. Recipe-'s-polytope and P. Its-boundary-polytope, 75 A.3 Search tree generated by algorithm 1, p.75

A. V. Aho and J. E. Hopcroft, The Design and Analysis of Computer Algorithms, p.72, 1974.

P. Amaral, J. Júdice, and H. D. Sherali, A reformulation-linearizationconvexication algorithm for optimal correction of an inconsistent system of linear constraints, Comput. Oper. Res, vol.35, issue.5, p.14941509, 1938.

D. Avis, lrs home page, School of Computer Science, vol.73, p.79, 1993.

D. Avis and D. Bremner, How Good are Convex Hull Algorithms? Computational Geometry: Theory and Applications, pp.265301-72, 1995.

D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra, Discrete Comput. Geom, vol.8, issue.3, p.295313, 1992.

M. L. Balinski, An algorithm for nding all vertices of convex polyhedral sets, p.72, 1959.

A. Ben-tal, L. Ghaoui, and A. Nemirovski, Robust Optimization (Princeton Series in Applied Mathematics), 2009.

C. J. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, vol.2, issue.2 8, p.121167, 1998.

M. Bussieck and M. Lübbecke, The vertex set of a 0/1-polytope is strongly P-enumerable, Computational Geometry, vol.11, issue.2, pp.103109-73, 1998.

N. Chakravarti, Some results concerning post-infeasibility analysis, European Journal of Operational Research, vol.73, issue.1, pp.139143-139180, 1994.
DOI : 10.1016/0377-2217(94)90152-X

M. Chèbre, Y. Cre, and N. Petit, Feedback control and optimization for the production of commercial fuels by blending, Journal of Process Control, vol.20, issue.4, p.441451, 2010.
DOI : 10.1016/j.jprocont.2010.01.008

J. W. Chinneck, Feasibility and Infeasibility in Optimization:: Algorithms and Computational Methods (International Series in Operations Research & Management Science, p.37, 2007.

T. Christof and A. Löbel, PORTA: Polyhedron representation transformation algorithm, p.73, 1997.

O. Daoudi, Zonotopes et zonoïdes : études et applications aux processus de la séparation, 1995.

M. E. Dyer, The Complexity of Vertex Enumeration Methods, Mathematics of Operations Research, vol.8, issue.3, pp.381402-72, 1983.
DOI : 10.1287/moor.8.3.381

M. E. Dyer and L. G. , An algorithm for determining all extreme points of a convex polytope, Mathematical Programming, vol.21, issue.1, pp.8196-72, 1977.
DOI : 10.1007/BF01593771

K. Fukuda, cdd/cdd+ Reference Manual, Institute for Operations Research, vol.73, p.79, 1995.

K. Fukuda and A. Prodon, Double description method revisited, pp.91111-72, 1996.
DOI : 10.1007/3-540-61576-8_77

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.

J. H. Gary, G. E. Handwerk, and M. J. Kaiser, Petroleum Rening: Technology and Economics, Fifth Edition, 2001.

D. Girard and P. Valentin, Zonotopes and Mixtures management. International Series of Numerical Mathematics, p.3, 1989.

H. J. Greenberg, An empirical analysis of infeasibility diagnosis for instances of linear programming blending models, IMA Journal of Management Mathematics, vol.4, issue.2, pp.163210-163247, 1992.
DOI : 10.1093/imaman/4.2.163

E. Hendrix, Finding robust solutions for product design problems, European Journal of Operational Research, vol.92, issue.1, p.2836, 1996.
DOI : 10.1016/0377-2217(95)00082-8

B. Lacolle and P. Valentin, Modélisation géométrique de la faisabilité de plusieurs mélanges. Modélisation mathématique et analyse numérique, pp.313348-313351, 1993.

T. H. Mattheiss, An Algorithm for Determining Irrelevant Constraints and all Vertices in Systems of Linear Inequalities, Operations Research, vol.21, issue.1, pp.247260-72, 1973.
DOI : 10.1287/opre.21.1.247

T. S. Motzkin, H. Raia, G. L. Thompson, and R. M. , 3. The Double Description Method, Contributions to the Theory of Games, volume II, pp.5173-72, 1953.
DOI : 10.1515/9781400881970-004

K. G. Murty, S. N. Kabadi, and R. Chandrasekaran, Infeasibility Analysis for Linear Systems, a survey, Arabian Journal of Science and Technology, vol.25, issue.1C, pp.318-356, 2000.

N. Odeh, Modélisation mathématique des propriétés de mélanges : Bsplines et optimisation avec conditions de forme, 1990.

J. S. Provan, Ecient enumeration of the vertices of polyhedra associated with network LP's, Mathematical Programming, pp.4764-73, 1994.

R. Seidel, Output-size sensitive algorithms for constructive problems in computational geometry, p.72, 1986.

R. Seidel, The upper bound theorem for polytopes: an easy proof of its asymptotic version, Computational Geometry, vol.5, issue.2, p.115116, 1995.
DOI : 10.1016/0925-7721(95)00013-Y

Y. Serpemen, F. W. Wenzel, and A. Hubel, Blending technology key to making new gasolines, Oil and Gas Journal, vol.89, issue.11, 1991.

]. A. Singh, Model-based real-time optimization of automotive gasoline blending operations, Journal of Process Control, vol.10, issue.1, pp.4358-4381, 2000.
DOI : 10.1016/S0959-1524(99)00037-2

K. H. Slaoui, Application des techniques mathématiques à la gestion des mélanges : histosplines et optimisation, 1986.

N. Szafran, Zonoèdres : de la géométrie algorithmique à la théorie de la séparation, 1991.

L. G. Valiant, The Complexity of Enumeration and Reliability Problems, SIAM Journal on Computing, vol.8, issue.3, pp.410421-72, 1979.
DOI : 10.1137/0208032

P. J. Vermeer, C. C. Pedersen, W. M. Canney, and J. S. Ayala, Blendcontrol system all but eliminates reblends for Canadian rener, Oil and Gas Journal, issue.30, p.9574, 1997.

W. Wang, Z. Li, Q. Zhang, and Y. Li, On-line optimization model design of gasoline blending system under parametric uncertainty, 2007 Mediterranean Conference on Control & Automation, 2003.
DOI : 10.1109/MED.2007.4433757

J. White and F. Hall, Gasoline blending optimization cuts use of expensive components, Oil and Gas Journal, vol.90, issue.45, pp.8184-8187, 1992.

Y. Zhang, Results analysis for trust constrained real-time optimization, Journal of Process Control, vol.11, issue.3, p.329341, 2001.
DOI : 10.1016/S0959-1524(99)00072-4

Y. Zhang, D. Monder, and J. Forbes, Real-time optimization under parametric uncertainty: a probability constrained approach, Journal of Process Control, vol.12, issue.3, p.373389, 2002.
DOI : 10.1016/S0959-1524(01)00047-6