N

N

Méthodologie pour un processus d’analyse temporelle
dirigé par les modeles pour les systémes automobiles

Saoussen Anssi Rekik

» To cite this version:

Saoussen Anssi Rekik. Méthodologie pour un processus d’analyse temporelle dirigé par les modeéles
pour les systémes automobiles. Autre [cs.OH]. Université Paris Sud - Paris XI, 2011. Frangais. NNT:
2011PA112239 . tel-00647906

HAL Id: tel-00647906
https://theses.hal.science/tel-00647906
Submitted on 3 Dec 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00647906
https://hal.archives-ouvertes.fr

Methodology for Model-based Timing
Analysis Process for Automotive
Systems

Méthodologie pour un Processus d’Analyse
Temporelle Dirigé par les Modeles pour les

Systemes Automobiles

THESE

Présentée et soutenue publiquement le
09 Novembre 2011

Par
SAOUSSEN ANSSI
Pour obtenir le grade de
DOCTEUR EN INFORMATIQUE DE
I'Université Paris-Sud

Devant le jury composé de :

Prof. Guy Vidal-Naquet, Université Paris-Sud Président

Prof. Lionel Briand, Université d’Oslo Rapporteur

Prof. Jean-Philippe BABAU, Université de Brest Rapporteur

Prof. Francois TERRIER, CEA LIST Directeur de thése
Dr. Ing. Sébastien GERARD, CEA LIST Encadrant de these

Ing. Stefan Kuntz, Continental Automotive Encadrant de these

To my father,

For all the love he gave to us...

Methodology for Model-based Timing Analysis Process

Acknowledgements

This work has been financially supported by the ANRT (Association Nationale de la

Recherche Technique) in France.

I am grateful to my thesis committee for devoting their time to read the manuscript and to
participate in my dissertation. I have particularly appreciated the thoroughness and

insightful comments from Lionel Briand and Jean-Philippe Babau on earlier drafts.

Special thanks go to my thesis supervisor Prof. Frangois Terrier for giving me the

opportunity to develop this thesis at the CEA LIST labs.

I want to thank my advisor Sébastien Gérard for his crucial support in the development of

the ideas presented here.

[am gratetul to my technical advisor in Continental Stefan Kuntz for his support during this
work and the very interesting technical discussions that we had together. I would like to
salute his technical brilliance and his strong cultural sensitivity. This work allowed me to

learn much from him.

I would like to thank Frédéric-le-Hung, our team manager in Continental, for his support

during these three years and his open-mindedness.

I had the pleasure to work with Denis Claraz and Philippe Cuenot in Continental; I would
like to thank them for their interesting feedbacks and recommendations for the deployment

of this thesis work in Continental.

Special thanks go to my earlier technical advisor in CEA, Huascar Espinoza, for his help and

recommendations during the state-of-the-art studies.

During these three years I had the pleasure to participate to two research projects, EDONA
and Memvatex. I would like to thank all the members of these projects. In particular, I
would like to warmly thank Sara Tucci from CEA for her interesting ideas for the scientific

publications that we wrote together.

[am thanktful to all the people of the LIST lab in CEA and the ADE team in Continental. I
always found high availability of technical support, a very comfortable discussion
environment, a lot of resources to develop the work efficiently, wide openness for work

diffusion, and team participation.

Methodology for Model-based Timing Analysis Process

[am immeasurably thankful to my parents, Sayeh and Khadija, my brothers Imed and Ridha,
my sisters Naziha, Salwa, Henda, and my cousins Sonia and Randa in Tunisia for all their
love, sacrifices and endless encouragement. They always stand by me and never let me down
in spite of physical distance. I owe all my success to their love, care and sacrifices. They

taught me the real sense of sacrifice and altruism.

Finally, there are no words to express my gratitude to my dearly beloved husband Ahmed-
Amine for his sacrifices and everlasting encouragement. He gives me energy, peace of mind

and happiness. This thesis is dedicated to him for everything he means to me...

Methodology for Model-based Timing Analysis Process

RESUME

Ce travail de these a été eftectué dans le cadre d’une collaboration technique entre le CEA-
LIST a Paris et le service «développement avancé électronique» de Continental

Automotive a Toulouse.
1. Objectifs de la these

Dans ce travail de these on se propose de définir une méthodologie décrivant un processus
d’analyse temporelle dirigée par les modeles pour les systémes automobiles. Cette
méthodologie vise a donner un guide aux ingénieurs de développement logiciel automobile
pour T'intégration de la vérification temporelle dans un processus de développement dirigé
par les modeles. Ceci permettrait alors la détection au plus tot des erreurs de conception

liées au comportement temps réel des systémes.

En plus de la définition de la méthodologie elle-méme, sa validation doit étre aussi étudiée en
montrant a quelle mesure elle contribue a résoudre les problémes rencontrés actuellement
dans le domaine du développement logiciel automobile. L’acceptabilité de la méthodologie
est également a étudier pour évaluer son potentiel d’adoption pour le développement des

systemes de contrdle moteur (Engine management System EMS) a Continental.
2. Contexte de la thése
2.1. Contexte Industriel

Aujourd’hui, I'architecture des systémes automobile est devenue de plus en plus complexe
avec une utilisation massive du logiciel embarqué pour assurer les diverses fonctionnalités

d’une voiture.

Pour répondre correctement aux besoins de ces clients ainsi qu’aux contraintes de
concurrences, un équipementier (tel est le cas de Continental Automotive) doit considérer
deux facteurs essentiels: la maitrise du temps et du colit du développement logiciel ainsi que
la garantie de la fiabilité du systeme congu. Vue la complexité croissante du logiciel
embarqué automobile, la garantie de sa fiabilité dépend énormément de la capacité de
maitriser cette complexité lors du développement. En plus de la maitrise de la complexité, la
fiabilité des systémes automobiles doit étre également assurée a travers les techniques de
vérification et de validations. La vérification et la validation des contraintes de temps est
d’une importance énorme pour garantir cette fiabilité. Aujourd’hui la vérification temporelle

des systemes automobiles est effectuée trés tard au cours du développement (apres la phase

Methodology for Model-based Timing Analysis Process

d’intégration). Elle se base essentiellement sur des tests et des mesures plutdt que sur une
approche formelle et systématique. Ainsi, Pour développer un logiciel fiable tout en
respectant les contraintes de concurrences, il y a un besoin fort pour des approches de
développement qui permettent de: 1) Maitriser la complexité du logiciel lors du
développement.2) Réduire le temps et le colit de développement. 3) Définir une
activité de développement ainsi qu'une chaine d’outils homogéne et continue.4)
Permettre l'intégration de la vérification temporelle au cours du processus de

développement.
2.2. Approches existantes

Pour apporter des solutions aux besoins du développement du logiciel automobiles, plusieurs
approches, méthodes et techniques ont été définit aux cours de la derniére décennie. Ces
approches visent soit & donner des méthodes de développement permettant I'amélioration
des processus de développement des systémes automobiles (tel est le cas des approches
définit dans le cadre de I'ingénierie dirigée par les modeles), soit a permettre de vérifier le
comportement temps réel des systemes (comme les technique d’analyse d’ordonnancement et

de performance).

Dans le domaine automobiles, les approches et langages de modélisations qui ont été

définit sont:

e EAST-ADL: Ce langage permet la modélisation de larchitecture
électrique/électronique des systémes automobiles suivant plusieurs niveaux
d’abstraction. I1 donne plusieurs concepts permettant la modélisation de la structure
fonctionnelle (sur les niveaux Analyse et Design) et matérielle (& partir du niveau
design) des systémes automobiles. La Figure 1 montre les niveaux d’abstraction

d’EAST-ADL (le niveau implémentation s’appuie sur les concepts ' AUTOSAR)

Vehicle Feature Model

Analysis Architecture

I Functional An alysis Architecture |

Design Architecture

| Funct. Design Architecture | | Hw Design Architecture |

Implementation Architecture
Autosar Autosar
Application SWW Basic SV

| | Autosar Hws

Figure 1 Niveaux d’abstraction ' EAST-ADL

Methodology for Model-based Timing Analysis Process

e TADL: Ce langage permet la modélisation des propriétés et des contraintes
temporelles des éléments structurels décrits dans une architecture EAST-ADL ou

AUTOSAR.

* AUTOSAR:: Il donne une approche pour décrire une architecture logicielle standard
pour I'automobile. Il offre un modele d’architecture logicielle organisé suivant trois
niveaux : le logiciel applicatif, le RTE (RunTime Environment) et les couches
logicielle de bas nivaux (basic software). Le RTE fait le lien entre le logiciel applicatif
et les couches logicielle basses. Le logiciel est organisé sous forme de composants
logiciels (software components). Pour chaque composant, il est possible de décrire les
unités exécutables qu’il contient (runnable entities) ainsi que ses interfaces de

communication (port)

* MARTE : Ce langage permet de modéliser I'architecture des systemes temps réel. Il
offre un set de concepts de modélisation pour permettre d’effectuer de I'analyse

d’ordonnancement basée sur les modéles.

Parmi les techniques de vérification temporelle on cite essentiellement I'analyse
d’ordonnancement. Dans le contexte de cette technique, plusieurs tests d’ordonnangabilité
ainsi que des outils d’analyse d’ordonnancement ont été développés. Parmi ces outils il ya
des outils académique tel que Cheddar et MAST et d’autres commerciaux tel que SymTA/S
et Chronval. L'évaluation de ces outils d’analyse montre que SymTA/S est le plus adapté

pour faire de I'analyse d’ordonnancement pour les applications automobiles.

L’évaluation des ces approches de développement et de vérification temporelle (effectué aux
cours de ces travaux de thése) a montré quil y a un manque pour un guide
méthodologique pour l'intégration de la vérification temporelle notamment I’analyse
d’ordonnancement au cours du cycle de développement dirigé par les modéles. Ce

travail de thése propose une approche qui permettrait de résoudre ce probleme.
3. Méthodologie

3.1. Objectifs de la méthodologie :

e Définition d'un processus de développement dirigé par les modeles qui assure une
activité de développement continue et homogene tout au long du processus. Ce
processus doit étre facilement utilisable par un ingénieur Continental pour le
développement des systemes de control moteur (Engine Management Systems

Methodology for Model-based Timing Analysis Process

EMS). La méthodologie définit doit décrire les diftérentes phases du processus ainsi
que I'approche suivit pour le développement et 'affinement des modeles d’une phase a

autre.

* Donner un guide pour I'intégration de la vérification temporelle dans ce processus de

[

développement. Ceci requiert la définition du type de vérification temporelle

[

eftectuer durant chaque phase, les techniques et les outils de vérification temporelle
utiliser ainsi que la description de la maniére d’utiliser les résultats d’analyse de

chaque phase pour aftiner les modeles de la phase suivante.

* Décrire la maniere de développer des modeles analysables. Plus particulierement
comment extraire a chaque phase les modéles comportementaux nécessaires pour
I'analyse temporelles des modeles architecturaux utilisés pour la description de

I’architecture.

Figure 2 donne une vue générale du processus d’analyse temporelle dirigé par les
modeles que la méthodologie vise a définir ; aux cours de chaque phase, le concepteur a
en entrée un nombre d'exigences temporelle, il congoit donc l'architecture qui doit
respecter ces exigence et puis 1l effectue une analyse temporelle pour vérifier que

I'architecture congu respecte bien ces exigences.

\
e
) o
e
o
P
w2, ,‘,
s, ¢
Yo &
s,
P &
%, o
8 é\‘(‘ \
. "
Ry Ay, &S AR
%% P rec,“r mé‘eqar“
7 Mogg, '€ W
%, &
S &
Y &
% & .
A, & ey
% 4rc;?,.’8 <8 & oo e
Ve Mg S, e
< Ody o
%
B, ©
% % 5
N &
2 G
% &
2, <&

Figure 2: Processus d’analyse temporelle dirigé par les modéles
3.2. Description de la méthodologie :

Notre méthodologie propose de réutiliser les niveaux d’abstraction du processus de
modélisation ' EAST-ADL/AUTOSAR (figure 2) pour définir notre processus d’analyse
temporelle dirigé par les modeéles. Cependant, le processus EAST-ADL/AUTOSAR

présente seulement les niveaux d’abstraction et les concepts a utiliser a chaque niveau. Il ne

Methodology for Model-based Timing Analysis Process

donne aucune approche décrivant la maniere d’affiner les modéles d'un niveau a autre. En
plus, il ne propose aucune chaine outil pour supporter le processus de développement. Notre
méthodologie doit donc adapter et améliorer ce processus pour apporter des solutions pour

ces problémes.

On propose de commencer I'analyse temporelle a partir du niveau Analyse car le niveau
Véhicule ne donne pas assez de moyen permettant d’effectuer une analyse temporelle. Notre
processus se compose donc de trois phases : Analyse, Design et Implémentation. Sur chaque
phase, on décrit les activités de modélisation ainsi que d’analyse temporelles qui doivent se

faire.

Le figure 3 donne une vue générale du processus définit. Les paragraphes suivants

expliquent les activités effectués durant chaque phase.

System time budgets

Analysis Determine Develop Determine
Phase Vehicle end- 2 = system —- system time
to-end architecture budgets
requirements model

Refine architecture model

Dretermine
system end- Develop

to-end —- refined system (SRt
requirements architecture
model

Determine
functional
blocks time
budgets

: Estimate ECU

Refine architecture model Allecation Clnstraint

Det ine ‘

detailed end- Develop detailed Perform scheduling
to-end systeam analysis
requirements architecture Re-evaluate
nogsl ECU Loads

Design Phase

Implementation
Phase

Verify timing
constraints

Functional blocks time budge-rs
Figure 3 Les phases de la méthodologie proposée
Phase Analyse

Au cours de cette phase, une vue décrivant I'architecture fonctionnelle du systéme (« sub-
system analysis funtional view ») est développée en utilisant les concepts ' EAST-ADL pour
la modélisation fonctionnelle et les « composite structure diagram » d'UML2. Cette vue
décrit le systeme dans son environnement véhicule. Une deuxiéme vue (« sub-system
analysis timing view ») décrivant le comportement temporel du systéme est développé a
partir de la premiére vue fonctionnelle en utilisant les concepts de TADL et les diagrammes
de séquence pour représenter les informations temporelles du systéme (notamment les

contraintes temporelles). L’analyse temporelle effectuée durant cette phase se base sur cette

Methodology for Model-based Timing Analysis Process

10

derniére vue comportementale. L’analyse temporelle de cette phase vise a vérifier la bonne
intégration du systeme dans le véhicule en termes de compatibilité temporelle. Le
concepteur a en entrée une liste d’exigences de bout-en-bout (end-to-end requirements). Ces
exigences impliquent le systéme en cours de développement et les autres fonctions du
véhicule qui communiquent avec lui. Pour chaque exigence de bout-en-bout, le concepteur
doit déterminer un budget temps (« time budget ») qu’il faut allouer au system en cours de
développement pour respecter cette exigence. Chaque budget déterminé durant la phase
analyse représente une contrainte a respecter durant la phase design. La figure 4 montre les

activités de modélisation et d’analyse effectuées durant cette phase.

Modelling

Vehicle

Sub-system
Analysis Functional
View

Use information AnaIySiS
A
Use information Determine sub-
End-to-end constraint »| system time budget

| Sub-system Analysis Timing View ‘

Figure 4 Activités de modélisation et d’analyse temporelle de la phase Analyse
Phase Design

Durant cette phase, la décomposition fonctionnelle du systéme est représentée a travers une
vue qui décrit les blocks fonctionnels qui le composent (« sub-system design functional
view »). Les ressources matérielles sont aussi décrites durant cette phase («hardware
platform view »). Le concepteur eftfectue donc deux types d’analyse temporelle : la premiére
consiste a affiner les budgets temps alloués au system durant la phase précédente (Analyse)
en déterminant les budgets temps qu’il faut allouer a chaque block fonctionnel qui le
compose. La deuxieme analyse temporelle consiste a explorer I'architecture matérielle pour
déterminer la meilleure plateforme matérielle a utiliser (en termes de performance) ainsi que
le meilleur scénario d’allocation des blocks fonctionnels aux ressources matérielles. Ceci est
tait par le biais d'une exploration empirique d’'un nombre de scénarios d’allocation candidats

qui se base sur le calcul de l'utilisation des processeurs pour chaque scénario.

Methodology for Model-based Timing Analysis Process

11

Remarque : Dans cette derniére analyse temporelle (exploration de I'architecture matérielle),
on ne considere pas de modele de ressources logicielle tel que les taches OS ni I'allocation
des blocks fonctionnels a ces ressources. On considére seulement le modéle fonctionnel, le
modele de ressources matérielles et l'allocation directe des blocks fonctionnels aux

ressources matérielles.
La figure 5 montre les activités de modélisation et d’analyse effectuées durant cette phase.

Modelling Analysis

Figure 5 Activités de modélisation et d’analyse temporelle de la phase Design
Phase Implementation

Durant cette phase, un modele complet décrivant les diftérents aspects nécessaires pour
effectuer une analyse d’ordonnancement (architecture logiciel, ressources logicielle et
matérielles, allocation, etc.) est développé en utilisant les concepts ’AUTOSAR. Ce modeéle
est I'affinement du modele fonctionnel et matériel développé au cours de la phase design en
se basant sur les résultats d’analyse temporelle effectué durant cette phase (design). La figure

6 montre les activités de modélisation et d’analyse effectuées durant cette phase.

Methodology for Model-based Timing Analysis Process

12

Use information
from Design
Phase

Use
information

Figure 6 Activités de modélisation et d’analyse temporelle de la phase Implémentation

4. Déploiement et Validation de la méthodologie
4.1. Déploiement de la méthodologie

Dans cette partie, on propose une approche de déploiement de la méthodologie en décrivant
la maniére de l'appliquer dans le contexte de développement des fonctions de contrdle

moteur a Continental (EMS). Figure 7 décrit le processus de développement actuel des EMS

Customer
Regquest
EMS Design

e

chez Continental.

System Level
|

— Sub-system 1 Development Sub-system N Development
Sub-system 1 \ I Sub-systam N
SWE HW I " SWE HW |

Sub-system Level

EMS Integration

.

Figure 7 Processus actuel de développement des EMS

System Level

Methodology for Model-based Timing Analysis Process

13

La figure 8 montre ce méme processus dans le cas de I'application de notre méthodologie

EMS Design

ENS designar

*Sub-systam 1 time budgst
* Sub-system 1 CPU load budgst
+ Sub-systam 1 other

Asquirsments

*Sub-systam Ntime bugzat

* Sub-system N CPU losd budsst
* Sub-system N ather
Requirsmants:

)

- i’%, F e s &
N \%.% P
¢ B % ¢ 9
\ s L ‘Subsystem N q"g % o -
%s /’ -f‘f tunctionzl desizn “31% o &

ECUsdetarmination

ptian of sub- Description of sub-
system 1 AUTDSAR SW system N AUTOSAR W
srchitacture srchitacture

SW davelopment for subsystem L SW deveiopment for subsystam N

N ~

AUTOSAR models integration

Softwzre integrator l

Performance of scheduling analysic

Figure 8 Application de la méthodologie pour le développement des EMS
4.2. Acceptabilité de la méthodologie

En se basant sur I'approche de déploiement décrite précédemment, on a étudié 'acceptabilité
de notre méthodologie en termes de compétences demandés, les taches a effectuer aux cours
de chaque phase ainsi que la chaine d’outil proposée. Tous ces éléments ont été comparé avec
les compétences, taches et chaine d’outil utilisé actuellement chez Continental. Cette étude
montre un bon potentiel d’adoption de notre méthodologie chez Continental. Ceci est
particulierement valide pour la phase Implémentation de la méthodologie surtout que
Continental est en train de migrer vers une nouvelle plateforme basé sur les concepts

dAUTOSAR.
4.3. Validation générale de la méthodologie

La contribution de la méthodologie a satistaire les besoins du développement logiciel
automobile (présentés dans la section 1) a été aussi étudiée. La valeur ajoutée de notre
méthodologie consiste a donner la possibilité de commencer I'analyse temporelle t6t au cours
de processus de développement (beaucoup plus tét que T'analyse temporelle effectuée
actuellement chez Continental). Ceci permet de réduire le temps et le colit nécessaires pour

I'amélioration de larchitecture en cas de détection tardive d’erreur. En outre, notre

Methodology for Model-based Timing Analysis Process

14

méthodologie permet une bonne maitrise de la complexité de I'architecture congue tout au

long du processus de développement.

Methodology for Model-based Timing Analysis Process

15

Contents
INTRODUCGTION ..cccciiiiiiecirrsnnreeeeeeeceesssssnseasesessssssssssssssssssssssssnssssssssssssssssnssssssssssssssssnsssssssssssssnnnnases 18
1. THESIS TECHNICAL CONTEXT ...ccccorteerreerereeecraeesssnessssesssassssasssssesssasssssssssssssssassssasssssssssnsssssassssans 19
2. THESIS OBJIECTIVEScerrrteeeeeeeeeesrssssneeeesesssssssssssssssessessssssssssssssssssssnns 20
3. THESIS OUTLINE......cccorteeereeeeraeeessaessseesssaesssarssssssssasssssssssssssssassssasssssssssssssssassssasssssasssassssasssssssssnass 21
PART I: INDUSTRIAL CONTEXT AND RELATED WORK..........iiriirreeecreeeeneeenns 23
1. AUTOMOTIVE STATE OF PRACTICE AND CHALLENGESuceerreeereersreeecsaeeesaressnesssassssasesseans 24
2. RELATED WORK: MODEL-BASED APPROACHES & TIMING VERIFICATIONccecevuveerenvneens 27
2.1. IVIODEL-BASED APPROACHES ...cottiiiiiiisses 27
2.2. TIMING VERIFICATION: SCHEDULING ANALYSIS «cceuueeesueessnessssessssessssessssesssssessssessssessssesssssesssessssessssessnne 39
2.3. CONCLUSION . ..c.uuverineesiueessssesssesssesesesssssessssessssessaesssstessssessssessssesensesensesesstessssessssessssessssesssssesssees 48
3. WORK ORIENTATION AND APPROACH FEASIBILITY ..ccccoceeereeerneeesreessraeesrasssssnesssessssassssesssneass 48
3.1. APPROACH PRINCIPLE AND FEASIBILITY ISSUES.......cceestesesueresnesesunssssssssssessssassssesssssssssssssassssasssassssassanes 48
3.2. MODELING LANGUAGES EXPRESSIVITY EVALUATION ...oveeeennnnnsnisneesnnnnnssssinnesssnnssssssssssssssssssssssssssansssssssnns 49
3.3. SCHEDULING ANALYSIS TOOLS EVALUATION ...ccuuuueneeennsnnnnnnssssssnssnsnns 55
3.4. CONCLUSION AND APPROACH DIRECTIONSeeriunerssuesssuessseessseessssessssessssessssessssessssessssessssessssssssssssssses 66

PART II: METHODOLOGY FOR MODEL-BASED TIMING ANALYSIS PROCESS

.. 70
1. METHODOLOGY OVERVIEW & PROCESS PHASES.......cocceteerereeerrreeeessneeseessessessssessssssssessssssens 71
2. ANALYSIS PHASE ...ccovtiuieeetenreeseesteseestesteseesseessesssssssessssesssssssesssessessssesssssssssssesssessssssssssssssssssasse 73

2.1. ANALYSIS OBJECTIVES AND REQUIRED ANALYZABLE IMIODEL....cceveeuuesesinimmrennsssssssssmesnsssssssssssssnsssssssssssnenns 73
2.2, SOLUTIONS FOR ANALYZABLE IMIODEL AND TIMING ANALYSIS....uuuuueeersssssssssssssessssssssssssssssssssssssssssssssssssns 76
3. DIESIGN PHASE ...ooeiiiiiiieeeetteeecccrrneeeeteeeesssssseseeeessssssssssssssssssssssssssesssssssssssssssssesssssssssssssssssssssnnns 81
3.1. REFINEMENT OF SUB-SYSTEM TIME BUDGETS ..cccuuuuuuiiiirmrennnssiisinmressssssissimmmasssssssssmmssssssssssssnsssssssssssnes 81
3.2, PERFORMANCE OF HARDWARE ARCHITECTURE EXPLORATIONceeuueiirenniiirenniinmensiiemensssnmensssemnnsssssnsssnsennes 84
4. IMPLEMENTATION PHASE ...cccottiiiiiirteeeeeeeeeessseeeeeeteesessssssseeessssssssssssssssssssssssssssssesssssssssssssssssssssns 96
4.1. DETERMINATION OF RUNNABLE ENTITY TIMING INFORMATION ...ceeeessuneeessnssssssssneesnsssssssssnsesssssssssssnssnssns 96
4.2, DEVELOPMENT OF THE ANALYZABLE IVIODEL «..uvvvuuererisssssssssnneesssssssssssssessnsans 97

Methodology for Model-based Timing Analysis Process

16

4.3. PERFORMANCE OF SCHEDULING ANALYSIS .etitiiississssssssssssssissns 101
PART III: METHODOLOGY DEPLOYMENT AND VALIDATION......ccccceeevveeeenne 103
1. METHODOLOGY APPLICATION TO EMS DEVELOPMENTccccvteereeeerueessneessnesssaesssansssanesns 104
1.1. INTRODUCTION cccuuuuuiirsenesnssssssssnssesssannssnes 104

1.2. ENGINE MANAGEMENT SYSTEM DEVELOPMENT AT CONTINENTAL eeettiiiisssnsnns 104

1.3. MIGRATION TO THE NEW IMETHODOLOGY PROCESS...ccceueereutessssessssessssesssseessssessssessssessseessssessssessssessnn 108

2. EXAMPLEScuutiiiierueeercsrnneesessaresssssasesssssnsasssssesssssasesssssasssssssasesssssasssssssasasssssssssssnnesssssnsssssssnsassssne 117
2.1. DEVELOPMENT FROM SCRATCH: CRUISE CONTROL...citiisssnas 117

2.2. DEVELOPMENT BY REUSE: KNOCK ..ceetuuuuueiiineennnnnnniiiiineiinnnnssiiissenisnsssiisnsessssssssssssssssssssssssssssssssssssses 136

3. ABOUT THE METHODOLOGY ACCEPTABILITY ...cccceertrrirsuesissusseesessssseesasssssssosessssssessssssassesns 153
3.1, TASKS, ROLES, SKILLS..cceeeuereruersseesseessssessssessssessssssssssessssessssessssesssssesssessssesessessssesssssesssessssessssesss 153

= T TR o To I -0 159

3.3. IMETHODOLOGY TOOLING ceeuuuuuiireeensnssssssssnsssnssssss 164
3.3.2. CHEAT SHEET GUIDES.....uuuuuuiisssnes 165
3.3.3. IMIODEL VALIDATION RULES.cuuuuiiiiiiiiiiiiiiisisiiissns 166

4. METHODOLOGY GENERAL VALIDATION ...cccccceeereeerrnersreescraeessaressssesssassssassssassssassssaasssnsssssases 168
4.1. SYSTEM COMPLEXITY IMIASTERING ..ccecvuereruerssueessseessssessssessssessssesssssessssessssessssesssssesssessssessssessssssssases 168

4.2, DEVELOPMENT TIME AND COST REDUCTION ..uiiiiiiiiississsisssisisses 168

4.3. SEAMLESS DEVELOPMENT PROCESS...ccuuueesssnnnns 170

4.4. ENABLING TIMING VERIFICATION ...uuutieeureresnasesussssssssssssssssessssesesssssssssssssassssassssssssssssssssssssassssasessssasas 170
CONCLUSION AND PERSPECTIVES ...t teerttecreeeseeenseeessneeessseessssessssssessssssssassssaasns 173
ANNEX1: DEFINITION OF AN AUTOSAR OS TASK MODEL.........ceevvueerecrnnenn. 177
REFERENCESccocotiretiritieseeresneresneessneesesssasesassssssesssssesesasssssasssssssssssssssssssssssasesasasssasssssns 185

Methodology for Model-based Timing Analysis Process

Methodology for Model-based Timing Analysis Process

17

18

Introduction

This chapter introduces the thesis work that has been performed in the context of a
technical collaboration between the CEA LIST near Paris and the Advanced Development

Electronics (ADE) service of Continental Automotive in Toulouse.

CEA LIST is a key software system and technology research center whose mission consists
among others in providing methodologies and tools for real time embedded system
development (systems architecture and design, methods and facilities for software and
system dependability, etc). This laboratory works on several research projects in partnership
with industrial partners from nuclear, automotive, aeronautical, defense and medical
domains. Thus, the laboratory investigates and develops innovative solutions corresponding

to the requirements of these industrial partners.

The ADE service is a part of the Engine System (ES) business unit within the Powertrain
division at Continental. This service provides innovative techniques and methodologies for
the development of automotive electronic systems. These innovative approaches aim at
providing solutions for the challenges met to develop Engine Management Systems (EMS)
within the ES business unit. An Engine Management System (EMS) is a system used to
control the engine functionalities (e.g., Combustion, injection, ignition, etc). At Continental,
Engine Management Systems are developed to control many types of gasoline and diesel
engines for many customers all over the world. To develop these systems, many
requirements should be satisfied, including customer requirements but also environmental
norms (gas emission). In addition, due to the competition factor, development time and cost
for engine management systems should be mastered. The ADE service investigates
innovative approaches to meet all these challenges in future engine management system

generations.

This introduction is divided in three sections. The first section presents a brief overview of
the general technical context in which this work has been done. The second section presents

the thesis objectives and the third section describes the outline of the manuscript.

Methodology for Model-based Timing Analysis Process

19

1. Thesis Technical Context

Automotive real time systems are characterized by increasing complexity and tight
requirements for safety and timing. Today, highly competitive automotive industries
developing real-time systems must face industry requirements both quickly and dependably.
“Quickly” refers to the “time-to-market” issue, where delays in design or implementation
incur penalties and reduce market profit. “Dependably” refers to the trustworthiness of the
services provided by developed systems. One of the key dependability factors in real time
systems is system failure. Unlike fabrication faults and faults during usage, design faults are
supposed to be found and eliminated by system verification. Hence, whenever fault tolerance

cannot be guaranteed, fault prevention is the only way to avoid system failure [137].

Quantitative analysis [17] (such as performance and scheduling analysis) is a sound
approach to study non-functional properties at an early stage. It allows designers to detect
unfeasible real-time architectures, prevent costly design mistakes, and provide an analytical
basis to assess design tradeoffs associated to resource optimization. Quantitative analysis
uses mathematical-based techniques which purpose is to prove that a system meets its
requirements at any time. While the maturity of quantitative techniques has led to a set of
well established mathematical formalisms such as rate monotonic analysis (RMA) [27], Petri
nets [37, queuing theory [47] and timed automata [57, their widespread use with complex
industrial systems and into integrated tool environments still remains largely open.
Quantitative analysis is a difficult and time-consuming task, and to save time, many
industries either forgo it until absolutely necessary or train their designers to perform
preliminary analysis. However, most designers are under-trained in analysis and too busy to

perform useful analysis.

Model-Based Engineering (MBE) is gaining momentum in automotive system and software
development domains, as a means for mastering system complexity and assessing system-
level tradeoffs geared to achieving higher quality and dependability [67]. MBE and modeling
languages lead a major approach to enrich real-time systems engineering practices, by
moving the development process from lines-of-code to coarser-grained architectural
elements. One of the advantages expected from this approach is the ability to employ
correct-by-construction, but also incremental design processes (which rely extensively on
automated transformations and synthesis) and to formalize computer-based correctness

analysis.

Methodology for Model-based Timing Analysis Process

20

The model-based development community has invested special efforts in incorporating the
abilities to specify analytical constructs and non-functional properties with enough
expressive power, while still preserving the modeling abstraction level used by MBE
practitioners. Important research work has been carried out in order to provide modeling
languages (e.g., UML [77], SDL [87], AADL [97], MARTE [107], and TADL [117]) with

clear and well-formed semantics to support quantitative analysis.

However, most of the current works are characterized by providing only means and
concepts for the modeling of non-functional and especially timing information of the
system. Unfortunately, none of these approaches provide sufficient guidance on how
to integrate timing verification and validation into the model-based development

process.

2. Thesis Objectives

The underlying work investigates the definition of a methodology describing a model-based
timing verification process for automotive systems. It aims at giving guidance to software
development engineers about how to integrate timing verification within a model-based

development process enabling hence early detection of time-related errors.
In particular, this thesis work focus on the following specific objectives:

1. One fundamental objective that drove our research work is the definition of a model-
based development process ensuring a seamless development activity that can be
easily adopted in the context of engine management system development. The
methodology defined should describe the different phases of the model-based process

and how models should be refined from one phase to another.

2. The second objective is to give guidance on how to integrate timing verification in
each phase of this development process. This means defining the kind of timing
verification that should be performed during each phase, the verification techniques
and tools that can be used and how analysis results of each phase can be used to

refine the architecture during the next phase.

3. From a modeling and analysis point of view, the methodology defined should give a
way on how to develop analyzable models in each phase and especially how to derive
behavioral views needed for timing analysis from modeling views intended e.g. for

structure description.

Methodology for Model-based Timing Analysis Process

21

4. Besides the definition of the methodology itself, in this work we aim to validate the
methodology suggested by evaluating its degree of acceptability and showing to
which extent it allows resolving the problems faced currently in the context of

automotive software development.

3. Thesis Outline

This manuscript is composed of three major parts. The first part contains three chapters.
The first chapter describes precisely the particular context of this study related to the
development of automotive software in the particular case of Continental as a supplier. This
chapter ends by listing the needs of automotive domain in term of software development.
The second chapter gives an investigation and a state-of the art of the available model-based
approaches that attempted to bring answers and solutions to some of these needs. The third
chapter draws the general features of our approach to define a methodology for a model-
based timing analysis process. This is done after studying the feasibility of the approach

based on the chosen directions that will be presented in the same chapter.

The second part of the manuscript presents the methodology itself. This part is composed of
four chapters. The first chapter gives a general overview of the defined process. The
remaining three chapters tackle respectively the different process phases, the analysis phase,
the design phase and the implementation phase. Each chapter describes both the modeling

and timing analysis activities carried out during each phase.

The third part is dedicated to the deployment and validation of the proposed methodology.
This part is composed of four chapters. The first chapter presents an approach describing
how we intend to apply our methodology for the development of Engine Management
Systems (EMS) at Continental. The second chapter illustrates the approach by presenting
the application of the methodology to the development of two use cases. The third chapter
studies the acceptability of the methodology by showing the extent to which this
methodology can be adopted by Continental engineers. In this chapter we identity the gap
between the proposed methodology and the current development process at Continental in

terms of required vs. available skills, tasks, tool chain, etc.

The methodology tooling is also studied by presenting the tools that were implemented to

guide Continental engineers and ease their use of the methodology.

Methodology for Model-based Timing Analysis Process

22

The last chapter of this part presents the final validation of the methodology by showing to
which extent it provides solutions for the automotive software development needs

determined during the first part of this work.

The conclusion summarizes the study and discusses the possible perspectives for this work.

Methodology for Model-based Timing Analysis Process

23

Part I: Industrial Context and
Related Work

This first part aims at describing in detail the industrial context in which this thesis work
was done. The technical directions chosen for this work to meet the automotive domain
needs are presented and justified based on this context itself but also based on some already
available approaches. The first chapter presents the automotive context and highlights the
automotive needs in term of software development and timing verification. The second
chapter presents the available approaches that attempted to bring solutions for these needs.
We highlight the limitations of these approaches and we conclude on the need for a new
approach to satisty better the automotive needs. The third chapter gives a general overview
of the directions chosen for our work based on the available approaches and a feasibility

study for our approach.

Methodology for Model-based Timing Analysis Process

24

1. Automotive State of Practice and Challenges

In the automotive domain, the first time that software was deployed into cars was to control
the engine and, in particular, the ignition, 80 years ago [67]. At the beginning of software
deployment in cars, software-based solutions were very local, isolated and unrelated. Hence,
there were dedicated controllers (Electronic Control Units or ECUs) for the different
tunctions as well as dedicated sensors and actuators. With the intention to optimize wiring,
bus systems were deployed into cars allowing ECUs to be connected to each other and

exchange information.

Today, premium cars feature not less than 70 ECUs connected by more than five different
bus systems [67]. Within only 30 years, the amount of software in cars went from zero to
more than 10.000.000 lines of code. More than 2000 individual functions are realized or
controlled by software in premium cars. Software as well as hardware became enabling
technologies in cars. They enable new features and functionalities. Hardware is becoming
more and more a commodity while software determines the functionality and therefore

becomes the dominant factor for system complexity.

To understand better the automotive needs in term of software development, it is important
to clarify the state of practice in this domain. The development of a car involves mainly two
partners, the manufacturer (OEM) and the first-tier suppliers. The aim of the manufacturer
is to market cars that satisty the needs and the desires of the customers, on one hand by
respecting the manufacturing standards and norms and on the other hand by ensuring the
prosperity of his group [127. For these reasons, manufacturers have usually a strong and
global trade expertise. A car can be seen as an assembly of many systems integrated
together to ensure the various functionalities of the vehicle. The OEM intervenes during
two particular phases, the specification of systems and their integration into the vehicle. The
development of these systems is then carried out by the different suppliers that are involved;
such as the case of Continental Automotive. Once the request is specified by the
manufacturer, the supplier should develop the system that respects the requirements
specified. In this context of multi-partner development, the systems developed by a supplier
are more and more sophisticated and require usually highly specialized technical skills. Due
to concurrency pressure, manufacturers choose then to delegate the development of such
systems to several suppliers and focus only on vehicle integration and validation. In the case

of Continental Automotive, a system requested by a manufacturer may vary from a simple

Methodology for Model-based Timing Analysis Process

25

software component to a whole system consisting of software, hardware (ECU) and

mechanics (actuators, etc).

Being able to satisty efficiently customer request is the key factor for a supplier to save his
place in market. Efficiently means quickly, dependably and in a cost-efficient way. Quickly
refers to the time-to-delivery where the supplier is continuously submitted to the customer
pressure to deliver systems as early as possible. Development cost is also among the decisive
factors that guarantee the competitiveness of a supplier. Up to 40% of the production costs
of a car are due to electronics and software. Today, the costs of cars get more and more
influenced by development costs of software; 50-70% of the development costs of the

software/hardware systems are software costs [67].

Dependability means the trustworthiness of the service delivered by the developed system.
To develop dependable systems, suppliers should take up many challenges. In fact, the size
and structure of the embedded software and hardware in cars are enormous. Most of the
software is hard real time critical or at least soft real time critical. Several functions are
safety critical ones. In addition, car functions are quite heterogeneous (from embedded real
time control to infotainment, from comfort functions to driver assistance, etc). As a result,
the complexity and spectrum of requirements for on board software is enormous. In front of
this complexity and time/cost pressure, suppliers have usually recourse to reuse existing
solutions from one car to the next. However this remains insufficient with regard to
development time and cost!. In addition, the amount of automation in software production is
today quite low. Tools are many times used in an isolated manner. There is neither a

properly formalized design flow nor seamless tool chain for distributed functions.

It is hence obvious that there is a need for a suitable development process that

reduces complexity, enables innovation and saves time and costs.

Guaranteeing dependability is not ensured only by mastering system complexity. In fact
verification and validation is also of paramount importance in software development. This
allows verifying the proper functioning of the system and validating it against the
requirements specified by the customer. As mentioned previously, developing time critical

systems is among the challenges that suppliers should take up. Mastering the development

! This statement is based on the study of the state of practice of software development at Continental

Methodology for Model-based Timing Analysis Process

26

of such systems requires being able to understand, analyze and validate their real time
behavior. Automotive software development costs are significantly impacted by wrong
design choices made in the early stages of development, but often detected after
implementation. Most timing-related failures are detected very late in the development
process, during implementation or system integration phases. Timing verification is usually
addressed by means of measuring and testing rather than through formal and systematic
analysis. For this reason, innovative and complex functionalities are not implemented in a

cost-efficient way.

The need for defining an approach that permits timing verification throughout the

development process, starting from the early phases of design, is thus obvious

Such an approach would enable early prediction of system timing behavior and allow
potential weak points in design to be corrected as early as possible.
To conclude, in automotive software development, there is an obvious need today for

development approaches that allow:

* Mastering system complexity
* Reducing software development time and cost
* Defining seamless development activity supported by a seamless tool chain

* Ensuring system dependability, especially timing correctness through verification

and validation.

During the last decade, many approaches, methods and techniques have been developed to
bring solutions for the abovementioned automotive needs. For example, model based
engineering is gaining momentum in the automotive domain, as a means intended for
mastering system complexity and assessing system-level tradeofts geared to achieve higher

quality and dependability.

Continental supports the development and the use of several model-based
development approaches such as AUTOSAR [187], EAST-ADL [46] and TADL [48].

The directions of our work are chosen with respect to this context.

Methodology for Model-based Timing Analysis Process

27

In the domain of timing verifications, we can talk especially about quantitative techniques
(scheduling and performance analysis) where a variety of schedulability tests and tools have

been developed as a means to predict early real time system behavior.

In this thesis work, we focus on a key problem of automotive industry which is software
timing verification. After studying available approaches that attempted to bring answers to
automotive needs in the next sections, we present, in the second part of this manuscript, a
methodology enabling the integration of timing verification in a model-based development

process.

2. Related Work: Model-based Approaches & Timing
Verification

2.1. Model-based Approaches

2.1.1. Basics of Modeling Languages

As engineers work with many different kinds of models, it is important to understand which
models are dealt with in this thesis. Therefore, few definitions are given to provide a basis to

understand the rest of the thesis.[137]
Models and Metamodels

Models, as conceived in engineering, are representations of reality. The aim of the
engineering modeling process is to make our world measurable, calculable, predictable, and
thus more manageable. Computer models are computerized abstractions, data structures, or
simulations of, not only real systems or phenomena, but also of fictional objects, set-

theoretic structures and mathematical representations.

To know the nature of different models used in computer systems, we may identify two
relationships. The first relationship, called “represented by”, identifies a representation role
of a given modeled object over a model. For instance, a computer program can be
“represented by” a set of data flow diagrams. A given model could also represent another
model. For example, a mathematical function can be represented by a numerical
approximation. The second relationship, called “conforms to”, identifies a dependency of a
given model on a modeling language. Thus, we could say that a given data flow diagram
representing a piece of programming code conforms to the rules and modeling elements

defined, for example, for Gane-Sarson diagrams.[137]

Methodology for Model-based Timing Analysis Process

28

In MBE, the latter relationships receive special attention since domain specific modeling
languages are described and prescribed by models. These models are called metamodels. A
metamodel is yet another abstraction highlighting properties of the model itself. This model
is said to conform to its metamodel like a program conforms to the grammar of the
programming language in which it is written. This means that a metamodel describes the
various kinds of contained model elements and the way they are arranged, related and

constrained.
UML Profile Basics

In this thesis work, some notions related to the definition and use of UML profiles are used.

We describe here some basic notions related to this issue.

Profiles [147] are the built-in lightweight mechanism that serves to extend Meta Object
Facility (MOF)-based languages. More specifically, profiles are used to customize UML for
a specific domain or purpose via extension mechanisms that enrich the semantics and syntax
of the language. A stereotype is the basic feature for UML extension. It can be viewed as the
specialization of an existing UML concept, which provides capability for modeling domain-
specific concepts or patterns. Stereotypes may have attributes (also called tags) and be
assoclated with other stereotypes or existing UML concepts. From a notational viewpoint,
stereotypes can give a different graphical symbol for UML model elements. For instance, a
class stereotyped as «clock» might use a picture of a clock symbol instead of the ordinary
class symbol. Additionally, stereotypes can also be influenced by restrictions expressed in
constraints. The standard machine-readable textual language for defining constraints in

MOF-based languages is Object Constraint Language (OCL) [157.

2.1.2. Model-Based Development in Automotive Domain

Model-based and component-based approaches are gaining more and more success and
popularity in today’s automotive software domain. This success is due to the state of practice
and the way of proceeding in this domain [67]. In fact, in order to integrate one software unit
into the car, a supplier must design, integrate and test against the units of other suppliers.
Since the code inside the units (e.g. ECUs) is the intellectual property of the suppliers, the
other supplier (or the OEM) often will not get the code of the other units. As a consequence,
both have to build up some kind of “black box model” that they code/integrate/test against.
The high degree of interaction between OEM and suppliers makes the need for clear

interfaces and specifications evident. Models that take into account the static and dynamic

Methodology for Model-based Timing Analysis Process

29

aspects of sub-systems are attractive ways to specify the sub-systems architecture, syntactic
interfaces and behavior. Models could help very much in the communication between OEMs
and first and second tier suppliers. But, the major advantage expected from model based
development is the ability to employ correct-by-construction, but also incremental design
processes (which rely extensively on automated transformations and synthesis) and to
tormalize computer-based correctness analysis. In addition, there are many claims that
model-based and component-based approaches using architecture description languages can
help improve the overall system quality, foster reuse and evolution, and increase the

potential for automatic validation and verification.

The root of model based development is the advent of UML (Unified Modeling Language)
(77 as a standard modeling language. However, the general-purpose aspect of UML made
its use complicated for specific domains as it requires mastering in detail UML concepts.
UML use becomes hence difficult for engineers who are expected to have domain skills and
knowledge rather than UML knowledge. As a consequence, this led to the advent of domain
specific languages, DSL [167]. Domain-specific languages allowed modeling concepts to map

directly domain concepts rather than computer technology concepts.

In automotive domain, several modeling approaches and languages have been developed
during the last decade to cope with automotive software development challenges. These
approaches give means and concepts to capture the electric/electronic automotive
architecture such is the case of the modeling languages EAST-ADL [177] and AUTOSAR
[187. For real time modeling, we cite TADL [117] and also MARTE [107], the OMG

language for modeling and analysis of real time systems.

The next section gives a detailed overview of these approaches.

2.1.8. Model Based Approaches Presentation

= EAST-ADL

EAST-ADL [467] (Electronic Architecture and Software Technology-Architecture
Description language) is intended to capture the electric/electronic architecture of
automotive systems at different level of abstraction ranging from feature to implementation
level. EAST-ADL has been developed and improved in the context of several research
projects. The last available version of EAST-ADL has been developed in the context of the
ATESST? project [17].

Methodology for Model-based Timing Analysis Process

30

EAST-ADL provides a rich set of concepts to model system structure through several levels
of abstraction. From one level to another, the structural model of the system is refined by
including more precise implementation oriented details. Figure 1 shows an overview of the
EAST-ADL abstraction levels. Note that, as shown in this figure, the Implementation level
of EAST-ADL is based on AUTOSAR.

Vehicle Feature Model

Analysis Architecture

I Functional Analysis Architecture I

m
>
7
o
>
o
=

Design Architecture

| Funct. Design Architecture | l Hw Design Architecture |

Implementation Architecture
Autosar Autosar
Application SW Basic SW

Autosar Hw

HYSOLNY

Figure 1 EAST-ADL/AUTOSAR modeling process
Modelling of vehicle electronic systems with EAST-ADL starts with the capture of features
at the Feature level, thus providing product line organization and description. These
features are then realized at Analysis level by abstract entities, which model the functions
and functional devices that interact with the vehicle environment. At the Design level,
models are refined by including more realization-oriented details that allow subsequent
decomposition/refinement of the functional architecture. The Hardware Design
Architecture, which is denoted in parallel, captures the primary hardware entities as abstract
elements (e.g. sensor, actuator, power, ECU or electrical wiring including the

communication bus) to describe the topology of the system's electronic architecture.

EAST-ADL gives means and concepts to model system functional architecture [477]. Figure
2 gives an overview of the EAST-ADL metamodel for functional modelling. Modelling of
tunctional architecture with EAST-ADL is based on the core concept of “FunctionType’. A
“FunctionType’ is used to model system functions at both Analysis level
("AnalysisFunctionType'") and Design level (“DesignFunctionType’). An (“AnalysisFunctionType’
(respectively (“DesignFunctionType’) can be composed of “AnalysisFunctionPrototypes’

(respectively “DesignFunctionPrototypes’) that represent its sub functions. Interaction

Methodology for Model-based Timing Analysis Process

31

between EAST-ADL FunctionTypes 1is captured through “FunctionPort” and

“FunctionConnector” concepts.

Combext
watpTypes
FunefionType
+ isElementany; Boolean
EAElemant
1 +port +port winstanceRefs EA&lement
“;tpp‘;?wgp;” e R LT watpStructureElaments
" ey > Function Connector
1 +oonnector
I ®
/_(1 EAElement
watpPrototypes
FurctionProfolyoe
+ype wisOfTypen ZF\
AnalysisFunctionType . :
1 AnalysisFunctionPrototype
+part
[‘l 0.1 T
Functional Device
+ e i
DesignFunctionType e il ek DesignFunction Prototype
gl
+part
aat
0.1 o

Figure 2 EAST-ADL metamodel for functional modelling [477]
EAST-ADL also provides concepts for abstract hardware modelling. For example sensors
and actuators can be captured respectively through the concepts “sensor” and “actuator” tfrom
EAST-ADL. Communication buses can be modelled as “LogicalBus”. The concept “Node”

allows modelling ECUs involved in the system.

For timing modelling, EAST-ADL adopted TADL concepts to annotate architecture models

with timing properties and constraints.
= TADL

TADL (Timing Augmented Description Language) 487 has been developed in the context
of the European research project TIMMO (TIMing MOdeling) [117]. The definition of
TADL is based on modelling concepts from EAST-ADL and AUTOSAR by which the

Methodology for Model-based Timing Analysis Process

32

structural definition of the considered system is modelled. The augmentation is done by

adding information related to timing and events referring to structural elements [487].

TADL proposes a set of concepts to annotate structural models (function and software) with
timing properties and constraints such as maximum delays, repetitions and sampling rates
and synchronization constraints [497]. Figure 8 gives an overview of the TADL metamodel.
TADL concepts are centred on the concepts of “Event” and “EventChain”. An “EventChain”
describes the causal relationship of a set of functionality-dependant events. Every event
chain describes a causal relationship between two events. The first is called “Stimulus” (e.g.
event representing the activation of a function) and the second is called “Response” (e.g. event
representing the termination of a function). Furthermore, event chains can be hierarchically
decomposed into an arbitrary number of sub-chains called “EventChainSegment”. TADL

timing constraints can be attached to events and event chains to specity e.g. the repetition

rate of an event or the maximum latency of an event chain.

Event
Context +timingDescription . Eﬂsjefe"?qj
. g TimingDescription + isStateChange: Boolean = tiue
Timing 0.1 %
+stimulus 1.7 +rmesponse g 2
EAElement
+timingConstraint TimingConstraint
EwvertChain
0.1

g 1| ==T]
Figure 3 TADL metamodel [497]

= AUTOSAR

AUTOSAR (Automotive Open System Architecture) (187 is a standardized architecture for
automotive software that is developed by an international consortium of automotive OEMs,
Tier-1 suppliers and tool vendors. AUTOSAR ofters a software component model and a
three layered software architecture divided into application software, runtime environment
(RTE), and basic software (e.g., drivers and communication system). Figure 4 shows an

overview of AUTOSAR software architecture.

Methodology for Model-based Timing Analysis Process

33

SW-C SW-C SW-C SW-C_
Description Description Description Description
b P b b3
TS TS 5 | S
=20 L] =0 MEO = ED
(214 ng (217 (217
2 3

ECU l System Constraint

Descr:ptlons Description

T > -]

vapping &

ECUI ECUlI ECUm
[z 2 z
- g 3 (=] g (o] [&] g (o] = g g
& H? a0 00
] S] %
Basic Basic Basic
Software Software Software

b lmmd

Figure 4 AUTOSAR software architecture from VFB to mapping

AUTOSAR introduces the Virtual Functional Bus (VFB) concept to separate applications
from infrastructure. An application consists of interconnected “AUTOSAR Software
Components”. The VFB (shown in the top part of figure 4) provides standardized
communication mechanisms and services for these components. The VI'B acts independently
trom the chosen mapping of these components to the infrastructure of the interconnected

ECUs (shown in the bottom part of the figure 4).

The realization of the VFB concept is possible if each AUTOSAR ECU has standardized
basic software functionalities and interfaces. Figure 5 shows the layered architecture of an
AUTOSAR ECU, which basically identifies an application layer and the AUTOSAR Basic
Software (BSW). These parts are linked via the AUTOSAR Runtime Environment (RTE).
That means the RTE can be interpreted as the runtime implementation of the VFB on a

specitic ECU.

The RTE realizes an intermediate layer between the hardware independent application

software components and the hardware dependent basic software components.

Methodology for Model-based Timing Analysis Process

34

Application Layer

AUTOSAR Runtime Environment (RTE)

ECU Abstraction & Microcontroller
Complex Drivers Abstraction

Microcontroller

BSW-Layers: .Senrioes .

Figure 5 The AUTOSAR ECU layered architecture

The reuse of software components between different vehicle platforms, OEMs and suppliers
is one of the major goals of AUTOSAR. Therefore a methodology supporting a distributed,
function-driven development process was created [50]. AUTOSAR specifies also compatible
software interfaces at application level. However, the functional contents of the application
modules and components are different and related to the corporate identity and the desired

characteristics of the car manufacturer or its system suppliers.

AUTOSAR has developed a metamodel which precisely defines the concepts used to
describe a self-contained AUTOSAR system and a methodology. For example, software
models are organized into units called “SoftwareComponents” [517]. Those components
encapsulate the implementation of the functionality and the behaviour they provide, and
simply expose well-defined connection points called ports. In particular, atomic software
components are entities that support an implementation and hold behavioural entities called
“RunnableEntity”. A runnable is an entity that can be executed and scheduled independently
from any other runnable entity. AUTOSAR gives also concepts to describe the basic
software entities [517] as well as the OS (Operating System) configuration [527], RTE
configuration [587 and Hardware topology description [547] (ECU, Bus, etc)

Timing aspect is considered in AUTOSAR through its timing extensions [55] that allow
modelling the timing information of the system through concepts that express timing
properties and constraints on events and event chains (inspired by the concepts and
semantics defined in TADL in order to ease integration of AUTOSAR models with EAST-
ADL models).

Methodology for Model-based Timing Analysis Process

35

= MARTE
MARTE (Modeling and Analysis of Real Time Embedded Systems) is the OMG standard
dedicated for the modeling of real time systems. It provides means and constructs for

modeling non functional properties and time concepts [567].

MARTE offers also a dedicated framework for model-based scheduling analysis [137. This
modeling framework provides a rich set of concepts for modeling end-to-end flows, software
and hardware resource platform and for allocation of application modules to platform

resources.

2.1.4. Model-based Approaches Evaluation

As mentioned previously, the aforementioned model-based approaches were developed to
deal with specific automotive challenges (EAST-ADL, TADL, and AUTOSAR) and more
generally with real time systems challenges (MARTE). As presented in the first chapter,

automotive system development challenges can be categorized in four points:
= Mastering system complexity
* Reducing software development time and cost
* Defining seamless development activity supported by a seamless tool chain

* Ensuring system dependability, especially timing correctness through verification

and validation.

Table 1 summarizes the capabilities of the studied model-based approaches against the

aforementioned needs.
Mastering system complexity

Looking at the EAST-ADL/AUTOSAR modeling process, we can conclude that there is a
good potential to master system complexity. In fact developing automotive systems using
these approaches is based on modeling the system architecture starting from abstract
tunctional description until implementation detailed description. Hence, at early design
phases, designers focus only on functional aspects abstracting away implementation-related
details. In addition, hardware details can be described separately only starting from the

Design level.

At Implementation level, using AUTOSAR allows also mastering the system complexity. In
tact, AUTOSAR defines different views to enable the description of self-contained software

Methodology for Model-based Timing Analysis Process

36

architecture. In the VFB view, the focus is made on the description of software components
and their communication regardless of the platform and the mapping (of software
component to ECUs) chosen. In ECU view, the configuration of the ECU may be described
through describing the configuration of the RTE and the OS. Finally, in the system view,
the focus is made on the system topology by describing e.g. the ECUs and communication
buses used by the system. In addition, as shown in figure 5, AUTOSAR ofters a layered
software architecture giving the possibility to deal separately with the application software,
basic software and the hardware. Application software complexity is also reduced as each
application software component can be described independently from other software

components.

TADL focuses only on modeling the timing aspect of systems by relying on the modeling
process offered by EAST-ADL and AUTOSAR.

MARTE also focuses only on modeling the timing aspect of systems without any modeling
process support. However, the MARTE scheduling analysis framework allows modeling the
different scheduling and timing related features in separate views (application,
software/hardware resources, allocations, etc). This allows the designer to focus separately

on each aspect without involving details from other views.
Reducing development time and cost

Using the EAST-ADL/AUTOSAR approach, development cost and time can be reduced as
there is a good potential for easier reuse of software and hardware components and hence

saving the time and cost required for redeveloping them.

In addition, using a model-based approach allows a better representation of system
information (using models). Thus, the time required to collect such information (for further

use) 1s significantly reduced during the development process.
Defining seamless development process and tool chain

The modeling process of EAST-ADL/AUTOSAR seems to be interesting as it gives the
possibility to design the system architecture starting from abstract functional description
until detailed implementation description. However, this process defines only the abstraction
levels and the modeling concepts to be used at each level. It does not give any guidance

about model refinement from a level to another. In addition it proposes no tool chain

Methodology for Model-based Timing Analysis Process

37

support that allows describing and validating the system architecture along the development

process.

As mentioned previously, TADL relies on the modeling process oftered by EAST-ADL and
AUTOSAR. In addition, a methodology has been defined to describe how the concepts

defined by this language can be used at each abstraction level.

MARTE tocus only on giving concepts for timing modeling without defining any modeling
process or methodology
Enabling timing verification

From a timing verification point of view, the aforementioned model-based approaches
attempted to give means for the development of time critical systems. This is mainly

ensured through giving concepts for expressing timing properties and constraints on models

(TADL, AUTOSAR and MARTE).

However, supporting timing verification by these approaches is limited only to giving such
means and concepts. In fact several methodological problems remain unsolved by these

approaches, such as:
* How to integrate timing verification during the model-based development process?

* Which timing verification techniques should be used during each development

phase?

* How to develop analyzable model to enable a particular timing verification and how

to use provided concepts?

To enable model-based timing verification, these approaches should be complemented by a

new one that allows answering these questions.

Methodology for Model-based Timing Analysis Process

Table 1 Modeling approaches capabilities

EAST-ADL/AUTOSAR TADL MARTE
Development through | Focuses ~ on annotating | Focus on modeling timing
abstraction levels (From | structural elements with | information without
abstract functional | timing information giving a modeling process
descripti t detailed
escription © HCE] Relies on the means offered Scheduling analysis
impl. tation).
implementation) by EAST-ADL and | models can be organized
Enable the designer to focus | AUTOSAR to master | on separate views
on different aspect at | complexity (application, platform,
different levels allocation, etc)
Master
Software is organized into
system .
separate software
comp leXIty components
Software architecture
described through different
views (VFB, ECU, System)
Layered software
architecture (application
software, basic software,
hardware)
Potential for easier reuse of | Reduces information | Reduces information
software and hardware | collection time through using | collection time through
Reduce)
components (save | models using models
development .
redevelopment time and cost)
time and
Reduce information
cost
collection time through using
models
Define only the abstraction | Relies on the modeling | No modeling
levels process of EAST- | process/methodology s
ADL/AUTOSAR defined
Define No guidance for model cine
seamless refinement and | Methodology defined to | No tool chain defined
development transformation describe how to use TADL
v ts based EAST-
activity No tool chain defined to | O P Pased on
) ADL/AUTOSAR structural
enable architecture
1 ts
description and validation clements
Enable Give only concepts to express timing information (timing properties & constraints)
timing No guidance for model-based timing verification (how to integrate timing verification, how
verification | to develop analyzable models, which tools to use, how to use results, etc)

Methodology for Model-based Timing Analysis Process

38

39

2.2. Timing Verification: Scheduling Analysis

2.2.1. Introduction

Since 1980s, many models, methods and tools were proposed to check if a real time system
tulfills its requirements (e.g. Petri nets (197, synchronous languages 207, etc). One of these
methods, usually called scheduling analysis is a part of a larger set of quantitative methods,
the real time scheduling theory. Based on a schedulability test, scheduling analysis allow
verifying the schedulability of a task set. Schedulability tests are based on the calculation of
the worst case response time of a task, which is the longest time between the activation of a
task and its subsequent completion. Once the worst-case response time is known, the
teasibility of a task can be checked by comparing its worst-case response time to its deadline.
In next sections, we present the most known results achieved in schedulability analysis in

term of schedulability tests and scheduling analysis tools development.

2.2.2. Schedulability Tests: Brief Historical Review

In this section, we present a historical review of the most known results achieved within

schedulability test development for fixed-priority monoprocessor systems.

In 1973, Liu and Layland published a paper on the scheduling of periodic tasks that is
generally regarded as the foundational and most influential work in fixed priority real time

scheduling theory [217]. They made the following assumptions:
= All tasks are periodic

= All tasks are released at the beginning of period and have a deadline equal to their

period
= All tasks are independent, i.e., have no resource or precedence relationships

= All tasks have fixed computation time or, at least, an upper bound on their

computation time which is less than or equal to their periods
* No task may voluntary suspend itself
= All tasks are fully preemptible
* All overheads are assumed to be null

® There is just one processor.

Methodology for Model-based Timing Analysis Process

40

Based on this model, Liu and Layland gave a sufficient utilization-based condition for the
teasibility of a fixed priority task set scheduled with the rate monotonic algorithm (RMA)
[217. They proved that a set of n periodic tasks, each having a computation time C; and a
period T is feasible with this algorithm if

IEREERRY

iz i
Due to the limitations of Liu and Layland test (pessimistic condition, unrealistic task model
with deadlines equal to periods, task priorities have to be assigned according to the rate
monotonic policy) more complex feasibility tests were developed to address the above
limitations. In 1987, Lehoczky et al. [227] gave the first exact schedulability test for the Liu
and Layland task model. Concurrently, another group of researchers looked at the problem
of determining the worst case response time of a task. Joseph and Pandya [237] and Audsley
et al. [24] developed independently an algorithm to compute the worst-case response time

R of a task 1;as the least-fixed-point of the following recursive equation:

R=C+ ilr-rﬂwq

In 1982, Leung [257] considered fixed priority scheduling of a set of tasks with deadlines less
than their periods. Lehoczky [267] considered another relaxation of the Liu and Layland
model to permit a task to have a deadline greater than its period. The Lehoczky approach
uses the notion of “busy-period”. A “level 7 busy period” is defined as the maximum time for
which a processor executes tasks of priority greater than or equal to the priority of task z
Lehoczky shows how the worst-case response time of a task 7 can be found by examining a
number of windows, each defined to be the length of the busy period starting at the window,
and each window starting at an arrival of task z In the early 1990, Tindell [277] extended
the Lehoczky response time analysis providing an exact test for tasks with arbitrary

deadlines.

A further relaxation of Liu and Layland task model is to permit tasks to have specified
offsets (phasing). Tindell proposed in [287] a test for fixed priority tasks in which task offsets
can be taken into account. This test has been later extended by Palencia and Gonzalez to

take into account static and dynamic task offsets [297.

Methodology for Model-based Timing Analysis Process

41

Wang and Saksena [307 introduced a feasibility test where they take into account non-

preemptible tasks in addition to preemptible ones.

The development of scheduling analysis tools implementing such schedulability tests lies at
the very core of scheduling analysis issue. In the next section, we give an overview of

currently available scheduling analysis tools.

2.2.8. Scheduling Analysis Tools Presentation
While the number of scheduling analysis tools is constantly increasing, they also vary

widely in terms of analysis capabilities and supported features.

e MAST

MAST [817 is an open source tool developed by the University of Cantabria in Spain.
MAST is still under development and is intended to allow modeling real time applications
and performing scheduling analysis for them. The tool offers a suite of scheduling analysis
tests, ranging from classic RMA for fixed priority monoprocessor systems to more
sophisticated analyses for EDF (Earliest Deadline First) schedulers [217] and distributed
systems. In MAST, each real time situation is described through a set of concurrent
transactions [417]. A transaction represents the execution of a set of activities triggered by
an external event. An activity is an instance of an operation. The output of each activity is an
internal event that may in turn activate other activities. Events may have timing
requirements associated with them. Activities follow a predecessor/successor relationship
with the possibility for an activity to have multiple successors or multiple predecessors.
Each activity is bound to a single schedulable resource (task) and a schedulable resource
refers to one processing resource. This way, the concept of activity encapsulates the
allocation of the operation on a single schedulable resource and the allocation of the
schedulable resource on a single processing resource. Table 2 and 3 summarize respectively

the most important required inputs for the analysis as well as the output result of MAST.

Methodology for Model-based Timing Analysis Process

Table 2 MAST required inputs

Required input

information

Description

Processing Resource

They represent the processing capacity of a hardware
component that executes some of the modeled system
activities (Regular Processor) or message transmission

(Packet Based Network).

Scheduling Server

They represent schedulable entities in a processing

resource (e.g. OS task)

Shared Resource

They represent resource that are shared among different
threads or tasks and that must be used on a mutually

exclusive way.

Operation

It represent a piece of code or a message

Transaction

A transaction represents a flow of executing activities
that are interrelated. A transaction is defined with a list of
external events, a list of internal events and their timing

requirements and a list of activities

External Event

It represents an event that activates a transaction. It can

be e.g. periodic or sporadic.

Activity

It represents an instance of an operation to be executed
by a scheduling server. An activity is defined by an input
event, and output event, an operation and the scheduling

server hosting this operation

Internal Event

It is an event that is generated by an activity. It can
trigger the activation of another activity within the same

transaction.

Timing Requirement

Represents the timing requirement imposed on the
instant of generation of an internal event. It represent a
deadline or a maximum jitter on the generation instant of

the event.

Methodology for Model-based Timing Analysis Process

42

43

Table 38 MAST output results

Output result Description

System/processing If positive, it represents the percentage by which all
resource/transaction slack | the execution times of all the operation contained in
the global system (or used by the processing resource
or the transaction) may be increased while still
keeping the system schedulable. If negative it is the
percentage by which all these execution times have to

be decreased to make the system schedulable.

Worst/best/average Represents the worst/best/average response time of
Transaction response time | the transaction (generation of the output event of the
transaction) with reference to the external event of

the same transaction.

Processing resource It measures the relation, in percentage, between the
utilization time that the processing resource is being used to

execute activities and the total elapsed time.

Operation slack The percentage by which the execution time of that
operation may be increased (or decreased) while
keeping the system schedulable (or to make the

system schedulable)

¢ Cheddar

Cheddar [327] is also open source and is developed and maintained by the University of
Brest in France. This tool is designed for checking task temporal constraints of a real time
application. Cheddar is based on an analysis framework that includes most of classical real
time schedulability tests such as RMA and EDF. In Cheddar, an application is defined by a
set of processors, buffers, shared resources, messages and tasks [407]. In the most simple
task model, each task periodically performs a treatment. This “periodic” task is defined by
three parameters: its deadline, its period and its capacity that represents a bound on the
execution time of the job performed by this task. Table 4 and 5 summarize respectively the

most important required inputs for the analysis as well as the output result of Cheddar.

Methodology for Model-based Timing Analysis Process

44

Table 4 Cheddar required inputs

Required L
Description
Input
Processor They represent the processing capacity of a hardware component that executes some of
the modeled tasks
Task It represents the schedulable entity in the processor. A task is characterized by a priority
a computation time, an activation period and a deadline.
Network It represents e.g. communication buses

Shared resource

They represent resource that are shared among different tasks and that must be used on a

mutually exclusive way.

Message Represent messages that are exchanged between tasks
Bufter They represent stocking elements for the information exchanged between tasks that
read/write in the bufter
Table 5 Cheddar output results
Output result Description

Task response time The time between the activation and the termination

instants of the task

Processor utilization [t measures the relation, in percentage, between the

time that the processing resource is being used to

execute activities and the total elapsed time.

* Rapid-RMA

Rapid-RMA [837] is a commercial tool developed by Tri-pacific Software Company. Rapid-

RMA allows performing analysis based on rate monotonic and deadline monotonic [34]

algorithms. A Rapid-RMA system is composed of a set of tasks allocated to hardware

resources (CPU, BUS). Each task is characterized by its period, deadline, priority and

computation time. Table 6 and 7 summarize respectively the most important required inputs

for the analysis as well as the output result of Rapid-RMA.

Methodology for Model-based Timing Analysis Process

45

Table 6 Rapid-RMA required inputs

Required Input Description
Task It represents the schedulable entity in the processor. A task is characterized by a
priority a computation time an activation period and a deadline.
Node It represent the hardware resource with processing capacity that executes some of the
modeled tasks
Bus It represents the communication medium used to exchange message between some of
the modeled nodes
Table 7 Rapid-RMA output results
Output result Description

Task completion time It represents the task response time (time between the

activation until the termination of the task)

Processor utilization [t measures the relation, in percentage, between the

factor time that the processing resource is being used to

execute activities and the total elapsed time.

¢ Chronval

Chronval 857 is a commercial tool produced by the Inchron Company. The tool allows

performing scheduling analysis for single and distributed systems. Unlike other scheduling

analysis tools that are based on schedulability tests from scheduling theory, Chronval is

based on the “real time calculus” technique [577]. The tool allows calculating task response

times for an OSEK? compliant system. In this tool, a system is seen as a set of tasks. Each

task is associated with a source that allows specifying its activation pattern. Task deadlines

are specified as requirements that constrain the maximum delay between the task activation

and its termination instants. Table 8 and 9 summarize respectively the most important

required inputs for the analysis as well as the output result of Chronval.

> OSEK : Open Systems and their interfaces for the Electronics in Motor Vehicles

Methodology for Model-based Timing Analysis Process

46

Table 8 Chronval required inputs

Required Input Description
Task It represents the schedulable entity in the processor.
Source It is an element that allow to represent the activation pattern of each task
ECU It represent a hardware resource with processing capacity
Bus It represents the communication medium used to exchange message between some of
the modeled nodes
Timing requirement | Enables to specify a task deadline or a deadline on a flow formed by several tasks

Table 9 Chronval output results

Output result Description

Task worst case response | It represents the worst response time (time between

time the activation until the termination of the task)

Event spectrum Shows the variation of the available and the remaining

processor capacity for each task

 SymTA/S

SymTA/S [367 is a commercial tool developed by the Symtavision Company. The tool is
said to be based on schedulability tests that extend previously mentioned classical tests to
take into account automotive specific constraints (these constraints will be detailed in the
next chapter). It allows performing analysis for both single and distributed systems. In
SymTA/S, each real time situation is described through a set of tasks hosting a number of
runnables. A runnable represents the execution of a non-preemptive piece of code. Each task
in SymTA/S is characterized by an activation pattern, a priority and a deadline. Table 10
and 11 summarize respectively the most important required inputs for the analysis as well as

the output result of Chronval.

Methodology for Model-based Timing Analysis Process

47

Table 10 SymTA/S required inputs

Required Input Description

Task It represents the schedulable entity in the processor. A task is characterized by a

priority, an execution time (if it hosts no runnables) and an activation pattern

Runnable It represents a non-preemptible executable entity in a task.
ECU It represent a hardware resource with processing capacity
Bus It represents the communication medium used to exchange message between some of

the modeled nodes

Max response time | It represent the deadline on task or path execution

Path A path represents a flow of tasks or runnables executing successively and

communicating variables

Table 11 SymTA/S output results

Output result Description
worst case response time It represents the worst case response time for a task
or a path
Processor utilization It measures the relation, in percentage, between the
time that the processing resource is being used to
execute activities and the total elapsed time.

2.2.4. Scheduling Analysis Evaluation

Scheduling analysis seems to be a good candidate to perform timing verification for real time
systems. Using this technique, there is a good potential to allow detecting timing errors
early (only based on a task model) preventing hence costly time-related design mistakes to

be detected late.

However, to enable timing verification for automotive systems using such technique, a need
for schedulability tests and tools that fit well automotive needs and constraints is
obvious. In addition, there is currently no guidance about how to integrate such

verification technique during the development process.

Methodology for Model-based Timing Analysis Process

48

2.3. Conclusion
As shown in the previous sections, several model-based approaches and methods were
developed to bring solutions for automotive needs such as mastering system complexity

during development, allowing reuse, reducing development time and cost, etc.

To ensure real time system dependability, many scheduling analysis tests and tools were

developed as a means for early timing verification.

An obvious lack today in these approaches, is guidance for enabling the integration of
timing verification during a seamless model-based development process. In this thesis
work, we propose to define an approach for a methodology describing a model-based

timing verification process for automotive systems.

8. Work Orientation and Approach Feasibility

3.1. Approach Principle and Feasibility Issues

In our approach, based on existing solutions, we propose to combine some model-based
approaches to define our development process. Then, we aim to define a methodology to
enable timing verification during each phase of this process. Figure 6 shows an overview of

the principle of the targeted process.

) &
o0
(cbbe‘ﬁqﬁwa
W
2,
LY o
Py 54
%, &
% & \
’% 7 4 e’oﬁ‘\s N
£t g <@ e
So My, Clur, e}
7 Odgy © e
)’\’b
V- &
Y, 0 f§\‘5'
&O}@ 'b¢
% &
&
Doy Chitge, S g oo™
So ., M Clun 1 i@
o Mogy, '@ ol
% (’))- &
oy L
% @ 5
%, &
s, G
e §°Q>
A}s 'qrcf?f'!‘e L3
%o Moy, tre
@ Oy

Figure 6 Overview of a model-based timing analysis process
At each phase of the development process, the designer has a set of timing requirements as

inputs. S/he designs and models the system architecture (structure, behaviour, etc...) that

Methodology for Model-based Timing Analysis Process

49

should satisfy these requirements. S/he then performs timing analysis to verify whether the
proposed architecture does satisty them. Based on the results of this analysis, the designer
determines what improvements are needed in the architecture or what tradeofts could be
made to meet the corresponding timing requirements. The designer may need to perform
this activity iteratively until a valid model is obtained. Based on the architecture designed
during the current phase, the designer determines the requirements that should be satisfied

during the next development phase when refining the system architecture.

To define the model-based development process, we propose to use and adapt some of the
available modelling approaches. For timing verification, we suggest to use scheduling

analysis as a verification technique in this process.

From a feasibility point of view, to be able to define such model-based scheduling analysis
process for automotive systems based on existing solutions, we need to satisty the two

tollowing requirements:

* The modelling process should be based on modelling languages that are
expressive enough to enable scheduling analysis-aware modelling for

automotive applications

To verify this requirement, we need to evaluate the expressivity of available modelling
languages. This will enable us to decide which language (s) to use for our modelling process
or how to combine some of these languages to define this process. Based on the defined
development process, we can also decide how and in which phase we can integrate

scheduling analysis.

* Scheduling analysis should be usable to perform timing verification for

automotive applications.

To prove the usability of scheduling analysis for automotive systems, we need to identity a
tool that satisfies scheduling analysis needs for automotive systems. This tool should
implement schedulability tests that take into account all automotive needs. To identify such
tool, we will evaluate the capabilities of available scheduling analysis tools against

automotive needs in term of scheduling analysis.

3.2. Modeling Languages Expressivity Evaluation
In this section, we evaluate the expressivity of the aforementioned modeling languages,

EAST-ADL/TADL, AUTOSAR and MARTE to enable scheduling-analysis aware

Methodology for Model-based Timing Analysis Process

50

modeling. This evaluation is done against automotive application modeling needs to enable

scheduling analysis.

The first paragraph characterizes the required modeling features. Next, we highlight the
capabilities and limitations of the studied modeling languages with respect to those

requirements.

3.2.1. Modeling Needs for Automotive Applications to Enable Scheduling Analysis

We organize the modeling features needed for scheduling analysis into the four following

categories:

Application workload. Modeling languages should enable describing the application
workload which represents the processing load of the system. It represents the different
operations (functions) executed in the system and contending for use of processing resources
and other shared resources. An operation may represent a small segment of code execution
as well as the sending of a message through a communication medium. Operations are
generally organized in processing flows (set of related operations/functions). To make the
analysis possible, modeling languages shall enable specifying the execution /transmission

time (worst, best or average) for operations/messages.

Application timing behavior. The application timing behavior represents the timing
information of the different operations or processing flows involved in the system under
analysis. Timing information contains both timing description (timing properties) and
timing constraints. Timing description contains the specification of the triggering of system
operations or processing flows (recurrence, activation jitters, etc.). Most available scheduling
analysis tools allow analyzing systems with various triggering patterns such as periodic,
sporadic, singular, etc. For those activation patterns, it is necessary to specity the period or
the minimum inter-arrival time of the triggering events. Timing constraints must be met by
the system operations or flows. They are represented basically by operation deadlines,

output jitter bounds and end-to-end deadlines.

Resource platform. It represents the concrete architecture and capacity of hardware (e.g.,
CPU or buses) and software (e.g. OS tasks) resources. For hardware resources such as
processors, modeling languages should allow e.g. the description of the scheduler used. For
a more accurate analysis, it may be also necessary to specify the processor overheads (e.g.

context switch overhead). For software resources such as tasks, it is necessary to specitfy the

Methodology for Model-based Timing Analysis Process

51

task nature (preemptive, non-preemptive, etc.) as well as its priority. Involved shared

resources should also be described.

Allocation. To get an analyzable model, modeling languages should enable specifying the
allocation of the operations to software resources (e.g. tasks) and the allocation of software

resources to hardware resources (e.g. processors).

3.2.2. Modeling Languages Capabilities

Table 12 contains a summary of the extent to which the surveyed modeling languages cover
the features considered. It gives the set of modeling concepts offered by each language to

cover the above-mentioned features.

Application workload. Modeling application workload differs significantly in these
languages. For example, the “ADLFunctionType” and “ADLFunctionPrototype” concepts of
EAST-ADL allow modeling the functions executed in the system. EAST-ADL gives also
means to specify function execution times through the “ExecutionTimeConstraint” concept. It

allows specitying worst, best or average execution time for each EAST-ADL function [47].

In AUTOSAR, The system workload is described through two categories of elements:
runnable entities [517] and basic software module entities [527]. Runnable entities are the
smallest code-fragment that are provided by an application software component and are
subject to scheduling by the underlying operating system. Runnable entities are specified in
the system model as a part of the internal behavior of software components. Basic software
entities are also subject to scheduling and contend for use of processing resources. A basic
software entity represents the smallest code fragment that can be described for a basic

software module or cluster.

In AUTOSAR, it is possible to specify the execution time for both runnable entities and
basic software entities as “ResourceConsumption” (when describing the corresponding
software component implementation or basic software module implementation). The
resource consumption element provides information about memory and time consumption
for each software component implementation or basic software module implementation.

Maximum, minimum and nominal execution times can be specified.

MARTE models the application workload as a set of processing flows called “End-to-end
Slows”. They describe interrelated units of processing work called “steps” and which contend

for the use of processing resources with other end-to-end flows [567. MARTE gives the

Methodology for Model-based Timing Analysis Process

52

possibility to specify the execution time of a step through the attribute “execTime” that

allows specifying a worst or best step execution time.

Application timing behavior. To model application timing behavior elements, EAST-ADL
relies on TADL concepts. TADL allows attaching timing description and timing constraints
to the events and event chains describing the timing behavior of the system. For example it
is possible to describe the triggering pattern of an event (periodic, sporadic, etc) or the

maximum latency of an event chain.

MARTE, itself, uses the notion of end-to-end flows to express timing constraints such as an
end-to-end deadline imposed on a flow of steps or simply a step deadline. MARTE models
the triggering of an end-to-end flow through the element “WorkloadEvent” that allows

specitying the triggering pattern of each flow (periodic, sporadic, etc).

AUTOSAR allows the modeling of the application timing behavior features through its
timing extensions [55]. Timing extensions allow specifying the timing description and the
timing constraints of the system. They are used to describe the timing behavior in diftferent
views: the virtual functional bus view (VFB timing), the software components view (Swc
timing), the basic software module view (Bsw module timing), the system view (system

timing) and at the ECU view (ECU timing).

On each level, processing flows are described through the event and event chain concepts

(inspired from TADL concepts).

AUTOSAR Timing constraints can be attached to both event chains and events. For an
event, timing constraints specify its arrival pattern as well as its occurrence jitter. Supported
arrival patterns in AUTOSAR are: periodic, sporadic, burst, concrete and arbitrary. For
event chains, it is possible to specify their latencies. A latency timing constraint restricts the
time duration between the occurrence of the stimulus and the occurrence of the

corresponding response of that chain.

Resource platform. Modeling of software and hardware resource platform is more or less
supported by the different languages. EAST-ADL supports modeling of hardware resources
through the concepts of “Node” (to represent an ECU) and “LogicalBus” (to represent
communication buses). However, EAST-ADL does not give any means to model software
resources such as OS tasks during the Analysis and Design levels. In fact, EAST-ADL relies
of AUTOSAR concepts to describe this feature starting from the Implementation level.

Methodology for Model-based Timing Analysis Process

53

MARTE, itself, gives the possibility to model both hardware and software resources.
MARTE distinguishes two kinds of processing resources; “ExecutionHost”, which includes
tor example processors and coprocessors, and “CommunicationHost”, which includes resources
such as networks and buses. Processing resources can be characterized by throughput
properties such as processing rate, efficiency properties such as utilization, and overhead
properties such as blocking times and clock overhead times. Software resources can be
modeled in MARTE as “SchedulableResource” or “CommunicationChannel”. On one hand, a
schedulable resource is a kind of active protected resource that is used to execute steps. In a
real time operating system (RTOS), this is the mechanism that represents a unit of
concurrent execution, such as a task, a process, or a thread. On the other hand, a

communication channel provides concurrency to communication steps.

The “SharedResource” concept of MARTE allows modeling the shared resources involved in

the system.

AUTOSAR allows specitying the system hardware resources when describing the system
topology in the system view [547]. The “ECUlnstance” concept allows defining the ECUs
used in the topology. Communication networks can be specified through the
“CommunicationCluster” concept that represents the main element to describe the topological
connection of communicating ECUs. For each communication cluster, we can define one or
more “PhysicalChannel” that describe the transmission medium that is used to send and
receive information between two communicating ECUs, as well as the protocol used for the

communication.

AUTOSAR allows describing the software resources involved in the system when defining
the OS configuration [5387. Tasks are specified through the “OsTask” concept that represents
an OSEK task. Task priority can be specified using the attribute “OsTaskPriority”. The
attribute “OsTaskSchedule” allows specifying whether the task is preemtible or not.
Interrupts are supported through the “OsISR” concept that represents an OSER interrupt

service routine.

AUTOSAR Shared resources may be specified using the “OsResource” concept, used to
coordinate the concurrent access of tasks and ISRs to shared resources. The attribute
“OsTaskResourceRef” of the OS task element allows listing the shared resources accessed by

the specific task.

Methodology for Model-based Timing Analysis Process

54

Allocation. EAST-ADL/TADL gives means to describe the allocation of functional entities
described at the design level to hardware resources. This is done through the concepts
“FunctionAllocation” that represent an allocation constraint binding an “AllocateableElement”
(computation function or communication connector) to an “AllocationTarget” (computation
or communication hardware resource). However, allocation of functions to OS tasks cannot
be described in EAST-ADL (this is due to the fact that EAST-ADL relies on the description
of such information at the Implementation level using AUTOSAR). Unlike EAST-ADL,
MARTE ofters a set of concepts to develop a complete allocation model (allocation of steps
to schedulable resources or communication channels and allocation of schedulable
resources/communication channels to execution and communication hosts). The MARTE
concept “allocate” allows associating elements from a logical context, application model
elements, to named elements described in a more physical context, execution platform model
elements. The “allocated” concept allows describing entities that can be allocated to a hosting

element.

The allocation of tasks to hardware resources is performed in AUTOSAR during the ECU
configuration process. The configuration of a particular ECU used in the system involves
the configuration of the OS and of the runtime environment RTE [587]. The OS
configuration contains among others the definition of the different OS tasks involved. Hence,
this indicates that the defined tasks are allocated to the ECU which is subject to

configuration.

The mapping of runnable entities and basic software module entities to OS tasks is part of
the RTE configuration. The mapping of runnable entities to OS tasks is based on the
mapping of the “RTEEwvent” that activate those runnable entities. In a similar way, basic
software module entities are mapped to OS tasks by mapping the “BswEvent” that activate

them.

Methodology for Model-based Timing Analysis Process

Table 12 Modeling supports for scheduling analysis

Needed Concepts offered by modeling languages
modeling
Features EAST-ADL/TADL MARTE AUTOSAR
ADLFunctionType/Prototype. | End-to-end flow. Step, | Runnable Entity.
ExecutionTimeConstraint ExecTime Bsw Entity. Swc
(worst, best, average) Implementation. Bsw
Application Implementation.
Workload Resource
Consumption.
Measured/estimated
execution time
Event chains. Event chains | End-to-end flows | Event chains.
related to architecture events. | deadlines, step deadlines, | Events. Event
Application Event occurrenhce constraints. | triggering workload activat19n
Timin Event . chain l.ategcy eve-nt, workload event con-stralnts. Event
. & constraints, synchronization | arrival pattern chain latency
Behavior constraints constraints,
synchronization
constraints
Hardware resources: Node, | Hardware resource: | Hardware resource:
Logical bus execution host, | ECU instance,
communication host communication
No software resource .
Resource description Software resource: cluster, physical
p channel
Platform schedulable resource,
communication channel Software resource:
OS task, Os ISR,
Shared resource
Os resource
means for linking function | Allocation of steps to | Allocation of
prototypes to hardware | schedulable resources/ | software resources to
entities at design level communication channels hardware resources
No means to describe | Allocation of schedulable (05 .conﬁguratlon
. . . mechanism)
allocation of functions to | resources/communication
Allocation | software resources channels to | Allocation of
execution/communication | runnable entities and
hosts basic software
concepts: allocate entities to software
’ | resources (RTE
allocated . .
configuration
mechanism)

3.3.

Scheduling Analysis Tools Evaluation

55

To prove the usability of scheduling analysis to perform timing verification for automotive

applications, we propose to evaluate the capabilities of available scheduling analysis tools to

select most convenient tool(s) for our process.

Methodology for Model-based Timing Analysis Process

56

The first section characterizes the required analysis features. Next, we highlight the

capabilities and limitations of the studied tools with respect to those requirements.

8.3.1. Scheduling Analysis Needs for Automotive Applications

This section characterizes the architecture of automotive applications. Such characterization
suffices for the purpose of this part, which is to identity the timing analysis needs of
automotive systems and hence the requirements that should be met by analysis tools. It
serves, finally, to provide an informal, comparative review of capabilities provided by the
selected tools. For a better understanding, we will assign an identifier to each requirement
that we denote REQx where x is the requirement number. Table 13 summarizes the

characterization of the identified requirements.

Today's automotive systems have evolved constantly and now offer even more challenging

teatures that can be summed up as follows:

Limited hardware resources. Today, CPU load, has become day-to-day issue and is the
very basis for the design of automotive systems. For these reasons, scheduling analysis is
required to determine, or at least estimate, the processor performance needed for a given

design. Hence, Analysis tools should have techniques to determine the processor utilization [REQ]I].

Timing constraints. In addition to limited hardware resources, automotive applications
must deal with many kinds of timing constraints. These may concern task or function
deadlines or maximum jitters on task activation instants. Automotive tasks may have hard
deadlines (e.g. for safety functions) or soft deadlines (for body comfort functions). Moreover,

these tasks may have deadlines that are less, equal or greater than their periods.

In addition, the end-to-end delay after data is read by a sensor and the output generated
trom it and passed to an actuator (known as “data age”) is crucial to control model stability.
Scheduling analysis is hence needed to verify if those constraints are met or not. To enable
this verification, scheduling analysis tools have to meet certain requirements that we

summarize as follows:
When describing the system under analysis
* Analysis tools should allow specifying task or function deadlines [REQ27]
* Analysis tools should allow specifying jitters related to the function or task actrvation instants

[REQ3]

Methodology for Model-based Timing Analysis Process

57

* Analysis tools should allow specifying end-to-end timing constraints [RIEQ4]

(An end-to-end timing constraint is a deadline imposed on the delay of an end-to-end flow formed by

executing steps in the system)
When analyzing the system

* Analysis tools should allow analyzing tasks with deadlines that are less, equal or greater than

therr periods [REQS5]

* Analysis tools should have techniques to verify whether end-to-end constraints are respected
[REQ6]

Heterogeneous activation pattern. In automotive task model, tasks can be time triggered
or event triggered. Event triggered tasks are activated by the arrival of events that can be
periodic, sporadic or singular (arrives only once). Time triggered tasks are periodic tasks
that are activated at predetermined points in time. In automotive, there are two kinds of
periodic tasks, timing tasks and engine-synchronous tasks. Timing tasks have timing
recurrences (e.g. Ims, 10ms, etc) (they are simply classic periodic tasks). Engine-
synchronous task are activated by the arrival of events related to the engine-running. The
recurrences of these events are expressed in engine angle degree rather than time (e.g.
2°crank). In fact these recurrences depend on the Camshaft and Crankshaft positions that
vary with the engine speed (The camshaft wheel is the element of the engine that allows the
opening and the closure of intake and exhaust valves. The crankshaft wheel is the part of the
engine that translates reciprocating linear piston motion into rotation). Hence, expressing
the period of such tasks in time depends also on the engine speed. For instance, for a 6
cylinder system, a task that should be activated each 120°crank has got a recurrence of
3.3ms at 6000rpm and 13.33ms at 1500rpm (engine-synchronous tasks are hence periodic
tasks in the angular base and aperiodic tasks in the classic time base). This variable aspect of

recurrence should be taken into account by scheduling analysis tools:
» Analysis tools should allow specifying periodic, sporadic and singular activation [REQ7]

» Analysis tools should allow describing and analyzing system with engine-synchronous tasks
[REQs]
Distributed architecture. In conventional automotive system design, a function may be

distributed over many ECUs (Electronic Control Units) into a network that may even use

multiple protocols. Most used protocols are CAN, LIN and FlexRay [877]. For such

Methodology for Model-based Timing Analysis Process

58

distributed functions, it is important to guarantee end-to-end response times. In addition, in
such complex architectures, optimization of network resource consumption and message
scheduling requires knowledge of the impact of network properties such as network
overheads and driver overheads, and of different communication protocols. Consequently,

scheduling analysis tools have to satisty the following requirements:

* Analysis tools should allow easy description of distributed systems with multiple ECUs and
communication buses [REQ9]

» Analysis tools should have techniques to analyze multiprocessor systems [REQ107
* Analysis tools should have techniques for CAN, LIN and FlexRay [REQ11]

* Analysis tools should allow taking into account processor overheads (basically context switch

overhead) and network overhead (network driver overheads) [REQ12]

Task concurrency and dependency. In automotive systems, tasks may be dependent. This
dependency results basically from task chaining which means that a task is activated by
another task. Automotive tasks may also have activation offsets. For engine synchronous

tasks, their offsets vary also with the engine speed.

Concerning the concurrency issue, in automotive design, although tasks are concurrent,
different tasks may have the same priority level. As most automotive applications are based
on OSEKR [887, these tasks are scheduled using the FIFO algorithm (First In First out) as a
second scheduling protocol. Moreover, automotive tasks are of three kinds: preemptive
tasks, cooperative tasks and interrupts. The execution of cooperative tasks can be
interrupted by higher priority cooperative tasks only at predefined points called schedule
points. Figure 7, shows an example of a system with preemptive and cooperative tasks. Task
T1 is a preemptive task having the highest priority, task T2 and T3 are both cooperative
tasks, T2 has got higher priority than T3. As the figure shows, T2 waits until the schedule
point of T'3 to start executing, while T'1, being preemptive, interrupts T2 before its schedule

point.

Methodology for Model-based Timing Analysis Process

59

T

Wialting the

schedule paint of]
T2 T3

Schedule
paint
T3

Schedule
point

Figure 7 Preemptive and Cooperative Tasks

To enable an accurate scheduling analysis, analysis tools have to support the description and

analysis of such a task model and hence:

* Analysis tools should allow describing task dependency resulting from task chaining
[REQ13]

* Analysis tools should allow using FIFO as second scheduling algorithm for tasks having the
same priority level [REQ14]

» Analysis tools should allow specifying preemptive, cooperative tasks and interrupts [REQ157]

* Analysis tools should allow describing and analyzing systems with constant and variable

offsets [REQ167]

Methodology for Model-based Timing Analysis Process

Table 138: Requirements on scheduling analysis tools

Requirement Description
REQ1 Analysis tools should have techniques to determine the processor utilization
REQ2 Analysis tools should allow specifying task or function deadlines
REQ Analysis tools should allow specitying jitters related to the function or task
3
activation instants
REQ4 Analysis tools should allow specifying end-to-end timing constraints
REQ5 Analysis tools should allow analyzing tasks with deadlines that are less,
equal or greater than their periods
Analysis tools should have techniques to verify if end-to-end constraints are
REQ6
respected
Analysis tools should allow specifying periodic, sporadic and singular
REQ7 Y pecitying p P g
activation
REQ Analysis tools should allow describing and analyzing system with engine-
8
synchronous tasks
REQ Analysis tools should allow easy description of distributed systems with
9
multiple ECUs and communication buses
REQ10 Analysis tools should have techniques to analyze multiprocessor systems
REQ11 Analysis tools should have techniques for CAN, LIN and FlexRay
Analysis tools should allow taking into account processor overheads
REQ12 (basically context switch overhead) and network overhead (network driver
overheads)
Analysis tools should allow describing task dependency resulting from task
REQ13 o
chaining
Analysis tools should allow using FIFO as second scheduling algorithm for
REQ14
tasks having the same priority level
Analysis tools should allow specifying preemptive, cooperative tasks and
REQ15 Y pecitying p P P
interrupts
Analysis tools should allow describing and analyzing systems with constant
REQ16
and variable offsets

Methodology for Model-based Timing Analysis Process

60

61

3.3.2. Scheduling Analysis Tools Capabilities

In this section, we consider the atorementioned scheduling analysis tools, MAST, Cheddar,
Rapid-RMA, Chronval and SymTA/S. Table 14 summarizes the coverage provided by these
tools with regard to the requirements described above. Full explanations are given in

subsequent paragraphs.

REQ1: MAST allows the designer evaluating his processor or network performance by
calculating either its global utilization or a more limited scenario such as utilization by
context and interrupt switch activities. The tool likewise enables him to see to what extent
operations executed on the processing resource are schedulable. This entails calculation of
processor or network slack, i.e. the percentage increase in execution times that is compatible

with keeping the system schedulable.

Cheddar allows performing certain feasibility tests based on calculation of the processor
utilization factor [217]. Depending on the resulting factor, the tool tells the user whether a

task set will be schedulable or not. Cheddar does not calculate processor or network slack.

Rapid-RMA allows calculating the processor utilization for periodic and aperiodic tasks. In
addition to quantitative results, it displays also a graphic showing the utilization of the

processor by each kind of tasks and the unused percentage of the processor capacity.

Chronval does not calculate a value showing the global utilization of the processor by the
different tasks. However, through a graph called “event spectrum viewer”, it is possible to

visualize the variation of the available and the remaining processor capacity for each task.

For each processor, SymTA/S calculates its global utilization but also elementary utilization
tor each task. This kind of result is interesting, it allows the designer identifying the tasks

having the biggest load and hence the possible changes in case of overloaded processor.

REQ2: MAST defines the concept of operation that represents a piece of code or the sending
of a message. The tool allows specifying timing constraints on operations through the
concept of timing requirement. The latter can be specified on the output event of an activity
(represents the execution of an operation). A timing requirement may be a deadline or a
maximum jitter imposed on the generation instant of the output event of an activity. MAST
supports both hard and soft deadlines. Cheddar and Rapid-RMA support this feature

differently by allowing specification of deadlines on tasks themselves.

Methodology for Model-based Timing Analysis Process

62

To describe task deadlines, Chronval allows assigning a timing requirement to a task. This
requirement allows specifying a bound on the delay between the activation event of the task
and its termination event. SymTA/S, itself, allows specifying a max response time for each

task.

REQ3: MAST defines the concept of external event that serves to trigger the execution of a
flow of activities (transaction). The tool allows specifying a maximum jitter on the arrival
time of an external event but this is only possible for periodic events. Cheddar supports this
feature by allowing specifying a maximum lateness on task wake up time through the

concept jitter.

Rapid-RMA does not allow specifying jitter bounds for the activation instants of aperiodic
tasks

To describe the activation of a task, Chronval uses the concept of source. A source is an
element that is connected to a task to describe its activation patterns such as its period (or
minimum inter-arrival time) and its activation jitter. This feature is also supported by

SymTA/S that allows specifying a jitter value for periodic, sporadic and pattern tasks [597.

REQ4: MAST meets this requirement by allowing the specification of a deadline on the
generation instant of the output event of an execution flow of activities (transaction) with
reference to the external triggering event. Contrarily to MAST, specifying end-to-end
constraints is supported neither by Cheddar nor by Rapid-RMA.

In Chronval, specitying end-to-end timing constraints is also supported through the concept
of requirement. To specify an end-to-end constraint on a flow of tasks, one can specity a
requirement between the activation event of the first task and the termination event of the

last task in the flow.

SymTA/S uses a similar approach, specifying end-to-end timing constraints is supported
through the concept of path in SymTA/S. A path represents a flow of tasks or runnables
executing successively and communicating variables. SymTA/S gives the possibility to

specify a max response time for the path.

REQ5: Except Rapid-RMA that requires task deadlines to be equal to task periods, all of the
other tools allow specifying and analyzing tasks with deadlines that are less, equal or greater

than their periods.

Methodology for Model-based Timing Analysis Process

63

REQ6: MAST allows calculating the response time of the output event of a transaction and
compares this with end-to-end constraints imposed on the system. Cheddar allows
calculating end-to-end response times based on the holistic approach defined by Tindell for
distributed systems in [397]. These end-to-end response times include message transmission

delay and buftfer memorization delay.

Rapid-RMA, itself, has no means to verity end-to-end constraints involving more than one

task.

As for deadlines, Chronval calculates end-to-end response times and compares them with
end-to-end requirements. SymTA/S uses the same approach by calculating the response
time for each path and comparing it with path max response time. In SymTA/S, a path
response time is the sum of the response times of the tasks involved in the path and the

sampling delays.

REQ7: Triggering patterns are captured in MAST through external events that activate
transaction execution. MAST external events may be periodic, singular, sporadic,

unbounded or bursty.

In Cheddar, there is no distinction between a task and its triggering. Cheddar does not, in
fact, consider triggering events but rather focus on tasks themselves. In Cheddar tasks may
be periodic, aperiodic, sporadic, etc [407]. Cheddar also makes it possible for the designer to
specify new activation patterns (User-defined activation pattern) without modifying the
implementation of the tool [407. This same facility is provided by MAST, but the tool

implementation should be modified (As it is an open-source tool)

Rapid-RMA and SymTA/S use the same approach as Cheddar, allowing hence specifying
the activation pattern of a task without having recourse to event concept. Rapid-RMA
allows specitying periodic and aperiodic tasks. SymTA/S, itself, allows describing sporadic
and periodic tasks that may have activation jitters. Singular tasks are described through the

aperiodic pattern in Rapid-RMA; this kind of tasks cannot be described in SymTA/S.

Chronval uses the notion of source to describe the activation of a task. Chronval sources

allow describing periodic, sporadic and singular tasks.

REQS8: As mentioned previously, engine-synchronous task periods and deadlines vary
depending on the engine speed. This means that for a fixed engine speed, these tasks can be

considered as purely periodic tasks with constant deadlines. Hence to be able to analyze a

Methodology for Model-based Timing Analysis Process

64

system with such kind of tasks, using the studied tools, we need to perform the analysis for a
fixed engine speed. This is due to the fact that all of the studied tools consider only one
timing base in which task parameter values can be expressed (period, deadlines, etc).
However this is very limiting due to the fact that a worst-case response time determined for
a particular speed is not necessarily valid for other engine speeds. To solve this problem,
SymTA/S gives the possibility to perform analysis for variable engine speed. This is done
based on a scripting support that allows expressing the parameters of these tasks as a
tunction of engine speed and then incrementing the engine speed and performing the
analysis for each speed. Compared with other tools, this approach is quite interesting as it
allows determining worst case response times for different engine speeds. However, a special
care should be taken when choosing the incrementation step of the speed. In fact a large step
enables a fast analysis but many transitory speeds are missed. Choosing a small
incrementation step allows covering more transitory speeds but the analysis takes much

more time.

REQ9 & REQ10: All of the studied tools allow describing and analyzing distributed
systems. In addition, all of them implement scheduling techniques for multiprocessor

systems.

MAST enables description of the networks involved in a system being analyzed through the
concept of Packet Based Network. It represents a network that uses some kind of real time
protocol based on non-preemptible packets for sending messages [417]. MAST supports the
tfollowing transmission kinds: Simplex, Half duplex and Full duplex (see [417] for more

details about these transmission kinds).

Cheddar is designed to perform scheduling simulation of message-sharing applications
distributed on several processors. It allows specifying networks with three kinds of

communication protocols (bounded delay, jitter delay and parametric delay) [327.

Rapid-RMA allows describing and analyzing distributed systems through the multiple node
analysis. The tool allows describing the buses used for the communication in the system
under analysis as well as the time overheads associated to the access to these communication
media. However, the tool gives no means to describe the bus properties such as the

communication protocol used.

SymTA/S and Chronval also allow describing and analyzing systems with multiple ECUs

and communication buses.

Methodology for Model-based Timing Analysis Process

65

REQ11: Except SymTA/S which allows describing and analyzing systems with CAN and
Flexray buses, none of the other tools have analysis techniques dedicated for these buses.

LIN bus is not supported by any of the studied tools.

REQ12: MAST has means for independent description of overheads for both processor and
network. In fact, it allows specifying either worst, best or average context switch overhead
when describing system processors. For networks, MAST allows specifying packet
overheads that represent the overheads associated with sending each packet because of the

protocol messages or headers that need to be sent before or after each packet.

Cheddar and SymTA/S, on the other hand, allow specifying the context switch overhead
value associated to the activation of each task, but no network overheads may be described

in these tools.

Rapid-RMA allows taking into account time overheads associated with the acquisition or the
release of a resource such as a memory or a bus. For processors, the tool allows specifying
the context switch rate, which is the amount of time the CPU takes to change from

executing one task to another.
Chronval, itself, does not give any means to describe processor or network overheads.

REQ13: Unlike MAST and Rapid-RMA, SymTA/S, Cheddar and Chronval allow specifying
task chaining. In Chronval, each task has got a “connection” field. In this field, it is possible
to describe an activation source for the task or to specify that this task is activated by
another task. For each SymTA/S task, it is possible to describe a “caller” that represents

another task that activates it.

REQ14: All of the studied tools allow specitying tasks with the same priority. However,
only SymTA/S and Cheddar give the possibility to use FIFO as second scheduling

algorithm for these tasks.

REQ15: Systems having preemptive and cooperative tasks as well as interrupts can be
described and analyzed by SymTA/S, Chronval and rapid-RMA. All of them allow
describing non-preemptible sections for each cooperative task. This feature is supported
neither by MAST nor by Cheddar as both of them consider only a fully preemptive system

that may have interrupts.

REQ16: All studied tools allow describing and analyzing tasks with static offsets. Variable

offsets are not supported by these tools. However, for engine-synchronous task offsets which

Methodology for Model-based Timing Analysis Process

66

depend on the engine speed, the scripting support of SymTA/S can be used to analyze

systems having such offsets.

Table 14 Scheduling analysis tools capabilities

The requirement is satisfied by the tool
Requirements MAST Cheddar I:S\P;Iii_ SymTA/S Chronval
REQ1 Yes Yes Yes Yes No
REQ2 Yes Yes Yes Yes Yes
REQ3 Yes Yes No Yes Yes
REQ4 Yes No No Yes Yes
REQ5 Yes Yes No Yes Yes
No
REQ7 Yes Yes Yes (no singular Yes
activation)
REQS No No No Yes No
REQ9 Yes Yes Yes Yes Yes
REQ10 Yes Yes Yes Yes Yes
Yes (for
REQ11 No No No CAN and No
Flexray)
REQ12 Yes Yes Yes Yes No
REQ13 No Yes No Yes Yes
REQ14 No Yes No Yes No
REQ15 No No Yes Yes Yes
REQ16 No (no No (no No (no No (no
variable variable variable Yes variable
offsets) offsets) offsets) offsets)
Covered fe; Zzei/suncovered 10/6 11/5 8/8 15/1 10/6

3.4.

Conclusion and Approach Directions

In our approach, we propose to align our model-based development process with the EAST-

ADL/AUTOSAR modeling process. This choice is due to fact that this process gives a good

support to model automotive architecture from an abstract functional description until a

detailed implementation. In addition this choice is motivated by the fact that Continental

supports the use of EAST-ADL and AUTOSAR (as mentioned at the end of the first section
Methodology for Model-based Timing Analysis Process

67

of this part). However, the EAST-ADL/AUTOSAR process presents only the abstraction
levels and modeling concepts that can be used at each level. It gives guidance neither about
how models can be developed (e.g. which modeling diagrams to use) nor about how these
models can be refined from one level to another. For these reasons, our methodology needs
to enrich this process with guidance for model development, transtformation and refinement

as well as the views to be developed at each level to obtain a complete analyzable model.

Based on the evaluation of the expressivity of the different modeling languages (see section
3.2.2), we can conclude that MARTE and AUTOSAR are the most expressive languages to
enable scheduling analysis-aware modeling. In fact, both of them give all the necessary
means to develop an analyzable model and perform scheduling analysis. Hence, there are
two possibilities to integrate scheduling analysis in the chosen EAST-ADL/AUTOSAR

process:

1) The first possibility is to perform scheduling analysis at the design level of the
process by completing EAST-ADL models with MARTE concepts to get an
analyzable model and hence perform complete scheduling analysis as described in
[457]. In [457], we show how to complete EAST-ADL models using MARTE
concepts to describe software (e.g. OS tasks) and hardware resources (e.g. ECUs) as
well as the allocation of functions to OS tasks and the allocation of OS tasks to
hardware resources. Based on the developed model, we show how to perform
scheduling analysis using the scheduling analysis tool MAST. This is done based on
an automatic transformation of EAST-ADL/MARTE models to a MAST model as
described in [607].

2) The second possibility is to perform scheduling analysis at the implementation level
based only on AUTOSAR concepts (as AUTOSAR gives all the necessary

information to develop an analyzable model).

As we aim at defining a seamless and coherent timing analysis process, it is not possible to
perform scheduling analysis both at the design and the implementation level. To avoid the
redundancy of timing analysis between the design and the implementation level, we decided
to perform scheduling analysis only at the implementation level (based on AUTOSAR
concepts) and to complete this by a more “abstract” timing analysis at the analysis and

design levels (this “abstract” analysis will be described with more details in the next

Methodology for Model-based Timing Analysis Process

68

paragraphs). This choice is also motivated by the fact that Continental supports the use of
AUTOSAR.

Starting timing verification at the implementation level is, however, quite late. In our
approach, we suggest then to start earlier, at the analysis level. We believe that this is the
earliest level against which timing verification can be performed. In fact, the EAST-ADL
Feature level is rather dedicated to capture vehicle features with product line description,
without the details needed to perform any relevant timing analysis (e.g., it offers no
descriptions of the internal architecture of the vehicle functions). Our model-based timing
analysis process thus consists of the following three usual phases: Analysis phase, Design
phase and Implementation phase. The timing verification performed during analysis and
design phases is a sort of “abstract analysis” that sets for a preparatory work for the
scheduling analysis activity that will be performed during the implementation phase. We
call thus the verification activity during these phases (analysis and design phases) “timing

analysis” rather than scheduling analysis.

During analysis and design phases, we propose to determine time budgets to be allocated to
the system under design and to its sub-functions to ensure compliance with the input timing
requirements during each phase. To determine such budgets, we propose to complement the
EAST-ADL structural views with timing views that we will annotate using TADL
concepts. The time budgets determined during each phase will be used as input for the

timing analysis performed during the next phase.

As we start capturing the hardware entities at the design level, we propose also to start
evaluating hardware resource capacities at this level. To do so, an “abstract” model for
allocation of functional elements to hardware resources should be developed (by abstracting
software resources such as OS tasks). As this allocation model aims to represent only the
allocation of functional elements to hardware resources (without involving OS tasks), this
model can be developed using only EAST-ADL concepts for allocation modeling. This way,
based on the EAST-ADL allocation model, a scheduling analysis tool can be used to evaluate
the load of each processing resource by calculating its utilization. This analysis can also be
performed based on a model that combines EAST-ADL concepts for functional and
hardware modeling and MARTE concepts for allocation modeling similarly to the approach
described in [457]. The advantage of the second alternative is the possibility to use the
automatic transformations that are already implemented [607] to transform MARTE models

to a scheduling analysis tool model. In our methodology, we choose this latter alternative
Methodology for Model-based Timing Analysis Process

69

(combining EAST-DL and MARTE concepts) as using MARTE automatic transformations
would enable us reducing the time required to perform the needed timing analysis

(processor load evaluation)

From a tool support point of view, the evaluation work performed for the scheduling
analysis tools show that many of the automotive needs are met by some of the evaluated
tools (which proves the usability of scheduling analysis to perform timing verification for
automotive systems). However, SymTA/S seems to be the most complete and the most
convenient for automotive systems. Hence, in our approach, we propose to use this tool to
perform scheduling analysis during the implementation phase. Nevertheless, other tools
such as Cheddar or MAST are used in our methodology to evaluate hardware resource

capacities during the design phase based on the calculation of the processor utilization.

Methodology for Model-based Timing Analysis Process

70

Part II: Methodology for Model-
Based Timing Analysis Process

In this part, we present a methodology that describes a model-based timing analysis process.

This process is defined based on available EAST-ADL/AUTOSAR modeling process

presented in the previous part.

This part is composed of four chapters. The first chapter gives a general overview of the
model-based timing analysis process. The second, third and fourth chapters detail the
modeling and timing analysis activities performed respectively during the analysis, design

and implementation phases.

Methodology for Model-based Timing Analysis Process

71

1. Methodology Overview & Process Phases
The methodology presented in this part describes a model-based timing analysis process.

The methodology defines both the modelling process and the timing analysis process.

1. The modelling process describes the models that should be developed in each phase to
enable a particular timing analysis. It shows how these models are refined from one
phase to another and how timing models are derived from architecture models. It also

describes the modelling views needed for every analysis type.

2. The timing analysis process describes the kind of analysis to be performed during each
phase and how analysis results can be used for the next phase. It also indicates which

tool can be used to perform each kind of analysis.

Throughout the remainder of this part, the vehicle function developed using the proposed
methodology is referred to as the "sub-system" (as it represents a part/sub-system of the

vehicle itself).

As already stated previously, our process entails three phases. Each of them comprises, two
activities, i.e. development of the analyzable model for the sub-system, and performance of
timing analysis based on this model. The next paragraphs give a briet description of these
analyzable model development and the timing analysis activities. Figure 8 shows a general
overview of the timing analysis and modelling activity for each phase of the process.

Chapters 2, 3 and 4 provide more details on the architecture model developed at each stage.
* Analysis phase

During this phase, a functional architecture view is developed based on EAST-ADL
concepts for functional modelling. This view depicts the sub-system under development in
its vehicle environment. Based on this view, a second view called timing view is derived to
enable the timing analysis of this phase. The timing analysis performed during this phase
aims to verify correct integration of the sub-system into the vehicle in terms of timing
compatibility. The designer has a set of vehicle end-to-end requirements that involve the
sub-system being designed and the other vehicle functions/sub-systems that interact with it
(a detailed explanation of these requirements is given in the next paragraphs). For each
vehicle end-to-end requirement, the designer determines a time budget to be allocated to the
sub-system, to ensure compliance with this requirement. Each sub-system time budget

determined during the analysis phase serves as a constraint for the next phase — design.

Methodology for Model-based Timing Analysis Process

72

* Design phase

During this phase, the functional breakdown of the sub-system is modelled by detailing the
tunctional blocks that constitute it. The hardware resources used by the sub-system are also
modelled during this phase. The designer performs, hence, two kinds of timing analysis. The
first consists in refining the time budgets allocated to the sub-system during the analysis
phase. Based on the sub-system time budgets determined at analysis level for each vehicle
end-to-end requirement, the designer determines the time budgets to be allocated to each
functional block. S/he thus continues complying with vehicle end-to-end requirements as
sub-system architecture is refined. Each functional block time budget represents a timing

constraint that has to be met during the implementation phase.

The second timing analysis of this phase explores the hardware architecture to identify the
best target hardware platform, while suitably allocating functional blocks to hardware
resources. Our approach relies on empirical exploration to conduct the analysis. The latter is
performed on the basis of a scenario for allocating functional blocks to the chosen ECUs,
after evaluation of the utilization of each ECU. Note that during this phase, we do not take
into consideration OS tasks but limit analysis to the functional model, the hardware platform
and the allocation of functional blocks to ECUs. Based on the obtained ECU utilization
values, the designer determines the best allocation scenario. This scenario subsequently

serves as a constraint for refining the allocation model in the implementation phase.
* Implementation phase

During this phase, a complete model of the software and hardware architecture of the sub-
system is developed by further refining the models and the timing results of the design
phase. The complete model contains all the information required to perform a complete

scheduling analysis (application, hardware and software resources, allocation, etc.).

Methodology for Model-based Timing Analysis Process

LGENHEY | Vehicle end-to-
Phase end
quirements

Refine
requirements "

Design Sub-system
time budgets
Phase

Refine
requirements

Timing
Requirements

Implem.

Phase

Allocation
constraints

73

Analyzable model

e Determine sub-
e e » system time

L = budgets

Refine
model 1

Analyzable model

Determine
functional block

—amt— Wl = time budgets

= Evaluate ECU

utilization
Refine
model
Analyzable model Perform

—_— | = _ » Scheduling

il analysis

Figure 8 General overview of the model-based timing analysis process

2. Analysis Phase

2.1. Analysis Objectives and required Analyzable Model

2.1.1. Timing Analysis Objectives

The timing analysis of this phase consists in determining a set of time budgets for the

sub-system under development. These time budgets are determined with respect to a set of

vehicle end-to-end requirements that the designer should respect.

Time budget

A time budget represents a constraint on the response time of the sub-system. It represents

a deadline that we allocate to the sub-system to ensure compliance with a vehicle en-to-end

requirement.

Vehicle end-to-end requirement

Methodology for Model-based Timing Analysis Process

74

A vehicle end-to-end requirement is a requirement that impose a maximum delay on a flow
formed by several vehicle sub-systems including the sub-system under development. To
explain more the concept of vehicle end-to-end requirement, let’s consider the example of
the cruise control sub-system of Figure 9a. The cruise control is used to maintain vehicle
speed to a speed set point desired by the driver. Based on driver requests that are acquired
through a switch sensor, the cruise control performs the desired action (e.g. calculate speed
set point, increase/ decrease set point, etc) and then sends a torque request to the torque set
point sub-system to maintain the vehicle speed to the speed set point. The cruise control
communicates also with the brake controller sub-system that informs him about the braking

pedal status.

Driver

request Interpreted I ™\ /- \

. driver request
Switch
.................... >
Sensor .
> Cruise Control Torque request Wi T L
................ >
Pedal : Status

Cruise: Status

Braking . Brake Controller -
Pedal

Display
Actuator

Figure 9a Example of the cruise control

An example of a vehicle end-to-end requirement is the following: “When the driver
depresses the braking pedal, cruise control should be deactivated within 300ms”. This
requirement imposes a maximum delay on the execution flow starting from the depressing
of the braking pedal until the cruise control sends an output (null torque request) to the

torque set point sub-system (cf. figure 9b)

Methodology for Model-based Timing Analysis Process

75

Driver

request Interpreted (ﬁ (\

driver request
Switch | s >
Sensor Cruise Control

N Torque request Torque Set Point

.............................. > - EERTT T TR R PP EEEERE R

\ / Cruise Sta\@

Pedal : Status

Display
Actuator

Brake Controller

Braking

Delay< 300ms

Figure 9b Example of the cruise control

2.1.2. Analyzable Model Minimum Features

To be able to determine the time budgets to be allocated to the sub-system under
development, the model developed should contain the minimum information enabling such
analysis. We organize this information in two categories: the vehicle functional architecture

and the vehicle timing architecture

= Vehicle functional architecture: It should represent the functional decomposition of
the vehicle by showing the vehicle sub-systems (including the sub-system under

development) and their interactions.

* Vehicle timing architecture: It represents a set of end-to-end flows formed by the
vehicle sub-systems (including the sub-system under development). These end-to-end
tlows should be annotated with the vehicle end-to-end requirements that should be

respected in this phase.

In the next section, we present the development of the minimum analyzable model in our

methodology by annotating some UML diagrams with EAST-ADL and TADL concepts.

Methodology for Model-based Timing Analysis Process

76

2.2. Solutions for Analyzable Model and Timing Analysis
In this section, we present the solution of our methodology to develop the minimum

analyzable model and the heuristics for the timing analysis in this phase.

2.2.1. Development of Analyzable Model

To develop the analyzable model that contains the minimum information presented in 2.1.2,
we develop the following views: "analysis functional view" and "analysis timing view". The
term "analysis", as used here, refers to the analysis phase. Figure 9c gives an overview of

these two views.

* Analysis Functional View: This view represents the features of the vehicle functional
architecture presented previously (cf. section 2.1.2). To model this view, we use EAST-
ADL concepts for functional modelling and UML composite structure diagrams to
tangibly represent said concepts. The vehicle is modelled as a white box that shows its
functions/sub-systems, including the sub-system under development and the latter's
interaction with other vehicle functions. Note that the sub-system is depicted here as a
black box. To develop this view, we use an UML editor that implements an UML profile
tor EAST-ADL, this enables us using UML diagrams and annotating them with EAST-
ADL concepts. The following guidelines should be respected to develop this view:

» The vehicle should be modelled as an UML class (container)

» Each vehicle sub-system (including the sub-system under development) should be
modelled as an UML property and stereotyped with “AnalysisFunctionType” from
EAST-ADL

» Each vehicle element representing a sensor or an actuator should be modelled as

an UML property and stereotyped with “FunctionalDevice” from EAST-ADL.

» The interaction between vehicle elements should be modelled by UML

connectors and stereotyped with “FunctionConnector” from EAST-ADL.

» The communication interface of each element should be modelled as an UML

port and stereotyped with “FlowPort” from EAST-ADL.

* Analysis Timing View: This view represents the features of the vehicle timing

architecture presented previously (cf. section 2.1.2). To model this view, we use UML

Methodology for Model-based Timing Analysis Process

77

sequence diagrams that we annotate with TADL concepts to model the event chains
(end-to-end flows) and annotate them with TADL constraints. At the end of the next
chapter, a paragraph explains how this timing view is developed using sequences
diagrams and TADL concepts. To develop this view, the following guidelines should be

respected:

» Each flow of sub-systems should be modelled as a UML interaction and
stereotyped with “EventChain” form TADL.

» Each sub-system involved in the flow should be modelled as a lifeline with an
action execution specification. The action execution specification should be
stereotyped with “EventChain” and specified as an “EventChainSegment” for the
whole UML interaction.

» Each message should be stereotyped with “Ewventchain” tfrom TADL and

“DataMessage” (this concept will be detailed in the next section)

» FEach vehicle-end-to-end requirement should be specified as a TADL

“ReactionConstraint” for the whole UML interaction.

Analysis Functional View Analysis Timing View

Vehicle — Vehicle E2E requiremeni —

F1 Sub-syste F2

— F1
L Sub-system

F2

Figure 9a Analyzable model overview of the analysis phase
2.2.2. Determination of sub-system time budgets

2.2.2.1. Introduction

For each vehicle end-to-end requirement, the designer determines a time budget to be
allocated to the sub-system ensuring compliance with this requirement. Time budgets can
be determined using a tool whose input is the timing view of the analyzable model and
whose output is a time budget for each specified end-to-end requirement. This operation can

Methodology for Model-based Timing Analysis Process

78

also be performed manually based on designer expertise (to facilitate the process, we assume
here that the time budgets for the other vehicle functions/subsystems are already known). In our
methodology, we also suppose that for each vehicle end-to-end requirement, we obtain exactly one

time budget for the sub-system.

Once timing analysis is completed, the designer possesses a set of sub-system time budgets
that ensure compliance with the vehicle end-to-end requirements. Such time budgets are the
input constraints that the designer needs to consider when refining sub-system architecture
at the design stage. Each time budget namely represents an internal end-to-end constraint

that should be satisfied when describing the sub-system functional blocks at design level.

2.2.2.2.Sub-system Time Budgets

To determine sub-system time budgets, the designer has a set of vehicle end-to-end
requirements that involve several vehicle sub-systems/functions including the sub-system
under development. These vehicle sub-systems communicate together through exchanging
data. Let’s consider the example shown by Figure 10. The considered sub-system
communicates with five functions within the vehicle as shown in the figure (For the clarity
of the models, we do not show the EAST-ADL stereotypes in the following figures, however

detailed models are shown in the examples presented in the next part of this manuscript).

Vehicle
Function 1
Function 4
Datal l—l Datal Data2
—. Data3 Data 4HData4
Sub-system
Data2
Data3 .7
Function 2

Function 5

B Dotas Data 9 —Mlpatao

Data 5.—' Data 5 Data BF

Function 3

Data 7} pata7 Datasff

Figure 10: example of a sub-system functional analysis view

Let’s consider the following vehicle end-to-end requirement that we call Req: “From the

activation of “function 1”7 until the termination of ‘“function 4”, the duration should not exceed

Methodology for Model-based Timing Analysis Process

79

100ms”. Figure 11 shows the flow of vehicle functions involved in this vehicle end-to-end

requirement (function 1, sub-system, function 4)

Vehicle
Function 1
Datal Data2 Function 4
Datal l l l Data3
l lData 4
Sub-system Data 4
Dataz2 Data3
Function 2

Function 5

Data8ff}———J) Data8 Data 9f—Wata o

Data 5.—. Data 5 Data 6.—

—1 Data 6
Function 3

Data 7f——J Data7 Data6ff}——

Figure 11: Flow of vehicle functions involved in Req

Let’s suppose that the time budget of “function 1”7 is 20ms and the time budget of “function
4” is 50ms. Thus, the time budget that should be allocated to the sub-system for compliance
with this vehicle end-to-end requirement is 30ms (let’s call it TB). This time budget means
that from the reception of “data 2” by the sub-system until the production of “data 3”, the
duration should not exceed 30ms. Let’s call each flow within the sub-system (i.e., from the
reception of an input data by the sub-system until the production of an output data) “sub-
system internal flow”. Hence, the time budget TB imposes a constraint on the delay of the

sub-system internal flow “reception of data 2-production of data 3”.

A particular use case should be considered when determining sub-system time budgets. Let’s

consider the following two vehicle end-to-end requirements:

* Req 1: From the activation of “function 2” to the termination of function 5, the duration

should not exceed 200 ms.

* Req 2: From the activation of “function 3” to the termination of “function 57, the duration

should not exceed 150 ms.
Methodology for Model-based Timing Analysis Process

80

Figure 12 shows the flow of vehicle functions involved in each vehicle end-to-end
requirement (the broken line depicts the flow of functions involved in Req 1 and the solid

line represents the flow corresponding to Req 2)

Vehicle
Function 1
Datal Data2 Function 4
Datal .—. l— Data2
. HData 4
Sub-system Data 4
Data2 Data3
. l
Function 2
Data’s Data6 Function 5
Data 5 l—.— ——————— =1 Data 8
Data9
[[—— === -—— —I— ——————— -l—.Data9
_ _d _
Data 8
Data b
Function 3
Data 7 Data 6
Data 7.

Figure 12: flow of vehicle functions involved in Req1 and Req 2

As stated earlier, for each vehicle end-to-end requirement, we determine a sub-system time
budget that allows respecting this vehicle end-to-end requirement. Hence, in our case, we
determine two time budgets (let’s call them TB 1 and TB 2) for the sub-system. However, as
the figures show, our sub-system acquires “Data 6” from both “function 2” and “function 3”.
This means that both TB1 and TB2 impose a constraint on the same sub-system internal
flow (reception of “data 6”-production of “data 8”). In this case, we should decide which time
budget to keep for the remaining of the work. Two cases should be considered based on the
operating mode of the sub-system (an operating mode corresponds to a particular state of the sub-
system depending on the interaction of the sub-ystem with its environment. For example, depending on

the detection of a failure, the sub-system can be in a failure mode or in a nominal mode (without

Sailure)).

* Case 1: if each time budget corresponds to a different sub-system operating mode

(e.g. one time budget correspond to the activation mode of the sub-system and the

Methodology for Model-based Timing Analysis Process

81

other one to its deactivation mode), then the two time budgets should be kept and the
analysis performed during next steps should consider each operating mode

separately.

* Case 2: if the two time budgets correspond to the same sub-system operating mode,
then we keep only the smallest time budget and the further analysis should be

performed considering only this time budget.

3. Design Phase

During the design phase, the system architecture model obtained in the analysis phase is
further refined and two timing analysis activities are carried out. The first consists of
refining the sub-system time budgets determined at analysis level. The second is an
exploration of the hardware architecture based on an evaluation of processor utilization for
each functional-block-to-ECU allocation scenario. To evaluate this utilization, the designer

should have previously estimated the execution times required for each functional block.

3.1. Refinement of Sub-system Time Budgets

Refining the sub-system time budgets determined during the analysis phase means
evaluating the time budgets to be allocated to the functional blocks so that vehicle end-to-
end requirements are still met after design-phase refinement of sub-system functional
architecture. To determine the functional block time budgets, the same approach is used as
for the analysis phase. This requires first developing an analyzable model that contain the

minimum information for such analysis.

3.1.1. Analyzable Model

3.1.1.1. Analyzable Model Minimum Features

We organize the features of the minimum analyzable model in two categories: the sub-

system functional architecture and the sub-system timing architecture.

* Sub-system functional architecture: It should represent the functional decomposition
of the sub-system by showing the functional blocks that compose it and their

Interactions.

Methodology for Model-based Timing Analysis Process

82

* Sub-system timing architecture: It represents a set of end-to-end flows formed by the
sub-system functional blocks. These end-to-end flows should be annotated with the sub-

system time budgets that have been determined in the previous phase- analysis.
3.1.1.2.Solution for the Analyzable Model

To represent the minimum features of the analyzable model, we develop two views, a
tunctional view ("design functional view") and a timing view ("design timing view"). Note

that the term "design" in these views and the following discussion refers to the design phase.

* Design Functional View: This view represents the features of the sub-system
functional architecture mentioned previously (cf. 8.1.1.1). It refines the Analysis
tunctional view of the analysis phase. The sub-system modelled as a black box during the
analysis phase is therefore depicted here as a white box showing the functional blocks
and the interactions between them. This view is also developed using EAST-ADL
concepts for functional modelling, and UML composite structure diagrams. To develop

this view, the following guidelines should be respected:

» The Sub-system should be modelled as an UML container class and
stereotypes with “DesignFunctionType” from EAST-ADL.

» Each functional block should be modelled as an UML property and
stereotyped with “DesignFunctionPrototye’.

» The interaction between the functional blocks should be modelled by UML

connectors and stereotyped with “FunctionConnector” from EAST-ADL.

» The communication interface of each element should be modelled as an UML

port and stereotyped with “FlowPort” from EAST-ADL.

* Design Timing View: This view represents the features of the sub-system timing
architecture presented previously (cf. 3.1.1.1). It refines the analysis timing view of the
analysis phase. It depicts a set of flows formed by the functional blocks making up the
sub-system. For each sub-system time budget determined during the analysis phase, we
model an end-to-end flow containing the functional blocks concerned by the budget. For
example, if we determine a time budget to be allocated to the sub-system during its
activation, we model an end-to-end flow of sub-system functional blocks that participate

in sub-system activation and we specify said budget as an end-to-end constraint on this

Methodology for Model-based Timing Analysis Process

83

flow. In the same way as for the analysis phase, this view is modelled using UML
sequence diagrams annotated with TADL concepts to model event chains and timing
constraints. At the end of this chapter, a paragraph explains how this view and the
timing view of the analysis level are developed using sequence diagrams and how these
views are derived from functional views. The following guidelines should be respected to

develop this view:

> FEach flow of functional block should be modelled as an UML interaction and
stereotyped with “EventChain” form TADL.

» Each functional block involved in the flow should be modelled as a lifeline with
an action execution specification. The action execution specification should be
stereotyped with “EventChain” and specified as an “EventChainSegment” for the

whole interaction.

» Each message should be stereotyped with “Ewventchain” tfrom TADL and

“DataMessage” (this concept will be detailed in the next section)

» Each sub-system time budget determined in the previous phase should be
specified as a “ReactionConstraint” from TADL for the whole UML interaction.

3.1.2. Determination of Time Budgets for Functional Blocks

For each sub-system time budget (modelled as an end-to-end constraint in the design timing
view), the designer determines a time budget to be allocated to each functional block to
satisfy the constraint. Distribution of the time budgets to the functional blocks is based on
the expertise of the designer and the nature of each functional block. For example, a
tunctional block performing a simple signal transformation will have a small time budget.
One performing complex processing that requires much more time will then have a larger
time budget. Budget allocation should take place in such a way that the overall time budget
determined for the sub-system is likewise met. After this timing analysis, the designer
possesses a number of time budgets for each functional block. Each such functional block
time budget corresponds to a different sub-system operating mode and should be met during
sald operating mode (e.g. a function that participates in sub-system activation and failure
detection will have a time budget for each of these operating modes). The functional block
time budgets determined during this phase are used during the implementation phase, after

the system functional architecture is transformed into a software architecture with software

Methodology for Model-based Timing Analysis Process

84

components and runnable entities. These time budgets are then refined to determine the
time budgets to be allocated to the runnable entities or to end-to-end flows formed by a
number of communicating runnable entities, etc. The latter represent input constraints for

the scheduling analysis activity performed at the implementation stage.

Figure 13 shows an overview of the model development and the timing analysis of the

design phase that refines the models and the timing results of the previous phase —analysis.

Analyzable Model Analysis

Analysis Functional View Analysis Timing View Inputs for results

Analysis Vehicle Vehicle E2ZE requirement analysis

Sub-system
Phase A1 w Lol imebudgets

\ : \ Time budgets refinemen

\ Analysis
! 3 ; ' results

FB1time
budget
FB3 time
budget
FB4 time
budget

Figure 13 model and timing results refinement from analysis to design phase

Desig onal Vie Inputs for
analysis

Sub-system time budget |

Sub-system

Design .78 -~

Phase
| FB2 —I_ kA M

EAST-ADL/UML composite

structure diagrams TADL/UML sequence diagrams

3.2. Performance of Hardware Architecture Exploration

At this stage, we assume that the hardware platform to be used by the sub-system has been
already chosen (this is done to comply with the current automotive development process, in
which new sub-systems are integrated into a vehicle for which there is a pre-existing
software and hardware resource platform). The analysis performed here is thus geared to
ensuring correct integration of the sub-system with other vehicle functions in terms of
requested processor load. Based on a functional block-to-available ECU allocation scenario,
the designer evaluates the load requested by the sub-system for each processor. This allows
him to determine the allocation scenario that best satisfies any constraints s/he might have
with regard to processor utilization. Once the analysis results are known, the designer

decides whether to distribute functional blocks over many ECUs or to allocate them to the

Methodology for Model-based Timing Analysis Process

85

same ECU and which functions can be so allocated. To perform this evaluation, it is

necessary to develop an analyzable model that contains the minimum information necessary

for this analysis.

3.2.1.

Development of an Analyzable Model

3.2.1.1. Analyzable model minimum features

In scheduling analysis, to evaluate the utilization of a processor, one needs to specity:

v" The executing processors

v The executable entities on these processors and their execution times and activation

periods

v" The allocation of the executable entities to the processors

Hence, to perform this evaluation, we organize the minimum information needed for the

analyzable model in three categories:

Sub-system functional architecture: It represents the functional blocks that
compose the sub-system under development (these functional blocks represent the
executable entities that contend for the use of the executing processors). The
execution time and the activation period of each functional block should be specified.
These parameters can be determined based on designer expertise, measurements or

knowledge of former versions developed for the sub-system.

Hardware platform: It represents the hardware resources on which the functional
blocks can execute. For our analysis, we don’t need to model the software resources

such as OS tasks.

Allocation: It represents the allocation of the functional blocks to the hardware
resources. For this analysis, we don’t model the allocation of the functional blocks to
the software resources but we allocate the functional blocks directly to the hardware

resources.

3.2.1.2.Solution for Analyzable Model

To end up with the minimum analyzable model necessary for this analysis, we developed a

modelling framework that combines EAST-ADL and MARTE to model the information

Methodology for Model-based Timing Analysis Process

86

necessary for the analysis. This modelling framework is composed of three views: design

tunctional view, hardware platform view and allocation view.

* Design Functional View: This view represents the features of the sub-system
tunctional architecture (It is not different from the view described earlier, in which sub-
system functional blocks are described using EAST-ADL functional modelling
concepts). As also mentioned above, these functional blocks are represented as
“DesignFunctionPrototypes”. ~ These “DesignFunctionPrototypes” are typed by
“DesignFunctionTypes” for which we specify the execution times estimated during the
previous step using the EAST-ADL concept “ExecutionTimeConstraint”. The activation
period of each functional block is specified through the concept “Trigger” of EAST-ADL
(this concept allows describing the activation pattern of an EAST-ADL FunctionType).

The guidelines for the development of this view have been described in 3.1.1.2.

* Hardware Platform View: This view represents the features of the hardware platform
(cf. 8.2.2) In this view, we represent the hardware resources (e.g. ECUs) that are used by
the sub-system. To model the view, we use UML composite structure diagrams. EAST-
ADL concepts for hardware modelling are supplemented here by MARTE concepts for
hardware resource platform modelling. The following guidelines should be respected to

develop this view:

» The hardware platform should be modelled by a UML container class and
stereotyped with “SaResourcePlatform” from MARTE.

» Each execution hardware resource (e.g. ECU) should be modelled by a UML
property and stereotypes with “SaExecHost” from MARTE and “Node’ from
EAST-ADL.

» Each Communication hardware resource (e.g. bus) should be modelled by a UML
property and stereotyped with “SaCommHost’” from MARTE and “LogicalBus’ tfrom
EAST-ADL.

= Allocation View: This view represents the features of the allocation (ct. 3.2.2). In this
view, we use a key concept from MARTE which is “SadnalysisContext”. This concept
helps to bind the model elements to a particular evaluation scope. The core of the

binding concept is the allocation of functions executed in the scenario of interest, to the

Methodology for Model-based Timing Analysis Process

87

resource platform (Note that during this phase, we abstract the software resource
platform such as OS tasks and allocate functional blocks directly to hardware resources).
Such allocation is carried out by specifying a UML composite diagram stereotyped as
“SaAnalysisContext”. In this way, the composite diagram contains two main parts
representing the sub-system design functional view with the functions to be allocated
and the hardware platform view respectively. To represent the allocation relationships,
MARTE concepts for allocation are used. Functional blocks are stereotyped as
“allocated”. This stereotype allows specifying the resource to which the function is
allocated. A dependency connector is drawn between each function and its hosting
resource and stereotyped as “allocate”. The following guidelines should be respected to

develop this view:

» A UML container class should be modelled and stereotyped with
“SaAnalysisContext’ from MARTE.

» The allocation relationships should be modelled with UML dependency

connectors and stereotyped with “allocate” from MARTE.

» Each functional block should be modelled as a UML property and stereotyped
with “allocated” from MARTE.

Figure 13a shows an overview of the analyzable model needed for hardware architecture

exploration.

Allocation View

- = Hardware Platform View i FB3 | | FB2 FB4
Design Functional View ' 7 " 1
Sub-system \ + ’ | :
| FB1 ecul| |ecuzl |ecus " | '
[1 1
1 FB3 VI v v
—L | I I I ECU1 ECU2 ECU3
— FB2 R BUS
EAST-ADL & UML composite EAST-ADL/MARTE BTl LT

structure diagrams

Figure 13a Overview of the analyzable model for hardware architecture exploration

Methodology for Model-based Timing Analysis Process

88

3.2.2. Evaluation of Processor Loads

3.2.2.1. Principle

Starting from the allocation view of the model, a scheduling analysis tool can follow the
links of the model to extract the information that it needs to perform processor load
evaluation (function execution times, allocation, hardware resource parameters, etc). As the
original aim of scheduling analysis tools is to verify if a task set is schedulable or not, all of
them require specifying the OS tasks involved in the sub-system. However, in our approach,
we abstract the OS task model during this phase, showing only the allocation of functional
blocks to hardware resources. Therefore, to be able to use a scheduling analysis tool for our
purpose, our model should be transformed in an accurate way to obtain the model required
by the tool. Some scheduling analysis tools require a description of the allocation of
tfunctions to OS tasks and the allocation of OS tasks to processing resources. Other tools
require only the allocation of OS tasks to processing resources. In both cases, to be able to
use such tools to analyze our model, each functional block defined in that model should be
transformed into an OS task in the analysis tool model (or into an OS task allocating only
one function). The execution time determined for each functional block should be then
assigned to the defined OS task (or to the function that it allocates). As our goal here is not
to perform complete scheduling analysis, but just to evaluate processor loads (without
timing constraint verification), the choice of the priorities to be assigned to the different
tasks is not important (to calculate processor utilization, one needs to specify only the task

execution times and activation periods without specifying their priorities).

3.2.2.2. Tool Use and Model Transformation

To evaluate processor loads, we claim to use the scheduling analysis tools MAST, cheddar
or SymTA/S (cf. section 3.4. of part I). In this section we show the mapping that should be
performed to transtorm the analyzable model to a cheddar or MAST model (we encourage
the use of these two tools as they are open source and free, SymTA/S will anyway be used to
perform complete scheduling analysis in the implementation phase). Table 14a and 14b show
respectively the mapping of the elements of the analyzable model to a MAST and Cheddar
model. Note that an automatic transformation is already implemented from MATE models

to MAST in the context of another research work.

Methodology for Model-based Timing Analysis Process

Table 14a Mapping of analyzable model elements to Cheddar elements

Analyzable model element Stereotype Cheddar element
Functional Block DesignFunctionprototype, Task
Allocated
Execution hardware resource Node, SaExecHost Processor
Communication hardware LogicalBus, saCommHost Network

resource

Functional block execution time

ExecutionTimeConstraint

Task computation time

Functional block activation Trigger Task period
period
Allocation relationship Allocated, Allocate Task property called
“processor”

Table 14b Mapping of analyzable model elements to MAST elements

Analyzable model element

Stereotype

MAST element

Functional Block

DesignFunctionprototype,
Allocated

Transaction with only one
activity representing a
Scheduling server hosting

only one Operation

Execution hardware resource

Node, SaExecHost

Processing resource (regular

processor)

Communication hardware

resource

LogicalBus, SaCommHost

Bus (packet based network)

Functional block execution time

ExecutionTimeConstraint

Operation execution time

Functional block activation

period

Trigger

Transaction external event

Allocation relationship

Allocated, Allocate

Activity parameters for the
specification of the scheduling

server and operation

Methodology for Model-based Timing Analysis Process

89

90

Using Sequence Diagrams to Represent Timing Views at
Analysis and Design Levels

The objective of this section is to describe how system timing views are represented at
analysis and design levels. As specified in the methodology description, analysis and
design functional views are represented using UML composite structure diagrams
annotated with EAST-ADL concepts for functional modeling. At each level, the aim is
to derive from the functional view a timing view where we can represent the end-to-end
constraints to be satisfied when determining the necessary time budgets.

To represent the timing views, we opted for the use of TADL concepts to represent
constrained end-to-end flows by means of events and event chains. The questions to be

answered are the following:

* How to move from the EAST-ADL/Composite structure diagram model

elements to TADL elements?

* How to represent the TADL timing view using an UML behavioral diagram?

1. From EAST-ADL/composite structure diagram models to TADL

Objective: We have as input a composite structure diagram representing the interaction
between several functions. Some flows formed by these functions are submitted to end-
to-end constraints. We want to represent these flows and their constraints using TADL
events and event chains. How to map the elements of the EAST-ADL/composite

diagram model with TADL events and event chains?

Solution: Each flow of functions will be represented as a TADL event chain. As our aim
is to specify a time budget for each function involved in the end-to-end flow, each arrival
of data on the input port of a function and the production of data in the output port of a
tunction will be considered as an observable event and modeled as a TADL event.
Consequently, each function involved in the end-to-end flow will be represented as an
event chain segment.

Figure 14 shows an example of an EAST-ADL model developed using UML composite
diagram. The end-to-end flow formed by the functions function_1, function_2 and
function_3 is submitted to an end-to-end constraint as shown in the figure. To derive

the timing view from this model, we identified the observable events (here we

Methodology for Model-based Timing Analysis Process

91

considered that the arrival of data 1 at the input port of the container system and the

arrival of this same data at the input port of function_1 occurs at the same instant so we

considered only one observable event (event 1), we did the same to produce data 4

(delegation delays are neglected))
Observable Events -

<<Function

<<FunctionPrototype=>
Function_3

<<FunctionPrototype=>=>

Function_2
Event5

3 Datad

Event 6

Event4

Data1 <<FunctionPrototype>> § ata? ‘i
Event1 Function 1 Eyent 2 Event 3

Dataé

——

<<FunctionPrototype>>

Data5
Function_5

—

<<FunctionPrototype=>=

. | Function_4

End-to-end constraint:

from the acquisition of data1 the
system should produce data4
within X ms
Figure 14 Observable event in EAST-ADL functional model
15 shows the deriving of the TADL timing view from the EAST-

Figure
ADL/composite structure view

Methodology for Model-based Timing Analysis Process

92

Observable Events ~

~

Datat <<FunctionPrototype>> <<FunctionPrototype>> <<FunctionProlotyp§> Data4
_.l—@ Function_2 Function_3 | —
Event1 Function_1 gyent2 Event3 Event4 Event5 Event 6

<<FunctionPrototype>>
Data5 Dataé

Function_4 —1 Function_5 [

<<FunctionPrototype>>

EAST-ADL fcomposite structure world

End-to-end constraint:

from the acquisition of data1 the
system should produce datad
within X ms

Eventi Event2 Event 3 Event4 Event 5 Event 6

EventChainSegment! EventChainSegment2 EventChainSegmentd EventChainSegmentd EwventChainSegmentd

TADL world
_—
—

Function_1 Transferof data2 Function_2 Transferof data3 Function_3

Figure 15 From EAST-ADL functional view to TADL view

2. Representing TADL timing views using sequences diagrams
Now, as we defined how to use TADL concepts to model the timing views, the question

that we should answer is how to represent concretely this timing view?

In our approach, we propose to use UML behavioral diagrams. According to the UML
2.0 specification [7], seven UML diagrams can be used to specify the behavior of a
system: Activity, Sequence, Communication, Interaction Overview, Timing, Use Case
and State Machine diagrams. In this work, the closest diagram to model the required
timing views is sequence diagram. Sequence diagrams represent a particular scenario of
communication between collaborating components. Sequence diagrams do not focus
only on message passing but also the chronological order of this communication. This
tits well our case as we want to represent and end-to-end flow of functions representing
a particular scenario of communication between these functions. To have an accurate
representation of TADL end-to-end flows with sequence diagrams we should first

answer the following questions:

* What are the observable events in a sequence diagram?; this will allow us

defining the elements to be annotated with TADL events

Methodology for Model-based Timing Analysis Process

93

e In EAST-ADIL, communication between functions is assumed to be
asynchronous based on data exchange, how to represent this in sequence
diagrams?

To answer these questions, let’s remind first some notions in sequence diagrams: A
sequence diagram represents the message interchange between lifelines. A message
defines different ways of communication between lifelines of one interaction, generally
involving a pair of sender and receiver. Message may be of the following kinds:
synchronous or asynchronous operation call, asynchronous signal post, creation or
delete of an object, or a reply message. In UML2, a message owns generally two
message ends: one refers to the event occurrence related to the posting of the message,
while the other refers to the event occurrence related to the receipt of the message.
Currently, due to its initial intent, the UMLZ2 interactions chapter defines only specific
events dedicated to either operation-based message or signal-based message. For each
lifeline it is possible to associate an Execution Specification that represents the
execution of an action or behavior within the lifeline. Each execution specification
occurrence is assoclated to two events that represent respectively the start and the end
of the action or behavior execution

Observable events in sequence diagrams

As stated before, each message in a sequence diagram is associated to two event
occurrences, the first relates to the sending of the message and the second to the
reception of the message. We consider then each sending event and reception event of a
message as an observable event (and hence these events will be stereotyped with TADL
events). Each function involved in the end-to-end flow will be modeled as a lifeline
containing an Action Execution Specification. The events representing the start and end
of each occurrence of an action execution specification will be considered also as
observable events and stereotyped with TADL event.

Data based communication issue

The main paradigm for communicating within sequence diagrams is the message that
involves either operation call-based or signal-based communication. This is not
sufficient for our purpose, because EAST-ADL2 enables also structural entities (the
«FunctionTypes») to communicate by data-passing. So, we need to extend the message
concept as defined in the chapter interaction to enable UML sequence diagrams to

support data-based communication. As shown in figure 16 we define then the stereotype

Methodology for Model-based Timing Analysis Process

94

«DataMessage». This latter owns a property value, which models the data value

conveyed by the message.

«metaclass»
Message

«Stereotype»
DataMessage

+ value: OpaqueExpres...

Figure 16 Definition of the DataMessage concept
As mentioned previously, UML2 interactions define events related to either operation-

based message or signal-based message. We need then to extend also the UML2 Event
concept to enable events related to data-based communication. As shown in figure 17,
we define an abstract class «DataEvent» that extends the UML2 Event concept. This
class 1s specialized by «RecieveDataEvent» and «SendDataEvent» to express

respectively events related to the reception and the sending of a DataMessage.

Methodology for Model-based Timing Analysis Process

Figure 17 Definition of the DataEvent concept

“metaclasss
Event

«5barsokypes
DataEvent

«Skereolypes
ReceiveDataEvent

«Shersotypes
SendDataEvent

95

This same extension approach is described in [627] by Gérard and Servat who defined a

MARTE annex for EAST-ADL modelling (this annex has been added to the MARTE

last release specification).

Figure 18 shows an overview of the timing view obtained for the example presented in

<<EventChainSegment==>
Function_2 execution

figure 15
<<EventChain>>
1 1 0
1 1 0
1 1 0
==EventChainSegment 1 !
=<EventChainSegment=> DatahMessage=> : :
Function_1 execution Transfer of data 2 | !
) \ i
{ 0 !
1
1
1
1
1
[

Y
=<EventChainSegment, DataMessage>>
Transfer of data 3

==EventChainSegment=>
Function_3 execution

Methodology for Model-based Timing Analysts

Figure 18 Timing view example

Process

96

4. Implementation Phase

During this phase, the sub-system functional architecture modelled in the design phase is
refined and transformed into software architecture described using software components and
runnable entities. The hardware and software platform is also refined and the mapping
(allocation) is specified (mapping of runnable entities to OS tasks and mapping of OS tasks
to hardware resources). A complete scheduling analysis can thus be performed during this
phase, since all the required information is available (OS task model, allocation, timing
information, etc). In the same way as for the two previous phases, an analyzable model
should be developed. This is done using AUTOSAR concepts. Beforehand, however, the
designer needs to obtain timing information for the runnable entities involved in the system.
By timing information, we mean the execution times of the runnable entities and their

timing constraints.

4.1. Determination of Runnable Entity Timing information
As mentioned at the beginning of this section, the timing information considered here

concerns the execution times and timing constraints for runnable entities.

4.1.1. Estimation of Runnable Entity Execution Times

Depending on the choices made to transform the system functional architecture of the
design level into software architecture, the designer estimates the execution times of the
runnable entities by taking into account the execution times determined for the functional
blocks during the design phase. If, for example, a functional block is transformed into a
software component with a single runnable, this runnable will have the same execution time
as the functional block. The execution times determined during this phase are used to
annotate the application view of the analyzable model (more details on model views are

provided in a later paragraph)

4.1.2. Determination of Runnable Entity Timing Constraints

In the same way as for execution times, the timing constraints to be respected in this phase
depend on the transformation choices made and the time budgets determined for functional
blocks at the design stage. If, for instance, a functional block is transformed into a software
component with two runnables executing successively, the time budget determined for this
tunctional block at design level is considered as an end-to-end constraint from the activation

of the first runnable until the second runnable has executed. The timing constraints

Methodology for Model-based Timing Analysis Process

97

determined during this phase are used to annotate the timing behaviour view of the

analyzable model.

4.2.

4.2.1.

Development of the Analyzable Model

Analyzable Model Minimum Features

To enable scheduling analysis, the analyzable model should contain the following features

that we organize into four categories:

Application workload: The application workload represents the processing load of
the system. It represents the different operations (functions/runnable entities)
executed in the system and contending for use of processing resources and other
shared resources. An operation may represent a small segment of code execution as
well as the sending of a message through a communication medium. Operations are
generally organized in processing flows (set of related operations/functions). To
make the analysis possible, scheduling analysis requires the specification of the

execution /transmission time (worst, best or average) for operations/messages.

Application Timing behavior: The application timing behavior represents the
timing information of the different operations or processing flows involved in the
system under analysis. Timing information contains both timing description (timing
properties) and timing constraints. Timing description contains the specification of
the triggering of system operations or processing flows (recurrence, activation
Jitters, etc.). Most scheduling analysis tools allow analyzing systems with various
triggering patterns such as periodic, sporadic, singular, etc. For those activation
patterns, it is necessary to specify the period or the min inter-arrival time of the
triggering events. Timing constraints must be met by the system operations or
flows. They are represented essentially by operation deadlines, output jitter bounds

and end-to-end dead-lines.

Resource Platform: It represents the concrete architecture and capacity of hardware
(e.g., CPU or buses) and software (e.g. tasks) resources. For hardware resources such
as processors, the model should contain the description of the scheduler used. For a
more accurate analysis, it may be also necessary to specify the processor overheads

(e.g. context switch overhead). For software resources such as tasks, it is necessary to

Methodology for Model-based Timing Analysis Process

98

specify the task nature (preemptive, non-preemptive, etc.) as well as its priority.

Involved shared resources should also be described.

* Mapping (allocation): It represents the allocation of the operations to software
resources (e.g. tasks) and the allocation of software resources to hardware resources

(e.g. processors).

In the following section, we describe how, based on AUTOSAR concepts, we develop such

minimum analyzable model.

4.2.2. AUTOSAR Analyzable Model

The minimum analyzable model developed during this phase contains four views
(application view, timing behaviour view, resource platform view and a mapping view). To
model each view, concepts from different AUTOSAR templates are used. The different
views of this phase are obtained as a refinement of the model of the previous phase, design.
Figure 19 shows an overview the model refinement from the design to the implementation

phase.

* Application View: This view represents the application workload features (cf. 4.2.1) and
represents mainly the software architecture of the sub-system using software
components and runnable entities. This view is developed as a transformation and
refinement of the sub-system design functional view developed at design level.
Transformation of the design functional view into a software application view depends
on the choices made by the designer. S/he may choose to transform each functional block
into a software component with one or more runnables [617]. Due to some constraints,
s/he may also choose to concatenate two functional blocks in a single software
component. In this view, two aspects are modelled for each software component:
component behaviour, where runnable entities and their triggering events are described,
and component implementation, where runnable entity execution times can be specified.
To develop this view using AUTOSAR concepts the following guidelines should be

respected:

» The sub-system software architecture should be modelled by a set of software
component (these software components correspond to the transformation of the

tunctional blocks of the design phase)

Methodology for Model-based Timing Analysis Process

99

» For each software component, an AUTOSAR Internal Behaviour should be
specified

» Each executable operation in the sub-system should be modelled as an

AUTOSAR Runnable Entity

» To specify the Runnable Entities execution times a Software Component
Implementation ~ should be described. In each software component
implementation, a Resource Consumption should be specified where the maximum,

minimum or nominal execution time of the runnable entity can be specified.

* Timing behaviour View: This view describes the features of the application timing
behaviour (cf. 4.2.1), the designer describes the timing behaviour of the sub-system using
AUTOSAR events and event chains for which the previously determined timing
constraints are specified. End-to-end constraints and runnable deadlines should, for
example, be specified in this view. The following guidelines should be respected to

develop this view:

» Each processing flow of runnable entities should be modelled as an AUTOSAR
EventChain

» Each end-to-end constraint imposed on a flow of runnables should be specified as a

Max latency Constraint tor the corresponding event chain.

» Each event activating the execution of a processing flow should be modelled as a

Stimulus from AUTOSAR

» Each event produced at the execution termination of a flow should be modelled as a

Response

» To describe the triggering of each processing flow, an event triggering constraint

should be defined where the arrival pattern ot the stimulus event can be described

= Resource Platform View: This view represents the features of the resource platform
presented in 4.2.1. It shows the software (e.g., OS tasks) and hardware resources used in
the sub-system. This view is obtained by refining the allocation view of the design phase.
It namely incorporates more scheduling-oriented features such as the description of the

scheduler parameters for each ECU. To develop this view, AUTOSAR concepts from
Methodology for Model-based Timing Analysis Process

100

both OS configuration and System template are used. The following guidelines should be

respected when developing this view:

» Each OS task should be modelled as an AUTOSAR “Os Task”. Its priority can be
specified using the attribute Os Task Priority

» Interrupts involved in the system should be described as Os Isr that represents

an OSEK interrupt service routine.
» Shared resources should be specified as Os Resource trom AUTOSAR

> Each ECU should be modelled as an ECU instance from AUTOSAR

» Each communication network should be modelled by Communication Cluster for
which it is possible to specify a PhysicalChannel that describes the transmission

medium that is used to send and receive information between two communicating

ECUs.

* Mapping View: This view represents the mapping features described in 4.2.1. It is a
refinement of the allocation view described at the design stage (here we use the term
mapping rather than allocation to comply with AUTOSAR terminology). In this view,
we describe allocation of the runnable entities and to OS tasks. Allocation of the OS
tasks to the different available ECUs is also described. To describe the mapping of
runnable entities to OS tasks, AUTOSAR concepts for RTE (Runtime Environment)
configuration are used. The mapping of a runnable entity to an OS task is based on
mapping of its triggering event to this task. The mapping of the OS tasks to ECUs is
described using AUTOSAR concepts for OS configuration.

To describe the mapping using AUTOSAR concepts, one should proceed as follows: The
description of the tasks allocated in each ECU is performed in two steps. The first step is
the definition of the OS configuration. In this configuration definition, the OS is
modelled by an ECU Configuration Module Definition element. For this module, one
should define an ECU Parameter Configuration Container called OsTask. Once this
definition is done, the second step is the modeling of the concrete configuration of the
OS. For this, we define an ECU Module Configuration Value. In this module configuration
value, we define the corresponding tasks as ECU Container Values. These container values

should have OsTask as a definition.
Methodology for Model-based Timing Analysis Process

101

Mapping the runnable entities to OS tasks is done in two steps following the RTE
configuration for each ECU. In the first step, which is the definition of the RTE
configuration, we create an IECU Module Definition. To this module definition, we
associate a container definition called RteSwComponentInstance in which we create another
container called RteEventToTaskMapping. The later allows referencing the mapped
RTEEvent and the OS task. The second step is the specification of the concrete mapping
value of the sub-system runnable entities. This is done by creating container values for

which we specify the elements created in the first step as definitions.

Design functionalview Hardware platform view

sub-system - - .

ECUL |ECUZ

-

-

1
1
!
T
1
i
1
! A
i \
| BIE==
J ECU1 -
e | res| ’ 1
=|| = = =
ez]| e ~e
" ecu1
Application view Timing behavior view Resource platform view Mapping view

Concepts from AR SWC Concepts from AR timing Conceptsfrom AR OS & concepts from RTE & OS
template extension template System template configuration

SWC1| |SWC2 SWCS

SWC: Software component RE: Runnable Entity ~ ECU: Electronic Control Unit

Figure 19 Model refinement from Design to Implementation phase

4.3. Performance of Scheduling Analysis

4.8.1. Principle

To perform scheduling analysis, the developed model is transformed into a model that can
be read by a scheduling analysis tool. Note that, at this stage, since our goal is to perform a
complete scheduling analysis (evaluation of processor loads and verification of timing
constraints), the analysis should take into account all vehicle functions executed on the same
resource platform used by the sub-system. The analyzable model views are not changed, but
the application view should contain all the software components and runnable entities
executed on the same resource platform. The resource platform view shall contain all OS
tasks allocated to the hardware resources used by all functions. To verify deadlines, knowing

Methodology for Model-based Timing Analysis Process

102

task priorities and preemption by other tasks is crucial; so the complete software resource
platform should be described. Scheduling analysis results help the designer to validate the
final architecture or assess the possible tradeoffs required to satisty timing or load
constraints. The tool used for this activity should meet the requirements listed in the section
3.3.1 of the first part of this manuscript to enable scheduling analysis for automotive

systems.

4.3.2. Tool Use and Model Transformation
To perform scheduling analysis, we claim to use the scheduling analysis tool SymTA/S (ct.
section 3.4 of part I). To perform scheduling analysis, the AUTOSAR analyzable model

should be transformed to a SymTA/S model as shown in table 14c.

Table 14c AUTOSAR to SymTA/S model transformation

AUTOSAR analyzable model SymTA/S model

elements elements

Runnable entity/non-preemptible
Runnable
flow of runnable entities

Path (formed by runnable
Event chain
entities)

Runnable entity execution time Runnable execution time

Task activation/

Event
runnable activation
OS Task Task
ECU instance ECU
Physical channel Bus

When transforming the AUTOSAR model to a SymTA/S model, a special care should be
taken when defining the runnables in SyMTA/S. In fact the concept of runnable in
SymTA/S represents a non-preemptible entity executing in an OS task. Hence this can map

to the concept of runnable entity in AUTOSAR but also to any non-preemptible flow of

runnable entities in AUTOAR.
Methodology for Model-based Timing Analysis Process

103

Part I1I: Methodology Deployment
and Validation

In this part, we focus on the deployment and the validation of our methodology. The
methodology deployment means how we intend to apply the proposed methodology to
develop automotive applications. In this work, we focus on the application of the
methodology to develop Engine Management Systems (EEMS) at Continental. An Engine
Management System (EMS) is a system used to control the engine functionalities (e.g.,
Combustion, injection, ignition, etc). An EMS consists of software parts implemented in an

Electronic Control Unit (ECU) that can communicate with sensors and actuators.

The methodology validation is done through studying the acceptability of the methodology
and through showing the extent to which this methodology provides solution for

automotive software development needs determined in the first part of this work.

This part is then divided to four chapters. The first chapter presents the approach describing
the application of the methodology in the context of EMS development. The approach deals
with two scenarios: the development from scratch and the development by reuse. The
second chapter illustrates the approach by presenting an example of the application of the
methodology to two use cases: the cruise control (development from scratch) and the knock,
a component used to detect “knock” and to adjust the ignition accordingly (development by

reuse).

The third chapter studies the methodology acceptability through identifying the gap
between the current EMS development process at Continental and the process proposed by

our methodology.

The last chapter studies the extent to which this methodology provides solution for

automotive software development needs determined in the first part of this work.

Methodology for Model-based Timing Analysis Process

104

1. Methodology Application to EMS Development

1.1. Introduction

In this chapter, we present the deployment approach of our methodology within Continental
to develop engine management systems. For a better understanding of engine management
system, we have to know first how an engine is running. A four stroke engine cycle is

composed of four phases:
* Intake: the piston moves down aspiring the fuel/air mixture (injection)
* Compression: the piston moves up compressing the mixture

* Power: a spark generated by an ignition system starts the combustion (ignition), the

piston is then pushed down

e Exhaust: the burnt gases are evacuated

During the engine cycle, a Crankshaft wheel translates the linear piston motion into
rotation, a Camshaft wheel turns to force the valve opening by pressing on the
intake/exhaust valves. While the engine speed varies, the connection to the crankshaft
wheel fully synchronizes the mechanical cycles of the cylinders. It is therefore useful to date

engine operations not by physical time but by the crankshaft angular position.

An Engine Management System (EMS) is a system used to control the engine
functionalities (e.g., Combustion, injection, ignition, etc). An EMS consists of software parts
implemented in an Electronic Control Unit (ECU) that can communicate with sensors and

actuators.

1.2. Engine Management System Development at Continental
This section gives a general description of the current Continental development approach of

engine management systems.

Figure 20 gives a general overview about the development process of EMS at Continental.

Methodology for Model-based Timing Analysis Process

Sub-system Level

105

Customer
Request

; l

EMS Design

System Level

Sub-system 1 Sub-system M
Requirements Requirements
; | /
Sub-system 1 Development Sub-system N Development

EMS Integration

.

Sub-system N
W & HW

Sub-system 1
SW B HW

System Level

Figure 20 Current EMS development process

As the figure shows, based on the customer request, a first development phase called EMS

design is performed. This phase is performed by the EMS designer and consists of:

1.

EMS requirement analysis: This means collecting and analyzing the requirements
that the EMS under development should meet. The requirements that are considered
during this phase are of two kinds: functional requirements i.e., requirements that
describe the functionality of the system (e.g. the system should calculate the engine
speed) and performance requirements which constrain mainly the CPU load and the
memory consumption of the system (e.g. CPU total load should not exceed 60%).
Currently, timing requirements are not considered during this phase. This kind of
requirements are expressed and analyzed very late during the software

implementation of each sub-system.

EMS partitioning: This consists mainly in defining the needed sub-systems. For

example, an EMS can require a sub-system to ensure the injection functionality

Methodology for Model-based Timing Analysis Process

106

(injection sub-system), a second one for calculating the engine speed (engine speed
determination sub-system) and a third one to control engine knocking during
combustion (knock sub-system). Each sub-system is composed of software and
hardware parts. For instance, the injection sub-system can require software parts to
control the injection and hardware parts, the injectors, which execute the injection

itself.

Based on the EMS requirements determined during the EMS design phase, the EMS
designer determines the requirements to be satisfied by each sub-system. Then, each sub-
system is developed separately by taking into account these requirements. In addition, for

each sub-system, the software parts are developed separately from the hardware parts.

Once the different sub-systems are developed, the integration phase starts. This consists
mainly in integrating the software parts of the different sub-systems together as well as the

integration of hardware parts.

Our methodology will intervene during three steps of the current Continental process: the
EMS design phase, the software development of each sub-system and the EMS integration
phase. The application of our methodology in the context of EMS development will be
presented in detail in the next section. Before this, let’s present the current approach used at

Continental to develop the software of each sub-system.

Sub-system Software development

Currently, there are two approaches for software development at Continental. The first one
is purely code-centric approach and the second one is model-based approach. Unlike the
code-centric approach where the algorithms are described as Word specifications and then
implemented manually using C coding, in the model-based approach the functional design is
performed based on Simulink 447 models that describe the defined functions and their
associated algorithms. Then, based on these models the C code is generated automatically
using a code generator tool. Figure 21 describes the process followed for the two

approaches.

Methodology for Model-based Timing Analysis Process

107

Software (e**{'*
implementation ,:ui'b
&

Figure 21 Sub-system software development process
At the beginning of the development process of each approach, the function developer starts
by analyzing the requirements that should be respected when designing and implementing
the needed software. In the next phase, he performs the functional design. This consists
mainly in determining the needed functions to ensure the functionality of the sub-system
under design and the algorithm to associate to each function. During the software

implementation phase, the software developer implements these algorithms using C coding.

Software integration

The integration of the software parts from different sub-systems is done by the software
integrator during the EMS integration phase. After the software integration step, the

software integrator performs the software analysis. This analysis consists in:

* Verifying the proper integration of the software by analyzing the static architecture

of the integrated system (data communication, input/outputs, etc).

* Verifying the timing behavior of the system by measuring the response times of the
OS tasks involved as well as the global CPU load based on the C code of the

integrated system.

Software reuse

The process described in figure 21 is completely followed when the software of a sub-system
is developed from scratch. However, in order to save the development time and cost,
engineers have usually recourse to reuse and adapt previous versions of the software. In

software development at Continental, we can distinguish three categories of software reuse:

= Strong reuse: In this case, more than 80% of the new software version is reused from

previous version. The modifications concern only some configuration parameters and

Methodology for Model-based Timing Analysis Process

108

variables but the software “core” is not changed. This concerns e.g., the software of

engine dependant sub-systems (e.g., engine speed determination sub-system)

= Medium reuse: In this case of reuse, more than 50% of the new software version is
reused from previous version. The typical modification that can be done on the
software is the introduction of new software modules to ensure new functionalities of

the sub-system.

* Weak reuse: In this case of reuse, only the developer expertise and knowledge on
previous versions of the software is reused. No software modules are reused from

previous versions.

In the case of weak and medium reuse, both the function and software developer are
involved and the development process described in figure 21 is completely followed. In the
case of strong reuse, no functional design is performed; the software developer works

directly on the existing C code to modify the needed parameters and variables.

In the next section, we describe how to apply the proposed methodology in each

development case (development from scratch, strong reuse, medium reuse and weak reuse).

1.3. Migration to the New Methodology Process

This section describes how to map the current Continental development process and the
process proposed by our methodology. Before describing how our methodology will be
applied to develop software in the context of EMS development, let’s remind briefly the
different activities to be performed during each phase of our proposed development process

as described in figure 22.

Methodology for Model-based Timing Analysis Process

109

Vehicle End-to-
end
Reguirements

*Vehicle functional decomposition tﬁhé
modeling %&U

*Vehicle end-to-end constraints modeling
*Sub-system time budgets determination

%

* Sub-system functional decomposition ‘%’ o
modeling %‘VF,

*Sub-system end-to-end constraints modeling

*Functional blocks time budgets determination

* Hardware abstract architecture modeling

¢ Allocation of functional blocks to hardware b R

resources modeling Phase

*Processor load Determination

+ AUTOSAR detailed software architecture
description
* Scheduling analysis perfarmance

Figure 22 Proposed model-based process

1.3.1. Development from Scratch
Figure 23 shows an overview of our approach to apply the methodology to the development

of EMS.

Methodology for Model-based Timing Analysis Process

110

EMS Design

o -

"Sub-system Ntimes budgst
* Sub-system N CPLU lozd budset

*Sub-system 1 time budgst.

* Sub-system 1 CPU o=d budzgst
* Sub-system 1 other
R=quirsments

* Sub-system Nother
Requirements

\.'. / " b g ., /I
_ E f Subt_s\anelmd n % 3 ; ..é“bf
: functionzl desizn
functional dasign %s i, 5 = “315, e

»Sub-system 1
f ; . o (* functional block time L
functianzl block tima budget determinstion \
FUHEEEIHET-_EF_W”""U" * Best sliocationof :
Best sllacation of Implementatico functional blockto ko
fU"m:lnE""-_'-'Ckf_ﬂ Bese ECUsdetzrmination
ECUsdetarmination
Drescription of sub- Description of sub-
system 1 AUTOSAR SW system NAUTOSAR 3

architecture architecture

SW developmant for subsystem 1

N ~

AUTOSAR models integration

Softwers intzgrator l

Performance of scheduling analysis

EW deveiopment forsub-systemN

Figure 23 Application of the methodology to develop Engine Management Systems

To develop a whole engine management system, we propose to apply our development

process as follows:

* We suggest mapping the activities of the analysis phase of our methodology (described
in figure 22) to the EMS design phase of the current development process (described in
figure 20). This means that during the EMS design phase described in figure 20, in
addition to his/her current task, the EMS designer will determine and analyze what we
called in our methodology the vehicle end-to-end requirements. In this case, these
requirements will involve some of the sub-systems required for the designed EMS. In
the remaining of this chapter, we will hence call these requirements EMS end-to-end
requirements instead of vehicle end-to-end requirements. Based on the EMS end-to-end
requirements, the system designer, supported by experts from each sub-system,

determines the time budgets that should be assigned to each sub-system.

Methodology for Model-based Timing Analysis Process

111

Let’s consider, for example, an EMS that contains a sub-system for the calculation of the
engine position (engine position determination sub-system). This sub-system transfers
the engine position information to an injection sub-system that calculates the instant at
which the injection should be performed. An EMS end-to-end requirement can be as
follows: “The duration from the start of engine position determination until the injection
instant is calculated, should not exceed 500ms”. Based on this requirement and other
EMS end-to-end requirements, the EMS designer determines hence the time budgets to
assign to the engine position determination sub-system and to the injection sub-system.
To determine these budgets, the EMS designer will use also his/her expertise related to
previous versions of some of the involved sub-systems. This will help him/her to
determine the budgets that should be assigned to the sub-systems that are developed

from scratch.

As mentioned previously, in the current development process, requirements concerning
the global CPU load value of the EMS are considered during the EMS design phase. In
our approach, we suggest to determine, based on these requirements, the CPU load
requirements for each sub-system. This means that the EMS designer should determine
during this phase the CPU budget that can be assigned to each sub-system (e.g., the
CPU load requested by the injection sub-system should not exceed 5%).

* We suggest applying the design and implementation phases of our methodology to
develop the software of each sub-system. During the design phase of each sub-system,
the function developer models the sub-system functional decomposition and determines
the functional block time budgets based on the corresponding sub-system time budgets
determined previously by the EMS designer. During this same phase, the function
developer determines the best allocation scenario of functional blocks to available ECUs.
This is done by taking into account the sub-system CPU load budget determined
previously by the EMS designer.

During the implementation phase, the software developer describes the software
architecture of each sub-system using AUTOSAR models. Furthermore, based on the
tunctional block time budgets, he determines the timing constraints that should be

respected at this level.

Methodology for Model-based Timing Analysis Process

112

* Once the software architecture of each sub system is described using AUTOSAR models,
the software integrator will integrate the AUTOSAR models of the different sub-
systems. During this phase he performs also scheduling analysis on the integrated
system to verify that the timing constraints of each sub-system are respected and that

the CPU load constraints are met.

1.3.2. Development by Reuse

As mentioned previously (section 1.2), in the current EMS development process, the
software of the sub-systems required by the EMS can be developed by reusing and adapting
previous versions of it. In this section, we propose to show how to apply our methodology to
develop the software of such sub-systems by reusing the existing artifact of the previous
software versions. Table 15 presents the kind of artifacts that are available from a previous
software version. In the remaining of this section, we present the application of our

methodology in case of strong, medium and weak software reuse.

Table 15. Example of available artifacts from previous software version

Artifact Description

The software of each sub-system is organized into software
C code files modules. For each software module a C code file is
available.

e This artifact describes the implementation of each software
Word specifications dul
module

These models are represented in an internal tool called
XD. This tool is used to analyze the static architecture of
the software after EMS integration. The software of each
XD models sub-system is represented by a number of software
modules. Each software module is composed of a number of
operations which represent the smallest executable code
fragment.

This artifact contains the timing information of the
integrated system. This information consists mainly in
Timing data base operation execution times, OS task response times and
CPU utilization values. These data are measured by an
internal tool using the C code of the integrated system

Methodology for Model-based Timing Analysis Process

113

Case of strong reuse:

As mentioned previously, in this case of reuse, to develop the new version of the software, all
the software modules are reused from the previous version. The modifications done on the
new version are minor and concern only e.g., parameters or variable names modification.
Hence, in this case of reuse, we do not need to perform the activities of the analysis and
design phases of our methodology. To enable this case of reuse by using our methodology,
we suggest then to work directly on the implementation phase by transforming the legacy
information represented in the XD model (see table 15) of the previous software to an

AUTOSAR architecture. Figure 24 shows an overview of our approach.

Analysis Phase Can not be applied for sub-system P
Design Phase Notneeded for sub-system P
Sub-system P implementation phase Moditvrasiod
' ;::ymn;ir: ' Software integration and analysis

Sub-system old SW architecture S-Bh“ssﬁé::cai‘:ilﬂom"' AUTOSAR SW architecture

XD model of ather sub-systems

SW Modulel Transform ApplicationSwComponentt

DOperationil RunnableEntity1l I

Transform

Dperationip

RunnableEntitylp
Perform

Integrate scheduling

Software analysis
ApplicationSwiComponentN

Runnable EntityN1

SW ModuieN

DperationN1

Runnable Entityhp

DperationNp

Timing data base: unnable entity execution times
execution times

Figure 24 Application of the methodology in case of strong software reuse

Let’s consider a sub-system P as described in figure 24. To develop the new version of the
software of this sub-system, we do not need to determine the time budget and CPU load
budget to assign to it during analysis phase. In fact these budgets should be already known

(or at least can be estimated directly) from the previous software version. As the software

Methodology for Model-based Timing Analysis Process

114

architecture is already available, to develop the software of the sub-system P the design

phase is also not needed.

The transformation of the XD model to an AUTOSAR model should be done as follows:
each software module is transformed to an AUTOSAR software component. The operations
of each software module are transformed into runnable entities. Once the AUTOSAR
software architecture of sub-system P is described, the software integrator integrates it with
the AUTOSAR models of the software of other involved sub-systems (the software of other
sub-systems is developed in the same way either by reuse or from scratch as described
previously). The timing data base containing the execution times of the sub-system P
operations will be used to specity the execution times of the runnable entities to enable

performing scheduling analysis.

Case of weak reuse

In this case of reuse, no software modules can be reused from previous version. Hence, all
the methodology phases should be applied for the development of the software in the same
way as for the development from scratch. However, when performing the scheduling
analysis on the integrated system, the expertise of the software integrator from the previous
versions of the sub-system can be used to estimate the execution times of the runnable

entities of the sub-system considered.

Case of medium reuse

In this case of reuse, we will focus on the case of adding new functions or software modules

to the previous software version. We have to distinguish, then, two cases:

* If the new function or software module will interact with other sub-systems in a way
that there are EMS end-to-end requirements that involve these sub-systems and the
one under development, then the methodology should be applied starting from the
analysis phase. This is needed to determine the new time budget to assign to the

considered sub-system with this new configuration.

e It the new function or software module will interfere only internally with other
software modules within the same sub-system, then the methodology can be applied
starting from the design phase. The time budget to be assigned to the sub-system

can be estimated directly based on the previous software version.

Methodology for Model-based Timing Analysis Process

115

Figure 25 shows the approach followed during design and implementation phases for
these two cases. As the figure shows, based on the XD model that describes the previous
software modules and their operations, the function developer transforms during the
design phase each software module into functional block. He defines then the new
tunctional blocks needed for the new version of the sub-system. Based on this new
configuration and the time budget known for the sub-system previous version, the
tunction developer determines the time budget to assign to each functional block of the
new configuration. Based on the new functional architecture, the software developer
describes the new software architecture using AUTOSAR constructs. The simplest way
is to transform each functional block defined at the design level to an AUTOSAR
software component at the implementation level. The definition of the runnable entities
for each software component is done by taking into account the information from the

previous software architecture but also the new constraints on the software.

Sub-system new functional

DESign Phase architecture

Functional block 1 New functional block 1 Determine
Functional
New functional block 2

Block time

budgets

Functional block N

Implementation Phase

Sub-system old SW
architecture

XD model
- New
. SoftwareComponentl
SOy SEELEL ' RIS SoftwareComponent 1

Operation1l

Operationlp
SoftwareComponentN b=
SoftwareComponent 2

Sub-system new AUTOSAR
SW architecture

SW ModuleN

OperationN1

OperationNp

Figure 25 Application of the methodology in case of medium software reuse

Methodology for Model-based Timing Analysis Process

116

In the next chapter, we present an example of the application of our methodology for the
development of two sub-systems, the cruise control (development from scratch) and the

knock sub-system (development by medium reuse).

Methodology for Model-based Timing Analysis Process

117

2. Examples

This chapter provides an illustration of the application of our methodology to the
development of engine management sub-systems. The first section presents an example of
the application of the methodology to develop the cruise control sub-system from scratch.
The second section deals with the scenario of development by medium reuse and considers
the knock sub-system as use case. To develop the models of these two use cases; we used the
Papyrus tool [427] to develop the models at the analysis and design levels and the Cessar-

CT tool [437 for the models of the implementation level.

2.1. Development from Scratch: Cruise Control

2.1.1. Use Case Presentation

The application considered is the cruise control function. It is used to maintain vehicle speed
at a speed setpoint desired by the driver. This functionality calls for a switch sensor that
acquires the driver inputs (set cruise, cancel cruise, increase speed setpoint, etc.) and a
control system that processes inputs from this sensor and other EMS sub-systems (e.g.
braking sub-system) to calculate the speed setpoint and send a torque request to the torque
setpoint sub-system. In this section, we show how to apply the proposed methodology to
develop and analyze the software of the cruise control sub-system. In subsequent sections of

this chapter, we refer to this sub-system as “cruise control”.

2.1.2. Analysis Phase

In this phase, based on the given timing requirements (EMS end-to-end requirements), we
determine the time budgets to be allocated to each sub-system involved in these
requirements. Here we focus on the cruise control sub-system and we consider that the time
budgets of other sub-systems that communicate with the cruise control are already known

based on information from previous developments of these sub-systems.

2.1.2.1. EMS End-to-end Requirements

We determined two EMS end-to-end requirements to be satisfied when designing the cruise
control sub-system. These have been denoted as EMS_REQ1 and EMS_REQ2 (REQ for

requirement).

* EMS_REQ1: When the driver depresses the braking pedal, cruise control should be

deactivated within 800ms.

Methodology for Model-based Timing Analysis Process

should be calculated and displayed within 500ms

118

EMS_REQ2: When the driver activates cruise control, the vehicle speed setpoint

These two requirements concern the cruise control sub-system and other sub-systems such

as the brake controller sub-system, which receives inputs from the pedal sensor indicating

the status of the pedal (depressed or not) and the display actuator that receives inputs from

several vehicle functions for display. In the next step, we determine the time budgets to be

allocated to the cruise control in order to satisty these two requirements. First, we need to

develop a model containing the information necessary for this timing analysis.

2.1.2.2. Analyzable Model

As stated earlier, the analyzable model comprises two views, the analysis functional view

and the analysis timing view.

Cruise Control Analysis Functional View: Figure 26 shows the model developed

tor this view. This model depicts a functional decomposition of the EMS focusing on

the interaction of the cruise control with other EMS sub-systems. In it, the cruise

control sub-system (called “CruiseControl” in the figure) is communicating with the

brake controller sub-system, the torque setpoint sub-system, the display actuator and

the switch sensor that acquires the driver inputs. As the figure also shows, EAST-

ADL concepts are used here; the cruise control sub-system and the other sub-

systems are modelled as “AnalysisFunctionTypes”. Sensors and actuators are modelled

as “FunctionalDevices”, an EAST-ADL concept that represents the functional part of a

sensor or an actuator. The interaction between different sub-systems is modelled

using EAST-ADL connectors called “FunctionConnectors”.

Cruise Cantrol Funcion: | Ana lysis

Pressyre

sfunctionalDevices
PedalSensor

sanalysisFunctionTypes
BrakeController

&2 | Pressure PedalDepressed
E=
+furjctionConnedtors

]) | PedalDepressed
crionConm &3

Pedalinformation

=]

FunctisnTonnectol

«functionalDevice:
SwitchSensor

<
[‘ﬁ DriverInput

«functionCo

«analysisFunctionTypes
CruiseCantrol

wanalysisFunctionTypes
TorgueSetpoint

:| Pedalnformation

TorqueRequestE\;ﬂ]—[&n] TorgueRequest

«fury

tioncCanm

| ActivateCruise -
nectare CruiseStatus [

<Fun

TorgueSetpoint |4

ckors

«functionalDevices
Displayactuatar

«FunctionConnecka

3

[+ | DriverInput

ActivateCruise [@

m:' CruiseStatus AFuni

Cannectar|

Torqued

tionConnecl

InformationDisplayed =] &Il

Informati

Figure 26 Cruise control analysis functional view

Methodology for Model-based Timing Analysis Process

=

tpoint

e

nDisplayed

119

The end-to-end requirement EMS_REQ1 means that from the point in time at which
the pedal sensor receives a pressure until the point in time the torque setpoint
calculates a null torque setpoint, the time elapsed should not exceed 300ms.
EMS_REQ2 means that since the switch sensor receives the driver input ordering
activation of cruise control until the speed setpoint is calculated by cruise control and

then displayed by the display actuator, the time elapsed should not exceed 500ms.

To determine the time budgets to be allocated to the cruise control, we developed a
timing view in which these timing constraints are expressed in the model using

TADL concepts.

* Cruise Control Analysis Timing View: Figure 27a and 28a show sequence
diagrams representing the cruise control analysis timing view. For each EMS end-
to-end requirement, we model an interaction that we stereotype with “EventChain”.
Each event chain is made up of sub-chains that represent the execution of the
functions involved in the interaction and the transfer of data-based messages
between these functions. This way, each action execution specification and each
message are modelled as sub-chains (stereotyped with “EventChain” and specified as
“EventChainSegment” for the whole interaction event chain). As shown in Figure 27b
and 28b, to express each end-to-end requirement, we specity for each “EventChain” a
TADL “ReactionConstraint” for which we specify a “I'imeDuration”. The latter enables
to specity the upper value of the reaction constraint (For example, for the first event
chain, we specify a reaction constraint called cruise_deactivation_delay. For this
reaction constraint, we describe a time duration of 300ms as an upper bound value).
To support data-based communication, each message is also stereotyped as
“DataMessage”. Events associated to the sending and receiving of these massages are
stereotyped respectively as “SendDataEvent” and “RecieveDataEvent” and also as
TADL events. For each event chain involved in the interaction stimulus and

response events are specified.

Methodology for Model-based Timing Analysis Process

120

sd! CC_deactivation_brakingEventChain
«EventChain:

PedalSensor
BrakeContraller CruiseContral TarqueSetpoink
| |
|
«DataMessage, EventChains
Transfer_Pedal_depressed_data
«EventChains :

«DataMessage, EventChaine
«EventChains Transefer_pedal_status_data

«DataMessage, EventChains

]
|
|
|
|
|
|
|
|
|
|
|
|
|
Transfer_null_torgque_request |

«EventChains

|
|
|
|
|
|
|
|
|
|
|
: «EventChains

Figure 27a Cruise Control analysis timing view, deactivation event chain

«reactionConstraints himeDurations
cruise_deactivation_delay

cruise_deactivation_max_delay

EJ console| ! Propetties 53 <« timeDurationz-» <Data Type: cruise_deactivation_max_delay
0 n n 0 o #pplied stereotypes:
{?} <<reactionConstraint»> <Constraint:» cruise_deactivation_delay ML Prsd sterEatypes
m Applied stereotypes: Profile imeDuration (fram TADL _profile)
Appearance [*5 CsetCode: Inkeger [1..1]=1
Prafile eactionConstraint IA0L_profile) Cadvarced. | €ETE CoeCadeFactor: Inteqer [, 1]= 300
Aippeatance scope: EventChain [1..1]=CC_deactivation_brakingEvenkChain — 15 Value: Float [1,.1] =
Bdvanced Upper: TimeDuration [0..1] = cruise_deactivation_max_delay

IEI Lawer: TimeDurabion 0., 1] = tan
& Nominal: TimeDuration [0..1]=nul
& jitter: Tmeluration [0..1] = nul

Figure 27b Specification of timing constraint for the deactivation event chain

Methodology for Model-based Timing Analysis Process

121

sd: CC_activation_display _EventChain
«EventChains

SwitchSensar CruiseContral DisplayAckuator

«dataMessage, eventChains
Transfer_cruise_activation_request

|
|
I
|
|
I
|
«EventChains |
«dataMessage, eventChains :

. Tranfser_cruise_activation_status
#EventChains

«EventChains

e P

Figure 28a Cruise Control analysis timing view, activation event chain

himeDuration:

(CC_activation_display_max_dela

sreactionCanstraint:
CC_ackivation_display_delay
&+

{7} < <reactionConstraint > <Constraint> CC_activation_display_delay < <timeDuration> > <Data Type:» CC_activation_display_max_delay
———— Applied stereotypes: fpplied sterentypes:

I pplied stereatypes =

Profile [& ReactionConstraint {from TADL profie) Prafile meDuration {from TADL_profile)

ope: EventChain [1,.1] = CC_activation_display_EventChain fippearance t BLA0e. IOtET =
Bl Upper: TimeDuration [U..l]=CC_actwation_d\sp\ay_mE Advariced
IEI Lawer: Time[uraton .. 1] = o CE VTR L =0
& Homingl: TimeDuration [0..1] = nul
“-[E jitter: TimeDuration [0.,1] = nul

Anpearance:

fidvanced

Figure 28b Specification of the timing constraints for the activation event chain

2.1.2.3.Cruise Control Time Budgets

As mentioned during the methodology description, we consider that the time budgets for
the other EMS sub-systems are already known. Determining the time budgets for cruise
control is then quite easy at this stage. In our example, with the help of application experts,
we managed to manually determine the following time budgets, which satisty the two
previously listed end-to-end requirements. To ensure compliance with EMS_REQ1 (and

taking into account the time budgets of the pedal sensor, the brake controller and the torque

Methodology for Model-based Timing Analysis Process

122

setpoint sub-systems) we should allocate 100ms to cruise control deactivation. To ensure
compliance with EMS_REQ?2 (and taking into account the time budgets of the switch sensor
and the display actuator), we should allocate 200ms to cruise control activation and speed
setpoint calculation. Hence, we have the following two constraints to be satistied when

refining the cruise control functional architecture during the design phase:
* AConst1: Cruise control should be deactivated within 100ms.

* AConst2: Cruise control should be activated and speed setpoint calculated within

200ms.

2.1.8. Design Phase

In this phase, we refine the functional architecture of the cruise control by showing its
tunctional breakdown into functional blocks. The first timing analysis performed 1is
refinement of the time budgets determined in the analysis phase by determining the time

budget to be allocated to each functional block.

2.1.8.1. Refinement of Cruise Control Time Budgets

To refine the time budgets determined during the analysis phase, we first develop an

analyzable model of cruise control.

A. Analyzable Model

In the same way as for the analysis phase, the model is composed of two views:

* Cruise Control Design Functional View: Figure 29 shows the functional
breakdown of the cruise control sub-system. We broke down the sub-system into
four functional blocks: Input acquisition and interpretation is responsible for the
acquisition of inputs from the switch sensor and other sub-systems and their
interpretation, to deduce the desired action (activate cruise, cancel cruise, etc).
Failure management is responsible for diagnosis of the cruise control inputs and limp
home activation (the limp home function decides which action to take if an error is
detected). Speed setpoint calculation is responsible for calculation of the desired
speed setpoint. Control is responsible for calculation of the cruise control states and
transitions and maintaining speed at the speed setpoint. As Figure 29 shows, the
“CruiseControl” “AnalysisFunctionType” modelled in the analysis phase is realized here
by a “DesignFunctionType” also called “CruiseControl”. Each Functional Block is

Methodology for Model-based Timing Analysis Process

123

modelled as a “DesignFunctionPrototype” that represents an instance of a

“DesignFunctionType”.

«designFunctionTypes
CruiseContral

«designFunctionProkobypes
SpeedetpointCaloulation

«designFunctionProtokypes
InputacquisitionAndInterpretation

Redallnformation 1+ | InterpretedInputs
[ﬂ]—[ﬁ] Pedallnfaormation SpeedSetpoint|«

Ink tedInput: '—
functionConnectar: M s['z‘

]—[&‘; ActivateCruise

ActivateCruise

«designFunckionPrototypes
«functionConnector:s Cantral

[F]

[+ | SpeedSetpoint

«functionConneckars

=) InkerpretedInputs
sfunctionConnectars:

«designFunctionProbobypes TorqueRequest[.g. L
FailuretManagement

TorqueRequest

CruiseAckion

«functionConnectors

—[.g. InkerpretedInputs «functionConnectors

CruiseAckion

Figure 29 Cruise control design functional view

* Cruise Control Design Timing View: AConstl means that from instant at which
the pedal information input is acquired by the input acquisition and interpretation
function until the control functional block orders a null torque request, the time
elapsed should not exceed 100ms. AConst2 means that from the time of acquisition of
the "activate cruise" input until calculation of the setpoint by the speed setpoint
calculation and then activation of cruise control by the control functional block, the
time elapsed should not exceed 200ms. To ensure the safety of the driver, a new
constraint is introduced at this stage, to ensure that, if a failure is detected, cruise
control is deactivated within 100ms (Aconst3). This means that from the instant at
which inputs are acquired and interpreted until the detection of failure and
deactivation of cruise control, the time elapsed should not exceed 100ms. Figure 30a,
31a and 32a show the sequence diagrams developed for the timing view. The first
diagram shows the communication between the functional blocks involved in
AConstl (i.e. deactivation of cruise control). The second diagram shows
communication between the functional blocks involved in AConst2 (i.e. activation of
cruise control and calculation of the speed setpoint). The third diagram shows

communication between the functional blocks involved in AConst3. In the same way
Methodology for Model-based Timing Analysis Process

124

as for the analysis phase, for each event chain, we specify the corresponding reaction

constraint as shown by figure 30b, 31b and 32b.

sd; Acquisition_to_Control_EventChain
«EventChain:

InputAcquisistionAndInterpretation ‘

«dataMessage, eventChains

|
|
|
|
|
Transfer_deactivation_request_data |

«EventiZhains

«EventChains

Figure 30a Cruise Control design timing view, “acquisition to control” event chain

sbimelurations

acquistion_to_control_max_dela

sreactionConstraints
acquisivion_to_conkrol_delay

{?} < <reactionConstraint™>» < Constraint™ acquisition_to_control_delay < < timeDuration: > <Data Type> acquistion_to_control_max_delay
————— hppled stereatypes: —————— hpplied stereatypes:
iy iy
Profile [l = ReactionCanstraint TADL prifils) Profile [& TimeDuration {fram TADL_prafile)
Aippeatance scope: EventChain [1..1] = Acquisition_to_Control_EventChain fippearance [#0 CseCadrIntene =
[y .0 Lipper: TimeDuration [0.,1] = acquistion_to_control_max_dels [y pm— 7O CseCodeFactor: Integer [1..1] = 100
(30 Lower; TmeDoraoom 0. 1]=nul — 3 Yale! Float [1..1]=nul

(& Mominal; TmeDuration [0..1] = nul
[jtter: TimeDuration [0.,1]=nul

Figure 30b specification of the timing constraints to the “acquisition to control” event chain

Methodology for Model-based Timing Analysis Process

125

sd: Acquisition_setpaint_contral_EventChain
«EventChains

InputacquisitiondndInterpretation Speed3etpointCalculation

«dataMessage, eventChairs
Transfer_desired_speed_data

«EventChains

«dataMessage, eventChains

Transfer_speed_setpoint
«EventChains

«EventChain:

Figure 31a Cruise Control design timing view, “acquisition setpoint control” event chain

«timeDurations

sreactionCaonstraints anquisition_to_setpoint_contral_max_dela

acquisition_to_setpoint_control_delay

El consale | =l Properties 53 << timeDuration > <Data TypeZ» acquisition_to_setpoint_control_max_delay
{7} < <reactionConstraint>>» <Constraint> acquisition_to_setpoint_control_delay L Appled sterzotypes:
™ #pplied sterentypes: Profile =l] TimeDuration {from TADL_profils)
@ - - - Appearance [#-El CseCods: Integer [1..1]=1
-
Profile ER= Reactlan(unstram:1 . from TADL DI’D.FI.‘E.) . ‘ — seCodeFactor: Integer[l.&]:@}
Appearance COpeE! EffentC al.n [1.1]= ncqms|t|?h_setp0|nt_c?ntro |_EventCham =T =
rpe— Upper; TimeDuration [0,,1] = acquisition_to_setpoint_control_max_dela

-[&] Lower: TimeLUraton (0 1] = i
-[& Wominal: TimeDuration [0,,1] = null
-[& jitter: TimeDuration [0.,1] = null

Figure 31b Specification of the timing constraint for the acquisition setpoint control event
chain

Methodology for Model-based Timing Analysis Process

126

sd: acquisition_FailureManagement_control_EventChain
«EventChains

InputacquisitionandInterpretation FailurelMangement Control

#dataMessage, eventChains

I
I
I
I
I
Transfer_acouired_data :

«EventChains

«dataMessage, eventChain:

]
I
I
I
I
I
I
I
I
I
Transfer_failure_status I

«EventChain:

«EventChain:

Figure 32a Cruise Control design timing view, failure event chain

atimeDurations

acquisiion_falre_control_max_delay

srgactionConstraintz

acquisition_fallure_contral_delay
¥
& console | = propertes 23 <« timeDuration: > <Data Type:» acquisition_failure_control_max_delay
{7} <<reactionConstraint»> <Constraint:> acquisition_failure_control_delay — Applied stereatypes:
™ Applied stereatypes: ‘ Profile T
Profile] ReactionCgnsiraint liam-Hible=prodh Appestance . G0
dppearance 7= scope: EvenkChain[1,.1]= acquisition_failureManagement_conkrol_EventChar Advanced - 5 CoeCodeFactor: Integer [1.1]= 100
) L ' 0] Yalue! Float [1,.1]=nul
Advanced : Inger: TimeCuration [0,,1] = acquisiion_failure_control_may_dela:
& Lower: TimeDuration [0,,1] = nul
-~ & Marminal; TimeDuratan [0..1] = nul
{3 jtter: TimeDuration [0..1] = nul

Figure 32b Specifying timing constraint to “acquisition failure control” event chain
B. Functional Block Time Budgets

We determined manually the time budgets to be allocated to each functional block for
compliance with the three constraints mentioned previously. The time budgets that can be

allocated to the various functional blocks are as follows:
* Input acquisition and interpretation: 30ms

* Failure management: 20ms

Methodology for Model-based Timing Analysis Process

127

e Control: 50ms

* Speed setpoint calculation: 90ms

This means that, when refining the cruise control architecture at the implementation phase,

we should respect the following timing constraints:

DConst1: Input acquisition and interpretation should be performed within 30ms
* DConst2: The failure management should take place within 20ms
* DConst3: Control should take place within 50ms

* DConst4: Speed setpoint calculation should take place within 90ms

The next step is to explore the hardware architecture to determine the best allocation of
cruise control functional blocks to the available hardware resources. This is done based on

an evaluation of load for each processor.

2.1.8.2. Hardware Architecture Exploration

In this step, we explore the available hardware architecture, for the purpose of deciding
which hardware resources to select and how to efficiently distribute cruise control functional
blocks over these resources. In our case, the cruise control functions can be distributed
between the engine management ECU (EMS ECU) and the body controller ECU. These
two ECUs communicate via a CAN bus. Based on the load evaluation for each ECU, we
determine the best functional block-to-ECU allocation scenario. This means first developing

a model containing the information necessary for the analysis.

A. Analyzable Model

As explained in the description of our methodology, the model is made up of three views:

* Cruise Control Design Functional View: This is the view described in Figure 26. In
this view, we specified the execution time of each functional block. Execution times were
estimated with the help of application experts at Continental. We thus determined the
tollowing execution times:

» Input acquisition and interpretation: 80us
» Failure management: 100 us

» Speed setpoint calculation: 120 ps
Methodology for Model-based Timing Analysis Process

128

» Control: 200 us
The EAST-ADL concept “Execution’TimeConstraint” enables specification of these times for

each functional block.

* Hardware Platform View: Figure 383 shows the hardware platform model, which we
developed using a UML composite diagram. Each computation hardware resource is
modelled as a “Node” (EAST-ADL) and a “SaExecHost” (MARTE) to represent resources
with processing capacity that can host executable elements. The CAN bus is stereotyped
by “LogicalBus” (EAST-ADL) and “SaCommHost” (MARTE). The aim of using MARTE
concepts here is to enable the use of the automatic transformation implemented for

MARTE models to analyze the system using the MAST tool.

zgaRezourcesPlatform:
CruiseControl_hardware _resource_platform

#node, saExecHosts #node | zaFxecHosts

Engine_Management Body Controller
[e=]
B

=l
CAM_BLUS
¢logicalBus | saCommHosts

Figure 33 Hardware platform view

Using this view, we choose the best scenario for the allocation of functional blocks to the
hardware platform. The best scenario is chosen according to the load requested by the
tunctional blocks for each ECU. To do so, we model the allocation view that represents the

allocation scenario to be analyzed.

= Allocation View: When allocating the functional blocks to the hardware platform, we
must satisty certain requirements identified with the help of vehicle dynamic architecture
specialists at Continental (when applying the methodology to the development of EMS,
these budget should be determined by the EMS designer during the EMS design phase):

» The load requested by cruise control functions from the Body controller ECU

should not exceed 1%

Methodology for Model-based Timing Analysis Process

129

» The load requested by cruise control functions from the engine management ECU
should not exceed 2% (these values are determined by taking into account the load
budgets of other sub-systems that will be allocated to these ECUs).

» The failure management and the control functional block should be allocated to the
same ECU to ensure speed reaction of the control system when an error is
detected.

Figure 34 shows the modelling of a functional block-to-available ECU allocation scenario.
Here we chose to allocate input acquisition and interpretation to the body controller ECU
and the rest of the functional blocks to the engine management ECU. MARTE concepts for
allocation are used in this view. Each functional block is stereotyped by “allocated”, a concept
that allows specification of the hardware resource hosting the functional block. Moreover, a
dependency connector is drawn between each functional block and its hosting ECU and is

stereotyped by “allocate”.

esafnalysisContexts

Allocation
CruiseControl
designFunctionPrototype., allocateds «designFunctionPrototype, sllocateds edesignFunctionProtatype, slocateds designFunctionPrototype, llocated:
InputhcquisitionAndinterpretation SpeedSetpointCalculation FailureManagement Contral
1 i
! |
! |
wabstractions : wabstractions 1 «abstractions zabstractions
gallocates sallocates : callocates sallocates
f T
|

spaResourcesPlatform:
I

|
|
! i
! CruiseControl_hardware_resource_platform
i]

v y y Y
«node , saExecHosts «niode, saExecHosts
Body Controller Engine Management

Figure 34 Allocation view
B. Processor Loads Determination

Based on the allocation scenario shown and the execution times annotated on the design
tunctional view, we used the scheduling analysis tool MAST [317 (for which an automatic
transformation from MARTE models is implemented [607]) to evaluate the load requested

by the functional blocks allocated to each processor. Each functional block is transformed
Methodology for Model-based Timing Analysis Process

130

into a schedulable resource hosting only one operation in the MAST model. In scheduling
analysis, processor utilization is calculated based on two kinds of parameters which are the
tasks/functions execution times and the tasks/functions periods regardless of the priorities
that are assigned to the executed tasks. Hence, task priorities are not important for our
analysis (evaluation of processor loads). For this reason, we assume that all schedulable
resources have the same priority in our example (this assumption is used only for this

analysis).

For each schedulable resource a transaction is defined in MAST. For each operation, we
assigned the execution time determined for the corresponding functional block. To be able
to calculate processor loads, we also need to specify the triggering period of each
transaction. With the help of cruise control application experts at continental, we assigned
10ms as the period for both input acquisition/interpretation and failure management, and
40ms as the period for both speed setpoint calculation and control. Based on this information
and the allocation scenario chosen, the tool calculated an utilization of 0.8 % of the body
controller ECU and 1.8 % of the engine management ECU by the cruise control functions.
These results meet the requirements listed above (other tested allocation scenarios did not
meet these requirements). We therefore kept this allocation scenario as the best scenario.
This is the scenario to be satistied when refining the cruise control architecture at the
implementation stage, especially when describing the mapping of runnable entities to OS
tasks. Let’s note that to calculate the utilization of each ECU by the cruise control functions,
we do not model the other vehicle functions executed on these ECU. That is why, in our
model (figure 31), we represent only the allocation of the cruise control functions to these

ECUs (without considering other vehicle functions executed on the same ECUs).

2.1.4. Implementation Phase

In this phase, the cruise control functional architecture is refined and transformed into
AUTOSAR architecture described using software components and runnable entities. To
develop the analyzable model, we used the CESSAR-CT tool, this is an AUTOSAR
workbench developed by the Continental Engineering Services. This tool is based on the
ARTOP (AUTOSAR Tool Platform) framework [437, an implementation of common base
tunctionality for AUTOSAR development tools.

2.1.4.1. Analyzable Model

Methodology for Model-based Timing Analysis Process

131

Cruise Control Application View: We developed this view by transforming the cruise
control design functional view into (an) AUTOSAR model. Figure 85 shows an overview
of the AUTOSAR application view that we developed (As the tool used does not ofter
graphical views of the model developed, the figures of this section present a simplified
overview of the models, for the clarity of the figure we do not show all the data
exchanged between the software components). Each functional block is transformed into
an application software component for which we describe the behaviour by specifying the
runnable entities and their triggering events. The communication between these
software components is modelled through AUTOSAR ports called “PPortProtyotype” tor
provided data and “RPortPrototype” for required data.

<=ApplicationSoftwarzComponent>>
Input acquisition and <=ApplicationSoftwareComponent>>

interpretation Speed setpoint calculation <<PPortPrototypess
SpeedSetpoint

<=RunnableEntity>> ==RunnableEntity>>
o <<PPortPrototype=> . . e
Acquisition Intzrpretedinguts Speed setpoint calculation ==ApplicztionSoftwareComponant=»
[Control
<<RunnableEntity>> <=RPortPrototype=>
Interpretedinputs
- <<RPortPrototype>>
Interpretation - N
x SpeedSetpoint Application condition
<<RunnableEn
=<RPortPrototype=>
Intarpratedinputs Basic function

<<Runnable

==RPortPrototype>>
CruiseAction

Control

<<ApplicationSoftwaraCompanants>

Failure management
<fRPortPrototype=>

ntarpretedinputs P —
4. Diagnosis =2PPortPrototypess
CruiszAction

<<RunnableEn
Limp home

Figure 35 Simplified overview of the cruise control application view

Software component input acquisition and interpretation involves two runnable entities —
acquisition and interpretation. Speed setpoint calculation requires only one runnable for the
calculation of the speed setpoint. Failure management involves two runnable entities, the
first to perform diagnosis of the inputs and the second to decide what action to take in case
of error. The control software component is made up of three runnable entities: its
application condition and basic function, which calculate the cruise control states and
transitions to decide whether to carry out specific cruise control activities; and its controller,

which is a PI controller that maintains vehicle speed.

Methodology for Model-based Timing Analysis Process

132

For each runnable entity, we defined an “RTEEwvent” that defines the triggering of the
runnable. For example, as we chose to execute failure management each 10ms, we specified,

tor diagnosis and limp home runnable entities, an “RTEEwvent” with 10ms as its period.

For each software component, we also specified a software component implementation that
allows us to set the execution time of each runnable entity. This is done using the
AUTOSAR concept “resource consumption”, which describes the necessary resource in terms
of execution time for each runnable entity. Table 16 shows the runnable entity execution
times that we determined taking into account the execution times determined previously for

the functional blocks and with help of cruise control function experts.

Table 16 Determination of Cruise Control runnable execution times

Functional Execution Constraints &

block time (us) | Comments (based

Runnable Execution

on discussion with

Entities time (us)

cruise control

experts)

Input interpretation Acquisition 30
Input P P q

needs more time to

acquisition and 80 han
. . execute than Input Interpretation 50
Interpretation L

acquisition

Failure

management

100

diagnosis needs
more time to
execute than limp

home

Diagnosis

60

Limp home

40

Speed setpoint

calculation

120

This functional
block is
transformed to a
software
component with
only one runnable
then the runnable
has the same
execution time as

the functional block

Speed setpoint

calculation

120

Methodology for Model-based Timing Analysis Process

133

Control

200

the basic function
runnable entity

should have the

largest execution

time, application
condition runnable
entity has the
smallest execution

time

Application
_ 40
condition
Basic function 100
Controller 60

As shown in table 16, based on discussion with cruise control

function experts, we

determined the constraints that should be respected when assigning the execution times for

the defined runnable entities. Based on these constraints, we determined an execution time

value to each runnable entity.

* Cruise Control Timing Behaviour View: In this view, we modelled the timing

behaviour of cruise control by means of events and event chains from the AUTOSAR

timing extensions. For each timing constraint determined at the design stage (DConst1,

DConst2, DConst3 and DConst4), we created an event chain for which we specified a

latency constraint. As an example, for DConst1 (figure 36), we created an event chain

having the activation event of the runnable entity acquisition as a stimulus and the

termination event of the runnable entity interpretation as a response. For this event

chain, we specified a latency constraint with 80ms as maximum value. For DConst4, we

created an event chain formed by the runnable entity speed setpoint calculation. We

specified for this event chain a latency constraint with 90ms as maximum value.

<< Stimulus=>=
Acquisition start

<<LatencyConstraint>>

N

<<EventChainSegment>>

Acquisition

Max = 30ms

<<EventChain>>
Input acquisition and interpretation

<<EventChainSegment=>

<<EventChainSegment>>
Interpretation

<<Response=>>
Interpretation end

L

Figure 36 Representation of the modelling of the acquisition event chain

Methodology for Model-based Timing Analysis Process

134

= Resource Platform View: In this view, we model the hardware and software resources
used by the sub-system. Each ECU is modelled as AUTOSAR “ECU instance”, the CAN
bus is modelled as “CanPhysicalChannel”, which represents a CAN communication
medium. As presented in the previous chapter, we intend to perform scheduling analysis
after the integration of the cruise control software with the software of other sub-
systems executing in the same ECUs. In the implementation phase of the cruise control,
we should describe, hence, only the OS tasks that allocate the cruise control runnable in
each ECU. Then, during the integration phase, the software platform models from
different sub-systems are integrated and scheduling analysis can be performed. Figure 37

shows an overview of the software and hardware platform used by the cruise control.

<<Eculnstance>> <<Eculnstance>>

Engine management Bedy controller

<<DsTask>> <<ODsTask>> <<OsTask>>

TASK_10MS_1 TASK_40MS TASK_10MS _2

<cCanPhysicalChannel==
CAN bus

Figure 37 Resource platform used by the cruise control
The description of the OS tasks is produced during description of the OS configuration for

each ECU. With this configuration, it is possible to define the OS tasks and their scheduling
properties (e.g. priorities). AUTOSAR concepts are used here for OS configuration. After
performing scheduling analysis, we can assess the improvements that are necessary for the

chosen software resource platform and the mapping scheme selected.

* Mapping View: To perform scheduling analysis, we have to describe the mapping of OS
tasks to processing units. In AUTOSAR, this can take place when the OS configuration
is defined for each ECU. In this view, we also described mapping of the cruise control
runnable entities to the selected OS tasks. To do so, we described the mapping of
runnable triggering events to the OS tasks. Figure 38 gives an overview of the mapping
view developed during this phase. To decide on a scheme for mapping runnable entities
to OS Tasks, we should comply with the allocation scenario selected at the design level.
This means that the runnable entities of the input acquisition/interpretation function
should be mapped to a task allocated to the body controller ECU and the other

runnables to tasks allocated to the engine management ECU. Based on the available

Methodology for Model-based Timing Analysis Process

135

software platform, we decided to allocate the runnable entities of failure management to
TASK_ 10MS_1 that is allocated to the engine management ECU. The runnable entities
of control and speed setpoint calculation are allocated to TASK_40MS. In a similar way,
the runnable entities of acquisition and interpretation are allocated to TASK_10MS_2
that is hosted by the body controller ECU. To describe such mapping, we used
AUTOSAR concepts for RTE configuration. For example, mapping of the diagnosis
entity to the TASK_10MS_1 is described using AUTOSAR concepts to define the link

between the triggering event of the entity, and the OS task.

<<Eculnstance>>
Engine Management

<<OsTask=>> <<OsTask>>
TASK_10MS 1 TASK_A0MS

<< RunnableEntity>>
<<RunnableEntity>> Speed setpoint

Diagnosis

<<RunnableEntity>>
Application condition

<<RunnableEntity>>
<<RunnableEntity>> Basic function
Limp home <<RunnableEntity>>
Control

<<Eculnstance>>

Body Controller

<<DsTask>>
TASK_10MS_2

<<RunnalbleEntity>>
Acquisition

<<RunnableEntity>>

Interpretation

Figure 38 Cruise control mapping view

2.1.5. Scheduling Analysis

We performed scheduling analysis after integrating the cruise control sub-system with
other sub-systems executing on the engine management and body controller ECUs (for
simplification reasons, the development of other sub-systems is not presented here, but it

should be done also by application of the methodology either to develop them from scratch

Methodology for Model-based Timing Analysis Process

136

or by reuse). We used the SymTA/S tool to perform scheduling analysis. To do so, we
transformed the AUTOSAR model of the integrated system into a SymTA/S model (cf.
section 2.2.3 of part I). We used SymTA/S concepts to describe the OS tasks and the
hardware resources (ECUs and CAN bus) included in the resource platform view. Each
event chain described in the timing behaviour view is transformed into a "path" formed by
runnable entities in the SymTA/S model. The latency constraint for each event chain is

specified as a path maximum response time in SymTA/S.

Scheduling analysis results:

Table 17 shows a part of the analysis results (only results related to the cruise control sub-
system). It gives the response times obtained for each event chain described in the model. All
the response times obtained for all the sub-systems are less than the specified time

constraints (deadlines), which means that the system is schedulable.

Table17 Response Times for Cruise Control

Event Chain Response times (ms) Deadlines (ms)
Input acquisition and 15.2 30
interpretation
Failure management 10 20
Speed setpoint calculation 40.1 90
Control 17.3 50

The tool calculated an overall load of 60% for the engine management ECU with 1.8%
requested by the cruise control functions. The overall load of the Body Controller ECU is
75% with 0.8% requested by the cruise control functions. Based on these results, we can
validate the architecture designed (application, mapping, software & hardware resource

platform).

2.2. Development by Reuse: Knock
In this chapter, we present an example of the application of the methodology to develop the

software of a knock sub-system by reusing and adapting a previous version of it. We deal

Methodology for Model-based Timing Analysis Process

137

with the case of medium reuse and particularly we focus on the scenario of adding a new

software module to the knock previous software version.

2.2.1. Use Case Presentation

The knock sub-system is used to detect engine knocking during engine combustion and
adjust the ignition accordingly to prevent the engine from “knocking”. In gasoline internal
combustion engines with spark ignition, an undesired effect may occur when the fuel
mixture partially and spontaneously ignites as a result of the compression in the combustion

chamber. The knock sub-system is developed to avoid such phenomenon.

The knock control is based on the acquisition of the engine noise signal during a crankshaft
angular window. This window is set around the ignition operation (we call it main window).
Based on the acquired noise signal, a detection phase is performed to determine if knock
exists or not. In case of knock detected, a correction is performed by calculating an angular

retard to be applied to ignition instant to compensate knock phenomenon.

In turbo-compressed engines, an undesired pre-ignition phenomenon which is similar to the
knock phenomenon can occur before the ignition (during another timing window that we
call pre-window). This phenomenon may be very harmful and increases considerably the

emission of pollutant gases. Thus, it is necessary to control it.

In this chapter, we show how to apply our methodology to develop a new version of the
knock control sub-system that allows controlling both knock and pre-ignition phenomena.
This is done based on previous version of this sub-system that allows only detecting and
controlling the knock phenomenon. As shown in the previous chapter, to develop the new
version of the knock sub-system, we use the information represented in the XD model (cf.
table 15) of the previous software version and extend it to obtain the needed new software
version. Figure 39 shows an overview of the previous software architecture as organized in
the XD tool. All the knock software modules are executed on the engine management ECU.
The noise acquisition software module contains only one operation that allows the filtering
and the integration of the engine noise raw signal. The acquisition of the engine noise signal
is performed during a window whose begin instant and duration are calculated by the
window parameter calculation operation of the detection software module. The threshold
calculation operation, allows, based on the filtered engine noise signal, calculating a
threshold value. Based on this threshold value, the knock energy calculation operation

determines the knock energy which reflects the knock intensity. If this energy exceeds a
Methodology for Model-based Timing Analysis Process

138

specific limit, this means that a knock phenomenon is taking place. In case of knock detected,
the correction loop operation of the control software module calculates an angle retard to be
applied to the ignition instant to compensate the knock. The ignition angle retard is

communicated to the ignition setpoint sub-system that controls the ignition instant.

Window parameters
l <<Software Module>>
<<Software Module>> c <<Software Module>>
wEr . Detection war ¢ -
lgnition
Noise Acquisition <<Operation>> Control angle
) o X i retard
“<0peration=> Moise signal Widow parameter calculation —
ilteri di . —_— Knock <<Operation=>
Filtering and integration Oneratiom energy
* Correction loop
Threshaold calculation
<<0peration>>
Knock energy calculation
T Inhibition order
<<Software Module>> <<Software Modulex>
Diagnosis Failure Limp home
information
. _ » .
e <<Operation>> <<0Operation>>

Diagnosis Limp home d

Default

Angle retard
inlimp
home mode

Figure 39 Simplified overview of previous knock software architecture

Based on this architecture, we propose to develop a new version of this sub-system that
allows controlling also the pre-ignition phenomenon. We call this new version knock/pre-

ignition sub-system rather than knock sub-system.

The control of the pre-ignition phenomenon by the knock/pre-ignition sub-system consists
of detecting the pre-ignition phenomenon during the pre-window and then sending a
request to the ignition realization sub-system to stop the ignition in the corresponding

cylinder if pre-ignition is detected.

2.2.2. Analysis phase

In this phase, we determined the EMS end-to-end requirements that the new version of the
knock/pre-ignition sub-system should meet. We identified two EMS end-to-end

requirements:

Methodology for Model-based Timing Analysis Process

139

* EMS_REQ1: In case of knock detected, the knock should be compensated within 700ms

e EMS_REQ2: In case of pre-ignition detected, ignition stopping order should be

delivered within 900ms

Based on these end-to-end requirements, we should determine the time budgets to be
allocated to the knock/pre-ignition sub-system. Before this, we should develop the

analyzable model.

2.2.2.1. Analyzable Model

* Knock/pre-ignition Analysis Functional View: Figure 40 shows the functional view
developed during this phase for the knock/pre-ignition sub-system. The figure shows
the interaction of the knock/pre-ignition sub-system with other sub-systems within the
EMS. As presented during the methodology description, EAST-ADL constructs for

tunctional modeling are used to develop this view.

EM3

«analysisFunctionTypes
Ignition_setpoink

«analysisFunctionTypes

sfunctionalDevices Knock_Pre-ignition

Moise_sensor

IgnitionSetpoint [21

. IgnitionAngleRetard
NU'SE[&I o] | MNoise J d = ++ | IgnitiomAngleRetard
MoiseSignal |4 [@] MoiseSignal

knuckIgn\tiDnSton

afunctionalDevices
Ignition_actuator

Ignition_stopped £
StopOrder

Ignition_stopped

«analysisFunctionTypes
Ignition_realization

IgnitionSetpaint
StopOrder

lnocklgnitionStop

Figure 40 Knock/Pre-ignition analysis functional view

* Knock/pre-ignition Analysis Timing View: Figures 41 and 42 show the timing view
developed to represent the above-mentioned end-to-end requirements. EMS_REQ]1
means that since the acquisition of the noise signal by the sensor and the detection of the
knock phenomenon by the knock/pre-ignition sub-system until the new ignition setpoint
is calculated by the ignition setpoint sub-system (based on the ignition angle retard
information), the duration should not exceed 700ms. EMS_REQ2 means that since the
acquisition of the noise signal and the detection of the pre-ignition phenomenon by the
knock/pre-ignition sub-system until the ignition realization delivers an order to stop the

ignition operation, the duration should not exceed 900ms. The two following figures

Methodology for Model-based Timing Analysis Process

140

represent respectively the timing views corresponding to the requirements EMS_REQ1

and EMS_REQ2.

s knock_pre-ignition_ignition_setpoint_EventZhain
weventChain s

Moise_sensar

#eventChain»

«eventChain, dataMeszages
tranfer_noise_raw signal

fnock_Pre-ignition

«eventChain, dataMessages
«eventChain s transfer_ignition_angle_retard

Ignikion_setpaink

=evenkbChains

Figure 41 Knock/Pre-ignition-to-ignition setpoint event chain

sd: Knock_pre-ignition_ignition_realization_EventChain
zexventChain:

Moise_sensor

=eventChain:

aeventi_hain, dataMessages
transfer_noise_raw_signal

‘ Knock_Pre-ignition

«eventiChain, dataMessages
transfer_ignition_stop_request

Ignition_realization

zeventChain:s:

weventChains

Figure 42 Knock/Pre-ignition-to-ignition realization event chain

2.2.2.2. Determination of Knock/Pre-ignition Time Budgets

Based on our knowledge of the time budgets of previous versions of the ignition setpoint and

ignition realization sub-systems, we determined the following time budgets to be allocated

Methodology for Model-based Timing Analysis Process

141

to the knock/pre-ignition sub-system; to comply with the EMS-REQ1 the knock detection
and correction should be performed within 300ms. To comply with EMS_REQ2, from the
detection of the pre-ignition until an ignition stop request is delivered the duration should
not exceed 250ms. Hence, we have the following two constraints to be satisfied when

refining the knock/pre-ignition functional architecture during the design phase:

* AConstl: The detection and the correction of the knock should be performed within

400ms

* AConst2: From the detection of the pre-ignition until an ignition stop request is

delivered, the duration should not exceed 250ms.

2.2.3. Design phase

It is during this phase, that we start reusing the information available from the previous

version of the knock sub-system software.

To detect the pre-ignition phenomenon, it is possible to use exactly the same software
modules as the previous version without adding new functional blocks/software modules. In
this case; we just need to adapt the software module called “detection” to enable both the
detection of the knock and pre-ignition phenomena. However, the pre-ignition phenomenon
occurs only in turbo-compressed engines. So, for the other engine kinds, only the previous
knock software version is needed. To facilitate the reuse of both the previous and new
versions of the sub-system, we decided, hence, to add a new function that allows detecting

separately the pre-ignition phenomenon during the pre-window.

2.2.3.1. Analyzable Model

* Knock/pre-ignition Design Functional View: We develop this view based on the
already existing software modules. As described in the previous chapter, we transform
each software module from the previous software version to a functional block. Then, we
add a new functional block for the detection of the pre-ignition phenomenon. Figure 43
shows an overview of the knock/pre-ignition functional architecture developed during

this phase.

Methodology for Model-based Timing Analysis Process

142

«designFunctionTypes
Knock_Pre-ignition

E

MoiseSignal

(Lad]

=]

«designFunctionPrototype:s
Preignition_detection

FilteredioiseSignal _win
FailureInformation
FilteredhaiseSignal_prewin

ﬁ@—@

«designFunctionPratatypes «designFunctionPrototypes edesignFunctionProkotypes
Moise_acquisition Knock_detection Contral
Filteredhoisesignal_win [FilteredMoiseSignal_win
PrewindowParamsters PrewindowParameters TgritionAnglsR stard [‘ﬂj—[&]
WindowParameters ‘windowParameters IgnitionAngleRetard
oo KnockEne
FiIteredNoisaSignaIJ)rewwn InhibitionOrder oy EnockErergy
] | NoiseSignal
. InhibitionOrder
InhibitionQrder
«designFunctionProtatypes
Diagnosis sdesignFunctionPrototypes
Limp_home

InhibitionCrder [
=)
FailureInformation

DefaultangleRetard u]

DefaultsngleRetard

FileeredroiseSignal_prewin

IrhibitionCrder

IgnitionStopRequest l;ﬂ.]

e
(=]
IanitionStopRequest

Figure 48 Knock/pre-ignition design functional view

As figure 43 shows, the software modules noise acquisition, detection, control, diagnosis
and limp home are transformed respectively into functional blocks called noise
acquisition, knock detection, control, diagnosis and limp home. We introduced the new
tunctional block pre-ignition detection for the detection of the pre-ignition phenomenon.
This detection is done based on the noise signal acquired during the pre-window. As
presented in the methodology description, EAST-ADL constructs for functional
modeling are used to develop this view. Note that during this phase, we perform just a
direct transformation of each software module from the previous software version to a
tunctional block without focusing on the software module internal implementation (i.e.,
the operations/runnables that it contains). Such implementation will be described during
the implementation phase based on the new functional architecture chosen and the
timing analysis results obtained during the design phase. Nevertheless, during this phase
(design), we decide about the role of each functional block of the new configuration. For
example, the noise acquisition functional block will perform not only the acquisition of
the noise signal during the main window (as it was the case for the previous software
version) but also the acquisition of the noise signal during the pre-window. As for the
previous software version, the knock detection functional block is responsible for the
detection of the knock phenomenon and the parameter calculation for the main window.

For the new version of the knock/pre-ignition sub-system, this functional block will also
Methodology for Model-based Timing Analysis Process

143

perform the parameter calculation of the pre-window. The control functional block will
perform the same task as for the previous software version. The diagnosis and limp home
tunctional blocks will process the noise signals acquired during both the main window

and the pre-window.

Based on this functional configuration and the time budgets determined for the
knock/pre-ignition sub-system, we determine the time budget to allocate to each

tunctional block. To do so, we need to develop first the timing view of this phase.

* Knock/pre-ignition Design Timing View: Figure 44, 45 and 46 show the timing view
of the design phase. The constraint AConst1 (figure 44) means that from the start of the
noise acquisition functional block until the knock detection and then the control are
finished, the duration should not exceed 300ms. AConst2 (figure 45) means that since the
start of the noise acquisition until the pre-ignition detection is finished, the duration
should not exceed 250ms. From the previous version of the knock sub-system, we
introduce, during this phase, a new constraint AConst3 (figure 46) that requires that,
from the start of the diagnosis until the end of the limp home, the duration should not

exceed 200ms.

sd: Acquisition_detection_conkrol_EventChain
weventChain

knock_detection

«dataMessage, eventChains
transfer_FilteredhaiseSignal_win
«eventChain:
«dataMessage, eventChain:
transfer_kKnockEnergy
«eventChain:

seventChain: D

Figure 44 From acquisition to control EventChain

Methodology for Model-based Timing Analysis Process

144

sd: Acquisition_pre-ignition_EventChain
«eventChains:

Pre-ignition_detection
|

dataMessage, eventChain:

transfer_FilteredMaiseSignal_prewin
#eventChains — gnal_p

«eventChains

Figure 45 From acquisition to pre-ignition detection EventChain

sd: Diagnosis_LimpHome_EventChain
«eventChains

]
|
I
|
|
I
H«event(:hain»
|
I
I
|
I
|
|
I
|
|

+#dataMessage, eventChain:

) transfer_Failurelnformation
s«evenbChain:

Figure 46 From diagnosis to limp home EventChain

Based on the above mentioned constraints and with the help of knock sub-system specialists
we determined the following time budgets to allocate to the functional blocks of the new

knock/pre-ignition version (table 18).

Methodology for Model-based Timing Analysis Process

145

Table 18 Knock/pre-ignition functional block time budgets

Functional block Time budget (ms)
Noise acquisition 100
Knock detection 200
Control 100
Pre-ignition detection 150
Diagnosis 100
Limp home 100

These time budgets mean that:

* DConstl: The noise acquisition should be performed within 100ms

* DConst2: The knock detection should take place within 200ms

* DConst3: The knock control should be performed during 100ms

* DConst4: The pre-ignition detection should take place within 150ms
* DConst5: The diagnosis should be performed within 100ms

* Dconst6: The limp home should take place within 100ms

These constraints should be respected when creating the software architecture of the

knock/pre-ignition during the implementation phase

2.2.3.2. Hardware Architecture Exploration:
As mentioned previously, for the previous version of the knock sub-system, all the software
modules execute on the engine management ECU. In our case, the new version of the sub-
system should use the same resource. Hence in this phase, we perform ECU load estimation
not to determine the best functional block-to-ECU allocation scenario but just to verify that
the CPU load budget decided for the new version is respected with the new configuration

(introduction of pre-ignition detection). With the help of EMS designer and knock sub-

Methodology for Model-based Timing Analysis Process

146

system specialists, we identified that the load requested by the knock/pre-ignition should
not exceed 5% of the global load of the engine management ECU. To verify if this load could
be respected or not, we should determine the ECU load requested by the new software
version based on the functional architecture described previously and the execution times

estimated for the functional blocks.

Estimation of functional block execution times:

The execution time of each functional block is determined based on the previous software
version. In fact, for this previous version, we have a data base describing the execution time
of each operation (these operations are described in figure 39). Table 19 shows the execution
times of the previous software version operations. These execution times will allow us

having an estimation of the execution time of the functional blocks.

Table 19 Operation execution times from previous knock software version

Operation Execution Time (us)

Filtering and integration 7

Diagnosis 7.5

Limp home 400
Window parameter setting 6
Threshold calculation 9
Knock energy calculation 9
Correction loop 27

In the previous software version, the operation filtering and integration has a worst case
execution time of 7 ps. For the new version of the sub-system, we know that this operation
should be performed twice (first on the signal acquired during main window and then on the
signal acquired during pre-window). Thus, for the functional block noise acquisition, we can
estimate a bound of 14 ps for its execution time (the double of the filtering and integration
operation execution time). As the control functional block role remains unchanged, we can

assign to it the same execution time as the previous version.

Methodology for Model-based Timing Analysis Process

147

For the knock detection functional block, in addition to old treatment (main window
parameter calculation, threshold calculation, energy calculation), the new version should
calculate also the parameters of the pre-window. Thus, we can estimate for it an execution
time of 30 ps (the sum of the previous execution times augmented by an extra time for the
calculation of pre-window parameter. This augmentation should be nearly equal to the
execution time of the main window parameter calculation operation). The bound to be
estimated for the execution time of the diagnosis functional block is 15us as the treatment of
this functional block should be performed for both the noise signal acquired during the main
window and the signal acquired during the pre-window. For the pre-ignition functional
block, we estimate an execution time of 20us (the detection of the pre-ignition phenomenon
will be nearly similar to the knock detection based on the calculation of a pre-ignition

threshold)

To be able to estimate the load requested by knock/pre-ignition functional block, we also
need to know the period of each treatment. Table 20 describes the activation of each

operation from the previous software version.

Table 20 periods of previous software version operations

Operation Activation
Filtering and integration Window end event

Diagnosis SEG_event

Limp home 100ms

Window parameter setting SEG_event

Threshold calculation SEG_event

Knock energy calculation SEG_event

Correction loop SEG_event

The window end event and the SEG event are engine-synchronous events (the periods of
these events depend on the engine speed). In our case, to simplify the understanding of the
illustration, we choose to perform timing analysis for a six cylinder engine running at 6000
rpm. At this engine speed, the window end event has a period of 2ms. The SEG event has a

period of 3ms.

Methodology for Model-based Timing Analysis Process

148

Based on these values, we can assign the following periods to our functional blocks (table
21). We choose to assign a period of 3ms for the pre-ignition detection functional block
(similar to the period of knock detection functional block). Table 21 shows also the

functional block execution times.

Table 21 Knock/pre-ignition functional block execution times and periods

Functional block Execution time (Us) Period (ms)
Noise acquisition 14 2
Knock detection 30 3

Control 27 3

Diagnosis 15 3
Limp home 400 100

Pre-ignition detection 30 3

Based on these values, the global load requested by the knock/pre-ignition functional blocks
is 4.1%. This value is less than the load budget authorized for the knock/pre-ignition sub-
system. This means that the architecture conceived can be validated and it is possible to

move to the next development phase, the implementation.

2.2.4. Implementation Phase

During this phase, we transform the knock/pre-ignition functional architecture described
during the design phase into a software architecture using AUTOSAR concepts. As for the

cruise control use case, we used the Cessart-CT tool to create the models of this phase.

* Knock/pre-ignition Application View: In this view, we chose to transform each
tunctional block from the design phase to an AUTOSAR software component. Figure 47
shows a simplified overview of the software components and their communication (for
the clarity of the figures, we do not show all the data exchanged between the software
components). Figure 48 shows the runnable entities created for each software

component.

Methodology for Model-based Timing Analysis Process

149

<<ApplicationSoftwareComponents>
<=ApplicationScftwareCompenent=> 2) =
Noise Acquisiti Knock Detection
Oise Acquisition <<PPortPrototypes> << ApplicationSoftwareComponent=>
<<PPortPrototype>> <<RPortPrototype=> PrewindowParameters Control
FilteredNoiseSignal_win I—4I FilteredNoiseSignal_win
<<RPortProfotype>> <<PPortPrototype=>
PrewindowParameters WwindowParameters
<<RPortPrototypes> <<PPortPrototypex> <<RPortPrototypes> <<PPortPrototypes> I I <<PPortPrototyper> <<PPortPrototype=> I
WindowParameters FiteredNoiseSignal_prewin I— InhibitionOrder KnockEnergy KnockEnergy IgnitionAngleRetard
<<RPortPrototype=»
<<RPortPrototypes= InhibitionCrder

InhibitionOrder

<<ApplicationSoftwareComponent>>

Diagnosis
<<RPortProfotype>>
—I FilteredMeisesignal_win

<<ApplicationSoftwareComponent>>
Limp home

<<RPortPrototypes: <<PPortPrototype== <<PPortPrototypes>

I FilteredNoiseSignal_prewin — co o neor oo I I i

<<PPortPrototype=» I
InhibitionCrder

<<ApplicationSoftwareComponent=>

Pre-ignition Detection
I <<RPortPrototype>>
FilteredNoiseSignal_prewin

I <<RPortPrototypes=
InhibitionCrder

Figure 47 simplified overview of Knock/pre-ignition AUTOSAR software architecture

<<ApplicationSoftwareComponent>> <<ApplicationSoftwareComponent>>

Meise Acquisition Knock Detection

RunnableEntitys> “RunnableEntitys> unnableEntitys

Widow parameter calculation Knock Threshold calculation

Filtering and integration_win

RunnableEntity>> uning bleEntity>>

Pre-window parameter
Filtering and integration_prewin calculation

RunnableEntity=>

Knock energy calculation

<<ApplicationSoftwareComponent=>> <<ApplicationSoftwareComponent=>> <<ApplicationSoftwareComponent>>

Pre-ignition Detection Diagnosis Control

<=RunnableEntity>:
<<RunnableEntity>> <<RunnableEntity>> unnabletntity>>
Correction loop

Pre-ignition Threshold calculation Diagnosis_win

<<ApplicationSoftwareComponent>>

<<RunnableEntity>> <<RunnableEntity>> Limp home

Pre-ignition energy calculation Diagnosis_prewin

uning bleEntity>>

Limp home

Figure 48 Knock/pre-ignition software components and runnable entities

As figure 48 shows, compared with the previous software version, the internal behavior

(the defined runnable entities) of each software component is adapted to respect the new

Methodology for Model-based Timing Analysis Process

150

configuration. The software component noise acquisition contains two runnable entities.
The first one performs the filtering and integration of the noise signal acquired during
the main window and the second one processes the signal acquired during the pre-
window. For the software component knock detection, we added a runnable entity for
the calculation of the pre-window parameters (begin instant and duration). The
diagnosis software component contains two runnable entities that perform the diagnosis
of the noise signal acquired during the main window and the one acquired during the
pre-window. The pre-ignition software component contains two runnable entities. The
first runnable entity calculates a pre-ignition threshold. Based on this threshold, the
second runnable entity calculates the pre-ignition energy. If this energy exceeds a fixed

limit, this means that pre-ignition is occurring.

* Knock/pre-ignition Timing Behavior View: In this view, we modeled the timing
constraints determined during the design phase by means of AUTOSAR events and
event chains. For example, for the constraint DConst3, we modeled an event chain
having as stimulus the activation event of the runnable entity correction loop and as
response the termination event of the same runnable. For this event chain, we specified a
latency constraint having 100ms as a maximum value. For Dconst4, we modeled an
event chain having as stimulus the activation event of the runnable pre-ignition
threshold calculation and as response the termination event of the runnable pre-ignition
energy calculation. For this event chain, we specified a latency constraint of 150ms.
Figure 49 shows a representation of the event chain related to the constraint Dconst4

(pre-ignition event chain).

<<LatencyConstraint>>

Max = 150ms
R E

) <<EventChain>> _RE_S‘_]DHSE
<o Stimuluse> e e Pre-ignition energy

P Pre-ignition X
Pre-ignition calculationend

threshold calculation
=T \1 <<EventChainSegment=> <<EventChainSegments== <<EventChainSegment=> /

Pre-ignition threshold Pre-ignition energy
calculation calculation

Figure 49 Representation of the modeling of the pre-ignition event chain

Methodology for Model-based Timing Analysis Process

151

= Resource Platform View: In this view, we model the hardware and software resources
used by the knock/pre-ignition sub-system. Figure 50 shows an overview of the resource
platform used by this sub-system. As mentioned previously, all the knock/pre-ignition
software components will run on the engine management ECU. Task_ENG is an
engine-synchronous task that is triggered by the SEG event presented in table 20.
Task_WinEnd is triggered by the window end event.

<<Eculnstance>>
Engine management

<<OsTask=>

<<OsTask=>> <<OsTask=>

TASK_ENG TASK_100mM3S

TASK_WinEnd

Figure 50 Representation of the resource platform view

* Mapping View: Figure 51 shows a representation of the mapping view, it presents the
distribution of the runnable entities between OS tasks. To develop this view, we used the
information of the mapping of the previous software version operations to OS tasks. For
the new software architecture, we chose to map the runnable entities of the pre-ignition

detection software component to the TASK_ENG.

<<Eculnstance>>
Engine management

<<0sTasl
TASK_ENG

<<RunnableEntity>> <<RunnableEntity=>
Diagnosis_win Prewindow parameter calculation

<<RunnableEntity=> <<RunnableEntity=>
Diagnosis_prewin Thresheold calculation

<<RunnableEntity=> <<RunnableEntity=>
Window parameter calculation Knock energy calculation

<<RunnableEntity>> <<RunnableEntity>>
Pre-ignition threshold calculation Pre-igniticn energy calculation

<<RunnableEntity>>

<<RunnableEntity>>
Filtering and integration_win

<<RunnableEntity>>
Limp home

<<RunnableEntity>>
Filtering and integration_prewin

Figure 51 Representation of the mapping view

Methodology for Model-based Timing Analysis Process

152

2.2.5. Scheduling Analysis
We performed scheduling analysis using the SymTA/S tool. The scheduling analysis was

performed taking into account all other EMS sub-systems and the new knock/ pre-ignition
constraints. Table 22 shows the response times related to the knock/pre-ignition sub-
system. All the response times are less than the deadlines specified (the same for the
constraints considered for the other sub-systems) which means that the system is

schedulable.

Table22: Response times for the knock/pre-ignition event chains

Event Chain Deadline (ms) Response Time (ms)
Noise acquisition 100 25
Knock control 100 15
Pre-ignition detection 150 82.5
Knock detection 200 110
diagnosis 100 30.5
Limp home 100 40.2

Methodology for Model-based Timing Analysis Process

153

3. About the Methodology Acceptability

In this chapter, we propose to measure the acceptability of our methodology and its potential
to be adopted by Continental engineers. Let’s note that the results of this thesis work has
contributed among many other research works carried out at Continental to the decision of
Continental to migrate to a new EMS software architecture based on AUTOSAR concepts
and adapted to EMS characteristics. As a part of this migration process, a tool allowing the
description of EMS software architecture with AUTOSAR concepts is being developed. This
tool gives the possibility to transform previous software version described with XD models
into AUTOSAR software architecture. It is also intended to allow the integration of
AUTOSAR models from different parts of the EMS software.

3.1. Tasks, Roles, Skills

To measure the acceptability of our methodology, we propose to measure the gap between
our proposed process and the current EMS development process (described in section 1.2 of
this part) in terms of current vs. new tasks and skills in order to determine the training
needs and to evaluate their availability potential. Table 23 gives a comparison between the
tasks performed currently by the different roles involved in the EMS development process
and the new tasks required by our methodology. The new tasks required by the
methodology should be weaved into the tasks performed currently during the EMS

development process.

Methodology for Model-based Timing Analysis Process

154

integration in Doors data base
- EMS partitioning

Table 28 Current vs. new tasks
Role Current task New task
. . | - EMS d-to-end timi i t
- EMS requirement analysis . f_m oen l,mmg requiremen
. determination and analysis
(functional and performance o : .
. . R - Analysis functional views modeling
EMS designer | requirements): elicitationand

- Analysis timing views modeling
- Sub-system time and CPU load budgets
determination

- Sub-system design functional view

systems

- Sub-system requirement analysis modeling
(requirement elicitation and | _ Sub-system timing view modeling
integration in Doors data base) - Functional ~ block time budgets
.)) determination
Function - .F.unctlon and algorithms B Functional block execution times
developer d?scrlptlon (ma.mually or through estimation
Simulink modeling) - Modeling of abstract architecture of the
hardware platform to be used by the sub-
system.
- Allocation of functional blocks to hardware
resources modeling
- Processor load estimation
- Sub-system algorithms | - Sub-system software architecture
Software implementation (manual C coding description using AUTOSAR
developer or automatic C code generation | - Runnable entity timing information
from Simulink models) determination (timing constraints &
execution times)
S - C code and algorithms | - AUTOSAR models from different sub-
oftware])) .)
. integration from different sub- | systems integration
Integrator

- Scheduling analysis performance for
integrated EMS

As the table shows, the new tasks required by the methodology are centered on modeling

and timing analysis. To be capable to perform these tasks, some skills need to be acquired by

the different roles involved in the development process. Table 24, 25, 26 and 27 give a

comparison between the current skills and the new required skills for each role involved in

the development process.

Methodology for Model-based Timing Analysis Process

Table 24. Current vs. new skills and training needs for EMS designer

155

Role

Current skills

New skills

Required skill

Rational

Availability risk

Training needs

EMS designer

- Use of Doors tool

- Domain knowledge:
engine control
knowledge

- CPU load budgeting

Real time skills:

EMS designer should
have these skills to be
able to determine the

No availability risk
as EMS designer
can be supported by
the function and

No training is
needed

determination of EMS EMS end-to-end Sciftware developer
. . of each sub-system .
end-to-end requirements | requirements and, based Need for support
. . . who have better .
and sub-system time on this, to determine from sub-system
. . knowledge about A
budgeting the time budget to . function and
. the time budget that .
assign to each sub- software developer
svstem can be acceptable
S for the considered
sub-system
Medium availability
risk as EAST-ADL
To be capable to | is not very well
EAST-ADL functional develop functional | known currently EAST-ADL
modeling views during the | and hence there is a training

analysis phase

risk of lack of
EAST-ADL

training
Need for use of UML
composite structure
. diagrams for functional | No risk of . .
UMLd s UML basic t
1agrams use views and UML | availability as UML asic traling

sequence diagrams for
timing views

UML editor use

Needed to develop the
models during the
analysis phase

is a standard and
training for UML
concepts and tools
can be provided
easily

UML editor
training (e.g.,
ARTISAN studio,
papyrus MDT)

TADL modeling

Need to be familiar with
TADL concepts to
develop the timing
views that represent the
EMS
requirements during the
analysis phase

end-to-end

No availability risk
as TADL notions
are integrated in
AUTOSAR timing
extensions for
which training can
be provided at
Continental

TADL training

Eclipse use

This skill is needed as
most of available UML
editors are eclipse based

No availability risk
as EMS designer
can be supported by
software developers
who have already

eclipse use skills

Eclipse basic
training

As the table shows, most of the new required skills for EMS developer are centered on

modeling skills and the use of modeling languages and tools. Such skills can be acquired by

EMS designer through training.

Methodology for Model-based Timing Analysis Process

Table 25. Current vs. new skills and training needs for function developer

156

New skills

. Trainin
Role Current skills d J
Required skill Rational Availability risk neeas
No availability risk | Support from
To be capable to as function | - EMS dynamic
Real time skills: determine t% netional developer can be behavior
capability to block time budgets supported by experts
determine time J i t‘ Continental dynamic
an estimate . .
budgets and estimate functional block architecture Information
nctiona oc .
execution times 4 tion times specialists who have | exchange with
execution times strong real time software
skills developer
Medium availability
To b ble ¢ risk as EAST-ADL
o be capable to | .
S t v 11
EAST-ADL develop functional i:no “Z . ;fggﬂ V:z | EAST-ADL
wn cu
functional modeling | views during the Ty Al training
desi has hence there is a risk
esigh phase of lack of EAST-
ADL training
Need for use of UML
composite structure
diagrams for .
. . UML bas
. . UML diagrams use functional views and | No risk of) ,aMC
- Use of Doors tool s training
- sub-system UML sequence | availability as UML
Function functional design d@grams for timing | 1s .a. star{dard and
R . views training for UML
developer description as Word
specifications concepts and tools
- Auto coding-aware can - be provided UML editor
Simulink mO(;gelin Needed to develop | easily training (e.g.,
Simu
& UML editor use models during design ARTISAN
phase studio, papyrus
MDT)
No availability risk
s TADL ts
Need to be familiar | ©° - ¢ C:)I;lcep.s
. | are integrate in
. with TADL concepts | () r 0GR timing TADL
TADL modeling to model the timing
. duri h extensions for which training
views urin e
desi b & training can be
esign phase
ghp provided at
Continental

Eclipse use

This skill is needed
as most of available
UML editors are
eclipse based

No availability risk
as function
developer can be
supported by
software developers
at Continental who
have already eclipse
use skills

Eclipse basic
training

Methodology for Model-based Timing Analysis Process

Table 26. Current vs. new skills and training needs for software developer

157

New skills
Role Current skills Required . Skill availability Training needs
. Rational .
skill risk

AUTOSAR No availability risk as
modeling: AUTOSAR trainings
application Software developer | can be provided at
modeling, should master using | Continental
timing AUTOSAR concepts to AUTOSAR
modeling, develop sub-system training

- MISRA C coding platform software architecture at

- Real time skills: modeling, implementation level

capability to decide mapping

Software about recurrences | modeling
developer and deadlines to

assign to executing No availability risk as

operations an AUTOSAR editor

- Work within eclipse adapted to describe

environment AUTOSAR | Needed to develop bEi\i/iz aﬁiﬁﬁfﬁiﬁe “ | aurosar
editor use AUTOSAR models editor training

continental with the
intention to train
software developers to

it.

Methodology for Model-based Timing Analysis Process

Table 27. Current vs. new skills and training needs for software integrator

158

New skills Training
Role Current skills
Required skill Rational Availability risk needs
This skill is needed | No availability risk
to enable a correct | as AUTOSAR
. integration of the | trainings can be AUTOSAR
AUTOSAR modeling AUTOSAR models | provided at training
from different sub- | Continental
systems
No availability risk
as an AUTOSAR
editor developed
within Continental
. Needed to integrate | and adapted to EMS AUTOSAR
AUTOSAR editor use AUTOSAR models architecture is being | editor training
developed with the
intention to train
software integrators
to it.
tizlftwa::e mt(eiiizlr?ar; Capability to work The available Eclipse basic
within Eclipse AUTOSAR editors | No availability risk ..
tools) . . training
e environment are eclipse-based.
- Capability to
Software a.na.lyze the static a.nd Software integrator | No availability risk
integrator tlmmg. .behavwr need to be capable to | as for commercial Scheduling
(execution time and S schedulin tools such as analysis tool
. . . use scheduling y
response time Scheduling analysis analysis tools to | SymTA/S, the | training (e.g,,
measurement) of the tool use , . : i
. perform scheduling | provider is ready to SymTA/S,
integrated software analysis ~ for the | train continental Chronval)

integrated system

engineers to it.

Basic notions of
scheduling theory

The software
integrator should
have some notions of
scheduling theory
(preemption,
cooperation,

blocking, offsets, etc)
to be
interpret scheduling

capable to

analysis results.

Real time properties
of Continental tasks
(recurrences,
deadlines,
preemptivity) are
already known by
software integrators.
For scheduling
theory notions, there
is no availability risk
as these notions can
be acquired during

trainings to
scheduling analysis
tools.

No specific
training is
needed, this
knowledge can
be acquired as
part of training
to scheduling
analysis tools

Based on the comparison presented in the previous tables in terms of needed tasks and skills,

we can conclude that there is a good potential for our methodology to be adopted by

Methodology for Model-based Timing Analysis Process

159

Continental engineers. In fact some of the skills required by the methodology are already
available in continental. For the skills that are not available yet, there is no risk to acquire
them as trainings can be provided at Continental. However, as EAST-ADL is a new
formalism, EAST-ADL trainings can be not available in the short term. The early
development phases based on EAST-ADL modeling can be adopted as an enhancement of
the future Continental development process that is intended to be based on AUTOSAR

software architecture.

3.2. Tool Support

In this section, we propose to measure the acceptability of the proposed methodology in
terms of tool support. To this end, we compare the current tool chain used at Continental to
develop engine management systems and the tool chain required by our methodology.

Figure 52 shows an overview of the current EMS development tool chain.

EMS Design

EMS Requirement Analysis EMES partitioning

Ei]

Doorsdatabase

Requirement Analysis Requirement Analysis

Doorsdatabase Doorsdatabase

Functional Design

Software Implementation Software Implementation

Ceditor =
Coode genemstor

Ceditor

Coode geneator

SW development for sub-system 1 SW development for sub-system N

Software Integration

Software integration tool

Software Static Analysis Software Timing Analysis

XD Timing data bass

EMS Integration and Analysis

Figure 52 Current tool chain used to develop Engine management systems

Methodology for Model-based Timing Analysis Process

160

As the figure shows, requirement analysis activities are performed by the EMS designer and
tunction developer based on the Doors data base. During the software development of each
sub-system, the functional design is described either as Word specifications in the code-
centric approach or through using the Simulink tool to model the functions and their
associated algorithms in the model-based approach. In the same way, the software
implementation is either done manually using a C code editor or by generating the C code
automatically using a C code generator. During the software integration, an internal
software integration tool is used. Then, from this tool, an XD model is generated to enable
the analysis of the static architecture of the software using the XD tool. In parallel, an
internal tool (timing data base) allows performing the timing analysis of the integrated
software by measuring the operation execution times, the OS task response times and the

CPU load values.
Figure 53 shows the new EMS development tool chain underlying our methodology.

EMS Design

EMS Requirement Analysis EMS partitioning Analysis Phase

] Z

Doorsdatabase
UML editor

Reguirement Analysis

Doorsdatabase

Design Phase .

Scheduling
analysis tool

Scheduling
analysis tool

UMNAL editor UML editar

Implementation Phase Implementation Phase

@ =
AUTOSAR editor ALTOSAR editor

SW development for sub-system 1 SW development for sub-system N

Software Integration - =

AUTOSAR mode! integrationtool

Scheduling Analysis

. SymTA/S)

Scheduling analysis tool

EMS Integration and Analysis

Figure 53 Methodology development tool chain

Methodology for Model-based Timing Analysis Process

161

As figure 53 shows, during the analysis and design phases, a UML editor is needed in order
to enable the development of functional and timing views during these phases. During the
implementation phase of each sub-system, an AUTOSAR editor is needed to describe the
software architecture using AUTOSAR constructs. Such editor is also needed to perform the
integration of AUTOSAR models from different sub-systems. Based on the functional
architecture modeled during the design phase for each sub-system, a large part of the
AUTOSAR software architecture can be generated automatically using a transformation
tool. In the same way, to perform scheduling analysis on the integrated architecture, a
transformation tool is needed to transform AUTOSAR models to a model understandable by

a scheduling analysis tool.

Table 28, 29 and 30 give a comparison between the current and the new tool chains during
respectively EMS design phase, software development for each sub-system and software
integration and analysis. The new tool chain required by the methodology should be weaved

into the tool chain that is currently used during the EMS development process.

Table 28 Current vs., new tool chain used during EMS design phase

EMS New tools
Current
Development tool
phase 0088 Tool Rational Example Availability risk
No availability risk as
To develop these tools are already
- Papyrus . .
- Doors data EAST-ADL MDT developed. Artisan studio
EMS design base UML editor and TADL Arti is already used by
- Artisan
- Word models during | Continental engineers to
. Studio .
analysis phase develop basic software
parts for each sub-system

Methodology for Model-based Timing Analysis Process

162

Table 29 Current vs., new tool chain used during software development of each sub-system

EMS New tools
Current
Development tools
phase Tool Rational Example Availability risk
To develop
EAST-ADL - Papyrus No availability risk as
UML editor and TADL | - Artisan these tools are already
models during | Studio developed
design phase
To calculate
the processor
. loads based on | - MAST No availability risk as
Scheduling . .
. functional - Cheddar these tools are already
analysis tool block-to-ECU | - SymTA/S available
allocation
scenario
A tool called Optimum
This tool is that allows generating
needed to automatically AUTOSAR
generate software components
automatically a from EAST-ADL
Software - Doors part of the functional models exists
- Word . AUTOSAR already. However, this
development _ Simulink Design to oftw tool is ‘ ‘
for each sub- C edi implementation sottivare Optimum oot ds o Mot - matire
system L ecieor transformation e}rchltecture [60] eno.ugh..v "l?he o
- Ccode from the availability of such tool is
tool . . .
generator functional not a blocking point for
EAST-ADL the adoption of the
architecture methodology but it may
and hence prevent from saving more
accelerate the development time
development compared with current
status of the methodology
This tool is
needed to Cessar-CT is not mature
model the enough. Nevertheless,
software there is no availability
AUT.O SAR architecture of Cessar-CT risk for an AUTOSAR
editor each sub- editor as a tool is already
system using being developed in
AUTOSAR Continental for a new
concepts EMS architecture based

on AUTOSAR.

Methodology for Model-based Timing Analysis Process

163

Table 30 Current vs., new tool chain used during software integration and in case of software reuse

EMS c ¢ New tools
urren
Development tool
phase 001s Tool Rational Example Availability risk
This tool is
1; d o0 tls No availability risk
AUTOSAR | "<°°¢ © because the AUTOSAR
enable the . .
models nteorati f editor developed for the
integration o
integration | ' & new EMS AUTOSAR
tool B architecture is intended
AUTOSAR
AUTOSAR . to enable the integration
dels f 5
editor) models - from of AUTOSR parts from
different sub- o
different sub-systems
systems
This tool is
needed to
generate
. automatically This kind of
- Softw AUTOSAR t
Soft intZ ;;?;;n cheduli © from AUTOSAR- transformation tool is
it © :.vare d toolg > elu e AUTOSAR to-SymTA/S | being currently
integration an analysis
5 lvsi XD tool transf J G models a | transformation | developed by
analysis - ransformation
¥ Timine data tool model tool Symtavision, the
- 00
base 5 understandable SymTA/S provider
by a
scheduling
analysis tool
This tool s No avallablh.ty risk as
SymTA/S is already
needed to . . .
p available and it satisfies
perform .
11 th schedul
Scheduling scheduling . a . ¢ schieduiing
. . SymTA/S analysis needs for
analysis tool analysis on the . ,
. automotive systems. Let’s
integrated note that the license of
AUTOSAR .
this tool costs between
models
30000 and 40000 Euros.
This tool is
needed to
speed the
transformation No availability risk as the
XD t of the old AUTOSAR editor
o
Development AUTOSAR software developed for the new
by reuse with dit) architecture EMS AUTOSAR
editor -
the - transf . represented in architecture is intended
ransformation
methodology tool XD to an to allow importing
o0 AUTOSAR models represented in
architecture in XD.
case of reuse of
software
modules.

Methodology for Model-based Timing Analysis Process

164

As the tables show, several new tools that are not currently used by Continental engineers
are required by our methodology. However, these tools are already available and mature
enough and engineers can be trained to them. Some tools such as the tool to transtorm
EAST-ADL functional architecture to an AUTOSAR architecture are available but need to
be improved. Nevertheless, the evaluation of this tool in Continental showed that it can be

improved easily for an accurate integration in the development process.

3.3. Methodology Tooling

In this section, we present the tools that have been developed to facilitate the use of our
methodology by Continental engineers. To model our methodology, the Eclipse Process
Framework (EPF) [637 is used to represent the phases and activities of our methodology.
To guide Continental engineers through the use of our methodology, we implemented also
Eclipse cheat sheets that engineers can follow when using the methodology. Finally, a set of
model checking rules have been implemented to ensure the development of consistent

models during the analysis and design phases using the papyrus tool.

3.3.1. Methodology EPT Model

Figure 54 shows a simplified overview of the EPF model developed for the methodology.
The figure shows the modeling of the different activities that should be performed during
each phase. In addition, the figure details the tasks that should be performed to develop the

analyzable models during the analysis and implementation phases.

Methodology for Model-based Timing Analysis Process

165

Deevelop The System Analysis Functionsl View
= et
— Develop Analyzable Model

Analysiz Phase = ¥
0 Develop Anatysis Timing View

Determing systam timing information

=

Design Phase

Determine Funclional Blocks Timing Information

=l

Evalusie Processors Load

| Fore
Loy

Determine Runnabile Ertity Timing Information
Lo Lo
e Mode! the Applcation View Model the resource Plalform View
= I3
] LI
Implemertstion Phase — Develop the Aralyzable Madel
Le L
Model the Timing behaviour View Model the Mapping View
7}

Perform Sched:h'lg Analysis
Figure 54 Simplified EPTF model of the methodology

s3.3.2. Cheat Sheet Guides

To guide engineers through the use of our methodology, we implemented a set of eclipse
cheat sheets that describe in details the steps to follow to develop the models needed during
each phase of the development. Figure 55 shows an example of a cheat sheet that describes
the modeling steps that should be followed to develop the timing view during the design
phase. These cheat sheets can be added as a plug-in to the Eclipse platform and can be used

by Continental engineers as a part of the Eclipse help.

Methodology for Model-based Timing Analysis Process

166

(5 Chesk shests £ T e
Methodology Modeling Guidance

B E Develop Madels for Tirming Analysis
[4 Create papyrus profect
[_; Develop Model at Analysis Level
[Develop Model at Design Level
_» Create AUTOSAR project
[_'.- Develop Software Application Yiew
['d Develop Software Timing Behavior View
,l Develop Resource PlatForm
I_.: Develop Mapping View

| =] .

Develop Design Model

= Introduction

This cheat sheet shows you the different steps to follow to develop the model at the design level. You need
to develop four views: design functional view, design timing view, hardware platform view and allocation
view. functional and timing views are used for time budget refinement. other views are used for hardware
architecture exploration and processor load estimation

&] Click to Begin
¥ organize model packages

» Creste Design Functional View
v Creste Design Timing View

In the package dedicated for the timing view, create the necessary diagrams as described in the next sub-
steps

For each time budget determined ak the analysis level for the function under design, create a new sequence
diagram. each time just write: clic in the timing view package, new diagram and choose sequence diagram

Model each Functional block involved in the time budget as a e line and the data transfer as asynchronous
messages, the function execution should be modeled as ActionExecutionSpecfication

Stereotype the whale nteraction as EventChain from TADL. The messages should be stereotyped with
DataMessage, sach event corresponding to the sending or receiving of message should be stereotyped with
DataEvent and TADLEvent, events related to the execution start or finish should be stereotyped with TADLEvent

fill in the properties of the EvenitChain by specifying the stimulus and response events as well as the end-to-end
constraint as a latency constraint

» Create Hardware Platform View
» Create Alocation View

Figure 55 Example of an implemented Eclipse sheet cheat

3.3.5. Model Validation Rules.

To ensure the development of consistent models, we used the EMF (Eclipse Modeling
Framework) [647] Validation mechanisms to implement modeling rules against which
Continental engineers can verify the correctness of their Papyrus models during analysis
and design phases. These rules are developed as constraints implemented in Java. Figure 56
shows an example of the validation of a timing view developed using Papyrus MDT. To
validate this view, we implemented a Java constraint telling that messages should be
stereotyped with the stereotype “DataMassage” as described during the methodology
presentation. As the figure shows, once the validation is launched, the tool detects that this

constraint is not respected and an error message notifies the designer about the problem.

Methodology for Model-based Timing Analysis Process

167

i
tran tié_d ata

Acquisition . .
—

1

I

|

|

1

I

I

I

I

|

I

I

|

I

|

EY
| H SeqDiagram 23 |

= Proo&ﬁes[‘;fi&rorwq {2 Problems £2
S errars, 0 warnings, O others
Description
= €3 Errors (5 iterns)
@ " This message tranfer_data is nok stereotyped with DataMessage”

Figure 56 Example of modeling rule validation in Papyrus

Methodology for Model-based Timing Analysis Process

168

4. Methodology General Validation

This section aims at highlighting the added value of the proposed methodology through
showing at which extent it allows satistying the automotive needs presented in the first part
of this manuscript. To validate our methodology we select hence a set of validation criteria
that reflect these needs. As denoted in the first part of this manuscript, the approach should

allow:

* Reducing development time and cost

* Mastering system complexity

* Providing a seamless development process based on a seamless tool chain

* Ensuring system dependability, especially timing correctness through verification and

validation.

Table 81 summarizes the capabilities of the methodology against these needs.

4.1. System Complexity Mastering

In our process, a top-down approach is followed, whereby system architecture is detailed and
refined from one phase to another. During the early development phase (analysis), for
example, the focus is only on system functional architecture, thus abstracting away the
complexity that is potentially inherent in hardware or implementation details. This
architecture is further refined during the design phase, and the general features of its
hardware platform are described. Finally, the software and hardware architectures are
supplemented with all related implementation details. In this way, the complexity of the
architecture described increases gradually from one phase to another, allowing engineers to
tfocus during each on particular views of the system. The complexity of timing analysis also
increases gradually from phase to phase. During analysis phase, the focus is made only on
timing validation of the architecture. During design phase, this validation continues and is
enhanced by validation of the hardware platform. Finally, after the integration stage, a
complete scheduling analysis is performed to validate both the timing and performance

constraints.

4.2. Development Time and Cost Reduction
Development time and cost reduction is enabled by our methodology basically through the
early detection of time-related failure. In fact, if we consider the current EMS development

Methodology for Model-based Timing Analysis Process

169

process at Continental, timing verification is performed currently very late after the
integration of the EMS and is based on tests and measurements (measurement of task
response times based on the C code of the integrated system). In case of failure detected
during this phase, the correction of such failure is very time-consuming. In fact, the
knowledge of the failure source is very difficult (which sub-system is involved? at which
stage a design mistake was made? etc...). With our methodology, timing analysis starts
since the very early phase of the EMS design. By identitying EMS end-to-end requirements
and assigning time budgets to the different sub-systems based on these requirements, we
ensure that these requirements remain respected when developing the software of each sub-
system. In addition, during the software development process for each sub-system, timing
analysis is performed in each phase to ensure the correctness of the architecture designed
and hence the possibility to move to the next phase. Hence, if a failure is detected by the
scheduling analysis performed on the integrated system, we do not need to spend more time
to go back to the early design phases (as the architecture designed during these phases is
already validated).

Furthermore, the current timing analysis performed on the EMS (after the system
integration) is more time-consuming than the scheduling analysis activity that we propose
in our methodology. In fact, for an EMS configuration containing almost 20 OS tasks, the
measurement of OS task response times (using C code) at a fixed engine speed takes nearly
four days as it requires moditying the C code of the integrated system to get analyzable C
code. In addition the tool used currently to measure these response times takes nearly two
days to analyze the code. For the same EMS configuration, performing scheduling analysis
using the SymTA/S tool takes only one day knowing that the SymTA/S model for the EMS
architecture was described manually. This duration will be greatly reduced when the

SymTA/S model is generated automatically form, e.g., AUTOSAR models.

In addition, unlike our approach, the current approach does not allow measuring the
response times of engine-synchronous tasks; it gives results only for timing tasks. Hence,
the results obtained do not reflect at all the real timing behavior of the system. Due to this,
some real time failures may be detected only during the final tests on the vehicle itself which

introduces extra time and cost to correct them.

To conclude, our process proposes to start timing analysis early. This allows engineers to

also detect errors early and thus adapt the already developed architecture using models only.

Methodology for Model-based Timing Analysis Process

170

It also saves any time that would otherwise have been lost, for instance, in correcting code
to account for late error detection. Then again, since our development process is model-
based, automatic transformations can be used to generate either models for the next phase
(e.g. by transforming a model developed at the design stage into AUTOSAR software
architecture) or the final code from the AUTOSAR implementation model. It also serves to
automatically generate input models for the analysis tools. All of these features represent a
huge reduction in development time and hence cost. In the cruise control use case presented
previously, development of models in the different phases, together with timing analysis,
took only three days, which is much less than the time usually required to develop software

based on classical approaches (code-centric approaches).

4.3. Seamless Development Process

Our methodology gives guidance for a seamless development and timing analysis process. In
tact, unlike existing approaches that we described in the first part of this manuscript, our
methodology gives guidance for model refinement from a phase to another. In addition, it
describes how analysis results of each phase should be used for architecture refinement

during the next phase.

Moreover, the methodology describes the tool chain that should be used during the
development process for both the modeling and timing analysis activity. Based on the
acceptability study of the methodology, there is a good potential for an easy adoption of this

tool chain at Continental.

4.4. Enabling Timing Verification

The first objective of our proposed process was to enable the integration of timing analysis
along the development process. Compared with available approaches presented in the first
part of this manuscript, our methodology gives detailed guidance allowing performing
timing analysis and verification from early design phases until implementation and
integration. Furthermore, compared with current EMS development process where timing
analysis is performed only at the integration stage, our process enables starting timing
analysis since the very early design phases. In fact during the analysis phase, sub-system
time budgets are determined to ensure compliance with vehicle end-to-end requirements.
Then, these budgets are refined during the design phase to determine the functional block
time budgets. These latter time budgets represent the constraints that are verified during

the implementation phase through performing scheduling analysis. In addition, the
Methodology for Model-based Timing Analysis Process

171

validation of the hardware platform is started during the design phase, based only on
allocation of functional blocks to hardware resources. This model is refined during the
implementation phase by adding the software resources and the mapping of the runnable
entities to these resources. This way, our methodology enables during the early phases
(analysis and design) a sort of “preparatory analysis” that paves the ground for the

scheduling analysis activity performed after EMS integration.

In addition, in this work, we showed how to move from modeling and design activities to

timing analysis activities by presenting guidance for model development and refinement.

Methodology for Model-based Timing Analysis Process

172

Table 31 Methodology capabilities

Software development needs Methodology capabilities

Development through abstraction levels (From abstract functional

description to detailed implementation).

The complexity of the designed architecture increases gradually

from a phase to another

Master system complexity Enable the designer to focus on different aspect at different design

phases

The complexity of the timing analysis increases gradually
(evaluation of time budgets, then evaluation of hardware resources

utilization and finally complete scheduling analysis)

Early detection of design mistakes,

Reduce time and cost due to correction of last-minute detected

errors
Reduce development time

and cost The scheduling analysis proposed by the methodology is less time

consuming than the approach used currently in continental

Automatic transformation of models can be used to accelerate the

development and the timing analysis

Gives guidance for model refinement and transformation (from

analysis to design phase, from design to implementation phase,

Define seamless .) .
from modeling to analysis tools)

development activity
A tool chain for modeling and timing analysis is defined to cover

the whole development process

Detailed guidance for integration of timing analysis in the

development process
Enable timing verification | Enables starting timing analysis during early design phases

Guidance for development of analyzable models during each

development phase

Methodology for Model-based Timing Analysis Process

173

Conclusion and Perspectives

In this thesis work, we presented a methodology for a model-based timing analysis process.
This work has been done to make up for the lacks of some existing approaches that

attempted to provide solutions for automotive software development needs.

Today, four major challenges are to be met in automotive software development domain: 1)
Reduce software development time and cost, 2) master system complexity during
development, 3) provide a seamless development process based on a seamless tool chain and
4) ensure system correctness through enabling early validation and verification. Among the
important aspects to be verified for automotive software is the correctness of its timing

behavior.

In order to provide solutions to some of these needs, many model-based development
approaches and methodologies have been defined. Some of these approaches are automotive
domain specific such as the approaches defining the EAST-ADL, TADL and AUTOSAR
modeling languages. Other approaches are dedicated to real-time systems in general like the
modeling language MARTE. These approaches give modeling means and concepts that
allow describing several aspects of the developed system (application, platform, timing,
allocation, etc). However, although these approaches give some solutions for the above-
mentioned automotive needs, they remain incomplete in term of enabling timing verification

along the development process.

To make up for this lack, we propose in this thesis work a methodology that allows
integrating timing analysis, mainly scheduling analysis, in a model-based development

process that we defined based on the existing approaches.

First, we studied the feasibility of our approach which combines model-based development
for automotive applications and scheduling analysis. On one hand, this feasibility study is
based on the evaluation of the expressivity of the available modeling languages for enabling
scheduling analysis. On the other hand, the study is based on the evaluation of the usability
of scheduling analysis to enable timing verification for automotive systems. This is done
through evaluating the capabilities of available scheduling analysis tools to satisty

scheduling analysis needs for automotive applications.

Methodology for Model-based Timing Analysis Process

174

Our approach is based on the definition of a model-based timing analysis process. This
process is composed of three development phases; analysis, design and implementation
phase. During the early design phases, analysis and design, analyzable models are developed
using the EAST-ADL constructs for functional modeling, TADL means for timing
modeling and MARTE concepts to model allocation. Based on the developed analyzable
model, timing analysis is performed to determine time budgets to allocate either to the
developed sub-system itself or to its functional blocks. The time budgets determined during
each phase ensure respecting the end-to-end timing requirements of that phase. During
design phase, a hardware architecture exploration is also performed to determine the best
tunctional block-to-ECU allocation scenario based on the evaluation of ECU loads. During
the implementation phase, the complete software architecture is described and scheduling
analysis is performed to verify whether the system respects the timing constraints

determined by the timing analysis carried out during previous phases.

In this thesis work, we presented also an approach describing how to apply our methodology
for the development of Engine Management Systems (EMS) at Continental. First, we
studied the EMS current development process at Continental. Then, an approach describing
the application of our methodology in the context of this development process is defined.
This approach focuses on two development scenarios; software development from scratch
and software development by reuse. Based on the above-mentioned application approach, we
studied also the acceptability of our methodology by measuring the gap between this
methodology and the current EMS development process in terms of tasks, skills and tool
chain. This acceptability study reveals a strong potential of our methodology to be adopted
by Continental engineers especially that, as a result of this thesis work, the AUTOSAR

formalism is being currently deployed for new EMS architecture at Continental.

The most important added value of our methodology is enabling early detection of timing
errors during the development process. This allows avoiding last-minutes detected mistakes

and hence saving time and cost required for correcting the software implemented.

Our methodology gives also a seamless development and timing analysis process that is
based on seamless tool chain for architecture modeling and timing analysis. The diftferent
development phases defined allows describing the system architecture in a progressive way
tfrom abstract functional description until detailed implementation. This allows, hence

designers mastering the complexity of the designed architecture and give them the

Methodology for Model-based Timing Analysis Process

175

possibility to focus each time only on particular aspect of the architecture (functional

description, hardware, timing, etc).

Although our methodology gives several solutions to meet the automotive software

development challenges at Continental, some points should be improved in further works:

In our methodology, we suggest to perform scheduling analysis based on a self-contained
AUTOSAR software architecture. To perform scheduling analysis, one needs to specify task
or function execution times. However, in our methodology this is done based only on
estimation and designer expertise without giving any formal approach describing how these
execution times can be determined. In case of development by reuse, these execution times
can be determined based the execution times measured from the C code of previous software
version. In the case of the cruise control use case (development from scratch), the execution
times have been determined based on the application expert knowledge. However, this
remains insufficient and there is a need to define a formal approach allowing the

determination of such execution times.

In addition, from a practical point of view, we presented an approach to apply our
methodology for EMS development at Continental. However, for the software description,
we do not describe in detail how constructs used currently to describe EMS software
architecture can be mapped to AUTOSAR concepts. This work is being carried out by
another team at Continental. It aims at adapting AUTOSAR concepts and means for EMS

software architecture specificities.

A further topic that is not presented in this work is the design of an AUTOSAR software
platform (OS tasks) that ensures the timing correctness of the designed system. In fact, an
approach should be developed to describe how, based on the timing properties of AUTOSAR
runnable entities (deadlines, end-to-end constraints, periods, etc), a task model respecting
these properties should be designed. For example the following questions should be

answered:
¢ How to define OS task deadlines
* How to define task priorities

* How to define task periods/ activation patterns

Methodology for Model-based Timing Analysis Process

176

Annex 1 shows an example of a work in progress that is performed in this thesis work to
solve this problem. The annex shows mainly an approach to define OS task deadlines based

on the deadlines and end-to-end constraints imposed on the AUTOSAR runnable entities.

Methodology for Model-based Timing Analysis Process

177

Annex1: Definition of an

AUTOSAR OS Task Model

At the implementation level (based on AUTOSAR software architecture), to enable
scheduling analysis, the designer should define the OS tasks that constitute the software
resource platform. To define a complete task model, the designer should make some choices

to answer the following questions:

1. How to define the OS tasks of the system

2. How to assign the priorities to these tasks

3. How to determine the deadlines for these tasks based on the runnable deadlines and
end-to-end constraints

4. What are the activation patterns and the recurrences of these tasks.

5. How to define the “preemptivity” kind of each task (which tasks are

preemptive/cooperative)

1. OS tasks choice: generalities

When choosing the OS tasks, the designer should take into account the characteristics of
the runnable entities to be mapped to these tasks. In fact, the designer has as input a set
of runnable entities submitted to a number of constraints such as deadlines or end-to-end
constraints and characterized by recurrences and execution times. Based on this
information, the designer should decide about the properties to assign to each chosen
task (priority, deadline, etc). Of course, the choice of the task model should be done in an
accurate and optimized way. For example, to optimize the CPU load resulting from task
switch overheads, the designer should try to minimize at maximum the number of

chosen tasks while keeping, at the same time, an efficient task model.

2. Task priorities

Here, to comply with AUTOSAR OS, we consider a fixed priority task model, i.e. task
priorities are fixed before system execution and do not change at runtime. When
assigning priorities to chosen tasks, the designer should consider both the timing
constraints of the runnable entities mapped to these tasks (deadlines and end-to-end

constraints) and their execution times. Runnable entities having small deadlines (i.e.

Methodology for Model-based Timing Analysis Process

178

representing urgent treatments) should be mapped to tasks for which the designer
should assign high priorities (deadline monotonic way). Execution times of mapped
runnables should also be considered in order to prevent tasks from being delayed by
higher priority task having a large execution time. In such task case (tasks with large
execution time), the designer should assign a low priority to these tasks and allow them
to have pre-emption points (schedule points) in order to give the possibility to higher
priority tasks to execute without waiting the termination of these task. Moreover, when
assigning priorities to tasks, one should consider its deadline value but also the criticality

of the treatment associated.

3. Task deadlines
Task deadlines should be determined based on the deadlines and end-to-end constraints

of the mapped runnable entities.

A. Casel: System with only deadlines on runnables (no defined end-to-end
constraints on flows of runnables)

In this case, the designer has as input a set of runnable entities, each runnable has got a
deadline, a recurrence and an execution time. Of course, it is not optimal to create a task
for each runnable and assign the runnable deadline to this task. So the designer should
find a solution to map many runnable entities to the same task for which he chooses a
deadline that ensures respecting all the deadlines of the mapped runnables. To do so, the
designer determines, first based on his expertise, groups of runnables to be mapped to
the same task (these groups are formed by runnables with deadlines that are close to
each other). For each group of runnables we define a “deadline class”. This represents the
smallest runnable deadline in the group. The task to which we map the runnables of this
group will have as deadline this deadline class. To avoid a very pessimistic design the
designer should adapt the definition of the groups and the repartition of the runnables
based on the following constraint: for each runnable entity, to belong to a group, the
difference between the deadline of this runnable and the deadline class of the group
should be smaller than a certain value that we denote X. This value is chosen by the

designer based on his expertise

Formulation

Methodology for Model-based Timing Analysis Process

179

Let’s consider a system defined by R = {rey, req,....., ren}, R is a set of runnable entities
re; (1 €{1. .n}). Each runnable entity re; is defined by (pi, di, exi), pi is the runnable
recurrence, di is its deadline and ex; is its execution time. The designer determines a set
of groups of runnable entities G= {g....gs}. Each group gmis defined as follows: gm =

{rej...rex} (m e {1..s} and j, k € {1..n}). For each group gm we define a deadline class dgm

=mind, re {j...k}
Contraints:

1. A runnable entity re; belongs to a group gmif and only it |(di - dgm) | < X

Example:
Let’s consider the runnable entities of table 1:

Table 1 Example of runnable entities and their deadlines

Runnable | Deadline
REO 200 ps
RE1 1 ms
RE2 2 ms
RE3 3 ms
RE4 10 ms
RE5 12 ms
RE6 20 ms
RE7 25 ms
RES 100 ms
RE9 101 ms
RE10 26 ms

Methodology for Model-based Timing Analysis Process

180

Based on his expertise, the designer will determine a first repartition of these runnables into
groups (runnables with deadlines that are close to each other will belong to the same group).

Table 2 gives a repartition of runnable entities into groups

Table 2 Example of a repartition of runnable entities to groups

Group Runnables Deadline class
gl REO 200 us
g2 RE1, RE2, RE3 1 ms
23 RE4, RE5 10 ms
g4 RE6, RE7, RE10 20 ms
g5 RES, RE9 100 ms

This is a first repartition of the runnable entities based on the designer expertise

Now suppose that the bound X is equal to 1ms (i.e. 4 runnable entity re: belongs to a group g if
and only if | (d: - de) |< 1 ms)

In this case, RE3 can not belong anymore to the group g1, so we should put it in new group:
223 = {RE3} having a deadline class equal to 8ms. It is also the case for the RE5 that can’t
belong anymore to g3 so we assign it to a new group g34 = {RE5} with 12ms as a deadline
class, this is also true for the runnable RE7 that can not belong to g4, so we create a group
g45= {RE7} with 25ms as a deadline class. RE10 should also be removed from g4. As the
difference between the deadline of RE10 and the deadline class of g4 is less or equal to 1ms,

we should put RE10 in the group g45

Finally we end up with the repartition of table 3:

Methodology for Model-based Timing Analysis Process

181

Table 3 Repartition obtained

Group Runnables Deadline class

gl REO 200 us
g2 RE1, RE2 1 ms

223 RE3 3 ms

23 RE4 10 ms
234 RE5 12 ms
o4 RE6 20 ms
245 RE7, RE10 25 ms
g5 RES, RE9 100 ms

So, to ensure the respect of the deadlines of these runnables preventing a very pessimistic

design, we define the following tasks presented in table 4:

Table 4 Defined tasks
Task Task deadline Mapped runnables
T1 200 Us REO
T2 1 ms RE1, RE2
T3 3 ms RE3
T4 10 ms RE4
Ts 12 ms RE5
Te6 20 ms REs6
T7 25 ms RE7, RE10
TS 100 ms RES, RE9

B. Case 2: System with runnables deadlines and end-to-end constraints
Methodology for Model-based Timing Analysis Process

182

In this case, there are two possible configurations: either end-to-end constraints
are imposed on independent end-to-end flows of runnables (i.e. constrained end-
to-flows have no common runnable entities, figure 1) or these end-to-end flows

have common runnables (figure 2)

End-to-end constraint

T~

!!\

\\End-to-end constraint2 /

Figure 1 Example of independent end-to-end flows

End-to-end constraint

\

End-to-end constraint? ,/’/,'

Figure 2 Example of dependent end-to-end flows

/

B.1: system with independent end-to-end flows:

In this case, the designer considers each constrained end-to-end flow as a unique
runnable entity formed by the succession of the runnables of this end-to-end flow
and having as deadline the end-to-end constraint imposed on this end-to-end flow

(tigure 3)

Methodology for Model-based Timing Analysis Process

183

End-to-end constraint

\

Figure 3 End-to-end flow transformation

End-to-end constraint

This means that all the runnables belonging to a constrained end-to-end flow will be
mapped to the same task. The designer performs then the same work described above by

defining groups of runnables with deadline classes.
B.2: system with dependent end-to-end flows:

Here, we have also two cases: either we are allowed to map a runnable to more than one
task (i.e. a runnable can be called by more than one task) or each runnable should be
mapped to exactly one task. In the first case, the work is easy and is the same as the
work described in B.1: each end-to-end flow is considered as a unique runnable and will
be mapped to a task. Runnables belonging to more than one end-to-end flow may be

mapped to more than one task.

In the second case (when a runnable cannot be mapped to more than one task) the
problem concerns mainly the runnables that belong to more than one end-to-end-flow.
The designer separates the runnable entities in two groups: the first group contains the
runnable that does not belong to any constrained end-to-end flow or to only one end-to-
end flow. The second group contains the runnables that belong to more than one
constrained end-to-end flow. He performs then the same work described in A for the
runnables of the first group. Then based on his expertise, and the formed groups, he

assigns the remaining runnables (i.e. the runnables belonging to more than one end-to-

Methodology for Model-based Timing Analysis Process

184

end flow) to the formed group in a way that the global end-to-end constraint will be

respected

4. Task recurrences

The problem of choosing task recurrences is similar to the problem of choosing task
deadlines. The designer has as input a set of runnable entities having recurrences and
should be mapped to tasks for which we assign recurrences that should respect the
runnable recurrences. The designer should make a trade-oft between the choice of task

recurrences and the choice of task deadlines. How this trade-off should be made?

5. Task preemptivity
Choosing the preemptivity kind for a task means to choose between three categories of
tasks: either a task is fully preemptive, fully non-preemptive or cooperative. What is the

criterion on which the preemptivity kind is chosen?

Methodology for Model-based Timing Analysis Process

185

References

[1]

[2]

[s]

[4]

[5]

[6]

7]

[8]

[9]

C10]
St
C1e]

[18]

[14]

B. Selic, “A Generic Framework for Modeling Resources with UML”, IEEE Computer vol. 33
no.6, pp.64-69, June 2000.

M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. Gonzalez Harbour, “A Practitioner’s
Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time

Systems”, Kluwer Academic Publishers, 1993.

J.J. P. Tsai, S. J. Yang and Y.-H. Chang, “Timing constraint Petri Nets and their Application
to Schedulability Analysis of Real-time System Specification”, IEEE Transactions on Software

Engineering, vol. 21, n° 1, pp. 82-49, 1995.

D.C. Petriu, C. Shousha, A. Jalnapurkar, “Architecture-Based Performance Analysis Applied to
a Telecommunication System”, I.LE.E.E. Transactions on Software Eng, Vol.26, No.11,

pp-1049-1065, Nov. 2000.

R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, vol.
126, pp. 183-235, 1994.

A. Pretschner, M. Broy, I. H. Kruger, T. Stauner, “Software Engineering for Automotive
Systems: A Roadmap”, 29" International Conference on Software Engineering (ICSE 2007),
Minneapolis MN, USA, May 27t 2007.

Object Management Group: Unified Modeling Language — Superstructure Version 2.1.1
formal/2007-02-03

[. T. Union, “Specification and Description Language”, International Telecommunication

Union Recommendation Z.100, 1992.

Avionics Architecture Description Language Standards Document (AADL),
http://www.aadl.info.

MARTE website. www.omgmarte.org

TIMMO website. www.timmo.org

S. Gérard, “Modélisation UML Exécutable pour les Systems Embarqués de I'automobile”, PhD
Thesis.

H. Espinoza, “An Integrated Model-Driven Framework for Specifying and Analyzing Non-
Functional Properties of Real Time Systems”, PhD Thesis.

L. Fuentes, A. Vallecillo: “An Introduction to UML Profiles”, UPGRADE, The European

Journal for the Informatics Professional, 5(2):5-13, April 2004, ISSN: 1684-5285.

Methodology for Model-based Timing Analysis Process

[15]

[16]
[17]
[18]
[19]
[20]

[e1]

[22]

res]

[24]

[25]

[26]

[27]

[28]

[29]

186

Object Management Group: Object Constraint Language (OCL). OMG Available

Specification. Version 2.0 (2006)
M. Fowler, “Domain Specific Languages” (Book), ISBN: 0321712943 9780321712943
EAST-ADL website. www.atesst.org

AUTOSAR Partnership. www.autosar.org

J. L. Peterson, “Petri Net Theory and the Modeling of Systems”, Prentice Hall, 1981

P. L. Guernic, T. Gautier, M. L. Borgne and C. L. Maire, “Programming Real Time
Applications with SIGNAL”, INRIA-RENNE, report N 1446, 1991

Liu, C. L. and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-
time Environment”. Journal of the ACM (Association for Computing Machinery), Vol. 20 n°1,
Jan.1973

Lehoczky, J. P., L. Sha, and D. Y. Ding: 1989, “The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior”, 10t IEEE Real-Time Systems
Symposium (RTSS51989), Santa Monica CA, USA, December 5— 7th, 1989.

Joseph, M. and P. Pandya: 1986, “Finding Response Times in a real-time system. BCS

Computer Journal, Vol. 29, n°5, 390-395.

N. C. Audslay, A. Burns, M. F. Richardson, and A. J. Wellings: “Hard real-time Scheduling:
The Deadline Monotonic Approach”, 8th IEEE Workshop on Real-Time Operating Systems
and Software. Atlanta, GA, USA,

Leung, J. Y. T. and J. Whitehead: 1982, On the complexity of fixed-priority scheduling of

periodic, real-time tasks. Performance Evaluation (Netherlands)

Lehoczky, J. P.: 1990, Fixed priority scheduling of periodic task sets with arbitrary deadlines.
In: Proc. 11th IEEE Real-Time Systems Symposium.

Tindell, K., A. Burns, and A. J. Wellings: 1994a, An extendible approach for analysing fixed

priority hard real-time tasks. Real-Time Systems

K. Tindell, Adding Time-Offsets to Schedulability Analysis, Technical Report YCS 221, Dept.
of Computer Science, University of York, England, January 1994.

J.C. Palencia Gutiérrez and M. Gonzédlez Harbour, Schedulability Analysis for Tasks with
Static and Dynamic Offsets. Proceedings of the 18th. IEEE Real-Time Systems Symposium,
Madrid, Spain, December 1998.

Methodology for Model-based Timing Analysis Process

[30]

[81]
[30]
[85]
(547

[85]
[567
[57]

(58]
(897

[40]

[41]

[42]
[438]
[44]
[45]

187

Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemption threshold. In
Proceedings of the Sixth International Conference on Real-Time Computing Systems and

Applications (RTCSA’99), 1999
MAST website (Mast.unican.es).
Cheddar website (http://beru.univ-brest.fr)

Rapid-RMA website (http://www.tripac.com/rapid-rma)

L. Sha, T. Abdelzaher, K. Arzen, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Caccamo, J.
Lehoczky, A. Mok, Real Time Scheduling Theory: A Historical Perspective, Real-Time

Systems Journal, November-December 2004.

Chronval website (http://www.inchron.com/chronval.html)

SymTA/S website (http://www.symtavision.com/symtas.html)

M. Traub, V. Lauer, J. Becker, M. Jersak, K. Richter and M. Kuhl: Using timing analysis for
evaluating communication behaviour network topologies in an early design phase of
automotive electric/electronic architectures. SAE World Congress, Detriot, MI, USA, April
2009

OSERK group website (http://www.osek-vdx.org)

K. Tindell and J. Clark: Holistic Schedulability Analysis for Distributed Real-time Systems.
Microprocessing and Microprogramming - Euromicro Journal (Special Issue on Parallel

Embedded Real-Time Systems), 40:117—134, 1994

F. Singhoff, J. Legrand, L. Nana and L. Marcé: Cheddar: a Flexible Real Time Scheduling
Framework. ACM SIGAda Ada Letters, volume 24, number 4, pages 1-8. Edited by ACM
Press, New York, USA. December 2004, ISSN: 1094-3641.

J. M. Drake, M. G. Harbour, J. J. Gutiérrez, P. L. Martinez, J. L. Medina, J. C. Palencia :
Modelling and Analysis Suite for Real Time Applications (MAST 1.3.7), Description of the
MAST Model. Report, Universidad De Cantabria, SPAIN, 2008.

Papyrus website (www.papyrusuml.org)

Webpage of the ARTOP User Group (www.artop.org)

Simulink website (www.mathworks.com/products/simulink)

Saoussen Anssi, Sara Tucci-pergiovanni, Chokri Mraidha, Arnaud Albinet, Frangois Terrier,
Sébastien Gérard, “Completing EAST-ADL with MARTE for Enabling Scheduling Analysis
for Automotive Applications”, Embedded Real Time Software and Systems (ETS?2010),

Toulouse, France, May 19th - 21st, 2010

Methodology for Model-based Timing Analysis Process

[46]

[47]
[48]

[49]
[50]
[51]
[52]

[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]

[61]

C627
C637
[647

188

P. Cuenot, P. Frey, R. Johansson, H. Loénn, M. O. Reiser, D. Srevat, R. Tavakoli Kolagari, D.
J. Chen, “Developing Automotive Products using the EAST-ADL2, an AUTOSAR Compliant
Architecture description Language”, Embedded Real Time Software (ERTS2008), Toulouse,

France, January 29- 31+, February 1%, 2008.
EAST-ADL Specification, Version 2.1, 2010-06-02.

H. Blom, R. Johansson, H. Lonn, “Annotation with Timing Constraints in the Context of
EAST-ADL2 and AUTOSAR, the Timing Augmented Description Language”, Workshop on
the Definition, evaluation and exploitation of modeling and computing standards for Real

Time Embedded Systems (STANDRTS'09), Dublin, Ireland, June 30th, 2009.

TADL: Timing Augmented Description Language Specification, version 2, 2009-10-05.
AUTOSAR Methodology Specification, version 1.2.2, release 4.0, 2008-08-15.
AUTOSAR Software Component Template, version 4.0.0, release 4.0, 2009-09-15.

AUTOSAR Basic Software Module description Template, version 2.0.0, release 4.0, 2009-11-

13

AUTOSAR Specification of Operating System, version 4.0.0, release 4.0, 2009-11-30.
AUTOSAR System Template, version 4.0.0, release 4.0, 2009-12-04.

AUTOSAR Specification of Timing Extension, version 1.0.0, release 4.0, 2009-11-30.
UML profile for MARTE (specification), version 1.0, November 2009.

K. Albers, “Approximative Real Time Analysis”, PhD Thesis, 2010

AUTOSAR Specification of RTE, version 38.0.0, release 4.0, 2009-12-18.

SymTA/S 1.4 Intro and Theory Manual, report, version 1.4.2, 2009.

C. Mraidha, S. Tucci-Piergiovanni, S. Gérard. Optimum: A MARTE-based Methodology for
Schedulability Analysis at Early Design Stages. Third IEEE International workshop UML
and IFormal Methods. November 2010, Shangai, China.

E. Wozniak, C. Mraidha, S. Gerard and F. Terrier: “A Guidance Framework for the
Generation of Implementation Models in the Automotive Domain”, 2d international workshop
DANCE, (Distributed Architecture modeling for Novel Component based Embedded systems),

held in conjunction with SEAA 2011 the 87t Euromicro conference, 2011.

S. Gérard, D. Servat: “Proposal for an EAST-ADL2 Annex to MARTE”, (report), 2008.

Eclipse Process Framework website (http://www.eclipse.org/ept/)

Eclipse Modelling Framework website (http://www.eclipse.org/modeling/emf/)

Methodology for Model-based Timing Analysis Process

189

Methodology for Model-based Timing Analysis Process

