.2.3.2 Collaborations . 161

●❧♦ss❛r② ✶✻✶

❇✐❜❧✐♦❣r❛♣❤② ✶✼✾

▲✐st ♦❢ ✜❣✉r❡s ✶✽✶

▲✐st ♦❢ t❛❜❧❡s ✶✽✸

6 TABLE OF CONTENTS

Introduction

Information Technology and Complexity

Information Technology has become predominant and pervasive in industry, eco-
nomics, finance, communication or transportation, to cite only a few ones. These ac-
tivities all rely on systems which help to design, to manage, to model, to improve, to
enhance or to support those activities. Pervasiveness of information technology leads to
the definition of more and more complex systems to handle a wider and wider range of
situations and standard techniques for systems development and engineering are dra-
matically impacted. Combination of programs, modules or functions become a matter
of multiple actors within controlled life–cycles, possibly geographically distributed.

Dealing with Complexity

Managing and pruning complexity are recurrent problems in any scientific rea-
soning. The activities of decomposing problems into more manageable subproblems
and propose abstract representations to hide unnecessary details are the keys to prop-
erly understand a given situation and to successfully provide solutions. The degree
to which these subproblems may be separated and recombined is the principle of
modularity.

Model-Driven Engineering (MDE) is based on the principle of abstraction which
consists in proposing partial and abstract representations to solve a given subproblem.
The MDE also proposes to shift practices from “models for documentation“ to “models
for production“ thus promoting models as first-class entities and productive artifacts
to make software engineering more efficient, cost–effective and safer.

Model Composition in MDE

While the application of modularity and abstraction principles helps tackling com-
plexity, designers are required to manipulate an increasing number of partial repre-
sentations. The activity of decomposing problems needs a step of recomposition at a
specific time to get a global representation of a system under construction and to reason
about the system as a whole for verification, validation and consistency checking pur-
poses. The recomposition step is however an error–prone and time–consuming activity.
Within the framework of MDE, model composition is an active field of research that

1

2 Introduction

focuses on automating the composition of model–based artifacts in a multi–modeling
environment.

Genericity in Model Composition Techniques

Model composition is a challenging topic of interest in which the definition of
new approaches should benefit from existing model composition techniques. In the
perspective of proposing adaptable model composition approaches, genericity plays
a significant role. Generic model composition frameworks (GCFs) deal with various
kinds of models in various contexts. However GCFs are initially designed to tackle a
specific goal. When new goals emerge, building new GCFs may benefit from existing
GCFs and things go round and round.

Identifying Model Composition Key Concepts

Reuse and adaptation imply to identify commonalties among GCFs and shift from
composition as an operator (a single definition for a single use – whatever large the
spectrum of composable models could be) to composition as an operation (a customiz-
able definition and a choice of existing operators to achieve a possibly large range
of goals). However, the lack of a common formalism for analyzing and comparing
the multitude of model composition approaches hinders the identification of reusable
artifacts.

The main contribution of this thesis is to propose a novel definition of model
composition as a pair of a mapping and an interpretation. A mapping is a set
of alignment rules between patterns of model element to detect how similar a set of
models are. An interpretation is the representation of both the purpose of the model
composition process and the user’s expectations on the model composition process
by-products. This definition paves the way to a theoretical framework that helps
(i)unifying the definition of existing model composition techniques and (ii)automating
the process of building problem–specific model composition tools.

The main contribution is supported by two subsidiaries propositions :
– We propose categories to classify existing model mapping techniques
and existing model mapping interpretations. This leads to the definition
of an interpretive lens for analyzing and comparing existing model composition
approaches.

– We define a modeling language that supports the definition of generic map-

pings among models and the definition of interpretations. The language is
inspired from the proposed categories.

Validation

We implemented a prototype that supports the novel definition of model composi-
tion. We validate the main contribution of this thesis through three experiments : (i)we
use the theoretical framework to unify four existing model merging techniques and

Introduction 3

propose a unique kernel for model composition ; (ii)we demonstrate the applicabil-
ity of the framework on the integration of legacy Application Programming Interface
(API) for the configuration and management of heterogeneous video and broadcast-
ing equipments in collaboration with industrial partners from Technicolor 1 ; (iii)we
demonstrate the applicability of the framework on the synchronization of heteroge-
neous models in the context of modeling service–oriented architectures (SOA).

Outline

Chapter 1 presents the thesis background, the classification of the key concepts of
model composition, and the systematic literature review protocol and results. Chap-
ter 2 proposes a formal definition of the theoretical framework for unifying model
composition approaches. Chapter 3 details the ModMap modeling language for the
definition of mappings and interpretations and how it helps building new model com-
position frameworks. Chapter 4 lists experiments that validate the relevance of the
ModMap modeling language with regard to the definition of model composition ap-
proaches. We conclude this thesis by providing perspectives and insights of this work
regarding future research on model composition techniques.

1. http ://www.technicolor.com/en/hi/technology/research-and-innovation-centers/rennes

4 Introduction

Chapitre 1

Model Composition in Software
Engineering

This chapter presents the context in which this thesis has been conducted and
draws up the state of the art in literature about the importance of this thesis topic in
computer science in general and software engineering in particular.

The purpose of this chapter is threefold : (i)Explore the current state of practice
in software development and give an overview of how modular design, MDE and
model composition bring pragmatic solutions to deal with the growing complexity of
systems ; (ii)Propose an intuitive definition of the key concepts in model composition
to provide an interpretive lens for comparing existing model composition approaches ;
(iii)Conduct a systematic literature review on model composition techniques to vali-
date the proposed key concepts and ultimately propose a unified theoretical framework
on model composition for enhancing model composition tools reuse and adaptation.

Figure 1.1 illustrates the outline of this chapter : Section 1.1 presents how model
composition helps tackle complexity in systems design and development. Section 1.2
proposes categories of the key concepts in model composition to classify existing model
composition techniques. Section 1.3 presents the protocol and results of the systematic
literature review that we conducted.

1.1 Modularity in Software Engineering

Facing a given problem, the scientific reasoning implies the decomposition of a
problem into simpler and more manageable subproblems. The activity of decomposing
problems thus put scientists in situations that they may already know or for which they
are most likely to successfully find a solution. The degree to which these subproblems
may be separated and recombined is the very principle of modularity.

5

6 Model Composition in Software Engineering

Systematic Literature
Review on Model

Composition Approaches

Overview of the
Triskell team

model composition
approaches

Intuitive definition
of categories for

correspondences and
interpretations

Validation of
categories using a

criterion of precision

1

2

3

4

Modularity,
Abstraction and

Background
in Software
Engineering

Figure 1.1 – Illustration of the process followed in Chapter 1

1.1.1 Modularity

In Computer Science, modularity allows the reuse and the composition of small
chunks of programs to achieve a bigger purpose.

In the fifties, automatic programming was a very active field of research. Automatic
programming refers to combining various routines for a single machine to perform
the final computation. For instance, Curry proposed a linear notation to express the
combination of program routines in [Cur54].

In the seventies, Dijkstra [Dij97] and Parnas [Par72] introduced the Separation of
Concerns (SoC) principle that invites designers to break down systems into units of
behavior or units of function to improve program composition and to control the
ever-growing complexity of systems.

In the nineties, Chandy and Taylor [CT90], Vargas–Vera [VV95] and Jackson [Jac90]
approaches addressed the challenge of software complexity in proposing to automate
the combination of units of decomposition in imperative programs. These approaches
provide answers to Jackson’s statement about “[h]aving divided to conquer, we must
reunite to rule” [Jac90].

Within the Object–Oriented (OO) paradigm, the application of the SoC principle
helps designers to decompose problems into objects that represent functional unit
of the overall system. OO programming is a technology that can fundamentally aid
software engineering because the underlying object model provides a better fit with
real domain problems. However according to Kiczales et al., in many situations, the
OO paradigm is not sufficient to clearly capture all the important design decisions that
a program must implement.

Thus, Kiczales et al. proposes to separate the main concern of a system from the
non functional and cross-cutting concerns [KLM+97]. He proposes to capture non
functional and cross–cutting code of a given system into units of decomposition called
aspects. In the event of building a consistent and global view of a system, aspects
are composed with one another within an operation called weaving. An aspect is
decomposed into two parts : (i)the advice contains the code of the concern that is to

Modularity in Software Engineering 7

be woven in specific places (i.e., join points in the control flow of the main concern ;
(ii)a pointcut descriptor that allows identifying join points within the main concern.
Most tools that support the Aspect–Oriented Programming (AOP) paradigm extend
existing programming languages such as C or Java. For instance, the AspectJ extends
Java both with a new class named “aspect” that contains pointcuts and advices, and
with a specific syntax for the definition of both pointcuts and advices.

Considering the evolution of practices in modular design and the difficulty to
tackle the ever growing complexity of systems, the MDE approach emerged as a new
approach for software engineering.

1.1.2 Abstraction and Model–Driven Engineering

The MDE approach is based on the principle that “everything is a model”. Going
further from the use of design patterns [GHJ+95] and aspects [KLM+97], MDE targets
the manipulation of a large number of models to capture the various concerns of a
system. The definition of a model, proposed by the Object Management Group (OMG)
is as follows :

[A] model is a representation of a part of the function, structure and/or
behavior of a system. [A model is a] specification [that] is said to be formal
when it is based on a language that has a well–defined form (“syntax”),
meaning (“semantics”), and possibly rules of analysis, inference, or proof
for its constructs. The syntax may be graphical or textual. The semantics
might be defined, more or less formally, in terms of things observed in the
world being described (e.g., message sends and replies, object states and
state changes, etc.), or by translating higher-level language constructs into
other constructs that have a well–defined meaning. [OMG01, §2.2.1, p.3]

A model encapsulates a partial and/or simplified description of a real “object”
from a specific point-of-view and for a given purpose. Software specification and
documentation are examples of abstractions that allow various people to participate,
interact and exchange specific information about a given system under development.

The OMG proposed to go one step further and to move from “design for documen-
tation” to “design for production”, promoting models (i.e., abstractions) as first-class
entities. In other words, models should both document software and be machine read-
able to make software development safer, cheaper and more efficient.

Building models require a modeling language that defines the concepts (i.e., model
elements), the structure and the semantics of a model. Concepts, structure and seman-
tics are captured into a representation called a meta–model : a model at a higher level of
abstraction that defines the modeling language of a specific model. The conformance
relationship between a model and its meta–model is such that : a model only contains
concepts from the meta–model and satisfies the meta–model constraints.

Since a meta-model is yet another model, it conforms to its own meta-model that
we call meta-meta-model. Meta-meta-models are usually reflexive (i.e., they define
their own elements, structure and semantics) to avoid the multiplication of the levels
of abstraction. In the terminology of MDE, this thesis focus on the technical space

8 Model Composition in Software Engineering

of ModelWare as shown in the pyramidal representation of meta-models (see Fig-
ure 1.2) [FEB06].

MOF
ECORE

ECORE
UML

M3

M2

M1

M0

UML

REAL WORLD

meta-meta-models

meta-models

models

concrete system

Figure 1.2 – A pyramidal representation of the levels of abstraction in Model–Driven
Engineering.

In the context of this thesis, we focus on the Modelware technical space which
own general-purpose modeling languages (GPML) such as MOF, UML or EMFCore
(ECore) and domain-specific modeling languages (DSML) such as SysML.

1.1.3 Modularity, Abstraction and Model Composition

Building models following the approach of MDE leads to the development of
dedicated languages and models to ease the specification of systems. Dealing with
complexity requires to build modular model. Modular design subsequently imposes
to create models for each concern that the system should tackle. Thus, designers are
required to manipulate an increasing number of models. This situation makes hand-
made composition an error-prone and time-consuming activity. Model composition
approaches helps in automating the process of recombining models with one another
to get dedicated and consistent views of the system under design/development.

1.1.4 A brief Overview of Model Composition Techniques

Most model composition techniques available are built for a specific purpose in a
given context. As an illustration, Sections 1.1.4.1 to 1.1.4.4 briefly describe the model
composition approaches proposed by the Triskell 1 team and its partners. This demon-
strates that even among persons who share the same culture and knowledge about
MDE and model composition, different contexts and purposes prevent embodying

1. http ://www.irisa.fr/triskell

Modularity in Software Engineering 9

the experience of individuals in the definition of a common approach for composing
models.

1.1.4.1 Kompose : A Generic Model Composition Tool

Kompose [FBF+08] is a model composition technique that supports merging ho-
mogeneous models (i.e., models that conform to the same meta–model). The merging
process is decomposed into four steps as follows :

1. Adapting the models that are going to be merged with directives, generalized
from [RGF+06] to prepare or force the merge of two models elements.

2. Matching model elements with one another using signatures. Signatures are the
specification of the matching mechanism. Signatures state on which data two
model elements should be compared with one another.

3. Merging the model elements uses reflexivity and introspection. Model elements
that match are merged into a single model element while the elements with no
counterpart are added untouched in the output model.

4. Finalizing the merging process using directives to tune the output model to get
the expected result.

The Kompose tool has an extension mechanism called “specialization”. A special-
ization is the adaptation of the model merging tool to support various MOF–based
modeling languages. The Kompose approach allows automating most of the merging
process whilst providing a certain degree of customization and user interaction if the
situation requires it.

1.1.4.2 SmartAdapters : A Model Weaver that supports Variability

The SmartAdapters [MPL+09 ; LMV+07] approach has been developed in collab-
oration with the Triskell team, the CoCoa team 2 from the LIFL French laboratory and
the MODALIS team 3 from the I3S French laboratory. SmartAdapters has been origi-
nally designed to provide capabilities for functional or extra–functional concerns to be
reused in the context of variability.SmartAdapters is a homogeneous and asymmetric
approach to weave reusable concerns (i.e., aspects) into one or several base models.
Each aspect is related to an adapter that declares a composition protocol. A compo-
sition protocol is a set of atomic operations and a set of target model elements that
specifies how the aspect should be woven with other aspects. The adapter specification
is the basis for identifying reusable aspects. Inspired by Software Product Line (SPL),
the composition protocol supports optional parts, variants definition and dependency
constraints to ensure consistency. The SmartAdapters process is composed of five steps
as follows :

1. Generating an extensible Aspect-Oriented Modeling (AOM) framework specific
to a meta–model.

2. http ://www2.lifl.fr/GOAL/cocoa/
3. http ://modalis.polytech.unice.fr/

10 Model Composition in Software Engineering

2. Defining aspects and associated weaving directives.

3. Matching all the places that match the aspect model. This step is supported by a
pattern–matching engine that relies on Drools 4.

4. Processing the Drools rules in memory.

5. Weaving the base model with the aspects models at runtime.

1.1.4.3 GeKo : A Generic Aspect Oriented Composer

With GeKo (Generic Komposer) [MKB+08], Morin et al. explore the use of mappings
between different views of an aspect in the context of software product lines. GeKo
relies on the definition of a pointcut model, possibly automatically generated from
an automatic Prolog-based pattern–matching mechanism, and on the definition of
two morphisms that identify which operations can be performed on the base model
and on the aspect models. Morphisms partition the base and aspect models into sets
that contain model elements to keep unchanged, model elements to remove, model
elements to be replaced and model elements to be added in the based model. The GeKo
process is as follows :

1. Weakening the metamodel of the based model allows the definition of abstract
pointcuts which can match a larger number of model elements in the base model.
Weakening a metamodel consists in removing constraints, declare all feature as
optional and making all abstract model elements concrete.

2. Identifying join points is achieved by a Prolog–based pattern–matching mech-
anism that tries to match pointcut with model elements from the base model. A
Prolog query is executed over a knowledge base containing the domain meta-
model, the base model, and the abstract pointcuts and results are converted back
into a Kermeta [MFJ05 ; JBF10] data-structure.

3. Applying morphisms to match pointcuts with the advice model to compute the
sets of model elements to add, to replace, or to remove.

4. Finalizing the weaving process by constructing a result from the union of the
models elements to keep, to add and to replace, and replacing or removing model
elements that should not be part of the result. Then a “cleaning” step is performed
to delete the relationships to the model elements that have been removed in the
the first phase of the finalization.

1.1.4.4 Semantic-based Weaving of Scenarios

In [KHJ06], Klein et al. proposed an algorithm to weave aspects into Message
Sequence Charts (MSC), taking into account the semantics of the MSCs. Aspects are
represented as alternative scenarios that address specific behavior in case the nominal
scenario cannot be executed. Providing a matching algorithm that allows the detection
of multiple minimal matchings in MSCs, they extend the matching algorithm to detect

4. http ://www.jboss.org/drools/drools-expert.html

Modularity in Software Engineering 11

matchings into a possibly infinite set of behaviors extracted from hierarchical MSCs
(hMSC). The global process consists of phases as follows :

1. Detect potential matches from unfolding hierarchical MSC and produce an
acyclic hMSC.

2. Detect future matches from unfolding hMSCs, starting from end nodes.

3. Replace all join points detected from the previous steps with the advice.

This approach suffers from several limitations inherent to the MSC but provide a
procedure to weave aspects into MSC at some degree. This approach does not seem
generic at a first glance, since the definition of pointcut and advice, and the proposed
algorithms are specific to the MSC structure.

1.1.4.5 Discussion

In the light of these four model composition techniques, we intuitively identify
three similarities as follows :

– Every technique composes a pair of models.
– Every technique proposes a mechanism for detecting similar or equivalent model

elements (i.e., matching).
– Every technique proposes a mechanism that uses matchings for combining mod-

els.
Among these very similarities, we observe variability that may depend on (i)the
result that designers expect, (ii)the characteristics of the models, or (iii)the degree of
genericity that the techniques propose. In Section 1.1.5, we discuss existing approaches
and frameworks for comparing model composition techniques.

1.1.5 Comparing Model Composition Techniques

We presented in Section 1.1.4 several model composition techniques that allow
composing models with one another in a specific context or for a specific purpose.
Inspired by previous works, these techniques were nonetheless mainly developed
from scratch. Reusing and adapting existing model composition techniques to address
new contexts or purposes is still a challenge and remains a difficult and error-prone
activity.

In [JFB08] and [Jea08], Jeanneret et al. propose a framework to compare model
composition techniques and listed a dozen dedicated model composition techniques.
The basics of Jeanneret’s comparison framework is the triplet what-where-how ques-
tions identifying respectively which elements should be composed, where elements
should be inserted or modified and how the composition process works to get the
expected result. This work also proposes naming conventions to distinguish between
model composition, model weaving, model merging, and model alignment that are
often mixed up in the literature. As Jörg Striegnitz stated, coming to an agreement on
model composition terminology needs a “...theory of extensible languages to reason
about language ... compositions.”[CØV02, 2002, p.13]. Until now, we are not aware of
any such unifying theory or any such consensus.

12 Model Composition in Software Engineering

Extending the definition of model composition to a wider ranger of operations
on models is usually referred as model management in the terminology of Bern-
stein [Ber03]. In [BCE+06], Brunet et al. proposed a framework for comparing existing
merging approaches. They propose a set of model management operations and they
identify relevant properties for a model merging operator. Similarly, Boucké et al. pro-
posed to characterize relations between various views of a system to extract a compar-
ison framework [BWH+08]. The comparison framework stresses the following three
dimensions : Usage which refers to the purpose of the relationships between views,
Scopewhich encompasses the range of the relationships, and Mechanismwhich details
the nature of the elements related with one another. In [Ber03], Bernstein proposed
several model management operators but still he asks for “[m]ore detailed semantics
of model management operators”[Ber03, 2003, p.11] and a definition of “the boundary
of useful model management computations”[Ber03, 2003, p.12]. In [ZDD06], Zito et al.
also propose to see the issues of “package merge and extension...in a even wider con-
text as particular problems in generic model management,...towards a general theory
of model manipulation and transformation.”[ZDD06, 2006, p.5].

Steel and Jézéquel concludes their proposition on model typing [SJ07] stating that
“[t]he lack of proper mechanisms for typing operations on models such as model
transformations leads to brittle and overly restrictive reuse characteristics” [SJ07, 2007,
p.11]. We think that a common background for comparing and analyzing existing
model composition techniques is necessary to define and/or identify such reuse char-
acteristics.

In the light of these attempts to classify or at least organize model composition tech-
niques, the computer science community and especially the model–driven engineering
community is eager to have such a comparison tool or theory on model composition
to “...help giving first class status to model composition...”[BBDF+06, 2006, p.14] and
to leverage research on model composition.

1.2 Key concepts in Model Composition

Among the multitude of model composition techniques and tools available, we
consider that organizing the body of knowledge encompassing existing model com-
position tools and techniques is the first step towards understanding the key concepts
in model composition and leveraging the applicability of Domain-Specific Language
(DSL) in software developers and designers day-to-day activities.

In the light of Section 1.1.4.5 and previous attempts to classify model composition
approaches (see Section 1.1.5), we observe that correspondences and interpretations
of these correspondences have a strong influence in the characterization of model
composition approaches. We expect that proposing categories of correspondences and
categories of interpretations will ease comparing, classifying and detecting reusable
modules in existing model composition techniques.

Section 1.2.1 propose the definition of six categories of correspondence relation-
ships that are the basis of the identification of the model elements involved in any

Key concepts in Model Composition 13

model composition process. Since model composition techniques work towards a spe-
cific purpose, we propose fifteen kinds of interpretation for these correspondences
divided in three categories (see Section 1.2.2). Interpretation is what we define as the
meaning of the correspondence relationships for a given purpose in a specific context.
For the purpose of validation, we conducted a systematic literature review (see Sec-
tion 1.3 to evaluate how precise and relevant each category is, regarding the state of
practice in model composition.

1.2.1 Correspondences

In the definition of an operation that manipulates models to achieve a specific goal,
we consider correspondences as any kind of implicit or explicit relationships between
sets of models or sets of model elements. This section presents an intuitive definition
of the six kinds of correspondences relationships (see Figure 1.3) that we propose. The
proposed classification is based on an extensive work on identifying correspondence
relationships from various model manipulation techniques. Sections 1.2.1.1 to 1.2.1.6
present an intuitive definition of the six categories of relationships.

1.2.1.1 Operator-based correspondence

Operator-based correspondence relationships rely on a set of functions or similar
constructs which operational semantics encompasses both the specification of the
correspondence between model elements and the interpretation of the correspondence.
This category includes techniques which provide predefined operators with fixed
semantics for a given purpose (e.g., [LNK+01 ; ASM+10 ; PGP+07 ; Ber03 ; Bar08]).

1.2.1.2 Pattern-based correspondence

Pattern–based correspondences are patterns or constructs very similar to patterns to
both find and express similarities between model elements. This category ranges from
very straight-forward pattern definitions for term-matching on names or other linguis-
tic terms to complex join-points, pointcuts, signatures or morphisms that provide more
control, more expressiveness and more flexibility in the definition of correspondences
(e.g., [Cla02 ; Jez08 ; BSM+07 ; ACL+10 ; MKB+08 ; TT08]).

1.2.1.3 Rule-based correspondence

Rule–based correspondences are expressed as specific rules that support identifi-
cation, selection and filtering of model elements that should be in relation with one
another (e.g., [CRR+07 ; JWE+07 ; HKG+10 ; SY10 ; PBB+09 ; BTF05]). Similar to pat-
terns that consist in looking for templates adequateness to identify correspondences,
rules allow nevertheless more expressiveness and more complex computations.

14 Model Composition in Software Engineering

1.2.1.4 Constraint-based correspondence

Satisfying constraints such as pre- or post-conditions, invariants, context-free or
context-dependent is another way of detecting correspondences. We call this kind of
correspondence a constraint-based correspondence (e.g., [PVSG+08 ; BBN+10 ; AT98 ;
IK04]).

1.2.1.5 Model-based correspondence

Model–based correspondences are formally defined by a modeling language or a
well–typed representation (i.e., a meta–model). A correspondence model is a dedicated
tree–based or graph–based representation with its own structure and semantics. The
creation of such model is often supported by an (semi–)automatic process that uses
other kind of correspondences (e.g., [BHP00 ; MBJ08 ; NB04 ; PR04 ; SE06 ; ZLL09 ; ZC07 ;
GW09]).

1.2.1.6 Delta representation-based correspondence

When correspondences are identified by analyzing the difference between two or
more versions of the same representation, we call them delta-based correspondences.
Deltas may be captured as traces, diffs (similar to version control tools), or in a dedi-
cated model (e.g., [CDRP08 ; CRE+08 ; EPK06]).

Correspondences

Operator-based

Pattern-based

Rule-based Constraint-based

Model-based

Model-based

Figure 1.3 – Intuitive classification of correspondences

1.2.2 Interpretation

Interpretation is what Jeanneret et al. called the “why”, that is the “...specification
and requirements of the [model] composition”[JFB08, 2008, p.5]. In other words, an
interpretation is what relates the correspondence relationships to the global purpose of
a model composition technique. Classifying interpretation of correspondences is sim-
ilar to intentional views proposed by Mens et al. proposed in [MMW02]. Intentional
views define intention relationships between views and bound a specific meaning to

Key concepts in Model Composition 15

each intention relationship. Instead of considering the relationship and its interpreta-
tion as highly coupled, we rather distinguish the correspondence relationships from
their interpretation to allow comparing techniques with each other and to eventually
increase the reusability of the correspondence relationships and of the interpretation
(see Figure 1.4). We identified three major situations in which model composition needs
specific interpretations to handle a wide range of software development activities :

– The creation of multiple models about the same of closely related concepts leads
to overlap. We propose seven interpretations to reconcile these models into a
unified representation and to deal with divergences.

– Separating concerns of a base model into reusable fragments leads tocross-cutting
models that describe ways to alter the behavior or structure. We propose three
interpretations to reflect the changes on the base model.

– Run-time interaction between models may allow to fulfill a given goal. We
propose three interpretations that specify how models are assembled with one
another.

1.2.2.1 Overlapping

Composing a set of overlapping model with the intent to create a unified rep-
resentation is usually referred as model merging. Overlapping models contain same
or closely related fragments that most model merging techniques use as join point.
The seven interpretations presented below are the expression of the variability in the
merging process.

Equivalence An equivalence interpretation means that the model elements that are
related to each other have the same semantics and structure. A merging process will
create a single concept from these model elements and will aggregate their attributes
and references.

Similarity Similarity is close to an equivalence interpretation in a sense that the
sets of elements have a close but still different structure/semantics. Small changes
are thus necessary to align the two set of models with each other to create a unified
representation.

Generalization A generalization interpretation implies that one set of model ele-
ments acts as a specialization/generalization of another set of elements. In Object–
Oriented design, it means that one set of model elements inherits/is–inherited–by an-
other set of model elements. Specialization/generalization is very useful when models
participates in model refinement activities.

Aggregation An aggregation interpretation means that one set of model elements
“contains” another set of model elements. In Object–Oriented design, it means that
one set of model elements has a is-part-of relationship to the other set of model

16 Model Composition in Software Engineering

elements and respectively the other set of model elements has a has-a relationship to
the source set of model elements.

Override An override interpretation means that one set of model elements is replaced
by another set of model elements. This happens when a specific representation is
deprecated and we replace this representation with a more adequate one.

Information Gap An information gap interpretation means that a specific set of
model elements (i.e., a fragment of structure) is required to properly merge the set of
model elements.

Ad hoc An ad hoc interpretation applies in all other situations when the construc-
tion of the unified representation needs more complex computation such as model
transformations to achieve a specific manipulation on a set of model elements.

1.2.2.2 Cross-cutting

Composing a set of cross-cutting fragments (i.e., aspects) that describe ways to alter
the behavior or structure of a base model is usually referred as model weaving. Cross-
cutting aspects are associated with pointcuts that help detect the join points in the
base model and in aspects to create a meaningful and consistent representation. Model
weaving covers three interpretations that allow (i)replacing a fragment with another
one, (ii)augmenting a fragment with the contents of another fragment or (iii)removing
a specific fragment that should not participate in the definition of the global system.

Replace Replacing an aspect with another aspect implies that one structure or behav-
ior defined in an aspect is not useful for a given purpose. This aspect is thus removed
and a more adequate aspect is woven instead.

Augment Aspects often represent different concerns that possibly work together to
achieve a specific goal. The intent of augmenting an aspect with another aspect is to
mix the structure and behavior of the concerns.

Remove Since aspects are concerns of a system, we may consider that every single
concern is not useful for every purpose of a given system. It means that for a specific
use a of system, an aspect may be not adequate or not relevant for a specific purpose,
or may clash with another aspect. Such a situation requires an operator that allows
removing an aspect from the base model.

1.2.2.3 Interaction

Interaction interpretations refer to behavioral models only. Behavioral models de-
scribe the expected behavior of a given system. This behavior is represented as a set of

Key concepts in Model Composition 17

activities (i.e., model elements are activities) which execution has to follow a specific
order. The order of execution is usually described on a time basis.

In this context, correspondence relationships allow to define an order of execution
between sets of activities.

Sequence A correspondence relationship that is interpreted as a sequence means
that model elements from one model are executed before or after the model elements
from another model.

Parallel Parallel interpretation is close to the notion of parallelism in General-purpose
Programmation Language (GPL) : models elements from different models are executed
at the same time.

Co-dependency Co-dependency is the state of two sets of model elements to be
mutually dependent. Project planning and workflow management activities propose
four relations to represent the relative execution of two sets of models :

– start-to-start means the execution of one set of model elements is allowed to start
only if another set model elements has been started.

– start-to-finish means the execution of one set of model elements is not allowed
to finish until another set model elements has been started.

– finish-to-start means the execution of one set of model elements is not allowed
to start until another set model elements has been finished.

– finish-to-finish means the execution of one set of model elements is not allowed
to finish until another set model elements has been finished.

Interpretations

Overlapping

Equivalence

Cross-Cutting

Replace

Interaction

Sequence

Similarity

Generalization

Aggregation

Override

Information Gap

Ad-Hoc

Augment

Remove

Parallel

Co-dependency

Delete

Add

Figure 1.4 – Intuitive classification of interpretations. This classification includes the
“add” and “delete” interpretations from Section 1.2.2.4, linked with dotted lines.

18 Model Composition in Software Engineering

1.2.2.4 Uncategorized Interpretations

As an extension to the three situations described in the beginning of Section 1.2.2,
we assume that knowledge about the internal structure of a model is not necessary to
propose correspondence relationships. This situation leads to the proposition of two
additional interpretations that allows inserting or removing set of model elements to
produce an expected result. We provide the following semantics for these interpreta-
tions :

Add An add interpretation allows inserting a set of model elements into another set
of model elements. Since the correspondence relationship is drawn between models,
we may consider two situations where an add interpretation occurs :

– Experts have a tacit knowledge of the internal structure of a model and decide
to add a specific set of model elements from one model into another model.

– The goal of the model composition operation is to include model elements that
do not exist in the model to compose. Experts thus provide enough data to build
these model elements prior to their composition.

However, if the model composition process has no data about the internal structure of
the models, we expect that the set of model elements to add will have no side–effect
on the original set of model elements.

Delete A delete relationship allows removing a set of model elements from another
set of model elements. Similarly to the add interpretation, the remove interpretation is
used in two situations as follows :

– Experts have a tacit knowledge of the internal structure of a model and decide
to remove a specific set of model elements owned by one of the model involved
in the correspondence relationship.

– A well–known set of model elements should be discarded from the result.
However, if the model composition process has no data about the internal structure
of the models, there is no guaranty that the original set of model elements will be
changed.

1.3 Validating the key elements of model composition

We propose to validate the categories of correspondence relationships and inter-
pretation proposed in Section 1.2 against model composition techniques from the
literature. Since a multitude of model composition techniques are available to support
multiple software engineering activities in multiple domains of application, time has
come to review and reason about model composition at a higher level of abstraction.
We conducted a systematic literature review to extract and collect valuable, analyzable
and reusable information that validate the proposed categories. Detecting similari-
ties between multiple model composition techniques developed for specific purposes
provide enough insights for proposing efficient ways to define and build model com-
position tools for specific problems not yet addressed.

Validating the key elements of model composition 19

In the following sections, we use the protocol template [BMA+05] proposed by
Biolchini et al. and adapted from the work of Kitchenham [Kit04] to describe the
systematic review protocol (see Figure 1.5).

Section 1.3.1 details the systematic literature review protocol and process. For pre-
sentation purposes, we regroup data as follows : (i)Section 1.3.1.1 presents problems,
research objectives and hypotheses that this review should help respectively to an-
swer, to corroborate and to validate ; (ii)Section 1.3.1.2 lists keywords and synonyms
that literature usually use to refer to model composition ; (iii)Section 1.3.1.3 details re-
quirements which characterize the relevance of the information that we gathered from
articles ; (iv)Sections 1.3.1.4 and 1.3.1.5 presents the data sources, the selection process,
the selection review and the initial list of articles selected for the systematic literature
review, with regard to selection criteria ; (v)Section 1.3.1.6 presents biases and threats
to the internal validity of the current systematic literature review ; (vi)Section 1.3.1.7
details how we choose to list extracted data.

Sections 1.3.2 to 1.3.4 presents the body of data that we extracted from the applica-
tion of the systematic literature protocol. Section 1.4 ultimately discusses results and
expectations with regard to the research objectives.

1.3.1 Systematic Review Protocol

1.3.1.1 Research Objectives

The systematic literature review should provide answers to the following research
questions :

Q1 Do all model composition techniques use correspondences between models or
model elements and is there a specific meaning given to these correspondences ?

Q1a Do the correspondences fit into the proposed categories ?

Q1b Do the meanings reflect the category proposed interpretations ?

Q2 Do model composition goals and purposes cover a wide range of software devel-
opment activities ?

With regard to the intuitive categories of correspondence and interpretation that
we proposed in Section 1.2, we expect to validate the following hypotheses named
after the questions they refer to :

H1.0 Every model composition technique uses a set of correspondence relationships
and a specific interpretation given a specific problem

H1a.1 Correspondence relationships from the literature should correspond to the pro-
posed categories

H1b.1 Interpretations from the literature should correspond to the proposed categories

H1.3 The list of correspondence and interpretation is exhaustive and precise enough
to cover all model composition techniques

H1.4 We observe an even distribution of the model composition techniques in the
proposed categories

20 Model Composition in Software Engineering

Systematic Review in Software Engineering Technical Report ES 679/05

COPPE/UFRJ/PESC Biolchini, Mian, Natali, Travassos
25

Appendix 1 Systematic Review Protocol Template

1. Question Formularization
1.1. Question Focus
1.2. Question Quality and Amplitude

- Problem
- Question
- Keywords and Synonyms
- Intervention
- Control
- Effect
- Outcome Measure
- Population
- Application
- Experimental Design

2. Sources Selection
2.1. Sources Selection Criteria Definition
2.2. Studies Languages
2.3. Sources Identification

- Sources Search Methods
- Search String
- Sources List

2.4. Sources Selection after Evaluation
2.5. References Checking

3. Studies Selection
3.1. Studies Definition

- Studies Inclusion and Exclusion Criteria Definition
- Studies Types Definition
- Procedures for Studies Selection

3.2. Selection Execution
- Initial Studies Selection
- Studies Quality Evaluation
- Selection Review

4. Information Extraction
4.1. Information Inclusion and Exclusion Criteria Definition
4.2. Data Extraction Forms
4.3. Extraction Execution

- Objective Results Extraction
i) Study Identification
ii) Study Methodology
iii) Study Results
iv) Study Problems

- Subjective Results Extraction
i) Information through authors
ii) General Impressions and Abstractions

4.4. Resolution of divergences among reviewers
5. Results Summarization

5.1. Results Statistical Calculus
5.2. Results Presentation in Tables
5.3. Sensitivity Analysis
5.4. Plotting
5.5. Final Comments

- Number of Studies
- Search, Selection and Extraction Bias
- Publication Bias
- Inter-Reviewers Variation
- Results Application
- Recommendations

Section 1.3.1.1
S2ction 1.3.1.2

S2ction 1.3.1.p
S2ction 1.3.1.5
S2ction 1.3.1.6

S2ction 1.3.1.3

S2ction 1.3.2
S2ction 1.3.3
S2ction 1.3.p

S2ction 1.3.5

S2ction 1.3.1.7

Figure 1.5 – Template proposed by Biolchini for the definition and execution of sys-
tematic review protocol. For presentation purposes, we regroup the description of the
protocol, the extracted data, and the results into nine sections referenced on the figure.

Validating the key elements of model composition 21

H2.0 A wide range of the software life-cycle activities are supported by model com-
position techniques

1.3.1.2 Model Composition and Synonyms

The selection of a relevant set of articles relies on a proper definition of keywords
and synonyms to look for model composition techniques. The term model is not pre-
cise enough to produce interesting results by itself and since some model composition
techniques often refer the the higher level of abstraction of a model to present their
approaches, we need to add metamodel as part of the keywords of interest. Looking
for model composition brings out a lot of results since the term composition is overloaded
in the literature. However, this helps to capture a wider range of techniques. In ad-
dition to composition, authors often use the terms merge(-ing), fusion, or weaving which
corresponds to specific applications of model composition in Software Engineering
(SE). Some of them are discussed in Section 1.3.2

1.3.1.3 Valuable Information Characterization

The identification of relevant information in articles must provide answers to the re-
search objectives that we define in Section 1.3.1.1. The characterization of the relevance
of the information is represented as a set of requirements as follows :

R1 Authors use an explicit or an implicit representation of correspondences between
models and/or metamodels.

R2 A model composition technique has a specific purpose for which it was designed
for

R3 A set of correspondences has at least one meaning (interpretation) which is pre-
sented in the paper

From these requirements, we should gather enough data to classify existing model
composition techniques with regard to the categories of correspondence relationships
and interpretations proposed in Section 1.2. Classification should help comparing
model composition approaches with one another. Exploring the uses of model com-
position in various software development activities is the first step in proposing an
interpretive lens to identify the core concepts of model composition. This will help
software designers, software architects and tool providers to reuse existing techniques
for their own needs.

1.3.1.4 Articles Selection Criteria and Methods

Articles of interest for this systematic literature review have been published in
software engineering conferences. Available and properly referenced technical re-
ports about model composition techniques are also valid candidates. The articles
are mainly written in English but French articles were also allowed. Articles that
we discuss in this review were extracted from electronic data sources including the
ACM Digital Library[Ass11], the IEEE Xplore Digital Library [IEE11b], the RefDoc

22 Model Composition in Software Engineering

Service [Ini11], the open access archive named HAL [CCS11], the IEEE Computer Soci-
ety Digital Library, [IEE11a], the CiteSeerX Digital Library [Pen11], the IBM Technical
Journals [IBM11], and the book series of Lectures Notes in Computer Science available
on SpringerLink [Spr11].

These data sources were crawled using web-based services to retrieve the references
of the articles to include in the selection. We use mainly the Google Scholar [Goo11]
service but also to some extent the Researchr [Res11], the SciVerse ScienceDirect [Els11],
the Oxford Journals [Oxf11], the ArnetMiner [KEG11] and CiteULike [Ove11] websites,
and several authors or research team projects homepages.

We perform our selection of articles using the following string that conforms to the
explanations of Section 1.3.1.2 :
model composition OR metamodel OR merging OR fusion OR weaving OR combination.

The articles that are selected for this review are only those which discuss model
composition operators or methods and techniques leading to the definition of such
model composition operator. The selection process starts by running the search on the
identified web-based search engines. Relevant articles are identified first by their title
and second by reading the abstract. If the articles do not discuss model composition
techniques or discuss the specific kind of relation in UML called composition, the article
is not included in the selection. Once a paper has been selected for review, it is read
entirely to capture valuable information. The adequateness of articles regarding selec-
tion criteria is checked by a main reviewer and at least by two more reviewers who
have an expertise on the domain of model composition.

1.3.1.5 Study selection

Among the articles that match the research criteria, some of them do not propose
any model composition technique or approach, but deal instead with industrial re-
quirements for efficient model merging [BE09], with internal properties of a specific
composition operator [PB09], or even with identifying compatibility issues with UML2
Package Merge [ZDD06]. The articles that were not proposing any model composition
technique or approach explicitly were removed from the set of selected articles for this
study. The complete list of articles that we selected for this systematic literature review
is presented in Table 1.1

Validating the key elements of model composition 23

Key Author(s) Title Year
[ACL+10] ❆❝❤❡r, ❈♦❧❧❡t, ▲❛❤✐r❡ et

al.
« Managing Variability in Workflow
with Feature Model Composition
Operators »

2010

[ACL+09] ❆❝❤❡r, ❈♦❧❧❡t, ▲❛❤✐r❡ et
al.

« Composing Feature Models » 2009

[AEC+07] ❆♥✇❛r, ❊❜❡rs♦❧❞,
❈♦✉❧❡tt❡ et al.

« Vers une approche à base de rè-
gles pour la composition de mod-
èles. Application au profil VUML. »

2007

[AJT+09] ❆♣❡❧, ❏❛♥❞❛, ❚r✉❥✐❧❧♦ et
al.

« Model Superimposition in Soft-
ware Product Lines »

2009

[ASM+10] ❆❧❢ér❡③, ❙❛♥t♦s, ▼♦r❡✐r❛

et al.
« Multi-view Composition Lan-
guage for Software Product Line
Requirements »

2010

[AT98] ❆❦s✐t et ❚❡❦✐♥❡r❞♦❣❛♥ ❙♦❧✈✐♥❣ t❤❡ ▼♦❞❡❧✐♥❣ Pr♦❜❧❡♠s

♦❢ ❖❜❥❡❝t✲❖r✐❡♥t❡❞ ▲❛♥❣✉❛❣❡s ❇②

❈♦♠♣♦s✐♥❣ ▼✉❧t✐♣❧❡ ❆s♣❡❝ts ❯s✐♥❣

❈♦♠♣♦s✐t✐♦♥ ❋✐❧t❡rs

1998

[BA00] ❇❡r❣♠❛♥s et ❆❦s✐t « Composing Software from Multi-
ple Concerns : A Model and Com-
position Anomalies »

2000

[BBN+10] ❇❡♥s❛❧❡♠, ❇♦③❣❛,
◆❣✉②❡♥ et al.

« Compositional verification for
component-based systems and ap-
plication »

2010

[BCR05] ❇♦r♦♥❛t,❈❛rsí et❘❛♠♦s « MOMENT : a formal MOdel man-
ageMENT tool »

2005

[BCR+07] ❇♦r♦♥❛t, ❈❛rsí, ❘❛♠♦s

et al.
« Formal Model Merging Applied
to Class Diagram Integration »

2007

[BHP00] ❇❡r♥st❡✐♥, ❍❛❧❡✈② et
P♦tt✐♥❣❡r

« A vision for management of com-
plex models »

2000

[BKB+08] ❇❛r❛✐s, ❑❧❡✐♥, ❇❛✉❞r② et
al.

« Composing Multi-view Aspect
Models »

2008

[BLTN10] ❇r♦tt✐❡r, ▲❡ ❚r❛♦♥ et
◆✐❝♦❧❛s

« Composing Models at Two Mod-
eling Levels to Capture Heteroge-
neous Concerns in Requirements »

2010

[BSM+07] ❇❛❧❛s✉❜r❛♠❛♥✐❛♥,
❙❝❤♠✐❞t, ▼♦❧♥❛r et al.

« Component-Based System Inte-
gration via (Meta)Model Composi-
tion »

2007

[BTF05] ❇❛❧❛❜❛♥, ❚✐♣ et ❋✉❤r❡r « Refactoring support for class li-
brary migration »

2005

Continued on next page

24 Model Composition in Software Engineering

Key Author(s) Title Year
[BWH10] ❇♦✉❝❦é, ❲❡②♥s et

❍♦❧✈♦❡t

« Composition of architectural
models : Empirical analysis and
language support »

2010

[Bar08] ❇❛rt❡❧t « Consistence preserving model
merge in collaborative develop-
ment processes »

2008

[Bel04] ❇❡❧❛♣✉r❦❛r ❯s❡ ❆❖P t♦ ♠❛✐♥t❛✐♥ ❧❡❣❛❝② ❏❛✈❛

❛♣♣❧✐❝❛t✐♦♥s

2004

[Ber03] ❇❡r♥st❡✐♥ « Applying Model Management to
Classical Meta Data Problems »

2003

[CBJ10] ❈❧❛✈r❡✉❧, ❇❛r❛✐s et
❏é③éq✉❡❧

« Integrating Legacy Systems with
MDE »

2010

[CDK+07] ❈✉r❜❡r❛,❉✉❢t❧❡r,❑❤❛❧❛❢
et al.

« Bite : Workflow Composition for
the Web »

2007

[CDRP08] ❈✐❝❝❤❡tt✐, ❉✐ ❘✉s❝✐♦ et
P✐❡r❛♥t♦♥✐♦

« Managing Model Conflicts in Dis-
tributed Development »

2008

[CRE+08] ❈✐❝❝❤❡tt✐, ❘✉s❝✐♦,
❊r❛♠♦ et al.

« Automating Co-evolution in
Model-Driven Engineering »

2008

[CRR+07] ❈❤✐t❝❤②❛♥, ❘❛s❤✐❞,
❘❛②s♦♥ et al.

« Semantics-based composition for
aspect-oriented requirements engi-
neering »

2007

[Cla02] ❈❧❛r❦❡ « Extending standard UML with
model composition semantics »

2002

[CSN08] ❈❤❡♥, ❙③t✐♣❛♥♦✈✐ts et
◆❡❡♠❛

« Compositional Specification of
Behavioral Semantics »

2008

[FDV07] ❋❛❜r♦, ❉✐❞♦♥❡t et
❱❛❧❞✉r✐❡③

« Semi-automatic model integra-
tion using matching transforma-
tions and weaving models »

2007

[DRMM+10] ❉✐ ❘✉s❝✐♦, ▼❛❧❛✈♦❧t❛,
▼✉❝❝✐♥✐ et al.

« Developing next generation ADLs
through MDE techniques »

2010

[EPK06] ❊♥❣❡❧, P❛✐❣❡ et ❑♦❧♦✈♦s « Using a Model Merging Language
for Reconciling Model Versions »

2006

[ES06] ❊♠❡rs♦♥ et ❙③t✐♣❛♥♦✈✐ts « Techniques for metamodel com-
position »

2006

[FBB+07] ❋❧❡✉r❡②, ❇r❡t♦♥, ❇❛✉❞r②
et al.

« Model-Driven Engineering for
Software Migration in a Large In-
dustrial Context »

2007

[FBF+08] ❋❧❡✉r❡②, ❇❛✉❞r②, ❋r❛♥❝❡
et al.

« A Generic Approach for Auto-
matic Model Composition »

2008

[DFB+05b] ❉✐❞♦♥❡t, ❋❛❜r♦, ❇é③✐✈✐♥
et al.

« AMW : a generic model weaver » 2005

Continued on next page

Validating the key elements of model composition 25

Key Author(s) Title Year
[FFR+07] ❋r❛♥❝❡, ❋❧❡✉r❡②, ❘❡❞❞②

et al.
« Providing Support for Model
Composition in Metamodels »

2007

[FGF+08] ❋r✐t③s❝❤❡, ●✐❧❛♥✐,
❋r✐t③s❝❤❡ et al.

« Towards Utilizing Model-Driven
Engineering of Composite Appli-
cations for Business Performance
Analysis »

2008

[GJ05] ●r♦❡♥♠♦ et ❏❛❡❣❡r « Model-driven semantic Web ser-
vice composition »

2005

[GKR+08] ●rö♥♥✐❣❡r, ❑r❛❤♥,
❘✉♠♣❡ et al.

« MontiCore : a framework for
the development of textual domain
specific languages »

2008

[GS03] ●öss❧❡r et ❙✐❢❛❦✐s « Composition for Component-
Based Modeling »

2003

[GW09] ●✐❡s❡ et ❲❛❣♥❡r « From model transformation to in-
cremental bidirectional model syn-
chronization »

2009

[HHJ+08] ❍❡♥r✐❦ss♦♥,
❍❡✐❞❡♥r❡✐❝❤, ❏♦❤❛♥♥❡s

et al.

« Extending grammars and meta-
models for reuse : the Reuseware
approach »

2008

[HKG+10] ❍❡♠❡❧, ❑❛ts,
●r♦❡♥❡✇❡❣❡♥ et al.

« Code generation by model trans-
formation : a case study in transfor-
mation modularity »

2010

[IK04] ■✈❦♦✈✐❝ et ❑♦♥t♦❣✐❛♥♥✐s « Tracing evolution changes of soft-
ware artifacts through model syn-
chronization »

2004

[JKB+06] ❏❛❝❦s♦♥, ❑❧❡✐♥, ❇❛✉❞r②
et al.

« Executable Aspect Oriented Mod-
els for Improved Model Testing »

2006

[JWE+07] ❏❛②❛r❛♠❛♥, ❲❤✐tt❧❡,
❊❧❦❤♦❞❛r② et al.

« Model Composition in Product
Lines and Feature Interaction De-
tection Using Critical Pair Analy-
sis »

2007

[JZF+09] ❏♦❤❛♥♥❡s, ❩s❝❤❛❧❡r,
❋❡r♥á♥❞❡③ et al.

« Abstracting Complex Languages
through Transformation and Com-
position »

2009

[Jez08] ❏❡③❡q✉❡❧ « Model driven design and aspect
weaving »

2008

[KAAK09] ❑✐❡♥③❧❡, ❆❧ ❆❜❡❞ et
❑❧❡✐♥

« Aspect-oriented multi-view mod-
eling »

2009

[KHJ06] ❑❧❡✐♥, ❍é❧♦✉❡t et
❏é③éq✉❡❧

« Semantic-based Weaving of Sce-
narios »

2006

[KJP05] ❑❧❡✐♥, ❏é③éq✉❡❧ et
P❧♦✉③❡❛✉

« Weaving Behavioural Models » 2005

Continued on next page

26 Model Composition in Software Engineering

Key Author(s) Title Year
[KM10] ❑❡❧s❡♥ et ▼❛ « A Modular Model Composition

Technique »
2010

[KPP06] ❑♦❧♦✈♦s, P❛✐❣❡ et P♦❧❛❝❦ « Merging Models with the Epsilon
Merging Language (EML) »

2006

[KUL+10] ❑r❛✉s❡, ❯❤❧❡♥❞♦r❢,
▲✉❜✐t③ et al.

« Annotation and merging of SBML
models with semanticSBML »

2010

[LNK+01] ▲❡❞❡❝③✐, ◆♦r❞str♦♠,
❑❛rs❛✐ et al.

« On metamodel composition » 2001

[LP03] ▲✐❛♥❣ et P❛r❡❞✐s « A port ontology for automated
model composition »

2003

[Let07] ▲❡t❦❡♠❛♥ ❈♦♠♣❛r✐♥❣ ❛♥❞ ♠❡r❣✐♥❣ ❯▼▲ ♠♦❞✲

❡❧s ✐♥ ■❇▼ ❘❛t✐♦♥❛❧ ❙♦❢t✇❛r❡ ❆r❝❤✐✲

t❡❝t ✿ ❆❞✲❤♦❝ ♠♦❞❡❧✐♥❣ ✲ ❋✉s✐♥❣ t✇♦

♠♦❞❡❧s ✇✐t❤ ❞✐❛❣r❛♠s

2007

[MBFF10] ▼♦ss❡r, ❇❧❛②✲❋♦r♥❛r✐♥♦

et ❋r❛♥❝❡
« Workflow Design Using Fragment
Composition »

2010

[MBJ08] ▼♦r✐♥, ❇❛r❛✐s et
❏é③éq✉❡❧

« Weaving Aspect Configurations
for Managing System Variability »

2008

[MBJ+07] ▼♦r✐♥, ❇❛r❛✐s, ❏é③éq✉❡❧
et al.

« Towards a Generic Aspect-
Oriented Modeling Framework »

2007

[MKB+08] ▼♦r✐♥, ❑❧❡✐♥, ❇❛r❛✐s et
al.

« A Generic Weaver for Supporting
Product Lines »

2008

[MBN+09] ▼♦r✐♥, ❇❛r❛✐s, ◆❛✐♥ et
al.

« Taming Dynamically Adaptive
Systems using models and aspects »

2009

[MMP+10] ▼❛❧❛✈♦❧t❛, ▼✉❝❝✐♥✐,
P❡❧❧✐❝❝✐♦♥❡ et al.

« Providing Architectural Lan-
guages and Tools Interoperability
through Model Transformation
Technologies »

2010

[MPL+09] ▼♦r✐♥, P❡rr♦✉✐♥, ▲❛❤✐r❡
et al.

« Weaving Variability into Domain
Metamodels »

2009

[Mos10] ▼♦ss❡r « Behavioral Compositions in
Service-Oriented Architecture »

2010

[NB04] ◆❛❤rst❡❞t et ❇❛❧❦❡ « A taxonomy for multimedia ser-
vice composition »

2004

[NM00] ◆♦② et ▼✉s❡♥ « PROMPT : Algorithm and Tool for
Automated Ontology Merging and
Alignment »

2000

[NSC+07] ◆❡❥❛t✐, ❙❛❜❡t③❛❞❡❤,
❈❤❡❝❤✐❦ et al.

« Matching and Merging of State-
charts Specifications »

2007

[OMK09] ❖❧❞❡✈✐❦, ▼❡♥❛r✐♥✐ et
❑rü❣❡r

« Model Composition Contracts » 2009

Continued on next page

Validating the key elements of model composition 27

Key Author(s) Title Year
[OO07] ❖❧✐✈❡✐r❛ et de ❖❧✐✈❡✐r❛ « A Guidance for Model Composi-

tion »
2007

[PBB+09] P❡rr♦✉✐♥, ❇r♦tt✐❡r,
❇❛✉❞r② et al.

« Composing Models for Detecting
Inconsistencies : A Requirements
Engineering Perspective »

2009

[PBC+11] P❛rr❛,❇❧❛♥❝,❈❧❡✈❡ et al. « Unifying Design and Runtime
Adaptations Using Aspect Models »

2011

[PDCS+01] P❛r❡❞✐s, ❉✐❛③✲❈❛❧❞❡r♦♥,
❙✐♥❤❛ et al.

« Composable Models for
Simulation-Based Design »

2001

[PGP+07] P♦♥s, ●✐❛♥❞✐♥✐, P❡r❡③ et
al.

« An Algebraic Approach for Com-
posing Model Transformations in
QVT »

2007

[PR04] P❛r❦ et ❘❛♠ « Information systems interoper-
ability : What lies beneath ? »

2004

[PRB+09] P❡❞r♦, ❘✐s♦❧❞✐, ❇✉❝❤s et
al.

« Composing Visual Syntax for Do-
main Specific Languages »

2009

[RCE08] ❘✉❜✐♥, ❈❤❡❝❤✐❦ et
❊❛st❡r❜r♦♦❦

« Declarative approach for model
composition »

2008

[SE06] ❙❛❜❡t③❛❞❡❤ et
❊❛st❡r❜r♦♦❦

« View merging in the presence of
incompleteness and inconsistency »

2006

[SFS+08] ❙á♥❝❤❡③, ❋✉❡♥t❡s, ❙t❡✐♥
et al.

« Aspect-Oriented Model Weaving
Beyond Model Composition and
Model Transformation »

2008

[SY10] ❙❤♦♥❧❡ et ❨✉❡♥ « Compose & conquer : modularity
for end-users »

2010

[TT08] ❚❛♥s❡② et ❚✐❧❡✈✐❝❤ « Annotation refactoring : inferring
upgrade transformations for legacy
applications »

2008

[PVSG+08] von P✐❧❣r✐♠, ❱❛♥❤♦♦✛,
❙❝❤✉❧③✲●❡r❧❛❝❤ et al.

« Constructing and Visualizing
Transformation Chains »

2008

[WJ08] ❲❤✐tt❧❡ et ❏❛②❛r❛♠❛♥ « MATA : A Tool for Aspect-
Oriented Modeling Based on Graph
Transformation »

2008

[WS08] ❲❡✐s❡♠ö❧❧❡r et ❙❝❤ürr « Formal Definition of MOF 2.0
Metamodel Components and Com-
position »

2008

[Wac07] ❲❛❝❤s♠✉t❤ « Metamodel Adaptation and
Model Co-adaptation »

2007

[Wag08] ❲❛❣❡❧❛❛r « Composition Techniques for Rule-
Based Model Transformation Lan-
guages »

2008

Continued on next page

28 Model Composition in Software Engineering

Key Author(s) Title Year
[XLH+07] ❳✐♦♥❣, ▲✐✉, ❍✉ et al. « Towards automatic model syn-

chronization from model transfor-
mations »

2007

[ZC07] ❩❤❛♥❣ et ❈❤❡♥❣ « Towards Re-engineering Legacy
Systems for Assured Dynamic
Adaptation »

2007

[ZLL09] ❩❤❛♥❣, ▲✐ et ▲✐✉ « An Approach for Model Compo-
sition and Verification »

2009

Table 1.1 – Full list of selected articles

1.3.1.6 Study quality assessment

Three kinds of threats to the internal validity of the study have been identified.
We avoided selection biases by using the same search string on every session of data
sources crawling. However, the identification of articles of interest has been achieved
by reading the title and abstract of articles and it is possible that some references were
involuntarily not selected. The selection of articles relies on papers published in inter-
national conferences on software engineering and thus we cannot avoid publication
biases that prevent accessing non-published articles of interest. Information of interest
is captured by a manual process of reading the articles entirely. Because of the nature
of data, this process is both systematic (search for keywords) and subjective (provide a
context and extract data about purpose and interpretation mainly. This process is even
more difficult because of the use of wordings specific to each authors. The process of
peer reviewing is proposed to tackle this issue. The last threat to validity is related
with the application of Biolchini et al. guidelines [BMA+05]. We closely followed the
guidelines for conducting this experiment to avoid misinterpreting some information.

1.3.1.7 Data Extraction

As a guiding thread for further discussion on model composition, we propose to
organize the body of knowledge about model composition techniques regarding the
main activities in the software life-cycle. We do not follow any existing development
or life-cycle model such as incremental, V, Y or evolutionary life-cycles to properly
cover a significant part of the domain and to avoid introducing any bias. We focus
on three of four main activities in software engineering which are : (i)Design (see
Section 1.3.2) as the full range of activities for building software and systems from
scratch or by assembling existing reusable software artifacts ; (ii)Verification and Vali-
dation (see Section 1.3.3) as the set of activities for validating software, ensuring that it
behaves as expected and that it answers the end–user expectations ; (iii)Evolution (see
Section 1.3.4) as the set of activities that deal with software maintenance, fixing errors,
providing new functionalities, re-engineering existing systems or versioning software
artifacts to ensure traceability and information backup. In the following sections, we

Validating the key elements of model composition 29

investigate various model techniques under the scope of the software engineering ac-
tivities that authors claim to address. The following sections present articles of interest.
Data presentation first focuses on the definition of terms that represent subactivities of
a given software life-cycle activity. Then we propose a detailed presentation of articles
of interest if any for each category of correspondence relationship. The selection of
articles for which we provide more details is based on (i)the relevance of the approach
regarding both the category of the correspondence relationships and the category of
interpretation and on (ii)the number of citations gathered from electronic data sources
that we referenced in Section 1.3.1.4.

1.3.2 Model Composition for Systems Design
5

This section lists the contributions in the literature that deal with the general activity
of designing software. We consider the following activities as subtypes of the design
activity :

Model Composition The term “composition” is overloaded in the MDE commu-
nity, so we choose to focus on all activities that enable to build a system from
the union of several independent and dependent software artifacts. This defini-
tion includes the usual terms of merging, union, weaving or fusion along with
any activity whose intent is to create a software from reusable chunks of other
systems.

Derivation Derivation is borrowed from the domain of SPL, where applications
are built from the selection of variants. These variants may be represented in a
feature model / diagram for instance where designers choose which ones are part
of one product. Derivation is different from the definition of model composition
above since “features” are specified in a specific formalism that allows identifying
relationships between features such as optionality, coupling, mutual-exclusion,
etc.

Orchestration The term “composition” when related with the domain of services
engineering, is connoted with the notion of assembly. For instance, Software as
a Service (SaaS) promotes the use of multiple services and their interaction to
support user requirements. While some techniques in the literature address the
specific problem of merging internal behavior of services to create new services,
composition and composite services usually refer to what is called orchestration
in the domain of workflow. Orchestration (centralized decision) or choreography
(decentralized decision) is the activity of arranging services execution with one
another to create a fully running process.

Integration is another engineering activity focused on building software for a
given purpose. The main difference with the three categories above is that it
generally manipulates existing systems as wholes. In other words, this activ-
ity produces new systems from the “interaction” of several independent and
running systems.

5. Each category is assigned a symbol to ease reading and understanding

30 Model Composition in Software Engineering

The following subsections will give details about techniques found in the literature that
address these four specific activities. Each description is completed by the description
of a selected subset of techniques that support this activities.

1.3.2.1 Composition ≪

Model composition is the activity of manipulating model elements from at least
two source models to produce a unified representation that may be serialized (case of
merging, union or fusion) or made only available at run-time (weaving for instance).
Usually the source models are specified using the same meta–language, i.e., the source
models share common concepts such as entities or relationships. Most research in
the literature is focused on this specific goal of being able to produce systems from
the union of existing models, automatically or semi-automatically. The reason why
there are so many approaches is mainly because of the inherent complexity of the
domain(s) considered, the language(s) that define the models, and the result of the
composition that may vary depending on the user expectations. As an illustration of
model composition, we give details about six techniques as follows.

≪
Operator-based Correspondence

“On Metamodel Composition” In [LNK+01], Ledeczi et al. proposed three UML-
based operators to build new DSML from existing metamodels. These operators sup-
port model modifications such as equivalence, implementation inheritance and inter-
face inheritance. The equivalence operator helps to define and execute a full union
of two UML class objects. Implementation inheritance captures all parent’s attributes
and containment relationships and “inject” them into the corresponding class. Inter-
face inheritance only deals with capturing relationships other than containment and
with binding them to another class.

Similar model composition approaches are proposed by Boronat et al. [BCR05 ;
BCR+07], Kelsen and Ma [KM10], Pedro et al. [PRB+09], Henriksson et al. [HHJ+08]
and Grönniger et al. [GKR+08].

≪
Pattern-based Correspondence

“Extending standard UML with model composition semantics” In the broader
scope of model integration [Cla02], Clarke proposed a technique for aligning artifacts
written in different paradigms. Along with the definition of relationships as first-class
entities, she proposed composition patterns to indicate how model elements from one
model should be overridden by model elements from another model. These patterns
are represented as a list of elements (classes,operations,attributes) from the model.

Similar model composition approaches are proposed by Wagelaar [Wag08], Jo-
hannes et al. [JZF+09],Fleurey and al. [FBF+08], Letkeman [Let07], Nejati et al. [NSC+07],
Mosser et al. [MBFF10], Rubin et al. [RCE08], Noy and Musen [NM00], Emerson and
Sztipanovits [ES06], Oliveira and de Oliveira [OO07], France et al. [FFR+07], Krause et

Validating the key elements of model composition 31

al. [KUL+10], Boucké et al. [BWH10], Kienzle et al. [KAAK09], Sánchez et al. [SFS+08],
Klein et al. [KHJ06 ; KJP05], Jézéquel [Jez08], Morin et al. [MBJ+07], Weisemöller and
Schürr [WS08], Apel et al. [AJT+09], and Acher et al. [ACL+10].

≪
Rule-based Correspondence

“Semantics-based composition for Aspect-Oriented Requirements Engineering”

Chitchyan et al. approach for composing requirements ([CRR+07]) is using a set of
rules to describe pointcuts and joinpoints in the requirements specifications. Based
on a dedicated language called Requirements Description Language, they support
requirements composition using a set of predefined operators for composition. From a
step of natural language processing, they detect “relationships” and “actions” classes
of verbs to which they bind specific composition operations. Semantic queries are then
used to select concerns that act as the constraint to be imposed. Finally, intersections
between constraints enable to find new requirements that come from the composition
of existing requirements.

Similar model composition approaches are proposed by Kolovos et al. [KPP06],
Whittle and Jayaraman [WJ08], Jayaraman et al. [JWE+07], Brottier et al. [BLTN10], and
Oldevik et al. [OMK09].

≪
Model-based Correspondence

“A vision for management of complex models” Bernstein et al. model-based ap-
proach ([BHP00]) for management for complex models relies on high-level operations
on models and models mappings to manage changes and transformations of models.
The main part of the paper is focused on providing a formal definition and semantics of
correspondences relationships (or mappings) between model elements. Composition
has two meaning in this paper. First they propose composition between mappings to
provide mappings transitivity (map(A,B) composed with map(B,C) offers map(A,C)).
Second, they proposed a definition of a merge operator between models. They propose
to use an additional input to the merge operator, using a delta model of the source
and target models, to drive the merge activity. Existing implementations of the merge
operator are very similar to the definition that they proposed, for instance in [FFR+07]
and [ZDD06].

Similar model composition approaches are proposed by Fabro et al. [DFB+05b],
Wachsmuth [Wac07], Liang and Paredis [LP03], and Paredis et al. [PDCS+01].

≪
Delta-based Correspondence

“Managing Model Conflicts in Distributed Development” In [CDRP08], Cic-
chetti et al. proposed a DSL for syntactic and semantics conflicts. Conflicts are relation-
ships between difference models, i.e delta models. Delta models are easy to process

32 Model Composition in Software Engineering

to identify structural conflicts and scenarios are thereafter used to identify semantic-
related patterns for conflicts. From conflicts identification they build a difference model
and add new model elements to model additions, deletions and changes. From this
representation, authors propose to achieve sequential and parallel combination. Se-
quential composition means merging modification conveyed by the first model with
the second one. About parallel composition, they distinguish two kinds : parallel de-
pendent and parallel independent. Parallel independent means that changes do not
effect the same model elements, so they apply the merge process they proposed for
sequential combination. About parallel dependent, they claim it requires additional
analysis to determine an order in the composition process. Automation of the com-
position process is achieved through the use of a set of Object-Constraint Language
(OCL) constraints with post-conditions that return collections of elements

1.3.2.2 Derivation ≪

Derivation is a relatively new domain of research in software engineering. The
demand of fast-paced development and production of new software from existing
products increases in a lot of domains including but not limited to telephony services
or on-board car systems. Derivation is a important activity in the context of software
product lines. It extends the traditional body of knowledge about software building
from reusable artifact in a sense that all end-products are related to one another with
the same global characteristics and expectations but tailored for specific usages. The
following sections illustrates derivation examples found in the literature.

≪
Operator-based Correspondence

“Multi-view Composition Language for Software Product Line Requirements”

In the context of SPL, Alferez et al. propose an approach [ASM+10] for composing
elements defined in separated and heterogeneous requirement models using a simple
set of operators. Using a DSL called Variability Modeling Language for Requirements
Engineering to support the definition of relationships between SPL features from
various feature models. They propose also a set of composition operators such as
insert, replace or remove that they define as a specific graph-transformation rule.
Those operators are then use to build SPL products from feature models.

A similar model composition approach is proposed by Morin et al. [MPL+09].

≪
Pattern-based Correspondence

“Model-Driven Design and Aspect Weaving” In [Jez08], Jezequel explores the
relationship between modeling and aspect weaving with regard to the large domain
of software product line. The author first pinpoints the fact that modeling is not only
abstracting but also analyzing a domain in a sense of separating various cross-cutting
and non cross-cutting concerns. Those concerns becomes then aspects that designers
can weave with one another to build a detailed design model. As the author said,

Validating the key elements of model composition 33

mixing and dealing with multiple concerns at a time to build a system is something
that engineers are able to do but what is really challenging is to quickly, cheaply and
safely change variants of aspects to build several products in the context of product
lines. Along the line of several papers about aspect weaving, Jezequel describes what
aspects are composed of and how they are composed with one another. Concepts of
joinpoints, pointcuts and advices are described as general aspect-weaving concepts
and then instantiated on the specific example of sequence diagrams where additional
issues arise. One of them is about temporality of the joinpoint detection or in other
words when a specific pointcut (as q sequence of messages) can be detected. Because
of interleaved messages that may occur when we weave multiple aspects, a specific
joinpoint may not be replaced by the advice without losing some information. To solve
this problem, the author introduces a specific operator called amalgamated sum which
helps capturing commonalties between a base model and the advice.

Similar model composition approaches are proposed by Apel et al. [AJT+09], Morin
et al.[MBJ08 ; MKB+08 ; MPL+09], and Parra et al. [PBC+11].

≪
Rule-based Correspondence

“Model Composition in Product Lines and Feature Interaction Detection Using

Critical-Pair Analysis” Jayaraman et al. proposed the MATA approach to compose
variant features in the context of SPL [JWE+07]. Variants are modeled as UML mod-
els and MATA allows automatic composition of such models. Relationships between
variants are captured in the MATA language and the ordering of the features may be
describe to provide additional detection of structural conflicts between models. Since
MATA defines rules on graphs, they use AGG [Tae04] to execute each rule and produce
a composed model that is then converted back in the UML language.

A similar model composition approach is proposed by Alférez et al. [ASM+10].

≪
Model-based Correspondence

“Weaving Aspect Configurations for Managing System Variability” In [MBJ08],
Morin et al. propose to tackle the issue of limited reusability of aspects by integrating
variability mechanisms into aspects. Using AOM concepts such as joinpoints, point-
cuts and advices, they propose a template model that expresses joinpoints in a more
generic way and that relaxes existing metamodel constraints to increase flexibility in
the definition of join points. The weaving process uses adapters that describe what is
going to be composed, where it should be composed (template model) and how it is
going to be composed (composition protocol). The composition protocol is described
by an adaptation model which contains predefined adaptations operations such as
makeUnique, create, clone, setProperty and unsetProperty. Variability is addressed
by mixing SPL concepts with the adaptation model. Adapters can support variants,
optional features or dependency constraints. Bindings between the adaptation model

34 Model Composition in Software Engineering

and actual model elements is necessary for the composition protocol to properly weave
model all together.

A similar model composition approach is proposed by Parra et al. [PBC+11].

1.3.2.3 Orchestration ≪

This idea of orchestration has been an underlying activity since the early days of
Computer Science and computing. The management of software artifacts in terms of
precedence and successiveness in time has been undergone from the very day the first
computer programs emerged until now with more complex abstractions but the basic
idea is quite the same. The term “orchestration” is part of the domain that deals with
modeling workflows, business processes and so on. Conforming to the previous defi-
nition, orchestration is the definition of how artifacts or fragments “interact” with one
another, considering these fragments as black-boxes. The following sections illustrate
orchestration examples found in the literature.

≪
Operator-based Correspondence

“An Algebraic Approach for Composing Model Transformations in QVT” Pons
et al. proposed an approach [PGP+07] for the orchestration of model transformation
in QVT [BBB+]. Their approach is based on using the algebraic theory of problems as
a mathematical foundation. The theory of problems defines a problem as a quadruple
<D,R,q,I>where D is the data domain, R is the result domain, q is a binary relation on
D × R and I is a set of instances of interest in the scope of the problem. By comparison
with QVT, they define QVT relations as problems and QVTOp [OMG07] mappings as
solutions. Based on this analogy, they propose a set of composition operators such as
union, sequence or fork between QVT relations and QVTOp mappings. Composition
operators are included in what they call a composition calculator that automatically
compose existing QVT-based transformations.

A similar model composition approach is proposed by von Pilgrim et al. [PVSG+08].

≪
Pattern-based Correspondence

“Code Generation by model transformation : a Case Study in Transformation

Modularity” In [HKG+10], Hemel et al. propose techniques for improving separa-
tion of concerns in the implementation of code generators for DSMLs. Using model
composition between transformation rules, they support code generation and model-
to-model transformation. Composition operators between rules represent composition
strategies such as sequential composition, deterministic choices, identifiers composi-
tion, etc. In their approach, correspondences between rules has a special meaning that
depends on the type of elements involved. When correspondence is achieved through
a rule, they composition means orchestration or weaving. When correspondence is a
specific operator “#” or a specific transformation, then composition refers to weaving
or merging.

Validating the key elements of model composition 35

A similar model composition approach is proposed by Mosser [Mos10].

≪
Rule-based Correspondence

“Bite : Workflow Composition for the Web” Curbera et al. present an approach
to deliver composition capabilities in a resource-centric environment [CDK+07], “such
that data and behavioral compositions are seamlessly supported by a common workflow-
oriented model”. Bite is a minimalist choreography language and runtime that relies
on the concepts of activity and dependency link between activities. Bite proposes a
set of basic constructs that represent actions in Web workflows such as receiving and
replying to a message, invoking a service or waiting for a fixed time for a flow to ter-
minate. With regard to this definition, Bite natively supports web data flows in which
several processing steps are connected with one another by data dependencies. Their
execution is considered as a data flow composition that executes each one of them syn-
chronously. Interactive flows, meaning web applications that ask users to provide data,
are widespread and Bite supports their definition and execution by proposing asyn-
chronous execution and supporting seamless integration of Web interaction models
and interactions.

Similar model composition approaches are proposed by Chitchyan et a. [CRR+07],
Pons et al. [PGP+07], and Hemel et al. [HKG+10].

≪
Constraint-based Correspondence

“Constructing and Visualizing Transformation Chains” Based on UniTI [VAVB+07],
a unified representation of transformations, von Pilgrim et al. propose an approach for
representing dependencies between transformations and products of these transfor-
mations [PVSG+08]. They use traceability links to propose user-friendly visualization
of chains of transformations. UniTI framework is based on three principles namely (1)
black-boxing by hiding internal behavior of transformations, (2) external specification
of provided and required interfaces for each transformation, and (3) composition of
transformations that they consider as reusable building blocks. Through the definition
and use of well-defined interfaces for transformations, interconnecting them in the
way component can be connected with one another is pretty straight-forward.

≪
Model-based Correspondence

“A Taxonomy for Multimedia Service Composition” In [NB04], Nahrstedt and
Balke proposed to bridge the multimedia domain with the Web Services domain to
benefit from web service composition techniques. They propose a taxonomy frame-
work that includes metrics about web and multimedia integration. The framework also
provide partitioning the composition space into successive composition, concurrent

36 Model Composition in Software Engineering

composition and hybrid composition. This taxonomy of partitions is refined with con-
cepts of performance, content and infrastructural support metrics to allow decompos-
ing multimedia composition problems. To give a few more details about composition,
successive composition is a composition of functionally dependent services that are
invoked sequentially. Concurrent composition is a composition of independent ser-
vices that are executed in parallel. Hybrid composition combines both successive and
parallel composition of services executions demonstrating functional dependencies
and time-based synchronization. However, authors do not give details in the paper
about how the composition is achieved.

A similar model composition approach is proposed by Bernstein et al. [BHP00].

1.3.2.4 Integration ≪

Integration is the design activity that allows communication between systems that
were not design to communicate. Communication is necessary to build a new sys-
tem from existing software or at least a whole that behaves like a single system. A
more usual term that describes interaction between existing system is interoperability.
While integration as a goal may be achieved with the use of composition, derivation or
orchestration, it is an activity that should take into account the characteristics of deal-
ing with existing systems. Those systems have been developed independently, which
means that it is pretty sure that they were not implemented using the same technolo-
gies. Here comes the difficult task of making heterogeneous systems interact. Second,
building a new system which integrates existing systems does not mean discarding
existing ones. Integration should then be conducted as if systems were gray-boxes,
where we have knowledge of some of the internal machinery of these systems, but
still we do not have full control on their implementation. It means that it is very of-
ten forbidden to modify existing systems to implement the integration. We must then
build some intermediate and consensual representation that we share between the
systems to be integrated. We usually consider two major ways to define the intermedi-
ate representation 6 : (1) message-based integration captures the calls and events from
one system and adapts these calls into the representation of another system ; (2) Data
transformation integration requires to build an intermediate format with serialization
and unserialization from the legacy systems own data. The following sections illustrate
integration examples found in the literature.

≪
Operator-based Correspondence

“Applying Model Management to Classical Meta Data Problems” In [Ber03],
Bernstein propose an extension to previous work [BHP00] composition operators and
applies them on integration, evolution and round-trip engineering activities. From
the definition of mappings as a representation encompassing two morphisms from
the mapping to the input model, he uses these mappings to define an algebra and

6. http ://en.wikipedia.org/wiki/Enterprise_application_integration#Patterns

Validating the key elements of model composition 37

implement specific model operators for model manipulation. Examples of operators
are : (1) Match that creates a mapping between two input models, (2) Diff that computes
a difference between a model to a given mapping, (3) Merge that returns a copy of
all the model elements of the input model after collapsing equivalent elements into a
single element in the output model, (4) Compose that combines two existing mappings.
Additional operators such as Apply, Copy, ModelGen or Enumerate allows performing
specific operations on models and/or mappings.

Similar model composition approaches are proposed by Boronat et al. [BCR05 ;
BCR+07], Gössler and Sifakis [GS03], and Shonle and Yuen [SY10].

≪
Pattern-based Correspondence

“Component–Based System Integration via (Meta)Model Composition” Bala-
subramanian et al. propose a model composition approach to integrate heterogeneous
systems [BSM+07]. The integration process creates a new DSML from existing DSML
and is supported by their System Integration Modeling Language (SIML) tool. They
propose to map interfaces from different technologies to achieve integration. Mapping
of interfaces involves (1) “mapping datatypes from source to target technology”, (2)
“mapping exceptions from source to target technology” and (3) “mapping languages”,
that is “mapping datatypes while accounting for differences in languages at the same
time”. Differences between technologies should be considered at a low-level of abstrac-
tion to allow providing mappings for protocols, to allow discovering components and
to allow providing mappings for Quality of Service (QoS) mechanisms. The composite
DSML obtained by SIML defines the semantics of the integration process which might
include reconciling differences between technologies. Elements from sub-DSMLs are
black-boxes which behavior and structure cannot be modified.

≪
Rule-based Correspondence

“Compose & Conquer : Modularity for End-Users” In [SY10], Shonle and Yuen
propose an innovative approach for providing end-users with on-the-fly solutions
that may possibly involve complex computation. The list of solutions is built from
a “creativity engine” that selects existing modules and compose the modules with
one another to provide integrated solutions. Selection of modules and libraries and
the various ways to compute the expected result are supported by ontology-based
computation. The approach is similar to code mashups since it requires adapters for
every candidate library or module but they do not need to know the modules names.
They presented two examples, one about producing a PDF document from a JPEG
document in various ways, and the other example dealt with crawling a website to
get the phone number, address and city of a restaurant from data scattered in various
places and various content types.

Similar model composition approaches are proposed by Bernstein [Ber03] and
Balasubramanian et al. [BSM+07].

38 Model Composition in Software Engineering

≪

Model-based Correspondence

“Information Systems Interoperability : What Lies Beneath ?” Park and Ram
proposed a framework for helping the integration of databases [PR04]. The frame-
work is called Conflict Resolution Environment for Autonomous Mediation (CREAM)
is designed to identify semantically related data from different databases and resolve
semantic conflict among them before the integration process. The framework relies
on schema for modeling data and shareable data from the databases, ontologies for
capturing contextual knowledge, mappings between schema to generate valid local
queries, relationships between concepts of knowledge for semantic reconciliation and
mediators to detect conflicts between schema and provide data access and transfor-
mation.

Similar model composition approaches are proposed by Liang and Paredis [LP03],
Paredis et al. [PDCS+01], Malavolta et al. [MMP+10], Clavreul et al. [CBJ10], and Del
Fabro and Valduriez [FDV07].

1.3.3 Model Composition for the Verification and the Validation
of Systems

This section presents techniques from the literature that address verification and
validation of systems.

Software verification and validation processes determine whether the de-
velopment products of a given activity conform to the requirements of that
activity and whether the software satisfies its intended use and user needs.
[IEE05, §1, p.1]

Validation is the process of

providing evidence that the software and its associated products satisfy
system requirements allocated to software at the end of each life cycle
activity, solve the right problem (e.g., correctly model physical laws, im-
plement business rules, use the proper system assumptions), and satisfy
intended use and user needs. [IEE05, §3.1.35, p.9]

Verification is the process of

providing objective evidence that the software and its associated products
conform to requirements (e.g., for correctness, completeness, consistency,
accuracy) for all life cycle activities during each life cycle process (acquisi-
tion, supply, development, operation, and maintenance) ; satisfy standards,
practices, and conventions during life cycle processes ; and successfully
complete each life cycle activity and satisfy all the criteria for initiating suc-
ceeding life cycle activities (e.g., building the software correctly). [IEE05,
§3.1.36, p.9]

This section lists the articles in the literature that deal with model composition to
validate and/or verify software. We focus on the following activities as subtypes of the
V&V activity :

Validating the key elements of model composition 39

Checking Consistency ensures that a system design is complete and detects defini-
tion overlaps or conflicting situations otherwise. Model composition techniques
propose methods to identify conflicts, resolve overlaps and ensure completeness.

Checking Correctness ensures that a system produces data that is valid against
the values expected by the same system or another system in interaction. Model
composition techniques provide global representations that suit well with satis-
fying a set of constraints or rules for data correctness.

The following subsections give details about techniques found in the literature that
address these two specific activities. Each description of an activity is completed by
the description of a selected subset of techniques that support this activity.

1.3.3.1 Model Composition for Checking Consistency ≪

Checking the consistency of a system is ensuring that the data flow of a system
remains consistent between two transactions. This is particularly true for databases
systems : each time a data is changed, the integrity of the database must remains.
In other words, the transaction should not introduce invalid data or else be canceled.
Broadening the definition to general-purpose software, checking consistency implies to
be consistent with a set of rules which are either provided by the system’s architecture
or design, or by the business domain which the system targets. The following sections
illustrate consistency checking examples found in the literature.

≪
Operator-based Correspondence

“Consistence Preserving Model Merge in Collaborative Development Process-

es” In [Bar08], Bartelt proposes mechanisms to synchronize models in a collaborative
development environment. The author proposes a merge operator for multiple ver-
sions of the same model, this operator ensuring consistency of the merged model. By
analogy with traditional document merging tools such as SVN or CVS, Bartelt pro-
poses several atomic operators such as add or delete and a set of mappings such as
changedItem, predecessors or successors for revision tasks. In addition to these op-
erators, two functions are provided : (1) changeState that determines the last change
operation on an information item and (2) mergeState that determines the information
items of a document after processing all changes of a revision task and its predeces-
sors. However the author specifically mentions that all these structures are not enough
for building valid model merging tools so the author focuses instead on consistency
checking. Consistency checking is dealt with in terms of checking constraints on mod-
els but no mechanism for automatically solving inconsistencies is proposed. It still rely
on developers meetings for providing solutions.

≪
Pattern-based Correspondence

40 Model Composition in Software Engineering

“Managing Variability in Workflow with Feature Model Composition Opera-

tors” Acher et al. propose to compose parameterized services into workflows using
SPL and AOM techniques in [ACL+10]. Their intent is (1) to capture commonalties
and variabilities in parameterized services and (2) to provide support for tailoring
and composing services. Using a set of composition operators, they insert a concern
into the description of services and they merge models of connected services with one
another. The set of operators are based on join points to express where concerns have
to be woven in the description. The current approach deals with merging services with
the same names. The composition operators offer consistency checking facilities such
as verifying that sequential, concurrent or condition-based communication between
services is conflict-free when reasoning on the global workflow.

Similar model composition approaches are proposed by Fleurey et al. [FBF+08],
Noy and Musen [NM00], and Barais et al. [BKB+08].

≪
Rule-based Correspondence

“Composing Models for Detecting Inconsistencies : A Requirements Engineer-

ing Perspective” In [PBB+09], Perrouin et al. propose a generic composition frame-
work which extracts information from heterogeneous models and translate it into a
set of fragments. The fragments are composed with one another to check for under-
specification and inconsistencies. The fragment composition (or fusion in their termi-
nology) process is driven by a set of fusion rules which are either equivalence rules
(ER) or normalization rules (NR). ERs are operations that replace equivalent objects
by a composed object and NRs transform fragments to detect inconsistencies. ER are
atomic operations on models which computes the union of a source and a target object.
NRs are constraints used to detect false positive inconsistencies.

Similar model composition approaches are proposed by Whittle and Jayaraman [WJ08],
Jayaraman et al. [JWE+07], Perrouin et al. [PBB+09], and Brottier et al. [BLTN10].

≪
Model-based Correspondence

“An Approach for Model Composition and Verification” Zhang et al. propose a
model weaving framework [ZLL09] that defines a set of model composition operators
that are related with source and target models. These models are transformed into
Alloy and a LinkModel captures the composition relationships (LinkPoints) between
model elements with precise semantics. The LinkModel is transformed into Alloy
and drives the model composition engine. Running the Alloy Analyzer on top of this
LinkModel, we obtain valid instances of the composed model and we can check that
the composition definition is consistent.

Similar model composition approaches are proposed by Park and Ram [PR04],
Zhang et al. [ZLL09], and Sabetzadeh and Easterbrook [SE06].

Validating the key elements of model composition 41

≪

Delta-based Correspondence

The approach proposed by Cicchetti et al. [CDRP08] and presented in details in
Section 1.3.2.1 also applies for checking model consistency.

1.3.3.2 Model Composition for Checking Correctness ≪

Validating how a system or component behaves regarding the data it reads or
produces requires the full picture of the system. Checking data for each component
does not implies that the composition of all components produce data that is still
correct. The following sections illustrate correctness checking examples found in the
literature.

≪
Pattern-based Correspondence

“Annotation and merging of SBML models with semanticSBML” In [KUL+10],
Krause et al. propose a tool to check and edit MIRIAM annotations and SBO terms in
SBML models. SBML (Systems Biology MArkup Language) is the leading exchange
format for mathematical models in Systems Biology. Semantic annotations link model
elements with external knowledge via unique database identifiers and ontology terms.
The proposed model merging process joined duplicate elements of two models. Match-
ing elements relies on a comparison of their MIRIAM annotations to resolve name
differences. The composition process is driven by the modeler interpretation of the
models and the semanticSBML tool help modelers to detect syntactic and semantic
conflicts. The main purpose of using model merging on SBML models is to build a set
of validity criteria for SBML models.

A similar model composition approach is proposed by Jackson et al. [JKB+06].

≪
Constraint-based Correspondence

“Compositional Verification for component–based systems and applications”

Bensalem et al. propose an algebraic model [BBN+10] that states how a system com-
posed of atomic components may satisfy a given global invariant. They compute
interaction invariants for each component of the system and they compute component
invariants to obtain the set of reachable states of the system. This iterative method
produces invariants that are progressively stronger and thus satisfying these invari-
ants should lead to better verification of the system. They demonstrate their approach
on checking for deadlock situations not considering synchronization-based deadlocks
and four other use-cases.

≪
Model-based Correspondence

42 Model Composition in Software Engineering

“View Merging in the presence of incompleteness and inconsistency” In [SE06],
Sabetzadeh and Easterbrook propose an approach for merging overlapping views of
a single system. Views are used by many people with different skills and their own
understanding of the system. It leads to "have discrepancies over the terminology be-
ing used" or on the semantics or the structure of the elements being used. The authors
propose a framework for merging these incomplete or inconsistent views based on a
graph-based formalism. Domain experts annotate these graphs with a degree of knowl-
edge to express their confidence in the design. This degree of knowledge participates
in the detection of inconsistencies or incomplete specifications. The process of merging
views is based on a disjoint union of the graphs nodes and edges and knowledge
about how to resolve inconsistency and incompleteness is captured in both connec-
tors (fragments of graphs that contains overlapping elements) and correspondences
between the elements from the connector and the elements from the views. The corre-
spondences are interpreted as equivalences between graph elements or adding/hiding
specific graph elements. All correspondences have to provided explicitly since the
merging process does not embed any matching mechanism.

1.3.4 Model Composition for the Evolution and the Maintenance of Sys-
tems

This section presents techniques from the literature that deal with the evolution of soft-
ware. Evolution in Computer Science represents a large part of the software life-cycle to
cope with environment changes, end-users expectations evolution, technological ad-
vances and bug correction. We consider the following activities as subtypes of software
evolution and maintenance :

Dynamic Reconfiguration Adaptation of a system once it has been deployed for
being used by end-users is an active field of research. Due to the increasing
pace of evolution in software, software have to be adapted constantly and this
activity may require relative long time of shutdown. In contexts where service
unavailability is not possible or not affordable, systems have to be adapted while
running. Compared to static adaptation, dynamic (or runtime) adaptation re-
quires specific mechanisms to both keep the system running and to provide
synchronous or asynchronous ways to modify a system. Examples of dynamic
adaptation are “fast-switch” of contexts or degradation and requires also specific
validation techniques before deployment to avoid loss of service.

Refactoring The refactoring activity is the application of “a set of ... restructur-
ing operations (refactorings)” [Opd92, p.2] on an existing software design or
implementation. William Opdyke give the following definition to refactorings
as :

Refactorings are reorganization plans that support change at an inter-
mediate level. ... While refactorings do not change the behavior of a
program, they support software design and evolution by restructuring

Validating the key elements of model composition 43

a program in a way that allows other changes to be made more easily.
[Opd92, §1.2, p.10–11]

Goals of refactoring are numerous and to give some examples, we may think
about increasing maintainability using design patterns or SoC, improve read-
ability by adding comments, or removing dead code using analysis techniques.

Adaptation Adapting a software has several goals. While it may refer to refactor-
ing, the meaning we choose here is adapting a system to be able to communicate
with another piece of software. Similarly to integration at design-time, develop-
ers have to provide adapters, wrappers, proxies, facades, etc. to achieve systems
interaction and inter-communication.

Synchronization Synchronization is another activity involving several indepen-
dent systems. Contrary to adaptation which refer to build a new software from
existing ones, synchronization is focused on ensuring consistency between sys-
tems while considering them as different entities.

Reconciliation Reconciliation is an activity that focuses on synchronizing two
representations of the same system. These representations have a common an-
cestor from which they evolved independently. This is a very common use case
in versioning systems.

1.3.4.1 Dynamic Reconfiguration ≪

In the literature, we found a single approach that deals with dynamic reconfigura-
tion of systems. This approach proposed by Morin et al. is detailled in the following
section.

≪
Pattern-based Correspondence

“Taming Dynamically Adaptive Systems using Models and Aspects” In [MKB+08],
Morin et al. propose an approach to tackle the challenge of reconfiguring Dynamic
Adaptive Systems at runtime. These systems rely on modes that capture the current
state and configuration of the system. They use Aspect-oriented Modeling techniques
and generative approaches to tackle the combinatorial explosion in the computation of
modes for these systems. They propose a five-step process as follows : (1) gather data
about the current configuration and build an abstract representation of the running
system, (2) compute a configuration on-demand with aspect weaving techniques, (3)
generate reconfiguration scripts, (4) validate the new configuration and (5) adapt the
running system with the new configuration. The construction of a configuration is
supported by SmartAdapters [LMV+07], an aspect-weaving tool that uses join points,
pointcuts and advices to specify what, where and how aspects are woven with one
another. Additional correspondences are implicitly created in step 4 in which the
comparison of the new configuration with the original one produces a match model
and a diff model. The match model captures which model elements are equivalent

44 Model Composition in Software Engineering

whereas the diff model includes "addition/removal of components/bindings, changes
in attributes values, etc.".

1.3.4.2 Refactoring ≪

The following sections illustrate examples of approaches found in the literature
regarding refactoring existing systems.

Operator-based Correspondence
≪

The approach proposed by Berstein [Ber03] and presented in Section 1.3.2.4 also applies
for system refactoring.

≪
Pattern-based Correspondence

“Annotation Refactoring : Inferring Upgrade Transformations for Legacy Ap-

plications” Tansey and Tilevich proposed an approach for performing legacy appli-
cations refactoring [TT08]. The paper is intended to solve the problem of upgrading
text- and name-based frameworks into metadata-based frameworks, specifically with
annotations. Using metadata from these annotations, they are able to infer general
transformation rules to perform the refactoring. From a set of representative examples,
users guide the inference engine by defining upgrade patterns and parameterize the
transformation engine using provided generated rules. Representative examples are
classes or interfaces that uses framework features that differ between versions or ven-
dors. Differences may occur in types, method signatures, fields, annotations, imports
or statements. Upgrade patterns capture the refactoring for many upgrade scenarios.
Patterns are defined within what we may call scopes such as : (1) bottom-up when
changes in the code depend of the enclosing class, (2) top-down when a specific class
migration imposes a special structure, or (3) identity when correspondences are found
between elements of the same type. From the analysis of these representative examples,
authors build transformation rules from a specific DSL that eases further changes by
end-users. To help the definition of transformation rules, representative examples are
analyzed by an inference algorithm that generates a set of rules for a given refactoring.

A similar model composition approach is proposed by Belapurkar [Bel04].

≪
Rule-based Correspondence

“Refactoring Support for Class Library Migration” In [BTF05], Balaban et al.
propose a technique for automatic migration of applications that use legacy library
classes. Based on mappings between legacy classes and their replacement classes, they
use type-based constraints to determine where it is possible to migrate code without
effecting the program’s type-correctness or behavior. Type-based constraints are a for-
malism for expressing relationships between the types of declarations and expressions

Validating the key elements of model composition 45

that are used for type-checking, type inference or refactoring. These constraints are
generated from the Abstract Syntax Tree (AST) of a program. Solving these constraints
is then achieved by a specific algorithm. A solution encompasses the maximum number
of legacy classes that can be transformed to their replacement classes.

Similar model composition approaches are proposed by Bernstein [Ber03] and
Fleurey et al. [FBB+07].

≪Model-based Correspondence

“Metamodel Adaptation and Model Co-Adaptation”

Different from previous approaches on a more “classic“ definition of refactoring, the
work of Wachsmuth [Wac07] on the adaptation of meta–models and models is another
illustration of refactoring in a more general meaning. We intentionally classified this
paper in the Refactoring Section because of the definition that we give of Refactoring
versus Adaptation. In this paper, the author propose to propagate the changes of a
meta–model to the models that conform to this meta–model. This allows keeping con-
sistency and validity of existing models regarding changes. Wachsmuth proposes eight
types of relationships between meta–models to capture changes and evolutions. Rela-
tionships are used to map meta–models together, considering equivalence, submodel
or enrichment, variation or extension, instance or semantic preservation, etc. Based on
this theoretical basis, they achieve meta–model evolution through the development of
a set of Query/View/Transformation (QVT) relations. Once the meta–models have been
related with each other, specific transformations are available for refactoring models.
Refactoring may or may not be necessary, depending the type of relations. For instance,
adding new instances should have no impact on old instances whereas modifying re-
lationships cardinality (and by the time, restricting relations) may need refactoring for
some instances that do not meet the new requirements.

Similar model composition approaches are proposed by Bernstein et al. [BHP00],
Fleurey et al. [FBB+07], and Zhang and Chen [ZC07].

1.3.4.3 Adaptation ≪

The following sections illustrate examples of approaches found in the literature
regarding adaptation of existing systems.

≪
Operator-based Correspondence

The approach proposed by Berstein [Ber03] and presented in Section 1.3.2.4 also applies
for system adaptation.

≪
Pattern-based Correspondence

The approach proposed by Tansey and Tilevich [TT08] and presented in Section 1.3.4.2
also applies for system adaptation.

46 Model Composition in Software Engineering

≪

Rule-based Correspondence

The approach proposed by Berstein [Ber03] and presented in Section 1.3.2.4 also applies
for system adaptation using rule-based correspondences.

≪
Constraint-based Correspondence

“Solving the modeling problems of object-oriented languages by composing

multiple aspects using composition filters” Aksit and Tekinerdogan proposed
Composition–Filters [AT98] to validate or invalidate a message that is received by
an object in an object-oriented based application. Filters are conditions or constraints
with a special “action” part which is either reject a message or dispatch a message.
I selected this approach as the illustration of an alternative way to weave aspects in
an aspect-oriented approach for objects that were not designed to be reusable in the
first hand. Every filter is an extension of an existing class and is defined using the
class elements such as the operations. Allowing or rejecting messages are one way
to adapt existing elements and provide adaptation mechanisms without modifying
existing objects specifications.

≪
Model-based Correspondence

“Towards Re-Engineering Legacy Systems for Assured Dynamic Adaptation”

In [ZC07], Zhang and Cheng propose a model-driven approach for adapting legacy
systems that were not meant to be adapted. Adaptation must also ensure that the sys-
tems still fulfill their intended purpose and that the systems correctness is preserved.
Using UML models to bridge the gap between software verification and software im-
plementation, they propose Petri nets based representations to produce an adaptation
model. Based on previous work about formalizing a subset of UML diagrams using
mappings between meta–models, they integrate a reverse-engineering step to tackle
legacy and newly developed code adaptation. They propose thus a four-step process
that (1) selects a set of legacy programs to be adapted from requirements analysis, (2)
translates these programs into UML Statecharts diagrams for verification, (3) helps
developers to create an adaptation model for verification, and (4) integrates and trans-
lates adaptation models into executable programs. This technique is invasive which
means that legacy programs have to be modified to use the adaptive programs that
have been generated along the adaptation process.

A similar model composition approach is proposed by Bernstein et al. [BHP00].

1.3.4.4 Synchronization ≪

The following sections illustrate examples of approaches found in the literature
regarding synchronization of existing systems.

Validating the key elements of model composition 47

≪

Operator-based Correspondence

“Towards Automatic Model Synchronization from Model Transformations”

Based on existing model transformations, Xiong et al. propose an approach for synchro-
nizing the models involved in the model transformations [XLH+07]. Given a specific
transformation, they have implemented a set of ATL rules to build a synchroniza-
tion system. Since ATL rules only provide a one-way transformation, they calculate
the backward transformation by extending the ATL Virtual Machine with push-back
functions. The synchronization step relies on two common operators in model-driven
engineering. The first one deals with identifying differences between two versions of
the same model. The second one called Merging achieves the merging of two models
by unifying the sets of their model elements. To keep track of differences and to guide
the merging process, differencing two models produces metadata that are concretely
bound to the original model using annotations. These annotations indicate if a model
element has not been modified, or if it has been replaced, or if it has been inserted, or
if it has been deleted. Using these tags, they are able to produce different models that
includes modifications from the target model or the source model and that we should
propagate. Propagation if performed by the merging operator and according to a set
of rules provided by the authors for conflicts resolution, both the target model and the
source model are updated.

≪
Rule-based Correspondence

The approach proposed by Xiong et al. [XLH+07] and presented in Section 1.3.4.4 is an
hybrid approach that uses both operator–based and rule–based correspondences.

≪
Constraint-based Correspondence

“Tracing Evolution Changes of Software Artifacts through Model Synchroniza-

tion” In [IK04], Ivkovic and Kontogiannis use model transformations to achieve
model synchronization. Their approach rely on a set of rules and relationships to cap-
ture dependencies or equivalence between models and to evaluate if these models
are synchronized or not. They propose a new metamodel for the definition of models
with synchronization capabilities. This generic metamodel is called Graph Metamodel
for Synchronization. Based on the information captured in this language and a set
of mappings, they propose another language to synchronize existing models. Mod-
els that conform to the transformation language contain the concrete algorithm for
propagating changes from one model to the other and vice-versa.

≪
Model-based Correspondence

“From Model Transformation to Incremental Bidirectional Model Synchroniza-

tion” [GW09] is an extension of [GW06] where Giese and Warner use Triple Graph

48 Model Composition in Software Engineering

Grammar (TGG) to synchronize models. In TGG, transformation designers manip-
ulates three models that correspond to the source model, the target model and an
additional correspondence model that defines mappings using predefined classes and
associations. Information gathered in the correspondence model is very similar to the
information that we may capture to build transformation traces. Using TGG, designers
also manipulate “stereotypes” on classes and relations between the source model, the
correspondence model and the target model. These “stereotypes” carry information
about the possible creation or deletion of an element during the model transformation
process. Based on the correspondence model, Giese and Warner propose an algorithm
to navigate through this model and synchronize the two models.

A similar model composition approach is proposed by Wachsmuth [Wac07].

≪
Delta-based Correspondence

“Automating Co-Evolution in Model-Driven Engineering” This work of Cic-
chetti et al. [CRE+08] propose an approach for vertical co-evolution, i.e., synchronize
a metamodel and its conforming models in the case of modifications. Based on a
model-based representation of differences between models, they automatically gener-
ate a transformation that performs the necessary synchronization steps. The difference
metamodel that captures the differences between models is automatically generated
from the source and target models. They end up with a new language that is dedicated
to represent differences for a given language. Differences are characterized within three
categories : additions, deletions or changes. Once the difference model is computed,
two transformations are generated, one from the source to the target and one from
the target to the source. These two transformations may then be used to synchronize
source and target models with each other.

1.3.4.5 Reconciliation ≪

The following sections illustrate reconciliation with examples from the literature.

≪
Operator-based Correspondence

The approach proposed by Bartelt. [Bar08] and presented in Section 1.3.4.4 also applies
for system reconciliation.

≪
Rule-based Correspondence

“Using a Model Merging Language for Reconciling Model Versions” Engel et
al. propose an approach for reconciling different versions of a model and to provide
automatic versioning [EPK06]. Their tool uses a differencing and merging process
with possible interaction with developers, to identify how to compose versions of a
model. Using Epsilon Merging Language (EML) [KPP06], they define matching and
merging rules for reconciling versions of models. Matching rules compares model

Validating the key elements of model composition 49

elements from the input models to identify equivalent model elements. The merging
process is realized by merging rules which state how to elements have to be composed
with each other and how to compute the merged element. In the specific example of
models reconciliation, they use matching rules to detect which elements have been
added or deleted between two versions of a model. Detecting changes is also part
of the matching process however no step in the merging process refers to it so this
interpretation is discarded. Once model elements are marked to be added or deleted,
the merging model follows a straight-forward algorithm for deleting/adding model
elements from/to the resulting model. Attributes and relationships between model
elements are handled in a fourth and fifth steps.

≪
Model-based Correspondence

The approaches proposed by Wachsmuth [Wac07] and Bernstein et al. [BHP00] and
presented respectively in Section 1.3.4.2 and in Model–based correspondence in Sec-
tion 1.3.2.1 also applies for system reconciliation.

≪
Delta-based Correspondence

The approach proposed by Engel et al. [EPK06] and presented in Section 1.3.4.5 also
uses delta-based correspondences. The approach proposed by Cicchetti et al. [CDRP08]
and presented in Section 1.3.2.1 also applies for system reconciliation.

1.3.5 Systematic Literature Review Summary

The systematic literature review provides examples that supports the categories
of correspondence and interpretation that we presented in Section 1.2. This section
presents results from the systematic literature review to summarize the distribution
of articles regarding (i)the kind of correspondence that they use (see Section 1.3.5.1),
(ii)the kind of correspondence that they use against the interpretation of these cor-
respondences (see Section 1.3.5.2, and (iii)the kind of correspondence that they use
against the software development activity (see Section 1.3.5.3). We provide additional
discussion and validation with regard to the research objectives in Section 1.4.

Raw results from the systematic literature are presented in Section 1.3.5.1, 1.3.5.2,
and 1.3.5.3. Section 1.4 discusses the research objectives proposed in Section 1.3.1.1.

1.3.5.1 Kind of Correspondences and Distribution of Articles

From the total number of 88 articles, 19 use operator-based correspondences, 32
use patterns to define correspondences, 15 use rule-based correspondences, 4 use
constraint-based correspondences, 24 use models to represent correspondences and 3
use delta-based correspondences. The sum of the distributed articles is greater than
the total number of articles since some approaches are hybrid (see Figure 1.6) such as
operators with patterns, operators with models, patterns with models.

Results corroborate the H1a.1 hypothesis from Section 1.3.1.1 : every model com-
position technique has successfully been assigned a kind of correspondence from the

50 Model Composition in Software Engineering

P
29

M O
9

9 C

16

R
3

D2

2
3

3

5

1

1 1

2

Figure 1.6 – Distribution of articles with respect to the type of correspondences. Circles
represents the number of articles for each kind of correspondence and lines represents
the number of hybrid approaches

category. Let RAi the number of articles that are assigned to only one kind of corre-
spondence i and HAi the number of articles that are assigned to at least two kinds of
correspondence. We compute the precision of the n kinds of correspondence such that :

Precision =

n
∑

i=1

RAi

RAi +HAi

n

(1.1)

Values of precision for each kind of correspondence and the global precision of
the proposed categories is shown in Table 1.2 with TA (RAi+HAi) the total number of
articles for one kind of correspondence i.

Operator Pattern Rule Constraint Model Delta Total
RA 9 29 9 3 16 2
HA 10 8 10 1 6 1
TA 19 37 19 4 22 3

Precision 0.47 0.78 0.47 0.75 0.73 0.67 0.65

Table 1.2 – Precision for each kind of correspondence and global precision for the
category

As an additional criteria, we compute the ratio of hybrid approaches HA against
the number SA of approaches that use a single kind of correspondence such that :

Ratio = HA
SA = 0.27 (1.2)

1.3.5.2 Interpretation and Distribution of Articles

Table 1.4 presents results with regard to the class of overlapping interpretations
of correspondences. Since the interpretations of correspondences are rarely provided

Validating the key elements of model composition 51

by the authors explicitly, the classification reflects the global feeling of how corre-
spondences may be interpreted in a given context for a specific problem. Moreover,
approaches usually supports several interpretations with regard to a given context.
However, among a total number of 78 articles that deal with overlapping models, a
large number of model composition techniques propose equivalence and similarity
as the main interpretations. The results agree with the idea that usually, overlapping
models contains model elements which are semantically equivalent or very close to
one another, these interpretation have respectively 51 and 23 candidates. The Ad Hoc
interpretation has 28 candidates since this interpretation includes all articles which
interpretations do not fit in the proposed classification. Other interpretations have far
less candidates in the set of articles since they correspond to more specific processing
of the correspondences for a given problem : 11 occurrences of the add interpretation,
11 occurrences of the delete interpretation, 5 occurrences of the change interpretation,
7 occurrences of the generalization interpretation, 5 occurrences of the aggregation
interpretation, 7 occurrences of the overriding interpretation, and 1 occurrence of the
information gap interpretation.

Table 1.5 shows results with regard to the classes of cross-cutting and interaction
interpretations of the correspondences. The distribution of articles in these interpreta-
tion is almost even except for the co-dependency interpretation which only collect 4
occurrences in the set of articles. Co-dependency is specific to the representation of pro-
cesses and few papers dealing with model composition in this domain go beyond the
sequentiality and parallelism of activities. The distribution for each interpretation is as
follows : 11 occurrences are about replacing model elements, 18 occurrences are about
augmenting, 8 occurrences are about removing, 15 occurrences are about sequencing,
and 12 occurrences are about paralleling.

Results corroborate the H1b.1 hypothesis from Section 1.3.1.1 : every model com-
position technique has successfully been assigned a kind of correspondence from the
category. However articles within the Ad Hoc category have either an undefined in-
terpretation or a too large interpretation to fit in the categories. Thus, we compare
the number of articles that are only filed in the Ad Hoc kind of interpretation against
the total number of articles to strengthen the relevance of the proposed categories of
interpretations. Let AI be the number of articles that file the Ad Hoc category only and
TI the total number of articles. We compute the rate of articles P that do not use the Ad
Hoc interpretation such that :

P = TI−AI
TI = 88−7

88 = 81
88 = 0.92 (1.3)

Let AI′ the number of articles that file the Ad Hoc category in addition to other
categories, we the rate of articles P′ that use the Ad Hoc interpretation among others
such that :

P′ = TI−AI
TI = 88−21

88 = 67
88 = 0.76 (1.4)

Most of the model composition approaches propose more than one interpretation for
correspondences. We explain this result by the fact that some interpretations are related
with each other in a specific context. For instance, a model composition technique

52 Model Composition in Software Engineering

that handles cross-cutting models and provides an “augment” interpretation without
proposing “remove” or “replace” would look incomplete. Computing the number of
articles with only one interpretation against the total number of articles using at least
this interpretation is not a relevant criterion in this situation. We propose to calculate
the accuracy of the categories of interpretation using the following scale :

– Classification of an approach in exactly one kind of interpretation is a very
relevant classification and is valued 1.

– Classification of an approach in exactly two kinds of interpretations is a some-
what relevant classification and is valued 0.8.

– Classification of an approach in exactly three kinds of interpretations is a some-
what irrelevant classification and is valued 0.3.

– Classification of an approach in at least four kinds of interpretations is an irrele-
vant classification and is valued 0.

Using this scale, we compute a value of accuracy for the categories of interpre-
tations. Results are shown in Table 1.3 with NI the number of interpretations, R the
scale of relevance, NA the number of articles for a given number of interpretations,
TA = 83 the total number of articles and Accuracy =

∑

(R∗NA)
TA the value of accuracy for

this category.

NI R NA NA/TA Accuracy
1 1 23 0.28
2 0.8 28 0.34
3 0.5 17 0.21
≥ 4 0 15 0.18

0.65

Table 1.3 – Accuracy of the categories of interpretations

V
alid

atin
g

th
e

k
ey

elem
en

ts
o

f
m

o
d

el
co

m
p

o
sitio

n
53

Correspondence

Interpretation
Overlapping

Add Delete Equ Sim Gen Aggr Overriding Info Gap Ad Hoc

+ ❂ , ≈ _ _ ≔ ! (. . .)
Operators [Ber03] [Ber03] [Ber03]

[DRMM+10] [DRMM+10] [DRMM+10] [DRMM+10]

[GS03]

[BCR05] [BCR05]

[BCR+07] [BCR+07]

[KM10]

[MPL+09]

[LNK+01] [LNK+01]

[MBN+09]

[PRB+09] [PRB+09] [PRB+09] [PRB+09]

[HHJ+08] [HHJ+08]

[HKG+10]

[XLH+07] [XLH+07] [XLH+07]

[PGP+07]

[CSN08]

[Bar08] [Bar08]

[PVSG+08]

[ASM+10] [ASM+10] [ASM+10]

Patterns [BKB+08] [BKB+08]

[FBF+08]

[Let07] [Let07] [Let07] [Let07]

[NM00]

[ACL+09] [ACL+09]

[Cla02] [Cla02]

[ES06] [ES06] [ES06] [ES06] [ES06]

[OO07]

[FFR+07]

54
M

o
d

el
C

o
m

p
o

sitio
n

in
S

o
ftw

are
E

n
g

in
eerin

g

Correspondence

Interpretation
Overlapping

Add Delete Equ Sim Gen Aggr Overriding Info Gap Ad Hoc

+ ❂ , ≈ _ _ ≔ ! (. . .)
[KUL+10] [KUL+10]

[BWH10] [BWH10]

[MPL+09] [MPL+09] [MPL+09]

[SFS+08] [SFS+08]

[Jez08]

[TT08] [TT08]

[WS08]

[AJT+09] [AJT+09]

[ACL+10]

[Wag08]

[JZF+09]

[NSC+07]

[CSN08]

[FBB+07]

[MBJ08]

Rules [EPK06] [EPK06] [EPK06] [EPK06] [EPK06]

[BSM+07] [BSM+07] [BSM+07]

[RCE08] [RCE08]

[ACL+09]

[KPP06]

[AEC+07]

[BTF05] [BTF05]

[BLTN10] [BLTN10]

[PBB+09]

[HKG+10]

[CRR+07]

[XLH+07] [XLH+07] [XLH+07]

V
alid

atin
g

th
e

k
ey

elem
en

ts
o

f
m

o
d

el
co

m
p

o
sitio

n
55

Correspondence

Interpretation
Overlapping

Add Delete Equ Sim Gen Aggr Overriding Info Gap Ad Hoc

+ ❂ , ≈ _ _ ≔ ! (. . .)
[WJ08]

[JWE+07]

Constraints [IK04] [IK04]

[PVSG+08]

Models [ZLL09] [ZLL09]

[GW06] [GW06]

[GW09] [GW09]

[FDV07] [FDV07] [FDV07] [FDV07]

[CBJ10] [CBJ10] [CBJ10]

[MMP+10] [MMP+10] [MMP+10] [MMP+10]

[PR04] [PR04]

[DRMM+10]

[AEC+07] [AEC+07] [AEC+07]

[DFB+05b] [DFB+05b] [DFB+05b] [DFB+05b]

[Wac07] [Wac07] [Wac07] [Wac07] [Wac07] [Wac07]

[SE06] [SE06] [SE06]

[BA00]

[BHP00]

[ZC07] [FBB+07]

[LP03]

[PDCS+01]

[MBJ08]

Deltas [EPK06] [EPK06]

[CRE+08] [CRE+08]

Table 1.4 – Distribution of articles with regard to the types of correspondence and the overlapping interpretations. The
Add and Delete interpretations are included in this table for convenience purposes.

56
M

o
d

el
C

o
m

p
o

sitio
n

in
S

o
ftw

are
E

n
g

in
eerin

g

Correspondence

Interpretation
Cross-Cutting Interaction

Replace Augment Remove Sequence Parallel Co-Dependency

≔ += \ ; ‖ �

Operators

[DRMM+10]

[GKR+08]

[GS03] [GS03]

[PGP+07] [PGP+07]

[SY10] [SY10]

[PVSG+08]

[BBN+10]

[Bar08]

Patterns

[JKB+06] [JKB+06] [JKB+06]

[BKB+08] [BKB+08] [BKB+08] [BKB+08]

[MKB+08] [MKB+08] [MKB+08]

[MBN+09] [MBN+09] [MBN+09]

[Cla02]

[KAAK09] [KAAK09]

[SFS+08]

[Jez08] [Jez08]

[Bel04] [Bel04] [Bel04]

[MBJ+07] [MBJ+07]

[KHJ06 ; KJP05] [KHJ06 ;

KJP05]

[PBC+11] [PBC+11]

[HKG+10] [HKG+10] [HKG+10]

[MBJ08]

[MBFF10] [MBFF10] [MBFF10]

[Mos10] [Mos10]

Rules [OMK09] [OMK09] [OMK09]

Continued on next page

V
alid

atin
g

th
e

k
ey

elem
en

ts
o

f
m

o
d

el
co

m
p

o
sitio

n
57

Correspondence

Interpretation
Cross-Cutting Interaction

Replace Augment Remove Sequence Parallel Co-Dependency

≔ += \ ; ‖ �
[CRR+07] [CRR+07] [CRR+07] [CRR+07]

[HKG+10] [HKG+10] [HKG+10]

[CDK+07] [CDK+07]

[PGP+07] [PGP+07]

[SY10] [SY10]

Constraints
[AT98]

[PVSG+08]

Models

[DRMM+10]

[ZLL09]

[PBC+11] [PBC+11]

[MBJ08]

[BA00] [BA00]

[NB04] [NB04]

[GJ05] [GJ05]

Deltas [CDRP08] [CDRP08]

Table 1.5 – Distribution of articles with regard to the type of correspondence and the cross-cutting
and interaction interpretations

58 Model Composition in Software Engineering

1.3.5.3 Software Activities and Distribution of Articles

Table 1.6 presents results with regard to the intention of designing software. As
we expected, 47 of the articles refer to the activity of model composition as their first
intention. However the use of model composition for other activities is significant,
respectively 9 articles about derivation, 12 about orchestration and 12 about integra-
tion. Table 1.7 presents results with regard to the intention of verifying and validating
software. Among 17 articles related to verification and validation, 13 articles pro-
pose approaches for checking software consistency and 4 are about checking software
correctness. Table 1.8 shows results with regard to the intention of making existing
software evolve. On a total of 24 articles, 1 propose dynamic reconfiguration facili-
ties, 7 are about refactoring, 4 deals with software adaptation, 7 are about software
synchronization and 5 propose approaches for software reconciliation.

Results corroborate the H2.0 hypothesis from Section 1.3.1.1 : a large range of
software life-cycle activities are actually supported by model composition techniques
to some extent. The model composition activity plays a significant role in these software
life-cycle activities although not always being emphasized.

Validating the key elements of model composition 59

Correspondence

Intention Design

Composition Derivation Orchestration Integration

Operators

[PGP+07],[Ber03] [ASM+10] [PGP+07] [Ber03],[SY10]

[KM10],[LNK+01] [MPL+09] [FGF+08] [GS03]

[PRB+09] [PVSG+08] [BCR05 ; BCR+07]

[HHJ+08],[GKR+08] [HKG+10]

[CSN08],[HKG+10]

[DRMM+10]

[BCR05 ; BCR+07]

Patterns

[Wag08],[Let07] [MPL+09] [Mos10]

[NSC+07],[MBFF10] [MBJ08]

[Cla02],[ES06] [JZF+09]

[NM00],[OO07] [Jez08]

[FFR+07],[KUL+10] [AJT+09]

[BWH10],[CSN08] [PBC+11]

[KAAK09],[SFS+08]

[PBC+11],[ACL+10]

[Jez08],[MBJ+07]

[WS08],[AJT+09]

[KHJ06 ; KJP05]

[MKB+08]

Rules

[CRR+07],[RCE08] [JWE+07] [CRR+07] [BSM+07]

[ACL+09],[KPP06] [HKG+10]

[AEC+07],[WJ08] [CDK+07]

[JWE+07],[BLTN10]

[HKG+10],[OMK09]

Constraints [AT98] [PVSG+08]

Models

[BHP00],[DFB+05b] [PBC+11] [BHP00],[NB04] [FDV07],[CBJ10]

[DRMM+10],[AEC+07] [MBJ08] [GJ05],[FGF+08] [MMP+10],[PR04]

[PBC+11],[SE06] [LP03 ; PDCS+01]

[Wac07]

[LP03 ; PDCS+01]

Deltas [CDRP08]

Table 1.6 – Distribution of articles with respect to the type of correspondences and the
software design intention

60 Model Composition in Software Engineering

Correspondence

Intention Verification

Consistency Correctness

Operators [Bar08] [BA00]

Patterns [FBF+08],[NM00],[ACL+10],[BKB+08] [KUL+10],[JKB+06]

Rules [WJ08],[JWE+07],[PBB+09],[BLTN10]

Constraints [BBN+10]

Models [PR04],[ZLL09],[SE06] [SE06]

Deltas [CDRP08]

Table 1.7 – Distribution of articles with respect to the type of correspondences and the
software verification and validation intentions

Correspondence

Intention Evolution

Reconfiguration Refactoring Adaptation Synchronization Reconciliation

Operators [MBN+09] [Ber03] [Ber03],[XLH+07] [Bar08]

Patterns
[MBN+09] [FBB+07] [TT08]

[TT08]

Rules [BTF05] [XLH+07] [EPK06]

Constraints [IK04]

Models

[BHP00] [BHP00], [GW06 ; GW09] [BHP00]

[ZC07] [ZC07] [Wac07] [Wac07]

[Wac07] [FBB+07]

Deltas
[CRE+08] [EPK06]

[CDRP08]

Table 1.8 – Distribution of articles with respect to the type of correspondences and the
software evolution intention

Discussion 61

1.4 Discussion

With respect to the possible review biases that we discussed in Section 1.3.1.6 and
in Section 1.3.1.7, this section proposes to go further on interpreting the systematic
literature review results regarding the research objectives (see Section 1.3.1.1).

1.4.1 Are Correspondences and Interpretations Pervasive ?

The systematic literature review validates the precision and relevance of the clas-
sification of the key concepts of model composition techniques. Observations back up
the intuitive classification of the kinds of correspondence and of the kinds of interpre-
tations and increase the confidence that we have in the proposed classifications as a
basis for characterizing and comparing model composition techniques. With a global
precision of 65% (see Table 1.2) for the classification of the kinds of correspondence and
a precision of 92% (see Equation 1.3) for the classification of the kinds of interpretation,
we consider the hypotheses H1a.1, H1b.1 and H1.3 as valid.

Validity of the H1.3 hypothesis implies that the H1.0 hypothesis is also valid. Since
the list of correspondences and interpretations is precise enough to cover all model
composition techniques, we deduce that every model composition technique uses a set
of correspondence relationships and a specific interpretation to these correspondences.
The proposed classification and decomposition into a set of correspondences and
interpretations to these correspondences (Question Q1) is thus relevant to characterize
model composition approaches.

We must however moderate the validity of the H1.3 hypothesis since (i)26% (see
Equation 1.2) of the studied model composition approaches use hybrid kinds of cor-
respondences, (ii)76% (see Equation 1.4) of the model composition approaches use an
Ad Hoc interpretation in conjunction with other interpretations, and (iii)the global
accuracy of the categories of interpretations is about 65% (see Table 1.3). These figures
pinpoint the difficulty to extract valuable information due to the lack of formalization
and precise definition of the model composition techniques. Model composition tech-
niques also often propose several interpretations to achieve the same goal in a given
context, these interpretations being logically related with one another. Ultimately, the
wording of model composition approaches may lead to some misinterpretation of their
description and definition.

Results from the systematic literature review do not satisfy the H1.4hypothesis. The
distribution of model composition techniques among each category (correspondences
and interpretations) is far from even. We details our explanation as follows :

Correspondences

– Pattern is the most represented kind of correspondences in the studied articles.
A pattern is a general word that covers a lot of techniques to compare elements
with one another and this probably explains why almost half of the hybrid
techniques uses patterns in conjunction with another kind of correspondence.

– The choice of a kind of correspondence may probably results from cultural
background or designers preference in addition to a trade-off between ex-

62 Model Composition in Software Engineering

pressiveness, degree of automation and further considerations related to the
context and purpose of a specific model composition technique.

Interpretations

– Equivalence, similarity are the most represented kinds of interpretation in the
studied articles. Cultural background has probably an impact on this result
since the definition of model composition is often narrowed to merging model
with close structures at design–time.

– Ad Hoc interpretations are also well represented in the studied articles. The
lack of formalization or classification for interpretation probably prevents slic-
ing very expressive operators that perform complex computations into more
manageable and reusable modules of computation.

1.4.2 Is Model Composition a Common Operation in Software Develop-
ment ?

The validity of hypothesis H2.0 has been briefly discussed in Section 1.3.5.3 and an-
swers positively to Question Q2 from the research objectives. In the context of this thesis
we will not further analyze the relationship between correspondences and software
activities nor propose any further explanation on the distribution of correspondences
and interpretations among software activities. We use software activities mainly for
presentation purpose only and our intent was to rely on examples to confirm that
model composition tackles far more software activities than merging structural mod-
els at design-time.

1.4.3 Summary of the Contribution

The validation of the two questions Q1 and Q2 from the research objectives is the first
step in the detection of commonalties among various operations on models and among
existing model composition techniques. We demonstrate that categories proposed in
Section 1.2 are valid with regard to the current state of practice in model composition.
Based on these categories, the first contribution of this thesis is the definition of an

interpretive lens to analyze and compare existing model composition techniques.
The main contribution of this thesis is to propose novel definition of model com-

position as a pair of a mapping and a set of interpretations. This novel definition
allows capitalizing the commonalties of the various model composition techniques.
Capitalization motivates the second contribution of this thesis that is the definition

of a unified theoretical framework. The definition of a unified theoretical framework
should (i)allow the redefinition of the various model composition techniques and of
the model composition purposes ; and (ii)allow the definition of specific model com-
position frameworks for a given purpose.

In Section 1.4.4, we present an overview of existing generic model composition
frameworks (GCF). We propose a set of objectives that we consider as important to
achieve capitalization and we stress the specific challenges that this thesis address.

Discussion 63

1.4.4 Overview of Existing Generic Composition Frameworks

We consider that the following objectives are important towards capitalizing com-
monalties across various model composition approaches that adress various model
composition goals :

– We should propose semantics for mappings relationships as a set of predefined
interpretations. A list of predefined interpretations should allow designers to
reuse them to address specific model composition purposes.

– We should keep the coupling between a mapping and its interpretation as low as
possible. Low coupling allows both (i)reusing a mapping with different interpre-
tations to tackle various purposes ; and (ii)reusing a given set of interpretations
that tackle a specific purpose with different mappings.

– We should support various model composition operations to cover the whole
range of activities that are supported by model composition approaches.

– We should support the customization of the model composition process to de-
crease the effort in building specific model composition frameworks.

Sections 1.4.4.1 to 1.4.4.3 discuss existing GCFs with regard to the contributions
of this thesis. Section 1.4.4.4 summarizes how existing GCFs support the proposed
objectives and emphasizes the challenges that the main contribution addresses.

1.4.4.1 Relationship–based Approach

Chechik et al. propose a relationship–based approach to ease model integration [CNM11].
They state that “...relationships [which hold between a set of models] should be treated
as first–class artifacts...” [CNM11, §6, p.14] to reduce the global complexity of the
definition of model composition frameworks. The categories of interpretations from
Section 1.2.2 are inspired from this work : we keep the list of overlapping relationships
with the same semantics and detail the types of relationships for the model interaction
and model cross-cutting categories. Extending the types of relationships available for
model composition and validating the categories by conducting a systematic literature
review, we propose a formalization for each type of relationship and a process for
building model composition frameworks.

Chechik et al. claim that future research should “...develop a more thorough classi-
fication of the purposes for which merge is applied applied, and subsequently study
the applicability and tradeoffs between different merge operators for a given pur-
pose.” [CNM11, §6, p.14]. Proposing a novel definition of model composition as a
pair of a mapping and an interpretation allows exploring how the purpose of a spe-
cific model composition operation influences the meaning of relationships which hold
between a set of models. While providing an extensive list of purposes for model com-
position is out of the scope of this thesis, results from the systematic literature review
may provide a starting point for future research in this direction.

64 Model Composition in Software Engineering

1.4.4.2 ATLAS Model Weaver and Virtual EMF

The novel definition of model composition as a pair of a mapping and an interpre-
tation is close to the experiments that Didonet et al. and Fabro et al. have undergone
proposing the generic AMW [DFB+05b ; DFB+05a ; FDV07]. Claiming that no unified
meta–model for mapping is enough to handle every model composition situation, there
is a need to build a “variety of small dedicated mapping languages” [DFB+05b, §1, p.2].
They subsequently propose a minimal meta–model for identifying correspondences
that can be extended to support specific requirements. The generic meta–model pro-
vides no meaning to the correspondences links but designers may provide extensions
of these links to define special semantics.

Our approach is similar in a sense that we propose to distinguish a mapping from
its interpretation to allow reusing correspondences for various model composition pur-
poses. Our contribution differs such that we propose a set of predefined interpretations
to handle situations that often occur. Providing predefined interpretations is twofold :
(i)it helps proposing precise semantics to a set of given correspondence links ; (ii)it
allows reusing and capitalizing mappings and their semantics among various model
composition operations. While predefined operators may not cope with specific re-
quirements or situations, the extension mechanism that we propose – using the Ad
Hoc interpretation – supports the same expressiveness as developing an extension to
a weaving link in AMW.

Using AMW, Clasen et al. proposed a new model composition approach based
on the use of a virtual model [CJC11]. A virtual model is a seamless model that
contains elements that are proxies to elements contained in other models : it allows
manipulating model elements from contributing models in a single workspace, without
taking into account the meta–models that these model elements conform to. While this
approach seems to target issues that are different from ours, proposing specific model
composition operations for specific correspondence links is still one of the central goals
of the approach 7.

1.4.4.3 Object–Relational Mapping

ORM has originally being designed to synchronize OO representations of data
with data structures in relational databases. Based on a set of mappings (i.e., annota-
tions) that propose equivalences between objects and data in tables, the synchronization
mechanism is embedded in the interpreter of the mapping language. Since persistence
techniques evolved to support various formats and various kinds of databases, multi-
ple mappings should have been necessary to handle this heterogeneity. ObjectSpaces
from Microsoft and Java Data Objects (JDO) handle this heterogeneity making anno-
tations independent from the target persistence storage. Using a single language for
annotations, developers can access/store data from/to various data storage.

The goal of proposing a novel definition for model composition in which mappings
and their interpretation are separated and loosely–coupled is similar : with a unique

7. Section Correspondence Model in http ://code.google.com/a/eclipselabs.org/p/virtual-emf/wiki/userguide

Discussion 65

set of mappings between sets of models, different sets of interpretations should lead
to the definition of different model composition techniques.

1.4.4.4 Contribution Challenges

Table 1.9 summarizes how GCFs from the literature meet the proposed objectives
for capitalization.

We observe that most GCFs either let designers define their own interpretations
or propose a single interpretation for mappings. While some GCFs propose several
interpretations for mappings, coupling between mappings and interpretations is still
high, thus hindering generalization and reuse of mappings and / or interpretations.

Most GCFs support very few model composition operations. Designed for a specific
purpose in a given context, effort and time for adapting these approaches to support
different model composition operations is significant.

Capturing a specific composition process is still challenging and surely explain
why even the adaptation of GCFs that propose a large number of model composi-
tion operations requires manual customization. Techniques for manual customization
varies but mostly require developing new application code, rewriting mappings inter-
preters, modifying existing model composition algorithms or even providing behavior
in another kind of representation (i.e., state machines).

The contribution of this thesis focuses on improving the state of practice in build-
ing generic model composition frameworks. We propose a theoretical framework that
supports the definition of model composition as a pair of a mapping and a set of
interpretations. Formalization of the concepts of mapping and interpretation is done
separately to keep coupling as low as possible. We propose a list of predefined map-

pings and a list of predefined interpretations as a basis for the construction of specific
model composition frameworks.

A pair of a mapping and a set of interpretations define a specific model composi-
tion framework for a given purpose. The theoretical framework thus support various

model composition operations through the construction of different pairs of map-

pings and interpretations.
The model composition process supported by a specific model composition frame-

work depends on domain– or problem– specific characteristics. The contribution of
this thesis partially tackles the customization challenge. The selection of a set of

interpretations provides default semantics to the model composition process and
captures characteristics related to the problem (i.e., the purpose of the model compo-
sition process). Additional semantics that refer to domain–specific concerns are still to
be captured manually.

66 Model Composition in Software Engineering

GCF

Characteristics

Predefined

Interpretations

for mappings

Coupling Mapping /

Interpretation

Supports

various model

composition

operations

Composition

Process Customization

AMW [DFB+05b] manual medium / high * manual
(Java Methods)

ORM [GG10] * medium 1 manual
(Interpreter)

Relation–based Approach

[CNM11]

* high * manual

Canonical Scheme

[BBDF+06]

manual high 1 manual

Model Management

[BHP00]

* high * manual
(Operators)

Kompose

[FFR+07 ; FBF+08]

1 high 1 manual
(Algorithm)

GeKo and SmartAdapter

[MKB+08 ; MPL+09]

1 high 2 manual

ReuseWare [HHJ+08] 1 high * manual
(Combine
two atomic
operations)

Generic Aspect–Oriented

Modeling Framework

[MBJ+07]

manual medium 1 manual

DUALLy [MMP+10] manual medium 1 manual
(State Machines)

Table 1.9 – Comparison of existing generic model composition frameworks (GCFs)

Chapitre 2

A Theoretical Framework for Model
Composition

This chapter presents the formalization of main contribution of the thesis, that is a
theoretical framework for model composition. Section 2.1 motivates the decomposition
of the definition of model composition into a pair of a mapping and a set of interpreta-
tions using parallels with structures in mathematical logic and with signs in linguistics.
These parallels allows characterizing the relations that exist between a mapping and
an interpretation. Section 2.2 proposes mathematical definitions for each kind of map-
ping and each kind of interpretation proposed in Section 1.2. Section 2.3 discusses how
the theoretical framework for model composition allows building model composition
frameworks that target specific model composition purposes.

2.1 Decomposing Model Composition

As we observed in the systematic literature review (see Chapter 1), most of the
model composition techniques use (i)correspondences between models or model ele-
ments and (ii)a specific interpretation of these correspondences to fulfill the ultimate
goal of the model composition operator. The nature of correspondences and their
interpretations is still to be discussed and formalized.

We propose to shift from a monolithic definition of model composition (a single
definition for a single use – whatever large the spectrum of composable models could
be) to a modular definition of model composition (a customizable definition and a
choice of existing operators to achieve a possibly large range of goals).

The big picture of the proposition is shown in Figure 2.1. Sections 2.1.1 and 2.1.2
draw parallels with structures in mathematical logic and with signs in linguistics
respectively to (i)motivate the separation of correspondences from their interpreta-

tion and to (ii)define the relationships that exist between a correspondence and its

interpretation.

67

68 A Theoretical Framework for Model Composition

MC1 MCp
MC5

MC6
MC2

MC10
MC3 MC9

MC7

MC8

Correspondences Interpretations

MC1 MC2 MCn...

relation?

Figure 2.1 – Model composition : Moving from monolithic techniques to techniques
on-demand

2.1.1 Model Composition is a Structure

Towards demonstrating that model composition is a pair of correspondences and
interpretations, we draw a parallel with Structures in mathematical logic.

A Structure in mathematical logic is a triple of a domain, a signature and an
interpretation [BS81, §V.1, p.217]. To avoid any misunderstanding in this section, we
use the term “goal” to refer to an interpretation in the context of mathematical logic
structures.

Let S be a mathematical structure, |S|be the domain of the structure,σbe a signature,
and G be a goal such that :

S = 〈 | S |, σ,G 〉 (2.1)

The domain of S is an arbitrary set called the underlying set of the structure, its
carrier or its universe. Signature of S is a set of function symbols and relation symbols
along with a function that ascribes to each symbol s a natural number (n = ar(s)) which
is called the arity of s because it is the arity of the “goal” of s. A “goal” function G of S
assigns functions and relations to the symbols of the signature. Each function symbol
f of arity n is assigned an n–ary function f S = G(f) on the domain.

From the definition of a structure in mathematical logic, we propose to decompose

model composition as a correspondence language and a specific set of interpreta-

tions. The infinite variability of model composition purposes is an obstacle to the
extensive formalization of the “goal” part. Thus we voluntarily discard this part from

Decomposing Model Composition 69

our definition of model composition while we still take into account the influence that
the purpose has on the definition of a new model composition operator.

We use mapping in the following explanations to refer to “a correspondence lan-
guage”. A mapping relates model elements – from a single or multiple models – with
one another and interpretations provide semantics to the mapping regarding a specific
model composition goal.

Let MC be the definition of a model composition operator as a mathematical oper-
ation, with MM a mapping over one or more models and I a set of interpretations such
that :

MC = 〈MM, I 〉 (2.2)

Categories proposed in Sections 1.2.1 and 1.2.2 provide background for the formal-
ization of mapping and interpretation. Formal definitions of mapping and interpreta-
tion are detailed respectively in Section 2.2.2 and in Section 2.2.3.

2.1.2 Model Composition is a Linguistic Sign

This section draws a parallel between the key concepts in model composition and
both linguistics and semiotics (i)to strengthen the proposed decomposition of model
composition as a pair of a mapping and of an interpretation, and (ii)to explore the
relationship that exists between a mapping and its interpretation.

Linguistics is a branch of the general science of semiotics that “...investigates the
nature of signs and the laws governing them” [Cha08, Introduction, p.9]. In other
words, semiotics is the scientific study of human language and includes the work
of philosophers, theorists, anthropologists, psychoanalysts, etc., which participate in
“...seeking to explore the use of signs in specific social situations” [Cha08, Introduction,
p.9].

The definition of a sign is closely related with the definition of a linguistic structure :
“Linguistic structures are pairing of a meaning and a form. Any particular pairing of
meaning and form is a Saussurean sign.” 1.

A “Saussurean sign” is defined as follows :

[Ferdinand de] Saussure offered a ’dyadic’ or two-part model of the
sign. He defined a sign as being composed of :

– a ’signifier’ (signifiant) - the form which the sign takes ; and
– the ’signified’ (signifié) - the concept it represents.

[Cha08, Signs, p.19]

Similarly to Equation 2.2, our thesis is that a model composition operation (i.e., a
sign) can be defined as a pairing of a mapping (i.e., a signifier) and an interpretation
(i.e a signified). In other words, a mapping is the definition of the model composition
operation and the interpretation gives a precise meaning to the mapping relationships
in a specific context.

1. http ://en.wikipedia.org/wiki/Linguistics#Divisions_based_on_linguistic_structures_studied

70 A Theoretical Framework for Model Composition

2.1.2.1 Variability of a Sign

We observed that mapping and interpretation are multiple, depending on the
context and the problem that a specific model composition operator handles. The
following statement on the definition of a sign in semiotics applies equally on the
definition of a model composition operator :

A sign is a recognizable combination of a signifier with a particular signi-
fied. The same signifier ... could stand for a different signified (and thus
be a different sign).... Similarly, many signifiers could stand for the [sig-
nified]... – again, with each unique pairing constituting a different sign.
[Cha08, Signs, p.19]

This allows the definition of model composition operators that are flexible, meaning
that (i)with a given mapping, we can build multiple model composition operators and
(ii)we can build multiple model composition operators that tackle the same purpose
using various mappings. The choice of a specific set of interpretations depends on
human–related or problem–related criteria, similarly to what Chandler tells us about
the choice of a signifier :

The use of one signifier rather than another from the same paradigm is
based on factors such as technical constraints, code (e.g., genre), convention,
connotation, style, rhetorical purpose and the limitations of the individual’s
own repertoire. [Cha08, Paradigmatic Analysis, p.72]

Quoting that, the general feeling when we observe existing model composition
techniques is that mapping and interpretation are rarely distinguished : model com-
position approaches propose solutions to specific problems, and seldom formalize the
underlying purpose of the model composition operator.

Chandler tells us that in semiotics, the signifier and the signified are highly cou-
pled, however, “...the signifier and the signified can be distinguish for analytical pur-
poses.” [Cha08, Signs, p.21].

This statement closely matches our reasoning approach : we want to separate

mapping from its interpretation to enhance the inherent reusability of these two

concepts.

2.1.2.2 Mapping and Interpretation Coupling

Identifying the relationship between a mapping and its interpretation is necessary
to identify highly reusable model composition techniques and to propose pairs of
mapping/interpretation that are adequate and relevant.

Since interpretation is the meaning of a mapping, we propose that default meaning
is such that mapped elements are in relation with one another. This definition is not
sufficient to capture the goal of a specific model composition technique. Thus, we need
to use concepts of denotation and connotation to further characterize the goal of the
model composition operator.

In semiotics, “...denotation and connotation are terms describing the relationship
between the signifier and its signified...” [Cha08, Denotation, Connotation and Myth,

Decomposing Model Composition 71

p.90] (see Figure 2.2). A signified is bound to a meaning that “...includes both denotation
and connotation.” [Cha08, Denotation, Connotation and Myth, p.90].

sign

signifier signified
denotation

connotation

Figure 2.2 – A simplified representation of a sign and the relationships between the
signifier and the signified.

Chandler gives a more precise definition of denotation and connotation that is :

’Denotation’ tends to be described as the definitional, ’literal’, ’obvious’
or ’commonsense’ meaning of a sign. In the case of linguistic signs, the
denotative meaning is what the dictionary attempts to provide....
...
The term ’connotation’ is used to refer to the socio-cultural and ’personal’
associations (ideological, emotional etc.) of the sign.
...
Connotations are not purely ’personal’ meanings - they are determined by
the [cultural] codes to which the interpreter has access. [Cha08, Denotation,
Connotation and Myth, p.90]

Denotation and connotation influence the definition of a model composition op-
erator. Selecting a specific mapping and specific interpretations to build a new model
composition operator is not enough. The goal of the model composition operator is
still to be captured since “[c]hanging the form of the signifier while keeping the same
signified can generate different connotations” [Cha08, Denotation, Connotation and
Myth, p.92] and “...connotation is very much a question of how [the] language [that
includes the signs] is used.” [Cha08, Denotation, Connotation and Myth, p.93].

The meaning of a pair of a mapping and an interpretation is given by a specific
connotation which represents the concept of goal in the definition of a structure in
mathematical logic. Definition of connotation and denotation is still too extensive to
propose a formal definition of the goal. However the variability of denotation/conno-
tation illustrates how the goal of a model composition operation may vary.

In the scope of the formalization of a model composition operator, we propose to
derive the definitions of connotation and denotation such that :

Definition ✶ Denotation
Denotation is the generic meaning of a pairing of a mapping representation and an
interpretation of this representation : model elements from one model relate with
model elements from another model.

72 A Theoretical Framework for Model Composition

Definition ✷ Connotation
Connotation refines the relate meaning into a meaning that takes into account a specific
context and a given goal to achieve.

Since the definition of connotations involves capturing a context that depends on
the designers using the model composition operator and depends on the model com-
position expectations (see Figure 2.3), we propose to use a General Purpose Language
(GPL) to realize the purpose of a model composition operator defined by a given
mapping and a given interpretation for a specific intention.

MM

I
DSML1 DSML2

Model
Composition

Goal

MC

<<realizes>><<connotates>>

<<denotates>>

Figure 2.3 – The goal of a specific model composition operator influences the relation-
ship between a mapping between two meta–modeling languages and the interpreta-
tion of the mapping.

2.1.2.3 From Linguistics to Model–Driven Engineering

Barthes tells us that "language is a pure abstract entity, ..., a set of basic types that
speech makes concrete in infinite variable ways” [Bar64, §I.1.4, p.22]. This definition
is sound regarding the definition of a meta–modeling language : a meta–modeling
language defines a set of basic types that are captured into a meta–model ; models
that conform to this meta–model instantiate the meta–model types in infinite variable
ways.

This statement reinforces even further the relevance of the parallel between model
composition and semiotics (see Section 2.1.2) in supporting the formal definition of a
model composition operator in the context of MDE.

The definition of the form of a signifier and of a signified proposed by Chan-
dler makes a smooth transition between semiotics and the concepts of mapping and
interpretation since :

– Signifiers :...[are expressed as a] language, formal syntactic structure...
– Signifieds :...[can take the form of a] ’semantic structure’ (Baggaley &

Duck[Dynamics of Television, 1976])...
[Cha08, Signs, p.39]

Towards a Unified Theory for Model Composition 73

We may conclude that a mapping MM is a “formal syntactic structure” (i.e., a
modeling language) and an interpretation of MM is the intended meaning of MM.
Section 2.2 proposes a formalization of MM and I.

2.2 Towards a Unified Theory for Model Composition

This section presents the formal definition of a model composition operator and the
basic constructs of the theoretical framework. We propose a formalization of the key
concepts observed in the systematic literature review (see Section 1.4) and we discuss
their usage to build new model composition operators from the reuse of existing
techniques. The intent of this section is to propose an interpretive lens for analyzing
model composition techniques not covered in the systematic literature review and to
provide a framework for building new model composition operators.

Definitions from this section are based on the following assumptions :

1. A mapping exists between a set of meta–modeling languages.

2. A model composition operator based on this mapping allows composing the
meta–modeling languages.

3. Execution of the model composition operator is allowed on the models that
conform to these meta–modeling languages.

For the sake of simplicity, definitions for mapping, interpretation, and model com-
position involve only two meta–modeling languages. Nevertheless, the unified frame-
work for model composition is applicable to an arbitrary number of meta–modeling
languages.

Section 2.2.1 presents the mathematical symbols and definitions that we use in the
formalization. Section 2.2.2 proposes a formalization for each kind of mapping and Sec-
tion 2.2.3 proposes a formalization of each kind of interpretation. Section 2.2.4 revisits
the definition of model composition in the context of domain–specific languages.

2.2.1 Mathematical Symbols and Definitions

This section lists the concepts, sets, function and symbols that we use to propose
formal definition of model composition, mapping and interpretation.

2.2.1.1 Domain–Specific Modeling Language

Let DSML represents a meta–modeling language.
Let ASM represents the abstract syntax of DSLMM (i.e., the set of types that DSMLM

defines).
Let CSM represents the concrete syntax of DSLMM (i.e., the textual or graphical repre-
sentation of concepts from DSMLM).
Let MASM→CSM

represents the mapping from the abstract syntax to the concrete syntax.
Let SDM represents the semantic domain of DSLMM.

74 A Theoretical Framework for Model Composition

Let MASM→SDM
represents the mapping from the abstract syntax to the semantic do-

main [HR04].

A meta–modeling language M is a five–part tuple such that :

DSMLM = 〈 ASM,CSM,MASM→CSM
,SDM,MASM→SDM

〉 (2.3)

2.2.1.2 Sets

Let Boolean = {TRUE,FALSE} the set of boolean values.
Let E represents the set of all possible model elements.
LetM represents the set of meta–types (i.e., the types of the meta-classes) of all possible
model elements.
Let EM ⊂ E be the set of model elements of a model M.
LetMM ⊂M be the set of meta–types of EM.
Let PMX represents the set of all properties of a meta–type MX.
Let C a set of constraint expressions.
Let E⊞

M
⊂ EM be the set of model elements of a model M labeled to be added.

Let E⊟
M
EM be the set of model elements of a model M labeled to be removed.

Let E�

M
⊂ EM be the set of model elements of a model M labeled to be modified.

Let Type ⊂M be a meta–type.
Let DSMLC be the model that results from the execution of the model composition
operation.
Let A ⊂ EA be a set of model elements from DSMLA such that : A = {x1, x2, . . . , xi}.
Let B ⊂ EB be a set of model elements from DSMLB such that : B = {y1, y2, . . . , y j}.
Let C ⊂ EC be a set of model elements from DSMLC such that : C = {z1, z2, . . . , zm}.
Let D ⊂ E be a set of model elements such that : D = {w1,w2, . . . ,wn}.

2.2.1.3 Functions and Relations

Letℜ : EM,EM be a relation of mappings between two set of model elements.
Let eval : C,Type,Type→ Boolean be the function that evaluates a given constraint on
a pair of model elements.
Let occ : Type,EM → EM be the function that retrieves an occurrence of a model
element of type Type in a set of model elements.
Let super : Type→MMX ∪ ∅ be a function which returns the set of super types for the
type X.
Let re f : EM → EM be a function that captures a reference between two sets of model
elements.
Let containment : EM → EM be a function that captures the container of a set of model
elements. A container owns a containment reference that targets contents.
Let match : EM,EM → Boolean be a function that detects whether two sets of model
elements overlaps (see Section 1.2.2).
Let joinpoint : EM,EM → Boolean be a relation that detects if two sets of model elements
are cross–cutting (see Section 1.2.2).

Towards a Unified Theory for Model Composition 75

Let invoke : EM be a procedure that executes the behavior a set of behavioral model
elements (see Section 1.2.2).
Let align : EM,PMX→ EM be a function that modifies a property X on a model element
of type M.
Let prop : EM → PMX be a function that retrieves the properties of a model element X
of type M.

2.2.1.4 Symbols

Let ≺ the precedence operator from partial ordering that means in this context “is
invoked before”.
Let�X be the time at which the execution of a model element X starts.
Let�X be the time at which the execution of a model element X ends.

2.2.2 Mapping Definition

A mapping MM is a DSML that captures the key concepts of relationships over the
elements of others DSML. MM is formally defined by its abstract syntax (ASMM), its
semantic domain (SDMM) and the mapping from the abstract syntax to the semantic
domain (MASMM→SDMM

) such that :

MM = 〈 ASMM,SDMM,MASMM→SDMM
〉 (2.4)

We voluntarily discard the representation of the concrete syntax (CSMM) and the map-
ping from the abstract syntax to the concrete syntax (MASMM→CSMM

) since the choice
of a concrete syntax has ultimately no impact on the definition of relations over the
elements of several DSML.

Since MM is a set of n–ary relationships over the elements of the abstract syntaxes
of n DSML ({ASDSML1 , . . . ,ASDSML2}), we consider that MM is equal by definition to a
set of alignment rules (Ra) such that :

MM ∈ ℜ(ASDSML1 , . . . ,ASDSMLn) ,
n
∑

i=1

Ra(DSMLi,DSMLi+1), s.t. n ≥ 1 (2.5)

The definition of an alignment rule varies in function of (1) the concrete representation
of ASMM and (2) the concrete mapping formalism. For instance, if a DSML is a graph-
structure, an alignment rule would be a n–ary relationship between graph patterns
(i.e., a graph morphism).

From Section 1.2.1, we proposed six kinds of mapping representation. These rep-
resentations are concrete examples for the definition of n–ary alignment relationships
that work on the abstract syntaxes of the DSML that we want to map with one another.
The following equations formalize the various kinds of mappings proposed in the
category in Section 1.2.1.

76 A Theoretical Framework for Model Composition

2.2.2.1 Operator-based Mapping

An operator-based mappingℜ is an application between the abstract syntaxes of
the two DSML. Since the behavior of the operator cannot be defined extensively, we
define ℜ using the f and g applications that respectively produce the image of the
elements from DSMLA and DSMLB, such that :

ℜ f ,g : Typen × Typen

Aℜ f ,g B⇔ (f (A)→ B) ∧
(g(B)→ A)

(2.6)

2.2.2.2 Pattern- or Rule- based Mapping

A pattern– or rule– based mappingℜ is the identification of elements with similar
characteristics such that :

ℜocc : Typen × Typen

Aℜocc B⇔ x ∈ A, y ∈ B s.t.
occ(y,A) , ∅ ∧ occ(x,B) , ∅

(2.7)

2.2.2.3 Constraint-based Mapping

A constraint-based mappingℜ rely on the evaluation of a constraint c to detect the
presence of a model element such that :

ℜc : Typen × Typen

Aℜc B⇔ c ∈ C, x ∈ A, y ∈ B s.t.
eval(c, x, y) = TRUE

(2.8)

2.2.2.4 Model-based Mapping

A model-based mappingℜ is itself a DSML whose abstract syntax (ASM) includes
model elements from the abstract syntaxes of the two DSML (ASDSMLA

,ASDSMLB
) such

that :
ℜ : DSMLM = 〈 ASM,SDM,MASM→SDM

〉 s.t.
ASM , ASDSMLA

∪ ASDSMLB

(2.9)

The new DSML built from the abstract syntaxes of the DSML is a language that ma-
nipulates and relates model elements with one another, providing enough information
for identifying equivalent, similar or different model elements.

2.2.2.5 Delta-based Mapping

A delta-based mapping ℜ provides information about at least the two situations
as follows :

Towards a Unified Theory for Model Composition 77

– A set of model elements is found in one of the DSML but not in the other. If model
elements are found in DSMLA but not in DSMLB, we consider these elements
as ❛❞❞❡❞ (E⊞

A
). If model elements are found in DSMLB but not in DSMLA we

consider them as ❞❡❧❡t❡❞ (E⊟
A

).
– A set of model elements is found in both DSML but the characteristics of these

model elements are not identical. We consider them as ♠♦❞✐✜❡❞ (E�

A
).

ℜ∆ : Typen × Typen

Aℜ∆ B⇔ x ∈ A, y ∈ B s.t.
E⊞

A
= E⊞

A
∪ {x} ⇒ x ∈ (A \ (A ∩ B))

E⊟
A
= E⊟

A
∪ {y} ⇒ y ∈ (B \ (A ∩ B))

E�

A
= E�

A
∪ {x} ⇒ x ∈ (A ∩ B) ∧ x , y

(2.10)

2.2.3 Interpretation Definition

The interpretation of a mapping participates in providing the semantics (SDMM) of
the mapping language. However, keeping mapping and interpretation loosely coupled
implies that an interpretation I participates in the definition of SDMM but is not suffi-
cient for expressing the whole semantics of the mapping language regarding the final
purpose of the mapping. Formalizing “human content” (the substance of the signified
[Chandler, 2008, p.39]) or expectations is difficult and is out the scope of this work.
However, we propose to build a DSML to capture some of these “expectations” such
that :

I = 〈 ASI,SDI,MASI→SDI
〉 (2.11)

where ASI is the set of interpretations that we propose in the category in Section 1.2.2
and SDI and MASI→CSI

being the set of definitions for each interpretation that we
propose in Section 1.3.5.2.

Sections 2.2.3.1 to 2.2.3.5 present a formal definition of each category of interpreta-
tions.

2.2.3.1 “Add” Interpretation

A Add interpretation allows us to add a set of model elements into another model
such that :

+ : Typen × Typen

A + B⇔ C = C ∪ (A ∪ B)
(2.12)

2.2.3.2 “Delete” Interpretation

A Delete interpretation allows us to remove a set of model elements from another
model such that :

− : Typen × Typen

A − B⇔ C = C ∪ (A \ (A ∩ B))
(2.13)

78 A Theoretical Framework for Model Composition

2.2.3.3 Overlapping

“Equivalence” Interpretation An Equivalence interpretation allows us to identify two
sets of model elements from two DSML that we consider to have the same semantics.
Let , the operator meaning is equal by definition such that :

,: Typen × Typen

A , B⇔ x ∈ A, y ∈ B s.t.
x = y⇒ C = (C ∪ {x}) ∨ (C ∪ {y})

(2.14)

“Similarity” Interpretation A Similarity interpretation allows us to identify two sets
of model elements from two DSML that have a close but different structure. Similarity
means that we need to align the two structures with each other such that :

≈: Typen × Typen

A ≈ B⇔ x ∈ A, y ∈ B, p ∈ prop(x), p′ ∈ prop(y) s.t.
x ≈ y⇒ ((align(x, p) = p′) ∧ (C = C ∪ {x})) ∨
((align(y, p′) = p) ∧ (C = C ∪ {y}))

(2.15)

This interpretation often requires additional inputs to correctly handle changes and to
produce the expected result. Additional inputs are encompassed in the align function.

“Generalization” Interpretation A Generalization interpretation is applicable on meta–
models only since it modifies the inherent structure of the target modeling language.
Generalization allows us to transform one set of model elements into a specialization of
another set of model elements such that :

_: Typen × Typen

A _ B⇔ x ∈ A, y ∈ B s.t.
super(x) ∪ {y}

(2.16)

“Aggregation” Interpretation An Aggregation interpretation is applicable on meta–
models only since it modifies the inherent structure of the target modeling language.
Aggregation allows us to create a containment relationship between two sets of model
elements such that :

q : Typen × Typen

AqB⇔ x ∈ A, y ∈ B s.t.
C = C ∪ {x} ∧ C = C ∪ {y} ∧ containment(x) = y

(2.17)

“Overriding” Interpretation An Overriding interpretation allows us to replace an
existing set of model elements with another set of model elements at places provided
by the function match such that :

≔: Typen × Typen

A ≔ B⇔ x ∈ A, y ∈ B s.t.
match(x, y)⇒ (C = (C \ {x}) ∧ (C = C ∪ {y}))

(2.18)

Towards a Unified Theory for Model Composition 79

“Information–Gap” Interpretation An Information–Gap interpretation allows us to
define a specific structure (i.e., a set of model elements) to relate the sets of model
elements that originate from the two DSML. Let q and r be two properties owned by a
specific structure D that helps binding the two sets of model elements such that :

!: Typen × Typen

A! B⇔ x ∈ A, y ∈ B,wi ∈ D,w j ∈ D s.t.
∃q ∈ prop(wi),∃r ∈ prop(w j) s.t.
C = C ∪ A ∧ C = C ∪ B ∧
((re f (x) = q ∧ re f (y) = r) ∨
(re f (q) = x ∧ re f (r) = y)) ∧
C = C ∪D

(2.19)

“Ad Hoc” Interpretation An Ad Hoc interpretation allows us to define an arbitrary-
complex computation on one set of model elements of the DSML or the other. Let op1
and op2 be two operations that defines this computation such that :

op1 : Typen −→ Typen op2 : Typen −→ Typen

op(A) = B op(B) = A
(2.20)

2.2.3.4 Cross–Cutting

“Replace” Interpretation A Replace interpretation allows us to switch one set of
model elements from one DSML with another set of model elements from another
DSML. Places to change are identified by the joinpoint function which is provided by
users. We define Replace such that :

≔: Typen × Typen

A ≔ B⇔ x ∈ A , y ∈ B s.t.
joinpoint(x, y)⇒ (C = (C \ {x}) ∧ (C = C ∪ {y}))

(2.21)

“Augment” Interpretation An Augment interpretation allows us to mix two sets of
elements together such that :

+= : Typen × Typen

A += B⇔ x ∈ A, y ∈ B, z ∈ C s.t.
(C = C ∪ {z})⇒ prop(z) = prop(x) ∪ prop(y)

(2.22)

“Remove” Interpretation A Remove interpretation allows us to remove parts of two
sets of elements that these sets have in common (i.e., a mathematical projection) such
that :

\ : Typen × Typen

A \ B⇔ x ∈ A, y ∈ B, z ∈ C s.t.
(C = C ∪ {z})⇒ prop(z) = prop(x) \ prop(y)

(2.23)

80 A Theoretical Framework for Model Composition

2.2.3.5 Interaction

“Sequence” Interpretation A Sequence interpretation allows us to sequence the com-
munication of two sets of model elements from two DSML such that :

; : Typen × Typen

A ; B⇔ invoke(A) ≺ invoke(B)
(2.24)

“Parallel” Interpretation A Parallel interpretation allows us to invoke the commu-
nication of two sets of model elements from two DSML at the same time. Let ‖ the
parallel operator such that :

// : Typen × Typen

A // B⇔ invoke(A) ‖ invoke(B)
(2.25)

“Codependency” Interpretation A Codependency interpretation is a set of causal rela-
tionships between sets of model elements from DSML. Let�,�,� and� the kinds
of causal relationships respectively meaning start-to-start, start-to-finish, finish-to-start
and finish-to-finish such that :

� : Typen × Typen

x ∈ A, y ∈ B s.t.
x � y⇔ x� y �X≺�Y

x� y⇔ �X≺�Y

x� y⇔ �X≺�Y

x� y⇔ �X≺�Y

(2.26)

2.2.4 Model Composition is a DSML

The definition of a model composition operator as a pair of a mapping MM and
interpretations of MM given in Equation 2.2 allows the definition of operators which
semantics is given by both I and the global purpose of the model composition process.
Going one step further, we propose to define a specific DSML to formalize model
composition such that :

MC = 〈 ASMC,SDMC,MASMC→SDMC
〉 (2.27)

ASMC is defined on top of the abstract syntax (ASMM) of the mapping DSML MM
(see Equation 2.4) and consequently contains all the concepts of the abstract syntax
of the mapping modeling language. The semantic domain SDMC of the modeling
language for model composition MC is defined on top of the abstract syntax of the
interpretation DSML (ASI) (see Equation 2.11). Taking into account ASMM and ASI in
the definition of the modeling language for model composition, we ultimately rewrite
the mapping MASMC→SDMC

with MASMM→ASI
such that :

MC = 〈 ASMM,ASI,MASMM→ASI
〉 (2.28)

Conclusion 81

This allows us to bind specific interpretations to a specific mapping that sub-
sequently allows us to build a specific model composition operator. This binding
(MASMM→ASI

) holds information about the context and the purpose of the model com-
position operator.

Since ASMM is the union of the elements of interest in the abstract syntaxes of the
n DSML that are part of the mapping DSML (see Equation 2.9), we rewrite MC such
that :

MC = 〈

n
⋃

j=1

ASDSML1 × ASDSML j
,ASI,MASMM→ASI

〉 (2.29)

A model composition DSML is thus capable of (i)providing mapping explicitly
for a set of DSML, of (ii)proposing a set of interpretations to capture the semantics of
the mapping , and of (iii)considering the ultimate purpose of the model composition
operation.

Note that the global purpose of the model composition language needs additional
input (connotation) to properly capture the purpose and context of the execution of
the model composition operation.

2.3 Conclusion

Building a model composition operator that addresses a new model composition
situation is a difficult and time-consuming task. The development of such effective
model composition operators implies the definition of mappings or the adaptation of
existing ones, and the development of the tool that supports such model composition
operator.

Our contribution focuses on the activity of designing model composition oper-
ators. With the help of the categorization of mappings and interpretations and the
formalization (see Section 2.2), we propose a two–step process to build specific model
composition operators :

1. Designers select a kind of mapping that fits their needs and a set of interpre-
tations that are in adequateness with the purpose of the model composition
operator. This pair of mapping and interpretations is the specification of a model
composition framework that supports a specific model composition operation.

2. The model composition framework should be customized to execute the specific
model composition operation in a given context. The context refers both to the
kind of modeling languages that the model composition operation should sup-
port and specific characteristics of the model composition process that are not
captured by the set of interpretations.

We illustrate this two–step process of building a specific model composition oper-
ator on model merging in Figure 2.4. A given pair of mappings and interpretations is
selected to support the very general purpose of model merging. Designers customize
the general purpose of the model merging operator by proposing specific connotations

82 A Theoretical Framework for Model Composition

(algorithms) to support merging models that conform to various formalisms. For in-
stance, Figure 2.4 illustrates the customization process for proposing a model merging
operator that supports merging UML and ECore models. The customization process
allows the definition of homogeneous or heterogeneous model merging operators,
according to the designers expectations.

Merge

MM

I

Model

Equ Customization

Merge
(UML,UML)

Merge
(UML,ECore)

Merge
(ECore,ECore)

...

Figure 2.4 – A given pair of a mapping and an interpretation that supports model
merging is refined into specific model composition operators

Proposing this two–step process, we limit the effort in designing a new model
composition operation to the customization of the model composition process. We
expect that proposing pairs of mapping and interpretations should become a sporadic
activity over time as more and more generic frameworks would be available.

In Chapter 3, we leverage the formalization of model composition as a pair of a
mapping and a set of correspondences to propose a framework for (i)unifying the
definition of model composition activities and for (ii)for building concrete model com-
position operators. The proposition of the framework is described using the running
example of building a model composition operator for model merging homogeneous
models.

Chapitre 3

ModMap : A Framework for
Unifying Model Composition
Activities

According to the formalization of model composition proposed in Chapter 2, we
present in this chapter a tool called MODel MAPping (ModMap) that supports the
definition of a mapping and its interpretation for producing an effective model com-
position language and concrete model composition operators (see Section 3.2.2).

Section 3.1 presents an intuitive process for the definition of a model composition
framework that supports model merging. The intuitive process is generalized at the
end of Section 3.1 for the definition of new model composition frameworks. Section 3.2
presents the ModMap framework that supports the definition of mappings and that
proposes default semantics for interpretations.

3.1 An Intuitive Process for Building Model Composition Frame-

works

3.1.1 A Running Example

The Bank model (see Figure 3.1) illustrates a simple bank data model. The BLP
model (see Figure 3.2) describes a Bell-LaPadula (BLP) access control feature [BL73]
where users and objects under access control are each associated with a security level.
User access control is driven by the domination relationship that ensures for instance
that a bank user can access his account only if the user’s security level dominates the
security level of the account. The expected composed model should merge the two
models into a consistent model that allows a Controller to call operations on BankUser
or Account, with respect to the security levels defined.

Intuitively, designers identify that Account and BankUser from the Bank model are
equivalent to Account and BankUser from the BLP model, respectively. The identifica-
tion of overlapping model elements is thus based on names : if a model element from

83

84 ModMap : A Framework for Unifying Model Composition Activities

BankUser

Controller
deposit()
transfer()
withdraw

Account
deposit()
withdraw

account

*

user*

X

X

Money<

<<<datatype>>

Figure 3.1 – The Bank model.

OperationEnum<

<

TRANSFER: 1
WITHDRAW: 2
DEPOSIT: 3

<<enumeration>>

OperationTypeEnum<

<

READ: 1
WRITE: 2

<<enumeration>>

Boolean<

<<<datatype>> BankUser
CreateSubject()
DeleteSubject()

BankSubject
CheckAccess()
transfer()
withdraw

SecurityLevel
AddDominatee()
AddDominator()
GetAllDominatees()

Account

Operation
Type : OperationTypeEnum

subject*

securityLevel1
dominatee

dominator

*

*

user

securityLevel
1

*

securityLevel

target

Target

operationType *

*
*

1

user
subject*

1

1

Figure 3.2 – The BLP model.

the Bank model has a name that equals the name of a model element in the BLP model,
designers would like to create a single model element from these two concepts.

Using a graphical representation to ease the specification of overlapping elements
between two models, designers relate Account and BankUser elements from the Bank
model with Account and BankUser elements from the BLP model. Figure 3.3 is an
example of graphical representation of overlapping relationships between the Bank
model and the BLP model : dotted lines are mappings that state which elements overlap
and equals indicates the semantics of the mapping.

BankUser

Controller
deposit()
transfer()
withdraw

Account
deposit()
withdraw

account

*

user*

X

X

Money<

<<<datatype>>

OperationEnum<

<

TRANSFER: 1
WITHDRAW: 2
DEPOSIT: 3

<<enumeration>>

OperationTypeEnum<

<

READ: 1
WRITE: 2

<<enumeration>>

Boolean<

<<<datatype>>
BankUser

CreateSubject()
DeleteSubject()

BankSubject
CheckAccess()
transfer()
withdraw

SecurityLevel
AddDominatee()
AddDominator()
GetAllDominatees()

Account

Operation
Type : OperationTypeEnum

subject*

securityLevel1
dominatee

dominator

*

*

user

securityLevel
1

*

securityLevel

target

Target

operationType *

*
*

1

user
subject*

1

1

equals

equals

Figure 3.3 – Intuitive relationships of overlap between the Bank and BLP models

An Intuitive Process for Building Model Composition Frameworks 85

3.1.2 A Framework for Model Merging

This section presents the intuitive process of building a model composition frame-
work for model merging on the running example and illustrated on Figure 3.4. A
designer who had an objective of merging models selects a pair of a mapping and a
set of interpretations. This selection is the definition of a generic model composition
framework for model merging. The model merging operation executes in a specific
context and for a specific purpose : this information is provided by designers that
parameterize the framework for model merging to ultimately build a specific model
composition operator.

Selection of

mappings and

interpretations

Designer

Merge

models

Framework

for

Model Merging

Customization

and

Context

Model Merging

Operator

Figure 3.4 – Intuitive process for building a model composition framework for model
merging.

3.1.2.1 Selection of a pair of Mapping and a set of Interpretations

On the example of merging the Bank model with the BLP model, designers intu-
itively use an equivalence interpretation (see Section 2.2.3) that allows them to identify
a set of equivalent model elements. In the definition of a model composition operation,
the choice of a kind of mappings is equally important. Designers choose to use a model
representation of mappings. This means that they use a modeling language to create a
model of correspondences between the Bank model and the BLP model.

3.1.2.2 Customization of the Framework

The selection of a pair of a mapping and a set of interpretations captures the
scope of the model composition operation. The model composition framework for
model merging is based on a model representation of mappings and an equivalence
interpretation. Thus, the framework allows designers to identify overlapping model
elements. Towards building a tool that supports merging two overlapping models,
designers should capture the context in which the model merging operation runs.
It means that designers should propose specific processing to take into account the

86 ModMap : A Framework for Unifying Model Composition Activities

nature of the models to merge and the specific characteristics of the merge operation
that are not captured by the interpretations.

We illustrate the process of providing a specific processing for model merging
as a merge() function presented in Listing 3.1. The merge() function takes two model
elements as parameters and performs the union of their properties to create a single
model element that is the union of the two originating model elements.

function merge (A : Object , B : Object) : Object i s
pre type (A) = type (B)
/ / c r e a t e s a new o b j e c t

C = new o b j e c t from type (A)
/ / union of the p r o p e r t i e s
foreach property p1 from A

foreach property p2 from B
i f p1 equals p2 then
/ / merge values and r e s o l v e c o n f l i c t s i f any
new_value = r e s o l v e C o n f l i c t s (value (p1) , value2 (p2))

end
/ / add property to C
end foreach

end foreach
end

Listing 3.1 – A simplified algorithm for model merging.

The execution of the merge() function within the model composition framework for
model merging produces a new model that contains elements from the Bank model and
the BLP model (see Figure 3.5). Model elements that designers identified as overlapping
are “combined” into a single element that contains all the properties of the originating
model elements.

OperationEnum<

<

TRANSFER: 1
WITHDRAW: 2
DEPOSIT: 3

<<enumeration>>

OperationTypeEnum<

<

READ: 1
WRITE: 2

<<enumeration>>

Boolean<

<<<datatype>>

BankUser
CreateSubject()
DeleteSubject()

BankSubject
CheckAccess()
transfer()
withdraw

SecurityLevel
AddDominatee()
AddDominator()
GetAllDominatees()

subject*

securityLevel1
dominatee

dominator

*

*

user

securityLevel
1

*

securityLevel

targettarget
operationType

*

*

*
1

user
subject*

1

Operation
Type : OperationTypeEnum1

account
*

user
*

X
X

Money<

<<<datatype>>

Account
deposit()
withdraw

Controller
deposit()

Figure 3.5 – Result of merging Bank and BLP. Grayed elements were owned by Bank
and have been merged within the set of model elements from BLP.

3.1.3 Generalization of the Intuitive Process

Based on the intuitive process of building a model composition framework for
model merging, we propose to generalize the approach to support the definition of

The ModMap Framework 87

model composition frameworks that target various purposes.
We presented categories of mappings and interpretations in Chapter 1 and we pro-

posed a formalization of these categories in Chapter 2. Towards the definition of model
composition frameworks, the ModMap tool supports every kind of interpretations to
ease the definition of the meaning of a specific mapping relationship. Among the kinds
of mappings, we consider that operators, patterns, rules, constraints and deltas prop-
erly support detection and/or expression of mappings at the model level. As stated in
Section 1.2.1.5, these kinds of mappings are often part of a (semi–) automatic process
that builds model–based representations. Subsequently, we choose to use a model of
mapping to successfully represent a wider range of mapping definitions and to address
a wider range of model composition activities.

Since a model of mapping is specific to a given context and for a specific purpose,
we propose a modular model-alignment modeling language that designers customize
for their own purpose. The model-alignment modeling language supports the defi-
nition of mappings between models or model elements and allows the selection of
interpretations for these mappings.

Customization of the model composition framework is capitalized in the selection
of interpretations for a set of mappings. However this set of interpretations is not
enough to capture the specific characteristics of the model composition operation.
Context–specific and purpose–specific data has to be provided by the designers.

3.2 The ModMap Framework

The ModMap framework proposes a model–alignment modeling language and
customization capabilities to build specific model composition frameworks in a given
context and for a given purpose. A specific model composition framework supports the
definition of a model–alignment modeling language that results from the definition
of mappings between models or sets of models elements and from the selection of
adequate interpretations for these mappings.

3.2.1 Architecture Overview

This section presents the global architecture of the ModMap framework and the
process of customization for building specific model composition frameworks (see
Figure 3.6).

The model–alignment language (see Section 3.2.2) is decomposed into four con-
cerns :

– The Mapping concern deals with the representation of mappings between model
elements (see Section 3.2.2.1).

– The Filter concern allows designers to propose filtering capabilities to mappings
(see Section 3.2.2.1).

– The Strategy concern is the representation of the categories of interpretations
formalized in Chapter 2 (see Section 3.2.2.2) and allows designers to associate a
specific interpretation to a mapping.

88 ModMap : A Framework for Unifying Model Composition Activities

selection
redefinitioninclusion

inclusion

Mapping
Concern

Operational
Semantics

Filter
Concern

Operational
Semantics

Strategy
Concern

Operational
Semantics

Directives
Concern

Operational
Semantics

Operational Semantics

Context-Specific
Model Alignment

Language

Purpose-specific
processing

Specialization1 Specialization2 Specializationn...

Composition Framework

Figure 3.6 – Overview of the process of building a problem–specific model composition
framework.

– The Directives concern represents a set of atomic operations that are applicable
on model elements (see Section 3.2.2.2). Directives are parameters for strategies
that allow designers to customize the model composition operation for their own
needs.

These concerns contribute to the definition of the model–alignment modeling lan-
guage as shown in Figure 3.6. We consider the Mapping concern and the Directives
concern generic enough to be included in a model composition framework with no
changes. Mappings between sets of model elements and parameters for interpretations
are ready to use for any model composition framework.

Since every model composition expectations vary depending on the objective of
the model composition operation, the model–alignment language proposed in Sec-
tion 3.2.2 requires customization. Figure 3.6 illustrates the process of customization
that building a specific model composition framework requires. Building a model
alignment language is the first step of the definition of a new model composition
framework. Customization allows designers to compose models within the context of
a specific model composition intent. Since global intention is difficult to capture, we
consider that designers should provide a purpose–specific processing (i.e., algorithm).

The ModMap framework proposes operational semantics for every concept of the
four concerns. Proposed operational semantics allows us to provide a default imple-
mentation of the various concepts. In the context of the Strategy concern, semantics
provide interpretations with a default implementation that corresponds to the formal-
ization proposed in Chapter 2. Each concern is weaved with its operational semantics
(see Section 3.2.3) using the Kermeta language. Section 3.2.4 presents the abstract syn-

The ModMap Framework 89

tax of the model-alignment language. Section 3.2.2 details the constructs of the four
concerns of the model-alignment modeling language and Section 3.2.3 presents the
operational semantics that are weaved to the various kinds of strategies.

3.2.2 A Language for (meta–)Model Alignment

This section details the constructs of the four concerns of the model alignment lan-
guage and propose a concrete syntax to ease the definition of mappings between mod-
els or model elements. Figure 3.7 illustrates the ModMap meta–model. The ModMap
meta–model describes a modeling language for the alignment of (meta–)models that
is decomposed of the two main concepts of Mapping and Strategy. More details about
these two concepts are provided in Section 3.2.2.1 and Section 3.2.2.2 respectively.

mapping

implements

strategies mappings

1

Mapping
pass : Pass
name : String1

Strategy

Mapper

Figure 3.7 – The ModMap meta–model is composed of a Mapper root and the two main
concepts of Mapping for creating relationships between model elements and Strategy
for giving semantics to these relationships.

3.2.2.1 Mapping Concern

The mapping concern (see Figure 3.8) of the model composition language includes
the concepts of Mapping, Role and Filter.

Mappings and Role

We propose four types of explicit mappings. Each type of mapping depends on the
multiplicity of sources and targets model elements that we map with one another :

– One2OneMapping is a relationship between one source model element and one
target element.

– One2ManyMapping is a relationship between one source model element and at
least two target model elements.

– Many2OneMapping is a relationship between at least two source model ele-
ments and one target model elements.

– Many2ManyMapping is a relationship between at least two source model ele-
ments and at least two target model elements.

90 ModMap : A Framework for Unifying Model Composition Activities

O2O_range

O2O_domain

O2M_domain O2M_range

M2M_domain

M2M_range

M2O_range

M2O_domain

scope

subMappings

One2OneMapping One�ManyMapping Many2ManyMappingMany2OneMapping

Pass<

<

first: 1
second: 2

<<enumeration>>

1

Mapping
pass : Pass
name : String1

1

Role
name : String

EModelElement
(from Ecore)

getEAnnotation(EString) : EAnnotation

Filter

Strategy
(from Strategy)

implements
mapping

0..1
1..*

Figure 3.8 – Mapping Concern of the ModMap language. Dark–grayed element is a
shortcut to the ECore meta–model and the light–grayed model element is the filter
concern.

Mappings own relationships with model elements. Using the de-facto standard to
design meta–models called Eclipse Modeling Framework (EMF) 1, mapping relation-
ships are bound to the ECore modeling language. In ECore, the most general model
element in the hierarchy of model elements is EModelElement. It allows to define a
mapping between every model element from a ECore model.

The concept of Role acts as a proxy that references EModelElement and avoid
binding a mapping to a EModelElementdirectly. This allows to reuse Roles for different
mappings.

A mapping has a reflexive relationship which allows for declaring sub mappings
that specialize the behavior of a parent mapping : this means that the semantics of the
sub mapping encompasses the semantics of its parent mapping. When we traverse a
mapping model for generating code or for analysis purposes, we visit the tree-based
structure using for instance, a Visitor Design Pattern [GHJ+95]. Visiting a structure is
decomposed into two passes, each one dealing with a specific concern. The first pass is
dedicated to create the structure of the expected result and the second pass is invoked
to correctly set non-containment references between objects. The pass attribute of a
mapping indicates which pass a mapping refers to.

Default navigation strategy for the Visitor implementation is depth-first : we tra-
verse the model by following the containment relationships. Each model element is

1. http ://www.eclipse.org/modeling/emf

The ModMap Framework 91

responsible of calling the visit()method for its own children.

Filter Concern

In Figure 3.8, we propose the concept of Filter related to a Role. The Filter concept
is abstract and allows the designer to propose filtering capabilities on the selection
of model elements to consider in the mapping relation. In other words, although the
definition of mappings between meta–types encompasses all instances of any meta–
types involved, we allow experts to select instances of interest for a given situation
and respectively discard instances that should not participate in a given mapping
relationship. Experts may extend the Filter abstract concept to provide additional
filtering capabilities.

3.2.2.2 Strategy Concern

Representing interpretations for mappings is decomposed in two sets of model
elements : strategies and directives adapted from [FBF+08].

Strategies and Parameter

The strategy concern is the first set of model elements that deal with representing
the interpretation of the mapping (see Figure 3.9). A strategy is the specification of a
specific and predefined algorithm that corresponds to common model manipulation.
Regarding the classification of interpretations presented in Chapter 1, we propose a
strategy for each kind of interpretation. Some of the strategies need more details to
capture a consistent definition of the interpretation. Additional details are provided
by a Parameter which is linked to a set of directives that customize the application
of the interpretation. The parameter of the InfoGapStrategy and of the AdHocStrat-
egy is represented as a ModelingUnit element from Kermeta. A ModelingUnit is the
root element of a Kermeta model. This means that a binding a ModelingUnit with a
InfoGapStrategy or AdHocStrategy, we can provide respectively structural data and
behavioral data as parameter to the interpretation.

Most strategies are applicable to any kind of elements at both the model and the
meta–model levels of abstraction. The GenStrategy and the AggrStrategy involve
changes on the hierarchy of types or on the hierarchy of containers respectively. These
changes are only applicable on meta–models since they would break the conformance
relationship that a model has with its meta–model.

The meaning of parameters for each strategy is such that :
– GenStrategy is about including an generalization relationship between a set

of model elements. Each model element of the set identified by the parameter
becomes a parent of each model element of the other set of models elements.

– AggrStrategy is about creating a containment relationship between model ele-
ments. Similarly to generalization, the parameter provides information about
which model element becomes the container of the other set of model elements.

– SimStrategy means that we need to rename one set of elements to allow aligning
models with one another. The parameter provide renaming directives.

92 ModMap : A Framework for Unifying Model Composition Activities

relation

rename

parent

container
structure

algorithm
type

order

base

direction

1
1

111

1
1 1

directive0..*

Strategy

Overlapping CrossCutting Interaction

EquStrategy

OverrideStrategy

GenStrategy

AggrStrategy SimStrategy

AddStrategy DeleteStrategy

AdHocStrategy

InfoGapStrategy

RemoveStrategy

ReplaceStrategy

AugmentStrategy

ParallelStrategy

SequenceStrategy

CodependencyStrategy

Parameter

ElementDirective
(from Directives)

execute()

ModelingUnit
(from Kermeta)

Mapping
(from Mapping)

implements
mapping

0..1
1..*

properties
1

refs

1

Figure 3.9 – The strategy concern contains interpretations proposed in Chapter 1. Most
interpretations need additional parameters or structures to allow designers to capture
the initial intention of the mapping. Dark–grayed concepts are shortcuts to Kermeta
or concepts from the Mapping and Directives concerns.

– ReplaceStrategy indicates that one set of model elements is kept whereas other
sets of model elements are discarded. The parameter indicates which set of model
elements should be kept.

– AugmentStrategy is about keeping a set of model elements and adding data
from other sets of model elements. The parameter identify which set of model
elements should be considered as the base in the terminology of AOM.

– SequenceStrategy is intended to order the execution of a set of model elements.
The parameters indicates how to order this execution.

– CodependencyStrategy is about ordering the execution of a set of model ele-
ments regarding to precise and somehow complex relationships. The parameter
indicates which type of co-dependency should be implemented.

About including a well-formed structure, we consider the two following cases :
– InfoGapStrategy means that a partial structure is needed to relate the sets of

The ModMap Framework 93

model elements. This structure is provided by a relationship to a ModelingUnit.
– AdHocStrategy provides an escape mechanism using a Turing-complete lan-

guage to handle specific complex computations or transformations. The binding
with a ModelingUnit allows for providing a specific algorithm provided by users.
This algorithm is encompassed into a ModelingUnit that contains both structure
and behavior.

Directives

Directives are a set of model elements that correspond to atomic operations on models
(see Figure 3.10). The set of directives is voluntarily kept small to increase understand-
ing and reusing.

Concat
propertyNames : String0.*.

1

Create
className : String
identifier : String1

Destroy
1

Change
propertyName : String

Remove

Add

Set

Literal

ElementRef

getModelElement()

VoidLiteral

ElementDirective
execute()

1

NameRef
qname : String 1

IDRef
identifier : String

1

StringLiteral
value : String 1

BooleanLiteral
value : Boolean 1

IntegerLiteral
value : Integer

value
target1

1
1
1

left

right

value target
1 1

Parameter
(from Strategy)

directive
0..*

Figure 3.10 – Extension of Reddy et al.’s directives [RGF+06]. The Destroy and Concat
concepts have been added to the original implementation. The Parameter concept is a
shortcut to the Strategy concern.

Adapted from the directives [FBF+08 ; RGF+06] of the Kompose Tool 2, we reuse
the following concepts with no changes :

2. http ://www.kermeta.org/mdk/kompose

94 ModMap : A Framework for Unifying Model Composition Activities

– ElementDirective is the top-most model element from the directive concern. This
abstract concepts encompasses the execute()methods which allows running a
given directive.

– Create allows for creating new model elements with an identifier (i.e., name
of the variable to access to the model element) and a className (i.e., the type of
the new model element).

– Change is the abstract concept for any directives that induce modifying a model
element. The propertyName property represents the name of the model ele-
ment property to change. value owns the new value to set to the property
propertyName. target indicates which model element the propertyName refers
to.
– Remove allows removing a property/value.
– Add allows adding a property/value.
– Set allows modifying an existing property/value.

– ElementRef is the abstract concept for referring to model elements or value.
– NameRef allows referring to a model element by its qualified name (qname).
– Literal allows referring to a literal value.

– StringLiteral is a string value.
– BooleanLiteral is a boolean value.
– IntegerLiteral is an integer value.
– VoidLiteral is the void value.

– IDRef allows referring to a specific identifier.

In addition to the original set of concepts, we propose two new concepts as follows :

– Destroy allows removing a model element from a model.
– Concat allows concatenating multiple strings and/or model elements properties

of type String. propertyNames contains the list of strings to concatenate. value
and target have the same semantics than value and target from the Change
concept.

We added a new inheritance link between ElementDirective and ElementRef to allow
reference a given model element within a larger scope.

3.2.3 A Tool for Building Model Composition Frameworks

This section proposes operational semantics for each construct of the concerns pre-
sented in Section 3.2.2. Operational semantics allow us to provide additional meaning
for the constructs of the model-alignment modeling language and propose a default
implementation for the set of interpretations.

Section 3.2.3.1 is a remainder on the methodology and techniques that we use to
propose the operational semantics to the ModMap concerns. Following this method-
ology, Sections 3.2.3.2 to 3.2.3.4 proposes operational semantics for each ModMap
concern.

The ModMap Framework 95

3.2.3.1 Methodology and Techniques in Kermeta for Providing Operational Se-

mantics

Operational semantics for the ModMap modeling language are provided using the
Kermeta [MFJ05 ; JBF10] language. This section is a reminder about the implementation
of the Visitor Design Pattern with aspects in Kermeta to “weave” operational semantics
within the ModMap meta–model.

Aspects and Static Introduction

The ModMap concerns are embedded in an independent modeling language. We use
Kermeta’s open class mechanism to statically introduce new properties or new opera-
tions within the model elements of the meta–model of modeling language. This means
that new properties and operations are statically type–checked against the complete
underlying Kermeta model. We provide operational semantics for every ModMap
model element using the static introduction supported by Kermeta, as illustrated in
Listing 3.2.

/ / Reopening an e x i s t i n g c l a s s A
aspect c l a s s A{
/ / Introducing new p r o p e r t i e s
a t t r i b u t e name : S t r i n g
reference b : B
/ / Introducing new operat ions
operation myOperation (. . .) i s do

. . .
end
/ / Overriding an e x i s t i n g operat ion
method oldMethod (. . .) i s do

super
. . .

end
}

Listing 3.2 – Static Introduction in Kermeta

The aspect keyword allows reopening an existing Kermeta class. In the scope of
the aspect, attributes, references and operations are easily added using the Kermeta
standard concrete syntax.

Visitor Design Pattern in Kermeta

As any GPL–like programming language, Kermeta allows implementing the Visitor
Design Pattern [GHJ+95] to scan a tree–based representation such as a model. Using
aspects and static introduction, developers define their abstract and concrete visitors
with no changes to the (meta–)model on which it applies.

The implementation of the Visitor Design Pattern is however cumbersome : it re-
quires to create an accept()method in every model element ; it requires an Abstract-
Visitor to declare visit()methods for every model element ; it requires to implement
visit()methods for any concrete Visitor.

96 ModMap : A Framework for Unifying Model Composition Activities

Inspired from David Lorenz approach [Lor98] for using aspects for the imple-
mentation of the the Visitor Design Pattern, we use aspects to capture traceability
information. Listing 3.3 shows an example of Visitor using aspects.

/ / I n t e g r a t i n g V i s i t o r i n t o an e x i s t i n g c l a s s
aspect c l a s s A {
/ * Adding a r e f e r e n c e f o r the purpose of t r a c e a b i l i t y

* and r e f e r e n c e s the r e s u l t of the V i s i t o r

* /
reference output : Object
/ / The v i s i t operat ion
operation v i s i t (. . .) : Void i s do

. . .
end

}

/ / Using the V i s i t o r to scan a s t r u c t u r e
c l a s s V i s i t o r {

operation main { . . . } : Void i s do
var a : A i n i t A. new
. . .
/ / s t a r t s v i s i t i n g
a . v i s i t ()
/ / r e t r i e v e s r e s u l t
a . output
. . .

end
}

Listing 3.3 – Implementation of a Visitor using aspects in Kermeta

Using aspects, we reopen an existing class in which we add a new reference and a
new operation 3. The operation performs a specific computation and stores the result
into the reference. In any Kermeta class, we can start visiting a structure using the
visit method and access the result by a call to the output reference of an object.
output plays two roles : the reference stores the result of the visit() operation, and
the reference is a traceability link between the current object and the result object.

In the following sections, we propose default operational semantics for the ModMap
model elements using aspects and the Visitor Design Pattern. The purpose of propos-
ing default operational semantics is to provide behavior to the structural concepts
of the ModMap meta–model. Providing behavior allows us to capitalize part of the
purpose of various model composition operators. Semantics allow designers to focus
on proposing purpose–specific processing that covers what remains to build a specific
model composition operation.

3.2.3.2 Operational Semantics for the Mapping Concern

Operational semantics for the mapping concern refers to the way the mapping
model structure is to be scanned. The default method of scanning is naive : we scan
every mapping one by one, in the order of creation. Since scanning may have an

3. The reference name and the operation name have no impact on the execution of the visitor.

The ModMap Framework 97

impact on the ultimate purpose of the model composition, the naive method may be
specialized if necessary. Scan is available through the implementation of the Visitor
Design Pattern (see Listing 3.4 and Listing 3.5), using the methodology that we detailed
in Section 3.2.3.1.

/ * Mapper i s the root o b j e c t of the ModMap model

* Method v i s i t scans mappings in the

* order of t h e i r c r e a t i o n .

* Output i s a ModelingUnit

* /
aspect c l a s s Mapper {

reference output : ModelingUnit

operation v i s i t () i s do
output := ModelingUnit . new
/ / scans mappings and c a l l s V i s i t o r on each
s e l f . mappings . each { m |

m. v i s i t ()
/ / missing output assignment

}
end

}

Listing 3.4 – Operational Semantics for the Mapper model element from the mapping
concern.

The operational semantics of theMappermodel element creates a KermetaModeling-
Unit that represent the model of composition. The visit() method scans mappings
and subsequently modify the ModelingUnit.

Scanning mappings is a three steps process (see Listings 3.5 and 3.6) : (i)we
scan nested mappings using the subMappings property of a Mapping ; (ii)we scan roles
associated to a mapping ; (iii)we build an algorithm from the operational semantics of
associated strategies.

About roles, we expect to build a specific Kermeta Class for each role to represent
the related EModelElement. This Kermeta class is used to define a specific composition
method. The creation of a class (buildClassFromEModelElementmethod) manipulates
Kermeta concepts and uses a filter if any to allow selecting relevant model elements
only. Inputs about filtering are provided by end-users.

98 ModMap : A Framework for Unifying Model Composition Activities

/ * Scanning nested mappings of a mapping * /
aspect c l a s s Mapping {

reference output : Set<Class>
operation v i s i t () i s do

s e l f . subMappings . each { m |

m. v i s i t ()
output . add (m. output)

}
end

}
/ * Scanning domain and range r o l e s * /
aspect c l a s s One2OneMapping {

method v i s i t () i s do
super
/ / Creates output c l a s s e s
var domain_class : Class
var ra ng e _ c la s s : Class
/ / Scans a s s o c i a t e d r o l e s
O2O_domain . v i s i t ()
O2O_range . v i s i t ()
var domain_block : Block
var range_block : Block
/ / Scans r e l a t e d s t r a t e g i e s and bui lds blocks of s tatements
s e l f . implements . each { s |

s . v i s i t (domain , range)
domain_block := s . output_domain ()
range_block := s . output_range ()

}
domain_class := O2O_domain . output
ra ng e _ c la s s := O2O_range . output
/ / Adds block of s tatements to the composition method
var domain_op : Operation i n i t domain_class . getOperation ("myOp")
var range_op : Operation i n i t ra ng e _ c la s s . getOperation ("myOp")
domain_op . statement . add (domain_block)
range_op . statement . add (range_block)
output . add (domain_class)
output . add (r a n g e _ c l a s s)

end
}

Listing 3.5 – Operational Semantics for the Mapping model elements from the mapping
concern.

/ * Scanning a Role and build a Kermeta r e p r e s e n t a t i o n of the t a r g e t

* EModelElement

* /
aspect c l a s s Role {

reference output : Class
operation v i s i t () i s do

output := buildClassFromEModelElement (s e l f . element , f i l t e r)
end

}

Listing 3.6 – Operational Semantics for the Role model element from the mapping
concern.

The ModMap Framework 99

3.2.3.3 Operational Semantics for the Strategies Concern

This section presents the operational semantics of the strategy concern of the
ModMap meta–model. These operational semantics relies on the directives concern
that is presented in Section 3.2.3.4.

Listing 3.7 illustrates the definition of the visit() method for strategies. Every
model element that inherits from Strategy provides an implementation of the visit()
method.

The default semantics of the visit() method calls an operation called compose()
that embeds the specific processing of the model composition operation. Thecompose()
operation produces a set of statements that achieve the specific model composition op-
eration on the objects A and B. This set of statements is encapsulated into a Kermeta
Block of statements.

aspect c l a s s S t r a t e g y {
reference output : Set<Block>
operation v i s i t (A : Set<Object > , B : Set<Object >) i s do
/ * compose () i s an operat ion t h a t inc ludes the process s p e c i f i c to the

purpose of the model composition * /
var b : Block i n i t compose (A, B)
output . add (b)

end
}

Listing 3.7 – Operational Semantics for the Strategy model element from the strategy
concern.

The Parameter model element allows providing parameters for a strategy if nec-
essary. These parameters are written using directives. Scanning a parameter thus sub-
sequently scans the set of directives associated with the parameter (see Listing 3.8).

aspect c l a s s Parameter {
reference output : Set<Object>
operation v i s i t (A : Set<Object > , B : Set<Object >) i s do

d i r e c t i v e . each { d |
d . v i s i t (A, B)
output . add (d . output)

}
end

}

Listing 3.8 – Operational Semantics for the Parameter model element from the strategy
concern.

Add and Delete Strategies

Add Strategy The visit()method of the Add strategy (see Listing 3.9) calls the
visit() method of its parameter. If a parameter has been provided, we create a new
relation (Property object in Kermeta) and add this new relation to the set of properties
of the object A before calling the super operation from Strategy.

100 ModMap : A Framework for Unifying Model Composition Activities

aspect c l a s s AddStrategy {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

s e l f . r e l a t i o n . v i s i t (A, B)
var p : Property i n i t s e l f . r e l a t i o n . output
i f p != void then

A. ownedAttribute . add (p)
end
super

end
}

Listing 3.9 – Operational Semantics for the Add Strategy model element from the
strategy concern.

Delete Strategy The Delete Strategy (see Listing 3.10) has no additional param-
eter. It calls the remove() operation on the collection of objects from A with objects
from B as a parameter before calling the super operation from Strategy.

aspect c l a s s D e l e t e S t r a t e g y {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

A. removeAll (B)
super

end
}

Listing 3.10 – Operational Semantics for the Delete Strategy model element from the
strategy concern.

Overlapping Strategies

Equivalence Strategy The Equivalence Strategy (see Listing 3.11) relies on a
set of parameters (properties). The visit() method calls the Visitor on the properties
parameter and then call the equals() operation. The equals() operation stores which
properties proposed by the user should be considered as equivalent for each model
element. This information supports the composition process to identify equivalent
model elements.

aspect c l a s s EquStrategy {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

s e l f . p r o p e r t i e s . v i s i t (A, B)
equals (A, B , s e l f . p r o p e r t i e s . output)
super

end
}

Listing 3.11 – Operational Semantics for the Equivalence Strategy model element from
the strategy concern.

The ModMap Framework 101

Similarity Strategy The Similarity Strategy (see Listing 3.12) relies on a set of
parameters (rename property). The visit() method calls the Visitor on its parameter
and then call the align() operation. The align() operation align objects A and B with
regard to the set of directives provided by the user.

aspect c l a s s SimStrategy {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

s e l f . rename . v i s i t (A, B)
a l i g n (A, B , s e l f . rename . output)
super

end
}

Listing 3.12 – Operational Semantics for the Similarity Strategy model element from
the strategy concern.

Generalization Strategy The Generalization Strategy (see Listing 3.13) only
applies on the meta–level of abstraction (i.e., the meta–model) of a model, since it
modifies the tree of hierarchy of a set of model elements. The parent parameter
indicates which set of model elements should become the parent of the other. If A or B
are equals to the parameter, the set of supertypes of A or B is respectively augmented
with B or A.

aspect c l a s s GenStrategy {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

s e l f . parent . v i s i t (A, B)
i f A. equals (s e l f . parent . output) then

B . superType . add (A)
e ls e

A. superType . add (B)
end
super

end
}

Listing 3.13 – Operational Semantics for the Generalization Strategy model element
from the strategy concern.

Aggregration Strategy The Aggregation Strategy (see Listing 3.14) only applies
on meta–models since it modifies the inherent structure of a model by adding a con-
tainment relationship. The containerparameter indicates which set of model elements
should become the container of the other set. From this information, we create a new
relationship with its containment property equals to true. This new property is then
added to object A or B, depending on the container parameter.

102 ModMap : A Framework for Unifying Model Composition Activities

aspect c l a s s AggrStrategy {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

s e l f . c o nt a i ne r . v i s i t (A, B)
var p : Property i n i t s e l f . c o nt a i ne r . output
i f A. equals (s e l f . c o nt a i ne r . t a r g e t) then

A. ownedAttribute . add (p)
e ls e

B . ownedAttribute . add (p)
end
super

end
}

Listing 3.14 – Operational Semantics for the Aggregation Strategy model element from
the strategy concern.

Override Strategy The Override Strategy (see Listing 3.15) traverse the structure
of A to detect model elements to override. Detected model elements are added to a
new set of objects new_a that contains the original model elements of A without those
replaced by the objects from B.

aspect c l a s s Overr ideStrategy {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

var new_A : Set<Object> i n i t Set<Object > .new
A. each { o |

i f not B . conta ins (o) then
new_A . add (o)

e ls e
new_A . add (B . get (o))

end
}
A. c l e a r
A. addAll (new_A)
super

end
}

Listing 3.15 – Operational Semantics for the Override Strategy model element from the
strategy concern.

Information Gap Strategy The Information Gap Strategy (see Listing 3.16)
expects to get a set of relationships from the parameter. Visiting the parameter produces
a set of properties identified by their expected containing model element. We browse
this map of properties and subsequently add them to either A or B, depending on
the parameters. The reason why we do not manipulate the structure relationship and
consequently the ModelingUnit attached to it is that we expect the refs parameter to
provide relationships that already point to the structure to include.

Ad Hoc Strategy The Ad Hoc Strategy (see Listing 3.17) propose an escape
mechanism that allows arbitrary complex computation on the model elements that are
mapped with one another. We propose to encapsulate this complex computation in a
Kermeta ModelingUnitwhich represent the algorithm of the process. This algorithm is

The ModMap Framework 103

aspect c l a s s InfoGapStrategy {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

var m : ModelingUnit i n i t s e l f . s t r u c t u r e
s e l f . r e f s . v i s i t (A, B)
var p r o p e r t i e s : Hashtable<Object , Property> i n i t s e l f . r e f s . output
p r o p e r t i e s . keySet . each { o |

i f o . equals (A) then
A. add (p r o p e r t i e s . get (o))

e ls e
i f o . equals (B) then

B . ownedAttribute . add (p r o p e r t i e s . get (o))
e ls e

o . ownedAttribute . add (p r o p e r t i e s . get (o))
end

end
}
super

end
}

Listing 3.16 – Operational Semantics for the Information Gap Strategy model element
from the strategy concern.

added to the current Block of statements of the strategy as preliminary process before
the execution of the compose() operation.

aspect c l a s s AdHocStrategy {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do
/ / complex user−defined computation
var m : ModelingUnit i n i t s e l f . a lgorithm
output . add (ModelingUnit)
super

end
}

Listing 3.17 – Operational Semantics for the Ad Hoc Strategy model element from the
strategy concern.

Cross–Cutting Strategies

Replace Strategy The Replace Strategy (see Listing 3.18) replaces all model
models from one set with model elements from another set. According to thedirection
parameter that states which set of model elements should be replaced, we traverse the
sets of model elements and create a new set which contains replaced model elements.

104 ModMap : A Framework for Unifying Model Composition Activities

aspect c l a s s ReplaceStra tegy {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

var new_set : Set<Object> i n i t Set<Object > .new
s e l f . d i r e c t i o n . v i s i t (A, B)
i f s e l f . d i r e c t i o n . output . equals (A) then

A. each { o |
i f not B . conta ins (o) then
new_set . add (o)

e ls e
new_set . add (B . get (o))

end
}
A. c l e a r ()
A. addAll (new_set)

e ls e
B . each { o |

i f not A. conta ins (o) then
new_set . add (o)

e ls e
new_set . add (A. get (o))

end
}
B . c l e a r ()
B . addAll (new_set)

end
super

end
}

Listing 3.18 – Operational Semantics for the Replace Strategy model element from the
strategy concern.

Augment Strategy The Augment Strategy (see Listing 3.19) rely on a base set of
model elements which is identified by the base parameter. For each model element
of the base, if two elements are found equal, we make the union of the sets of their
properties to ultimately add it to the model elements of the base.

Remove Strategy The Remove Strategy (see Listing 3.20) is the opposite of the
augment strategy. For each pair of equal model elements, we check if they own a
common property. If found, we remove the common property.

The ModMap Framework 105

aspect c l a s s AugmentStrategy {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

s e l f . base . v i s i t (A, B)
i f A. equals (s e l f . base . output) then

B . each { o |
A. each { o2 |

i f o . equals (o2) then
o . ownedAttribute . each {aA |

o2 . ownedAttribute . add (aA)
}

end
}

}
e ls e

A. each { o |
B . each { o2 |

i f o . equals (o2) then
o . ownedAttribute . each {aA |

o2 . ownedAttribute . add (aA)
}

end
}

}
end
super

end
}

Listing 3.19 – Operational Semantics for the Augment Strategy model element from
the strategy concern.

aspect c l a s s RemoveStrategy {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

B . each { o |
A. each { o2 |

i f o . equals (o2) then
o . ownedAttribute . each {aA |

o2 . ownedAttribute . remove (aA)
}

end
}

}
super

end
}

Listing 3.20 – Operational Semantics for the Remove Strategy model element from the
strategy concern.

Interaction Strategies

Sequence Strategy The Sequence Strategy (see Listing 3.21) orders the execution
of A and B. The call of the visit() operation on the order parameter identifies
which model element should be executed first. The execute() operation is then called
depending on this order parameter.

106 ModMap : A Framework for Unifying Model Composition Activities

aspect c l a s s SequenceStrategy {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

s e l f . order . v i s i t (A, B)
i f s e l f . order . output . equals (A) then

execute (A)
execute (B)

e ls e
execute (B)
execute (A)

end
super

end
}

Listing 3.21 – Operational Semantics for the Sequence Strategy model element from
the strategy concern.

Parallel Strategy The Parallel Strategy (see Listing 3.22) rely on theconcurr_exec()
operation which implements the concurrent execution of the model elements.

aspect c l a s s P a r a l l e l S t r a t e g y {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

concurr_exec (A, B)
super

end
}

Listing 3.22 – Operational Semantics for the Parallel Strategy model element from the
strategy concern.

Codependency Strategy The Codependency Strategy (see Listing 3.23) proposes
a naive implementation of the start–to–start, start–to–finish, finish–to–start, and finish–to–
finish codependency relationships. According to the type parameter which indicates
which kind of codependency relationships to take into account, we use a couple of
boolean values to indicate if the execution of a model element is started or finished
and to allow an execution to start or to end with respectively allowedToStart and
allowedToEnd boolean values.

The ModMap Framework 107

aspect c l a s s CodependencyStrategy {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

s e l f . type . v i s i t (A, B)
/ / S t a r t −to−S t a r t
i f s e l f . type . output . equals (s2s) then

i f A. s t a r t e d then B . al lowedToStart := t rue end
e ls e
/ / S t a r t −to−F in i s h
i f s e l f . type . output . equals (s 2 f) then

i f A. s t a r t e d then B . allowedToEnd := t rue end
e ls e
/ / Finish−to−S t a r t
i f s e l f . type . output . equals (f 2 s) then

i f A. ended then B . al lowedToStart := t rue end
e ls e
/ / Finish−to−F in i s h
i f A. ended then B . allowedToEnd := t rue end

end
end

end
super

end
}

Listing 3.23 – Operational Semantics for the Codependency Strategy model element
from the strategy concern.

3.2.3.4 Operational Semantics for Directives

In this section, we distinguish operation directives and reference directives. We
presents the operational semantics for ElementDirective and its specializations that
expect changes (ElementDirective)and detail ElementRef directives that allow refer-
encing existing model elements or literals.

Directives Operational semantics of the ElementDirective directive declare an
abstract method visit() which is overridden by the ElementDirective children. List-
ing 3.24 shows the operational semantics for the ElementDirective object and for
Change, one of its children. The visit()method of Change looks for the target model
element provided by the propertyName property and the target value property in both
A and B. Both objects are added to the directive output.

References to Model Elements References to model elements are provided by
the abstract concept ElementRef. Listing 3.25 illustrates the operational semantics for
the NameRef concept and the Literal concept which respectively references an object
or a constant value. The qualified name of the object to find (qname property) is looked
up in both A and B and added to the output if found. If the referenced element is a
constant value, output is assigned to its value.

108 ModMap : A Framework for Unifying Model Composition Activities

aspect c l a s s ElementDirect ive {
operation v i s i t (A : Set<Object > , B : Set<Object >) i s a b s t r a c t

}

aspect c l a s s Change {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

var o : Object i n i t lookupObject (s e l f . propertyName ,A)
i f o == void then

o := lookupObject (s e l f . propertyName , B)
end
s e l f . value . v i s i t (A, B)
output . add (o)
output . add (s e l f . value . output)

end
}

Listing 3.24 – Operational Semantics for ElementDirective and its children from direc-
tives.

aspect c l a s s NameRef {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

var o : Object i n i t lookupObject (s e l f . qname ,A)
i f o == void then

o := lookupObject (s e l f . qname , B)
end
output . add (o)

end
}

aspect c l a s s L i t e r a l {
method v i s i t (A : Set<Object > , B : Set<Object >) i s do

output := s e l f . value
end

}

Listing 3.25 – Operational Semantics for ElementRef and its children from directives.

3.2.4 ModMap Concrete Syntax

Providing a framework for building model composition operators may be diffi-
cult to manipulate for designers. To this purpose, we propose a concrete syntax for
ModMap to ease the definition of mapping specifications, providing designers with a
graphical language. The constructs of the concrete syntax reflect the constructs of the
model-alignment modeling language presented in Section 3.2.2. The graphical repre-
sentation is an adaptation and an extension of the formalism proposed by Hausmann
et al. [HK03]. Hausmann et al.’s formalism includes elements to express “consistency
between models” or in other words “conditions under which two models are compat-
ible”.

We kept the following definition as a basis for the concrete syntax :
– A white diamond indicates a mapping definition and has a name.
– A given model element or a set of model elements is linked to a mapping defini-

tion with a dotted line.

Conclusion 109

– If a mapping definition involves multiple sources or multiple targets, a black
circle is put between the mapping description and the sets of model elements
involved.

We propose to extend Hausmann et al.’s formalism as follows :
– We explicitly separated mapping descriptions into four types. Each type depends

on the multiplicity of sources models elements and targets model elements that
we want to map with one another.

– We allow the creation of a mapping description between any model element such
as classes, attributes, and associations between model elements.

– We propose that each mapping description is bound to a set of strategies (see
Section 3.2.2.2).

– Each strategy is represented by a colored circle and included into the white
diamond of a mapping description.

– If necessary, parameters for strategies are provided in orange boxes and linked
to their strategy by a straight gray line.

– For Ad Hoc and Information Gap strategies, a red box contains respectively
the user–provided structure or algorithm necessary for the model composition
processing.

Figure 3.11 illustrates the concrete syntax of the model-alignment language on the
running example. We use a One2OneMapping to define an equivalence relationship
between Account from the Bank model and Account from the BLP model. The other
One2OneMapping defines an equivalence relationship between BankUser from the Bank
model and BankUser from the BLP model.

Mapping

EquStrategy

Class
Cart

customer
items

Account

BankUser

Account
deposit()
withdraw

BankUser
CreateSubject()
DeleteSubject()

Account

BankUser

Figure 3.11 – Model of mappings between the Bank model and the BLP model

Additional examples of the concrete syntax in action can be found in Chapter 4.

3.3 Conclusion

We have presented in this chapter the ModMap framework that allows designers to
build model composition frameworks that are specific to a given purpose. We proposed
a model-alignment language that covers the definition of mappings between a set of
models or a set of models elements. This model-alignment language can be customized
for a given purpose by selecting a set of interpretation that are relevant for a specific
purpose. Additional purpose– or domain–specific characteristics should be proposed

110 ModMap : A Framework for Unifying Model Composition Activities

by designers to finalize the definition of a model composition framework for a specific
operation on models.

In the next chapter, we demonstrate the application of the ModMap framework on
three case studies that target three different operations on a set of models.

Chapitre 4

Validation and Application

This section presents three use cases that act as a validation of the theoretical
framework for unifying model composition approaches, presented in Chapter 2, and
of the ModMap language presented in Chapter 3.

Section 4.1 demonstrates the use of the theoretical framework to unify four existing
model merging techniques. With this experiment, we expect to validate the adequate-
ness of the theoretical framework (i)to compare existing model composition approaches
and (ii)to propose a unique kernel for model composition that is independent from
the context.

Section 4.2 demonstrates the use of the theoretical framework on an industrial
case study from the MOPCOM–I project to integrate legacy APIs. We collaborate with
industrial partners from Technicolor 1 to automate the integration of legacy API for
the configuration and management of heterogeneous video and broadcasting equip-
ments. This validates both the applicability of the theoretical framework to other

management activities and the efficiency of using the ModMap framework in action.
Section 4.3 extends the use of ModMap and the unified theoretical framework

to the challenges of model synchronization in a context of Service–Oriented Archi-
tecture (SOA). This allows extending the scope of the theoretical framework
to encompass various model management activities beyond model merging and
model integration.

4.1 Generalizing Model Merging

Model merging is used to compose different concerns in a large model. Even
though the purpose of model merging usually remains constant, most model merging
operators are custom-built for specific languages. In this case study, we propose a
unified framework of model merging that distills the body of knowledge embedded in
four existing model merging operations. The unified framework helps both comparing
existing operations on a common basis and improving code reuse to build new model
merging operations.

1. http ://www.technicolor.com/en/hi/technology/research-and-innovation-centers/rennes

111

112 Validation and Application

4.1.1 Existing Tools for Model Merging

We choose four model merging techniques that handle a pair of homogeneous
models to illustrate the current approach. We briefly recap the main concepts for each
technique in Sections 4.1.1.1 to 4.1.1.4.

Description of the four techniques is organized as follows :
– Inputs details if a technique is model or meta–model specific and how many

models are involved in a model merging operation.
– Match presents the implicit or explicit matching mechanism proposed by a tech-

nique to detect model elements to merge.
– Merge gives information about the merging process for elements that match and

element that do not.
– Outputs gives details about the output model, its type and any specific charac-

teristic.
– Other lists any other specific processing that supports or enhances the merging

process to produce a model that meets the user expectations.
Using this structure, we capture the internal mechanisms of each technique and

expect to identify commonalties that would ease the definition of a generic unified
core for model merging.

4.1.1.1 UML Package Merge

The Unified Modeling Language (UML) is a standard proposed by the Object Man-
agement Group (OMG). The UML2 modeling language supports modular construction
of models through the notions of package and ppackage merge. As a tool for improv-
ing modularity, UML2 supports a new directed relationship between packages named
“Package Merge” [OMG10b, §11.9.3]. Package Merge allows for extending an existing
package by merging the contents of another package.

– Inputs are two UML Class Diagrams that are either physically independent
or defined under two different namespaces. The technique is applicable to the
whole UML meta–model if adequate extensions are provided to handle the
various kinds of UML types.

– Match is an implicit mechanism that checks names and types (i.e., instance of the
same element in the meta-model).

– Merge applies on a predefined set of types and recursively among packages and
their nested children. The set of predefined types may be extended for supporting
merging among specific types.
– Matchings elements are merged w.r.t. a set of transformation rules [OMG10b,

§11.9.3, p.165–168] that details the navigation across the structure of elements
and constraints to satisfy.

– Non matching elements are deep copied.
– Outputs is a new UML Class Diagram that contains the output of the merge

operation : matching elements are merged with one another and non matching
elements are copied from the source UML models.

Generalizing Model Merging 113

Fig. 4.1 illustrates an example of UML PackageMerge in which the contents of the
package BasicEmployees should be merged with the content of package EmployeeLoca-
tion. On this specific example, only one match is found : The UML class Employee in
BasicEmployees has a name that equals the name of the UML class Employee in Employ-
eeLocation. The resulting UML class diagram thus contains a UML class Employee that
contains the properties (i.e., attributes and references) of both source classes. No other
match is detected between these packages, thus other UML classes are just copied into
the resulting UML class diagram.

1

Person
name : String

1

Employee
number : Integer
officeNum : Integer

1

Job
title : String

worksAs
11..*

BasicEmployees - Result

1

Building
address : String

worksIn

1

*

1

Person
name : String

1

Employee
number : Integer 1

Job
title : String

worksAs
11..*

BasicEmployees

1

Employee
officeNum : Integer

1

Building
address : String

worksIn

1

*

EmployeeLocation

<<merge>>

1

Figure 4.1 – A package merge example adapted from [ZDD06]

4.1.1.2 Kompose : A Generic Model Composition Tool

A detailed description of Kompose is available in Section 1.1.4.1. As a reminder,
Kompose 2 is a merging tool for multi–view design [FFR+07] (related to Aspect–
Oriented Modeling). Kompose merges homogeneous pairs of models that conform
to various kinds of meta–models.

– Inputs are two homogeneous models that conform to the same meta–model that
itself conforms to the Meta Object Facility (MOF) meta–model. One of the two
models is considered as the base model and the other as an aspect, similarly to
what exists in Aspect–Oriented Modeling.

– Match is an explicit mechanism based on signatures. Signatures define a set
of properties which are used to detect the equivalence between pairs of model

2. http ://www.kermeta.org/mdk/kompose

114 Validation and Application

elements that have the same type (e.g., pairs of classes or pairs of operations).
Default signature checks name.

– Merge applies on all types and recursively among containers and their nested
children. Using reflexivity and introspection to access properties allows defining
a generic merge algorithm to support merging of different models. The model
elements to merge are all referenced in a global set of model elements which is
sequentially browsed to detect matches and merge model elements that match.
– Model elements which signatures match are merged into a single model ele-

ment
– Model elements with no match are deep copied in the resulting model

– Outputs is the modification of the base model that contains the output of the
merge operation as described above.

– Other facilities are proposed by Kompose to change input and output models
prior to and post to the match and the merge mechanisms. In addition, a conflict
resolver is provided to meet specific user expectations regarding the merge of
values.

Fig. 4.2 and Fig. 4.3 are respectively the base model (BLP) and the aspect model
(Bank) from [FFR+07]. In this example, the considered models are class diagrams
that conform to the UML meta-model. Listing 4.1 presents the pseudocode of the
default signature. Using the default signature, we detect that the classes BankUser and
Account from the Bank model matches classes BankUser and Account from the BLP
model respectively. Fig. 4.4 shows the new version of the BLP model after merging.
Matching classes have been merged into a single class and properties from these classes
have been merged into a single property. Non matching classes and properties from
the input models have been deep copied. As described in [FFR+07], the two operations
transfer() and withdraw() from the Controller class of the Bank model have been removed
from the merged model with post–directives to meet users requirements.

OperationEnum<

<

TRANSFER: 1
WITHDRAW: 2
DEPOSIT: 3

<<enumeration>>

OperationTypeEnum<

<

READ: 1
WRITE: 2

<<enumeration>>

Boolean<

<<<datatype>> BankUser
CreateSubject()
DeleteSubject()

BankSubject
CheckAccess()
transfer()
withdraw()

SecurityLevel
AddDominatee()
AddDominator()
GetAllDominatees()

Account

Operation
Type : OperationTypeEnum

subject*

securityLevel1
dominatee

dominator

*

*

user

securityLevel
1

*

securityLevel

target

Target

operationType *

*
*

1

user
subject*

1

1

Figure 4.2 – An example of the blp model adapted from [FFR+07]

4.1.1.3 Match and Merge of Statechart Specifications

Nejati et al. [NSC+07] have defined a merge operator for statecharts. This merge
operator produces a new statechart that contains states, transitions, actions, events and
guards of the input statecharts. The merge operator preserves the behavioral properties

Generalizing Model Merging 115

BankUser

Controller
deposit()
transfer()
withdraw()

Account
deposit()
withdraw()

account

*

user*

X
X

Money<

<<<datatype>>

Figure 4.3 – An example of the bank model adapted from [FFR+07]

function equals (ob j1 : Object , ob j2 : Object) : Boolean i s
re turn obj1 . name == obj2 . name

end

Listing 4.1 – Pseudo code of the Kompose default signature.

OperationEnum<

<

TRANSFER: 1
WITHDRAW: 2
DEPOSIT: 3

<<enumeration>>

OperationTypeEnum<

<

READ: 1
WRITE: 2

<<enumeration>>

Boolean<

<<<datatype>>

BankUser
CreateSubject()
DeleteSubject()

BankSubject
CheckAccess()
transfer()
withdraw()

SecurityLevel
AddDominatee()
AddDominator()
GetAllDominatees()

subject*

securityLevel1
dominatee

dominator

*

*

user

securityLevel
1

*

securityLevel

targettarget
operationType

*

*

*
1

user
subject*

1

Operation
Type : OperationTypeEnum1

account
*

user
*

X
X

Money<

<<<datatype>>

Account
deposit()
withdraw()

Controller
deposit()

Figure 4.4 – Result of the composition of the Bank model and the BLP model from
[FFR+07]

of the input models, distinguishes between shared and non-shared behaviors of the
input models, and respects the hierarchical structure and parallelism of the input
models.

– Inputs are two statecharts, for instance that conform to the UML State Machine
meta-model.

– Match is an explicit mechanism that uses heuristics to propose correspondence
relationships between states from the two statecharts. Correspondence relation-
ships should be reviewed by domain experts to add missing correspondences
and to remove false positives. The match mechanism is hybrid and combines
both static matching and behavioral matching.
– Static matching combines similarity degrees between states. Similarity degrees

are computed from typographic and linguistic data (i.e. state names) and the
position of a state in the hierarchical structure of both statecharts.

– Behavioral matching generates similarity degrees between states based on
their behavioral semantics, computing values of forward- and backward-
bisimilarity.

116 Validation and Application

Each matching is defined as a function assigning a normalized value to every
pair of states. The closer a degree is to 1, the more similar two states are. Ag-
gregating the static and behavioral heuristics to generate the overall similarity
degrees between states and given a similarity threshold, they can determine a
correspondence relation over the states of the input models.

– Merge constructs a model that contains shared behaviors of the input models
as normal behaviors and non–shared behaviors as variabilities. Variabilities are
represented using parametrization : non–shared transitions are guarded by con-
ditions denoting the transitions’ origins. Non-shared states are included in the
output model without any provisions.
– Shared states and transitions are identified as follows :

– A state is shared if it is related to some state by a correspondence relation
and is non–shared otherwise.

– A transition t is shared : if the transition source x and target y states are
shared (i.e., a correspondence relation relates x with an x′ and y with y′) ; if
there exists a transition t′ between x′ and y′ whose event, whose condition
and whose priority equals those of the transition t ; if the action of t′ either
equals action of t or if the two actions are independent. A pair of actions is
independent if the execution order results in the same system behavior. A
transition is non–shared otherwise.

– Shared states are merged into a single state in the output model with their
names concatenated.

– Non–shared states are copied in the output model
– Shared transitions are copied in the output model States names are and a new

state is added to the resulting statechart specification
– Shared transitions are copied to the resulting statechart specification with their

event, their condition,their action and their priority unchanged.
– Non–shared transitions are copied to the resulting statechart specification with

their event, their action and their priority unchanged and with the condition
concatenated with the name of the original UML statechart that the transition
comes from.

– Output is a new structurally sound statechart. The output statechart contains
both shared and non -shared behaviors.

– Other merging rules are available for computing with the hierarchical structure
for parallel states and super states.

Fig. 4.5 shows the two input statecharts and the merged statechart as presented
in [NSC+07]. The following equation 4.1 is the set of correspondence relations after
revision by domain experts :

(s0, t0), (s4, t4), (s2, t1), (s5, t5), (s3, t2), (s6, t6),
(s3, t3), (s7, t7)

(4.1)

Among the states of the Call Logger Basic and Call Logger Voicemail, only s1 and s8 are
non–shared and thus copied to s0, t0 with no changes. Every other state has its name
concatenated with the states it corresponds to. Boldface conditions capture the origins

Generalizing Model Merging 117

of the respective transitions. For instance, the transition from (s2,t2) to (s4,t4) annotated
with the condition [ID=basic] indicates a variable behavior that is applicable only for
clients subscribing to basic. The definition of shared transitions is conservative in the
sens that it requires such transitions to have identical events, conditions and priorities
in both input models. While this is sound to ensure that behavior is preserved, it may
results in redundant transitions. For example, the transitions from (s2,t1) to (s3,t2) and to
(s3,t3) fire actions callee = subscriber and callee = participant respectively. Since the value
of callee in state (s3,t3) equals participant and equals subscriber in (s3,t2), we can replace
callee by subscriber or participant on transitions and merge redundant transitions.

Call logger - basic
Initialize Links

Start

Link
Callee

setup :zone=source]/
callee = participant

setup :zone=target]/
callee = subscriber

s0

Wait

callee?Ack

Timer
Started

Log
Success

Log
Failure

participant?Accept :zone=source] OR
subscriber?Accept :zone=target]

participant?Reject :zone=source] OR
participant?TearDown :zone=source] OR
subscriber?Reject :zone=target] OR
subscriber?TearDown :zone=target]

participant?TearDown OR
subscriber?TearDown

s1
s2

s3

s4

s5

s7s6

Call logger - voicemail
Start Link

Subscriber

setup :zone=source]

setup :zone=target]

Pending

subscriber?Ack

Timer
Started

Log
Success

Log
Failure

participant?Accept :zone=source] OR
subscriber?Accept :zone=target]

participant?Reject :zone=source] OR
participant?Unavail :zone=source] OR
participant?TearDown :zone=source] OR
subscriber?Reject :zone=target] OR
subscriber?Unavail :zone=target] OR
subscriber?TearDown :zone=target]

participant?TearDown OR
subscriber?TearDown

Link
Participant

t 0

t 1

t 3

t 2

participant?Ack
t 4

Log
Voicemail

t 5

t 6

redirectToVoicemail
:zone=target]

t 7 t 8

Call logger - (basic,voicemail)

participant?Accept :zone=source] OR
subscriber?Accept :zone=target]

participant?Reject :zone=source] OR
participant?Unavail :zone=source, ID=voicemail] OR
participant?TearDown :zone=source] OR
subscriber?Reject :zone=target] OR
subscriber?Unavail :zone=target,ID=voicemail] OR
subscriber?TearDown :zone=target]participant?TearDown OR

subscriber?TearDown

Log
Voicemail

redirectToVoicemail
:zone=target,
ID=voicemail]

t 8

(s ,t)00

Initialize Links

(Start,
Start)

(LinkCallee,
Link Subscriber)

setup :zone=target]/
callee = subscriber

setup :zone=source]/
callee = participant

s1
(s ,t)12 (s ,t)23

(LinkCallee,
Link Participant)

(s ,t)33

(Waiting,
Pending)

subscriber?Ack
:ID=voicemail]

callee?Ack
:ID=basic]

(s ,t)44

participant?Ack
:ID=voicemail]

callee?Ack
:ID=basic]

(s ,t)55
(Timer Started,
Timer Started)

(Log Success,
Log Success)

(Log Failure,
Log Failure)

(s ,t)66

(s ,t)77

Figure 4.5 – Statecharts of the call logger feature variants from [NSC+07]. Conditions
shown in boldface capture the origins of the respective transitions.

4.1.1.4 Composition of Orchestration of Services with ADORE

ADORE 3 is meant to modularize service orchestrations [MBFF10]. ADORE allows
merging a set of partial orchestrations (i.e., fragments) within a main orchestration and

3. http ://http ://rainbow.i3s.unice.fr/adore/wiki/doku.php

118 Validation and Application

provides checking capabilities for detecting inconsistencies in the merged orchestra-
tions.

– Inputs are a main ADORE orchestration and a set of ADORE fragments.
– Match is an explicit mechanism that determines where a fragment is statically

inserted into the main orchestration. Fragments declare a hook activity, a predeces-
sor activity and a successor activity. The hook activity indicates where the fragment
will be connected in the main orchestration. Predecessor and successor activities
are used for inconsistencies and behavior checking. An expert of the domain
proposes a composition unit that is a set of bindings for the Hook activity with
activities in the main orchestration.

– Merge is an algorithm that computes a set of actions (e.g., add an activity, create
an order relation, create a variable.) for each binding and executes this set of
actions to merge fragments into the main orchestration.

– Output is the main ADORE orchestration augmented with the set of fragments
unless no binding is provided.

– Other algorithms perform a preliminary merge of the set of fragments using
logical unification and substitution in the case when multiple fragments must be
woven into the main orchestration using the same Hook activity.

Fig. 4.6 is the main orchestration for the CaptureWitnessReport scenario of the Car
Crash Crisis Management System (CCCMS)as presented in [MBFF10], and related to
a common case study for assessing Aspect-Oriented Modeling approaches [KGM10].
Fig. 4.7 and Fig. 4.8 are two fragments, dealing respectively with “requesting video
display” and ”detecting fake crises” scenarios. Using the composition unit proposed by
experts and illustrated in Listing 4.2, ADORE performs the merge of the two fragments
into the main orchestration (see Fig. 4.9).

(coord,id) := receive()rcv

(wi) := UI::promptWitnessInfo(coord)a10

CMS::setWitness(id,wi) (pi) := PhoneCie::getInfo(wi.id)

(exact) := CMS::validateWitnessInfo(wi,pi)

exact

a11

a2

a3

a2a12

(i) := UI::promptPrelimInfo(coord)

(ci) := promptCheckList(coord,id,ccl)

(ccl) := CMS::buildCheckList(i)

CMS::assignEmergencyLvl(id,ci)

MsgBus::send('status','active',id) reply()rpla51

a50

a4

a2a3

Figure 4.6 – The CaptureWitnessRecord workflow from [MBFF10]

Generalizing Model Merging 119

(c) := survSys::canCover(info.loc)t

(feedId) := survSys::activateVideo(info.loc)a12

a3 ui::displayVideoFeed(user,feedId)

P

S

hook(info)h

Figure 4.7 – The RequestVideo fragment from [MBFF10]

(isReal) := ui::prompt4RealCrisis(user)t

throw('fakeCrisis')thr

P

S

hook(user)h

Figure 4.8 – The FakeCrisis fragment from [MBFF10]

composition cms : : captureWitnessReport {
apply requestVideo (user : ’ coord ’) => a3 ;
apply f a k e C r i s i s D e t e c t e d => a4 ;

}

Listing 4.2 – Composition Unit for the CCCMS case study.

(coord,id) := receive()rcv

(wi) := UI::promptWitnessInfo(coord)a10

CMS::setWitness(id,wi) (pi) := PhoneCie::getInfo(wi.id)

exact

a11

a2

a3

a2a12

(i) := UI::promptPrelimInfo(coord)

(ci) := promptCheckList(coord,id,ccl)

(ccl) := CMS::buildCheckList(i)

MsgBus::send('status','active',id) reply()rpla51

a4

CMS::assignEmergencyLvl(id,ci)a50

(exact) := CMS::validateWitnessInfo(wi,pi)a2a3

(c) := survSys::canCover(info.loc)t

(feedId) := survSys::activateVideo(info.loc)a12

a3 ui::displayVideoFeed(user,feedId)

isReal

(isReal) := ui::prompt4RealCrisis(coord)t

throw('fakeCrisis')thr
! isReal

Figure 4.9 – The CaptureWitnessRecord workflow augmented with the RequestVideo
and the FakeCrisis fragments from [MBFF10]. Grayed activities, guards and wait rela-
tionships comes from the fragments.

120 Validation and Application

4.1.2 Capitalization on the Match and Merge Processes

The four operations presented previously seem radically different at first sight : each
technique manipulates models that conform to different formalisms ; merge operations
are implemented in different programming languages and are meant to be used for
different purposes in software development such as global design, meta–modeling,
feature interaction analysis and service orchestration modeling. However the central
purpose is similar : given a pair of models, each technique builds a new model that
contains no more and no less information than the initial models. In the resulting
model, each pair of equivalent elements is modeled as a unique element and elements
that are not equivalent are included with no changes.
In the following sections, we discuss the implementation of this core behavior of the
merge operator in order to re–implement the four merge operators on the basis of a
unique framework. We rigorously engineer a core framework that can be systematically
reused to build new merge operators for different formalisms. The core framework
satisfies the following properties for model merging that were proposed in [BCE+06 ;
CNM11] :

– Completeness : Ensure that no data is lost along the merging process : each model
element from the input models should be represented in the merged model.

– Non-Redundancy : no duplicate element exists in the merged model. Duplicate
elements originating from the input models must lead to the creation of a single
element in the merged model.

– Minimality : The merged model contains information that originates solely from
the input models.

– Singularity : Any pair of matched model elements leads to the creation of a
single element in the merged model.

– Idempotency : Guaranteeing completeness, non redundancy and minimality
ensures that merging a model with itself should produce a model that is an exact
copy of the original model.

Whilst some merging operators are dedicated to a given formalism (statecharts,
class diagrams and service orchestrations) and Kompose is formalism independent,
all these formalisms are described thanks to meta-models that conform to the OMG
MOF [OMG10a]. In practice, the implementation of the MOF standard could be the
one proposed by the Eclipse Modeling Framework (EMF), namely ECore [SBP+08].

The MOF standard and subsequently its ECore implementation propose to describe
meta-models in an object-oriented manner. They provide the following language con-
structs for specifying a meta-model : package, classes, properties, multiple inheritance
and different kinds of associations between classes. The semantics of these core object-
oriented constructs that is shared by various languages (e.g., Java, C#).

Since all merging operators shared a decomposition into a match mechanism and
a merge mechanism, we propose to capitalize these two mechanisms at the ECore
level. Listing 4.3 is an optimized implementation of the capitalized merge operator
that traverse the input models once. The algorithm loads the two input models and
calls the sum() method. The sum() method is in charge of traversing the input models

Generalizing Model Merging 121

func t ion merge (model1 : Object , model2 : Object) : Object i s
/ / Loads e l e m e n t s f o r b o t h mode l s
/ / Load ing r e t u r n s t h e r o o t o f t h e model
root1 = loadModel (model1)
root2 = loadModel (model2)
/ / C a l l s t h e sum method f o r merging t h e two mode l s
merged_model = sum(root1 , root2)
/ / Saves t h e merged model
saveModel (merged_model)

end

Listing 4.3 – Algorithm of the merge operation

from the top-most container elements and calls the match() method for each pair of
model elements. The output of the sum() method is a merged model.

Section 4.1.3.4 details the proposed match algorithm and Section 4.1.3.5 discusses
the proposed sum algorithm.

4.1.3 Application of the Unified Framework

For the purpose of validating the unified theoretical framework proposed in Chap-
ter 2, we demonstrate that (i)a single model–alignment language successfully repre-
sents language–specific matchings and (ii)we successfully build a unique algorithm to
handle existing merge operations.

4.1.3.1 Overview of the Model Composition Framework Customization

The definition of a new model composition framework for model merging follows
the process of customization illustrated on Figure 3.6 in Section 3.2.1. Figure 4.10
illustrates the definition of a model composition framework for model merging.

Model merging relies on a match mechanism that detects equivalent model ele-
ments and a merge mechanism (see Section 4.1.3.5) that produces a result from equiva-
lent model elements. We propose a model–alignment language for model merging (see
Section 4.1.3.2) to describe mappings between meta–model elements. Mappings (see
Section 4.1.3.3) are analyzed to automatically detect matches between model elements
using a generic match algorithm (see Section 4.1.3.4). This generic matching mecha-
nism may be customized to change the default equivalence behavior and to handle
specific pattern–matching mechanism. Customizations are bound to the isEqual()
method to reduce global customization effort.

4.1.3.2 A Specific Model–Alignment Language for Model Merging

For the purpose of this merge operation, we build a specific model–alignment
language. This model–alignment language includes the concepts of Mappings and
Directives, with no extension of Filter proposed and the EquStrategy selected to indicate

122 Validation and Application

Com��sition Framework for Model Merging

Mapping
Fragment

Operational
Semantics

Directives
Fragment

Operational
Semantics

+

EquStrategy
equals()

+

Merge Algorithm

isEqual() for
Package Merge

isEqual() for
Kompose

isEqual() for
Statecharts

isEqual() for
ADORE

Match Algorithm

Model-Alignment
Language

Figure 4.10 – Customization of the generic process to build a model composition
framework for model merging.

equivalence between model elements. Figure 4.11 shows the specific model–alignment
language that we use in this experiment.

directive0..*
ElementDirective
(from Directives)

execute()

mapping

implements

strategies mappings

Strategy

Mapper

Overlapping

EquStrategy Parameter

Mapping
(from Mappings)

1 pass : Pass
name : String1

1
properties

Figure 4.11 – Subset of the ModMap language for Model Merge

Since the focus of this approach is on homogeneous model merging (i.e., merging
models that conform to the same meta–model), mappings relates meta–classes with
the same name. The use of the EquStrategy allows restricting equivalence between
meta–classes to a set of properties of interest. Examples of mappings are proposed in
Section 4.1.3.3 for every existing model merging technique.

4.1.3.3 Mappings and Matches

This section presents the mappings for every model merging technique. This
mapping is the specification of a pattern–matching mechanism that allows detecting
matches at the level of the models to compose.

Generalizing Model Merging 123

UML Package Merge

Since UML Package Merge takes UML2 models as input and produce a UML model
as output, we propose a specification of mappings among UML models such that
every pair of NamedElement (i.e., model element with a name) which property name
are equal allows merging this pair of model elements into a single model element.
Figure 4.12 shows the mappings needed to simulate UML Package Merge with our
approach.

1

NamedElement
name : String 1

NamedElement
name : String

name
EquParameter

Figure 4.12 – Specification of the UML Package Merge mapping at the meta–class level

Kompose

Kompose is a generic composer on homogeneous models that works on any meta–
model implying that a specialization has been provided to handle such meta–model.
We illustrate the specification of mappings among ECore models which is one of the
specialization provided by the Kompose tool. The basic composition of ECore models
is defined such that every pair of ENamedElement (i.e., a model element with a name)
which property name are equal allows merging this pair of model elements into a single
model element. In addition, we consider two EOperation equal if they have the same
return type and identical operation parameters such that EParameters are of the same
type. Figure 4.13 shows how we specify mappings for ECore models.

1

ENamedElement
name : String 1

ENamedElement
name : String

EOperation
eType : EClassifier

EOperation

EParameter EParameter
eType : EClassifier

eType : EClassifier

eType : EClassifier

name
EquParameter

eType
eParameters

EquParameter

eType
EquParameter

Figure 4.13 – Specification of the Kompose mappings at the meta–class level

124 Validation and Application

Statecharts Merge

Matching and Merging Statecharts takes two statecharts as input and produce a new
statechart. We choose to use the statechart diagrams from UML2 to represent the input
and output models. For the statecharts to be properly merged, we consider that the
property name of two Package, two ExecutionEvent, two Port or two Region must be
equal. About Transition, the effect, guard and trigger properties must be equal. The
specification property of two Constraint must be equal and the body property of
two OpaqueBehavior must be equal. Figure 4.14 shows how we specify mappings for
Statecharts models.

1

NamedElement
name : String 1

NamedElement
name : String

Constraint
s��cification :
 ValueSpecification

Transition
effect : Behavior
guard : Constraint
trigger : Trigger

Transition
effect : Behavior
guard : Constraint
trigger : Trigger

Constraint
specification :
 ValueSpecification

1

OpaqueBehavior
body : String 1

OpaqueBehavior
body : String

name
EquParameter

effect
guard
trigger

EquParameter

specification
EquParameter

body
EquParameter

Figure 4.14 – Specification of the Statecharts Merge mappings at the meta–class level

ADORE Merge

ADORE weaves fragments of orchestration into a main orchestration. Both orchestra-
tions conform to the ADORE meta–model that contains concepts of Relation, Activity
and Variable. The equivalence of two Activity implies that the properties inputs are
equal and the equivalence of two Variable implies that the properties type are equal.
Figure 4.15 shows how we specify mappings for ADORE models.

4.1.3.4 A Unique Algorithm for Matching using Mappings

We propose a unique algorithm (see Listing 4.4) for matching model elements.
The matching algorithm detects equivalence of a pair of model elements within an
isEqual() method which default behavior is to compare values of properties and to
return a boolean value.

Generalizing Model Merging 125

1

A��ivity
name : String
inputs : Variable

Variable
name : String
type : String
isSet : Boolean

Variable
name : String
type : String
isSet : Boolean

1

Activity
name : String
inputs : Variable

type
EquParameter

inputs
EquParameter

Figure 4.15 – Specification of the ADORE Merge mappings at the meta–class level

The default behavior of the isEqual() method is not enough to properly detect
matches in various situations. The matching mechanism should be precise enough to
avoid merging objects that are not expected to be merged. Since the matching mecha-
nism is domain–specific (i.e., matches are detected among elements that conform to a
specific meta-model), we allow extending the pattern–matching mechanism to include
specific heuristics and/or complex matching computations. The extension mechanism
is limited to the redefinition of the isEqual() method to isolate domain-specific parts
and to limit the effort of extension as low as possible.

From the examples of the four existing techniques, the isEqual() method thus may
contain specific UML Package–Merge detection rules, heuristics and similarity de-
grees computation for UML statecharts, or data provided by experts such as Kompose
signatures or activity matches for ADORE models.

We illustrate the redefinition of the isEqual() method for ADORE models in List-
ing 4.5 w.r.t. the proposition of matches from experts (see Listing 4.2).

The result of the match function allows merging model elements that are identified
as equivalent.

126 Validation and Application

func t ion match (o b j e c t 1 : Object , o b j e c t 2 : Object) : Boolean i s
r e s u l t := t rue
type1 := o b j e c t 1 . getMetaClass
type2 := o b j e c t 2 . getMetaClass
m := getMapping (type1 , type2)

i f m != void then
boolean b := m. p r o p e r t i e s . f o r A l l { p |

i f p . i s R e f e r e n c e () then
match (get (p , o b j e c t 1) , get (p , o b j e c t 2))

e ls e
/ / e q u a l s r e p r e s e n t s t h e s p e c i f i c method
/ / o f t e s t i n g t h e e q u i v a l e n c e be tween
/ / o b j e c t s . Th i s method may be e x t e n d e d
/ / with domain− s p e c i f i c p r o c e s s i n g
equals (get (p , o b j e c t 1) , get (p , o b j e c t 2))

end
}
r e s u l t := b

end

Listing 4.4 – Algorithm of the match operation

operat ion isEqual (p : Property , o1 : Object , o2 : Object) : Boolean i s
var a : adore : : A c t i v i t y
var h : adore : : Hook
r e s u l t := f a l s e
a ?= o1
h ?= o2
/ / r e q u e s t V i d e o
i f a . name . equals (" a3 ") then

/ / compare p r o p e r t i e s
r e s u l t := (get (p , a) . s i z e () == get (p , h) . s i z e ()) and

get (p , a) . equals (get (p , h))
e ls e
/ / f a k e C r i s i s D e t e c t e d
i f a . name . equals (" a4 ") then
/ / compare p r o p e r t i e s
r e s u l t := (get (p , a) . s i z e () == get (p , h) . s i z e ()) and

get (p , a) . equals (get (p , h))
end
. . .

end

Listing 4.5 – Implementation of the isEqual() method for ADORE models

4.1.3.5 A Generic Sum Algorithm

We propose a generic algorithm for deeply merging two model elements. This
algorithm is shown in Listing 4.6. The sum() operation takes two elements as parameters
and creates a new element as a result. The sum() function calls the match() function to
compute matches (see Section 4.1.3.4).

Generalizing Model Merging 127

func t ion sum(o b j e c t 1 : Object , o b j e c t 2 : Object) : Object i s
pre type (o b j e c t 1) = type (o b j e c t 2)
/ / c r e a t e s a new o b j e c t
r e s u l t = new o b j e c t from type (o b j e c t 1)
i f match (ob jec t1 , o b j e c t 2) then
/ / merging p r o p e r t i e s
foreach property p1 from o b j e c t 1

foreach property p2 from o b j e c t 2
i f match (p1 , p2) then
/ / i f r e l a t i o n s , c r e a t e s a new p r o p e r t y and c a l l s
/ / sum () r e c u r s i v e l y
i f (p1 i s a r e l a t i o n and p2 i s a r e l a t i o n) then

new_value = new property p
s e t (new_value , sum(get (p1 , o b j e c t 1) , get (p2 , o b j e c t 2)))

e ls e
/ / merges v a l u e s and r e s o l v e c o n f l i c t s i f any
new_value = r e s o l v e C o n f l i c t s (value (p1) , value2 (p2))

end
/ / add p r o p e r t y t o r e s u l t

add (r e s u l t , new_value)
end foreach

end foreach
end

end

Listing 4.6 – Algorithm of the sum() operation

4.1.4 Properties of the Merge Implementation

The concrete implementation of the merge operator satisfies the following proper-
ties

– Completeness : The implementation of the merge operator allows creating a sin-
gle model element from two model elements identified as equivalent and allows
copy non matching model elements in the merged model with no changes. No
operation of filtering or destroying model elements appears in the implementa-
tion, thus satisfying the completeness property of the merge operator.

– Non-Redundancy : The merge operation is implemented in a single pass : both
input models are traversed once and model elements that match are merged
in single model elements. By construction, the merged model cannot contain
redundant data. This statement holds with the following assumptions :
– Mappings are one-to-one only : a single model element from one model is

related to a single model element from another model.
– Multiple mappings for a single model element are forbidden. Multiple map-

pings may end up in situations where the sum() algorithm produces different
model elements that should be merged with one another.

– Minimality : The implementation of the merge operator manipulates model
elements that comes from the two inputs models. Any new model element or
value originates from the two input models.

– Singularity : The sum() function calls the match() function for any pair of model
elements. The match function calls the getMapping() function to retrieve a map-

128 Validation and Application

ping between two elements. We assume correct that the getMapping() function is
correct. Since we call the getMapping() function for every pair of model elements,
we ensure that every mapping from the mapping specification is processed.
Thus, the correctness property holds.

– Idempotency : Assuming that mappings relate each construct of a model to
itself, the match() operation should detect matches for every construct. Since we
guarantee the completeness, non redundancy, and minimality properties for the
merging process, the sum() method produces a merged model that is an exact
copy of the input model.

4.1.4.1 Discussion

This approach provides significant results using the unification framework for
model composition activities. Starting with four existing model composition approaches
that were designed independently but still supporting the purpose of merging homo-
geneous models, we propose a unique algorithm that realizes the intention, a unique
matching mechanism that supports the equivalence interpretation of correspondences
and a unique representation of correspondences among MOF–like (meta–) models. As
we expect, variability of the four existing approaches is encapsulated in the definition
of language–specific mappings that may be provided by experts of the domain or
automatically computed. This work properly illustrates how powerful our theoretical
framework may be in action and how subsequent model composition tools may be
adapted and reused in contexts that differ from the original work.

Objectively, we must keep in mind however that unification is possible to some
extent. The global purpose of the model composition approaches should be close
enough from one another and some minor characteristics may influence the final
computation of the merge operation. For instance, the pre– and post– alignment of
models provided by Kompose participates in the model merging activity. Since this
capability is only available in Kompose and the boundaries of its action is a-priori
infinite, we voluntarily discard model pre– and post– processing from the current
proposition.

To conclude, we should consider the unified approach as the minimal set of mech-
anisms to support model merging for various languages, providing a highly reusable
independent module. Further extensions will only provide operations that are context–
or problem– specific.

4.2 Interoperability and Heterogeneous Composition

The goal of this experiment is to automate the integration of existing legacy [CBJ10].
Model integration is another form of model composition. The intent is to produce
adapters between objects to allow data–sharing or transformation between them. The
generation of these adapters requires the definition of mappings and the definition
of a specific processing to properly to generate meaningful adapters. The definition
of mappings is thus provided by domain experts between models of the legacy API.

Interoperability and Heterogeneous Composition 129

The model composition framework for model integration based on these mappings is
executed at runtime to convert concepts from one API in concepts of the other API.

4.2.1 Context

This experiment was conducted in the context of the MOPCOM–I project which
focus on using MDE for software specification and software design on reliable model–
based processes. The MOPCOM–I project is funded by the competitiveness cluster of
Brittany called “Images et Réseaux”. The project regroups four industrial partners and
four academic partners as follows :

– Thales Systèmes Aéroportés (Brest, France) from the Business Group Airbone
Systems (BGAS)

– Technicolor Rennes Research Center(Rennes, France)
– France Telecom Research Center (Lannion, France)
– Sodifrance (Rennes, France)
– Research Team CAMA (Components for Adaptable and Mobile Architecture)

from ENST Bretagne (Brest, France)
– DTN (Développement de Nouvelles Technologies) research laboratory from EN-

STA (Brest, France)
– Group ALCC (Architectures Logicielles et Composants de Confiance) from the

UBS-Valoria research laboratory (Vannes, France)
The goal of the MOPCOM–I project is two-fold : (i)propose formal model–driven

processes for software specification and design to support engineering activities ;
(ii)use model–based techniques to strengthen the safety of software developments
by supporting early design and post design verification techniques.

In the context of the MOPCOM–I project, the Triskell Team is in charge of two
work packages : (i)WP 2.1 Models verification and (ii)WP 2.4 Reliable models and
meta–models fusion. Our contribution in those work packages is validated against the
Technicolor case study on video and broadcasting equipments management.

4.2.2 Technicolor Distribution and Broadcasting Devices Management

Technicolor is a provider of technologies, systems and services for managing video
content from the content production activities to content broadcasting activities, in-
cluding networking. For instance, the Thomson Extensible Management System for
Digital TV deals with the intercommunication of heterogeneous legacy hardware de-
vices (i.e., Network Adapters, MPEG Multiplexers, Encoders, Decoders). Hardware
devices are designed by different manufacturers and from different technologies that
use specific API for control and management (see Figure 4.16). Tackling the heterogene-
ity, Thomson provides a distributed architecture with a set of remote user interfaces
and administration servers that communicate with one another through an interme-
diate API called XMS. Administration servers main responsibility is thus to convert
XMS orders into device–specific commands.

130 Validation and Application

Figure 4.16 – Global View of the Management Architecture with some examples of
managed physical devices

4.2.3 Legacy Systems and Translation Issues

Toward the purpose of integrating with various existing platforms and systems,
Technicolor develops API for an extensive set of protocols such as MTEP, SNSM, XMS,
TCP/IP, or RS232/485. The evolution of legacy equipments induces the development
and the maintenance of several versions of APIs, both for the specific protocols and for
the intermediate language XMS. This situation leads to the combinatorial explosion of
the number of adapters to be developed.

In the context of the MOPCOM-I project, Technicolor proposed the case study of
building adapters between the XMS API (the intermediate protocol for communication)
and the MTEP API (a device–specific protocol for communication and control). The
purpose of the case study is to identify existing flaws in the process of building adapters
and propose techniques to increase its automation.

The state of practice in converting MTEP to XMS and conversely is based on infor-
mal textual descriptions which lead to ambiguous interpretations and subsequently
more effort in designing, implementing and validating converters. Lack of formal
representation and semantics also hinders the automatic synthesis of the translation
process from the mapping specifications.

4.2.4 A Semi–Automated Solution for Integrating Legacy Systems

Our contribution on the Technicolor case study is to propose a model–driven ap-
proach to alleviate the implementation of multiple adapters. From a first step of auto-
matic reverse–engineering relevant concepts from APIs to high–level models, we use
the ModMap framework to (i)support the definition of mappings between concepts in
these API high–level models ; and to (ii)automatically generate adapters for converting
APIs using AOP techniques to avoid changes in legacy API.

Interoperability and Heterogeneous Composition 131

The global process of the approach is composed of four steps as illustrated in
Figure 4.17 :

1. Model Abstraction From Legacy Code

We analyze the legacy code of the API to find all relevant classes. We automati-
cally build an application model using reverse–engineering techniques.

2. High Level Mappings Description

Designers of converters propose mappings at the model level between classes
from the MTEP API and classes from the XMS API.

3. Translation Strategies

Designers select translation strategies to specify how data should be transfered
between model elements.

4. Generation of Bidirectional Adapters

Models and mappings provide enough data to automatically generate bidirec-
tional adapters as aspects. We propose a non invasive process to extend legacy
code with adaptation capabilities.

MTEP API XMS API

1 1

B_RedundancyResource

B_NetworkElement

MTEP_Device

MTEP_Group B_RedundancyGroup

2

Group

Device

Translation Strategies

2

3

Wrapper MTEP Wrapper XMS

4

Mappings
MTEP Model XMS Model

ASPECTS

Figure 4.17 – The integration process is composed of four steps. We automatically ex-
tract models from the APIs. Users define mappings and select strategies for translating
model elements. We automatically generate adapters for each API.

4.2.5 Application of the Unified Framework

Among the four steps of the global process, the description of high level mappings
and the selection of translation strategies are the concrete application of the theoretical
framework.

Section 4.2.5.2 presents the model–alignment language that we define for model
integration, Section 4.2.5.3 illustrates how we use the model–alignment language to

132 Validation and Application

design converters between two specific API and Section 4.2.5.4 details how we auto-
matically generate bidirectional and non invasive adapters from the alignment of the
two models of API.

4.2.5.1 Overview of the Model Composition Framework Customization

The definition of a new model composition framework for model integration fol-
lows the process of customization illustrated on Figure 3.6 in Section 3.2.1. Figure 4.18
presents the definition of a model composition framework for model integration.

Our definition of model integration in the context of heterogeneous legacy API
is the ability to transfer objects that conform to a given structure into objects that
conform to another structure and vice–versa. Transfer is achieved through a set of
bidirectional transformations supported a mechanism of adaptation. From the spec-
ification of mappings between the two structures, we produce a set of adapters that
are used at runtime to convert an object from an API into an object from another API.
We propose a model–alignment language for model integration (see Section 4.2.5.2) to
capture the specification of mappings proposed by experts of the domain. A specific
interpreter traverses the specification of mappings (see Section 4.2.5.3) to produce a
model of adaptation that defines the expected set of converters between two API given
the set of translation strategies selected by experts.

Composition Framework for Model Integration

Mapping
Fragment

Operational
Semantics

Directives
Fragment

Operational
Semantics

+

SimStrategy
align()

+

align() for
adaptation

is qual() for
adaptation

Model-Alignment Lang uage

EquStrategy Ad-Hoc Strategy

Production of
Bidirectional Adapters

templates for
adaptation

Figure 4.18 – Customization of the generic process to build a model composition
framework for model integration.

4.2.5.2 A Specific Model–Alignment Language for Model Integration

For the purpose of model integration, we build a specific model–alignment lan-
guage. The model–alignment language includes the concepts of Mappings and Direc-
tives with no extension of Filter proposed for this experiment. Strategies selected are

Interoperability and Heterogeneous Composition 133

the EquStrategy, the SimStrategy and the AdHocStrategy to respectively define equiva-
lence between model elements, to define similarity between model elements and align
model elements given a set of atomic operations, and to propose an escape mechanism
to express complex computations to properly adapt model elements.

1
directive0..*

ElementDirective
(from Directives)

execute()

mapping

implements

strategies mappings

Strategy

Mapper

Overlapping

EquStrategy SimStrategy AdHocStrategy

Parameter

rename
1

algorithm

ModelingUnit
(from Kermeta)

Mapping
(from Mappings)

1 pass : Pass
name : String1

1
properties

Figure 4.19 – Subset of the ModMap language for Model Integration

4.2.5.3 Design Converters for the Integration of MTEP and XMS

This section illustrates the definition of mappings and the selection of translation
strategies between the MTEP API and the XMS API.

Step 1 from the global process extracts a model–based representation of the source
code of an API using JaMoPP 4. The extracted model contains model elements from
the domain that we want to align with the model elements of another API. Figure 4.20
shows the model extracted from the MTEP API and Figure 4.21 shows the model
extracted from the XMS API.

In the global process of the approach, step 2 and step 3 are the definition of map-
pings between sets of models elements and the selection of specific interpretations.
We use the specific model–alignment language for model integration proposed in Sec-
tion 4.2.5.2 and shown in Figure 4.19. With this subset of the ModMap language, we
propose mappings for the integration of a subset of the MTEP API and a subset of the
XMS API as illustrated in Figure 4.22. This mapping specifically illustrates mappings
between the elements of topology and the elements of redundancy management of the
two protocols.

4. http ://www.jamopp.org/index.php/JaMoPP

134 Validation and Application

Mtep_ElementMtep_Topoiogy

1

Mtep_Device_Output
iogicai_output_id : String

groups
boards

nominal_devices

redundant_devices

device_inputs
device_outputs

entities

1

Mtep_Entity
version : short
reiease : short
entityId : short

1

1

1

Mtep_DMT
DMT_name : String
MCC_device_id : int
MCC_device_comment : String

1

1

1

Mtep_Group
group_id : short
group_type : short1

1

Mtep_Board
board_type : short
siot_number : short1

1

Mtep_Device
device_id : short
type : short
extendedType : short
comment : String

1

1

1

1

Mtep_Device_Input
iogicai_input_id : String
connected_device_id : short
iogicai_output_id : short

1

1

inputs

outputs

Figure 4.20 – Model of the MTEP API.

B_ElementData

B_XmsBusinessData

B_RedundancyData

1

B_ManagedElement
extendedType : int
type : short
comment : String
name : String

1

1

1

B_Input B_OutputB_Bidirectional

B_Switcher

1

B_RedundancyGroup
name : String
mediationUnitName : String
type : short
comment : String

1

1

1

B_FloatingRedundancyGroup

B_FixedRedundancyGroup

B_RedundancyPhysicalResource
1 comment : String

B_RedundancyLogicalResource
1 redundancyPriority : int

B_RedundancyReplaceableResource
1 redundancyStatus : byte

switchMode : byte1

B_RedundancyResource
1 name : String

elementData

redundancyData

groupselements

subElements

physicalResources

carriedLogicalResource

nominals

redundants

1

B_ElementResource
isPhysical : boolean
name : String1

1

B_ElementPort
portId : int
signalType : int
specificity : byte

1

1

1

B_Board
slot : int
boardType : int1 B_MediationUnit

nominalName : String1 1

B_NetworkElement
deviceId : int
productRelease : String1

B_XMU

B_SMU

B_LMU

B_VMU

manager

B_ATMCoupler

B_TsProbe
1 tsProbeInputName : String1

B_Vibe
model : byte

B_ViBEFunction

B_ViBEFelpFunction

supportingNE

innerResources

source

EnumRedundancySwitchMode<

<

s_C_MANUAL: 0
s_C_AUTO: 1
s_C_SWITCH_BACK: 2
s_C_SWITCH_BACK_ON_NOMINAL_FAULTLESS: 3
s_C_NONE: 4

<<enumeration>>

EnumRedundancyStatus<

<

s_C_STANDBY: 1
s_C_ACTIVE: 2
s_C_UNSYNCHRONIZED: 5

<<enumeration>>

EnumXmuExtType<

<

s_C_MCC2G_MINI: 2
s_C_MCC2G_STANDARD: 3
s_C_MCC2G_SUPER: 4
s_C_XMU_MEDIATION: 5
s_C_LAZULITE_106: 6
s_C_AXON: 7
s_C_VIEWNET: 8
s_C_LAZULITE_107: 9

<<enumeration>>

EnumElementType<

<

s_C_SINGLE_SERVICE_ENCODER: 1
s_C_TRANSPORT_STREAM_MULTIPLEXOR: 2
s_C_MEDIATION_UNIT: 4
s_C_MANAGEMENT_SYSTEM = 5

<<enumeration>>

Figure 4.21 – Model of the XMS API.

Interoperability and Heterogeneous Composition 135

Mapping

AdHocStrategy

SimStrategy

Class

Parameter box

Mtep_Topology
entities

B_ElementData
elementsTopo_Business

entities = elements
SimParameter

B_RedundancyData
groups

1

Mtep_DMT
DMT_name : String
MCC_device_id : int
MCC_device_comment : String
groups

1

1

B_XMU

DMT_XMU

MCC_device_comment = name
type = EET.s_C_MEDIATION_UNIT
extendedType = EXET.s_C_XMU_MEDIATION
groups = groups

SimParameter

1

Mtep_Group
group_id : short
group_type : short
nominal_devices
redundant_devices

1

Group

["group_",group_id] += name
group_type = type
nominal_devices = nominals
redundant_devices = redundants

SimParameter

B_FixedRedundancyGroup
nominals
redundants

B_Switcher

1

B_NetworkElement
deviceId : int
productRelease : String
manager

1

Device

device_id = deviceId
type = type
extended_type = extendedType
comment = name
boards + innerResources
device_inputs + innerResources
device_outputs + innerResources

SimParameter

type = ENUM_TYPE_SWITCHER

B_RedundancyReplaceableResource
1 redundancyStatus : byte

switchMode : byte
nominals
redundants

1

1

Mtep_Device
device_id : short
type : short
extendedType : short
comment : String
device_inputs
device_outputs
boards

1

1

1

1

Mtep_Board
board_type : short
slot_number : short
inputs
outputs

1

1

B_Board
slot : int
boardType : int1

Boards

board_type = boardType
slot_number = slot
["board_T",boardType,"_S",slot] += name
isPhysical = true
inputs + supportedResources
outputs + supportedResources

SimParameter

1

Mtep_Device_Input
logical_input_id : String
connected_device_id : short
logical_output_id : short

1

1

B_Inputinputs

logical_input_id = portId
["IN_",portId] += name

SimParameter

1

Mtep_Device_Output
logical_output_id : String B_OutputOutputs

logical_input_id = portId
["OUT_",portId] += name

SimParameter

Mtep_Topology
entities

1

Mtep_Group
group_id : short
group_type : short
nominal_devices
redundant_devices

1

if nominal_device then
 redundancyStatus = ERS.s_C_ACTIVE
 switch_mode = ERSM.s_C_MANUAL
else
 redundancyStatus = ERS.s_C_STANDBY
 switch_mode = ERSM.s_C_NONE
end

if nominal_device then
 redundancyStatus = ERS.s_C_ACTIVE
 switch_mode = ERSM.s_C_MANUAL
else
 redundancyStatus = ERS.s_C_STANDBY
 switch_mode = ERSM.s_C_NONE
end

Algorithm box

Figure 4.22 – Model of mappings for the integration of the MTEP and XMS API.

136 Validation and Application

4.2.5.4 Generation of Bidirectional Non Invasive Adapters

The last step of the process is the automatic generation of adapters. Similarly to
model–to–code transformations, the code generator uses two input parameters : the
mapping model and the Kermeta code that supports the translation strategies. We
adapted code generation methods to use aspect–weaving techniques, i.e., we generate
adapters as aspect to avoid the invasion of the original code of API. The production of
non invasive adapters is composed of three stages.

1. Mappings are automatically converted to a model of adaptation. Each mapping
is converted into two Kermeta aspects : one for the source model elements of the
first API and one for the target model elements of the second API. These aspects
contain Kermeta operations that encapsulate the adaptation between the two
API. Strategies and additional alignment directives are translated into effective
Kermeta transformation code.

2. One key concern of this approach is to be non–invasive regarding legacy API
code. The model of adaptation contains definitions of both API classes and
adapters. The generation of code from the model of adaptation would build a
set of new classes that would overwrite legacy classes. We prevent this situation
by removing class definitions that are equivalent between the model of the API
and the model of adaptation. We apply a filtering method that only keeps new
class members or additional utility classes. The filtering method checks names
of classes and their signature to identify equivalent class definitions which are
subsequently removed from the adaptation model.

3. Using the Kermeta Compiler, we process the model of adaptation to produce
Scala aspect code. Classes that do not exist in the legacy code are created whereas
classes that already exist are augmented with inter–type declarations. Inter–
type declarations encapsulate the translation behavior between existing classes.
Adapters between the two API are composed with the original legacy code at
load–time using the Scala compiler. Load–time weaving is deferred until the
point that a class loader loads a class file and defines the class to the Java Virtual
Machine (JVM). As a consequence, additional capabilities we brought through
the adapters production does not pollute existing code embedded in legacy API.

4.2.6 Evaluation

The evaluation of the approach is based on comparing efforts between classic de-
velopment techniques (followed by domain experts) and between our semi-automated
process. As a benchmark, we compare our solution to the Thomson Extensible Manage-
ment System evolution on the specific example of MTEP to XMS protocol translations.

4.2.6.1 Impact of Automation on Adapters Production

The case study is based on a subset of Thomson MTEP to XMS conversion. This
subset contains nine MTEP-related concepts and thirty XMS-related concepts defined

Interoperability and Heterogeneous Composition 137

in their respective APIs.
From the correspondence specifications provided by experts, Thomson developers

implemented twenty mappings to carry out the bijective translations between MTEP
and XMS (see Figure 4.23 for details about mappings ratio). The application of our
process on the same case study involves only seven bidirectional mappings, whose
distribution is represented in Figure 4.24.

We can draw two conclusions from these figures :

1. We reduce the number of mapping descriptions to handle the case study.

2. Mapping descriptions complexity is globally reduced since 74% of mapping
descriptions are One–to–one mappings and Many–to–One and Many–to–many
mappings are scarcely used (13% for both kinds).

The first point comes from the use of a more adequate DSL to express mappings
at the right level of abstraction. At the code level, developers implement complex
mappings as one-to-one mappings because the implementation language do not of-
fer higher-order mapping operators. The mapping language we propose offers more
expressiveness to declare mappings so some of them, identified by experts, are not ex-
pressed anymore as single mappings but are encapsulated into higher-order mappings.
The second point is related to the expressiveness of the DSL versus the implementa-
tion practices in Java. We observed that when people use low-level correspondence
languages, they are more tempted to violate implementation practices of the Visitor
Pattern to access incidental information (information from multiple concepts that do
not take part in the original described mappings). Our approach limits this problem
since the mapping DSL offers higher abstractions to retrieve data in a proper way : users
are able to describe relations between mappings, so concepts involved in a mapping
are confined to the original inputs and outputs of the wrappers.

Figure 4.25 is to be compared with Thomson implementation of adapters (100%
of strategies would be Ad Hoc strategies). This figure shows that most of strategies
(86%) used to handle the case study are semi-automatic. Of course, it is not possible to
automatically define all mapping implementations : that is why we provide a way to
use a more powerful language to implement the remaining mappings.

These results are a first indication, on a relatively small example, that the use of a
high-level language for mapping descriptions helps reduce the number of adapters to
be implemented. It also gives additional evidence that the use of generative techniques
cuts down global complexity and effort to produce adapters.

4.2.6.2 Comparison of Effort

The second stage of our evaluation deals with effort estimation in terms of the
number of Lines of Code (LOC). Thomson global adapter size for the case study is
about 5350 LOCs to realize the bi-directional translation between MTEP and XMS
protocols. Our approach is implemented using only 510 Kermeta LOCs. The effort
has been evaluated to 136 hours of person work for the manual implementation of a
new adapter, compared to 150 hours to handle the same example with our approach.

138 Validation and Application

15%

15%

20%50%

One-to-one Mappings

Many-to-one Mappings
One-to-many Mappings

Many-to-many Mappings

Figure 4.23 – Distribution of the twenty mappings identified by the experts of the
domain and implemented with Java.

74%

13%

13%

One-to-one Mappings

Many-to-one Mappings
One-to-many Mappings

Many-to-many Mappings

Figure 4.24 – Distribution of the eight mappings identified by experts of the domain
and implemented with the ModMap mapping language.

Equivalence

AdHoc

Similarity

86%

14%

Figure 4.25 – Ratio of strategy types used to map the MTEP and the XMS API.

Considering up to 50 extra hours to take into account the introduction of a new
mapping language and a new language for strategies definition for users, the effort
needed to use our process is of 150 up to 200 hours (see Table 4.1) for the very first
version of an adapter, which is slightly more than the manual approach.

However, the mean of the effort to produce a new version of an adapter for both
approaches are 57 hours for a manual implementation versus 9 hours with the semi-
automatic process.

These results have several consequences : First, we are able to say that our ap-
proach needs less manual implementation from users. Second, thanks to generative
techniques, we were able to reduce the number of bugs in code and thus time spent
in debugging has been drastically reduced. These improvements allow users to save
some maintenance effort on the code in further evolutions. Figure 4.26 illustrates the

Interoperability and Heterogeneous Composition 139

Production of Manual Generative

a new adapter Approach Approach

v1 v2 (avg) v1 v2 (avg)
Code length (LOC) 5350 - 570 -
Total TDEV (Hours) 136 +57 150-200 +9

Table 4.1 – Effort for manual and generative approaches for the production of a new
adapter. The production of a second version (v2) increases the effort by an average
of 57 hours for the manual approach and by an average of 9 hours for the generative
approach.

700

600

500

400

300

200

100

0
101 2 3 4 5 6 7 8 9

Ef
fo

rt
(H

ou
rs

)

Versions

Manual
Approach
Generative
Approach

Figure 4.26 – Cumulative effort for the production of new versions of adapters using
manual or generative approach : effort (time of development in month) is on the y-axis
and versions on the x-axis.

effort reduction in the production of ten successive versions of this adapter. A manual
approach induces a constant effort to develop and test new adapters versions. Our
semi-automatic approach is expensive on the very first version (learning overhead
and complex mapping definitions) but costs decrease with time as learning overhead
decreases in further evolution. Even though benefits, in terms of efforts, observed on
Figure 4.26 are relatively small, we have to keep in mind that this process is to be
repeated, for instance, on the five API definitions presented on Figure 4.16 with, let us
say 10 versions each. Since we want these APIs to be integrated with each other, it ends
in the production of (5 ∗ 10)4 adapters. A potential extrapolation of our results would
give an effort reduction of up to 87% by using our approach.

4.2.7 Discussion

This case study presents a process to semi–automatically produce adapters for
existing legacy API. Mixing reverse–engineering, model–to–model transformation,

140 Validation and Application

code generation and aspect weaving techniques together, we alleviate tedious and
error–prone activities. This work on the Technicolor case study provides significant
benefits in this specific context and also demonstrates that the definition of model
composition goes beyond model merging and similar activities. Model integration is
an activity that fits in the definition of model composition that we propose in the
unified theoretical framework : the definition of mappings and the selection of specific
strategies allow (i)describing mappings declaratively between legacy models, and
allows (ii)automating the process of building converters.

In hindsight, we discover that specifics of a given model transformation is hard to
capture within the boundaries of a proposed set of semantics (i.e., strategies). Thus,
we provide an escape mechanism to the meta–language using Kermeta to allow the
definition of arbitrary complex mappings.

With this application of the unified theoretical framework in mind, we should fur-
ther explore a set of software life–cycle activities such as those that we discussed on
Section 1.3.1.7. Further work on the relationship between software life–cycle activi-
ties and specific model–alignment languages should help proposing and developing
generic model composition frameworks dedicated to specific model–related activities.

4.3 Bridging the Gap between Structure and Behavior in the

context of SOA

We illustrate model synchronization in the following case study. Synchronization is
another kind of model composition activity that requires to capture changes between
an arbitrary number of models and propagates changes if necessary to maintain global
consistency among the various software artifacts. This experiment is summarized
in [CMBF+11].

4.3.1 Service–Oriented Architecture Background

Developing a large–scale software system as a Service–oriented Architecture (SOA)
involves the creation and integration of a variety of services. Services must be coordi-
nated to adequately participate in the required behavior of the system. Model–driven
development of such systems is highly likely to produce a variety of models capturing
the many diverse design concerns that arise during development. The management
of models in such multi–modeling environments is known to be challenging. In par-
ticular, activities related to checking and maintaining consistency among the multiple
views of a system can be complex.

There is a need for techniques that developers can use to detect conflicts and di-
vergences across multi-models of systems developed using SOA. Two models diverge
when one model consists of elements that do not correspond to elements in the other
model.

Our work specifically addresses the problem of synchronizing SOA business pro-
cess models with domain models. The approach described in this paper provides SOA

Bridging the Gap between Structure and Behavior in the context of SOA 141

designers with integrated generative and model composition techniques that can be
used to automatically propagate divergence resolution strategies across these models.
The core of the iterative synchronization approach consists of four major steps : (i)the
generation of a structural model based on the data extracted from the business process
model, (ii)the merge of the generated model with the initial domain model, (iii)the
identification of formal divergences between these two models and finally (iv)the au-
tomated propagation of resolution strategies provided by experts.

4.3.2 Design a Car Crash Crisis Management System

4.3.2.1 The Crisis Management System

We illustrate the approach using a case study problem described in a Transactions
on Aspect-Oriented Software Development (TAOSD) special issue on AOM [MBFF10].
The purpose of the special issue was to compare the application of existing AOM
approaches on a common system development problem, namely the development of
a Crisis Management System (CMS).

In the case study, a CMS is a system that facilitates the coordination of activities and
of information flow between all stakeholders and parties that need to work together
to handle a crisis.

4.3.2.2 The Car Crash Crisis Management

Among the multitude of crises handled by CMS, including terrorist attacks, epi-
demics, or accidents, we focus on car accidents. Car accidents are handled by the Car
Crash CMS (CCCMS) which “includes all the functionalities of general crisis manage-
ment systems, and some additional features specific to car crashes such as facilitating
the rescuing of victims at the crisis scene and the use of tow trucks to remove damaged
vehicles” [KGM10, §2.4, p.5]. The original system includes ten use cases described
using textual scenarios. For ease of understanding, we illustrate our approach on the
Capture Witness Report (CWR) use case only.

The CWR case study (use case #2 in the original document) captures the set of
actions that a Coordinator takes to create a new Crisis based on the information reported
by the Witness of a car accident. The main success scenario for this use case (extracted
from the requirements document) is described in Figure 4.27. The subject of the use case
is the CCCMS system represented by System. Two actors are involved in the sequence
of activities needed to report a car crash : (i)PhoneCompany is the role played by an
external partner that provides phone–related information, and (ii)Coordinator is the
role played by the person who interacts with the CCCMS system through a graphical
user interface to enter information.

We focus on the contribution of two experts in the definition of a solution to this
CWR use case : a domain model expert (ed) designs the structural view of the system
and a business process expert (eb) designs the behavioral view (i.e., the set of activities
and the flow of control between these activities) of the system.

142 Validation and Application

Coordinator requests Witness to provide his identification.

1. Coordinator provides witness information to System as reported by the witness.

2. Coordinator informs System of location and type of crisis as reported by the
witness.
In parallel to steps 2 − 4 :

2a.1 System contacts PhoneCompany to verify witness information.

2a.2 PhoneCompany sends address/phone information to System.

2a.3 System validates information received from the PhoneCompany.

3. System provides Coordinator with a crisis-focused checklist.

4. Coordinator provides crisis information to System as reported by the witness.

5. System assigns an initial emergency level to the crisis and sets the crisis status
to active.

Use case ends in success.

Figure 4.27 – Textual Scenario of Use Case #2 : “Capture Witness Report”
4.3.2.3 Domain Model Design

Figure 4.28(a) is a class diagram that captures problem concepts identified from the
requirements and that are relevant to the CWR use case. This domain class diagram
(CDD) is designed by ed who formalizes his deep understanding of the various concepts
manipulated in the CCCMS system. The main concepts with respect to the CWR use
case are the following :

Crisis : is the concept shared by any CMS system. A Crisis occurs at a given location
and at a given time, it has an emergency level, a status and possibly some
additional information. A Crisismay be reported by a Witness and may include
Missions.

Witness : is a person who reports a Crisis.

Mission : is an action that should be taken when a Crisis is reported.

CheckList : is a list of things that should be checked with a Witness.

CMSEmployee : is a human resource who is qualified and capable of performing Miss-
ions in the context of a Crisis.

4.3.2.4 Business Model Design

The business process model (BPM) associated with the CWR use case is represented
in Figure 4.28(b). According to SOA principles, eb designs this business process model
with regard to his/her own understanding of the system. For better undestanding, we
provide correspondences (black clouds) between the BPM activities and the steps in
the textual scenario (see Fig. 4.27). The business process starts by receiving a crisis
coordinator (coord) and a crisis identifier (id).

Bridging the Gap between Structure and Behavior in the context of SOA 143

It contains two branches, executed in parallel. The left branch of the business
process deals with the internal logic of the CWR scenario. The context of the current
crisis is built by retrieving information from the witness of the crisis : the process
requests preliminary information about the crisis and then refines the information it
receives through subsequent exchanges between the system and the witness. In parallel
(the right branch), the system calls an external partner (PhoneCompany) to check the
information given by the witness of a crisis and prevent false or erroneous reports.
When the two branches join, that is, when the system considers the crisis report to
be genuine, the system assigns an emergency level to the crisis and updates the crisis
status to active.

4.3.3 Challenges and Synchronization Process

The complete CCCMS implementation contains thirteen business processes, de-
scribing hundreds of activities and thousands of relations between activities. Manual
synchronization of the various views of such a large system can be challenging, time–
consuming and error–prone. This section highlights situations in which checking and
maintaining consistency across models can benefit from the use of automatic synchro-
nization mechanisms.

Since CDD and BPM are defined by independent experts (ed , eb), one can encounter
situations where types from the behavioral model (BPM) and types from the structural
model (CDD) diverge. We illustrate these divergences with examples from Section 4.3.2
below :

S1–Name Mismatch : The business expert misspells a concept that already exists in
CDD. In Figure 4.28(b), ed uses a CheckList type whereas eb uses a Crisis-
CheckList type. This situation illustrates naming conflicts that often occur across
different views of the same system. For instance, the PROMPT [NM00] approach
for aligning ontologies addresses this kind of conflicts among others.

S2–Concept Enforcing : The business expert uses data collected from an external part-
ner, which are unknown from the domain point of view. In Figure 4.28(b), eb uses
information collected from the external agency PhoneCompany that is unkown
to ed and thus not modeled in the CDD. This situation identifies the need to
introduce externally defined artefacts (i.e., provided by partner services) to the
CDD.

S3–Concept Usages : The business expert uses his/her own data structure, i.e., uses
concepts defined in CDD in an unforeseen way. In Figure 4.28(b), eb uses a Prelim-
inaryInformation concept in Activity 2. Since the original scenario indicates
that the Coordinator should manipulate the location and type of the Crisis,
we consider that eb aggregated several artifacts already defined in CDD (namely
the location of the crisis and its type) in a single object for practical reasons. This
situation illustrates how specific usage of data in a BPM can improve the CDD.

Clearly, the synchronization of both CDD and BPM is not a trivial problem. We
identify two challenges related to these situations : (i)the automatic identification of

144 Validation and Application

CCCMS

emergencyLevel: String
affectedArea: String
startTime: String
endTime: String
status: String
detailedInfo: String

Crisis

emergencyLevel: String
location: String
startTime: String
endTime: String
status: String
detailedInfo: String

Mission

Worker

CMSEmployee

identification: String
Witness

CrisisType

CheckList

0..*

0..*
0..*

0..*

leader

involved

missions

crisis

crisisobservedBy
type

witness
mission

phone: String

(a) Domain model (CDD), extract.

1.

2.

3.

4.

5.

2a.1

2a.2

2a.3

Var. Type Var. Type

(coord,id):= receive()

wi := UI::promptWitnessInfo(coord)

CMS::setWitness(id,wi) pi := PhoneCie::getInfo(wi.id)

i := UI.promptPrelimInfo(coord)

ccl := CMS::buildCheckList(i) exact := CMS::validate(wi,pi)

exactci := UI::promptCheckList(coord,id,ccl)

CMS::assignEmergencyLevel(id,ci)

MsgBus::send("status","active",id)

reply()

exact

id
coord CMSEmployee

String
Witness

ccl

wi
boolean

ci
pi

CrisisInformation
PhoneInformation

PreliminaryInformation

CrisisCheckList

i

(b) Business process model (BPM), graphical representation

We use here the graphical representation defined by ADORE [MBFF10] to represent business processes. Boxes

represent activities (e.g., message reception, service invocation), and arrows represent causality relations (i.e., the

associated partial order). A wait relation (a→ b) means that b will wait for the end of a to start its own execution.

A guard relation (a
v
→ b) strengthens the wait semantics, and conditions the start of b to the value of v. Relations

are combined using a conjunctive semantics (∧).

Figure 4.28 – Initial model artifacts, proposed by experts.

such divergences (C1) and (ii)the capture of resolution strategies and their automated
propagation across models in the synchronization process (C2). Figure 4.29 illustrates
our approach that tackles these two challenges.

Bridging the Gap between Structure and Behavior in the context of SOA 145

The first step of the process extracts data from the set of available BPM to derive
a class diagram (CDI) which contains all the concepts manipulated by this set of
processes (1). Then, we use a divergence detection algorithm to identify occurrences of the
situations (Si) that we discussed previously (2). The detection of divergences leads to a
phase of negotiation between experts from the domain and experts from the business
process. Experts should consent on identifying strategies to resolve divergences (3) and
to ultimately perform an accurate synchronization of CDD and BPM. The last step
of the process (4) propagates the resolution strategies using a dedicated algorithm
(strategies propagation), which automatically applies changes in both CDD and BPM.

Class
Diagram
(domain)

Business
Processes

Class
Diagram
(derived)

Divergence
Detection

Negotiation

Strategies
Propagation

automated

human-driven
algorithm

Structural

Model

1

3

Business
Process
Designer

Domain
Designer

4

Figure 4.29 – SOA Models Synchronization : Process Overview

4.3.4 Identifying Model Divergences

This section presents the first two steps of the model synchronization process and
the formalization of the divergence detection mechanism.

4.3.4.1 Naive Synchronization with Merge

The first step of the process extracts data from the BPM to derive a class–diagram
(CDI). The generation procedure visits all available business processes and extracts the
types of all the declared variables.

Merging CDI with CDD using model composition techniques such as Kompose
[FFR+07], produces a naive alignment of both models (see Figure 4.30). Naive align-
ment relies on an element matching process based on names. Elements with equivalent
names are unified into a single element. For instance, theCMSEmployee element has been
found in both CDD and CDI and therefore the merged model contains a single unified
CMSEmployee element. Though simple, the naive alignment cannot align concepts that
have different names. The default behavior of Kompose when such name–mismatches
occur is to include the elements that do not match in the merged model. For instance,
PreliminaryInformation is a concept from CDI with no candidate match in CDD.

146 Validation and Application

CCCMS

emergencyLevel: String
affectedArea: String
startTime: String
endTime: String
status: String
detailedInfo: String

Crisis

emergencyLevel: String
location: String
startTime: String
endTime: String
status: String
detailedInfo: String

Mission

Worker

CMSEmployee

identification: String

id: String

Witness

CrisisType

CheckList

0..*

0..*
0..*

0..*

leader

involved

missions

crisis

crisisobservedBy
type

witness
mission

CrisisCheckListPreliminaryInformation CrisisInformation

PhoneCompany

PhoneInformation

phone: String

Figure 4.30 – Merged model : CDD (white) ⊕ CDI (gray)

We modified the default behavior of Kompose to record every operation used to
produce the merged model. This record is analyzed to (i)validate every element that is
automatically merged (e.g., CMSEmployee) and to (ii)detect divergences between CDD
and CDI.

4.3.4.2 Divergence Detection Mechanism

The analysis of the recorded operations leads to the detection of two kinds of
divergences :

Point-of-view divergences occur when a model element from CDI has no equivalent
counterpart in CDD (e.g., PhoneInformation).

Structural divergences occur when a model element from CDI has an equivalent
counterpart in CDD but the properties of the model element do not match with
the properties of the corresponding model element in CDD (e.g., a “public” model
element in CDI is “private” in CDD).

The divergence detection mechanism uses a matching operator and a set of signa-
tures to compare a model element with another one. Let match be the predicate that
checks if a model element of CDI is equivalent to a model element of CDD. With this
match predicate, we formalize the kind of divergences as follows :

– Point-of-view Divergence refers to a model element in CDI that has no equivalent
model element in CDD : b ∈ CDIs.t.∄ di ∈ CDD, match(b, di).

– Structural Divergence refers to a model element in CDI that has equivalent model
element in CDD but whose properties do not match.

We formalize structural divergences according to the definitions provided by Barais
et al. [BKB+08]. We defined two rules, used to reify the Class signature and the Property
signature.

Bridging the Gap between Structure and Behavior in the context of SOA 147

Class Signature. The signature of a Class encompasses its identi f ier, its modi f ier,
possible superclasses and its usage. In the OO paradigm, the category and the visibility
of classes provide additional information on how we may use these classes in a given
OO program. A class is internal when it participates in calling internal services either
as a value or as the type of a parameter of a service. For all other usages, we consider
the class as mixed.

Classsig = (Identi f ier,Modi f ier,Superclass,Usage)

Modi f iers ∈ {Category,Visibility}, Category ∈ {abstract, concrete, f inal}

Visibility ∈ {private, protected, public}, Usage ∈ {internal,mixed}

CDI reflects the usage of the class definitions at runtime and thus, classes are necessarily
concrete, public with no Superclasses. In other words, we detect a divergence (c1) when
a class in CDI has an equivalent class in CDD that is not public such that :

(c1) match(CB,CD) ∧ VisibilityCD
, public (4.2)

Usage refers to the class usage in the business processes. This definition has an impact
on the process of deriving CDI : (i)classes that do not participate in calling an internal
service are not captured by the data structure extraction process since we cannot modify
the definition of a class provided by an external partner for compatibility reasons ;
(ii)classes that are used both within internal and external services are mixed. They can
only be enriched with additional information that cope with the initial definition of
the class.

Regarding Usage, we detect a divergence (c2) when the usage of a class in CDD is
internal whereas an equivalent class is mixed in CDI such that :

(c2) match(CB,CD) ∧UsageCD
= internal ∧UsageCB

= mixed (4.3)

Property Signature. The signature of a property encompasses its Identi f ier, its scope
of use (Static), its Type that is either a Class or a Datatype and its Access.

Propertysig = (Identi f ier,Static,Type,Access)

Static ∈ {static,nonstatic}, Type ∈ Class ∪Datatype

Access ∈ {read,write, rw,no}

The first divergence (p1) that we may detect is if the two properties that we matched
in CDI and in CDD have different types such that :

match(PB,PD) ∧ (p1) TypePD , TypePB (4.4)

A property is static if it is common to all instances of this property and it is nonstatic
otherwise. Properties that are used in BPM are necessarily nonstatic and thus we may
detect the following divergence (p2) :

match(PB,PD) ∧ (p2) StaticPD = static (4.5)

148 Validation and Application

Among these usual OO characteristics, we propose an additional access characteristic
which determines how a property is accessed in BPM : read means that the property
is only read by a service ; write means that the property is only written by a service ;
rw means that the property is read and written by one or more services ; no is used
in other cases. For instance, the property id of a Witness in Figure 4.28(b) is a read
property since the property is read in activity 2a.1 and never written in any other
activity. From this definition, we may detect two divergences : (p3) a property in CDD
is never accessed (no) or (p3′) a property in CDD is not rw and an equivalent property
in CDI is accessed differently such that :

(p3) AccessPD = no ∨ (p3′) (AccessPD , rw ∧ AccessPD , AccessPB) (4.6)

The formalization of the structural divergences allows propagating changes au-
tomatically in the CDD regarding the structure and data of the BPM. Resolution of
point–of–view divergences requires additional resolution strategies proposed by ex-
perts to solve the divergence situation presented in Section 4.3.3.

4.3.5 Application of the Unified Framework

4.3.5.1 Overview of the Model Composition Framework Customization

The definition of a new model composition framework for model synchroniza-
tion follows the process of customization illustrated on Figure 3.6 in Section 3.2.1.
Figure 4.31 illustrates the definition of a model composition framework for model
merging.

Synchronization is another kind of model composition activity that requires to
capture changes between an arbitrary number of models and propagates changes if
necessary to maintain global consistency among the various software artifacts. Model
synchronization is composed of two processes that synchronize structural divergences
and point–of–view divergences from a set of resolution strategies. Details are provided
in Section 4.3.6.

We propose a model–alignment language for model synchronization (see Sec-
tion 4.3.5.2) to allow experts to propose resolution strategies between model elements.
Automatic propagation of resolution strategies (see Section 4.3.6) allows the synchro-
nization of both the domain model and the business model.

4.3.5.2 A Specific Model–Alignment Language for Model Synchronization

For the purpose of this synchronization operation, we build a specific model–
alignment language and include the following interpretations :

– ReplaceStrategy to tackle structural divergences. Automatic detection of struc-
tural divergences would provide input data to the joinpoint() function.

– SimStrategy to deal with Name–mismatch situations by renaming selected con-
cepts.

Bridging the Gap between Structure and Behavior in the context of SOA 149

Composition Framework for Model Synchronization

Mapping
Fragment

Operational
Semantics

Directives
Fragment

Operational
Semantics

+

SimStrategy
align()

+

align() for
ADORE models

align() for
class diagrams

Model-Alignment Language

DeleteStrategyAddStrategy AggrStrategy ReplaceStrategy

Structural Divergences
Synchronization

POV Divergences
Synchronization

joinpoint()

automatic joinpoints
detection

Figure 4.31 – Customization of the generic process to build a model composition
framework for model synchronization.

– AddStrategy, DeleteStrategy, AggrStrategy and AugmentStrategy to handle con-
cept enforcing and concept usage situations, i.e., to replace existing structural
information with what experts find more adequate.

Figure 4.32 shows the specific model–alignment language that we use in this ex-
periment.

4.3.5.3 Proposing and Automating Resolution Strategies

In the global process of the approach, the negotiation step allow experts to propose
strategies to resolve divergences between the CDD and the BPM. This negotiation step
produces a definition of mappings between model elements from BPM and model
elements from CDD and the selection of specific interpretations for each mapping. We
use the specific model–alignment language for model synchronization proposed in
Section 4.3.5.2 and shown in Figure 4.32. With this subset of the ModMap language,
we propose mappings for the synchronization of business process models with models
of the domain as illustrated in Figure 4.33.

150 Validation and Application

directive0..*
ElementDirective
(from Directives)

execute()

mapping

implements

strategies mappings

Strategy

Mapper

Overlapping

Parameter

Mapping
(from Mapp��gs)

1 pass 	
���
name 	 String1

1

rename

ReplaceStrategy

CrossCutting

S�Strategy

AddStrategy DeleteStrategy

AggrStrategy

direction

container

relation 1 1
1

AugmentStrategy

1
base

Figure 4.32 – Subset of the ModMap language for Model Synchronization

CCCMS

0..*
0..*

0..*
0..*

leader

involved missions

crisis

crisisobservedBy

mission witness

type

(S1)

(S2)

(S3)

crisisInfo

CheckList

CrisisType1

Witness
identification : String
phone : String1

1

Crisis
emergencyLevel : String
affectedArea : String
startTime : String
endTime : String
status : String
detailedInfo : String

1

1

1

1

1

1

Mission
emergencyLevel : String
location : String
startTime : String
endTime : String
status : String
detailedInfo : String

1

1

1

1

1

Worker

CMSEmployee

CrisisCheckList

CrisisInformation

PreliminaryInformation

PhoneCompany

PhoneInformation

1

Witness
id : String

CheckList
SimParameter

Witness

identification
SimParameter

PhoneInfo

Witness
AggrParameter

phone

PrelimInfo

Crisis
AggrParameter

prelimInfoPreliminaryInformation
AugParameter

CrisisInfo

Crisis
AggrParameter

crisisInfo

Mapping SimStrategy

Class Parameter box
CrisisInformation AugmentStrategy

DeleteStrategy
AggrStrategy

CheckList

CrisisInformation
AugParameter

AddStrategy

Figure 4.33 – Model of mappings for the synchronization of the BPM and the CDD.

Bridging the Gap between Structure and Behavior in the context of SOA 151

4.3.6 Propagation of the Resolution Strategies

The negotiation phase is important for experts to come to an agreement about how
to deal with divergences in views. We capture their decisions in ModMap to allow
automatic propagation of resolution strategies across models.

The purpose–specific processing reads each resolution strategy captured in the
ModMap model and automatically produces a set of operations on both CDD and
BPM to synchronize the views.

In the following sections, we illustrate the interpretation of each resolution strategy
with examples from the case study.

4.3.6.1 Name–Mismatch Strategy

The resolution of name–mismatches is straight-forward. The propagation process
identifies every occurrences of a given name and replaces it with the name provided
by the experts. The details of the propagation are discussed in the next subsections for
both CDD and BPM.

Domain model synchronization. We use the language of directives provided by the
Kompose tool to rename model elements in CDD. We adapted the Kompose tool to
execute directives on a single model. Listing 4.7 lists the directives that the Kompose
tool executes for modifying the name of CheckList in CDD.

D i r e c t i v e s {
domainmodel : : CheckList . name := " C r i s i s C h e c k L i s t "

}

Listing 4.7 – Kompose directives for renaming the CheckList class of the domain model
CDD

Business process synchronization. We use a formal representation of business pro-
cesses models, based on many-sorted first order logic [Mos10]. Thus, one can use
logical substitution (θ = {x← x′}, [Sti81]) to replace in a given model m all occurrences
of x by x′. We denote a mθ the model obtained after substitution. When several sub-
stitutions Θ = {θ1, . . . , θn} need to be performed on the same model, we denote as
mΘ their parallel application on m. In the context of name mismatch strategies, the
engine will generate the set of substitutions necessary to perform all the expected align-
ments : Θ = {w.identi f ication← w.id}. Denoting as {bp1, . . . , bpn} the available business
processes in the system, the enhanced SOA is therefore defined as {bp1Θ, . . . , bpnΘ}.

4.3.6.2 Concept Enforcing and Concept Usage Strategies

The resolution of concept enforcing and concept usages situations may rely on a
large number of operations for propagating changes. The details of the propagation
are discussed in the next subsections for both CDD and BPM.

152 Validation and Application

Domain model synchronization Synchronization of CDD for concept enforcing and
concept usages relies on a set of Kompose directives to modify CDD. We adopt two
interpretations that are driven by the arity of the mapping relationship :

– When a mapping relationship relates only two model elements, the model ele-
ment from CDD is removed, the model element from CDI is added to CDD and a
UML relation is created from the container of the initial model element from CDD
to the new model element in CDD. For instance, experts decided to discard the
phone property of the class Witness and use PhoneInformation instead. Prop-
erty phone is removed from the class Witness and we create a new containment
relation between Witness and PhoneInformation. This relation is named against
the parameter of the replacement strategy.

– When a mapping relationship relates more than two model elements, the syn-
chronization process is almost the same except that the model element from CDI
is considered as the container of the model elements from CDD. Thus, we move
the model elements from CDD into the new model element in CDD. For instance,
experts agreed on using PreliminaryInformation instead of the two properties
type and affectedArea from the class Crisis. PreliminaryInformation is thus
enriched with the two properties type and affectedArea and a new containment
relation is created between Crisis and PreliminaryInformation.

Listing 4.8 lists the directives that are applied on CDD for replacing the phone
property of the class Witnesswith PhoneInformation.

❉✐ r ❡ ❝ t ✐ ✈ ❡ s ④
✴✯❈r❡❛t❡s ❛ ♥❡✇ P❤♦♥❡■♥❢♦r♠❛t✐♦♥ ❝ ❧ ❛ s s

❛♥❞ r❡♠♦✈❡s ❡ ① ✐ s t ✐ ♥ ❣ ♣❤♦♥❡ ❛ t t r ✐ ❜ ✉ t ❡
✐♥ ❲✐t♥❡ss ✯✴

❝ r ❡ ❛ t ❡ ❈❧❛ss ❛s ✩♣✐
✩♣✐ ✳ ♥❛♠❡ ❂ ✧P❤♦♥❡■♥❢♦r♠❛t✐♦♥ ✧
❞❡s t r♦② ❞♦♠❛✐♥♠♦❞❡❧ ✿ ✿ ❲✐t♥❡ss ✿ ✿ ♣❤♦♥❡
✴✴❈r❡❛t❡s t❤❡ ♣❤♦♥❡ r ❡ ❧ ❛ t ✐ ♦ ♥
❝ r ❡ ❛ t ❡ ❆s s♦❝ ✐ ❛ t ✐ ♦♥ ❛s ✩♣❤♦♥❡
✩♣❤♦♥❡ ✳ ♥❛♠❡ ❂ ✧♣❤♦♥❡✧
❝ r ❡ ❛ t ❡ Pr♦♣❡rt② ❛s ✩♣❤♦♥❡❴sr❝
✩♣❤♦♥❡❴sr❝ ✳ ❛❣❣r❡❣❛t ✐♦♥ ❂
❞♦♠❛✐♥♠♦❞❡❧ ✿ ✿ ❆❣❣r❡❣❛t✐♦♥❑✐♥❞ ✿ ✿
★❝♦♠♣♦s✐t❡

✩♣❤♦♥❡❴sr❝ ✳ ✉♣♣❡r ❂ ✶
✩♣❤♦♥❡❴sr❝ ✳ t②♣❡ ❂ ❞♦♠❛✐♥♠♦❞❡❧ ✿ ✿ ❲✐t♥❡ss

❝ r ❡ ❛ t ❡ Pr♦♣❡rt② ❛s ✩♣❤♦♥❡❴t❣t
✩♣❤♦♥❡❴t❣t ✳ ✉♣♣❡r ❂ ✶
✩♣❤♦♥❡❴t❣t ✳ t②♣❡ ❂ ✩♣✐

✩♣❤♦♥❡ ✳♠❡♠❜❡r❊♥❞ ✰ ✩♣❤♦♥❡❴sr❝
✩♣❤♦♥❡ ✳♠❡♠❜❡r❊♥❞ ✰ ✩♣❤♦♥❡❴t❣t
✴✯❆❞❞s t❤❡ P❤♦♥❡■♥❢♦r♠❛t✐♦♥ ❝ ❧ ❛ s s ❛♥❞

t❤❡ ♣❤♦♥❡ r ❡ ❧ ❛ t ✐ ♦ ♥ ✯✴
❞♦♠❛✐♥♠♦❞❡❧ ✿ ✿ ♣❛❝❦❛❣❡❞❊❧❡♠❡♥t ✰ ✩♣✐
❞♦♠❛✐♥♠♦❞❡❧ ✿ ✿ ♣❛❝❦❛❣❡❞❊❧❡♠❡♥t ✰ ✩♣❤♦♥❡ ⑥

Listing 4.8 – Kompose directives for integrating PhoneInformation in the domain
model CDD

Bridging the Gap between Structure and Behavior in the context of SOA 153

Business process synchronization The propagation of strategies for the resolution
of concept enforcing and concept usage situations relies on logical substitution to
propagate the new accesses (e.g., {pi← wi.phone} to replace the variable pi by an access
to the attribute phone contained in the variable wi). However, such replacements impose
that we retrieve the “container” variable (e.g., wi) that is necessary to access a specific
property (e.g., phone). Synchronization of PhoneInformation and phone illustrates the
situation where the “container” variable already exists. Thus we use this variable to
access to the phone information of a Witness and substitutions are propagated. When
the “container” variable is not already available, we ask the experts how to initialize
this “container” in BPM. After synchronization of PreliminaryInformationwith type
and affectedArea, PreliminaryInformation is contained by a Crisis object. Since
no Crisis object is available in the initial process, experts propose the invocation of the
getCrisis operation exposed by the CMS service. This operation stores a Crisis object
in a variable c. This invocation is automatically inserted into the business process by
the ADORE engine (after the receive acitivity) and default substitutions are executed.

4.3.7 Discussion

This experiment proposes an approach for synchronizing business processes with
domain models developed by different teams working on the same system, in the con-
text of SOA. This approach leverages and integrates model composition and generative
techniques to automate significant aspects of the synchronization process. Model syn-
chronization is a second activity that fits in the definition of model composition that
we propose in the unified theoretical framework : the definition of mappings and the
selection of specific strategies help to (i)focus human intervention on the detection
of divergences that require human judgment and experience, and to (ii)automate the
process of propagating of the proposed resolution strategies to reduce the global effort
of model synchronization.

This second application of the unified theoretical framework on model composi-
tion beyond model merging and model integration consolidates the intuitive claim
that model composition encompasses many operations on models and that the unified
theoretical framework is able to support these diverse operations. Further work on the
relationship between software life–cycle activities and specific model–alignment lan-
guages should help proposing and developing generic model composition frameworks
dedicated to specific activities and operations on models.

154 Validation and Application

CCCMS

emergencyLevel: String

status: String

Crisis

emergencyLevel: String
location: String
startTime: String
endTime: String
status: String
detailedInfo: String

Mission

Worker

CMSEmployee

identification: String
Witness

CrisisType

0..*

0..*

0..*

leader

involved missions
crisis

observedBy

mission witness

affectedArea: String
PreliminaryInformation

0..* crisis

type

PhoneCompany

PhoneInformation

CrisisInformation

prelimInfo

phone

detailedInfo: String
startTime: String
endTime: String

crisisInfo

CrisisCheckList

(a) Aligned Domain model

c.prelimInfo

c.prelimInfo

1.

2.

3.

4.

5.

2a.1

2a.2

2a.3

Var. Type Var. Type
CrisisCheckList

c.crisisInfo

id

(coord,id):= receive()

c := CMS::getCrisis(id)

wi := UI::promptWitnessInfo(coord)

CMS::SetWitness(id,wi) wi.identification:= PhoneCie::getInfo()

:= UI.promptPrelimInfo(coord)

ccl := CMS::buildCheckList()exact := CMS::validate(wi,

wi.phone

wi.phone)

:= UI::promptCheckList(coord,id,ccl)

CMS::assignEmergencyLevel(id)

MsgBus::send("status","active",id)

reply()

exact

coord CMSEmployee

exact

Crisis
String
Witness

ccl
c

wi boolean

(b) Aligned Business process model

Figure 4.34 – Aligned models resulting from the propagation of the resolution strate-
gies.

Conclusion

The growing complexity of designing and building software has transformed the
state of practice in both industry and academy. Software development life–cycle in a
multi–modeling environment with multiple actors is a prevailing trend that involves
designing, analyzing and building multiple model–based artifacts. Academics interest
for these topics of composing models in the large definition of model management
that encompasses a large range of operations on models is still both worthwhile and
challenging.

Adoption of the MDE practices in industry requires specific organizational, man-
agerial and social factors to be successful endeavors [HRW11]. Still, progressive adop-
tion brings new situations and new requirements that research is eager for finding
adequate solutions.

The multitude of model composition frameworks available is a proof of success
in the design of model composition frameworks that tackle specific situations and
context. While the development of model composition framework is valuable and
successful in a given number of situations, the development of techniques and tools
of industrial quality is hindered by the incapacity of these frameworks to be easily
adapted and reused over different situations and for different purposes.

I.1 A Decomposition of the Definition of Model Composition

Our contribution to this field is to propose a novel definition of model composition
both to enhance the global understanding of this operation and to broaden the scope
of application of model composition approaches in the MDE community.

Previous work about model composition that we discuss in Chapter 1, proposes
various operators that handle a large range of operations on model, claims that map-
ping (i.e., correspondences, relationships between model elements) is the real surplus
value in the definition of meaningful model composition approaches, or combine both
mappings and operations in single modeling artifacts. From the observation of these
attempts to classify existing model composition approaches, we observe that mappings
and interpretations of these mappings have a strong influence in the characterization
of model composition approaches.

The main contribution of this thesis is thus to propose a novel definition of model

155

156 Conclusion

composition as a pair of a mapping and a set of interpretations. A mapping is a set of
explicit relationships between sets of models or sets of model elements. Interpretation
provides semantics to a mapping and participates to a specific model composition
purpose.

I.1.1 Literature Review and Observations

The intuitive decomposition of model composition as pairs of mappings and in-
terpretations is supported by categories for mappings and categories for interpreta-
tions. The category of mappings includes operator–based, pattern–based, rule–based,
constraint–based, model–based and delta–based representations of a mapping. The
category of interpretation includes fifteen kinds of interpretations divided in three
categories which cover overlapping models, cross–cutting models and interacting
models. We evaluate the relevance and precision of the two categories by conduct-
ing a systematic literature review. The systematic literature review leads us to explore
proceedings of the major software engineering and MDE international and national
conferences or journals to capture the state of practice about model composition in
software engineering.

Research objectives, review protocol and results are presented in Chapter 1 follow-
ing guidelines proposed by Biolchini et al. [BMA+05].

Proposing categories for both mappings and interpretations, validated with an
empirical study by conducting a systematic literature review, we provide experts with
an interpretive lens for model composition techniques analysis. This interpretive lens is
a new apparatus in the early stages of software engineering and system development to
compare and to select or to adapt an adequate existing model composition frameworks
to cope with requirements, or to start designing and building a new model composition
framework if necessary.

I.1.2 Formal Definition of Mappings and Interpretations

The intuitive proposition of the novel definition of model composition as a pair
of mapping and interpretations is based on analogies with structures in mathematical
logic and linguistics.

Structures in mathematical logic helps to bridge the gap between our vision and a
grounded theory that already separates these concepts and that defines explicitly the
relationships between these concepts. The exact nature of the relationships between a
mapping and interpretations of this mapping is however dependent from a number
of parameters that are barely captured in the current state of practice. We use the
parallel with linguistics to explore how the purpose of a model composition and how
the human contribution to this purpose influences both the nature of the relationships
between a mapping and interpretations and the global intention of a given model
composition framework.

In linguistics, a sign is composed of a signifier and a signified that respectively are
the form which a sign takes and the concept it represents. Considering a mapping as

A Decomposition of the Definition of Model Composition 157

the form of the model composition and interpretations as the concept it represents,
we use the concepts of denotation and connotation to explore further the relationship
between a mapping and its interpretations. Denotation is the generic meaning of a
pairing of a mapping and an interpretation of this mapping : model elements from one
model relate to model elements from another model. Connotation refines the meaning
of relate to take into account the context and the purpose of the mapping for a specific
model composition goal.

Supporting this intuitive definition of mapping and interpretation, we propose
a unified theory for model composition in Chapter 2. The theory proposes a formal
definition of the various kinds of mappings and the various kinds of interpretations
and leads to the definition of a framework for unifying model composition activities
(see Chapter 3).

I.1.3 A Framework for Unifying Model Composition Activities

Chapter 3 presents the MODel MAPping (ModMap) tool that supports the defini-
tion of mappings and their interpretations for producing effective model composition
languages and concrete model composition operators. The concrete implementation
of the ModMap tool proposes (i)a language for the design of mappings between mod-
els and meta–models ; (ii)the operational semantics for each kind of interpretations ;
(iii)a concrete syntax to ease the specification of mappings and the selection of spe-
cific interpretations and (iv)the global process for building new model composition
operators. As an illustration, we present the process of building a specific model com-
position framework for model merging and the process of building a specific model
composition framework for model integration.

I.1.4 Validation and Experiments

We evaluate the adequateness and relevance of the modeling framework for build-
ing model composition frameworks through three experiments : (i)we use the theoret-
ical framework to unify four existing model merging techniques and propose a unique
kernel for model composition ; (ii)we demonstrate the applicability of the framework
on the integration of legacy API for the configuration and management of heteroge-
neous video and broadcasting equipments in collaboration with industrial partners
from Technicolor 1 ; (iii)we demonstrate the applicability of the framework on the syn-
chronization of heterogeneous models in the context of modeling service–oriented
architectures (SOA).

In the next section, we propose perspectives for both improving the current state
of the art about model composition and for further research.

1. http ://www.technicolor.com/en/hi/technology/research-and-innovation-centers/rennes

158 Conclusion

II.2 Perspectives

We provide a modeling framework that supports the definition of mappings and
the definition of interpretations for building specific model composition operations.
Providing semantics for mappings and interpretations, the modeling framework is
a tool–kit that experts can customize to fit specific needs and to answer to specific
situations.

We strongly believe that the main contribution of this thesis is an important step
in fulfilling our vision of shifting from model composition as an operator that targets
a specific purpose in a specific context to model composition as an operation that
allows controlled customization and variability of the model composition process. The
contribution of this thesis opens new tracks and fields or research that need additional
and in–depth exploration.

II.2.1 Extension of the Systematic Literature Review

In the context of this thesis, we focus effort on the characterization of the key
concepts of correspondence and interpretation in model composition. The systematic
literature review results presented in Chapter 1 reflect the variability of correspon-
dences and interpretations that existing model composition approaches put into action
to achieve a specific purpose in a specific context. Along with the evolution of corre-
spondence and interpretation categories, we envisage three further developments to
this piece of work.

II.2.1.1 Influence of Software Development Activities

We are confident that software development activities influence the definition and
the specification of both correspondences and interpretations. We consider worth-
while to extract further information both about the relation between correspondences
and software activities, and about the relation between interpretations and software
activities. Such information would help (i)characterizing which pair of a correspon-
dence and an interpretation is relevant for a specific software activity and eventually
(ii)providing a list of model composition approaches that supports such software ac-
tivities. We presented preliminary data to achieve this goal but additional analysis is
actually required.

II.2.1.2 Existing Model Composition Approaches Adaptation

In the current presentation of the systematic literature reviews, several model com-
position approaches support several software development activities. In the process
of building new model composition operations, we believe that these techniques that
already tackle various model composition challenges are good candidates for reuse
and adaptation.

Perspectives 159

II.2.1.3 Classification Completeness

In the light of the presentation of the systematic literature review results in tables,
we observe that some pairs of correspondence/interpretation and some pairs of corre-
spondence/software activity have no candidate article identified. Towards providing a
complete characterization of model compsition, additional research is needed to eval-
uate why such pairs have not been proposed yet and what scientific challenge may lie
beneath.

II.2.2 Model Composition as a first–class Entity in MDE

Model composition in multi–modeling environments for software engineering is
a key activity. Bézivin et al. believe that model composition techniques should be
given a first–class status, similarly to what has be done with model transformation
techniques [BBDF+06]. In the extension of UML with model composition semantics,
Siobhán Clarke proposes that a “... subject–oriented design model supports a new kind
of design construct, called a composition relationship that supports the specification
of how design models should be composed” [Cla02, §3, p.6]. We envisage also to
manipulate model composition as a first–class entity and propose two perpectives in
this directions.

II.2.2.1 About a “composable” relationship in the Meta–Object Facility (MOF)

Observing that model composition is a relevant technique for supporting a wide
range of activities on models, we may consider model composition as a key concept
in MDE. The next step in the definition of model composition is to provide an abstract
representation that we promote a level of abstraction up so that designers can define
model composition as part of their model design. Model composition thus become a
first-class entity at the meta-meta-level of MOF.

In other words, a new kind of relationship should be added to the Property Type of
MOF (see Figure II.1) with the following semantics that mimics the semantics of MOF
properties [OMG10a, §12.5, p.45] : Property : :isComposition==true

– An object may be composed with multiple objects
– Cyclic composition is valid : order of composition is determined by the concrete

implementation of the property instance.
– Any composition property should be provided with specific semantics using an

action language such as Kermeta.
The semantics of the new composition relationship would include the mapping

and interpretation DSML semantics that are presented in Chapter 3. If available, such
a relationship would ease the definition of model composition operation between
objects and would allow to take into account such operation in systems and languages
design.

160 Conclusion

Type

1

Classifier
isAbstract : Boolean = false

Generalization

Feature TypedElement
1

MultiplicityElement
isOrdered : Boolean = false
isUnique : Boolean = false
upper : UnlimitedNatural[0..1] = 1
lower : Integer[0..1] = 1

1

1

1

StructuralFeature

Association

Class

1

Operation
isOrdered : Boolean = false
isUnique : Boolean = false
upper : UnlimitedNatural[0..1] = 1
lower : Integer[0..1] = 1

1

1

1

1

Parameter
direction : ParameterDirectionKind = in

TypedElement

associationmemberEnd

ownerEnd

owningAssociation

0..1
0..1

0..*

2..*

property

/opposite

0..1

0..1

operation
ownedParameter0..1 0..*

class

ownedAttribute0..*

0..1

0..*

class

ownedOperation

0..1

class

/superclass

0..*0..*

specific1

1

0..*0..*
generalization

generalization

raisedException
0..*

0..*
operation

general

1

Property
isDerived : Boolean = false
aggregation : AggregationKind = none
isComposite : Boolean
isId : Boolean = false
isComposition : Boolean = false

1

1

1

1

Figure II.1 – MOF core metamodel : EssentialMOF classes adapted from [OMG10a,
§12.2, p.40]

II.2.2.2 High-Order Composition

A direct consequence of promoting model composition in the meta-meta-level
of abstraction is that it allows manipulating model composition as any other model
element. This is a requirement for a higher–order application of the model composition
operator. Thus, our proposition should support composition of model compositions or
in other words : higher–order model composition (HOC). Similarly to Higher–Order
Transformations (HOT) [TJF+09], an HOC takes a model composition as an input and
produces a model composition as an output. For instance, an HOC may define the
model composition of two DSML DSML1 and DSML3 from the model composition
of the two DSML DSML1 with DSML2 and the model composition of the two DSML
DSML2 with DSML3. This opens new paths for research and application in synthesizing
model composition frameworks from existing techniques.

II.2.3 Application and Future of ModMap

II.2.3.1 Extending the scope of application of ModMap

Preliminary results in generalizing model merging allow us to redefine four ex-
isting techniques by proposing a unique match module and a unique merge module.
Further work is twofold : (i)propose additional experiments about various model com-

Perspectives 161

position techniques to assess scalability, relevance and limits in the application of the
theoretical framework for unifying model composition techniques ; (ii)build a repos-
itory of libraries that support various purposes to provide reusable and extensible
on-the-shelf model management components.

Similarly, we present in Chapter 3 two case studies that deal with model integration
and model synchronization for which the ModMap framework is adequate. We think
about using ModMap for the specification of additional software life–cycle activities
such as model derivation, model orchestration, model consistency checking or even
model reconfiguration.

II.2.3.2 Collaborations

In the light of the MOPCOM–I project and the successful application of ModMap
to the Technicolor case studies, we are exploring future collaborations with several
partners such as France Telecom and Thales Systèmes Aéroportés on different model
mapping issues. We are currently carrying out preliminary discussions with France
Telecom about the definition of mappings between WebServices and the functional-
ities of a given system to ease and automate the design of WebServices interfaces
with regard to the service that they provide. Thales Systèmes Aéroportés interest in
proposing mappings is threefold : (i)provide mappings model–to–model to help spec-
ifying transformations between specific DSML on “mission planning and debriefing”
case study ; (ii)provide mappings between semi–structured documents and a specific
DSML to provide serialization capabilities ; (iii)provide mappings between a specific
DSML and the representation of the environment to help improving the definition of
software interfaces.

Besides the direct application of ModMap for these specific case study, the ModMap
framework needs (i)maturation for being usable in a industrial context and needs
(ii)metrics to evaluate how it fits in particular contexts.

Glossary

AMW ATLAS Model Weaver. vi, 64, 66

AOM Aspect-Oriented Modeling. 9, 33, 40, 92, 141

AOP Aspect–Oriented Programming. 7, 130

API Application Programming Interface. 3, 111, 129–133, 136, 137, 139, 157

AST Abstract Syntax Tree. 45

DSL Domain-Specific Language. 12, 32, 44, 137

DSML Domain-Specific Modeling Language. xi–xiii, 8, 30, 34, 37, 75–81, 159–161

ECore EMFCore. 8, 90

EML Epsilon Merging Language. 49

GCFs Generic model composition frameworks. 2, 63, 65

GPL General-purpose Programmation Language. 17, 95

JVM Java Virtual Machine. 136

LOC Lines of Code. 137

MDE Model-Driven Engineering. 1, 5, 7, 8, 29, 72, 129, 155, 156, 159

ModMap MODel MAPping. 83

MOF Meta-Object Facility. xi, 8, 9, 128, 159

OCL Object-Constraint Language. 32

OMG Object Management Group. 7

OO Object–Oriented. 6, 64, 147, 148

ORM Object–Relational Mapping. vi, 64, 66

QoS Quality of Service. 37

QVT Query/View/Transformation. 45

SaaS Software as a Service. 29

161

162 Glossary

SE Software Engineering. 21

SOA Service–Oriented Architecture. 111, 153

SoC Separation of Concerns. 6, 43

SPL Software Product Line. 9, 29, 32–34, 40

TGG Triple Graph Grammar. 48

UML Unified Modeling Language. xi, 8, 33, 112, 113, 159

Bibliography

[ACL+09] M. Acher, P. Collet, P. Lahire et al. « Composing Feature Models ».
Dans : Software Language Engineering. Éd. par M. van den Brand, D.
Gaševic et J. Gray. T. 5969. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2009, p. 62–81. doi : 10.1007/978-3-642-12107-
4_6. url : http://dx.doi.org/10.1007/978-3-642-12107-4_6.

[ACL+10] M. Acher, P. Collet, P. Lahire et al. « Managing Variability in Workflow
with Feature Model Composition Operators ». Dans : Software Compo-
sition. Éd. par B. Baudry et E. Wohlstadter. T. 6144. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2010, p. 17–33. url :
http://dx.doi.org/10.1007/978-3-642-14046-4_2.

[AEC+07] A. Anwar, S. Ebersold, B. Coulette et al. « Vers une approche à base de
règles pour la composition de modèles. Application au profil VUML. »
French. Dans : L’Objet, Ingénierie Dirigée par les Modèles 13.4/2007 (déc.
2007), p. 73–103. url : ftp://ftp.irit.fr/IRIT/MACAO/Coulette-
etal-LObjet2007.pdf.

[AJT+09] S. Apel, F. Janda, S. Trujillo et al. « Model Superimposition in Software
Product Lines ». Dans : Theory and Practice of Model Transformations. Éd.
par R. Paige. T. 5563. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2009, p. 4–19. doi : 10.1007/978-3-642-02408-
5_2. url : http://dx.doi.org/10.1007/978-3-642-02408-5_2.

[ASM+10] M. Alférez, J. a. Santos, A. Moreira et al. « Multi-view Composition
Language for Software Product Line Requirements ». Dans : Software
Language Engineering. Éd. par M. van den Brand, D. Gaševic et J. Gray.
T. 5969. Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 2010, p. 103–122. url : http://dx.doi.org/10.1007/978-3-
642-12107-4_8.

[AT98] M. Aksit et B. Tekinerdogan. Solving the Modeling Problems of Object-
Oriented Languages By Composing Multiple Aspects Using Composition
Filters. AOP’98 Workshop Position Paper. 1998.url :http://wwwtrese.
cs.utwente.nl/Docs/Tresepapers/FilterAspects.html.

[Ass11] Association for Computing Machinery. ACM DL. online. Juin 2011.
url : http://portal.acm.org/.

163

http://dx.doi.org/10.1007/978-3-642-12107-4_6
http://dx.doi.org/10.1007/978-3-642-14046-4_2
ftp://ftp.irit.fr/IRIT/MACAO/Coulette-etal-LObjet2007.pdf
ftp://ftp.irit.fr/IRIT/MACAO/Coulette-etal-LObjet2007.pdf
http://dx.doi.org/10.1007/978-3-642-02408-5_2
http://dx.doi.org/10.1007/978-3-642-12107-4_8
http://dx.doi.org/10.1007/978-3-642-12107-4_8
http://wwwtrese.cs.utwente.nl/Docs/Tresepapers/FilterAspects.html
http://wwwtrese.cs.utwente.nl/Docs/Tresepapers/FilterAspects.html
http://portal.acm.org/

164 BIBLIOGRAPHY

[BA00] L. M. Bergmans et M. Aksit. « Composing Software from Multiple
Concerns : A Model and Composition Anomalies ». Dans : ICSE 2000
Workshop on Multi-Dimensional Separation of Concerns in Software Engi-
neering. 2000. url : http://doc.utwente.nl/18812/.

[BBB+] W. Bast, M. Belaunde, X. Blanc et al. MOF QVT final adopted specifica-
tion.

[BBDF+06] J. Bezivin, S. Bouzitouna, M. Del Fabro et al. « A Canonical Scheme for
Model Composition ». Dans : Model Driven Architecture - Foundations and
Applications. Éd. par A. Rensink et J. Warmer. T. 4066. Lecture Notes in
Computer Science. Springer Berlin /Heidelberg, 2006, p. 346–360. url :
http://dx.doi.org/10.1007/11787044_26.

[BBN+10] S. Bensalem, M. Bozga, T.-H. Nguyen et al. « Compositional verification
for component-based systems and application ». Dans : Software, IET 4.3
(juin 2010), p. 181 –193. issn : 1751-8806. doi : 10.1049/iet-sen.2009.
0011.

[BCE+06] G. Brunet, M. Chechik, S. Easterbrook et al. « A manifesto for model
merging ». Dans : Proceedings of the 2006 international workshop on Global
integrated model management. GaMMa ’06. New York, NY, USA : ACM,
2006, p. 5–12. doi : http://doi.acm.org/10.1145/1138304.1138307.
url : http://doi.acm.org/10.1145/1138304.1138307.

[BCR05] A. Boronat, J. Carsí et I. Ramos. « MOMENT : a formal MOdel manage-
MENT tool ». Dans : Summer School on Generative and Transformational
Techniques in Software Engineering (2005). url : http://moment.dsic.
upv.es/index.php?option=com_docman\&\#38;task=doc_download\

&\#38;gid=36.

[BCR+07] A. Boronat, J. A. Carsí, I. Ramos et al. « Formal Model Merging Applied
to Class Diagram Integration ». Dans : Electron. Notes Theor. Comput. Sci.
166 (jan. 2007), p. 5–26. doi : 10.1016/j.entcs.2006.06.013. url :
http://portal.acm.org/citation.cfm?id=1223344.1223436.

[BE09] L. Bendix et P. Emanuelsson. « Requirements for Practical Model Merge
- An Industrial Perspective ». Dans : Model Driven Engineering Languages
and Systems. Éd. par A. Schürr et B. Selic. T. 5795. Lecture Notes in
Computer Science. Springer Berlin /Heidelberg, 2009, p. 167–180. doi :
10.1007/978-3-642-04425-0_13. url : http://dx.doi.org/10.
1007/978-3-642-04425-0_13.

[BHP00] P. A. Bernstein, A. Y. Halevy et R. A. Pottinger. « A vision for man-
agement of complex models ». Dans : SIGMOD Record (ACM Special
Interest Group on Management of Data) 29.4 (2000), p. 55–63. issn : 0163-
5808. doi : http://doi.acm.org/10.1145/369275.369289. url : http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.3340.

http://doc.utwente.nl/18812/
http://dx.doi.org/10.1007/11787044_26
http://doi.acm.org/10.1145/1138304.1138307
http://moment.dsic.upv.es/index.php?option=com_docman\&\#38;task=doc_download\&\#38;gid=36
http://moment.dsic.upv.es/index.php?option=com_docman\&\#38;task=doc_download\&\#38;gid=36
http://moment.dsic.upv.es/index.php?option=com_docman\&\#38;task=doc_download\&\#38;gid=36
http://portal.acm.org/citation.cfm?id=1223344.1223436
http://dx.doi.org/10.1007/978-3-642-04425-0_13
http://dx.doi.org/10.1007/978-3-642-04425-0_13
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.3340
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.3340

BIBLIOGRAPHY 165

[BKB+08] O. Barais, J. Klein, B. Baudry et al. « Composing Multi-view Aspect
Models ». Dans : Composition-Based Software Systems, 2008. ICCBSS 2008.
Seventh International Conference on. 2008, p. 43 –52. doi : 10.1109/
ICCBSS.2008.12.

[BL73] D. E. Bell et L. J. LaPadula. « Secure Computer Systems : Mathematical
Foundations and Model ». Dans : The MITRE Corporation Bedford MA
Technical Report M74244 May 1.M74-244 (1973), p. 42.

[BLTN10] E. Brottier, Y. Le Traon et B. Nicolas. « Composing Models at
Two Modeling Levels to Capture Heterogeneous Concerns in Re-
quirements ». Dans : Software Composition. Éd. par B. Baudry et E.
Wohlstadter. T. 6144. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2010, p. 1–16. doi : 10.1007/978-3-642-14046-
4_1. url : http://dx.doi.org/10.1007/978-3-642-14046-4_1.

[BMA+05] J. Biolchini, P. G. Mian, Ana et al. Systematic Review in Software Engi-
neering. Rap. tech. Technical Report RT-ES 679/05, Systems Engineering
et Computer Science Department, COPPE/UFRJ, 2005.

[BS81] S. Burris et H. Sankappanavar. A Course In Universal Algebra. Springer-
Verlag, 1981, p. xvi, 276.

[BSM+07] K. Balasubramanian, D. C. Schmidt, Z. Molnar et al. « Component-
Based System Integration via (Meta)Model Composition ». Dans : En-
gineering of Computer-Based Systems, 2007. ECBS ’07. 14th Annual IEEE
International Conference and Workshops on the. 2007, p. 93 –102. doi :
10.1109/ECBS.2007.24.

[BTF05] I. Balaban, F. Tip et R. Fuhrer. « Refactoring support for class library
migration ». Dans : OOPSLA ’05 : Proceedings of the 20th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages,
and applications. San Diego, CA, USA : ACM, 2005, p. 265–279. isbn :
1-59593-031-0. doi : http://doi.acm.org/10.1145/1094811.1094832.

[BWH+08] N. Boucké, D. Weyns, R. Hilliard et al. « Characterizing Relations
between Architectural Views ». Dans : Software Architecture. Éd. par R.
Morrison, D. Balasubramaniam et K. Falkner. T. 5292. Lecture Notes
in Computer Science. Springer Berlin /Heidelberg, 2008, p. 66–81. url :
http://dx.doi.org/10.1007/978-3-540-88030-1_7.

[BWH10] N. Boucké, D. Weyns et T. Holvoet. « Composition of architectural
models : Empirical analysis and language support ». Dans : J. Syst.
Softw. 83 (11 2010), p. 2108–2127. issn : 0164-1212. doi : http://dx.doi.
org/10.1016/j.jss.2010.06.011. url : http://dx.doi.org/10.
1016/j.jss.2010.06.011.

http://dx.doi.org/10.1007/978-3-642-14046-4_1
http://dx.doi.org/10.1007/978-3-540-88030-1_7
http://dx.doi.org/10.1016/j.jss.2010.06.011
http://dx.doi.org/10.1016/j.jss.2010.06.011

166 BIBLIOGRAPHY

[Bar08] C. Bartelt. « Consistence preserving model merge in collaborative
development processes ». Dans : CVSM ’08 : Proceedings of the 2008
international workshop on Comparison and versioning of software models.
Leipzig, Germany : ACM, 2008, p. 13–18. isbn : 978-1-60558-045-6. doi :
10.1145/1370152.1370157. url : http://dx.doi.org/10.1145/
1370152.1370157.

[Bar64] R. Barthes. « Éléments de sémiologie ». French. Dans : Communications
4.1 (1964), p. 91–135. issn : 0588-8018. doi : 10.3406/comm.1964.1029.
url :http://www.persee.fr/web/revues/home/prescript/article/
comm_0588-8018_1964_num_4_1_1029.

[Bel04] A. Belapurkar. Use AOP to maintain legacy Java applications. Mar. 2004.
url : http://www.ibm.com/developerworks/java/library/j-
aopsc2.html.

[Ber03] P. A. Bernstein. « Applying Model Management to Classical Meta Data
Problems ». Dans : Proc. First Biennal Conference on Innovative Data Sys-
tems Research, 2003. CIDR’03. 2003.

[CBJ10] M. Clavreul, O. Barais et J.-M. Jézéquel. « Integrating Legacy Sys-
tems with MDE ». Dans : ICSE’10 : Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering and ICSE Workshops. T. 2.
Cape Town, South Africa 2010, p. 69–78. url : http://www.irisa.fr/
triskell/publis/2010/CLAVREUL10a.pdf.

[CCS11] CCSD-CNRS. HAL. online. Juin 2011. url : http://hal.archives-
ouvertes.fr/index.php.

[CDK+07] F. Curbera, M. Duftler, R. Khalaf et al. « Bite : Workflow Composition
for the Web ». Dans : Service-Oriented Computing - ICSOC 2007. Éd.
par B. Krämer, K.-J. Lin et P. Narasimhan. T. 4749. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2007, p. 94–106. url :
http://dx.doi.org/10.1007/978-3-540-74974-5_8.

[CDRP08] A. Cicchetti, D. Di Ruscio et A. Pierantonio. « Managing Model Con-
flicts in Distributed Development ». Dans : Model Driven Engineering
Languages and Systems. Éd. par K. Czarnecki, I. Ober, J.-M. Bruel et al.
T. 5301. Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 2008, p. 311–325. url : http://dx.doi.org/10.1007/978-3-
540-87875-9_23.

[CJC11] C. Clasen, F. Jouault et J. Cabot. « Virtual Composition of EMF Mod-
els ». Anglais. Dans : 7èmes Journées sur l’Ingénierie Dirigée par les Modèles
(IDM 2011). Lille, France 2011. url : http://hal.inria.fr/inria-
00606374/PDF/VirtualModels_IDM2011.pdf.

http://dx.doi.org/10.1145/1370152.1370157
http://dx.doi.org/10.1145/1370152.1370157
http://www.persee.fr/web/revues/home/prescript/article/comm_0588-8018_1964_num_4_1_1029
http://www.persee.fr/web/revues/home/prescript/article/comm_0588-8018_1964_num_4_1_1029
http://www.ibm.com/developerworks/java/library/j-aopsc2.html
http://www.ibm.com/developerworks/java/library/j-aopsc2.html
http://www.irisa.fr/triskell/publis/2010/CLAVREUL10a.pdf
http://www.irisa.fr/triskell/publis/2010/CLAVREUL10a.pdf
http://hal.archives-ouvertes.fr/index.php
http://hal.archives-ouvertes.fr/index.php
http://dx.doi.org/10.1007/978-3-540-74974-5_8
http://dx.doi.org/10.1007/978-3-540-87875-9_23
http://dx.doi.org/10.1007/978-3-540-87875-9_23
http://hal.inria.fr/inria-00606374/PDF/VirtualModels_IDM2011.pdf
http://hal.inria.fr/inria-00606374/PDF/VirtualModels_IDM2011.pdf

BIBLIOGRAPHY 167

[CMBF+11] M. Clavreul, S. Mosser, M. Blay-Fornarino et al. « Service–Oriented
Architecture Modeling : Bridging the Gap Between Structure and Be-
havior ». Dans : MODELS’11 : Proceedings of the 14th ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems. To
appear. 2011.

[CNM11] M. Chechik, S. Nejati et S. Mehrdad. « A Relationship-Based Approach
to Model integration ». Dans : Journal of Innovations in Systems and Soft-
ware Engineering (2011).

[CØV02] K. Czarnecki, K. Østerbye et M. Völter. « Generative Programming ».
Dans : Object-Oriented Technology ECOOP 2002 Workshop Reader. Éd.
par J. Hernandez et A. Moreira. T. 2548. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2002, p. 15–29. url : http://dx.
doi.org/10.1007/3-540-36208-8_2.

[CRE+08] A. Cicchetti, D. D. Ruscio, R. Eramo et al. « Automating Co-evolution
in Model-Driven Engineering ». Dans : Enterprise Distributed Object Com-
puting Conference, IEEE International 0 (2008), p. 222–231. issn : 1541-
7719. doi : http://doi.ieeecomputersociety.org/10.1109/EDOC.
2008.44.

[CRR+07] R. Chitchyan, A. Rashid, P. Rayson et al. « Semantics-based composi-
tion for aspect-oriented requirements engineering ». Dans : Proceedings
of the 6th international conference on Aspect-oriented software development.
AOSD ’07. Vancouver, British Columbia, Canada : ACM, 2007, p. 36–48.
isbn : 1-59593-615-7. doi : http://doi.acm.org/10.1145/1218563.
1218569. url : http://doi.acm.org/10.1145/1218563.1218569.

[CSN08] K. Chen, J. Sztipanovits et S. Neema. « Compositional Specification of
Behavioral Semantics ». Dans : Design, Automation, and Test in Europe. Éd.
par R. Lauwereins et J. Madsen. Springer Netherlands, 2008, p. 253–265.
isbn : 978-1-4020-6488-3. url : http://dx.doi.org/10.1007/978-1-
4020-6488-3_19.

[CT90] K. M Chandy et S. Taylor. A Primer for Program Composition Notation.
Technical Report 10. Pasadena, CA, USA : California Institute of Tech-
nology, 1990. url : http://www.ncstrl.org:8900/ncstrl/servlet/
search?formname=detail\&id=oai%3Acaltechcstr%3A00000071.

[Cha08] D. Chandler. Semiotics for Beginners. Daniel Chandler (University
of Wales, Aberystwyth), 2008. isbn : 9781874166559. url : http://
dominicpetrillo.com/ed/Semiotics_for_Beginners.pdf.

[Cla02] S. Clarke. « Extending standard UML with model composition seman-
tics ». Dans : Sci. Comput. Program. 44.1 (2002), p. 71–100. issn : 0167-6423.
doi : http://dx.doi.org/10.1016/S0167-6423(02)00030-8.

http://dx.doi.org/10.1007/3-540-36208-8_2
http://dx.doi.org/10.1007/3-540-36208-8_2
http://doi.acm.org/10.1145/1218563.1218569
http://dx.doi.org/10.1007/978-1-4020-6488-3_19
http://dx.doi.org/10.1007/978-1-4020-6488-3_19
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail\&id=oai%3Acaltechcstr%3A00000071
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail\&id=oai%3Acaltechcstr%3A00000071
http://dominicpetrillo.com/ed/Semiotics_for_Beginners.pdf
http://dominicpetrillo.com/ed/Semiotics_for_Beginners.pdf

168 BIBLIOGRAPHY

[Cur54] H. B. Curry. « The logic of program composition , in Applications Sci-
entifiques de la Logique Mathématique : Actes du 2 ». Dans : e Colloque
International de Logique Mathématique, Paris - 25-30 Août 1952, Institut
Henri Poincaré. 1954, p. 97–102.

[DFB+05a] M. Didonet, D. Fabro, J Bézivin et al. « Applying Generic Model Man-
agement to Data Mapping ». Dans : Proceedings of BDA 2005. Saint-Malo,
France 2005, p. 343–355.

[DFB+05b] M. Didonet, D. Fabro, J. Bézivin et al. « AMW : a generic model
weaver ». Dans : Proceedings of the 1ère Journée sur l’Ingénierie Dirigée
par les Modèles (IDM05). 2005. url : http://www.sciences.univ-
nantes.fr/lina/atl/www/papers/IDM_2005_weaver.pdf.

[DRMM+10] D. Di Ruscio, I. Malavolta, H. Muccini et al. « Developing next gen-
eration ADLs through MDE techniques ». Dans : Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1.
ICSE ’10. New York, NY, USA : ACM, 2010, p. 85–94. doi : http:
//doi.acm.org/10.1145/1806799.1806816. url : http://doi.acm.
org/10.1145/1806799.1806816.

[Dij97] E. W. Dijkstra. A Discipline of Programming. 1st. Upper Saddle River,
NJ, USA : Prentice Hall PTR, 1997. isbn : 013215871X.

[EPK06] K.-D. Engel, R. F. Paige et D. S. Kolovos. « Using a Model Merging
Language for Reconciling Model Versions ». Dans : ECMDA-FA. Éd. par
A. Rensink et J. Warmer. T. 4066. Lecture Notes in Computer Science.
Springer, 2006, p. 143–157. isbn : 3-540-35909-5.

[ES06] M. Emerson et J. Sztipanovits. « Techniques for metamodel composi-
tion ». Dans : The 6th OOPSLA Workshop on Domain-Specific Modeling,
OOPSLA 2006. ACM, ACM Press, 2006, p. 123–139.

[Els11] Elsevier BV. SciVerse ScienceDirect. online. Juin 2011. url : http://www.
hub.sciverse.com/action/home.

[FBB+07] F. Fleurey, E. Breton, B. Baudry et al. « Model-Driven Engineering
for Software Migration in a Large Industrial Context ». Anglais. Dans :
MoDELS’07. Nashville, TN, USA États-Unis 2007. url : http://hal.
inria.fr/inria-00477566/PDF/fleurey07a.pdf.

[FBF+08] F. Fleurey, B. Baudry, R. France et al. « A Generic Approach for Au-
tomatic Model Composition ». Dans : Models in Software Engineering.
Éd. par H. Giese. T. 5002. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2008, p. 7–15. doi : 10.1007/978-3-540-69073-
3_2. url : http://dx.doi.org/10.1007/978-3-540-69073-3_2.

http://www.sciences.univ-nantes.fr/lina/atl/www/papers/IDM_2005_weaver.pdf
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/IDM_2005_weaver.pdf
http://doi.acm.org/10.1145/1806799.1806816
http://doi.acm.org/10.1145/1806799.1806816
http://www.hub.sciverse.com/action/home
http://www.hub.sciverse.com/action/home
http://hal.inria.fr/inria-00477566/PDF/fleurey07a.pdf
http://hal.inria.fr/inria-00477566/PDF/fleurey07a.pdf
http://dx.doi.org/10.1007/978-3-540-69073-3_2

BIBLIOGRAPHY 169

[FDV07] D. Fabro, M. Didonet et P. Valduriez. « Semi-automatic model inte-
gration using matching transformations and weaving models ». Dans :
SAC ’07 : Proceedings of the 2007 ACM symposium on Applied comput-
ing. Seoul, Korea : ACM, 2007, p. 963–970. isbn : 1-59593-480-4. doi :
http://doi.acm.org/10.1145/1244002.1244215.

[FEB06] J. M. Favre, J. Estublier et M. Blay. L’ingénierie dirigée par les modèles :
au-delà du MDA. French. Hermes-Lavoisier, 2006.

[FFR+07] R. France, F. Fleurey, R. Reddy et al. « Providing Support for Model
Composition in Metamodels ». Dans : Enterprise Distributed Object Com-
puting Conference, 2007. EDOC 2007. 11th IEEE International. 2007, p. 253.
doi : 10.1109/EDOC.2007.55.

[FGF+08] M. Fritzsche, W. Gilani, C. Fritzsche et al. « Towards Utilizing Model-
Driven Engineering of Composite Applications for Business Perfor-
mance Analysis ». Dans : Model Driven Architecture - Foundations and
Applications. Éd. par I. Schieferdecker et A. Hartman. T. 5095. Lec-
ture Notes in Computer Science. Springer Berlin / Heidelberg, 2008,
p. 369–380. url : http://dx.doi.org/10.1007/978-3-540-69100-
6_26.

[GG10] A. Goncalves et A. Goncalves. « Object-Relational Mapping ». Dans :
Beginning Java EE 6 Platform with GlassFish 3. Apress, 2010, p. 61–121.
isbn : 978-1-4302-2890-5. url : http://dx.doi.org/10.1007/978-1-
4302-2890-5_3.

[GHJ+95] E. Gamma, R. Helm, R. Johnson et al. Design patterns : elements of reusable
object-oriented software. Boston, MA, USA : Addison-Wesley Longman
Publishing Co., Inc., 1995. isbn : 0-201-63361-2.

[GJ05] R. Groenmo et M. Jaeger. « Model-driven semantic Web service com-
position ». Dans : Software Engineering Conference, 2005. APSEC ’05. 12th
Asia-Pacific. 2005. doi : 10.1109/APSEC.2005.81.

[GKR+08] H. Grönniger, H. Krahn, B. Rumpe et al. « MontiCore : a framework
for the development of textual domain specific languages ». Dans :
Companion of the 30th international conference on Software engineering.
ICSE Companion ’08. New York, NY, USA : ACM, 2008, p. 925–926.
doi : http://doi.acm.org/10.1145/1370175.1370190. url : http:
//doi.acm.org/10.1145/1370175.1370190.

[GS03] G. Gössler et J. Sifakis. « Composition for Component-Based Model-
ing ». Dans : Formal Methods for Components and Objects. Éd. par F. S.
de Boer, M. M. Bonsangue, S. Graf et al. T. 2852. Lecture Notes in
Computer Science. Springer Berlin /Heidelberg, 2003, p. 443–466. url :
http://dx.doi.org/10.1007/978-3-540-39656-7_19.

http://dx.doi.org/10.1007/978-3-540-69100-6_26
http://dx.doi.org/10.1007/978-3-540-69100-6_26
http://dx.doi.org/10.1007/978-1-4302-2890-5_3
http://dx.doi.org/10.1007/978-1-4302-2890-5_3
http://doi.acm.org/10.1145/1370175.1370190
http://doi.acm.org/10.1145/1370175.1370190
http://dx.doi.org/10.1007/978-3-540-39656-7_19

170 BIBLIOGRAPHY

[GW06] H. Giese et R. Wagner. « Incremental Model Synchronization with
Triple Graph Grammars ». Dans : Model Driven Engineering Languages
and Systems. Éd. par O. Nierstrasz, J. Whittle, D. Harel et al. T. 4199.
Lecture Notes in Computer Science. Springer Berlin /Heidelberg, 2006,
p. 543–557. url : http://dx.doi.org/10.1007/11880240_38.

[GW09] H. Giese et R. Wagner. « From model transformation to incremen-
tal bidirectional model synchronization ». Dans : Software and Systems
Modeling 8 (1 2009), p. 21–43. issn : 1619-1366. url : http://dx.doi.
org/10.1007/s10270-008-0089-9.

[Goo11] Google. Google Scholar. online. Juin 2011. url : http://scholar.
google.fr.

[HHJ+08] J. Henriksson, F. Heidenreich, J. Johannes et al. « Extending grammars
and metamodels for reuse : the Reuseware approach ». Dans : Software,
IET 2.3 (juin 2008), p. 165 –184.

[HK03] J. H. Hausmann et S. Kent. « Visualizing model mappings in UML ».
Dans : SoftVis ’03 : Proceedings of the 2003 ACM symposium on Software
visualization. San Diego, California : ACM, 2003, p. 169–178. isbn : 1-
58113-642-0. doi : http://doi.acm.org/10.1145/774833.774858.

[HKG+10] Z. Hemel, L. Kats, D. Groenewegen et al. « Code generation by model
transformation : a case study in transformation modularity ». Dans :
Software and Systems Modeling 9 (3 2010), p. 375–402. issn : 1619-1366.
url : http://dx.doi.org/10.1007/s10270-009-0136-1.

[HR04] D. Harel et B. Rumpe. « Meaningful modeling : what’s the semantics
of "semantics" ? » Dans : Computer 37.10 (oct. 2004), p. 64 –72. issn :
0018-9162. doi : 10.1109/MC.2004.172.

[HRW11] J. Hutchinson, M. Rouncefield et J. Whittle. « Model-driven engi-
neering practices in industry ». Dans : Proceeding of the 33rd interna-
tional conference on Software engineering. ICSE ’11. Waikiki Honolulu,
HI, USA : ACM, 2011, p. 633–642. isbn : 978-1-4503-0445-0. doi : http:
//doi.acm.org/10.1145/1985793.1985882. url : http://doi.acm.
org/10.1145/1985793.1985882.

[IBM11] IBM. IBM Technical Journal. online. Juin 2011. url : http://www.
research.ibm.com/journal/.

[IEE05] IEEE Computer Society. « IEEE Standard for Software Verification and
Validation ». Dans : IEEE Std 1012-2004 (Revision of IEEE Std 1012-1998)
(août 2005), p. 0–110. doi : 10.1109/IEEESTD.2005.96278.

[IEE11a] IEEE (Institute of Electrical and Electronics Engineers). Computer
Society Digital Library. online. Juin 2011. url : http://www.computer.
org/portal/web/csdl/home.

http://dx.doi.org/10.1007/11880240_38
http://dx.doi.org/10.1007/s10270-008-0089-9
http://dx.doi.org/10.1007/s10270-008-0089-9
http://scholar.google.fr
http://scholar.google.fr
http://dx.doi.org/10.1007/s10270-009-0136-1
http://doi.acm.org/10.1145/1985793.1985882
http://doi.acm.org/10.1145/1985793.1985882
http://www.research.ibm.com/journal/
http://www.research.ibm.com/journal/
http://www.computer.org/portal/web/csdl/home
http://www.computer.org/portal/web/csdl/home

BIBLIOGRAPHY 171

[IEE11b] IEEE (Institute of Electrical and Electronics Engineers). IEEE
Xplore. online. Juin 2011. url : http://ieeexplore.ieee.org/Xplore/
guesthome.jsp.

[IK04] I. Ivkovic et K. Kontogiannis. « Tracing evolution changes of software
artifacts through model synchronization ». Dans : Software Maintenance,
2004. Proceedings. 20th IEEE International Conference on. 2004, p. 252 –261.
doi : 10.1109/ICSM.2004.1357809.

[Ini11] Inist-CNRS. Refdoc. online. Juin 2011. url : http://www.refdoc.fr/.

[JBF10] J.-M. Jézéquel, O. Barais et F. Fleurey. Model Driven Language Engineer-
ing with Kermeta. English. Éd. par Joao M. Fernandes, Ralf Lammel, Joao
Saraiva et al. LNCS 6491, Springer, 2010. url : http://hal.archives-
ouvertes.fr/inria-00538461/PDF/Jezequel10b.pdf.

[JFB08] C. Jeanneret, R. France et B. Baudry. « A reference process for model
composition ». Dans : Proceedings of the 2008 AOSD workshop on Aspect-
oriented modeling. AOM ’08. New York, NY, USA : ACM, 2008, p. 1–6.
doi : http://doi.acm.org/10.1145/1404920.1404921. url : http:
//doi.acm.org/10.1145/1404920.1404921.

[JKB+06] A. Jackson, J. Klein, B. Baudry et al. « Executable Aspect Oriented
Models for Improved Model Testing ». Dans : ECMDA workshop on
Integration of Model Driven Development and Model Driven Testing. Bilbao,
Spain Espagne 2006. url : http://hal.inria.fr/inria-00512544/
en/.

[JWE+07] P. Jayaraman, J. Whittle, A. Elkhodary et al. « Model Composition
in Product Lines and Feature Interaction Detection Using Critical Pair
Analysis ». Dans : Model Driven Engineering Languages and Systems. Éd.
par G. Engels, B. Opdyke, D. Schmidt et al. T. 4735. Lecture Notes in
Computer Science. Springer Berlin /Heidelberg, 2007, p. 151–165. doi :
10.1007/978-3-540-75209-7_11. url : http://dx.doi.org/10.
1007/978-3-540-75209-7_11.

[JZF+09] J. Johannes, S. Zschaler, M. Fernández et al. « Abstracting Complex
Languages through Transformation and Composition ». Dans : Model
Driven Engineering Languages and Systems. Éd. par A. Schürr et B. Selic.
T. 5795. Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 2009, p. 546–550. doi : 10.1007/978-3-642-04425-0_41. url :
http://dx.doi.org/10.1007/978-3-642-04425-0_41.

[Jac90] M. Jackson. « Some complexities in computerbased systems and their
implications for system development ». Dans : CompEuro ’90. Proceed-
ings of the 1990 IEEE International Conference on Computer Systems and
Software Engineering. 1990, p. 344 –351. doi : 10.1109/CMPEUR.1990.
113645.

http://ieeexplore.ieee.org/Xplore/guesthome.jsp
http://ieeexplore.ieee.org/Xplore/guesthome.jsp
http://www.refdoc.fr/
http://hal.archives-ouvertes.fr/inria-00538461/PDF/Jezequel10b.pdf
http://hal.archives-ouvertes.fr/inria-00538461/PDF/Jezequel10b.pdf
http://doi.acm.org/10.1145/1404920.1404921
http://doi.acm.org/10.1145/1404920.1404921
http://hal.inria.fr/inria-00512544/en/
http://hal.inria.fr/inria-00512544/en/
http://dx.doi.org/10.1007/978-3-540-75209-7_11
http://dx.doi.org/10.1007/978-3-540-75209-7_11
http://dx.doi.org/10.1007/978-3-642-04425-0_41

172 BIBLIOGRAPHY

[Jea08] C. Jeanneret. « An Analysis of Model Composition Approaches ».
Mém.de maîtr. Ecole Polytechnique Fédérale de Lausanne, 2008.

[Jez08] J.-M. Jezequel. « Model driven design and aspect weaving ». Dans :
Software and Systems Modeling 7 (2 2008), p. 209–218. issn : 1619-1366.
url : http://dx.doi.org/10.1007/s10270-008-0080-5.

[KAAK09] J. Kienzle, W. AlAbed et J. Klein. « Aspect-oriented multi-view model-
ing ». Dans : Proceedings of the 8th ACM international conference on Aspect-
oriented software development. AOSD ’09. New York, NY, USA : ACM,
2009, p. 87–98. doi : http://doi.acm.org/10.1145/1509239.1509252.
url : http://doi.acm.org/10.1145/1509239.1509252.

[KEG11] KEG. Arnetminer. online. Juin 2011. url : http://arnetminer.net/
index.jsp.

[KGM10] J. Kienzle, N. Guelfi et S. Mustafiz. « Crisis Management Systems :
A Case Study for Aspect-Oriented Modeling ». Dans : Transactions on
Aspect-Oriented Software Development VII. Éd. par S. Katz, M. Mezini
et J. Kienzle. T. 6210. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2010, p. 1–22. isbn : 978-3-642-16085-1. url : http:
//dx.doi.org/10.1007/978-3-642-16086-8_1.

[KHJ06] J. Klein, L. Hélouet et J.-M. Jézéquel. « Semantic-based Weaving of
Scenarios ». Dans : proceedings of the 5th International Conference on Aspect-
Oriented Software Development (AOSD’06). Bonn, Germany : ACM, 2006.

[KJP05] J. Klein, J.-M. Jézéquel et N. Plouzeau. « Weaving Behavioural Mod-
els ». Dans : In First Workshop on Models and Aspects, Handling Crosscut-
ting Concerns in MDSD at ECOOP 05. 2005.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar et al. « Aspect-oriented pro-
gramming ». Dans : ECOOP’97 – Object-Oriented Programming. Éd. par
M. Aksit et S. Matsuoka. T. 1241. Lecture Notes in Computer Science.
Springer Berlin /Heidelberg, 1997, p. 220–242. isbn : 978-3-540-63089-0.
url : http://dx.doi.org/10.1007/BFb0053381.

[KM10] P. Kelsen et Q. Ma. « A Modular Model Composition Technique ».
Dans : Fundamental Approaches to Software Engineering. Éd. par D.
Rosenblum et G. Taentzer. T. 6013. Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, 2010, p. 173–187. url : http://dx.
doi.org/10.1007/978-3-642-12029-9_13.

[KPP06] D. Kolovos, R. Paige et F. Polack. « Merging Models with the Epsilon
Merging Language (EML) ». Dans : Model Driven Engineering Languages
and Systems. Éd. par O. Nierstrasz, J. Whittle, D. Harel et al. T. 4199.
Lecture Notes in Computer Science. Springer Berlin /Heidelberg, 2006,
p. 215–229. url : http://dx.doi.org/10.1007/11880240_16.

http://dx.doi.org/10.1007/s10270-008-0080-5
http://doi.acm.org/10.1145/1509239.1509252
http://arnetminer.net/index.jsp
http://arnetminer.net/index.jsp
http://dx.doi.org/10.1007/978-3-642-16086-8_1
http://dx.doi.org/10.1007/978-3-642-16086-8_1
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/978-3-642-12029-9_13
http://dx.doi.org/10.1007/978-3-642-12029-9_13
http://dx.doi.org/10.1007/11880240_16

BIBLIOGRAPHY 173

[KUL+10] F. Krause, J. Uhlendorf, T. Lubitz et al. « Annotation and merg-
ing of SBML models with semanticSBML ». Dans : Bioinformatics 26.3
(2010), p. 421–422. doi : 10.1093/bioinformatics/btp642. eprint :
http://bioinformatics.oxfordjournals.org/content/26/3/421.

full.pdf+html. url : http://bioinformatics.oxfordjournals.org/
content/26/3/421.abstract.

[Kit04] B. Kitchenham. « Procedures for Performing Systematic Reviews ».
Dans : Joint Technical Report NICTA Technical Report 0400011T1 33 (2004).
url : http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.122.3308&rep=rep1&type=pdf.

[LMV+07] P. Lahire, B. Morin, G. Vanwormhoudt et al. « Introducing Variabil-
ity into Aspect-Oriented Modeling Approaches ». Dans : Model Driven
Engineering Languages and Systems. Éd. par G. Engels, B. Opdyke, D.
Schmidt et al. T. 4735. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2007, p. 498–513. url : http://dx.doi.org/10.
1007/978-3-540-75209-7_34.

[LNK+01] A. Ledeczi, G. Nordstrom, G. Karsai et al. « On metamodel compo-
sition ». Dans : Control Applications, 2001. (CCA ’01). Proceedings of the
2001 IEEE International Conference on. 2001, p. 756 –760. doi : 10.1109/
CCA.2001.973959.

[LP03] V.-C. Liang et C. Paredis. « A port ontology for automated model com-
position ». Dans : Simulation Conference, 2003. Proceedings of the 2003
Winter. T. 1. 2003, p. 613 –622. doi : 10.1109/WSC.2003.1261476.

[Let07] K. Letkeman. Comparing and merging UML models in IBM Rational
Software Architect : Ad-hoc modeling - Fusing two models with diagrams.
English. IBM. 2007. url : http://www.ibm.com/developerworks/
rational/library/07/0410_letkeman/.

[Lor98] D. Lorenz. « Visitor Beans : An Aspect–Oriented Pattern ». Dans :
Object–Oriented Technology : ECOOP’98 Workshop Reader. Éd. par S.
Demeyer et J. Bosch. T. 1543. Lecture Notes in Computer Science.
Springer Berlin /Heidelberg, 1998, p. 579–579. isbn : 978-3-540-65460-5.
url : http://dx.doi.org/10.1007/3-540-49255-0_130.

[MBFF10] S. Mosser, M. Blay-Fornarino et R. France. « Workflow Design Using
Fragment Composition ». Dans : Transactions on Aspect-Oriented Software
Development VII. Éd. par S. Katz, M. Mezini et J. Kienzle. T. 6210.
Lecture Notes in Computer Science. Springer Berlin /Heidelberg, 2010,
p. 200–233. doi : 10.1007/978-3-642-16086-8_6. url : http://dx.
doi.org/10.1007/978-3-642-16086-8_6.

[MBJ+07] B. Morin, O. Barais, J.-M. Jézéquel et al. « Towards a Generic Aspect-
Oriented Modeling Framework ». Dans : Models and Aspects workshop,
at ECOOP 2007. Berlin, Germany Allemagne 2007. url : http://hal.
archives-ouvertes.fr/inria-00505222/PDF/morin07a.pdf.

http://bioinformatics.oxfordjournals.org/content/26/3/421.abstract
http://bioinformatics.oxfordjournals.org/content/26/3/421.abstract
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.3308&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.3308&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-540-75209-7_34
http://dx.doi.org/10.1007/978-3-540-75209-7_34
http://www.ibm.com/developerworks/rational/library/07/0410_letkeman/
http://www.ibm.com/developerworks/rational/library/07/0410_letkeman/
http://dx.doi.org/10.1007/3-540-49255-0_130
http://dx.doi.org/10.1007/978-3-642-16086-8_6
http://dx.doi.org/10.1007/978-3-642-16086-8_6
http://hal.archives-ouvertes.fr/inria-00505222/PDF/morin07a.pdf
http://hal.archives-ouvertes.fr/inria-00505222/PDF/morin07a.pdf

174 BIBLIOGRAPHY

[MBJ08] B. Morin, O. Barais et J.-M. Jézéquel. « Weaving Aspect Configurations
for Managing System Variability ». Dans : VaMoS’08 : 2nd Int. Workshop
on Variability Modelling of Software-Intensive Systems. 2008.

[MBN+09] B. Morin, O. Barais, G. Nain et al. « Taming Dynamically Adaptive
Systems using models and aspects ». Dans : Proceedings of the 31st Inter-
national Conference on Software Engineering. ICSE ’09. Washington, DC,
USA : IEEE Computer Society, 2009, p. 122–132. isbn : 978-1-4244-3453-
4. doi : http://dx.doi.org/10.1109/ICSE.2009.5070514. url :
http://dx.doi.org/10.1109/ICSE.2009.5070514.

[MFJ05] P.-A. Muller, F. Fleurey et J.-M. Jézéquel. « Weaving Executability
into Object-Oriented Meta-Languages ». Dans : Proceedings of MOD-
ELS/UML’2005. Éd. par S. K. L. Briand. T. 3713. LNCS. Montego Bay,
Jamaica : Springer, 2005, p. 264–278. url : http://www.irisa.fr/
triskell/publis/2005/Muller05a.pdf.

[MKB+08] B. Morin, J. Klein, O. Barais et al. « A Generic Weaver for Supporting
Product Lines ». Dans : EA ’08 : Proceedings of the 13th international
workshop on Early Aspects. Leipzig, Germany : ACM, 2008, p. 11–18. isbn :
978-1-60558-032-6. doi : http://doi.acm.org/10.1145/1370828.
1370832.

[MMP+10] I. Malavolta, H. Muccini, P. Pelliccione et al. « Providing Architec-
tural Languages and Tools Interoperability through Model Transfor-
mation Technologies ». Dans : Software Engineering, IEEE Transactions
on 36.1 (jan. 2010), p. 119 –140. doi : 10.1109/TSE.2009.51.

[MMW02] K. Mens, T. Mens et M. Wermelinger. « Supporting unanticipated soft-
ware evolution through intentional software views ». Dans : ECOOP
2002 Workshop on Unanticipated Software Evolution. 2002.

[MPL+09] B. Morin, G. Perrouin, P. Lahire et al. « Weaving Variability into Do-
main Metamodels ». Dans : Model Driven Engineering Languages and
Systems. Éd. par A. Schürr et B. Selic. T. 5795. Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2009, p. 690–705. url :
http://dx.doi.org/10.1007/978-3-642-04425-0_56.

[Mos10] S. Mosser. « Behavioral Compositions in Service-Oriented Architec-
ture ». Thèse de doct. Université de Nice-Sophia Antipolis, 2010.

[NB04] K. Nahrstedt et W.-T. Balke. « A taxonomy for multimedia service
composition ». Dans : Proceedings of the 12th annual ACM international
conference on Multimedia. New York, NY, USA : ACM, 2004, p. 88–95.
doi : http://doi.acm.org/10.1145/1027527.1027544. url : http:
//doi.acm.org/10.1145/1027527.1027544.

[NM00] N. F. Noy et M. A. Musen. « PROMPT : Algorithm and Tool for Auto-
mated Ontology Merging and Alignment ». Dans : AAAI/IAAI. AAAI
Press / The MIT Press, 2000, p. 450–455. isbn : 0-262-51112-6.

http://dx.doi.org/10.1109/ICSE.2009.5070514
http://www.irisa.fr/triskell/publis/2005/Muller05a.pdf
http://www.irisa.fr/triskell/publis/2005/Muller05a.pdf
http://dx.doi.org/10.1007/978-3-642-04425-0_56
http://doi.acm.org/10.1145/1027527.1027544
http://doi.acm.org/10.1145/1027527.1027544

BIBLIOGRAPHY 175

[NSC+07] S. Nejati, M. Sabetzadeh, M. Chechik et al. « Matching and Merging
of Statecharts Specifications ». Dans : ICSE ’07 : Proceedings of the 29th
international conference on Software Engineering. ICSE’07. Washington,
DC, USA : IEEE Computer Society, 2007, p. 54–64. isbn : 0-7695-2828-7.
doi : http://dx.doi.org/10.1109/ICSE.2007.50.

[OMG01] OMG. Model Driven Architecture (MDA). online. Juil. 2001. url : http:
//www.omg.org/cgi-bin/doc?ormsc/2001-07-01.

[OMG07] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifi-
cation. online. Juil. 2007. url : http://www.omg.org/cgi-bin/doc?
ptc/2007-07-07.

[OMG10a] OMG. MOF Specification v.2.4 - Beta 2. online. Déc. 2010. url : http:
//www.omg.org/spec/MOF/2.4/Beta2.

[OMG10b] OMG. Uml Superstructure Specification v2.4 - Beta 2. online. Nov. 2010.
url : http://www.omg.org/spec/UML/2.4/.

[OMK09] J. Oldevik, M. Menarini et I. Krüger. « Model Composition Con-
tracts ». Dans : Model Driven Engineering Languages and Systems. Éd.
par A. Schürr et B. Selic. T. 5795. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2009, p. 531–545. url : http://dx.doi.
org/10.1007/978-3-642-04425-0_40.

[OO07] K. Oliveira et T. de Oliveira. « A Guidance for Model Composition ».
Dans : Software Engineering Advances, 2007. ICSEA 2007. International
Conference on. 2007, p. 27. doi : 10.1109/ICSEA.2007.5.

[Opd92] W. F. Opdyke. « Refactoring Object-Oriented Frameworks ». Thèse
de doct. Champaign, IL, USA : University of Illinois at Urbana-
Champaign, 1992.

[Ove11] Oversity Limited. CiteULike. online. Juin 2011. url : http://www.
citeulike.org/home.

[Oxf11] OxfordUniversity Press. Oxford Journals. online. Juin 2011. url : http:
//bioinformatics.oxfordjournals.org/.

[PB09] R. Pottinger et P. Bernstein. « Associativity and Commutativity in
Generic Merge ». Dans : Conceptual Modeling : Foundations and Appli-
cations. Éd. par A. Borgida, V. Chaudhri, P. Giorgini et al. T. 5600.
Lecture Notes in Computer Science. Springer Berlin /Heidelberg, 2009,
p. 254–272. doi : 10.1007/978-3-642-02463-4_14. url : http://dx.
doi.org/10.1007/978-3-642-02463-4_14.

[PBB+09] G. Perrouin, E. Brottier, B. Baudry et al. « Composing Models for
Detecting Inconsistencies : A Requirements Engineering Perspective ».
Dans : Requirements Engineering : Foundation for Software Quality. Éd. par
M. Glinz et P. Heymans. T. 5512. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2009, p. 89–103. doi : 10.1007/978-3-

http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
http://www.omg.org/cgi-bin/doc?ptc/2007-07-07
http://www.omg.org/cgi-bin/doc?ptc/2007-07-07
http://www.omg.org/spec/MOF/2.4/Beta2
http://www.omg.org/spec/MOF/2.4/Beta2
http://www.omg.org/spec/UML/2.4/
http://dx.doi.org/10.1007/978-3-642-04425-0_40
http://dx.doi.org/10.1007/978-3-642-04425-0_40
http://www.citeulike.org/home
http://www.citeulike.org/home
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://dx.doi.org/10.1007/978-3-642-02463-4_14
http://dx.doi.org/10.1007/978-3-642-02463-4_14

176 BIBLIOGRAPHY

642-02050-6_8. url : http://dx.doi.org/10.1007/978-3-642-
02050-6_8.

[PBC+11] C. Parra, X. Blanc, A. Cleve et al. « Unifying Design and Runtime
Adaptations Using Aspect Models ». Anglais. Dans : Science of Computer
Programming (19 jan. 2011). doi : 10.1016/j.scico.2010.12.005. url :
http://hal.inria.fr/inria-00564592/en/.

[PDCS+01] C. Paredis, A. Diaz-Calderon, R. Sinha et al. « Composable Models
for Simulation-Based Design ». Dans : Engineering with Computers 17
(2001), p. 112–128. doi : 10.1007/PL00007197. url : http://dx.doi.
org/10.1007/PL00007197.

[PGP+07] C. Pons, R. Giandini, G. Perez et al. « An Algebraic Approach for
Composing Model Transformations in QVT ». Dans : 4th International
Workshop on Software Language Engineering at the 10th International Con-
ference MoDELS 2007. ATEM. Citeseer, 2007.

[PR04] J. Park et S. Ram. « Information systems interoperability : What lies
beneath ? » Dans : ACM Trans. Inf. Syst. 22 (4 2004), p. 595–632. issn :
1046-8188. doi : http://doi.acm.org/10.1145/1028099.1028103.
url : http://doi.acm.org/10.1145/1028099.1028103.

[PRB+09] L. Pedro, M. Risoldi, D. Buchs et al. « Composing Visual Syntax for Do-
main Specific Languages ». Dans : Human-Computer Interaction. Novel In-
teraction Methods and Techniques. Éd. par J. Jacko. T. 5611. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2009, p. 889–898.
doi : 10.1007/978-3-642-02577-8_97. url : http://dx.doi.org/10.
1007/978-3-642-02577-8_97.

[PVSG+08] J. von Pilgrim, B. Vanhooff, I. Schulz-Gerlach et al. « Constructing
and Visualizing Transformation Chains ». Dans : Model Driven Archi-
tecture - Foundations and Applications. Éd. par I. Schieferdecker et A.
Hartman. T. 5095. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2008, p. 17–32. url : http://dx.doi.org/10.1007/978-
3-540-69100-6_2.

[Par72] D. L. Parnas. « On the criteria to be used in decomposing systems
into modules ». Dans : Commun. ACM 15 (12 1972), p. 1053–1058. issn :
0001-0782. doi : http://doi.acm.org/10.1145/361598.361623. url :
http://doi.acm.org/10.1145/361598.361623.

[Pen11] Penn StateCollege of Information andTechnology. CiteSeerX Digital
Library and Search Engine. online. Juin 2011. url : http://citeseerx.
ist.psu.edu/.

[RCE08] J. Rubin, M. Chechik et S. M. Easterbrook. « Declarative approach for
model composition ». Dans : MiSE ’08 : Proceedings of the 2008 inter-
national workshop on Models in software engineering. Leipzig, Germany :

http://dx.doi.org/10.1007/978-3-642-02050-6_8
http://dx.doi.org/10.1007/978-3-642-02050-6_8
http://hal.inria.fr/inria-00564592/en/
http://dx.doi.org/10.1007/PL00007197
http://dx.doi.org/10.1007/PL00007197
http://doi.acm.org/10.1145/1028099.1028103
http://dx.doi.org/10.1007/978-3-642-02577-8_97
http://dx.doi.org/10.1007/978-3-642-02577-8_97
http://dx.doi.org/10.1007/978-3-540-69100-6_2
http://dx.doi.org/10.1007/978-3-540-69100-6_2
http://doi.acm.org/10.1145/361598.361623
http://citeseerx.ist.psu.edu/
http://citeseerx.ist.psu.edu/

BIBLIOGRAPHY 177

ACM, 2008, p. 7–14. isbn : 978-1-60558-025-8. doi : http://doi.acm.
org/10.1145/1370731.1370734.

[RGF+06] Y. Reddy, S. Ghosh, R. France et al. « Directives for Composing Aspect-
Oriented Design Class Models ». Dans : Transactions on Aspect-Oriented
Software Development I. Éd. par A. Rashid et M. Aksit. T. 3880. Lec-
ture Notes in Computer Science. Springer Berlin / Heidelberg, 2006,
p. 75–105. url : http://dx.doi.org/10.1007/11687061_3.

[Res11] Researchr. Researchr. online. Juin 2011. url : http://researchr.org/.

[SBP+08] D. Steinberg, F. Budinsky, M. Paternostro et al. EMF : Eclipse Modeling
Framework (2nd Edition). 2008.

[SE06] M. Sabetzadeh et S. Easterbrook. « View merging in the presence of
incompleteness and inconsistency ». Dans : Requir. Eng. 11.3 (2006),
p. 174–193. issn : 0947-3602. doi : http://dx.doi.org/10.1007/
s00766-006-0032-y.

[SFS+08] P. Sánchez, L. Fuentes, D. Stein et al. « Aspect-Oriented Model Weaving
Beyond Model Composition and Model Transformation ». Dans : Model
Driven Engineering Languages and Systems. Éd. par K. Czarnecki, I. Ober,
J.-M. Bruel et al. T. 5301. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2008, p. 766–781. url : http://dx.doi.org/10.
1007/978-3-540-87875-9_53.

[SJ07] J. Steel et J.-M. Jézéquel. « On model typing ». Dans : Software and
Systems Modeling 6 (4 2007), p. 401–413. issn : 1619-1366. url : http:
//dx.doi.org/10.1007/s10270-006-0036-6.

[SY10] M. Shonle et T. T. Yuen. « Compose & conquer : modularity for end-
users ». Dans : Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 2. ICSE ’10. New York, NY, USA :
ACM, 2010, p. 191–194. doi : http://doi.acm.org/10.1145/1810295.
1810327. url : http://doi.acm.org/10.1145/1810295.1810327.

[Spr11] Springer-Verlag GmbH. SpringerLink. online. Juin 2011. url : http:
//www.springerlink.com/.

[Sti81] M. E. Stickel. « A Unification Algorithm for Associative-Commutative
Functions ». Dans : J. ACM 28 (3 1981), p. 423–434. issn : 0004-5411.
doi : http://doi.acm.org/10.1145/322261.322262. url : http:
//doi.acm.org/10.1145/322261.322262.

[TJF+09] M. Tisi, F. Jouault, P. Fraternali et al. « On the Use of Higher-Order
Model Transformations ». Dans : Model Driven Architecture - Foundations
and Applications. Éd. par R. Paige, A. Hartman et A. Rensink. T. 5562.
Lecture Notes in Computer Science. Springer Berlin /Heidelberg, 2009,
p. 18–33. url : http://dx.doi.org/10.1007/978-3-642-02674-4_3.

http://dx.doi.org/10.1007/11687061_3
http://researchr.org/
http://dx.doi.org/10.1007/978-3-540-87875-9_53
http://dx.doi.org/10.1007/978-3-540-87875-9_53
http://dx.doi.org/10.1007/s10270-006-0036-6
http://dx.doi.org/10.1007/s10270-006-0036-6
http://doi.acm.org/10.1145/1810295.1810327
http://www.springerlink.com/
http://www.springerlink.com/
http://doi.acm.org/10.1145/322261.322262
http://doi.acm.org/10.1145/322261.322262
http://dx.doi.org/10.1007/978-3-642-02674-4_3

178 BIBLIOGRAPHY

[TT08] W. Tansey et E. Tilevich. « Annotation refactoring : inferring upgrade
transformations for legacy applications ». Dans : OOPSLA ’08 : Proceed-
ings of the 23rd ACM SIGPLAN conference on Object-oriented programming
systems languages and applications. Nashville, TN, USA : ACM, 2008,
p. 295–312. isbn : 978-1-60558-215-3. doi : http://doi.acm.org/10.
1145/1449764.1449788.

[Tae04] G. Taentzer. « AGG : A Graph Transformation Environment for Model-
ing and Validation of Software ». Dans : Applications of Graph Transforma-
tions with Industrial Relevance. 2004, p. 446–453. doi : 10.1007/b98116.
url : http://dx.doi.org/10.1007/b98116.

[VAVB+07] B. Vanhooff, D. Ayed, S. Van Baelen et al. « UniTI : A Unified Trans-
formation Infrastructure ». Dans : Model Driven Engineering Languages
and Systems. Éd. par G. Engels, B. Opdyke, D. Schmidt et al. T. 4735.
Lecture Notes in Computer Science. Springer Berlin /Heidelberg, 2007,
p. 31–45. url : http://dx.doi.org/10.1007/978-3-540-75209-7_3.

[VV95] M Vargas-Vera. « Using Prolog Techniques to Guide Program Compo-
sition ». Thèse de doct. University of Edinburgh, 1995.

[WJ08] J. Whittle et P. Jayaraman. « MATA : A Tool for Aspect-Oriented Mod-
eling Based on Graph Transformation ». Dans : Models in Software Engi-
neering. Éd. par H. Giese. T. 5002. Lecture Notes in Computer Science.
Springer Berlin /Heidelberg, 2008, p. 16–27. url : http://dx.doi.org/
10.1007/978-3-540-69073-3_3.

[WS08] I. Weisemöller et A. Schürr. « Formal Definition of MOF 2.0 Meta-
model Components and Composition ». Dans : Model Driven Engineer-
ing Languages and Systems. Éd. par K. Czarnecki, I. Ober, J.-M. Bruel
et al. T. 5301. Lecture Notes in Computer Science. Springer Berlin /Hei-
delberg, 2008, p. 386–400. url : http://dx.doi.org/10.1007/978-3-
540-87875-9_28.

[Wac07] G. Wachsmuth. « Metamodel Adaptation and Model Co-adaptation ».
Dans : ECOOP 2007 - Object-Oriented Programming. Éd. par E. Ernst.
T. 4609. Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 2007, p. 600–624. url : http://dx.doi.org/10.1007/978-3-
540-73589-2_28.

[Wag08] D. Wagelaar. « Composition Techniques for Rule-Based Model Trans-
formation Languages ». Dans : Proceedings of the 1st international confer-
ence on Theory and Practice of Model Transformations (ICMT’08). Berlin,
Heidelberg : Springer-Verlag, 2008, p. 152–167. doi : http://dx.doi.
org/10.1007/978-3-540-69927-9_11. url : http://dx.doi.org/10.
1007/978-3-540-69927-9_11.

http://dx.doi.org/10.1007/b98116
http://dx.doi.org/10.1007/978-3-540-75209-7_3
http://dx.doi.org/10.1007/978-3-540-69073-3_3
http://dx.doi.org/10.1007/978-3-540-69073-3_3
http://dx.doi.org/10.1007/978-3-540-87875-9_28
http://dx.doi.org/10.1007/978-3-540-87875-9_28
http://dx.doi.org/10.1007/978-3-540-73589-2_28
http://dx.doi.org/10.1007/978-3-540-73589-2_28
http://dx.doi.org/10.1007/978-3-540-69927-9_11
http://dx.doi.org/10.1007/978-3-540-69927-9_11

BIBLIOGRAPHY 179

[XLH+07] Y. Xiong, D. Liu, Z. Hu et al. « Towards automatic model synchroniza-
tion from model transformations ». Dans : Proceedings of the twenty-
second IEEE/ACM international conference on Automated software engineer-
ing. ASE ’07. Atlanta, Georgia, USA : ACM, 2007, p. 164–173. isbn : 978-
1-59593-882-4. doi : http://doi.acm.org/10.1145/1321631.1321657.
url : http://doi.acm.org/10.1145/1321631.1321657.

[ZC07] J. Zhang et B. Cheng. « Towards Re-engineering Legacy Systems for
Assured Dynamic Adaptation ». Dans : Modeling in Software Engineering,
2007. MISE ’07 : ICSE Workshop 2007. International Workshop on. 2007,
p. 10. doi : 10.1109/MISE.2007.14.

[ZDD06] A. Zito, Z. Diskin et J. Dingel. « Package Merge in UML 2 : Practice vs.
Theory ? » Dans : Model Driven Engineering Languages and Systems. Éd.
par O. Nierstrasz, J. Whittle, D. Harel et al. T. 4199. Lecture Notes in
Computer Science. Springer Berlin /Heidelberg, 2006, p. 185–199. url :
http://dx.doi.org/10.1007/11880240_14.

[ZLL09] D. Zhang, S. Li et X. Liu. « An Approach for Model Composition and
Verification ». Dans : INC, IMS and IDC, 2009. NCM ’09. Fifth International
Joint Conference on. 2009, p. 1102 –1107. doi : 10.1109/NCM.2009.271.

http://doi.acm.org/10.1145/1321631.1321657
http://dx.doi.org/10.1007/11880240_14

180 BIBLIOGRAPHY

List of figures

1.1 Illustration of the process followed in Chapter 1 6
1.2 Levels of Abstraction in Model-Driven Engineering 8
1.3 Intuitive classification of correspondences 14
1.4 Intuitive classification of interpretations. 17
1.5 Template protocol proposed by Biolchini for systematic reviews. 20
1.6 Distribution of articles with respect to the type of correspondences. . . . 50

2.1 Moving from monolithic techniques to techniques on-demand 68
2.2 A simplified representation of a sign . 71
2.3 Influence of the goal on a specific model composition operator 72
2.4 Refinement of a pair of a mapping and an interpretation 82

3.1 The Bank model. 84
3.2 The BLP model. 84
3.3 Intuitive relationships of overlap between the Bank and BLP models . . 84
3.4 Intuitive process for building a model composition framework for model

merging. 85
3.5 Result of merging the Bank model with the BLP model 86
3.6 Process of building a problem–specific model composition framework . 88
3.7 ModMap meta–model . 89
3.8 Mapping Concern of the ModMap language 90
3.9 Strategy Concern of the ModMap language 92
3.10 Directives Concern of the ModMap language 93
3.11 Model of mappings between the Bank model and the BLP model 109

4.1 A package merge example adapted from [ZDD06] 113
4.2 An example of the blp model adapted from [FFR+07] 114
4.3 An example of the bank model adapted from [FFR+07] 115
4.4 Composition of the Bank model and the BLP model from [FFR+07] . . . 115
4.5 Statecharts of the call logger feature variants from [NSC+07] 117
4.6 The CaptureWitnessRecord workflow from [MBFF10] 118
4.7 The RequestVideo fragment from [MBFF10] 119
4.8 The FakeCrisis fragment from [MBFF10] 119
4.9 CaptureWitnessRecord workflow augmented with the RequestVideo

and the FakeCrisis fragments [MBFF10] 119

181

182 LIST OF FIGURES

4.10 Customization of the Generic Process for Model Merging 122
4.11 Subset of the ModMap language for Model Merge 122
4.12 Specification of the UML Package Merge mapping at the meta–class level123
4.13 Specification of the Kompose mappings at the meta–class level 123
4.14 Specification of the Statecharts Merge mappings at the meta–class level . 124
4.15 Specification of the ADORE Merge mappings at the meta–class level . . 125
4.16 Technicolor Management Architecture . 130
4.17 Model Integration Process . 131
4.18 Customization of the generic process for model integration 132
4.19 Subset of the ModMap language for Model Integration 133
4.20 Model of the MTEP API. 134
4.21 Model of the XMS API. 134
4.22 Model of mappings for the integration of the MTEP and XMS API. . . . 135
4.23 Distribution of Java Mappings . 138
4.24 Distribution of ModMap Mappings . 138
4.25 Ratio of strategy types used to map the MTEP and the XMS API. 138
4.26 Cumulative effort for the production of new versions of adapters 139
4.27 Textual Scenario of Use Case #2 : “Capture Witness Report” 142
4.28 Initial model artifacts, proposed by experts. 144
4.29 SOA Models Synchronization : Process Overview 145
4.30 Merged model : CDD (white) ⊕ CDI (gray) 146
4.31 Customization of the generic process for model synchronization. 149
4.32 Subset of the ModMap language for Model Synchronization 150
4.33 Model of mappings for the synchronization of the BPM and the CDD. . . 150
4.34 Aligned models resulting from the propagation of the resolution strategies.154

II.1 MOF core metamodel . 160

List of tables

1.1 Full list of selected articles . 28
1.2 Precision of the correspondences . 50
1.3 Accuracy of the categories of interpretations 52
1.4 Distribution of articles for correspondences and overlapping interpre-

tations . 55
1.5 Distribution of articles with regard to the type of correspondence and

the cross-cutting and interaction interpretations 57
1.6 Distribution of articles for correspondences and design activities 59
1.7 Distribution of articles for correspondences and verification activities . . 60
1.8 Ditribution of articles for correspondences and evolution activities . . . 60
1.9 Comparison of existing generic model composition frameworks (GCFs) 66

4.1 Effort for manual and generative production of a new adapter 139

183

VU : VU :

Le Directeur de Thèse Le Responsable de L’Ecole Doctorale

(Nom et Prénom)

VU pour autorisation de soutenance

Rennes, le

Le Président de l’Université de Rennes 1

Guy CATHELINEAU

VU après soutenance pour autorisation de publication :

Le Président de Jury,

(Nom et Prénom)

Résumé

L’Ingénierie Dirigée par les Modèles (IDM) est basée sur le principe d’abstraction
et de séparation des préoccupations pour gérer la complexité du développement de
logiciels. Les ingénieurs s’appuient sur des modèles dédiées à la résolution d’un prob-
lème particulier. Dans le cadre de l’IDM, la composition de modèles est un domaine de
recherche très actif qui vise à automatiser les tâches de recomposition des modèles. La
quasi-inexistence de consensus pour comparer les techniques existantes entraîne une
explosion de l’effort nécessaire pour produire de nouveaux outils spécifiques à partir
de techniques existantes.

La contribution principale de cette thèse est de proposer une définition originale de
la composition de modèles comme étant une paire correspondance-interprétation. A
partir de cette définition, nous proposons un cadre théorique qui (1) unifie les représen-
tations des techniques de composition existantes et qui (2) automatise le développe-
ment d’outils de composition de modèles. La contribution principale s’appuie sur deux
sous-contributions supplémentaires :

– Nous proposons des catégories pour classer les techniques de correspondance et
les interprétations existantes.

– Nous proposons un langage de modélisation spécifique pour la définition de
correspondances génériques entre modèles et la définition d’interprétations.

Un prototype logiciel a été développé et utilisé dans le cadre du projet MOPCOM-
I du pôle de compétitivité Images & Réseaux de la région Bretagne. La validation
de la contribution a été démontrée sur un cas d’étude proposé par Technicolor pour
l’intégration de librairies existantes dédiées à la gestion d’équipements numériques de
diffusion vidéo.

Abstract

Model-Driven Engineering (MDE) is a software development methodology that relies
on the Separation of Concerns (SoC) and Abstraction principles to deal with complex-
ity. Thinking in terms of higher levels of abstraction and building dedicated models
to address specific concerns allow decomposing a problem into more manageable
subproblems. Within the framework of MDE, model composition is an active field
of research that focuses on automating the composition of model-based artifacts in a
multi-modeling environment. However the lack of a common formalism for compar-
ing existing approaches hinders their adaptation and reuse for building new model
composition techniques. The main contribution of this thesis is to propose a novel
definition of model composition as a pair of a mapping and an interpretation. This
definition paves the way to a theoretical framework that (1) unifies existing represen-
tations of model composition techniques and (2) automates the process of building
model composition tools. The main contribution is supported by two subsidiaries
propositions : - We propose categories to classify existing mapping techniques and
existing model composition interpretations. - We define a language that supports the
definition of generic mappings among models and the definition of interpretations. We
validate the contribution through two experiments : (1) a systematic literature review
validates the proposed categories for mappings and interpretations ; (2) a prototype
that supports the model composition approach has been tested on an industrial case
study from Technicolor about the composition of legacy APIs for the management of
heterogeneous video and broadcasting equipments.

	Introduction
	Model Composition in Software Engineering
	Modularity in Software Engineering
	Modularity
	Abstraction and Model–Driven Engineering
	Modularity, Abstraction and Model Composition
	A brief Overview of Model Composition Techniques
	Kompose: A Generic Model Composition Tool
	SmartAdapters: A Model Weaver for Variability
	GeKo: A Generic Aspect Oriented Composer
	Semantic-based Weaving of Scenarios
	Discussion

	Comparing Model Composition Techniques

	Key concepts in Model Composition
	Correspondences
	Operator-based correspondence
	Pattern-based correspondence
	Rule-based correspondence
	Constraint-based correspondence
	Model-based correspondence
	Delta representation-based correspondence

	Interpretation
	Overlapping
	Cross-cutting
	Interaction
	Uncategorized Interpretations

	Validating the key elements of model composition
	Systematic Review Protocol
	Research Objectives
	Model Composition and Synonyms
	Valuable Information Characterization
	Articles Selection Criteria and Methods
	Study selection
	Study quality assessment
	Data Extraction

	Model Composition for Systems Design
	Composition
	Derivation
	Orchestration
	Integration

	Model Composition for Validation and Verification
	Model Composition for Checking Consistency
	Model Composition for Checking Correctness

	Model Composition for Evolution and Maintenance
	Dynamic Reconfiguration
	Refactoring
	Adaptation
	Synchronization
	Reconciliation

	Systematic Literature Review Summary
	Kind of Correspondences and Distribution of Articles
	Interpretation and Distribution of Articles
	Software Activities and Distribution of Articles

	Discussion
	Are Correspondences and Interpretations Pervasive?
	Is Model Composition a Common Operation?
	Summary of the Contribution
	Overview of Existing Generic Composition Frameworks
	Relationship–based Approach
	ATLAS Model Weaver and Virtual EMF
	Object–Relational Mapping
	Contribution Challenges

	A Theoretical Framework for Model Composition
	Decomposing Model Composition
	Model Composition is a Structure
	Model Composition is a Linguistic Sign
	Variability of a Sign
	Mapping and Interpretation Coupling
	From Linguistics to Model–Driven Engineering

	Towards a Unified Theory for Model Composition
	Mathematical Symbols and Definitions
	Domain–Specific Modeling Language
	Sets
	Functions and Relations
	Symbols

	Mapping Definition
	Operator-based Mapping
	Pattern- or Rule- based Mapping
	Constraint-based Mapping
	Model-based Mapping
	Delta-based Mapping

	Interpretation Definition
	``Add'' Interpretation
	``Delete'' Interpretation
	Overlapping
	Cross–Cutting
	Interaction

	Model Composition is a DSML

	Conclusion

	ModMap: A Framework for Unifying Model Composition Activities
	An Intuitive Process for Building Model Composition Frameworks
	A Running Example
	A Framework for Model Merging
	Selection of a pair of Mapping and a set of Interpretations
	Customization of the Framework

	Generalization of the Intuitive Process

	The ModMap Framework
	Architecture Overview
	A Language for (meta–)Model Alignment
	Mapping Concern
	Strategy Concern

	A Tool for Building Model Composition Frameworks
	Methodology and Techniques for Operational Semantics
	Operational Semantics for the Mapping Concern
	Operational Semantics for the Strategies Concern
	Operational Semantics for Directives

	ModMap Concrete Syntax

	Conclusion

	Validation and Application
	Generalizing Model Merging
	Existing Tools for Model Merging
	UML Package Merge
	Kompose: A Generic Model Composition Tool
	Match and Merge of Statechart Specifications
	Composition of Orchestration of Services with ADORE

	Capitalization on the Match and Merge Processes
	Application of the Unified Framework
	Model Composition Framework Customization
	Model–Alignment Language for Model Merging
	Mappings and Matches
	A Unique Algorithm for Matching using Mappings
	A Generic Sum Algorithm

	Properties of the Merge Implementation
	Discussion

	Interoperability and Heterogeneous Composition
	Context
	Technicolor Distribution and Broadcasting Devices Management
	Legacy Systems and Translation Issues
	A Semi–Automated Solution for Integrating Legacy Systems
	Application of the Unified Framework
	Model Composition Framework Customization
	Model–Alignment Language for Model Integration
	Design Converters for the Integration of MTEP and XMS
	Generation of Bidirectional Non Invasive Adapters

	Evaluation
	Impact of Automation on Adapters Production
	Comparison of Effort

	Discussion

	Bridging the Gap between Structure and Behavior in the context of SOA
	Service–Oriented Architecture Background
	Design a Car Crash Crisis Management System
	The Crisis Management System
	The Car Crash Crisis Management
	Domain Model Design
	Business Model Design

	Challenges and Synchronization Process
	Identifying Model Divergences
	Naive Synchronization with Merge
	Divergence Detection Mechanism

	Application of the Unified Framework
	Model Composition Framework Customization
	Model–Alignment Language for Model Synchronization
	Proposing and Automating Resolution Strategies

	Propagation of the Resolution Strategies
	Name–Mismatch Strategy
	Concept Enforcing and Concept Usage Strategies

	Discussion

	Conclusion
	A Decomposition of the Definition of Model Composition
	Literature Review and Observations
	Formal Definition of Mappings and Interpretations
	A Framework for Unifying Model Composition Activities
	Validation and Experiments

	Perspectives
	Extension of the Systematic Literature Review
	Influence of Software Development Activities
	Existing Model Composition Approaches Adaptation
	Classification Completeness

	Model Composition as a first–class Entity in MDE
	``Composable'' Relationship in MOF
	High-Order Composition

	Application and Future of ModMap
	Extending the scope of application of ModMap
	Collaborations

	Glossary
	Bibliography
	List of figures
	List of tables

