
HAL Id: tel-00647906
https://theses.hal.science/tel-00647906

Submitted on 3 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Méthodologie pour un processus d’analyse temporelle
dirigé par les modèles pour les systèmes automobiles

Saoussen Anssi Rekik

To cite this version:
Saoussen Anssi Rekik. Méthodologie pour un processus d’analyse temporelle dirigé par les modèles
pour les systèmes automobiles. Autre [cs.OH]. Université Paris Sud - Paris XI, 2011. Français. �NNT :
2011PA112239�. �tel-00647906�

https://theses.hal.science/tel-00647906
https://hal.archives-ouvertes.fr

Methodology for Model-based Timing

Analysis Process for Automotive

Systems

Méthodologie pour un Processus d’Analyse

Temporelle Dirigé par les Modèles pour les

Systèmes Automobiles

THESE

Présentée et soutenue publiquement le

09 Novembre 2011

Par

SAOUSSEN ANSSI

Pour obtenir le grade de

DOCTEUR EN INFORMATIQUE DE

l’Université Paris-Sud

Devant le jury composé de :

Prof. Guy Vidal-Naquet, Université Paris-Sud Président

Prof. Lionel Briand, Université d’Oslo Rapporteur

Prof. Jean-Philippe BABAU, Université de Brest Rapporteur

Prof. François TERRIER, CEA LIST Directeur de thèse

Dr. Ing. Sébastien GERARD, CEA LIST Encadrant de thèse

Ing. Stefan Kuntz, Continental Automotive Encadrant de thèse

2

Methodology for Model-based Timing Analysis Process

 To my father,

For all the love he gave to us…

3

Methodology for Model-based Timing Analysis Process

Acknowledgements
This work has been financially supported by the ANRT (Association Nationale de la

Recherche Technique) in France.

I am grateful to my thesis committee for devoting their time to read the manuscript and to

participate in my dissertation. I have particularly appreciated the thoroughness and

insightful comments from Lionel Briand and Jean-Philippe Babau on earlier drafts.

Special thanks go to my thesis supervisor Prof. François Terrier for giving me the

opportunity to develop this thesis at the CEA LIST labs.

I want to thank my advisor Sébastien Gérard for his crucial support in the development of

the ideas presented here.

I am grateful to my technical advisor in Continental Stefan Kuntz for his support during this

work and the very interesting technical discussions that we had together. I would like to

salute his technical brilliance and his strong cultural sensitivity. This work allowed me to

learn much from him.

I would like to thank Frédéric-le-Hung, our team manager in Continental, for his support

during these three years and his open-mindedness.

I had the pleasure to work with Denis Claraz and Philippe Cuenot in Continental; I would

like to thank them for their interesting feedbacks and recommendations for the deployment

of this thesis work in Continental.

Special thanks go to my earlier technical advisor in CEA, Huascar Espinoza, for his help and

recommendations during the state-of-the-art studies.

During these three years I had the pleasure to participate to two research projects, EDONA

and Memvatex. I would like to thank all the members of these projects. In particular, I

would like to warmly thank Sara Tucci from CEA for her interesting ideas for the scientific

publications that we wrote together.

I am thankful to all the people of the LIST lab in CEA and the ADE team in Continental. I

always found high availability of technical support, a very comfortable discussion

environment, a lot of resources to develop the work efficiently, wide openness for work

diffusion, and team participation.

4

Methodology for Model-based Timing Analysis Process

I am immeasurably thankful to my parents, Sayeh and Khadija, my brothers Imed and Ridha,

my sisters Naziha, Salwa, Henda, and my cousins Sonia and Randa in Tunisia for all their

love, sacrifices and endless encouragement. They always stand by me and never let me down

in spite of physical distance. I owe all my success to their love, care and sacrifices. They

taught me the real sense of sacrifice and altruism.

Finally, there are no words to express my gratitude to my dearly beloved husband Ahmed-

Amine for his sacrifices and everlasting encouragement. He gives me energy, peace of mind

and happiness. This thesis is dedicated to him for everything he means to me…

5

Methodology for Model-based Timing Analysis Process

RESUME

Ce travail de thèse a été effectué dans le cadre d’une collaboration technique entre le CEA-

LIST à Paris et le service « développement avancé électronique » de Continental

Automotive à Toulouse.

1. Objectifs de la thèse

Dans ce travail de thèse on se propose de définir une méthodologie décrivant un processus

d’analyse temporelle dirigée par les modèles pour les systèmes automobiles. Cette

méthodologie vise à donner un guide aux ingénieurs de développement logiciel automobile

pour l’intégration de la vérification temporelle dans un processus de développement dirigé

par les modèles. Ceci permettrait alors la détection au plus tôt des erreurs de conception

liées au comportement temps réel des systèmes.

En plus de la définition de la méthodologie elle-même, sa validation doit être aussi étudiée en

montrant à quelle mesure elle contribue à résoudre les problèmes rencontrés actuellement

dans le domaine du développement logiciel automobile. L’acceptabilité de la méthodologie

est également à étudier pour évaluer son potentiel d’adoption pour le développement des

systèmes de contrôle moteur (Engine management System EMS) à Continental.

2. Contexte de la thèse

2.1. Contexte Industriel

Aujourd’hui, l’architecture des systèmes automobile est devenue de plus en plus complexe

avec une utilisation massive du logiciel embarqué pour assurer les diverses fonctionnalités

d’une voiture.

Pour répondre correctement aux besoins de ces clients ainsi qu’aux contraintes de

concurrences, un équipementier (tel est le cas de Continental Automotive) doit considérer

deux facteurs essentiels: la maitrise du temps et du coût du développement logiciel ainsi que

la garantie de la fiabilité du système conçu. Vue la complexité croissante du logiciel

embarqué automobile, la garantie de sa fiabilité dépend énormément de la capacité de

maîtriser cette complexité lors du développement. En plus de la maîtrise de la complexité, la

fiabilité des systèmes automobiles doit être également assurée à travers les techniques de

vérification et de validations. La vérification et la validation des contraintes de temps est

d’une importance énorme pour garantir cette fiabilité. Aujourd’hui la vérification temporelle

des systèmes automobiles est effectuée très tard au cours du développement (après la phase

6

Methodology for Model-based Timing Analysis Process

d’intégration). Elle se base essentiellement sur des tests et des mesures plutôt que sur une

approche formelle et systématique. Ainsi, Pour développer un logiciel fiable tout en

respectant les contraintes de concurrences, il y a un besoin fort pour des approches de

développement qui permettent de : 1) Maîtriser la complexité du logiciel lors du

développement.2) Réduire le temps et le coût de développement. 3) Définir une

activité de développement ainsi qu’une chaine d’outils homogène et continue.4)

Permettre l’intégration de la vérification temporelle au cours du processus de

développement.

2.2. Approches existantes

Pour apporter des solutions aux besoins du développement du logiciel automobiles, plusieurs

approches, méthodes et techniques ont été définit aux cours de la dernière décennie. Ces

approches visent soit à donner des méthodes de développement permettant l’amélioration

des processus de développement des systèmes automobiles (tel est le cas des approches

définit dans le cadre de l’ingénierie dirigée par les modèles), soit à permettre de vérifier le

comportement temps réel des systèmes (comme les technique d’analyse d’ordonnancement et

de performance).

Dans le domaine automobiles, les approches et langages de modélisations qui ont été

définit sont:

• EAST-ADL : Ce langage permet la modélisation de l’architecture

électrique/électronique des systèmes automobiles suivant plusieurs niveaux

d’abstraction. Il donne plusieurs concepts permettant la modélisation de la structure

fonctionnelle (sur les niveaux Analyse et Design) et matérielle (à partir du niveau

design) des systèmes automobiles. La Figure 1 montre les niveaux d’abstraction

d’EAST-ADL (le niveau implémentation s’appuie sur les concepts d’AUTOSAR)

Figure 1 Niveaux d’abstraction d’EAST-ADL

7

Methodology for Model-based Timing Analysis Process

• TADL : Ce langage permet la modélisation des propriétés et des contraintes

temporelles des éléments structurels décrits dans une architecture EAST-ADL ou

AUTOSAR.

• AUTOSAR : Il donne une approche pour décrire une architecture logicielle standard

pour l’automobile. Il offre un modèle d’architecture logicielle organisé suivant trois

niveaux : le logiciel applicatif, le RTE (RunTime Environment) et les couches

logicielle de bas nivaux (basic software). Le RTE fait le lien entre le logiciel applicatif

et les couches logicielle basses. Le logiciel est organisé sous forme de composants

logiciels (software components). Pour chaque composant, il est possible de décrire les

unités exécutables qu’il contient (runnable entities) ainsi que ses interfaces de

communication (port)

• MARTE : Ce langage permet de modéliser l’architecture des systèmes temps réel. Il

offre un set de concepts de modélisation pour permettre d’effectuer de l’analyse

d’ordonnancement basée sur les modèles.

Parmi les techniques de vérification temporelle on cite essentiellement l’analyse

d’ordonnancement. Dans le contexte de cette technique, plusieurs tests d’ordonnançabilité

ainsi que des outils d’analyse d’ordonnancement ont été développés. Parmi ces outils il ya

des outils académique tel que Cheddar et MAST et d’autres commerciaux tel que SymTA/S

et Chronval. L’évaluation de ces outils d’analyse montre que SymTA/S est le plus adapté

pour faire de l’analyse d’ordonnancement pour les applications automobiles.

L’évaluation des ces approches de développement et de vérification temporelle (effectué aux

cours de ces travaux de thèse) a montré qu’il y a un manque pour un guide

méthodologique pour l’intégration de la vérification temporelle notamment l’analyse

d’ordonnancement au cours du cycle de développement dirigé par les modèles. Ce

travail de thèse propose une approche qui permettrait de résoudre ce problème.

3. Méthodologie

3.1. Objectifs de la méthodologie :

• Définition d’un processus de développement dirigé par les modèles qui assure une

activité de développement continue et homogène tout au long du processus. Ce

processus doit être facilement utilisable par un ingénieur Continental pour le

développement des systèmes de control moteur (Engine Management Systems

8

Methodology for Model-based Timing Analysis Process

EMS). La méthodologie définit doit décrire les différentes phases du processus ainsi

que l’approche suivit pour le développement et l’affinement des modèles d’une phase à

autre.

• Donner un guide pour l’intégration de la vérification temporelle dans ce processus de

développement. Ceci requiert la définition du type de vérification temporelle à

effectuer durant chaque phase, les techniques et les outils de vérification temporelle à

utiliser ainsi que la description de la manière d’utiliser les résultats d’analyse de

chaque phase pour affiner les modèles de la phase suivante.

• Décrire la manière de développer des modèles analysables. Plus particulièrement

comment extraire à chaque phase les modèles comportementaux nécessaires pour

l’analyse temporelles des modèles architecturaux utilisés pour la description de

l’architecture.

Figure 2 donne une vue générale du processus d’analyse temporelle dirigé par les

modèles que la méthodologie vise à définir ; aux cours de chaque phase, le concepteur a

en entrée un nombre d’exigences temporelle, il conçoit donc l’architecture qui doit

respecter ces exigence et puis il effectue une analyse temporelle pour vérifier que

l’architecture conçu respecte bien ces exigences.

Figure 2: Processus d’analyse temporelle dirigé par les modèles

3.2. Description de la méthodologie :

Notre méthodologie propose de réutiliser les niveaux d’abstraction du processus de

modélisation d’EAST-ADL/AUTOSAR (figure 2) pour définir notre processus d’analyse

temporelle dirigé par les modèles. Cependant, le processus EAST-ADL/AUTOSAR

présente seulement les niveaux d’abstraction et les concepts à utiliser à chaque niveau. Il ne

9

Methodology for Model-based Timing Analysis Process

donne aucune approche décrivant la manière d’affiner les modèles d’un niveau à autre. En

plus, il ne propose aucune chaine outil pour supporter le processus de développement. Notre

méthodologie doit donc adapter et améliorer ce processus pour apporter des solutions pour

ces problèmes.

On propose de commencer l’analyse temporelle à partir du niveau Analyse car le niveau

Véhicule ne donne pas assez de moyen permettant d’effectuer une analyse temporelle. Notre

processus se compose donc de trois phases : Analyse, Design et Implémentation. Sur chaque

phase, on décrit les activités de modélisation ainsi que d’analyse temporelles qui doivent se

faire.

Le figure 3 donne une vue générale du processus définit. Les paragraphes suivants

expliquent les activités effectués durant chaque phase.

Figure 3 Les phases de la méthodologie proposée

Phase Analyse

Au cours de cette phase, une vue décrivant l’architecture fonctionnelle du système (« sub-

system analysis funtional view ») est développée en utilisant les concepts d’EAST-ADL pour

la modélisation fonctionnelle et les « composite structure diagram » d’UML2. Cette vue

décrit le système dans son environnement véhicule. Une deuxième vue (« sub-system

analysis timing view ») décrivant le comportement temporel du système est développé à

partir de la première vue fonctionnelle en utilisant les concepts de TADL et les diagrammes

de séquence pour représenter les informations temporelles du système (notamment les

contraintes temporelles). L’analyse temporelle effectuée durant cette phase se base sur cette

10

Methodology for Model-based Timing Analysis Process

dernière vue comportementale. L’analyse temporelle de cette phase vise à vérifier la bonne

intégration du système dans le véhicule en termes de compatibilité temporelle. Le

concepteur a en entrée une liste d’exigences de bout-en-bout (end-to-end requirements). Ces

exigences impliquent le système en cours de développement et les autres fonctions du

véhicule qui communiquent avec lui. Pour chaque exigence de bout-en-bout, le concepteur

doit déterminer un budget temps (« time budget ») qu’il faut allouer au system en cours de

développement pour respecter cette exigence. Chaque budget déterminé durant la phase

analyse représente une contrainte à respecter durant la phase design. La figure 4 montre les

activités de modélisation et d’analyse effectuées durant cette phase.

Figure 4 Activités de modélisation et d’analyse temporelle de la phase Analyse

Phase Design

Durant cette phase, la décomposition fonctionnelle du système est représentée à travers une

vue qui décrit les blocks fonctionnels qui le composent (« sub-system design functional

view »). Les ressources matérielles sont aussi décrites durant cette phase (« hardware

platform view »). Le concepteur effectue donc deux types d’analyse temporelle : la première

consiste à affiner les budgets temps alloués au system durant la phase précédente (Analyse)

en déterminant les budgets temps qu’il faut allouer à chaque block fonctionnel qui le

compose. La deuxième analyse temporelle consiste à explorer l’architecture matérielle pour

déterminer la meilleure plateforme matérielle à utiliser (en termes de performance) ainsi que

le meilleur scénario d’allocation des blocks fonctionnels aux ressources matérielles. Ceci est

fait par le biais d’une exploration empirique d’un nombre de scénarios d’allocation candidats

qui se base sur le calcul de l’utilisation des processeurs pour chaque scénario.

11

Methodology for Model-based Timing Analysis Process

Remarque : Dans cette dernière analyse temporelle (exploration de l’architecture matérielle),

on ne considère pas de modèle de ressources logicielle tel que les tâches OS ni l’allocation

des blocks fonctionnels à ces ressources. On considère seulement le modèle fonctionnel, le

modèle de ressources matérielles et l’allocation directe des blocks fonctionnels aux

ressources matérielles.

La figure 5 montre les activités de modélisation et d’analyse effectuées durant cette phase.

Figure 5 Activités de modélisation et d’analyse temporelle de la phase Design

Phase Implementation

Durant cette phase, un modèle complet décrivant les différents aspects nécessaires pour

effectuer une analyse d’ordonnancement (architecture logiciel, ressources logicielle et

matérielles, allocation, etc.) est développé en utilisant les concepts d’AUTOSAR. Ce modèle

est l’affinement du modèle fonctionnel et matériel développé au cours de la phase design en

se basant sur les résultats d’analyse temporelle effectué durant cette phase (design). La figure

6 montre les activités de modélisation et d’analyse effectuées durant cette phase.

12

Methodology for Model-based Timing Analysis Process

Figure 6 Activités de modélisation et d’analyse temporelle de la phase Implémentation

4. Déploiement et Validation de la méthodologie

4.1. Déploiement de la méthodologie

Dans cette partie, on propose une approche de déploiement de la méthodologie en décrivant

la manière de l’appliquer dans le contexte de développement des fonctions de contrôle

moteur à Continental (EMS). Figure 7 décrit le processus de développement actuel des EMS

chez Continental.

Figure 7 Processus actuel de développement des EMS

13

Methodology for Model-based Timing Analysis Process

La figure 8 montre ce même processus dans le cas de l’application de notre méthodologie

Figure 8 Application de la méthodologie pour le développement des EMS

4.2. Acceptabilité de la méthodologie

En se basant sur l’approche de déploiement décrite précédemment, on a étudié l’acceptabilité

de notre méthodologie en termes de compétences demandés, les tâches à effectuer aux cours

de chaque phase ainsi que la chaine d’outil proposée. Tous ces éléments ont été comparé avec

les compétences, tâches et chaine d’outil utilisé actuellement chez Continental. Cette étude

montre un bon potentiel d’adoption de notre méthodologie chez Continental. Ceci est

particulièrement valide pour la phase Implémentation de la méthodologie surtout que

Continental est en train de migrer vers une nouvelle plateforme basé sur les concepts

d’AUTOSAR.

4.3. Validation générale de la méthodologie

La contribution de la méthodologie à satisfaire les besoins du développement logiciel

automobile (présentés dans la section 1) a été aussi étudiée. La valeur ajoutée de notre

méthodologie consiste à donner la possibilité de commencer l’analyse temporelle tôt au cours

de processus de développement (beaucoup plus tôt que l’analyse temporelle effectuée

actuellement chez Continental). Ceci permet de réduire le temps et le coût nécessaires pour

l’amélioration de l’architecture en cas de détection tardive d’erreur. En outre, notre

14

Methodology for Model-based Timing Analysis Process

méthodologie permet une bonne maitrise de la complexité de l’architecture conçue tout au

long du processus de développement.

15

Methodology for Model-based Timing Analysis Process

Contents
INTRODUCTION .. 18

1. THESIS TECHNICAL CONTEXT... 19

2. THESIS OBJECTIVES .. 20

3. THESIS OUTLINE .. 21

PART I: INDUSTRIAL CONTEXT AND RELATED WORK .. 23

1. AUTOMOTIVE STATE OF PRACTICE AND CHALLENGES .. 24

2. RELATED WORK: MODEL-BASED APPROACHES & TIMING VERIFICATION 27

2.1. MODEL-BASED APPROACHES .. 27

2.2. TIMING VERIFICATION: SCHEDULING ANALYSIS ... 39

2.3. CONCLUSION ... 48

3. WORK ORIENTATION AND APPROACH FEASIBILITY ... 48

3.1. APPROACH PRINCIPLE AND FEASIBILITY ISSUES .. 48

3.2. MODELING LANGUAGES EXPRESSIVITY EVALUATION .. 49

3.3. SCHEDULING ANALYSIS TOOLS EVALUATION ... 55

3.4. CONCLUSION AND APPROACH DIRECTIONS .. 66

PART II: METHODOLOGY FOR MODEL-BASED TIMING ANALYSIS PROCESS

 .. 70

1. METHODOLOGY OVERVIEW & PROCESS PHASES ... 71

2. ANALYSIS PHASE .. 73

2.1. ANALYSIS OBJECTIVES AND REQUIRED ANALYZABLE MODEL ... 73

2.2. SOLUTIONS FOR ANALYZABLE MODEL AND TIMING ANALYSIS... 76

3. DESIGN PHASE ... 81

3.1. REFINEMENT OF SUB-SYSTEM TIME BUDGETS ... 81

3.2. PERFORMANCE OF HARDWARE ARCHITECTURE EXPLORATION .. 84

4. IMPLEMENTATION PHASE .. 96

4.1. DETERMINATION OF RUNNABLE ENTITY TIMING INFORMATION .. 96

4.2. DEVELOPMENT OF THE ANALYZABLE MODEL .. 97

16

Methodology for Model-based Timing Analysis Process

4.3. PERFORMANCE OF SCHEDULING ANALYSIS ... 101

PART III: METHODOLOGY DEPLOYMENT AND VALIDATION 103

1. METHODOLOGY APPLICATION TO EMS DEVELOPMENT .. 104

1.1. INTRODUCTION .. 104

1.2. ENGINE MANAGEMENT SYSTEM DEVELOPMENT AT CONTINENTAL .. 104

1.3. MIGRATION TO THE NEW METHODOLOGY PROCESS ... 108

2. EXAMPLES .. 117

2.1. DEVELOPMENT FROM SCRATCH: CRUISE CONTROL ... 117

2.2. DEVELOPMENT BY REUSE: KNOCK .. 136

3. ABOUT THE METHODOLOGY ACCEPTABILITY .. 153

3.1. TASKS, ROLES, SKILLS .. 153

3.2. TOOL SUPPORT .. 159

3.3. METHODOLOGY TOOLING .. 164

3.3.2. CHEAT SHEET GUIDES .. 165

3.3.3. MODEL VALIDATION RULES. ... 166

4. METHODOLOGY GENERAL VALIDATION .. 168

4.1. SYSTEM COMPLEXITY MASTERING ... 168

4.2. DEVELOPMENT TIME AND COST REDUCTION .. 168

4.3. SEAMLESS DEVELOPMENT PROCESS .. 170

4.4. ENABLING TIMING VERIFICATION ... 170

CONCLUSION AND PERSPECTIVES ... 173

ANNEX1: DEFINITION OF AN AUTOSAR OS TASK MODEL 177

REFERENCES .. 185

17

Methodology for Model-based Timing Analysis Process

18

Methodology for Model-based Timing Analysis Process

Introduction
This chapter introduces the thesis work that has been performed in the context of a

technical collaboration between the CEA LIST near Paris and the Advanced Development

Electronics (ADE) service of Continental Automotive in Toulouse.

CEA LIST is a key software system and technology research center whose mission consists

among others in providing methodologies and tools for real time embedded system

development (systems architecture and design, methods and facilities for software and

system dependability, etc). This laboratory works on several research projects in partnership

with industrial partners from nuclear, automotive, aeronautical, defense and medical

domains. Thus, the laboratory investigates and develops innovative solutions corresponding

to the requirements of these industrial partners.

The ADE service is a part of the Engine System (ES) business unit within the Powertrain

division at Continental. This service provides innovative techniques and methodologies for

the development of automotive electronic systems. These innovative approaches aim at

providing solutions for the challenges met to develop Engine Management Systems (EMS)

within the ES business unit. An Engine Management System (EMS) is a system used to

control the engine functionalities (e.g., Combustion, injection, ignition, etc). At Continental,

Engine Management Systems are developed to control many types of gasoline and diesel

engines for many customers all over the world. To develop these systems, many

requirements should be satisfied, including customer requirements but also environmental

norms (gas emission). In addition, due to the competition factor, development time and cost

for engine management systems should be mastered. The ADE service investigates

innovative approaches to meet all these challenges in future engine management system

generations.

This introduction is divided in three sections. The first section presents a brief overview of

the general technical context in which this work has been done. The second section presents

the thesis objectives and the third section describes the outline of the manuscript.

19

Methodology for Model-based Timing Analysis Process

1. Thesis Technical Context
Automotive real time systems are characterized by increasing complexity and tight

requirements for safety and timing. Today, highly competitive automotive industries

developing real-time systems must face industry requirements both quickly and dependably.

“Quickly” refers to the “time-to-market” issue, where delays in design or implementation

incur penalties and reduce market profit. “Dependably” refers to the trustworthiness of the

services provided by developed systems. One of the key dependability factors in real time

systems is system failure. Unlike fabrication faults and faults during usage, design faults are

supposed to be found and eliminated by system verification. Hence, whenever fault tolerance

cannot be guaranteed, fault prevention is the only way to avoid system failure [13].

 Quantitative analysis [1] (such as performance and scheduling analysis) is a sound

approach to study non-functional properties at an early stage. It allows designers to detect

unfeasible real-time architectures, prevent costly design mistakes, and provide an analytical

basis to assess design tradeoffs associated to resource optimization. Quantitative analysis

uses mathematical-based techniques which purpose is to prove that a system meets its

requirements at any time. While the maturity of quantitative techniques has led to a set of

well established mathematical formalisms such as rate monotonic analysis (RMA) [2], Petri

nets [3], queuing theory [4] and timed automata [5], their widespread use with complex

industrial systems and into integrated tool environments still remains largely open.

Quantitative analysis is a difficult and time-consuming task, and to save time, many

industries either forgo it until absolutely necessary or train their designers to perform

preliminary analysis. However, most designers are under-trained in analysis and too busy to

perform useful analysis.

Model-Based Engineering (MBE) is gaining momentum in automotive system and software

development domains, as a means for mastering system complexity and assessing system-

level tradeoffs geared to achieving higher quality and dependability [6]. MBE and modeling

languages lead a major approach to enrich real-time systems engineering practices, by

moving the development process from lines-of-code to coarser-grained architectural

elements. One of the advantages expected from this approach is the ability to employ

correct-by-construction, but also incremental design processes (which rely extensively on

automated transformations and synthesis) and to formalize computer-based correctness

analysis.

20

Methodology for Model-based Timing Analysis Process

The model-based development community has invested special efforts in incorporating the

abilities to specify analytical constructs and non-functional properties with enough

expressive power, while still preserving the modeling abstraction level used by MBE

practitioners. Important research work has been carried out in order to provide modeling

languages (e.g., UML [7], SDL [8], AADL [9], MARTE [10], and TADL [11]) with

clear and well-formed semantics to support quantitative analysis.

However, most of the current works are characterized by providing only means and

concepts for the modeling of non-functional and especially timing information of the

system. Unfortunately, none of these approaches provide sufficient guidance on how

to integrate timing verification and validation into the model-based development

process.

2. Thesis Objectives

The underlying work investigates the definition of a methodology describing a model-based

timing verification process for automotive systems. It aims at giving guidance to software

development engineers about how to integrate timing verification within a model-based

development process enabling hence early detection of time-related errors.

In particular, this thesis work focus on the following specific objectives:

1. One fundamental objective that drove our research work is the definition of a model-

based development process ensuring a seamless development activity that can be

easily adopted in the context of engine management system development. The

methodology defined should describe the different phases of the model-based process

and how models should be refined from one phase to another.

2. The second objective is to give guidance on how to integrate timing verification in

each phase of this development process. This means defining the kind of timing

verification that should be performed during each phase, the verification techniques

and tools that can be used and how analysis results of each phase can be used to

refine the architecture during the next phase.

3. From a modeling and analysis point of view, the methodology defined should give a

way on how to develop analyzable models in each phase and especially how to derive

behavioral views needed for timing analysis from modeling views intended e.g. for

structure description.

21

Methodology for Model-based Timing Analysis Process

4. Besides the definition of the methodology itself, in this work we aim to validate the

methodology suggested by evaluating its degree of acceptability and showing to

which extent it allows resolving the problems faced currently in the context of

automotive software development.

3. Thesis Outline
This manuscript is composed of three major parts. The first part contains three chapters.

The first chapter describes precisely the particular context of this study related to the

development of automotive software in the particular case of Continental as a supplier. This

chapter ends by listing the needs of automotive domain in term of software development.

The second chapter gives an investigation and a state-of the art of the available model-based

approaches that attempted to bring answers and solutions to some of these needs. The third

chapter draws the general features of our approach to define a methodology for a model-

based timing analysis process. This is done after studying the feasibility of the approach

based on the chosen directions that will be presented in the same chapter.

The second part of the manuscript presents the methodology itself. This part is composed of

four chapters. The first chapter gives a general overview of the defined process. The

remaining three chapters tackle respectively the different process phases, the analysis phase,

the design phase and the implementation phase. Each chapter describes both the modeling

and timing analysis activities carried out during each phase.

The third part is dedicated to the deployment and validation of the proposed methodology.

This part is composed of four chapters. The first chapter presents an approach describing

how we intend to apply our methodology for the development of Engine Management

Systems (EMS) at Continental. The second chapter illustrates the approach by presenting

the application of the methodology to the development of two use cases. The third chapter

studies the acceptability of the methodology by showing the extent to which this

methodology can be adopted by Continental engineers. In this chapter we identify the gap

between the proposed methodology and the current development process at Continental in

terms of required vs. available skills, tasks, tool chain, etc.

The methodology tooling is also studied by presenting the tools that were implemented to

guide Continental engineers and ease their use of the methodology.

22

Methodology for Model-based Timing Analysis Process

The last chapter of this part presents the final validation of the methodology by showing to

which extent it provides solutions for the automotive software development needs

determined during the first part of this work.

The conclusion summarizes the study and discusses the possible perspectives for this work.

23

Methodology for Model-based Timing Analysis Process

Part I: Industrial Context and

Related Work
This first part aims at describing in detail the industrial context in which this thesis work

was done. The technical directions chosen for this work to meet the automotive domain

needs are presented and justified based on this context itself but also based on some already

available approaches. The first chapter presents the automotive context and highlights the

automotive needs in term of software development and timing verification. The second

chapter presents the available approaches that attempted to bring solutions for these needs.

We highlight the limitations of these approaches and we conclude on the need for a new

approach to satisfy better the automotive needs. The third chapter gives a general overview

of the directions chosen for our work based on the available approaches and a feasibility

study for our approach.

24

Methodology for Model-based Timing Analysis Process

1. Automotive State of Practice and Challenges
In the automotive domain, the first time that software was deployed into cars was to control

the engine and, in particular, the ignition, 30 years ago [6]. At the beginning of software

deployment in cars, software-based solutions were very local, isolated and unrelated. Hence,

there were dedicated controllers (Electronic Control Units or ECUs) for the different

functions as well as dedicated sensors and actuators. With the intention to optimize wiring,

bus systems were deployed into cars allowing ECUs to be connected to each other and

exchange information.

Today, premium cars feature not less than 70 ECUs connected by more than five different

bus systems [6]. Within only 30 years, the amount of software in cars went from zero to

more than 10.000.000 lines of code. More than 2000 individual functions are realized or

controlled by software in premium cars. Software as well as hardware became enabling

technologies in cars. They enable new features and functionalities. Hardware is becoming

more and more a commodity while software determines the functionality and therefore

becomes the dominant factor for system complexity.

To understand better the automotive needs in term of software development, it is important

to clarify the state of practice in this domain. The development of a car involves mainly two

partners, the manufacturer (OEM) and the first-tier suppliers. The aim of the manufacturer

is to market cars that satisfy the needs and the desires of the customers, on one hand by

respecting the manufacturing standards and norms and on the other hand by ensuring the

prosperity of his group [12]. For these reasons, manufacturers have usually a strong and

global trade expertise. A car can be seen as an assembly of many systems integrated

together to ensure the various functionalities of the vehicle. The OEM intervenes during

two particular phases, the specification of systems and their integration into the vehicle. The

development of these systems is then carried out by the different suppliers that are involved;

such as the case of Continental Automotive. Once the request is specified by the

manufacturer, the supplier should develop the system that respects the requirements

specified. In this context of multi-partner development, the systems developed by a supplier

are more and more sophisticated and require usually highly specialized technical skills. Due

to concurrency pressure, manufacturers choose then to delegate the development of such

systems to several suppliers and focus only on vehicle integration and validation. In the case

of Continental Automotive, a system requested by a manufacturer may vary from a simple

25

Methodology for Model-based Timing Analysis Process

software component to a whole system consisting of software, hardware (ECU) and

mechanics (actuators, etc).

Being able to satisfy efficiently customer request is the key factor for a supplier to save his

place in market. Efficiently means quickly, dependably and in a cost-efficient way. Quickly

refers to the time-to-delivery where the supplier is continuously submitted to the customer

pressure to deliver systems as early as possible. Development cost is also among the decisive

factors that guarantee the competitiveness of a supplier. Up to 40% of the production costs

of a car are due to electronics and software. Today, the costs of cars get more and more

influenced by development costs of software; 50-70% of the development costs of the

software/hardware systems are software costs [6].

Dependability means the trustworthiness of the service delivered by the developed system.

To develop dependable systems, suppliers should take up many challenges. In fact, the size

and structure of the embedded software and hardware in cars are enormous. Most of the

software is hard real time critical or at least soft real time critical. Several functions are

safety critical ones. In addition, car functions are quite heterogeneous (from embedded real

time control to infotainment, from comfort functions to driver assistance, etc). As a result,

the complexity and spectrum of requirements for on board software is enormous. In front of

this complexity and time/cost pressure, suppliers have usually recourse to reuse existing

solutions from one car to the next. However this remains insufficient with regard to

development time and cost1. In addition, the amount of automation in software production is

today quite low. Tools are many times used in an isolated manner. There is neither a

properly formalized design flow nor seamless tool chain for distributed functions.

It is hence obvious that there is a need for a suitable development process that

reduces complexity, enables innovation and saves time and costs.

Guaranteeing dependability is not ensured only by mastering system complexity. In fact

verification and validation is also of paramount importance in software development. This

allows verifying the proper functioning of the system and validating it against the

requirements specified by the customer. As mentioned previously, developing time critical

systems is among the challenges that suppliers should take up. Mastering the development

1
 This statement is based on the study of the state of practice of software development at Continental

26

Methodology for Model-based Timing Analysis Process

of such systems requires being able to understand, analyze and validate their real time

behavior. Automotive software development costs are significantly impacted by wrong

design choices made in the early stages of development, but often detected after

implementation. Most timing-related failures are detected very late in the development

process, during implementation or system integration phases. Timing verification is usually

addressed by means of measuring and testing rather than through formal and systematic

analysis. For this reason, innovative and complex functionalities are not implemented in a

cost-efficient way.

The need for defining an approach that permits timing verification throughout the

development process, starting from the early phases of design, is thus obvious

 Such an approach would enable early prediction of system timing behavior and allow

potential weak points in design to be corrected as early as possible.

To conclude, in automotive software development, there is an obvious need today for

development approaches that allow:

� Mastering system complexity

� Reducing software development time and cost

� Defining seamless development activity supported by a seamless tool chain

� Ensuring system dependability, especially timing correctness through verification

and validation.

During the last decade, many approaches, methods and techniques have been developed to

bring solutions for the abovementioned automotive needs. For example, model based

engineering is gaining momentum in the automotive domain, as a means intended for

mastering system complexity and assessing system-level tradeoffs geared to achieve higher

quality and dependability.

Continental supports the development and the use of several model-based

development approaches such as AUTOSAR [18], EAST-ADL [46] and TADL [48].

The directions of our work are chosen with respect to this context.

27

Methodology for Model-based Timing Analysis Process

In the domain of timing verifications, we can talk especially about quantitative techniques

(scheduling and performance analysis) where a variety of schedulability tests and tools have

been developed as a means to predict early real time system behavior.

In this thesis work, we focus on a key problem of automotive industry which is software

timing verification. After studying available approaches that attempted to bring answers to

automotive needs in the next sections, we present, in the second part of this manuscript, a

methodology enabling the integration of timing verification in a model-based development

process.

2. Related Work: Model-based Approaches & Timing

Verification

2.1. Model-based Approaches

2.1.1. Basics of Modeling Languages

As engineers work with many different kinds of models, it is important to understand which

models are dealt with in this thesis. Therefore, few definitions are given to provide a basis to

understand the rest of the thesis.[13]

Models and Metamodels

Models, as conceived in engineering, are representations of reality. The aim of the

engineering modeling process is to make our world measurable, calculable, predictable, and

thus more manageable. Computer models are computerized abstractions, data structures, or

simulations of, not only real systems or phenomena, but also of fictional objects, set-

theoretic structures and mathematical representations.

To know the nature of different models used in computer systems, we may identify two

relationships. The first relationship, called “represented by”, identifies a representation role

of a given modeled object over a model. For instance, a computer program can be

“represented by” a set of data flow diagrams. A given model could also represent another

model. For example, a mathematical function can be represented by a numerical

approximation. The second relationship, called “conforms to”, identifies a dependency of a

given model on a modeling language. Thus, we could say that a given data flow diagram

representing a piece of programming code conforms to the rules and modeling elements

defined, for example, for Gane-Sarson diagrams.[13]

28

Methodology for Model-based Timing Analysis Process

In MBE, the latter relationships receive special attention since domain specific modeling

languages are described and prescribed by models. These models are called metamodels. A

metamodel is yet another abstraction highlighting properties of the model itself. This model

is said to conform to its metamodel like a program conforms to the grammar of the

programming language in which it is written. This means that a metamodel describes the

various kinds of contained model elements and the way they are arranged, related and

constrained.

UML Profile Basics

In this thesis work, some notions related to the definition and use of UML profiles are used.

We describe here some basic notions related to this issue.

Profiles [14] are the built-in lightweight mechanism that serves to extend Meta Object

Facility (MOF)-based languages. More specifically, profiles are used to customize UML for

a specific domain or purpose via extension mechanisms that enrich the semantics and syntax

of the language. A stereotype is the basic feature for UML extension. It can be viewed as the

specialization of an existing UML concept, which provides capability for modeling domain-

specific concepts or patterns. Stereotypes may have attributes (also called tags) and be

associated with other stereotypes or existing UML concepts. From a notational viewpoint,

stereotypes can give a different graphical symbol for UML model elements. For instance, a

class stereotyped as «clock» might use a picture of a clock symbol instead of the ordinary

class symbol. Additionally, stereotypes can also be influenced by restrictions expressed in

constraints. The standard machine-readable textual language for defining constraints in

MOF-based languages is Object Constraint Language (OCL) [15].

2.1.2. Model-Based Development in Automotive Domain

Model-based and component-based approaches are gaining more and more success and

popularity in today’s automotive software domain. This success is due to the state of practice

and the way of proceeding in this domain [6]. In fact, in order to integrate one software unit

into the car, a supplier must design, integrate and test against the units of other suppliers.

Since the code inside the units (e.g. ECUs) is the intellectual property of the suppliers, the

other supplier (or the OEM) often will not get the code of the other units. As a consequence,

both have to build up some kind of “black box model” that they code/integrate/test against.

The high degree of interaction between OEM and suppliers makes the need for clear

interfaces and specifications evident. Models that take into account the static and dynamic

29

Methodology for Model-based Timing Analysis Process

aspects of sub-systems are attractive ways to specify the sub-systems architecture, syntactic

interfaces and behavior. Models could help very much in the communication between OEMs

and first and second tier suppliers. But, the major advantage expected from model based

development is the ability to employ correct-by-construction, but also incremental design

processes (which rely extensively on automated transformations and synthesis) and to

formalize computer-based correctness analysis. In addition, there are many claims that

model-based and component-based approaches using architecture description languages can

help improve the overall system quality, foster reuse and evolution, and increase the

potential for automatic validation and verification.

The root of model based development is the advent of UML (Unified Modeling Language)

[7] as a standard modeling language. However, the general-purpose aspect of UML made

its use complicated for specific domains as it requires mastering in detail UML concepts.

UML use becomes hence difficult for engineers who are expected to have domain skills and

knowledge rather than UML knowledge. As a consequence, this led to the advent of domain

specific languages, DSL [16]. Domain-specific languages allowed modeling concepts to map

directly domain concepts rather than computer technology concepts.

In automotive domain, several modeling approaches and languages have been developed

during the last decade to cope with automotive software development challenges. These

approaches give means and concepts to capture the electric/electronic automotive

architecture such is the case of the modeling languages EAST-ADL [17] and AUTOSAR

[18]. For real time modeling, we cite TADL [11] and also MARTE [10], the OMG

language for modeling and analysis of real time systems.

The next section gives a detailed overview of these approaches.

2.1.3. Model Based Approaches Presentation

� EAST-ADL

EAST-ADL [46] (Electronic Architecture and Software Technology-Architecture

Description language) is intended to capture the electric/electronic architecture of

automotive systems at different level of abstraction ranging from feature to implementation

level. EAST-ADL has been developed and improved in the context of several research

projects. The last available version of EAST-ADL has been developed in the context of the

ATESST2 project [17].

30

Methodology for Model-based Timing Analysis Process

EAST-ADL provides a rich set of concepts to model system structure through several levels

of abstraction. From one level to another, the structural model of the system is refined by

including more precise implementation oriented details. Figure 1 shows an overview of the

EAST-ADL abstraction levels. Note that, as shown in this figure, the Implementation level

of EAST-ADL is based on AUTOSAR.

Figure 1 EAST-ADL/AUTOSAR modeling process

Modelling of vehicle electronic systems with EAST-ADL starts with the capture of features

at the Feature level, thus providing product line organization and description. These

features are then realized at Analysis level by abstract entities, which model the functions

and functional devices that interact with the vehicle environment. At the Design level,

models are refined by including more realization-oriented details that allow subsequent

decomposition/refinement of the functional architecture. The Hardware Design

Architecture, which is denoted in parallel, captures the primary hardware entities as abstract

elements (e.g. sensor, actuator, power, ECU or electrical wiring including the

communication bus) to describe the topology of the system's electronic architecture.

EAST-ADL gives means and concepts to model system functional architecture [47]. Figure

2 gives an overview of the EAST-ADL metamodel for functional modelling. Modelling of

functional architecture with EAST-ADL is based on the core concept of “FunctionType”. A

“FunctionType” is used to model system functions at both Analysis level

("AnalysisFunctionType") and Design level (“DesignFunctionType”). An (“AnalysisFunctionType”

(respectively (“DesignFunctionType”) can be composed of “AnalysisFunctionPrototypes”

(respectively “DesignFunctionPrototypes”) that represent its sub functions. Interaction

31

Methodology for Model-based Timing Analysis Process

between EAST-ADL FunctionTypes is captured through “FunctionPort” and

“FunctionConnector” concepts.

Figure 2 EAST-ADL metamodel for functional modelling [47]

EAST-ADL also provides concepts for abstract hardware modelling. For example sensors

and actuators can be captured respectively through the concepts “sensor” and “actuator” from

EAST-ADL. Communication buses can be modelled as “LogicalBus”. The concept “Node”

allows modelling ECUs involved in the system.

For timing modelling, EAST-ADL adopted TADL concepts to annotate architecture models

with timing properties and constraints.

� TADL

TADL (Timing Augmented Description Language) [48] has been developed in the context

of the European research project TIMMO (TIMing MOdeling) [11]. The definition of

TADL is based on modelling concepts from EAST-ADL and AUTOSAR by which the

32

Methodology for Model-based Timing Analysis Process

structural definition of the considered system is modelled. The augmentation is done by

adding information related to timing and events referring to structural elements [48].

TADL proposes a set of concepts to annotate structural models (function and software) with

timing properties and constraints such as maximum delays, repetitions and sampling rates

and synchronization constraints [49]. Figure 3 gives an overview of the TADL metamodel.

TADL concepts are centred on the concepts of “Event” and “EventChain”. An “EventChain”

describes the causal relationship of a set of functionality-dependant events. Every event

chain describes a causal relationship between two events. The first is called “Stimulus” (e.g.

event representing the activation of a function) and the second is called “Response” (e.g. event

representing the termination of a function). Furthermore, event chains can be hierarchically

decomposed into an arbitrary number of sub-chains called “EventChainSegment”. TADL

timing constraints can be attached to events and event chains to specify e.g. the repetition

rate of an event or the maximum latency of an event chain.

Figure 3 TADL metamodel [49]

� AUTOSAR

AUTOSAR (Automotive Open System Architecture) [18] is a standardized architecture for

automotive software that is developed by an international consortium of automotive OEMs,

Tier-1 suppliers and tool vendors. AUTOSAR offers a software component model and a

three layered software architecture divided into application software, runtime environment

(RTE), and basic software (e.g., drivers and communication system). Figure 4 shows an

overview of AUTOSAR software architecture.

33

Methodology for Model-based Timing Analysis Process

Figure 4 AUTOSAR software architecture from VFB to mapping

AUTOSAR introduces the Virtual Functional Bus (VFB) concept to separate applications

from infrastructure. An application consists of interconnected “AUTOSAR Software

Components”. The VFB (shown in the top part of figure 4) provides standardized

communication mechanisms and services for these components. The VFB acts independently

from the chosen mapping of these components to the infrastructure of the interconnected

ECUs (shown in the bottom part of the figure 4).

The realization of the VFB concept is possible if each AUTOSAR ECU has standardized

basic software functionalities and interfaces. Figure 5 shows the layered architecture of an

AUTOSAR ECU, which basically identifies an application layer and the AUTOSAR Basic

Software (BSW). These parts are linked via the AUTOSAR Runtime Environment (RTE).

That means the RTE can be interpreted as the runtime implementation of the VFB on a

specific ECU.

The RTE realizes an intermediate layer between the hardware independent application

software components and the hardware dependent basic software components.

34

Methodology for Model-based Timing Analysis Process

Figure 5 The AUTOSAR ECU layered architecture

The reuse of software components between different vehicle platforms, OEMs and suppliers

is one of the major goals of AUTOSAR. Therefore a methodology supporting a distributed,

function-driven development process was created [50]. AUTOSAR specifies also compatible

software interfaces at application level. However, the functional contents of the application

modules and components are different and related to the corporate identity and the desired

characteristics of the car manufacturer or its system suppliers.

AUTOSAR has developed a metamodel which precisely defines the concepts used to

describe a self-contained AUTOSAR system and a methodology. For example, software

models are organized into units called “SoftwareComponents” [51]. Those components

encapsulate the implementation of the functionality and the behaviour they provide, and

simply expose well-defined connection points called ports. In particular, atomic software

components are entities that support an implementation and hold behavioural entities called

“RunnableEntity”. A runnable is an entity that can be executed and scheduled independently

from any other runnable entity. AUTOSAR gives also concepts to describe the basic

software entities [51] as well as the OS (Operating System) configuration [52], RTE

configuration [58] and Hardware topology description [54] (ECU, Bus, etc)

Timing aspect is considered in AUTOSAR through its timing extensions [55] that allow

modelling the timing information of the system through concepts that express timing

properties and constraints on events and event chains (inspired by the concepts and

semantics defined in TADL in order to ease integration of AUTOSAR models with EAST-

ADL models).

35

Methodology for Model-based Timing Analysis Process

� MARTE

MARTE (Modeling and Analysis of Real Time Embedded Systems) is the OMG standard

dedicated for the modeling of real time systems. It provides means and constructs for

modeling non functional properties and time concepts [56].

 MARTE offers also a dedicated framework for model-based scheduling analysis [13]. This

modeling framework provides a rich set of concepts for modeling end-to-end flows, software

and hardware resource platform and for allocation of application modules to platform

resources.

2.1.4. Model-based Approaches Evaluation

As mentioned previously, the aforementioned model-based approaches were developed to

deal with specific automotive challenges (EAST-ADL, TADL, and AUTOSAR) and more

generally with real time systems challenges (MARTE). As presented in the first chapter,

automotive system development challenges can be categorized in four points:

� Mastering system complexity

� Reducing software development time and cost

� Defining seamless development activity supported by a seamless tool chain

� Ensuring system dependability, especially timing correctness through verification

and validation.

Table 1 summarizes the capabilities of the studied model-based approaches against the

aforementioned needs.

Mastering system complexity

Looking at the EAST-ADL/AUTOSAR modeling process, we can conclude that there is a

good potential to master system complexity. In fact developing automotive systems using

these approaches is based on modeling the system architecture starting from abstract

functional description until implementation detailed description. Hence, at early design

phases, designers focus only on functional aspects abstracting away implementation-related

details. In addition, hardware details can be described separately only starting from the

Design level.

At Implementation level, using AUTOSAR allows also mastering the system complexity. In

fact, AUTOSAR defines different views to enable the description of self-contained software

36

Methodology for Model-based Timing Analysis Process

architecture. In the VFB view, the focus is made on the description of software components

and their communication regardless of the platform and the mapping (of software

component to ECUs) chosen. In ECU view, the configuration of the ECU may be described

through describing the configuration of the RTE and the OS. Finally, in the system view,

the focus is made on the system topology by describing e.g. the ECUs and communication

buses used by the system. In addition, as shown in figure 5, AUTOSAR offers a layered

software architecture giving the possibility to deal separately with the application software,

basic software and the hardware. Application software complexity is also reduced as each

application software component can be described independently from other software

components.

TADL focuses only on modeling the timing aspect of systems by relying on the modeling

process offered by EAST-ADL and AUTOSAR.

MARTE also focuses only on modeling the timing aspect of systems without any modeling

process support. However, the MARTE scheduling analysis framework allows modeling the

different scheduling and timing related features in separate views (application,

software/hardware resources, allocations, etc). This allows the designer to focus separately

on each aspect without involving details from other views.

Reducing development time and cost

Using the EAST-ADL/AUTOSAR approach, development cost and time can be reduced as

there is a good potential for easier reuse of software and hardware components and hence

saving the time and cost required for redeveloping them.

In addition, using a model-based approach allows a better representation of system

information (using models). Thus, the time required to collect such information (for further

use) is significantly reduced during the development process.

Defining seamless development process and tool chain

The modeling process of EAST-ADL/AUTOSAR seems to be interesting as it gives the

possibility to design the system architecture starting from abstract functional description

until detailed implementation description. However, this process defines only the abstraction

levels and the modeling concepts to be used at each level. It does not give any guidance

about model refinement from a level to another. In addition it proposes no tool chain

37

Methodology for Model-based Timing Analysis Process

support that allows describing and validating the system architecture along the development

process.

As mentioned previously, TADL relies on the modeling process offered by EAST-ADL and

AUTOSAR. In addition, a methodology has been defined to describe how the concepts

defined by this language can be used at each abstraction level.

MARTE focus only on giving concepts for timing modeling without defining any modeling

process or methodology

Enabling timing verification

From a timing verification point of view, the aforementioned model-based approaches

attempted to give means for the development of time critical systems. This is mainly

ensured through giving concepts for expressing timing properties and constraints on models

(TADL, AUTOSAR and MARTE).

However, supporting timing verification by these approaches is limited only to giving such

means and concepts. In fact several methodological problems remain unsolved by these

approaches, such as:

� How to integrate timing verification during the model-based development process?

� Which timing verification techniques should be used during each development

phase?

� How to develop analyzable model to enable a particular timing verification and how

to use provided concepts?

To enable model-based timing verification, these approaches should be complemented by a

new one that allows answering these questions.

38

Methodology for Model-based Timing Analysis Process

Table 1 Modeling approaches capabilities

 EAST-ADL/AUTOSAR TADL MARTE

Master

system

complexity

Development through

abstraction levels (From

abstract functional

description to detailed

implementation).

 Enable the designer to focus

on different aspect at

different levels

Software is organized into

separate software

components

Software architecture

described through different

views (VFB, ECU, System)

Layered software

architecture (application

software, basic software,

hardware)

Focuses on annotating

structural elements with

timing information

Relies on the means offered

by EAST-ADL and

AUTOSAR to master

complexity

Focus on modeling timing

information without

giving a modeling process

Scheduling analysis

models can be organized

on separate views

(application, platform,

allocation, etc)

Reduce

development

time and

cost

Potential for easier reuse of

software and hardware

components (save

redevelopment time and cost)

Reduce information

collection time through using

models

Reduces information

collection time through using

models

Reduces information

collection time through

using models

Define

seamless

development

activity

Define only the abstraction

levels

No guidance for model

refinement and

transformation

No tool chain defined to

enable architecture

description and validation

Relies on the modeling

process of EAST-

ADL/AUTOSAR

Methodology defined to

describe how to use TADL

concepts based on EAST-

ADL/AUTOSAR structural

elements

No modeling

process/methodology is

defined

No tool chain defined

Enable

timing

verification

Give only concepts to express timing information (timing properties & constraints)

No guidance for model-based timing verification (how to integrate timing verification, how

to develop analyzable models, which tools to use, how to use results, etc)

39

Methodology for Model-based Timing Analysis Process

2.2. Timing Verification: Scheduling Analysis

2.2.1. Introduction

Since 1980s, many models, methods and tools were proposed to check if a real time system

fulfills its requirements (e.g. Petri nets [19], synchronous languages [20], etc). One of these

methods, usually called scheduling analysis is a part of a larger set of quantitative methods,

the real time scheduling theory. Based on a schedulability test, scheduling analysis allow

verifying the schedulability of a task set. Schedulability tests are based on the calculation of

the worst case response time of a task, which is the longest time between the activation of a

task and its subsequent completion. Once the worst-case response time is known, the

feasibility of a task can be checked by comparing its worst-case response time to its deadline.

In next sections, we present the most known results achieved in schedulability analysis in

term of schedulability tests and scheduling analysis tools development.

2.2.2. Schedulability Tests: Brief Historical Review

In this section, we present a historical review of the most known results achieved within

schedulability test development for fixed-priority monoprocessor systems.

In 1973, Liu and Layland published a paper on the scheduling of periodic tasks that is

generally regarded as the foundational and most influential work in fixed priority real time

scheduling theory [21]. They made the following assumptions:

� All tasks are periodic

� All tasks are released at the beginning of period and have a deadline equal to their

period

� All tasks are independent, i.e., have no resource or precedence relationships

� All tasks have fixed computation time or, at least, an upper bound on their

computation time which is less than or equal to their periods

� No task may voluntary suspend itself

� All tasks are fully preemptible

� All overheads are assumed to be null

� There is just one processor.

40

Methodology for Model-based Timing Analysis Process

Based on this model, Liu and Layland gave a sufficient utilization-based condition for the

feasibility of a fixed priority task set scheduled with the rate monotonic algorithm (RMA)

[21]. They proved that a set of n periodic tasks, each having a computation time Ci and a

period Ti is feasible with this algorithm if











−≤∑

=
12

1

1

n
n

i i

i
n

T

C

Due to the limitations of Liu and Layland test (pessimistic condition, unrealistic task model

with deadlines equal to periods, task priorities have to be assigned according to the rate

monotonic policy) more complex feasibility tests were developed to address the above

limitations. In 1987, Lehoczky et al. [22] gave the first exact schedulability test for the Liu

and Layland task model. Concurrently, another group of researchers looked at the problem

of determining the worst case response time of a task. Joseph and Pandya [23] and Audsley

et al. [24] developed independently an algorithm to compute the worst-case response time

iR of a task τi as the least-fixed-point of the following recursive equation:

∑
−

= 










+=

1

1

i

j
j

j

i
ii C

T

R
CR

In 1982, Leung [25] considered fixed priority scheduling of a set of tasks with deadlines less

than their periods. Lehoczky [26] considered another relaxation of the Liu and Layland

model to permit a task to have a deadline greater than its period. The Lehoczky approach

uses the notion of “busy-period”. A “level i busy period” is defined as the maximum time for

which a processor executes tasks of priority greater than or equal to the priority of task i.

Lehoczky shows how the worst-case response time of a task i can be found by examining a

number of windows, each defined to be the length of the busy period starting at the window,

and each window starting at an arrival of task i. In the early 1990, Tindell [27] extended

the Lehoczky response time analysis providing an exact test for tasks with arbitrary

deadlines.

A further relaxation of Liu and Layland task model is to permit tasks to have specified

offsets (phasing). Tindell proposed in [28] a test for fixed priority tasks in which task offsets

can be taken into account. This test has been later extended by Palencia and Gonzalez to

take into account static and dynamic task offsets [29].

41

Methodology for Model-based Timing Analysis Process

Wang and Saksena [30] introduced a feasibility test where they take into account non-

preemptible tasks in addition to preemptible ones.

The development of scheduling analysis tools implementing such schedulability tests lies at

the very core of scheduling analysis issue. In the next section, we give an overview of

currently available scheduling analysis tools.

2.2.3. Scheduling Analysis Tools Presentation

While the number of scheduling analysis tools is constantly increasing, they also vary

widely in terms of analysis capabilities and supported features.

• MAST

MAST [31] is an open source tool developed by the University of Cantabria in Spain.

MAST is still under development and is intended to allow modeling real time applications

and performing scheduling analysis for them. The tool offers a suite of scheduling analysis

tests, ranging from classic RMA for fixed priority monoprocessor systems to more

sophisticated analyses for EDF (Earliest Deadline First) schedulers [21] and distributed

systems. In MAST, each real time situation is described through a set of concurrent

transactions [41]. A transaction represents the execution of a set of activities triggered by

an external event. An activity is an instance of an operation. The output of each activity is an

internal event that may in turn activate other activities. Events may have timing

requirements associated with them. Activities follow a predecessor/successor relationship

with the possibility for an activity to have multiple successors or multiple predecessors.

Each activity is bound to a single schedulable resource (task) and a schedulable resource

refers to one processing resource. This way, the concept of activity encapsulates the

allocation of the operation on a single schedulable resource and the allocation of the

schedulable resource on a single processing resource. Table 2 and 3 summarize respectively

the most important required inputs for the analysis as well as the output result of MAST.

42

Methodology for Model-based Timing Analysis Process

Table 2 MAST required inputs

Required input

information

Description

Processing Resource They represent the processing capacity of a hardware

component that executes some of the modeled system

activities (Regular Processor) or message transmission

(Packet Based Network).

Scheduling Server They represent schedulable entities in a processing

resource (e.g. OS task)

Shared Resource They represent resource that are shared among different

threads or tasks and that must be used on a mutually

exclusive way.

Operation It represent a piece of code or a message

Transaction A transaction represents a flow of executing activities

that are interrelated. A transaction is defined with a list of

external events, a list of internal events and their timing

requirements and a list of activities

External Event It represents an event that activates a transaction. It can

be e.g. periodic or sporadic.

Activity It represents an instance of an operation to be executed

by a scheduling server. An activity is defined by an input

event, and output event, an operation and the scheduling

server hosting this operation

Internal Event It is an event that is generated by an activity. It can

trigger the activation of another activity within the same

transaction.

Timing Requirement Represents the timing requirement imposed on the

instant of generation of an internal event. It represent a

deadline or a maximum jitter on the generation instant of

the event.

43

Methodology for Model-based Timing Analysis Process

Table 3 MAST output results

Output result Description

System/processing

resource/transaction slack

If positive, it represents the percentage by which all

the execution times of all the operation contained in

the global system (or used by the processing resource

or the transaction) may be increased while still

keeping the system schedulable. If negative it is the

percentage by which all these execution times have to

be decreased to make the system schedulable.

Worst/best/average

Transaction response time

Represents the worst/best/average response time of

the transaction (generation of the output event of the

transaction) with reference to the external event of

the same transaction.

Processing resource

utilization

It measures the relation, in percentage, between the

time that the processing resource is being used to

execute activities and the total elapsed time.

Operation slack The percentage by which the execution time of that

operation may be increased (or decreased) while

keeping the system schedulable (or to make the

system schedulable)

• Cheddar

Cheddar [32] is also open source and is developed and maintained by the University of

Brest in France. This tool is designed for checking task temporal constraints of a real time

application. Cheddar is based on an analysis framework that includes most of classical real

time schedulability tests such as RMA and EDF. In Cheddar, an application is defined by a

set of processors, buffers, shared resources, messages and tasks [40]. In the most simple

task model, each task periodically performs a treatment. This “periodic” task is defined by

three parameters: its deadline, its period and its capacity that represents a bound on the

execution time of the job performed by this task. Table 4 and 5 summarize respectively the

most important required inputs for the analysis as well as the output result of Cheddar.

44

Methodology for Model-based Timing Analysis Process

Table 4 Cheddar required inputs

Required

Input
Description

Processor They represent the processing capacity of a hardware component that executes some of

the modeled tasks

Task It represents the schedulable entity in the processor. A task is characterized by a priority

a computation time, an activation period and a deadline.

Network It represents e.g. communication buses

Shared resource They represent resource that are shared among different tasks and that must be used on a

mutually exclusive way.

Message Represent messages that are exchanged between tasks

Buffer They represent stocking elements for the information exchanged between tasks that

read/write in the buffer

Table 5 Cheddar output results

Output result Description

Task response time The time between the activation and the termination

instants of the task

Processor utilization It measures the relation, in percentage, between the

time that the processing resource is being used to

execute activities and the total elapsed time.

• Rapid-RMA

Rapid-RMA [33] is a commercial tool developed by Tri-pacific Software Company. Rapid-

RMA allows performing analysis based on rate monotonic and deadline monotonic [34]

algorithms. A Rapid-RMA system is composed of a set of tasks allocated to hardware

resources (CPU, BUS). Each task is characterized by its period, deadline, priority and

computation time. Table 6 and 7 summarize respectively the most important required inputs

for the analysis as well as the output result of Rapid-RMA.

45

Methodology for Model-based Timing Analysis Process

Table 6 Rapid-RMA required inputs

Required Input Description

Task It represents the schedulable entity in the processor. A task is characterized by a

priority a computation time an activation period and a deadline.

Node It represent the hardware resource with processing capacity that executes some of the

modeled tasks

Bus It represents the communication medium used to exchange message between some of

the modeled nodes

Table 7 Rapid-RMA output results

Output result Description

Task completion time It represents the task response time (time between the

activation until the termination of the task)

Processor utilization

factor

It measures the relation, in percentage, between the

time that the processing resource is being used to

execute activities and the total elapsed time.

• Chronval

Chronval [35] is a commercial tool produced by the Inchron Company. The tool allows

performing scheduling analysis for single and distributed systems. Unlike other scheduling

analysis tools that are based on schedulability tests from scheduling theory, Chronval is

based on the “real time calculus” technique [57]. The tool allows calculating task response

times for an OSEK2 compliant system. In this tool, a system is seen as a set of tasks. Each

task is associated with a source that allows specifying its activation pattern. Task deadlines

are specified as requirements that constrain the maximum delay between the task activation

and its termination instants. Table 8 and 9 summarize respectively the most important

required inputs for the analysis as well as the output result of Chronval.

2
 OSEK : Open Systems and their interfaces for the Electronics in Motor Vehicles

46

Methodology for Model-based Timing Analysis Process

Table 8 Chronval required inputs

Required Input Description

Task It represents the schedulable entity in the processor.

Source It is an element that allow to represent the activation pattern of each task

ECU It represent a hardware resource with processing capacity

Bus It represents the communication medium used to exchange message between some of

the modeled nodes

Timing requirement Enables to specify a task deadline or a deadline on a flow formed by several tasks

Table 9 Chronval output results

Output result Description

Task worst case response

time

It represents the worst response time (time between

the activation until the termination of the task)

Event spectrum Shows the variation of the available and the remaining

processor capacity for each task

• SymTA/S

SymTA/S [36] is a commercial tool developed by the Symtavision Company. The tool is

said to be based on schedulability tests that extend previously mentioned classical tests to

take into account automotive specific constraints (these constraints will be detailed in the

next chapter). It allows performing analysis for both single and distributed systems. In

SymTA/S, each real time situation is described through a set of tasks hosting a number of

runnables. A runnable represents the execution of a non-preemptive piece of code. Each task

in SymTA/S is characterized by an activation pattern, a priority and a deadline. Table 10

and 11 summarize respectively the most important required inputs for the analysis as well as

the output result of Chronval.

47

Methodology for Model-based Timing Analysis Process

Table 10 SymTA/S required inputs

Required Input Description

Task It represents the schedulable entity in the processor. A task is characterized by a

priority, an execution time (if it hosts no runnables) and an activation pattern

Runnable It represents a non-preemptible executable entity in a task.

ECU It represent a hardware resource with processing capacity

Bus It represents the communication medium used to exchange message between some of

the modeled nodes

Max response time It represent the deadline on task or path execution

Path A path represents a flow of tasks or runnables executing successively and

communicating variables

Table 11 SymTA/S output results

Output result Description

worst case response time It represents the worst case response time for a task

or a path

Processor utilization It measures the relation, in percentage, between the

time that the processing resource is being used to

execute activities and the total elapsed time.

2.2.4. Scheduling Analysis Evaluation

Scheduling analysis seems to be a good candidate to perform timing verification for real time

systems. Using this technique, there is a good potential to allow detecting timing errors

early (only based on a task model) preventing hence costly time-related design mistakes to

be detected late.

However, to enable timing verification for automotive systems using such technique, a need

for schedulability tests and tools that fit well automotive needs and constraints is

obvious. In addition, there is currently no guidance about how to integrate such

verification technique during the development process.

48

Methodology for Model-based Timing Analysis Process

2.3. Conclusion

As shown in the previous sections, several model-based approaches and methods were

developed to bring solutions for automotive needs such as mastering system complexity

during development, allowing reuse, reducing development time and cost, etc.

To ensure real time system dependability, many scheduling analysis tests and tools were

developed as a means for early timing verification.

An obvious lack today in these approaches, is guidance for enabling the integration of

timing verification during a seamless model-based development process. In this thesis

work, we propose to define an approach for a methodology describing a model-based

timing verification process for automotive systems.

3. Work Orientation and Approach Feasibility

3.1. Approach Principle and Feasibility Issues

In our approach, based on existing solutions, we propose to combine some model-based

approaches to define our development process. Then, we aim to define a methodology to

enable timing verification during each phase of this process. Figure 6 shows an overview of

the principle of the targeted process.

Figure 6 Overview of a model-based timing analysis process

At each phase of the development process, the designer has a set of timing requirements as

inputs. S/he designs and models the system architecture (structure, behaviour, etc…) that

49

Methodology for Model-based Timing Analysis Process

should satisfy these requirements. S/he then performs timing analysis to verify whether the

proposed architecture does satisfy them. Based on the results of this analysis, the designer

determines what improvements are needed in the architecture or what tradeoffs could be

made to meet the corresponding timing requirements. The designer may need to perform

this activity iteratively until a valid model is obtained. Based on the architecture designed

during the current phase, the designer determines the requirements that should be satisfied

during the next development phase when refining the system architecture.

To define the model-based development process, we propose to use and adapt some of the

available modelling approaches. For timing verification, we suggest to use scheduling

analysis as a verification technique in this process.

From a feasibility point of view, to be able to define such model-based scheduling analysis

process for automotive systems based on existing solutions, we need to satisfy the two

following requirements:

� The modelling process should be based on modelling languages that are

expressive enough to enable scheduling analysis-aware modelling for

automotive applications

To verify this requirement, we need to evaluate the expressivity of available modelling

languages. This will enable us to decide which language (s) to use for our modelling process

or how to combine some of these languages to define this process. Based on the defined

development process, we can also decide how and in which phase we can integrate

scheduling analysis.

� Scheduling analysis should be usable to perform timing verification for

automotive applications.

To prove the usability of scheduling analysis for automotive systems, we need to identify a

tool that satisfies scheduling analysis needs for automotive systems. This tool should

implement schedulability tests that take into account all automotive needs. To identify such

tool, we will evaluate the capabilities of available scheduling analysis tools against

automotive needs in term of scheduling analysis.

3.2. Modeling Languages Expressivity Evaluation

In this section, we evaluate the expressivity of the aforementioned modeling languages,

EAST-ADL/TADL, AUTOSAR and MARTE to enable scheduling-analysis aware

50

Methodology for Model-based Timing Analysis Process

modeling. This evaluation is done against automotive application modeling needs to enable

scheduling analysis.

The first paragraph characterizes the required modeling features. Next, we highlight the

capabilities and limitations of the studied modeling languages with respect to those

requirements.

3.2.1. Modeling Needs for Automotive Applications to Enable Scheduling Analysis

We organize the modeling features needed for scheduling analysis into the four following

categories:

Application workload. Modeling languages should enable describing the application

workload which represents the processing load of the system. It represents the different

operations (functions) executed in the system and contending for use of processing resources

and other shared resources. An operation may represent a small segment of code execution

as well as the sending of a message through a communication medium. Operations are

generally organized in processing flows (set of related operations/functions). To make the

analysis possible, modeling languages shall enable specifying the execution /transmission

time (worst, best or average) for operations/messages.

Application timing behavior. The application timing behavior represents the timing

information of the different operations or processing flows involved in the system under

analysis. Timing information contains both timing description (timing properties) and

timing constraints. Timing description contains the specification of the triggering of system

operations or processing flows (recurrence, activation jitters, etc.). Most available scheduling

analysis tools allow analyzing systems with various triggering patterns such as periodic,

sporadic, singular, etc. For those activation patterns, it is necessary to specify the period or

the minimum inter-arrival time of the triggering events. Timing constraints must be met by

the system operations or flows. They are represented basically by operation deadlines,

output jitter bounds and end-to-end deadlines.

Resource platform. It represents the concrete architecture and capacity of hardware (e.g.,

CPU or buses) and software (e.g. OS tasks) resources. For hardware resources such as

processors, modeling languages should allow e.g. the description of the scheduler used. For

a more accurate analysis, it may be also necessary to specify the processor overheads (e.g.

context switch overhead). For software resources such as tasks, it is necessary to specify the

51

Methodology for Model-based Timing Analysis Process

task nature (preemptive, non-preemptive, etc.) as well as its priority. Involved shared

resources should also be described.

Allocation. To get an analyzable model, modeling languages should enable specifying the

allocation of the operations to software resources (e.g. tasks) and the allocation of software

resources to hardware resources (e.g. processors).

3.2.2. Modeling Languages Capabilities

Table 12 contains a summary of the extent to which the surveyed modeling languages cover

the features considered. It gives the set of modeling concepts offered by each language to

cover the above-mentioned features.

Application workload. Modeling application workload differs significantly in these

languages. For example, the “ADLFunctionType” and “ADLFunctionPrototype” concepts of

EAST-ADL allow modeling the functions executed in the system. EAST-ADL gives also

means to specify function execution times through the “ExecutionTimeConstraint” concept. It

allows specifying worst, best or average execution time for each EAST-ADL function [47].

In AUTOSAR, The system workload is described through two categories of elements:

runnable entities [51] and basic software module entities [52]. Runnable entities are the

smallest code-fragment that are provided by an application software component and are

subject to scheduling by the underlying operating system. Runnable entities are specified in

the system model as a part of the internal behavior of software components. Basic software

entities are also subject to scheduling and contend for use of processing resources. A basic

software entity represents the smallest code fragment that can be described for a basic

software module or cluster.

In AUTOSAR, it is possible to specify the execution time for both runnable entities and

basic software entities as “ResourceConsumption” (when describing the corresponding

software component implementation or basic software module implementation). The

resource consumption element provides information about memory and time consumption

for each software component implementation or basic software module implementation.

Maximum, minimum and nominal execution times can be specified.

MARTE models the application workload as a set of processing flows called “End-to-end

flows”. They describe interrelated units of processing work called “steps” and which contend

for the use of processing resources with other end-to-end flows [56]. MARTE gives the

52

Methodology for Model-based Timing Analysis Process

possibility to specify the execution time of a step through the attribute “execTime” that

allows specifying a worst or best step execution time.

Application timing behavior. To model application timing behavior elements, EAST-ADL

relies on TADL concepts. TADL allows attaching timing description and timing constraints

to the events and event chains describing the timing behavior of the system. For example it

is possible to describe the triggering pattern of an event (periodic, sporadic, etc) or the

maximum latency of an event chain.

MARTE, itself, uses the notion of end-to-end flows to express timing constraints such as an

end-to-end deadline imposed on a flow of steps or simply a step deadline. MARTE models

the triggering of an end-to-end flow through the element “WorkloadEvent” that allows

specifying the triggering pattern of each flow (periodic, sporadic, etc).

AUTOSAR allows the modeling of the application timing behavior features through its

timing extensions [55]. Timing extensions allow specifying the timing description and the

timing constraints of the system. They are used to describe the timing behavior in different

views: the virtual functional bus view (VFB timing), the software components view (Swc

timing), the basic software module view (Bsw module timing), the system view (system

timing) and at the ECU view (ECU timing).

On each level, processing flows are described through the event and event chain concepts

(inspired from TADL concepts).

AUTOSAR Timing constraints can be attached to both event chains and events. For an

event, timing constraints specify its arrival pattern as well as its occurrence jitter. Supported

arrival patterns in AUTOSAR are: periodic, sporadic, burst, concrete and arbitrary. For

event chains, it is possible to specify their latencies. A latency timing constraint restricts the

time duration between the occurrence of the stimulus and the occurrence of the

corresponding response of that chain.

Resource platform. Modeling of software and hardware resource platform is more or less

supported by the different languages. EAST-ADL supports modeling of hardware resources

through the concepts of “Node” (to represent an ECU) and “LogicalBus” (to represent

communication buses). However, EAST-ADL does not give any means to model software

resources such as OS tasks during the Analysis and Design levels. In fact, EAST-ADL relies

of AUTOSAR concepts to describe this feature starting from the Implementation level.

53

Methodology for Model-based Timing Analysis Process

MARTE, itself, gives the possibility to model both hardware and software resources.

MARTE distinguishes two kinds of processing resources; “ExecutionHost”, which includes

for example processors and coprocessors, and “CommunicationHost”, which includes resources

such as networks and buses. Processing resources can be characterized by throughput

properties such as processing rate, efficiency properties such as utilization, and overhead

properties such as blocking times and clock overhead times. Software resources can be

modeled in MARTE as “SchedulableResource” or “CommunicationChannel”. On one hand, a

schedulable resource is a kind of active protected resource that is used to execute steps. In a

real time operating system (RTOS), this is the mechanism that represents a unit of

concurrent execution, such as a task, a process, or a thread. On the other hand, a

communication channel provides concurrency to communication steps.

The “SharedResource” concept of MARTE allows modeling the shared resources involved in

the system.

AUTOSAR allows specifying the system hardware resources when describing the system

topology in the system view [54]. The “ECUInstance” concept allows defining the ECUs

used in the topology. Communication networks can be specified through the

“CommunicationCluster” concept that represents the main element to describe the topological

connection of communicating ECUs. For each communication cluster, we can define one or

more “PhysicalChannel” that describe the transmission medium that is used to send and

receive information between two communicating ECUs, as well as the protocol used for the

communication.

AUTOSAR allows describing the software resources involved in the system when defining

the OS configuration [53]. Tasks are specified through the “OsTask” concept that represents

an OSEK task. Task priority can be specified using the attribute “OsTaskPriority”. The

attribute “OsTaskSchedule” allows specifying whether the task is preemtible or not.

Interrupts are supported through the “OsISR” concept that represents an OSEK interrupt

service routine.

AUTOSAR Shared resources may be specified using the “OsResource” concept, used to

coordinate the concurrent access of tasks and ISRs to shared resources. The attribute

“OsTaskResourceRef” of the OS task element allows listing the shared resources accessed by

the specific task.

54

Methodology for Model-based Timing Analysis Process

Allocation. EAST-ADL/TADL gives means to describe the allocation of functional entities

described at the design level to hardware resources. This is done through the concepts

“FunctionAllocation” that represent an allocation constraint binding an “AllocateableElement”

(computation function or communication connector) to an “AllocationTarget” (computation

or communication hardware resource). However, allocation of functions to OS tasks cannot

be described in EAST-ADL (this is due to the fact that EAST-ADL relies on the description

of such information at the Implementation level using AUTOSAR). Unlike EAST-ADL,

MARTE offers a set of concepts to develop a complete allocation model (allocation of steps

to schedulable resources or communication channels and allocation of schedulable

resources/communication channels to execution and communication hosts). The MARTE

concept “allocate” allows associating elements from a logical context, application model

elements, to named elements described in a more physical context, execution platform model

elements. The “allocated” concept allows describing entities that can be allocated to a hosting

element.

The allocation of tasks to hardware resources is performed in AUTOSAR during the ECU

configuration process. The configuration of a particular ECU used in the system involves

the configuration of the OS and of the runtime environment RTE [58]. The OS

configuration contains among others the definition of the different OS tasks involved. Hence,

this indicates that the defined tasks are allocated to the ECU which is subject to

configuration.

The mapping of runnable entities and basic software module entities to OS tasks is part of

the RTE configuration. The mapping of runnable entities to OS tasks is based on the

mapping of the “RTEEvent” that activate those runnable entities. In a similar way, basic

software module entities are mapped to OS tasks by mapping the “BswEvent” that activate

them.

55

Methodology for Model-based Timing Analysis Process

Table 12 Modeling supports for scheduling analysis

Needed

modeling

Features

Concepts offered by modeling languages

EAST-ADL/TADL MARTE AUTOSAR

Application

Workload

ADLFunctionType/Prototype.

ExecutionTimeConstraint

(worst, best, average)

End-to-end flow. Step,

ExecTime

Runnable Entity.

Bsw Entity. Swc

Implementation. Bsw

Implementation.

Resource

Consumption.

Measured/estimated

execution time

Application

Timing

Behavior

Event chains. Event chains

related to architecture events.

Event occurrence constraints.

Event chain latency

constraints, synchronization

constraints

End-to-end flows

deadlines, step deadlines,

triggering workload

event, workload event

arrival pattern

Event chains.

Events. Event

activation

constraints. Event

chain latency

constraints,

synchronization

constraints

Resource

Platform

Hardware resources: Node,

Logical bus

No software resource

description

Hardware resource:

execution host,

communication host

Software resource:

schedulable resource,

communication channel

Shared resource

Hardware resource:

ECU instance,

communication

cluster, physical

channel

Software resource:

OS task, Os ISR,

 Os resource

Allocation

means for linking function

prototypes to hardware

entities at design level

No means to describe

allocation of functions to

software resources

Allocation of steps to

schedulable resources/

communication channels

Allocation of schedulable

resources/communication

channels to

execution/communication

hosts

concepts: allocate,

allocated

Allocation of

software resources to

hardware resources

(OS configuration

mechanism)

Allocation of

runnable entities and

basic software

entities to software

resources (RTE

configuration

mechanism)

3.3. Scheduling Analysis Tools Evaluation

To prove the usability of scheduling analysis to perform timing verification for automotive

applications, we propose to evaluate the capabilities of available scheduling analysis tools to

select most convenient tool(s) for our process.

56

Methodology for Model-based Timing Analysis Process

The first section characterizes the required analysis features. Next, we highlight the

capabilities and limitations of the studied tools with respect to those requirements.

3.3.1. Scheduling Analysis Needs for Automotive Applications

This section characterizes the architecture of automotive applications. Such characterization

suffices for the purpose of this part, which is to identify the timing analysis needs of

automotive systems and hence the requirements that should be met by analysis tools. It

serves, finally, to provide an informal, comparative review of capabilities provided by the

selected tools. For a better understanding, we will assign an identifier to each requirement

that we denote REQx where x is the requirement number. Table 13 summarizes the

characterization of the identified requirements.

Today's automotive systems have evolved constantly and now offer even more challenging

features that can be summed up as follows:

Limited hardware resources. Today, CPU load, has become day-to-day issue and is the

very basis for the design of automotive systems. For these reasons, scheduling analysis is

required to determine, or at least estimate, the processor performance needed for a given

design. Hence, Analysis tools should have techniques to determine the processor utilization [REQ1].

Timing constraints. In addition to limited hardware resources, automotive applications

must deal with many kinds of timing constraints. These may concern task or function

deadlines or maximum jitters on task activation instants. Automotive tasks may have hard

deadlines (e.g. for safety functions) or soft deadlines (for body comfort functions). Moreover,

these tasks may have deadlines that are less, equal or greater than their periods.

In addition, the end-to-end delay after data is read by a sensor and the output generated

from it and passed to an actuator (known as “data age”) is crucial to control model stability.

Scheduling analysis is hence needed to verify if those constraints are met or not. To enable

this verification, scheduling analysis tools have to meet certain requirements that we

summarize as follows:

When describing the system under analysis

� Analysis tools should allow specifying task or function deadlines [REQ2]

� Analysis tools should allow specifying jitters related to the function or task activation instants

[REQ3]

57

Methodology for Model-based Timing Analysis Process

� Analysis tools should allow specifying end-to-end timing constraints [REQ4]

(An end-to-end timing constraint is a deadline imposed on the delay of an end-to-end flow formed by

executing steps in the system)

When analyzing the system

� Analysis tools should allow analyzing tasks with deadlines that are less, equal or greater than

their periods [REQ5]

� Analysis tools should have techniques to verify whether end-to-end constraints are respected

[REQ6]

Heterogeneous activation pattern. In automotive task model, tasks can be time triggered

or event triggered. Event triggered tasks are activated by the arrival of events that can be

periodic, sporadic or singular (arrives only once). Time triggered tasks are periodic tasks

that are activated at predetermined points in time. In automotive, there are two kinds of

periodic tasks, timing tasks and engine-synchronous tasks. Timing tasks have timing

recurrences (e.g. 1ms, 10ms, etc) (they are simply classic periodic tasks). Engine-

synchronous task are activated by the arrival of events related to the engine-running. The

recurrences of these events are expressed in engine angle degree rather than time (e.g.

2°crank). In fact these recurrences depend on the Camshaft and Crankshaft positions that

vary with the engine speed (The camshaft wheel is the element of the engine that allows the

opening and the closure of intake and exhaust valves. The crankshaft wheel is the part of the

engine that translates reciprocating linear piston motion into rotation). Hence, expressing

the period of such tasks in time depends also on the engine speed. For instance, for a 6

cylinder system, a task that should be activated each 120°crank has got a recurrence of

3.3ms at 6000rpm and 13.33ms at 1500rpm (engine-synchronous tasks are hence periodic

tasks in the angular base and aperiodic tasks in the classic time base). This variable aspect of

recurrence should be taken into account by scheduling analysis tools:

� Analysis tools should allow specifying periodic, sporadic and singular activation [REQ7]

� Analysis tools should allow describing and analyzing system with engine-synchronous tasks

[REQ8]

Distributed architecture. In conventional automotive system design, a function may be

distributed over many ECUs (Electronic Control Units) into a network that may even use

multiple protocols. Most used protocols are CAN, LIN and FlexRay [37]. For such

58

Methodology for Model-based Timing Analysis Process

distributed functions, it is important to guarantee end-to-end response times. In addition, in

such complex architectures, optimization of network resource consumption and message

scheduling requires knowledge of the impact of network properties such as network

overheads and driver overheads, and of different communication protocols. Consequently,

scheduling analysis tools have to satisfy the following requirements:

� Analysis tools should allow easy description of distributed systems with multiple ECUs and

communication buses [REQ9]

� Analysis tools should have techniques to analyze multiprocessor systems [REQ10]

� Analysis tools should have techniques for CAN, LIN and FlexRay [REQ11]

� Analysis tools should allow taking into account processor overheads (basically context switch

overhead) and network overhead (network driver overheads) [REQ12]

Task concurrency and dependency. In automotive systems, tasks may be dependent. This

dependency results basically from task chaining which means that a task is activated by

another task. Automotive tasks may also have activation offsets. For engine synchronous

tasks, their offsets vary also with the engine speed.

 Concerning the concurrency issue, in automotive design, although tasks are concurrent,

different tasks may have the same priority level. As most automotive applications are based

on OSEK [38], these tasks are scheduled using the FIFO algorithm (First In First out) as a

second scheduling protocol. Moreover, automotive tasks are of three kinds: preemptive

tasks, cooperative tasks and interrupts. The execution of cooperative tasks can be

interrupted by higher priority cooperative tasks only at predefined points called schedule

points. Figure 7, shows an example of a system with preemptive and cooperative tasks. Task

T1 is a preemptive task having the highest priority, task T2 and T3 are both cooperative

tasks, T2 has got higher priority than T3. As the figure shows, T2 waits until the schedule

point of T3 to start executing, while T1, being preemptive, interrupts T2 before its schedule

point.

59

Methodology for Model-based Timing Analysis Process

Figure 7 Preemptive and Cooperative Tasks

To enable an accurate scheduling analysis, analysis tools have to support the description and

analysis of such a task model and hence:

� Analysis tools should allow describing task dependency resulting from task chaining

[REQ13]

� Analysis tools should allow using FIFO as second scheduling algorithm for tasks having the

same priority level [REQ14]

� Analysis tools should allow specifying preemptive, cooperative tasks and interrupts [REQ15]

� Analysis tools should allow describing and analyzing systems with constant and variable

offsets [REQ16]

60

Methodology for Model-based Timing Analysis Process

Table 13: Requirements on scheduling analysis tools

Requirement Description

REQ1 Analysis tools should have techniques to determine the processor utilization

REQ2 Analysis tools should allow specifying task or function deadlines

REQ3
Analysis tools should allow specifying jitters related to the function or task

activation instants

REQ4 Analysis tools should allow specifying end-to-end timing constraints

REQ5
Analysis tools should allow analyzing tasks with deadlines that are less,

equal or greater than their periods

REQ6
Analysis tools should have techniques to verify if end-to-end constraints are

respected

REQ7
Analysis tools should allow specifying periodic, sporadic and singular

activation

REQ8
Analysis tools should allow describing and analyzing system with engine-

synchronous tasks

REQ9
Analysis tools should allow easy description of distributed systems with

multiple ECUs and communication buses

REQ10 Analysis tools should have techniques to analyze multiprocessor systems

REQ11 Analysis tools should have techniques for CAN, LIN and FlexRay

REQ12

Analysis tools should allow taking into account processor overheads

(basically context switch overhead) and network overhead (network driver

overheads)

REQ13
Analysis tools should allow describing task dependency resulting from task

chaining

REQ14
Analysis tools should allow using FIFO as second scheduling algorithm for

tasks having the same priority level

REQ15
Analysis tools should allow specifying preemptive, cooperative tasks and

interrupts

REQ16
Analysis tools should allow describing and analyzing systems with constant

and variable offsets

61

Methodology for Model-based Timing Analysis Process

3.3.2. Scheduling Analysis Tools Capabilities

In this section, we consider the aforementioned scheduling analysis tools, MAST, Cheddar,

Rapid-RMA, Chronval and SymTA/S. Table 14 summarizes the coverage provided by these

tools with regard to the requirements described above. Full explanations are given in

subsequent paragraphs.

REQ1: MAST allows the designer evaluating his processor or network performance by

calculating either its global utilization or a more limited scenario such as utilization by

context and interrupt switch activities. The tool likewise enables him to see to what extent

operations executed on the processing resource are schedulable. This entails calculation of

processor or network slack, i.e. the percentage increase in execution times that is compatible

with keeping the system schedulable.

Cheddar allows performing certain feasibility tests based on calculation of the processor

utilization factor [21]. Depending on the resulting factor, the tool tells the user whether a

task set will be schedulable or not. Cheddar does not calculate processor or network slack.

Rapid-RMA allows calculating the processor utilization for periodic and aperiodic tasks. In

addition to quantitative results, it displays also a graphic showing the utilization of the

processor by each kind of tasks and the unused percentage of the processor capacity.

Chronval does not calculate a value showing the global utilization of the processor by the

different tasks. However, through a graph called “event spectrum viewer”, it is possible to

visualize the variation of the available and the remaining processor capacity for each task.

For each processor, SymTA/S calculates its global utilization but also elementary utilization

for each task. This kind of result is interesting, it allows the designer identifying the tasks

having the biggest load and hence the possible changes in case of overloaded processor.

REQ2: MAST defines the concept of operation that represents a piece of code or the sending

of a message. The tool allows specifying timing constraints on operations through the

concept of timing requirement. The latter can be specified on the output event of an activity

(represents the execution of an operation). A timing requirement may be a deadline or a

maximum jitter imposed on the generation instant of the output event of an activity. MAST

supports both hard and soft deadlines. Cheddar and Rapid-RMA support this feature

differently by allowing specification of deadlines on tasks themselves.

62

Methodology for Model-based Timing Analysis Process

To describe task deadlines, Chronval allows assigning a timing requirement to a task. This

requirement allows specifying a bound on the delay between the activation event of the task

and its termination event. SymTA/S, itself, allows specifying a max response time for each

task.

REQ3: MAST defines the concept of external event that serves to trigger the execution of a

flow of activities (transaction). The tool allows specifying a maximum jitter on the arrival

time of an external event but this is only possible for periodic events. Cheddar supports this

feature by allowing specifying a maximum lateness on task wake up time through the

concept jitter.

Rapid-RMA does not allow specifying jitter bounds for the activation instants of aperiodic

tasks

To describe the activation of a task, Chronval uses the concept of source. A source is an

element that is connected to a task to describe its activation patterns such as its period (or

minimum inter-arrival time) and its activation jitter. This feature is also supported by

SymTA/S that allows specifying a jitter value for periodic, sporadic and pattern tasks [59].

REQ4: MAST meets this requirement by allowing the specification of a deadline on the

generation instant of the output event of an execution flow of activities (transaction) with

reference to the external triggering event. Contrarily to MAST, specifying end-to-end

constraints is supported neither by Cheddar nor by Rapid-RMA.

In Chronval, specifying end-to-end timing constraints is also supported through the concept

of requirement. To specify an end-to-end constraint on a flow of tasks, one can specify a

requirement between the activation event of the first task and the termination event of the

last task in the flow.

SymTA/S uses a similar approach, specifying end-to-end timing constraints is supported

through the concept of path in SymTA/S. A path represents a flow of tasks or runnables

executing successively and communicating variables. SymTA/S gives the possibility to

specify a max response time for the path.

REQ5: Except Rapid-RMA that requires task deadlines to be equal to task periods, all of the

other tools allow specifying and analyzing tasks with deadlines that are less, equal or greater

than their periods.

63

Methodology for Model-based Timing Analysis Process

REQ6: MAST allows calculating the response time of the output event of a transaction and

compares this with end-to-end constraints imposed on the system. Cheddar allows

calculating end-to-end response times based on the holistic approach defined by Tindell for

distributed systems in [39]. These end-to-end response times include message transmission

delay and buffer memorization delay.

Rapid-RMA, itself, has no means to verify end-to-end constraints involving more than one

task.

As for deadlines, Chronval calculates end-to-end response times and compares them with

end-to-end requirements. SymTA/S uses the same approach by calculating the response

time for each path and comparing it with path max response time. In SymTA/S, a path

response time is the sum of the response times of the tasks involved in the path and the

sampling delays.

REQ7: Triggering patterns are captured in MAST through external events that activate

transaction execution. MAST external events may be periodic, singular, sporadic,

unbounded or bursty.

In Cheddar, there is no distinction between a task and its triggering. Cheddar does not, in

fact, consider triggering events but rather focus on tasks themselves. In Cheddar tasks may

be periodic, aperiodic, sporadic, etc [40]. Cheddar also makes it possible for the designer to

specify new activation patterns (User-defined activation pattern) without modifying the

implementation of the tool [40]. This same facility is provided by MAST, but the tool

implementation should be modified (As it is an open-source tool)

Rapid-RMA and SymTA/S use the same approach as Cheddar, allowing hence specifying

the activation pattern of a task without having recourse to event concept. Rapid-RMA

allows specifying periodic and aperiodic tasks. SymTA/S, itself, allows describing sporadic

and periodic tasks that may have activation jitters. Singular tasks are described through the

aperiodic pattern in Rapid-RMA; this kind of tasks cannot be described in SymTA/S.

Chronval uses the notion of source to describe the activation of a task. Chronval sources

allow describing periodic, sporadic and singular tasks.

REQ8: As mentioned previously, engine-synchronous task periods and deadlines vary

depending on the engine speed. This means that for a fixed engine speed, these tasks can be

considered as purely periodic tasks with constant deadlines. Hence to be able to analyze a

64

Methodology for Model-based Timing Analysis Process

system with such kind of tasks, using the studied tools, we need to perform the analysis for a

fixed engine speed. This is due to the fact that all of the studied tools consider only one

timing base in which task parameter values can be expressed (period, deadlines, etc).

However this is very limiting due to the fact that a worst-case response time determined for

a particular speed is not necessarily valid for other engine speeds. To solve this problem,

SymTA/S gives the possibility to perform analysis for variable engine speed. This is done

based on a scripting support that allows expressing the parameters of these tasks as a

function of engine speed and then incrementing the engine speed and performing the

analysis for each speed. Compared with other tools, this approach is quite interesting as it

allows determining worst case response times for different engine speeds. However, a special

care should be taken when choosing the incrementation step of the speed. In fact a large step

enables a fast analysis but many transitory speeds are missed. Choosing a small

incrementation step allows covering more transitory speeds but the analysis takes much

more time.

REQ9 & REQ10: All of the studied tools allow describing and analyzing distributed

systems. In addition, all of them implement scheduling techniques for multiprocessor

systems.

MAST enables description of the networks involved in a system being analyzed through the

concept of Packet Based Network. It represents a network that uses some kind of real time

protocol based on non-preemptible packets for sending messages [41]. MAST supports the

following transmission kinds: Simplex, Half duplex and Full duplex (see [41] for more

details about these transmission kinds).

Cheddar is designed to perform scheduling simulation of message-sharing applications

distributed on several processors. It allows specifying networks with three kinds of

communication protocols (bounded delay, jitter delay and parametric delay) [32].

Rapid-RMA allows describing and analyzing distributed systems through the multiple node

analysis. The tool allows describing the buses used for the communication in the system

under analysis as well as the time overheads associated to the access to these communication

media. However, the tool gives no means to describe the bus properties such as the

communication protocol used.

SymTA/S and Chronval also allow describing and analyzing systems with multiple ECUs

and communication buses.

65

Methodology for Model-based Timing Analysis Process

REQ11: Except SymTA/S which allows describing and analyzing systems with CAN and

Flexray buses, none of the other tools have analysis techniques dedicated for these buses.

LIN bus is not supported by any of the studied tools.

REQ12: MAST has means for independent description of overheads for both processor and

network. In fact, it allows specifying either worst, best or average context switch overhead

when describing system processors. For networks, MAST allows specifying packet

overheads that represent the overheads associated with sending each packet because of the

protocol messages or headers that need to be sent before or after each packet.

Cheddar and SymTA/S, on the other hand, allow specifying the context switch overhead

value associated to the activation of each task, but no network overheads may be described

in these tools.

Rapid-RMA allows taking into account time overheads associated with the acquisition or the

release of a resource such as a memory or a bus. For processors, the tool allows specifying

the context switch rate, which is the amount of time the CPU takes to change from

executing one task to another.

Chronval, itself, does not give any means to describe processor or network overheads.

REQ13: Unlike MAST and Rapid-RMA, SymTA/S, Cheddar and Chronval allow specifying

task chaining. In Chronval, each task has got a “connection” field. In this field, it is possible

to describe an activation source for the task or to specify that this task is activated by

another task. For each SymTA/S task, it is possible to describe a “caller” that represents

another task that activates it.

REQ14: All of the studied tools allow specifying tasks with the same priority. However,

only SymTA/S and Cheddar give the possibility to use FIFO as second scheduling

algorithm for these tasks.

REQ15: Systems having preemptive and cooperative tasks as well as interrupts can be

described and analyzed by SymTA/S, Chronval and rapid-RMA. All of them allow

describing non-preemptible sections for each cooperative task. This feature is supported

neither by MAST nor by Cheddar as both of them consider only a fully preemptive system

that may have interrupts.

REQ16: All studied tools allow describing and analyzing tasks with static offsets. Variable

offsets are not supported by these tools. However, for engine-synchronous task offsets which

66

Methodology for Model-based Timing Analysis Process

depend on the engine speed, the scripting support of SymTA/S can be used to analyze

systems having such offsets.

Table 14 Scheduling analysis tools capabilities

Requirements

The requirement is satisfied by the tool

MAST Cheddar
Rapid-

RMA
SymTA/S Chronval

REQ1 Yes Yes Yes Yes No

REQ2 Yes Yes Yes Yes Yes

REQ3 Yes Yes No Yes Yes

REQ4 Yes No No Yes Yes

REQ5 Yes Yes No Yes Yes

REQ7 Yes Yes Yes

No

(no singular

activation)

Yes

REQ8 No No No Yes No

REQ9 Yes Yes Yes Yes Yes

REQ10 Yes Yes Yes Yes Yes

REQ11 No No No

Yes (for

CAN and

Flexray)

No

REQ12 Yes Yes Yes Yes No

REQ13 No Yes No Yes Yes

REQ14 No Yes No Yes No

REQ15 No No Yes Yes Yes

REQ16 No (no

variable

offsets)

No (no

variable

offsets)

No (no

variable

offsets)

Yes

No (no

variable

offsets)

Covered features/uncovered

features
10/6 11/5 8/8 15/1 10/6

3.4. Conclusion and Approach Directions

In our approach, we propose to align our model-based development process with the EAST-

ADL/AUTOSAR modeling process. This choice is due to fact that this process gives a good

support to model automotive architecture from an abstract functional description until a

detailed implementation. In addition this choice is motivated by the fact that Continental

supports the use of EAST-ADL and AUTOSAR (as mentioned at the end of the first section

67

Methodology for Model-based Timing Analysis Process

of this part). However, the EAST-ADL/AUTOSAR process presents only the abstraction

levels and modeling concepts that can be used at each level. It gives guidance neither about

how models can be developed (e.g. which modeling diagrams to use) nor about how these

models can be refined from one level to another. For these reasons, our methodology needs

to enrich this process with guidance for model development, transformation and refinement

as well as the views to be developed at each level to obtain a complete analyzable model.

Based on the evaluation of the expressivity of the different modeling languages (see section

3.2.2), we can conclude that MARTE and AUTOSAR are the most expressive languages to

enable scheduling analysis-aware modeling. In fact, both of them give all the necessary

means to develop an analyzable model and perform scheduling analysis. Hence, there are

two possibilities to integrate scheduling analysis in the chosen EAST-ADL/AUTOSAR

process:

1) The first possibility is to perform scheduling analysis at the design level of the

process by completing EAST-ADL models with MARTE concepts to get an

analyzable model and hence perform complete scheduling analysis as described in

[45]. In [45], we show how to complete EAST-ADL models using MARTE

concepts to describe software (e.g. OS tasks) and hardware resources (e.g. ECUs) as

well as the allocation of functions to OS tasks and the allocation of OS tasks to

hardware resources. Based on the developed model, we show how to perform

scheduling analysis using the scheduling analysis tool MAST. This is done based on

an automatic transformation of EAST-ADL/MARTE models to a MAST model as

described in [60].

2) The second possibility is to perform scheduling analysis at the implementation level

based only on AUTOSAR concepts (as AUTOSAR gives all the necessary

information to develop an analyzable model).

As we aim at defining a seamless and coherent timing analysis process, it is not possible to

perform scheduling analysis both at the design and the implementation level. To avoid the

redundancy of timing analysis between the design and the implementation level, we decided

to perform scheduling analysis only at the implementation level (based on AUTOSAR

concepts) and to complete this by a more “abstract” timing analysis at the analysis and

design levels (this “abstract” analysis will be described with more details in the next

68

Methodology for Model-based Timing Analysis Process

paragraphs). This choice is also motivated by the fact that Continental supports the use of

AUTOSAR.

Starting timing verification at the implementation level is, however, quite late. In our

approach, we suggest then to start earlier, at the analysis level. We believe that this is the

earliest level against which timing verification can be performed. In fact, the EAST-ADL

Feature level is rather dedicated to capture vehicle features with product line description,

without the details needed to perform any relevant timing analysis (e.g., it offers no

descriptions of the internal architecture of the vehicle functions). Our model-based timing

analysis process thus consists of the following three usual phases: Analysis phase, Design

phase and Implementation phase. The timing verification performed during analysis and

design phases is a sort of “abstract analysis” that sets for a preparatory work for the

scheduling analysis activity that will be performed during the implementation phase. We

call thus the verification activity during these phases (analysis and design phases) “timing

analysis” rather than scheduling analysis.

During analysis and design phases, we propose to determine time budgets to be allocated to

the system under design and to its sub-functions to ensure compliance with the input timing

requirements during each phase. To determine such budgets, we propose to complement the

EAST-ADL structural views with timing views that we will annotate using TADL

concepts. The time budgets determined during each phase will be used as input for the

timing analysis performed during the next phase.

As we start capturing the hardware entities at the design level, we propose also to start

evaluating hardware resource capacities at this level. To do so, an “abstract” model for

allocation of functional elements to hardware resources should be developed (by abstracting

software resources such as OS tasks). As this allocation model aims to represent only the

allocation of functional elements to hardware resources (without involving OS tasks), this

model can be developed using only EAST-ADL concepts for allocation modeling. This way,

based on the EAST-ADL allocation model, a scheduling analysis tool can be used to evaluate

the load of each processing resource by calculating its utilization. This analysis can also be

performed based on a model that combines EAST-ADL concepts for functional and

hardware modeling and MARTE concepts for allocation modeling similarly to the approach

described in [45]. The advantage of the second alternative is the possibility to use the

automatic transformations that are already implemented [60] to transform MARTE models

to a scheduling analysis tool model. In our methodology, we choose this latter alternative

69

Methodology for Model-based Timing Analysis Process

(combining EAST-DL and MARTE concepts) as using MARTE automatic transformations

would enable us reducing the time required to perform the needed timing analysis

(processor load evaluation)

From a tool support point of view, the evaluation work performed for the scheduling

analysis tools show that many of the automotive needs are met by some of the evaluated

tools (which proves the usability of scheduling analysis to perform timing verification for

automotive systems). However, SymTA/S seems to be the most complete and the most

convenient for automotive systems. Hence, in our approach, we propose to use this tool to

perform scheduling analysis during the implementation phase. Nevertheless, other tools

such as Cheddar or MAST are used in our methodology to evaluate hardware resource

capacities during the design phase based on the calculation of the processor utilization.

70

Methodology for Model-based Timing Analysis Process

Part II: Methodology for Model-

Based Timing Analysis Process
In this part, we present a methodology that describes a model-based timing analysis process.

This process is defined based on available EAST-ADL/AUTOSAR modeling process

presented in the previous part.

This part is composed of four chapters. The first chapter gives a general overview of the

model-based timing analysis process. The second, third and fourth chapters detail the

modeling and timing analysis activities performed respectively during the analysis, design

and implementation phases.

71

Methodology for Model-based Timing Analysis Process

1. Methodology Overview & Process Phases
The methodology presented in this part describes a model-based timing analysis process.

The methodology defines both the modelling process and the timing analysis process.

1. The modelling process describes the models that should be developed in each phase to

enable a particular timing analysis. It shows how these models are refined from one

phase to another and how timing models are derived from architecture models. It also

describes the modelling views needed for every analysis type.

2. The timing analysis process describes the kind of analysis to be performed during each

phase and how analysis results can be used for the next phase. It also indicates which

tool can be used to perform each kind of analysis.

Throughout the remainder of this part, the vehicle function developed using the proposed

methodology is referred to as the "sub-system" (as it represents a part/sub-system of the

vehicle itself).

As already stated previously, our process entails three phases. Each of them comprises, two

activities, i.e. development of the analyzable model for the sub-system, and performance of

timing analysis based on this model. The next paragraphs give a brief description of these

analyzable model development and the timing analysis activities. Figure 8 shows a general

overview of the timing analysis and modelling activity for each phase of the process.

Chapters 2, 3 and 4 provide more details on the architecture model developed at each stage.

� Analysis phase

During this phase, a functional architecture view is developed based on EAST-ADL

concepts for functional modelling. This view depicts the sub-system under development in

its vehicle environment. Based on this view, a second view called timing view is derived to

enable the timing analysis of this phase. The timing analysis performed during this phase

aims to verify correct integration of the sub-system into the vehicle in terms of timing

compatibility. The designer has a set of vehicle end-to-end requirements that involve the

sub-system being designed and the other vehicle functions/sub-systems that interact with it

(a detailed explanation of these requirements is given in the next paragraphs). For each

vehicle end-to-end requirement, the designer determines a time budget to be allocated to the

sub-system, to ensure compliance with this requirement. Each sub-system time budget

determined during the analysis phase serves as a constraint for the next phase – design.

72

Methodology for Model-based Timing Analysis Process

� Design phase

During this phase, the functional breakdown of the sub-system is modelled by detailing the

functional blocks that constitute it. The hardware resources used by the sub-system are also

modelled during this phase. The designer performs, hence, two kinds of timing analysis. The

first consists in refining the time budgets allocated to the sub-system during the analysis

phase. Based on the sub-system time budgets determined at analysis level for each vehicle

end-to-end requirement, the designer determines the time budgets to be allocated to each

functional block. S/he thus continues complying with vehicle end-to-end requirements as

sub-system architecture is refined. Each functional block time budget represents a timing

constraint that has to be met during the implementation phase.

The second timing analysis of this phase explores the hardware architecture to identify the

best target hardware platform, while suitably allocating functional blocks to hardware

resources. Our approach relies on empirical exploration to conduct the analysis. The latter is

performed on the basis of a scenario for allocating functional blocks to the chosen ECUs,

after evaluation of the utilization of each ECU. Note that during this phase, we do not take

into consideration OS tasks but limit analysis to the functional model, the hardware platform

and the allocation of functional blocks to ECUs. Based on the obtained ECU utilization

values, the designer determines the best allocation scenario. This scenario subsequently

serves as a constraint for refining the allocation model in the implementation phase.

� Implementation phase

During this phase, a complete model of the software and hardware architecture of the sub-

system is developed by further refining the models and the timing results of the design

phase. The complete model contains all the information required to perform a complete

scheduling analysis (application, hardware and software resources, allocation, etc.).

73

Methodology for Model-based Timing Analysis Process

Figure 8 General overview of the model-based timing analysis process

2. Analysis Phase

2.1. Analysis Objectives and required Analyzable Model

2.1.1. Timing Analysis Objectives

 The timing analysis of this phase consists in determining a set of time budgets for the

sub-system under development. These time budgets are determined with respect to a set of

vehicle end-to-end requirements that the designer should respect.

Time budget

A time budget represents a constraint on the response time of the sub-system. It represents

a deadline that we allocate to the sub-system to ensure compliance with a vehicle en-to-end

requirement.

Vehicle end-to-end requirement

74

Methodology for Model-based Timing Analysis Process

A vehicle end-to-end requirement is a requirement that impose a maximum delay on a flow

formed by several vehicle sub-systems including the sub-system under development. To

explain more the concept of vehicle end-to-end requirement, let’s consider the example of

the cruise control sub-system of Figure 9a. The cruise control is used to maintain vehicle

speed to a speed set point desired by the driver. Based on driver requests that are acquired

through a switch sensor, the cruise control performs the desired action (e.g. calculate speed

set point, increase/ decrease set point, etc) and then sends a torque request to the torque set

point sub-system to maintain the vehicle speed to the speed set point. The cruise control

communicates also with the brake controller sub-system that informs him about the braking

pedal status.

Figure 9a Example of the cruise control

An example of a vehicle end-to-end requirement is the following: “When the driver

depresses the braking pedal, cruise control should be deactivated within 300ms”. This

requirement imposes a maximum delay on the execution flow starting from the depressing

of the braking pedal until the cruise control sends an output (null torque request) to the

torque set point sub-system (cf. figure 9b)

75

Methodology for Model-based Timing Analysis Process

Figure 9b Example of the cruise control

2.1.2. Analyzable Model Minimum Features

To be able to determine the time budgets to be allocated to the sub-system under

development, the model developed should contain the minimum information enabling such

analysis. We organize this information in two categories: the vehicle functional architecture

and the vehicle timing architecture

� Vehicle functional architecture: It should represent the functional decomposition of

the vehicle by showing the vehicle sub-systems (including the sub-system under

development) and their interactions.

� Vehicle timing architecture: It represents a set of end-to-end flows formed by the

vehicle sub-systems (including the sub-system under development). These end-to-end

flows should be annotated with the vehicle end-to-end requirements that should be

respected in this phase.

In the next section, we present the development of the minimum analyzable model in our

methodology by annotating some UML diagrams with EAST-ADL and TADL concepts.

76

Methodology for Model-based Timing Analysis Process

2.2. Solutions for Analyzable Model and Timing Analysis

In this section, we present the solution of our methodology to develop the minimum

analyzable model and the heuristics for the timing analysis in this phase.

2.2.1. Development of Analyzable Model

To develop the analyzable model that contains the minimum information presented in 2.1.2,

we develop the following views: "analysis functional view" and "analysis timing view". The

term "analysis", as used here, refers to the analysis phase. Figure 9c gives an overview of

these two views.

� Analysis Functional View: This view represents the features of the vehicle functional

architecture presented previously (cf. section 2.1.2). To model this view, we use EAST-

ADL concepts for functional modelling and UML composite structure diagrams to

tangibly represent said concepts. The vehicle is modelled as a white box that shows its

functions/sub-systems, including the sub-system under development and the latter's

interaction with other vehicle functions. Note that the sub-system is depicted here as a

black box. To develop this view, we use an UML editor that implements an UML profile

for EAST-ADL, this enables us using UML diagrams and annotating them with EAST-

ADL concepts. The following guidelines should be respected to develop this view:

� The vehicle should be modelled as an UML class (container)

� Each vehicle sub-system (including the sub-system under development) should be

modelled as an UML property and stereotyped with “AnalysisFunctionType” from

EAST-ADL

� Each vehicle element representing a sensor or an actuator should be modelled as

an UML property and stereotyped with “FunctionalDevice” from EAST-ADL.

� The interaction between vehicle elements should be modelled by UML

connectors and stereotyped with “FunctionConnector” from EAST-ADL.

� The communication interface of each element should be modelled as an UML

port and stereotyped with “FlowPort” from EAST-ADL.

� Analysis Timing View: This view represents the features of the vehicle timing

architecture presented previously (cf. section 2.1.2). To model this view, we use UML

77

Methodology for Model-based Timing Analysis Process

sequence diagrams that we annotate with TADL concepts to model the event chains

(end-to-end flows) and annotate them with TADL constraints. At the end of the next

chapter, a paragraph explains how this timing view is developed using sequences

diagrams and TADL concepts. To develop this view, the following guidelines should be

respected:

� Each flow of sub-systems should be modelled as a UML interaction and

stereotyped with “EventChain” form TADL.

� Each sub-system involved in the flow should be modelled as a lifeline with an

action execution specification. The action execution specification should be

stereotyped with “EventChain” and specified as an “EventChainSegment” for the

whole UML interaction.

� Each message should be stereotyped with “Eventchain” from TADL and

“DataMessage” (this concept will be detailed in the next section)

� Each vehicle-end-to-end requirement should be specified as a TADL

“ReactionConstraint” for the whole UML interaction.

Figure 9a Analyzable model overview of the analysis phase

2.2.2. Determination of sub-system time budgets

2.2.2.1. Introduction

For each vehicle end-to-end requirement, the designer determines a time budget to be

allocated to the sub-system ensuring compliance with this requirement. Time budgets can

be determined using a tool whose input is the timing view of the analyzable model and

whose output is a time budget for each specified end-to-end requirement. This operation can

78

Methodology for Model-based Timing Analysis Process

also be performed manually based on designer expertise (to facilitate the process, we assume

here that the time budgets for the other vehicle functions/subsystems are already known). In our

methodology, we also suppose that for each vehicle end-to-end requirement, we obtain exactly one

time budget for the sub-system.

Once timing analysis is completed, the designer possesses a set of sub-system time budgets

that ensure compliance with the vehicle end-to-end requirements. Such time budgets are the

input constraints that the designer needs to consider when refining sub-system architecture

at the design stage. Each time budget namely represents an internal end-to-end constraint

that should be satisfied when describing the sub-system functional blocks at design level.

2.2.2.2. Sub-system Time Budgets

To determine sub-system time budgets, the designer has a set of vehicle end-to-end

requirements that involve several vehicle sub-systems/functions including the sub-system

under development. These vehicle sub-systems communicate together through exchanging

data. Let’s consider the example shown by Figure 10. The considered sub-system

communicates with five functions within the vehicle as shown in the figure (For the clarity

of the models, we do not show the EAST-ADL stereotypes in the following figures, however

detailed models are shown in the examples presented in the next part of this manuscript).

Figure 10: example of a sub-system functional analysis view

Let’s consider the following vehicle end-to-end requirement that we call Req: “From the

activation of “function 1” until the termination of “function 4”, the duration should not exceed

79

Methodology for Model-based Timing Analysis Process

100ms”. Figure 11 shows the flow of vehicle functions involved in this vehicle end-to-end

requirement (function 1, sub-system, function 4)

Figure 11: Flow of vehicle functions involved in Req

Let’s suppose that the time budget of “function 1” is 20ms and the time budget of “function

4” is 50ms. Thus, the time budget that should be allocated to the sub-system for compliance

with this vehicle end-to-end requirement is 30ms (let’s call it TB). This time budget means

that from the reception of “data 2” by the sub-system until the production of “data 3”, the

duration should not exceed 30ms. Let’s call each flow within the sub-system (i.e., from the

reception of an input data by the sub-system until the production of an output data) “sub-

system internal flow”. Hence, the time budget TB imposes a constraint on the delay of the

sub-system internal flow “reception of data 2-production of data 3”.

A particular use case should be considered when determining sub-system time budgets. Let’s

consider the following two vehicle end-to-end requirements:

• Req 1: From the activation of “function 2” to the termination of function 5, the duration

should not exceed 200 ms.

• Req 2: From the activation of “function 3” to the termination of “function 5”, the duration

should not exceed 150 ms.

80

Methodology for Model-based Timing Analysis Process

Figure 12 shows the flow of vehicle functions involved in each vehicle end-to-end

requirement (the broken line depicts the flow of functions involved in Req 1 and the solid

line represents the flow corresponding to Req 2)

Figure 12: flow of vehicle functions involved in Req1 and Req 2

As stated earlier, for each vehicle end-to-end requirement, we determine a sub-system time

budget that allows respecting this vehicle end-to-end requirement. Hence, in our case, we

determine two time budgets (let’s call them TB 1 and TB 2) for the sub-system. However, as

the figures show, our sub-system acquires “Data 6” from both “function 2” and “function 3”.

This means that both TB1 and TB2 impose a constraint on the same sub-system internal

flow (reception of “data 6”-production of “data 8”). In this case, we should decide which time

budget to keep for the remaining of the work. Two cases should be considered based on the

operating mode of the sub-system (an operating mode corresponds to a particular state of the sub-

system depending on the interaction of the sub-ystem with its environment. For example, depending on

the detection of a failure, the sub-system can be in a failure mode or in a nominal mode (without

failure)).

• Case 1: if each time budget corresponds to a different sub-system operating mode

(e.g. one time budget correspond to the activation mode of the sub-system and the

81

Methodology for Model-based Timing Analysis Process

other one to its deactivation mode), then the two time budgets should be kept and the

analysis performed during next steps should consider each operating mode

separately.

• Case 2: if the two time budgets correspond to the same sub-system operating mode,

then we keep only the smallest time budget and the further analysis should be

performed considering only this time budget.

3. Design Phase

During the design phase, the system architecture model obtained in the analysis phase is

further refined and two timing analysis activities are carried out. The first consists of

refining the sub-system time budgets determined at analysis level. The second is an

exploration of the hardware architecture based on an evaluation of processor utilization for

each functional-block-to-ECU allocation scenario. To evaluate this utilization, the designer

should have previously estimated the execution times required for each functional block.

3.1. Refinement of Sub-system Time Budgets

Refining the sub-system time budgets determined during the analysis phase means

evaluating the time budgets to be allocated to the functional blocks so that vehicle end-to-

end requirements are still met after design-phase refinement of sub-system functional

architecture. To determine the functional block time budgets, the same approach is used as

for the analysis phase. This requires first developing an analyzable model that contain the

minimum information for such analysis.

3.1.1. Analyzable Model

3.1.1.1. Analyzable Model Minimum Features

We organize the features of the minimum analyzable model in two categories: the sub-

system functional architecture and the sub-system timing architecture.

� Sub-system functional architecture: It should represent the functional decomposition

of the sub-system by showing the functional blocks that compose it and their

interactions.

82

Methodology for Model-based Timing Analysis Process

� Sub-system timing architecture: It represents a set of end-to-end flows formed by the

sub-system functional blocks. These end-to-end flows should be annotated with the sub-

system time budgets that have been determined in the previous phase- analysis.

3.1.1.2. Solution for the Analyzable Model

To represent the minimum features of the analyzable model, we develop two views, a

functional view ("design functional view") and a timing view ("design timing view"). Note

that the term "design" in these views and the following discussion refers to the design phase.

� Design Functional View: This view represents the features of the sub-system

functional architecture mentioned previously (cf. 3.1.1.1). It refines the Analysis

functional view of the analysis phase. The sub-system modelled as a black box during the

analysis phase is therefore depicted here as a white box showing the functional blocks

and the interactions between them. This view is also developed using EAST-ADL

concepts for functional modelling, and UML composite structure diagrams. To develop

this view, the following guidelines should be respected:

� The Sub-system should be modelled as an UML container class and

stereotypes with “DesignFunctionType” from EAST-ADL.

� Each functional block should be modelled as an UML property and

stereotyped with “DesignFunctionPrototye”.

� The interaction between the functional blocks should be modelled by UML

connectors and stereotyped with “FunctionConnector” from EAST-ADL.

� The communication interface of each element should be modelled as an UML

port and stereotyped with “FlowPort” from EAST-ADL.

� Design Timing View: This view represents the features of the sub-system timing

architecture presented previously (cf. 3.1.1.1). It refines the analysis timing view of the

analysis phase. It depicts a set of flows formed by the functional blocks making up the

sub-system. For each sub-system time budget determined during the analysis phase, we

model an end-to-end flow containing the functional blocks concerned by the budget. For

example, if we determine a time budget to be allocated to the sub-system during its

activation, we model an end-to-end flow of sub-system functional blocks that participate

in sub-system activation and we specify said budget as an end-to-end constraint on this

83

Methodology for Model-based Timing Analysis Process

flow. In the same way as for the analysis phase, this view is modelled using UML

sequence diagrams annotated with TADL concepts to model event chains and timing

constraints. At the end of this chapter, a paragraph explains how this view and the

timing view of the analysis level are developed using sequence diagrams and how these

views are derived from functional views. The following guidelines should be respected to

develop this view:

� Each flow of functional block should be modelled as an UML interaction and

stereotyped with “EventChain” form TADL.

� Each functional block involved in the flow should be modelled as a lifeline with

an action execution specification. The action execution specification should be

stereotyped with “EventChain” and specified as an “EventChainSegment” for the

whole interaction.

� Each message should be stereotyped with “Eventchain” from TADL and

“DataMessage” (this concept will be detailed in the next section)

� Each sub-system time budget determined in the previous phase should be

specified as a “ReactionConstraint” from TADL for the whole UML interaction.

3.1.2. Determination of Time Budgets for Functional Blocks

For each sub-system time budget (modelled as an end-to-end constraint in the design timing

view), the designer determines a time budget to be allocated to each functional block to

satisfy the constraint. Distribution of the time budgets to the functional blocks is based on

the expertise of the designer and the nature of each functional block. For example, a

functional block performing a simple signal transformation will have a small time budget.

One performing complex processing that requires much more time will then have a larger

time budget. Budget allocation should take place in such a way that the overall time budget

determined for the sub-system is likewise met. After this timing analysis, the designer

possesses a number of time budgets for each functional block. Each such functional block

time budget corresponds to a different sub-system operating mode and should be met during

said operating mode (e.g. a function that participates in sub-system activation and failure

detection will have a time budget for each of these operating modes). The functional block

time budgets determined during this phase are used during the implementation phase, after

the system functional architecture is transformed into a software architecture with software

84

Methodology for Model-based Timing Analysis Process

components and runnable entities. These time budgets are then refined to determine the

time budgets to be allocated to the runnable entities or to end-to-end flows formed by a

number of communicating runnable entities, etc. The latter represent input constraints for

the scheduling analysis activity performed at the implementation stage.

Figure 13 shows an overview of the model development and the timing analysis of the

design phase that refines the models and the timing results of the previous phase –analysis.

Figure 13 model and timing results refinement from analysis to design phase

3.2. Performance of Hardware Architecture Exploration

At this stage, we assume that the hardware platform to be used by the sub-system has been

already chosen (this is done to comply with the current automotive development process, in

which new sub-systems are integrated into a vehicle for which there is a pre-existing

software and hardware resource platform). The analysis performed here is thus geared to

ensuring correct integration of the sub-system with other vehicle functions in terms of

requested processor load. Based on a functional block-to-available ECU allocation scenario,

the designer evaluates the load requested by the sub-system for each processor. This allows

him to determine the allocation scenario that best satisfies any constraints s/he might have

with regard to processor utilization. Once the analysis results are known, the designer

decides whether to distribute functional blocks over many ECUs or to allocate them to the

85

Methodology for Model-based Timing Analysis Process

same ECU and which functions can be so allocated. To perform this evaluation, it is

necessary to develop an analyzable model that contains the minimum information necessary

for this analysis.

3.2.1. Development of an Analyzable Model

3.2.1.1. Analyzable model minimum features

In scheduling analysis, to evaluate the utilization of a processor, one needs to specify:

� The executing processors

� The executable entities on these processors and their execution times and activation

periods

� The allocation of the executable entities to the processors

 Hence, to perform this evaluation, we organize the minimum information needed for the

analyzable model in three categories:

� Sub-system functional architecture: It represents the functional blocks that

compose the sub-system under development (these functional blocks represent the

executable entities that contend for the use of the executing processors). The

execution time and the activation period of each functional block should be specified.

These parameters can be determined based on designer expertise, measurements or

knowledge of former versions developed for the sub-system.

� Hardware platform: It represents the hardware resources on which the functional

blocks can execute. For our analysis, we don’t need to model the software resources

such as OS tasks.

� Allocation: It represents the allocation of the functional blocks to the hardware

resources. For this analysis, we don’t model the allocation of the functional blocks to

the software resources but we allocate the functional blocks directly to the hardware

resources.

3.2.1.2. Solution for Analyzable Model

To end up with the minimum analyzable model necessary for this analysis, we developed a

modelling framework that combines EAST-ADL and MARTE to model the information

86

Methodology for Model-based Timing Analysis Process

necessary for the analysis. This modelling framework is composed of three views: design

functional view, hardware platform view and allocation view.

� Design Functional View: This view represents the features of the sub-system

functional architecture (It is not different from the view described earlier, in which sub-

system functional blocks are described using EAST-ADL functional modelling

concepts). As also mentioned above, these functional blocks are represented as

“DesignFunctionPrototypes”. These “DesignFunctionPrototypes” are typed by

“DesignFunctionTypes” for which we specify the execution times estimated during the

previous step using the EAST-ADL concept “ExecutionTimeConstraint”. The activation

period of each functional block is specified through the concept “Trigger” of EAST-ADL

(this concept allows describing the activation pattern of an EAST-ADL FunctionType).

The guidelines for the development of this view have been described in 3.1.1.2.

� Hardware Platform View: This view represents the features of the hardware platform

(cf. 3.2.2) In this view, we represent the hardware resources (e.g. ECUs) that are used by

the sub-system. To model the view, we use UML composite structure diagrams. EAST-

ADL concepts for hardware modelling are supplemented here by MARTE concepts for

hardware resource platform modelling. The following guidelines should be respected to

develop this view:

� The hardware platform should be modelled by a UML container class and

stereotyped with “SaResourcePlatform” from MARTE.

� Each execution hardware resource (e.g. ECU) should be modelled by a UML

property and stereotypes with “SaExecHost” from MARTE and “Node” from

EAST-ADL.

� Each Communication hardware resource (e.g. bus) should be modelled by a UML

property and stereotyped with “SaCommHost” from MARTE and “LogicalBus” from

EAST-ADL.

� Allocation View: This view represents the features of the allocation (cf. 3.2.2). In this

view, we use a key concept from MARTE which is “SaAnalysisContext”. This concept

helps to bind the model elements to a particular evaluation scope. The core of the

binding concept is the allocation of functions executed in the scenario of interest, to the

87

Methodology for Model-based Timing Analysis Process

resource platform (Note that during this phase, we abstract the software resource

platform such as OS tasks and allocate functional blocks directly to hardware resources).

Such allocation is carried out by specifying a UML composite diagram stereotyped as

“SaAnalysisContext”. In this way, the composite diagram contains two main parts

representing the sub-system design functional view with the functions to be allocated

and the hardware platform view respectively. To represent the allocation relationships,

MARTE concepts for allocation are used. Functional blocks are stereotyped as

“allocated”. This stereotype allows specifying the resource to which the function is

allocated. A dependency connector is drawn between each function and its hosting

resource and stereotyped as “allocate”. The following guidelines should be respected to

develop this view:

� A UML container class should be modelled and stereotyped with

“SaAnalysisContext” from MARTE.

� The allocation relationships should be modelled with UML dependency

connectors and stereotyped with “allocate” from MARTE.

� Each functional block should be modelled as a UML property and stereotyped

with “allocated” from MARTE.

Figure 13a shows an overview of the analyzable model needed for hardware architecture

exploration.

Figure 13a Overview of the analyzable model for hardware architecture exploration

88

Methodology for Model-based Timing Analysis Process

3.2.2. Evaluation of Processor Loads

3.2.2.1. Principle

Starting from the allocation view of the model, a scheduling analysis tool can follow the

links of the model to extract the information that it needs to perform processor load

evaluation (function execution times, allocation, hardware resource parameters, etc). As the

original aim of scheduling analysis tools is to verify if a task set is schedulable or not, all of

them require specifying the OS tasks involved in the sub-system. However, in our approach,

we abstract the OS task model during this phase, showing only the allocation of functional

blocks to hardware resources. Therefore, to be able to use a scheduling analysis tool for our

purpose, our model should be transformed in an accurate way to obtain the model required

by the tool. Some scheduling analysis tools require a description of the allocation of

functions to OS tasks and the allocation of OS tasks to processing resources. Other tools

require only the allocation of OS tasks to processing resources. In both cases, to be able to

use such tools to analyze our model, each functional block defined in that model should be

transformed into an OS task in the analysis tool model (or into an OS task allocating only

one function). The execution time determined for each functional block should be then

assigned to the defined OS task (or to the function that it allocates). As our goal here is not

to perform complete scheduling analysis, but just to evaluate processor loads (without

timing constraint verification), the choice of the priorities to be assigned to the different

tasks is not important (to calculate processor utilization, one needs to specify only the task

execution times and activation periods without specifying their priorities).

3.2.2.2. Tool Use and Model Transformation

To evaluate processor loads, we claim to use the scheduling analysis tools MAST, cheddar

or SymTA/S (cf. section 3.4. of part I). In this section we show the mapping that should be

performed to transform the analyzable model to a cheddar or MAST model (we encourage

the use of these two tools as they are open source and free, SymTA/S will anyway be used to

perform complete scheduling analysis in the implementation phase). Table 14a and 14b show

respectively the mapping of the elements of the analyzable model to a MAST and Cheddar

model. Note that an automatic transformation is already implemented from MATE models

to MAST in the context of another research work.

89

Methodology for Model-based Timing Analysis Process

Table 14a Mapping of analyzable model elements to Cheddar elements

Analyzable model element Stereotype Cheddar element

Functional Block DesignFunctionprototype,
Allocated

Task

Execution hardware resource Node, SaExecHost Processor

Communication hardware

resource

LogicalBus, saCommHost Network

Functional block execution time ExecutionTimeConstraint Task computation time

Functional block activation

period

Trigger Task period

Allocation relationship Allocated, Allocate Task property called

“processor”

Table 14b Mapping of analyzable model elements to MAST elements

Analyzable model element Stereotype MAST element

Functional Block DesignFunctionprototype,
Allocated

Transaction with only one

activity representing a

Scheduling server hosting

only one Operation

Execution hardware resource Node, SaExecHost Processing resource (regular

processor)

Communication hardware

resource

LogicalBus, SaCommHost Bus (packet based network)

Functional block execution time ExecutionTimeConstraint Operation execution time

Functional block activation

period

Trigger Transaction external event

Allocation relationship Allocated, Allocate Activity parameters for the

specification of the scheduling

server and operation

90

Methodology for Model-based Timing Analysis Process

Using Sequence Diagrams to Represent Timing Views at

Analysis and Design Levels
The objective of this section is to describe how system timing views are represented at

analysis and design levels. As specified in the methodology description, analysis and

design functional views are represented using UML composite structure diagrams

annotated with EAST-ADL concepts for functional modeling. At each level, the aim is

to derive from the functional view a timing view where we can represent the end-to-end

constraints to be satisfied when determining the necessary time budgets.

To represent the timing views, we opted for the use of TADL concepts to represent

constrained end-to-end flows by means of events and event chains. The questions to be

answered are the following:

• How to move from the EAST-ADL/Composite structure diagram model

elements to TADL elements?

• How to represent the TADL timing view using an UML behavioral diagram?

1. From EAST-ADL/composite structure diagram models to TADL

Objective: We have as input a composite structure diagram representing the interaction

between several functions. Some flows formed by these functions are submitted to end-

to-end constraints. We want to represent these flows and their constraints using TADL

events and event chains. How to map the elements of the EAST-ADL/composite

diagram model with TADL events and event chains?

Solution: Each flow of functions will be represented as a TADL event chain. As our aim

is to specify a time budget for each function involved in the end-to-end flow, each arrival

of data on the input port of a function and the production of data in the output port of a

function will be considered as an observable event and modeled as a TADL event.

Consequently, each function involved in the end-to-end flow will be represented as an

event chain segment.

Figure 14 shows an example of an EAST-ADL model developed using UML composite

diagram. The end-to-end flow formed by the functions function_1, function_2 and

function_3 is submitted to an end-to-end constraint as shown in the figure. To derive

the timing view from this model, we identified the observable events (here we

91

Methodology for Model-based Timing Analysis Process

considered that the arrival of data 1 at the input port of the container system and the

arrival of this same data at the input port of function_1 occurs at the same instant so we

considered only one observable event (event 1), we did the same to produce data 4

(delegation delays are neglected))

Figure 14 Observable event in EAST-ADL functional model

Figure 15 shows the deriving of the TADL timing view from the EAST-

ADL/composite structure view

92

Methodology for Model-based Timing Analysis Process

Figure 15 From EAST-ADL functional view to TADL view

2. Representing TADL timing views using sequences diagrams
Now, as we defined how to use TADL concepts to model the timing views, the question

that we should answer is how to represent concretely this timing view?

In our approach, we propose to use UML behavioral diagrams. According to the UML

2.0 specification [7], seven UML diagrams can be used to specify the behavior of a

system: Activity, Sequence, Communication, Interaction Overview, Timing, Use Case

and State Machine diagrams. In this work, the closest diagram to model the required

timing views is sequence diagram. Sequence diagrams represent a particular scenario of

communication between collaborating components. Sequence diagrams do not focus

only on message passing but also the chronological order of this communication. This

fits well our case as we want to represent and end-to-end flow of functions representing

a particular scenario of communication between these functions. To have an accurate

representation of TADL end-to-end flows with sequence diagrams we should first

answer the following questions:

• What are the observable events in a sequence diagram?; this will allow us

defining the elements to be annotated with TADL events

93

Methodology for Model-based Timing Analysis Process

• In EAST-ADL, communication between functions is assumed to be

asynchronous based on data exchange, how to represent this in sequence

diagrams?

To answer these questions, let’s remind first some notions in sequence diagrams: A

sequence diagram represents the message interchange between lifelines. A message

defines different ways of communication between lifelines of one interaction, generally

involving a pair of sender and receiver. Message may be of the following kinds:

synchronous or asynchronous operation call, asynchronous signal post, creation or

delete of an object, or a reply message. In UML2, a message owns generally two

message ends: one refers to the event occurrence related to the posting of the message,

while the other refers to the event occurrence related to the receipt of the message.

Currently, due to its initial intent, the UML2 interactions chapter defines only specific

events dedicated to either operation-based message or signal-based message. For each

lifeline it is possible to associate an Execution Specification that represents the

execution of an action or behavior within the lifeline. Each execution specification

occurrence is associated to two events that represent respectively the start and the end

of the action or behavior execution

Observable events in sequence diagrams

As stated before, each message in a sequence diagram is associated to two event

occurrences, the first relates to the sending of the message and the second to the

reception of the message. We consider then each sending event and reception event of a

message as an observable event (and hence these events will be stereotyped with TADL

events). Each function involved in the end-to-end flow will be modeled as a lifeline

containing an Action Execution Specification. The events representing the start and end

of each occurrence of an action execution specification will be considered also as

observable events and stereotyped with TADL event.

Data based communication issue

The main paradigm for communicating within sequence diagrams is the message that

involves either operation call-based or signal-based communication. This is not

sufficient for our purpose, because EAST-ADL2 enables also structural entities (the

«FunctionTypes») to communicate by data-passing. So, we need to extend the message

concept as defined in the chapter interaction to enable UML sequence diagrams to

support data-based communication. As shown in figure 16 we define then the stereotype

94

Methodology for Model-based Timing Analysis Process

«DataMessage». This latter owns a property value, which models the data value

conveyed by the message.

Figure 16 Definition of the DataMessage concept

As mentioned previously, UML2 interactions define events related to either operation-

based message or signal-based message. We need then to extend also the UML2 Event

concept to enable events related to data-based communication. As shown in figure 17,

we define an abstract class «DataEvent» that extends the UML2 Event concept. This

class is specialized by «RecieveDataEvent» and «SendDataEvent» to express

respectively events related to the reception and the sending of a DataMessage.

95

Methodology for Model-based Timing Analysis Process

Figure 17 Definition of the DataEvent concept

This same extension approach is described in [62] by Gérard and Servat who defined a

MARTE annex for EAST-ADL modelling (this annex has been added to the MARTE

last release specification).

Figure 18 shows an overview of the timing view obtained for the example presented in

figure 15

Figure 18 Timing view example

96

Methodology for Model-based Timing Analysis Process

4. Implementation Phase

During this phase, the sub-system functional architecture modelled in the design phase is

refined and transformed into software architecture described using software components and

runnable entities. The hardware and software platform is also refined and the mapping

(allocation) is specified (mapping of runnable entities to OS tasks and mapping of OS tasks

to hardware resources). A complete scheduling analysis can thus be performed during this

phase, since all the required information is available (OS task model, allocation, timing

information, etc). In the same way as for the two previous phases, an analyzable model

should be developed. This is done using AUTOSAR concepts. Beforehand, however, the

designer needs to obtain timing information for the runnable entities involved in the system.

By timing information, we mean the execution times of the runnable entities and their

timing constraints.

4.1. Determination of Runnable Entity Timing information

As mentioned at the beginning of this section, the timing information considered here

concerns the execution times and timing constraints for runnable entities.

4.1.1. Estimation of Runnable Entity Execution Times

Depending on the choices made to transform the system functional architecture of the

design level into software architecture, the designer estimates the execution times of the

runnable entities by taking into account the execution times determined for the functional

blocks during the design phase. If, for example, a functional block is transformed into a

software component with a single runnable, this runnable will have the same execution time

as the functional block. The execution times determined during this phase are used to

annotate the application view of the analyzable model (more details on model views are

provided in a later paragraph)

4.1.2. Determination of Runnable Entity Timing Constraints

In the same way as for execution times, the timing constraints to be respected in this phase

depend on the transformation choices made and the time budgets determined for functional

blocks at the design stage. If, for instance, a functional block is transformed into a software

component with two runnables executing successively, the time budget determined for this

functional block at design level is considered as an end-to-end constraint from the activation

of the first runnable until the second runnable has executed. The timing constraints

97

Methodology for Model-based Timing Analysis Process

determined during this phase are used to annotate the timing behaviour view of the

analyzable model.

4.2. Development of the Analyzable Model

4.2.1. Analyzable Model Minimum Features

To enable scheduling analysis, the analyzable model should contain the following features

that we organize into four categories:

� Application workload: The application workload represents the processing load of

the system. It represents the different operations (functions/runnable entities)

executed in the system and contending for use of processing resources and other

shared resources. An operation may represent a small segment of code execution as

well as the sending of a message through a communication medium. Operations are

generally organized in processing flows (set of related operations/functions). To

make the analysis possible, scheduling analysis requires the specification of the

execution /transmission time (worst, best or average) for operations/messages.

� Application Timing behavior: The application timing behavior represents the

timing information of the different operations or processing flows involved in the

system under analysis. Timing information contains both timing description (timing

properties) and timing constraints. Timing description contains the specification of

the triggering of system operations or processing flows (recurrence, activation

jitters, etc.). Most scheduling analysis tools allow analyzing systems with various

triggering patterns such as periodic, sporadic, singular, etc. For those activation

patterns, it is necessary to specify the period or the min inter-arrival time of the

triggering events. Timing constraints must be met by the system operations or

flows. They are represented essentially by operation deadlines, output jitter bounds

and end-to-end dead-lines.

� Resource Platform: It represents the concrete architecture and capacity of hardware

(e.g., CPU or buses) and software (e.g. tasks) resources. For hardware resources such

as processors, the model should contain the description of the scheduler used. For a

more accurate analysis, it may be also necessary to specify the processor overheads

(e.g. context switch overhead). For software resources such as tasks, it is necessary to

98

Methodology for Model-based Timing Analysis Process

specify the task nature (preemptive, non-preemptive, etc.) as well as its priority.

Involved shared resources should also be described.

� Mapping (allocation): It represents the allocation of the operations to software

resources (e.g. tasks) and the allocation of software resources to hardware resources

(e.g. processors).

In the following section, we describe how, based on AUTOSAR concepts, we develop such

minimum analyzable model.

4.2.2. AUTOSAR Analyzable Model

The minimum analyzable model developed during this phase contains four views

(application view, timing behaviour view, resource platform view and a mapping view). To

model each view, concepts from different AUTOSAR templates are used. The different

views of this phase are obtained as a refinement of the model of the previous phase, design.

Figure 19 shows an overview the model refinement from the design to the implementation

phase.

� Application View: This view represents the application workload features (cf. 4.2.1) and

represents mainly the software architecture of the sub-system using software

components and runnable entities. This view is developed as a transformation and

refinement of the sub-system design functional view developed at design level.

Transformation of the design functional view into a software application view depends

on the choices made by the designer. S/he may choose to transform each functional block

into a software component with one or more runnables [61]. Due to some constraints,

s/he may also choose to concatenate two functional blocks in a single software

component. In this view, two aspects are modelled for each software component:

component behaviour, where runnable entities and their triggering events are described,

and component implementation, where runnable entity execution times can be specified.

To develop this view using AUTOSAR concepts the following guidelines should be

respected:

� The sub-system software architecture should be modelled by a set of software

component (these software components correspond to the transformation of the

functional blocks of the design phase)

99

Methodology for Model-based Timing Analysis Process

� For each software component, an AUTOSAR Internal Behaviour should be

specified

� Each executable operation in the sub-system should be modelled as an

AUTOSAR Runnable Entity

� To specify the Runnable Entities execution times a Software Component

Implementation should be described. In each software component

implementation, a Resource Consumption should be specified where the maximum,

minimum or nominal execution time of the runnable entity can be specified.

� Timing behaviour View: This view describes the features of the application timing

behaviour (cf. 4.2.1), the designer describes the timing behaviour of the sub-system using

AUTOSAR events and event chains for which the previously determined timing

constraints are specified. End-to-end constraints and runnable deadlines should, for

example, be specified in this view. The following guidelines should be respected to

develop this view:

� Each processing flow of runnable entities should be modelled as an AUTOSAR

EventChain

� Each end-to-end constraint imposed on a flow of runnables should be specified as a

Max latency Constraint for the corresponding event chain.

� Each event activating the execution of a processing flow should be modelled as a

Stimulus from AUTOSAR

� Each event produced at the execution termination of a flow should be modelled as a

Response

� To describe the triggering of each processing flow, an event triggering constraint

should be defined where the arrival pattern of the stimulus event can be described

� Resource Platform View: This view represents the features of the resource platform

presented in 4.2.1. It shows the software (e.g., OS tasks) and hardware resources used in

the sub-system. This view is obtained by refining the allocation view of the design phase.

It namely incorporates more scheduling-oriented features such as the description of the

scheduler parameters for each ECU. To develop this view, AUTOSAR concepts from

100

Methodology for Model-based Timing Analysis Process

both OS configuration and System template are used. The following guidelines should be

respected when developing this view:

� Each OS task should be modelled as an AUTOSAR “Os Task”. Its priority can be

specified using the attribute Os Task Priority

� Interrupts involved in the system should be described as Os Isr that represents

an OSEK interrupt service routine.

� Shared resources should be specified as Os Resource from AUTOSAR

� Each ECU should be modelled as an ECU instance from AUTOSAR

� Each communication network should be modelled by Communication Cluster for

which it is possible to specify a PhysicalChannel that describes the transmission

medium that is used to send and receive information between two communicating

ECUs.

� Mapping View: This view represents the mapping features described in 4.2.1. It is a

refinement of the allocation view described at the design stage (here we use the term

mapping rather than allocation to comply with AUTOSAR terminology). In this view,

we describe allocation of the runnable entities and to OS tasks. Allocation of the OS

tasks to the different available ECUs is also described. To describe the mapping of

runnable entities to OS tasks, AUTOSAR concepts for RTE (Runtime Environment)

configuration are used. The mapping of a runnable entity to an OS task is based on

mapping of its triggering event to this task. The mapping of the OS tasks to ECUs is

described using AUTOSAR concepts for OS configuration.

To describe the mapping using AUTOSAR concepts, one should proceed as follows: The

description of the tasks allocated in each ECU is performed in two steps. The first step is

the definition of the OS configuration. In this configuration definition, the OS is

modelled by an ECU Configuration Module Definition element. For this module, one

should define an ECU Parameter Configuration Container called OsTask. Once this

definition is done, the second step is the modeling of the concrete configuration of the

OS. For this, we define an ECU Module Configuration Value. In this module configuration

value, we define the corresponding tasks as ECU Container Values. These container values

should have OsTask as a definition.

101

Methodology for Model-based Timing Analysis Process

Mapping the runnable entities to OS tasks is done in two steps following the RTE

configuration for each ECU. In the first step, which is the definition of the RTE

configuration, we create an ECU Module Definition. To this module definition, we

associate a container definition called RteSwComponentInstance in which we create another

container called RteEventToTaskMapping. The later allows referencing the mapped

RTEEvent and the OS task. The second step is the specification of the concrete mapping

value of the sub-system runnable entities. This is done by creating container values for

which we specify the elements created in the first step as definitions.

Figure 19 Model refinement from Design to Implementation phase

4.3. Performance of Scheduling Analysis

4.3.1. Principle

To perform scheduling analysis, the developed model is transformed into a model that can

be read by a scheduling analysis tool. Note that, at this stage, since our goal is to perform a

complete scheduling analysis (evaluation of processor loads and verification of timing

constraints), the analysis should take into account all vehicle functions executed on the same

resource platform used by the sub-system. The analyzable model views are not changed, but

the application view should contain all the software components and runnable entities

executed on the same resource platform. The resource platform view shall contain all OS

tasks allocated to the hardware resources used by all functions. To verify deadlines, knowing

102

Methodology for Model-based Timing Analysis Process

task priorities and preemption by other tasks is crucial; so the complete software resource

platform should be described. Scheduling analysis results help the designer to validate the

final architecture or assess the possible tradeoffs required to satisfy timing or load

constraints. The tool used for this activity should meet the requirements listed in the section

3.3.1 of the first part of this manuscript to enable scheduling analysis for automotive

systems.

4.3.2. Tool Use and Model Transformation

To perform scheduling analysis, we claim to use the scheduling analysis tool SymTA/S (cf.

section 3.4 of part I). To perform scheduling analysis, the AUTOSAR analyzable model

should be transformed to a SymTA/S model as shown in table 14c.

Table 14c AUTOSAR to SymTA/S model transformation

AUTOSAR analyzable model

elements

SymTA/S model

elements

Runnable entity/non-preemptible

flow of runnable entities
Runnable

Event chain
Path (formed by runnable

entities)

Runnable entity execution time Runnable execution time

Event

Task activation/

runnable activation

OS Task Task

ECU instance ECU

Physical channel Bus

When transforming the AUTOSAR model to a SymTA/S model, a special care should be

taken when defining the runnables in SyMTA/S. In fact the concept of runnable in

SymTA/S represents a non-preemptible entity executing in an OS task. Hence this can map

to the concept of runnable entity in AUTOSAR but also to any non-preemptible flow of

runnable entities in AUTOAR.

103

Methodology for Model-based Timing Analysis Process

Part III: Methodology Deployment

and Validation
In this part, we focus on the deployment and the validation of our methodology. The

methodology deployment means how we intend to apply the proposed methodology to

develop automotive applications. In this work, we focus on the application of the

methodology to develop Engine Management Systems (EMS) at Continental. An Engine

Management System (EMS) is a system used to control the engine functionalities (e.g.,

Combustion, injection, ignition, etc). An EMS consists of software parts implemented in an

Electronic Control Unit (ECU) that can communicate with sensors and actuators.

The methodology validation is done through studying the acceptability of the methodology

and through showing the extent to which this methodology provides solution for

automotive software development needs determined in the first part of this work.

This part is then divided to four chapters. The first chapter presents the approach describing

the application of the methodology in the context of EMS development. The approach deals

with two scenarios: the development from scratch and the development by reuse. The

second chapter illustrates the approach by presenting an example of the application of the

methodology to two use cases: the cruise control (development from scratch) and the knock,

a component used to detect “knock” and to adjust the ignition accordingly (development by

reuse).

The third chapter studies the methodology acceptability through identifying the gap

between the current EMS development process at Continental and the process proposed by

our methodology.

The last chapter studies the extent to which this methodology provides solution for

automotive software development needs determined in the first part of this work.

104

Methodology for Model-based Timing Analysis Process

1. Methodology Application to EMS Development

1.1. Introduction

In this chapter, we present the deployment approach of our methodology within Continental

to develop engine management systems. For a better understanding of engine management

system, we have to know first how an engine is running. A four stroke engine cycle is

composed of four phases:

• Intake: the piston moves down aspiring the fuel/air mixture (injection)

• Compression: the piston moves up compressing the mixture

• Power: a spark generated by an ignition system starts the combustion (ignition), the

piston is then pushed down

• Exhaust: the burnt gases are evacuated

During the engine cycle, a Crankshaft wheel translates the linear piston motion into

rotation, a Camshaft wheel turns to force the valve opening by pressing on the

intake/exhaust valves. While the engine speed varies, the connection to the crankshaft

wheel fully synchronizes the mechanical cycles of the cylinders. It is therefore useful to date

engine operations not by physical time but by the crankshaft angular position.

An Engine Management System (EMS) is a system used to control the engine

functionalities (e.g., Combustion, injection, ignition, etc). An EMS consists of software parts

implemented in an Electronic Control Unit (ECU) that can communicate with sensors and

actuators.

1.2. Engine Management System Development at Continental

This section gives a general description of the current Continental development approach of

engine management systems.

Figure 20 gives a general overview about the development process of EMS at Continental.

105

Methodology for Model-based Timing Analysis Process

Figure 20 Current EMS development process

As the figure shows, based on the customer request, a first development phase called EMS

design is performed. This phase is performed by the EMS designer and consists of:

1. EMS requirement analysis: This means collecting and analyzing the requirements

that the EMS under development should meet. The requirements that are considered

during this phase are of two kinds: functional requirements i.e., requirements that

describe the functionality of the system (e.g. the system should calculate the engine

speed) and performance requirements which constrain mainly the CPU load and the

memory consumption of the system (e.g. CPU total load should not exceed 60%).

Currently, timing requirements are not considered during this phase. This kind of

requirements are expressed and analyzed very late during the software

implementation of each sub-system.

2. EMS partitioning: This consists mainly in defining the needed sub-systems. For

example, an EMS can require a sub-system to ensure the injection functionality

106

Methodology for Model-based Timing Analysis Process

(injection sub-system), a second one for calculating the engine speed (engine speed

determination sub-system) and a third one to control engine knocking during

combustion (knock sub-system). Each sub-system is composed of software and

hardware parts. For instance, the injection sub-system can require software parts to

control the injection and hardware parts, the injectors, which execute the injection

itself.

Based on the EMS requirements determined during the EMS design phase, the EMS

designer determines the requirements to be satisfied by each sub-system. Then, each sub-

system is developed separately by taking into account these requirements. In addition, for

each sub-system, the software parts are developed separately from the hardware parts.

Once the different sub-systems are developed, the integration phase starts. This consists

mainly in integrating the software parts of the different sub-systems together as well as the

integration of hardware parts.

Our methodology will intervene during three steps of the current Continental process: the

EMS design phase, the software development of each sub-system and the EMS integration

phase. The application of our methodology in the context of EMS development will be

presented in detail in the next section. Before this, let’s present the current approach used at

Continental to develop the software of each sub-system.

Sub-system Software development

Currently, there are two approaches for software development at Continental. The first one

is purely code-centric approach and the second one is model-based approach. Unlike the

code-centric approach where the algorithms are described as Word specifications and then

implemented manually using C coding, in the model-based approach the functional design is

performed based on Simulink [44] models that describe the defined functions and their

associated algorithms. Then, based on these models the C code is generated automatically

using a code generator tool. Figure 21 describes the process followed for the two

approaches.

107

Methodology for Model-based Timing Analysis Process

Figure 21 Sub-system software development process

At the beginning of the development process of each approach, the function developer starts

by analyzing the requirements that should be respected when designing and implementing

the needed software. In the next phase, he performs the functional design. This consists

mainly in determining the needed functions to ensure the functionality of the sub-system

under design and the algorithm to associate to each function. During the software

implementation phase, the software developer implements these algorithms using C coding.

Software integration

The integration of the software parts from different sub-systems is done by the software

integrator during the EMS integration phase. After the software integration step, the

software integrator performs the software analysis. This analysis consists in:

• Verifying the proper integration of the software by analyzing the static architecture

of the integrated system (data communication, input/outputs, etc).

• Verifying the timing behavior of the system by measuring the response times of the

OS tasks involved as well as the global CPU load based on the C code of the

integrated system.

Software reuse

The process described in figure 21 is completely followed when the software of a sub-system

is developed from scratch. However, in order to save the development time and cost,

engineers have usually recourse to reuse and adapt previous versions of the software. In

software development at Continental, we can distinguish three categories of software reuse:

� Strong reuse: In this case, more than 80% of the new software version is reused from

previous version. The modifications concern only some configuration parameters and

108

Methodology for Model-based Timing Analysis Process

variables but the software “core” is not changed. This concerns e.g., the software of

engine dependant sub-systems (e.g., engine speed determination sub-system)

� Medium reuse: In this case of reuse, more than 50% of the new software version is

reused from previous version. The typical modification that can be done on the

software is the introduction of new software modules to ensure new functionalities of

the sub-system.

� Weak reuse: In this case of reuse, only the developer expertise and knowledge on

previous versions of the software is reused. No software modules are reused from

previous versions.

In the case of weak and medium reuse, both the function and software developer are

involved and the development process described in figure 21 is completely followed. In the

case of strong reuse, no functional design is performed; the software developer works

directly on the existing C code to modify the needed parameters and variables.

In the next section, we describe how to apply the proposed methodology in each

development case (development from scratch, strong reuse, medium reuse and weak reuse).

1.3. Migration to the New Methodology Process

This section describes how to map the current Continental development process and the

process proposed by our methodology. Before describing how our methodology will be

applied to develop software in the context of EMS development, let’s remind briefly the

different activities to be performed during each phase of our proposed development process

as described in figure 22.

109

Methodology for Model-based Timing Analysis Process

Figure 22 Proposed model-based process

1.3.1. Development from Scratch

Figure 23 shows an overview of our approach to apply the methodology to the development

of EMS.

110

Methodology for Model-based Timing Analysis Process

Figure 23 Application of the methodology to develop Engine Management Systems

To develop a whole engine management system, we propose to apply our development

process as follows:

• We suggest mapping the activities of the analysis phase of our methodology (described

in figure 22) to the EMS design phase of the current development process (described in

figure 20). This means that during the EMS design phase described in figure 20, in

addition to his/her current task, the EMS designer will determine and analyze what we

called in our methodology the vehicle end-to-end requirements. In this case, these

requirements will involve some of the sub-systems required for the designed EMS. In

the remaining of this chapter, we will hence call these requirements EMS end-to-end

requirements instead of vehicle end-to-end requirements. Based on the EMS end-to-end

requirements, the system designer, supported by experts from each sub-system,

determines the time budgets that should be assigned to each sub-system.

111

Methodology for Model-based Timing Analysis Process

Let’s consider, for example, an EMS that contains a sub-system for the calculation of the

engine position (engine position determination sub-system). This sub-system transfers

the engine position information to an injection sub-system that calculates the instant at

which the injection should be performed. An EMS end-to-end requirement can be as

follows: “The duration from the start of engine position determination until the injection

instant is calculated, should not exceed 500ms”. Based on this requirement and other

EMS end-to-end requirements, the EMS designer determines hence the time budgets to

assign to the engine position determination sub-system and to the injection sub-system.

To determine these budgets, the EMS designer will use also his/her expertise related to

previous versions of some of the involved sub-systems. This will help him/her to

determine the budgets that should be assigned to the sub-systems that are developed

from scratch.

As mentioned previously, in the current development process, requirements concerning

the global CPU load value of the EMS are considered during the EMS design phase. In

our approach, we suggest to determine, based on these requirements, the CPU load

requirements for each sub-system. This means that the EMS designer should determine

during this phase the CPU budget that can be assigned to each sub-system (e.g., the

CPU load requested by the injection sub-system should not exceed 5%).

• We suggest applying the design and implementation phases of our methodology to

develop the software of each sub-system. During the design phase of each sub-system,

the function developer models the sub-system functional decomposition and determines

the functional block time budgets based on the corresponding sub-system time budgets

determined previously by the EMS designer. During this same phase, the function

developer determines the best allocation scenario of functional blocks to available ECUs.

This is done by taking into account the sub-system CPU load budget determined

previously by the EMS designer.

During the implementation phase, the software developer describes the software

architecture of each sub-system using AUTOSAR models. Furthermore, based on the

functional block time budgets, he determines the timing constraints that should be

respected at this level.

112

Methodology for Model-based Timing Analysis Process

• Once the software architecture of each sub system is described using AUTOSAR models,

the software integrator will integrate the AUTOSAR models of the different sub-

systems. During this phase he performs also scheduling analysis on the integrated

system to verify that the timing constraints of each sub-system are respected and that

the CPU load constraints are met.

1.3.2. Development by Reuse

As mentioned previously (section 1.2), in the current EMS development process, the

software of the sub-systems required by the EMS can be developed by reusing and adapting

previous versions of it. In this section, we propose to show how to apply our methodology to

develop the software of such sub-systems by reusing the existing artifact of the previous

software versions. Table 15 presents the kind of artifacts that are available from a previous

software version. In the remaining of this section, we present the application of our

methodology in case of strong, medium and weak software reuse.

Table 15. Example of available artifacts from previous software version

Artifact Description

C code files
The software of each sub-system is organized into software

modules. For each software module a C code file is

available.

Word specifications
This artifact describes the implementation of each software

module

XD models

These models are represented in an internal tool called

XD. This tool is used to analyze the static architecture of

the software after EMS integration. The software of each

sub-system is represented by a number of software

modules. Each software module is composed of a number of

operations which represent the smallest executable code

fragment.

Timing data base

This artifact contains the timing information of the

integrated system. This information consists mainly in

operation execution times, OS task response times and

CPU utilization values. These data are measured by an

internal tool using the C code of the integrated system

113

Methodology for Model-based Timing Analysis Process

Case of strong reuse:

As mentioned previously, in this case of reuse, to develop the new version of the software, all

the software modules are reused from the previous version. The modifications done on the

new version are minor and concern only e.g., parameters or variable names modification.

Hence, in this case of reuse, we do not need to perform the activities of the analysis and

design phases of our methodology. To enable this case of reuse by using our methodology,

we suggest then to work directly on the implementation phase by transforming the legacy

information represented in the XD model (see table 15) of the previous software to an

AUTOSAR architecture. Figure 24 shows an overview of our approach.

Figure 24 Application of the methodology in case of strong software reuse

Let’s consider a sub-system P as described in figure 24. To develop the new version of the

software of this sub-system, we do not need to determine the time budget and CPU load

budget to assign to it during analysis phase. In fact these budgets should be already known

(or at least can be estimated directly) from the previous software version. As the software

114

Methodology for Model-based Timing Analysis Process

architecture is already available, to develop the software of the sub-system P the design

phase is also not needed.

The transformation of the XD model to an AUTOSAR model should be done as follows:

each software module is transformed to an AUTOSAR software component. The operations

of each software module are transformed into runnable entities. Once the AUTOSAR

software architecture of sub-system P is described, the software integrator integrates it with

the AUTOSAR models of the software of other involved sub-systems (the software of other

sub-systems is developed in the same way either by reuse or from scratch as described

previously). The timing data base containing the execution times of the sub-system P

operations will be used to specify the execution times of the runnable entities to enable

performing scheduling analysis.

Case of weak reuse

In this case of reuse, no software modules can be reused from previous version. Hence, all

the methodology phases should be applied for the development of the software in the same

way as for the development from scratch. However, when performing the scheduling

analysis on the integrated system, the expertise of the software integrator from the previous

versions of the sub-system can be used to estimate the execution times of the runnable

entities of the sub-system considered.

Case of medium reuse

In this case of reuse, we will focus on the case of adding new functions or software modules

to the previous software version. We have to distinguish, then, two cases:

• If the new function or software module will interact with other sub-systems in a way

that there are EMS end-to-end requirements that involve these sub-systems and the

one under development, then the methodology should be applied starting from the

analysis phase. This is needed to determine the new time budget to assign to the

considered sub-system with this new configuration.

• If the new function or software module will interfere only internally with other

software modules within the same sub-system, then the methodology can be applied

starting from the design phase. The time budget to be assigned to the sub-system

can be estimated directly based on the previous software version.

115

Methodology for Model-based Timing Analysis Process

Figure 25 shows the approach followed during design and implementation phases for

these two cases. As the figure shows, based on the XD model that describes the previous

software modules and their operations, the function developer transforms during the

design phase each software module into functional block. He defines then the new

functional blocks needed for the new version of the sub-system. Based on this new

configuration and the time budget known for the sub-system previous version, the

function developer determines the time budget to assign to each functional block of the

new configuration. Based on the new functional architecture, the software developer

describes the new software architecture using AUTOSAR constructs. The simplest way

is to transform each functional block defined at the design level to an AUTOSAR

software component at the implementation level. The definition of the runnable entities

for each software component is done by taking into account the information from the

previous software architecture but also the new constraints on the software.

Figure 25 Application of the methodology in case of medium software reuse

116

Methodology for Model-based Timing Analysis Process

In the next chapter, we present an example of the application of our methodology for the

development of two sub-systems, the cruise control (development from scratch) and the

knock sub-system (development by medium reuse).

117

Methodology for Model-based Timing Analysis Process

2. Examples
This chapter provides an illustration of the application of our methodology to the

development of engine management sub-systems. The first section presents an example of

the application of the methodology to develop the cruise control sub-system from scratch.

The second section deals with the scenario of development by medium reuse and considers

the knock sub-system as use case. To develop the models of these two use cases; we used the

Papyrus tool [42] to develop the models at the analysis and design levels and the Cessar-

CT tool [43] for the models of the implementation level.

2.1. Development from Scratch: Cruise Control

2.1.1. Use Case Presentation

The application considered is the cruise control function. It is used to maintain vehicle speed

at a speed setpoint desired by the driver. This functionality calls for a switch sensor that

acquires the driver inputs (set cruise, cancel cruise, increase speed setpoint, etc.) and a

control system that processes inputs from this sensor and other EMS sub-systems (e.g.

braking sub-system) to calculate the speed setpoint and send a torque request to the torque

setpoint sub-system. In this section, we show how to apply the proposed methodology to

develop and analyze the software of the cruise control sub-system. In subsequent sections of

this chapter, we refer to this sub-system as “cruise control”.

2.1.2. Analysis Phase

In this phase, based on the given timing requirements (EMS end-to-end requirements), we

determine the time budgets to be allocated to each sub-system involved in these

requirements. Here we focus on the cruise control sub-system and we consider that the time

budgets of other sub-systems that communicate with the cruise control are already known

based on information from previous developments of these sub-systems.

2.1.2.1. EMS End-to-end Requirements

We determined two EMS end-to-end requirements to be satisfied when designing the cruise

control sub-system. These have been denoted as EMS_REQ1 and EMS_REQ2 (REQ for

requirement).

• EMS_REQ1: When the driver depresses the braking pedal, cruise control should be

deactivated within 300ms.

118

Methodology for Model-based Timing Analysis Process

• EMS_REQ2: When the driver activates cruise control, the vehicle speed setpoint

should be calculated and displayed within 500ms

These two requirements concern the cruise control sub-system and other sub-systems such

as the brake controller sub-system, which receives inputs from the pedal sensor indicating

the status of the pedal (depressed or not) and the display actuator that receives inputs from

several vehicle functions for display. In the next step, we determine the time budgets to be

allocated to the cruise control in order to satisfy these two requirements. First, we need to

develop a model containing the information necessary for this timing analysis.

2.1.2.2. Analyzable Model

As stated earlier, the analyzable model comprises two views, the analysis functional view

and the analysis timing view.

� Cruise Control Analysis Functional View: Figure 26 shows the model developed

for this view. This model depicts a functional decomposition of the EMS focusing on

the interaction of the cruise control with other EMS sub-systems. In it, the cruise

control sub-system (called “CruiseControl” in the figure) is communicating with the

brake controller sub-system, the torque setpoint sub-system, the display actuator and

the switch sensor that acquires the driver inputs. As the figure also shows, EAST-

ADL concepts are used here; the cruise control sub-system and the other sub-

systems are modelled as “AnalysisFunctionTypes”. Sensors and actuators are modelled

as “FunctionalDevices”, an EAST-ADL concept that represents the functional part of a

sensor or an actuator. The interaction between different sub-systems is modelled

using EAST-ADL connectors called “FunctionConnectors”.

Figure 26 Cruise control analysis functional view

119

Methodology for Model-based Timing Analysis Process

The end-to-end requirement EMS_REQ1 means that from the point in time at which

the pedal sensor receives a pressure until the point in time the torque setpoint

calculates a null torque setpoint, the time elapsed should not exceed 300ms.

EMS_REQ2 means that since the switch sensor receives the driver input ordering

activation of cruise control until the speed setpoint is calculated by cruise control and

then displayed by the display actuator, the time elapsed should not exceed 500ms.

To determine the time budgets to be allocated to the cruise control, we developed a

timing view in which these timing constraints are expressed in the model using

TADL concepts.

� Cruise Control Analysis Timing View: Figure 27a and 28a show sequence

diagrams representing the cruise control analysis timing view. For each EMS end-

to-end requirement, we model an interaction that we stereotype with “EventChain”.

Each event chain is made up of sub-chains that represent the execution of the

functions involved in the interaction and the transfer of data-based messages

between these functions. This way, each action execution specification and each

message are modelled as sub-chains (stereotyped with “EventChain” and specified as

“EventChainSegment” for the whole interaction event chain). As shown in Figure 27b

and 28b, to express each end-to-end requirement, we specify for each “EventChain” a

TADL “ReactionConstraint” for which we specify a “TimeDuration”. The latter enables

to specify the upper value of the reaction constraint (For example, for the first event

chain, we specify a reaction constraint called cruise_deactivation_delay. For this

reaction constraint, we describe a time duration of 300ms as an upper bound value).

To support data-based communication, each message is also stereotyped as

“DataMessage”. Events associated to the sending and receiving of these massages are

stereotyped respectively as “SendDataEvent” and “RecieveDataEvent” and also as

TADL events. For each event chain involved in the interaction stimulus and

response events are specified.

120

Methodology for Model-based Timing Analysis Process

Figure 27a Cruise Control analysis timing view, deactivation event chain

Figure 27b Specification of timing constraint for the deactivation event chain

121

Methodology for Model-based Timing Analysis Process

Figure 28a Cruise Control analysis timing view, activation event chain

Figure 28b Specification of the timing constraints for the activation event chain

2.1.2.3. Cruise Control Time Budgets

As mentioned during the methodology description, we consider that the time budgets for

the other EMS sub-systems are already known. Determining the time budgets for cruise

control is then quite easy at this stage. In our example, with the help of application experts,

we managed to manually determine the following time budgets, which satisfy the two

previously listed end-to-end requirements. To ensure compliance with EMS_REQ1 (and

taking into account the time budgets of the pedal sensor, the brake controller and the torque

122

Methodology for Model-based Timing Analysis Process

setpoint sub-systems) we should allocate 100ms to cruise control deactivation. To ensure

compliance with EMS_REQ2 (and taking into account the time budgets of the switch sensor

and the display actuator), we should allocate 200ms to cruise control activation and speed

setpoint calculation. Hence, we have the following two constraints to be satisfied when

refining the cruise control functional architecture during the design phase:

• AConst1: Cruise control should be deactivated within 100ms.

• AConst2: Cruise control should be activated and speed setpoint calculated within

200ms.

2.1.3. Design Phase

In this phase, we refine the functional architecture of the cruise control by showing its

functional breakdown into functional blocks. The first timing analysis performed is

refinement of the time budgets determined in the analysis phase by determining the time

budget to be allocated to each functional block.

2.1.3.1. Refinement of Cruise Control Time Budgets

To refine the time budgets determined during the analysis phase, we first develop an

analyzable model of cruise control.

A. Analyzable Model

In the same way as for the analysis phase, the model is composed of two views:

� Cruise Control Design Functional View: Figure 29 shows the functional

breakdown of the cruise control sub-system. We broke down the sub-system into

four functional blocks: Input acquisition and interpretation is responsible for the

acquisition of inputs from the switch sensor and other sub-systems and their

interpretation, to deduce the desired action (activate cruise, cancel cruise, etc).

Failure management is responsible for diagnosis of the cruise control inputs and limp

home activation (the limp home function decides which action to take if an error is

detected). Speed setpoint calculation is responsible for calculation of the desired

speed setpoint. Control is responsible for calculation of the cruise control states and

transitions and maintaining speed at the speed setpoint. As Figure 29 shows, the

“CruiseControl” “AnalysisFunctionType” modelled in the analysis phase is realized here

by a “DesignFunctionType” also called “CruiseControl”. Each Functional Block is

123

Methodology for Model-based Timing Analysis Process

modelled as a “DesignFunctionPrototype” that represents an instance of a

“DesignFunctionType”.

Figure 29 Cruise control design functional view

� Cruise Control Design Timing View: AConst1 means that from instant at which

the pedal information input is acquired by the input acquisition and interpretation

function until the control functional block orders a null torque request, the time

elapsed should not exceed 100ms. AConst2 means that from the time of acquisition of

the "activate cruise" input until calculation of the setpoint by the speed setpoint

calculation and then activation of cruise control by the control functional block, the

time elapsed should not exceed 200ms. To ensure the safety of the driver, a new

constraint is introduced at this stage, to ensure that, if a failure is detected, cruise

control is deactivated within 100ms (Aconst3). This means that from the instant at

which inputs are acquired and interpreted until the detection of failure and

deactivation of cruise control, the time elapsed should not exceed 100ms. Figure 30a,

31a and 32a show the sequence diagrams developed for the timing view. The first

diagram shows the communication between the functional blocks involved in

AConst1 (i.e. deactivation of cruise control). The second diagram shows

communication between the functional blocks involved in AConst2 (i.e. activation of

cruise control and calculation of the speed setpoint). The third diagram shows

communication between the functional blocks involved in AConst3. In the same way

124

Methodology for Model-based Timing Analysis Process

as for the analysis phase, for each event chain, we specify the corresponding reaction

constraint as shown by figure 30b, 31b and 32b.

Figure 30a Cruise Control design timing view, “acquisition to control” event chain

Figure 30b specification of the timing constraints to the “acquisition to control” event chain

125

Methodology for Model-based Timing Analysis Process

Figure 31a Cruise Control design timing view, “acquisition setpoint control” event chain

Figure 31b Specification of the timing constraint for the acquisition setpoint control event

chain

126

Methodology for Model-based Timing Analysis Process

Figure 32a Cruise Control design timing view, failure event chain

Figure 32b Specifying timing constraint to “acquisition failure control” event chain

B. Functional Block Time Budgets

We determined manually the time budgets to be allocated to each functional block for

compliance with the three constraints mentioned previously. The time budgets that can be

allocated to the various functional blocks are as follows:

• Input acquisition and interpretation: 30ms

• Failure management: 20ms

127

Methodology for Model-based Timing Analysis Process

• Control: 50ms

• Speed setpoint calculation: 90ms

This means that, when refining the cruise control architecture at the implementation phase,

we should respect the following timing constraints:

• DConst1: Input acquisition and interpretation should be performed within 30ms

• DConst2: The failure management should take place within 20ms

• DConst3: Control should take place within 50ms

• DConst4: Speed setpoint calculation should take place within 90ms

The next step is to explore the hardware architecture to determine the best allocation of

cruise control functional blocks to the available hardware resources. This is done based on

an evaluation of load for each processor.

2.1.3.2. Hardware Architecture Exploration

In this step, we explore the available hardware architecture, for the purpose of deciding

which hardware resources to select and how to efficiently distribute cruise control functional

blocks over these resources. In our case, the cruise control functions can be distributed

between the engine management ECU (EMS ECU) and the body controller ECU. These

two ECUs communicate via a CAN bus. Based on the load evaluation for each ECU, we

determine the best functional block-to-ECU allocation scenario. This means first developing

a model containing the information necessary for the analysis.

A. Analyzable Model

As explained in the description of our methodology, the model is made up of three views:

� Cruise Control Design Functional View: This is the view described in Figure 26. In

this view, we specified the execution time of each functional block. Execution times were

estimated with the help of application experts at Continental. We thus determined the

following execution times:

� Input acquisition and interpretation: 80µs

� Failure management: 100 µs

� Speed setpoint calculation: 120 µs

128

Methodology for Model-based Timing Analysis Process

� Control: 200 µs

The EAST-ADL concept “ExecutionTimeConstraint” enables specification of these times for

each functional block.

� Hardware Platform View: Figure 33 shows the hardware platform model, which we

developed using a UML composite diagram. Each computation hardware resource is

modelled as a “Node” (EAST-ADL) and a “SaExecHost” (MARTE) to represent resources

with processing capacity that can host executable elements. The CAN bus is stereotyped

by “LogicalBus” (EAST-ADL) and “SaCommHost” (MARTE). The aim of using MARTE

concepts here is to enable the use of the automatic transformation implemented for

MARTE models to analyze the system using the MAST tool.

Figure 33 Hardware platform view

Using this view, we choose the best scenario for the allocation of functional blocks to the

hardware platform. The best scenario is chosen according to the load requested by the

functional blocks for each ECU. To do so, we model the allocation view that represents the

allocation scenario to be analyzed.

� Allocation View: When allocating the functional blocks to the hardware platform, we

must satisfy certain requirements identified with the help of vehicle dynamic architecture

specialists at Continental (when applying the methodology to the development of EMS,

these budget should be determined by the EMS designer during the EMS design phase):

� The load requested by cruise control functions from the Body controller ECU

should not exceed 1%

129

Methodology for Model-based Timing Analysis Process

� The load requested by cruise control functions from the engine management ECU

should not exceed 2% (these values are determined by taking into account the load

budgets of other sub-systems that will be allocated to these ECUs).

� The failure management and the control functional block should be allocated to the

same ECU to ensure speed reaction of the control system when an error is

detected.

Figure 34 shows the modelling of a functional block-to-available ECU allocation scenario.

Here we chose to allocate input acquisition and interpretation to the body controller ECU

and the rest of the functional blocks to the engine management ECU. MARTE concepts for

allocation are used in this view. Each functional block is stereotyped by “allocated”, a concept

that allows specification of the hardware resource hosting the functional block. Moreover, a

dependency connector is drawn between each functional block and its hosting ECU and is

stereotyped by “allocate”.

Figure 34 Allocation view

B. Processor Loads Determination

Based on the allocation scenario shown and the execution times annotated on the design

functional view, we used the scheduling analysis tool MAST [31] (for which an automatic

transformation from MARTE models is implemented [60]) to evaluate the load requested

by the functional blocks allocated to each processor. Each functional block is transformed

130

Methodology for Model-based Timing Analysis Process

into a schedulable resource hosting only one operation in the MAST model. In scheduling

analysis, processor utilization is calculated based on two kinds of parameters which are the

tasks/functions execution times and the tasks/functions periods regardless of the priorities

that are assigned to the executed tasks. Hence, task priorities are not important for our

analysis (evaluation of processor loads). For this reason, we assume that all schedulable

resources have the same priority in our example (this assumption is used only for this

analysis).

For each schedulable resource a transaction is defined in MAST. For each operation, we

assigned the execution time determined for the corresponding functional block. To be able

to calculate processor loads, we also need to specify the triggering period of each

transaction. With the help of cruise control application experts at continental, we assigned

10ms as the period for both input acquisition/interpretation and failure management, and

40ms as the period for both speed setpoint calculation and control. Based on this information

and the allocation scenario chosen, the tool calculated an utilization of 0.8 % of the body

controller ECU and 1.8 % of the engine management ECU by the cruise control functions.

These results meet the requirements listed above (other tested allocation scenarios did not

meet these requirements). We therefore kept this allocation scenario as the best scenario.

This is the scenario to be satisfied when refining the cruise control architecture at the

implementation stage, especially when describing the mapping of runnable entities to OS

tasks. Let’s note that to calculate the utilization of each ECU by the cruise control functions,

we do not model the other vehicle functions executed on these ECU. That is why, in our

model (figure 31), we represent only the allocation of the cruise control functions to these

ECUs (without considering other vehicle functions executed on the same ECUs).

2.1.4. Implementation Phase

In this phase, the cruise control functional architecture is refined and transformed into

AUTOSAR architecture described using software components and runnable entities. To

develop the analyzable model, we used the CESSAR-CT tool, this is an AUTOSAR

workbench developed by the Continental Engineering Services. This tool is based on the

ARTOP (AUTOSAR Tool Platform) framework [43], an implementation of common base

functionality for AUTOSAR development tools.

2.1.4.1. Analyzable Model

131

Methodology for Model-based Timing Analysis Process

Cruise Control Application View: We developed this view by transforming the cruise

control design functional view into (an) AUTOSAR model. Figure 35 shows an overview

of the AUTOSAR application view that we developed (As the tool used does not offer

graphical views of the model developed, the figures of this section present a simplified

overview of the models, for the clarity of the figure we do not show all the data

exchanged between the software components). Each functional block is transformed into

an application software component for which we describe the behaviour by specifying the

runnable entities and their triggering events. The communication between these

software components is modelled through AUTOSAR ports called “PPortProtyotype” for

provided data and “RPortPrototype” for required data.

Figure 35 Simplified overview of the cruise control application view

Software component input acquisition and interpretation involves two runnable entities –

acquisition and interpretation. Speed setpoint calculation requires only one runnable for the

calculation of the speed setpoint. Failure management involves two runnable entities, the

first to perform diagnosis of the inputs and the second to decide what action to take in case

of error. The control software component is made up of three runnable entities: its

application condition and basic function, which calculate the cruise control states and

transitions to decide whether to carry out specific cruise control activities; and its controller,

which is a PI controller that maintains vehicle speed.

132

Methodology for Model-based Timing Analysis Process

For each runnable entity, we defined an “RTEEvent” that defines the triggering of the

runnable. For example, as we chose to execute failure management each 10ms, we specified,

for diagnosis and limp home runnable entities, an “RTEEvent” with 10ms as its period.

For each software component, we also specified a software component implementation that

allows us to set the execution time of each runnable entity. This is done using the

AUTOSAR concept “resource consumption”, which describes the necessary resource in terms

of execution time for each runnable entity. Table 16 shows the runnable entity execution

times that we determined taking into account the execution times determined previously for

the functional blocks and with help of cruise control function experts.

Table 16 Determination of Cruise Control runnable execution times

Functional

block

Execution

time (µs)

Constraints &

Comments (based

on discussion with

cruise control

experts)

Runnable

Entities

Execution

time (µs)

Input

acquisition and

interpretation

80

Input interpretation

needs more time to

execute than input

acquisition

Acquisition 30

Interpretation 50

Failure

management
100

diagnosis needs

more time to

execute than limp

home

Diagnosis 60

Limp home 40

Speed setpoint

calculation
120

This functional

block is

transformed to a

software

component with

only one runnable

then the runnable

has the same

execution time as

the functional block

Speed setpoint

calculation
120

133

Methodology for Model-based Timing Analysis Process

Control 200

the basic function

runnable entity

should have the

largest execution

time, application

condition runnable

entity has the

smallest execution

time

Application

condition
40

Basic function 100

Controller 60

As shown in table 16, based on discussion with cruise control function experts, we

determined the constraints that should be respected when assigning the execution times for

the defined runnable entities. Based on these constraints, we determined an execution time

value to each runnable entity.

� Cruise Control Timing Behaviour View: In this view, we modelled the timing

behaviour of cruise control by means of events and event chains from the AUTOSAR

timing extensions. For each timing constraint determined at the design stage (DConst1,

DConst2, DConst3 and DConst4), we created an event chain for which we specified a

latency constraint. As an example, for DConst1 (figure 36), we created an event chain

having the activation event of the runnable entity acquisition as a stimulus and the

termination event of the runnable entity interpretation as a response. For this event

chain, we specified a latency constraint with 30ms as maximum value. For DConst4, we

created an event chain formed by the runnable entity speed setpoint calculation. We

specified for this event chain a latency constraint with 90ms as maximum value.

Figure 36 Representation of the modelling of the acquisition event chain

134

Methodology for Model-based Timing Analysis Process

� Resource Platform View: In this view, we model the hardware and software resources

used by the sub-system. Each ECU is modelled as AUTOSAR “ECU instance”, the CAN

bus is modelled as “CanPhysicalChannel”, which represents a CAN communication

medium. As presented in the previous chapter, we intend to perform scheduling analysis

after the integration of the cruise control software with the software of other sub-

systems executing in the same ECUs. In the implementation phase of the cruise control,

we should describe, hence, only the OS tasks that allocate the cruise control runnable in

each ECU. Then, during the integration phase, the software platform models from

different sub-systems are integrated and scheduling analysis can be performed. Figure 37

shows an overview of the software and hardware platform used by the cruise control.

Figure 37 Resource platform used by the cruise control
The description of the OS tasks is produced during description of the OS configuration for

each ECU. With this configuration, it is possible to define the OS tasks and their scheduling

properties (e.g. priorities). AUTOSAR concepts are used here for OS configuration. After

performing scheduling analysis, we can assess the improvements that are necessary for the

chosen software resource platform and the mapping scheme selected.

• Mapping View: To perform scheduling analysis, we have to describe the mapping of OS

tasks to processing units. In AUTOSAR, this can take place when the OS configuration

is defined for each ECU. In this view, we also described mapping of the cruise control

runnable entities to the selected OS tasks. To do so, we described the mapping of

runnable triggering events to the OS tasks. Figure 38 gives an overview of the mapping

view developed during this phase. To decide on a scheme for mapping runnable entities

to OS Tasks, we should comply with the allocation scenario selected at the design level.

This means that the runnable entities of the input acquisition/interpretation function

should be mapped to a task allocated to the body controller ECU and the other

runnables to tasks allocated to the engine management ECU. Based on the available

135

Methodology for Model-based Timing Analysis Process

software platform, we decided to allocate the runnable entities of failure management to

TASK_ 10MS_1 that is allocated to the engine management ECU. The runnable entities

of control and speed setpoint calculation are allocated to TASK_40MS. In a similar way,

the runnable entities of acquisition and interpretation are allocated to TASK_10MS_2

that is hosted by the body controller ECU. To describe such mapping, we used

AUTOSAR concepts for RTE configuration. For example, mapping of the diagnosis

entity to the TASK_10MS_1 is described using AUTOSAR concepts to define the link

between the triggering event of the entity, and the OS task.

Figure 38 Cruise control mapping view

2.1.5. Scheduling Analysis

We performed scheduling analysis after integrating the cruise control sub-system with

other sub-systems executing on the engine management and body controller ECUs (for

simplification reasons, the development of other sub-systems is not presented here, but it

should be done also by application of the methodology either to develop them from scratch

136

Methodology for Model-based Timing Analysis Process

or by reuse). We used the SymTA/S tool to perform scheduling analysis. To do so, we

transformed the AUTOSAR model of the integrated system into a SymTA/S model (cf.

section 2.2.3 of part I). We used SymTA/S concepts to describe the OS tasks and the

hardware resources (ECUs and CAN bus) included in the resource platform view. Each

event chain described in the timing behaviour view is transformed into a "path" formed by

runnable entities in the SymTA/S model. The latency constraint for each event chain is

specified as a path maximum response time in SymTA/S.

Scheduling analysis results:

Table 17 shows a part of the analysis results (only results related to the cruise control sub-

system). It gives the response times obtained for each event chain described in the model. All

the response times obtained for all the sub-systems are less than the specified time

constraints (deadlines), which means that the system is schedulable.

Table17 Response Times for Cruise Control

Event Chain Response times (ms) Deadlines (ms)

Input acquisition and

interpretation

15.2 30

Failure management 10 20

Speed setpoint calculation 40.1 90

Control 17.3 50

The tool calculated an overall load of 60% for the engine management ECU with 1.8%

requested by the cruise control functions. The overall load of the Body Controller ECU is

75% with 0.8% requested by the cruise control functions. Based on these results, we can

validate the architecture designed (application, mapping, software & hardware resource

platform).

2.2. Development by Reuse: Knock

In this chapter, we present an example of the application of the methodology to develop the

software of a knock sub-system by reusing and adapting a previous version of it. We deal

137

Methodology for Model-based Timing Analysis Process

with the case of medium reuse and particularly we focus on the scenario of adding a new

software module to the knock previous software version.

2.2.1. Use Case Presentation

The knock sub-system is used to detect engine knocking during engine combustion and

adjust the ignition accordingly to prevent the engine from “knocking”. In gasoline internal

combustion engines with spark ignition, an undesired effect may occur when the fuel

mixture partially and spontaneously ignites as a result of the compression in the combustion

chamber. The knock sub-system is developed to avoid such phenomenon.

The knock control is based on the acquisition of the engine noise signal during a crankshaft

angular window. This window is set around the ignition operation (we call it main window).

Based on the acquired noise signal, a detection phase is performed to determine if knock

exists or not. In case of knock detected, a correction is performed by calculating an angular

retard to be applied to ignition instant to compensate knock phenomenon.

In turbo-compressed engines, an undesired pre-ignition phenomenon which is similar to the

knock phenomenon can occur before the ignition (during another timing window that we

call pre-window). This phenomenon may be very harmful and increases considerably the

emission of pollutant gases. Thus, it is necessary to control it.

In this chapter, we show how to apply our methodology to develop a new version of the

knock control sub-system that allows controlling both knock and pre-ignition phenomena.

This is done based on previous version of this sub-system that allows only detecting and

controlling the knock phenomenon. As shown in the previous chapter, to develop the new

version of the knock sub-system, we use the information represented in the XD model (cf.

table 15) of the previous software version and extend it to obtain the needed new software

version. Figure 39 shows an overview of the previous software architecture as organized in

the XD tool. All the knock software modules are executed on the engine management ECU.

The noise acquisition software module contains only one operation that allows the filtering

and the integration of the engine noise raw signal. The acquisition of the engine noise signal

is performed during a window whose begin instant and duration are calculated by the

window parameter calculation operation of the detection software module. The threshold

calculation operation, allows, based on the filtered engine noise signal, calculating a

threshold value. Based on this threshold value, the knock energy calculation operation

determines the knock energy which reflects the knock intensity. If this energy exceeds a

138

Methodology for Model-based Timing Analysis Process

specific limit, this means that a knock phenomenon is taking place. In case of knock detected,

the correction loop operation of the control software module calculates an angle retard to be

applied to the ignition instant to compensate the knock. The ignition angle retard is

communicated to the ignition setpoint sub-system that controls the ignition instant.

 Figure 39 Simplified overview of previous knock software architecture

Based on this architecture, we propose to develop a new version of this sub-system that

allows controlling also the pre-ignition phenomenon. We call this new version knock/pre-

ignition sub-system rather than knock sub-system.

The control of the pre-ignition phenomenon by the knock/pre-ignition sub-system consists

of detecting the pre-ignition phenomenon during the pre-window and then sending a

request to the ignition realization sub-system to stop the ignition in the corresponding

cylinder if pre-ignition is detected.

2.2.2. Analysis phase

In this phase, we determined the EMS end-to-end requirements that the new version of the

knock/pre-ignition sub-system should meet. We identified two EMS end-to-end

requirements:

139

Methodology for Model-based Timing Analysis Process

• EMS_REQ1: In case of knock detected, the knock should be compensated within 700ms

• EMS_REQ2: In case of pre-ignition detected, ignition stopping order should be

delivered within 900ms

Based on these end-to-end requirements, we should determine the time budgets to be

allocated to the knock/pre-ignition sub-system. Before this, we should develop the

analyzable model.

2.2.2.1. Analyzable Model

• Knock/pre-ignition Analysis Functional View: Figure 40 shows the functional view

developed during this phase for the knock/pre-ignition sub-system. The figure shows

the interaction of the knock/pre-ignition sub-system with other sub-systems within the

EMS. As presented during the methodology description, EAST-ADL constructs for

functional modeling are used to develop this view.

Figure 40 Knock/Pre-ignition analysis functional view

• Knock/pre-ignition Analysis Timing View: Figures 41 and 42 show the timing view

developed to represent the above-mentioned end-to-end requirements. EMS_REQ1

means that since the acquisition of the noise signal by the sensor and the detection of the

knock phenomenon by the knock/pre-ignition sub-system until the new ignition setpoint

is calculated by the ignition setpoint sub-system (based on the ignition angle retard

information), the duration should not exceed 700ms. EMS_REQ2 means that since the

acquisition of the noise signal and the detection of the pre-ignition phenomenon by the

knock/pre-ignition sub-system until the ignition realization delivers an order to stop the

ignition operation, the duration should not exceed 900ms. The two following figures

140

Methodology for Model-based Timing Analysis Process

represent respectively the timing views corresponding to the requirements EMS_REQ1

and EMS_REQ2.

Figure 41 Knock/Pre-ignition-to-ignition setpoint event chain

Figure 42 Knock/Pre-ignition-to-ignition realization event chain

2.2.2.2. Determination of Knock/Pre-ignition Time Budgets

Based on our knowledge of the time budgets of previous versions of the ignition setpoint and

ignition realization sub-systems, we determined the following time budgets to be allocated

141

Methodology for Model-based Timing Analysis Process

to the knock/pre-ignition sub-system; to comply with the EMS-REQ1 the knock detection

and correction should be performed within 300ms. To comply with EMS_REQ2, from the

detection of the pre-ignition until an ignition stop request is delivered the duration should

not exceed 250ms. Hence, we have the following two constraints to be satisfied when

refining the knock/pre-ignition functional architecture during the design phase:

• AConst1: The detection and the correction of the knock should be performed within

400ms

• AConst2: From the detection of the pre-ignition until an ignition stop request is

delivered, the duration should not exceed 250ms.

2.2.3. Design phase

It is during this phase, that we start reusing the information available from the previous

version of the knock sub-system software.

To detect the pre-ignition phenomenon, it is possible to use exactly the same software

modules as the previous version without adding new functional blocks/software modules. In

this case; we just need to adapt the software module called “detection” to enable both the

detection of the knock and pre-ignition phenomena. However, the pre-ignition phenomenon

occurs only in turbo-compressed engines. So, for the other engine kinds, only the previous

knock software version is needed. To facilitate the reuse of both the previous and new

versions of the sub-system, we decided, hence, to add a new function that allows detecting

separately the pre-ignition phenomenon during the pre-window.

2.2.3.1. Analyzable Model

• Knock/pre-ignition Design Functional View: We develop this view based on the

already existing software modules. As described in the previous chapter, we transform

each software module from the previous software version to a functional block. Then, we

add a new functional block for the detection of the pre-ignition phenomenon. Figure 43

shows an overview of the knock/pre-ignition functional architecture developed during

this phase.

142

Methodology for Model-based Timing Analysis Process

Figure 43 Knock/pre-ignition design functional view

As figure 43 shows, the software modules noise acquisition, detection, control, diagnosis

and limp home are transformed respectively into functional blocks called noise

acquisition, knock detection, control, diagnosis and limp home. We introduced the new

functional block pre-ignition detection for the detection of the pre-ignition phenomenon.

This detection is done based on the noise signal acquired during the pre-window. As

presented in the methodology description, EAST-ADL constructs for functional

modeling are used to develop this view. Note that during this phase, we perform just a

direct transformation of each software module from the previous software version to a

functional block without focusing on the software module internal implementation (i.e.,

the operations/runnables that it contains). Such implementation will be described during

the implementation phase based on the new functional architecture chosen and the

timing analysis results obtained during the design phase. Nevertheless, during this phase

(design), we decide about the role of each functional block of the new configuration. For

example, the noise acquisition functional block will perform not only the acquisition of

the noise signal during the main window (as it was the case for the previous software

version) but also the acquisition of the noise signal during the pre-window. As for the

previous software version, the knock detection functional block is responsible for the

detection of the knock phenomenon and the parameter calculation for the main window.

For the new version of the knock/pre-ignition sub-system, this functional block will also

143

Methodology for Model-based Timing Analysis Process

perform the parameter calculation of the pre-window. The control functional block will

perform the same task as for the previous software version. The diagnosis and limp home

functional blocks will process the noise signals acquired during both the main window

and the pre-window.

Based on this functional configuration and the time budgets determined for the

knock/pre-ignition sub-system, we determine the time budget to allocate to each

functional block. To do so, we need to develop first the timing view of this phase.

• Knock/pre-ignition Design Timing View: Figure 44, 45 and 46 show the timing view

of the design phase. The constraint AConst1 (figure 44) means that from the start of the

noise acquisition functional block until the knock detection and then the control are

finished, the duration should not exceed 300ms. AConst2 (figure 45) means that since the

start of the noise acquisition until the pre-ignition detection is finished, the duration

should not exceed 250ms. From the previous version of the knock sub-system, we

introduce, during this phase, a new constraint AConst3 (figure 46) that requires that,

from the start of the diagnosis until the end of the limp home, the duration should not

exceed 200ms.

Figure 44 From acquisition to control EventChain

144

Methodology for Model-based Timing Analysis Process

Figure 45 From acquisition to pre-ignition detection EventChain

Figure 46 From diagnosis to limp home EventChain

Based on the above mentioned constraints and with the help of knock sub-system specialists

we determined the following time budgets to allocate to the functional blocks of the new

knock/pre-ignition version (table 18).

145

Methodology for Model-based Timing Analysis Process

Table 18 Knock/pre-ignition functional block time budgets

Functional block Time budget (ms)

Noise acquisition 100

Knock detection 200

Control 100

Pre-ignition detection 150

Diagnosis 100

Limp home 100

These time budgets mean that:

• DConst1: The noise acquisition should be performed within 100ms

• DConst2: The knock detection should take place within 200ms

• DConst3: The knock control should be performed during 100ms

• DConst4: The pre-ignition detection should take place within 150ms

• DConst5: The diagnosis should be performed within 100ms

• Dconst6: The limp home should take place within 100ms

 These constraints should be respected when creating the software architecture of the

knock/pre-ignition during the implementation phase

2.2.3.2. Hardware Architecture Exploration:

As mentioned previously, for the previous version of the knock sub-system, all the software

modules execute on the engine management ECU. In our case, the new version of the sub-

system should use the same resource. Hence in this phase, we perform ECU load estimation

not to determine the best functional block-to-ECU allocation scenario but just to verify that

the CPU load budget decided for the new version is respected with the new configuration

(introduction of pre-ignition detection). With the help of EMS designer and knock sub-

146

Methodology for Model-based Timing Analysis Process

system specialists, we identified that the load requested by the knock/pre-ignition should

not exceed 5% of the global load of the engine management ECU. To verify if this load could

be respected or not, we should determine the ECU load requested by the new software

version based on the functional architecture described previously and the execution times

estimated for the functional blocks.

Estimation of functional block execution times:

The execution time of each functional block is determined based on the previous software

version. In fact, for this previous version, we have a data base describing the execution time

of each operation (these operations are described in figure 39). Table 19 shows the execution

times of the previous software version operations. These execution times will allow us

having an estimation of the execution time of the functional blocks.

Table 19 Operation execution times from previous knock software version

Operation Execution Time (µs)

Filtering and integration 7

Diagnosis 7.5

Limp home 400

Window parameter setting 6

Threshold calculation 9

Knock energy calculation 9

Correction loop 27

In the previous software version, the operation filtering and integration has a worst case

execution time of 7 µs. For the new version of the sub-system, we know that this operation

should be performed twice (first on the signal acquired during main window and then on the

signal acquired during pre-window). Thus, for the functional block noise acquisition, we can

estimate a bound of 14 µs for its execution time (the double of the filtering and integration

operation execution time). As the control functional block role remains unchanged, we can

assign to it the same execution time as the previous version.

147

Methodology for Model-based Timing Analysis Process

For the knock detection functional block, in addition to old treatment (main window

parameter calculation, threshold calculation, energy calculation), the new version should

calculate also the parameters of the pre-window. Thus, we can estimate for it an execution

time of 30 µs (the sum of the previous execution times augmented by an extra time for the

calculation of pre-window parameter. This augmentation should be nearly equal to the

execution time of the main window parameter calculation operation). The bound to be

estimated for the execution time of the diagnosis functional block is 15µs as the treatment of

this functional block should be performed for both the noise signal acquired during the main

window and the signal acquired during the pre-window. For the pre-ignition functional

block, we estimate an execution time of 20µs (the detection of the pre-ignition phenomenon

will be nearly similar to the knock detection based on the calculation of a pre-ignition

threshold)

To be able to estimate the load requested by knock/pre-ignition functional block, we also

need to know the period of each treatment. Table 20 describes the activation of each

operation from the previous software version.

Table 20 periods of previous software version operations

Operation Activation

Filtering and integration Window end event

Diagnosis SEG_event

Limp home 100ms

Window parameter setting SEG_event

Threshold calculation SEG_event

Knock energy calculation SEG_event

Correction loop SEG_event

The window end event and the SEG event are engine-synchronous events (the periods of

these events depend on the engine speed). In our case, to simplify the understanding of the

illustration, we choose to perform timing analysis for a six cylinder engine running at 6000

rpm. At this engine speed, the window end event has a period of 2ms. The SEG event has a

period of 3ms.

148

Methodology for Model-based Timing Analysis Process

Based on these values, we can assign the following periods to our functional blocks (table

21). We choose to assign a period of 3ms for the pre-ignition detection functional block

(similar to the period of knock detection functional block). Table 21 shows also the

functional block execution times.

Table 21 Knock/pre-ignition functional block execution times and periods

Functional block Execution time (µs) Period (ms)

Noise acquisition 14 2

Knock detection 30 3

Control 27 3

Diagnosis 15 3

Limp home 400 100

Pre-ignition detection 30 3

Based on these values, the global load requested by the knock/pre-ignition functional blocks

is 4.1%. This value is less than the load budget authorized for the knock/pre-ignition sub-

system. This means that the architecture conceived can be validated and it is possible to

move to the next development phase, the implementation.

2.2.4. Implementation Phase

During this phase, we transform the knock/pre-ignition functional architecture described

during the design phase into a software architecture using AUTOSAR concepts. As for the

cruise control use case, we used the Cessart-CT tool to create the models of this phase.

� Knock/pre-ignition Application View: In this view, we chose to transform each

functional block from the design phase to an AUTOSAR software component. Figure 47

shows a simplified overview of the software components and their communication (for

the clarity of the figures, we do not show all the data exchanged between the software

components). Figure 48 shows the runnable entities created for each software

component.

149

Methodology for Model-based Timing Analysis Process

Figure 47 simplified overview of Knock/pre-ignition AUTOSAR software architecture

Figure 48 Knock/pre-ignition software components and runnable entities

As figure 48 shows, compared with the previous software version, the internal behavior

(the defined runnable entities) of each software component is adapted to respect the new

150

Methodology for Model-based Timing Analysis Process

configuration. The software component noise acquisition contains two runnable entities.

The first one performs the filtering and integration of the noise signal acquired during

the main window and the second one processes the signal acquired during the pre-

window. For the software component knock detection, we added a runnable entity for

the calculation of the pre-window parameters (begin instant and duration). The

diagnosis software component contains two runnable entities that perform the diagnosis

of the noise signal acquired during the main window and the one acquired during the

pre-window. The pre-ignition software component contains two runnable entities. The

first runnable entity calculates a pre-ignition threshold. Based on this threshold, the

second runnable entity calculates the pre-ignition energy. If this energy exceeds a fixed

limit, this means that pre-ignition is occurring.

� Knock/pre-ignition Timing Behavior View: In this view, we modeled the timing

constraints determined during the design phase by means of AUTOSAR events and

event chains. For example, for the constraint DConst3, we modeled an event chain

having as stimulus the activation event of the runnable entity correction loop and as

response the termination event of the same runnable. For this event chain, we specified a

latency constraint having 100ms as a maximum value. For Dconst4, we modeled an

event chain having as stimulus the activation event of the runnable pre-ignition

threshold calculation and as response the termination event of the runnable pre-ignition

energy calculation. For this event chain, we specified a latency constraint of 150ms.

Figure 49 shows a representation of the event chain related to the constraint Dconst4

(pre-ignition event chain).

Figure 49 Representation of the modeling of the pre-ignition event chain

151

Methodology for Model-based Timing Analysis Process

� Resource Platform View: In this view, we model the hardware and software resources

used by the knock/pre-ignition sub-system. Figure 50 shows an overview of the resource

platform used by this sub-system. As mentioned previously, all the knock/pre-ignition

software components will run on the engine management ECU. Task_ENG is an

engine-synchronous task that is triggered by the SEG event presented in table 20.

Task_WinEnd is triggered by the window end event.

Figure 50 Representation of the resource platform view

� Mapping View: Figure 51 shows a representation of the mapping view, it presents the

distribution of the runnable entities between OS tasks. To develop this view, we used the

information of the mapping of the previous software version operations to OS tasks. For

the new software architecture, we chose to map the runnable entities of the pre-ignition

detection software component to the TASK_ENG.

Figure 51 Representation of the mapping view

152

Methodology for Model-based Timing Analysis Process

2.2.5. Scheduling Analysis

We performed scheduling analysis using the SymTA/S tool. The scheduling analysis was

performed taking into account all other EMS sub-systems and the new knock/ pre-ignition

constraints. Table 22 shows the response times related to the knock/pre-ignition sub-

system. All the response times are less than the deadlines specified (the same for the

constraints considered for the other sub-systems) which means that the system is

schedulable.

Table22: Response times for the knock/pre-ignition event chains

Event Chain Deadline (ms) Response Time (ms)

Noise acquisition 100 25

Knock control 100 15

Pre-ignition detection 150 82.5

Knock detection 200 110

diagnosis 100 30.5

Limp home 100 40.2

153

Methodology for Model-based Timing Analysis Process

3. About the Methodology Acceptability
In this chapter, we propose to measure the acceptability of our methodology and its potential

to be adopted by Continental engineers. Let’s note that the results of this thesis work has

contributed among many other research works carried out at Continental to the decision of

Continental to migrate to a new EMS software architecture based on AUTOSAR concepts

and adapted to EMS characteristics. As a part of this migration process, a tool allowing the

description of EMS software architecture with AUTOSAR concepts is being developed. This

tool gives the possibility to transform previous software version described with XD models

into AUTOSAR software architecture. It is also intended to allow the integration of

AUTOSAR models from different parts of the EMS software.

3.1. Tasks, Roles, Skills

To measure the acceptability of our methodology, we propose to measure the gap between

our proposed process and the current EMS development process (described in section 1.2 of

this part) in terms of current vs. new tasks and skills in order to determine the training

needs and to evaluate their availability potential. Table 23 gives a comparison between the

tasks performed currently by the different roles involved in the EMS development process

and the new tasks required by our methodology. The new tasks required by the

methodology should be weaved into the tasks performed currently during the EMS

development process.

154

Methodology for Model-based Timing Analysis Process

Table 23 Current vs. new tasks

Role Current task New task

EMS designer

- EMS requirement analysis

(functional and performance

requirements): elicitationand

integration in Doors data base

- EMS partitioning

- EMS end-to-end timing requirement

determination and analysis

- Analysis functional views modeling

- Analysis timing views modeling

- Sub-system time and CPU load budgets

determination

Function

developer

- Sub-system requirement analysis

(requirement elicitation and

integration in Doors data base)

- Function and algorithms

description (manually or through

Simulink modeling)

- Sub-system design functional view

modeling

- Sub-system timing view modeling

- Functional block time budgets

determination

- Functional block execution times

estimation

- Modeling of abstract architecture of the

hardware platform to be used by the sub-

system.

- Allocation of functional blocks to hardware

resources modeling

- Processor load estimation

Software

developer

- Sub-system algorithms

implementation (manual C coding

or automatic C code generation

from Simulink models)

- Sub-system software architecture

description using AUTOSAR

- Runnable entity timing information

determination (timing constraints &

execution times)

Software

integrator

- C code and algorithms

integration from different sub-

systems

- AUTOSAR models from different sub-

systems integration

- Scheduling analysis performance for

integrated EMS

As the table shows, the new tasks required by the methodology are centered on modeling

and timing analysis. To be capable to perform these tasks, some skills need to be acquired by

the different roles involved in the development process. Table 24, 25, 26 and 27 give a

comparison between the current skills and the new required skills for each role involved in

the development process.

155

Methodology for Model-based Timing Analysis Process

Table 24. Current vs. new skills and training needs for EMS designer

Role Current skills

New skills

Training needs

Required skill Rational Availability risk

EMS designer

- Use of Doors tool

- Domain knowledge:

engine control

knowledge

- CPU load budgeting

Real time skills:

determination of EMS

end-to-end requirements

and sub-system time

budgeting

EMS designer should

have these skills to be

able to determine the

EMS end-to-end

requirements and, based

on this, to determine

the time budget to

assign to each sub-

system

No availability risk

as EMS designer

can be supported by

the function and

software developer

of each sub-system

who have better

knowledge about

the time budget that

can be acceptable

for the considered

sub-system

No training is

needed

Need for support

from sub-system

function and

software developer

EAST-ADL functional

modeling

To be capable to

develop functional

views during the

analysis phase

Medium availability

risk as EAST-ADL

is not very well

known currently

and hence there is a

risk of lack of

EAST-ADL

training

EAST-ADL

training

UML diagrams use

Need for use of UML

composite structure

diagrams for functional

views and UML

sequence diagrams for

timing views

No risk of

availability as UML

is a standard and

training for UML

concepts and tools

can be provided

easily

UML basic training

UML editor use

Needed to develop the

models during the

analysis phase

UML editor

training (e.g.,

ARTISAN studio,

papyrus MDT)

TADL modeling

Need to be familiar with

TADL concepts to

develop the timing

views that represent the

EMS end-to-end

requirements during the

analysis phase

No availability risk

as TADL notions

are integrated in

AUTOSAR timing

extensions for

which training can

be provided at

Continental

TADL training

Eclipse use

This skill is needed as

most of available UML

editors are eclipse based

No availability risk

as EMS designer

can be supported by

software developers

who have already

eclipse use skills

Eclipse basic

training

As the table shows, most of the new required skills for EMS developer are centered on

modeling skills and the use of modeling languages and tools. Such skills can be acquired by

EMS designer through training.

156

Methodology for Model-based Timing Analysis Process

Table 25. Current vs. new skills and training needs for function developer

Role Current skills
New skills

Training

needs
Required skill Rational Availability risk

Function

developer

- Use of Doors tool

- sub-system

functional design

description as Word

specifications

- Auto coding-aware

Simulink modeling

Real time skills:

capability to

determine time

budgets and estimate

execution times

To be capable to

determine functional

block time budgets

and estimate

functional block

execution times

No availability risk

as function

developer can be

supported by

Continental dynamic

architecture

specialists who have

strong real time

skills

Support from

EMS dynamic

behavior

experts

Information

exchange with

software

developer

EAST-ADL

functional modeling

To be capable to

develop functional

views during the

design phase

Medium availability

risk as EAST-ADL

is not very well

known currently and

hence there is a risk

of lack of EAST-

ADL training

EAST-ADL

training

UML diagrams use

Need for use of UML

composite structure

diagrams for

functional views and

UML sequence

diagrams for timing

views

No risk of

availability as UML

is a standard and

training for UML

concepts and tools

can be provided

easily

UML basic

training

UML editor use

Needed to develop

models during design

phase

UML editor

training (e.g.,

ARTISAN

studio, papyrus

MDT)

TADL modeling

Need to be familiar

with TADL concepts

to model the timing

views during the

design phase

No availability risk

as TADL concepts

are integrated in

AUTOSAR timing

extensions for which

training can be

provided at

Continental

TADL

training

Eclipse use

This skill is needed

as most of available

UML editors are

eclipse based

No availability risk

as function

developer can be

supported by

software developers

at Continental who

have already eclipse

use skills

Eclipse basic

training

157

Methodology for Model-based Timing Analysis Process

Table 26. Current vs. new skills and training needs for software developer

Role Current skills

New skills

Training needs
Required

skill
Rational

Skill availability

risk

Software

developer

- MISRA C coding

- Real time skills:

capability to decide

about recurrences

and deadlines to

assign to executing

operations

- Work within eclipse

environment

AUTOSAR

modeling:

application

modeling,

timing

modeling,

platform

modeling,

mapping

modeling

Software developer

should master using

AUTOSAR concepts to

develop sub-system

software architecture at

implementation level

No availability risk as

AUTOSAR trainings

can be provided at

Continental

AUTOSAR

training

AUTOSAR

editor use

Needed to develop

AUTOSAR models

No availability risk as

an AUTOSAR editor

adapted to describe

EMS architecture is

being developed at

continental with the

intention to train

software developers to

it.

AUTOSAR

editor training

158

Methodology for Model-based Timing Analysis Process

Table 27. Current vs. new skills and training needs for software integrator

Role Current skills
New skills

Training

needs
Required skill Rational Availability risk

Software

integrator

-Software integration

tool use (internal

tools)

- Capability to

analyze the static and

timing behavior

(execution time and

response time

measurement) of the

integrated software

AUTOSAR modeling

This skill is needed

to enable a correct

integration of the

AUTOSAR models

from different sub-

systems

No availability risk

as AUTOSAR

trainings can be

provided at

Continental

AUTOSAR

training

AUTOSAR editor use
Needed to integrate

AUTOSAR models

No availability risk

as an AUTOSAR

editor developed

within Continental

and adapted to EMS

architecture is being

developed with the

intention to train

software integrators

to it.

AUTOSAR

editor training

Capability to work

within Eclipse

environment

The available

AUTOSAR editors

are eclipse-based.

No availability risk
Eclipse basic

training

Scheduling analysis

tool use

Software integrator

need to be capable to

use scheduling

analysis tools to

perform scheduling

analysis for the

integrated system

No availability risk

as for commercial

tools such as

SymTA/S, the

provider is ready to

train continental

engineers to it.

Scheduling

analysis tool

training (e.g.,

SymTA/S,

Chronval)

Basic notions of

scheduling theory

The software

integrator should

have some notions of

scheduling theory

(preemption,

cooperation,

blocking, offsets, etc)

to be capable to

interpret scheduling

analysis results.

Real time properties

of Continental tasks

(recurrences,

deadlines,

preemptivity) are

already known by

software integrators.

For scheduling

theory notions, there

is no availability risk

as these notions can

be acquired during

trainings to

scheduling analysis

tools.

No specific

training is

needed, this

knowledge can

be acquired as

part of training

to scheduling

analysis tools

Based on the comparison presented in the previous tables in terms of needed tasks and skills,

we can conclude that there is a good potential for our methodology to be adopted by

159

Methodology for Model-based Timing Analysis Process

Continental engineers. In fact some of the skills required by the methodology are already

available in continental. For the skills that are not available yet, there is no risk to acquire

them as trainings can be provided at Continental. However, as EAST-ADL is a new

formalism, EAST-ADL trainings can be not available in the short term. The early

development phases based on EAST-ADL modeling can be adopted as an enhancement of

the future Continental development process that is intended to be based on AUTOSAR

software architecture.

3.2. Tool Support

In this section, we propose to measure the acceptability of the proposed methodology in

terms of tool support. To this end, we compare the current tool chain used at Continental to

develop engine management systems and the tool chain required by our methodology.

Figure 52 shows an overview of the current EMS development tool chain.

Figure 52 Current tool chain used to develop Engine management systems

160

Methodology for Model-based Timing Analysis Process

As the figure shows, requirement analysis activities are performed by the EMS designer and

function developer based on the Doors data base. During the software development of each

sub-system, the functional design is described either as Word specifications in the code-

centric approach or through using the Simulink tool to model the functions and their

associated algorithms in the model-based approach. In the same way, the software

implementation is either done manually using a C code editor or by generating the C code

automatically using a C code generator. During the software integration, an internal

software integration tool is used. Then, from this tool, an XD model is generated to enable

the analysis of the static architecture of the software using the XD tool. In parallel, an

internal tool (timing data base) allows performing the timing analysis of the integrated

software by measuring the operation execution times, the OS task response times and the

CPU load values.

Figure 53 shows the new EMS development tool chain underlying our methodology.

Figure 53 Methodology development tool chain

161

Methodology for Model-based Timing Analysis Process

As figure 53 shows, during the analysis and design phases, a UML editor is needed in order

to enable the development of functional and timing views during these phases. During the

implementation phase of each sub-system, an AUTOSAR editor is needed to describe the

software architecture using AUTOSAR constructs. Such editor is also needed to perform the

integration of AUTOSAR models from different sub-systems. Based on the functional

architecture modeled during the design phase for each sub-system, a large part of the

AUTOSAR software architecture can be generated automatically using a transformation

tool. In the same way, to perform scheduling analysis on the integrated architecture, a

transformation tool is needed to transform AUTOSAR models to a model understandable by

a scheduling analysis tool.

Table 28, 29 and 30 give a comparison between the current and the new tool chains during

respectively EMS design phase, software development for each sub-system and software

integration and analysis. The new tool chain required by the methodology should be weaved

into the tool chain that is currently used during the EMS development process.

Table 28 Current vs., new tool chain used during EMS design phase

EMS

Development

phase

Current

tools

New tools

Tool Rational Example Availability risk

EMS design

- Doors data

base

- Word

UML editor

To develop

EAST-ADL

and TADL

models during

analysis phase

- Papyrus

MDT

- Artisan

Studio

No availability risk as

these tools are already

developed. Artisan studio

is already used by

Continental engineers to

develop basic software

parts for each sub-system

162

Methodology for Model-based Timing Analysis Process

Table 29 Current vs., new tool chain used during software development of each sub-system

EMS

Development

phase

Current

tools

New tools

Tool Rational Example Availability risk

Software

development

for each sub-

system

- Doors

- Word

- Simulink

- C editor

- C code

generator

UML editor

To develop

EAST-ADL

and TADL

models during

design phase

- Papyrus

- Artisan

Studio

No availability risk as

these tools are already

developed

Scheduling

analysis tool

To calculate

the processor

loads based on

functional

block-to-ECU

allocation

scenario

- MAST

- Cheddar

- SymTA/S

No availability risk as

these tools are already

available

Design to

implementation

transformation

tool

This tool is

needed to

generate

automatically a

part of the

AUTOSAR

software

architecture

from the

functional

EAST-ADL

architecture

and hence

accelerate the

development

Optimum

[60]

A tool called Optimum

that allows generating

automatically AUTOSAR

software components

from EAST-ADL

functional models exists

already. However, this

tool is not mature

enough. The non-

availability of such tool is

not a blocking point for

the adoption of the

methodology but it may

prevent from saving more

development time

compared with current

status of the methodology

AUTOSAR

editor

This tool is

needed to

model the

software

architecture of

each sub-

system using

AUTOSAR

concepts

Cessar-CT

Cessar-CT is not mature

enough. Nevertheless,

there is no availability

risk for an AUTOSAR

editor as a tool is already

being developed in

Continental for a new

EMS architecture based

on AUTOSAR.

163

Methodology for Model-based Timing Analysis Process

Table 30 Current vs., new tool chain used during software integration and in case of software reuse

EMS

Development

phase

Current

tools

New tools

Tool Rational Example Availability risk

Software

integration and

analysis

- Software

integration

tool

- XD tool

- Timing data

base

AUTOSAR

models

integration

tool

(AUTOSAR

editor)

This tool is

needed to

enable the

integration of

the

AUTOSAR

models from

different sub-

systems

-

No availability risk

because the AUTOSAR

editor developed for the

new EMS AUTOSAR

architecture is intended

to enable the integration

of AUTOSR parts from

different sub-systems

AUTOSAR to

scheduling

analysis

transformation

tool

This tool is

needed to

generate

automatically

from

AUTOSAR

models a

model

understandable

by a

scheduling

analysis tool

AUTOSAR-

to-SymTA/S

transformation

tool

This kind of

transformation tool is

being currently

developed by

Symtavision, the

SymTA/S provider

Scheduling

analysis tool

This tool is

needed to

perform

scheduling

analysis on the

integrated

AUTOSAR

models

SymTA/S

No availability risk as

SymTA/S is already

available and it satisfies

all the scheduling

analysis needs for

automotive systems. Let’s

note that the license of

this tool costs between

30000 and 40000 Euros.

Development

by reuse with

the

methodology

-

XD to

AUTOSAR

editor

transformation

tool

This tool is

needed to

speed the

transformation

of the old

software

architecture

represented in

XD to an

AUTOSAR

architecture in

case of reuse of

software

modules.

-

No availability risk as the

AUTOSAR editor

developed for the new

EMS AUTOSAR

architecture is intended

to allow importing

models represented in

XD.

164

Methodology for Model-based Timing Analysis Process

 As the tables show, several new tools that are not currently used by Continental engineers

are required by our methodology. However, these tools are already available and mature

enough and engineers can be trained to them. Some tools such as the tool to transform

EAST-ADL functional architecture to an AUTOSAR architecture are available but need to

be improved. Nevertheless, the evaluation of this tool in Continental showed that it can be

improved easily for an accurate integration in the development process.

3.3. Methodology Tooling

In this section, we present the tools that have been developed to facilitate the use of our

methodology by Continental engineers. To model our methodology, the Eclipse Process

Framework (EPF) [63] is used to represent the phases and activities of our methodology.

To guide Continental engineers through the use of our methodology, we implemented also

Eclipse cheat sheets that engineers can follow when using the methodology. Finally, a set of

model checking rules have been implemented to ensure the development of consistent

models during the analysis and design phases using the papyrus tool.

3.3.1. Methodology EPF Model

Figure 54 shows a simplified overview of the EPF model developed for the methodology.

The figure shows the modeling of the different activities that should be performed during

each phase. In addition, the figure details the tasks that should be performed to develop the

analyzable models during the analysis and implementation phases.

165

Methodology for Model-based Timing Analysis Process

Figure 54 Simplified EPF model of the methodology

3.3.2. Cheat Sheet Guides

To guide engineers through the use of our methodology, we implemented a set of eclipse

cheat sheets that describe in details the steps to follow to develop the models needed during

each phase of the development. Figure 55 shows an example of a cheat sheet that describes

the modeling steps that should be followed to develop the timing view during the design

phase. These cheat sheets can be added as a plug-in to the Eclipse platform and can be used

by Continental engineers as a part of the Eclipse help.

166

Methodology for Model-based Timing Analysis Process

Figure 55 Example of an implemented Eclipse sheet cheat

3.3.3. Model Validation Rules.

To ensure the development of consistent models, we used the EMF (Eclipse Modeling

Framework) [64] Validation mechanisms to implement modeling rules against which

Continental engineers can verify the correctness of their Papyrus models during analysis

and design phases. These rules are developed as constraints implemented in Java. Figure 56

shows an example of the validation of a timing view developed using Papyrus MDT. To

validate this view, we implemented a Java constraint telling that messages should be

stereotyped with the stereotype “DataMassage” as described during the methodology

presentation. As the figure shows, once the validation is launched, the tool detects that this

constraint is not respected and an error message notifies the designer about the problem.

167

Methodology for Model-based Timing Analysis Process

Figure 56 Example of modeling rule validation in Papyrus

168

Methodology for Model-based Timing Analysis Process

4. Methodology General Validation
This section aims at highlighting the added value of the proposed methodology through

showing at which extent it allows satisfying the automotive needs presented in the first part

of this manuscript. To validate our methodology we select hence a set of validation criteria

that reflect these needs. As denoted in the first part of this manuscript, the approach should

allow:

• Reducing development time and cost

• Mastering system complexity

• Providing a seamless development process based on a seamless tool chain

• Ensuring system dependability, especially timing correctness through verification and

validation.

Table 31 summarizes the capabilities of the methodology against these needs.

4.1. System Complexity Mastering

In our process, a top-down approach is followed, whereby system architecture is detailed and

refined from one phase to another. During the early development phase (analysis), for

example, the focus is only on system functional architecture, thus abstracting away the

complexity that is potentially inherent in hardware or implementation details. This

architecture is further refined during the design phase, and the general features of its

hardware platform are described. Finally, the software and hardware architectures are

supplemented with all related implementation details. In this way, the complexity of the

architecture described increases gradually from one phase to another, allowing engineers to

focus during each on particular views of the system. The complexity of timing analysis also

increases gradually from phase to phase. During analysis phase, the focus is made only on

timing validation of the architecture. During design phase, this validation continues and is

enhanced by validation of the hardware platform. Finally, after the integration stage, a

complete scheduling analysis is performed to validate both the timing and performance

constraints.

4.2. Development Time and Cost Reduction

Development time and cost reduction is enabled by our methodology basically through the

early detection of time-related failure. In fact, if we consider the current EMS development

169

Methodology for Model-based Timing Analysis Process

process at Continental, timing verification is performed currently very late after the

integration of the EMS and is based on tests and measurements (measurement of task

response times based on the C code of the integrated system). In case of failure detected

during this phase, the correction of such failure is very time-consuming. In fact, the

knowledge of the failure source is very difficult (which sub-system is involved? at which

stage a design mistake was made? etc…). With our methodology, timing analysis starts

since the very early phase of the EMS design. By identifying EMS end-to-end requirements

and assigning time budgets to the different sub-systems based on these requirements, we

ensure that these requirements remain respected when developing the software of each sub-

system. In addition, during the software development process for each sub-system, timing

analysis is performed in each phase to ensure the correctness of the architecture designed

and hence the possibility to move to the next phase. Hence, if a failure is detected by the

scheduling analysis performed on the integrated system, we do not need to spend more time

to go back to the early design phases (as the architecture designed during these phases is

already validated).

Furthermore, the current timing analysis performed on the EMS (after the system

integration) is more time-consuming than the scheduling analysis activity that we propose

in our methodology. In fact, for an EMS configuration containing almost 20 OS tasks, the

measurement of OS task response times (using C code) at a fixed engine speed takes nearly

four days as it requires modifying the C code of the integrated system to get analyzable C

code. In addition the tool used currently to measure these response times takes nearly two

days to analyze the code. For the same EMS configuration, performing scheduling analysis

using the SymTA/S tool takes only one day knowing that the SymTA/S model for the EMS

architecture was described manually. This duration will be greatly reduced when the

SymTA/S model is generated automatically form, e.g., AUTOSAR models.

In addition, unlike our approach, the current approach does not allow measuring the

response times of engine-synchronous tasks; it gives results only for timing tasks. Hence,

the results obtained do not reflect at all the real timing behavior of the system. Due to this,

some real time failures may be detected only during the final tests on the vehicle itself which

introduces extra time and cost to correct them.

To conclude, our process proposes to start timing analysis early. This allows engineers to

also detect errors early and thus adapt the already developed architecture using models only.

170

Methodology for Model-based Timing Analysis Process

It also saves any time that would otherwise have been lost, for instance, in correcting code

to account for late error detection. Then again, since our development process is model-

based, automatic transformations can be used to generate either models for the next phase

(e.g. by transforming a model developed at the design stage into AUTOSAR software

architecture) or the final code from the AUTOSAR implementation model. It also serves to

automatically generate input models for the analysis tools. All of these features represent a

huge reduction in development time and hence cost. In the cruise control use case presented

previously, development of models in the different phases, together with timing analysis,

took only three days, which is much less than the time usually required to develop software

based on classical approaches (code-centric approaches).

4.3. Seamless Development Process

Our methodology gives guidance for a seamless development and timing analysis process. In

fact, unlike existing approaches that we described in the first part of this manuscript, our

methodology gives guidance for model refinement from a phase to another. In addition, it

describes how analysis results of each phase should be used for architecture refinement

during the next phase.

Moreover, the methodology describes the tool chain that should be used during the

development process for both the modeling and timing analysis activity. Based on the

acceptability study of the methodology, there is a good potential for an easy adoption of this

tool chain at Continental.

4.4. Enabling Timing Verification

The first objective of our proposed process was to enable the integration of timing analysis

along the development process. Compared with available approaches presented in the first

part of this manuscript, our methodology gives detailed guidance allowing performing

timing analysis and verification from early design phases until implementation and

integration. Furthermore, compared with current EMS development process where timing

analysis is performed only at the integration stage, our process enables starting timing

analysis since the very early design phases. In fact during the analysis phase, sub-system

time budgets are determined to ensure compliance with vehicle end-to-end requirements.

Then, these budgets are refined during the design phase to determine the functional block

time budgets. These latter time budgets represent the constraints that are verified during

the implementation phase through performing scheduling analysis. In addition, the

171

Methodology for Model-based Timing Analysis Process

validation of the hardware platform is started during the design phase, based only on

allocation of functional blocks to hardware resources. This model is refined during the

implementation phase by adding the software resources and the mapping of the runnable

entities to these resources. This way, our methodology enables during the early phases

(analysis and design) a sort of “preparatory analysis” that paves the ground for the

scheduling analysis activity performed after EMS integration.

In addition, in this work, we showed how to move from modeling and design activities to

timing analysis activities by presenting guidance for model development and refinement.

172

Methodology for Model-based Timing Analysis Process

Table 31 Methodology capabilities

Software development needs Methodology capabilities

Master system complexity

Development through abstraction levels (From abstract functional

description to detailed implementation).

The complexity of the designed architecture increases gradually

from a phase to another

 Enable the designer to focus on different aspect at different design

phases

The complexity of the timing analysis increases gradually

(evaluation of time budgets, then evaluation of hardware resources

utilization and finally complete scheduling analysis)

Reduce development time

and cost

Early detection of design mistakes,

Reduce time and cost due to correction of last-minute detected

errors

The scheduling analysis proposed by the methodology is less time

consuming than the approach used currently in continental

Automatic transformation of models can be used to accelerate the

development and the timing analysis

Define seamless

development activity

Gives guidance for model refinement and transformation (from

analysis to design phase, from design to implementation phase,

from modeling to analysis tools)

A tool chain for modeling and timing analysis is defined to cover

the whole development process

Enable timing verification

Detailed guidance for integration of timing analysis in the

development process

Enables starting timing analysis during early design phases

Guidance for development of analyzable models during each

development phase

173

Methodology for Model-based Timing Analysis Process

Conclusion and Perspectives
In this thesis work, we presented a methodology for a model-based timing analysis process.

This work has been done to make up for the lacks of some existing approaches that

attempted to provide solutions for automotive software development needs.

Today, four major challenges are to be met in automotive software development domain: 1)

Reduce software development time and cost, 2) master system complexity during

development, 3) provide a seamless development process based on a seamless tool chain and

4) ensure system correctness through enabling early validation and verification. Among the

important aspects to be verified for automotive software is the correctness of its timing

behavior.

In order to provide solutions to some of these needs, many model-based development

approaches and methodologies have been defined. Some of these approaches are automotive

domain specific such as the approaches defining the EAST-ADL, TADL and AUTOSAR

modeling languages. Other approaches are dedicated to real-time systems in general like the

modeling language MARTE. These approaches give modeling means and concepts that

allow describing several aspects of the developed system (application, platform, timing,

allocation, etc). However, although these approaches give some solutions for the above-

mentioned automotive needs, they remain incomplete in term of enabling timing verification

along the development process.

To make up for this lack, we propose in this thesis work a methodology that allows

integrating timing analysis, mainly scheduling analysis, in a model-based development

process that we defined based on the existing approaches.

First, we studied the feasibility of our approach which combines model-based development

for automotive applications and scheduling analysis. On one hand, this feasibility study is

based on the evaluation of the expressivity of the available modeling languages for enabling

scheduling analysis. On the other hand, the study is based on the evaluation of the usability

of scheduling analysis to enable timing verification for automotive systems. This is done

through evaluating the capabilities of available scheduling analysis tools to satisfy

scheduling analysis needs for automotive applications.

174

Methodology for Model-based Timing Analysis Process

Our approach is based on the definition of a model-based timing analysis process. This

process is composed of three development phases; analysis, design and implementation

phase. During the early design phases, analysis and design, analyzable models are developed

using the EAST-ADL constructs for functional modeling, TADL means for timing

modeling and MARTE concepts to model allocation. Based on the developed analyzable

model, timing analysis is performed to determine time budgets to allocate either to the

developed sub-system itself or to its functional blocks. The time budgets determined during

each phase ensure respecting the end-to-end timing requirements of that phase. During

design phase, a hardware architecture exploration is also performed to determine the best

functional block-to-ECU allocation scenario based on the evaluation of ECU loads. During

the implementation phase, the complete software architecture is described and scheduling

analysis is performed to verify whether the system respects the timing constraints

determined by the timing analysis carried out during previous phases.

In this thesis work, we presented also an approach describing how to apply our methodology

for the development of Engine Management Systems (EMS) at Continental. First, we

studied the EMS current development process at Continental. Then, an approach describing

the application of our methodology in the context of this development process is defined.

This approach focuses on two development scenarios; software development from scratch

and software development by reuse. Based on the above-mentioned application approach, we

studied also the acceptability of our methodology by measuring the gap between this

methodology and the current EMS development process in terms of tasks, skills and tool

chain. This acceptability study reveals a strong potential of our methodology to be adopted

by Continental engineers especially that, as a result of this thesis work, the AUTOSAR

formalism is being currently deployed for new EMS architecture at Continental.

The most important added value of our methodology is enabling early detection of timing

errors during the development process. This allows avoiding last-minutes detected mistakes

and hence saving time and cost required for correcting the software implemented.

Our methodology gives also a seamless development and timing analysis process that is

based on seamless tool chain for architecture modeling and timing analysis. The different

development phases defined allows describing the system architecture in a progressive way

from abstract functional description until detailed implementation. This allows, hence

designers mastering the complexity of the designed architecture and give them the

175

Methodology for Model-based Timing Analysis Process

possibility to focus each time only on particular aspect of the architecture (functional

description, hardware, timing, etc).

Although our methodology gives several solutions to meet the automotive software

development challenges at Continental, some points should be improved in further works:

In our methodology, we suggest to perform scheduling analysis based on a self-contained

AUTOSAR software architecture. To perform scheduling analysis, one needs to specify task

or function execution times. However, in our methodology this is done based only on

estimation and designer expertise without giving any formal approach describing how these

execution times can be determined. In case of development by reuse, these execution times

can be determined based the execution times measured from the C code of previous software

version. In the case of the cruise control use case (development from scratch), the execution

times have been determined based on the application expert knowledge. However, this

remains insufficient and there is a need to define a formal approach allowing the

determination of such execution times.

In addition, from a practical point of view, we presented an approach to apply our

methodology for EMS development at Continental. However, for the software description,

we do not describe in detail how constructs used currently to describe EMS software

architecture can be mapped to AUTOSAR concepts. This work is being carried out by

another team at Continental. It aims at adapting AUTOSAR concepts and means for EMS

software architecture specificities.

A further topic that is not presented in this work is the design of an AUTOSAR software

platform (OS tasks) that ensures the timing correctness of the designed system. In fact, an

approach should be developed to describe how, based on the timing properties of AUTOSAR

runnable entities (deadlines, end-to-end constraints, periods, etc), a task model respecting

these properties should be designed. For example the following questions should be

answered:

• How to define OS task deadlines

• How to define task priorities

• How to define task periods/ activation patterns

176

Methodology for Model-based Timing Analysis Process

Annex 1 shows an example of a work in progress that is performed in this thesis work to

solve this problem. The annex shows mainly an approach to define OS task deadlines based

on the deadlines and end-to-end constraints imposed on the AUTOSAR runnable entities.

177

Methodology for Model-based Timing Analysis Process

Annex1: Definition of an

AUTOSAR OS Task Model
At the implementation level (based on AUTOSAR software architecture), to enable

scheduling analysis, the designer should define the OS tasks that constitute the software

resource platform. To define a complete task model, the designer should make some choices

to answer the following questions:

1. How to define the OS tasks of the system

2. How to assign the priorities to these tasks

3. How to determine the deadlines for these tasks based on the runnable deadlines and

end-to-end constraints

4. What are the activation patterns and the recurrences of these tasks.

5. How to define the “preemptivity” kind of each task (which tasks are

preemptive/cooperative)

1. OS tasks choice: generalities

When choosing the OS tasks, the designer should take into account the characteristics of

the runnable entities to be mapped to these tasks. In fact, the designer has as input a set

of runnable entities submitted to a number of constraints such as deadlines or end-to-end

constraints and characterized by recurrences and execution times. Based on this

information, the designer should decide about the properties to assign to each chosen

task (priority, deadline, etc). Of course, the choice of the task model should be done in an

accurate and optimized way. For example, to optimize the CPU load resulting from task

switch overheads, the designer should try to minimize at maximum the number of

chosen tasks while keeping, at the same time, an efficient task model.

2. Task priorities

Here, to comply with AUTOSAR OS, we consider a fixed priority task model, i.e. task

priorities are fixed before system execution and do not change at runtime. When

assigning priorities to chosen tasks, the designer should consider both the timing

constraints of the runnable entities mapped to these tasks (deadlines and end-to-end

constraints) and their execution times. Runnable entities having small deadlines (i.e.

178

Methodology for Model-based Timing Analysis Process

representing urgent treatments) should be mapped to tasks for which the designer

should assign high priorities (deadline monotonic way). Execution times of mapped

runnables should also be considered in order to prevent tasks from being delayed by

higher priority task having a large execution time. In such task case (tasks with large

execution time), the designer should assign a low priority to these tasks and allow them

to have pre-emption points (schedule points) in order to give the possibility to higher

priority tasks to execute without waiting the termination of these task. Moreover, when

assigning priorities to tasks, one should consider its deadline value but also the criticality

of the treatment associated.

3. Task deadlines

Task deadlines should be determined based on the deadlines and end-to-end constraints

of the mapped runnable entities.

A. Case1: System with only deadlines on runnables (no defined end-to-end

constraints on flows of runnables)

In this case, the designer has as input a set of runnable entities, each runnable has got a

deadline, a recurrence and an execution time. Of course, it is not optimal to create a task

for each runnable and assign the runnable deadline to this task. So the designer should

find a solution to map many runnable entities to the same task for which he chooses a

deadline that ensures respecting all the deadlines of the mapped runnables. To do so, the

designer determines, first based on his expertise, groups of runnables to be mapped to

the same task (these groups are formed by runnables with deadlines that are close to

each other). For each group of runnables we define a “deadline class”. This represents the

smallest runnable deadline in the group. The task to which we map the runnables of this

group will have as deadline this deadline class. To avoid a very pessimistic design the

designer should adapt the definition of the groups and the repartition of the runnables

based on the following constraint: for each runnable entity, to belong to a group, the

difference between the deadline of this runnable and the deadline class of the group

should be smaller than a certain value that we denote X. This value is chosen by the

designer based on his expertise

Formulation

179

Methodology for Model-based Timing Analysis Process

Let’s consider a system defined by R = {re1, re2,….., ren}, R is a set of runnable entities

rei (i c{1. ..n}). Each runnable entity rei is defined by (pi, di, exi), pi is the runnable

recurrence, di is its deadline and exi is its execution time. The designer determines a set

of groups of runnable entities G= {g1….gs}. Each group gm is defined as follows: gm =

{rej…rek} (m c {1...s} and j, k c {1...n}). For each group gm we define a deadline class dgm

= min dr, r c {j…k}

Contraints:

1. A runnable entity rei belongs to a group gm if and only if |(di - dgm) | ≤ X

Example:

Let’s consider the runnable entities of table 1:

Table 1 Example of runnable entities and their deadlines

Runnable Deadline

RE0 200 µs

RE1 1 ms

RE2 2 ms

RE3 3 ms

RE4 10 ms

RE5 12 ms

RE6 20 ms

RE7 25 ms

RE8 100 ms

RE9 101 ms

RE10 26 ms

180

Methodology for Model-based Timing Analysis Process

Based on his expertise, the designer will determine a first repartition of these runnables into

groups (runnables with deadlines that are close to each other will belong to the same group).

Table 2 gives a repartition of runnable entities into groups

Table 2 Example of a repartition of runnable entities to groups

Group Runnables Deadline class

g1 RE0 200 µs

g2 RE1, RE2, RE3 1 ms

g3 RE4, RE5 10 ms

g4 RE6, RE7, RE10 20 ms

g5 RE8, RE9 100 ms

This is a first repartition of the runnable entities based on the designer expertise

Now suppose that the bound X is equal to 1ms (i.e. A runnable entity rei belongs to a group gm if

and only if | (di - dgm) |≤ 1 ms)

In this case, RE3 can not belong anymore to the group g1, so we should put it in new group:

g23 = {RE3} having a deadline class equal to 3ms. It is also the case for the RE5 that can’t

belong anymore to g3 so we assign it to a new group g34 = {RE5} with 12ms as a deadline

class, this is also true for the runnable RE7 that can not belong to g4, so we create a group

g45= {RE7} with 25ms as a deadline class. RE10 should also be removed from g4. As the

difference between the deadline of RE10 and the deadline class of g45 is less or equal to 1ms,

we should put RE10 in the group g45

Finally we end up with the repartition of table 3:

181

Methodology for Model-based Timing Analysis Process

Table 3 Repartition obtained

Group Runnables Deadline class

g1 RE0 200 µs

g2 RE1, RE2 1 ms

g23 RE3 3 ms

g3 RE4 10 ms

g34 RE5 12 ms

g4 RE6 20 ms

g45 RE7, RE10 25 ms

g5 RE8, RE9 100 ms

So, to ensure the respect of the deadlines of these runnables preventing a very pessimistic

design, we define the following tasks presented in table 4:

Table 4 Defined tasks

Task Task deadline Mapped runnables

T1 200 µs RE0

T2 1 ms RE1, RE2

T3 3 ms RE3

T4 10 ms RE4

T5 12 ms RE5

T6 20 ms RE6

T7 25 ms RE7, RE10

T8 100 ms RE8, RE9

B. Case 2: System with runnables deadlines and end-to-end constraints

182

Methodology for Model-based Timing Analysis Process

In this case, there are two possible configurations: either end-to-end constraints

are imposed on independent end-to-end flows of runnables (i.e. constrained end-

to-flows have no common runnable entities, figure 1) or these end-to-end flows

have common runnables (figure 2)

Figure 1 Example of independent end-to-end flows

Figure 2 Example of dependent end-to-end flows

B.1: system with independent end-to-end flows:

In this case, the designer considers each constrained end-to-end flow as a unique

runnable entity formed by the succession of the runnables of this end-to-end flow

and having as deadline the end-to-end constraint imposed on this end-to-end flow

(figure 3)

183

Methodology for Model-based Timing Analysis Process

Figure 3 End-to-end flow transformation

This means that all the runnables belonging to a constrained end-to-end flow will be

mapped to the same task. The designer performs then the same work described above by

defining groups of runnables with deadline classes.

B.2: system with dependent end-to-end flows:

Here, we have also two cases: either we are allowed to map a runnable to more than one

task (i.e. a runnable can be called by more than one task) or each runnable should be

mapped to exactly one task. In the first case, the work is easy and is the same as the

work described in B.1: each end-to-end flow is considered as a unique runnable and will

be mapped to a task. Runnables belonging to more than one end-to-end flow may be

mapped to more than one task.

In the second case (when a runnable cannot be mapped to more than one task) the

problem concerns mainly the runnables that belong to more than one end-to-end-flow.

The designer separates the runnable entities in two groups: the first group contains the

runnable that does not belong to any constrained end-to-end flow or to only one end-to-

end flow. The second group contains the runnables that belong to more than one

constrained end-to-end flow. He performs then the same work described in A for the

runnables of the first group. Then based on his expertise, and the formed groups, he

assigns the remaining runnables (i.e. the runnables belonging to more than one end-to-

184

Methodology for Model-based Timing Analysis Process

end flow) to the formed group in a way that the global end-to-end constraint will be

respected

4. Task recurrences

The problem of choosing task recurrences is similar to the problem of choosing task

deadlines. The designer has as input a set of runnable entities having recurrences and

should be mapped to tasks for which we assign recurrences that should respect the

runnable recurrences. The designer should make a trade-off between the choice of task

recurrences and the choice of task deadlines. How this trade-off should be made?

5. Task preemptivity

Choosing the preemptivity kind for a task means to choose between three categories of

tasks: either a task is fully preemptive, fully non-preemptive or cooperative. What is the

criterion on which the preemptivity kind is chosen?

185

Methodology for Model-based Timing Analysis Process

References
[1] B. Selic, “A Generic Framework for Modeling Resources with UML”, IEEE Computer vol. 33

no.6, pp.64-69, June 2000.

[2] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. Gonzalez Harbour, “A Practitioner’s

Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time

Systems”, Kluwer Academic Publishers, 1993.

[3] J. J. P. Tsai, S. J. Yang and Y.-H. Chang, “Timing constraint Petri Nets and their Application

to Schedulability Analysis of Real-time System Specification”, IEEE Transactions on Software

Engineering, vol. 21, n° 1, pp. 32-49, 1995.

[4] D.C. Petriu, C. Shousha, A. Jalnapurkar, “Architecture-Based Performance Analysis Applied to

a Telecommunication System”, I.E.E.E. Transactions on Software Eng, Vol.26, No.11,

pp.1049-1065, Nov. 2000.

[5] R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, vol.

126, pp. 183–235, 1994.

[6] A. Pretschner, M. Broy, I. H. Kruger, T. Stauner, “Software Engineering for Automotive

Systems: A Roadmap”, 29th International Conference on Software Engineering (ICSE 2007),

Minneapolis MN, USA, May 27th , 2007.

[7] Object Management Group: Unified Modeling Language -- Superstructure Version 2.1.1

formal/2007-02-03

[8] I. T. Union, “Specification and Description Language”, International Telecommunication

Union Recommendation Z.100, 1992.

[9] Avionics Architecture Description Language Standards Document (AADL),

http://www.aadl.info.

[10] MARTE website. www.omgmarte.org

[11] TIMMO website. www.timmo.org

[12] S. Gérard, “Modélisation UML Exécutable pour les Systems Embarqués de l’automobile”, PhD

Thesis.

[13] H. Espinoza, “An Integrated Model-Driven Framework for Specifying and Analyzing Non-

Functional Properties of Real Time Systems”, PhD Thesis.

[14] L. Fuentes, A. Vallecillo: “An Introduction to UML Profiles”, UPGRADE, The European

Journal for the Informatics Professional, 5(2):5-13, April 2004, ISSN: 1684-5285.

186

Methodology for Model-based Timing Analysis Process

[15] Object Management Group: Object Constraint Language (OCL). OMG Available

Specification. Version 2.0 (2006)

[16] M. Fowler, “Domain Specific Languages” (Book), ISBN: 0321712943 9780321712943

[17] EAST-ADL website. www.atesst.org

[18] AUTOSAR Partnership. www.autosar.org

[19] J. L. Peterson, “Petri Net Theory and the Modeling of Systems”, Prentice Hall, 1981

[20] P. L. Guernic, T. Gautier, M. L. Borgne and C. L. Maire, “Programming Real Time

Applications with SIGNAL”, INRIA-RENNE, report N 1446, 1991

[21] Liu, C. L. and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-

time Environment”. Journal of the ACM (Association for Computing Machinery), Vol. 20 n°1,

Jan.1973

[22] Lehoczky, J. P., L. Sha, and D. Y. Ding: 1989, “The Rate Monotonic Scheduling Algorithm:

Exact Characterization and Average Case Behavior”, 10th IEEE Real-Time Systems

Symposium (RTSS1989), Santa Monica CA, USA, December 5 – 7th, 1989.

[23] Joseph, M. and P. Pandya: 1986, “Finding Response Times in a real-time system. BCS

Computer Journal, Vol. 29, n°5, 390-395.

[24] N. C. Audslay, A. Burns, M. F. Richardson, and A. J. Wellings: “Hard real-time Scheduling:

The Deadline Monotonic Approach”, 8th IEEE Workshop on Real-Time Operating Systems

and Software. Atlanta, GA, USA,

[25] Leung, J. Y. T. and J. Whitehead: 1982, On the complexity of fixed-priority scheduling of

periodic, real-time tasks. Performance Evaluation (Netherlands)

[26] Lehoczky, J. P.: 1990, Fixed priority scheduling of periodic task sets with arbitrary deadlines.

In: Proc. 11th IEEE Real-Time Systems Symposium.

[27] Tindell, K., A. Burns, and A. J. Wellings: 1994a, An extendible approach for analysing fixed

priority hard real-time tasks. Real-Time Systems

[28] K. Tindell, Adding Time-Offsets to Schedulability Analysis, Technical Report YCS 221, Dept.

of Computer Science, University of York, England, January 1994.

[29] J.C. Palencia Gutiérrez and M. González Harbour, Schedulability Analysis for Tasks with

Static and Dynamic Offsets. Proceedings of the 18th. IEEE Real-Time Systems Symposium,

Madrid, Spain, December 1998.

187

Methodology for Model-based Timing Analysis Process

[30] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemption threshold. In

Proceedings of the Sixth International Conference on Real-Time Computing Systems and

Applications (RTCSA’99), 1999

[31] MAST website (Mast.unican.es).

[32] Cheddar website (http://beru.univ-brest.fr)

[33] Rapid-RMA website (http://www.tripac.com/rapid-rma)

[34] L. Sha, T. Abdelzaher, K. Arzen, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Caccamo, J.

Lehoczky, A. Mok, Real Time Scheduling Theory: A Historical Perspective, Real-Time

Systems Journal, November-December 2004.

[35] Chronval website (http://www.inchron.com/chronval.html)

[36] SymTA/S website (http://www.symtavision.com/symtas.html)

[37] M. Traub, V. Lauer, J. Becker, M. Jersak, K. Richter and M. Kuhl: Using timing analysis for

evaluating communication behaviour network topologies in an early design phase of

automotive electric/electronic architectures. SAE World Congress, Detriot, MI, USA, April

2009

[38] OSEK group website (http://www.osek-vdx.org)

[39] K. Tindell and J. Clark: Holistic Schedulability Analysis for Distributed Real-time Systems.

Microprocessing and Microprogramming - Euromicro Journal (Special Issue on Parallel

Embedded Real-Time Systems), 40:117–134, 1994

[40] F. Singhoff, J. Legrand, L. Nana and L. Marcé: Cheddar: a Flexible Real Time Scheduling

Framework. ACM SIGAda Ada Letters, volume 24, number 4, pages 1-8. Edited by ACM

Press, New York, USA. December 2004, ISSN: 1094-3641.

[41] J. M. Drake, M. G. Harbour, J. J. Gutiérrez, P. L. Martinez, J. L. Medina, J. C. Palencia :

Modelling and Analysis Suite for Real Time Applications (MAST 1.3.7), Description of the

MAST Model. Report, Universidad De Cantabria, SPAIN, 2008.

[42] Papyrus website (www.papyrusuml.org)

[43] Webpage of the ARTOP User Group (www.artop.org)

[44] Simulink website (www.mathworks.com/products/simulink)

[45] Saoussen Anssi, Sara Tucci-pergiovanni, Chokri Mraidha, Arnaud Albinet, François Terrier,

Sébastien Gérard, “Completing EAST-ADL with MARTE for Enabling Scheduling Analysis

for Automotive Applications”, Embedded Real Time Software and Systems (ETS22010),

Toulouse, France, May 19th - 21st, 2010

188

Methodology for Model-based Timing Analysis Process

[46] P. Cuenot, P. Frey, R. Johansson, H. Lönn, M. O. Reiser, D. Srevat, R. Tavakoli Kolagari, D.

J. Chen, “Developing Automotive Products using the EAST-ADL2, an AUTOSAR Compliant

Architecture description Language”, Embedded Real Time Software (ERTS2008), Toulouse,

France, January 29- 31st, February 1st, 2008.

[47] EAST-ADL Specification, Version 2.1, 2010-06-02.

[48] H. Blom, R. Johansson, H. Lönn, “Annotation with Timing Constraints in the Context of

EAST-ADL2 and AUTOSAR, the Timing Augmented Description Language”, Workshop on

the Definition, evaluation and exploitation of modeling and computing standards for Real

Time Embedded Systems (STANDRTS'09), Dublin, Ireland, June 30th, 2009.

[49] TADL: Timing Augmented Description Language Specification, version 2, 2009-10-05.

[50] AUTOSAR Methodology Specification, version 1.2.2, release 4.0, 2008-08-15.

[51] AUTOSAR Software Component Template, version 4.0.0, release 4.0, 2009-09-15.

[52] AUTOSAR Basic Software Module description Template, version 2.0.0, release 4.0, 2009-11-

13

[53] AUTOSAR Specification of Operating System, version 4.0.0, release 4.0, 2009-11-30.

[54] AUTOSAR System Template, version 4.0.0, release 4.0, 2009-12-04.

[55] AUTOSAR Specification of Timing Extension, version 1.0.0, release 4.0, 2009-11-30.

[56] UML profile for MARTE (specification), version 1.0, November 2009.

[57] K. Albers, “Approximative Real Time Analysis”, PhD Thesis, 2010

[58] AUTOSAR Specification of RTE, version 3.0.0, release 4.0, 2009-12-18.

[59] SymTA/S 1.4 Intro and Theory Manual, report, version 1.4.2, 2009.

[60] C. Mraidha, S. Tucci-Piergiovanni, S. Gérard. Optimum: A MARTE-based Methodology for

Schedulability Analysis at Early Design Stages. Third IEEE International workshop UML

and Formal Methods. November 2010, Shangai, China.

[61] E. Wozniak, C. Mraidha, S. Gerard and F. Terrier: “A Guidance Framework for the

Generation of Implementation Models in the Automotive Domain”, 2nd international workshop

DANCE, (Distributed Architecture modeling for Novel Component based Embedded systems),

held in conjunction with SEAA 2011 the 37th Euromicro conference, 2011.

[62] S. Gérard, D. Servat: “Proposal for an EAST-ADL2 Annex to MARTE”, (report), 2008.

[63] Eclipse Process Framework website (http://www.eclipse.org/epf/)

[64] Eclipse Modelling Framework website (http://www.eclipse.org/modeling/emf/)

189

Methodology for Model-based Timing Analysis Process

