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RESUME 

Ce travail de thèse a été effectué dans le cadre d’une collaboration technique entre le CEA-

LIST à Paris et le service « développement avancé électronique » de Continental 

Automotive à Toulouse. 

1. Objectifs de la thèse 

Dans ce travail de thèse on se propose de définir une méthodologie décrivant un processus 

d’analyse temporelle dirigée par les modèles pour les systèmes automobiles. Cette 

méthodologie vise à donner un guide aux ingénieurs de développement logiciel automobile 

pour l’intégration de la vérification temporelle dans un processus de développement dirigé 

par les modèles. Ceci permettrait alors la détection au plus tôt des erreurs de conception 

liées au comportement temps réel des systèmes. 

En plus de la définition de la méthodologie elle-même, sa validation doit être aussi étudiée en 

montrant à quelle mesure elle contribue à résoudre les problèmes rencontrés actuellement 

dans le domaine du développement logiciel automobile. L’acceptabilité de la méthodologie 

est également à étudier pour évaluer son potentiel d’adoption pour le développement des 

systèmes de contrôle moteur (Engine management System EMS) à Continental.   

2. Contexte de la thèse 

2.1. Contexte Industriel  

Aujourd’hui, l’architecture des systèmes automobile est devenue de plus en plus complexe 

avec une utilisation massive du logiciel embarqué pour assurer les diverses fonctionnalités 

d’une voiture.  

Pour répondre correctement aux besoins de ces clients ainsi qu’aux contraintes de 

concurrences, un équipementier (tel est le cas de Continental Automotive) doit considérer 

deux facteurs essentiels: la maitrise du temps et du coût du développement logiciel ainsi que 

la garantie de la fiabilité du système conçu. Vue la complexité croissante du logiciel 

embarqué automobile, la garantie de sa fiabilité dépend énormément de la capacité de 

maîtriser cette complexité lors du développement. En plus de la maîtrise de la complexité, la 

fiabilité des systèmes automobiles doit être également assurée à travers les techniques de 

vérification et de validations. La vérification et la validation des contraintes de temps est 

d’une importance énorme pour garantir cette fiabilité. Aujourd’hui la vérification temporelle 

des systèmes automobiles est effectuée très tard au cours du développement (après la phase 
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d’intégration). Elle se base essentiellement sur des tests et des mesures plutôt que sur une 

approche formelle et systématique. Ainsi, Pour développer un logiciel fiable tout en 

respectant les contraintes de concurrences, il y a un besoin fort pour des approches de 

développement qui permettent de : 1) Maîtriser la complexité du logiciel lors du 

développement.2) Réduire le temps et le coût de développement. 3) Définir une 

activité de développement ainsi qu’une chaine d’outils homogène et continue.4) 

Permettre l’intégration de la vérification temporelle au cours du processus de 

développement. 

2.2. Approches existantes  

Pour apporter des solutions aux besoins du développement du logiciel automobiles, plusieurs 

approches, méthodes et techniques ont été définit aux cours de la dernière décennie. Ces 

approches visent soit à donner des méthodes de développement permettant l’amélioration 

des processus de développement des systèmes automobiles (tel est le cas des approches 

définit dans le cadre de l’ingénierie dirigée par les modèles), soit à permettre de vérifier le 

comportement temps réel des systèmes (comme les technique d’analyse d’ordonnancement et 

de performance). 

Dans le domaine automobiles, les approches et langages de modélisations qui ont été 

définit sont: 

• EAST-ADL : Ce langage permet la modélisation de l’architecture 

électrique/électronique des systèmes automobiles suivant plusieurs niveaux 

d’abstraction. Il donne plusieurs concepts permettant la modélisation de la structure 

fonctionnelle  (sur les niveaux Analyse et Design) et matérielle (à partir du niveau 

design) des systèmes automobiles. La Figure 1 montre les niveaux d’abstraction 

d’EAST-ADL (le niveau implémentation s’appuie sur les concepts d’AUTOSAR) 

 

Figure 1 Niveaux d’abstraction d’EAST-ADL 
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• TADL : Ce langage permet la modélisation des propriétés et des contraintes 

temporelles des éléments structurels décrits dans une architecture EAST-ADL ou 

AUTOSAR. 

• AUTOSAR : Il donne une approche pour décrire une architecture logicielle standard 

pour l’automobile. Il offre un modèle d’architecture logicielle organisé suivant trois 

niveaux : le logiciel applicatif, le RTE (RunTime Environment) et les couches 

logicielle de bas nivaux (basic software). Le RTE fait le lien entre le logiciel applicatif 

et les couches logicielle basses. Le logiciel est organisé sous forme de composants 

logiciels (software components). Pour chaque composant, il est possible de décrire les 

unités exécutables qu’il contient (runnable entities) ainsi que ses interfaces de 

communication (port) 

• MARTE : Ce langage permet de modéliser l’architecture des systèmes temps réel. Il 

offre un set de concepts de modélisation pour permettre d’effectuer de l’analyse 

d’ordonnancement basée sur les modèles. 

Parmi les techniques de vérification temporelle on cite essentiellement l’analyse 

d’ordonnancement. Dans le contexte de cette technique, plusieurs tests d’ordonnançabilité 

ainsi que des outils d’analyse d’ordonnancement ont été développés. Parmi ces outils il ya 

des outils académique tel que Cheddar et MAST et d’autres commerciaux tel que SymTA/S 

et Chronval. L’évaluation de ces outils d’analyse montre que SymTA/S est le plus adapté 

pour faire de l’analyse d’ordonnancement pour les applications automobiles. 

L’évaluation des ces approches de développement et de vérification temporelle (effectué aux 

cours de ces travaux de thèse) a montré qu’il y a un manque pour un guide 

méthodologique pour l’intégration de la vérification temporelle notamment l’analyse 

d’ordonnancement au cours du cycle de développement dirigé par les modèles. Ce 

travail de thèse propose une approche qui permettrait de résoudre ce problème. 

3. Méthodologie 

3.1. Objectifs de la méthodologie : 

• Définition d’un processus de développement dirigé par les modèles qui assure une 

activité de développement continue et homogène tout au long du processus. Ce 

processus doit être facilement utilisable par un ingénieur Continental pour le 

développement des systèmes de control moteur (Engine Management Systems 
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EMS). La méthodologie définit doit décrire les différentes phases du processus ainsi 

que l’approche suivit pour le développement et l’affinement des modèles d’une phase à 

autre. 

• Donner un guide pour l’intégration de la vérification temporelle dans ce processus de 

développement. Ceci requiert la définition du type de vérification temporelle à 

effectuer durant chaque phase, les techniques et les outils de vérification temporelle à 

utiliser ainsi que la description de la manière d’utiliser les résultats d’analyse de 

chaque phase pour affiner les modèles de la phase suivante. 

• Décrire la manière de développer des modèles analysables. Plus particulièrement 

comment extraire à chaque phase les modèles comportementaux nécessaires pour 

l’analyse temporelles des modèles architecturaux utilisés pour la description de 

l’architecture. 

Figure 2 donne une vue générale du processus d’analyse temporelle dirigé par les 

modèles que la méthodologie vise à définir ; aux cours de chaque phase, le concepteur a 

en entrée un nombre d’exigences temporelle, il conçoit donc l’architecture qui doit 

respecter ces exigence et puis il effectue une analyse temporelle pour vérifier que 

l’architecture conçu respecte bien ces exigences. 

 

Figure 2: Processus d’analyse temporelle dirigé par les modèles 

3.2. Description de la méthodologie : 

Notre méthodologie propose de réutiliser les niveaux d’abstraction du  processus de 

modélisation d’EAST-ADL/AUTOSAR  (figure 2) pour définir notre processus d’analyse 

temporelle dirigé par les modèles. Cependant, le processus EAST-ADL/AUTOSAR 

présente seulement les niveaux d’abstraction et les concepts à utiliser à chaque niveau. Il ne 
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donne aucune approche décrivant la manière d’affiner les modèles d’un niveau à autre. En 

plus, il ne propose aucune chaine outil pour supporter le processus de développement. Notre 

méthodologie doit donc adapter et améliorer ce processus pour apporter des solutions pour 

ces problèmes. 

On propose de commencer l’analyse temporelle à partir du niveau Analyse car le niveau 

Véhicule ne donne pas assez de moyen permettant d’effectuer une analyse temporelle. Notre 

processus se compose donc de trois phases : Analyse, Design et Implémentation. Sur chaque 

phase, on décrit les activités de modélisation ainsi que d’analyse temporelles qui doivent se 

faire. 

Le figure 3 donne une vue générale du processus définit. Les paragraphes suivants 

expliquent les activités effectués durant chaque phase. 

 

Figure 3 Les phases de la méthodologie proposée 

Phase Analyse  

Au cours de cette phase, une vue décrivant l’architecture fonctionnelle du système (« sub-

system analysis funtional view ») est développée en utilisant les concepts d’EAST-ADL pour 

la modélisation fonctionnelle et les « composite structure diagram » d’UML2. Cette vue 

décrit le système dans son environnement véhicule. Une deuxième vue (« sub-system 

analysis timing view ») décrivant le comportement temporel du système est développé à 

partir de la première vue fonctionnelle en utilisant les concepts de TADL et les diagrammes 

de séquence pour représenter les informations temporelles du système (notamment les 

contraintes temporelles). L’analyse temporelle effectuée durant cette phase se base sur cette 
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dernière vue comportementale. L’analyse temporelle de cette phase vise à vérifier la bonne 

intégration du système dans le véhicule en termes de compatibilité temporelle. Le 

concepteur a en entrée une liste d’exigences de bout-en-bout (end-to-end requirements). Ces 

exigences impliquent le système en cours de développement et les autres fonctions du 

véhicule qui communiquent avec lui. Pour chaque exigence de bout-en-bout, le concepteur 

doit déterminer un budget temps (« time budget ») qu’il faut allouer au system en cours de 

développement pour respecter cette exigence. Chaque budget déterminé durant la phase 

analyse représente une contrainte à respecter durant la phase design. La figure 4 montre les 

activités de modélisation et d’analyse effectuées durant cette phase. 

 

Figure 4 Activités de modélisation et d’analyse temporelle de la phase Analyse 

Phase Design 

Durant cette phase, la décomposition fonctionnelle du système est représentée à travers une 

vue qui décrit les blocks fonctionnels qui le composent (« sub-system design functional 

view »). Les ressources matérielles sont aussi décrites durant cette phase (« hardware 

platform view »). Le concepteur effectue donc deux types d’analyse temporelle : la première 

consiste à affiner les budgets temps alloués au system durant la phase précédente (Analyse) 

en déterminant les budgets temps qu’il faut allouer à chaque block fonctionnel qui le 

compose. La deuxième analyse temporelle consiste à explorer l’architecture matérielle pour 

déterminer la meilleure plateforme matérielle à utiliser (en termes de performance) ainsi que 

le meilleur scénario d’allocation des blocks fonctionnels aux ressources matérielles. Ceci est 

fait par le biais d’une exploration empirique d’un nombre de scénarios d’allocation candidats 

qui se base sur le calcul de l’utilisation des processeurs pour chaque scénario.  
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Remarque : Dans cette dernière analyse temporelle (exploration de l’architecture matérielle), 

on ne considère pas de modèle de ressources logicielle tel que les tâches OS ni l’allocation 

des blocks fonctionnels à ces ressources. On considère seulement le modèle fonctionnel, le 

modèle de ressources matérielles et l’allocation directe des blocks fonctionnels aux 

ressources matérielles. 

La figure 5 montre les activités de modélisation et d’analyse effectuées durant cette phase. 

 

Figure 5 Activités de modélisation et d’analyse temporelle de la phase Design 

Phase Implementation 

Durant cette phase, un modèle complet décrivant les différents aspects nécessaires pour 

effectuer une analyse d’ordonnancement (architecture logiciel, ressources logicielle et 

matérielles, allocation, etc.) est développé en utilisant les concepts d’AUTOSAR. Ce modèle 

est l’affinement du modèle fonctionnel et matériel développé au cours de la phase design en 

se basant sur les résultats d’analyse temporelle effectué durant cette phase (design). La figure 

6 montre les activités de modélisation et d’analyse effectuées durant cette phase. 
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Figure 6 Activités de modélisation et d’analyse temporelle de la phase Implémentation 

4. Déploiement et Validation de la méthodologie 

4.1. Déploiement de la méthodologie 

Dans cette partie, on propose une approche de déploiement de la méthodologie en décrivant 

la manière de l’appliquer dans le contexte de développement des fonctions de contrôle 

moteur à Continental (EMS). Figure 7 décrit le processus de développement actuel des EMS 

chez Continental. 

 

Figure 7 Processus actuel de développement des EMS  
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La figure 8 montre ce même processus dans le cas de l’application de notre méthodologie 

 

Figure 8 Application de la méthodologie pour le développement des EMS 

4.2. Acceptabilité de la méthodologie 

En se basant sur l’approche de déploiement décrite précédemment, on a étudié l’acceptabilité 

de notre méthodologie en termes de compétences demandés, les tâches à effectuer aux cours 

de chaque phase ainsi que la chaine d’outil proposée. Tous ces éléments ont été comparé avec 

les compétences, tâches et chaine d’outil utilisé actuellement chez Continental. Cette étude 

montre un bon potentiel d’adoption de notre méthodologie chez Continental. Ceci est 

particulièrement valide pour la phase Implémentation de la méthodologie surtout que 

Continental est en train de migrer vers une nouvelle plateforme basé sur les concepts 

d’AUTOSAR. 

4.3. Validation générale de la méthodologie 

La contribution de la méthodologie à satisfaire les besoins du développement logiciel 

automobile (présentés dans la section 1) a été aussi étudiée. La valeur ajoutée de notre 

méthodologie consiste à donner la possibilité de commencer l’analyse temporelle tôt au cours 

de processus de développement (beaucoup plus tôt que l’analyse temporelle effectuée 

actuellement chez Continental). Ceci permet de réduire le temps et le coût nécessaires pour 

l’amélioration de l’architecture en cas de détection tardive d’erreur. En outre, notre 
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méthodologie permet une bonne maitrise de la complexité de l’architecture conçue tout au 

long du processus de développement. 
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Introduction 
This chapter introduces the thesis work that has been performed in the context of a 

technical collaboration between the CEA LIST near Paris and the Advanced Development 

Electronics (ADE) service of Continental Automotive in Toulouse.  

CEA LIST is a key software system and technology research center whose mission consists 

among others in providing methodologies and tools for real time embedded system 

development (systems architecture and design, methods and facilities for software and 

system dependability, etc). This laboratory works on several research projects in partnership 

with industrial partners from nuclear, automotive, aeronautical, defense and medical 

domains. Thus, the laboratory investigates and develops innovative solutions corresponding 

to the requirements of these industrial partners. 

The ADE service is a part of the Engine System (ES) business unit within the Powertrain 

division at Continental. This service provides innovative techniques and methodologies for 

the development of automotive electronic systems. These innovative approaches aim at 

providing solutions for the challenges met to develop Engine Management Systems (EMS) 

within the ES business unit. An Engine Management System (EMS) is a system used to 

control the engine functionalities (e.g., Combustion, injection, ignition, etc). At Continental, 

Engine Management Systems are developed to control many types of gasoline and diesel 

engines for many customers all over the world. To develop these systems, many 

requirements should be satisfied, including customer requirements but also environmental 

norms (gas emission). In addition, due to the competition factor, development time and cost 

for engine management systems should be mastered. The ADE service investigates 

innovative approaches to meet all these challenges in future engine management system 

generations. 

This introduction is divided in three sections. The first section presents a brief overview of 

the general technical context in which this work has been done. The second section presents 

the thesis objectives and the third section describes the outline of the manuscript. 
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1. Thesis Technical Context 
Automotive real time systems are characterized by increasing complexity and tight 

requirements for safety and timing. Today, highly competitive automotive industries 

developing real-time systems must face industry requirements both quickly and dependably. 

“Quickly” refers to the “time-to-market” issue, where delays in design or implementation 

incur penalties and reduce market profit. “Dependably” refers to the trustworthiness of the 

services provided by developed systems. One of the key dependability factors in real time 

systems is system failure. Unlike fabrication faults and faults during usage, design faults are 

supposed to be found and eliminated by system verification. Hence, whenever fault tolerance 

cannot be guaranteed, fault prevention is the only way to avoid system failure [13]. 

 Quantitative analysis [1] (such as performance and scheduling analysis) is a sound 

approach to study non-functional properties at an early stage. It allows designers to detect 

unfeasible real-time architectures, prevent costly design mistakes, and provide an analytical 

basis to assess design tradeoffs associated to resource optimization. Quantitative analysis 

uses mathematical-based techniques which purpose is to prove that a system meets its 

requirements at any time. While the maturity of quantitative techniques has led to a set of 

well established mathematical formalisms such as rate monotonic analysis (RMA) [2], Petri 

nets [3], queuing theory [4] and timed automata [5], their widespread use with complex 

industrial systems and into integrated tool environments still remains largely open. 

Quantitative analysis is a difficult and time-consuming task, and to save time, many 

industries either forgo it until absolutely necessary or train their designers to perform 

preliminary analysis. However, most designers are under-trained in analysis and too busy to 

perform useful analysis. 

Model-Based Engineering (MBE) is gaining momentum in automotive system and software 

development domains, as a means for mastering system complexity and assessing system-

level tradeoffs geared to achieving higher quality and dependability [6]. MBE and modeling 

languages lead a major approach to enrich real-time systems engineering practices, by 

moving the development process from lines-of-code to coarser-grained architectural 

elements. One of the advantages expected from this approach is the ability to employ 

correct-by-construction, but also incremental design processes (which rely extensively on 

automated transformations and synthesis) and to formalize computer-based correctness 

analysis. 
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The model-based development community has invested special efforts in incorporating the 

abilities to specify analytical constructs and non-functional properties with enough 

expressive power, while still preserving the modeling abstraction level used by MBE 

practitioners. Important research work has been carried out in order to provide modeling 

languages (e.g., UML [7], SDL [8], AADL [9], MARTE [10], and TADL [11]) with 

clear and well-formed semantics to support quantitative analysis. 

However, most of the current works are characterized by providing only means and 

concepts for the modeling of non-functional and especially timing information of the 

system. Unfortunately, none of these approaches provide sufficient guidance on how 

to integrate timing verification and validation into the model-based development 

process. 

2. Thesis Objectives 

The underlying work investigates the definition of a methodology describing a model-based 

timing verification process for automotive systems. It aims at giving guidance to software 

development engineers about how to integrate timing verification within a model-based 

development process enabling hence early detection of time-related errors. 

In particular, this thesis work focus on the following specific objectives: 

1. One fundamental objective that drove our research work is the definition of a model-

based development process ensuring a seamless development activity that can be 

easily adopted in the context of engine management system development. The 

methodology defined should describe the different phases of the model-based process 

and how models should be refined from one phase to another. 

2. The second objective is to give guidance on how to integrate timing verification in 

each phase of this development process. This means defining the kind of timing 

verification that should be performed during each phase, the verification techniques 

and tools that can be used and how analysis results of each phase can be used to 

refine the architecture during the next phase. 

3. From a modeling and analysis point of view, the methodology defined should give a 

way on how to develop analyzable models in each phase and especially how to derive 

behavioral views needed for timing analysis from modeling views intended e.g. for 

structure description. 
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4. Besides the definition of the methodology itself, in this work we aim to validate the 

methodology suggested by evaluating its degree of acceptability and showing to 

which extent it allows resolving the problems faced currently in the context of 

automotive software development. 

3. Thesis Outline 
This manuscript is composed of three major parts. The first part contains three chapters. 

The first chapter describes precisely the particular context of this study related to the 

development of automotive software in the particular case of Continental as a supplier. This 

chapter ends by listing the needs of automotive domain in term of software development. 

The second chapter gives an investigation and a state-of the art of the available model-based 

approaches that attempted to bring answers and solutions to some of these needs. The third 

chapter draws the general features of our approach to define a methodology for a model-

based timing analysis process. This is done after studying the feasibility of the approach 

based on the chosen directions that will be presented in the same chapter. 

The second part of the manuscript presents the methodology itself. This part is composed of 

four chapters. The first chapter gives a general overview of the defined process. The 

remaining three chapters tackle respectively the different process phases, the analysis phase, 

the design phase and the implementation phase. Each chapter describes both the modeling 

and timing analysis activities carried out during each phase. 

The third part is dedicated to the deployment and validation of the proposed methodology. 

This part is composed of four chapters. The first chapter presents an approach describing 

how we intend to apply our methodology for the development of Engine Management 

Systems (EMS) at Continental. The second chapter illustrates the approach by presenting 

the application of the methodology to the development of two use cases. The third chapter 

studies the acceptability of the methodology by showing the extent to which this 

methodology can be adopted by Continental engineers. In this chapter we identify the gap 

between the proposed methodology and the current development process at Continental in 

terms of required vs. available skills, tasks, tool chain, etc.  

The methodology tooling is also studied by presenting the tools that were implemented to 

guide Continental engineers and ease their use of the methodology.  
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The last chapter of this part presents the final validation of the methodology by showing to 

which extent it provides solutions for the automotive software development needs 

determined during the first part of this work. 

The conclusion summarizes the study and discusses the possible perspectives for this work. 
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Part I: Industrial Context and 

Related Work 
This first part aims at describing in detail the industrial context in which this thesis work 

was done. The technical directions chosen for this work to meet the automotive domain 

needs are presented and justified based on this context itself but also based on some already 

available approaches. The first chapter presents the automotive context and highlights the 

automotive needs in term of software development and timing verification. The second 

chapter presents the available approaches that attempted to bring solutions for these needs. 

We highlight the limitations of these approaches and we conclude on the need for a new 

approach to satisfy better the automotive needs. The third chapter gives a general overview 

of the directions chosen for our work based on the available approaches and a feasibility 

study for our approach. 
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1. Automotive State of  Practice and Challenges 
In the automotive domain, the first time that software was deployed into cars was to control 

the engine and, in particular, the ignition, 30 years ago [6]. At the beginning of software 

deployment in cars, software-based solutions were very local, isolated and unrelated. Hence, 

there were dedicated controllers (Electronic Control Units or ECUs) for the different 

functions as well as dedicated sensors and actuators. With the intention to optimize wiring, 

bus systems were deployed into cars allowing ECUs to be connected to each other and 

exchange information.  

Today, premium cars feature not less than 70 ECUs connected by more than five different 

bus systems [6]. Within only 30 years, the amount of software in cars went from zero to 

more than 10.000.000 lines of code. More than 2000 individual functions are realized or 

controlled by software in premium cars. Software as well as hardware became enabling 

technologies in cars. They enable new features and functionalities. Hardware is becoming 

more and more a commodity while software determines the functionality and therefore 

becomes the dominant factor for system complexity. 

To understand better the automotive needs in term of software development, it is important 

to clarify the state of practice in this domain. The development of a car involves mainly two 

partners, the manufacturer (OEM) and the first-tier suppliers. The aim of the manufacturer 

is to market cars that satisfy the needs and the desires of the customers, on one hand by 

respecting the manufacturing standards and norms and on the other hand by ensuring the 

prosperity of his group [12]. For these reasons, manufacturers have usually a strong and 

global trade expertise. A car can be seen as an assembly of many systems integrated 

together to ensure the various functionalities of the vehicle. The OEM intervenes during 

two particular phases, the specification of systems and their integration into the vehicle. The 

development of these systems is then carried out by the different suppliers that are involved; 

such as the case of Continental Automotive. Once the request is specified by the 

manufacturer, the supplier should develop the system that respects the requirements 

specified. In this context of multi-partner development, the systems developed by a supplier 

are more and more sophisticated and require usually highly specialized technical skills. Due 

to concurrency pressure, manufacturers choose then to delegate the development of such 

systems to several suppliers and focus only on vehicle integration and validation. In the case 

of Continental Automotive, a system requested by a manufacturer may vary from a simple 
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software component to a whole system consisting of software, hardware (ECU) and 

mechanics (actuators, etc). 

Being able to satisfy efficiently customer request is the key factor for a supplier to save his 

place in market. Efficiently means quickly, dependably and in a cost-efficient way. Quickly 

refers to the time-to-delivery where the supplier is continuously submitted to the customer 

pressure to deliver systems as early as possible. Development cost is also among the decisive 

factors that guarantee the competitiveness of a supplier. Up to 40% of the production costs 

of a car are due to electronics and software. Today, the costs of cars get more and more 

influenced by development costs of software; 50-70% of the development costs of the 

software/hardware systems are software costs [6].  

Dependability means the trustworthiness of the service delivered by the developed system. 

To develop dependable systems, suppliers should take up many challenges. In fact, the size 

and structure of the embedded software and hardware in cars are enormous. Most of the 

software is hard real time critical or at least soft real time critical. Several functions are 

safety critical ones. In addition, car functions are quite heterogeneous (from embedded real 

time control to infotainment, from comfort functions to driver assistance, etc). As a result, 

the complexity and spectrum of requirements for on board software is enormous. In front of 

this complexity and time/cost pressure, suppliers have usually recourse to reuse existing 

solutions from one car to the next. However this remains insufficient with regard to 

development time and cost1. In addition, the amount of automation in software production is 

today quite low. Tools are many times used in an isolated manner. There is neither a 

properly formalized design flow nor seamless tool chain for distributed functions.  

It is hence obvious that there is a need for a suitable development process that 

reduces complexity, enables innovation and saves time and costs. 

 

Guaranteeing dependability is not ensured only by mastering system complexity. In fact 

verification and validation is also of paramount importance in software development. This 

allows verifying the proper functioning of the system and validating it against the 

requirements specified by the customer. As mentioned previously, developing time critical 

systems is among the challenges that suppliers should take up. Mastering the development 

                                                      
1
 This statement is based on the study of the state of practice of software development at Continental 
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of such systems requires being able to understand, analyze and validate their real time 

behavior. Automotive software development costs are significantly impacted by wrong 

design choices made in the early stages of development, but often detected after 

implementation. Most timing-related failures are detected very late in the development 

process, during implementation or system integration phases. Timing verification is usually 

addressed by means of measuring and testing rather than through formal and systematic 

analysis. For this reason, innovative and complex functionalities are not implemented in a 

cost-efficient way.  

The need for defining an approach that permits timing verification throughout the 

development process, starting from the early phases of design, is thus obvious 

 

 Such an approach would enable early prediction of system timing behavior and allow 

potential weak points in design to be corrected as early as possible. 

To conclude, in automotive software development, there is an obvious need today for 

development approaches that allow: 

� Mastering system complexity 

� Reducing software development time and cost 

� Defining seamless development activity supported by a seamless tool chain 

� Ensuring system dependability, especially timing correctness through verification 

and validation. 

 

During the last decade, many approaches, methods and techniques have been developed to 

bring solutions for the abovementioned automotive needs. For example, model based 

engineering is gaining momentum in the automotive domain, as a means intended for 

mastering system complexity and assessing system-level tradeoffs geared to achieve higher 

quality and dependability.  

Continental supports the development and the use of several model-based 

development approaches such as AUTOSAR [18], EAST-ADL [46] and TADL [48]. 

The directions of our work are chosen with respect to this context. 
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In the domain of timing verifications, we can talk especially about quantitative techniques 

(scheduling and performance analysis) where a variety of schedulability tests and tools have 

been developed as a means to predict early real time system behavior. 

In this thesis work, we focus on a key problem of automotive industry which is software 

timing verification. After studying available approaches that attempted to bring answers to 

automotive needs in the next sections, we present, in the second part of this manuscript, a 

methodology enabling the integration of timing verification in a model-based development 

process. 

2. Related Work: Model-based Approaches & Timing 

Verification 

2.1. Model-based Approaches 

2.1.1. Basics of Modeling Languages 

As engineers work with many different kinds of models, it is important to understand which 

models are dealt with in this thesis. Therefore, few definitions are given to provide a basis to 

understand the rest of the thesis.[13] 

Models and Metamodels  

Models, as conceived in engineering, are representations of reality. The aim of the 

engineering modeling process is to make our world measurable, calculable, predictable, and 

thus more manageable. Computer models are computerized abstractions, data structures, or 

simulations of, not only real systems or phenomena, but also of fictional objects, set-

theoretic structures and mathematical representations. 

To know the nature of different models used in computer systems, we may identify two 

relationships. The first relationship, called “represented by”, identifies a representation role 

of a given modeled object over a model. For instance, a computer program can be 

“represented by” a set of data flow diagrams. A given model could also represent another 

model. For example, a mathematical function can be represented by a numerical 

approximation. The second relationship, called “conforms to”, identifies a dependency of a 

given model on a modeling language. Thus, we could say that a given data flow diagram 

representing a piece of programming code conforms to the rules and modeling elements 

defined, for example, for Gane-Sarson diagrams.[13] 
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In MBE, the latter relationships receive special attention since domain specific modeling 

languages are described and prescribed by models. These models are called metamodels. A 

metamodel is yet another abstraction highlighting properties of the model itself. This model 

is said to conform to its metamodel like a program conforms to the grammar of the 

programming language in which it is written.  This means that a metamodel describes the 

various kinds of contained model elements and the way they are arranged, related and 

constrained. 

UML Profile Basics 

In this thesis work, some notions related to the definition and use of UML profiles are used. 

We describe here some basic notions related to this issue. 

Profiles [14] are the built-in lightweight mechanism that serves to extend Meta Object 

Facility (MOF)-based languages. More specifically, profiles are used to customize UML for 

a specific domain or purpose via extension mechanisms that enrich the semantics and syntax 

of the language. A stereotype is the basic feature for UML extension. It can be viewed as the 

specialization of an existing UML concept, which provides capability for modeling domain-

specific concepts or patterns. Stereotypes may have attributes (also called tags) and be 

associated with other stereotypes or existing UML concepts. From a notational viewpoint, 

stereotypes can give a different graphical symbol for UML model elements. For instance, a 

class stereotyped as «clock» might use a picture of a clock symbol instead of the ordinary 

class symbol. Additionally, stereotypes can also be influenced by restrictions expressed in 

constraints. The standard machine-readable textual language for defining constraints in 

MOF-based languages is Object Constraint Language (OCL) [15]. 

2.1.2. Model-Based Development in Automotive Domain 

Model-based and component-based approaches are gaining more and more success and 

popularity in today’s automotive software domain. This success is due to the state of practice 

and the way of proceeding in this domain [6]. In fact, in order to integrate one software unit 

into the car, a supplier must design, integrate and test against the units of other suppliers. 

Since the code inside the units (e.g. ECUs) is the intellectual property of the suppliers, the 

other supplier (or the OEM) often will not get the code of the other units. As a consequence, 

both have to build up some kind of “black box model” that they code/integrate/test against. 

The high degree of interaction between OEM and suppliers makes the need for clear 

interfaces and specifications evident. Models that take into account the static and dynamic 
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aspects of sub-systems are attractive ways to specify the sub-systems architecture, syntactic 

interfaces and behavior. Models could help very much in the communication between OEMs 

and first and second tier suppliers. But, the major advantage expected from model based 

development is the ability to employ correct-by-construction, but also incremental design 

processes (which rely extensively on automated transformations and synthesis) and to 

formalize computer-based correctness analysis. In addition, there are many claims that 

model-based and component-based approaches using architecture description languages can 

help improve the overall system quality, foster reuse and evolution, and increase the 

potential for automatic validation and verification. 

The root of model based development is the advent of UML (Unified Modeling Language) 

[7] as a standard modeling language. However, the general-purpose aspect of UML made 

its use complicated for specific domains as it requires mastering in detail UML concepts. 

UML use becomes hence difficult for engineers who are expected to have domain skills and 

knowledge rather than UML knowledge. As a consequence, this led to the advent of domain 

specific languages, DSL [16]. Domain-specific languages allowed modeling concepts to map 

directly domain concepts rather than computer technology concepts. 

In automotive domain, several modeling approaches and languages have been developed 

during the last decade to cope with automotive software development challenges. These 

approaches give means and concepts to capture the electric/electronic automotive 

architecture such is the case of the modeling languages EAST-ADL [17] and AUTOSAR 

[18]. For real time modeling, we cite TADL [11] and also MARTE [10], the OMG 

language for modeling and analysis of real time systems. 

The next section gives a detailed overview of these approaches. 

2.1.3. Model Based Approaches Presentation 

� EAST-ADL 

EAST-ADL [46] (Electronic Architecture and Software Technology-Architecture 

Description language) is intended to capture the electric/electronic architecture of 

automotive systems at different level of abstraction ranging from feature to implementation 

level. EAST-ADL has been developed and improved in the context of several research 

projects. The last available version of EAST-ADL has been developed in the context of the 

ATESST2 project [17]. 
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EAST-ADL provides a rich set of concepts to model system structure through several levels 

of abstraction. From one level to another, the structural model of the system is refined by 

including more precise implementation oriented details. Figure 1 shows an overview of the 

EAST-ADL abstraction levels. Note that, as shown in this figure, the Implementation level 

of EAST-ADL is based on AUTOSAR. 

 

Figure 1 EAST-ADL/AUTOSAR modeling process 

Modelling of vehicle electronic systems with EAST-ADL starts with the capture of features 

at the Feature level, thus providing product line organization and description. These 

features are then realized at Analysis level by abstract entities, which model the functions 

and functional devices that interact with the vehicle environment. At the Design level, 

models are refined by including more realization-oriented details that allow subsequent 

decomposition/refinement of the functional architecture. The Hardware Design 

Architecture, which is denoted in parallel, captures the primary hardware entities as abstract 

elements (e.g. sensor, actuator, power, ECU or electrical wiring including the 

communication bus) to describe the topology of the system's electronic architecture. 

EAST-ADL gives means and concepts to model system functional architecture [47]. Figure 

2 gives an overview of the EAST-ADL metamodel for functional modelling. Modelling of 

functional architecture with EAST-ADL is based on the core concept of “FunctionType”. A 

“FunctionType” is used to model system functions at both Analysis level 

("AnalysisFunctionType") and Design level (“DesignFunctionType”). An (“AnalysisFunctionType” 

(respectively (“DesignFunctionType”) can be composed of “AnalysisFunctionPrototypes” 

(respectively “DesignFunctionPrototypes”) that represent its sub functions. Interaction 
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between EAST-ADL FunctionTypes is captured through “FunctionPort” and 

“FunctionConnector” concepts. 

 

Figure 2 EAST-ADL metamodel for functional modelling [47] 

EAST-ADL also provides concepts for abstract hardware modelling. For example sensors 

and actuators can be captured respectively through the concepts “sensor” and “actuator” from 

EAST-ADL. Communication buses can be modelled as “LogicalBus”. The concept “Node” 

allows modelling ECUs involved in the system. 

For timing modelling, EAST-ADL adopted TADL concepts to annotate architecture models 

with timing properties and constraints. 

� TADL 

TADL (Timing Augmented Description Language) [48] has been developed in the context 

of the European research project TIMMO (TIMing MOdeling) [11]. The definition of 

TADL is based on modelling concepts from EAST-ADL and AUTOSAR by which the 
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structural definition of the considered system is modelled. The augmentation is done by 

adding information related to timing and events referring to structural elements [48]. 

TADL proposes a set of concepts to annotate structural models (function and software) with 

timing properties and constraints such as maximum delays, repetitions and sampling rates 

and synchronization constraints [49]. Figure 3 gives an overview of the TADL metamodel. 

TADL concepts are centred on the concepts of “Event” and “EventChain”. An “EventChain” 

describes the causal relationship of a set of functionality-dependant events. Every event 

chain describes a causal relationship between two events. The first is called “Stimulus” (e.g. 

event representing the activation of a function) and the second is called “Response” (e.g. event 

representing the termination of a function). Furthermore, event chains can be hierarchically 

decomposed into an arbitrary number of sub-chains called “EventChainSegment”. TADL 

timing constraints can be attached to events and event chains to specify e.g. the repetition 

rate of an event or the maximum latency of an event chain. 

 

Figure 3 TADL metamodel [49] 

� AUTOSAR 

AUTOSAR (Automotive Open System Architecture) [18] is a standardized architecture for 

automotive software that is developed by an international consortium of automotive OEMs, 

Tier-1 suppliers and tool vendors. AUTOSAR offers a software component model and a 

three layered software architecture divided into application software, runtime environment 

(RTE), and basic software (e.g., drivers and communication system). Figure 4 shows an 

overview of AUTOSAR software architecture.  
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Figure 4 AUTOSAR software architecture from VFB to mapping 

AUTOSAR introduces the Virtual Functional Bus (VFB) concept to separate applications 

from infrastructure. An application consists of interconnected “AUTOSAR Software 

Components”. The VFB (shown in the top part of figure 4) provides standardized 

communication mechanisms and services for these components. The VFB acts independently 

from the chosen mapping of these components to the infrastructure of the interconnected 

ECUs (shown in the bottom part of the figure 4). 

The realization of the VFB concept is possible if each AUTOSAR ECU has standardized 

basic software functionalities and interfaces. Figure 5 shows the layered architecture of an 

AUTOSAR ECU, which basically identifies an application layer and the AUTOSAR Basic 

Software (BSW). These parts are linked via the AUTOSAR Runtime Environment (RTE). 

That means the RTE can be interpreted as the runtime implementation of the VFB on a 

specific ECU. 

The RTE realizes an intermediate layer between the hardware independent application 

software components and the hardware dependent basic software components. 
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Figure 5 The AUTOSAR ECU layered architecture 

The reuse of software components between different vehicle platforms, OEMs and suppliers 

is one of the major goals of AUTOSAR. Therefore a methodology supporting a distributed, 

function-driven development process was created [50]. AUTOSAR specifies also compatible 

software interfaces at application level. However, the functional contents of the application 

modules and components are different and related to the corporate identity and the desired 

characteristics of the car manufacturer or its system suppliers. 

AUTOSAR has developed a metamodel which precisely defines the concepts used to 

describe a self-contained AUTOSAR system and a methodology. For example, software 

models are organized into units called “SoftwareComponents” [51]. Those components 

encapsulate the implementation of the functionality and the behaviour they provide, and 

simply expose well-defined connection points called ports. In particular, atomic software 

components are entities that support an implementation and hold behavioural entities called 

“RunnableEntity”. A runnable is an entity that can be executed and scheduled independently 

from any other runnable entity. AUTOSAR gives also concepts to describe the basic 

software entities [51] as well as the OS (Operating System) configuration [52], RTE 

configuration [58] and Hardware topology description [54] (ECU, Bus, etc) 

Timing aspect is considered in AUTOSAR through its timing extensions [55] that allow 

modelling the timing information of the system through concepts that express timing 

properties and constraints on events and event chains (inspired by the concepts and 

semantics defined in TADL in order to ease integration of AUTOSAR models with EAST-

ADL models). 
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� MARTE 

MARTE (Modeling and Analysis of Real Time Embedded Systems) is the OMG standard 

dedicated for the modeling of real time systems. It provides means and constructs for 

modeling non functional properties and time concepts [56]. 

 MARTE offers also a dedicated framework for model-based scheduling analysis [13]. This 

modeling framework provides a rich set of concepts for modeling end-to-end flows, software 

and hardware resource platform and for allocation of application modules to platform 

resources. 

2.1.4. Model-based Approaches Evaluation 

As mentioned previously, the aforementioned model-based approaches were developed to 

deal with specific automotive challenges (EAST-ADL, TADL, and AUTOSAR) and more 

generally with real time systems challenges (MARTE). As presented in the first chapter, 

automotive system development challenges can be categorized in four points: 

� Mastering system complexity 

� Reducing software development time and cost 

� Defining seamless development activity supported by a seamless tool chain 

� Ensuring system dependability, especially timing correctness through verification 

and validation. 

Table 1 summarizes the capabilities of the studied model-based approaches against the 

aforementioned needs. 

Mastering system complexity 

Looking at the EAST-ADL/AUTOSAR modeling process, we can conclude that there is a 

good potential to master system complexity. In fact developing automotive systems using 

these approaches is based on modeling the system architecture starting from abstract 

functional description until implementation detailed description. Hence, at early design 

phases, designers focus only on functional aspects abstracting away implementation-related 

details. In addition, hardware details can be described separately only starting from the 

Design level.  

At Implementation level, using AUTOSAR allows also mastering the system complexity. In 

fact, AUTOSAR defines different views to enable the description of self-contained software 
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architecture. In the VFB view, the focus is made on the description of software components 

and their communication regardless of the platform and the mapping (of software 

component to ECUs) chosen. In ECU view, the configuration of the ECU may be described 

through describing the configuration of the RTE and the OS. Finally, in the system view, 

the focus is made on the system topology by describing e.g. the ECUs and communication 

buses used by the system. In addition, as shown in figure 5, AUTOSAR offers a layered 

software architecture giving the possibility to deal separately with the application software, 

basic software and the hardware. Application software complexity is also reduced as each 

application software component can be described independently from other software 

components. 

TADL focuses only on modeling the timing aspect of systems by relying on the modeling 

process offered by EAST-ADL and AUTOSAR. 

MARTE also focuses only on modeling the timing aspect of systems without any modeling 

process support. However, the MARTE scheduling analysis framework allows modeling the 

different scheduling and timing related features in separate views (application, 

software/hardware resources, allocations, etc). This allows the designer to focus separately 

on each aspect without involving details from other views. 

Reducing development time and cost 

Using the EAST-ADL/AUTOSAR approach, development cost and time can be reduced as 

there is a good potential for easier reuse of software and hardware components and hence 

saving the time and cost required for redeveloping them. 

In addition, using a model-based approach allows a better representation of system 

information (using models). Thus, the time required to collect such information (for further 

use) is significantly reduced during the development process. 

Defining seamless development process and tool chain 

The modeling process of EAST-ADL/AUTOSAR seems to be interesting as it gives the 

possibility to design the system architecture starting from abstract functional description 

until detailed implementation description. However, this process defines only the abstraction 

levels and the modeling concepts to be used at each level. It does not give any guidance 

about model refinement from a level to another. In addition it proposes no tool chain 
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support that allows describing and validating the system architecture along the development 

process. 

As mentioned previously, TADL relies on the modeling process offered by EAST-ADL and 

AUTOSAR. In addition, a methodology has been defined to describe how the concepts 

defined by this language can be used at each abstraction level. 

MARTE focus only on giving concepts for timing modeling without defining any modeling 

process or methodology 

Enabling timing verification 

From a timing verification point of view, the aforementioned model-based approaches 

attempted to give means for the development of time critical systems. This is mainly 

ensured through giving concepts for expressing timing properties and constraints on models 

(TADL, AUTOSAR and MARTE). 

However, supporting timing verification by these approaches is limited only to giving such 

means and concepts. In fact several methodological problems remain unsolved by these 

approaches, such as: 

� How to integrate timing verification during the model-based development process? 

� Which timing verification techniques should be used during each development 

phase? 

� How to develop analyzable model to enable a particular timing verification and how 

to use provided concepts? 

To enable model-based timing verification, these approaches should be complemented by a 

new one that allows answering these questions. 
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Table 1 Modeling approaches capabilities 

 EAST-ADL/AUTOSAR TADL MARTE 

Master 

system 

complexity 

Development through 

abstraction levels (From 

abstract functional 

description to detailed 

implementation). 

 Enable the designer to focus 

on different aspect at 

different levels 

Software is organized into 

separate software 

components 

Software architecture 

described through different 

views (VFB, ECU, System) 

Layered software 

architecture (application 

software, basic software, 

hardware) 

Focuses on annotating 

structural elements with 

timing information 

Relies on the means offered 

by EAST-ADL and 

AUTOSAR to master 

complexity 

Focus on modeling timing 

information without 

giving a modeling process 

Scheduling analysis 

models can be organized 

on separate views 

(application, platform, 

allocation, etc) 

Reduce 

development 

time and 

cost 

Potential for easier reuse of 

software and hardware 

components (save 

redevelopment time and cost) 

Reduce information 

collection time through using 

models 

Reduces information 

collection time through using 

models 

Reduces information 

collection time through 

using models 

Define 

seamless 

development 

activity 

Define only the abstraction 

levels 

No guidance for model 

refinement and 

transformation 

No tool chain defined to 

enable architecture 

description and validation 

Relies on the modeling 

process of EAST-

ADL/AUTOSAR 

Methodology defined to 

describe how to use TADL 

concepts based on EAST-

ADL/AUTOSAR structural 

elements 

No modeling 

process/methodology is 

defined 

No tool chain defined 

Enable 

timing 

verification 

Give only concepts to express timing information (timing properties & constraints) 

No guidance for model-based timing verification (how to integrate timing verification, how 

to develop analyzable models, which tools to use, how to use results, etc) 
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2.2. Timing Verification: Scheduling Analysis 

2.2.1. Introduction 

Since 1980s, many models, methods and tools were proposed to check if a real time system 

fulfills its requirements (e.g. Petri nets [19], synchronous languages [20], etc). One of these 

methods, usually called scheduling analysis is a part of a larger set of quantitative methods, 

the real time scheduling theory. Based on a schedulability test, scheduling analysis allow 

verifying the schedulability of a task set. Schedulability tests are based on the calculation of 

the worst case response time of a task, which is the longest time between the activation of a 

task and its subsequent completion. Once the worst-case response time is known, the 

feasibility of a task can be checked by comparing its worst-case response time to its deadline. 

In next sections, we present the most known results achieved in schedulability analysis in 

term of schedulability tests and scheduling analysis tools development. 

2.2.2. Schedulability Tests: Brief Historical Review 

In this section, we present a historical review of the most known results achieved within 

schedulability test development for fixed-priority monoprocessor systems. 

In 1973, Liu and Layland published a paper on the scheduling of periodic tasks that is 

generally regarded as the foundational and most influential work in fixed priority real time 

scheduling theory [21]. They made the following assumptions:  

� All tasks are periodic 

� All tasks are released at the beginning of period and have a deadline equal to their 

period 

� All tasks are independent, i.e., have no resource or precedence relationships 

� All tasks have fixed computation time or, at least, an upper bound on their 

computation time which is less than or equal to their periods 

� No task may voluntary suspend itself 

� All tasks are fully preemptible 

� All overheads are assumed to be null 

� There is just one processor. 
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Based on this model, Liu and Layland gave a sufficient utilization-based condition for the 

feasibility of a fixed priority task set scheduled with the rate monotonic algorithm (RMA) 

[21]. They proved that a set of n periodic tasks, each having a computation time Ci and a 

period Ti is feasible with this algorithm if 
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Due to the limitations of Liu and Layland test (pessimistic condition, unrealistic task model 

with deadlines equal to periods, task priorities have to be assigned according to the rate 

monotonic policy) more complex feasibility tests were developed to address the above 

limitations. In 1987, Lehoczky et al. [22] gave the first exact schedulability test for the Liu 

and Layland task model. Concurrently, another group of researchers looked at the problem 

of determining the worst case response time of a task. Joseph and Pandya [23] and Audsley 

et al. [24] developed independently an algorithm to compute the worst-case response time 

iR of a task τi as the least-fixed-point of the following recursive equation: 
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In 1982, Leung [25] considered fixed priority scheduling of a set of tasks with deadlines less 

than their periods. Lehoczky [26] considered another relaxation of the Liu and Layland 

model to permit a task to have a deadline greater than its period. The Lehoczky approach 

uses the notion of “busy-period”. A “level i busy period” is defined as the maximum time for 

which a processor executes tasks of priority greater than or equal to the priority of task i. 

Lehoczky shows how the worst-case response time of a task i can be found by examining a 

number of windows, each defined to be the length of the busy period starting at the window, 

and each window starting at an arrival of task i. In the early 1990, Tindell [27] extended 

the Lehoczky response time analysis providing an exact test for tasks with arbitrary 

deadlines. 

A further relaxation of Liu and Layland task model is to permit tasks to have specified 

offsets (phasing). Tindell proposed in [28] a test for fixed priority tasks in which task offsets 

can be taken into account. This test has been later extended by Palencia and Gonzalez to 

take into account static and dynamic task offsets [29]. 
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Wang and Saksena [30] introduced a feasibility test where they take into account non-

preemptible tasks in addition to preemptible ones.  

The development of scheduling analysis tools implementing such schedulability tests lies at 

the very core of scheduling analysis issue. In the next section, we give an overview of 

currently available scheduling analysis tools. 

2.2.3. Scheduling Analysis Tools Presentation 

While the number of scheduling analysis tools is constantly increasing, they also vary 

widely in terms of analysis capabilities and supported features.  

• MAST 

MAST [31] is an open source tool developed by the University of Cantabria in Spain. 

MAST is still under development and is intended to allow modeling real time applications 

and performing scheduling analysis for them. The tool offers a suite of scheduling analysis 

tests, ranging from classic RMA for fixed priority monoprocessor systems to more 

sophisticated analyses for EDF (Earliest Deadline First) schedulers [21] and distributed 

systems. In MAST, each real time situation is described through a set of concurrent 

transactions [41]. A transaction represents the execution of a set of activities triggered by 

an external event. An activity is an instance of an operation. The output of each activity is an 

internal event that may in turn activate other activities. Events may have timing 

requirements associated with them. Activities follow a predecessor/successor relationship 

with the possibility for an activity to have multiple successors or multiple predecessors. 

Each activity is bound to a single schedulable resource (task) and a schedulable resource 

refers to one processing resource. This way, the concept of activity encapsulates the 

allocation of the operation on a single schedulable resource and the allocation of the 

schedulable resource on a single processing resource. Table 2 and 3 summarize respectively 

the most important required inputs for the analysis as well as the output result of MAST. 
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Table 2 MAST required inputs 

Required input 

information 

Description 

Processing Resource They represent the processing capacity of a hardware 

component that executes some of the modeled system 

activities (Regular Processor) or message transmission 

(Packet Based Network).  

Scheduling Server They represent schedulable entities in a processing 

resource (e.g. OS task) 

Shared Resource They represent resource that are shared among different 

threads or tasks and that must be used on a mutually 

exclusive way. 

Operation It represent a piece of code or a message 

Transaction A transaction represents a flow of executing activities 

that are interrelated. A transaction is defined with a list of 

external events, a list of internal events and their timing 

requirements and a list of activities 

External Event It represents an event that activates a transaction. It can 

be e.g. periodic or sporadic. 

Activity It represents an instance of an operation to be executed 

by a scheduling server. An activity is defined by an input 

event, and output event, an operation and the scheduling 

server hosting this operation 

Internal Event It is an event that is generated by an activity. It can 

trigger the activation of another activity within the same 

transaction. 

Timing Requirement Represents the timing requirement imposed on the 

instant of generation of an internal event. It represent a 

deadline or a maximum jitter on the generation instant of 

the event. 
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Table 3 MAST output results 

Output result Description 

System/processing 

resource/transaction slack 

If positive, it represents the percentage by which all 

the execution times of all the operation contained in 

the global system (or used by the processing resource 

or the transaction) may be increased while still 

keeping the system schedulable. If negative it is the 

percentage by which all these execution times have to 

be decreased to make the system schedulable. 

Worst/best/average 

Transaction response time 

Represents the worst/best/average response time of 

the transaction (generation of the output event of the 

transaction) with reference to the external event of 

the same transaction. 

Processing resource 

utilization 

It measures the relation, in percentage, between the 

time that the processing resource is being used to 

execute activities and the total elapsed time. 

Operation slack The percentage by which the execution time of that 

operation may be increased (or decreased) while 

keeping the system schedulable (or to make the 

system schedulable) 

 

• Cheddar 

Cheddar [32] is also open source and is developed and maintained by the University of 

Brest in France. This tool is designed for checking task temporal constraints of a real time 

application. Cheddar is based on an analysis framework that includes most of classical real 

time schedulability tests such as RMA and EDF. In Cheddar, an application is defined by a 

set of processors, buffers, shared resources, messages and tasks [40]. In the most simple 

task model, each task periodically performs a treatment. This “periodic” task is defined by 

three parameters: its deadline, its period and its capacity that represents a bound on the 

execution time of the job performed by this task. Table 4 and 5 summarize respectively the 

most important required inputs for the analysis as well as the output result of Cheddar. 
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Table 4 Cheddar required inputs 

Required 

Input 
Description 

Processor They represent the processing capacity of a hardware component that executes some of 

the modeled tasks 

Task It represents the schedulable entity in the processor. A task is characterized by a priority 

a computation time, an activation period and a deadline. 

Network It represents e.g. communication buses 

Shared resource They represent resource that are shared among different tasks and that must be used on a 

mutually exclusive way. 

Message Represent messages that are exchanged between tasks 

Buffer They represent stocking elements for the information exchanged between tasks that 

read/write in the buffer 

 

Table 5 Cheddar output results 

Output result Description 

Task response time The time between the activation and the termination 

instants of the task 

Processor utilization It measures the relation, in percentage, between the 

time that the processing resource is being used to 

execute activities and the total elapsed time. 

 

• Rapid-RMA 

Rapid-RMA [33] is a commercial tool developed by Tri-pacific Software Company. Rapid-

RMA allows performing analysis based on rate monotonic and deadline monotonic [34] 

algorithms. A Rapid-RMA system is composed of a set of tasks allocated to hardware 

resources (CPU, BUS). Each task is characterized by its period, deadline, priority and 

computation time. Table 6 and 7 summarize respectively the most important required inputs 

for the analysis as well as the output result of Rapid-RMA. 
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Table 6 Rapid-RMA required inputs 

Required Input Description 

Task It represents the schedulable entity in the processor. A task is characterized by a 

priority a computation time an activation period and a deadline. 

Node It represent the hardware resource with processing capacity that executes some of the 

modeled tasks 

Bus It represents the communication medium used to exchange message between some of 

the modeled nodes 

 

Table 7 Rapid-RMA output results 

Output result Description 

Task completion time It represents the task response time (time between the 

activation until the termination of the task) 

Processor utilization 

factor 

It measures the relation, in percentage, between the 

time that the processing resource is being used to 

execute activities and the total elapsed time. 

 

• Chronval 

Chronval [35] is a commercial tool produced by the Inchron Company. The tool allows 

performing scheduling analysis for single and distributed systems. Unlike other scheduling 

analysis tools that are based on schedulability tests from scheduling theory, Chronval is 

based on the “real time calculus” technique [57]. The tool allows calculating task response 

times for an OSEK2 compliant system. In this tool, a system is seen as a set of tasks. Each 

task is associated with a source that allows specifying its activation pattern. Task deadlines 

are specified as requirements that constrain the maximum delay between the task activation 

and its termination instants. Table 8 and 9 summarize respectively the most important 

required inputs for the analysis as well as the output result of Chronval. 

 

 

                                                      
2
 OSEK : Open Systems and their interfaces for the Electronics in Motor Vehicles 
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Table 8 Chronval required inputs 

Required Input Description 

Task It represents the schedulable entity in the processor. 

Source It is an element that allow to represent the activation pattern of each task 

ECU It represent a hardware resource with processing capacity 

Bus It represents the communication medium used to exchange message between some of 

the modeled nodes 

Timing requirement Enables to specify a task deadline or a deadline on a flow formed by several tasks 

 

Table 9 Chronval output results 

Output result Description 

Task worst case response 

time 

It represents the worst response time (time between 

the activation until the termination of the task) 

Event spectrum Shows the variation of the available and the remaining 

processor capacity for each task 

 

• SymTA/S 

SymTA/S [36] is a commercial tool developed by the Symtavision Company. The tool is 

said to be based on schedulability tests that extend previously mentioned classical tests to 

take into account automotive specific constraints (these constraints will be detailed in the 

next chapter). It allows performing analysis for both single and distributed systems. In 

SymTA/S, each real time situation is described through a set of tasks hosting a number of 

runnables. A runnable represents the execution of a non-preemptive piece of code. Each task 

in SymTA/S is characterized by an activation pattern, a priority and a deadline. Table 10 

and 11 summarize respectively the most important required inputs for the analysis as well as 

the output result of Chronval. 
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Table 10 SymTA/S required inputs 

Required Input Description 

Task It represents the schedulable entity in the processor. A task is characterized by a 

priority, an execution time (if it hosts no runnables) and an activation pattern 

Runnable It represents a non-preemptible executable entity in a task.  

ECU It represent a hardware resource with processing capacity 

Bus It represents the communication medium used to exchange message between some of 

the modeled nodes 

Max response time It represent the deadline on task or path execution 

Path A path represents a flow of tasks or runnables executing successively and 

communicating variables 

 

Table 11 SymTA/S output results 

Output result Description 

worst case response time It represents the worst case response time for a task 

or a path 

Processor utilization It measures the relation, in percentage, between the 

time that the processing resource is being used to 

execute activities and the total elapsed time. 

 

2.2.4. Scheduling Analysis Evaluation 

Scheduling analysis seems to be a good candidate to perform timing verification for real time 

systems. Using this technique, there is a good potential to allow detecting timing errors 

early (only based on a task model) preventing hence costly time-related design mistakes to 

be detected late. 

However, to enable timing verification for automotive systems using such technique, a need 

for schedulability tests and tools that fit well automotive needs and constraints is 

obvious. In addition, there is currently no guidance about how to integrate such 

verification technique during the development process. 
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2.3. Conclusion 

As shown in the previous sections, several model-based approaches and methods were 

developed to bring solutions for automotive needs such as mastering system complexity 

during development, allowing reuse, reducing development time and cost, etc. 

To ensure real time system dependability, many scheduling analysis tests and tools were 

developed as a means for early timing verification. 

An obvious lack today in these approaches, is guidance for enabling the integration of 

timing verification during a seamless model-based development process. In this thesis 

work, we propose to define an approach for a methodology describing a model-based 

timing verification process for automotive systems. 

3. Work Orientation and Approach Feasibility 

3.1. Approach Principle and Feasibility Issues 

In our approach, based on existing solutions, we propose to combine some model-based 

approaches to define our development process. Then, we aim to define a methodology to 

enable timing verification during each phase of this process. Figure 6 shows an overview of 

the principle of the targeted process. 

 

Figure 6 Overview of a model-based timing analysis process 

At each phase of the development process, the designer has a set of timing requirements as 

inputs. S/he designs and models the system architecture (structure, behaviour, etc…) that 
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should satisfy these requirements. S/he then performs timing analysis to verify whether the 

proposed architecture does satisfy them. Based on the results of this analysis, the designer 

determines what improvements are needed in the architecture or what tradeoffs could be 

made to meet the corresponding timing requirements. The designer may need to perform 

this activity iteratively until a valid model is obtained. Based on the architecture designed 

during the current phase, the designer determines the requirements that should be satisfied 

during the next development phase when refining the system architecture. 

To define the model-based development process, we propose to use and adapt some of the 

available modelling approaches. For timing verification, we suggest to use scheduling 

analysis as a verification technique in this process.  

From a feasibility point of view, to be able to define such model-based scheduling analysis 

process for automotive systems based on existing solutions, we need to satisfy the two 

following requirements: 

� The modelling process should be based on modelling languages that are 

expressive enough to enable scheduling analysis-aware modelling for 

automotive applications 

To verify this requirement, we need to evaluate the expressivity of available modelling 

languages. This will enable us to decide which language (s) to use for our modelling process 

or how to combine some of these languages to define this process. Based on the defined 

development process, we can also decide how and in which phase we can integrate 

scheduling analysis. 

� Scheduling analysis should be usable to perform timing verification for 

automotive applications. 

To prove the usability of scheduling analysis for automotive systems, we need to identify a 

tool that satisfies scheduling analysis needs for automotive systems. This tool should 

implement schedulability tests that take into account all automotive needs. To identify such 

tool, we will evaluate the capabilities of available scheduling analysis tools against 

automotive needs in term of scheduling analysis.  

3.2. Modeling Languages Expressivity Evaluation 

In this section, we evaluate the expressivity of the aforementioned modeling languages, 

EAST-ADL/TADL, AUTOSAR and MARTE to enable scheduling-analysis aware 
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modeling. This evaluation is done against automotive application modeling needs to enable 

scheduling analysis. 

The first paragraph characterizes the required modeling features. Next, we highlight the 

capabilities and limitations of the studied modeling languages with respect to those 

requirements. 

3.2.1.  Modeling Needs for Automotive Applications to Enable Scheduling Analysis 

We organize the modeling features needed for scheduling analysis into the four following 

categories: 

Application workload. Modeling languages should enable describing the application 

workload which represents the processing load of the system. It represents the different 

operations (functions) executed in the system and contending for use of processing resources 

and other shared resources. An operation may represent a small segment of code execution 

as well as the sending of a message through a communication medium. Operations are 

generally organized in processing flows (set of related operations/functions). To make the 

analysis possible, modeling languages shall enable specifying the execution /transmission 

time (worst, best or average) for operations/messages. 

Application timing behavior. The application timing behavior represents the timing 

information of the different operations or processing flows involved in the system under 

analysis. Timing information contains both timing description (timing properties) and 

timing constraints. Timing description contains the specification of the triggering of system 

operations or processing flows (recurrence, activation jitters, etc.). Most available scheduling 

analysis tools allow analyzing systems with various triggering patterns such as periodic, 

sporadic, singular, etc. For those activation patterns, it is necessary to specify the period or 

the minimum inter-arrival time of the triggering events. Timing constraints must be met by 

the system operations or flows. They are represented basically by operation deadlines, 

output jitter bounds and end-to-end deadlines. 

Resource platform. It represents the concrete architecture and capacity of hardware (e.g., 

CPU or buses) and software (e.g. OS tasks) resources. For hardware resources such as 

processors, modeling languages should allow e.g. the description of the scheduler used. For 

a more accurate analysis, it may be also necessary to specify the processor overheads (e.g. 

context switch overhead). For software resources such as tasks, it is necessary to specify the 
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task nature (preemptive, non-preemptive, etc.) as well as its priority. Involved shared 

resources should also be described. 

Allocation. To get an analyzable model, modeling languages should enable specifying the 

allocation of the operations to software resources (e.g. tasks) and the allocation of software 

resources to hardware resources (e.g. processors). 

3.2.2. Modeling Languages Capabilities 

Table 12 contains a summary of the extent to which the surveyed modeling languages cover 

the features considered. It gives the set of modeling concepts offered by each language to 

cover the above-mentioned features. 

Application workload. Modeling application workload differs significantly in these 

languages. For example, the “ADLFunctionType” and “ADLFunctionPrototype” concepts of 

EAST-ADL allow modeling the functions executed in the system. EAST-ADL gives also 

means to specify function execution times through the “ExecutionTimeConstraint” concept. It 

allows specifying worst, best or average execution time for each EAST-ADL function [47]. 

In AUTOSAR, The system workload is described through two categories of elements: 

runnable entities [51] and basic software module entities [52]. Runnable entities are the 

smallest code-fragment that are provided by an application software component and are 

subject to scheduling by the underlying operating system. Runnable entities are specified in 

the system model as a part of the internal behavior of software components. Basic software 

entities are also subject to scheduling and contend for use of processing resources. A basic 

software entity represents the smallest code fragment that can be described for a basic 

software module or cluster. 

In AUTOSAR, it is possible to specify the execution time for both runnable entities and 

basic software entities as “ResourceConsumption” (when describing the corresponding 

software component implementation or basic software module implementation). The 

resource consumption element provides information about memory and time consumption 

for each software component implementation or basic software module implementation. 

Maximum, minimum and nominal execution times can be specified. 

MARTE models the application workload as a set of processing flows called “End-to-end 

flows”. They describe interrelated units of processing work called “steps” and which contend 

for the use of processing resources with other end-to-end flows [56]. MARTE gives the 



52 

 

Methodology for Model-based Timing Analysis Process 

 

possibility to specify the execution time of a step through the attribute “execTime” that 

allows specifying a worst or best step execution time. 

Application timing behavior. To model application timing behavior elements, EAST-ADL 

relies on TADL concepts. TADL allows attaching timing description and timing constraints 

to the events and event chains describing the timing behavior of the system. For example it 

is possible to describe the triggering pattern of an event (periodic, sporadic, etc) or the 

maximum latency of an event chain.  

MARTE, itself, uses the notion of end-to-end flows to express timing constraints such as an 

end-to-end deadline imposed on a flow of steps or simply a step deadline. MARTE models 

the triggering of an end-to-end flow through the element “WorkloadEvent” that allows 

specifying the triggering pattern of each flow (periodic, sporadic, etc). 

AUTOSAR allows the modeling of the application timing behavior features through its 

timing extensions [55]. Timing extensions allow specifying the timing description and the 

timing constraints of the system. They are used to describe the timing behavior in different 

views: the virtual functional bus view (VFB timing), the software components view (Swc 

timing), the basic software module view (Bsw module timing), the system view (system 

timing) and at the ECU view (ECU timing). 

On each level, processing flows are described through the event and event chain concepts 

(inspired from TADL concepts). 

AUTOSAR Timing constraints can be attached to both event chains and events. For an 

event, timing constraints specify its arrival pattern as well as its occurrence jitter. Supported 

arrival patterns in AUTOSAR are: periodic, sporadic, burst, concrete and arbitrary. For 

event chains, it is possible to specify their latencies. A latency timing constraint restricts the 

time duration between the occurrence of the stimulus and the occurrence of the 

corresponding response of that chain. 

Resource platform. Modeling of software and hardware resource platform is more or less 

supported by the different languages. EAST-ADL supports modeling of hardware resources 

through the concepts of “Node” (to represent an ECU) and “LogicalBus” (to represent 

communication buses). However, EAST-ADL does not give any means to model software 

resources such as OS tasks during the Analysis and Design levels. In fact, EAST-ADL relies 

of AUTOSAR concepts to describe this feature starting from the Implementation level. 
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MARTE, itself, gives the possibility to model both hardware and software resources. 

MARTE distinguishes two kinds of processing resources; “ExecutionHost”, which includes 

for example processors and coprocessors, and “CommunicationHost”, which includes resources 

such as networks and buses. Processing resources can be characterized by throughput 

properties such as processing rate, efficiency properties such as utilization, and overhead 

properties such as blocking times and clock overhead times. Software resources can be 

modeled in MARTE as “SchedulableResource” or “CommunicationChannel”. On one hand, a 

schedulable resource is a kind of active protected resource that is used to execute steps. In a 

real time operating system (RTOS), this is the mechanism that represents a unit of 

concurrent execution, such as a task, a process, or a thread. On the other hand, a 

communication channel provides concurrency to communication steps. 

The “SharedResource” concept of MARTE allows modeling the shared resources involved in 

the system. 

AUTOSAR allows specifying the system hardware resources when describing the system 

topology in the system view [54]. The “ECUInstance” concept allows defining the ECUs 

used in the topology. Communication networks can be specified through the 

“CommunicationCluster” concept that represents the main element to describe the topological 

connection of communicating ECUs. For each communication cluster, we can define one or 

more “PhysicalChannel” that describe the transmission medium that is used to send and 

receive information between two communicating ECUs, as well as the protocol used for the 

communication. 

AUTOSAR allows describing the software resources involved in the system when defining 

the OS configuration [53]. Tasks are specified through the “OsTask” concept that represents 

an OSEK task. Task priority can be specified using the attribute “OsTaskPriority”. The 

attribute “OsTaskSchedule” allows specifying whether the task is preemtible or not. 

Interrupts are supported through the “OsISR” concept that represents an OSEK interrupt 

service routine. 

AUTOSAR Shared resources may be specified using the “OsResource” concept, used to 

coordinate the concurrent access of tasks and ISRs to shared resources. The attribute 

“OsTaskResourceRef” of the OS task element allows listing the shared resources accessed by 

the specific task. 
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Allocation. EAST-ADL/TADL gives means to describe the allocation of functional entities 

described at the design level to hardware resources. This is done through the concepts 

“FunctionAllocation” that represent an allocation constraint binding an “AllocateableElement” 

(computation function or communication connector) to an “AllocationTarget” (computation 

or communication hardware resource). However, allocation of functions to OS tasks cannot 

be described in EAST-ADL (this is due to the fact that EAST-ADL relies on the description 

of such information at the Implementation level using AUTOSAR). Unlike EAST-ADL, 

MARTE offers a set of concepts to develop a complete allocation model (allocation of steps 

to schedulable resources or communication channels and allocation of schedulable 

resources/communication channels to execution and communication hosts). The MARTE 

concept “allocate” allows associating elements from a logical context, application model 

elements, to named elements described in a more physical context, execution platform model 

elements. The “allocated” concept allows describing entities that can be allocated to a hosting 

element. 

The allocation of tasks to hardware resources is performed in AUTOSAR during the ECU 

configuration process. The configuration of a particular ECU used in the system involves 

the configuration of the OS and of the runtime environment RTE [58]. The OS 

configuration contains among others the definition of the different OS tasks involved. Hence, 

this indicates that the defined tasks are allocated to the ECU which is subject to 

configuration. 

The mapping of runnable entities and basic software module entities to OS tasks is part of 

the RTE configuration. The mapping of runnable entities to OS tasks is based on the 

mapping of the “RTEEvent” that activate those runnable entities. In a similar way, basic 

software module entities are mapped to OS tasks by mapping the “BswEvent” that activate 

them.  
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Table 12 Modeling supports for scheduling analysis 

Needed 

modeling 

Features 

Concepts offered by modeling languages 

EAST-ADL/TADL MARTE AUTOSAR 

Application 

Workload 

ADLFunctionType/Prototype. 

ExecutionTimeConstraint 

(worst, best, average) 

End-to-end flow. Step, 

ExecTime 

Runnable Entity. 

Bsw Entity. Swc 

Implementation. Bsw 

Implementation. 

Resource 

Consumption. 

Measured/estimated 

execution time 

Application 

Timing 

Behavior 

Event chains. Event chains 

related to architecture events. 

Event occurrence constraints. 

Event chain latency 

constraints, synchronization 

constraints 

End-to-end flows 

deadlines, step deadlines, 

triggering workload 

event, workload event 

arrival pattern 

Event chains. 

Events. Event 

activation 

constraints. Event 

chain latency 

constraints, 

synchronization 

constraints 

Resource 

Platform 

Hardware resources: Node, 

Logical bus 

No software resource 

description 

Hardware resource: 

execution host, 

communication host 

Software resource: 

schedulable resource, 

communication channel 

Shared resource 

Hardware resource: 

ECU instance, 

communication 

cluster, physical 

channel 

Software resource: 

OS task, Os ISR, 

 Os resource  

Allocation 

means for linking function 

prototypes to hardware 

entities at design level 

No means to describe 

allocation of functions to 

software resources 

Allocation of steps to 

schedulable resources/ 

communication channels 

Allocation of schedulable 

resources/communication 

channels to 

execution/communication 

hosts 

concepts: allocate, 

allocated 

Allocation of 

software resources to 

hardware resources 

(OS configuration 

mechanism) 

Allocation of 

runnable entities and 

basic software 

entities to software 

resources (RTE 

configuration 

mechanism) 

 

3.3. Scheduling Analysis Tools Evaluation  

To prove the usability of scheduling analysis to perform timing verification for automotive 

applications, we propose to evaluate the capabilities of available scheduling analysis tools to 

select most convenient tool(s) for our process. 
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The first section characterizes the required analysis features. Next, we highlight the 

capabilities and limitations of the studied tools with respect to those requirements. 

3.3.1. Scheduling Analysis Needs for Automotive Applications 

This section characterizes the architecture of automotive applications. Such characterization 

suffices for the purpose of this part, which is to identify the timing analysis needs of 

automotive systems and hence the requirements that should be met by analysis tools. It 

serves, finally, to provide an informal, comparative review of capabilities provided by the 

selected tools. For a better understanding, we will assign an identifier to each requirement 

that we denote REQx where x is the requirement number. Table 13 summarizes the 

characterization of the identified requirements. 

Today's automotive systems have evolved constantly and now offer even more challenging 

features that can be summed up as follows: 

Limited hardware resources. Today, CPU load, has become day-to-day issue and is the 

very basis for the design of automotive systems. For these reasons, scheduling analysis is 

required to determine, or at least estimate, the processor performance needed for a given 

design. Hence, Analysis tools should have techniques to determine the processor utilization [REQ1]. 

Timing constraints. In addition to limited hardware resources, automotive applications 

must deal with many kinds of timing constraints. These may concern task or function 

deadlines or maximum jitters on task activation instants. Automotive tasks may have hard 

deadlines (e.g. for safety functions) or soft deadlines (for body comfort functions). Moreover, 

these tasks may have deadlines that are less, equal or greater than their periods. 

In addition, the end-to-end delay after data is read by a sensor and the output generated 

from it and passed to an actuator (known as “data age”) is crucial to control model stability. 

Scheduling analysis is hence needed to verify if those constraints are met or not. To enable 

this verification, scheduling analysis tools have to meet certain requirements that we 

summarize as follows: 

When describing the system under analysis 

� Analysis tools should allow specifying task or function deadlines [REQ2] 

� Analysis tools should allow specifying jitters related to the function or task activation instants 

[REQ3] 
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� Analysis tools should allow specifying end-to-end timing constraints [REQ4] 

(An end-to-end timing constraint is a deadline imposed on the delay of an end-to-end flow formed by 

executing steps in the system) 

When analyzing the system 

� Analysis tools should allow analyzing tasks with deadlines that are less, equal or greater than 

their periods [REQ5] 

� Analysis tools should have techniques to verify whether end-to-end constraints are respected 

[REQ6] 

Heterogeneous activation pattern. In automotive task model, tasks can be time triggered 

or event triggered. Event triggered tasks are activated by the arrival of events that can be 

periodic, sporadic or singular (arrives only once). Time triggered tasks are periodic tasks 

that are activated at predetermined points in time. In automotive, there are two kinds of 

periodic tasks, timing tasks and engine-synchronous tasks. Timing tasks have timing 

recurrences (e.g. 1ms, 10ms, etc) (they are simply classic periodic tasks). Engine-

synchronous task are activated by the arrival of events related to the engine-running. The 

recurrences of these events are expressed in engine angle degree rather than time (e.g. 

2°crank). In fact these recurrences depend on the Camshaft and Crankshaft positions that 

vary with the engine speed (The camshaft wheel is the element of the engine that allows the 

opening and the closure of intake and exhaust valves. The crankshaft wheel is the part of the 

engine that translates reciprocating linear piston motion into rotation). Hence, expressing 

the period of such tasks in time depends also on the engine speed. For instance, for a 6 

cylinder system, a task that should be activated each 120°crank has got a recurrence of 

3.3ms at 6000rpm and 13.33ms at 1500rpm (engine-synchronous tasks are hence periodic 

tasks in the angular base and aperiodic tasks in the classic time base). This variable aspect of 

recurrence should be taken into account by scheduling analysis tools: 

� Analysis tools should allow specifying periodic, sporadic and singular activation [REQ7] 

� Analysis tools should allow describing and analyzing system with engine-synchronous tasks 

[REQ8] 

Distributed architecture. In conventional automotive system design, a function may be 

distributed over many ECUs (Electronic Control Units) into a network that may even use 

multiple protocols. Most used protocols are CAN, LIN and FlexRay [37]. For such 
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distributed functions, it is important to guarantee end-to-end response times. In addition, in 

such complex architectures, optimization of network resource consumption and message 

scheduling requires knowledge of the impact of network properties such as network 

overheads and driver overheads, and of different communication protocols. Consequently, 

scheduling analysis tools have to satisfy the following requirements: 

� Analysis tools should allow easy description of distributed systems with multiple ECUs and 

communication buses [REQ9] 

� Analysis tools should have techniques to analyze multiprocessor systems [REQ10] 

� Analysis tools should have techniques  for CAN, LIN and FlexRay [REQ11] 

� Analysis tools should allow taking into account processor overheads (basically context switch 

overhead) and network overhead (network driver overheads) [REQ12] 

Task concurrency and dependency. In automotive systems, tasks may be dependent. This 

dependency results basically from task chaining which means that a task is activated by 

another task. Automotive tasks may also have activation offsets. For engine synchronous 

tasks, their offsets vary also with the engine speed. 

 Concerning the concurrency issue, in automotive design, although tasks are concurrent, 

different tasks may have the same priority level. As most automotive applications are based 

on OSEK [38], these tasks are scheduled using the FIFO algorithm (First In First out) as a 

second scheduling protocol. Moreover, automotive tasks are of three kinds: preemptive 

tasks, cooperative tasks and interrupts. The execution of cooperative tasks can be 

interrupted by higher priority cooperative tasks only at predefined points called schedule 

points. Figure 7, shows an example of a system with preemptive and cooperative tasks. Task 

T1 is a preemptive task having the highest priority, task T2 and T3 are both cooperative 

tasks, T2 has got higher priority than T3. As the figure shows, T2 waits until the schedule 

point of T3 to start executing, while T1, being preemptive, interrupts T2 before its schedule 

point.  
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Figure 7 Preemptive and Cooperative Tasks 

To enable an accurate scheduling analysis, analysis tools have to support the description and 

analysis of such a task model and hence: 

� Analysis tools should allow describing task dependency resulting from task chaining 

[REQ13] 

� Analysis tools should allow using FIFO as second scheduling algorithm for tasks having the 

same priority level [REQ14] 

� Analysis tools should allow specifying preemptive, cooperative tasks and interrupts [REQ15] 

� Analysis tools should allow describing and analyzing systems with constant and variable 

offsets [REQ16] 
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Table 13: Requirements on scheduling analysis tools 

Requirement Description 

REQ1 Analysis tools should have techniques to determine the processor utilization 

REQ2 Analysis tools should allow specifying task or function deadlines 

REQ3 
Analysis tools should allow specifying jitters related to the function or task 

activation instants 

REQ4 Analysis tools should allow specifying end-to-end timing constraints 

REQ5 
Analysis tools should allow analyzing tasks with deadlines that are less, 

equal or greater than their periods 

REQ6 
Analysis tools should have techniques to verify if end-to-end constraints are 

respected 

REQ7 
Analysis tools should allow specifying periodic, sporadic and singular 

activation 

REQ8 
Analysis tools should allow describing and analyzing system with engine-

synchronous tasks 

REQ9 
Analysis tools should allow easy description of distributed systems with 

multiple ECUs and communication buses 

REQ10 Analysis tools should have techniques to analyze multiprocessor systems 

REQ11 Analysis tools should have techniques  for CAN, LIN and FlexRay 

REQ12 

Analysis tools should allow taking into account processor overheads 

(basically context switch overhead) and network overhead (network driver 

overheads) 

REQ13 
Analysis tools should allow describing task dependency resulting from task 

chaining 

REQ14 
Analysis tools should allow using FIFO as second scheduling algorithm for 

tasks having the same priority level 

REQ15 
Analysis tools should allow specifying preemptive, cooperative tasks and 

interrupts 

REQ16 
Analysis tools should allow describing and analyzing systems with constant 

and variable offsets 
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3.3.2. Scheduling Analysis Tools Capabilities 

In this section, we consider the aforementioned scheduling analysis tools, MAST, Cheddar, 

Rapid-RMA, Chronval and SymTA/S. Table 14 summarizes the coverage provided by these 

tools with regard to the requirements described above. Full explanations are given in 

subsequent paragraphs. 

REQ1: MAST allows the designer evaluating his processor or network performance by 

calculating either its global utilization or a more limited scenario such as utilization by 

context and interrupt switch activities. The tool likewise enables him to see to what extent 

operations executed on the processing resource are schedulable. This entails calculation of 

processor or network slack, i.e. the percentage increase in execution times that is compatible 

with keeping the system schedulable. 

Cheddar allows performing certain feasibility tests based on calculation of the processor 

utilization factor [21]. Depending on the resulting factor, the tool tells the user whether a 

task set will be schedulable or not. Cheddar does not calculate processor or network slack. 

Rapid-RMA allows calculating the processor utilization for periodic and aperiodic tasks. In 

addition to quantitative results, it displays also a graphic showing the utilization of the 

processor by each kind of tasks and the unused percentage of the processor capacity. 

Chronval does not calculate a value showing the global utilization of the processor by the 

different tasks. However, through a graph called “event spectrum viewer”, it is possible to 

visualize the variation of the available and the remaining processor capacity for each task. 

For each processor, SymTA/S calculates its global utilization but also elementary utilization 

for each task. This kind of result is interesting, it allows the designer identifying the tasks 

having the biggest load and hence the possible changes in case of overloaded processor. 

REQ2: MAST defines the concept of operation that represents a piece of code or the sending 

of a message. The tool allows specifying timing constraints on operations through the 

concept of timing requirement. The latter can be specified on the output event of an activity 

(represents the execution of an operation). A timing requirement may be a deadline or a 

maximum jitter imposed on the generation instant of the output event of an activity. MAST 

supports both hard and soft deadlines. Cheddar and Rapid-RMA support this feature 

differently by allowing specification of deadlines on tasks themselves. 
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To describe task deadlines, Chronval allows assigning a timing requirement to a task. This 

requirement allows specifying a bound on the delay between the activation event of the task 

and its termination event. SymTA/S, itself, allows specifying a max response time for each 

task. 

REQ3: MAST defines the concept of external event that serves to trigger the execution of a 

flow of activities (transaction). The tool allows specifying a maximum jitter on the arrival 

time of an external event but this is only possible for periodic events. Cheddar supports this 

feature by allowing specifying a maximum lateness on task wake up time through the 

concept jitter. 

Rapid-RMA does not allow specifying jitter bounds for the activation instants of aperiodic 

tasks 

To describe the activation of a task, Chronval uses the concept of source. A source is an 

element that is connected to a task to describe its activation patterns such as its period (or 

minimum inter-arrival time) and its activation jitter. This feature is also supported by 

SymTA/S that allows specifying a jitter value for periodic, sporadic and pattern tasks [59]. 

REQ4: MAST meets this requirement by allowing the specification of a deadline on the 

generation instant of the output event of an execution flow of activities (transaction) with 

reference to the external triggering event. Contrarily to MAST, specifying end-to-end 

constraints is supported neither by Cheddar nor by Rapid-RMA. 

In Chronval, specifying end-to-end timing constraints is also supported through the concept 

of requirement. To specify an end-to-end constraint on a flow of tasks, one can specify a 

requirement between the activation event of the first task and the termination event of the 

last task in the flow. 

SymTA/S uses a similar approach, specifying end-to-end timing constraints is supported 

through the concept of path in SymTA/S. A path represents a flow of tasks or runnables 

executing successively and communicating variables. SymTA/S gives the possibility to 

specify a max response time for the path. 

REQ5: Except Rapid-RMA that requires task deadlines to be equal to task periods, all of the 

other tools allow specifying and analyzing tasks with deadlines that are less, equal or greater 

than their periods. 
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REQ6: MAST allows calculating the response time of the output event of a transaction and 

compares this with end-to-end constraints imposed on the system. Cheddar allows 

calculating end-to-end response times based on the holistic approach defined by Tindell for 

distributed systems in [39]. These end-to-end response times include message transmission 

delay and buffer memorization delay. 

Rapid-RMA, itself, has no means to verify end-to-end constraints involving more than one 

task. 

As for deadlines, Chronval calculates end-to-end response times and compares them with 

end-to-end requirements. SymTA/S uses the same approach by calculating the response 

time for each path and comparing it with path max response time. In SymTA/S, a path 

response time is the sum of the response times of the tasks involved in the path and the 

sampling delays. 

REQ7: Triggering patterns are captured in MAST through external events that activate 

transaction execution. MAST external events may be periodic, singular, sporadic, 

unbounded or bursty. 

In Cheddar, there is no distinction between a task and its triggering. Cheddar does not, in 

fact, consider triggering events but rather focus on tasks themselves. In Cheddar tasks may 

be periodic, aperiodic, sporadic, etc [40]. Cheddar also makes it possible for the designer to 

specify new activation patterns (User-defined activation pattern) without modifying the 

implementation of the tool [40]. This same facility is provided by MAST, but the tool 

implementation should be modified (As it is an open-source tool) 

Rapid-RMA and SymTA/S use the same approach as Cheddar, allowing hence specifying 

the activation pattern of a task without having recourse to event concept. Rapid-RMA 

allows specifying periodic and aperiodic tasks. SymTA/S, itself, allows describing sporadic 

and periodic tasks that may have activation jitters. Singular tasks are described through the 

aperiodic pattern in Rapid-RMA; this kind of tasks cannot be described in SymTA/S. 

Chronval uses the notion of source to describe the activation of a task. Chronval sources 

allow describing periodic, sporadic and singular tasks. 

REQ8: As mentioned previously, engine-synchronous task periods and deadlines vary 

depending on the engine speed. This means that for a fixed engine speed, these tasks can be 

considered as purely periodic tasks with constant deadlines. Hence to be able to analyze a 
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system with such kind of tasks, using the studied tools, we need to perform the analysis for a 

fixed engine speed. This is due to the fact that all of the studied tools consider only one 

timing base in which task parameter values can be expressed (period, deadlines, etc). 

However this is very limiting due to the fact that a worst-case response time determined for 

a particular speed is not necessarily valid for other engine speeds. To solve this problem, 

SymTA/S gives the possibility to perform analysis for variable engine speed. This is done 

based on a scripting support that allows expressing the parameters of these tasks as a 

function of engine speed and then incrementing the engine speed and performing the 

analysis for each speed. Compared with other tools, this approach is quite interesting as it 

allows determining worst case response times for different engine speeds. However, a special 

care should be taken when choosing the incrementation step of the speed. In fact a large step 

enables a fast analysis but many transitory speeds are missed. Choosing a small 

incrementation step allows covering more transitory speeds but the analysis takes much 

more time. 

REQ9 & REQ10: All of the studied tools allow describing and analyzing distributed 

systems. In addition, all of them implement scheduling techniques for multiprocessor 

systems. 

MAST enables description of the networks involved in a system being analyzed through the 

concept of Packet Based Network. It represents a network that uses some kind of real time 

protocol based on non-preemptible packets for sending messages [41]. MAST supports the 

following transmission kinds: Simplex, Half duplex and Full duplex (see [41] for more 

details about these transmission kinds). 

Cheddar is designed to perform scheduling simulation of message-sharing applications 

distributed on several processors. It allows specifying networks with three kinds of 

communication protocols (bounded delay, jitter delay and parametric delay) [32]. 

Rapid-RMA allows describing and analyzing distributed systems through the multiple node 

analysis. The tool allows describing the buses used for the communication in the system 

under analysis as well as the time overheads associated to the access to these communication 

media. However, the tool gives no means to describe the bus properties such as the 

communication protocol used. 

SymTA/S and Chronval also allow describing and analyzing systems with multiple ECUs 

and communication buses. 
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REQ11: Except SymTA/S which allows describing and analyzing systems with CAN and 

Flexray buses, none of the other tools have analysis techniques dedicated for these buses. 

LIN bus is not supported by any of the studied tools. 

REQ12: MAST has means for independent description of overheads for both processor and 

network. In fact, it allows specifying either worst, best or average context switch overhead 

when describing system processors. For networks, MAST allows specifying packet 

overheads that represent the overheads associated with sending each packet because of the 

protocol messages or headers that need to be sent before or after each packet.  

Cheddar and SymTA/S, on the other hand, allow specifying the context switch overhead 

value associated to the activation of each task, but no network overheads may be described 

in these tools. 

Rapid-RMA allows taking into account time overheads associated with the acquisition or the 

release of a resource such as a memory or a bus. For processors, the tool allows specifying 

the context switch rate, which is the amount of time the CPU takes to change from 

executing one task to another. 

Chronval, itself, does not give any means to describe processor or network overheads. 

REQ13: Unlike MAST and Rapid-RMA, SymTA/S, Cheddar and Chronval allow specifying 

task chaining. In Chronval, each task has got a “connection” field. In this field, it is possible 

to describe an activation source for the task or to specify that this task is activated by 

another task. For each SymTA/S task, it is possible to describe a “caller” that represents 

another task that activates it. 

REQ14: All of the studied tools allow specifying tasks with the same priority. However, 

only SymTA/S and Cheddar give the possibility to use FIFO as second scheduling 

algorithm for these tasks. 

REQ15: Systems having preemptive and cooperative tasks as well as interrupts can be 

described and analyzed by SymTA/S, Chronval and rapid-RMA. All of them allow 

describing non-preemptible sections for each cooperative task. This feature is supported 

neither by MAST nor by Cheddar as both of them consider only a fully preemptive system 

that may have interrupts. 

REQ16: All studied tools allow describing and analyzing tasks with static offsets. Variable 

offsets are not supported by these tools. However, for engine-synchronous task offsets which 
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depend on the engine speed, the scripting support of SymTA/S can be used to analyze 

systems having such offsets.  

Table 14 Scheduling analysis tools capabilities 

Requirements 

The requirement is satisfied by the tool 

MAST Cheddar 
Rapid-

RMA 
SymTA/S Chronval 

REQ1 Yes Yes Yes Yes No 

REQ2 Yes Yes Yes Yes Yes 

REQ3 Yes Yes No Yes Yes 

REQ4 Yes No No Yes Yes 

REQ5 Yes Yes No Yes Yes 

REQ7 Yes Yes Yes 

No 

(no singular 

activation) 

Yes 

REQ8 No No No Yes No 

REQ9 Yes Yes Yes Yes Yes 

REQ10 Yes Yes Yes Yes Yes 

REQ11 No No No 

Yes (for 

CAN and 

Flexray) 

No 

REQ12 Yes Yes Yes Yes No 

REQ13 No Yes No Yes Yes 

REQ14 No Yes No Yes No 

REQ15 No No Yes Yes Yes 

REQ16 No (no 

variable 

offsets) 

No (no 

variable 

offsets) 

No (no 

variable 

offsets) 

Yes 

No (no 

variable 

offsets) 

Covered features/uncovered 

features 
10/6 11/5 8/8 15/1 10/6 

 

3.4. Conclusion and Approach Directions 

In our approach, we propose to align our model-based development process with the EAST-

ADL/AUTOSAR modeling process. This choice is due to fact that this process gives a good 

support to model automotive architecture from an abstract functional description until a 

detailed implementation. In addition this choice is motivated by the fact that Continental 

supports the use of EAST-ADL and AUTOSAR (as mentioned at the end of the first section 
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of this part). However, the EAST-ADL/AUTOSAR process presents only the abstraction 

levels and modeling concepts that can be used at each level. It gives guidance neither about 

how models can be developed (e.g. which modeling diagrams to use) nor about how these 

models can be refined from one level to another. For these reasons, our methodology needs 

to enrich this process with guidance for model development, transformation and refinement 

as well as the views to be developed at each level to obtain a complete analyzable model. 

Based on the evaluation of the expressivity of the different modeling languages (see section 

3.2.2), we can conclude that MARTE and AUTOSAR are the most expressive languages to 

enable scheduling analysis-aware modeling. In fact, both of them give all the necessary 

means to develop an analyzable model and perform scheduling analysis. Hence, there are 

two possibilities to integrate scheduling analysis in the chosen EAST-ADL/AUTOSAR 

process: 

1) The first possibility is to perform scheduling analysis at the design level of the 

process by completing EAST-ADL models with MARTE concepts to get an 

analyzable model and hence perform complete scheduling analysis as described in 

[45]. In [45], we show how to complete EAST-ADL models using MARTE 

concepts to describe software (e.g. OS tasks) and hardware resources (e.g. ECUs) as 

well as the allocation of functions to OS tasks and the allocation of OS tasks to 

hardware resources. Based on the developed model, we show how to perform 

scheduling analysis using the scheduling analysis tool MAST. This is done based on 

an automatic transformation of EAST-ADL/MARTE models to a MAST model as 

described in [60]. 

2) The second possibility is to perform scheduling analysis at the implementation level 

based only on AUTOSAR concepts (as AUTOSAR gives all the necessary 

information to develop an analyzable model). 

As we aim at defining a seamless and coherent timing analysis process, it is not possible to 

perform scheduling analysis both at the design and the implementation level. To avoid the 

redundancy of timing analysis between the design and the implementation level, we decided 

to perform scheduling analysis only at the implementation level (based on AUTOSAR 

concepts) and to complete this by a more “abstract” timing analysis at the analysis and 

design levels (this “abstract” analysis will be described with more details in the next 
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paragraphs). This choice is also motivated by the fact that Continental supports the use of 

AUTOSAR. 

Starting timing verification at the implementation level is, however, quite late. In our 

approach, we suggest then to start earlier, at the analysis level. We believe that this is the 

earliest level against which timing verification can be performed. In fact, the EAST-ADL 

Feature level is rather dedicated to capture vehicle features with product line description, 

without the details needed to perform any relevant timing analysis (e.g., it offers no 

descriptions of the internal architecture of the vehicle functions). Our model-based timing 

analysis process thus consists of the following three usual phases: Analysis phase, Design 

phase and Implementation phase. The timing verification performed during analysis and 

design phases is a sort of “abstract analysis” that sets for a preparatory work for the 

scheduling analysis activity that will be performed during the implementation phase. We 

call thus the verification activity during these phases (analysis and design phases) “timing 

analysis” rather than scheduling analysis.  

During analysis and design phases, we propose to determine time budgets to be allocated to 

the system under design and to its sub-functions to ensure compliance with the input timing 

requirements during each phase. To determine such budgets, we propose to complement the 

EAST-ADL structural views with timing views that we will annotate using TADL 

concepts. The time budgets determined during each phase will be used as input for the 

timing analysis performed during the next phase. 

As we start capturing the hardware entities at the design level, we propose also to start 

evaluating hardware resource capacities at this level. To do so, an “abstract” model for 

allocation of functional elements to hardware resources should be developed (by abstracting 

software resources such as OS tasks). As this allocation model aims to represent only the 

allocation of functional elements to hardware resources (without involving OS tasks), this 

model can be developed using only EAST-ADL concepts for allocation modeling. This way, 

based on the EAST-ADL allocation model, a scheduling analysis tool can be used to evaluate 

the load of each processing resource by calculating its utilization. This analysis can also be 

performed based on a model that combines EAST-ADL concepts for functional and 

hardware modeling and MARTE concepts for allocation modeling similarly to the approach 

described in [45]. The advantage of the second alternative is the possibility to use the 

automatic transformations that are already implemented [60] to transform MARTE models 

to a scheduling analysis tool model. In our methodology, we choose this latter alternative 
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(combining EAST-DL and MARTE concepts) as using MARTE automatic transformations 

would enable us reducing the time required to perform the needed timing analysis 

(processor load evaluation) 

From a tool support point of view, the evaluation work performed for the scheduling 

analysis tools show that many of the automotive needs are met by some of the evaluated 

tools (which proves the usability of scheduling analysis to perform timing verification for 

automotive systems). However, SymTA/S seems to be the most complete and the most 

convenient for automotive systems. Hence, in our approach, we propose to use this tool to 

perform scheduling analysis during the implementation phase. Nevertheless, other tools 

such as Cheddar or MAST are used in our methodology to evaluate hardware resource 

capacities during the design phase based on the calculation of the processor utilization. 
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Part II: Methodology for Model-

Based Timing Analysis Process  
In this part, we present a methodology that describes a model-based timing analysis process. 

This process is defined based on available EAST-ADL/AUTOSAR modeling process 

presented in the previous part. 

This part is composed of four chapters. The first chapter gives a general overview of the 

model-based timing analysis process. The second, third and fourth chapters detail the 

modeling and timing analysis activities performed respectively during the analysis, design 

and implementation phases. 



71 

 

Methodology for Model-based Timing Analysis Process 

 

1. Methodology Overview & Process Phases 
The methodology presented in this part describes a model-based timing analysis process. 

The methodology defines both the modelling process and the timing analysis process.  

1. The modelling process describes the models that should be developed in each phase to 

enable a particular timing analysis. It shows how these models are refined from one 

phase to another and how timing models are derived from architecture models. It also 

describes the modelling views needed for every analysis type.  

2. The timing analysis process describes the kind of analysis to be performed during each 

phase and how analysis results can be used for the next phase. It also indicates which 

tool can be used to perform each kind of analysis. 

Throughout the remainder of this part, the vehicle function developed using the proposed 

methodology is referred to as the "sub-system" (as it represents a part/sub-system of the 

vehicle itself). 

As already stated previously, our process entails three phases. Each of them comprises, two 

activities, i.e. development of the analyzable model for the sub-system, and performance of 

timing analysis based on this model. The next paragraphs give a brief description of these 

analyzable model development and the timing analysis activities. Figure 8 shows a general 

overview of the timing analysis and modelling activity for each phase of the process. 

Chapters 2, 3 and 4 provide more details on the architecture model developed at each stage. 

� Analysis phase 

During this phase, a functional architecture view is developed based on EAST-ADL 

concepts for functional modelling. This view depicts the sub-system under development in 

its vehicle environment. Based on this view, a second view called timing view is derived to 

enable the timing analysis of this phase. The timing analysis performed during this phase 

aims to verify correct integration of the sub-system into the vehicle in terms of timing 

compatibility. The designer has a set of vehicle end-to-end requirements that involve the 

sub-system being designed and the other vehicle functions/sub-systems that interact with it 

(a detailed explanation of these requirements is given in the next paragraphs). For each 

vehicle end-to-end requirement, the designer determines a time budget to be allocated to the 

sub-system, to ensure compliance with this requirement. Each sub-system time budget 

determined during the analysis phase serves as a constraint for the next phase – design.  
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� Design phase 

During this phase, the functional breakdown of the sub-system is modelled by detailing the 

functional blocks that constitute it. The hardware resources used by the sub-system are also 

modelled during this phase. The designer performs, hence, two kinds of timing analysis. The 

first consists in refining the time budgets allocated to the sub-system during the analysis 

phase. Based on the sub-system time budgets determined at analysis level for each vehicle 

end-to-end requirement, the designer determines the time budgets to be allocated to each 

functional block. S/he thus continues complying with vehicle end-to-end requirements as 

sub-system architecture is refined. Each functional block time budget represents a timing 

constraint that has to be met during the implementation phase.  

The second timing analysis of this phase explores the hardware architecture to identify the 

best target hardware platform, while suitably allocating functional blocks to hardware 

resources. Our approach relies on empirical exploration to conduct the analysis. The latter is 

performed on the basis of a scenario for allocating functional blocks to the chosen ECUs, 

after evaluation of the utilization of each ECU. Note that during this phase, we do not take 

into consideration OS tasks but limit analysis to the functional model, the hardware platform 

and the allocation of functional blocks to ECUs. Based on the obtained ECU utilization 

values, the designer determines the best allocation scenario. This scenario subsequently 

serves as a constraint for refining the allocation model in the implementation phase. 

� Implementation phase 

During this phase, a complete model of the software and hardware architecture of the sub-

system is developed by further refining the models and the timing results of the design 

phase. The complete model contains all the information required to perform a complete 

scheduling analysis (application, hardware and software resources, allocation, etc.). 
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Figure 8 General overview of the model-based timing analysis process 

2. Analysis Phase 

2.1. Analysis Objectives and required Analyzable Model 

2.1.1. Timing Analysis Objectives 

    The timing analysis of this phase consists in determining a set of time budgets for the 

sub-system under development. These time budgets are determined with respect to a set of 

vehicle end-to-end requirements that the designer should respect. 

Time budget 

A time budget represents a constraint on the response time of the sub-system. It represents 

a deadline that we allocate to the sub-system to ensure compliance with a vehicle en-to-end 

requirement. 

Vehicle end-to-end requirement 
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A vehicle end-to-end requirement is a requirement that impose a maximum delay on a flow 

formed by several vehicle sub-systems including the sub-system under development. To 

explain more the concept of vehicle end-to-end requirement, let’s consider the example of 

the cruise control sub-system of Figure 9a. The cruise control is used to maintain vehicle 

speed to a speed set point desired by the driver. Based on driver requests that are acquired 

through a switch sensor, the cruise control performs the desired action (e.g. calculate speed 

set point, increase/ decrease set point, etc) and then sends a torque request to the torque set 

point sub-system to maintain the vehicle speed to the speed set point. The cruise control 

communicates also with the brake controller sub-system that informs him about the braking 

pedal status. 

 

Figure 9a Example of the cruise control 

An example of a vehicle end-to-end requirement is the following: “When the driver 

depresses the braking pedal, cruise control should be deactivated within 300ms”. This 

requirement imposes a maximum delay on the execution flow starting from the depressing 

of the braking pedal until the cruise control sends an output (null torque request) to the 

torque set point sub-system (cf. figure 9b) 
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Figure 9b Example of the cruise control 

 

2.1.2. Analyzable Model Minimum Features 

To be able to determine the time budgets to be allocated to the sub-system under 

development, the model developed should contain the minimum information enabling such 

analysis. We organize this information in two categories: the vehicle functional architecture 

and the vehicle timing architecture 

� Vehicle functional architecture: It should represent the functional decomposition of 

the vehicle by showing the vehicle sub-systems (including the sub-system under 

development) and their interactions.  

� Vehicle timing architecture: It represents a set of end-to-end flows formed by the 

vehicle sub-systems (including the sub-system under development). These end-to-end 

flows should be annotated with the vehicle end-to-end requirements that should be 

respected in this phase. 

In the next section, we present the development of the minimum analyzable model in our 

methodology by annotating some UML diagrams with EAST-ADL and TADL concepts. 
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2.2. Solutions for Analyzable Model and Timing Analysis 

In this section, we present the solution of our methodology to develop the minimum 

analyzable model and the heuristics for the timing analysis in this phase. 

2.2.1. Development of Analyzable Model 

To develop the analyzable model that contains the minimum information presented in 2.1.2, 

we develop the following views: "analysis functional view" and "analysis timing view". The 

term "analysis", as used here, refers to the analysis phase. Figure 9c gives an overview of 

these two views. 

� Analysis Functional View: This view represents the features of the vehicle functional 

architecture presented previously (cf. section 2.1.2). To model this view, we use EAST-

ADL concepts for functional modelling and UML composite structure diagrams to 

tangibly represent said concepts. The vehicle is modelled as a white box that shows its 

functions/sub-systems, including the sub-system under development and the latter's 

interaction with other vehicle functions. Note that the sub-system is depicted here as a 

black box. To develop this view, we use an UML editor that implements an UML profile 

for EAST-ADL, this enables us using UML diagrams and annotating them with EAST-

ADL concepts. The following guidelines should be respected to develop this view: 

� The vehicle should be modelled as an UML class (container) 

� Each vehicle sub-system (including the sub-system under development) should be 

modelled as an UML property and stereotyped with “AnalysisFunctionType” from 

EAST-ADL 

� Each vehicle element representing a sensor or an actuator should be modelled as 

an UML property and stereotyped with “FunctionalDevice” from EAST-ADL. 

� The interaction between vehicle elements should be modelled by UML 

connectors and stereotyped with “FunctionConnector” from EAST-ADL. 

� The communication interface of each element should be modelled as an UML 

port and stereotyped with “FlowPort” from EAST-ADL. 

 

� Analysis Timing View: This view represents the features of the vehicle timing 

architecture presented previously (cf. section 2.1.2). To model this view, we use UML 
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sequence diagrams that we annotate with TADL concepts to model the event chains 

(end-to-end flows) and annotate them with TADL constraints. At the end of the next 

chapter, a paragraph explains how this timing view is developed using sequences 

diagrams and TADL concepts. To develop this view, the following guidelines should be 

respected: 

� Each flow of sub-systems should be modelled as a UML interaction and 

stereotyped with “EventChain” form TADL. 

� Each sub-system involved in the flow should be modelled as a lifeline with an 

action execution specification. The action execution specification should be 

stereotyped with “EventChain” and specified as an “EventChainSegment” for the 

whole UML interaction. 

� Each message should be stereotyped with “Eventchain” from TADL and 

“DataMessage” (this concept will be detailed in the next section) 

� Each vehicle-end-to-end requirement should be specified as a TADL 

“ReactionConstraint” for the whole UML interaction. 

 

Figure 9a Analyzable model overview of the analysis phase  

2.2.2. Determination of sub-system time budgets 

2.2.2.1. Introduction 

For each vehicle end-to-end requirement, the designer determines a time budget to be 

allocated to the sub-system ensuring compliance with this requirement. Time budgets can 

be determined using a tool whose input is the timing view of the analyzable model and 

whose output is a time budget for each specified end-to-end requirement. This operation can 
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also be performed manually based on designer expertise (to facilitate the process, we assume 

here that the time budgets for the other vehicle functions/subsystems are already known). In our 

methodology, we also suppose that for each vehicle end-to-end requirement, we obtain exactly one 

time budget for the sub-system. 

Once timing analysis is completed, the designer possesses a set of sub-system time budgets 

that ensure compliance with the vehicle end-to-end requirements. Such time budgets are the 

input constraints that the designer needs to consider when refining sub-system architecture 

at the design stage.  Each time budget namely represents an internal end-to-end constraint 

that should be satisfied when describing the sub-system functional blocks at design level. 

2.2.2.2. Sub-system Time Budgets 

To determine sub-system time budgets, the designer has a set of vehicle end-to-end 

requirements that involve several vehicle sub-systems/functions including the sub-system 

under development. These vehicle sub-systems communicate together through exchanging 

data. Let’s consider the example shown by Figure 10. The considered sub-system 

communicates with five functions within the vehicle as shown in the figure (For the clarity 

of the models, we do not show the EAST-ADL stereotypes in the following figures, however 

detailed models are shown in the examples presented in the next part of this manuscript). 

 

Figure 10: example of a sub-system functional analysis view 

Let’s consider the following vehicle end-to-end requirement that we call Req: “From the 

activation of “function 1” until the termination of “function 4”, the duration should not exceed 
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100ms”. Figure 11 shows the flow of vehicle functions involved in this vehicle end-to-end 

requirement (function 1, sub-system, function 4) 

 

Figure 11: Flow of vehicle functions involved in Req 

Let’s suppose that the time budget of “function 1” is 20ms and the time budget of “function 

4” is 50ms. Thus, the time budget that should be allocated to the sub-system for compliance 

with this vehicle end-to-end requirement is 30ms (let’s call it TB). This time budget means 

that from the reception of “data 2” by the sub-system until the production of “data 3”, the 

duration should not exceed 30ms. Let’s call each flow within the sub-system (i.e., from the 

reception of an input data by the sub-system until the production of an output data) “sub-

system internal flow”. Hence, the time budget TB imposes a constraint on the delay of the 

sub-system internal flow “reception of data 2-production of data 3”. 

A particular use case should be considered when determining sub-system time budgets. Let’s 

consider the following two vehicle end-to-end requirements:  

• Req 1: From the activation of “function 2” to the termination of function 5, the duration 

should not exceed 200 ms.  

• Req 2: From the activation of “function 3” to the termination of “function 5”, the duration 

should not exceed 150 ms.  
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Figure 12 shows the flow of vehicle functions involved in each vehicle end-to-end 

requirement (the broken line depicts the flow of functions involved in Req 1 and the solid 

line represents the flow corresponding to Req 2) 

 

Figure 12: flow of vehicle functions involved in Req1 and Req 2 

As stated earlier, for each vehicle end-to-end requirement, we determine a sub-system time 

budget that allows respecting this vehicle end-to-end requirement. Hence, in our case, we 

determine two time budgets (let’s call them TB 1 and TB 2) for the sub-system. However, as 

the figures show, our sub-system acquires “Data 6” from both “function 2” and “function 3”. 

This means that both TB1 and TB2 impose a constraint on the same sub-system internal 

flow (reception of “data 6”-production of “data 8”). In this case, we should decide which time 

budget to keep for the remaining of the work. Two cases should be considered based on the 

operating mode of the sub-system (an operating mode corresponds to a particular state of the sub-

system depending on the interaction of the sub-ystem with its environment. For example, depending on 

the detection of a failure, the sub-system can be in a failure mode or in a nominal mode (without 

failure)). 

• Case 1: if each time budget corresponds to a different sub-system operating mode 

(e.g. one time budget correspond to the activation mode of the sub-system and the 
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other one to its deactivation mode), then the two time budgets should be kept and the 

analysis performed during next steps should consider each operating mode 

separately. 

• Case 2: if the two time budgets correspond to the same sub-system operating mode, 

then we keep only the smallest time budget and the further analysis should be 

performed considering only this time budget. 

3. Design Phase 

During the design phase, the system architecture model obtained in the analysis phase is 

further refined and two timing analysis activities are carried out. The first consists of 

refining the sub-system time budgets determined at analysis level. The second is an 

exploration of the hardware architecture based on an evaluation of processor utilization for 

each functional-block-to-ECU allocation scenario. To evaluate this utilization, the designer 

should have previously estimated the execution times required for each functional block. 

3.1. Refinement of Sub-system Time Budgets 

Refining the sub-system time budgets determined during the analysis phase means 

evaluating the time budgets to be allocated to the functional blocks so that vehicle end-to-

end requirements are still met after design-phase refinement of sub-system functional 

architecture. To determine the functional block time budgets, the same approach is used as 

for the analysis phase. This requires first developing an analyzable model that contain the 

minimum information for such analysis. 

3.1.1. Analyzable Model 

3.1.1.1. Analyzable Model Minimum Features 

We organize the features of the minimum analyzable model in two categories: the sub-

system functional architecture and the sub-system timing architecture. 

� Sub-system functional architecture: It should represent the functional decomposition 

of the sub-system by showing the functional blocks that compose it and their 

interactions.  
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� Sub-system timing architecture: It represents a set of end-to-end flows formed by the 

sub-system functional blocks. These end-to-end flows should be annotated with the sub-

system time budgets that have been determined in the previous phase- analysis. 

3.1.1.2. Solution for the Analyzable Model 

To represent the minimum features of the analyzable model, we develop two views, a 

functional view ("design functional view") and a timing view ("design timing view"). Note 

that the term "design" in these views and the following discussion refers to the design phase. 

� Design Functional View: This view represents the features of the sub-system 

functional architecture mentioned previously (cf. 3.1.1.1). It refines the Analysis 

functional view of the analysis phase. The sub-system modelled as a black box during the 

analysis phase is therefore depicted here as a white box showing the functional blocks 

and the interactions between them. This view is also developed using EAST-ADL 

concepts for functional modelling, and UML composite structure diagrams. To develop 

this view, the following guidelines should be respected: 

� The Sub-system should be modelled as an UML container class and 

stereotypes with “DesignFunctionType” from EAST-ADL. 

� Each functional block should be modelled as an UML property and 

stereotyped with “DesignFunctionPrototye”. 

� The interaction between the functional blocks should be modelled by UML 

connectors and stereotyped with “FunctionConnector” from EAST-ADL. 

� The communication interface of each element should be modelled as an UML 

port and stereotyped with “FlowPort” from EAST-ADL. 

� Design Timing View: This view represents the features of the sub-system timing 

architecture presented previously (cf. 3.1.1.1). It refines the analysis timing view of the 

analysis phase. It depicts a set of flows formed by the functional blocks making up the 

sub-system. For each sub-system time budget determined during the analysis phase, we 

model an end-to-end flow containing the functional blocks concerned by the budget. For 

example, if we determine a time budget to be allocated to the sub-system during its 

activation, we model an end-to-end flow of sub-system functional blocks that participate 

in sub-system activation and we specify said budget as an end-to-end constraint on this 
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flow. In the same way as for the analysis phase, this view is modelled using UML 

sequence diagrams annotated with TADL concepts to model event chains and timing 

constraints. At the end of this chapter, a paragraph explains how this view and the 

timing view of the analysis level are developed using sequence diagrams  and how these 

views are derived from functional views. The following guidelines should be respected to 

develop this view: 

� Each flow of functional block should be modelled as an UML interaction and 

stereotyped with “EventChain” form TADL. 

� Each functional block involved in the flow should be modelled as a lifeline with 

an action execution specification. The action execution specification should be 

stereotyped with “EventChain” and specified as an “EventChainSegment” for the 

whole interaction. 

� Each message should be stereotyped with “Eventchain” from TADL and 

“DataMessage” (this concept will be detailed in the next section) 

� Each sub-system time budget determined in the previous phase should be 

specified as a “ReactionConstraint” from TADL for the whole UML interaction. 

3.1.2. Determination of Time Budgets for Functional Blocks 

For each sub-system time budget (modelled as an end-to-end constraint in the design timing 

view), the designer determines a time budget to be allocated to each functional block to 

satisfy the constraint. Distribution of the time budgets to the functional blocks is based on 

the expertise of the designer and the nature of each functional block. For example, a 

functional block performing a simple signal transformation will have a small time budget. 

One performing complex processing that requires much more time will then have a larger 

time budget. Budget allocation should take place in such a way that the overall time budget 

determined for the sub-system is likewise met. After this timing analysis, the designer 

possesses a number of time budgets for each functional block. Each such functional block 

time budget corresponds to a different sub-system operating mode and should be met during 

said operating mode (e.g. a function that participates in sub-system activation and failure 

detection will have a time budget for each of these operating modes). The functional block 

time budgets determined during this phase are used during the implementation phase, after 

the system functional architecture is transformed into a software architecture with software 
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components and runnable entities. These time budgets are then refined to determine the 

time budgets to be allocated to the runnable entities or to end-to-end flows formed by a 

number of communicating runnable entities, etc. The latter represent input constraints for 

the scheduling analysis activity performed at the implementation stage.  

Figure 13 shows an overview of the model development and the timing analysis of the 

design phase that refines the models and the timing results of the previous phase –analysis. 

 

Figure 13 model and timing results refinement from analysis to design phase 

3.2. Performance of Hardware Architecture Exploration 

At this stage, we assume that the hardware platform to be used by the sub-system has been 

already chosen (this is done to comply with the current automotive development process, in 

which new sub-systems are integrated into a vehicle for which there is a pre-existing 

software and hardware resource platform). The analysis performed here is thus geared to 

ensuring correct integration of the sub-system with other vehicle functions in terms of 

requested processor load. Based on a functional block-to-available ECU allocation scenario, 

the designer evaluates the load requested by the sub-system for each processor. This allows 

him to determine the allocation scenario that best satisfies any constraints s/he might have 

with regard to processor utilization. Once the analysis results are known, the designer 

decides whether to distribute functional blocks over many ECUs or to allocate them to the 
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same ECU and which functions can be so allocated. To perform this evaluation, it is 

necessary to develop an analyzable model that contains the minimum information necessary 

for this analysis. 

3.2.1. Development of an Analyzable Model 

3.2.1.1. Analyzable model minimum features 

In scheduling analysis, to evaluate the utilization of a processor, one needs to specify: 

� The executing processors 

� The  executable entities on these processors and their execution times and activation 

periods 

� The allocation of the executable entities to the processors 

 Hence, to perform this evaluation, we organize the minimum information needed for the 

analyzable model in three categories: 

� Sub-system functional architecture: It represents the functional blocks that 

compose the sub-system under development (these functional blocks represent the 

executable entities that contend for the use of the executing processors). The 

execution time and the activation period of each functional block should be specified. 

These parameters can be determined based on designer expertise, measurements or 

knowledge of former versions developed for the sub-system. 

� Hardware platform: It represents the hardware resources on which the functional 

blocks can execute. For our analysis, we don’t need to model the software resources 

such as OS tasks. 

� Allocation: It represents the allocation of the functional blocks to the hardware 

resources. For this analysis, we don’t model the allocation of the functional blocks to 

the software resources but we allocate the functional blocks directly to the hardware 

resources. 

3.2.1.2. Solution for Analyzable Model 

To end up with the minimum analyzable model necessary for this analysis, we developed a 

modelling framework that combines EAST-ADL and MARTE to model the information 
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necessary for the analysis. This modelling framework is composed of three views: design 

functional view, hardware platform view and allocation view. 

� Design Functional View: This view represents the features of the sub-system 

functional architecture (It is not different from the view described earlier, in which sub-

system functional blocks are described using EAST-ADL functional modelling 

concepts). As also mentioned above, these functional blocks are represented as 

“DesignFunctionPrototypes”. These “DesignFunctionPrototypes” are typed by 

“DesignFunctionTypes” for which we specify the execution times estimated during the 

previous step using the EAST-ADL concept “ExecutionTimeConstraint”. The activation 

period of each functional block is specified through the concept “Trigger” of EAST-ADL 

(this concept allows describing the activation pattern of an EAST-ADL FunctionType). 

The guidelines for the development of this view have been described in 3.1.1.2. 

� Hardware Platform View: This view represents the features of the hardware platform 

(cf. 3.2.2) In this view, we represent the hardware resources (e.g. ECUs) that are used by 

the sub-system. To model the view, we use UML composite structure diagrams. EAST-

ADL concepts for hardware modelling are supplemented here by MARTE concepts for 

hardware resource platform modelling. The following guidelines should be respected to 

develop this view: 

� The hardware platform should be modelled by a UML container class and 

stereotyped with “SaResourcePlatform” from MARTE. 

� Each execution hardware resource (e.g. ECU) should be modelled by a UML 

property and stereotypes with “SaExecHost” from MARTE and “Node” from 

EAST-ADL. 

� Each Communication hardware resource (e.g. bus) should be modelled by a UML 

property and stereotyped with “SaCommHost” from MARTE and “LogicalBus” from 

EAST-ADL. 

� Allocation View: This view represents the features of the allocation (cf. 3.2.2). In this 

view, we use a key concept from MARTE which is “SaAnalysisContext”. This concept 

helps to bind the model elements to a particular evaluation scope. The core of the 

binding concept is the allocation of functions executed in the scenario of interest, to the 
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resource platform (Note that during this phase, we abstract the software resource 

platform such as OS tasks and allocate functional blocks directly to hardware resources). 

Such allocation is carried out by specifying a UML composite diagram stereotyped as 

“SaAnalysisContext”. In this way, the composite diagram contains two main parts 

representing the sub-system design functional view with the functions to be allocated 

and the hardware platform view respectively. To represent the allocation relationships, 

MARTE concepts for allocation are used. Functional blocks are stereotyped as 

“allocated”. This stereotype allows specifying the resource to which the function is 

allocated. A dependency connector is drawn between each function and its hosting 

resource and stereotyped as “allocate”. The following guidelines should be respected to 

develop this view: 

� A UML container class should be modelled and stereotyped with 

“SaAnalysisContext” from MARTE. 

� The allocation relationships should be modelled with UML dependency 

connectors and stereotyped with “allocate” from MARTE. 

� Each functional block should be modelled as a UML property and stereotyped 

with “allocated” from MARTE. 

Figure 13a shows an overview of the analyzable model needed for hardware architecture 

exploration. 

 

Figure 13a Overview of the analyzable model for hardware architecture exploration 
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3.2.2. Evaluation of Processor Loads 

3.2.2.1. Principle 

Starting from the allocation view of the model, a scheduling analysis tool can follow the 

links of the model to extract the information that it needs to perform processor load 

evaluation (function execution times, allocation, hardware resource parameters, etc). As the 

original aim of scheduling analysis tools is to verify if a task set is schedulable or not, all of 

them require specifying the OS tasks involved in the sub-system. However, in our approach, 

we abstract the OS task model during this phase, showing only the allocation of functional 

blocks to hardware resources. Therefore, to be able to use a scheduling analysis tool for our 

purpose, our model should be transformed in an accurate way to obtain the model required 

by the tool. Some scheduling analysis tools require a description of the allocation of 

functions to OS tasks and the allocation of OS tasks to processing resources. Other tools 

require only the allocation of OS tasks to processing resources. In both cases, to be able to 

use such tools to analyze our model, each functional block defined in that model should be 

transformed into an OS task in the analysis tool model (or into an OS task allocating only 

one function). The execution time determined for each functional block should be then 

assigned to the defined OS task (or to the function that it allocates). As our goal here is not 

to perform complete scheduling analysis, but just to evaluate processor loads (without 

timing constraint verification), the choice of the priorities to be assigned to the different 

tasks is not important (to calculate processor utilization, one needs to specify only the task 

execution times and activation periods without specifying their priorities). 

3.2.2.2. Tool Use and Model Transformation 

To evaluate processor loads, we claim to use the scheduling analysis tools MAST, cheddar 

or SymTA/S (cf. section 3.4. of part I). In this section we show the mapping that should be 

performed to transform the analyzable model to a cheddar or MAST model (we encourage 

the use of these two tools as they are open source and free, SymTA/S will anyway be used to 

perform complete scheduling analysis in the implementation phase). Table 14a and 14b show 

respectively the mapping of the elements of the analyzable model to a MAST and Cheddar 

model. Note that an automatic transformation is already implemented from MATE models 

to MAST in the context of another research work. 
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Table 14a Mapping of analyzable model elements to Cheddar elements 

Analyzable model element Stereotype Cheddar element 

Functional Block DesignFunctionprototype, 
Allocated 

Task 

Execution hardware resource Node, SaExecHost Processor 

Communication hardware 

resource 

LogicalBus, saCommHost Network 

Functional block execution time ExecutionTimeConstraint Task computation time 

Functional block activation 

period 

Trigger Task period 

Allocation relationship Allocated, Allocate Task property called 

“processor” 

 

Table 14b Mapping of analyzable model elements to MAST elements 

Analyzable model element Stereotype MAST element 

Functional Block DesignFunctionprototype, 
Allocated 

Transaction with only one 

activity representing a 

Scheduling  server hosting 

only one Operation 

Execution hardware resource Node, SaExecHost Processing resource (regular 

processor) 

Communication hardware 

resource 

LogicalBus, SaCommHost Bus (packet based network) 

Functional block execution time ExecutionTimeConstraint Operation execution time 

Functional block activation 

period 

Trigger Transaction external event 

Allocation relationship Allocated, Allocate Activity parameters for the 

specification of the scheduling 

server and operation 
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Using Sequence Diagrams to Represent Timing Views at 

Analysis and Design Levels 
The objective of this section is to describe how system timing views are represented at 

analysis and design levels. As specified in the methodology description, analysis and 

design functional views are represented using UML composite structure diagrams 

annotated with EAST-ADL concepts for functional modeling. At each level, the aim is 

to derive from the functional view a timing view where we can represent the end-to-end 

constraints to be satisfied when determining the necessary time budgets. 

To represent the timing views, we opted for the use of TADL concepts to represent 

constrained end-to-end flows by means of events and event chains. The questions to be 

answered are the following: 

• How to move from the EAST-ADL/Composite structure diagram model 

elements to TADL elements? 

• How to represent the TADL timing view using an UML behavioral diagram? 

 

1. From EAST-ADL/composite structure diagram models to TADL 

 

Objective: We have as input a composite structure diagram representing the interaction 

between several functions. Some flows formed by these functions are submitted to end-

to-end constraints. We want to represent these flows and their constraints using TADL 

events and event chains. How to map the elements of the EAST-ADL/composite 

diagram model with TADL events and event chains? 

 

Solution: Each flow of functions will be represented as a TADL event chain. As our aim 

is to specify a time budget for each function involved in the end-to-end flow, each arrival 

of data on the input port of a function and the production of data in the output port of a 

function will be considered as an observable event and modeled as a TADL event. 

Consequently, each function involved in the end-to-end flow will be represented as an 

event chain segment. 

Figure 14 shows an example of an EAST-ADL model developed using UML composite 

diagram. The end-to-end flow formed by the functions function_1, function_2 and 

function_3 is submitted to an end-to-end constraint as shown in the figure. To derive 

the timing view from this model, we identified the observable events (here we 
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considered that the arrival of data 1 at the input port of the container system and the 

arrival of this same data at the input port of function_1 occurs at the same instant so we 

considered only one observable event (event 1), we did the same to produce data 4 

(delegation delays are neglected)) 

 
Figure 14 Observable event in EAST-ADL functional model 

Figure 15 shows the deriving of the TADL timing view from the EAST-

ADL/composite structure view 

 



92 

 

Methodology for Model-based Timing Analysis Process 

 

 
Figure 15 From EAST-ADL functional view to TADL view 

 

2. Representing TADL timing views using sequences diagrams 
Now, as we defined how to use TADL concepts to model the timing views, the question 

that we should answer is how to represent concretely this timing view? 

In our approach, we propose to use UML behavioral diagrams. According to the UML 

2.0 specification [7], seven UML diagrams can be used to specify the behavior of a 

system: Activity, Sequence, Communication, Interaction Overview, Timing, Use Case 

and State Machine diagrams. In this work, the closest diagram to model the required 

timing views is sequence diagram. Sequence diagrams represent a particular scenario of 

communication between collaborating components. Sequence diagrams do not focus 

only on message passing but also the chronological order of this communication. This 

fits well our case as we want to represent and end-to-end flow of functions representing 

a particular scenario of communication between these functions. To have an accurate 

representation of TADL end-to-end flows with sequence diagrams we should first 

answer the following questions: 

• What are the observable events in a sequence diagram?; this will allow us 

defining the elements to be annotated with TADL events 
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• In EAST-ADL, communication between functions is assumed to be 

asynchronous based on data exchange, how to represent this in sequence 

diagrams? 

To answer these questions, let’s remind first some notions in sequence diagrams: A 

sequence diagram represents the message interchange between lifelines. A message 

defines different ways of communication between lifelines of one interaction, generally 

involving a pair of sender and receiver. Message may be of the following kinds: 

synchronous or asynchronous operation call, asynchronous signal post, creation or 

delete of an object, or a reply message. In UML2, a message owns generally two 

message ends: one refers to the event occurrence related to the posting of the message, 

while the other refers to the event occurrence related to the receipt of the message. 

Currently, due to its initial intent, the UML2 interactions chapter defines only specific 

events dedicated to either operation-based message or signal-based message. For each 

lifeline it is possible to associate an Execution Specification that represents the 

execution of an action or behavior within the lifeline. Each execution specification 

occurrence is associated to two events that represent respectively the start and the end 

of the action or behavior execution 

Observable events in sequence diagrams 

As stated before, each message in a sequence diagram is associated to two event 

occurrences, the first relates to the sending of the message and the second to the 

reception of the message. We consider then each sending event and reception event of a 

message as an observable event (and hence these events will be stereotyped with TADL 

events). Each function involved in the end-to-end flow will be modeled as a lifeline 

containing an Action Execution Specification. The events representing the start and end 

of each occurrence of an action execution specification will be considered also as 

observable events and stereotyped with TADL event. 

Data based communication issue 

The main paradigm for communicating within sequence diagrams is the message that 

involves either operation call-based or signal-based communication. This is not 

sufficient for our purpose, because EAST-ADL2 enables also structural entities (the 

«FunctionTypes») to communicate by data-passing. So, we need to extend the message 

concept as defined in the chapter interaction to enable UML sequence diagrams to 

support data-based communication. As shown in figure 16 we define then the stereotype 
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«DataMessage». This latter owns a property value, which models the data value 

conveyed by the message. 

 

Figure 16 Definition of the DataMessage concept 

As mentioned previously, UML2 interactions define events related to either operation-

based message or signal-based message. We need then to extend also the UML2 Event 

concept to enable events related to data-based communication. As shown in figure 17, 

we define an abstract class «DataEvent» that extends the UML2 Event concept. This 

class is specialized by «RecieveDataEvent» and «SendDataEvent» to express 

respectively events related to the reception and the sending of a DataMessage.  
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Figure 17 Definition of the DataEvent concept 

This same extension approach is described in [62] by Gérard and Servat who defined a 

MARTE annex for EAST-ADL modelling (this annex has been added to the MARTE 

last release specification). 

Figure 18 shows an overview of the timing view obtained for the example presented in 

figure 15 

 
Figure 18 Timing view example 
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4. Implementation Phase 

During this phase, the sub-system functional architecture modelled in the design phase is 

refined and transformed into software architecture described using software components and 

runnable entities. The hardware and software platform is also refined and the mapping 

(allocation) is specified (mapping of runnable entities to OS tasks and mapping of OS tasks 

to hardware resources). A complete scheduling analysis can thus be performed during this 

phase, since all the required information is available (OS task model, allocation, timing 

information, etc). In the same way as for the two previous phases, an analyzable model 

should be developed. This is done using AUTOSAR concepts. Beforehand, however, the 

designer needs to obtain timing information for the runnable entities involved in the system. 

By timing information, we mean the execution times of the runnable entities and their 

timing constraints. 

4.1. Determination of Runnable Entity Timing information 

As mentioned at the beginning of this section, the timing information considered here 

concerns the execution times and timing constraints for runnable entities. 

4.1.1. Estimation of Runnable Entity Execution Times 

Depending on the choices made to transform the system functional architecture of the 

design level into software architecture, the designer estimates the execution times of the 

runnable entities by taking into account the execution times determined for the functional 

blocks during the design phase. If, for example, a functional block is transformed into a 

software component with a single runnable, this runnable will have the same execution time 

as the functional block. The execution times determined during this phase are used to 

annotate the application view of the analyzable model (more details on model views are 

provided in a later paragraph) 

4.1.2. Determination of Runnable Entity Timing Constraints 

In the same way as for execution times, the timing constraints to be respected in this phase 

depend on the transformation choices made and the time budgets determined for functional 

blocks at the design stage. If, for instance, a functional block is transformed into a software 

component with two runnables executing successively, the time budget determined for this 

functional block at design level is considered as an end-to-end constraint from the activation 

of the first runnable until the second runnable has executed. The timing constraints 
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determined during this phase are used to annotate the timing behaviour view of the 

analyzable model. 

4.2. Development of the Analyzable Model 

4.2.1. Analyzable Model Minimum Features 

To enable scheduling analysis, the analyzable model should contain the following features 

that we organize into four categories: 

� Application workload: The application workload represents the processing load of 

the system. It represents the different operations (functions/runnable entities) 

executed in the system and contending for use of processing resources and other 

shared resources. An operation may represent a small segment of code execution as 

well as the sending of a message through a communication medium. Operations are 

generally organized in processing flows (set of related operations/functions). To 

make the analysis possible, scheduling analysis requires the specification of the 

execution /transmission time (worst, best or average) for operations/messages. 

� Application Timing behavior: The application timing behavior represents the 

timing information of the different operations or processing flows involved in the 

system under analysis. Timing information contains both timing description (timing 

properties) and timing constraints. Timing description contains the specification of 

the triggering of system operations or processing flows (recurrence, activation 

jitters, etc.). Most scheduling analysis tools allow analyzing systems with various 

triggering patterns such as periodic, sporadic, singular, etc. For those activation 

patterns, it is necessary to specify the period or the min inter-arrival time of the 

triggering events. Timing constraints must be met by the system operations or 

flows. They are represented essentially by operation deadlines, output jitter bounds 

and end-to-end dead-lines. 

� Resource Platform: It represents the concrete architecture and capacity of hardware 

(e.g., CPU or buses) and software (e.g. tasks) resources. For hardware resources such 

as processors, the model should contain the description of the scheduler used. For a 

more accurate analysis, it may be also necessary to specify the processor overheads 

(e.g. context switch overhead). For software resources such as tasks, it is necessary to 
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specify the task nature (preemptive, non-preemptive, etc.) as well as its priority. 

Involved shared resources should also be described. 

� Mapping (allocation): It represents the allocation of the operations to software 

resources (e.g. tasks) and the allocation of software resources to hardware resources 

(e.g. processors). 

In the following section, we describe how, based on AUTOSAR concepts, we develop such 

minimum analyzable model. 

4.2.2. AUTOSAR Analyzable Model 

The  minimum analyzable model developed during this phase contains four views 

(application view, timing behaviour view, resource platform view and a mapping view). To 

model each view, concepts from different AUTOSAR templates are used. The different 

views of this phase are obtained as a refinement of the model of the previous phase, design. 

Figure 19 shows an overview the model refinement from the design to the implementation 

phase. 

� Application View: This view represents the application workload features (cf. 4.2.1) and 

represents mainly the software architecture of the sub-system using software 

components and runnable entities. This view is developed as a transformation and 

refinement of the sub-system design functional view developed at design level. 

Transformation of the design functional view into a software application view depends 

on the choices made by the designer. S/he may choose to transform each functional block 

into a software component with one or more runnables [61]. Due to some constraints, 

s/he may also choose to concatenate two functional blocks in a single software 

component. In this view, two aspects are modelled for each software component: 

component behaviour, where runnable entities and their triggering events are described, 

and component implementation, where runnable entity execution times can be specified. 

To develop this view using AUTOSAR concepts the following guidelines should be 

respected: 

� The sub-system software architecture should be modelled by a set of software 

component (these software components correspond to the transformation of the 

functional blocks of the design phase) 
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� For each software component, an AUTOSAR Internal Behaviour should be 

specified 

� Each executable operation in the sub-system should be modelled as an 

AUTOSAR Runnable Entity 

� To specify the Runnable Entities execution times a Software Component 

Implementation should be described. In each software component 

implementation, a Resource Consumption should be specified where the maximum, 

minimum or nominal execution time of the runnable entity can be specified. 

� Timing behaviour View: This view describes the features of the application timing 

behaviour (cf. 4.2.1), the designer describes the timing behaviour of the sub-system using 

AUTOSAR events and event chains for which the previously determined timing 

constraints are specified. End-to-end constraints and runnable deadlines should, for 

example, be specified in this view. The following guidelines should be respected to 

develop this view: 

� Each processing flow of runnable entities should be modelled as an AUTOSAR 

EventChain 

� Each end-to-end constraint imposed on a flow of runnables should be specified as a 

Max latency Constraint for the corresponding event chain. 

� Each event activating the execution of a processing flow should be modelled as a 

Stimulus from AUTOSAR 

� Each event produced at the execution termination of a flow should be modelled as a 

Response 

� To describe the triggering of each processing flow, an event triggering constraint 

should be defined where the arrival pattern of the stimulus event can be described 

� Resource Platform View: This view represents the features of the resource platform 

presented in 4.2.1. It shows the software (e.g., OS tasks) and hardware resources used in 

the sub-system. This view is obtained by refining the allocation view of the design phase. 

It namely incorporates more scheduling-oriented features such as the description of the 

scheduler parameters for each ECU. To develop this view, AUTOSAR concepts from 
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both OS configuration and System template are used. The following guidelines should be 

respected when developing this view: 

� Each OS task should be modelled as an AUTOSAR “Os Task”. Its priority can be 

specified using the attribute Os Task Priority 

� Interrupts involved in the system should be described as Os Isr that represents 

an OSEK interrupt service routine. 

� Shared resources should be specified as Os Resource from AUTOSAR 

� Each ECU should be modelled as an ECU instance from AUTOSAR 

� Each communication network should be modelled by Communication Cluster for 

which it is possible to specify a PhysicalChannel that describes the transmission 

medium that is used to send and receive information between two communicating 

ECUs. 

� Mapping View: This view represents the mapping features described in 4.2.1. It is a 

refinement of the allocation view described at the design stage (here we use the term 

mapping rather than allocation to comply with AUTOSAR terminology). In this view, 

we describe allocation of the runnable entities and to OS tasks. Allocation of the OS 

tasks to the different available ECUs is also described. To describe the mapping of 

runnable entities to OS tasks, AUTOSAR concepts for RTE (Runtime Environment) 

configuration are used. The mapping of a runnable entity to an OS task is based on 

mapping of its triggering event to this task. The mapping of the OS tasks to ECUs is 

described using AUTOSAR concepts for OS configuration.  

To describe the mapping using AUTOSAR concepts, one should proceed as follows: The 

description of the tasks allocated in each ECU is performed in two steps. The first step is 

the definition of the OS configuration. In this configuration definition, the OS is 

modelled by an ECU Configuration Module Definition element. For this module, one 

should define an ECU Parameter Configuration Container called OsTask. Once this 

definition is done, the second step is the modeling of the concrete configuration of the 

OS. For this, we define an ECU Module Configuration Value. In this module configuration 

value, we define the corresponding tasks as ECU Container Values. These container values 

should have OsTask as a definition. 
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Mapping the runnable entities to OS tasks is done in two steps following the RTE 

configuration for each ECU. In the first step, which is the definition of the RTE 

configuration, we create an ECU Module Definition. To this module definition, we 

associate a container definition called RteSwComponentInstance in which we create another 

container called RteEventToTaskMapping. The later allows referencing the mapped 

RTEEvent and the OS task. The second step is the specification of the concrete mapping 

value of the sub-system runnable entities. This is done by creating container values for 

which we specify the elements created in the first step as definitions. 

 

Figure 19 Model refinement from Design to Implementation phase 

4.3. Performance of Scheduling Analysis 

4.3.1. Principle 

To perform scheduling analysis, the developed model is transformed into a model that can 

be read by a scheduling analysis tool. Note that, at this stage, since our goal is to perform a 

complete scheduling analysis (evaluation of processor loads and verification of timing 

constraints), the analysis should take into account all vehicle functions executed on the same 

resource platform used by the sub-system. The analyzable model views are not changed, but 

the application view should contain all the software components and runnable entities 

executed on the same resource platform. The resource platform view shall contain all OS 

tasks allocated to the hardware resources used by all functions. To verify deadlines, knowing 
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task priorities and preemption by other tasks is crucial; so the complete software resource 

platform should be described. Scheduling analysis results help the designer to validate the 

final architecture or assess the possible tradeoffs required to satisfy timing or load 

constraints. The tool used for this activity should meet the requirements listed in the section 

3.3.1 of the first part of this manuscript to enable scheduling analysis for automotive 

systems. 

4.3.2. Tool Use and Model Transformation 

To perform scheduling analysis, we claim to use the scheduling analysis tool SymTA/S (cf. 

section 3.4 of part I). To perform scheduling analysis, the AUTOSAR analyzable model 

should be transformed to a SymTA/S model as shown in table 14c. 

Table 14c AUTOSAR to SymTA/S model transformation 

AUTOSAR analyzable model 

elements 

SymTA/S model 

elements 

Runnable entity/non-preemptible 

flow of runnable entities 
Runnable 

Event chain 
Path (formed by runnable 

entities) 

Runnable entity execution time Runnable execution time 

Event 

Task activation/ 

runnable activation 

OS Task Task 

ECU instance ECU 

Physical channel Bus 

 

When transforming the AUTOSAR model to a SymTA/S model, a special care should be 

taken when defining the runnables in SyMTA/S. In fact the concept of runnable in 

SymTA/S represents a non-preemptible entity executing in an OS task. Hence this can map 

to the concept of runnable entity in AUTOSAR but also to any non-preemptible flow of 

runnable entities in AUTOAR. 
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Part III: Methodology Deployment 

and Validation 
In this part, we focus on the deployment and the validation of our methodology. The 

methodology deployment means how we intend to apply the proposed methodology to 

develop automotive applications. In this work, we focus on the application of the 

methodology to develop Engine Management Systems (EMS) at Continental. An Engine 

Management System (EMS) is a system used to control the engine functionalities (e.g., 

Combustion, injection, ignition, etc). An EMS consists of software parts implemented in an 

Electronic Control Unit (ECU) that can communicate with sensors and actuators. 

The methodology validation is done through studying the acceptability of the methodology 

and through showing the extent to which this methodology provides solution for 

automotive software development needs determined in the first part of this work. 

This part is then divided to four chapters. The first chapter presents the approach describing 

the application of the methodology in the context of EMS development. The approach deals 

with two scenarios: the development from scratch and the development by reuse. The 

second chapter illustrates the approach by presenting an example of the application of the 

methodology to two use cases: the cruise control (development from scratch) and the knock, 

a component used to detect “knock” and to adjust the ignition accordingly (development by 

reuse). 

The third chapter studies the methodology acceptability through identifying the gap 

between the current EMS development process at Continental and the process proposed by 

our methodology. 

The last chapter studies the extent to which this methodology provides solution for 

automotive software development needs determined in the first part of this work. 
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1. Methodology Application to EMS Development 

1.1. Introduction  

In this chapter, we present the deployment approach of our methodology within Continental 

to develop engine management systems. For a better understanding of engine management 

system, we have to know first how an engine is running. A four stroke engine cycle is 

composed of four phases: 

• Intake: the piston moves down aspiring the fuel/air mixture (injection) 

• Compression: the piston moves up compressing the mixture 

• Power: a spark generated by an ignition system starts the combustion (ignition), the 

piston is then pushed down 

• Exhaust: the burnt gases are evacuated 

During the engine cycle, a Crankshaft wheel translates the linear piston motion into 

rotation, a Camshaft wheel turns to force the valve opening by pressing on the 

intake/exhaust valves. While the engine speed varies, the connection to the crankshaft 

wheel fully synchronizes the mechanical cycles of the cylinders. It is therefore useful to date 

engine operations not by physical time but by the crankshaft angular position. 

An Engine Management System (EMS) is a system used to control the engine 

functionalities (e.g., Combustion, injection, ignition, etc). An EMS consists of software parts 

implemented in an Electronic Control Unit (ECU) that can communicate with sensors and 

actuators. 

1.2. Engine Management System Development at Continental 

This section gives a general description of the current Continental development approach of 

engine management systems. 

Figure 20 gives a general overview about the development process of EMS at Continental.  
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Figure 20  Current EMS development process 

As the figure shows, based on the customer request, a first development phase called EMS 

design is performed. This phase is performed by the EMS designer and consists of: 

1. EMS requirement analysis: This means collecting and analyzing the requirements 

that the EMS under development should meet. The requirements that are considered 

during this phase are of two kinds: functional requirements i.e., requirements that 

describe the functionality of the system (e.g. the system should calculate the engine 

speed) and performance requirements which constrain mainly the CPU load and the 

memory consumption of the system (e.g. CPU total load should not exceed 60%). 

Currently, timing requirements are not considered during this phase. This kind of 

requirements are expressed and analyzed very late during the software 

implementation of each sub-system. 

2. EMS partitioning: This consists mainly in defining the needed sub-systems. For 

example, an EMS can require a sub-system to ensure the injection functionality 
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(injection sub-system), a second one for calculating the engine speed (engine speed 

determination sub-system) and a third one to control engine knocking during 

combustion (knock sub-system). Each sub-system is composed of software and 

hardware parts. For instance, the injection sub-system can require software parts to 

control the injection and hardware parts, the injectors, which execute the injection 

itself. 

Based on the EMS requirements determined during the EMS design phase, the EMS 

designer determines the requirements to be satisfied by each sub-system. Then, each sub-

system is developed separately by taking into account these requirements. In addition, for 

each sub-system, the software parts are developed separately from the hardware parts.   

Once the different sub-systems are developed, the integration phase starts. This consists 

mainly in integrating the software parts of the different sub-systems together as well as the 

integration of hardware parts. 

Our methodology will intervene during three steps of the current Continental process: the 

EMS design phase, the software development of each sub-system and the EMS integration 

phase. The application of our methodology in the context of EMS development will be 

presented in detail in the next section. Before this, let’s present the current approach used at 

Continental to develop the software of each sub-system.  

Sub-system Software development 

Currently, there are two approaches for software development at Continental. The first one 

is purely code-centric approach and the second one is model-based approach. Unlike the 

code-centric approach where the algorithms are described as Word specifications and then 

implemented manually using C coding, in the model-based approach the functional design is 

performed based on Simulink [44] models that describe the defined functions and their 

associated algorithms. Then, based on these models the C code is generated automatically 

using a code generator tool. Figure 21 describes the process followed for the two 

approaches.  
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Figure 21 Sub-system software development process 

At the beginning of the development process of each approach, the function developer starts 

by analyzing the requirements that should be respected when designing and implementing 

the needed software. In the next phase, he performs the functional design. This consists 

mainly in determining the needed functions to ensure the functionality of the sub-system 

under design and the algorithm to associate to each function. During the software 

implementation phase, the software developer implements these algorithms using C coding. 

 

Software integration 

The integration of the software parts from different sub-systems is done by the software 

integrator during the EMS integration phase. After the software integration step, the 

software integrator performs the software analysis. This analysis consists in:  

• Verifying the proper integration of the software by analyzing the static architecture 

of the integrated system (data communication, input/outputs, etc). 

• Verifying the timing behavior of the system by measuring the response times of the 

OS tasks involved as well as the global CPU load based on the C code of the 

integrated system.      

Software reuse 

The process described in figure 21 is completely followed when the software of a sub-system 

is developed from scratch. However, in order to save the development time and cost, 

engineers have usually recourse to reuse and adapt previous versions of the software. In 

software development at Continental, we can distinguish three categories of software reuse: 

� Strong reuse: In this case, more than 80% of the new software version is reused from 

previous version. The modifications concern only some configuration parameters and 
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variables but the software “core” is not changed. This concerns e.g., the software of 

engine dependant sub-systems (e.g., engine speed determination sub-system) 

� Medium reuse: In this case of reuse, more than 50% of the new software version is 

reused from previous version. The typical modification that can be done on the 

software is the introduction of new software modules to ensure new functionalities of 

the sub-system. 

� Weak reuse: In this case of reuse, only the developer expertise and knowledge on 

previous versions of the software is reused. No software modules are reused from 

previous versions. 

In the case of weak and medium reuse, both the function and software developer are 

involved and the development process described in figure 21 is completely followed. In the 

case of strong reuse, no functional design is performed; the software developer works 

directly on the existing C code to modify the needed parameters and variables. 

In the next section, we describe how to apply the proposed methodology in each 

development case (development from scratch, strong reuse, medium reuse and weak reuse). 

1.3. Migration to the New Methodology Process 

This section describes how to map the current Continental development process and the 

process proposed by our methodology. Before describing how our methodology will be 

applied to develop software in the context of EMS development, let’s remind briefly the 

different activities to be performed during each phase of our proposed development process 

as described in figure 22. 
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Figure 22 Proposed model-based process 

1.3.1. Development from Scratch 

Figure 23 shows an overview of our approach to apply the methodology to the development 

of EMS.  
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Figure 23 Application of the methodology to develop Engine Management Systems 

To develop a whole engine management system, we propose to apply our development 

process as follows: 

• We suggest mapping the activities of the analysis phase of our methodology (described 

in figure 22) to the EMS design phase of the current development process (described in 

figure 20). This means that during the EMS design phase described in figure 20, in 

addition to his/her current task, the EMS designer will determine and analyze what we 

called in our methodology the vehicle end-to-end requirements. In this case, these 

requirements will involve some of the sub-systems required for the designed EMS. In 

the remaining of this chapter, we will hence call these requirements EMS end-to-end 

requirements instead of vehicle end-to-end requirements. Based on the EMS end-to-end 

requirements, the system designer, supported by experts from each sub-system, 

determines the time budgets that should be assigned to each sub-system.  
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Let’s consider, for example, an EMS that contains a sub-system for the calculation of the 

engine position (engine position determination sub-system). This sub-system transfers 

the engine position information to an injection sub-system that calculates the instant at 

which the injection should be performed. An EMS end-to-end requirement can be as 

follows: “The duration from the start of engine position determination until the injection 

instant is calculated, should not exceed 500ms”. Based on this requirement and other 

EMS end-to-end requirements, the EMS designer determines hence the time budgets to 

assign to the engine position determination sub-system and to the injection sub-system. 

To determine these budgets, the EMS designer will use also his/her expertise related to 

previous versions of some of the involved sub-systems. This will help him/her to 

determine the budgets that should be assigned to the sub-systems that are developed 

from scratch. 

As mentioned previously, in the current development process, requirements concerning 

the global CPU load value of the EMS are considered during the EMS design phase. In 

our approach, we suggest to determine, based on these requirements, the CPU load 

requirements for each sub-system. This means that the EMS designer should determine 

during this phase the CPU budget that can be assigned to each sub-system (e.g., the 

CPU load requested by the injection sub-system should not exceed 5%). 

• We suggest applying the design and implementation phases of our methodology to 

develop the software of each sub-system. During the design phase of each sub-system, 

the function developer models the sub-system functional decomposition and determines 

the functional block time budgets based on the corresponding sub-system time budgets 

determined previously by the EMS designer. During this same phase, the function 

developer determines the best allocation scenario of functional blocks to available ECUs. 

This is done by taking into account the sub-system CPU load budget determined 

previously by the EMS designer.  

During the implementation phase, the software developer describes the software 

architecture of each sub-system using AUTOSAR models. Furthermore, based on the 

functional block time budgets, he determines the timing constraints that should be 

respected at this level. 
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• Once the software architecture of each sub system is described using AUTOSAR models, 

the software integrator will integrate the AUTOSAR models of the different sub-

systems. During this phase he performs also scheduling analysis on the integrated 

system to verify that the timing constraints of each sub-system are respected and that 

the CPU load constraints are met. 

1.3.2. Development by Reuse 

As mentioned previously (section 1.2), in the current EMS development process, the 

software of the sub-systems required by the EMS can be developed by reusing and adapting 

previous versions of it. In this section, we propose to show how to apply our methodology to 

develop the software of such sub-systems by reusing the existing artifact of the previous 

software versions. Table 15 presents the kind of artifacts that are available from a previous 

software version. In the remaining of this section, we present the application of our 

methodology in case of strong, medium and weak software reuse. 

Table 15. Example of available artifacts from previous software version 

Artifact Description 

C code files 
The software of each sub-system is organized into software 

modules. For each software module a C code file is 

available.  

Word specifications 
This artifact describes the implementation of each software 

module 

XD models 

These models are represented in an internal tool called 

XD. This tool is used to analyze the static architecture of 

the software after EMS integration. The software of each 

sub-system is represented by a number of software 

modules. Each software module is composed of a number of 

operations which represent the smallest executable code 

fragment. 

Timing data base 

This artifact contains the timing information of the 

integrated system. This information consists mainly in 

operation execution times, OS task response times and 

CPU utilization values. These data are measured by an 

internal tool using the C code of the integrated system 
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Case of strong reuse: 

As mentioned previously, in this case of reuse, to develop the new version of the software, all 

the software modules are reused from the previous version. The modifications done on the 

new version are minor and concern only e.g., parameters or variable names modification. 

Hence, in this case of reuse, we do not need to perform the activities of the analysis and 

design phases of our methodology. To enable this case of reuse by using our methodology, 

we suggest then to work directly on the implementation phase by transforming the legacy 

information represented in the XD model (see table 15) of the previous software to an 

AUTOSAR architecture. Figure 24 shows an overview of our approach.  

 

Figure 24 Application of the methodology in case of strong software reuse 

Let’s consider a sub-system P as described in figure 24. To develop the new version of the 

software of this sub-system, we do not need to determine the time budget and CPU load 

budget to assign to it during analysis phase. In fact these budgets should be already known 

(or at least can be estimated directly) from the previous software version. As the software 
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architecture is already available, to develop the software of the sub-system P the design 

phase is also not needed.  

The transformation of the XD model to an AUTOSAR model should be done as follows: 

each software module is transformed to an AUTOSAR software component. The operations 

of each software module are transformed into runnable entities. Once the AUTOSAR 

software architecture of sub-system P is described, the software integrator integrates it with 

the AUTOSAR models of the software of other involved sub-systems (the software of other 

sub-systems is developed in the same way either by reuse or from scratch as described 

previously). The timing data base containing the execution times of the sub-system P 

operations will be used to specify the execution times of the runnable entities to enable 

performing scheduling analysis. 

Case of weak reuse 

In this case of reuse, no software modules can be reused from previous version. Hence, all 

the methodology phases should be applied for the development of the software in the same 

way as for the development from scratch. However, when performing the scheduling 

analysis on the integrated system, the expertise of the software integrator from the previous 

versions of the sub-system can be used to estimate the execution times of the runnable 

entities of the sub-system considered. 

Case of medium reuse 

In this case of reuse, we will focus on the case of adding new functions or software modules 

to the previous software version. We have to distinguish, then, two cases: 

• If the new function or software module will interact with other sub-systems in a way 

that there are EMS end-to-end requirements that involve these sub-systems and the 

one under development, then the methodology should be applied starting from the 

analysis phase. This is needed to determine the new time budget to assign to the 

considered sub-system with this new configuration. 

• If the new function or software module will interfere only internally with other 

software modules within the same sub-system, then the methodology can be applied 

starting from the design phase. The time budget to be assigned to the sub-system 

can be estimated directly based on the previous software version. 
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Figure 25 shows the approach followed during design and implementation phases for 

these two cases. As the figure shows, based on the XD model that describes the previous 

software modules and their operations, the function developer transforms during the 

design phase each software module into functional block. He defines then the new 

functional blocks needed for the new version of the sub-system. Based on this new 

configuration and the time budget known for the sub-system previous version, the 

function developer determines the time budget to assign to each functional block of the 

new configuration. Based on the new functional architecture, the software developer 

describes the new software architecture using AUTOSAR constructs. The simplest way 

is to transform each functional block defined at the design level to an AUTOSAR 

software component at the implementation level. The definition of the runnable entities 

for each software component is done by taking into account the information from the 

previous software architecture but also the new constraints on the software.  

 

Figure 25 Application of the methodology in case of medium software reuse 
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In the next chapter, we present an example of the application of our methodology for the 

development of two sub-systems, the cruise control (development from scratch) and the 

knock sub-system (development by medium reuse). 
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2. Examples  
This chapter provides an illustration of the application of our methodology to the 

development of engine management sub-systems. The first section presents an example of 

the application of the methodology to develop the cruise control sub-system from scratch. 

The second section deals with the scenario of development by medium reuse and considers 

the knock sub-system as use case. To develop the models of these two use cases; we used the 

Papyrus tool [42] to develop the models at the analysis and design levels and the Cessar-

CT tool [43] for the models of the implementation level. 

2.1. Development from Scratch: Cruise Control 

2.1.1. Use Case Presentation 

The application considered is the cruise control function. It is used to maintain vehicle speed 

at a speed setpoint desired by the driver. This functionality calls for a switch sensor that 

acquires the driver inputs (set cruise, cancel cruise, increase speed setpoint, etc.) and a 

control system that processes inputs from this sensor and other EMS sub-systems (e.g. 

braking sub-system) to calculate the speed setpoint and send a torque request to the torque 

setpoint sub-system. In this section, we show how to apply the proposed methodology to 

develop and analyze the software of the cruise control sub-system. In subsequent sections of 

this chapter, we refer to this sub-system as “cruise control”. 

2.1.2. Analysis Phase 

In this phase, based on the given timing requirements (EMS end-to-end requirements), we 

determine the time budgets to be allocated to each sub-system involved in these 

requirements. Here we focus on the cruise control sub-system and we consider that the time 

budgets of other sub-systems that communicate with the cruise control are already known 

based on information from previous developments of these sub-systems. 

2.1.2.1. EMS End-to-end Requirements 

We determined two EMS end-to-end requirements to be satisfied when designing the cruise 

control sub-system. These have been denoted as EMS_REQ1 and EMS_REQ2 (REQ for 

requirement). 

• EMS_REQ1: When the driver depresses the braking pedal, cruise control should be 

deactivated within 300ms. 
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• EMS_REQ2: When the driver activates cruise control, the vehicle speed setpoint 

should be calculated and displayed within 500ms 

These two requirements concern the cruise control sub-system and other sub-systems such 

as the brake controller sub-system, which receives inputs from the pedal sensor indicating 

the status of the pedal (depressed or not) and the display actuator that receives inputs from 

several vehicle functions for display. In the next step, we determine the time budgets to be 

allocated to the cruise control in order to satisfy these two requirements. First, we need to 

develop a model containing the information necessary for this timing analysis. 

2.1.2.2. Analyzable Model 

As stated earlier, the analyzable model comprises two views, the analysis functional view 

and the analysis timing view. 

� Cruise Control Analysis Functional View: Figure 26 shows the model developed 

for this view. This model depicts a functional decomposition of the EMS focusing on 

the interaction of the cruise control with other EMS sub-systems. In it, the cruise 

control sub-system (called “CruiseControl” in the figure) is communicating with the 

brake controller sub-system, the torque setpoint sub-system, the display actuator and 

the switch sensor that acquires the driver inputs. As the figure also shows, EAST-

ADL concepts are used here; the cruise control sub-system and the other sub-

systems are modelled as “AnalysisFunctionTypes”. Sensors and actuators are modelled 

as “FunctionalDevices”, an EAST-ADL concept that represents the functional part of a 

sensor or an actuator. The interaction between different sub-systems is modelled 

using EAST-ADL connectors called “FunctionConnectors”. 

 

Figure 26 Cruise control analysis functional view  
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The end-to-end requirement EMS_REQ1 means that from the point in time at which 

the pedal sensor receives a pressure until the point in time the torque setpoint 

calculates a null torque setpoint, the time elapsed should not exceed 300ms. 

EMS_REQ2 means that since the switch sensor receives the driver input ordering 

activation of cruise control until the speed setpoint is calculated by cruise control and 

then displayed by the display actuator, the time elapsed should not exceed 500ms.  

To determine the time budgets to be allocated to the cruise control, we developed a 

timing view in which these timing constraints are expressed in the model using 

TADL concepts.  

� Cruise Control Analysis Timing View: Figure 27a and 28a show sequence 

diagrams representing the cruise control analysis timing view. For each EMS end-

to-end requirement, we model an interaction that we stereotype with “EventChain”. 

Each event chain is made up of sub-chains that represent the execution of the 

functions involved in the interaction and the transfer of data-based messages 

between these functions. This way, each action execution specification and each 

message are modelled as sub-chains (stereotyped with “EventChain” and specified as 

“EventChainSegment” for the whole interaction event chain). As shown in Figure 27b 

and 28b, to express each end-to-end requirement, we specify for each “EventChain” a 

TADL “ReactionConstraint” for which we specify a “TimeDuration”. The latter enables 

to specify the upper value of the reaction constraint (For example, for the first event 

chain, we specify a reaction constraint called cruise_deactivation_delay. For this 

reaction constraint, we describe a time duration of 300ms as an upper bound value). 

To support data-based communication, each message is also stereotyped as 

“DataMessage”. Events associated to the sending and receiving of these massages are 

stereotyped respectively as “SendDataEvent” and “RecieveDataEvent” and also as 

TADL events. For each event chain involved in the interaction stimulus and 

response events are specified.  
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Figure 27a Cruise Control analysis timing view, deactivation event chain 

 

Figure 27b Specification of timing constraint for the deactivation event chain 
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Figure 28a Cruise Control analysis timing view, activation event chain 

 

Figure 28b Specification of the timing constraints for the activation event chain 

2.1.2.3. Cruise Control Time Budgets 

As mentioned during the methodology description, we consider that the time budgets for 

the other EMS sub-systems are already known. Determining the time budgets for cruise 

control is then quite easy at this stage. In our example, with the help of application experts, 

we managed to manually determine the following time budgets, which satisfy the two 

previously listed end-to-end requirements. To ensure compliance with EMS_REQ1 (and 

taking into account the time budgets of the pedal sensor, the brake controller and the torque 
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setpoint sub-systems) we should allocate 100ms to cruise control deactivation. To ensure 

compliance with EMS_REQ2 (and taking into account the time budgets of the switch sensor 

and the display actuator), we should allocate 200ms to cruise control activation and speed 

setpoint calculation. Hence, we have the following two constraints to be satisfied when 

refining the cruise control functional architecture during the design phase: 

• AConst1: Cruise control should be deactivated within 100ms. 

• AConst2: Cruise control should be activated and speed setpoint calculated within 

200ms. 

2.1.3. Design Phase 

In this phase, we refine the functional architecture of the cruise control by showing its 

functional breakdown into functional blocks. The first timing analysis performed is 

refinement of the time budgets determined in the analysis phase by determining the time 

budget to be allocated to each functional block.  

2.1.3.1. Refinement of Cruise Control Time Budgets 

To refine the time budgets determined during the analysis phase, we first develop an 

analyzable model of cruise control. 

A. Analyzable Model 

In the same way as for the analysis phase, the model is composed of two views: 

� Cruise Control Design Functional View: Figure 29 shows the functional 

breakdown of the cruise control sub-system. We broke down the sub-system into 

four functional blocks:  Input acquisition and interpretation is responsible for the 

acquisition of inputs from the switch sensor and other sub-systems and their 

interpretation, to deduce the desired action (activate cruise, cancel cruise, etc).  

Failure management is responsible for diagnosis of the cruise control inputs and limp 

home activation (the limp home function decides which action to take if an error is 

detected). Speed setpoint calculation is responsible for calculation of the desired 

speed setpoint. Control is responsible for calculation of the cruise control states and 

transitions and maintaining speed at the speed setpoint. As Figure 29 shows, the 

“CruiseControl” “AnalysisFunctionType” modelled in the analysis phase is realized here 

by a “DesignFunctionType” also called “CruiseControl”. Each Functional Block is 
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modelled as a “DesignFunctionPrototype” that represents an instance of a 

“DesignFunctionType”. 

 

Figure 29 Cruise control design functional view 
 

� Cruise Control Design Timing View: AConst1 means that from instant at which 

the pedal information input is acquired by the input acquisition and interpretation 

function until the control functional block orders a null torque request, the time 

elapsed should not exceed 100ms. AConst2 means that from the time of acquisition of 

the "activate cruise" input until calculation of the setpoint by the speed setpoint 

calculation and then activation of cruise control by the control functional block, the 

time elapsed should not exceed 200ms. To ensure the safety of the driver, a new 

constraint is introduced at this stage, to ensure that, if a failure is detected, cruise 

control is deactivated within 100ms (Aconst3). This means that from the instant at 

which inputs are acquired and interpreted until the detection of failure and 

deactivation of cruise control, the time elapsed should not exceed 100ms. Figure 30a, 

31a and 32a show the sequence diagrams developed for the timing view. The first 

diagram shows the communication between the functional blocks involved in 

AConst1 (i.e. deactivation of cruise control). The second diagram shows 

communication between the functional blocks involved in AConst2 (i.e. activation of 

cruise control and calculation of the speed setpoint). The third diagram shows 

communication between the functional blocks involved in AConst3. In the same way 
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as for the analysis phase, for each event chain, we specify the corresponding reaction 

constraint as shown by figure 30b, 31b and 32b. 

 

Figure 30a Cruise Control design timing view, “acquisition to control” event chain 

 

Figure 30b specification of the timing constraints to the “acquisition to control” event chain 
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Figure 31a Cruise Control design timing view, “acquisition setpoint control” event chain 

 

Figure 31b Specification of the timing constraint for the acquisition setpoint control event 

chain 
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Figure 32a Cruise Control design timing view, failure event chain 

 

Figure 32b Specifying timing constraint to “acquisition failure control” event chain 

B. Functional Block Time Budgets 

We determined manually the time budgets to be allocated to each functional block for 

compliance with the three constraints mentioned previously. The time budgets that can be 

allocated to the various functional blocks are as follows: 

• Input acquisition and interpretation: 30ms 

• Failure management: 20ms 
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• Control: 50ms 

• Speed setpoint calculation: 90ms 

This means that, when refining the cruise control architecture at the implementation phase, 

we should respect the following timing constraints: 

• DConst1: Input acquisition and interpretation should be performed within 30ms 

• DConst2: The failure management should take place within 20ms 

• DConst3: Control should take place within 50ms 

• DConst4: Speed setpoint calculation should take place within 90ms 

The next step is to explore the hardware architecture to determine the best allocation of 

cruise control functional blocks to the available hardware resources. This is done based on 

an evaluation of load for each processor. 

2.1.3.2. Hardware Architecture Exploration 

In this step, we explore the available hardware architecture, for the purpose of deciding 

which hardware resources to select and how to efficiently distribute cruise control functional 

blocks over these resources. In our case, the cruise control functions can be distributed 

between the engine management ECU (EMS ECU) and the body controller ECU. These 

two ECUs communicate via a CAN bus. Based on the load evaluation for each ECU, we 

determine the best functional block-to-ECU allocation scenario. This means first developing 

a model containing the information necessary for the analysis. 

A. Analyzable Model 

As explained in the description of our methodology, the model is made up of three views: 

� Cruise Control Design Functional View: This is the view described in Figure 26. In 

this view, we specified the execution time of each functional block. Execution times were 

estimated with the help of application experts at Continental. We thus determined the 

following execution times: 

� Input acquisition and interpretation: 80µs 

� Failure management: 100 µs 

� Speed setpoint calculation: 120 µs 



128 

 

Methodology for Model-based Timing Analysis Process 

 

� Control: 200 µs  

The EAST-ADL concept “ExecutionTimeConstraint” enables specification of these times for 

each functional block. 

� Hardware Platform View: Figure 33 shows the hardware platform model, which we 

developed using a UML composite diagram. Each computation hardware resource is 

modelled as a “Node” (EAST-ADL) and a “SaExecHost” (MARTE) to represent resources 

with processing capacity that can host executable elements. The CAN bus is stereotyped 

by “LogicalBus” (EAST-ADL) and “SaCommHost” (MARTE). The aim of using MARTE 

concepts here is to enable the use of the automatic transformation implemented for 

MARTE models to analyze the system using the MAST tool. 

 

Figure 33 Hardware platform view 

Using this view, we choose the best scenario for the allocation of functional blocks to the 

hardware platform. The best scenario is chosen according to the load requested by the 

functional blocks for each ECU. To do so, we model the allocation view that represents the 

allocation scenario to be analyzed. 

� Allocation View: When allocating the functional blocks to the hardware platform, we 

must satisfy certain requirements identified with the help of vehicle dynamic architecture 

specialists at Continental (when applying the methodology to the development of EMS, 

these budget should be determined by the EMS designer during the EMS design phase): 

� The load requested by cruise control functions from the Body controller ECU 

should not exceed 1%  
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� The load requested by cruise control functions from the engine management ECU 

should not exceed 2% (these values are determined by taking into account the load 

budgets of other sub-systems that will be allocated to these ECUs). 

� The failure management and the control functional block should be allocated to the 

same ECU to ensure speed reaction of the control system when an error is 

detected. 

Figure 34 shows the modelling of a functional block-to-available ECU allocation scenario. 

Here we chose to allocate input acquisition and interpretation to the body controller ECU 

and the rest of the functional blocks to the engine management ECU. MARTE concepts for 

allocation are used in this view. Each functional block is stereotyped by “allocated”, a concept 

that allows specification of the hardware resource hosting the functional block. Moreover, a 

dependency connector is drawn between each functional block and its hosting ECU and is 

stereotyped by “allocate”. 

 

Figure 34 Allocation view 

B. Processor Loads Determination 

Based on the allocation scenario shown and the execution times annotated on the design 

functional view, we used the scheduling analysis tool MAST [31] (for which an automatic 

transformation from MARTE models is implemented [60]) to evaluate the load requested 

by the functional blocks allocated to each processor. Each functional block is transformed 
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into a schedulable resource hosting only one operation in the MAST model. In scheduling 

analysis, processor utilization is calculated based on two kinds of parameters which are the 

tasks/functions execution times and the tasks/functions periods regardless of the priorities 

that are assigned to the executed tasks. Hence, task priorities are not important for our 

analysis (evaluation of processor loads). For this reason, we assume that all schedulable 

resources have the same priority in our example (this assumption is used only for this 

analysis).  

For each schedulable resource a transaction is defined in MAST. For each operation, we 

assigned the execution time determined for the corresponding functional block. To be able 

to calculate processor loads, we also need to specify the triggering period of each 

transaction. With the help of cruise control application experts at continental, we assigned 

10ms as the period for both input acquisition/interpretation and failure management, and 

40ms as the period for both speed setpoint calculation and control. Based on this information 

and the allocation scenario chosen, the tool calculated an utilization of 0.8 % of the body 

controller ECU and 1.8 % of the engine management ECU by the cruise control functions. 

These results meet the requirements listed above (other tested allocation scenarios did not 

meet these requirements). We therefore kept this allocation scenario as the best scenario. 

This is the scenario to be satisfied when refining the cruise control architecture at the 

implementation stage, especially when describing the mapping of runnable entities to OS 

tasks. Let’s note that to calculate the utilization of each ECU by the cruise control functions, 

we do not model the other vehicle functions executed on these ECU. That is why, in our 

model (figure 31), we represent only the allocation of the cruise control functions to these 

ECUs (without considering other vehicle functions executed on the same ECUs). 

2.1.4. Implementation Phase 

In this phase, the cruise control functional architecture is refined and transformed into 

AUTOSAR architecture described using software components and runnable entities. To 

develop the analyzable model, we used the CESSAR-CT tool, this is an AUTOSAR 

workbench developed by the Continental Engineering Services. This tool is based on the 

ARTOP (AUTOSAR Tool Platform) framework [43], an implementation of common base 

functionality for AUTOSAR development tools. 

2.1.4.1. Analyzable Model 



131 

 

Methodology for Model-based Timing Analysis Process 

 

Cruise Control Application View: We developed this view by transforming the cruise 

control design functional view into (an) AUTOSAR model. Figure 35 shows an overview 

of the AUTOSAR application view that we developed (As the tool used does not offer 

graphical views of the model developed, the figures of this section present a simplified 

overview of the models, for the clarity of the figure we do not show all the data 

exchanged between the software components). Each functional block is transformed into 

an application software component for which we describe the behaviour by specifying the 

runnable entities and their triggering events. The communication between these 

software components is modelled through AUTOSAR ports called “PPortProtyotype” for 

provided data and “RPortPrototype” for required data. 

 

Figure 35 Simplified overview of the cruise control application view 

Software component input acquisition and interpretation involves two runnable entities – 

acquisition and interpretation. Speed setpoint calculation requires only one runnable for the 

calculation of the speed setpoint. Failure management involves two runnable entities, the 

first to perform diagnosis of the inputs and the second to decide what action to take in case 

of error. The control software component is made up of three runnable entities: its 

application condition and basic function, which calculate the cruise control states and 

transitions to decide whether to carry out specific cruise control activities; and its controller, 

which is a PI controller that maintains vehicle speed. 
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For each runnable entity, we defined an “RTEEvent” that defines the triggering of the 

runnable. For example, as we chose to execute failure management each 10ms, we specified, 

for diagnosis and limp home runnable entities, an “RTEEvent” with 10ms as its period.  

For each software component, we also specified a software component implementation that 

allows us to set the execution time of each runnable entity. This is done using the 

AUTOSAR concept “resource consumption”, which describes the necessary resource in terms 

of execution time for each runnable entity. Table 16 shows the runnable entity execution 

times that we determined taking into account the execution times determined previously for 

the functional blocks and with help of cruise control function experts. 

Table 16 Determination of Cruise Control runnable execution times 

Functional 

block 

Execution 

time (µs) 

Constraints & 

Comments (based 

on discussion with 

cruise control 

experts) 

Runnable 

Entities 

Execution 

time (µs) 

Input 

acquisition and 

interpretation 

80 

Input interpretation 

needs more time to 

execute than input 

acquisition 

Acquisition 30 

Interpretation 50 

Failure 

management 
100 

diagnosis needs 

more time to 

execute than limp 

home 

Diagnosis 60 

Limp home 40 

Speed setpoint 

calculation 
120 

This functional 

block is 

transformed to a 

software 

component with 

only one runnable 

then the runnable 

has the same 

execution time as 

the functional block 

Speed setpoint 

calculation 
120 
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Control 200 

the basic function 

runnable entity 

should have the 

largest execution 

time, application 

condition runnable 

entity has the 

smallest execution 

time 

Application 

condition 
40 

Basic function 100 

Controller 60 

 

As shown in table 16, based on discussion with cruise control function experts, we 

determined the constraints that should be respected when assigning the execution times for 

the defined runnable entities. Based on these constraints, we determined an execution time 

value to each runnable entity. 

� Cruise Control Timing Behaviour View: In this view, we modelled the timing 

behaviour of cruise control by means of events and event chains from the AUTOSAR 

timing extensions. For each timing constraint determined at the design stage (DConst1, 

DConst2, DConst3 and DConst4), we created an event chain for which we specified a 

latency constraint. As an example, for DConst1 (figure 36), we created an event chain 

having the activation event of the runnable entity acquisition as a stimulus and the 

termination event of the runnable entity interpretation as a response. For this event 

chain, we specified a latency constraint with 30ms as maximum value. For DConst4, we 

created an event chain formed by the runnable entity speed setpoint calculation. We 

specified for this event chain a latency constraint with 90ms as maximum value. 

 

Figure 36 Representation of the modelling of the acquisition event chain 
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� Resource Platform View: In this view, we model the hardware and software resources 

used by the sub-system. Each ECU is modelled as AUTOSAR “ECU instance”, the CAN 

bus is modelled as “CanPhysicalChannel”, which represents a CAN communication 

medium. As presented in the previous chapter, we intend to perform scheduling analysis 

after the integration of the cruise control software with the software of other sub-

systems executing in the same ECUs.  In the implementation phase of the cruise control, 

we should describe, hence, only the OS tasks that allocate the cruise control runnable in 

each ECU. Then, during the integration phase, the software platform models from 

different sub-systems are integrated and scheduling analysis can be performed. Figure 37 

shows an overview of the software and hardware platform used by the cruise control. 

 

Figure 37 Resource platform used by the cruise control 
The description of the OS tasks is produced during description of the OS configuration for 

each ECU. With this configuration, it is possible to define the OS tasks and their scheduling 

properties (e.g. priorities). AUTOSAR concepts are used here for OS configuration. After 

performing scheduling analysis, we can assess the improvements that are necessary for the 

chosen software resource platform and the mapping scheme selected.  

• Mapping View: To perform scheduling analysis, we have to describe the mapping of OS 

tasks to processing units. In AUTOSAR, this can take place when the OS configuration 

is defined for each ECU. In this view, we also described mapping of the cruise control 

runnable entities to the selected OS tasks. To do so, we described the mapping of 

runnable triggering events to the OS tasks. Figure 38 gives an overview of the mapping 

view developed during this phase. To decide on a scheme for mapping runnable entities 

to OS Tasks, we should comply with the allocation scenario selected at the design level. 

This means that the runnable entities of the input acquisition/interpretation function 

should be mapped to a task allocated to the body controller ECU and the other 

runnables to tasks allocated to the engine management ECU. Based on the available 
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software platform, we decided to allocate the runnable entities of failure management to 

TASK_ 10MS_1 that is allocated to the engine management ECU. The runnable entities 

of control and speed setpoint calculation are allocated to TASK_40MS. In a similar way, 

the runnable entities of acquisition and interpretation are allocated to TASK_10MS_2 

that is hosted by the body controller ECU. To describe such mapping, we used 

AUTOSAR concepts for RTE configuration. For example, mapping of the diagnosis 

entity to the TASK_10MS_1 is described using AUTOSAR concepts to define the link 

between the triggering event of the entity, and the OS task.  

 

Figure 38 Cruise control mapping view 

2.1.5. Scheduling Analysis 

We performed scheduling analysis after integrating the cruise control sub-system with 

other sub-systems executing on the engine management and body controller ECUs (for 

simplification reasons, the development of other sub-systems is not presented here, but it 

should be done also by application of the methodology either to develop them from scratch 
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or by reuse). We used the SymTA/S tool to perform scheduling analysis. To do so, we 

transformed the AUTOSAR model of the integrated system into a SymTA/S model (cf. 

section 2.2.3 of part I). We used SymTA/S concepts to describe the OS tasks and the 

hardware resources (ECUs and CAN bus) included in the resource platform view. Each 

event chain described in the timing behaviour view is transformed into a "path" formed by 

runnable entities in the SymTA/S model. The latency constraint for each event chain is 

specified as a path maximum response time in SymTA/S. 

 

Scheduling analysis results: 

Table 17 shows a part of the analysis results (only results related to the cruise control sub-

system). It gives the response times obtained for each event chain described in the model. All 

the response times obtained for all the sub-systems are less than the specified time 

constraints (deadlines), which means that the system is schedulable. 

Table17 Response Times for Cruise Control 

Event Chain Response times (ms) Deadlines (ms) 

Input acquisition and 

interpretation 

15.2 30 

Failure management 10 20 

Speed setpoint calculation 40.1 90 

Control 17.3 50 

 

The tool calculated an overall load of 60% for the engine management ECU with 1.8% 

requested by the cruise control functions. The overall load of the Body Controller ECU is 

75% with 0.8% requested by the cruise control functions. Based on these results, we can 

validate the architecture designed (application, mapping, software & hardware resource 

platform). 

2.2. Development by Reuse: Knock 

In this chapter, we present an example of the application of the methodology to develop the 

software of a knock sub-system by reusing and adapting a previous version of it. We deal 
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with the case of medium reuse and particularly we focus on the scenario of adding a new 

software module to the knock previous software version. 

2.2.1. Use Case Presentation 

The knock sub-system is used to detect engine knocking during engine combustion and 

adjust the ignition accordingly to prevent the engine from “knocking”. In gasoline internal 

combustion engines with spark ignition, an undesired effect may occur when the fuel 

mixture partially and spontaneously ignites as a result of the compression in the combustion 

chamber. The knock sub-system is developed to avoid such phenomenon. 

The knock control is based on the acquisition of the engine noise signal during a crankshaft 

angular window. This window is set around the ignition operation (we call it main window). 

Based on the acquired noise signal, a detection phase is performed to determine if knock 

exists or not. In case of knock detected, a correction is performed by calculating an angular 

retard to be applied to ignition instant to compensate knock phenomenon. 

In turbo-compressed engines, an undesired pre-ignition phenomenon which is similar to the 

knock phenomenon can occur before the ignition (during another timing window that we 

call pre-window). This phenomenon may be very harmful and increases considerably the 

emission of pollutant gases.  Thus, it is necessary to control it. 

In this chapter, we show how to apply our methodology to develop a new version of the 

knock control sub-system that allows controlling both knock and pre-ignition phenomena. 

This is done based on previous version of this sub-system that allows only detecting and 

controlling the knock phenomenon. As shown in the previous chapter, to develop the new 

version of the knock sub-system, we use the information represented in the XD model (cf. 

table 15) of the previous software version and extend it to obtain the needed new software 

version. Figure 39 shows an overview of the previous software architecture as organized in 

the XD tool. All the knock software modules are executed on the engine management ECU. 

The noise acquisition software module contains only one operation that allows the filtering 

and the integration of the engine noise raw signal. The acquisition of the engine noise signal 

is performed during a window whose begin instant and duration are calculated by the 

window parameter calculation operation of the detection software module. The threshold 

calculation operation, allows, based on the filtered engine noise signal, calculating a 

threshold value. Based on this threshold value, the knock energy calculation operation 

determines the knock energy which reflects the knock intensity. If this energy exceeds a 
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specific limit, this means that a knock phenomenon is taking place. In case of knock detected, 

the correction loop operation of the control software module calculates an angle retard to be 

applied to the ignition instant to compensate the knock. The ignition angle retard is 

communicated to the ignition setpoint sub-system that controls the ignition instant. 

 

 

 Figure 39 Simplified overview of previous knock software architecture  

Based on this architecture, we propose to develop a new version of this sub-system that 

allows controlling also the pre-ignition phenomenon. We call this new version knock/pre-

ignition sub-system rather than knock sub-system. 

The control of the pre-ignition phenomenon by the knock/pre-ignition sub-system consists 

of detecting the pre-ignition phenomenon during the pre-window and then sending a 

request to the ignition realization sub-system to stop the ignition in the corresponding 

cylinder if pre-ignition is detected. 

2.2.2. Analysis phase 

In this phase, we determined the EMS end-to-end requirements that the new version of the 

knock/pre-ignition sub-system should meet. We identified two EMS end-to-end 

requirements: 
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• EMS_REQ1: In case of knock detected, the knock should be compensated within 700ms 

• EMS_REQ2: In case of pre-ignition detected, ignition stopping order should be 

delivered within 900ms 

Based on these end-to-end requirements, we should determine the time budgets to be 

allocated to the knock/pre-ignition sub-system. Before this, we should develop the 

analyzable model. 

2.2.2.1. Analyzable Model 

• Knock/pre-ignition Analysis Functional View: Figure 40 shows the functional view 

developed during this phase for the knock/pre-ignition sub-system. The figure shows 

the interaction of the knock/pre-ignition sub-system with other sub-systems within the 

EMS. As presented during the methodology description, EAST-ADL constructs for 

functional modeling are used to develop this view.  

 

Figure 40 Knock/Pre-ignition analysis functional view 

• Knock/pre-ignition Analysis Timing View: Figures 41 and 42 show the timing view 

developed to represent the above-mentioned end-to-end requirements. EMS_REQ1 

means that since the acquisition of the noise signal by the sensor and the detection of the 

knock phenomenon by the knock/pre-ignition sub-system until the new ignition setpoint 

is calculated by the ignition setpoint sub-system (based on the ignition angle retard 

information), the duration should not exceed 700ms. EMS_REQ2 means that since the 

acquisition of the noise signal and the detection of the pre-ignition phenomenon by the 

knock/pre-ignition sub-system until the ignition realization delivers an order to stop the 

ignition operation, the duration should not exceed 900ms. The two following figures 
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represent respectively the timing views corresponding to the requirements EMS_REQ1 

and EMS_REQ2. 

 

Figure 41 Knock/Pre-ignition-to-ignition setpoint event chain 

 

Figure 42 Knock/Pre-ignition-to-ignition realization event chain 

2.2.2.2. Determination of Knock/Pre-ignition Time Budgets 

Based on our knowledge of the time budgets of previous versions of the ignition setpoint and 

ignition realization sub-systems, we determined the following time budgets to be allocated 
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to the knock/pre-ignition sub-system; to comply with the EMS-REQ1 the knock detection 

and correction should be performed within 300ms. To comply with EMS_REQ2, from the 

detection of the pre-ignition until an ignition stop request is delivered the duration should 

not exceed 250ms. Hence, we have the following two constraints to be satisfied when 

refining the knock/pre-ignition functional architecture during the design phase: 

• AConst1: The detection and the correction of the knock should be performed within 

400ms 

• AConst2: From the detection of the pre-ignition until an ignition stop request is 

delivered, the duration should not exceed 250ms. 

2.2.3. Design phase 

It is during this phase, that we start reusing the information available from the previous 

version of the knock sub-system software. 

To detect the pre-ignition phenomenon, it is possible to use exactly the same software 

modules as the previous version without adding new functional blocks/software modules. In 

this case; we just need to adapt the software module called “detection” to enable both the 

detection of the knock and pre-ignition phenomena. However, the pre-ignition phenomenon 

occurs only in turbo-compressed engines. So, for the other engine kinds, only the previous 

knock software version is needed. To facilitate the reuse of both the previous and new 

versions of the sub-system, we decided, hence, to add a new function that allows detecting 

separately the pre-ignition phenomenon during the pre-window. 

2.2.3.1. Analyzable Model 

• Knock/pre-ignition Design Functional View: We develop this view based on the 

already existing software modules. As described in the previous chapter, we transform 

each software module from the previous software version to a functional block. Then, we 

add a new functional block for the detection of the pre-ignition phenomenon. Figure 43 

shows an overview of the knock/pre-ignition functional architecture developed during 

this phase. 
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Figure 43 Knock/pre-ignition design functional view 

As figure 43 shows, the software modules noise acquisition, detection, control, diagnosis 

and limp home are transformed respectively into functional blocks called noise 

acquisition, knock detection, control, diagnosis and limp home. We introduced the new 

functional block pre-ignition detection for the detection of the pre-ignition phenomenon. 

This detection is done based on the noise signal acquired during the pre-window. As 

presented in the methodology description, EAST-ADL constructs for functional 

modeling are used to develop this view. Note that during this phase, we perform just a 

direct transformation of each software module from the previous software version to a 

functional block without focusing on the software module internal implementation (i.e., 

the operations/runnables that it contains). Such implementation will be described during 

the implementation phase based on the new functional architecture chosen and the 

timing analysis results obtained during the design phase. Nevertheless, during this phase 

(design), we decide about the role of each functional block of the new configuration. For 

example, the noise acquisition functional block will perform not only the acquisition of 

the noise signal during the main window (as it was the case for the previous software 

version) but also the acquisition of the noise signal during the pre-window. As for the 

previous software version, the knock detection functional block is responsible for the 

detection of the knock phenomenon and the parameter calculation for the main window. 

For the new version of the knock/pre-ignition sub-system, this functional block will also 
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perform the parameter calculation of the pre-window. The control functional block will 

perform the same task as for the previous software version. The diagnosis and limp home 

functional blocks will process the noise signals acquired during both the main window 

and the pre-window. 

Based on this functional configuration and the time budgets determined for the 

knock/pre-ignition sub-system, we determine the time budget to allocate to each 

functional block. To do so, we need to develop first the timing view of this phase. 

• Knock/pre-ignition Design Timing View: Figure 44, 45 and 46 show the timing view 

of the design phase. The constraint AConst1 (figure 44) means that from the start of the 

noise acquisition functional block until the knock detection and then the control are 

finished, the duration should not exceed 300ms. AConst2 (figure 45) means that since the 

start of the noise acquisition until the pre-ignition detection is finished, the duration 

should not exceed 250ms. From the previous version of the knock sub-system, we 

introduce, during this phase, a new constraint AConst3 (figure 46) that requires that, 

from the start of the diagnosis until the end of the limp home, the duration should not 

exceed 200ms. 

 

Figure 44 From acquisition to control EventChain 
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Figure 45 From acquisition to pre-ignition detection EventChain 

 

 

Figure 46 From diagnosis to limp home EventChain 

Based on the above mentioned constraints and with the help of knock sub-system specialists 

we determined the following time budgets to allocate to the functional blocks of the new 

knock/pre-ignition version (table 18). 
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Table 18 Knock/pre-ignition functional block time budgets 

Functional block Time budget (ms) 

Noise acquisition 100 

Knock detection 200 

Control 100 

Pre-ignition detection 150 

Diagnosis 100 

Limp home 100 

 

These time budgets mean that: 

• DConst1: The noise acquisition should be performed within 100ms 

• DConst2: The knock detection should take place within 200ms 

• DConst3: The knock control should be performed during 100ms 

• DConst4: The pre-ignition detection should take place within 150ms 

• DConst5: The diagnosis should be performed within 100ms 

• Dconst6: The limp home should take place within 100ms 

 These constraints should be respected when creating the software architecture of the 

knock/pre-ignition during the implementation phase 

2.2.3.2. Hardware Architecture Exploration: 

As mentioned previously, for the previous version of the knock sub-system, all the software 

modules execute on the engine management ECU. In our case, the new version of the sub-

system should use the same resource. Hence in this phase, we perform ECU load estimation 

not to determine the best functional block-to-ECU allocation scenario but just to verify that 

the CPU load budget decided for the new version is respected with the new configuration 

(introduction of pre-ignition detection). With the help of EMS designer and knock sub-
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system specialists, we identified that the load requested by the knock/pre-ignition should 

not exceed 5% of the global load of the engine management ECU. To verify if this load could 

be respected or not, we should determine the ECU load requested by the new software 

version based on the functional architecture described previously and the execution times 

estimated for the functional blocks. 

Estimation of functional block execution times: 

The execution time of each functional block is determined based on the previous software 

version. In fact, for this previous version, we have a data base describing the execution time 

of each operation (these operations are described in figure 39). Table 19 shows the execution 

times of the previous software version operations. These execution times will allow us 

having an estimation of the execution time of the functional blocks.  

Table 19 Operation execution times from previous knock software version 

Operation Execution Time (µs) 

Filtering and integration 7 

Diagnosis 7.5 

Limp home 400 

Window parameter setting 6 

Threshold calculation 9 

Knock energy calculation 9 

Correction loop 27 

 

In the previous software version, the operation filtering and integration has a worst case 

execution time of 7 µs. For the new version of the sub-system, we know that this operation 

should be performed twice (first on the signal acquired during main window and then on the 

signal acquired during pre-window). Thus, for the functional block noise acquisition, we can 

estimate a bound of 14 µs for its execution time (the double of the filtering and integration 

operation execution time). As the control functional block role remains unchanged, we can 

assign to it the same execution time as the previous version. 
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For the knock detection functional block, in addition to old treatment (main window 

parameter calculation, threshold calculation, energy calculation), the new version should 

calculate also the parameters of the pre-window. Thus, we can estimate for it an execution 

time of 30 µs (the sum of the previous execution times augmented by an extra time for the 

calculation of pre-window parameter. This augmentation should be nearly equal to the 

execution time of the main window parameter calculation operation). The bound to be 

estimated for the execution time of the diagnosis functional block is 15µs as the treatment of 

this functional block should be performed for both the noise signal acquired during the main 

window and the signal acquired during the pre-window. For the pre-ignition functional 

block, we estimate an execution time of 20µs (the detection of the pre-ignition phenomenon 

will be nearly similar to the knock detection based on the calculation of a pre-ignition 

threshold) 

To be able to estimate the load requested by knock/pre-ignition functional block, we also 

need to know the period of each treatment. Table 20 describes the activation of each 

operation from the previous software version. 

Table 20 periods of previous software version operations 

Operation Activation 

Filtering and integration Window end event 

Diagnosis SEG_event 

Limp home 100ms 

Window parameter setting SEG_event 

Threshold calculation SEG_event 

Knock energy calculation SEG_event 

Correction loop SEG_event 

 

The window end event and the SEG event are engine-synchronous events (the periods of 

these events depend on the engine speed). In our case, to simplify the understanding of the 

illustration, we choose to perform timing analysis for a six cylinder engine running at 6000 

rpm. At this engine speed, the window end event has a period of 2ms. The SEG event has a 

period of 3ms.  
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Based on these values, we can assign the following periods to our functional blocks (table 

21). We choose to assign a period of 3ms for the pre-ignition detection functional block 

(similar to the period of knock detection functional block). Table 21 shows also the 

functional block execution times. 

Table 21 Knock/pre-ignition functional block execution times and periods 

Functional block Execution time (µs) Period (ms) 

Noise acquisition 14 2 

Knock detection 30 3 

Control 27 3 

Diagnosis 15 3 

Limp home 400 100 

Pre-ignition detection 30 3 

 

Based on these values, the global load requested by the knock/pre-ignition functional blocks 

is 4.1%. This value is less than the load budget authorized for the knock/pre-ignition sub-

system. This means that the architecture conceived can be validated and it is possible to 

move to the next development phase, the implementation. 

2.2.4. Implementation Phase 

During this phase, we transform the knock/pre-ignition functional architecture described 

during the design phase into a software architecture using AUTOSAR concepts. As for the 

cruise control use case, we used the Cessart-CT tool to create the models of this phase. 

� Knock/pre-ignition Application View: In this view, we chose to transform each 

functional block from the design phase to an AUTOSAR software component. Figure 47 

shows a simplified overview of the software components and their communication (for 

the clarity of the figures, we do not show all the data exchanged between the software 

components). Figure 48 shows the runnable entities created for each software 

component. 
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Figure 47 simplified overview of Knock/pre-ignition AUTOSAR software architecture 

 

Figure 48 Knock/pre-ignition software components and runnable entities 

As figure 48 shows, compared with the previous software version, the internal behavior 

(the defined runnable entities) of each software component is adapted to respect the new 
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configuration. The software component noise acquisition contains two runnable entities. 

The first one performs the filtering and integration of the noise signal acquired during 

the main window and the second one processes the signal acquired during the pre-

window. For the software component knock detection, we added a runnable entity for 

the calculation of the pre-window parameters (begin instant and duration). The 

diagnosis software component contains two runnable entities that perform the diagnosis 

of the noise signal acquired during the main window and the one acquired during the 

pre-window. The pre-ignition software component contains two runnable entities. The 

first runnable entity calculates a pre-ignition threshold. Based on this threshold, the 

second runnable entity calculates the pre-ignition energy. If this energy exceeds a fixed 

limit, this means that pre-ignition is occurring. 

� Knock/pre-ignition Timing Behavior View: In this view, we modeled the timing 

constraints determined during the design phase by means of AUTOSAR events and 

event chains. For example, for the constraint DConst3, we modeled an event chain 

having as stimulus the activation event of the runnable entity correction loop and as 

response the termination event of the same runnable. For this event chain, we specified a 

latency constraint having 100ms as a maximum value. For Dconst4, we modeled an 

event chain having as stimulus the activation event of the runnable pre-ignition 

threshold calculation and as response the termination event of the runnable pre-ignition 

energy calculation. For this event chain, we specified a latency constraint of 150ms. 

Figure 49 shows a representation of the event chain related to the constraint Dconst4 

(pre-ignition event chain). 

 

Figure 49 Representation of the modeling of the pre-ignition event chain 
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� Resource Platform View: In this view, we model the hardware and software resources 

used by the knock/pre-ignition sub-system. Figure 50 shows an overview of the resource 

platform used by this sub-system. As mentioned previously, all the knock/pre-ignition 

software components will run on the engine management ECU. Task_ENG is an 

engine-synchronous task that is triggered by the SEG event presented in table 20. 

Task_WinEnd is triggered by the window end event. 

 

Figure 50 Representation of the resource platform view 

� Mapping View: Figure 51 shows a representation of the mapping view, it presents the 

distribution of the runnable entities between OS tasks. To develop this view, we used the 

information of the mapping of the previous software version operations to OS tasks. For 

the new software architecture, we chose to map the runnable entities of the pre-ignition 

detection software component to the TASK_ENG. 

 

Figure 51 Representation of the mapping view 
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2.2.5. Scheduling Analysis 

We performed scheduling analysis using the SymTA/S tool. The scheduling analysis was 

performed taking into account all other EMS sub-systems and the new knock/ pre-ignition 

constraints. Table 22 shows the response times related to the knock/pre-ignition sub-

system. All the response times are less than the deadlines specified (the same for the 

constraints considered for the other sub-systems) which means that the system is 

schedulable. 

Table22: Response times for the knock/pre-ignition event chains 

Event Chain Deadline (ms) Response Time (ms) 

Noise acquisition 100 25 

Knock control 100 15 

Pre-ignition detection 150 82.5 

Knock detection 200 110 

diagnosis 100 30.5 

Limp home 100 40.2 
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3. About the Methodology Acceptability 
In this chapter, we propose to measure the acceptability of our methodology and its potential 

to be adopted by Continental engineers. Let’s note that the results of this thesis work has 

contributed among many other research works carried out at Continental to the decision of 

Continental to migrate to a new EMS software architecture based on AUTOSAR concepts 

and adapted to EMS characteristics. As a part of this migration process, a tool allowing the 

description of EMS software architecture with AUTOSAR concepts is being developed. This 

tool gives the possibility to transform previous software version described with XD models 

into AUTOSAR software architecture. It is also intended to allow the integration of 

AUTOSAR models from different parts of the EMS software. 

3.1. Tasks, Roles, Skills 

To measure the acceptability of our methodology, we propose to measure the gap between 

our proposed process and the current EMS development process (described in section 1.2 of 

this part) in terms of current vs. new tasks and skills in order to determine the training 

needs and to evaluate their availability potential. Table 23 gives a comparison between the 

tasks performed currently by the different roles involved in the EMS development process 

and the new tasks required by our methodology. The new tasks required by the 

methodology should be weaved into the tasks performed currently during the EMS 

development process. 
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Table 23 Current vs. new tasks 

Role Current task New task 

EMS designer 

-  EMS requirement analysis 

(functional and performance 

requirements): elicitationand 

integration in Doors data base 

- EMS partitioning 

- EMS end-to-end timing requirement 

determination and analysis 

-  Analysis functional views modeling 

-  Analysis timing views modeling 

- Sub-system time and CPU load budgets 

determination  

Function 

developer 

 

-  Sub-system requirement analysis 

(requirement elicitation and 

integration in Doors data base) 

-  Function and algorithms 

description (manually or through 

Simulink modeling) 

 

-  Sub-system design functional view 

modeling 

-  Sub-system timing view modeling 

-  Functional block time budgets 

determination 

-  Functional block execution times 

estimation 

-  Modeling of abstract architecture of the 

hardware platform to be used by the sub-

system. 

-  Allocation of functional blocks to hardware 

resources modeling 

-  Processor load estimation 

Software 

developer 

-  Sub-system algorithms 

implementation (manual C coding 

or automatic C code generation 

from Simulink models) 

-  Sub-system software architecture 

description using AUTOSAR 

-  Runnable entity timing information 

determination (timing constraints & 

execution times) 

Software 

integrator 

-   C code and algorithms 

integration from different sub-

systems 

-  AUTOSAR models from different sub-

systems integration 

-  Scheduling analysis performance for 

integrated EMS 

 

As the table shows, the new tasks required by the methodology are centered on modeling 

and timing analysis. To be capable to perform these tasks, some skills need to be acquired by 

the different roles involved in the development process. Table 24, 25, 26 and 27 give a 

comparison between the current skills and the new required skills for each role involved in 

the development process. 

 

 

 



155 

 

Methodology for Model-based Timing Analysis Process 

 

Table 24. Current vs. new skills and training needs for EMS designer 

Role Current skills 

New skills 

Training needs 

Required skill Rational Availability risk 

EMS designer 

- Use of Doors tool 

-  Domain knowledge: 

engine control 

knowledge 

- CPU load budgeting 

 

Real time skills: 

determination of EMS 

end-to-end requirements 

and sub-system time 

budgeting 

EMS designer should 

have these skills to be 

able to determine the 

EMS end-to-end 

requirements and, based 

on this, to determine 

the time budget to 

assign to each sub-

system 

No availability risk 

as EMS designer 

can be supported by 

the function and 

software developer 

of each sub-system 

who have better 

knowledge about 

the time budget that 

can be acceptable 

for the considered 

sub-system 

No training is 

needed 

Need for support 

from sub-system 

function and 

software developer 

EAST-ADL functional 

modeling 

To be capable to 

develop functional 

views during the 

analysis phase 

Medium availability 

risk as EAST-ADL 

is not very well 

known currently 

and hence there is a 

risk of lack of 

EAST-ADL 

training 

EAST-ADL 

training 

UML diagrams use 

Need for use of UML 

composite structure 

diagrams for functional 

views and UML 

sequence diagrams for 

timing views 

No risk of 

availability as UML 

is a standard and 

training for UML 

concepts and tools 

can be provided 

easily 

UML basic training 

UML editor use 

Needed to develop the 

models during the 

analysis phase 

UML editor 

training (e.g., 

ARTISAN studio, 

papyrus MDT) 

TADL modeling 

Need to be familiar with 

TADL concepts to 

develop the timing 

views that represent the 

EMS end-to-end 

requirements during the 

analysis phase 

No availability risk 

as TADL notions 

are integrated in 

AUTOSAR timing 

extensions for 

which training can 

be provided at 

Continental 

TADL training  

Eclipse use 

This skill is needed as 

most of available UML 

editors are eclipse based 

No availability risk 

as EMS designer 

can be supported by 

software developers 

who have already 

eclipse use skills 

Eclipse basic 

training 

 

As the table shows, most of the new required skills for EMS developer are centered on 

modeling skills and the use of modeling languages and tools. Such skills can be acquired by 

EMS designer through training. 
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Table 25. Current vs. new skills and training needs for function developer 

Role Current skills 
New skills 

Training 

needs 
Required skill Rational Availability risk 

Function 

developer 

-  Use of Doors tool 

- sub-system 

functional design 

description as Word 

specifications 

-  Auto coding-aware 

Simulink modeling 

Real time skills: 

capability to 

determine time 

budgets and estimate 

execution times 

To be capable to 

determine functional 

block time budgets 

and estimate 

functional block 

execution times 

No availability risk 

as function 

developer can be 

supported by 

Continental dynamic 

architecture 

specialists who have 

strong real time 

skills 

Support from 

EMS dynamic 

behavior 

experts 

Information 

exchange with 

software 

developer 

EAST-ADL 

functional modeling 

To be capable to 

develop functional 

views during the 

design phase 

Medium availability 

risk as EAST-ADL 

is not very well 

known currently and 

hence there is a risk 

of lack of EAST-

ADL training 

EAST-ADL 

training 

UML diagrams use 

Need for use of UML 

composite structure 

diagrams for 

functional views and 

UML sequence 

diagrams for timing 

views 

No risk of 

availability as UML 

is a standard and 

training for UML 

concepts and tools 

can be provided 

easily 

UML basic 

training 

UML editor use 

Needed to develop 

models during design 

phase 

UML editor 

training (e.g., 

ARTISAN 

studio, papyrus 

MDT) 

TADL modeling 

Need to be familiar 

with TADL concepts 

to model the timing 

views during the 

design phase 

No availability risk 

as TADL concepts 

are integrated in 

AUTOSAR timing 

extensions for which 

training can be 

provided at 

Continental 

TADL 

training 

Eclipse use 

This skill is needed 

as most of available 

UML editors are 

eclipse based 

No availability risk 

as function 

developer can be 

supported by 

software developers 

at Continental who 

have already eclipse 

use skills 

Eclipse basic 

training 
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Table 26. Current vs. new skills and training needs for software developer 

Role Current skills 

New skills 

Training needs 
Required 

skill 
Rational 

Skill availability 

risk 

Software 

developer 

-  MISRA C coding 

-  Real time skills: 

capability to decide 

about recurrences 

and deadlines to 

assign to executing 

operations 

- Work within eclipse 

environment 

AUTOSAR 

modeling: 

application 

modeling, 

timing 

modeling, 

platform 

modeling, 

mapping 

modeling 

Software developer 

should master using 

AUTOSAR concepts to 

develop sub-system 

software architecture at 

implementation level 

No availability risk as 

AUTOSAR trainings 

can be provided at 

Continental 

AUTOSAR 

training 

AUTOSAR 

editor use 

Needed to develop 

AUTOSAR models 

No availability risk as 

an AUTOSAR editor 

adapted to describe 

EMS architecture is 

being developed at 

continental with the 

intention to train 

software developers to 

it. 

AUTOSAR 

editor training 
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Table 27. Current vs. new skills and training needs for software integrator 

Role Current skills 
New skills 

Training 

needs 
Required skill Rational Availability risk 

Software 

integrator 

-Software integration 

tool use (internal 

tools) 

- Capability to 

analyze the static and 

timing behavior  

(execution time and 

response time 

measurement) of the 

integrated software  

AUTOSAR modeling 

This skill is needed 

to enable a correct 

integration of the 

AUTOSAR models 

from different sub-

systems 

No availability risk 

as AUTOSAR 

trainings can be 

provided at 

Continental 

AUTOSAR 

training 

AUTOSAR editor use 
Needed to integrate 

AUTOSAR models 

No availability risk 

as an AUTOSAR 

editor developed 

within Continental 

and adapted to EMS 

architecture is being 

developed with the 

intention to train 

software integrators 

to it. 

AUTOSAR 

editor training 

Capability to work 

within Eclipse 

environment 

The available 

AUTOSAR editors 

are eclipse-based. 

No availability risk 
Eclipse basic 

training 

Scheduling analysis 

tool use 

Software integrator 

need to be capable to 

use scheduling 

analysis tools to 

perform scheduling 

analysis for the 

integrated system 

No availability risk 

as for commercial 

tools such as 

SymTA/S, the 

provider is ready to 

train continental 

engineers to it. 

Scheduling 

analysis tool 

training (e.g., 

SymTA/S, 

Chronval) 

Basic notions of 

scheduling theory 

The software 

integrator should 

have some notions of 

scheduling theory 

(preemption, 

cooperation, 

blocking, offsets, etc) 

to be capable to 

interpret scheduling 

analysis results. 

Real time properties 

of Continental tasks 

(recurrences, 

deadlines, 

preemptivity) are 

already known by 

software integrators. 

For scheduling 

theory notions, there 

is no availability risk 

as these notions can 

be acquired during 

trainings to 

scheduling analysis 

tools. 

No specific 

training is 

needed, this 

knowledge can 

be acquired as 

part of training 

to scheduling 

analysis tools 

 

Based on the comparison presented in the previous tables in terms of needed tasks and skills, 

we can conclude that there is a good potential for our methodology to be adopted by 
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Continental engineers. In fact some of the skills required by the methodology are already 

available in continental. For the skills that are not available yet, there is no risk to acquire 

them as trainings can be provided at Continental. However, as EAST-ADL is a new 

formalism, EAST-ADL trainings can be not available in the short term. The early 

development phases based on EAST-ADL modeling can be adopted as an enhancement of 

the future Continental development process that is intended to be based on AUTOSAR 

software architecture. 

3.2. Tool Support 

In this section, we propose to measure the acceptability of the proposed methodology in 

terms of tool support. To this end, we compare the current tool chain used at Continental to 

develop engine management systems and the tool chain required by our methodology. 

Figure 52 shows an overview of the current EMS development tool chain. 

 

Figure 52 Current tool chain used to develop Engine management systems 
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As the figure shows, requirement analysis activities are performed by the EMS designer and 

function developer based on the Doors data base. During the software development of each 

sub-system, the functional design is described either as Word specifications in the code-

centric approach or through using the Simulink tool to model the functions and their 

associated algorithms in the model-based approach. In the same way, the software 

implementation is either done manually using a C code editor or by generating the C code 

automatically using a C code generator. During the software integration, an internal 

software integration tool is used. Then, from this tool, an XD model is generated to enable 

the analysis of the static architecture of the software using the XD tool. In parallel, an 

internal tool (timing data base) allows performing the timing analysis of the integrated 

software by measuring the operation execution times, the OS task response times and the 

CPU load values. 

Figure 53 shows the new EMS development tool chain underlying our methodology. 

 

Figure 53 Methodology development tool chain 
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As figure 53 shows, during the analysis and design phases, a UML editor is needed in order 

to enable the development of functional and timing views during these phases. During the 

implementation phase of each sub-system, an AUTOSAR editor is needed to describe the 

software architecture using AUTOSAR constructs. Such editor is also needed to perform the 

integration of AUTOSAR models from different sub-systems. Based on the functional 

architecture modeled during the design phase for each sub-system, a large part of the 

AUTOSAR software architecture can be generated automatically using a transformation 

tool. In the same way, to perform scheduling analysis on the integrated architecture, a 

transformation tool is needed to transform AUTOSAR models to a model understandable by 

a scheduling analysis tool. 

Table 28, 29 and 30 give a comparison between the current and the new tool chains during 

respectively EMS design phase, software development for each sub-system and software 

integration and analysis. The new tool chain required by the methodology should be weaved 

into the tool chain that is currently used during the EMS development process. 

Table 28 Current vs., new tool chain used during EMS design phase 

EMS 

Development 

phase 

Current 

tools 

New tools 

Tool Rational Example Availability risk 

EMS design 

-  Doors data 

base 

- Word 

UML editor 

To develop 

EAST-ADL 

and TADL 

models during 

analysis phase 

- Papyrus 

MDT 

- Artisan 

Studio 

No availability risk as 

these tools are already 

developed. Artisan studio 

is already used by 

Continental engineers to 

develop basic software 

parts for each sub-system 
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Table 29 Current vs., new tool chain used during software development of each sub-system 

EMS 

Development 

phase 

Current 

tools 

New tools 

Tool Rational Example Availability risk 

Software 

development 

for each sub-

system 

-  Doors 

-  Word 

-  Simulink 

-  C editor 

- C code 

generator 

UML editor 

To develop 

EAST-ADL 

and TADL 

models during 

design phase 

- Papyrus 

- Artisan 

Studio 

No availability risk as 

these tools are already 

developed 

Scheduling 

analysis tool 

To calculate 

the processor 

loads based on 

functional 

block-to-ECU 

allocation 

scenario 

 

 

- MAST 

- Cheddar 

- SymTA/S 

No availability risk as 

these tools are already 

available 

Design to 

implementation 

transformation 

tool 

This tool is 

needed to 

generate 

automatically a 

part of the 

AUTOSAR 

software 

architecture 

from the 

functional 

EAST-ADL 

architecture 

and hence 

accelerate the 

development 

Optimum 

[60] 

A tool called Optimum 

that allows generating 

automatically AUTOSAR 

software components 

from EAST-ADL 

functional models exists 

already. However, this 

tool is not mature 

enough. The non-

availability of such tool is 

not a blocking point for 

the adoption of the 

methodology but it may 

prevent from saving more 

development time 

compared with current 

status of the methodology 

AUTOSAR 

editor 

This tool is 

needed to 

model the 

software 

architecture of 

each sub-

system using 

AUTOSAR 

concepts 

Cessar-CT 

 

Cessar-CT is not mature 

enough. Nevertheless, 

there is no availability 

risk for an AUTOSAR 

editor as a tool is already 

being developed in 

Continental for a new 

EMS architecture based 

on AUTOSAR. 
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Table 30 Current vs., new tool chain used during software integration and in case of software reuse 

EMS 

Development 

phase 

Current 

tools 

New tools 

Tool Rational Example Availability risk 

Software 

integration and 

analysis 

- Software 

integration 

tool 

- XD tool 

- Timing data 

base 

AUTOSAR 

models 

integration 

tool 

(AUTOSAR 

editor) 

This tool is 

needed to 

enable the 

integration of 

the 

AUTOSAR 

models from 

different sub-

systems 

- 

No availability risk 

because the AUTOSAR 

editor developed for the 

new EMS AUTOSAR 

architecture is intended 

to enable the integration 

of AUTOSR parts from 

different sub-systems 

AUTOSAR to 

scheduling 

analysis 

transformation 

tool 

This tool is 

needed to 

generate 

automatically 

from 

AUTOSAR 

models a 

model 

understandable 

by a 

scheduling 

analysis tool 

AUTOSAR-

to-SymTA/S 

transformation 

tool 

This kind of 

transformation tool is 

being currently 

developed by 

Symtavision, the 

SymTA/S provider 

Scheduling 

analysis tool 

This tool is 

needed to 

perform 

scheduling 

analysis on the 

integrated 

AUTOSAR 

models 

SymTA/S 

No availability risk as 

SymTA/S is already 

available and it satisfies 

all the scheduling 

analysis needs for 

automotive systems. Let’s 

note that the license of 

this tool costs between 

30000 and 40000 Euros. 

Development 

by reuse with  

the 

methodology 

- 

XD to 

AUTOSAR 

editor 

transformation 

tool 

This tool is 

needed to 

speed the 

transformation 

of the old 

software 

architecture 

represented in 

XD to an 

AUTOSAR 

architecture in 

case of reuse of 

software 

modules. 

- 

No availability risk as the 

AUTOSAR editor 

developed for the new 

EMS AUTOSAR 

architecture is intended 

to allow importing 

models represented in 

XD. 
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 As the tables show, several new tools that are not currently used by Continental engineers 

are required by our methodology. However, these tools are already available and mature 

enough and engineers can be trained to them. Some tools such as the tool to transform 

EAST-ADL functional architecture to an AUTOSAR architecture are available but need to 

be improved. Nevertheless, the evaluation of this tool in Continental showed that it can be 

improved easily for an accurate integration in the development process. 

3.3. Methodology Tooling 

In this section, we present the tools that have been developed to facilitate the use of our 

methodology by Continental engineers. To model our methodology, the Eclipse Process 

Framework (EPF) [63] is used to represent the phases and activities of our methodology. 

To guide Continental engineers through the use of our methodology, we implemented also 

Eclipse cheat sheets that engineers can follow when using the methodology. Finally, a set of 

model checking rules have been implemented to ensure the development of consistent 

models during the analysis and design phases using the papyrus tool. 

3.3.1. Methodology EPF Model 

Figure 54 shows a simplified overview of the EPF model developed for the methodology. 

The figure shows the modeling of the different activities that should be performed during 

each phase. In addition, the figure details the tasks that should be performed to develop the 

analyzable models during the analysis and implementation phases. 
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Figure 54 Simplified EPF model of the methodology 

3.3.2. Cheat Sheet Guides 

To guide engineers through the use of our methodology, we implemented a set of eclipse 

cheat sheets that describe in details the steps to follow to develop the models needed during 

each phase of the development. Figure 55 shows an example of a cheat sheet that describes 

the modeling steps that should be followed to develop the timing view during the design 

phase. These cheat sheets can be added as a plug-in to the Eclipse platform and can be used 

by Continental engineers as a part of the Eclipse help. 
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Figure 55 Example of an implemented Eclipse sheet cheat 

3.3.3. Model Validation Rules. 

To ensure the development of consistent models, we used the EMF (Eclipse Modeling 

Framework) [64] Validation mechanisms to implement modeling rules against which 

Continental engineers can verify the correctness of their Papyrus models during analysis 

and design phases. These rules are developed as constraints implemented in Java. Figure 56 

shows an example of the validation of a timing view developed using Papyrus MDT. To 

validate this view, we implemented a Java constraint telling that messages should be 

stereotyped with the stereotype “DataMassage” as described during the methodology 

presentation. As the figure shows, once the validation is launched, the tool detects that this 

constraint is not respected and an error message notifies the designer about the problem. 
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Figure 56 Example of modeling rule validation in Papyrus 
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4. Methodology General Validation 
This section aims at highlighting the added value of the proposed methodology through 

showing at which extent it allows satisfying the automotive needs presented in the first part 

of this manuscript. To validate our methodology we select hence a set of validation criteria 

that reflect these needs. As denoted in the first part of this manuscript, the approach should 

allow: 

• Reducing development time and cost 

• Mastering system complexity 

• Providing a seamless development process based on a seamless tool chain 

• Ensuring system dependability, especially timing correctness through verification and 

validation. 

Table 31 summarizes the capabilities of the methodology against these needs. 

4.1. System Complexity Mastering 

In our process, a top-down approach is followed, whereby system architecture is detailed and 

refined from one phase to another. During the early development phase (analysis), for 

example, the focus is only on system functional architecture, thus abstracting away the 

complexity that is potentially inherent in hardware or implementation details. This 

architecture is further refined during the design phase, and the general features of its 

hardware platform are described. Finally, the software and hardware architectures are 

supplemented with all related implementation details. In this way, the complexity of the 

architecture described increases gradually from one phase to another, allowing engineers to 

focus during each on particular views of the system. The complexity of timing analysis also 

increases gradually from phase to phase. During analysis phase, the focus is made only on 

timing validation of the architecture. During design phase, this validation continues and is 

enhanced by validation of the hardware platform. Finally, after the integration stage, a 

complete scheduling analysis is performed to validate both the timing and performance 

constraints. 

4.2. Development Time and Cost Reduction 

Development time and cost reduction is enabled by our methodology basically through the 

early detection of time-related failure. In fact, if we consider the current EMS development 
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process at Continental, timing verification is performed currently very late after the 

integration of the EMS and is based on tests and measurements (measurement of task 

response times based on the C code of the integrated system). In case of failure detected 

during this phase, the correction of such failure is very time-consuming. In fact, the 

knowledge of the failure source is very difficult (which sub-system is involved? at which 

stage a design mistake was made? etc…). With our methodology, timing analysis starts 

since the very early phase of the EMS design. By identifying EMS end-to-end requirements 

and assigning time budgets to the different sub-systems based on these requirements, we 

ensure that these requirements remain respected when developing the software of each sub-

system. In addition, during the software development process for each sub-system, timing 

analysis is performed in each phase to ensure the correctness of the architecture designed 

and hence the possibility to move to the next phase. Hence, if a failure is detected by the 

scheduling analysis performed on the integrated system, we do not need to spend more time 

to go back to the early design phases (as the architecture designed during these phases is 

already validated).  

Furthermore, the current timing analysis performed on the EMS (after the system 

integration) is more time-consuming than the scheduling analysis activity that we propose 

in our methodology. In fact, for an EMS configuration containing almost 20 OS tasks, the 

measurement of OS task response times (using C code) at a fixed engine speed takes nearly 

four days as it requires modifying the C code of the integrated system to get analyzable C 

code. In addition the tool used currently to measure these response times takes nearly two 

days to analyze the code. For the same EMS configuration, performing scheduling analysis 

using the SymTA/S tool takes only one day knowing that the SymTA/S model for the EMS 

architecture was described manually. This duration will be greatly reduced when the 

SymTA/S model is generated automatically form, e.g., AUTOSAR models. 

In addition, unlike our approach, the current approach does not allow measuring the 

response times of engine-synchronous tasks; it gives results only for timing tasks. Hence, 

the results obtained do not reflect at all the real timing behavior of the system. Due to this, 

some real time failures may be detected only during the final tests on the vehicle itself which 

introduces extra time and cost to correct them.  

To conclude, our process proposes to start timing analysis early. This allows engineers to 

also detect errors early and thus adapt the already developed architecture using models only. 
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It also saves any time that would otherwise have been lost, for instance, in correcting code 

to account for late error detection. Then again, since our development process is model-

based, automatic transformations can be used to generate either models for the next phase 

(e.g. by transforming a model developed at the design stage into AUTOSAR software 

architecture) or the final code from the AUTOSAR implementation model. It also serves to 

automatically generate input models for the analysis tools. All of these features represent a 

huge reduction in development time and hence cost. In the cruise control use case presented 

previously, development of models in the different phases, together with timing analysis, 

took only three days, which is much less than the time usually required to develop software 

based on classical approaches (code-centric approaches). 

4.3. Seamless Development Process 

Our methodology gives guidance for a seamless development and timing analysis process. In 

fact, unlike existing approaches that we described in the first part of this manuscript, our 

methodology gives guidance for model refinement from a phase to another. In addition, it 

describes how analysis results of each phase should be used for architecture refinement 

during the next phase. 

Moreover, the methodology describes the tool chain that should be used during the 

development process for both the modeling and timing analysis activity. Based on the 

acceptability study of the methodology, there is a good potential for an easy adoption of this 

tool chain at Continental. 

4.4. Enabling Timing Verification 

The first objective of our proposed process was to enable the integration of timing analysis 

along the development process. Compared with available approaches presented in the first 

part of this manuscript, our methodology gives detailed guidance allowing performing 

timing analysis and verification from early design phases until implementation and 

integration. Furthermore, compared with current EMS development process where timing 

analysis is performed only at the integration stage, our process enables starting timing 

analysis since the very early design phases. In fact during the analysis phase, sub-system 

time budgets are determined to ensure compliance with vehicle end-to-end requirements. 

Then, these budgets are refined during the design phase to determine the functional block 

time budgets. These latter time budgets represent the constraints that are verified during 

the implementation phase through performing scheduling analysis. In addition, the 
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validation of the hardware platform is started during the design phase, based only on 

allocation of functional blocks to hardware resources. This model is refined during the 

implementation phase by adding the software resources and the mapping of the runnable 

entities to these resources. This way, our methodology enables during the early phases 

(analysis and design) a sort of “preparatory analysis” that paves the ground for the 

scheduling analysis activity performed after EMS integration. 

In addition, in this work, we showed how to move from modeling and design activities to 

timing analysis activities by presenting guidance for model development and refinement. 
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Table 31 Methodology capabilities 

Software development needs Methodology capabilities 

Master system complexity 

Development through abstraction levels (From abstract functional 

description to detailed implementation). 

The complexity of the designed architecture increases gradually 

from a phase to another 

 Enable the designer to focus on different aspect at different design 

phases 

The complexity of the timing analysis increases gradually 

(evaluation of time budgets, then evaluation of hardware resources 

utilization and finally complete scheduling analysis) 

Reduce development time 

and cost 

Early detection of design mistakes, 

Reduce time and cost due to correction of last-minute detected 

errors 

The scheduling analysis proposed by the methodology is less time 

consuming than the approach used currently in continental 

Automatic transformation of models can be used to accelerate the 

development and the timing analysis 

Define seamless 

development activity 

Gives guidance for model refinement and transformation (from 

analysis to design phase, from design to implementation phase, 

from modeling to analysis tools) 

A tool chain for modeling and timing analysis is defined to cover 

the whole development process 

Enable timing verification 

Detailed guidance for integration of timing analysis in the 

development process 

Enables starting timing analysis during early design phases 

Guidance for development of analyzable models during each 

development phase 
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Conclusion and Perspectives 
In this thesis work, we presented a methodology for a model-based timing analysis process. 

This work has been done to make up for the lacks of some existing approaches that 

attempted to provide solutions for automotive software development needs. 

Today, four major challenges are to be met in automotive software development domain: 1) 

Reduce software development time and cost, 2) master system complexity during 

development, 3) provide a seamless development process based on a seamless tool chain and 

4) ensure system correctness through enabling early validation and verification. Among the 

important aspects to be verified for automotive software is the correctness of its timing 

behavior.  

In order to provide solutions to some of these needs, many model-based development 

approaches and methodologies have been defined. Some of these approaches are automotive 

domain specific such as the approaches defining the EAST-ADL, TADL and AUTOSAR 

modeling languages. Other approaches are dedicated to real-time systems in general like the 

modeling language MARTE. These approaches give modeling means and concepts that 

allow describing several aspects of the developed system (application, platform, timing, 

allocation, etc). However, although these approaches give some solutions for the above-

mentioned automotive needs, they remain incomplete in term of enabling timing verification 

along the development process.  

To make up for this lack, we propose in this thesis work a methodology that allows 

integrating timing analysis, mainly scheduling analysis, in a model-based development 

process that we defined based on the existing approaches.  

First, we studied the feasibility of our approach which combines model-based development 

for automotive applications and scheduling analysis. On one hand, this feasibility study is 

based on the evaluation of the expressivity of the available modeling languages for enabling 

scheduling analysis. On the other hand, the study is based on the evaluation of the usability 

of scheduling analysis to enable timing verification for automotive systems. This is done 

through evaluating the capabilities of available scheduling analysis tools to satisfy 

scheduling analysis needs for automotive applications. 
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Our approach is based on the definition of a model-based timing analysis process. This 

process is composed of three development phases; analysis, design and implementation 

phase. During the early design phases, analysis and design, analyzable models are developed 

using the EAST-ADL constructs for functional modeling, TADL means for timing 

modeling and MARTE concepts to model allocation. Based on the developed analyzable 

model, timing analysis is performed to determine time budgets to allocate either to the 

developed sub-system itself or to its functional blocks. The time budgets determined during 

each phase ensure respecting the end-to-end timing requirements of that phase. During 

design phase, a hardware architecture exploration is also performed to determine the best 

functional block-to-ECU allocation scenario based on the evaluation of ECU loads. During 

the implementation phase, the complete software architecture is described and scheduling 

analysis is performed to verify whether the system respects the timing constraints 

determined by the timing analysis carried out during previous phases. 

In this thesis work, we presented also an approach describing how to apply our methodology 

for the development of Engine Management Systems (EMS) at Continental. First, we 

studied the EMS current development process at Continental. Then, an approach describing 

the application of our methodology in the context of this development process is defined. 

This approach focuses on two development scenarios; software development from scratch 

and software development by reuse. Based on the above-mentioned application approach, we 

studied also the acceptability of our methodology by measuring the gap between this 

methodology and the current EMS development process in terms of tasks, skills and tool 

chain. This acceptability study reveals a strong potential of our methodology to be adopted 

by Continental engineers especially that, as a result of this thesis work, the AUTOSAR 

formalism is being currently deployed for new EMS architecture at Continental. 

The most important added value of our methodology is enabling early detection of timing 

errors during the development process. This allows avoiding last-minutes detected mistakes 

and hence saving time and cost required for correcting the software implemented. 

Our methodology gives also a seamless development and timing analysis process that is 

based on seamless tool chain for architecture modeling and timing analysis. The different 

development phases defined allows describing the system architecture in a progressive way 

from abstract functional description until detailed implementation. This allows, hence 

designers mastering the complexity of the designed architecture and give them the 
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possibility to focus each time only on particular aspect of the architecture (functional 

description, hardware, timing, etc). 

Although our methodology gives several solutions to meet the automotive software 

development challenges at Continental, some points should be improved in further works: 

In our methodology, we suggest to perform scheduling analysis based on a self-contained 

AUTOSAR software architecture. To perform scheduling analysis, one needs to specify task 

or function execution times. However, in our methodology this is done based only on 

estimation and designer expertise without giving any formal approach describing how these 

execution times can be determined. In case of development by reuse, these execution times 

can be determined based the execution times measured from the C code of previous software 

version. In the case of the cruise control use case (development from scratch), the execution 

times have been determined based on the application expert knowledge. However, this 

remains insufficient and there is a need to define a formal approach allowing the 

determination of such execution times.  

In addition, from a practical point of view, we presented an approach to apply our 

methodology for EMS development at Continental. However, for the software description, 

we do not describe in detail how constructs used currently to describe EMS software 

architecture can be mapped to AUTOSAR concepts. This work is being carried out by 

another team at Continental. It aims at adapting AUTOSAR concepts and means for EMS 

software architecture specificities. 

A further topic that is not presented in this work is the design of an AUTOSAR software 

platform (OS tasks) that ensures the timing correctness of the designed system. In fact, an 

approach should be developed to describe how, based on the timing properties of AUTOSAR 

runnable entities (deadlines, end-to-end constraints, periods, etc), a task model respecting 

these properties should be designed. For example the following questions should be 

answered: 

• How to define OS task deadlines 

• How to define task priorities 

• How to define task periods/ activation patterns 
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Annex 1 shows an example of a work in progress that is performed in this thesis work to 

solve this problem. The annex shows mainly an approach to define OS task deadlines based 

on the deadlines and end-to-end constraints imposed on the AUTOSAR runnable entities. 
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Annex1: Definition of  an 

AUTOSAR OS Task Model 
At the implementation level (based on AUTOSAR software architecture), to enable 

scheduling analysis, the designer should define the OS tasks that constitute the software 

resource platform. To define a complete task model, the designer should make some choices 

to answer the following questions: 

1. How to define the OS tasks of the system 

2. How to assign the priorities to these tasks 

3. How to determine the deadlines for these tasks based on the runnable deadlines and 

end-to-end constraints 

4. What are the activation patterns and the recurrences of these tasks. 

5. How to define the “preemptivity” kind of each task (which tasks are 

preemptive/cooperative) 

 

1. OS tasks choice: generalities 

When choosing the OS tasks, the designer should take into account the characteristics of 

the runnable entities to be mapped to these tasks. In fact, the designer has as input a set 

of runnable entities submitted to a number of constraints such as deadlines or end-to-end 

constraints and characterized by recurrences and execution times. Based on this 

information, the designer should decide about the properties to assign to each chosen 

task (priority, deadline, etc). Of course, the choice of the task model should be done in an 

accurate and optimized way. For example, to optimize the CPU load resulting from task 

switch overheads, the designer should try to minimize at maximum the number of 

chosen tasks while keeping, at the same time, an efficient task model. 

2. Task priorities 

Here, to comply with AUTOSAR OS, we consider a fixed priority task model, i.e. task 

priorities are fixed before system execution and do not change at runtime. When 

assigning priorities to chosen tasks, the designer should consider both the timing 

constraints of the runnable entities mapped to these tasks (deadlines and end-to-end 

constraints) and their execution times. Runnable entities having small deadlines (i.e. 
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representing urgent treatments) should be mapped to tasks for which the designer 

should assign high priorities (deadline monotonic way). Execution times of mapped 

runnables should also be considered in order to prevent tasks from being delayed by 

higher priority task having a large execution time. In such task case (tasks with large 

execution time), the designer should assign a low priority to these tasks and allow them 

to have pre-emption points (schedule points) in order to give the possibility to higher 

priority tasks to execute without waiting the termination of these task. Moreover, when 

assigning priorities to tasks, one should consider its deadline value but also the criticality 

of the treatment associated.  

3. Task deadlines 

Task deadlines should be determined based on the deadlines and end-to-end constraints 

of the mapped runnable entities. 

A. Case1: System with only deadlines on runnables (no defined end-to-end 

constraints on flows of runnables) 

In this case, the designer has as input a set of runnable entities, each runnable has got a 

deadline, a recurrence and an execution time. Of course, it is not optimal to create a task 

for each runnable and assign the runnable deadline to this task. So the designer should 

find a solution to map many runnable entities to the same task for which he chooses a 

deadline that ensures respecting all the deadlines of the mapped runnables. To do so, the 

designer determines, first based on his expertise, groups of runnables to be mapped to 

the same task (these groups are formed by runnables with deadlines that are close to 

each other). For each group of runnables we define a “deadline class”. This represents the 

smallest runnable deadline in the group. The task to which we map the runnables of this 

group will have as deadline this deadline class. To avoid a very pessimistic design the 

designer should adapt the definition of the groups and the repartition of the runnables 

based on the following constraint: for each runnable entity, to belong to a group, the 

difference between the deadline of this runnable and the deadline class of the group 

should be smaller than a certain value that we denote X. This value is chosen by the 

designer based on his expertise 

Formulation 
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Let’s consider a system defined by R = {re1, re2,….., ren}, R is a set of runnable entities 

rei (i c{1. ..n}). Each runnable entity rei is defined by (pi, di, exi), pi is the runnable 

recurrence, di is its deadline and exi is its execution time. The designer determines a set 

of groups of runnable entities G= {g1….gs}. Each group gm is defined as follows: gm = 

{rej…rek} (m c {1...s} and j, k c {1...n}). For each group gm we define a deadline class dgm 

= min dr, r c {j…k} 

Contraints: 

1. A runnable entity rei belongs to a group gm if and only if |(di - dgm) | ≤ X  

Example:  

Let’s consider the runnable entities of table 1: 

Table 1 Example of runnable entities and their deadlines 

Runnable Deadline 

RE0 200 µs 

RE1 1 ms 

RE2 2 ms 

RE3 3 ms 

RE4 10 ms 

RE5 12 ms 

RE6 20 ms 

RE7 25 ms 

RE8 100 ms 

RE9 101 ms 

RE10 26 ms 
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Based on his expertise, the designer will determine a first repartition of these runnables into 

groups (runnables with deadlines that are close to each other will belong to the same group). 

Table 2 gives a repartition of runnable entities into groups 

Table 2 Example of a repartition of runnable entities to groups 

Group Runnables Deadline class 

g1 RE0 200 µs 

g2 RE1, RE2, RE3 1 ms 

g3 RE4, RE5 10 ms 

g4 RE6, RE7, RE10 20 ms 

g5 RE8, RE9 100 ms 

 

This is a first repartition of the runnable entities based on the designer expertise 

Now suppose that the bound X is equal to 1ms (i.e. A runnable entity rei belongs to a group gm if 

and only if | (di - dgm) |≤ 1 ms) 

In this case, RE3 can not belong anymore to the group g1, so we should put it in new group: 

g23 = {RE3} having a deadline class equal to 3ms. It is also the case for the RE5 that can’t 

belong anymore to g3 so we assign it to a new group g34 = {RE5} with 12ms as a deadline 

class, this is also true for the runnable RE7 that can not belong to g4, so we create a group 

g45= {RE7} with 25ms as a deadline class. RE10 should also be removed from g4. As the 

difference between the deadline of RE10 and the deadline class of g45 is less or equal to 1ms, 

we should put RE10 in the group g45 

Finally we end up with the repartition of table 3: 
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Table 3 Repartition obtained 

Group Runnables Deadline class 

g1 RE0 200 µs 

g2 RE1, RE2 1 ms 

g23 RE3 3 ms 

g3 RE4 10 ms 

g34 RE5 12 ms 

g4 RE6  20 ms 

g45 RE7, RE10 25 ms 

g5 RE8, RE9 100 ms 

So, to ensure the respect of the deadlines of these runnables preventing a very pessimistic 

design, we define the following tasks presented in table 4: 

Table 4 Defined tasks 

Task Task deadline Mapped runnables 

T1 200 µs RE0 

T2 1 ms RE1, RE2 

T3 3 ms RE3 

T4 10 ms RE4 

T5 12 ms RE5 

T6 20 ms RE6 

T7 25 ms RE7, RE10 

T8 100 ms RE8, RE9 

 

B. Case 2: System with runnables deadlines and end-to-end constraints 
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In this case, there are two possible configurations: either end-to-end constraints 

are imposed on independent end-to-end flows of runnables (i.e. constrained end-

to-flows have no common runnable entities, figure 1) or these end-to-end flows 

have common runnables (figure 2) 

 

Figure 1 Example of independent end-to-end flows 

 

 

Figure 2 Example of dependent end-to-end flows 

B.1: system with independent end-to-end flows: 

In this case, the designer considers each constrained end-to-end flow as a unique 

runnable entity formed by the succession of the runnables of this end-to-end flow 

and having as deadline the end-to-end constraint imposed on this end-to-end flow 

(figure 3) 
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Figure 3 End-to-end flow transformation 

This means that all the runnables belonging to a constrained end-to-end flow will be 

mapped to the same task. The designer performs then the same work described above by 

defining groups of runnables with deadline classes. 

B.2: system with dependent end-to-end flows: 

Here, we have also two cases: either we are allowed to map a runnable to more than one 

task (i.e. a runnable can be called by more than one task) or each runnable should be 

mapped to exactly one task. In the first case, the work is easy and is the same as the 

work described in B.1: each end-to-end flow is considered as a unique runnable and will 

be mapped to a task. Runnables belonging to more than one end-to-end flow may be 

mapped to more than one task. 

In the second case (when a runnable cannot be mapped to more than one task) the 

problem concerns mainly the runnables that belong to more than one end-to-end-flow. 

The designer separates the runnable entities in two groups: the first group contains the 

runnable that does not belong to any constrained end-to-end flow or to only one end-to-

end flow. The second group contains the runnables that belong to more than one 

constrained end-to-end flow. He performs then the same work described in A for the 

runnables of the first group. Then based on his expertise, and the formed groups, he 

assigns the remaining runnables (i.e. the runnables belonging to more than one end-to-
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end flow) to the formed group in a way that the global end-to-end constraint will be 

respected 

4. Task recurrences 

The problem of choosing task recurrences is similar to the problem of choosing task 

deadlines. The designer has as input a set of runnable entities having recurrences and 

should be mapped to tasks for which we assign recurrences that should respect the 

runnable recurrences. The designer should make a trade-off between the choice of task 

recurrences and the choice of task deadlines. How this trade-off should be made? 

5. Task preemptivity 

Choosing the preemptivity kind for a task means to choose between three categories of 

tasks: either a task is fully preemptive, fully non-preemptive or cooperative. What is the 

criterion on which the preemptivity kind is chosen?  
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