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Résumé

Résumé

Cette theése présente quelques résultats d’analyse sur les espaces LP le plus souvent non commu-
tatifs. La premiere partie exhibe de large classes de contractions sur des espaces LP non commutatifs
qui vérifient I'analogue non commutatif de la conjecture de Matsaev. De plus, cette partie fournit
une comparaison entre certaines normes apparaissant naturellement dans ce domaine. La deuxieme
partie traite des fonctions carrées. Le premier résultat principal énonce que si T est un opérateur
R-Ritt sur un espace LP alors les fonctions carrées associées sont équivalentes. Le second résultat
principal est une caractérisation de certaines estimations carrées utilisant les dilatations. La troisiéme
partie de cette these introduit de nouvelles fonctions carrées pour les opérateurs de Ritt définis sur
des espaces LP non commutatifs. Le résultat principal est qu’en général ces fonctions carrées ne sont
pas équivalentes. Cette partie contient aussi un résultat d’équivalence entre la norme usuelle et une
certaine fonction carrée. La quatriéme partie introduit un analogue non commutatif de I'algebre de
Figa-Talamanca-Herz A,(G) sur le prédual naturel de 'espace d’opérateurs 9, o, des multiplicateurs

de Schur completement bornées sur I’espace de Schatten SP.
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Espaces LP non commutatifs, espaces de Schatten, conjecture de Matsaev, multiplicateurs de Schur,
dilatations, fonctions carrées, opérateurs de Ritt, algebres de Figa-Talamanca-Herz, espaces d’opéra-

teurs.
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Estimates of norms in noncommutative LP-spaces and applications

Abstract

This thesis presents some results of analysis in LP-spaces, especially often noncommutative. The
first part exhibits large classes of contractions on noncommutative LP-spaces which satisfy the noncom-
mutative analogue of Matsaev’s conjecture. Moreover, this part gives a comparison between various
norms arising naturally from this field. The second part is devoted to square functions. The first
main result states that if 7" is an R-Ritt operator on a LP-space then the involved square functions
are equivalent. The second principal result is a characterization of some square functions estimates
in terms of dilations. In the third part of this thesis, we introduce some new square functions for
Ritt operators defined on noncommutative LP-spaces. The main result is that these square functions
are generally not equivalent. This part also contains a result of equivalence between the usual norm
and some special square function. The fourth part introduces a noncommutative analogue of the
Figa-Talamanca-Herz algebra A,(G) on the natural predual of the operator space M, o, of completely
bounded Schur multipliers on the Schatten space SP.
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Non-commutative LP spaces, Schatten spaces, Matsaev’s conjecture, Schur multipliers, dilations,
square functions, Ritt operators, Figa-Talamanca-Herz algebras, operator spaces.
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Introduction générale

1 Introduction

Un des plus importants changements de point de vue de notre compréhension du monde physique
est sans doute apparu avec les travaux de W. Heisenberg. Ce dernier a montré que ’on peut davantage
comprendre la nature en substituant des matrices aux fonctions dans les théories mathématiques de
celle-ci. Contrairement aux fonctions, les matrices ne commutent pas en général. Cette ‘mécanique
matricielle’ a attiré un certain nombre de mathématiciens qui ont développé les mathématiques néces-
saires a ce changement de paradigme. Cette démarche générale et importante a donné naissance aux
mathématiques non commutatives.

Deux d’entre eux, F. Murray et J. von Neumann ont alors développé une théorie de I'intégration
non commutative dans une remarquable série d’articles. Ils ont remplacé les algebres de fonctions qui
apparaissent naturellement dans la théorie de 'intégration classique par une certaine classe d’algebres
d’opérateurs bornées sur un espace de Hilbert. Plus tard, on a nommé ces dernieres, algebres de von
Neumann.

A la suite de ces travaux et sous 'impulsion de J. Dixmier, I. Segal et d’autres, une théorie des
espaces LP non commutatifs se développa naturellement et rapidement. Récemment, les techniques
matricielles et la théorie des espaces d’opérateurs ont redynamisé ce domaine.

Dans cette théorie, on utilise une trace 7 sur une algebre de von Neumann M a la place de I'inté-
grale. Les espaces LP non commutatifs les plus simples sont les classes de Schatten, qui correspondent
au cas ou M est lalgebre B (62) de tous les opérateurs bornés sur 'espace de Hilbert ¢2 et ot 7
est la trace usuelle Tr. Les espaces LP associés sont alors notés SP et chacun d’entre eux s’identifie a
'ensemble des opérateurs = de B(¢?) tels que ||z s» = (Tr (x*x)g)% < oo. En utilisant une base ortho-
normale de £2, on peut voir ces derniers comme des matrices infinies. Ces espaces sont intensivement
utilisés dans cette these. Notons au passage qu’on dit qu'une application linéaire T' entre espaces L

non commutatifs est complétement bornée si T @ Idgr est bornée. Autrement dit, une application com-
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pletement bornée est une application qui reste bornée quand on remplace les scalaires par les matrices
de SP. Ces applications sont les applications naturelles de la théorie des espaces d’opérateurs.

Cette théorie se propose premierement de développer des concepts similaires a ceux de la théorie
des espaces LP classiques, i.e commutatifs. Le chapitre 4 illustre bien ce point. Souvent, les deux
situations se comportent de maniere similaire comme par exemple dans le chapitre 2. Cependant,
le cas non commutatif peut se comporter de maniere tres différente du cas classique amenant des
constructions mathématiques nouvelles. La comparaison des résultats de dilatation du chapitre 1 avec
le cas commutatif permet de bien comprendre cette particularité. De plus, dans ce contexte, il est
parfois assez instructif de comparer directement les situations commutatives et non commutatives
comme dans la section 3 du chapitre 1. Enfin, cette théorie apporte aussi des problemes d’un type
nouveau sans équivalent dans le cas commutatif. Le chapitre 3 de cette these illustre parfaitement ce
fait.

2 Contenu de la thése

Cette these est constituée de quatre chapitres, rédigés en anglais. Le premier chapitre de la these
présente un article intitulé ‘On Matsaev’s conjecture for contractions on noncommutative LP-spaces’.
Ce texte a été accepté dans Journal of Operator Theory. Le second chapitre est un travail en colla-
boration avec C. Le Merdy intitulé ‘Dilation of Ritt operators on LP-spaces’. Le troisiéme chapitre
intitulé ‘Square functions for Ritt operators on noncommutative LP-spaces’ a été chronologiquement
le dernier travail de cette these. Le dernier chapitre s’intitule ‘Noncommutative Figa-Talamanca-Herz
algebras for Schur multipliers’ et a été publié dans Integral Equations and Operator Theory en 2011.
Le reste de cette section est constituée des descriptions détaillées de chaque chapitre (chacun d’eux

commence par une description analogue en anglais).

2.1 Chapitre 1

Estimer les normes des fonctions d’opérateurs est une tache essentielle dans la théorie des opéra-
teurs. Dans ce domaine, V. V. Matsaev a énoncé la conjecture suivante en 1971, voir [81]. Pour tout
1 < p < o0, désignons par S : P — (P opérateur de décalage a droite défini par S(ag,ai,asz,...) =

(O,ao,al,ag, .. )

Conjecture 2.1 Supposons 1 < p < oo, p # 2. Soit  un espace mesuré et soit T : LP(2) — LP(Q)

une contraction. Pour tout polynéme complexe P, on a

HP(T)HLP(Q)—)LP(Q) < HP(S)H@ID—wp‘ (1)

Il est facile de voir que (1) est vraie pour p = 1 et p = co. De plus, en utilisant la transformation de

Fourier, il est clair que pour p = 2, (1) est une conséquence de l'inégalité de von Neumann. Notons enfin

10
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que, treés récemment et apres la rédaction de ce chapitre, S. W. Drury [34] a trouvé un contre-exemple
pour p = 4 en utilisant 'informatique.

Pour les autres valeurs de p, le probléme de la validité de (1) pour toute contraction est ouvert.
I1 est bien connu que l'inégalité (1) est vraie pour toute contraction positive, plus généralement pour
tous les opérateurs T': LP(Q) — LP(Q?) qui admettent un majorant contractant (i.e. il existe une
contraction positive T vérifiant |T(f)| < T(|f])). Cela vient du fait que ces opérateurs admettent une
dilatation isométrique. On renvoie le lecteur a [3], [24], [58], [82] et [89] pour plus d’information sur
cette question.

En 1985, V.V. Peller [90] a introduit une version non commutative de la conjecture de Matsaev
pour les espaces de Schatten SP = SP (62). Rappelons que les éléments de SP peuvent étre vus comme
des matrices infinies indexées par N x N. Alors on définit ’application linéaire o: SP — SP comme le

décalage ‘du NO au SE’ qui envoie toute matrice

agp apr a2 - 0 0 O
alp @11 a2 - 0 apo apr ---

sur . (2)
ay a1 Q2 - 0 aipp an

Soit SP(SP) l'espace de toutes les matrices [aij]i ;>0 & coefficients a;; dans SP, qui représentent un
élément de l’espace de Schatten SP (52 ®o 62). Le produit tensoriel algébrique SP ® SP peut étre vu
comme un sous-espace dense de SP(SP) de maniére naturelle. Alors I’application donnée par (2) sur
SP(SP) est une isométrie, qui est 'unique extension de o ® Isr a 'espace SP(SP) (voir la section 2 du
chapitre 1 pour plus de détails sur ces représentations matricielles). La question de V.V. Peller est la

suivante.

Question 2.2 Supposons 1 < p < oo, p # 2. Soit T: SP — SP une contraction sur l’espace de
Schatten SP. A-t-on
1P(T)]| < |[P(o) ® Idsy

Sp—s Sp ||Sp(sp)—>sp(sp) (3)

pour tout polynéme complexe P ?

Peller a observé que l'inégalité (3) est vraie quand T est une isométrie ou quand 'application
T : SP — SP est définie par T'(x) = axb, ot a: £ — % et b : £ — (2 sont des contractions.
Les espaces de Schatten SP sont les exemples de base d’espaces LP non commutatifs. Il est alors

naturel d’étendre le probleme de Peller a ce contexte plus large. Cela mene a la question suivante.

Question 2.3 Supposons 1 < p < 0o, p # 2. Soit M une algébre de von Neumann semifinie et soit

LP(M) Uespace LP non commutatif associé. Soit T : LP(M) — LP(M) une contraction. A-t-on

HP(T)||LP(M)—>LP(M) < |’P(0) ®IdSpHSP(SP)—>SP(SP) (4)

11
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pour tout polyndome complexe P ?

Comme dans le cas commutatif, il est facile de voir que I'inégalité (4) est vraie quand p =1, p = 2
ou p = oco. Le but principal de ce chapitre est d’exhiber de large classes de contractions sur des espaces
LP non commutatifs qui vérifient I'inégalité (4) pour tout polynéme complexe P. Le théoréme suivant

réunit certains de nos résultats principaux.

Theorem 2.4 Supposons 1 < p < oo. Les applications suivantes vérifient (4) pour tout polynome

complexe P.

1. Un multiplicateur de Schur My : SP — SP induit par un multiplicateur de Schur M : B(€2) —

B((?) contractant associé a une matrice réelle A.

2. Un multiplicateur de Fourier My : LP(VN(G)) — LP(VN(G)) induit par un multiplicateur de
Fourier contractant My : VN(G) — VN(G) associé a une fonction a valeurs réelles t: G — R,

dans le cas ou G est un groupe discret moyennable.

3. Un multiplicateur de Fourier My : LP(VN(F,)) — LP(VN(F,)) induit par un multiplicateur de
Fourier unital complétement positif My : VN(IF,,) — VN(F,,) associé d une fonction a valeurs

réelles t : By, — R, ot F,, est le groupe libre a n générateurs (1 < n < oo).

Ces résultats reposent sur des théoréemes de dilatation que nous allons maintenant énoncer. De

plus, ces théorémes sont basés sur des constructions dues & E. Ricard [104].

Theorem 2.5 Soit My : B((?) — B({?) un multiplicateur de Schur unital complétement positif
associé a une matrice réelle A. Alors il existe une algébre de von Neumann hyperfinie M munie d’une
trace semifinie normale fidéle, un x-automorphisme U : M — M wunital préservant la trace et un

x-monomorphisme J : B(£?) — M normal unital préservant les traces tels que
(My)k = EU*J

pour tout entier k >0, ou E : M — B(£2) est lespérance conditionnelle fidéle normale préservant la

trace canonique associée a J.

Theorem 2.6 Soit G un groupe discret. Soit My : VN(G) — VN(G) un multiplicateur de Fourier
unital complétement positif associé a une fonction da valeurs réelles t : G — R. Alors il existe une
algébre de von Neumann munie d’une trace finie normale fidéle, un x-automorphisme U : M — M
unital préservant la trace et un x-monomorphisme J : VN(G) — M normal unital préservant les traces

tels que

(My)* = EU*J

12
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pour tout entier k > 0, ou B : M — VN(G) est l'espérance conditionnelle fidéle normale préservant
la trace canonique associée a J. De plus, si G est moyennable ou si G =T, (1 <n < o0), lalgébre de

von Neumann M a la propriété QWEP.

Différentes normes sur I'espace des polynémes complexes apparaissent naturellement en examinant
la conjecture de Matsaev et le probleme de Peller, et il est intéressant d’essayer de les comparer. Si
1 < p < oo, notons que 'espace de toutes les matrices diagonales de SP peut étre identifié avec ¢P.
Avec ce point de vue, 'opérateur de décalage S : /P — (P coincide avec la restriction de ¢ : SP — SP

aux matrices diagonales. Ceci implique immédiatement que

||P(S)H£P—>ZP < ||P(0)||SP—>SP < ||P(U) ®Id5’p”5‘p(5‘p)—>5‘p(5’p)

pour tout polynéme complexe P. On montrera le résultat suivant, qui contredit une conjecture de
Peller [90, Conjecture 2].

Theorem 2.7 Supposons 1 < p < oo, p # 2. Alors il existe un polynome complexe P tel que
[P o —pp < [1P(0) @ Idsr| gy (50)— 0 (50)-

Pour compléter cette investigation, on prouvera que

||P(J)’|SP—>SP = HP(O-) ® IdSp||Sp(Sp)—>Sp(Sp) = HP(S) ® IdSpH@(Sp)—Mp(SP) (5)

pour tout P (la premiére de ces inégalités étant due a E. Ricard).

Ce chapitre est organisé de la maniere suivante. Dans la section 2, on fixe certaines notations, on
donne des informations sur la notion clé d’application completement bornée sur un espace LP non
commutatif, on prouve la seconde inégalité de (5) et on donne certains résultats préliminaires. Dans
la section 3, on montre que certains multiplicateurs de Fourier sur LP(R) et ¢ sont bornés mais pas
complétement bornés et on prouve le théoréme 2.7 et la premiere égalité de (5). La section suivante 4
est consacrée aux classes de contractions qui vérifient 'inégalité de Matsaev non commutative (4) pour
tout polynéme complexe P. En particulier, on prouve les théorémes 2.5 et 2.6. Dans la section 5, on
considere un analogue naturel de la question 2.3 pour les Cy-semigroupes de contractions. Finalement
dans la derniére section 6, on exhibe des polynémes P qui vérifient toujours (4) pour toute contraction
T.

13
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2.2 Chapitre 2

Soit (£2, ;) un espace mesuré et soit 1 < p < oco. Pour tout opérateur borné 7': LP(Q2) — LP(9),

considérons la ‘fonction carrée’

: (6)

Lp

(gm’f(m) -1’

|zl = |

définie pour tout x € LP(Q). De telles quantités apparaissent fréquemment dans ’analyse des opé-
rateurs sur des espaces LP. Elles remontent au moins a [109], ou elles sont utilisées en lien avec les
fonctions carrées de martingales pour étudier des semigroupes de diffusion et leurs contreparties dis-
cretes. Des fonctions carrées similaires pour les semigroupes continus ont joué un roéle clé dans le
récent développement du calcul fonctionnel H* et de ses applications (voir en particulier le papier
[52], I'article de synthese [67] et leurs références).

Soit (ex)k>1 une suite de variables de Rademacher indépendantes sur un certain espace probabilisé
Q. Soit X un espace de Banach. On définit Rad(X) C L?(Q, X) comme étant 1’adhérence du sous-
espace engendré par {e;®x : k > 1, x € X} dans 'espace de Bochner L?(, X). Les deux définitions

suivantes sont fondamentales pour ce chapitre. La premiere est celle de la R-bornitude.

Definition 2.8 On dit qu’un ensemble F C B(X) est R-borné s’il existe une constante C' > 0 telle

que pour toute familles finies Ty,..., T, de F et x1,...,z, de X, on ait

n
Zak@)xk

k=1

n
Z Er X Tk(l'k)
k=1

<C
Rad(X)

Rad(X)

La seconde est celle d’un analogue discret de la propriété d’analyticité pour les semigroupes continus.

Definition 2.9 On dit qu’un opérateur T' € B(X) est un opérateur de Ritt si les deuz ensembles
{T" : n >0} et {n(T" ~T" Y in> 1} (7)
sont bornés. De méme, on dit que T est un opérateur R-Ritt si les deux ensembles de (7) sont R-bornés.

L’article [69] contient une preuve du fait que si 7" est a la fois une contraction positive et un opéra-
teur de Ritt, alors il vérifie une estimation uniforme ||z||71 < ||z||z» pour € LP(2). Cette estimation
et d’autres du méme genre ménent a des inégalités maximales fortes pour cette classe d’opérateurs
(voir aussi [70]). De plus, dans l'article [68], on trouve une étude des opérateurs T': LP(Q2) — LP(Q)
tels que T et son opérateur adjoint T%: LP" (Q) — LP"(Q) admettent tous les deux des estimations

uniformes
lzllzy S llzllze et ylle-1 < lyllper (8)

pour z € LP(Q) et y € LP (). (Ici p* = -E5 est le nombre conjugué de p.) Il est démontré que (8)

14
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implique que T' est un opérateur R-Ritt et que (8) est équivalent & ce que T ait un calcul fonctionnel
H®° borné par rapport a un domaine de Stolz du disque unité de sommet 1.

Le présent chapitre est une suite de ces investigations. Notre principal résultat est le théoréme
suivant. Il donne une caractérisation de (8) en termes de dilatations. On montre que (8) est vraie si et
seulement si T est R-Ritt et s’il admet une dilatation grossiere (loose dilation) i.e. il existe un autre
espace mesuré (€, i), deux applications bornées J: LP() — LP(Q) et Q: LP(Q) — LP(£2), ainsi qu'un

isomorphisme U: LP(Q) — LP(Q) tels que I'ensemble {U™ : n € Z} soit borné et

T =QU™J, n3>0.

Theorem 2.10 Supposons 1 < p < oo. Soit T: LP(Q2) — LP(Q2) un opérateur de Ritt. Les assertions

sutvantes sont équivalentes.

(i) L’opérateur T et son adjoint T*: LP"(Q) — LP"(Q) admettent tous les deux des estimations
uniformes

lellza < llzlle  and  flylir-1 S llyller
pour x € LP(Q) ety € LP" (Q).

(ii) L’opérateur T est R-Ritt et admet une dilatation grossiére.

Ce résultat sera établi a la section 4. Il devrait étre vu comme un analogue discret du résultat principal
de [43].

Dans la section 3, on considére des variantes de (6) de la maniére suivante. Supposons que
T: LP(Q) — LP(Q) soit un opérateur de Ritt. Alors I — T est un opérateur sectoriel et on peut

définir ses puissances fractionnaires (I —7)* pour tout o > 0. Alors on consideére

+o0 5
(Z k2a71|Tk71(I . T)ax|2) (9)
k=1

2ll7.a = ‘
Lp

pour tout x € LP(Q2). Notre second résultat principal est le théoréme suivant qui affirme que quand T

est un opérateur R-Ritt, alors les fonctions carrées || - |7, sont deux a deux équivalentes.

Theorem 2.11 Supposons 1 < p < oo. Soit T: LP(Q2) — LP() un opérateur R-Ritt. Alors pour tous

a,B >0, on a une équivalence

2t =~ 2lrs, @€ LP(Q).

Ce résultat devrait étre vu comme un analogue discret de [66, Théoréme 1.1]. On le prouve ici comme

une étape clé de notre caractérisation de (8) en termes de dilatations.
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Ce chapitre est organisé de la maniere suivante. La section 2 contient principalement des résultats
préliminaires. La section suivante 3 contient une preuve du théoréme 2.11. Dans la section 4, on
prouve le théoreme 2.10. La section 5 est consacrée a des compléments sur les opérateurs définis sur
un espace LP et leurs propriétés de calcul fonctionnel, en lien avec les applications p-complétement
bornées. Finalement, la section 6 contient des généralisations aux opérateurs T: X — X sur des
espaces de Banach généraux X. On donne une attention particuliere aux espaces LP non commutatifs,
dans 'esprit de [52].

2.3 Chapitre 3

Soit M une algebre de von Neumann semifinie munie d’une trace semifinie fidéle normale. Pour
tout 1 < p < oo, on note LP(M) l'espace LP associé (non commutatif). Soit 7" un opérateur borné sur

LP(M). Considérons la ‘fonction carrée’ suivante

+oo % —+o00 %
lellz = inf{H(Z )| (i)
k=1 k=1

sil<p<2et

+
Lr

Cuptop = k2 (TF (@) = TF (@) V &k > 1} (10)
Lp

)

Lr

|zl = max{H(iok ’Tk(:c) _ Tk,l(m)‘z ) 2
k=1

I *
(;1 k ’ (T*(2) = T4 }(2))

2 4
Vb

si 2 < p < 00, définie pour tout = € LP(M). De telles quantités ont été introduites dans [68] et étudiées

dans cet article et dans le chapitre 2. Notons en effet que dans le cas commutatif, les fonctions carrées
(10) et (11) se réduisent & (6). Pour tout v € ]0, %], soit B, l'intérieur de I’enveloppe convexe de 1
et du disque unité D(0,sin~y). Supposons 1 < p < oo. Soit 7' un opérateur de Ritt avec Ran(I — 7))
dense dans LP(M) admettant un calcul fonctionnel H*(B,) borné pour un certain v € |0, 5[, i.e. il
existe un angle v € ]0, 7| et une constante positive K telle que ||g0(T)||Lp(M)_>Lp(M) < Kol ge(s,)

pour tout polynéme complexe ¢. Un résultat de [68] dit essentiellement que

[zl o any = l2llry, @€ LP(M) (12)

(voir aussi la remarque 6.4 du chapitre 2). Maintenant, considérons les ‘fonctions carrées colonne et
ligne’ suivantes
Lr

2>§
(13)

définies pour tout z € LP(M). Supposons 1 < p < 2. Dans ce contexte, si x € LP(M), il est naturel de

400 2 %
Hl.HT,Ql = H(Zk"f’“(m) —Tk—l(x)‘ )
k=1

+00 %
et HmHTW’l = H ( Z k ’ (Tk(g;) — Tk’—l(x))
k=1

Lp

chercher des conditions suffisantes pour trouver une décomposition x = 1 + z telle que ||z |71 et
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|z2||7,r1 soient finies. Le premier résultat principal de ce chapitre est le théoreme suivant. Il renforce
I'équivalence précédente (12) dans le cas ou 7" admet en fait un calcul fonctionnel H*(By) complé-
tement borné, i.e. il existe une constante positive K telle que |’(’0(T)ch,LP(M)—>LP(M) < Kol ge(s,)

pour tout polynéme complexe ¢.

Theorem 2.12 Supposons 1 < p < 2. Soit T un opérateur de Ritt sur LP(M) avec Ran(I —T) dense
dans LP(M). Supposons que T admette un calcul fonctionnel H*(By) complétement borné pour un

certain y € |0, 5[. Alors on a
Il oy ~ inf {1 llzen + 22l @ =21 +22},  xe€ L2(M).

Dans ce contexte, il est naturel de comparer les deux quantités de (13). Le second résultat principal
de ce chapitre est le théoréme suivant. Il affirme qu’en général, ‘les fonctions carrées colonne et ligne’

ne sont pas équivalentes.

Theorem 2.13 Supposons 1 < p < oo, p # 2. Alors il existe un opérateur de Ritt T sur l’espace de
Schatten SP, avec Ran(I —T') dense dans SP, admettant un calcul fonctionnel H*(B.) complétement

borné pour un certain vy € |0, %[ tel que

sup llzll7c.1 s xeSP=00if2<p<ooetsup llzllzr.1 rreSPr=0ifl<p<2. (14)
[Ed |t [ ]l7e,0

De plus, le méme résultat est vrai avec les roles de || - |71 et || - ||7r1 échangés.

Pour un opérateur de Ritt admettant un calcul fonctionnel H*°(B,) complétement borné, il semble
aussi intéressant, au vu de I’équivalence (12), de comparer ces deux quantités avec la norme usuelle
| - le(ary- Si T est un opérateur de Ritt avec Ran(/ — T') dense dans LP(M) admettant un calcul

fonctionnel H*(B,) borné pour un certain y € ]0, 5[, I'équivalence (12) implique que

lzllzeary S NzllTenr et lzllzeary S lzllre

sil<p<2et

zlrer S @lleany et Nzl S I@lliean

si 2 < p < o0, pour tout © € LP(M). Le dernier résultat principal de ce chapitre est que, excepté si

p = 2, ces estimations ne peuvent pas étre renversées :

Theorem 2.14 Supposons 2 < p < oo (resp. 1 < p < 2). Il existe un opérateur de Ritt T sur
Uespace de Schatten SP, avec Ran(I — T') dense dans SP, admettant un calcul fonctionnel H*(B.,)

complétement borné avec v € |0, %[ tel que

Sup{ lzlls» : xESp}:oo (resp. Sup{”xHT’c’l: xGSp}:oo>.

z]l7,e1 ||| 5
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De plus, le méme résultat est vrai avec || - ||7,c1 remplacé par || - || 71-

Ce chapitre est organisé de la maniére suivante. La section 2 donne une bréve présentation des
espaces LP non commutatifs et des opérateurs de Ritt et on introduit les notions d’opérateurs Col-Ritt
et Row-Ritt et de calcul fonctionnel H*°(B,) complétement borné qui sont utiles pour ce chapitre. La
section 3 suivante contient principalement des résultats préliminaires concernant les opérateurs Col-
Ritt et Row-Ritt. La section 4 est consacrée a prouver les théorémes 2.13 and 2.14. Dans la section
5, on présente une preuve du théoreme 2.12. On termine cette section en donnant certains exemples

naturels auxquels ce résultat peut étre appliqué.

2.4 Chapitre 4

L’algebre de Fourier A(G) d’un groupe localement compact G fut introduite par P. Eymard dans
[39]. L’algebre A(G) est le prédual de 'algebre de von Neumann VN(G) du groupe G. Si G est
abélien de groupe dual @, alors la transformation de Fourier induit un isomorphisme isométrique de
L' (CA?) sur A(G). Dans [41], A. Figa-Talamanca a montré que, si G est abélien, le prédual naturel de
lespace de Banach des multiplicateurs de Fourier bornés sur LP(G) est isométriquement isomorphe
a un espace Ap(G) de fonctions continues sur G. De plus, on a Ay(G) = A(G) isométriquement.
Dans [39] et [47], C. Herz a prouvé que l'espace A,(G) est une algebre de Banach pour le produit
usuel des fonctions (voir aussi [91]). Donc Ap(G) est un analogue ‘LP’ de l'algebre de Fourier A(G).
Ces algebres sont appelées algebres de Figa-Talamanca-Herz. Dans [105], V. Runde a introduit un
espace d’opérateurs analogue OA,(G) de 'algebre A,(G). L’espace de Banach sous-jacent & OA,(G)
est différent de I’espace de Banach A,(G). De plus, il est possible de montrer (en utilisant une variante
convenable de [64, Théoreme 5.6.1]) que OA,(G) est le prédual naturel de l'espace d’opérateurs des
multiplicateurs de Fourier complétement bornés. On renvoie a [28], [29], [63] et [106] pour d’autres
espaces d’opérateurs analogues de A,(G).

Le but de ce chapitre est d’introduire des analogues non commutatifs de ces algebres dans le
contexte des multiplicateurs de Schur completement bornés sur les espaces de Schatten SP. Rappelons
qu’une application T': SP — SP est completement bornée si Idg» ® T est borné sur SP(SP). Si 1 <
p < oo, l'espace d’opérateurs C'B(SP) des applications complétement bornées de SP dans lui-méme
est naturellement un espace d’opérateurs dual. En effet, on a un isomorphisme isométrique C'B(S?) =
(SP ®SP° ) * ot ® désigne le produit tensoriel projectif d’espace d’opérateurs. De plus, on prouvera que le
sous-espace M, , des multiplicateurs de Schur complétement bornés est un sous-ensemble commutatif
maximal de CB(SP). Par conséquent, le sous-espace M, o, est préfaiblement fermé dans CB(S?). Donc
M, est naturellement un espace d’opérateurs dual avec M, 4, = (SPRSP" /(M) 1) - Si on désigne
par i: SP&8P" — S Papplication A ® B — A x B, ot * désigne le produit de Schur, on montrera
que (M, )1 = Kere,. Maintenant, on définit l'espace d’opérateurs R, comme l'espace Im 1),
muni de la structure d’espace d’opérateurs de SPRS?" /Ker ¥p. On a completement isométriquement

(iﬁp’cb)* = IM, . De plus, par définition, on a une inclusion complétement contractante R, ., C S L
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Rappelons que les éléments de S' peuvent étre vus comme des matrices infinies. Notre principal

résultat est le théoréme suivant.

Theorem 2.15 Supposons 1 < p < oo. Le prédual R, de lespace d’opérateurs My, o, muni du

produit matriciel usuel ou du produit de Schur est une algébre de Banach complétement contractante.

Dans [85] et [111], S. K. Parott et R. S. Strichartz ont montré que si 1 < p < oo, p # 2 tout
multiplicateur de Fourier isométrique sur LP(G) est un multiple scalaire d’un opérateur induit par une
translation. Dans [41], A. Figa-Talamanca a montré que ’espace des multiplicateurs de Fourier bornés
est 'adhérence pour la topologie faible d’opérateurs de ’espace vectoriel engendré par ces opérateurs.

On donne des analogues non commutatifs de ces deux résultats.

Theorem 2.16 1. Supposons 1 < p < oo, p # 2. Alors tout multiplicateur de Schur isométrique

sur SP est défini par une matrice [a;b;] avec a;,b; € T.

2. Supposons 1 < p < oo. L’espace M, des multiplicateurs de Schur bornés sur SP est 'adhérence
de l’espace vectoriel engendré par les multiplicateurs de Schur isométriques pour la topologie

d’opérateurs faible.

Ce chapitre est organisé de la maniére suivante. Dans la section 2, on fixe certaines notations et on
montre que les préduaux naturels de 9, et M, ., admettent des réalisations concretes comme espace
de matrices. On donne aussi des propriétés élémentaires de ces espaces. Dans la section 3, on montre
que le prédual naturel R, o de 'espace d’opérateurs R, , des multiplicateurs de Schur completement
bornés, muni du produit matriciel, est une algebre de Banach complétement contractante. Dans la
section 4, on se tourne vers le produit de Schur. On observe que le prédual naturel R, de I'espace de
Banach 91, des multiplicateurs de Schur bornés est une algebre de Banach pour le produit de Schur. De
plus, on montre que 'espace R, ;, muni du produit de Schur est une algebre de Banach complétement
contractante. Dans la derniére section 5, on détermine les multiplicateurs de Schur isométriques sur S?
et on prouve que 'espace M, est 'adhérence pour la topologie faible d’opérateurs de I’espace vectoriel

engendré par les multiplicateurs isométriques.
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Chapitre 1

On Matsaev’s conjecture for contractions on

noncommutative LP-spaces

1 Introduction

To estimate the norms of functions of operators is an essential task in Operator Theory. In this
subject, V. V. Matsaev stated the following conjecture in 1971, see [81]. For any 1 < p < oo, let
2, P denote the right shift operator defined by S(ag, a1, as,...) = (0, a9, a1,as9,...).

Conjecture 1.1 Suppose 1 < p < oo, p # 2. Let Q be a measure space and let LP(2) EIR LP(Q) be a

contraction. For any complex polynomial P, we have
HP(T)HLP(Q)—>LP(Q) < HP(S)H@p—)@p‘ (1'1)
It is easy to see that (1.1) holds true for p = 1 and p = oco. Moreover, by using the Fourier
transform, it is clear that for p = 2, (1.1) is a consequence of von Neumann'’s inequality. Finally, very

recently and after the writing of this chapter, S. W. Drury [34] found a counterexample in the case

p = 4 by using computer.

For all other values of p, the validity of (1.1) for any contraction is open. It is well-known that
(1.1) holds true for any positive contraction, more generally for all operators LP(2) Lo (©2) which
admit a contractive majorant (i.e. there exists a positive contraction T satisfying |T'(f)| < T(|f])).
This follows from the fact that these operators admit an isometric dilation. We refer the reader to [3],

[24], [58], [82] and [89] for information and historical background on this question.

In 1985, V.V. Peller [90] introduced a noncommutative version of Matsaev’s conjecture for Schatten

spaces SP = SP(£?). Recall that elements of SP can be regarded as infinite matrices indexed by N x N.
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Thus we define the linear map S? % SP as the shift ‘from NW to SE’ which maps any matrix

app apr Qg2 - 0O 0 0
aipp a1 aig  c - 0 apo apr ---

to . (1.2)
asy a1 Q2 - 0 aip an

Let SP(S?) be the space of all matrices [a;;]; j>0 with entries a;; in SP, which represent an element of
the bigger Schatten space SP(¢? @9 £?). The algebraic tensor product SP ® SP can be regarded as a
dense subspace of SP(SP) in a natural way. Then the mapping on SP(SP) given by (1.2) is an isometry,
which is the unique extension of o ® Isr to the space SP(SP). (See Section 2 below for more details

on these matricial representations.) Peller’s question is as follows.

Question 1.2 Suppose 1 < p < oo, p # 2. Let SP T, SP be a contraction on the Schatten space SP.

Do we have
HP(T)HSP—>SP < HP(U) ®Idsp||,5‘p(5p)—>sz7(sz7) (1'3)

for any complex polynomial P?

Peller observed that (1.3) holds true when 7' is an isometry or when SP L, S is defined by
T(x) = axb, where ¢ % ¢% and 2 2, 2 are contractions.
The Schatten spaces SP are basic examples of noncommutative LP-spaces. It is then natural to

extend Peller’s problem to this wider context. This leads to the following question.

Question 1.3 Suppose 1 < p < oo, p # 2. Let M be a semifinite von Neumann algebra and let
LP(M) be the associated noncommutative LP-space. Let LP(M) EIN LP(M) be a contraction. Do we

have
HP(T)HLP(M)—)LP(M) < ”P(U) ®IdSpHSP(SP)—>SP(SP) (1'4)
for any complex polynomial P?

As in the commutative case, it is easy to see that (1.4) holds true when p =1, p =2 or p = oco. The
main purpose of this article is to exhibit large classes of contractions on noncommutative LP-spaces
which satisfy inequality (1.4) for any complex polynomial P. The next theorem gathers some of our

main results.

Theorem 1.4 Suppose 1 < p < co. The following maps satisfy (1.4) for any complex polynomial P.

1. A Schur multiplier S° 24 SP induced by a contractive Schur multiplier B () Ma, B (6?)

assoctated with a real-valued matriz A.
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2. A Fourier multiplier LP(VN(G)) 2, LP(VN(Q)) induced by a contractive Fourier multiplier
VN(G) M, VN(G) associated with a real valued function G L R, in the case where G is an

amenable discrete group G.

3. A Fourier multiplier LP(VN(F,,)) A, LP(VN(F,,)) induced by a unital completely positive

Fourier multiplier VN(F,,) M, VN(F,,) associated with a real valued function F, - R, where

F,, is the free group with n generators (1 < n < o).

The proof of these results will use dilation theorems that we now state. Moreover, these theorems

rely on constructions dues to E. Ricard [104].

Theorem 1.5 Let B((?) Ma, B(£?) be a unital completely positive Schur multiplier with a real-valued
matriz A. Then there exists a hyperfinite von Neumann algebra M equipped with a semifinite normal
faithful trace, a unital trace preserving x-automorphism M v, M, a unital trace preserving one-to-one

normal *-homomorphism B(£?) L M such that
(M)* =EU*J

for any integer k > 0, where M E, B(Ez) 1s the canonical faithful normal trace preserving conditional

expectation associated with J.

Theorem 1.6 Let G be a discrete group. Let VN(QG) M, VN(G) be a unital completely positive
Fourier multiplier associated with a real valued function G L R. Then there exists a von Neumann
algebra M equipped with a faithful finite normal trace, a unital trace preserving x-automorphism M v,

M, a unital normal trace preserving one-to-one x-homomorphism VN(G) L M such that,
(My)k =RU*J

for any integer k > 0, where M L VN(G) is the canonical faithful normal trace preserving conditional
expectation associated with J. Moreover, if G is amenable or if G = F,, (1 < n < o), the von Neumann

algebra M has the quotient weak expectation property.

Various norms on the space of complex polynomials arise from Matsaev’s conjecture and Peller’s
problem, and it is interesting to try to compare them. If 1 < p < oo, note that the space of all diagonal
matrices in SP can be identified with ¢P. In this regard, the shift operator 5, ¢ coincides with the

restriction of SP % SP to diagonal matrices. This readily implies that

HP(S)H@_W, S HP(U)||SP—>SP < |[P(o) ®IdSpHsp(sp)—>sp(sp)

for any complex polynomial P. We will show the following result, which disproves a conjecture due
to Peller [90, Conjecture 2].

23



Chapitre I. On Matsaev’s conjecture for contractions on noncommutative LP-spaces

Theorem 1.7 Suppose 1 < p < oo, p # 2. Then there exists a complex polynomial P such that

1P gp—sr < 1P(0) © Tdso| gy 50— 5050y

To complete this investigation, we will also show that

HP(U)HSP—>sp = [|[P(o) ® Id5p|‘SP(SP)—>SP(SP) =|P(s)® Idsp||fp(57’)—>€p(5“’) (1.5)

for any P (the first of these equalities being due to E. Ricard).

The paper is organized as follows. In §2, we fix some notations, we give some background on the
key notion of completely bounded maps on noncommutative LP-spaces, we prove the second equality
of (1.5) and we give some preliminary results. In §3, we show that some Fourier multipliers on LP(R)
and E’Z’ are bounded but not completely bounded and we prove Theorem 1.7 and the first equality
of (1.5). §4 is devoted to classes of contractions which satisfy noncommutative Matsaev’s inequality
(1.4) for any complex polynomial P. In particular we prove Theorems 1.5 and 1.6. In §5, we consider
a natural analog of Question 1.3 for Cy-semigroups of contractions. Finally in §6, we exhibit some

polynomials P which always satisfy (1.4) for any contraction 7.

2 Preliminaries

Let us recall some basic notations. Let T = {z € C | |z| = 1} and J; ; the symbol of Kronecker.

If 1 is an index set and if F is a vector space, we write M for the space of the I x I matrices with
entries in C and M;(E) for the space of the I x I matrices with entries in E. If K is another index
set, we have an isomorphism M;(Mg) = M« k.

Let M be a von Neumann algebra equipped with a semifinite normal faithful trace 7. For 1 < p <
oo the noncommutative LP-space LP(M) is defined as follows. If ST is the set of all positive x € M
such that 7(z) < oo and S is its linear span, then LP(M) is the completion of S with respect to the
norm ||z Lr(pr) = T(|$|p)%. One sets L>°(M) = M. We refer to [103], and the references therein, for
more information on these spaces.

Let 1 < p < oo. If I is an index set and if we equip the space B (ﬁ%) with the operator norm and the
canonical trace Tr, the space LP(B(¢?)) identifies to the Schatten-von Neumann class S7. The space
SP is the space of those compact operators x from ¢7 into ¢ such that Hx||5f = (Tr (SL‘*ZL')%)% < 00.
The space S of compact operators from ¢ into ¢2 is equipped with the operator norm. For I = N,
we simplify the notations, we let SP for S§. Elements of S} are regarded as matrices A = [a;;]; jer of
M. The space S7(S%.) is the space of those compact operators z from ¢ ® ¢% into ¢3 @2 (3 such that
HxHS?(S%) = ((Tr ®Tr)(m*x)g)% < 00o. Elements of ST(S%.) are regarded as matrices of M (Mf).

Let M be a von Neumann algebra equipped with a semifinite normal faithful trace 7. If the von

Neumann algebra B((?)@M is equipped with the semifinite normal faithful trace Tr ®7, the space
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LP(B(£3)®@M) identifies to a space SY(LP(M)) of matrices of M;(LP(M)). Moreover, under this
identification, the algebraic tensor product S¥ ® LP(M) is dense in ST (LP(M)).

Let N be another von Neumann algebra equipped with a semifinite normal faithful trace. If
1 < p < o0, we say that a linear map LP(M) Lorp (N) is completely bounded if Idgr @ T extends
to a bounded operator SP(LP(M)) Tdsp®T, gp (LP(N)). In this case, the completely bounded norm

”Tch,LP(M)—)LP(N) is defined by

HT||cb,LP(M)—>LP(N) = ||Id5p ®T||sp(Lp(M))—>sp(Lp(N))- (2-1)

If Q is a measure space, the space SP(LP(§)) is isometric to the LP-space LP(f2,SP) of SP-valued

functions in Bochner’s sense. Thus, if LP(Q2) EiN LP(Q) is a linear map, we have

1T Neb, e (@) —2r(@) = T ® Idsr || 1y 50)— Lo (.5): (2.2)

The notion of completely bounded map and the completely bounded norm defined in (2.1) are the
same that these defined in operator space theory, see [37], [99] and [101].

Now, we let:

Definition 2.1 Let M be a von Neumann algebra equipped with a faithful semifinite normal trace and
1 <p < oo. Let LP(M) z, LP(M) be a contraction. We say that T satisfies the noncommutative
Matsaev’s property if (1.4) holds for any complex polynomial P.

We denote by ¢ 5, P the right shift on /7. We use the same notation for the right shift on ¢,. We
denote by S_ the left shift on ¢? defined by S_(ag,a1,as,...) = (a1,a2,as,...). Suppose 1 < p < oo.
Let X be a Banach space. For any complex polynomial P, we define || P||, x by

||PHp,X = ||P(S) ®IdX||gp(X)—>gp(X)-

We let ||P|l, = ||Pllpc( = [|IP(S)|ler—ew). If 1 < p < o0, it is easy to see that, for any complex

polynomial P, we have
||P||p,X = HP(S) ®IdXHz§(X)—>g§()Q = HP(SL) ®IdXHzp(X)—>ep(X)' (2~3)
Moreover, for all 1 < p < oo, by (2.2), we have
||PHP751’ = HP(S)Hijg_)g;- (24)

Note that, if 1 < p < oo, we have [|P|[,s0 = ||P||ps,.. Moreover, if 1 < p < ¢ < 2, we have

| Pllg,5, < [|[Pllp,s» by interpolation. We define the linear map S} S, Sh as the shift "from NW to SE'
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which maps any matrix

ap,0 ap,1 ag2 - o G-1,-1 G-10 (-1
aip a1l a2 - to “++ o ap—1 Qoo Qo1
aso az1 ag2 - ceeoap-1 a1 ain

If 1 < p < oo, it is not difficult to see that for any complex polynomial P we have

HP(@>H5§—>5‘§ =[|P(0)|gp—gp and HP(@)HCb,sg—w%’ = HP(U)HCbﬁp—)sp' (2.5)

Moreover, it is easy to see that, for all A € S¥, we have the equality ©(A4) = SAS ~! where we consider
A and ©(A) as operators on /3.

We will use the following theorem inspired by a well-known technique of Kitover.

Theorem 2.2 Suppose 1 < p < oo. Let X be a Banach space and X L, X an isometry (not

necessarily onto). For any complex polynomial P, we have the inequality

HP(T)HX—)X < HPH%X'

Proof : 1t suffices to consider the case 1 < p < co. Let 0 < r < 1. Since T is an isometry we have

+w . . +w . . +m .
Z HT]TJ(.%)H?( = ZTJPHT]('T)’|§( = |’$’§(<Z<Tp)]> < +o0.
=0 =0

§=0
+oo P
We let C, = (Z rIP > . Now we define the operator
§=0
W,: X — P(X)
r — (T (x), T (x),..., T (z),...)

which is an isometry. If n is a positive integer and if z € X we have

W ((rT)"z) = Ci(r"T"x,r”HT”Hm, c) = (S @ Idx)" (Wy(x)).

T

We deduce that for any complex polynomial P we have W,.P(rT) = P(S_ ® Idx)W,. Now, if z € X,

we have

[P(rT)x| HWT(P(TT)x)Hep(X)

= ||P(S- ® Idx)W; (@) 4o

26



1.2 Preliminaries

< ||P(S-) ®IdXng(X)—>£P(X) lzllx
= IPlpxlzlx by (2.3).

Consequently, letting r to 1, we obtain finally that ||P(T)||_, y < [IPllpx- ]

Corollary 2.3 Suppose 1 < p < co. Let P be a complex polynomial. We have

[P(o) @ IdSP’|5p(sp)—>sp(sp) = HPHp,sp'
Proof : With the diagonal embedding of /7 in SP, we see that for any complex polynomial P we have

1Pl 50 < [1P(0)

p,SP ® Idsp’|5'p(5p)—>5p(5p)'

Now the map SP(SP) o&ldse,

for every complex polynomial P we have

SP(SP) is an isometry. Hence, by the above theorem, we deduce that

HP(U) ®IdSp||sp(sp)_>5p(sp) = ”P(U ®IdSP)||Sp(sp)_>5p(sp) < ||P ‘ILSP(SP) = HP p,SP-

Let M be a von Neumann algebra. Let us recall that M has QWEP means that M is the quotient of
a C*-algebra having the weak expectation property (WEP) of C. Lance (see [84] for more information
on these notions). It is unknown whether every von Neumann algebra has this property. We will need

the following theorem which is a particular case of a result of [50].

Theorem 2.4 Let M be a von Neumann algebra with QWEP equipped with a faithful semifinite
normal trace. Suppose 1 < p < oo. Let Q be a measure space. Suppose that LP($2) EAN LP(Q) is a

completely bounded map. Then T'® Idry(yr) extends to a bounded operator and we have

||T®Ide(M)||Lp(QﬁLp(M))_>Lp(QﬁLp(M)) <N Tl ep, e ()—Lr(02)-

In the case where M is a hyperfinite von Neumann algebra, the statement of this theorem is easy to
prove (use [99, (3.1)] and [99, (3.6)]). With this theorem, we deduce the following proposition.

Proposition 2.5 Suppose 1 < p < co. Let M be a von Neumann algebra with QWEP equipped with

a faithful semifinite normal trace. For all complex polynomial P we have

Py, ary < [IP|lp,se-

With this proposition, we can prove the following corollary.
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Corollary 2.6 Let M be a von Neumann algebra equipped with a faithful semifinite normal trace and
1 <p<oo. Let LP(M) AN LP(M) be a contraction. Suppose that there exists a von Neumann algebra
M with QWEP equipped with a faithful semifinite normal trace, an isometric embedding LP(M) ER
LP(N), an isometry LP(N) Y, LP(N) and a contractive projection LP(N) e, LP(M) such that,

TF = QU*J

for any integer k > 0. Then the contraction T has the noncommutative Matsaev’s property.

Proof : For any complex polynomial P, we have

HP(T)HLP(M)—)LP(M) - |‘QP(U)JHLP(M)—>LP(M)

< ||P(U)||LP(N)—>LP(N)'

By using Theorem 2.2, we obtain the inequality
HP(T)HLP(M)—)LP(M) < ||P||p,LP(N)-
Now, the von Neumann algebra N is QWEP. Then, by Proposition 2.5, we obtain finally that

1P(T

)HLP(M)—)LP(M) < HP p,SP-

Theorem 2.4, Proposition 2.5 and Corollary 2.6 hold true more generally for noncommutative
LP-spaces of a von Neumann algebra equipped with a distinguished normal faithful state M 2, C,

constructed by Haagerup. See [103] and the references therein for more informations on these spaces.

We refer to [3], [51] and [89] for information on dilations on LP-spaces (commutative and noncom-

mutative).

3 Comparison between the commutative and noncommutative cases

Suppose 1 < p < 0. Let GG be a locally compact abelian group with dual group G. An operator
LP(G) EiN LP(G) is a Fourier multiplier if there exists a function ¢ € L*°(G) such that for any
f € LP(G) N L*(G) we have F(T(f)) = vF(f) where F denotes the Fourier transform. In this case,
we let ' = M,,. G. Pisier showed that, if GG is a compact group and 1 < p < o0, p # 2, there exists
a bounded Fourier multiplier LP(G) Lorr (G) which is not completely bounded (see [99, Proposition
8.1.3]. We will show this result is also true for the groups R and Z and we will prove Theorem 1.7.
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If b € L'(G), we define the convolution operator Cj, by

Cy: LP(G) — LP(G)
f —  bxf.

This operator is a completely bounded Fourier multiplier. We observe that, if P = Y 1_, apz" is a
P(S =

complex polynomial, the operator ¢ P, ¢ is the operator ¢ Ca, 5, where @ is the sequence defined

by ar = ay if 0 < k < n and ai = 0 otherwise.

We will use the following approximation result [64, Theorem 5.6.1].

Theorem 3.1 Suppose 1 < p < co. Let G be a locally compact abelian group. Let LP(G) EiR LP(G)
be a bounded Fourier multiplier. Then there exists a net of continuous functions (by);er, with compact
support such that

1Co 1oy o6y < ITlzo(c) =10y and  Co =5 T

(convergence for the strong operator topology).

Moreover, we need the following vectorial extension of [31, Proposition 3.3]. One can prove this
theorem as [24, Theorem 3.4].

Theorem 3.2 Suppose 1 < p < co. Let ¢ be a continuous function on R which defines a completely
bounded Fourier multiplier My on LP(R). Then the restriction |Z of the function 1 to Z defines a
completely bounded Fourier multiplier M,z on LP(T).

We will use the next result of Jodeit [49, Theorem 3.5]. We introduce the function A: R — R defined
by
1—Jz| if ze[-1,1]

0 if |z >1.

A(z) = {

Theorem 3.3 Suppose 1 < p < co. Let ¢ be a complex function defined on Z such that My is a
bounded Fourier multiplier on LP(T). Then the complex function R ¥, C defined on R by

P(x) = Z o(k)A(z — k), z € R, (3.1)

keZ

M,
defines a bounded Fourier multiplier LP(R) —% LP(R).

Now, we are ready to prove the following theorem.

M,
Theorem 3.4 Suppose 1 < p < oo, p # 2. Then there exists a bounded Fourier multiplier LP(R) -,

LP(R) which is not completely bounded.

29



Chapitre I. On Matsaev’s conjecture for contractions on noncommutative LP-spaces

Proof : By [99, Proposition 8.1.3], there exists a bounded Fourier multiplier LP(T) Me, pp (T) which is
not completely bounded. Now, we define the function ¥ on R by (3.1). By Theorem 3.3, the function
R ¥ C defines a bounded Fourier multiplier LP(R) Mo, pp (R). Now, suppose that My is completely
bounded. Since the function R % C is continuous, by Theorem 3.2, we deduce that the restriction
Y|Z defines a completely bounded Fourier multiplier My z on LP(T). Moreover, we observe that, for
all k € Z, we have

P(k) = (k).

M,
Then we deduce that the Fourier multiplier LP(T) —> LP(T) is completely bounded. We obtain
M,
a contradiction. Consequently, the bounded Fourier multiplier LP(R) -, LP(R) is not completely
bounded. [ |

The proof of the next theorem is inspired by [24, page 25].

Theorem 3.5 Suppose 1 < p < oo, p# 2. Then
1. There exists a bounded Fourier multiplier ¢}, EIR 05 which is not completely bounded.

2. There exists a complex polynomial P such that || P|, < ||P|p,s»-

M.
Proof : By Theorem 3.4, there exists a bounded Fourier multiplier LP(R) —% LP(R) which is not
R)—LP(R) = 1. By Theorem 3.1, there

exists a net of continuous functions (b;);cr, with compact support such that

completely bounded. We can suppose that M, satisfies |‘M¢H I

HCbl <1 and Cbl—>M¢

HL;D(]R —LP(R) =

Let ¢ > 1. There exists an element y = >°p_; fr ® 2, € LP(R) ® SP with ||ly[|z»®,sp) < 1 such that
|(My ® Idszo)(y)HLp(]R s»y = 3¢. Then, it is not difficult to see that there exists [ € L such that
1(Cy, @ Idgp)(y)HLp(R vy = 2. We deduce that there exists a continuous function b: R — C with

compact support such that [|Cy||rr)y—rrr) < 1 and |[Cyl|, Le(R)—Lr(r) = 2¢- Thus there exists a

continuous function R % C with compact support such that
1Collr®)y—rr®)y <1 and  [|Cllep, 1o (r)—Lr(R) = 2¢-

Now, we define the sequence (an) , of complex sequences indexed by Z by, if n > 1 and k € Z

ank—// (t_s+k>dsdt.

Note that each sequence a,, has only a finite number of non null term. Let n > 1. We introduce the
k k+1 [
Y

n’ n

conditional expectation LP(R) En, p (R) with respect to the o-algebra generated by the [
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k € Z. For every integer n > 1 and all f € LP(R), we have
K+l
Enf=n)_ (ﬂ f(t)dt)l[k .y
keZ \’n non
(see [1, page 227]). Now, we define the linear map ¢ o E, (LP(R)) by, if u € &
1
Jp(u) =nv Z ukl[ﬁ ka1 [
kEZ non

It is easy to check that the map J,, is an isometry of ¢ onto the range E,(LP(R)) of E,. For any

u € ¢}, we have

EnCln(u) =13 (/kn (Can(U))(t)dt>1[k7k+1[
keZ \’m w
B
=n b(t —s)(Jn(w))(s)dsdt |11, s
%(/ =) mw)e) >[M[
Eii +o0 1
=n b(t — s)n» uilp; joap(s) |dsdt |1y, i 3.2
Z</ I (Z [ >> ) a6
_ ws bR ~ Ods
> <]€% j/ﬁ / b(t — 5)d dt>1[27,€nl[ (3.3)
o 1+% u % % s 7‘7
- keZ <Je% 3/0 0 b<t i )d dt>1[fwkﬁl[
_at » Ll /t—s+k—j
} ke%(j%f/o/ob( Jastt 1y
:TL% (Zu'jan7k_j>1[ﬁvknl[
kEZ \ jEL
= JpnCy, (u)

(where the equality (3.3) follows from the fact that the summation over j € Z of (3.2) is finite). Thus

we have the following commutative diagram

LP(R) LP(R)
I
E,(LP(R)) En(LP(R))
JnTz %Tjﬁ
& o &,
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Then, for any integer n > 1, since ||E,||L»®)—rrr) < 1, we have the following estimate

||Can’|g§_>4§ < Gl rm)— Loy < 1.

SO

Moreover, we have E,, ® Idgr Idppr spy- It is easy to see that

n—-+0o
(EnCoy,) ® Tdgy —2— Cy @ Idgp.
n—-+o0o

By the strong semicontinuity of the norm, we obtain that

ICollcb, o (R)— Lo(r) < Himinf B CoBonll 4, 1p@)— 1o (@)
Then, there exists an integer n > 1 such that

> c.

HCan H < 1 and HC‘ln ch,fz—wg =

o&—0
Thus, we prove the second assertion by shifting the obtained multiplier. Finally, we show the first
assertion by the closed graph theorem, (2.3) for X = C and (2.4). ]

In the light of Corollary 2.3 and Theorem 3.5, it is natural to compare ||P(c and

||P(U)||SP—>SP'
to E. Ricard. In order to prove it, we need the following notion of Schur multiplier. We equip T with

)ch7SP—>SP
We finish the section by proving that these quantities are identical. It is a result due

its normalized Haar measure. We denote by SP(L?(T)) the Schatten-von Neumann class associated
with B(L*(T)). If f € Lao(T x T), we denote the associated Hilbert-Schmidt operator by

K;: L¥(T) — L?(T)
uo = Jpu(a)f(z )z

A Schur multiplier on SP(L?(T)) is a linear map SP(L*(T)) L SP(L%(T)) such that there exists a

K
measurable function T x T % C which satisfies, for any finite rank operator of the form L2 (T) =1

L*(T), the equality T(Ky) = K,f. We denote T by M, and we say that the function ¢ is the symbol
of the Schur multiplier SP(L*(T)) Mo, SP(L%(T)) (see [10] and [62] for more details).

We denote by L?(T) EN ¢% the Fourier transform. We define the isometry ¥ by

U SP(LA(T)) — S
T — FTF L

Now, we can show the following proposition.
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Proposition 3.6 Suppose 1 < p < oo. For any complex polynomial P, we have

1P go—ss0 = 1P@)|p 50— 50 ( = 1P(@) © T gy 5y 050 )

Proof : 1t suffices to consider the case 1 < p < oco. For any n € Z and any finite rank operator of the

form Ky, we have

(O (Ky))(en) = SFK TS (en)
= STK (2" )

= SS’"( /J]‘ 2" (z, -)dz>
= S( Z (/[r2 z"?kf(z, z’)dzdz/> ek>

keZ

= Z </11‘2 z"_lz’kf(z,z')dzdz'> €lt1-

kEZ

Now we define the function T x T % C by ¢(z,2") = 2712/ where z,2' € T. Then, for any n € Z and

any finite rank operator of the form Ky, we have

(UM (K ) (en) = T oy T (en)

- 5</H‘zngo(z, ')f(zv )dz)

=> (/11‘2 z"z”kgo(z,z’)f(z,z’)dzdz'> ek

- (/ z"lz’klf(z,z’)dzdz'> e
T2

= (/ z"lz’kf(z,z/)dzdz'> €kt1-
T2

SP(LA(T)) s ST (LA(T)).

Furthermore, for any complex polynomial P, we have P(M,) = Mp(,). Moreover, the Schur multiplier
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M
SP(L2(T)) —2% SP(L2(T)) has a continuous symbol whose the support has no isolated point. By
[62, Theorem 1.19], we deduce that the norm and the completely bounded norm of P(M,) coincide.

Since V¥ is a complete isometry, we obtain the result by (2.5). ]

4 Positive results

Let M and N be von Neumann algebras equipped with faithful semifinite normal traces 73y and
Tn. Let M L Na positive linear map. We say that 7T is trace preserving if for all z € L*(M) N M
we have 7 (T'(z)) = 7as(x). We will use the following straightforward extension of [53, Lemma 1.1].

Lemma 4.1 Let M and N be von Neumann algebras equipped with faithful semifinite normal traces.
Let M L5 N be a trace preserving unital normal positive map. Suppose 1 < p < co. Then T induces a
contraction LP (M) AN LP(N). Moreover, if M L. N is an one-to-one normal unital x-homomorphism,
T induces an isometry LP(M) EiR LP(N).

Let M be a von Neumann algebra equipped with faithful semifinite normal trace 7 and N a von
Neumann subalgebra such that the restriction of 7 is still semifinite. Then, it is well-known that the
extension LP(M) E (N) of the canonical faithful normal trace preserving conditional M 5 Nisa

contractive projection.

Consider the situation where M = M is a linear map such there exists a von Neumann algebra N
equipped with a faithful semifinite normal trace, a unital trace preserving x-automorphism N YN ,

a unital normal trace preserving one-to-one *-homomorphism M 7, N such that,
Tk =RU*J (4.1)

for any integer k > 0, where N E, M is the canonical faithful normal trace preserving conditional
expectation associated with J. Then, for all 1 < p < oo, the maps N Y N and M L N extend
to isometries Ly(N) LR L,(N) and LP(M) ER LP(N) and the map N E, M extends to a contractive
projection LP(N) LR LP(M) such that (4.1) is also true for the induced map LP(M) AN LP(M).

In order to prove Theorems 1.5 and 1.6, we need to use fermion algebras. Since we will study maps
between g-deformed algebras, we recall directly several facts about these more general algebras in the
context of [18]. We denote by S,, the symmetric group. If o is a permutation of S,, we denote by |o|
the number card{(7,j) | 1 < i,j < n,0(i) > o(j)} of inversions of o. Let H be a real Hilbert space
with complexification He. If —1 < ¢ < 1 the ¢g-Fock space over H is

F,(H)=CQeo P HE"
n>1
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where (2 is a unit vector, called the vacuum and where the scalar product on Hg" is given by

(h1® - ®hp, k1 ®- Z q° h17 0’(1 -+ {hn, ka(n)>Hc
€Sy
If ¢ = —1, we must first divide out by the null space, and we obtain the usual antisymmetric Fock

space. The creation operator [(e) for e € H is given by

le):  F(H)  — Fq(H)
M@ - Qh, — e@h & & hy,.

They satisfy the g-relation
1(S)l(e) —ql(e)l(f)" = (f,e)uldg,(m)-

We denote by F,(H) ON ¢(H) the selfadjoint operator I(e) + l(e)*. The g-von Neumann algebra
I';(H) is the von Neumann algebra generated by the operators w(e) where e € H. It is a finite von
Neumann algebra with the trace 7 defined by 7(z) = (Q, 2.Q)g, ) where z € [';(H).

Let H and K be real Hilbert spaces and H L, K be a contraction with complexification H¢ Ie, Kc.

We define the following linear map

Fy(T) : Fq(H) — F4(K)
hi®---®@hy, +— Tchi®- - @TIchy.

T'q(T)

Then there exists a unique map I'y(H) ——= I'q(H) such that for every « € I';(H) we have

(Fq(T)(x))Q = Fy(T)(292).

This map is normal, unital, completely positive and trace preserving. If H L, K is an isometry;,
Ty(T
I'y(T) is an injective *-homomorphism. If 1 < p < oo, it extends to a contraction LP(T'y(H)) L@,

LP(Ty(K)).

We are mainly concerned with the fermion algebra I'_;(H). In this case, recall that if e € H has
norm 1, then the operator w(e) satisfies w(e)? = Idy ,(g). Moreover, we need the following Wick
formula, (see [17, page 2] and [36, Corollary 2.1]). In order to state this, we denote, if £ > 1 is an
integer, by P2(2k) the set of 2-partitions of the set {1,2,...,2k}. If V € Po(2k) we let ¢(V) the number
of crossings of V, which is given, by the number of pairs of blocks of V which cross (see [36, page 8630]
for a precise definition). Then, if fi,..., for € H we have

rwif)w(fe) - wlfor) = > D)™V II (i fidu (4.2)

VePa(2k) (4,7)€V
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In particular, for all e, f € H, we have

T(w(ew(f)) = (e fim (4.3)

Let A = [ai;]ijer be a matrix of M;. By definition, the Schur multiplier on B(¢%) associated
with this matrix is the unbounded linear operator M4 whose domain is the space of all B = [b;;]; jer
of B(¢3) such that [a;;b;j];jer belongs to B(¢3), and whose action on B = [b;j]; jes is given by
Ma(B) = [aijbijlijer- For all i,j € I, the matrix e;; belongs to D(M4), hence My is densely defined
for the weak* topology. Suppose 1 < p < oco. If for any B € S?, we have B € D(M4) and the
matrix M4 (B) represents an element of S?, by the closed graph theorem, the matrix A of M; defines
a bounded Schur multiplier S¥ Ma, SP. We have a similar statement for bounded Schur multipliers
on B(#3).

Recall that a matrix A of My defines a contractive Schur multiplier B(¢3) Ma, (¢3) if and only
if there exists an index set K and norm 1 vectors h; € E% and k; € @( such that for all 7,57 € I we
have a; ; = (hi, kj).2 (see [36]). If all entries of A are real numbers, we can take the real vector space
E%((R) instead of the complex vector space E%{. Finally, recall that every contractive Schur multiplier
B(¢3) Ma, B(£3) is completely contractive (see [86]).

We say that a matrix A of M; induces a completely positive Schur multiplier B(¢%) Ma, (¢3) if
and only if for any finite set F' C I the matrix [a;;]; jer is positive (see [86]). An other well-known
characterization is that there exists vectors h; € £%(C) of norm 1 such that for all i,j € I we have
a;j = (hi, hj) e I A is a real matrix, we can use the real vector space ¢% (R) instead of the complex
vector space (% .

Let M be a von Neumann algebra equipped with a semifinite normal faithful trace 7. Suppose
that M > M is a normal contraction. We say that T is selfadjoint if for all z,y € M N LY(M) we

have
T(T(2)y") = 7(x(Ty)").

In this case, it is easy to see that the restriction T|M N L'(M) extends to a contraction L'(M) —
L'(M). By complex interpolation, for any 1 < p < 0o, we obtain a contractive map LP (M) EiR LP(M).
Moreover, the operator L%(M) EiR L?(M) is selfadjoint. If M L, M is a normal selfadjoint complete
contraction, it is easy to see that the map LP (M) EIR LP(M) is completely contractive for all 1 < p < oo.
It is easy to see that a contractive Schur multiplier B (¢%) Ma, B((3) associated with a matrix A of
M is selfadjoint if and only if all entries of A are real.

In order to prove the next theorem, we need the following notion of infinite tensor product of von
Neumann algebras, see [114]. Given a sequence (M, 7, )nez of von Neumann algebras M,, equipped
with faithful normal finite traces 7,, then on the infinite minimal C*-tensor product of the algebras
(Mp,)nez there is a well-defined infinite product state -+ ® 71 ® 70 ® 71 ® ---. The weak operator
closure of the GNS-representation of the infinite C*-tensor product of (M, ),ez with respect to the

state -+ - ® 71 ® T ® 71 ® - - - yields a von Neumann algebra, called the infinite tensor product of von
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Neumann algebras M,, with respect to the traces 7,,. We will denote this algebra by &,,cz(Mn, ).
The state --- @71 R T ® 71 ® --- extends to a faithful normal finite trace on ®n€Z (M,,, 7,) which
we still denote by - @ T_1 QTR T ® - -.

The following theorem states that we can dilate some Schur multipliers. The construction (and
the one of Theorem 4.6) is inspired by the work of E. Ricard [104].

Theorem 4.2 Let B(E%) Ma, B(ﬁ%) be a unital completely positive Schur multiplier associated with
a real-valued matriz A. Then there exists a hyperfinite von Neumann algebra M equipped with a
semifinite normal faithful trace, a unital trace preserving x-automorphism M Y m , a unital trace

preserving one-to-one normal *-homomorphism B(E%) Lo M such that
(My)* =EU*J

for any integer k > 0, where M LN B(03) is the canonical faithful normal trace preserving conditional

expectation associated with J.

Proof : Since the map B(£3) Ma, B(£3) is completely positive we can define a positive symmetric

bilinear form (-, -);,2,4 on the real span of the e;, where i € I, by:
<€i, 6j>g2,A = Q4. (44)

We denote by ¢>4 the completion of the real pre-Hilbert obtained by quotient by the corresponding
kernel. For all i of T we still denote by e; the class of e; in £24. Now we define the von Neumann
algebra M by
M = B(@)@(@(Fl(f%“),r)).
nez

Since the von Neumann algebra I'_; (¢24) is hyperfinite, the von Neumann algebra M is also hyperfi-
nite. We define the element d of M by

d=Yei®  @Iwe)RI®-
i€l

where w(e;) is in position 0. Recall that My is unital. Then it is not difficult to see that d is a
symmetry, i.e. a selfadjoint unitary element. We equip the von Neumann algebra M with the faithful
semifinite normal trace 7y = Tr ® -+ ®T® 7 - - -. We denote by M = B((?%) the canonical faithful

normal trace preserving conditional expectation of M onto B (5%) We have
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We define the canonical injective normal unital x-homomorphism

J: B() — M
z — 2R RII®---.

Clearly, J preserves the traces. We define the right shift

S @nGZ(F—l(ﬂ’A)vT) - ®n€Z(F—1(€2’A)7T)

Now, we define the linear map

U: M — M
y +— d((Idpz)®.7)(y))d.

The map M Y. M is a unital sx-automorphism of M. Moreover, it is easy to see that M Yo M

preserves the trace 7p;. Now, we will show that, for any positive integer k, we have, for all x € B(@)

Uro J(z) = Z zije; @ Q1 Quw(ew(e;) ® - @w(e)w(e;) I @ - (4.5)
ijel

k factors

by induction on k, where the first w(e;)w(e;) is in position 0. The statement clearly holds for k£ = 0.
Now, assume (4.5). For all z € B(¢%), we have

UFH o J(2) = d((Idpey © .7) (U 0 J(2)) )d

:d<(IdB(£§) ®5”)< Y zijey ® - ® I ®w(e;)wl(e)) ®"'®W(6i)w(€j)®l®"'>>d

ijel

= (Zw@---@l@w(m)@l@---)(Z Tije; @ @I R I R@w(e)w(e)) ® -
rel 1,7€1

®w(ei)w(ej)®l®--->(Zess®---®l®w(es)®l®-~>
sel

= > wijereijess @ @I @w(er)w(es) ®w(e)w(e;) ® - @ wle)w(e;) @I -
i’j7T7S€I

= > wije @ @I @w(e)w(e)) ®w(e)w(e)) ® - Quw(ew(e) @I @--- .

ijel

We obtained the statement (4.5) for k£ + 1. Then, we deduce that for any positive integer k and any
z € B({?) we have

EoUfo J(z) =
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= (Idsfj ®"'®7’®"')< Z l‘ijeij®"'®I®w(ei)w(€j)®"'®w(ei)w(ej)®f®'“)
i,j€l
k

= Y T(wlewley)) wijess

i,j€l
= 3" (eirej)ea) wijes; by (4.3)

i,j€l
== Z (aij)kxijeij by (44)

i,J€1
= (Ma)*(2).

Thus, for any positive integer k, we have
(Mg =EoUFoJ.

The proof is complete. [ |

Corollary 4.3 Let B((%) Ma, B(£3) be a contractive Schur multiplier associated with a real-valued

matriz A. Suppose 1 < p < oco. Then, the induced Schur multiplier SY Ma, St satisfies the noncom-

mutative Matsaev’s property. More precisely, for any complex polynomial P, we have

HP(MA)Hc@s?—w? < HPHZLS”'

Proof : Suppose that B(¢3) Ma, (¢2) is a contractive Schur multiplier associated with a real matrix
A of My. There exists a set K and norm 1 vectors h; € (3. (R) and k; € ¢3.(R) such that for all 4,5 € I
we have a; ; = (hs, kj) 2 (R)- Now we define the following matrices of M

B = [<hi7hj>é§<(m)]

el C= [(kiakj>€f<(R)L7j€I and D = {(ki,hﬁzg((mhje]-

For all i € I and all n € {1,2}, we define the norm 1 vector [, ; of /2 (R) by

B h; ifn=1landiel
M) 7Y ki ifn=2andiecl.

B A
Now, by the identification My(M) ~ My 97, the matrix [ D C ] of My(M) identifies to the
matrix

F= W"’“ lm’m%(m} () €{1,2} xT,(m.j) {1, 2} x I
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of Miyy,9}xs- The Schur multiplier B (6%172}“) Mr, 3(6%172} ;) associated with this matrix is unital and

completely positive. Moreover, since the matrix F is real, B(@l,2}x 7) M, B(@l,z}x ;) is selfadjoint.

Let 1 < p < oco. For any complex polynomial P, we have

P(Mg) P(M
1P gy < l P(M5) () 1
Mp) POMe) gy sp)—spisp)
= ||P(M .
H ( F)Hs?lﬂ}x[_}s?lﬂ}x[

Now, according to Theorem 4.2, remarks following Lemma 4.1 and Corollary 2.6, the Schur multiplier
M satisfies the noncommutative Matsaev’s property. We deduce that M4 also satisfies this property.
Moreover, in applying this result to the Schur multiplier Mg 4(= I ® My), we obtain the inequality

for the completely bounded norm. ]

We pass to Fourier multipliers on discrete groups. Suppose that G is a discrete group. We denote

A
by e the neutral element of G. We denote by €2G Ma), EQG the unitary operator of left translation by
g and VN(G) the von Neumann algebra of G spanned by the A(g) where g € G. It is an finite algebra

with trace given by
Ta(r) = <56G,a:(€eG)>%

where (g,)gec is the canonical basis of /%, and x € VN(G). A Fourier multiplier is a normal linear
map VN(G) R VN(G) such that there exists a function G - C such that for all g € G we have
T((A(g)) = tgA(g). In this case, we denote T by

M;: VN(G) — VN(G)
Ag) > tgAg).

It is easy to see that a contractive Fourier multiplier VN(G) M, VN(G) is selfadjoint if and only if
G L C is a real function. It is well-known that a Fourier multiplier VN(G) RN VN(G) is completely
positive if and only if the function ¢ is positive definite. If the discrete group G is amenable, by
[30, Corollary 1.8], every contractive Fourier multiplier VN(G) M, VN(G) is completely contractive.
Recall the following transfer result [79, Theorem 2.6].

Theorem 4.4 Let G be an amenable discrete group. Suppose 1 < p < 0o. Let G LR a function. Let
A be the matriz of Mg defined by agp = tg,—1 where g, h € G. The Fourier multiplier My is completely
bounded on LP(VN(G)) if and only if the Schur multiplier M, is completely bounded on S%,. In this
case, we have

04

) = [ Mal (4.6)

b, LP (VN(G))— LP (VN(G) cb,SE,— S,

Now, we can prove the next result.

Corollary 4.5 Let G be an amenable discrete group. Let VN(G) M, VN(G) be a contractive Fourier
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multiplier associated with a real function G LR Suppose 1 < p < oco. Then, the induced Fourier mul-
tiplier LP(VN(G)) M (VN(QG)) satisfies the noncommutative Matsaev’s property. More precisely,
for any complex polynomial P, we have
HP(Mt)ch,Lp(VN(G))—mp(VN(G)) < ||P||p75""
Proof : We define the matrix A of Mg by a4 = t,,-1 where g,h € G. By (4.6), for any complex
polynomial P and all 1 < p < 0o, we have
HP(Mt)||cb,LP(VN(G))—>LP(VN(G)) - HP(MA)||cb,sg—>sg

= |P(Idsr ® MA)Hsp(sg)HSP(Sg)

| P(Mrga

)HSP(SE)—)SP(S%)'

Since G is amenable, the Fourier multiplier VN(G) M, VN(G) is completely contractive. Moreover,
the map VN(G) ELIN VN(G) is selfadjoint. Thus, for any 1 < p < oo, the map LP(VN(G)) My,
LP(VN(Q)) is completely contractive. Then, by (4.6), for any 1 < p < oo, we have

HMI®AHSP(sg)—>sp(Sg) = HMAch,sgasg
= [ Millep,zr(vna)—Lr(vN@G))
< 1

By Corollary 4.3, we deduce finally that, for any complex polynomial P and all 1 < p < oo, we have

HP(Mt)||LP(VN(G))—)LP(VN(G)) < HP’p,SP(Sg) = HP p,SP-

In order to prove the next theorem we need the notion of crossproduct. We refer to [110] and [112]

for more information on this concept.

Theorem 4.6 Let G be a discrete group. Let VN(QG) M, VN(G) be a unital completely positive
Fourier multiplier associated with a real valued function G L R. Then there exists a von Neumann
algebra M equipped with a faithful finite normal trace, a unital trace preserving x-automorphism M Y,

M, a unital normal trace preserving one-to-one x-homomorphism VN(G) LM such that,
(My)k = RU*J

for any integer k > 0, where M E, VN(G) is the canonical faithful normal trace preserving conditional

expectation associated with J.
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Proof : Since the map VN(G) A, VN(G) is completely positive, we can define a positive symmetric

bilinear form (-, -),2.: on the real span of the ey, where g € G, by:

(€g,€n)p2t = lg=1p-

We denote by ¢%! the completion of the real pre-Hilbert space obtained by quotient by the corre-
sponding kernel. For all g € G, we denote by g the class of e, in ¢*!. Then, for all g,h € G, we

have

<gv h)p,t =tg-1p-

0
For all g € G, it easy to see that there exists a unique isometry ¢>! —% ¢%! such that for all h € G we
have 04(h) = gh.

For all g € G, we define the unital trace preserving x-automorphism «(g) =T'—1(0y ® I d@):

a(g): Ta(P' @) — Toa(' @2 03)
w(h ®v) —  w(gh®v).

The homomorphism G = Aut (F_l (02 @9 E%)) allows us to define the von Neumann algebra
M = T_ (' ®903) x,G. (4.7)

We can identify F_1(€2’t ®2 E%) as a subalgebra of M. We let J the canonical normal unital injective
x-homomorphism VN(G) <, M. We denote by 7 the faithful finite normal trace on I'_1 ((*! @9 £2).
Recall that, for all g € G, the map «(g) is trace preserving. Thus, the trace 7 is a-invariant. We

equip M with the induced canonical trace 7. For all € T (£2! ®4 £2) and all g € G, we have

(2T (M) = G (x) (4.8)

(see [110] pages 359 and 352). If g,h € G and v € (3, we can write the relations of commutation of

the crossed product as
JN@)w(h ® v) = w(gh ® v)J (A(g)). (4.9)

We denote by M E VN(G) the canonical faithful normal trace preserving conditional expectation.
For all z € I'_1 (¢*! ®, (3) and all g € G we have

E(2J(Mg))) = 7(x)\g).
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We define the unital trace preserving *-automorphism . = I'_j(Idp,: ® S):

B Ffl(f&t X9 f%) — I'4 (fz’t X9 f%)
w(h ® ep) —  w(h®ept1).

Since M; is unital, w(eg®eq) is a symmetry, i.e. a selfadjoint unitary element. Moreover, for all g € G,

we have a(g)” = Ya(g). Then, by [112, Proposition 4.4.4], we can define a unital x-automorphism

U M — M
zJ(A(g)) +—— wleg ®e) (z)J(A(g))w(ea @ eo).

Now, we will show that U preserves the trace. For all g € G and all x € T'_; (¢£*! ®4 (2), we have

TM<U(JUJ()\(Q)))> = (S (@) T (\9)))
= Gpeem(Z(@) by (48)
= lgeeT(T)

= Tm (xJ()\(g))) :

We conclude by linearity and normality. It is not hard to see that J preserves the traces.

Now, we will prove that, for any integer k > 1 and any g € G, we have

Uk o J(A(g)) (4.10)
= wleg®ep)w(eg®er) - wleg @ er—1)w(g ® ep—1)w(g ® ex—2) - w(g ® eg)J(A(g))

by induction on k. The statement holds clearly for k = 1: if g € G, we have

UoJ(Xg)) = wlea®eo)d(Ag))w(e ® en)
= wleg ®eg)w(g @ eo)J (Ag)) by (4.9).

Now, assume (4.10). For all g € G, we have

UM o J(N(g))
= U(w(eg Reg)w(eg®er) - wleg @ ep—1)w(g @ ep—1)w(g @ ep—2) - w(g® eo)J()\(g))>
= w(eg ®ep)w(eg ®erw(eg ®ez) - wleg @ er)w(g ® ep)w(g @ ef—1) - -+

(9 ®e1)J(A(g))w(ec ® eo)

= w(eg ®ep)wlec Ver)w(eq @ eg) - wleg ®ep)w(g ® ep)w(g @ ex—1) -+

(9 ®e1)w(g ®eo)J (A(g)).

w

w
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We obtained the statement (4.10) for £ + 1. Now let & > 1 and g € G. We define the elements
fi,- -, for of the Hilbert space ¢*! @5 (2 by

f'— eqg Re;i—1 lfl gk‘
' g®ep; ifk+1<i<2k

If 1 < i < 2k, we have

(fir fok—it1) oz = (ec @ €in1,9 @ €i1) gy
= (ea,9)eelei-1,€i-1)2

_tg

By a similar computation, if 1 < i < j < 2k with j # 2k — i 4+ 1, we obtain (f;, fj>£2,t®2€% = 0. Then,
for all g € G, we have

EU*T(Mg)) = E<w(€G®€0)"'w(ec®€k—1)w(9®€k—1)"'w(9®€0)=]()\(9))>

= T(wleg®e) - wleg ®ep—1)w(g @ er—1) - w(g®en))A(g)

= 7(w(fi)w “w(far)) Mg)

= ( > =0T <fiafj>€27t®2£%>/\(g) by (4.2) (4.11)
VePa(2k) (i)EV

= (fi f2k>1£“®242 o frs fk+1>e27t®24%)\(9)

= (tg)"Ag)

= T*(\9))-

(The only non null term in the sum of (4.11) is the term with V = {(1,2k), (2,2k —1),...,(k,k+1)},
which satisfies ¢(V) = 0). Thus, for any positive integer k (the case k = 0 is trivial), we conclude that

Tk = EU* J.
||

Corollary 4.7 Let G be a discrete group. Let VN(G) M, VN(G) be a unital completely positive
Fourier multiplier which is associated with a real function G LR Suppose that the von Neumann
algebra (4.7) has QWEP. Let 1 < p < oo. Then, the induced Fourier multiplier LP(VN(G)) My,
LP(VN(Q)) satisfies the noncommutative Matsaev’s property.

Proof : This corollary follows from Theorem 4.6, remarks following Lemma 4.1 and Corollary 2.6. ®

At the light of above corollary, it is important to know when the von Neumann algebra (4.7)
has QWEP. If the group G is amenable, this algebra has QWEP by [84, Proposition 4.1] (or [25,
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Proposition 4.8]). Now we give an example of non-amenable group G such that this von Neumann
algebra has QWEP. We denote by F,, a free group with n generators denoted by g¢i,..., g, where
1 < n < oco. We denote by R the hyperfinite factor of type II; and by RY an ultrapower of R
with respect to a non-trivial ultrafilter U. In order to prove the next theorem we need the notion of
amalgamated free product of von Neumann algebras. We refer to [12] and [115] for more information
on this concept. Note that, with the notations of the proof of Theorem 4.6, the von Neumann algebra

Iy (62"5 ®9 E%) is *-isomorphic to the hyperfinite factor of type II;.

Proposition 4.8 Suppose 1 < n < oo. Let F,, & Aut(R) be a homomorphism. Then the crossed
product R x4 F,, has QWEP.

Proof : First we will show the result for n = 2. We denote by (g1) and (g2) the subgroups of Fo
generated by g; and g2 and by o1 and aw the restrictions of « to these subgroups. First, we prove that
the subalgebras R x4, (g1) and R x4, (g2) are free with respect to the canonical faithful normal trace
preserving conditional expectation R x4 Fo E R We identify R as a subalgebra of R x4 Fo. We may
regard the elements of R x,, Fo as matrices |:O[7,—1 (w(rt_l))] with entries in R where Fy =5 R is

r,tEFg
a map. Recall that the conditional expectation E on R is given by

E<[ar—1(w(rt_1))} ) = w(er,).

rtEFy

Suppose that i1,...,i; € {1,2} are integers such that i1 # i, ...,ix_1 # ig. For any 1 < j < k, let

- (L
Aj = [arq(w](rt ))]r,teIFz
be an element of R Xy, (gi;) such that E(A;) = 0 where each I, R is a map satisfying w;(g) =0
if g & (gi;). Then, for all 1 < j < k, we have w;(er,) = 0. Now, we have

E(A;---Ap) = E({ar1(W1(rt—1))L’t€F2 .. {arl (Wk(rt_l))}me&)

= Y @ e (@) e (@ llealily))ao (@ille-)
L1, . .lp_1€F2
= 0.

Thus the von Neumann algebra R x, Fy decomposes as an amalgamated free product of R x4, (g1)
and R X,, (g2) over R. Moreover, the groups (g1) and (g2) are commutative, hence amenable. We
have already point out that the crossed product of the hyperfinite factor R by an amenable group has
QWEP. Then the von Neumann algebras R x,, (g91) and R X4, (92) are QWEP. Moreover, by [11,
page 283], these von Neumann algebras have a separable predual. By [57, Theorem 1.4], we deduce
that these von Neumann algebras are embeddable into RY. Now, the theorem stating in [20, Corollary

4.5] says that, for finite von Neumann algebras with separable preduals, being embeddable into RY is
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stable under amalgamated free products over a hyperfinite von Neumann algebra. Thus we deduce
that R 31,5 is embeddable into RY, which is equivalent to QWEP, by [57, Theorem 1.4], since R x,Fy
has a separable predual. Induction then gives the case when 2 < n < oo, and the case n = oo then
follows since, by [84, Proposition 4.1], QWEP is preserved by taking the weak* closure of increasing

unions of von Neumann algebras. [ |
We pass to maps arising in the second quantization in the context of [18].

Proposition 4.9 Suppose 1 < p < oo and —1 < q < 1. Let H be a real Hilbert space and H LHa

contraction. Then the induced map LP(Ty(H)) M, LP(Ty(H)) satisfies the noncommutative Matsaev’s

property.

Proof : There exists an orthogonal dilation K Y, Kde H L H. We denote by H 2, K the

embedding of H in K and K 9, H the projection of K on H. The map I'y(K) ), I';(K) is a unital
injective normal trace preserving x-homomorphism. The map I';(H) LACIN I'y(K) is a unital trace

preserving s-automorphism. The map I'y(K) e, I';(H) is the canonical faithful normal unital trace

preserving conditional expectation of I'j(K) on I'y(H). Moreover, we have for any integer k
Fq(T)k = Fq(P)Fq(U)qu(J)-

We conclude with Theorem 4.6, remarks following Lemma 4.1, Corollary 2.6 and by using the fact
that, by [83], the von Neumann algebra I';(H) has QWEP. ]
In order to state more easily our following result we need to define the following property. Let M

be a von Neumann algebra. Suppose that M L, M is a linear map.

Property 4.10 There exists a von Neumann algebra N with QWEP equipped with a normal faithful
finite trace on N, a unital trace preserving x-automorphism N v, N, a unital injective normal trace

preserving x-homomorphism M Iy N such that,
T" = EU*J.
for any integer k > 0, where M E VN(G) is the canonical faithful normal trace preserving conditional

expectation associated with J.

This property is stable under free product. Indeed, one can prove the next proposition with an
argument similar to that used in the proof of [52, Lemma 10.4] and by using [20, Corollary 4.5] and
[57, Theorem 1.4].

Proposition 4.11 Let My and My be von Neumann algebras with separable preduals equipped with
normal faithful finite traces T and 2. Let M I, M and My LN Ms be linear maps. If Ty and Tb

satisfy Property 4.10, their free product

_ T FT _
(My, 71)%(Ma, 72) =25 (My, 1)%(Ma, 9)
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also satisfies Property 4.10.

Thus the above proposition allows us to construct other examples of contractions satisfying the non-

commutative Matsaev’s property.

5 The case of semigroups

Suppose 1 < p < co. We denote by (T;)i>0 the translation semigroup on LP(R), where T;(f)(s) =
f(s—1t)if f € LP(R) and s,t € R. This semigroup (T;):>0 is a Co-semigroup of contractions.
Let (T})i=0 be a Cp-semigroup of contractions on a Banach space X. For all b € L'(R) with

support in R, it is easy to see that the linear operator

[Fevt)hdt: X — X
o [FOb() Thwdt

is well-defined and bounded. Moreover, we have

Now, let us state a question for semigroups which is analogue to Matsaev’s Conjecture 1.1.

+0o0
| i < bl

X—X

Question 5.1 Suppose 1 < p < oo, p # 2. Let (Ti)i>0 be a Co-semigroup of contractions on a

LP-space LP(2) of a measure space Q. Do we have the following estimate
+00 +oo
/ b(t)T,dt / b(t)T,dt
0 0

for all b € L*(R) with support in R*?

<
Lp(Q)— Lr(Q)

(5.1)

Lp(R)—LP(R)

We pass to the noncommutative case. We can state the following noncommutative analogue of
Question 5.1.

Question 5.2 Suppose 1 < p < oo, p # 2. Let (Ty)i>0 be a Co-semigroup of contractions on a

noncommutative LP-space LP(M). Do we have the following estimate

or allb € LY(R) with support in RT?
J pp

<
Lp(M)—Lp (M)

+o0 +oo
/ b(t)T,dt / b(t)T,dt (5.2)
0 0

cb,LP(R)— LP(R)

For all b € LY(R) with support in RT, it is clear that C, = [;"°°b(t)T;dt. Moreover, for all
b € L'(R), we have

1Coll L1 ry— L1 (R) = 1Cblleh, L1 (®)— L1 (R) = 10l L1 (R)-
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Consequently, the inequalities (5.1) and (5.2) hold true for p = 1.

In [24, page 25|, it is proved that the Cp-semigroups of positive contractions satisfy inequality
(5.1). Using [89, Theorem 3| and the same method, we can generalize this result to Cp-semigroups
of operators which admit a contractive majorant. Now, we adapt this method in order to give a link

between Question 5.2 and Question 1.3.

Theorem 5.3 Suppose 1 < p < oo. Let (Ti)i>0 be a Co-semigroup of contractions on a noncom-
mutative LP-space LP(M) such that each LP(M) ELN LP(M) satisfies the noncommutative Matsaev’s
property. Then the semigroup (T})i>o satisfies inequality (5.2).

Proof : It is not hard to see that it suffices to prove this in the case when b has compact support.

Now we define the sequence (an)n>1 of complex sequences indexed by Z as in the proof of Theorem

3.5. Let n > 1. Observe that if R™ ENy7 (M) is continuous and piecewise affine with nodes at £ then

/0+°° b(#) F()dt = gankf(i)

Let © € LP(M). Let R™ ELNy 5 (M) be the continuous and piecewise affine function with nodes at &
k

such that f, (%) = (T )kx Since the map t — Tyz is uniformly continuous on compacts of RT we

have
+o0 100 k 400 +oo k
/ b(t)Tyxdt — Z amk(T%) x = / b(t)Tyxdt — Z an kfn <n>
0 k=0 Lp (M) 0 k=0 Lp (M)
+oo
0 Lp(M)
We deduce that N
o +o00
3 an i (Tr)" — b(t)Thdt.
k=0 " 0

By the commutative diagram of the proof of Theorem 3.5, we have for any integer n > 1

1Canll ez —ep < NColleb,Lr@)— Lo (@):

Finally, by the strongly lower semicontinuity of the norm, we obtain that

< liminf
n—-+00

+0o0
/ b(t)T, dt
0

+oo E
> ank(Tr)
k=1 "

Lim inf |G, [lop e — e

Lp(M)—LP (M) Lr(M)—LP(M)

N

= Cbllep,r(®)—Lr(R)-
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The first consequence of this theorem is that inequality (5.2) holds true for p = 2. Now, we list

some natural examples of semigroups which satisfy inequality (5.2) by our results, using this theorem.

Semigroups of Schur multipliers. Let (7});>0 a w*-semigroup of selfadjoint contractive Schur
multipliers on B(¢%). If 1 < p < oo and t > 0, the map B(¢%) -5 I
St = el S?. Using [52, Remark 5.2], it is easy to see that we obtain a Cp-semigroup of contractions
SP = I, SP which satisfies inequality (5.2).

(¢3) induces a contraction

Semigroups of Fourier multipliers on an amenable group. Let G be an amenable group. Let
(Ti)t=0 a w*-semigroup of selfadjoint contractive Fourier multipliers on VN (G). If 1 < p < oo and
t > 0, the map VN(G) ELN VN(G) induces a contraction LP(VN(G)) ELN LP(VN(G)). We obtain a
Co-semigroup of contractions LP(VN(G)) EINy § (VN(G)) which satisfies inequality (5.2).

Noncommutative Poisson semigroup. Let n > 1 be an integer. Recall that F,, denotes a free
group with n generators denoted by g1,...,¢n. A semigroup on LP(VN(F,)) induced by a w*-
semigroup of selfadjoint completely positive unital Fourier multipliers on V N (F,,) satisfies inequality
(5.2). An example is provided by the following semigroup. Any g € F,, has a unique decomposition

of the form
g=g"g g,
where [ > 0 is an integer, each i; belongs to {1,...,n}, each k; is a non zero integer, and i; # i1 if
1 < j <l—1. The case when | = 0 corresponds to the unit element g = ep, . By definition, the length
of g is defined as
gl = [kl + - + [kl

This is the number of factors in the above decomposition of g. For any nonnegative real number ¢ > 0,

we have a normal unital completely positive selfadjoint map

T;: VN(F,) — VN(F,)
Ag) e N(g).

These maps define a w*-semigroup (7}):>¢ called the noncommutative Poisson semigroup (see [52]
for more information). If 1 < p < oo, this semigroup defines a Cp-semigroup of contractions
LP(VN(F,,)) ELNy 52 (VN(F,,)) which satisfies inequality (5.2).

g¢-Ornstein-Uhlenbeck semigroup. Suppose —1 < ¢ < 1. Let H be a real Hilbert space and let
(at)i>0 be a Cp-semigroup of contractions on H. For any t > 0, let Ty = I'y(ar). Then (T})xo is

a w*-semigroup of normal unital completely positive maps on the von Neumann algebra I'j(H). If
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1 < p < oo, this semigroup defines a Cyp-semigroup of contractions LP(I'y(H)) EIN LP(Ty(H)) (see [52]
for more information). This semigroup satisfies inequality (5.2).

In the case where a; = e~ ‘I, the semigroup (73)so is the so-called ¢-Ornstein-Uhlenbeck semi-

group.

Modular semigroups. The Cy-semigroups of isometries satisfy inequality (5.2). Examples are
provided by modular automorphisms semigroups. Here we use noncommutative LP-spaces of a von
Neumann algebra equipped with a distinguished normal faithful state, constructed by Haagerup. We
refer to [103], and the references therein, for more information on these spaces. Let M be a von
Neumann algebra with QWEP equipped with a normal faithful state M %> C. Let (of), , be the

teR

modular group of ¢. If 1 < p < oo, it is well known that (o7),.  induces a Cp-semigroup of isometries

>0
o
LP(M) — LP(M) (see [53]). This semigroup satisfies inequality (5.2).

In the light of Theorem 4.2, it is natural to ask for dilations of unital selfadjoint completely positive
semigroups of Schur multipliers. Actually, these semigroups admit a description which allows us to

construct a such dilation.

Proposition 5.4 Suppose that A is a matrix of M. For allt > 0, let T; be the unbounded Schur

multipliers on B((3) associated with the matriz
o] 53)
i,j€l

Then the semigroup (T;)i>0 extends to a semigroup of selfadjoint unital completely positive Schur
multipliers B(E%) ELN B(E%) if and only if there exists a Hilbert space H and a family (o;)icr of
elements of H such that for all t > O the Schur multiplier B((?) 25 B(£2) is associated with the

matric
|:€—t||04i—aj”§_1:| ]
i,J€1
In this case, the Hilbert space may be chosen as a real Hilbert space. Moreover, (T¢)i>0 is a

w*-semigroup.

Proof : Now say that each T; is a selfadjoint unital completely positive contraction means that for
all ¢ > 0, the matrix (5.3) defines a real-valued positive definite kernel on I x I in the sense of [6,
Chapter 3, Definition 1.1] such that for all i € I we have a;; = 0. Now, the theorem of Schoenberg
[6, Theorem 2.2] affirms that if 1/ is a kernel then e~ is a positive definite kernel for all ¢ > 0 if
and only if ¢ is a negative definite kernel. Consequently, the last assertion is equivalent to the fact
that A defines a real-valued negative definite kernel which vanishes on the diagonal of I x I. Finally,
the characterization of real-valued definite negative kernel of [6, Proposition 3.2] gives the equivalence

with the required description.
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The assertion concerning the choice of the Hilbert space is clear. Finally, using [52, Remark 5.2],

it is easy to see that (T});>0 is a w*-semigroup. [

The next proposition is inspired by the work [53].

Proposition 5.5 Let (T})i>0 be a w*-semigroup of selfadjoint unital completely positive Schur multi-
pliers on B (6%) Then, there exists a hyperfinite von Neumann algebra M equipped with a semifinite
normal faithful trace, a w*-semigroup (Up)i=o of unital trace preserving *-automorphisms of M, a

unital trace preserving one-to-one normal x-homomorphism B(E%) L M such that
Ty = EU.J.

for any t > 0, where M E B(Z%) s the canonical faithful normal trace preserving conditional expec-

tation associated with J.

Proof : By Proposition 5.4, there exists a real Hilbert space H and a family («;);er of elements of H

such that, for all ¢ > 0, the Schur multiplier B(¢%) ELN B(£?) is associated with the matrix

[emtlosmnliy]
J.kel

Let u be a gaussian measure on H, i.e. a probability space (2, u) together with a measurable function
Q = H such that, for all h € H, we have

o lRll — / ¢ gy (1)
Q

where i2 = —1. We define the von Neumann algebra M = L>®(Q)®@B({?). Note that M is a hyperfinite
von Neumann algebra. We equip the von Neumann algebra M with the faithful semifinite normal trace
v = Jo - du®Tr. Note that, by [107, Theorem 1.22.13], we have a #-isomorphism M = L> ({2, B({%)).

We define the canonical injective normal unital x-homomorphism

J: B(3) — L®(Q)@B(%)

T — l®x.

It is clear that the map J preserves the traces. We denote by M E, B(E%) the canonical faithful
normal trace preserving conditional expectation of M onto B(¢3). For all w € Q and ¢t > 0 let Dy(w)
be the diagonal matrix of B(¢?) defined by

iVit{aj,w(w)) 2
I

Dt(w) = 5j7k6 .
J,kel

Note that, for all ¢ > 0, the map EL B(H) defines an unitary element of L>(Q, B(¢%)). Now, for
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all t > 0 we define the linear map

U : LOO(Q,B(E%)) N L°°<Q,B(€%))

Ift > 0, it is easy to see that the map U, is a trace preserving x-automorphism of M. For all x € B (@),

we have

= /gth(w)(l(@x)Dt(w)*dM(w)

_ /Q {ei\/f(ajak,w(w))ijk] dp(w)

J,kel
— {e—tllaj—ak\\%x.k}
3,kel
= Ti(x).
Thus, for all ¢ > 0, we have
T, = EUJ.
The assertion concerning the regularity of the semigroup is easy and left to the reader. [ |

In the same vein, it is not difficult to construct a dilation of the noncommutative Poisson semigroup.
It is an unpublished result of F. Lust-Piquard. Moreover, it is easy to dilate the Cy-semigroups of
r
contractions LP(T'y(H)) Talos), LP(T,(H)), with [113, Theorem 8.1].

Finally, we have the next result analogue to Corollary 2.6. One can prove this proposition with a

similar argument.

Proposition 5.6 Suppose 1 < p < oo. Let (T})i>0 be a Co-semigroup of contractions on a non-
commutative LP-space LP(M). Suppose that there exists a noncommutative LP-space LP(N) where
N has QWEP, a Cy-semigroup (Uy)i>0 of isometric operators on LP(N), an isometric embedding
LP(M) ER LP(N) and a contractive map LP(N) <, LP(M) such that,

T, = QU,J.

for any t > 0. Then, for all b € L*(R) with support in RY, we have the estimate

Moreover, if LP(N) is a commutative LP-space LP(Q), we have, for all b € L*(R) with support in RY,

N

“+00
/ b()Tydt
0

“+o00
/ b()T,dt
0

LP(M)— L (M) cb,LP (R)— L (R)
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the estimate

<

“+o0
/ b(t)Tydt
0 Lr(Q)—Lr(Q)

This proposition allows us to give alternate proofs for some results of this section. By example,

“+00
/ b(t)T,dt
0

L (R)—L? (R)

using [113, Theorem 8.1] of dilation of Cp-semigroups on a Hilbert space, we deduce that the both
inequalities (5.1) and (5.2) are true for p = 2. By using [40], we see that the Cp-semigroups of operators

which admit a contractive majorant satisfy inequality (5.1), for 1 < p < oo .

6 Final remarks

We begin by observing that the inequalities (1.1) and (1.4) are true for any complex polynomial
P of degree 1 and any contraction 7. Indeed, suppose that P(z) = a + bz, then it is easy to see that
|Pll2 = |a| + |b]. Thus, for all 1 < p < oo, we have ||P||, = ||P||p,s» = |a| + |b].

Now we will determine the real polynomials of higher degree with a similar property.

n

Proposition 6.1 Let P = Z arz® be a real polynomial such that ay # 0 for any 0 < k < n. The
k=0

following assertions are equivalent.

n
1. For all1 < p < oo, we have ||P||, = Z lag].
k=0

n
2. For all 1 < p < oo, we have ||P|p.sr = Z lag|.
k=0
n
3. There exists 1 < p < oo such that | P||, = Z lag|.
k=0

n
4. There exists 1 < p < oo such that || P||p,.sr = Z lak|.
k=0

5. The coefficients ay have the same sign or the signs of the ay are alternating (i.e. for any integer

0 < k<n—1 we have agar41 <0).

In this case, for the polynomial P and any contraction T, the inequalities (1.1) and (1.4) are true.

Proof : First we will show that ||P|l2 = Y j_g |ak| is equivalent to the last assertion. Recall that
| Pll2 = sup|;=1 |P(2)|. On the one hand, for all 0 < < 27, we have

n n 2
Z arer? + < ag sin(k@))
k=0 k=0

= Z a2 cos?(k6) + 2 Z aga; cos(kb) cos(10) + Z a2 sin? (k@)
k=0 0<k<I<n k=0

2

2 n
= ( Z ay cos(k0)>

k=0
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+2 Z aga; sin(k6) sin(16)
0<k<I<n

= > ap+2 > agagcos ((k—1)0).
k=0

0<k<isn

On the other hand, we have the equality

n 2 n
<Z|akl> :Zai—l—Q Z \akal\.
k=0 k=0

0<k<I<n

Then P satisfies || P|l2 = > r—¢ |ak| if and only if

> agageos (k—100) = > |agayl.

0<k<i<n 0<k<is<n

This last assertion means that for all 0 < k < I < n we have cos ((k — 1)0) = sign(axa;). It is easy to
see that this last assertion is equivalent to the assertion 5.

Now, it is trivial that the equality || Pll2 = >_}_( |ax| implies the assertions 1 and 2, that 1 implies
3 and that 2 implies 4. Now we show that 4 implies ||P|l2 = > 1_g |ax|. By interpolation, we have

n

1—2
1Plloose = D larl = [[Pllpse < ([1Plloo,se) 7 (I1P
k=0

LSEIN]

2,52)

Moreover, it is easy to see that || Pl|2 = || P||2,s,. Then we obtain

kSIS
kSIS
SIS

(I1Plloc,50)” < (I[Pll2,55) 7 = (1Pl2)

And finally we have

n

> larl = [Plso.s < [IPll2.
k=0

The proof that the assertion 3 implies ||P|l2 = > j_ |ak| is similar. [
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Chapter 11

Dilation of Ritt operators on LP-spaces

1 Introduction

Let (92, 1) be a measure space and let 1 < p < co. For any bounded operator T': LP(Q2) — LP(Q),

consider the ‘square function’

, (1.1)
p

(gm’w - T’f—1<a:>!2)é

)z, = |

defined for any = € LP(Q2). Such quantities frequently appear in the analysis of LP-operators. They
go back at least to [109], where they were used in connection with martingale square functions to
study diffusion semigroups and their discrete counterparts. Similar square functions for continuous
semigroups played a key role in the recent development of H°-calculus and its applications. See in

particular the fundamental paper [26], the survey [67] and the references therein.

It is shown in [69] that if T" is both a positive contraction and a Ritt operator, then it satisfies a
uniform estimate ||z||71 < [|z||rr for x € LP(Q). This estimate and related ones lead to strong maximal
inequalities for this class of operators (see also [70]). Next in the paper [68], the author studies the
operators T such that both T: LP(Q) — LP(Q) and its adjoint operator T*: LP"(Q) — LP" () satisfy
uniform estimates

ez S lzllee and  lyllzn S 1yl (1.2)

for x € LP(Q) and y € L (Q). (Here p* = p%l is the conjugate number of p.) It is shown that
(1.2) implies that 7" is an R-Ritt operator (see Section 2 below for the definition) and that (1.2) is
equivalent to T having a bounded H°-calculus with respect to a Stolz domain of the unit disc with

vertex at 1.

The present paper is a continuation of these investigations. Our main result is a characterization
of (1.2) in terms of dilations. We show that (1.2) holds true if and only if 7" is R-Ritt and there exist
another measure space (€, i), two bounded maps J: LP(Q) — LP(Q) and Q: LP(Q) — LP(2), as well

55



Chapter II. Dilation of Ritt operators on LP-spaces

as an isomorphism U: LP(Q2) — LP(2) such that {U™ : n € Z} is bounded and
T —QU™J, n>0.

This result will be established in Section 4. It should be regarded as a discrete analog of the main
result of [43].

In Section 3, we consider variants of (1.1) as follows. Assume that T': LP(Q2) — LP(Q) is a Ritt
operator. Then I — T' is a sectorial operator and one can define its fractional power (I — T)¢ for any

« > 0. Then we consider

+00 1
(Z K2V (] — T)"‘x|2) (13)

k=1

)70 = ‘

P
for any x € LP(f2). Our second main result (Theorem 3.3 below) is that when 7" is an R-Ritt operator,
then the square functions || ||7,, are pairwise equivalent. This result of independent interest should
be regarded as a discrete analog of [66, Theorem 1.1]. We prove it here as it is a key step in our

characterization of (1.2) in terms of dilations.

Section 2 mostly contains preliminary results. Section 5 is devoted to complements on LP-operators
and their functional calculus properties, in connection with p-completely bounded maps. Finally
Section 6 contains generalizations to operators T: X — X on general Banach spaces X. We pay a

special attention to noncommutative LP-spaces, in the spirit of [52].

We end this introduction with a few notation. If X is a Banach space, we let B(X) denote the
algebra of all bounded operators on X and we let Iy denote the identity operator on X (or simply I if
there is no ambiguity on X). For any T' € B(X), we let o(T") denote the spectrum of 7. If A € C\ o (7))
(the resolvent set of T), we let R(\,T) = (A x — T)~! denote the corresponding resolvent operator.
We refer the reader to [32] for general information on Banach space geometry. We will frequently use
Bochner spaces LP(Q; X), for which we refer to [33].

For any a € C and r > 0, we let D(a,r7) = {2 € C : |z —a| < r} and we let D = D(0,1) denote
the open unit disc centered at 0. Also we let T = {z € C : |z| = 1} denote its boundary.

Whenever 2 C C is a non empty open set, we let H*°(2) denote the space of all bounded holo-

morphic functions f: 0 — C. This is a Banach algebra for the norm

[ fll o) = sup{|f(2)] : z € Q}.

Also we let P denote the algebra of all complex polynomials.

In the above presentation and later on in the paper we will use < to indicate an inequality up to
a constant which does not depend on the particular element to which it applies. Then A(x) ~ B(x)
will mean that we both have A(x) < B(x) and B(z) < A(x).
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I1.2 Preliminaries on R-boundedness and Ritt operators

2 Preliminaries on R-boundedness and Ritt operators

This section is devoted to definitions and preliminary results involving R-boundedness (and the
companion notion of y-boundedness), matrix estimates and Ritt operators. We deal with operators
acting on an arbitrary Banach space X (as opposed to the next two sections, where X will be an
LP-space).

Let (ex)k>1 be a sequence of independent Rademacher variables on some probability space .
We let Rad(X) C L?*(Q0; X) be the closure of Span{ey ® z : k > 1, z € X} in the Bochner space
L?(90; X). Thus for any finite family z1, ..., 7, in X, we have

1

2 2

dw) .
X

Rad(X) ( /QO

We say that a set F' C B(X) is R-bounded provided that there is a constant C' > 0 such that for any

n
Z €L S Tk
k=1

i ep(w) z
k=1

finite families T1,...,T, in F and x1,...,z, in X, we have
n n
> ek ® Tiolay) SO er@ay
k=1 Rad(X) k=1 Rad(X)

In this case we let R(F') denote the smallest possible C, which is called the R-bound of F'.

Let (gr)r>1 denote a sequence of independent complex valued, standard Gaussian random variables
on some probability space 2, and let Gauss(X) C L?(21; X) be the closure of Span{gr @ x : k >
1, z € X}. Then replacing the e;’s and Rad(X) by the g;’s and Gauss(X) in the above paragraph,
we obtain the similar notion of v-bounded set. The corresponding -bound of a set F' is denoted by
V().

These two notions are very close to each other, however we need to work with both of them
in this paper. Comparing them, we recall that any R-bounded set F' C B(X) is automatically ~-
bounded, with v(F') < R(F). Moreover if X has a finite cotype, then the Rademacher averages and
the Gaussian averages are equivalent on X (see e.g. [32, Proposition 12.11 and Theorem. 12.27]),
hence F is R-bounded if (and only if) it is y-bounded.

R-boundedness was introduced in [8] and then developed in the fundamental paper [22]. We refer
to the latter paper and to [60, Section 2] for a detailed presentation. We recall two facts which are
highly relevant for our paper. First, the closure of the absolute convex hull of any R-bounded set is
R-bounded [22, Lemma 3.2]. This implies the following.

Lemma 2.1 Let F C B(X) be an R-bounded set, let J C R be an interval and let C' = 0 be a constant.
Then the set

{/ a(t)V(t)dt ‘V: J — F is continuous, a € L'(J), lalli sy < C}
J
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is R-bounded.

Second, if X = LP(Q) is an LP-space with 1 < p < oo, then X has a finite cotype and we have an

I (i)

for finite families (zj); of LP(Q2). Consequently a set FF C B(LP(£2)) is R-bounded if and only if it is

~v-bounded, if and only if there exists a constant C' > 0 such that for any finite families T7,...,7,, in

equivalence

(2.1)

Rad(LP () Lr(Q)

F and z1,...,x, in LP(Q2), we have

(Zn:mf)%

k=1

(Siner)

k=1

<c

LP(Q) LP(Q)

In the sequel we represent any element of B(¢?) by an infinite matrix [c;;]; j>1 in the usual way.
Likewise for any integer n > 1, we identify the algebra M,, of all n x n matrices with the space of
linear maps ¢2 — (2. Clearly an infinite matrix [c;;]; j>1 represents an element of B(¢?) (in the sense

that it is the matrix associated to a bounded operator 2 — ¢2) if and only if

Sup” CZ] 1<Z,]<TLHB ZQ < 0.
nz1

For any [cij]i<ij<n in M, we set
eillleg = il gz
This is the so-called ‘regular norm’ of the operator [c;;]: €2 — (2.

Lemma 2.2 For any matric [cij] in M, the following assertions are equivalent.
(i) We have ||[ci; Hreg
(7t) There exist two matrices [a;;| and [bi;] in M, such that c;j = a;jbi; for anyi,j=1,...,n, and

we both have

sup Z |a;;|? and sup Z |bi;|*

1<z<n 1<isn
The implication ‘(ii)=-(i)’ is an easy application of the Cauchy-Schwarz inequality. The converse
is due to Peller [88, Section 3] (see also [2]). We refer to [94] and [102, Section 1.4] for more about
this result and complements on regular norms.
The following result extends the boundedness of the Hilbert matrix (wich corresponds to the case

B=~v= f) We thank Eric Ricard for his precious help in devising this proof.

Proposition 2.3 Let 3,7 > 0 be two positive real numbers. Then the infinite matrix

i< 27 2]
; N\ B+
<Z+j) 1,521
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represents an element of B((?).

Proof : For any i,j > 1, set

#3473
= T

Sl
=

) 1
(J) s and bij = Cz?j(

a;j = ¢

Then ¢;; = a;jb;; for any 4,7 > 1, hence by the easy implication of Lemma 2.2, it suffices to show that

+o0 +o0
sup Z |ai|? < oo and sup Z |bij|* < 0. (2.2)
izl i 32l =1

Fix some ¢ > 1. For any j > 1, we have

’aU‘Q = c(i)% — i
AN AN o (Z’_|_j)ﬁ+'y’
Hence

) 1 +00 1
Sl = (e + 5 )

Looking at the variations of the function t — 1/(t!=7(i + t)%+7) on (1, 00), we immediately deduce

that
1

+o00 ) 5 400

Changing t into it in the latter integral, we deduce that

This upper bound is finite and does not depend on 4, which proves the first half of (2.2). The proof of
the second half is identical. [ ]

We record the following elementary lemma for later use.
Lemma 2.4 Let [c;j]ij>1 and [dijlij>1 be infinite matrices of nonnegative real numbers, such that
cij < dij for any i,j > 1. If the matriz [d;;]; j>1 represents an element of B(¢?), then the same holds
for [cijlijz1-

We will need the following classical fact (see e.g. [32, Corollary 12.17]).

Lemma 2.5 Let X be a Banach space and let [bijli<ij<n be an element of M,. Then for any

T1,...,Ty tn X, we have

n
Z 9i ® bjjx; < |

ij=1

i1l ez

n
Zgy@%'

Gauss(X) Gauss(X)
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That result does not remain true if we replace Gaussian variables by Rademacher variables and

this defect is the main reason why it is sometimes easier to deal with y-boundedness than with R-

boundedness.

Proposition 2.6 Let X be a Banach space, let F' = {T;; : i,j > 1} be a y-bounded family of operators
on X, let n > 1 be an integer and let [ci;]i1<i j<n be an element of M,,. Then for any x1,...,x, in X,
we have

n
> 9 @ ciTij(x)
ij=1

< 'Y H Cz] reg

n
Zgj@)xj

Gauss(X) Gauss(X)

Proof : We can assume that H[CU]Hreg < 1. By Lemma 2.2, we can write ¢;; = a;;b;; with

sup Z\a”\ and sup Z\bwl (2.3)

1<z<n 1<isn

Let (gi )i j>1 be a doubly indexed family of independent Gaussian variables. For any integers 1 <

1,7 < n, we define
. . T
A(Z) = { a;1 ;2 ... Qgp } and B(]) = [ blj bgj bnj } .
Then we consider the two matrices
A = Diag(A(1),...,A(n)) € M, 2 and B = Diag(B(1),...,B(n)) € M,2,

Let z1,...,x, € X. Applying Lemma 2.5 successively to A and B, we then have

n n
3" g5 @ cijTij(a) = || D 9i ® aijbiTij(x;)

i,5=1 Gauss(X) ,j=1 Gauss(X)
n

< > 9ij ® biTj(x)

5,5=1 Gauss(X)
n

< AE) AL Y gi5 @ big;

t,j=1 Gauss(X)
n

< AE) NANIBI | D95 ®

J=1 Gauss(X)

We have

1
n 2
lAll =" sup [[A@)],,, = sup (Zlaijlz) :

<isn 1<isn j=1

hence ||A]| < 1 by (2.3). Likewise, we have ||B|| < 1 hence the above inequality yields the result. m
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We now turn to Ritt operators, the key class of this paper, and recall some of their main features.
Details and complements can be found in [15, 16, 68, 73, 77, 80, 116]. We say that an operator
T € B(X) is a Ritt operator if the two sets

{T" :n>} and {n(T” TN in> 1} (2.4)
are bounded. This is equivalent to the spectral inclusion
o(T)cCD (2.5)
and the boundedness of the set
&A—DMLT)JM>1} (2.6)

This resolvent estimate outside the unit disc is called the ‘Ritt condition’.

Likewise we say that T is an R-Ritt operator if the two sets in (2.4) are R-bounded. This is
equivalent to the inclusion (2.5) and the R-boundedness of the set (2.6).

For any angle v € (0, %), let B, be the interior of the convex hull of 1 and the disc D(0,sin~) (see
Figure II.1 below).

Figure I1.1

Then the Ritt condition and its R-bounded version can be strengthened as follows.

Lemma 2.7 Let T: X — X be a Ritt operator (resp. an R-Ritt operator). There exists an angle
v € (0,%) such that
o(T) Cc B,uU{l} (2.7)
and the set
{(A=DROT) : AeC\ By, A#1} (2.8)
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is bounded (resp. R-bounded).

This essentially goes back to [15], see [68] for details.
For any angle 6 € (0, 7), let

Yo = {z e C : |Arg(2)| < 9} (2.9)

be the open sector of angle 20 around the positive real axis (0,00). We say that a closed operator
A: D(A) — X with dense domain D(A) is sectorial if there exists 6 € (0, ) such that o(A) C ¥y and
the set

{#R(z,4) : zeC\ Ty} (2.10)

is bounded.

Let T be a Ritt operator and let v € (0, 5) be such that the spectral inclusion (2.7) holds true
and the set (2.8) is bounded. Then A = I — T is a sectorial operator. Indeed 1 — B, C X, and
zR(z,A) = (1 —2) = 1)R(1 — 2,T) for any z ¢ X,. Hence for § = v, the set (2.10) is bounded.
Thus for any « > 0, one can consider the fractional power (I — T)%. We refer e.g. to [45, Chapter
3] for various definitions of these (bounded) operators and their basic properties. Fractional powers
of Ritt operators can be expressed by a natural Dunford-Riesz functional calculus formula. Indeed it

was observed in [68] that for any polynomial ¢, we have

o(T)(I - T)" = 2% (=N R(T)dA, (2.11)

where the countour 0B, is oriented counterclockwise.
P. Vitse proved in [116] that if T: X — X is a Ritt operator, then for any integer N > 0, the set

{nNT"= (I —T)N : n > 1} is bounded. Our next statement is a continuation of these results.

Proposition 2.8 Let X be a Banach space and let T: X — X be a Ritt operator (resp. an R-Ritt
operator). For any o > 0, the set

{na(TT)”_l(I —rT)* :n>1, re (0, 1]}
is bounded (resp. R-bounded).

Proof : We will prove this result in the ‘R-Ritt case’ only. The ‘Ritt case’ is similar and simpler.
Assume that 7' is R-Ritt. Applying Lemma 2.7, we let v € (0, %) be such that (2.7) holds true and
the set (2.8) is R-bounded. Let 7 € (0,1] and let A € C\ B,, with A # 1. Then 2 € C\ B, hence 2

belongs to the resolvent set of T and we have

(A=1R(\,rT) = Al (A - 1)R<)\,T>.

A—r
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Since the set

—1
{i\\r : AGC\BV, )\7517 7‘6(0,1]}

is bounded, it follows from the above formula that the set
{0V =DROrT) : XeC\ By, A#£1, 7€ (0,1]} (2.12)

is R-bounded.

The boundary 9B, is the juxtaposition of the segment I'; going from 1 to 1 — cos(y)e™"7, of the
segment I'_ going from 1—cos(y)e to 1 and of the curve I'y going from 1 —cos(y)e™* to 1 —cos(y)e?
counterclockwise along the circle of center 0 and radius sin 7.

Consider a fixed number o > 0. For any integer n > 1 and any r € (0, 1], we have

1
(rT)" NI —rT)* = CRel A1 = XN)YR(\, rT) dA
Y

by applying (2.11) to rT. Hence we may write

_na

n®(rT)" NI —rT)* = AL = XY N = DR, rT) dX.

27 JoB,

According to the R-boundedness of the set (2.12) and Lemma 2.1, it therefore suffices to show that

the integrals
I, — na/ A1 — A[*~ L [d)
0B,

are uniformly bounded (for n varying in N). Let us decompose each of these integrals as I, =
Ino+ In+ + I, —, with

Imozno‘/ SPINE In,+:na/ .. ]d)|, and In,,:na/ SPNE
To ry r_
For A € Ty, we both have

cosy < |1—)A| <2 and |A| = sin~y.

Since the sequence (n®(siny)") ., is bounded, this readily implies that the sequence (I, 0)n>1 is

bounded.

Let us now estimate I, .. For any t € [0, cos ], we have t? < tcosy hence

>1

|1 —te*”]2 = 1+1t>—2tcosy<1—tcosn.

Hence
cos 7y i1 Ccos 7y noo
In7+:na/ 11— te™|"t* " dt <na/ (1 —tcosy)2t* " dt.
0 0
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Chapter II. Dilation of Ritt operators on LP-spaces

Changing t into s = tcos~y and using the inequality 1 — s < e™%, we deduce that

This yields (changing s into u = %)

20 oo
Iny+ < 7/ u* e % du.
7 (cosy)* Jo
Thus the sequence (I, 4+ )p>1 is bounded. Since I, — = I,, , this completes the proof of the bounded-
ness of (In)n>1. ]

3 Equivalence of square functions

Throughout the next two sections, we fix a measure space (€2, ) and a number 1 < p < co. We
shall deal with operators acting on the Banach space X = LP(Q2). We start with a precise definition

of (1.1) and (1.3) and a few comments.

Let T': LP(2) — LP(2) be a bounded operator and let x € LP(2). Let us consider
v = k3 (TH(x) = T (x))

for any k > 1. If the sequence (zj)r>1 belongs to the space LP(Q;¢?), then ||z|7, is defined as the
norm of (x)r>1 in that space. Otherwise, we set ||z|7,1 = oo. If T is a Ritt operator, then the

quantities ||z||7, are defined in a similar manner for any o > 0. In particular, ||z|/7, can be infinite.

These square functions are natural discrete analogs of the square functions asociated to sectorial

operators (see [26] and the survey paper [67]).
Assume that T is a Ritt operator. Then T is power bounded hence by the Mean Ergodic Theorem

(see e.g. [59, Section 2.1]), we have a direct sum decomposition
LP(Q) = Ker(I —T)®Ran(I — T), (3.1)

where Ker(-) and Ran(-) denote the kernel and the range, respectively. For any a > 0, we have
Ker((I —T)*) = Ker({ — T'). This implies that

|2|70 =0 <= z € Ker(I — T). (3.2)

Given any a > 0, a general question is to determine whether ||z||7, < oo for any = in LP(2). It

is easy to check, using the Closed graph Theorem, that this finiteness property is equivalent to the
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I1.3 Equivalence of square functions

existence of a constant C' > 0 such that
[zll10 < Cllzllze, € LP(Q). (3.3)

In [68], C. Le Merdy established the following connection between the boundedness of discrete square

functions and functional calculus properties.

Theorem 3.1 ([68]) Let T: LP(Q) — LP(Q) be a Ritt operator, with 1 < p < oco. The following

assertions are equivalent.

(i) The operator T and its adjoint T*: LP"(Q) — LP"(Q) both satisfy uniform estimates

ey < llele and  lyllrn S llyll e

for x € LP(Q) and y € LP" ().
(ii) There exists an angle 0 <y < 5 and a constant K > 0 such that

oM < K llellae=s,)

for any ¢ € P.
(iii) The operator T is R-Ritt and there exists an angle 0 < 0 < 7 such that I —T admits a bounded

H> (%) functional calculus.

Besides [68], we refer to [26, 60, 65, 75] for general information on H*(3y) functional calculus for
sectorial operators.

The main purpose of this section is to show that if 7" is R-Ritt, then the square functions || |74
are pairwise equivalent. Thus the existence of an estimate (3.3) does not depend on o > 0. This
result (Theorem 3.3 below) is a discrete analog of the equivalence of square functions associated to
R-sectorial operators, as established in [66].

We start with preliminary results which allow to estimate square functions ||z|7 by means of

approximation processes.

Lemma 3.2 Assume that T: LP(Q)) — LP(Q) is a Ritt operator, and let a > 0.
(1) For any operator V: LP(2) — LP(Q) such that VI =TV and any x € LP(QY), we have

V@7, < VI 7.0

(2) For any v € Ran(I — T, we have ||z|1,, < 00.
(3) Let v > a+ 1 be an integer and let x € Ran((I —T)"). Then

%70 = lim [|@];7q-
r—1-
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Chapter II. Dilation of Ritt operators on LP-spaces

Proof : (1): Consider V € B(LP(2)). As is well-known, the tensor product V @ Ip2 extends to a
bounded operator V@I : LP(Q;6%) — LP(; 0%), with |[V&Ipz| = ||V|. Assume that VT =TV and

let « be such that ||z||7,o < co. Then we have

(RN =T (V(2)) = VBIp [(*72TF (1 = T)"(2))

k>1]’

>1
and the result follows at once.

(2): Assume that z = (I — T')2’ for some 2/ € LP(Q). By Proposition 2.8, there exists a constant
C such that

=) )

PO

k=1

}:Hka—*Tk?ll T)*(z)

Lp

oo 1 C
< l2llze Z k572 Lo+l
k=1

(o]
< Cllallle Do k7% < oo,
k=1

This implies that (k:o‘_%Tk_l(I — T)%(x)),~, belongs to LP(€2; (?).

k>1

(3): It is clear that (I —rT)* — (I —T)* when r — 1. Assume that z € Ran((I —T)"). Arguing
as in part (2) we find that the sequence (kO‘*%Tk_l(:c))
part (1), we obtain that

k1 belongs to LP(£;£2). Then arguing as in

— 0
Lr(¢2)

(k2T = 1) = (1= T)%) ()

k}l‘

when r — 17. This implies the convergence result. [ |

Theorem 3.3 Assume that T: LP(Q2) — LP(Q2) is an R-Ritt operator. Then for any o, > 0, we

have an equivalence

~ lzllrs, @ e LP(Q).

Proof : We fix v > 0 such that a + v is an integer N > 1. For any integer k > 1, we define the

complex number

(k4 1) (k+ N —2)
C — 1 )

ko3

with the convention that ¢; = — if N = 1. For any z € D, we have
k23

}:kk+1 (k+ N —2)2*
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I1.3 Equivalence of square functions

Hence
oo
chka 222 Z (k+N-=2) )1 -2 = (N -1
Since the operator 1" is power bounded, we deduce that for every r € (0,1) we have

chka 2 (rT)2(1 — (rT)2)N = (N — 1)1,

the series being absolutely convergent. Since (I +rT)" is invertible, this yields

i e (rT)FY(I - rT)Vka*%(rT)kfl(I —rT)* = (N - )T +rT)"N
k=1

Let z € LP(Q)). For any integer m > 1 and any r € (0,1), we let
Ym(r) = (N — DI +rT) NmP=2 (7)™ NI — rT)Px
Then it follows from the above identity that
Z cemP2 (rT)™ k=21 — rT)P+7 . ko‘_%(TT)k_l(I —rT)%
For any n > 1, we consider the partial sum

n
Yman(r) = 3 eumP 2 (PT)™ 2L — TP k0TS (TR YT — 0T,
k=1

and we have yp, o (r) — ym(r) when n — co. Let us write

1
mﬁ_ﬁck

B-3 m+k=2(1 _ B+y —
cemP =3 (rT) (I —rT)P+ = o k_l)w[(

m+k — 1) (rT)m 21 rT)ﬁﬂ} (3.4)

for any m, k > 1. Since ¢ ~4o0 kﬂ*%, there exists a positive constant K such that

m’g_%ck i mB-3k"3
(m+k—1)+0 =7 (m+ k)8

for any m, k > 1. It therefore follows from Proposition 2.3 and Lemma 2.4 that the matrix

mﬁ 2CL
(m+k—1)7+8
m,k>1
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Chapter II. Dilation of Ritt operators on LP-spaces

represents an element of B(KQ). Moreover, by Proposition 2.8, the set
F o= {(m+k =100y =21 —rT) P k> 1, v € (0,1]}

is R-bounded. Hence by (2.1), (3.4) and Proposition 2.6, we get to an estimate

M e toc 2%
‘ (X lmaP) | | (Zr oyt = rpyaf)
m=1 Lp k=1 Lp
for any integer M > 1. Passing to the limit, we deduce that
[e%e] 9 % +o0 9 3
(Zo) | = (S oryia -y
m=1 P k=1 P

Since the set {(N — )" (I +rT)N : r € (0,1)} is bounded, we finally obtain that

lzllrrs S Nzllrro

It is crucial to note that in this estimate, the majorizing constant hidden in the symbol < does not
depend on r € (0,1). Now let v be an integer such that v > a+ 1 and v > 3+ 1. Applying Lemma

3.2 (3), we deduce a uniform estimate

zllrs S #ll7.0

for 2 € Ran((I — T)¥). Next for any integer m > 0, set

Ay = b i([— T").

It is clear that AY, maps X into Ran((/ — T')”). Hence we actually have a uniform estimate
HA;’n(az)HTﬁ < HAZ@(J;)HT,M reX, m>1.

Since T' is power bounded, the sequence (Ay,)m>0 is bounded. Applying Lemma 3.2 (1), we deduce a
further uniform estimate

Mm@y S Il2llre, zeX, m>1.

Equivalently, we have

S lzll7,a zeX, m>=1,1>1.

H<ikzﬁ‘llT‘f—lu—T>ﬁA:n<w>|2)2
k=1

Lp

For any x € Ran(I — T'), A,,(x) — x and hence AY () — = when m — oo. Hence passing to the limit
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I1.3 Equivalence of square functions

in the above inequaliy, we obtain a uniform estimate ||z||7 5 < ||z||7.o for # in Ran(I — T). Switching
the roles of a and f, this shows that | |75 and || |7, are equivalent on the space Ran(l —T).
Moreover || |73 and || ||7,o vanish on Ker(Z —T') by (3.2). Appealing to the direct sum decomposition
(3.1), we finally obtain that || |73 and || |7, are equivalent on LP(€2). ]

The techniques developed so far in this paper allow us to prove the following proposition, which
complements Theorem 3.1. For a Ritt operator T', we let Pr denote the projection onto Ker(I — T')
which vanishes on Ran(I — T') (recall (3.1)).

Proposition 3.4 Let T': LP(2) — LP(S2) be a Ritt operator, with 1 < p < co. Then the condition (i)

in Theorem 3.1 is equivalent to:
(1)’ We have an equivalence

|z|» = [|[Pr(z)|,, + ll=]r:

for xz € LP(Q).

Proof : That (i) implies (i)’ was proved in [69, Remark 3.4] in the case when T is ‘contractively
regular’. The proof in our present case is the same.

Assume (i)’ Let y € LP"(Q). We consider a finite sequence (z4)x>1 in LP(Q2) and we set
z =S k3T = T)ay,.
k
Then
SO (kE (T T = Ty, )

k

= [y, 2| < llzllzellyll Lo

Moreover z € Ran(I — T') hence applying (i)’, we deduce

ST(kE (TN = Ty, )

k

S lyllpes ]l

We will now show an estimate

lzllra S

~

(3.5)

oy

Then passing to the supremum over all finite sequences (71 )x>1 in the unit ball of LP(€2; £?), we deduce

that [lyllz-,1 < llyll Lo~
To show (3.5), first note that for any integer m > 1, we may write

Lp

1 1
m2k2

m2T" NI —T)x =) CERAE

k

(m + k)27 =21 — T)%y, .

Second according to [68], the assumption (i)’ implies that 7" is an R-Ritt operator. Hence by Proposi-
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Chapter II. Dilation of Ritt operators on LP-spaces

tion 2.8, the set {(m+k)?T™**=2(I -T)% : m,k > 1} is R-bounded. Therefore applying Propositions
2.3 and 2.6 we obtain (3.5). ]

4 Loose dilations

We will focus on the following notion of dilation for LP-operators.

Definition 4.1 Let T: LP(Q) — LP(Q2) be a bounded operator. We say that it admits a loose dilation
if there exist a measure space (Q,[i), two bounded maps J: LP(Q) — LP(Q) and Q: LP() — LP(Q),

as well as an isomorphism U: LP(Q2) — LP(Q) such that {U™ : n € Z} is bounded and
™ =QU"J, n = 0.
That notion is strictly weaker than the following more classical one.

Remark 4.2 We say that a bounded operator T': LP(Q2) — LP(Q2) admits a strict dilation if there exist
a measure space (U, Ji), two contractions J: LP(Q) — LP(Q) and Q: LP(Q) — LP(Q), as well as an
isometric isomorphism U: LP(Q) — LP(Q) such that T" = QU™J for any n > 0.

This strict dilation property implies that T is a contraction and that J and Q* are both isometries.

Conversely in the case p = 2, Nagy’s dilation Theorem (see e.g. [113, Chapter 1]) ensures that
any contraction L*(Q) — L%(Q) admits a strict dilation.

Next, assume that 1 < p # 2 < oco. Then it follows from [2, 3, 23, 88] that T: LP(2) — LP(2)
admits a strict dilation if and only if there exists a positive contraction S: LP(Q2) — LP(Q) such that
|T(x)] < S(|z|) for any x € LP(Q).

Except for p = 2 (see Remark 4.3 below), there is no similar description of operators admitting
a loose dilation. The general issue behind our investigation is to try to characterize the LP-operators
which satisfy this property. Theorem 4.8 below gives a satisfactory answer for the class of Ritt

operators.

Remark 4.3 Let H be a Hilbert space, let T: H — H be a bounded operator and let us say that T
admits a loose dilation if there exist a Hilbert space K, two bounded maps J: H — K and Q: K — H,
and an isomorphism U: K — K such that {U™ : n € Z} is bounded and T™ = QU™J for any n > 0.
Then this property is equivalent to T being similar to a contraction.

Indeed assume that there exists an isomorphism V € B(H) such that V=TV is a contraction. By
Nagy’s dilation Theorem, that contraction admits a unitary dilation. In other words, there is a unitary
U on a Hilbert space K containing H, such that (VYTV)" = qU"j for any n > 0, where j: H — K
is the canonical inclusion and ¢ = j* is the corresponding orthogonal projection. We obtain the loose
dilation property of T by taking J = iV~ and Q = Vq.
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The converse uses the notion of complete polynomial boundedness, for which we refer to [86, 87].
Assume that T' admits a loose dilation. Using [86, Corollary 9.4] and elementary arguments, we obtain

that T is completely polynomially bounded. Hence it is similar to a contraction by [87, Corollary 3.5].

According to the above result, the rest of this section is significant only in the case 1 < p # 2 < oco.
Let S: ¢, — % denote the natural shift operator given by S((tx)kez) = ((tx—1)kez). For any ¢ in

P (the algebra of complex polynomials), we set

el = 195 | eny (4.1)

We recall that if ¢ is given by ¢(z) = 37> dpz* , then ¢(S) is the convolution operator (with respect
to the group Z) associated to the sequence (di)rez. Alternatively, ¢(S) is the Fourier multiplier
associated to the restriction of ¢ to the unitary group T. We refer the reader to [35] for some
elementary background on Fourier multiplier theory.

Let us decompose (0, 7) dyadically into the following family (I;);ez of intervals:

;o [n—#,w—#) if j >0
! [29 =L, 29) if j < 0.

Then we denote by A, the corresponding arcs of T:
Aj = {eit :te —IjUIj }

We will use the following version of the Marcinkiewicz multiplier theorem (see [15, Theorem 4.3] and
also [35]).

Theorem 4.4 Let 1 < p < co. Let ¢ € L*™°(T) and assume that ¢ has uniformly bounded variations
over the (A;)jez. Then ¢ induces a bounded Fourier multiplier My: €5, — €5 and we have

HM¢||B(z§) <G (HCZ)HLOO(T) + sup{var (¢,4;) : j € Z})a
where var (¢, Aj) is the usual variation of ¢ over A; and the constant C, only depends on p.

For convenience, Definition 4.5 and Proposition 4.7 below are given for an arbitrary Banach space

X, although we are mostly interested in the case when X is an LP-space.

Definition 4.5 We say that a bounded operator T': X — X is p-polynomially bounded is there exists
a constant C' > 1 such that

(D) < Cllell (4.2)

for any complex polynomial .
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Chapter II. Dilation of Ritt operators on LP-spaces

The following connection with dilations is well-known.
Proposition 4.6 IfT: LP(Q)) — LP(QQ) admits a loose dilation, then it is p-polynomially bounded.

Proof : Assume that T satisfies the dilation property given by Definition 4.1. Then for any ¢ € P,
we have p(T) = Qp(U)J, hence

le(@)]| < QU Hle@)])-

Moreover by the transference principle (see [24, Theorem 2.4]), ||o(U)|| < K?||¢||p, where K > 1 is
any constant such that ||[U"|| < K for any integer n. This yields the result. ]

We will see in Section 5 that the converse of that proposition does not hold true.

The above proof shows that if T': LP(Q2) — LP(Q) admits a strict dilation, then |o(T)| < [l¢llp
for any ¢ € P, a very classical fact. The famous Matsaev Conjecture asks whether this inequality
holds for any LP-contraction 7" (even those with no strict dilation). This was disproved very recently
by Drury in the case p = 4 [34]. It is unclear whether there exists an LP-contraction 7' satisfying

lo(T)]| < |l¢]lp for any ¢ € P, without admitting a strict dilation.

Proposition 4.7 Let T: X — X be a p-polynomially bounded operator. Then I — T is sectorial and
for any 0 € (§,7), it admits a bounded H>(%g) functional calculus.

Proof : Since T is p-polynomially bounded, it is power bounded hence o(T) C D. We can thus
define ¢(T') for any rational function with poles outside D. Furthermore (4.2) holds as well for such
functions, by approximation.

We fix two numbers § < 0 < #" < 7 and we let (see Figure I1.2):
_ ~ 1 : 1
Dy = D( —icot(0), m) U D(z cot(6), W)'

Clearly Dy contains D. For any ¢ € (—m,0) U (0, ), let 7(¢) denote the radius of the largest open

disc centered at e’ and included in Dy. If ¢ is positive and small enough, we have

r(t) = — — |e™ + i cot(0)]

2

= — - \/cos2(t) + (sin(t) + cot())

= n(0) <1 - \/1 + 25sin(t) sin(6) COS(G))
— —cos(O)t + %(sin(@) cos”(9)) 12 + O(1%).

Consequently, we have r(t) > — cos(6)t for ¢ > 0 small enough. We deduce that if j < 0 with |j| large

enough and ¢ € I;, we have

D (6 t’ — COS(G)W) C Dg. (43)
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Dy

Y

Figure I1.2

The same holds for ¢ € —I;. Moreover the intervals I; and I_; of the dyadic decomposition have

length equal to ;7. Hence for any rational function ¢ with poles outside Dy and any j < 0 with |j|

large enough, we obtain that

var (gpm,Aj) = / |<p’(eit)| dt

7IjUIj

< / HSOHH—OWDZ) dt by (4.3) and Cauchy’s inequalities,
_nur; — cos(@)m

el 2mllelae )
= 2l — cos(0) 571t — cos(6)

We have a similar result if j > 0 and large enough. Applying Theorem 4.4, we deduce a uniform

estimate
HSO(S)HB(@ S el zoe (mg)-

Combining with (4.2) -as explained at the beginning of this proof- we obtain the existence of a constant

K > 0 such that for any rational function ¢ with poles outside Dy,

HSD(T)HB(X) < K||90|\Hoo(m>9)-

Note that we have the following inclusion:

1 —Dy C Xp.
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Then let Ry be the algebra of all rational functions with poles outside Xy and with a nonpositive

degree. We deduce from above that for any f € Ry,

1T =D < KN O=) | oo ) < Kl 1z (25)-

According to [65, Proposition 2.10], this readily implies that I — 7' is sectorial and admits a bounded
H> (%) functional calculus. ]

Theorem 4.8 Let T: LP(Q2) — LP(Q) be a Ritt operator, with 1 < p < oo. The following assertions

are equivalent.

(i) The operator T and its adjoint T*: LP"(Q) — LP"(Q) both satisfy uniform estimates

ez S lzllee and  lyllz-a S llyllzes

for x € LP(Q) and y € LP" ().
(ii) The operator T is R-Ritt and admits a loose dilation.
(iii) The operator T' is R-Ritt and p-polynomially bounded.
Proof : That (ii) implies (iii) follows from Proposition 4.6.
Assume (iii). By Proposition 4.7, I — T admits a bounded H*°(Xy) functional calculus for any
¢ > %. Since T is R-Ritt, this implies (i) by Theorem 3.1.
Assume (i). It follows from [68] (see Theorem 3.1) that T" is an R-Ritt operator. Thus we only
need to establish the dilation property of 7T'. Since T'is R-Ritt, Theorem 3.3 ensures that the square

functions || ||7,1 and || || 1 are equivalent on LP(2). Likewise, || ||7+1 and || ||« 1 are equivalent on
D) ’2

LP" (). Consequently the assumption (i) implies the existence of a constant C' > 1 such that
l2lpy < Cllolle and  lyllge s < Cllylee
for any = € LP(Q2) and any y € LP" ().

We will use the direct sum decomposition (3.1), as well as the analogous decompostion of LP" ()

corresponding to T*. According to the above estimates, we may define two bounded maps
juRan(T—T) — () and o Ran(l —T7) — 17 ()
as follows. For any « € Ran(I — T) and any y € Ran(I — T*), we set
op =TI —T)2z  and .= (T 11— T%)2y
if k>0, weset zp =0 and y, = 0 if £ < 0. Then we set

J1(x) = (zp)kez and  ja2(y) = (yk)kez-
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Then we let Jy: LP(Q2) — LP(Q) éLP(Q;E%) be the linear map taking any = € Ker(I — T) to (z,0)
and any = € Ran(I — T) to (0,71(x)). We define Jp: LP"(Q) — Lp*(Q)ZE)BLp* (Q;£2) in a similar way.
For any « € Ran(I — T') and y € Ran(I — T*), we have

1

Tk 1 5 (T*)k l(I T*)% >

Mg

<J1x ng

e T

i
I

{
(12501 - T)z, y)
{

T2k — T2)(I +T) 'z >

Mg

e
Il
—_

For any integer N > 1
iv: T2k (p 2y — [ _ 2N,
k=1
Furthermore, (I 4 T)~ 'z belongs to Ran(I — T') and the sequence (T™),,>o strongly converges to 0 on
that subspace of LP(2). Hence
(i, Joy) = ((I+T)'a,y).

Let ©: LP(Q) — LP(Q) be the linear map taking any z € Ran(/ — T') to (/+71")z and any x € Ker(I—T)

to itself. Then it follows from the above calculation that
0J5J; = Irp()- (4.4)

Let
7 =IP(Q)&LP(%62),

and let U: Z — Z be the linear map which takes any x € LP(Q) to itself and any sequence (xg)kez
in LP(;¢2) to the shifted sequence (zpy1)kez. Next let P: Z — Z be the linear map which
takes any x € LP(Q) to itself and any sequence (zj)rez in LP(Q;¢%) to the truncated sequence

(...,0,...,0,20,21,...,Tk,...). By construction, we have
PU”Jl = JlTn, n 2 0. (4.5)

We also have J5P = J3 hence setting J = J;: LP(Q) — Z and Q = ©J3: Z — LP(N), we deduce
from (4.4) and (4.5) that 7" = QU™J for any n > 0. Furthermore, U is an isometric isomorphism
on Z. Thus we have established that T satisfies the dilation property stated in Definition 4.1, except

that the dilation space is Z instead of being an LP-space.

It is easy to modify the construction to obtain a dilation through an LP-space, as follows. First

recall that using for example Gaussian variables, one can isometrically represent E% as a subspace of
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an LP-space such that there exists a bounded projection from this space onto ¢3 (see e.g. [92, Chapter
5]). The space Z can be therefore represented as well as a complemented subspace of an LP-space.

Thus we have

ZoW = LP(Q)

for an appropriate measure space (€2,7) and some Banach space W. Let J': LP(Q) — LP(Q) be
defined by J'(z) = (J(x),0), let U’: LP(Q)) — LP(Q) be defined by U'(z,w) = (Uz,w) and let
Q': LP(Q) — LP(Q) be defined by Q' (z,w) = Q(z). Then U’ is an isomorphism, (U'™),cz is bounded

and QU™ J" = T™ for any n > 0. []

5 Comparing p-boundedness properties

In this section we will consider an LP-analog of complete polynomial boundedness going back to
[93] (see also [97, Chapter 8]) and give complements to the results obtained in the previous section.
In particular we will show the existence of p-polynomially bounded operators LP — LP without any
loose dilation.

In the sequel we assume that 1 < p < 0o. Let n > 1 be an integer. For any vector space V', we let
M, (V') denote the space of n x n matrices with entries in V. When V = B(X) for some Banach space

X, we equip this space with a specific norm, as follows. For any [T};]1<i j<n in My (B(X)), we set

n

Tl s = 200 (35

=1

n

> Tij(xy)

=1

1
PNop n
) 1. € X, Zuxjugg}. (5.1)
X

=1

In other words, we regard [T;;] as an operator /£ (X) — ¢F(X) in a natural way and the norm of the
matrix is defined as the corresponding operator norm.

Let X,Y be two Banach spaces, let V' C B(X) be a subspace and let u: V' — B(Y') be a linear
mapping. We say that u is p-completely bounded if there exists a constant C' > 0 such that

1Ty ar sy < CNTG 01, 00

for any n > 1 and any matrix [T;;] in M, (V). In this case, we let ||u||pe denote the smallest possible
C.

Let us regard the vector space P of all complex polynomials as a subspace of B(#), by identifying
any ¢ € P with the operator (). Accordingly for any [¢;;] in M, (P), we set

H[‘Pij]Hp = H[‘PZJ<S)] p, My (B(£2))"

This extends (4.1) to matrices. We say that a bounded operator T: Y — Y is p-completely polyno-
mially bounded if the natural mapping u: P — B(Y") given by u(¢) = ¢(T') is p-completely bounded.
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II.5 Comparing p-boundedness properties

This is equivalent to the existence of a constant C' > 1 such that

H[S!?z‘j(T)]Hp,Mn(B(y)) < CH[‘PU]HP

for any matrix [p;;] of complex polynomials.

When p = 2 and Y is a Hilbert space, the notions of 2-polynomial boundedness and 2-complete
polynomial boundedness correspond to the usual notions of polynomial boundedness and complete
polynomial boundedness from [86, 87]. See [86] for the rich connections with operator space theory.
The existence of a polynomially bounded operator on Hilbert space which is not completely polyno-
mially bounded is a major result due to Pisier. Indeed this is the heart of his negative solution to the
Halmos problem [97, 98]. We will show that Pisier’s construction can be transferred to our LP-setting.

We start with an elementary result which is obvious when p = 2 but requires attention when p # 2.

Lemma 5.1 Let N > 1 be an integer, let H be a Hilbert space and let w: B({%) — B(H) be a unital

x-representation. Then for any n > 1 and any matriz [T;;] in M, (B((%)), we have
||[Tij]Hp,Mn(B(g§V)) S ||[W(Ej)]|’p,Mn(B(H))'

Proof : As is well-known, there is a Hilbert space K such that
H~B3(K), B(H)~B(&)eB(K),

and 7(T) =T ® I for any T € B({%) (see e.g. [27, Corollary I11.1.7]). Consider [T};] in M, (B(¢%))
and z1,...,z, in (3. Fix some e € K with |le|] = 1. Then

p P
@) =0 5
% i (K)
P
=Y D= (T @e)
i j 3,(K)
< ||[ ij Hp M (B(H Z z; ® 6”
< Mm@y sy Z [Ea7 o
J
and the result follows at once. [ |

Proposition 5.2 Suppose that 1 < p < co. There exists a p-polynomially bounded operator T on
LP([0,1]) which is not p-completely polynomially bounded.

Proof : We need some background on Pisier’s counterexample. We refer to [97, Chapter 9] and [86,
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Chapter II. Dilation of Ritt operators on LP-spaces

Chapter 10] for a detailed exposition of this example and also to the necessary background on Hankel
operators on B(¢2(H)) and their B(H)-valued symbols.

We start with a concrete description of a sequence of operators satisfying the so-called canonical
anticommutation relations. Let Iy denote the identity matrix on Ms. For any k > 1, consider the
unital embedding Mor — Morr1 ~ Myr @ My given by A — A ® I5. The closure of the union of the
resulting increasing sequence (Moyk )i>1 is a C*-algebra. Representing it as an algebra of operators, we

obtain a Hilbert space H and an embedding

U TMae € B(H) (5.2)
k>1
whose restriction to each M,k is a unital x-representation.

Consider the 2 x 2 matrices

For any k£ > 1, we set
Cp = E®* D@D € My,

where E®(*~1 denotes the tensor product of E with itself (k — 1) times. Then following (5.2) we
let C), denote this operator regarded as an element of B(H). The distinction between Cj and Cr
may look superfluous. The reason why we need this is that the inclusion providing the identification
between C}, and CN'k is a s-representation and a priori, *x-representations are not p-complete isometries

(i.e. they do not preserve p-matrix norms). However using Lemma 5.1, we see that for any m > 1, for

any n > 1 and for any aq,...,a, € M,,
Zak®ck®12®(m_k) < Zak@)évk (5.3)
k=1 van(B(egm)) k=1 p,Mn(B(H))

The above sequence of matrices has the following remarkable property (see [97, page 70]): for any

complex numbers aq, ..., Qm,

Z ap Cr ® Igg(m_k)
k=1

- (i rakﬁ) . (5.4

k=1

B(€3m)

2
Let H = (?(H) @ (*(H), let o: (?(H) — (?>(H) denote the shift operator, let I': /2(H) — (?(H) be
the Hankel operator associated to the B(H )-valued function F' given by

[e’e) aﬂ ik
F(t) = Z o € (21t
k=1
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and let T' € B(H) be the operator given by
T = [ o T ] .
0 o

Pisier proved that this operator is polynomially bounded without being completely polynomially

bounded. Since || -||2 < || - ||, on P, the linear mapping

w (P llp) — B(F),  ulp) =o(T),
is therefore bounded. Our aim is now to show that u is not p-completely bounded.

We consider the auxiliary mapping w: P — B(H) defined by letting
w< Z dkzk> = Z dgkag
k>0 k>0

for any finite sequence (d)r>0 of complex numbers.

Let j: H — (2(H) be the isometric embedding given by j(z) = (x,0,...,0,...). Then we define
the map v: B((*(H)) — B(H) by letting v(R) = j*Rj for any R € B(H). It is easy to check that v
is p-completely bounded, with [|v||,s = 1. On the other hand, for any ¢ € P, we have

[ le") T¢(o)
“O(T)_l 0 (o)

see [97, (9.7)]. Let @: P — B({*(H)) be defined by (p) = I'¢/(c). Then the argument in the proof
of [97, Theorem. 9.7] shows that w = vu. Thus if u were p-completely bounded, then w would be
p-completely bounded as well. Let us show that this does not hold true.

Note that for any Banach space X, for any integer N > 1, for any T € B(X) and for any
A € B(tY), we have

HA ® TH@}V()QHQV(X) = HAHB(E}V)HTHB(X)-

This can be be seen as a consequence of the fact that £ (X) is the projective tensor product of Z}V and

X, see [33, Chapter VIII], however an elementary proof is also possible (we leave this to the reader).

Let m > 1. Clearly HE||B(,%) = ||DHB(Z%) = 1. Hence applying the above property we have

ICilges, ) = IEI%4 I Dlsgeg) = 1 and hence

HCk ® I2™ M g g2

=1, k=1,...,n. (5.5)

B(bym (£))
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Chapter II. Dilation of Ritt operators on LP-spaces

Let ¢y, € Mam ® P be given by

om(z) = Z Cr ® Ig(mfk) 2
k=1

By (5.4), we have

Z 22 Cr ® ISZ)(m—k) =/m.

lemllz = sup [lom(2)] g, = sup
k=1

2= Jo|=

B(63m)

On the other hand, applying (5.5) we have

lemllr = = m.
k=1 B(thm () k=1 B(lym (£3))
By interpolation, we deduce that
lomlly < m3. (5.6)
Next we have
(IB(zg )®w>( ch®fz ") & Gy (5.7)

k=1

Let us estimate the norm of this tensor product in B(¢5..(H)). Let (e1, e2) denote the canonical basis

of C2. For any k = 1,...,m and any 41, ...,im,j1,---,jm in {1,2},

<(Ck ®12®(m_k))(ej1 ®'”®€jm),€i1 ®"'®6im>

= <Eej1 ®---® Eej,_, ® Dejy, @ €y, - @ €y €4 ®'”®eim>

= < %1 2ej ® "®(*1)6jk7172€jk71 ® 0ji 261 @ €y -+ @ €, €4 ®"'®6im>
o5
= (—1)%2 e (=) 128y o{egyeqy ) (eg iy ){en € )€y gy ) e (€ Ci)
d;
= ( 1) 2 ( 1) Ih—1s 6 Jk» 201 Zk5j1,l1 T 5jk71»ik716jk+1yik+l e '5jm,im'
Hence
m X k 2
<<Z(Ck®f§9(m Ne(Cre ™" ))>( Y e 06, ®e ®~-®ejm),
k=1 Jiyedm=1
2
Y e ® Qe e ®--'®eim>
1 yeeeyim=1
is equal to
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m 2 i 2
D <(Ck 2 15" (e @ @) 00 @ "'®€im>
k=1 j1,eerim,

11 yeenyim=

m 2 2
= Z Z (5jk72517ik6j17i1 T 5jk—17ik—16jk+1»ik+l T 5jm,im>

k=1 Ji,---Jm;,
1150 im=1
m
= 27t = m2m!
k=1

Since the norm of

Y e ® - ®ei, Ve, @ Qe

1 yeeeytm=1

in (8,,(¢2,) (resp. in 5, (¢3,.)) is equal to

1
2 P
( > e @ @e, b ) =27
om
i1 yeeim=1
(resp. Qm*) we deduce that
Ploesmelcont) >
k=1 Bty (£3m))
Combining with (5.3) and (5.7) we obtain that
m
H(IB(egm) ®w)(sﬁm)H > 5

Together with (5.6), this implies that w is not p-completely bounded. Thus 7" is not p-completely
polynomially bounded.
So we are done except that T acts on the Hilbert space H and not on LP([0,1]). However arguing

as in the last part of the proof of Theorem 4.8, it is easy to pass from H to the space LP([0,1]). m

The proof of Proposition 4.6 actually yields the following stronger result: if an operator T': LP(Q2) —
LP(Q) admits a loose dilation, then it is p-completely polynomially bounded (details are left to the

reader). Hence the above proposition yields the following.

Corollary 5.3 There exists a p-polynomially bounded operator T: LP([0,1]) — LP([0,1]) which does

not admit any loose dilation.

Note also that according to Theorem 4.8 and the above observation, no R-Ritt operator can satisfy
Proposition 5.2. Namely, if T': LP(2) — LP(2) is an R-Ritt operator and is p-polynomially bounded,
then it is p-completely polynomially bounded.
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Chapter II. Dilation of Ritt operators on LP-spaces

Remark 4.3 and the above investigations lead to the following open problem (for p # 2): does any
p-completely polynomially bounded operator T': LP(2) — LP() admit a loose dilation?
In the last part of this section we are going to consider another type of counterexamples. Clearly

any p-polynomially bounded T': LP(§2) — LP(2) is automatically power bounded, that is,

sup [|[T"] < o0.

n=0
The existence of a power bounded operator on Hilbert space which is not polynomially bounded is an
old result of Foguel [42]. Our aim is to prove an LP-analog of that result. We will actually show a
stronger form: there exists a Ritt operator which is not p-polynomialy bounded. To achieve this, we
will adapt the approach used in [55] to go beyond Foguel’s Theorem.

We need some background on Schauder bases and their multipliers that we briefly recall. We let

vy denote the set of all sequences (¢ )n>0 of complex numbers whose variation > 52 |¢p, — ¢p—1] is

finite. Any such sequence is bounded and v; is a Banach space for the norm
[e.e]
H(Cn)n?(lnvl = leo| + Z len — cn-1] -
n=1

Let (en)n>0 be a Schauder basis on some Banach space X. For any n > 0, let @,,: X — X be the
projection defined by

Q@n < > aka) =) akek (5.8)
k=0 k=n

for any converging sequence >, arer. The sequence (Qn)n>0 is bounded and by a standard Abel

summation argument, we have the following.

Lemma 5.4 For any ¢ = (¢n)n>0 in v1, there exists a (necessarily unique) bounded operator T,.: X —
X such that

e 00
Tc< Z anen> = Z CnQn€n
n=0 n=0

for any converging sequence ), anéy,. Furthermore,

171 < (50 1Qul ) co)rzall,,

n>0

The above operator T, is called the multiplier associated to the sequence c.

Proposition 5.5 Let 1 < p < 0.
(1) There exists a Ritt (hence a power bounded) operator on (? which is not p-polynomially
bounded.
(2) There exists an R-Ritt operator on LP([0,1]) which is not p-polynomially bounded.
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Proof : (1): We let (en)n>0 be a Schauder basis of H = ¢2. It is clear that the sequence (1 — 2%)7120
has a finite variation. According to the above discussion, we let T: H — H denote the multiplier
associated to that sequence.

For any 0 € (—m,0) U (0, 7], set

1
c(0)n = , n =0
(1= )
We have
T o l—5m dt
c(0), —c(0)n_1| = —
el =0l = | [TV

N

n=1
2 - dt
7;/ L |eif — )2

on—1
o /1 dt
= 0 |€i9 _ t|2 )
Let 1(0) denote the latter integral. It is finite hence ¢(f) = (c(8)n)n>0 belongs to vy. It is easy to
deduce that ¢ — T is invertible, the operator R(ew, T) being the multiplier associated to the sequence

c(0).

For 6 # 7, elementary computations yield

1(0) = /1 dt
~ Jo (t—cos(f))? +sin%(0)
B /:;‘123” du
sin(f) Joces@ 14 u?
m™—0

2sin(0)

Moreover [¢? — 1| = 2sin(4), hence

e —1]1(0) = (7 —6) ',

This is bounded for # varying in (—m,0) U (0, 7). According to Lemma 5.4, this shows that
o(T)cDU{l}  and {(/\ ~1)R\T) : €T\ {1}} is bounded.

Applying the maximum principle to the function z +— (1 — 2)(Ig — 2T)~!, we deduce that the set
{(A=1)R(\,T) : |A] > 1} is bounded as well, and hence T is a Ritt operator.

Let us now assume that the basis (e,)n>0 is not an unconditional one. The operator I — T is

1

the multiplier associated to the sequence (57), <

and as is well-known, the lack of unconditionality
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Chapter II. Dilation of Ritt operators on LP-spaces

implies that for any 6 € (0,), this operator does not have a bounded H>(%y) functional calculus
(see e.g. [65, Theorem 4.1] and its proof). According to Proposition 4.7, this implies that T is not
p-polynomially bounded.

(2): Since all bounded subsets of B(¢?) are R-bounded, the operator considered in part (1) is
automatically an R-Ritt operator. Then arguing again as in the proof of Theorem 4.8, it is easy to
pass from an ¢?-operator to an LP (10, 1])-operator which is not p-polynomially bounded although being
an R-Ritt operator. [ ]

6 Extensions to general Banach spaces

Up to now we have mostly dealt with operators acting on (commutative) LP-spaces. In this last
section, we shall consider more general Banach spaces, in particular noncommutative LP-spaces. We
aim at extending our main results from Sections 3 and 4 to this broader context.

We will use classical notions from Banach space theory such as cotype, K-convexity and the UMD
property. We refer the reader to [21, 32, 92] for background.

In accordance with (2.1), we are going to extend the definitions (1.1) and (1.3) to arbitrary Banach
spaces using Rademacher averages. Recall Section 2 for notation. The use of such averages as a
substitute of square functions on abstract Banach spaces is a classical and fruitful principle. See e.g.
[52, 54, 68].

Let X be a Banach space, let T: X — X be any bounded operator and let x € X. Consider the
element =, = k:%(Tk(az) — TF=1(x)) for any k > 1. If the series >, ex ® x3 converges in L?(Qq; X)
then we set

f k2 ep @ (TH(z) — T Y(2))
k=1

[llry =

Rad(X)
We set ||z||7,1 = oo otherwise. Likewise, if T" is a Ritt operator and « > 0 is a positive real number,

then we set

+oo )
Yk @TH NI -T)%
k=1

||33HT,a =

Rad(X)

if the corresponding series converges in L?(€; X), and ||z 7., = oo otherwise. The following extends
Theorem 3.3.

Theorem 6.1 Assume that X is reflexive and has a finite cotype. Let T: X — X be an R-Ritt

operator. Then for any o > 0 and 3 > 0, we have an equivalence
lzll7a ~ 2|78, x € X.

Proof : We noticed in Section 2 that if X has a finite cotype, then Rademacher averages and Gaussian

averages are equivalent on X.
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Furthermore, the reflexivity of X ensures that it satisfies the Mean Ergodic Theorem. We thus
have
X =Ker({ -T)®Ran(I —T).

Lastly, since X has a finite cotype, it cannot contain ¢y (as an isomorphic subspace). Hence by
[61], a series ) ex @, converges in L%(Q; X) if (and only if) its partial sums are uniformly bounded,
that is, there is a constant K > 0 such that

N
Z gL Q Tk
k=1

Rad(X)

With these three properties in hand, it is easy to see that our proof of Theorem 3.3 extends

verbatim to the general case. [ |

In the rest of this section we are going to focus on noncommutative LP-spaces. We let M be a
semifinite von Neumann algebra equipped with a normal semifinite faithful trace and for any 1 < p <
00, we let LP(M) denote the associated (noncommutative) LP-space. We refer to [103] for background
and information on these spaces. Any element of LP(M) is a (possibly unbounded) operator and for
any such x, we set

2| = (a*z)7.

We recall the noncommutative analog of (2.1) from [71] (see also [72]). For finite families (xy)s of

LP(M), we have the following equivalences. If 2 < p < oo, then

| w5

If1 < p<2, then

\ e

where the infimum runs over all possible decompositions zj = uy + vy in LP(M).

Let T': LP(M) — LP(M) be a bounded operator. We say that 7' admits a noncommutative loose
dilation if there exist a von Neumann algebra M, an isomorphism U: LP(M) — LP(M) such that the
set {U™ : n € Z} is bounded and two bounded maps LP(M) i>Lf”(M) and LP(M) in(M) such
that T™ = QU™J for any integer n > 0. We say that T" admits a noncommutative strict dilation if

Q

Y

Lp(M)

(= o)

Zsk@)xk
k

}. (6.1)
LP(M)

Rad(LP(M))

+

Q

(Shi)

k

ZEk(X)xk
k

R
Le(M)

Rad(LP(M)) Lr(M)

this holds true for an isometric isomorphism U and two contractions J and Q). As opposed to the
commutative case (see Remark 4.2), there is no characterization of contractions 7': LP(M) — LP(M)
which admit a noncommutative strict dilation. The gap with the commutative situation is illustrated

by the following result [51, Theorem 5.1]: for any p # 2, there exist a completely positive contraction
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on some finite dimensional noncommutative LP-space with no noncommutative strict dilation.
We now turn to loose dilations. In the commutative setting, the following proposition is a combi-

nation of Propositions 4.6 and 4.7.

Proposition 6.2 Let T': LP(M) — LP(M), with 1 < p < oo. If T' admits a noncommutative loose

dilation, then I —T is sectorial and admits a bounded H*>(Xg) functional calculus for any 0 € (g, ).

Proof : Let us explain how to adapt the ‘commutative’ proof to the present setting.
First we extend the definition (4.1) as follows. For any Banach space X, let Sx: ¢5(X) — ¢4(X)
denote the shift operator. Then for any ¢ € P, we set

lellpx = (S pez x)-

It follows from [15, Theorem 4.3] that if X is UMD, then Theorem 4.4 holds as well for scalar valued
Fourier multipliers on ¢ (X). In this case, the argument in the proof of Proposition 4.7 leads to the

following: for any 6 € (%, ), there is an estimate

lellp.x S llpll oo ) (6.3)

for rational functions ¢ with poles outside Dy.

Second we note that if U: LP(M) — LP(M) is an isomorphism such that K = sup{||U"|| : n €
Z} < oo, then the vectorial version of the transference principle (see [9, Theorem 2.8]) ensures that

for any ¢ as above, we have
2
HQD(U)H <K HQDHP,L;;(M)'

Assume now that T': LP(M) — LP(M) admits a noncommutative loose dilation. Noncommutative
LP-spaces are UMD hence property (6.3) applies to them. Hence arguing as in the proof of Proposition

4.6, we find an estimate

le(DI < el o mg)

for rational functions ¢ with poles outside Dy. Finally the argument at the end of the proof of
Proposition 4.7 yields that I — T" admits a bounded H>(¥g) functional calculus for any 6 > 5. We
skip the details. ]

We are now ready to give a noncommutative analog of Theorem 4.8.

Theorem 6.3 Let T': LP(M) — LP(M) be an R-Ritt operator, with 1 < p < oco.
(1) The following assertions are equivalent.
(i) The operator T' admits a noncommutative loose dilation.

(ii) The operator T and its adjoint T*: LP" (M) — LP" (M) both satisfy uniform estimates

lzllra S lelleary  and lyllrn S 1Yl
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for x € LP(M) and y € LP" (M).
(2) Assume that p > 2. Then the above conditions are equivalent to the existence of a constant
C > 1 for which the following two properties hold.
(1ii) For any x € LP(M),

+00 %
H<Zk|Tk($) —Tk_l(l‘)|2) < Cllzll ooy
k=1 Lr(M)

and

+o0 . 3
H(Zk‘(Tk(x) - T (x)) ‘2> < Cllzllzean-
k=1 Lr(M)

(iii)* For any y € LP" (M), there exist two sequences (ug)g>1 and (vg)g>1 of LP" (M) such that

~+00 %
(S
k=1

+
Lr* (M)

< Cllyllzes ary -
L9 (M)

+o00 %
(3 i)
k=1

and
we +vp = k2 (T (y) — T**F=D(y)) for any k > 1.

Proof : Theorem 3.1 holds as well on noncommutative LP-spaces for R-Ritt operators, by [68].
Combining that result with Proposition 6.2, we obtain that (i) implies (ii).
Assume (ii) and suppose for simplicity that I — T is 1-1 (the changes to treat the general case are

minor ones). By Theorem 6.1, we have uniform estimates

lelps < lellzeny  andlyllp. 2 S 1Yl )

for x € LP(M) and y € LP"(M). As in the proof of Theorem 4.8, we may therefore define .J; : LP(M) —
Rad(LP(M)) and Jy: LP" (M) — Rad(LP" (M)) by setting

+00 +oo
@)=Y e @ T I -T2z and  Jo(y) = > e @ T V(1 - T3y
k=1 k=1

for any = € LP(M) and any y € LP" (M). Since LP(M) is K-convex, we have a natural isomorphism
(Rad(LP(M))) ~ Rad(L¥" (M)). (6.4)

Hence one can consider the composition J3.J1, it is equal to (I +7)~! and one obtains (i) by simply
adapting the proof of Theorem 4.8.
Finally the equivalence between (ii) and (iii)+(iii)* follows from (6.1) and (6.2). ]

Note that switching (iii) and (iii)*, we find a version of (2) for the case p < 2.
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Remark 6.4

(1) Let T: LP(2) — LP(S2) be an R-Ritt operator on some commutative LP-space. Combining
Theorems 6.3 and 4.8, we find that T admits a noncommutative loose dilation (if and) only if it
admits a commutative one.

(2) Proposition 3.4 holds true on moncommutative LP-spaces. The proof is similar, using (6.4)
instead of the duality LP(Q;£2)" = LP"(Q; (?).

Remark 6.5 Let T: B((?) — B({?) be a contractive Schur multiplier, given by
T
[eijlijz1 — [tijcijlij=1

for some bi-infinite matriz [t;j]; j>1. Recall that for any 1 < p < oo, T extends to a contraction
SP — SP on the Schatten space SP. Assume that each t;; is real and that there exist § > 0 such that
146 <ty <1 foranyi,j > 1. It was observed in [68] that in this case, T: SP — SP is a Ritt
operator which admits a bounded H>(By) functional calculus for some ~y € (0,%), and hence satisfies
a square function estimate ||x||71 < ||z|| for x € SP.

Here is a (brief) alternative proof of this result, using dilations. Results from [68] ensure that it
suffices to show that I —T: SP — SP admits a bounded H>(Xg) functional calculus for some 0 < 7.
Further arguing as in the proof of Corollary 4.3 of Chapter I, we may reduce to the case when T
is unital and completely positive. According to Theorem 4.2 of Chapter I, T: SP — SP admits a
strict (hence a loose) noncommutative dilation in this case. By Proposition 6.2, this implies that the
realisation of I —T on SP admilts a bounded H*(Xg) functional calculus for any 0 > 5. Applying [52,
Theorem 5.6/, to Ty = e~te!T’, we find that the realisation of I —T on SP is R-sectorial of R-type < Z.
By [56, Proposition 5.1], these two results imply that on SP, I —T actually admits a bounded H*(Xg)

functional calculus for some 6 < 5, as expected.

We refer the reader to Chapter 1 for more examples of operators with a noncommutative strict
dilation, and to the next chapter for more about square functions associated to Ritt operators on

noncommutative LP-spaces.
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Chapter 111

Square functions for Ritt operators on

noncommutative LP-spaces

1 Introduction

Let M be a semifinite von Neumann algebra equipped with a normal semifinite faithful trace. For
any 1 < p < oo, we let LP(M) denote the associated (noncommutative) LP-space. Let T a bounded

operator on LP(M). Consider the following ‘square function’

lellz1 = inf {H (f |uk|2>2 4 <+ZOO |v;;|2>2 w4+ vp = k3 (TH() — T (2)) for any k}
k=1 Lp k=1 Lp
(1.1)
if 1 <p<2and
Il = max{ ’(f el 1w )| (S e @) ) } (12)
k=1 Lp k=1 Lp

if 2 < p < 00, defined for any = € LP(M). Such quantities were introduced in [68] and studied in this
paper and in Chapter 2. Similar square functions for continuous semigroups played a key role in the
recent development of H*-calculus and its applications. See in particular the paper [52], the survey

[67] and the references therein.

For any « € ]0, %[, let B, be the interior of the convex hull of 1 and the disc D(0,sin~). Suppose
1 < p < oo. Let T be a Ritt operator with Ran(/ — T") dense in LP(M) which admits a bounded
H*>(B,) functional calculus for some v € ]0, %[, i.e. there exists an angle v € ]0, 5[ and a positive
constant K such that ||<p(T)||Lp(M)HLp(M) < K|l oo (p,) for any complex polynomial ¢. A result of
[68] essentially says that

[zl zeany = [[@ll71, @€ LP(M) (1.3)
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Chapter III. Square functions for Ritt operators on noncommutative LP-spaces

(see also Remark 6.4 of Chapter 2). Now, consider the following ‘column and row square functions’
Lr

2)§
(1.4)

defined for any = € LP(M). Assume 1 < p < 2. In this context, if x € LP(M), it is natural to search

(;ijk ‘Tk(x) - kal(m)r );

400 %
and ||z 7,1 = H ( >k ‘ (Tk(a:) - T’H(x))
k=1

[2ll7,e1 = ‘
Lp

sufficient conditions to find a decomposition x = z1 + x2 such that ||z1|7.1 and ||z2|1,1 are finite.
The first main result of this paper is the next theorem. It strengthens the above equivalence (1.3) in
the case where T actually admits a completely bounded H>(B,,) functional calculus, i.e. there exists

a positive constant K such that ||g0(T)ch Lo(M)—Lp (M) < K|¢llge~(B,) for any complex polynomial .

Theorem 1.1 Suppose 1 < p < 2. Let T be a Ritt operator on LP(M) with Ran(I — T) dense in
LP(M). Assume that T admits a completely bounded H*®(B.,) functional calculus for some v € |0, 3.

Then we have
Il oy ~ inf {le1llzen + 22l = @ =21 +@2},  x e L2(M).

In this context, it is natural to compare the both quantities of (1.4). The second principal result
of this paper is the following theorem. It says that in general, ‘column and row square functions’ are

not equivalent.

Theorem 1.2 Suppose 1 < p # 2 < co. Then there exists a Ritt operator T on the Schatten space
SP, with Ran(I —T') dense in SP, which admits a completely bounded H*(B.) functional calculus for
some v € |0, 5[ such that

sup |ll7.c. s x €SP =00if2<p< oo and sup lzllz.r. cxeSPy=c0ifl<p<2 (15)
2l 7,1 [2]|7e1
Moreover, the same result holds with || - |71 and || - |17, switched.

For a Ritt operator admitting a completely bounded H>(B,) functional calculus, it also seems
interesting, in view of the equivalence (1.3), to compare these both quantities with the usual norm
| - lp(ary- If T is a Ritt operator with Ran(I —T') dense in LP(M) which admits a bounded H>°(B,)

functional calculus for some v € |0, g[, the equivalence (1.3) implies that

lzllerary S ll2llTer  and  [[2lleany S Izl

if 1 <p<2and

[zll7enr S el and  lzllres S l2llLei)
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if 2 < p < oo, for any x € LP(M). The last main result of this paper is that except if p = 2, these

estimates cannot be reversed:

Theorem 1.3 Suppose that 2 < p < oo (resp. 1 < p < 2). There exists a Ritt operator T on
the Schatten space SP, with Ran(l — T') dense in SP, which admits a completely bounded H*(B,)
functional calculus with ~ € 10, 5[ such that

sup{HxHSp D x € S”} = 0 (resp. sup{H:UHT’C’1 D x € Sp} = oo).

2[l7,e,1 l|]| s»

Moreover, the same result holds with || - ||1,c1 replaced by || - |71

The paper is organized as follows. Section 2 gives a brief presentation of noncommutative LP-spaces
and Ritt operators and we introduce the notions of Col-Ritt and Row-Ritt operators and completely
bounded H*°(B,) functional calculus which are relevant to our paper. The next section 3 mostly
contains preliminary results concerning Col-Ritt and Row-Ritt operators. Section 4 is devoted to
prove Theorems 1.2 and 1.3. In section 5, we present a proof of Theorem 1.1. We end this section by
giving some natural examples to which this result can be applied.

In the above presentation and later on in the paper we will use < to indicate an inequality up to
a constant which does not depend to the particular element to which it applies. Then A(z) ~ B(x)
will mean that we both have A(x) < B(x) and B(z) < A(x).

2 Background and preliminaries

We start with a few preliminaries on noncommutative LP-spaces. Let M be a von Neumann algebra
equipped with a normal semifinite faithful trace 7. Let M, be the set of all positive elements of M
and let Sy be the set of all x in M such that 7(x) < co. Then let S be the linear span of S;. For
any 1 < p < oo, define

3=

lzllrary = (r(2?)?,  z €S,

where |z| = (l'*l‘)% is the modulus of z. Then (S, - ||zr(ar)) is @ normed space. The corresponding
completion is the noncommutative LP-space associated with (M,7) and is denoted by LP(M). By
convention, we set L>°(M) = M, equipped with the operator norm. The elements of LP(M) can also
be described as measurable operators with respect to (M, 7). Further multiplication of measurable op-
erators leads to contractive bilinear maps LP(M) x LY(M) — L"(M) for any 1 < p,q,r < oo such that
%—I—% = % (noncommutative Holder’s inequality). Using trace duality, we then have LP(M)* = LP" (M)
isometrically for any 1 < p < co. Moreover, complex interpolation yields LP(M) = [L>®(M), L*(M)],
for any 1 < p < co. We refer the reader to [103] for details and complements. ’

Let 1 < p < oo. If we equip the space B({?) with the operator norm and the canonical trace

Tr, the space LP(B(¢?)) identifies to the Schatten-von Neumann class SP. This is the space of those
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Chapter III. Square functions for Ritt operators on noncommutative LP-spaces

1
compact operators z from ¢2 into 2 such that ||z|ls» = (Tr(z*z)2)? < co. Elements of B(¢2) or SP

are regarded as matrices A = [a;;]; j>1 in the usual way.

If the von Neumann algebra B(£?)®@M is equipped with the semifinite normal faithful trace Tr @,
the space LP(B(¢*)®M) canonically identifies to a space SP(LP(M)) of matrices with entries in LP(M).
Moreover, under this identification, the algebraic tensor product SP ® LP(M) is dense in SP(LP(M)).

We refer to [99] for more about these spaces and complements.

If 1 < p < oo, we say that a linear map on LP(M) is completely bounded if Is» ® T' extends to a
bounded operator on S?(LP(M)). In this case, the completely bounded norm Tl b,z (rry— Lo (a1) OF
T is defined by |||, r (n1)— Lo (a1) = (| Zs» ®THSP(LP(M))_>SP(LP(M)). We use the convention to define
T ||y, » (ar)— Lr(ar) by +o0 if T is not completely bounded.

We shall use various £2-valued noncommutative LP spaces. We refer to [52, Chapter 2| for more

information on these spaces. For any Y 7_; z) ® a € LP(M) ® (2, we set

n

(> <aj,ai>x:xj)é

ij=1

n
Z T X ag
k=1

Lr(M.2) | Lr(M)

We have for any family (xy)g>1 in LP(M)

1
n 2
[
LP(M,2) k=1

The space LP(M,(2) is the completion of LP(M) ® ¢? for this norm. It identifies to the space of

sequences (zy)g>1 in LP(M) such that Z;ﬁ T ® ep is convergent for the above norm. We define

n
= Z€k1®$k

k=1

(2.1)

n
Z T Q e
k=1

LP (M) SP(LP(M))

LP(M, ¢2) similarly. For any finite family (z%)1<k<n in LP(M), we have

n n % n
AL =H(Z|x7;|2) T enoa
k=1 LP(M,£2) k=1 LP(M) k=1 SP(LP(M))
For any 1 < p < oo and for any z1,...,z, € LP(M), we have
n n n
Zxk@)ek :SUP{ Z<$ka?/k>Lp(M)7Lp*(M)| : Zyk®€k < 1}- (2.2)
k=1 Lr(M,£2) k=1 k=1 L™ (M, £2)

A similar formula holds for the space LP(M,¢2). For simplicity, we write SP(¢2) for LP(B(¢?),¢2). If
2 < p < oo we define the Banach space LP(M, (2 ) = LP(M, ¢2) N LP(M, ¢2). For any u € LP(M, (2 ),

» “rad » “rad

we have

HuHLP(Zfad) = max {HUHLP(M,Eg)v HUHLP(M,EZ)}'

If 1 < p < 2 we define the Banach space LP(M, ¢2 ;) = LP(M, ¢?)+ LP(M, (2). For any u € LP(M, (2 ),

» “rad
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we have
lull ogarez,y = it {lunlloqarez) + luzll oares) }-
where the infimum runs over all possible decompositions © = wu; + ug with uy € LP(M,¢?) and

ug € LP(M, £2). Recall that, if 1 < p < oo, we have an isometric identification

LP(M, 0% )" = LP" (M, 2 ). (2.3)

rad rad

Let X be a Banach space and let (ex)r>1 be a sequence of independent Rademacher variables on some
probability space 2. Let Rad(X) C L*(€; X) be the closure of Span{ey ® z : k > 1, z € X} in the
Bochner space L?(2; X). Thus for any finite family z1, ..., 2, in X, we have

1

2 2

= (/ dw) .
Rad(X) @ X

If 1 < p < oo, the noncommutative Khintchine’s inequalities (see [72] and [103]) implies

n
Z €k @ Tk
k=1

En: Ek(w) T
k=1

Rad(LP(M)) = LP(M, (% ). (2.4)

rad

We say that a set F C B(X) is R-bounded if there is a constant C' > 0 such that for any finite families

T,...,7,inJF, and z1,...,x, in X, we have

n
Z er ® Ti(xg)
k=1

<C
Rad(X)

n
Z €k Q Tk
k=1

Rad(X)

In this case, we let R(F) denote the smallest possible C, which is called the R-bound of F. R-
boundedness was introduced in [8] and then developed in the fundamental paper [22]. We refer to the

latter paper and to [60, Section 2] for a detailed presentation.

On noncommutative LP-spaces, it will be convenient to consider two naturals variants of this
notion, introduced in [52, Chapter 4]. Let 1 < p < co. A subset F of B(LP(M)) is Col-bounded (resp.
Row-bounded) if there exists a constant C' > 0 such that for any finite families 77, ...,7, in ¥, and

Z1y...,Zy in LP(M), we have

1

< CH(Z%!%P)Q

k=1

(S menr)’

(2.5)

Lr(M) Lp(M)

(g @)

The least constant C' satisfying (2.5) will be denoted by Col(F). It follows from (2.4) that if a subset

Lr(M)
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F of B(LP(M)) is both Col-bounded and Row-bounded, then it is Rad-bounded.

Note that contrary to the case of R-boundedness, a singleton {7'} is not automatically Col-bounded
or Row-bounded. Indeed, {T'} is Col-bounded (resp. Row-bounded) if and only if T'® I,» extends
to a bounded operator on LP(M,¢?) (resp. LP(M,¢?)). And it turns out that if 1 < p # 2 < oo,
according to [52, Example 4.1], there exists a bounded operator T' on S? such that T ® I,» does not
extend to a bounded operator on SP(¢?). Moreover, T ® I,» extends to a bounded operator on SP(£2).
Then, we also deduce that there are sets F which are Rad-bounded and Col-bounded without being
Row-bounded. Similarly, one may find sets which are Rad-bounded and Row-bounded without being
Col-bounded, or which are Rad-bounded without being either Row-bounded or Col-bounded.

We turn to Ritt operators, the key class of this paper, and recall some of their main features.
Details and complements can be found in Chapter 2 and in [15], [16], [68], [73], [77], [80] and [116].
Let X be a Banach space. We say that an operator T' € B(X) is a Ritt operator if the two sets

{T" :n>0} and {n(T"-T"Y :n>1} (2.7)
are bounded. This is equivalent to the spectral inclusion
o(T)cD (2.8)
and the boundedness of the set
{(A=1)R\T) : |\ >1} (2.9)

where R(\,T) = (M —T)~! denotes the resolvent operator and D denotes the open unit disc centered
at 0. Likewise we say that 7" is an R-Ritt operator if the two sets in (2.7) are R-bounded. This is
equivalent to the inclusion (2.8) and the R-boundedness of the set (2.9).

Let T is a Ritt operator. The boundedness of (2.9) implies the existence of a constant K > 0 such
that [A — 1[| RO\ T)| .«
Thus for any o > 0, one can consider the fractional power (I —T)%. We refer to [45, Chapter 3], [60]

< K whenever £(A) > 1. This means that I — 7" is a sectorial operator.

and [74] for various definitions of these (bounded) operators and their basic properties.

We will use the following two naturals variants of the notion of R-Ritt operator.

Definition 2.1 Suppose 1 < p < co. Let T be a bounded operator on LP(M). We say that T is a
Col-Ritt (resp. Row-Ritt) operator if the two sets (2.7) are Col-bounded (resp. Row-bounded).

Remark 2.2 Assume that 1 < p < co. Let T be a bounded operator on LP(M). Using (2.2), it is
easy to see that T is Col-Ritt if and only if T* is Row-Ritt on LP" (M).

We let P denote the algebra of all complex polynomials. Let T" be a bounded operator on a Banach
space X. Let v € ]0,5[. Accordingly with [68], we say that T has a bounded H*°(B,) functional
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calculus if and only if there exists a constant K > 1 such that

||<P(T)||X_,X < KHSOHHOO(B.Y)

for any ¢ € P. Naturally, we let:

Definition 2.3 Suppose 1 < p < co. Let T be a bounded operator on LP(M). Let y € ]0,5[. We
say that T admits a completely bounded H*(B.,) functional calculus if T is completely bounded and if
Isp @ T admits a bounded H*(By) functional calculus on SP(LP(M)).

Let T be a bounded operator on LP(M) and v € |0, g[ Note that T" admits a completely bounded

H*°(B,) functional calculus if and only if there exists a constant K > 1 such that

HSD(T)HCpr(M)_)Lp(M) < KH‘P”HOO(BW)

for any ¢ € P.

3 Results related to Col-Ritt or Row-Ritt operators

In the subsequent sections, we need some preliminary results on Col-Ritt or Row-Ritt operators
that we present here. Some of them are analogues of existing results in the context of R-Ritt operators,
for which we will omit proofs.

We start with a variant of Proposition I1.2.8 suitable with our context. The proof is similar, using
[52, Lemma 4.2] instead of Lemma II.2.1.

Proposition 3.1 Suppose 1 < p < oco. Let T be a Col-Ritt operator on LP(M). For any o > 0, the
set
{no‘(gT)"*l(I —o)*: n>1, p€l0, 1]}

is Col-bounded. Moreover, a similar result holds for Row-Ritt operators.
Moreover, we need the following result [68].

Theorem 3.2 Suppose 1 < p < co. Let T be a bounded operator on LP(M) with a bounded H*(B)
functional calculus for some v € |0, g[ Then T is R-Ritt.

In the next statement, we establish a variant of the above result.

Theorem 3.3 Suppose 1 < p < co. Let T' be a bounded operator on LP(M). Assume that T admits

a completely bounded H*(B) functional calculus for some v € }O,g[. Then the operator T is both
Col-Ritt and Row-Ritt.
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Proof : We will only show the ‘column’ result, the proof for the ‘row’ one being the same. We wish
to show that the sets

F={T": m=>0} and Sz{m(Tm—Tmfl) cm > 1}

are Col-bounded. We consider the operator I ®T on the noncommutative LP-space SP(LP(M)). Then,
applying Theorem 3.2, we obtain that the sets

T={Isp @T™ : m >0} and  K={mlep @ (T™ -T" 1) : m=>1}

are Rad-bounded. Now consider z1,...,z, in LP(M) and Ti,...,T, in F. For any finite sequence

(ek)1<k<n valued in {—1,1}, we have

n
H Z \$k|2 (Z exrk)" (ExT )2

Lr(M) L (M)

n
Z Eker1 O Tk
k=1

Sp(LP(M))
Then passing to the average over all possible choices of €, = £1, we obtain that

n
Z €k Q ep1 D Tk
k=1

H Z |~’ﬂk!2

Lr(M) Rad(SP(LP(M)))

By a similar computation, we have

n
> er® (Isr © Ti)(ex1 © )
P

<kz: |Tk(ﬂ'3k)|2)é

Lr(M) Rad(SP(LP(M)))

It follows that
< Rad(7)

(), ,, <))

This concludes the proof of Col-boundedness of F with Col(F) < Rad(T). The proof for the set G is
identical. -

Lr(M)

Remark 3.4 Suppose 1 < p # 2 < co. The complete boundedness assumption in Theorem 3.3 cannot

be replaced by a boundedness assumption.

Proof : We have already recalled that, there exists a bounded operator T' on SP such that {T'} is
not Col-bounded. Let us fix v € ]0, 7. We may clearly assume that ¢(7’) is included in the open set
B,. Using the Dunford calculus, it is easy to prove that T is a Ritt operator which admits a bounded
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H*(B,) functional calculus. The set {T'} is not Col-bounded. Hence T' cannot be Col-Ritt. ]

Now, we give a precise definition of ‘square functions’ which clarifies (1.1), (1.2) and (1.4) and a

few comments. Let 7" a Ritt operator on LP(M). For any o > 0, let us consider
zp = k2T NI — T)%(2)

for any k > 1. If the sequence belongs to the space LP(M,¢2), then ||z7cq is defined as the norm
of (xx)k>1 in that space. Otherwise, we set ||z||7 o = 0o. In particular, ||z|7 o can be infinite. We
define the quantities ||z||7,.o by the same way. The quantities ||z||7 o are defined similarly in Chapter
2, using the space LP(M, (2, ) instead of LP(M, (?).

Finally, note that, if 2 < p < oo, we have

2ll7.0 = max {{|zl|l7.c.0, |2/}
and if 1 < p < 2, we have
2|70 = inf{HUHLp(M,gg) + vl earezy + uk + vk = ka*ékal(I — T)“x for any integer k:}

In [68], the following connection between the boundedness of square functions and functional calculus
is established.

Theorem 3.5 Suppose 1 < p < oo. Let T be a bounded operator on LP(M). The following assertions

are equivalent.

1. The operator T is R-Ritt and T and its adjoint T™ both satisfy uniform estimates

lzllra S lelliery  and  lyllr-1 S Nyll Lo (ary

for any x € LP(M) and y € LP"(M).
2. The operator T admits a bounded H*®(B.,) functional calculus for some vy € ]0, % .
Recall a special case of the principal result of Chapter 2.

Theorem 3.6 Let T be an R-Ritt operator on LP(M) with 1 < p < oo. For any a, 8 > 0 we have an
equivalence
zll7a = lzllre, @€ LP(M).

We shall now present a variant suitable to our context.
For any integer n > 1, we identify the algebra M, of all n X n matrices with the space of linear

maps (2 — (2. For any infinite matrix [c;;]; j>1, we set

cillhos = 58 i1 ]s 0]
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This is the so-called ‘regular norm’. We refer to [94] and [102] for more information on regular norms.

The next proposition will be useful. This result is similar to Proposition 2.6 of Chapter 2.

Proposition 3.7 Suppose 1 < p < co. Let [¢ij]ij>1 be an infinite matriz with H[Cij]Hreg < 00. Suppose

that {T;; : 4,5 > 1} is a Col-bounded set of operators on LP(M). Then the linear map
[eiTs] - (M ) — LP (M, £7)

Zacj®e] — Z(ZCU ij 1‘]>®6i
i=1 =

is well-defined and bounded. Moreover, we have a similar result for Row-bounded sets.

Proof : We shall only prove the ‘Col’ result. We can assume that H[CU]Hreg < 1. Letn > 1. By

Lemma 2.2 of Chapter 2, we can write ¢;; = a;;b;; for any 1 <14, j < n with

sup Z\am\ and sup Z\b”]

1<z<n 1<isn

Let x1,...,z, € LP(M) and y1,...,y, € L¥" (M). Since the set {T}; | 4,5 > 1} is Col-bounded, there

exists a positive constant C' such that

Z < Z cij Tij(x5), >
i=1 Lp(M),Lr* (M)

n

= Z < Zj(wa]) aZJyZ>Lp ),LP* (M)
Q=1

< Z I T3;5( bzywy

i,j=1

ZH%%Q

H 7,j=1

n

_Zl (@igbi Tij (£3), Yi) Lo (ary. oo (0
1,]=—

Z |(aijyi)* )é

H zgl

1
2
(3 loui?)

1,7=1

N

L™ (M)

Lo (M) | Lv* (M)

Now, we have
n n n n
> b= \$j|2<z \%’!2) <Dzl
i,j=1 j=1 i=1 j=1
Similarly, we have

n

n
> agyi P < il
=1

ij=1
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Consequently

1
n 2
(YluiP)
i=1

1
n 2
< cH(Z 2,1°)
=1

Z< CijTij(xj)vyi>
1

i=1 \j=

Lr(M),LP" (M) LP(M)‘ Le™ (M)
Taking the supremum over all y1,...,y, € LP" (M) such that |[(3F, |y2*|2)%||Lp ar) < 1 we obtain

n

n n
> ( Cij%(ff«“j)) ®ei <C| Y 7 ®¢
i=1 “j=1 Lp(M02) J=1 LP(M,€2)
by (2.2). We conclude with [52, Corollary 2.12]. [ ]
Now, we state a result which allows to estimate square functions | - ||7.co and || - ||7..o by means

of approximation processes, whose proof is similar to Lemma 3.2 of Chapter 2.

Lemma 3.8 Suppose 1 < p < co. Assume that T is a Col-Ritt operator on LP(M). Let a > 0.

1. Let V be an operator on LP(M) such that TV = VT with {V} Col-bounded. Then, for any
x € LP(M), we have
V(@) 1.0 < Col({VH) 2]l 7,c0-

2. Let v > a+1 be an integer and let x € Ran((I — T)"). Then

Hx”QT,C,OC - HxHT,C,Oé'
o—1—
Moreover, the same result holds with || - ||1.c.a replaced by || - ||7,r.a for Row-Ritt operators.

Now we state an equivalence result in our context similar to Theorem 3.6.

Theorem 3.9 Let T be a bounded operator on LP(M) with 1 < p < oo. Let a, 3 > 0.

1. If T is Col-Ritt, we have an equivalence

[2ll7ca = l2lTes @€ LP(M).

2. If T is Row-Ritt, we have an equivalence

lelTra = l2lrrs @€ LP(M).

Proof : The proof is similar to the one of Theorem 3.3 of Chapter 2, using Proposition 3.1, Proposition
3.7, Lemma 3.8 and [52, Corollary 2.12]. ]
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4 Comparison between squares functions and the usual norm

We aim at showing Theorem 1.3. We will provide an example on the Schatten space SP. This
example also prove that in general, row and column square functions are not equivalent (Theorem
4.3).

Let a a bounded operator on £2. Assume 1 < p < oo. We let L,: SP — SP the left multiplication
by a on SP defined by L,(z) = ax and we denote R,: SP — SP the right multiplication. It is clear
that £ and R* are the right multiplication and the left multiplication by a on SP". Note that, by [52,
Proposition 8.4 (4)], if I — a has dense range then Ran(/ — L,) is dense in SP. The next statement

gives a link between properties of a and its associated multiplication operators.

Proposition 4.1 Suppose 1 < p < co. Assume that a is a bounded operator on (2.
1. If a is a Ritt operator then the left multiplication L, is a Ritt operator on SP.
2. Let~ €0, g[ Then L, has a bounded H*(By) functional calculus if and only if a has one. In

that case, Lo actually has a completely bounded H* (B, ) functional calculus.

Moreover, we have a similar result for right multiplication.

Proof : We have (L) C o(a). Moreover, if A € p(a) we have R(\,L4) = LR q)- The first assertion

clearly follows. The statement (2) is a straightforward consequence of
Isr @ Lg = LI£2®a and f(Lg) = Lf(a), fePd

The proof of the ‘right’ result is identical. [ |

We denote by (ex)r>1 the canonical basis of /2. Now, for any integer k > 1, we fix ay = 1 — 2%

We consider the selfadjoint bounded diagonal operator a on ¢? defined by

+oo +oo
a( Z :):kek> = Z QpTEEL.
k=1 k=1

It follows from the Spectral Theorem for normal operators, that the operator a admits a bounded
H*>(B,) functional calculus for any v € ]0, 7 [. Thus £, and R, admit a completely bounded H>(B,)

functional calculus for any v € ]0, 5[ (hence L, and R, are Ritt operators).

Lemma 4.2 Assume that 2 < p < co. We have
[2]lggen = [2llsr and  |lz]lz, = llzllsr, 2 €SP (4.1)

Proof : We will only show the result for the operator L,, the proof for R, being the same. For any
x € SP and any p €]0, 1], we have

k((0La)* (I = 0La)(2))" ((0La)* (I — 0La)(z)) = k((0a)* (I — oa)z)" ((0a)* (I — ga)x)
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= ka*(I - 0a)(0a)** V(I — pa)x
= ka*(I — gLa)2(QLa)2(k*1)(x).

Now, for any z € D, we have

+o0
Z kzFl = (1-2)72
k=1

(4.2)

Since the operator L, is a contraction, we deduce that, for every o €]0, 1], the operator I — (0L,)? is

invertible and that we have

—iok(QLa)Z(k_l) = (I - (Qﬁ*a)z)iQ,
k=1

the series being absolutely convergent. Then we deduce that the series
+0o0

> k((0La)" 1T = 0La)(2)) " ((0£a)" (I — 0La)(2))
k=1

is convergent in the Banach space S % and that

+oo
M k((0La) M = 0La)(x)) " ((0La)" (I — 0La)(2)) = 2" (I — 0La)*(I — (0La)?) ~x
k=1

= 2*(I + oa)*x.

We deduce that

(:U* (I + ga)_2a:)%

|uuaﬁlz\
Sp

= [I(7 + ga) "2 g,
Then, for any x € SP, we obtain the estimate

et < 10T+ 00) ™ oyl l5v

< ][ sp-
By a similar computation, for any = € SP, we have
1
§||wHSP < lzlloga e
Applying Lemma 3.8 (2), we deduce an equivalence

1
sllellse <l@leeer <llzllse, @ € Ran((I = La)?).

(4.3)
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For any integer n > 1, we let d,, the bounded diagonal operator on ¢? defined by the matrix
diag(1,...,1,0,...). It is not difficult to see that, for any integer n > 1, the range of L4 is a
subspace of Ran((I — £,)?). Hence we actually have

1
§||Ldn(x)HSp < |’Ld"($)HLa,C,1 < HLdn(x)HSp, xeSP, n>1.
Then, on the one hand, we obtain
ILa, @), o1 < lzlsr,  zESP, n>1

By [52, Corollary 2.12] and (2.1), this latter inequality is equivalent to

l
3 e ® k2LETNT — La) (L4, (2)) Sllallse,  xeSP, n>1, 1>1

k=1

Sp(SP)

Passing to the limit in the above inequality and using again [52, Corollary 2.12], we obtain that
2]l gaen < llz]lsps x €SP,

Note, in particular that, for any « € SP, we have ||z||¢, 1 < 0o. On the other hand, note that, for
any integer n > 1, the operators L, and L£;, commute. Hence, for any x € SP and any integer n > 1,

we have

1a, (@)llsr S 1 Lan (@), ..
+oo

S e ® kILETN(T — L4) (L4, (2))
k=1

Sp(SP)

400 )
- |tsr 9 £ (L e o L - L0

5P(sP)

k=1
Letting n to the infinity, we deduce that
[zllsr S l2lleger, xS
The proof is complete. [ |
Theorem 4.3 Let o > 0. Assume that 2 < p < co. Then
sup HQUHM:JJESP =00 and  sup HQUHM::EESP = 00. (4.4)
2]l 2o 2| Rq .0
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Assume that 1 < p < 2. Then

up L:xe =00 an sup L:xe = Q. .
S I ||£a r,a P d | ”fRa c,a P 4.5
]| 2a.c.0 ]| %4

Proof : By Theorem 3.9, it suffices to prove the result for one specific real . Throughout the
proof, we will use a = 1. We first assume that 2 < p < co. Given an integer n > 1, we consider

e=e1+--+e, €EL2 andxzﬁe@eésp. Clearly, we have

n
zzt = E €ij.

ij=1
Now, we have

k(Lo (I = La) (@) (L (I = La)(2))" = k("7 (I = a)z) ("1 (I — a)z)

= ka* NI — a)zz*(I — a)a®?

n
= Z ka* NI — a)ei; (I — a)a®!
i=1
n

= Z (1—a;)(1— aj)k?(aiaj)k_leij'

ij=1
Using the equality (4.2), we obtain that the series

400
Z k(Lg_l(I - La)(x» (Lg_l(I - La)(x))*
k=1

is convergent in S % and that

n

+00
DoRLETHT = La) (@) (LgTHT = La)(@))" = Y (1= ai)(1— aj)(1 - ajaj) ey

k=1 ij=1

Now, note that
2 aw]
2

We deduce that

1
n it 2
[l s = (Z M%)
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We let A = [(77 . be the n x n matrix in the last right member of the above equations.

We have

All% - 27 i
H ||s;z;—mz1 N

n 4+
Moreover, note that
4i+j 4z+j

- - < 16— y
2+ 2 —1)8 (20 4 20)

217 4+ 251 42

16
4li—7l

2

Thus we have

1
413 <32( X g Jn

kEZ

If 4 < p < 00, we obtain

NH

1
]l 2ara = IIAH2 <Al S

Since z = %e@e is rank one, its norm in S? does not depend on p, and it is equal to ﬁ”e”?% = /n.
Then, by Lemma 4.2, we have ||z|| ¢, .1 ~ v/n. We obtain the first equality of (4.4) in that case.

If 2 < p < 4, we can write 10 + % with 0 < 6 < 1. Then

SIS

—0 0
[EIE 141l 5 < 1Al 1Al -

By construction, we have A > 0, hence we have

n 2i+j
[Allsy = Tr Z mez‘j

4,j=1
Z 1_ Z N2 — T
= ( 2” )2 i)
Thus
2], 1 S n'On2 =3,
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Recall that ||z| ¢, c1 ~ v/n. We obtain that

1
]| £ 1 > _n
2/l cort ™ pa-

FNES

= n+4.

S

Since n was arbitrary and 6 > 0, we obtain the first part of (4.4) in this case. Likewise, the above

proof has a ‘right analog’ which proves the second equality of (4.4).

We now turn to the proof of (4.5). We assume that 1 < p < 2. The second part of (4.4) says

p{Hy”Ll yegp*}:oo_ (4.6)

||yHL;;,c,1

To prove the first equality of (4.5), assume on the contrary that there is a constant K > 0 such that
for any z € SP

2] a1 < K]l e (4.7)

We begin by showing a duality relation between || - || s o1 and || - [|¢, 1. Let y € SP” and z € SP.
For any integer n > 1, recall that d,, is the bounded diagonal operator on ¢? defined by the matrix

diag(1,...,1,0,...). By (4.3), for any 0 < p < 1 and any integer n > 1, we have

‘<y7 Ldn (x)>sp* ,Sp =

+o0
<y= Z k(gﬁ‘a)%kil) (I- (Qﬁa)z)ZLdn (x)>

k=1 Sp* Sp
= 2(k—1) 2\2
= |22 (KR = (08 L (e) .,

_ Z< B3 (0L2)F (1 = of2) (I + 0£3)%y, k¥ (0La) (I — 0La)La, ()

Sp* Sp

< |(K2 (0La) 1T = o3)(I + o)) |24, (=

sr(2) )HQLQ,T,I'

k>1

Now, it is easy to see that {L}} is Col-bounded. We infer that

< H (W5 (oLe) M1~ 0tiy)

=

‘(y,ﬁzd >Sp . $)||9La,r,1
= Iyllocs el Lan @] e, 11-

Assume for a while that y € Ran((I — £%)?). By Lemma 3.8 (2), letting o to 1, we obtain

[ Lan (@) e 50| S MllesellCan @) g,y
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Letting n to the infinity, we obtain

S e ellzll e

‘<y7 :U)SP* ,SP

According to (4.7) and the first part of (4.1), we deduce that

(@ 2500 0| S Myl el e

Sylles e llz] sy

By duality, we finally obtain that
1llse < llylles.e- (4.8)

For an arbitrary y € SP”, we also obtain (4.8) by applying it to Ly (y) and then passing to the limit.
The second equivalence of (4.1) says that ||y||cs .1 = ||y[|ge= for any y € SP". This contradicts (4.6)
and completes the proof of the first part of (4.5). The proof of the second part is similar. [ |

Corollary 4.4 Suppose that 2 < p < 0o (resp. 1 <p <2). Let « > 0. There exists a Ritt operator T
on the Schatten space SP, with Ran(I —T') dense in SP, which admits a completely bounded H*>(B.)
functional calculus with ~ € 10,5 [ such that

sup{”xHSlO : wESp}:oo (resp. sup{”xHT’C’a : xESp}:oo)

[2]I7.c.0 lls»

Moreover, the same result holds with || - ||1.c.o replaced by || - ||7,r.q-

Proof : One more time, we only need to prove this result for « = 1. Then, this follows from Lemma
4.2 and Theorem 4.3. u

5 An alternative square function for 1 <p < 2

Let T be a Ritt operator on LP(M), with 1 < p < 2. For any o > 0, we may consider an alternative

square function by letting

l2lr0.0 = inf {|21]|7.00 + 2210 @ =21+ 22}

for any « € LP(M).
Note that if T" is both Col-Ritt and Row-Ritt, by Theorem 3.9, the square functions ||z||7,0, and
|lz||7,0,3 are equivalent for any o, 5 > 0.

Suppose that ||z|/7,0, is finite and that we have a decomposition = 1 + 22 with ||z1|7cq < 00
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ITI.5 An alternative square function for 1 < p < 2

and ||z2||7,ro < 00. Letting uy = ka_%kal(I —T)%; and v = k:a_%kal(I — T)%zxq, we have
ka_%Tk_l(I—T)aa::uk—l—vk, kE>1.
Moreover, the sequences u and v belong to LP(M, ¢?) and LP(M, ¢?) respectively. We deduce that
et < l2lron @€ IP(M).

We do not know if the two square functions | - |7, and || - ||7,0,o are equivalent in general. In the next

statement, we give a sufficient condition for an such equivalence to hold true.

Theorem 5.1 Suppose 1 < p < 2. Let T be a bounded operator on LP(M) with Ran(I —T) dense in
LP(M). Assume that T is both Col-Ritt and Row-Ritt. Let a,m > 0. Suppose that T satisfies a ‘dual

square function estimate’
1Yllr=m S Wllees ary: v € LY (M). (5.1)

Then we have an equivalence
[2ll7a ~ 2ll700, @€ LP(M).

Indeed, there is a positive constant C such that whenever x € LP(M) satisfies ||z||7,o < 0o, then there
exists x1,x2 € LP(M) such that

z=x1+w2 and |[21|1ea+ |22/lTr0 < Cllz]70-
Proof : Since T is both Col-Ritt and Row-Ritt, it is also an R-Ritt operator. Then, by Theorem
3.6 and Theorem 3.9, we only need to prove this result for « = 1 and n = 1. Observe that, for any

y € LP" (M), we have

H (k2 (T*)F (1 + T%)X(1 = T*)y)

1 e )
< H(”T*)2”LP*(M>HLP*<M>‘ T L (2,
“rad
S yllzo (any by (5.1).
We let
Z: I"(M) — LV (M, £2,4)

y o (BRI T - T*)y)k>1

denote the resulting bounded map. Let « € LP(M) such that ||z|7; < co. There exists two elements
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u € LP(M,(?) and v € LP(M, ¢2) such that for any positive integer k
_ pigk—1
up o =k2T" (I - T)x (5.2)

and such that

lull Lo (are2y + 0l o (are2y < 2||2]71-

Recall that we have contractive inclusions LP(M,¢?) C LP(M,¢2,) and LP(M,¢%) C LP(M,(?,).
Thus, by (2.3), we can define x; and x2 of LP(M) by

r1=Z% and 9= Z%v.

We will show that = x1 + 2. Since T is a Ritt-operator, there exists a positive constant C' such
that

+00 2 +o0 2
Lk—1 2 _ k=17 2
kgl ’ BT -T) ‘ LP(M)—Lr(M) kgl kHT I=1 ‘ LP(M)—LP(M)
+o0 1
k=1 k

For any 1 < p < 2, by [52, Proposition 2.5], we have the contractive inclusion LP (M, ¢2) C ¢?(LP(M)).
We deduce that ;% ||uk||%p( ay < 00 According to the Cauchy-Schwarz inequality, we deduce that

the series

iy 1 2 I 1
S kTN I =T uy = T+ 1) k2T NI = T)uy,
k=1 k=1

converges absolutely in LP(M). Now, for any y € LP" (M), we have

= <(I - T)Z*u,y>

= (u, Z(I - T")y)

<(I — T)xl,y>LP

(M),LP™ (M) Lr(M),LP" (M)

Lp(M,E2, ), LP" (M2, )

rad

- <U (k2 ()1 (T 4+ T2 (1 - T*)2y>k>1>

LP(M,Zfad),LP* (M,Zfad)
+o0
=5 (ug, k2 (T 11 — (T%)?)?
2 (e BT = TP) e
+o0
= < kTR (T —T?) uk,y>
k=1 Lr(M),LP* (M)
Thus, we deduce that
—+00
(I =Tz =3 k2T (1 = T%) (5.3)
k=1
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Similarly we have

+o0
(I=T)za =3 k2T* (I = T%) .
k=1

Now, we infer that

+00 +oo
(I =T) (w1 +w2) = S k2T I = T2 uy + 3 k3TH (1 = T2) 0

k=1 k=1
+oo N 9

=Y k2T NI = T%)  (wg + vp)
k=1

+oo
=S kTN = TR T NI - T by (5.2)
k=1

+oo
=Y kT 21 +T)°(I - T)%a.
k=1

By (4.2), for any z € D, we have
+oo
Z k2?21 — 222 = 1.
k=1

Since the operator T' is power bounded, we note that for every g €]0, 1] we have

I= +Z°o k(oT)*~2(I — (oT)?)?, (5.4)
k=1

the series being absolutely convergent. Hence, for any p €]0, 1], we have

+oo
(I - oT)x = (I - oT) S k(oT)* (I - (oT)*)*x

k=1
+oo
= > k(eT)* (I + oT)*(I - oT)’a.
k=1

It is not difficult to see that the latter series is normally convergent on [0,1]. Hence, letting o to 1, we
deduce that

(I-T)x = io ET?*=2(1 + T)X(I — T)3x.
k=1

Then we obtain
(I —-T)r=(—-T)(x1+ z2).

Since the space Ran(/ —T') is dense in LP(M), by the Mean Ergodic Theorem (see [59, Section 2.1}),

the operator I — T is injective. Consequently, we have x = x1 + z2. Now, it remains to estimate
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|z1||7,1,c and ||22|7,1,. According to (5.3), we have

+o0
mIT" NI = T)xy = 3 kzmaTH7m2(1 - T2),
k=1

for any integer m > 1. It is convenient to write this as m%Tm_l(I —T)z1 = (I +T)?yy, with

I 1 1
Ym = > kEm2TM™ (T — Ty,
k=1

Now, observe that

k2meTHTm=2(] — T)2 = (k +m — 1)2Tm=2(] — T2,

(k+m—1)%
According to Proposition I1.2.3 and Lemma I1.2.4, the matrix

L
(k+m—1)2 km>1

represents an element of B(¢%). Moreover, by Proposition 3.1, the set
{4 m—12THm2(1 =) kym > 1}
is Col-bounded. By Proposition 3.7, we deduce that (Y )m>1 € LP(M, ¢?) and that

H(ym)m>1||LP(M7gg) S ||U”LP(M,zg)-

Since {T'} is Col-bounded, we have

_ Lrm—1 _
orlrea = | (mbrm - 1))

Lr(M,¢2)

- H ((I + T)2ym) by (5.5)

m2lLe(ar2)

= H(ym)m>1HLp(M,gg)'

Finally, we deduce that there exists a positive constant C such that

[z1]l7e1 < Cllullzrare)-

Moreover, we have a similar result for xo. Finally, we have
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Cllullzearezy + CllvllLe(are2)

z1ll7e,1 + |22l Tm1 <
< Ol

Corollary 5.2 Suppose 1 < p < 2. Let T' be a bounded operator on LP(M) with Ran(I —T') dense in
LP(M) and let o > 0. Assume that T admits a completely bounded H*(By) functional calculus for
some vy € ]0

™

,5[. Then we have an equivalence

inf{HJ"IHT%O& + |lz2llT e + T =21+ 902} ~ |zl pary, € LP(M).

Proof : By Theorem 3.3, the operator T is both Col-Ritt and Row-Ritt (hence R-Ritt). Moreover,

by Theorem 3.5, it satisfies a ‘dual square estimate’

yllr=r S N9l vy, v € LP (M),

Then, by Theorem 5.1 above, the norms || - |7, and || - ||7,0,o are equivalent. Furthermore, by Theorem
3.6 and (1.3), || - [|1,a is equivalent to the usual norm || - || z»(ar), which proves the result. ]

Assume now that 7 is finite and normalized, that is, 7(1) = 1. Following [44] and [104] (see also
[4]), we say that a linear map T on M is a Markov map if T is unital, completely positive and trace
preserving. As is well known, such a map is necessarily normal and for any 1 < p < oo, it extends to

a contraction T), on LP(M). We say that T is selfadjoint if, for any x, 2’ € M, we have
(T(z)2") = 7(2T(z")).
This is equivalent to T being selfadjoint in the Hilbertian sense. We also consider the operator
Ap=1-T,.

The following result is stated in [68] with bounded instead of completely bounded. But a careful reading
of the proof shows that we have this stronger result. We refer to [45], [52], [67] and [68] for information

on H*>(Xy) functional calculus.

Proposition 5.3 Suppose 1 < p < co. Let T be a selfadjoint Markov map on M. Then the operator

Ay is sectorial and admits a completely bounded H*(Xg) functional calculus for some 0 € |0, 5 [.

Assume 1 < p < co. At this point, it is crucial to recall that LP-realizations T}, of Markov maps
T on M such that —1 ¢ o(T,) are Ritt operators, as noticed by C. Le Merdy in [68]. Let T be a
selfadjoint Markov map on M. According to [68] and Proposition 5.3, we obtain that 7, admits a
completely bounded H>°(B,) functional calculus for some v € ]0, % [. Hence, by Corollary 5.2, we

deduce the following result which strengthens a result of [68].
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Corollary 5.4 Suppose 1 < p < 2. Let T be a selfadjoint Markov map on M such that —1 ¢ o(T5)
with Ran(I — T},) dense in LP(M). Then, for any o > 0 there exists a positive constant C' such that
for any x € LP(M), there exists x1,x9 € LP(M) satisfying x = x1 + x2 and

|2 ) %

"
k=1

(T4 = 1) (a2))

< Cllzll e (ary-

(2 : 2a—1
k
k=1

Lp p
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Chapter 1V

Noncommutative Figa-Talamanca-Herz algebras

for Schur multipliers

1 Introduction

The Fourier algebra A(G) of a locally compact group G was introduced by P. Eymard in [39]. The
algebra A(G) is the predual of the group von Neumann algebra VN (G). If G is abelian with dual
group G, then the fourier transform induces an isometric isomorphism of Ly (@) onto A(G). In [41], A.
Figa-Talamanca showed, if G is abelian, that the natural predual of the Banach space of the bounded
Fourier multipliers on LP(G) is isometrically isomorphic to a space A,(G) of continuous functions on
G. Moreover As(G) = A(G) isometrically. In [39] and [47], C. Herz proved that the space A,(G) is
a Banach algebra for the usual product of functions (see also [91]). Hence A,(G) is an LP-analogue
of the Fourier algebra A(G). These algebras are called Figa-Talamanca-Herz algebras. In [105], V.
Runde introduced an operator space analogue OA,(G) of the algebra A,(G). The underlying Banach
space of OA,(G) is different from the Banach space A,(G). Moreover, it is possible to show (in using
a suitable variant of [64, Theorem 5.6.1]) that OA,(G) is the natural predual of the operator space of
the completely bounded Fourier multipliers. We refer to [28], [29], [63] and [106] for other operator
space analogues of A,(G).

The purpose of this article is to introduce noncommutative analogues of these algebras in the
context of completely bounded Schur multipliers on Schatten spaces SP. Recall that a map T': SP —
SP is completely bounded if Idgr ® T is bounded on SP(SP). If 1 < p < oo, the operator space
CB(SP) of completely bounded maps from SP into itself is naturally a dual operator space. Indeed,
we have a completely isometric isomorphism C'B(S?P) = (Sp@)Sp*)* where & denote the operator space
projective tensor product. Moreover, we will prove that the subspace 9, ; of completely bounded
Schur multipliers is a maximal commutative subset of C B(S?). Consequently, the subspace M, o, is w*-
closed in CB(SP). Hence M, o, is naturally a dual operator space with 9, o, = (Sp®5’p*/(9ﬁpycb)1_)*.
If we denote by 1,: SPRSP" — ST the map A® B — Ax B, where * is the Schur product, we will show
that (9, )1 = Kerv,. Now, we define the operator space R, « as the space Im 1, equipped with
the operator space structure of SPRSP™ /Ker 1p. We have completely isometrically (D‘ipﬁb)* =My e
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Moreover, by definition, we have a completely contractive inclusion R, 4 C S 1. Recall that elements

of S can be regarded as infinite matrices. Our principal result is the following theorem.

Theorem 1.1 Suppose 1 < p < oo. The predual R, o of the operator space M, o equipped with the

usual matricial product or the Schur product is a completely contractive Banach algebra.

In [85] and [111], S. K. Parott and R. S. Strichartz showed that if 1 < p < oo, p # 2 every isometric
Fourier multiplier on LP(G) is a scalar multiple of an operator induced by a translation. In [41],
A. Figa-Talamanca showed that the space of bounded Fourier multipliers is the closure in the weak
operator topology of the span of these operators. We give noncommutative analogues of these two

results.

Theorem 1.2 1. Suppose 1 < p < oo. If p # 2, an isometric Schur multiplier on SP is defined by
a matriz [a;b;] with a;,b; € T.
2. Suppose 1 < p < oo. The space M, of bounded Schur multipliers on SP is the closure of the span

of isometric Schur multipliers in the weak operator topology.

The paper is organized as follows.

In §2, we fix notations and we show that the natural preduals of 9, and M, 4 admit concrete
realizations as spaces of matrices. We give elementary properties of these spaces.

In §3, we show that the operator space R,  equipped with the matricial product is a completely
contractive Banach algebra.

In §4, we turn to the Schur product. We observe that the natural predual 2R, of the Banach space
M, of bounded Schur multipliers is a Banach algebra for the Schur product. Moreover, we show that
the space R, , equipped with the Schur product is a completely contractive Banach algebra.

In §5, we determine the isometric Schur multipliers on S? and prove that the space 9, is the

closure in the weak operator topology of the span of isometric multipliers.

2 Preduals of spaces of Schur multipliers

Let us recall some basic notations. Let T = {z € C | |z| = 1} and ¢;; the symbol of Kronecker.

If £ and F are Banach spaces, B(F, F) is the space of bounded linear maps between E and F.
We denote by ®, the Banach projective tensor product. If E,F and G are Banach spaces we have
(E ®y F)* = B(E, F*) isometrically. In particular, if F is a dual Banach space, B(F) is also a
dual Banach space. If (Ey, E1) is a compatible couple of Banach spaces we denote by (Ey, E1)g the
intermediate space obtained by complex interpolation between Ey and Ej.

The readers are refereed to [13], [37], [86] and [101] for details on operator spaces and completely
bounded maps. We let CB(E, F') for the space of all completely bounded maps endowed with the

norm

T e—Feb = sup Hdar, ® wllyr oy —ag ey
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IV.2 Preduals of spaces of Schur multipliers

When FE and F' are two operator spaces, CB(FE, F') is an operator space for the structure corresponding
to the isometric identifications M, (CB(E,F)) = CB(E, M,(F)). The dual operator space of E is
E* = CB(E,C). If E and F are operator spaces then the adjoint map T +— T* from CB(FE, F) into
CB(F*, E*) is a complete isometry.

If I is a set, we denote by C the operator space B(C, ¢%) and by R; the operator space B(@, C).
We have a complete isometry B(¢2) = CB(Cy) (see [13, (1.14)]).

The complex interpolated space between two compatible operator spaces Ey and Ej is the usual
Banach space Fy with the matrix norms corresponding to the isometric identifications M, (Ey) =
(M,,(Ey), Mn(El))e. Let Fy, F| be two other compatible operator spaces. Let p: Ey + Ey — Fy + Fy
be a linear map. If ¢ is completely bounded as a map from Ej into Fy, and from E; into Fi, then,

for any 0 < 8 < 1, ¢ is completely bounded from Fjy into Fy with

1-6 6
elleb,By—ry < (lpllebo—r0)  (lolleb,m—F1) -
If Ep N Fy is dense in both Ey and Fq, we have a completely contractive inclusion
(CB(Ey), CB(E1)), C CB(Ey)

(see [46, Lemma 0.2]).

We denote by & the operator space projective tensor product, by @i, the operator space minimal
tensor product, by ®j the Haagerup tensor product, by ®, the normal Haagerup tensor product, by
® the normal spatial tensor product, by ®,+, the weak* Haagerup tensor product and by ®. the
extended Haagerup tensor product (see [13], [38] and [108]). Suppose that E, F, G and H are operator
spaces. If p: E— F and ¥: G — H are completely bounded maps then the maps p ® ¢: F®, G —
F®p H and ¢ @ : E&QG — FRH are completely bounded and we have

o ® Ylleb, Eonc—Fona < |@lleh,E—FllYlleb,o—n
and
le @Vl g rae—ran < lellewp—rll¢llbc—m-

If E, F are operator spaces, we have E ®p, F' C E ®,+, F' completely isometrically (see [13, page
43)).

If E,F and G are operator spaces, we denote by CB(E x F,G) the space of jointly completely
bounded map. We have

CB(E x F,G) = CB(E®F,G) = CB(E,CB(F,Q))

completely isometrically. Consequently, we have (E&F)" = CB(F, F*) completely isometrically. In

particular, if E is a dual operator space, C B(F) is also a dual operator space.
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At several times, we will use the next easy lemma left to the reader.

Lemma 2.1 Suppose E and F are operator spaces. Let V: E— F and W: F — E be any completely

contractive maps. Then the map

©vw: CB(E) — CB(F)
T —  VITW

is completely contractive. Moreover, if E and F are reflexive then this map is also w*-continuous.

A Banach algebra A equipped with an operator space structure is called completely contractive if
the algebra product (a,b) — ab from A x A to A is a jointly completely contractive bilinear map.

We equip ¢7° with its natural operator space structure coming from its structure as a C*-algebra
and the Banach space E} with its natural operator space structure coming from its structure of predual
of £3°.

If I is an index set and if F is a vector space, we write M(E) for the space of the I x I matrices
with entries in . We denote by M?n(E) the subspace of matrices with a finite number of non null
entries. For I = {1,...,n}, we simplify the notations, we let M, (E) for Mg ) (E). We write Mg,
for M%n((C). We use the inclusion M; @ M; C My with the identification [A ® B](t,r),(u,s) = Qi brs.
For all 4,7, k,1 € I, the tensor e;; ® ey identifies to the matrix [6;¢0;u0rr0is](t,r),(u,s)crx1 (S€€ [37, page
5] for more information on these identifications).

Given a set I, the set P¢(I) of all finite subsets of I is directed with respect to set inclusion. For
J € Pg(I) and A € My, we write T;(A) for the matrix obtained from A by setting each entry to zero
if its row and column index are not both in J. We call (T,(A4)) P (1) the net of finite submatrices of
A.

The Schatten-von Neumann class S?, 1 < p < 00, is the space of those compact operators A from
/% into ¢2 such that HAHSf = (Tr (A*A)g)% < 0. The space S of compact operators from /% into
E% is equipped with the operator norm. For I = N, we simplify the notations, we let S? for S§. The
space S°(S%) of compact operators from 02 @9 03 into (7 @ (3. is equipped with the operator norm.
If 1 < p < oo, the space ST (S%.) is the space of those compact operators C from (2 @9 (2. into (7 @9 (3,
such that [|Cllgr(sz) = (Tt ©Tr)(C*C)8)7 < oo.

Elements of S7 are regarded as matrices A = [a;;]ijer of Mj. If A € ST we denote by AT
the operator of S? whose the matrix is the matrix transpose of A. If 1 < p < 0o, A € S and
Be Sf*, the operator ABT belongs to St. We let (A, B) « =Tr (ABT). We have (A, B)
limy 3=, ic s aijbij.

We equip S¢° with its natural operator space structure coming from its structure as a C*-algebra.

R —

ST-S7 STST

We equip S} with its natural operator space structure coming from its structure as dual of S7°. If
1 < p < oo, we give on S¥ the operator space structure defined by SV = (5%, S5}). completely
p

isometrically (see [101, page 140] for interesting remarks on this definition). By the same way, we define
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an operator space structure on S7(S%.). We have completely isometrically S7(S%.) = St (S7) = SV, «-
We will often silently use these identifications. By the same way, we define S7(S%-(S7)) and similar
operator space structures. G. Pisier showed that a map T': S§ — S is completely bounded if Idgr @ T
is bounded on SP(S7) (see [99, Lemma 1.7]). The readers are refereed to [99] for the details on operator
space structures on the Schatten-von Neumann class.

We denote by * the Schur (Hadamard) product: if A = [a;;]; jer and B = [b;;]; jer are matrices of
M; we have A * B = [a;jb;;]i jer. We recall that a matrix A of My defines a Schur multiplier M4 on
ST if for any B € S7 the matrix M4(B) = A x B represents an element of S?. In this case, by the
closed graph theorem, the linear map B — M,(B) is bounded on S7. The notation EUIII] stands for
the algebra of all bounded Schur multipliers on the Schatten space S7. We denote by ?mé . the space
of completely bounded Schur multipliers on S7. We give the space i)ﬁf), . the operator space structure
induced by CB(SY). For I = N, we simplify the notations, we let 9, for i)ﬁg and M, o, for Sﬁﬁcb.
Recall that if A € S7, we have M4 € imf, (see [13, page 225]).

If Mc € M, we have Mc € ML.. Moreover, if A € S} and B € S, we have

(M¢(A), B) o o = (A, Mo(B))

STST STST

If 1 < p < oo, the Banach spaces i)ﬁ]], and EITIZID* are isometric and the operator spaces sm;,cb and i)ﬁ]g*’cb
are completely isometric. We have 9. = S)ﬁéo’cb isometrically (see e.g. [78, Remark 2.2] and [48,
Lemma 2]). Moreover, we have Dﬁgo b = L7° @+, £3° completely isometrically (see e.g. [108, Theorem
3.1]) and ML = ¢33, isometrically.

If M4 € M is a Schur multiplier, we have HM{‘TJ(A)HB(S?) < ”MAHB(Sf) for any finite subset J of

. T . . .

I. Moreover, if Ms € M ,, we have for any finite subset J of I the inequality HMTJ(A)HCB(Sf) <
[Mallopse)-

It is well-known that the map (A, B) — A * B from S} x Sé)* into S} is contractive. In order to

study the preduals of SUIZI, and SDT;, «»» We need to show that this map is jointly completely contractive.

Proposition 2.2 Suppose 1 < p < oco. The bilinear map

SPx s — sl
(A,B) +—— AxB

is jointly completely contractive.
Proof : We denote 3: £ — (3° the canonical contractive map. We have
1Blleb,cr—ege = 11Bllz—pee <1 and  |[Blleb,ri—ee = [1Blli2pee <1

see [13, (1.10)]). Then by tensoring, the map C; ®p Ry — £3° ®p £7° is completely contractive. Now
I I

recall that we have a completely isometric canonical map £7° ®p (3 — 9. and a completely isometric
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map T +— T* from CB(S%°) into CB(S}). Then the map

SIOOZC](X)hRI — E?O(X)hg?o — ﬂﬁgo — CB(S})

€ij — e Qe — Meij — Meij

is completely contractive. This means that the map A — M4 from S%° into CB(S}) is completely
contractive. Then the map (A, B) — Ax B from S$° x S} into S} is completely jointly contractive. By
the commutativity of * and ®, the map from S} x S7° into S} is also completely jointly contractive.

Finally, we obtain the result by bilinear interpolation (see [101, page 57] and [7, page 96]). [

Then we can define the completely contractive map

Wl SPest — S}
A®B — AxB.

As ST @, Sf* embeds contractively into S?@Sf*, the map ¢! induces a contraction from S7 ®, Sf*
into S}, which we denote by <p£. We let ), = wgl . The following theorem (and the comments which
follow) is a noncommutative version of a theorem of Figa-Talamanca [41]. This latter theorem states
that the natural predual of the space of bounded Fourier multipliers admits a concrete realization as a
space A,(G) of continuous functions on G. In the sequel, we consider the dual pairs CB(S7), S¥ @S?*
and B(SV), ST ®, S?* where 1 < p < oo.

Theorem 2.3 Suppose 1 < p < o0.

1. The pre-annihilator (ZDTII)’Cb)J_ of the space im;’cb of completely bounded Schur multipliers on S¥
is equal to Ker wé. We have a complete isometry 93?{,701) = (S?@S?* /Ker 1[);)*.

2. The pre-annihilator (EDTII))J_ of the space EDTZI, of bounded Schur multipliers on SV is equal to
Ker @l We have an isometry M) = (57 @, Sf* /Ker goll,)*.

Proof : We will only prove the part 1. The proof of part 2 is similar. Let C = 22:1 Ar®By € S?@S?*.
Note that, for all integers k, we have My, € Dﬁf,. If 4, j are elements of I we have

!
<M€ii’C>CB(Sf)7S§’®S§’* - <M€z‘j’ Z A @ Bk> .
k=1 CB(S?),5P®8?

(eij * Ak, B)

I
MN

P op*
ST,S;

ol

=1
-

<€z’ja Ak * Bk>

p gp*
ST,S;

l
= <€ij, ZAk * Bk>

=1

e
Il
—

o
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By continuity, if C' € Sp®S , we have (M., C)

Ce Kerwp and Mp € Sﬁpcb,

= [1/){,(0)} . We deduce that, if

CB(SP),5P®s? i

we have for all J € P¢(I)
(M, (D), C>CB(S§’),S§@S§’* = 0.

Now, it is easy to see that we have Mg (p) % Mp in CB(SY) (ie., for all A € SY, we have
My, (py(A) — Mp(A)). Then My, (p) % Mp in CB(SY?). Moreover, recall that, for all J € P¢(I),

we have ||Mg, p)llgnr < [IMbDlgnr - Thus Mgy, (p) w7*> Mp. Consequently, if C' ¢ Kerwllj and
N p,cb Pp,c -
Mp € sm;d, we have

<MD,C> * :li§n<Mg~J(D),C>

CB(SP),5P®S? CB(S?),sP®sP"

Thus WeLhave Ker 1% C (Smi’cb) |- Now we will show that (Ker wé)J' C 971113701). Suppose that T' €
(Ker 1/1}{) . If 4, j, k,1 are elements of I such that (i,7) # (k,1), the tensor e;; ® e belongs to Ker 1/}15.

Therefore we have

(T(eis), 6kz>5§755* =(T,ei; ® ekl>03(s§’),s§@s§’*

=0.

Hence T is a Schur multiplier. We conclude that (Ker wé)L C im[{’cb. Since Ker 1/1{, is norm-closed in
S?@S?* we deduce that

1L
(zm;,d,)l C ((Ker 1/’;) )L = Ker %{-
Then the first claim of part 1 of the theorem is proved.
Now, we will show that Em;[;,cb is a maximal commutative subset of CB(SY). Let T: S§ — S¥ be a
bounded map which commutes with all Schur multipliers M., : St — S¥ where i, j € I. Then, for all
i,7,k,l € I such that (i,j) # (k,1) we have

<T(€Zj ekl>5p Sp* = TMe” ezy ekl>sp Sp

=
<Me T ezg ekl>sp Sp
<T 61] 62] ekl>>5?73?*

=0.

Hence T is a Schur multiplier. This proves the claim. Then DJTIIwb is weak* closed in CB(SY). We

immediately deduce the second claim of part 1 of the theorem. [ |
If 1 < p < oo, we define the operator space i}i b 38 the space Im wl equipped with the operator

space structure of S¥ ®S§ /Ker L. We let Ry, o = %p o We have completely isometrically (9‘{{,70 ) =
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Chapter IV. Noncommutative Figa-Talamanca-Herz algebras for Schur multipliers

E)JTI .- By definition, we have a completely contractive inclusion iRp o C S}. We define the Banach
space R}, as the space Im ¢}, equipped with the norm of 7 ®., Sﬁ’ /Ker @l We let R, = RI. We have
isometrically (R1)" = L.

By duality, well-known results on Dﬁl and Dﬁl . translate immediately into results on 9%[ and
PRI .- If 1 < p < oo, there is a contractive inclusion fRI c Rl .- If 1 < p < oo, the Banach spaces iRI
and 9‘{5* are isometric and the operator spaces R/ b and 9% - b ATe€ completely isometric. We have a

completely isometric isomorphism

lenly — Ry

(2.1)
e, Qe —— e

and isometric isomorphisms

1 1 1 IxI I _
oty — Ry and 0 — R=%g,
e Qe —— € € F— €ij-

Suppose 1 < p < ¢ < 2, we have injective contractive maps
M C M cml cmy and M|, CcM, ML, C MG,
(see [46, page 219]). One more time, by duality, we deduce that we have injective contractive inclusions
My C R, CcRICR] and R}, C R, CRL, C R,

Actually, the last inclusions are completely contractive. It is a part of Proposition 2.7.

Suppose 1 < p < oo. By a well-known property of the Banach projective tensor product, an element
C in SI belongs to iﬁé if and only if there exists two sequences (Ay)n>1 C ST and (Bp)n>1 C S
such that the series .72 A,, ® B,, converges absolutely in S?@Sﬂ-?* and C = Y129 A, * B, in St.

Moreover, we have

+00 oo

1Cloxr = inf{ ol AnllsplIBallger | C =" Ay Bn} (2.2)
n=1 I n=1

where the infimum is taken over all possible ways to represent C' as before. We observe that we have
an inclusion M{}n - ‘ﬁé. It is clear that Mf}n is dense in 9%; and SR; b

Remark 2.4 The Banach spaces Dﬁl and ML bcb Contain the space (. We deduce that, if I is infinite,
the Banach spaces EITI m! b.ch? 9{] and R! b OT€ N0t reflexive.

Now we make precise the duality between the operator spaces imf)’cb and %é’cb on the one hand and
the Banach spaces SJTII) and 9%113 on the other hand. Moreover, the next lemma specifies the density of
Mf}n in SR{, and S)‘if),cb
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IV.2 Preduals of spaces of Schur multipliers

Lemma 2.5 Suppose 1 < p < oo.

1. If J is a finite subset of I, the truncation map Tjy: R!

pcb E)‘izl7 & s completely contractive.
Moreover, if A € R! .chs We have in 9%

Ts(4) — A. (2.3)

2. For any completely bounded Schur multiplier M € ! peb and any B € R! pchs We have

<MA,B>m, W= hm Z ijbij. (2.4)

b b
p,c b,c ,]GJ

3. If J is a finite subset of I, the truncation map Ty : 9‘{},{ — SRII) s contractive. Moreover, if A € 2}{;,
we have Tj(A) = A in 9‘%{0.

4. For any bounded Schur multiplier My € E)ﬁl[, and any B € 9‘{{,, we have (My, B)

hm E a;;bij.

i,j€J

I sjl —
smp,mp

Proof : We only prove the assertions for the operator space %]I),cb' If ¢,7 are elements of I and

MAEW

.chr We have

<MA7 6i]>m[ <MA? eij * ei]>9ﬁ1 RrI

p,cb? pcb D,cb’™ p,cb
= (Maleij): eij) gr go*

= Q5.

Then we deduce that, for all M4 € Sﬁf)’cb and all B € M we have (Mg, B>smf L =i jer @ijhij.
Now, it is not difficult to see that, for any finite subset J of I, the truncation map Ty : S§ — S7
is completely contractive. Then, it follows easily that the truncation map T;: Dﬁé b = 9)?{7 o 18
completely contractive. Hence, by duality and by using the density of M?“ in R! ».cb: We deduce that
the truncation map T;: R! pcb ! ».cp 18 completely contractive. Furthermore, by density of M?n i

R! 5. 16 18 not difficult to prove the assertion (2.3). Finally, the equality (2.4) is now immediate. ™|

Finally, we end the section by giving supplementary properties of these operator spaces. For
that, we need the following proposition inspired by [78, Proposition 2.4]. If z,y € R, we denote by
My, S? — S¥ the Schur multiplier associated with the matrix [¢/*"e®*] rscl of My and by M, ,: S7 —
SP the Schur multiplier associated with the matrix [e~"*"e %] rsel of M;. It is easy to see that, for
all z,y € R, the maps M, ,: S7 — S¥ and M, ,: S¥ — S¥ are completely contractive. We denote by

dx the normalized measure on [0, 27].

Proposition 2.6 Suppose 1 < p < 0o. The space ML

»ep Of completely bounded Schur multipliers on

S is 1-completely complemented in the space CB(ST).
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Proof : Let T: S7 — S% be a completely bounded map. For any A € M?n the map

[0,27] x [0,27] — SP
(z,y) — Moy TMy y(A)

is continuous and we have

27 27 _
/ My yTM, (A de‘dy
0 0

27 p2m
// [RYA iy )Hsfd:vdy

27 2w _
<[] !|Mx,y|\sz;_>s§HTlls;msfl\Mm,st;_wgHAHs?dxdy

< 1Tl sz —sp 1 Allgo-

By the previous computation, we deduce that there exists a unique linear map P(T): S¥ — S¥ such
that for all A € S7 we have

27 27 _
(PO = [ [ Moy TN, (A)dady

Moreover, for all 22:1 Ay, ® By, € Mg, ® ST we have

! 2T 2w o
> A ® / My TM, (By)dady
0 0

H(Ids ® P(T )(ZAk@@Bk)

SP(SP) Sp(S7)

27 27 L l
(IdSp ® Mx,yTMz,y) ( Z A ® Bk) dl’dy
k=1 SP(SY)
!
ST\ 57— 52| > Ar © By
k=1 SP(S7)
Thus we see that the map P(T) is actually completely bounded and that we have ||[P(T)|| , ¢ ,o» <
T I

HTHCb,S?HS?‘ Now, for all r, s, k,l € I we have

Ldxdy

P

2m 271' _
< 6T87 ekl>sp SP / Mz,yTM.t,ye’/‘Sa ekl>
I

p*
I
= / / eﬂ”e*"y5<Mx7yTers, ekl> d:z:dy
o Jo

2 27 . . . .
/ / efmrefzysemkelyldxdy Ters: ekl SP o
0 0 T

2 . 2T .
_ (/ ezx(k—r)dx> </ ezy(l—S)dy> <T€r37 ekl>sp o
0 0 °1
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== 5rkdsl <T(ers)7 ekl>5§7,s?* .

Then the linear map P(T): S¥ — SV is a Schur multiplier. Moreover, if T: S¥ — S7 is a Schur
multiplier, we have P(T) =T.
)

Now, if T € M, (CB(SY)) and [Akili<ki<m € Mm(SY), with the notations of Lemma 2.1, we have

Ma: y,—TZJ Ma: y(Akl)d$dy:|

2r 27
I
0 0

2r 27
b

< ||THMn(CB(Sf))H[Akl]lgk,lgmHMm(s?) by Lemma 2.1.

2 2w
0

<L, Jjsn
l

gk’ gm Mrnn(s?)

| [Aga] || dedy
Mn(CB(S?))

(IdMn ® @Mw,yvﬁx’y) (T) H

g4V x,
/ y} 1<ij<n

[Tk ||ddy
My (CB(S7))

Thus we obtain
|(Idns, @ P)(T)|\Mn(cs(s§)> - H [P(Tij)]1<i7j<”HMn(CB(S}”))
STl ar, e B(sPy)-

We deduce that the map P: CB(S7) — Dﬁ[{’ « 1s completely contractive. The proof is complete.  ®

Proposition 2.7 1. We have completely isometric isomorphisms

0 — R, o |

ei®e; —— € A — My
2. Suppose 1 < p < g < 2. We have injective completely contractive maps
I I I I I I I
EInl ,cb - Em}o,cb - mq,cb C 9ﬁZ,cb and S):{Z,Cb C SRq,cb - SRp,cb - %l,cb'

Proof : 1) By minimality, we have a completely contractive map gﬁé b — {3~ We will show that

the inverse map is completely contractive. We have a complete isometry

(%% — B(S}) = CB(Crx1)
A — My4.

Now we know that (Rrx7)* = Crxs. Then we deduce a complete isometry

A — My —  (My)* = Ma.

123



Chapter IV. Noncommutative Figa-Talamanca-Herz algebras for Schur multipliers

By interpolation, we deduce a complete contraction

(%1 — (CB(Crx1), CB(Rix1))

1-
2

Recall that we have (Crxr, Rrxr)1 = S? completely isometrically (see [99] pages 137 and 140). Then
2
we have a complete contraction

(CB(C[M),CB(RIM))% — CB(S%).
Finally, we obtain a complete contraction (75 ; — CB (S%) We obtain the other isomorphism by
duality.

2) Let 1 < p < ¢ < 2. Recall that we have a contraction from i)ﬁéycb into ﬂﬁgycb (see [46, page
219]). Moreover we have imé b = L35 1 completely isometrically. Thus we have a complete contraction
imécb — E)ﬁﬁﬁb. Now, there exists 0 < § < 1 with S7 = (57, S%)e. Moreover, the identity mapping
DJTII,’ b é, . is completely contractive. By interpolation, we obtain a complete contraction ED?II,,Cb —

(o,

b E)ﬁé cb)g- On one hand, we know that we have a complete contraction

(cB(sY), CB(S%))g — CB((S7,57),) = CB(S).

On the other hand, the space sm;pb of completely bounded Schur multipliers is 1-completely com-
plemented in the space CB(SY). Then we have a complete contraction (9)?{, cb Smé b)g fmé o BY

composition, we deduce that we have a complete contraction Dﬁ{) o C imé - We obtain the other

completely contractive maps by duality. [ |

3 Noncommutative Figa-Talamanca-Herz algebras

We begin with the cases p = 1 and p = 2. Recall that we have a completely isometric isomorphism
iﬁicb =0} @5 £} (see (2.1)) and a completely contractive inclusion SR{,Cb C S}. Hence, the trace on S}

induces a completely contractive functional

Tr : E}@hf} — C

By tensoring, we deduce a completely contractive map

Idf} ® Tr ®Id4}: 5} O 5} Qp E} Qn ﬁ} — 5} n 5}.
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IV.3 Noncommutative Figa-Talamanca-Herz algebras

By composition with the canonical completely contractive map
(07 @n 1) (€} @p £}) — L1 ®p £} @p L] @4 £
we obtain a completely contractive map
Idp ® Tr @Idg: (0 @5 ) B (0] @p L1) — €] @ 4.
With the identification ?ﬁ{’cb = 5} hn 6}, we obtain the completely contractive map

%{,cb@)%{,cb - m{,cb
A® B — AB.

This means that the space iﬁicb equipped with the matricial product is a completely contractive
Banach algebra. Now, recall that we have ‘ﬁg b = E}@E} completely isometrically. Then, by a similar
argument, fﬁé «» equipped with the matricial product is also a completely contractive Banach algebra.
For other values of p, the proof is more complicated since we do not have any explicit description of
ml

p,cb*

In the following proposition, we give a link between E)fié o and ERII)’de .

Proposition 3.1 Suppose 1 < p < co. Then there exists a canonical complete contraction

I Sepl IxI
i)(‘{;D,cb(g)g{p,cb %p,cb

A®B — A® B.

Proof : The identity mapping on S7 ® S¥ extends to a complete contraction SY®SY — S7(SV). Hence

by tensoring, we obtain a completely contractive map
B: SPRSPRSY RSP — SE(SPYRSE (SP).

The map %{3 S?@)S?* — %é,cb is a complete quotient map. By [37, Proposition 7.1.7], we obtain a
complete quotient map
Uy @y STOS] BSTRS] — R ,ER,

Finally, by the commutativity of @, the map

a: PR PR — SPRSRS RS
AR BRC®D +— ARCQB®D

is completely isometric. We will prove that there exists a unique linear map such that the following
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diagram is commutative and that this map is completely contractive.

~ * o~ ~ * 6% o~ o~ * * IB ~ * *
SPRST @ST®SY —— SYRSTRSY ®SY —— SP(ST)®SY (SY)

vy @Yy v
Sepl IxI
ERp cb®9{ ,cb E)%p,cb

We have D‘iicb@m]icb = (S?@S?*(@S?@S?*)/Ker (1/)}{ ® @ZJ]g) completely isometrically. It suffices to
show that Ker (1/115 ® 1/){,) C Ker (¢ZI)XI Ba). By [37, Proposition 7.1.7] , we have the equality

Ker (wg ® w;) = closure (Ker (zﬂ;) ® 5’5’@55)* " S?@Sﬁ?* ® Ker (w]ﬁ))
Since the space Ker (¢! 3a) is closed in S}?@)S?*@S]ID@S?*, it suffices to show that
Ker (1)) ® SPRSY + SPRSP” © Ker (¥)) C Ker (1) Bav).

Let E € Ker (w{,) ® S?@S?. There exists integers n;, m;, matrices Ay, C; € ST and By, Dy j € S§*

such that the sequences

g mj
( Z Ak,i X B]m) and (Z Cl,j X Dl,j>
1>1 j

k=1 i> I=1 jz1

are convergent in S7®SY

and

Then, in the space S}, we have

g
> ApixBpi —— 0. (3.1)
1 1——+00

Moreover, note that, by continuity of the map ] S?@S?* — S}, the sequence (3, C ; * Dl,j)j>1

is convergent. Now, we have
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n; mj
W Ba(E) = vl Ba <<z lim > Api® Bk,i) ® ( lim Y C;® Dl,j>>
k=1 =

ng; My

. . . IxI . . . .
= Jm_tim 33 oAk @ By © Gy © D)

ng; My

— i ; Ix1 . ) ) .
= Jm_lm 303w (4@ Ciy @ By © Diy)

ng; My

- 53 (4 ) (B 1)

n; Mj
= lim lim Z Z (Ak,i * Bk,z’) ® (CIJ * Dl,j)

i——400 j——+00

k=11=1
n; m;
(g (o)
k=1 =1
=0 by (3.1).

We prove that S? @Sf* ® Ker (wé) C Ker (w{,“ Ba) by a similar computation. The proof is complete.

Now, we define the map V: Mf}n ® M?n — M?n ® M{}n by V(eij @ er) = 0it €ik @ €.
Proposition 3.2 With respect to trace duality, the map W : I\\/Jlf}n ® M?“ — M?n ® Ml}i“ defined by
W(ei; @ err) = dji eq @ ejj
is the dual map of V.. Moreover, the map V induces a partial isometry V: S7 @3 S? — S? @9 S%.
Proof : For all 4,7, k,l,7,s,t,u € I, we have

Tr (V(eij ® ep)(ers ® etu)T) = Oy Tr ((eik ® ekj)(ez; ® eﬁ))
= 0 Tr (egpely) Tr (ekjez;)

= OtstOirOju
and

Tr ((eij & ekl)(W(ers & etu))T> = 0g Tr <(€ij 02y ekl)(eru b2y ess)T>
= 6s Tr (esjel,) Tr (emely)

= (5kl5t5ir5ju-

We conclude that W is the dual map of V. The fact that V' induces a partial isometry is clear. [ |
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Proposition 3.3 Suppose 1 < p < co. The linear maps V : M?n ®M?“ — M?n ®Ml}in and W : M?n ®
M — Mir @ MEY admit completely contractive extensions V: S§(ST) — S7(SY) and W: S7(S?) —
SH(SD)-

Proof : We first prove that ¥V and W admit completely contractive extensions from S¢°(S7°) into
SP°(S5%°). Suppose that B = Yijkies bijkl ® €ij ® e € My ® Mf}n ® M{;‘n with J € P¢(I) and

bijkr € Mgy for all 4,j,k,1 € J. Note that the matrix U = Z ers ® egr of S7°(SF°) is unitary. Then
r,s€J
we have

Z bijkk ® eir, @ ey

H(Idsoo ®V)(B)Hsoo(s<;o - e

(57°))

5°0(57°(57°))

= (I.Soo @ ( Z ers ® esr>> ( Z bijkk ® ejr ® ekj)

r,s€J i,7,k€J

5°0(S7°(S79))

= Z bijkk ® erseik @ esrep;
r,8,%,J,k€J

5o0(57°(579))

= Z bijik @ erp @ €

i,5,k€J 50(52(5%°))

= Z ek @ ( Z bijrr @ €z'j>

keJ i,5€1

57°(5>(5%%))

> bijkk ® ei
ijel

= max
keJ

5%(S7°)

N

||B||S°°(S;>°(s;>o)) (submatrices)

and

> b ®ea ®ej;

H(Idsoo ®W)(B>st(s;>o - ey

(57°))

5°0(57°(57°))

= (IS°°®U)< Z bijjl®€il®ejj>(IS°°®U)

ijl€] S0 (§9°(529))

= Z bijji @ ers€ijepy ® €sr€jjCut
7,8,0,7,0,t, u€J

5°(57°(57°))

=11 Y b @ej; @ e
igleJ

5%°(S7°(S77))
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Z €jj & ( Z bijjl & eil>

Jes et S5 (8% (55))
= thax > bijj @ eq
i,leJ Soo(s[oo)
< Z bijrl ® exj @ ey (submatrices)
i,5,k,l€J Soo(SIoo(S?o))

= (ISOO ® ( Z ers @ esr)) ( Z bijkl & €Lj & 6il>
r,s€J i,5,k,l€J

= Z bijri @ erserj @ esrej
r,8,i,7,k€EJ

5°0(S7°(S7°))

50 (57°(57°))

1B 500 (520 (52¢) -

l

Then we deduce the claim. Hence, by duality, the linear maps V*: S (S]) — ST (ST) and W*: SI(S])
ST(ST) are completely contractive. Moreover, we know that W = V*. By interpolation between p = 1
and p = oo, we obtain that the maps V: S¥(SV) — S7(S7) and W: S7(SV) — ST(S7) are completely

contractive. |

Now, we define the linear map
JANE M[ — M[x]

A — [atséur](t,r),(u,s)elxﬁ

Proposition 3.4 Let 1 < p < co. Suppose that My: S§ — SV is a completely bounded Schur multi-
plier on SV associated with a matriz A of Mj. Then the map V(Ma ® IdS?)W s a bounded Schur
multiplier on SY(SY). Its associated matriz is A(A).

Proof : Ifi,j,k,1 € I and My € M!

D chr We have
b

MA(A) (67Lj @ ekl) = ([ats(sur](t,r),(u,s)EIXI) * ([5it5ju5kréls](t,r),(u,s)é[x[)
= jk:ail([5it5ju5k:r5ls](t,r),(u,s)é]x])
= 0Kk D ekl
and
V(MA & Ids?)W(eij ® ekl) = jkV(MA ® IdS?)(eil ® ejj)

= djraiV (eq @ exk)

= 0jk0;1€ik & €kl
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Recall that, for all operator spaces E and F', the map RQT +— R®T is completely contractive from
CB(E)®CB(F) into CB(E ®min F) and from CB(E)®CB(F) into CB(E®F) (see [14, Proposition
5.11]).

Proposition 3.5 Suppose 1 < p < oo. Let I,J be any sets. The map

CB(S7) — CB(S1(S))
T —  T'®Idgr
J
is a complete contraction.
Proof : By definition, we have S3°(S7) = S @min 7 and S} (SY) = S1®SY completely isometrically.

Then we obtain two complete contractions

CB(S]) — CB(SF)®CB(S]) — CB(SF(S7))
T — Ids;o QT — Ids;o QT
and R
CB(S}) — CB(S)®CB(S]) — CB(S}(S7))
T — IdS}] QT — Id5«§ QRT.

By interpolation, we obtain a completely contractive map

CB(S)) — (CB(SF(SD), CB(S3(SD)

=

We conclude by composing with the complete contraction

(CB(SP(S),CB(S}(S]))), — CB(S5(S}))

p

and by using the Fubini’s theorem (see [99, Theorem 1.9]). ]

Remark 3.6 It is easy to see that this map is completely isometric.

The next theorem is the principal result of this paper.

Theorem 3.7 Suppose 1 < p < co. The space D‘i]icb equipped with the usual matricial product is
a completely contractive Banach algebra. More precisely, if A and B are matrices of %{wb and
i,j € I, the limit limy ) ,c;akby; exists. Moreover, the matriz A.B of My defined by [A.Bl;; =
limy } ;s aixbyj belongs to ,‘)‘iécb. Finally, the map
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is completely contractive.

Proof : We have already seen that it suffices to prove the theorem with 1 < p < co. If My € ﬁﬁéycb,

by Proposition 3.4, we have the following commutative diagram

M
SH(SP) ~2 SH(S?)
w \%
I

By Proposition 3.5, the map M4 — Ma ® I dsf is completely contractive from Smécb into SDTII);I{ .

Moreover it is easy to see that this map is w*-continuous. Since S¥(SV) is reflexive, by Lemma 2.1
and by composition, the map M — Mx(4) from Sﬁfwb into 9)?11)21{ is a complete contraction and is
w*-continuous. We denote by A, : SR;XCZ{
1,7 € I and for all matrices A, B of Mf}“

— 9{5 . its preadjoint. Now, by Lemma 2.5, we have for all

[A(A®B)], = (M., A(A® B))
= (Mage,) A® B)

= <M[6it6jsé-u7‘}(t,'r),(u,s)GIXI7 [atubT‘S](t7T‘),(u7s)ElX[>

= h}n Z airij
reJ

= [A.By;.

DJTIXI’%IXI
p,cb’” p,cb

Thus we conclude that, if A, B € M?n, we have A,(A® B) = AB. By Proposition 3.1 and by density
of ME» @ Mf" in 9‘{{7761)@9{{7@, we deduce that the map
A

fin fin IxI I
Mt oM™ — R — Ry

A® B — A®QB — AB

admits a unique bounded extension from iﬁfo’ cb@iﬁé o into ‘ﬁf), - Moreover, this map is completely con-
tractive. Finally, we complete the proof by a straightforward approximation argument using Lemma
2.5. [ |

Remark 3.8 We do not know if the space ERIID equipped with the usual matricial product is a Banach

algebra. The Banach space analogue of Proposition 3.5 is false. It is the reason which explains that
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the method does not work for 9‘{]{. Howewver, note that if 9)?11) = imfovcb isometrically we have ERII, = 9%11376,)
isometrically. For 1 < p < oo, p # 2 the equality imf) = im;’cb is a classical open question.

4 Schur product

In this section, we replace the matricial product by the Schur product. First, it is easy to show

the following proposition.

Proposition 4.1 Suppose 1 < p < oo. The Banach space 9‘{5 equipped with the Schur product is a

commutative Banach algebra.

Proof : It suffices to use the equality (2.2) and the fact that S} equipped with the Schur product is
a Banach algebra (see [13, page 225]). ]

Now we will show the completely bounded analogue of this proposition. We define the pointwise

product
P: E}@ﬁ} — 0

e Qe (52']'62‘.

This map is well-defined and is completely contractive (see [13, page 211]). Then, by tensoring, we

obtain a completely contractive map
P® P: ((j&07) @ (03&4]) — 01 ®p L. (4.1)
By [38, Theorem 6.1], the map

((PRUP) Qon, ((PRUP)  — (I Rop £P°) DU R £9°)
a®®bRc®d — a®RcRb®d

is completely contractive. Moreover, by [38, (5.23)], we have the following commutative diagram

&

(EF&EF) Qon (LS (€7 @on £7°) O (UF° Qon £7°)

Q>

(B S ((°BF) (6 S ) B(EF B 7).
By [38, Theorem 4.2], [38, Theorem 5.3] and by duality, we deduce that the map

(et ent) — ((G20) @, ((i®L])
a®RbR®c®Rd — aRcRbRd
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IV.4 Schur product

is well-defined and completely contractive. Composing this map and (4.1), we deduce a completely

contractive map
Gk @n ) (k@ t}) — 0} @p 17
aRbRc®d — Pla®c)® P(b®d).

With the identification %{,cb = E} ®hn E}, we obtain a completely contractive map

§}}‘{,cb&’Zg{{,cb - %{,cb
A®B — Ax B.

This means that %{ « equipped with the Schur product is a completely contractive Banach algebra.
Now, recall that we have 9“15 b= E}@E} completely isometrically. Then, by a similar argument, %é?cb
equipped with the Schur product is also a completely contractive Banach algebra. We will use a
strategy similar to that used in the proof of Theorem 3.7 for other values of p.

We start by defining the Schur multiplier Mpg: SY(S7) — SP(S?) associated with the matrix
E = [6r40sul(t,r),(u,s)erx1 Of M 1. It is not difficult to see that M is a completely positive contraction.
Note that, for all ¢, j, k,l € I, we have

MEg(ei; ® ex) = ([5rt5su](t,r),(u,s)efx1> * ([5it5ju5k:r5ls](t,r),(u,s)é[x])

= 0ik0;1[0:t0juOkrO1s) (t,0),(u,s) €I x I

= 0i0j1€ij @ €p.
Now, we define the linear map

n: My — Myrxr

A — [arsértasu](t,r),(u,s)EIXI'

Proposition 4.2 Let 1 < p < co. Suppose that My: ST — SV is a completely bounded Schur mul-
tiplier on 5’5’ associated with a matriz A. Then the map Mg(My ® Idsf;)ME is a bounded Schur
multiplier on SY(SY). Its associated matriz is n(A).

Proof : Ifi,j,k,l €I and My € ML

pcbr W€ have
b

Mn(A) (eij X ekl) = ([aTsért(ssu](t,r),(u,s)EIXI) * ([5it5ju5kr6ls](t,r),(u,s)EIXI)

= 030105 10it0julkrO1s) (1,0, (u,s) eI x I
= dipbjiai5€ij @ epy (4.2)

and

Mp(Ma ® Idge)Mp(ei; ® en) = ixdjuMp(Ma ® Idgr)(ei; @ ex)
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= 5ik(5jlaij6¢j X ekq-
|

Theorem 4.3 Suppose 1 < p < 0o. The space %iycb equipped with the Schur product is a commutative

completely contractive Banach algebra.

Proof : We have already seen that it suffices to prove the theorem with 1 < p < oco. If My € zm{wb,

by Proposition 4.2, we have the following commutative diagram

M.
SP(SP) e SP(SP)
ME ME
S1(SF) s S1(S)).
I

We have already seen that the map Mg — M4 ® [ dsf is completely contractive from 9t/ b cb 10O
o x1 ey and w*-continuous. Since Sp (S) is reflexive, by Lemma 2.1 and by composition, the map
My — My(a) from om! pcb iNtO o> cb is a complete contraction and is w*-continuous.

We denote by 7, : 9%] xI_, SRIIwb its preadjoint. Now, by Lemma 2.5, we have for all i,j € I and

p,cb
for all matrices A, B of Ml}n

(4® B)]; = (Me,;,m(A® B))

93’t;I),cb’gizI),cb
= <M A® B>
n(eiz)> IXT qaIxI
! smz?,ib’%p,xcb
= <M[67;T6j567‘t65u}(t,'r‘),(u,s)EIXI7 [atubrs](t,r),(u,s)elxl> IxXI gnIxI
MR
p,C D,C
= aijbij

Thus we conclude that if A, B € Mi" we have n.(A ® B) = A * B. By Proposition 3.1 and by density

of I\\/JIﬁn ® I\\/JIﬁn in RI cb®9‘i

p.chs WE deduce that the map

IxI e
Mf}n ® M?n - mpiéb - SR{),cb
A® B — A®B — AxB

admits a unique bounded extension from 9‘{{,7617@9‘{ o into R! Moreover, this map is completely

p,cb*
contractive. Finally, we complete the proof by a straightforward approximation argument with Lemma

2.5. [ ]
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IV.5 Isometric multipliers

Now, we will give a more simple proof of this theorem. It is easy to see that 1 induces a completely
isometric map 7: S — ST (S7). Moreover, by the computation (4.2), its range is clearly 1-completely
complemented by Mp: S7(SY) — S7(SF). We denote by n=t: n(S7(SY)) — S the inverse map of 7.

For all B € n(SY(SY)), we have n~1(B) = [D(rr),(s,5)) - Finally, for all 4,5, k,1 € I we have

nMan~Mg(eij @ exr) = SidunMan™ (ei; ® exr)
= 0l unMan ™ ([6it6ju5kr5ls](t,r),(u,s)G]XI)
= 5ik5jl77MA([5ir5js(5kr5ls]r,sel>
= 5¢k5jlaij77([5z‘r5js5kr5zs]r,sel>
= 0i0510j€ij @ ex
= M4 (eij @ exy)

where we have used the computation (4.2) in the last equality.

Hence we have the following commutative diagram

My (a)

S7(S7) Sy (S7)
Mg
n(S7(57)) "
-
s" - sP.

We conclude with an argument similar to that used in the proof of Theorem 4.3.

5 Isometric multipliers
The next result is the noncommutative version of a theorem of Parrott [85] and Strichartz [111]

which states that every isometric Fourier multiplier on LP(G) for 1 < p < 0o, p # 2, is a scalar multiple

of an operator induced by a translation.

Theorem 5.1 Suppose 1 < p < oo, p # 2. An isometric Schur multiplier on SY is defined by a matriz
[aibj] with a;, bj eT.
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Proof : Suppose that M is an isometric Schur multiplier on the Banach space S7 defined by a matrix
C. First, we observe that M¢ is onto. Indeed, for all ¢,j € I, we have Mc(e;;) = cije;j. Then ¢;; # 0
since Mc is one-to-one. Consequently e;; belongs to the range of M¢c. By density, we conclude that
M is onto.

Now we use the theorem of Arazy [5] which describes the onto isometries on S7. Then there exists
two unitaries U = [u;;] and V = [v;5] of B(¢%) satisfying for all A € S}

CxA=UAV or CxA=UATV.
Examine the first case, we have for all k,1 € I
UeV =Cxey.
Hence, for all ¢, j € I, we have the equality

[Uele]ij = [C * ekl]ij.

Since
UewnVl]ij = wipvij
we have
c ifi=kandj=I
UiV = . oo
0 ifi#korifj#l.
Then ugrvy = cx;- Each c¢g; is non null since the image of each ep; by the map M¢ cannot be null.

Then, for all £ and all [, we have ug, # 0 and vy # 0. And for ¢ # k, we have u;zvy = 0. Then if
i # k, we have u;, = 0. Now if j # [, we have ug,v;; = 0. Then if j # [, we have v;; = 0. Finally, for
all 4,7 € I, we define the complex numbers a; = u;; and b; = vj;. Since the diagonal matrices U and
V' are unitaries, we have a;,b; € T. Thus we have the required form.

Examine the second case. We have for all k,1 € I
UeV=Cxey.
We deduce that, for all 7, j, k,l € I, we have
UeVlij = [C * exlij.

Since

UenV]ij = vy

we obtain ugvi = cp and u;vg; = 0 if ¢ # k or if j # [. Each ¢ is non null since the image of each

er; by the map Mo cannot be null. Then for all k,] we have ug; # 0 and vg; # 0. Thus the second
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case is absurd (if card(I) > 1).

The converse is straightforward. [ |

Remark 5.2 It is easy to see that an isometric Schur multiplier on S? is defined by a matriz (5]
with a;; € T.

The next result is the noncommutative version of a theorem of Figa-Talamanca [41] which states
that the space of bounded Fourier multipliers is the closure in the weak operator topology of the span

of translation operators.

Theorem 5.3 Suppose 1 < p < o0.

1. The space Sﬁ{),cb of completely bounded Schur multipliers on SY is the closure of the span of

isometric Schur multipliers in the weak™ topology and in the weak operator topology.

2. The space Em}[, of bounded Schur multipliers on SY is the closure of the span of isometric Schur

multipliers in the weak™ topology and in the weak operator topology.

Proof : We will only prove the part 1. The proof of the part 2 is similar.

It is easy to see that an isometric Schur multiplier on S7 is completely isometric. This fact allows
us to consider the span of isometric Schur multipliers in 971{37 - Let C be a matrix of ?ﬁé, b Suppose
that C belongs to the orthogonal of the set of isometric Schur multipliers. Thus, we have for any

isometric multiplier M, ,) (with a;,b; € T)

0= <M[‘1ibj]’ C>m1 ml

p,cb’™ p,cb

= li‘I]n Z aibjcij.
1,j€J
Let 19, jo be elements of I. Now, we choose the a;’s, b;’s, a;’s and b;-’s such that a; = b; = 1 for all
i,j €1, aj = —1if i # g, aj = 1, b; = —1if j # jo and b} = 1. Then, we have

0 = lim Z aibjc,;j + lim Z aib;cij + lim Z a;bjcij + lim Z a;-b;-cij
d 1,J€J d 1,j€J 7 1,7€J d 1,J€J
= lim Z (@i + a;)(bj + b)ci

Hence c;y;, = 0. It follows that C'= 0. Then, we deduce that the space imll), o of completely bounded

Schur multipliers is the closure of the span of isometric Schur multipliers in the weak® topology.

Moreover, this topology is more finer that the weak operator topology. Thus, the proof is complete.
|
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Estimations de normes dans les espaces L” non
commutatifs et applications

Résumé

Cette thése présente quelques résultats d’analyse sur les espaces LP le plus souvent non
commutatifs. La premiére partie exhibe de large classes de contractions sur des espaces L?
non commutatifs qui vérifient 'analogue non commutatif de la conjecture de Matsaev. De
plus, cette partie fournit une comparaison entre certaines normes apparaissant naturellement
dans ce domaine. La deuxiéme partie traite des fonctions carrées. Le premier résultat prin-
cipal énonce que si T est un opérateur R-Ritt sur un espace LP alors les fonctions carrées
associées sont équivalentes. Le second résultat principal est une caractérisation de certaines
estimations carrées utilisant les dilatations. La troisiéme partie de cette thése introduit de
nouvelles fonctions carrées pour les opérateurs de Ritt définis sur des espaces LP non commu-
tatifs. Le résultat principal est qu’en général ces fonctions carrées ne sont pas équivalentes.
Cette partie contient aussi un résultat d’équivalence entre la norme usuelle et une certaine
fonction carrée. La quatriéme partie introduit un analogue non commutatif de 1’algébre de
Figa-Talamanca-Herz A,(G) sur le prédual naturel de espace d’opérateurs 9, o, des mul-
tiplicateurs de Schur complétement bornées sur ’espace de Schatten SP.

Mots-clefs

Espaces LP non commutatifs, espaces de Schatten, conjecture de Matsaev, multiplicateurs
de Schur, dilatations, fonctions carrées, opérateurs de Ritt, algébres de Figa-Talamanca-Herz,
espaces d’opérateurs.
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Estimates of norms in noncommutative LP-spaces and
applications

Abstract

This thesis presents some results of analysis in LP-spaces, especially often noncommu-
tative. The first part exhibits large classes of contractions on noncommutative LP-spaces
which satisfy the noncommutative analogue of Matsaev’s conjecture. Moreover, this part
gives a comparison between various norms arising naturally from this field. The second part
is devoted to square functions. The first main result states that if 7" is an R-Ritt opera-
tor on a LP-space then the involved square functions are equivalent. The second principal
result is a characterization of some square functions estimates in terms of dilations. In the
third part of this thesis, we introduce some new square functions for Ritt operators defined
on noncommutative LP-spaces. The main result is that these square functions are generally
not equivalent. This part also contains a result of equivalence between the usual norm and
some special square function. The fourth part introduces a noncommutative analogue of the
Figa-Talamanca-Herz algebra A,(G) on the natural predual of the operator space M, o of
completely bounded Schur multipliers on the Schatten space SP.
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