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Introduction

The study of small systems has attracted much attention in recent years due to
the development of experimental techniques to probe physical properties at micro-
and nano-scales in physics, chemistry, material science, biology and medicine. For in-
stance, optical and magnetic tweezers have allowed one to mechanically manipulate
micron-sized particles to measure very weak interactions in colloids, to stretch living
cells, or used as mechanical probes to measure rheological properties of very tiny sam-
ples of complex fluids. Nanoscopic objects such as nanotubes and biomolecules can
be handled and probed by atomic force microscopy (AFM) micro-cantilevers. See fig-
ure 1(a) for two specific examples. On the other hand, new sophisticated micro and
nanotechnologies are being currently developed (figure 1(b)). Some examples are mi-
croelectromechanical systems (MEMS) and lab-on-a-chip technologies, designed to run
experiments with mesoscopic objets by means of micron-sized actuators, sensors and
minute flows integrated in a single small device. The second relevant example of such
nanotechnologies are synthetic molecular motors. They are conceived to operate as
highly efficient nanomachines capable of generate rectified motion and do work based
on the functioning of proteins responsible for the motion in living cells.

The systems cited in the previous examples share two important features:

• At these small lengthscales, the influence of the random collisions of the molecules
surrounding the micro and submicrometric objects is non-negligible. Then fluc-
tuations of quantities such as positions, velocities and energies are significant.

• Nonequilibrium conditions are commonplace due to nonconservative forces
and time dependent drivings exerted by the experimental apparatus, external
flows and gradients imposed at the boundaries or nonstationary conditions be-
cause of the initial preparation of the system.

Hence the physics of small systems requires to quantify the role of these two factors
in the performance of such small objects. However, this is not a trivial task using the
standard tools of thermodynamics and equilibrium statistical mechanics. Thermody-
namics deals only with a phenomenological approach of energy exchanges (heat and
work) for equilibrium processes, i.e. performed at an infinitely slow rate. A refinement
is possible thanks to equilibrium statistical mechanics, which provides a theoretical
framework to study the average behavior of thermodynamic bulk variables of macro-
scopic systems (composed of & 1023 particles) in thermal equilibrium from microscopic
properties of the constituent atoms and molecules. It admits the statistical descrip-
tion of nonequilibrium states very close to thermal equilibrium through the so-called
fluctuation-dissipation theorem [4]. This theorem provides an expression, which links
the statisitical properties of the spontaneous fluctuations of a system in thermal equi-
librium to the response to a weak external field. For example, it predicts mobilities
of colloidal suspensions subjected to external shear from the measurement of diffu-
sion coefficients done at thermal equilibrium. For an electric (magnetic) material,
the fluctuation-dissipation theorem allows one to determine the equilibrium statistical
properties of electric polarization (magnetization) fluctuations by the measurement of
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(a)

(b)

Figure 1: (a) Left panel: square array of silica microspheres (diameter 2µm) suspended
in water using optical tweezers. Right panel: nanotube (length 6.055µm, diameter
133 nm) buckled by an AFM cantilever. Image taken from [1]. (b) Left panel: Triple-
piston (5µm) MEMS steam engine. Water inside the three compresion cylinders is
heated by electric current and vaporizes, pushing the piston out. Image taken from
[2]. Right panel: (D) Schematic diagram of an F1-ATPase biomolecular-motor-powered
nanomechanical device, composed by (A) a Ni post (height 200 nm, diameter 80 nm),
(B) the F1-ATPase molecular motor and (C) a nanopropeller. Image taken from [3].
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Introduction

susceptibilities. Nonetheless, thermodynamics and equilibrium statistical mechanics
fail to describe adequately the behavior of the observables of a system as fluctuations
and nonequilibrium conditions become dominant. Taking into account these limita-
tions, recent progress in statistical mechanics of processes far from thermal equilibrium
has been achieved in parallel during the last 20 years. There are roughly two kinds
of theoretical relations that have been derived under certain hypothesis to statistically
describe nonequilibrium processes: fluctuation relations and generalized fluctuation-
dissipation (response) relations.

1. Fluctuation Relations (FR)

They describe symmetry properties of fluctuating energy exchanges and entropy pro-
duction for processes arbitrarily far from equilibrium. Then they can be regarded as
generalizations of the laws of thermodynamics to nonequilibrium fluctuating processes.
More specifically:

Jarzynski, Crooks and Hatano-Sasa relations [5, 6, 7]

They provide statistical identities for the work done during arbitrarily fast nonequi-
librium transformations between two equilibrium states and their relation with the
variation of free energy between the same equilibrium states. Let us illustrate these
relations with a simple example represented in figure 2(a).

We consider a small particle moving in a viscous fluid at fixed temperature T , with
a viscous friction coefficient γ. The particle motion is confined by a harmonic potential
of stiffness k and centered at x0:

Uk(x) =
k(x− x0)

2

2
.

The particle position x fluctuates around the position of the potential minimum x0
because of the thermal fluctuations provided by the molecules of the surrounding fluid.
For a constant value of k, the particle is in thermal equilibrium with the fluid and the
probability distribution of x is determined by the Boltzmann distribution

ρk(x) ∝ exp

[
−Uk(x)

kBT

]
.

We consider two constant values of the potential stiffness: k = k1 and k = k2 with
k1 < k2 fixing two different equilibrium states 1 and 2, respectively. We focus on a fast
variation of the stiffness following a given protocol k(t) in the time interval t1 ≤ t ≤ t2
between the two equilibrium states, i.e. k(t1) = k1 and k(t2) = k2. During this
nonequilibrium process, a given amount of work W is done on the particle to perform
the time variation of k. W is a random variable because it depends on the stochatic
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evolution of the particle position1. Specifically

W = −
∫ x(t2)

x(t1)

kx dx,

= −1

2

∫ t2

t1

k(t)
d

dt

[
x(t)2

]
dt,

= −1

2
[k2x(t2)

2 − k1x(t1)
2] +

1

2

∫ t2

t1

k̇(t)x(t)2 dt.

The second term on the right-hand side of the third line represents the work irreversibly
dissipated during a single stochastic realization in this nonequilibrium process:

Wdiss =
1

2

∫ t2

t1

k̇(t)x(t)2 dt.

The Hatano-Sasa relation states that for an infinite number of realizations of the same
dynamical protocol k(t) between the two equilibrium states at k1 and k2, the following
identity holds [7]: ⟨

exp

[∫ t2

t1

k̇(t)∂k ln ρk(xt) dt

]⟩
k

= 1,

where the brakets ⟨. . .⟩k denote a dynamical average over the infinite number of realiza-
tions of k(t) and the function ∂k ln ρk must be evaluted along each stochastic realization
of x. It turns out that the integral between the square brakets of the exponential is
equal to −Wdiss/(kBT ). The Hatano-Sasa identity holds for any protocol k(t) at any
rate satisfying the boundary conditions imposed by the two equilibrium states.

The Jarzynski equality relates the stochastic work Wdiss done during the dynamical
process k(t) with the free energy difference ∆F = F2−F1 between the two equilibrium
states 1 and 2 [5]: ⟨

exp

(
−Wdiss

kBT

)⟩
k

= exp

(
−∆F

kBT

)
.

Therefore, unlike classical thermodynamics, this FR allows one to compute equilibrium
free energies from the measurement of the nonequilibrium work done at any rate bew-
teen two equilibrium states. For the specific example illustrated in figure 2(a), the free
energy difference is ∆F = 0. Therefore, the Hatano-Sasa relation and the Jarzynski
equality yield the same expression.

Finally, the Crooks relation measures the asymmetry of the distribution P of the
work done from the equilibrium state 1 to the equilibrium state 2 with respect to the
distribution P ′ of the work done during the backward process from 2 to 1 [6]:

P (Wdiss)

P ′(−Wdiss)
= exp

(
Wdiss −∆F

kBT

)
.

1Note that the work W corresponds to the classical work, which differs by boundary terms from
the stochastic work Wdiss involved in the FRs.

ix



Introduction

(a) (b)

Figure 2: (a) Schematic representation of a nonequilibrium process to illustrate the
Hatano-Sasa, Jarzynski and Crooks relations. A particle immersed in a viscous fluid
and confined by a harmonic potential is subjected to a nonequilibrium transformation
between two equilibrium states 1 and 2. This is done by varying in time the potential
stiffness k between the values k1 and k2 in the time interval [t1, t2]. During this process
a given amount of work W is done. (b) Schematic representation of a nonequilibrium
steady state to illustrate the fluctuation theorem. A particle is confined by a harmonic
potential in a fluid in laminar flow moving at speed v. During a time τ a given amount
of entropy ∆Sτ is produced. The asymmetry of the distribution of the fluctuations of
∆Sτ is quantified by the fluctuation theorem.

The Crooks relation, formulated as a theorem, is usually regarded as the general result
from which the Jarzynski equality derives.

Fluctuation theorem [8, 9, 10, 11]

This FR quantifies the relative probability of observing positive values of the entropy
production with respect to rare negative values for a system driven into a nonequilib-
rium steady state. In particular, it implies that the mean value of the total entropy
production of a system in a nonequilibrium steady state is always positive.

Following the example of the particle confined by the harmonic potential, we now
consider that the fluid around the particle flows at constant speed v, see figure 2(b).
Therefore the flow constantly drags the particle with a force γ(ẋ−v), which is balanced
in average by the restoring force −k(x− x0) of the harmonic potential. This gives rise
to an average displacement ∆x = γv/k of the particle position with respect to x0. This
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is a nonequilibrium state because a finite amout of energy is externally provided to the
system by the flow. Such a nonequilibrium state is statistically invariant under time
translations, then it is a nonequilibrium steady state. In this case the distribution of
x is given explicitly by

ρk(x) ∝ exp

[
−k(x+∆x)2

2kBT

]
.

Due to the constant energy dissipation by the particle to sustain the nonequilibrium
steady state, a nonzero amount of entropy is always produced in average. It can be
shown that the total entropy change along a stochastic realization of x during a time
interval [0, τ ] is [11]

∆Sτ = −kB ln
ρk(xτ )

ρk(x0)
+
Qτ

T
,

where Qτ is the heat dissipated into the fluid during the same time interval. Since x
and Qτ are stochastic variables, ∆Sτ is also stochastic: there can be rare events where
entropy decreases (∆Sτ < 0) instead of the most common events where it increases
(∆Sτ > 0). The fluctuation theorem quantifies the relative probability of observing
a negative value ∆Sτ = −∆S with respect to the probability of observing a positive
value ∆Sτ = ∆S:

P (−∆S)

P (∆S)
= exp

(
−∆S

kB

)
.

Then ⟨∆Sτ ⟩ ≥ 0 in agreement with the second law of thermodynamics. See Appendices
A and B for a more detailed overview on the fluctuation theorem.

Due to its apparent validity under rather general hypothesis, FRs have been sub-
ject to intensive theoretical, numerical and experimental investigations. See [12] and
references therein for a descriptive review on experimental tests of FRs. But more im-
portantly for applications, they have successfully provided useful information in small
systems, otherwise inaccessible using the standard tools of equilibrium statistical me-
chanics. For instance, using the the Jarzynski and Crooks relations it is possible to
measure free energies of single biomolecules by perfoming nonequilibrium stretching
experiments [13, 14]. A second recent example is the use of the fluctuation theorem to
estimate the mean torque exerted by chemical reactions on a molecular motor protein
from fluctuation measurements [15]. Hence, they are turning from merely theoretical
relations into useful quantitative tools in experiments and simulations to study the
thermodynamics of small systems.

2. Generalized fluctuation-dissipation relations (GFDR)

Similar to the equilibrium formula given by the fluctuation-dissipation theorem, they
establish a link between the spontaneous fluctuations of a system in an unperturbed
state away from thermal equilibrium and the linear response to a weak perturbation
around the same nonequilibrium state. Then they offer the possibility to determine
the response of a system to complex time dependent perturbations by means of the
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Introduction

Figure 3: Examples of systems in nonequilibrium steady states: (a) Colloidal sus-
pension in stationary shear flow vx(y). (b) System conducting heat ⟨Q⟩ between two
reservoir at unequal temperatures TA > TB. (c) Brownian particle dragged by the
potential created by an optical trap moving at constant speed v. (d) Rotary molecular
motor enzyme (ATPase) pumped by the chemical synthesis of ATP. The central shaft
(blue) rotates unidirectionally during the synthesis.

measurement of unperturbed nonequilibrium fluctuating quantities. Conversely, statis-
tical properties of nonequilibrium fluctuations can be probed through the measuments
of response functions to weak external fields. There are two important unperturbed
nonequilibrium cases where GFDRs have been derived:

I. Nonequilibrium steady states [16, 17, 18, 19, 20, 21, 22, 23, 24]

This case corresponds to systems subjected to nonconservative forces, time-dependent
drivings or energy or mass fluxes but with time-invariant probability distributions.
GFDRs have been derived mainly for Markovian dynamics, i.e. when the time evolution
depends only on present values but not on the previous history of the system. Some
examples of nonequilibrium systems that are naturally in steady states are colloidal
particles driven by optical traps, sheared suspensions, molecular motors and systems
connected to reservoirs at different temperatures or chemical potentials (figure 3). In
all of theses cases, energy in injected into the system and at the same time the system
itself dissipates heat into the environment in order to maintain a stationary state.
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Figure 4: Examples of systems in nonstationary states relaxing to thermal equilibrium:
(a) spin system quenched at time t = 0 from a ferromagnetic phase at high temperature
(T > Tg) to a disordered spin glass phase at low temperature (T < Tg). Its magnetic
properties slowly evolve in time for t > 0. (b) Damped anharmonic oscillator in a fluid
at temperature T with friction coefficient γ. A mass m attached to a nonlinear spring
is released with an initial energy E(x(0), ẋ(0)) ≫ kBT at time t = 0. The position x(t)
of the mass at t > 0 is in a transient state before reaching the equilibrium mean value
⟨x(t)⟩ = 0 for t≫ m/γ.

II. Nonstationary states [25, 26, 22, 27, 28]

This case concerns systems with relaxational or transient dynamics after an initial
preparation of the system in a metastable configuration (figure 4). A special case of
GFDRs have been derived for systems rapidly quenched into a metastable state from
above to below a critical temperature and slowly relaxing towards thermal equilibrium
states [25, 26]. Some examples are glasses quenched below the glass transition tem-
perature Tg and thermoreversible gels quenched below the gelation temperature. A
closely related relaxational process occurs for systems quenched near a critical point,
for instance liquids crystal subjected to an abrupt decrease of an applied electric field
up to a critical value [29]. Other kinds of GFDRs describe transient Markovian dy-
namics of systems subjected to a fast variation of a control parameter, prepared in a
nonequilibrium initial condition or in contact with a nonstationary bath [22, 27, 28].
For instance, for a damped anharmonic oscillator in contact with a thermal bath, this
type of GFDRs describes the fluctuations and response around the transient state after
releasing the oscillator from a high-energy E configuration (E ≫ kBT ). In both cases,
the energy excess of the initial configuration must be dissipated into the environment
in order for the system to reach thermal equilibrium.

GFDRs have been also studied theoretically, numerically and experimentally, al-
beit to a much lesser extent than FRs. This is because GFDRs have been formulated
in more specific cases and from very different physical approaches involving quanti-
ties that are not always easily accessible in experiments. Moreover, most of the few
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Introduction

experimental tests so far only provide a qualitative picture of the relation between
nonequilibrium fluctuations and response. They only measure the violation of the
fluctuation-dissipation formula provided by equilibrium statistical mechanics without
any clear interpretation of the origin of this deviation.

Motivation and outline of the thesis

Motivated by the extensive studies on FRs for systems under simple nonequilibrium
conditions2, the first goal of the present thesis is to perform a careful and comprehen-
sive analysis of GFDRs in simple experiments on small systems that can be carried
out under very well controlled conditions. We aim to keep the experimental systems
as minimal as possible (e.g. a single relevant degree of freedom) but with enough
nonequilibrium features and complexity in order to gain a clear physical understanding
of the measured quantities. Such a kind of experimental control can be achieved in the
manipulation of a single micron-sized particle embedded in a fluid by the forces exerted
by a tigthly focused laser beam (optical traps). Strong nonequilibrium conditions can
be imposed to the system either by nonconservative forces exterted by the laser beam
or by the initial condition of the fluid surrounding the particle. In chapter 1 we de-
scribe the setup and the techniques based on optical traps that we use to conduct our
experimental study. Then, the thesis is divided into two parts in order to focus on the
study of two different kinds of nonequilibrium systems:

I. In the first part we address the study of fluctuations and linear response of a
Brownian particle driven into a periodic nonequilibrium steady state by a non-
conservative force exterted by a scanning laser beam. We first present in chapter
2 an overview of the theoretical derivation of the different GFDRs for nonequi-
librium steady states. Then in chapter 3 we describe the experiment where the
quantities involved in the different GFDR formulations can be accurately mea-
sured. Unlike previous experimental approaches, we do not attempt to measure
only the violations of the classical equilibrium fluctuation-dissipation relation,
but we determine the exact relation between fluctuations and response. Then a
detailed analysis allows us to get a physical interpretation of these GFDTs and
to quantify the role of currents due to the nonequilibrium nature of the system.

II. The second part deals with a Brownian particle in a bath prepared in an initial
out-of-equilibrium condition and slowly relaxing towards an equilibrium state
(physics aging). We measure the nonequilibrium spontaneous fluctuations of the
particle trapped by optical tweezers and the linear response to an external per-
turbation exerted through the motion of the optical trap. With the purpose of
quantifying the extent of the nonequilibrium nature of the system as it relaxes,
we also measure the fluctuations of the heat exhanged between the Brownian

2For example, electrical circuits under external currents, harmonic oscillators driven by magnetic
torques, colloidal particles dragged by optical tweezers, etc. either in transient and steady states
resulting from time-dependent drivings [12].
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particle and the bath. We study the statistical properties of these fluctuations in
the context of the fluctuation theorem. We conduct this experimental study in
two different relaxing media surrounding the Brownian particle: a colloidal glass
(Laponite, chapter 4) and a thermoreversible gel after a fast quench (gelatin,
chapter 5). In this way we are able to contrast the different experimental results
taking place at different length and timescales. Then we can identify the funda-
mental features of fluctuations and response for a nonequilibrium sytem slowly
relaxing to thermal equilibrium.

At first sight, the two different descriptions of nonequilibrium fluctuations and linear
response for the systems addressed in parts I and II seem two be dissimilar and at the
same time uncorrelated with the quantities measured in the context of FRs. Hence,
our second goal is to find out whether or not there are underlying measurable quan-
tities connecting these formulations. Once again, due to our minimal but sufficiently
complex experiments we are able to identify such a quantitative link. It turns out that
the total entropy production, or equivalently the probability or irreversible heat cur-
rents, play a unifying role between the different formulations of GFDRs and with FRs
either in steady states or nonstationary states relaxing towards thermal equilibrium.
Then throughout the present thesis we show that the "violation" of the equilibrium
fluctuation-dissipation formula for both kinds of nonequilibrium systems is actually
quantified by the total entropy production. This entropy can be experimentally mea-
sured by the tiny amounts of heat that must flow to sustain the nonequilibrium state
and that satisfy the properties imposed by FRs.
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Chapter 1

Optical traps

In this chapter we present a brief overview on the physics of optical tweezers. Then we
describe two different optical trap setups used to perform the experiments on trapped
micron-sized particles described throughout the thesis. We also detail the experimental
techniques implemented for the calibration and the detection of each apparatus.

1.1 The physics of optical tweezers
Optical traps (tweezers) consist on the use of radiation pressure of light in order to
trap and manipulate micron-sized objects in a stable way with forces ranging from
femto to piconewtons. For ordinary light, the force exerted by radiation pressure is
very small. For example, the radiation pressure P of sunlight (intensity I ≈ 1 kWm−2)
on an object of reflection coefficient R is P = (1+R)I/c, where c is the speed of light.
Then, in the ideal case R = 1 (total reflection) the maximum force that can be exerted
on a surface S = 1µm2 is

F = 2
IS

c
∼ 10 aN.

However, for real materials (R < 1) the force is even weaker than the previous value.
On the other hand, the force needed to drag a spherical particle of the same size through
water at a speed of 1µms−1 is ∼ 10 fN, i.e. 1000 times stronger than the maximum force
exerted by the radiation pressure of sunlight. Therefore, optical tweezers require a large
photon flux like that provided by a laser highly focused to the diffraction limit in order
to manipulate micron-sized objects. The first attempts to accomplish optical trapping
date back to the work of Ashkin in 1970 [30], one decade after the invention of laser. In
these early experiments, micron-sized particles suspended in water could be accelerated
and trapped by the radiation pressure of two opposing horizontal beams focused inside
the sample (see figure 1.1(a)). Nevertheless, the first experimental realization of a stable
optical trap using a single vertical beam was achieved until 1986 [31] (figure 1.1(b)).
This is the basic experimental configuration implemented in most of the modern optical
traps. Unlike the two opposing-beam system, the single-beam trap relies on a large
gradient force exerted by the focused beam on the trapped particle towards the center
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(a) (b)

Figure 1.1: (a) Sketch of the first experimental appartus [30] designed to trap a micro-
sized particle embedded in water by the radiation pressure of two opposing laser beams
(λ = 514.5 nm) focused by two lenses to obtained a waist ϖ = 6.2µm. The trapped
particle is detected by a microscope (M). (b) Sketch of the first single-beam optical trap
[31] created by means of an argon laser, tighly focused by a high-numerical-aperture
objective (NA = 1.25) to the diffraction limit (waist ϖ ≈ λ). A second laser (H) is
used to lift the particles to the focus of the upper trapping beam. Trapped particles
are visualized by a microscope (M) and the 90◦ scattered light is sent to a detector (D)
by a beam splitter (S).

of the focus. Then the particle is confined to the well of a potential created by the
focused beam. We explain the origin of this gradient force in the following.

The principle

We consider a spherical dielectric particle of radius r and refractive index np (dielectric
constant ϵp) embedded in a fluid of refractive index nm < np (dielectric constant ϵm).
The particle is close to a Gaussian laser beam of wavelength λ, tightly focused to the
diffraction limit at z = 0 in the fluid and propagating in the vertical direction +z
opposite to gravity (see figure 1.2). The spatial intensity profile of this kind of beam
can be approximated in cylindrical coordinates as

I(ρ, z) = I0 exp

(
− ρ2

2ϖ2
ρ

− z2

2ϖ2
z

)
, (1.1)

where ϖρ and ϖz are the size of the beam waist in the radial and axial directions,
respectively. On the other hand, for a highly focused beam the main contribution
of the force exerted by the electromagnetic field on the surface of the particle is of
electrostatic dipolar origin. Then the interaction energy between the particle and the
electrostatic field E can be expressed as

U = −1

2

∫
E0P dV, (1.2)
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1.1 The physics of optical tweezers

Figure 1.2: Schematic representation of a dialectric spherical particle close to a Gaus-
sian laser beam tightly focused to the diffraction limited spot. The intensity profile
I(ρ, z) around the focus is given approximately by equation (1.1). The radiation pres-
sure exerted by the beam results in two forces acting on the particle: a restoring force
F due to the intensity gradient directed to the focus center (ρ = 0, z = 0) and a
scattering force Fscat directed forward along the beam propagation +z.

where P is the dipolar density of the particle induced by the field E in presence of the
particle and E0 is the unperturbed electrostatic field in the absence of the particle. If
the particle is made of an isotropic linear material, the dipolar density is proportional
to electrostatic field

P =
ϵp − ϵm
4π

E.

In addition, if |ϵp− ϵm| ≪ 1 (weak polarization), E can be approximated by E0. Since
the intensity of the unperturbed electrostatic fields is proportional to E2

0

I =
ϵmE

2
0

8π
,

then the interaction energy (1.2) is approximately

U(ρ, z) = −2πα

∫ ρ

0

∫ z

−∞
I(ρ′, z′) ρ′ dρ′ dz′, (1.3)

where the parameter

α =
ϵp
ϵm

− 1 ≈
n2
p

n2
m

− 1,

measures the refractive index mismatch between the particle and the surrounding
medium. By inserting the expression of the Gaussian beam profile (1.1) into equation
(1.3) and taking the spatial derivatives, one finds the radial Fρ and axial Fz components
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of the force F = −∇U exerted by the electromagnetic field. For an isotropic focused
Gaussian beam (ϖ ≡ ϖρ = ϖz), an analytical expression of the isotropic force F (ϱ) as
a function of ϱ =

√
ρ2 + z2 can be readily found [32]

F (ϱ) = αI0ϖ
24π exp

(
−r

2 + ϱ2

2ϖ2

)[ rϱ
ϖ2

cosh
( rϱ
ϖ2

)
− sinh

( rϱ
ϖ2

)]
, (1.4)

For distances ϱ sufficiently small with respect to r, equation (1.4) yields a harmonic
restoring force

F (ϱ) = −kϱ, (1.5)

whith an effective spring constant (stiffness)

k =
αI0
ϖ2

4πr3

3
exp

(
− r2

2ϖ2

)
, (1.6)

whereas for distances much larger than the beam waist, F vanishes. Note that accord-
ing to equation (1.6), the focused beam actually acts as an attractive potential because
α > 0. Then when a particle is very close to the beam focus, its motion is confined by
an approximately harmonic potential well

U(ϱ) =
1

2
kϱ2.

For particles smaller than the beam waist r < ϖ, the stiffness is almost proportional
to the volume of the particle 4πr3/3 whereas for large particles r > ϖ, the stiffness
decreases as the particle radius increases. For the anisotropic case ϖρ < ϖz, which
is the most common in real Gaussian beams, a cumbersome calculation yields the
analytical expressions for the stiffness kρ and kz of the radial Fρ = −kρρ and axial
Fz = −kzz components of the restoring force with kρ > kz (see the analytical expression
derived in [32]). However, these expressions are not very useful in practice because they
require to measure the precise values of the beam waists ϖρ, ϖz and the local value
of the intensity I0 inside the chamber containing the trapped particle. Instead, it is
easier to implement in experiments some calibration techniques either to reconstruct
the potential energy of the particle in the focused beam or to measure directly the
values of kρ and kz, as described in detail in subsections 1.2.2 and 1.3.3.

Effect of photon scattering

It should be noted that according to equation (1.1) the gradient of the intensity ∇I is
proportional to I0/ϖ2. The stiffness k of resulting harmonic force is also proportional to
I0/ϖ

2 (see equation (1.6)). Then the origin of the attractive force exerted by the beam
is the intensity gradient created by the Gaussian profile: the larger the gradient the
stronger the trapping force. The maximum gradient that can be achieved in practice
occurs when the beam is focused to the diffraction limited spot (waistϖ ≈ λ). However,
this is not the only force exerted by the focused beam. Due to the scattering of the
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laser photons when passing through the particle, there is an additional nonconservative
force which pushes the particle forward along the beam propagation [33, 34, 35, 36].
For small particles r ≪ λ, the scattering force is Fscat ∼ I0λ

2α2(r/λ)6 [34]. As ϖ ≈ λ
for a diffraction limited laser spot and the maximum gradient force that can be exerted
on the particle is Fmax ∼ αI0ϖ

2(r/ϖ)3, then the ratio between the scattering and the
maximum harmonic force behaves as

Fscat

Fm

∼ α
( r
λ

)3
.

Since α < 1 in most of the experimental conditions, in general the scattering force is
much smaller than the trapping gradient force. When r ≈ λ, Fscat can become non-
negligible, slightly displacing the particle towards the direction of the beam propagation
but it is exactly balanced by the vertical component Fz of the trapping force. However,
this approximation is only valid when the laser is focused to the diffraction limit.
Otherwise the waist is ϖ > λ so that the ratio Fscat/Fm becomes proportional to ϖ/λ.
In such a case the scattering force dominates for sufficiently large ϖ and the particle is
pushed away from the focus in the direciton of the beam propagation. Finally, for large
particles (r ≫ λ), the scattering force is Fscat ≈ 2πα2I0ϖ

2 [32] whereas the maximum
gradient force is Fm ≈ 2παI0ϖ

2 (see equation (1.4)). Consequently the ratio between
Fscat and Fm scales as

Fscat

Fm

≈ α,

regardless of the value of λ. In this case the trapping gradient force also dominates
over the scattering force if the beam is focused to the diffraction limit ϖ ≈ λ.

We now proceed to describe two different custom-built setups that we used in order
to realize the optical trapping of microspheres of radius r = 1µm following the previous
physical ideas. Note that this particle size is comparable to the laser wavelength.

1.2 Single-trap setup

The first experimental setup consists on the creation of a single optical trap. The
setup is sketched in figure 1.3. The beam of a single-mode diode laser (Lumics, λ =
980 nm) is guided by an optical fiber and collimated by a telescope to a dichroic mirror
(DM2). The power of the diode laser is controlled by a computer. The collimated
beam is reflected by DM2 and directed to the entrance of an oil-immersion microscope
objective (Leica, 63×, high numerical aperture NA = 1.4). The objective tightly
focuses the beam to the diffraction limited spot (waist ϖ ≈ λ) inside a transparent cell
containing the microbeads to be trapped. The sample cell is fixed to a piezoelectric
stage (NanoMax-TS MAX313M) by means of a rigid holder to avoid the mechanical
vibrations of the glass plates making up the cell, as shown in figure 1.3.

The cell basically consists of a microscope slide and a coverslip separated by a
plastic spacer of inner diameter 15 mm ≤ 2R ≤ 20 mm and thickness 1 mm ≤ L ≤ 3

5



Optical traps

Figure 1.3: Diagram of the single-trap setup. L1 and L2 are the lenses of a beam
expander, M a mirror, DM1 and DM2 are dichroic mirrors. See section 1.2 for a
detailed explanation.

Figure 1.4: Schematic representation of the sample cell.
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1.2 Single-trap setup

Figure 1.5: Diagram of the PSD detection system for the single-trap setup. See sub-
section 1.2.1 for a detailed explanation.

mm. The cell is put with the microscope slide on top fixed to the piezoelectric stage in
such a way that the optical trap is created at a few microns 10 µm . h . 25 µm from
the inner coverslip surface, as schematized in figure 1.4. As the detailed description of
the cell depends on the special features of the experiment, they will be given in the
respective chapters.

The particles are dispersed in the fluid inside the cell at very low concentration
(volume fraction ∼ 10−6). Hence, the piezoelectric stage is used to facilitate the trap-
ping process: the sample cell can be slowly displaced a few microns in 3D by the
micrometer screws x, y and z to put the particles close to the beam focus. With the
purpose of visualizing the trapping process of a particle, the beam of a white light
source is guided by a fiber and focused in the sample cell by a condenser lens (focal
distance f2 = 23 mm). Then the resulting contrast image is magnified by the same
microscope objective used to create the optical trap. The image passes through the
dichroic mirrors DM2, DM1 and then it is reflected by the mirror M to be detected
by a CCD Camera. The whole setup is mounted on an optical table (Melles Griot) in
order to get rid of external mechanical vibrations that perturb the sample cell and the
position of the optical trap. In addition, the components of the trapping system are
enclosed in a Plexiglas box fixed to the optical table surface to insulate the optical trap
from acoustic noise. Once a particle is trapped by the focused beam, its position in the
xy plane (perpendicular to the beam propagation in +z) is tracked with a resolution
better than 1 nm using the following detection system.

1.2.1 Detection

The detection of the position of the trapped particle is based on a position sensitive
detector system (see figures 1.3 and 1.5). For this purpose, in addition to the trapping
beam we use a He-Ne laser (Melles Griot, λ = 632.8 nm). The Gaussian beam of the
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He-Ne laser is magnified by a beam expander created by two lenses (L1 and L2) to
fill completely the microscope objective entrance (diameter 10 mm). The collimated
He-Ne beam is focused by the same microscope objective very close but not exactly
in the focus of the trapping beam. A trapped bead of radius r = 1µm and refractive
index np in a fluid of refractive index nm acts as a microlens of effective focal length

f1 =
mr

2(m− 1)2
,

where m = np/nm. Hence, the He-Ne beam must be focused close to the focal plane
of the trapped bead, as shown in figure 1.5. In this way, when the bead barycenter is
exactly located at f1 from the focus of the He-Ne beam, the rays refracted by the bead
emerge parallel to the +z direction. Then the lens array formed by the condenser and
L3 (shown in figure 1.5) allows one to obtain a final laser spot focused at a distance
f2+4f3 from the center of the condenser. Thanks to the focus created by this lens array,
the intensity of the He-Ne spot at the distance f2 + 4f3 is almost independent of the
z position of the trapped bead. The spot is detected by a duolateral position sensing
diode (PSD, DL100-7PCBA3) of square active area 10 mm×10 mm which measures
the relative displacement of the laser spot centroid with respect to its own centroid.
The optical system is aligned in such a way that the laser spot centroid is located
exactly in the PSD centroid in the absence of the trapped bead1. In the presence of
a bead, fluctuations around its the mean position in the xy plane deflect the resulting
laser spot from the centroid of the PSD.

Data processing

When the laser spot impinges on the photodiode, currents are created and collected by
electrodes located at opposite edges. The currents collected at each edge are converted
into voltages (X1, X2 along x and Y1, Y2 along y) that are processed in order to provide
the difference outputs X1 − X2, Y1 − Y2 and the sum outputs X1 + X2, Y1 + Y2.
The differences are then externally normalized by the sums to obtain the centroid
coordinates of the He-Ne spot

X =
X1 −X2

X1 +X2

, Y =
Y1 − Y2
Y1 + Y2

.

For small displacements of the trapped bead with respect to the the focus center, the
PSD response is linear. Then the instantaneous particle position (x(t), y(t)) at time t
is proportional to the position (X(t), Y (t)) of the laser spot centroid

x(t) = AX(t), y(t) = BY (t),

1In the absence of the trapped bead acting as a collimator, the He-Ne spot on the PSD surface is
very large.
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where the proportionality constants A,B must be determined by calibration of the
apparatus2. The voltage signal (X,Y ) is filtered by a low-pass filter (Stanford SR640)
with a cutoff of 4 kHz in order to avoid aliasing. Finally, the filtered voltage signals
X, Y are received by a data acquisition board (National Instruments PCI-MIO-16XE-
10, 16-bit, 100 kS/s) with an adapted module (National Instruments SC-2040) for
simultaneous sampling. The data processing and analysis is done using home-made
LabVIEW and MATLAB programs, respectively.

1.2.2 Calibration

Without loss of generality, in the following analysis we will focus on a single coordinate
x of the trapped particle. The calibration of x (in meters) and the restoring force
exerted by the focused beam is done following the standard methods reported in the
literature [37, 38, 39]. A suitable method is chosen according to the nature of the fluid
where the micron-sized particles are suspended.

Viscous fluid

We first consider the case of a spherical Brownian particle of radius r in a Newtonian
fluid (e.g. water or glycerol) of known viscosity η and trapped by the focused beam.
The parameters to be determined are A and the optical trap stiffness k in the x di-
rection for small displacements (x < r), see equations (1.5) and (1.6). If the fluid is
in thermal equilibrium with the environment (temperature T ), a simple method can
be implemented by means of the measurement of the spontaneous fluctuations of x
[37]. For a micron-sized particle in a Newtonian fluid, the inertia and the Reynolds
number are negligible (see more details in section 1.4). Then, the time evolution of the
fluctuations of x can be described by the first order Langevin equation

γẋ = −kx+ ζ, (1.7)

where γ = 6πηr is the viscous drag coefficient of the particle in the fluid and ζ is a
white noise process of zero mean and delta-correlated in time ⟨ζtζs⟩ = 2kBTγδ(t − s)
which models the random collision of the fluid molecules with the trapped particle. By
taking the Fourier transform of x

x̂(f) =

∫ ∞

−∞
x(t)e−2πift dt

one can compute the power spectral density3 of x, defined as

Sx(f) = ⟨|x̂(f)|2⟩ = ⟨x̂(f)∗x̂(f)⟩.
2The conversion factors A and B from V to m slightly change from one sample to another because

of the dependence of the He-Ne beam deflexion on the optical path travelled through the cell and the
sample. Then they must be determined independently for each sample.

3The power spectral density quantifies the power content of a stationary signal at a given frequency.

9



Optical traps

where ⟨. . .⟩ is an infinite ensemble or time average. From equation (1.7) the analytical
expression of Sx(f) as a function of the frequency f is

Sx(f) =
kBT

γπ2(f2 + f 2
c )
, (1.8)

where the corner frequency fc, defined by Sx(fc) = Sx(0)/2 (see figure 1.6), is given by

fc =
k

2πγ
. (1.9)

On the other hand, the power spectral density of the unconverted voltage signal X
must be related to Sx(f) by

SX(f) =
1

A2
Sx(f) =

kBT

A2γπ2(f 2 + f2
c )
. (1.10)

Therefore, by performing a linear fit of the experimental signal: S−1
X = af 2 + b, the

conversion factor A and the trap stiffness are given in terms of the fitting parameters
a and b and the known quantities T , η and r by

A =

√
akBT

6π3ηr
, k =

√
b

a
12π2ηr, (1.11)

Figure shows an example of this calibration procedure for a spherical silica particle
(r = 1µm) embedded in an aqueous solution of glycerol at 60 wt % and trapped by the
λ = 980 nm laser kept at a fixed power P = 30 mW. The experimental power spectrum
of x is shown as a solid blue line whereas the Lorentzian profile (1.8) determined by
the linear fit of S−1

X as a function of f 2 is shown as a thick solid line. The conversion
factor from X to x and the trap stiffness k are computed using equations (1.11):
A = 350 nm V−1, k = 4.8 pN µm−1, corresponding to a corner frequency fc = 5.4 Hz.

Viscoelastic fluid

The calibration of the optical trap when the particle is embedded in a viscoelastic fluid
is more delicate because in general a model for the is viscoelasticity of the fluid is
unkown a priori. This requires to perform an additional active driving of the particle
to take into account its response in presence of the viscoelastic medium. In practice
this is realized by driving in time the position x0(t) of the optical trap by means of
the mechanical modulation of the laser beam. A feedback piezo actuator (Thorlabs
DRV517) is attached to the output of the optical fiber by a spring support, as shown in
figure 1.3. 1 V of DC voltage applied to the actuator results in a constant mechanical
displacement x0 = 150 nm of the x position of the beam focus. Then upon applying a
sinusoidal voltage to the actuator V (t) = V0 sin(2πfdt+ ϕ) at fixed frequency fd using
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Figure 1.6: (a) (a) Power spectral density of x (blue line) for a trapped silica particle in
an aqueous glycerol solution at 60 wt %. Black line: Lorentzian profile (1.8) computed
using the calibration parameters A = 350 nm V−1, k = 4.8 pN µm−1. The vertical
dashed lines show the position of the corner frequency fc = 5.4 Hz and the cutoff
frequency of the low-pass filter. (b) Power spectral density of a silica particle in an
aqueous solution of gelatin at 10 wt %, measured without (black dashed line) and with
a sinusoidal driving (red solid line) of the trap position x0 at frequency fd = 5 Hz and
amplitude βV0 = 30 nm. In both cases the particle (radius r = 1µm) is trapped by
the λ = 980 nm diode laser focused at h = 20µm above the lower wall of the sample
cell (see figure 1.3) at constant power P = 30 mW.
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a waveform generator (Agilent 33220A), the position of the optical trap is driven in
time as

x0(t) = βV0 sin(2πfdt+ ϕ), (1.12)

where ϕ is the initial phase and β = 150 nmV−1 is the conversion factor from the
applied voltage to the resulting focus displacement. It can be shown that the conversion
factor A from the PSD voltage signal X to x is4

A =

[
Re

⟨X̂(fd)⟩
x̂0(fd)

]−1

, (1.13)

where X̂ is the Fourier transform ofX measured in presence of the the sinusoidal driving
x0 at frequency fd. On the other hand, once the parameter A is computed, for a fluid in
thermal equilibrium with the environment5 at temperature T and the trapped particle
in equilibrium with the fluid, using the fluctuation-dissipation theorem (see section
2.1 of chapter 2 and [39]) the stiffness of the optical trap can be determined by the
expression

k = 4kBT
Re{RL(fd)}
Sx(fd)

. (1.14)

In equation (1.14), Sx is the power spectral density of x measured at equilibrium in
absence of external driving (x0 = 0) and Re{RL(fd)} is the real part of the active
spectrum of the laser driving, defined as

RL(fd) = i
⟨x̂(fd)⟩

2πfdx̂0(fd)
,

with x̂ the Fourier transform of the particle trajectory driven at frequency fd. Figure
1.6(b) shows the application of this calibration technique for a particle trapped in a
viscoelastic medium: an aqueous solution of gelatin at 10 wt %. The experimental
conditions of the trapping laser are the same as in figure 1.6(a) for glycerol. However,
in this case due to the viscoelasticity of the medium, the power spectral density of the
spontaneous fluctuations of x (black dashed line) is not Lorentzian. We also plot the
spectrum (red solid line) obtained upon applying the sinusoidal driving (1.12) to the
trap position x0 at frequency fd = 5 Hz and amplitude βV0 = 30 nm. The spectra
without and with the active driving of x0 overlap at all frequencies except for f = fd at
which there is a peak due to the sinusoidal excitation. Since no higher-order harmonics

4Strictly speaking, this expression is valid only for sufficiently large values of k. In practice the
value of A obtained by this method can be checked by comparison with the value obtained by imaging:
the variance of x, ⟨δx2⟩∆t must be computed over a given time window ∆t obtained by image particle
tracking. Then it follows that A =

√
⟨δx2⟩∆t/⟨δX2⟩∆t, with ⟨δX2⟩∆t the variance of the voltage

signal X under the same experimental conditions.
5In the experiment described in chapter 5, the fluid is out-of-equilibrium but this technique is still

valid if one assumes that for sufficiently short timescales, an equilibrium-like dynamics at temperature
T is experimentally probed. Then this calibration method can be carried out by applying a high-
frequency driving. The validity of the hypothesis is checked a posteriori.

12



1.3 Multi-trap setup

Figure 1.7: Diagram of the multiple-trap setup. L1, L2, L3 and L4 are lenses, M1, M2
and M3 mirrors and DM a dichroic mirror. See section 1.3 for a detailed explanation.

are created, we check in this way that the response of x is linear. The conversion factor
from X to x, computed using equation (1.13), is A = 260 nm V−1. The trap stiffness,
computed using equation (1.14), is k = 4.3 pN µm−1. Note that even when the laser
power is the same in figures 1.6(a) and 1.6(b), the values of A and k are different
because of their dependence on the refractive index of the medium.

1.3 Multi-trap setup

We now describe the second setup designed to create simultaneously multiple optical
traps either static or moving in space and time. Figure 1.7 sketches this multi-trap
system. A diode pumped solid state laser (Laser Quantum, Nd:YAG λ = 1064 nm) is
magnified by a beam expander (lenses L1 and L2) to obtain a 2 mm diameter collimated
beam. This diameter is necessary to optimize the efficiency of the XY acousto-optic
deflectors (see subsection 1.3.1). The diameter of the beam which emerges from the
second acousto-optic deflector output is magnified again to 10 mm and directed by two
mirrors (M1 and M2) and a discroic mirror (DM) to fill completely an oil-immersion
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microscope objective (Leica, 63×, NA = 1.4). This high-numerical-aperture objective
tightly focuses the infrarred beam to the diffraction limit inside the sample cell which
contains a fluid with suspended microbeads to be trapped. Similar to the single-trap
system, here the cell is also fixed to a piezoelectric stage (NanoMax-TS MAX313M) by
a rigid holder to avoid mechanical vibrations and to realize the trapping of the particles
by the micrometric displacement of the cell in 3D. The cell is illuminated with white
light by a condenser lens (focal distance f = 23 mm) to visualize the particles in the
focal plane of the objective. Then the image is magnified by the same microscope
objective. The image passes through the dicroic mirror DM and it is sent by the
mirror M3 to a CMOS camera (Mikrotron MC1310) for high-speed image acquisition
(see details in subsection 1.3.2). The setup is mounted on an optical table (Melles
Griot) and enclosed in a Plexiglas box to avoid external mechanical vibrations and
acoustic noise that would otherwise highly perturb the motion of the trapped particles.
The laser power, the electric signal of the function generator sent to the XY acousto-
optic deflector system and the data processing are controlled by a data acquisition
board (National Instruments PXI-6259, 16-bit, 2.8 MS/s) using home-made LabVIEW
programs whereas the image and data analysis is performed using MATLAB.

1.3.1 Acousto-optic deflectors

The creation of multiple independent optical traps is accomplished using an XY acousto-
optic deflector (AOD) system (AA Opto-electronic). This AOD system is specially
designed for a λ = 1064 nm laser. The beam trajectory can be slightly deflected by a
single AOD, before being focused by the objective. As represented in figure 1.8(a), an
acoustic wave is created in the crystal (TeO2) inside the AOD by means of a piezoelec-
tric transducer working at frequency F = 75 MHz. In this way the crystal acts as a
diffraction grating because of the spatial variation of the refractive index. The speed of
the acoustic wave in the TeO2 crystal is v = 650 m s−1. Consequently, at F = 75 MHz
the beam is deflected with respect to the undeflected trajectory (F = 0) an angle Φ0

given by

Φ0 =
λ

v
F.

The crystal is cut in such a way that in reality the deflected beam at the 1st diffracted
order at F = 75 MHz emerges parallel to the incident beam from the AOD output
with an efficiency ≈ 80%6. The deflexion angle can be varied in time by modulating
in time the frequency of the electrical signal sent to the transducer by an arbitrary
function generator (Tektronix AFG3102) an amount ∆F around F . Therefore, the
final time-dependent deflexion angle with respect to Φ0 is given by

∆ϕ =
λ

v
∆F.

6The efficiency of an AOD is defined as the ratio between the intensity of the undeflected beam
and the intensity of the 1st order diffracted beam, see figure 1.8(a).
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(a)

(b)

Figure 1.8: (a) Schematic representation of the deflexion of the infrarred laser beam
by the spatial variation of the TeO2 refractive index inside an AOD. The effective de-
flexion angle ∆ϕ is controlled by the frequency F + ∆F of an acoustic wave created
by a piezoelectric transducer and absorbed on the opposite side. (b) Schematic repre-
sentation of the creation of 4 independent optical traps by the 2D scan of the trapping
beam according to a step-like frequency modulation (1.15) of two AODs in series. The
blue arrows on the snapshot indicate the actual scanning direction of the focused beam
on the vertices of the square (d = 4.5µm).
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The maximum deflexion angle of the 1st order diffracted beam that can be achieved in
our experimental system is ∆ϕ = ±24.6 mrad corresponding to ∆F ± 15 MHz. In the
experimental XY AOD system two AODs are coupled perpendicularly in series in the
x and y directions, see figure 1.7. Then the final deflexion angle of the beam can be
controlled in two dimensions through the simultaneous modulation of the frequencies
∆FX and ∆FY , respectively. For a wavelength λ = 1064 nm of the trapping beam, a
constant frequency modulation ∆FX = 1 MHz produces an angular deflexion ∆ϕ =
1.6 mrad. This results in a displacement ∆x = 1.65µm of the trap position in the x
(equivalently for the y direction). Then the creation of multiple optical traps can be
easily realized through the high-frequency beam scan at different positions inside the
sample cell. The scanning rate must be large enough in order to avoid a significant
diffusive motion of the particle through the surrounding medium during the absence
of the beam. For instance, figure 1.8(b) shows a snapshot of four particles trapped (in
water) by means of the high-frequency scan (10 kHz) of the single λ = 1064 nm laser
at four different positions on the focal plane of the trapping beam inside the sample
cell. This is achieved by performing the following periodic frequency modulation of the
AOD system

∆FX(t) = ∆0Θ(t− 2∆t), ∆FY (t) = ∆FX(t−∆t), 0 ≤ t ≤ 4∆t, (1.15)

where Θ is the Heaviside step function, ∆t = 25µs is the time spent by the scanning
beam at each square vertex and 4∆t = 100µs is the period of the modulation. During
the absence of the trapping beam (3∆t = 75µs) each particle freely diffuses less than 6
nm in water, i.e. its Brownian motion is effectively confined by the harmonic potential
created by the focused beam during the time ∆t. The step frequency modulation
∆0 = 2.73 MHz corresponds to a separation distance between two adjacent optical
traps of d = 4.5µm. This method based on a scanning laser beam is used in the
experiments described in chapters 3 and 4.

1.3.2 Detection

The position of the particles trapped by the multi-trap system are dermined by image
acquisition and processing. We use simple optical microscopy with a halogen lamp
as the light source, as shown in figure 1.7. In order to avoid heating of the sample
cell, this light is guided by a fiber. The light is focused inside the sample cell by
means of a condenser lens (f = 23 mm) and then the contrast image of the bright
particle in a dark background is magnified by the same microscope objective used to
create the optical trap. The output images are detected using a high-speed CMOS
camera (Mikrotron MC1310, full resolution of 1280 × 1024 pixels) with an adapted
doubler lens. The sampling rate can be varied up to 118 frames per second at full
resolution and up to 1000 frames per second in reduced frame size. Hence, the smallest
measurable timescale (the time elapsed between successive positions of the particle) for
this detection system corresponds to 1 ms and the highest accessible frequency is 500
Hz. The images are recorded in AVI format for further image processing. Accurate
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Figure 1.9: (a) Examples of 2D trajectories of the four trapped particles shown in
figure 1.8(b) obtained by means of the the particle tracking method of the intensity
barycenter [40] for an image sampling rate of 500 frames per second. Inset: expanded
view of one of the tracked trajectories. (b) Power spectral densities of the x coordinate
of the four trapped particles shown in figure 1.8(b) (shown as solid lines in different
colors). Thick dashed line: Lorentzian profile (1.8) computed using the calibration
value fc = 7.5 Hz for the corner frequency.

particle tracking is achieved using a MATLAB-based software package freely distributed
for non-commercial use [40]. This software is based on a polynomial fit Gaussian weight
method to locate the coordinates (x, y) of the barycenter of the intensity distribution
on the image. The coordinates (x, y) correspond to the particle barycenter on the focal
plane perpendicular to the direction of the laser beam propagation. The combination of
this tracking method with the spatial resolution given by the camera (1 pixel = 103 nm,
measured using a calibration grid with 200 lines per mm) leads to a spatial precision
better than 10 nm for the tracked position of the particle. Even when the temporal
and spatial resolution of this detection system are lower than that of the PSD system
(subsection 1.2.1), the adventage here is that the positions of several particles can
be tracked simultaneously. This can not be done with the PSD system. Besides, the
resolution of the imaging procedure is enough for the experiments described in chapters
3 and 4. Figure 1.9(a) shows an example of this tracking procedure for the four trapped
particles shown in figure 1.8 for an image sampling rate of 500 frames per second. The
laser power is kept constant at 20 mW. Note that the Brownian motion of each trapped
particle is isotropic in the xy plane due to the very low ellipticity (1:1.03) of the cross
section of the trapping laser beam.
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1.3.3 Calibration

We use calibration methods for the optical trap stiffness similar to those presented in
section 1.2.2. The only difference here is that using the imaging technique for detection
we can measure the actual particle position x (in meters). As mentioned before, using
a calibration grid with 200 lines per mm placed in the focal plane of the microscope
objective, we determine the conversion factor between the number of pixels on the
detected image and the corresponding length in meters. We find 1 pixel = 103 nm
for the experimental configuration sketeched in figure 1.7. Unlike the conversion factor
A needed for the PSD system (subsection 1.2.1), the conversion factor from pixels to
meters is fixed so it can be measure only once povided that the experimental setup is
not modified. In this case the trap stiffness k can be also computed using equation
(1.11) by means of the linear fit S−1

x = af 2 + b. Figure shows the application of
this calibration technique to the fours particles trapped by the four potential wells
created by the scanning beam of figure 1.8(b) for a laser power P = 20 mW. As the
spectra of the x coordinates of the four trapped particles are Lorentzian (1.8) and
overlap, we check that the AOD frequency modulation (1.15) actually generates four
harmonic potentials with the same stiffness. Then the linear fit yields the mean values
k = 0.85 pNµm−1 for the trap stiffness and fc = 7.5 Hz for the corner frequency.
Similarly, for a viscoelastic fluid equation (1.14) can be directly used to compute k
from the active measurement of RL and the passive measurement of the power spectral
density of the particle position at fixed frequency f imposed by the external driving.

1.4 Microrheology
One of the various applications of optical traps is to measure local rheological proper-
ties of tiny samples (∼ 1µl) of soft matter. In this kind of measurements the trapped
microbeads embedded in the fluid of interest are used as mechanical probes to re-
construct the viscoelasticity of the surrounding medium. Microrheology is the generic
term to call this kind of experimental techniques. Let us exemplify some microrheology
techniques in the simplest case of a single spherical microbead. For a complete and
modern review on microrheology, see reference [42].

We consider a viscoelastic fluid characterized by the shear modulus G. This quantity
is a generalization of the concept of viscosity and accounts for energy storage and
dissipation by the fluid. The shear modulus is defined as the ratio between the shear
stress F/A applied to a volume of the fluid and the corresponding shear strain ∆x/l
in response to the stress

G =
F/A

∆x/l
,

as schematized in figure 1.10(a). In general G is a complex quantity. For example, for
an oscillatory shear applied to the fluid at constant frequency f , the shear modulus
can be splitted as

G(f) = G′(f) + iG′′(f).
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Figure 1.10: (a) Schematic representation of a shear stress applied to a viscoelastic fluid
by means of a force F exerted to the upper surface A and the resulting shear strain
∆x/l. (b) Schematic representation of a microrheology technique. A microbead in an
optical trap is subjected to: the restoring harmonic force of the trap, the viscoelastic
drag force of the surrounding fluid and the fluctuating force due to the thermal motion
of the fluid microstructure (represented as filaments). An external time-dependent force
F0(t) can be applied to the particle through the active driving of the trap position x0.

The real G′(f) and the imaginary G′′(f) parts are called the storage and the loss
modulus and mesure the energy stored and dissipated by the fluid per unit volume,
respectively, due to the shear. We now consider a spherical Brownian particle of radius
r embedded in this viscoelastic fluid and confined by the harmonic potential of an
optical trap, as represented in figure 1.10(b). For the typical acquisition frequencies
in optical tweezers, inertial effects are negligible in the dynamics of the particle. For
example, for a r = 1µm silica particle (mass m ∼ 1×10−14 kg) immersed in water, the
viscous drag coefficient is γ ∼ 1 × 10−8 kg s−1. Indeed, inertial effects are important
only for frequencies

f & γ

m
∼ 1MHz,

very far from the frequency range accessible by the PDS system (subsection 1.2.1) or
by image processing (subsection 1.3.2). On the other hand, the typical speed of the
particle associated to its Brownian motion is

v ∼
√
kBT

m
∼ 100µms−1.

Then the order of magnitude of the Reynolds number of a Brownian particle in water
(dynamic viscosity η ∼ 1× 10−3 Pa s) is

Re ∼ mv

ηr2
∼ 10−3.
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Such a small value means that the presence of the particle does not perturb the laminar
flow around it. Taking into account these two observations, the dynamics of the position
x of a trapped particle in a viscoelastic fluid can be modeled by the first order Langevin
equation ∫ t

−∞
Γ(t− s)ẋ(s) ds = −kx(t) + F0(t) + ζ(t), (1.16)

where the function Γ(t − s), called the memory kernel, weights the past viscoelastic
effects of the medium at time s ≤ t on the present motion of the particle at time
t. Then the convolution of Γ with ẋ represents the effective viscoelastic drag force
acting on the particle. Taking into account that Re≪ 1, the Fourier transform of the
memory kernel is simply related to the shear modulus G(f) of the fluid by the following
expression

Γ̂(f) = 6πri
G∗(f)

2πf
. (1.17)

The term −kx in the Langevin equation is the harmonic force exerted by the optical
trap; F0(t) represents an external time-dependen force applied to the particle; and ζ
is a stochastic force of zero mean which models the random collisions of the fluid mi-
crostructure (e.g. molecules, chains, clusters) with the trapped particle. The external
force is chosen depending on the nature of the fluid (equilibrium or nonequilibrium).
Then, the goal of microrheology is to extract G from the measurement of x. Microrhe-
ology techniques can be classified into two categories according of the choice of the
external force (F0(t) = 0 or F0(t) ̸= 0):

1.4.1 Passive microrheology

In passive microrheology (PMR), an optical trap acts as a passive element (F0(t) = 0)
keeping fixed the mean position of the bead while measuring the spontaneous fluctu-
ations of x(t). This kind of technique is suitable for fluids in thermal equilibrium at
constant temperature T . In such a case, the statistical properties of the stochastic force
ζ in equation (1.16) are not arbitrary but they are linked to the memory kernel Γ by
the fluctuation-dissipation theorem (see section 2.1). Specifically, the power spectral
density of ζ satisfies the relation

⟨|ζ̂(f)|2⟩ = 4kBTRe{Γ̂(f)},

= 12rkBT
G′′(f)

f
. (1.18)

On the other hand, when an external force is applied to the particle, the response of
the system contains information on the shear modulus because of the fluid strain. A
quantity which measures the response to small external forces is the linear response
function. See subsection 2.1.2 for a formal definition of linear response function. The
storage and loss moduli of the fluid are related to the Fourier transform α = α′ + iα′′
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of the linear response function by the expressions

G′(f) =
1

6πr

α′(f)− k

|α(f)|2
,

G′′(f) = − 1

6πr

α′′(f)

|α(f)|2
. (1.19)

Since the particle is in thermal equilibrium with the fluid, the fluctuation-dissipation
theorem is valid for x. Using this fact and equations (1.16) and (1.18), it can be shown
that the power spectral density of x is related to the shear modulus of the fluid by

⟨|x̂(f)|2⟩ = 2kBT

πf

6πrG′′(f)

[k + 6πrG′(f)]2 + [6πrG′′(f)]2
.

Then, the imaginary part α′′ can be indirectly computed from the power spectral
density ⟨|x̂(f)|2⟩:

α′′(f) =
πf⟨|x̂(f)|2⟩

2kBT
. (1.20)

The real part α′ can be reconstructed from α′′ using the the Kramers-Kronig relations

α′(f) =
2

π
P

∫ ∞

0

ξα′′(ξ)

ξ2 + f 2
dξ, (1.21)

where P stands for the principal part of the integral. Therefore the viscoelastic prop-
erties of the fluid can be completely determined by the measurement of the Brownian
motion of a trap particle using equations (1.19), (1.20) and (1.21), without applying
any shear stress, provided that it is in thermal equilibrium.

1.4.2 Active microrheology

Active microrheology (AMR) involves the active driving of the trapped particle by an
external force (F0(t) ̸= 0). In the experiments presented in this thesis, F0 is exerted by
the oscillatory motion of the position x0 of the optical trapped. This is realized using
the piezo actuator in the single-trap (subsection 1.2.2) or the XY AOD system in the
multi-trap setup (subsection 1.3.1). The particle displacement x is response to this
time-dependent driving must be simultaneouly measured to probe the viscoelasticity
of the fluid. Due to the time-dependent displacement of the trap position, the effective
optical trapping force at time t is

−k[x(t)− x0(t)] = −kx(t) + F0(t),

where we take F0(t) = kx0(t). From equations (1.16) and (1.17) it can be shown that
the storage and loss moduli are given by the expressions

G′(f) =
1

6πr

[
Re

(
F̂0(f)

⟨x̂(f)⟩F0

)
− k

]
,

G′′(f) =
1

6πr
Im

(
F̂0(f)

⟨x̂(f)⟩F0

)
, (1.22)
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where x̂ and F̂0 are the Fourier transforms of x and F0, respectively. The average
⟨. . .⟩F0 must be computed over a large number of independent realizations of the force
F0. The ratio ⟨x̂(f)⟩F0/F̂0(f) in equation (1.22) is the Fourier transform of the linear
response function (see subsection 2.1.2). The only restriction for equation (1.22) to
be valid is that the maximum value of F0 must be chosen small enough to avoid a
nonlinear response of x because:

1) a large displacement of x0 can push the particle barycenter out of the harmonic
part of the trapping potential (|x− x0| & r);

2) a large shear strain of the surrounding fluid can induce nonlinear viscoelastic
effects on the particle motion.

A general criterion is that the energy injected by the external driving must be compara-
ble or smaller than the thermal fluctuating energy kBT provided by the fluid molecules,
i.e.

max{x0} .
√
kBT

k
.

However, for a more precise determination of the regime where equation (1.22) is valid,
the linearity between ⟨max{x}⟩F0 and max{F0} must be checked for different values of
max{x0} at constant k.

Note that, unlike PMR, for AMR no assumptions are made on the properties of
the fluctuating force ζ of equation (1.16). Therefore this approach is valid either for
equilibrium or out-of-equilibrium fluids [43]. The rheological properties of a broader
class of soft materials can be probed by AM provided that the stiffness k of the optical
trap is known in order to quantify the external force F0 in equation (1.22). In chapters
4 and 5 we implement AMR to measure the time evolution of the shear modulus of two
complex fluids initially prepared in a nonequilibrium state and relaxing to a solid-like
phase.
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Chapter 2

Generalized fluctuation-dissipation
relations around a NESS

2.1 The fluctuation-dissipation theorem

2.1.1 Historical overview

The fluctuation-dissipation theorem has played a very important role in statistichal
mechanics from the historical point of view. Indeed, the fundamental idea of relating
equilibrium fluctuations with dissipation dates back to study of Brownian motion done
by Einstein [44], Smolochowski [45], Langevin [46] and Perrin [47] at the beginning
of the 20th century. Their work focused on the statistical description of the random
motion of colloidal particles suspended in fluids, as represented in figure 2.1(a). This
led to the celebrated Stokes-Einstein formula relating the diffusivity D of a Brownian
particle in a fluid at temperature T with its mobility µ upon applying an external force

D ≡ lim
t→∞

⟨x(t)2⟩ − ⟨x(t)⟩2

2t
,

= kBTµ, (2.1)

where kB = 1.38 × 10−23 J K−1 is the Boltzmann constant and x(t) denotes the po-
sition of the particle at time t in thermal equilibrium with the fluid. The mobility is
determined slightly out of equilibrium by applying a weak external force F , measuring
the resulting mean speed of the particle ⟨ẋ⟩F in this perturbed state and taking the
ratio µ = ⟨ẋ⟩F/F . Hence equation (2.1) provides a direct link between the equilibrium
fluctuations of the position x of the colloidal particle, quantified by D, with a response
function, µ. These fluctuations are a result of the random collisions of the surrounding
molecules of the fluid, that are small compared to the colloidal particle but the particle
itself is small enough to perceive them. The mobility quantifies also the dissipation
rate into the fluid due to the external force: it is given by the inverse of the viscous
drag coefficient γ: µ = 1/γ. For a spherical particle of radius r in a viscous fluid of
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Figure 2.1: Examples of processes linked by the fluctuation-dissipation theorem (2.16):
(a) Upper panel: free Brownian motion of a colloidal particle in a viscous fluid at
constant temperature. Lower panel: motion of the particle dragged in the fluid by a
constant external force F . (b) Upper panel: thermal voltage noise with zero mean in
a resistor kept at constant temperature. Lower panel: non-zero mean voltage induced
by a constant current I applied across the resistor.

dynamic viscosity η, the drag coefficient is γ = 6πηr, then equation (2.1) reads

D =
kBT

6πrη
.

Therefore equation (2.1) represents an early fluctuation-dissipation relation for the
Brownian motion derived more than a century ago.

The second representative example of a fluctuation-dissipation relation is that pro-
vided by the works of Johnson [48] and Nyquist [49] in 1928 on the thermal noise in
a resistor (resistance R), see figure 2.1(b). This noise appears as a fluctuating voltage
of zero mean value ⟨V ⟩ = 0 in absence of any external applied field and is gener-
ated by the thermal agitation of the electric charges in the resistor. In this case, the
fluctuation-dissipation relation reads

⟨V 2⟩
∆f

= 4kBTR, (2.2)

where T is the temperature, ⟨V 2⟩ is the mean square value of the thermal equilibrium
fluctuations of V measured over a frequency bandwidth ∆f . The left-hand side of
equation (2.2) is measured at thermal equilibrium whereas the right-hand side is deter-
mined by perturbing the system: R measures the linear response of the mean voltage
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⟨V ⟩I ̸= 0 induced when applying an external current I: R = ⟨V ⟩I/I. In analogy
with the role of the mobility in Brownian motion, the resistance also quantifies the
dissipation into the bath due to the external current applied to the resistor.

The particular equations (2.1) and (2.2) motivated to put the relation between
spontaneous fluctuations at thermal equilibrium and dissipation (or equivalently the
response) in a more fundamental context. In this way, Onsager proposed his famous
regression hypothesis: "the relaxation of macroscopic disturbances is governed by the
same laws as the regression of spontaneous microscopic fluctuations in an equilibrium
system" [50]. The regression hypothesis was demonstrated some years later with the
formulation of the fluctuation-dissipation theorem done in 1951 by Callen and Welton
[4]. Some closely related formulae are the Green-Kubo relations [51, 52] that allow one
to compute general transport coefficients (e.g. mobility, thermal conductivity, shear
viscosity, etc.) from the measurement of the right equilibrium correlation functions.
In the following subsections we present the standard derivation of the fluctuation-
dissipation theorem for systems slightly perturbed around a thermal equilibrium state.

2.1.2 Linear response function

Before going directly into the derivation of the fluctuation-dissipation formula, we first
formally specify what we mean by linear response function. We consider an observable
O describing a physical quantity of the system, e.g. position, velocity, energy, etc. In
general this is a function of the degrees of freedom q of the system: O = O(q). We
assume that this observable has a constant value O0 when the system is unperturbed
at time s < t0. Then, at time s = t0 we switch on a time-dependent perturbation h(s)
to the system so that the value of O changes from the original value O0. The system is
said to be in the linear response regime if the resulting value of the observable at time
t upon applying the perturbation can be expressed as the convolution

O(qt) = O0 +

∫ t

−∞
R(t− s)h(s) ds. (2.3)

The function R in equation (2.3) is called the linear response function and it takes into
account the fact that the current value of O at time t depends not only on the present
value of h(t), but also on past values. Hence the linear response function weights
the previous values of h(s) on the resulting O(qt). If a system is in the linear response
regime, equation (2.3) provides an operational definition of the linear response function
as a functional derivative

R(t− s) =

[
δO(qt)

δh(s)

]
h=0

. (2.4)

We point out that equation (2.3) is only an approximation of the response of real
physical systems. It represents an excellent approximation in the regime where the
relevant degrees of freedom exhibit linear dynamics (e.g. for mechanical harmonic
oscillators and RLC circuits). In such a case the response of O can be completely
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characterized by the single function R. If the dynamics of the degrees of freedom is
nonlinear, then one must consider the general expression of the response provided by
the Volterra expansion

O(qt) = O0 +
∞∑
n=1

1

n!

∫ t

−∞
. . .

∫ t

−∞
Kn(t− t1, . . . , t− tn)h(t1) . . . h(tn) dt1 . . . dtn, (2.5)

where the kernel functions Kn are generalizations of the linear response function R
that take into account nonlinear interactions in the system. In particular R = K1

is the first order term in the Volterra expansion (2.5). Even when in general the
response of nonlinear systems is formally expressed as a multiple nonlinear convolution,
their observables can still exhibit linear response of the form (2.3) provided that the
perturbation h is small enough so that the higher order terms O(h2) in equation (2.5)
are negligible compared to the linear order term. On the other hand, if the system is
stochastic and the perturbation is small enough, then the deterministic values of O(t)
in equation (2.3) must be replaced by the mean values ⟨O(qt)⟩h, where ⟨. . .⟩h stands
for an ensemble average performed over an infinite number of independent realizations
of the same dynamical perturbation h.

In the linear response regime the function R can be determined in a straightforward
way. Upon applying a delta perturbation at time s = 0: h(s) = h0δ(s), equation (2.3)
directly yields the linear response function in terms of the unperturbed and perturbed
mean values of the observable

R(t) =
⟨O(qt)⟩h − ⟨O(qt)⟩0

h0
, h(s) = h0δ(s). (2.6)

In practice, it is always easier and more reliable to implement a Heaviside perturbation
at time s = 0: h(s) = h0Θ(s), instead of a delta perturbation. The Heaviside procedure
yields the integrated linear response function

χ(t) =

∫ t

0

R(t− s) ds,

=
⟨O(qt)⟩h − ⟨O(qt)⟩0

h0
, h(s) = h0Θ(s), (2.7)

defined over a time interval [0, t]. Then, once the integrated linear response function is
determined by measuring the deviation between the perturbed and unperturbed mean
values of the observable, it follows that R(t) = dχ(t)/dt.

2.1.3 Derivation for Hamiltonian systems

We now present a simple but rather illustrative derivation of the fluctuation-dissipation
formula for a system described by a set of degrees of freedom q and an unperturbed
Hamiltonian H0(q). The system is in contact with a thermostat at fixed temperature
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T = (kBβ)
−1. In this case the mean value of an observable O(q) is determined by the

Boltzmann distribution
ρ0eq(q) =

exp [−βH0(q)]∫
exp [−βH0(q)] dq

, (2.8)

and reads
⟨O(q)⟩0 =

∫
ρ0eq(q)O(q) dq. (2.9)

We focus on the relation between the spontaneous fluctuations of O(q) with the linear
response function when weakly perturbing the system. For this we now assume that
from time −∞ to time t = 0 the system is subjected to a weak external constant
perturbation h such that the corresponding perturbed Hamiltonian can be written as
H0(q) − hV (q), where V (q) is the variable conjugate to h with respect to the energy.
The perturbation is suddenly switched off at time t = 0, i.e.

h(s) = hΘ(−s), (2.10)

with Θ the Heaviside step function. Then the mean value of the observable for t ≥ 0
is given by

⟨O(qt)⟩ =
∫

dq′
∫

dq ρeq(q)P (q
′, t|q, 0)O(q′), (2.11)

where P is the transition probability from the state at time t = 0 to the new state
with h = 0 at time t and ρeq(q) is the Boltzmann distribution (2.8) for the perturbed
Hamiltonian H0(q)−hV (q). For a sufficiently small value of h, ρeq(q) can be expressed
at linear order as1

ρeq(q) = ρ0eq(q)[1 + βhV (q)] +O(h2). (2.12)

Next, by inserting equation (2.12) into (2.11), one obtains the mean value of the ob-
servable after switching off the perturbation

⟨O(qt)⟩ = ⟨O(q)⟩0 + βh⟨O(qt)V (q0)⟩0, (2.13)

On the other hand, using the definition of linear response function, equation (2.3) reads

⟨O(qt)⟩ = ⟨O(q)⟩0 + h

∫ ∞

t

R(s)ds, (2.14)

for the Heaviside perturbation (2.10) of the Hamiltonian. Then, the comparison of
equations (2.13) and (2.14) implies that the linear response function R and the equi-
librium correlation function ⟨O(qt)V (q0)⟩0 are linked by the formula

kBTR(t) = −d⟨O(qt)V (q0)⟩0
dt

. (2.15)

Finally, taking into account the stationarity property at thermal equilibrium:

⟨O(qt−s)V (q0)⟩0 = ⟨O(qt)V (qs)⟩0,
1Without loss of generality, we assume that ⟨V (q)⟩0 = 0.
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Figure 2.2: Schematic representation of the system studied in section 2.2. Upper panel:
Nonequilibrium steady state of a system in contact with a thermal bath at temperature
T and subjected to a total force F . Lower panel: perturbed NESS resulting from a
small time-dependent variation h of the control parameters λ of the system.

equation (2.15) can be written in the general form

kBTR(t− s) = ∂s⟨O(qt)V (qs)⟩0. (2.16)

Equation (2.16) is the general formula of the fluctuation-dissipation theorem for sys-
tems weakly perturbed around an equilibrium state.

2.2 Fluctuations and linear response around a NESS
Strictly speaking, the fluctuation-dissipation formula (2.16) is valid only to describe
the linear response of systems in thermal equilibrium with a bath. This is because one
of the hypothesis for its derivation is that there exists a Hamiltonian which determines
the time evolution of its degrees of freedom. If such a Hamiltonian does not exist,
then equation (2.16) does not necessarily hold. One example of this situation occurs
when there are nonconservative forces acting on the system. In this section we focus
on the case where the unperturbed system is out of equilibrium due to external non-
conservative or time-dependent forces but its statistical properties are time-invariant,
i.e. the system is in a nonequilibrium steady state (NESS). In a NESS, energy is con-
stantly injected into the system by the external forces but at the same time the system
irreversibly dissipates heat into the environment.

We consider a system in contact with a thermal bath at fixed temperature T . The
system is described by a finite number n of microscopic degrees of freedom q = {qi, i =
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2.2 Fluctuations and linear response around a NESS

1, . . . , n}, as sketched in the upper panel of figure 2.2. It can exchange an amount of
heat Q(qs) with the bath which depends on the instantaneous configuration qs at time
s. In addition, it is subjected to a force F that depends on the degrees of freedom q
and on the control parameters λ. This force is allowed to be time-dependent through
the control parameters λ(t) and to have a nonconservative component, i.e. it can be
splitted as

F (q, λ(t)) = −∇U(q, λ(t)) +G(q),

where U is the potential that represents the Hamiltonian part of the dynamics. G
is the nonconservative component of the force, i.e. it can not be expressed as the
gradient of a potential function. The hypothesis for the formulations of the generalized
fluctuation-dissipation relations are the following:

• The system is in a NESS: the probability density function of the degrees of
freedom, ρ0(q), is time-invariant and the time correlation functions exhibit time-
translation invariance. If the nonconservative force G is non-zero then ρ0(q) is
different from the Boltzmann density ρ0eq(q) of equation (2.8).

• The dynamics is Markovian, i.e. the system does not have any memory on past
events. Its time evolution depends only on present values.

• The bath itself is at thermal equilibrium so the fluctuation-dissipation relation
(2.16) locally holds for the degrees of freedom of the bath.

According to the previous hyphotesis, we assume that the degrees of freedom of the
system exhibit diffusive dynamics, i.e. their time evolution can be modeled by a first
order Langevin equation

q̇i = −Γij∂jU(q) +Gi(q) + ζ i, (2.17)

where Γ is a symmetric matrix which accounts for the dissipation into the bath. ζ
is a stochastic process of zero mean and covariance ⟨ζ itζjs⟩ = 2kBTΓ

ijδ(t − s) that
models the random interaction with the bath. Some typical examples of real stochastic
dynamics modeled by equation (2.17) are: the position of an overdamped Brownian
particle driven by a moving optical trap in a fluid, the particle coordinates of a sheared
colloidal suspension, the rotational degrees of freedom of a molecular motor and the
voltage of a RC electronic network. We first focus on the fluctuations of an observable
O(q) of the system and then on the linear response function of O(q) to a small external
perturbation h of the control parameters λ, as depicted in the lower panel of figure
2.2. We briefly outline the physical ideas used for the derivation of the generalized
fluctuation-dissipation relations (GFDRs) reported in the literature for a system with
the features previously described.
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2.2.1 Lagrangian formulation [20, 53]

In this approach, we consider that the mean value of an observable O(q) evolves in
time according to the equation

∂t⟨O(qt)⟩ = ⟨(LO)(qt)⟩, (2.18)

where the linear operator L is called the generator of the process (2.17) and is explicitly
given by L = [−Γ∇U +G] ·∇+β−1∇·Γ∇ for the diffusive process (2.17). The adjoint
operator L† determines the time evolution of the probability density of q: the Fokker-
Planck equation associated to (2.17) can be written as

∂tρ = L†ρ = −∇ · j, (2.19)

where the probability current j is defined as

j = [−Γ∇U +G]ρ− β−1Γ∇ρ. (2.20)

Then we introduce the mean local velocity :

v =
j

ρ
, (2.21)

which allows us to write equation (2.19) in the hydrodynamical form of an advection
equation

(∂t + v · ∇)ρ = 0. (2.22)

In general, equation (2.19) can not be solved analytically except for some special cases.
For simplicity, here we focus on the situation when there is a single degree of freedom q
and the system is in a NESS, then the density ρ is the time independent NESS density
ρ0(q) and equation (2.19) implies that j is constant. In such a case the density and
the current admit an analytical expression derived in [54] and the mean local velocity
is proportional to the inverse of the NESS density:

v0(q) =
j

ρ0(q)
. (2.23)

On the other hand, we consider a time dependent perturbation hs to the potential
starting at time s = 0:

Us(q) = U(q)− hsV (q), (2.24)

In this case, the mean value of the observable can be expressed in terms of the nonsta-
tionary density of the perturbed process ρt(q), as

⟨O(qt)⟩h =

∫
ρt(q)O(q) dq. (2.25)

With the purpose to derive a GFDR from equation (2.25), a perturbative analysis must
be performed to obtain an expression for ρt at linear order in hs. This is done using
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the expression of the generator L with the perturbation (2.24) and the expression of
the current (2.20). Next, the resulting expression of ρt(q) must be inserted in equation
(2.25). Finally, taking the functional derivative of equation (2.25) with respect to hs,
a long but straightforward calculation leads to the GFDR

kBTR(t− s) = ∂s⟨O(qt)V (qs)⟩0 − ⟨O(θt)v0(qs)∂qV (qs)⟩0. (2.26)

Note that equation (2.26) relates the correlations measured in the unperturbed NESS
with the response function like the fluctuation-dissipation relation around thermal equi-
librium (2.16). However a new term appears involving a NESS correlation function with
the mean local velocity v0. Therefore it generalizes equation (2.16) so that the second
term on the right-hand side of (2.26) can be regarded as nonequilibrium additive cor-
rection. This term vanishes at thermal equilibrium because in that case the current is
j = 0. This is the so-called detailed balance condition. Then the GFDR (2.26) reduces
to the equilibrium form (2.16).

In analogy with the simplicity gained in hydrodynamics when describing fields in
the Lagrangian frame of a flow, equation (2.26) gains a simple form in the Lagrangian
frame of the mean local velocity v0 (2.23). The advection equation for the density (2.22)
implies that when measuring the fluctuations and the linear reponse of the observables
Õ(q̃) that are frozen in that frame, then they satisfy the equilibrium-like formula

⟨Õ(q̃t)Ṽ (q̃s)⟩0 = kBTRL(t, s), (2.27)

where the tilde stands for the quantities measured in the Lagrangian frame and RL is
the response measured in that frame as well. Equation (2.27) is close to the equilibrium
form (2.16) except for the lack of the translational time invariance because of the
transformation q → q̃. It can be formally shown that upon passing to the Lagrangian
frame the dynamics of q̃ is nonstationary but it exhibits an equilibrium-like picture: the
detailed balance condition holds (j = 0) and the corresponding probability density ρ̃(q̃)
is invariant and coincides with the NESS density measured in the Eulerian (laboratory)
frame, ρ̃ = ρ.

2.2.2 Entropic-frenetic formulation [22, 55, 56]

A second approach to the relation between fluctuations and response around a NESS is
based on symmetry properties of the fluctuations. The starting point is the description
of the system in terms of the weight P(qs) of space-time paths giving the state qs of
the system at time 0 ≤ s ≤ t. Therefore, if the system is initially at time s = 0 in a
NESS of density ρ0(q), the probability of finding the system in the state qs is given by

P(qs) = P(qs|q0)ρ(q0),

where P(qs|q0) is a conditional path probability of qs provided that the trajectory starts
at q0. In this way, the average of an observable O(q) can be written simply as

⟨O(qs)⟩ =
∫
qs

dP(qs)O(qs), (2.28)
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where
∫
qs

stands for the integration over all the possible paths arriving at qs at time
s ≤ t. Now we consider the dynamical process when applying the perturbation to the
potential (2.24). According to equation (2.28) the average value of the observable at
time t ≥ 0 is

⟨O(qs)⟩h =

∫
qs

dPh(qs)O(qs). (2.29)

The weight along the perturbed trajectories Ph in equation (2.29) can be written in
terms of an action A which relates Ph to the weight P0 of the unperturbed NESS
process. The action A is defined by

Ph(qs) = exp[−A(qs)]P0(qs). (2.30)

The central idea in this formulation is to decompose the action into a time symmetric
Ψ and a time anti-symmetric Σ component:

A =
Ψ− Σ

2
,

given respectively by

Ψ(qs) = A((θq)s) + A(qs), Σ(qs) = A((θq)s)− A(qs). (2.31)

In equation (2.31), θ is the time-reversal operator: (θq)s = qt−s. For diffusive processes
like those modeled by equation (2.17) and for a perturbation of the form (2.24), the
time symmetric term over a time interval [0, t] is given by [22, 55]

Ψ(qt) = β

∫ t

0

LV (qs)hsds. (2.32)

Ψ is called the excess in dynamical activity due to the perturbation hs. It quantifies how
frenetic is the perturbed process with respect to the uperturbed one. The functional
derivative of equation (2.32) with respect to hs, βLV (q) , is called frenesy and can be
regarded as a generalized escape rate of a stochastic trajectory of the particle from a
given phase space point. In equation (2.32), LV is an observable computed by applying
the generator of the process L to the variable V (q) conjugate to the perturbation h
with respect to the energy, see equation (2.24). On the other hand, the time anti-
symmetric term is proportional to the entropy excess with respect to the unperturbed
process produced by the perturbation

Σ(qt) = β

[
htV (qt)− h0V (q0)−

∫ t

0

ḣsV (qs)ds

]
. (2.33)

The derivation of the corresponding fluctuation-dissipation formula proceeds as follows.
The expressions (2.32) and (2.33) are inserted in equation (2.30). Then the resulting
expression for the path weight Ph is used to compute at linear order in hs the mean
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value ⟨O(θt)⟩h given by equation (2.29). Finally, by taking the functional derivative of
the resultant expression with respect to hs one obtains the GFDR

kBTR(t− s) =
1

2
[∂s⟨O(qt)V (qs)⟩0 − ⟨O(qt)LV (qs)⟩0], (2.34)

Unlike equation (2.26), this alternative GFDR does not involve explicitly the NESS
density ρ0(q). It only involves dynamical quantities through the generator L. It is
important to remark that this formulation is not restricted to diffusive processes in
NESS. It is also valid in more general cases, i.e. systems with inertial degrees of
freedom and nonstationary states, provided that the generator L is known.

2.2.3 Probability density formulation [17, 21, 24]

A third generalized approach to fluctuations and linear response around NESS exploits
directly the properties of the NESS density ρ0 with no need for a specific model of the
dynamics. In this case we must consider the explicit dependence of ρ0 on the control
parameters of the system: ρ0(q, λ). We define a generalized potential

Φ(q, λ) = − ln ρ0(q, λ). (2.35)

Note that the generalized potential Φ(q, λ) reduces to βU(θ) when ρ0(q, λ) is the Boltz-
mann density (2.8), as happens with zero nonconservative forces in equation (2.17).
Then, we consider the Hatano-Sasa relation, which provides a general identity for the
transition between either equilibrium or nonequilibrium steady states for Markovian
systems [7]. When the system is subjected to a time-dependent variation of the control
parameters λ(s) during the time interval [0, t], then the Hatano-Sasa identity reads⟨

exp

[
−
∫ t

0

λ̇α(s)
∂Φ(qs, λ(s))

∂λα

]
ds

⟩
λ

= 1, (2.36)

where the average ⟨. . .⟩λ denotes the average over an infinite number of independent
realizations of the dynamical process λ(s). In order to derive a fluctuation-response
relation from equation (2.36) we consider a small perturbation of the control parameter
hs = λ(s)− λ0, around the value λ0 = λ(0) which fixes an initial NESS at time s = 0.
Then, a straightforward perturbative analysis of equation (2.36) at linear order in hs
yields the generalized fluctuation-dissipation relation [21]

Rρ(t− s) = −∂s
⟨
∂Φ(qt, λ0)

∂λ

∂Φ(qs, λ0)

∂λ

⟩
0

,

= −∂s⟨Oρ(qt)Oρ(qs)⟩0, (2.37)

where Oρ is an observable fixed by the choice of the perturbation h

Oρ(q) =
∂Φ(q, λ0)

∂λ
,

= −∂ ln ρ0(q, λ0)
∂λ

, (2.38)
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whereas Rρ is the linear response function of this special observable with respect to hs

Rρ(t− s) =

[
δ⟨Oρ(qt)⟩h

δhs

]
h=0

. (2.39)

We now contrast the structure of equation (2.37) with the previous formulations. Since
this formulation is valid for any Markovian system in a NESS with no need for the
system to be in contact with a thermal bath, then equation (2.37) does not involve
the prefactor kBT like equations (2.26) and (2.34). Therefore, this formulation covers
a broader class of systems in NESS. On the other hand, it should be noted that the
previous formulations relate the linear response of any observable of interest O(q) due
to a fixed perturbation h with correlation functions involving O(q) and the observable
V (q) fixed by the choice of h. However, in the case of equation (2.37) there is no
freedom to choose the observable of interest. The only observable appearing in this
GFDR is Oρ(q), which is determined by the perturbed parameter according to equation
(2.38).

We point out that it is possible to generalize equation (2.37) for the fluctuations and
response of any observable O(q) using a detailed version of the Hatano-Sasa identity
(2.36), as demonstrated in [24]. The final GFDR for O(q) reads

R(t− s) = −∂s⟨O(qt)Oρ(qs)⟩0, (2.40)

which involves a correlation between the observable of interest O(q) and the observable
Oρ(λ) defined in equation (2.38). As it turns out that equation (2.40) is closely related
to the stochastic entropy formulation described in the following subsection, we do not
present more details on its derivation.

2.2.4 Stochastic entropy formulation [23]

Finally, an alternative and unifying approach to fluctuations and linear response around
a NESS for the diffusive systems that we consider in this chapter is based on stochas-
tic thermodynamics. This formulation provides a conceptual framework to describe
fluctuating energy exchanges taking place at thermal equilibrium or in simple nonequi-
librium conditions. The fundamental idea is to extend the concepts of work, heat and
entropy to single stochastic trajectories so it represents a refinement of the laws of ther-
modynmics. A brief overview on the main concepts of stochastic thermodynamics for
overdamped diffusive processes is given in Appendix C. For a vast study on stochastic
thermodynamics, see references [57, 58, 59, 60, 61, 62]. In particular, the second law of
thermodynamics can be extended to a single stochastic realization qt of a Markovian
process like that model by equation (2.17) by introducing the concept of stochastic
entropy

Sst(qt) = −kB ln ρ(qt, t). (2.41)

In equation (2.41), ρ(qt, t) is the solution of the Fokker-Planck equation (2.19) evaluated
along the stochastic trajectory qt, hence it depends on the initial condition q0 at time
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t = 0. This terms accounts for the entropy produced by the stochastic time evolution
of the configuration of the system. Hence, the total entropy production rate Ṡtot(qt)
during a single realization qt is the sum of two contributions. The first one is the usual
entropy production rate Ṡm(qt) = Q̇(qt)/T associated to the instantaneous power Q̇(qt)
dissipated into the environment. The second contribution is the stochastic entropy
production rate Ṡst(qt):

Ṡtot(qt) = Ṡm(qt) + Ṡst(qt). (2.42)

The derivation of the GFDR in the framework of stochastic thermodynamics proceeds
as follows. First, the generator Lh of the diffusive process (2.17) perturbed according
to equation (2.24) must be expressed at linear order in hs in terms of the generator of
the unperturbed NESS process: L: Lh

s = L+hsL
1. This yields the following expression

for the linear reponse function of an observable O(q)

R(t− s) =

∫
O(q) exp[L(t− s)]L1ρ0(q) dq. (2.43)

By performing a perturbative calculation of the Fokker-Planck equation (2.19) at two
different NESS densities ρ0(q) and ρ0(q) + hρ1(q), one finds the following relation at
lineat order in h

Lρ1(q) = −L1ρ0(q).

On the other hand, using the definition of the stochastic entropy (2.41) we have

∂hSst|h=0 = −kBρ1(q)/ρ0(q).

By inserting the previous two expressions into equation (2.43), we can readily obtain
the GFDR

kBR(t− s) = ⟨O(qt)X(qs)⟩0, (2.44)

where
X(q) = −∂hṠst(q)|h=0, (2.45)

is the variable conjugate to the perturbation h with respect to the stochastic entropy
production rate. It has to be noted that equation (2.44) reduces to the equilibrium
fluctuation-dissipation relation (2.16) around thermal equilibrium because in such a
case the total entropy production rate is zero Ṡtot(qt) = 0 for any stochastic trajectory
qt due to the detailed balance. Consequently, the stochastic entropy production rate
is simply related to the time derivative of the potential energy: Ṡst = −U̇/T . Then it
follows that X(q) = V̇ (q)/T , where V is the variable conjugate to h with respect to
the potential energy so we recover the equilibrium formula (2.16).

2.3 Conclusion
The generalization of the fluctuation-dissipation theorem around a NESS for systems
with Markovian dynamics has been achieved in recent years from different theoretical
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approaches. The different GFDRs link correlation functions of the spontaneous fluctu-
ations of the observable of interest in the unperturbed NESS with the linear response
function of this observable due to a small external time-dependent perturbation. Most
of the formulations involve a term which quantifies the broken detailed balance in a
NESS, i.e. the presence of currents between the system and the bath. The observables
involved in the different formulations (e.g. mean local velocities, dynamical activity,
stochastic entropy production, etc.) are not unique but they are equivalent in the sense
that they lead to the same values of the linear response function. From a fundamental
point of view in statistical mechanics it is of primary importance to have a clear phys-
ical interpretation of the connection between these apparently different GFDRs. From
the practical point of view this is an important issue as well because one can choose a
suitable GFDR for the system of interest depending on the accessible observables in an
experiment. For this purpose, in the chapter 3 we detail an experiment that allows us
to get a clear physical interpretation of the connection between the different GFDRs
previously described in this chapter.
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Chapter 3

Brownian particle in a viscous thermal
bath

In this chapter we describe an experiment in order to illustrate in a very clear way
the generalization of the fluctuation-dissipation relation around nonequilibrium steady
states (NESS) for systems with Markovian dynamics. In the experiment a micron-sized
particle is embedded in a Newtonian fluid (water) and its Brownian motion is confined
to a circular trajectory by scanning optical tweezers. A rotating laser beam exerts on
the particle a periodic conservative force plus a constant nonconservative one resulting
in the minimal non-trivial experimental realization of a NESS for a stochastic system
with a single relevant degree of freedom. We performed independent measurements of
the spontaneous NESS fluctuations of the position of the particle and the linear re-
sponse function after slightly perturbing the NESS. The experimental data is analyzed
in the context of the different generalized fluctuation-response formulae described in
the previous chapter.

3.1 Description of the experiment

3.1.1 Sample preparation

We prepared a dilute solution (volume fraction 10−6) of silica spherical particles (Poly-
sciences Inc., radius r = 1µm) in ultrapure water. A small volume of this solution was
introduced into a special transparent cell schematized in figure 3.1. The cell was made
of a small plastic chamber (length 22 mm, width 22 mm, thickness 2.5 mm) sandwiched
between a microscope slide and a coverslip and glued together with photopolymer ad-
hesive. The chamber is made up of two reservoirs separated by a second coverslip.
The reservoirs are connected by a small hole (diameter 1 mm) in this coverslip. The
lower reservoir is filled with ultrapure water without beads whereas the upper reser-
voir is filled with the solution. The experiment was performed at room temperature
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Figure 3.1: Schematic representation of the sample cell.

T = 20.0± 0.5◦C at which the dynamic viscosity of water is

η = 1.002∓ 0.010× 10−3 Pa s,

and consequently the viscous drag coefficient and the bare diffusion coefficient of the
particle are

γ = 6πrη = 1.89× 10−8 kg s−1,

D0 = kBT
γ

= 2.14× 10−13 m2 s−1,

respectively.
The cell was placed in the multi-trap setup described in chapter 1. A single spherical

bead is trapped in the upper reservoir by the focused beam of the λ = 1064 nm laser.
Then the bead is carefully dragged through the hole into the lower reservoir up to a
distance of a few millimeters from the hole. This is in order to avoid the perturbations
created by the presence of neighboring particles. In this way the experiment can be
performed using the same bead for several hours. Once isolated, the particle is detected
by imaging, as described in subsection 1.3.2 of chapter 1, at sampling rate of fs = 150
Hz and exposure time of 1/300 s.

3.1.2 Toroidal optical trap

The Brownian motion of a the particle trapped in the lower chamber is confined to a
torus using the XY AOD system described in subsection 1.3.1. A frequency modulation
is applied simultaneously to the acoustic wave created in each AOD, as represented in
figure 3.2). We choose sinusoidal modulations ∆FX and ∆FY in the x and y directions,
respectively, given by

∆FX(t) = ∆F cos(2πfRt+ α), ∆FY (t) = ∆F sin(2πfRt+ α), (3.1)
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Figure 3.2: Diagram of the creation of a toroidal optical trap using the XY AOD system
described in subsection 1.3.1. The red arrows represent the path of the laser beam.
The snapshot shows the actual rotation direction (at speed vR) of the scanning beam
along the circular trajectory created inside the sample cell after being tightly focused
by the microscrope objective.
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(a) (b)

Figure 3.3: (a) Snapshot of the Brownian particle in the toroidal optical trap. The
vertical arrow indicates the position θ = 0 whereas the curled arrow shows the direction
of rotation of the scanning laser beam. (b) Example of a typical 2D trajectory (red
line) on the plane of the circle described by the scanning beam for the experimental
conditions (3.5), extracted using the image processing technique described in subsection
1.3.2. The instantaneous angular position θt is computed using equation (3.7).
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where ∆F = 2.5 MHz (corresponding to ∆ϕ = 4 mrad), fR is the modulation frequency
and α is an initial constant phase. In this way the beam focused inside the sample cell
scans a circular trajectory of radius a = 4.12µm and angular position

θb(t) = 2πfRt+ α,

on the plane perpendicular to the beam propagation at a rotation frequency fR. Figure
3.3(a) sketches this experimental configuration on a snapshot. The resulting rotation
speed of the scanning focus along the circle of radius a is

vR = 2πafR. (3.2)

For a fixed value P of the laser power, the value of vR is chosen according to the
experimental conditions that one needs to impose to the particle by tuning the value
of fR. Three different nonequilibrium regimes occur depending on the value of vR [63]:

(a) At small rotation speed (vR . 500µms−1 for a laser power of P = 30 mW), the
particle is constantly dragged by the scanning optical trap along the circle at the
same speed vR. This is because the mean viscous drag force on the particle γvR
is balanced by the harmonic trapping force k∆s so that the particle follows the
trap center with a mean spatial delay ∆s = γvR/k.

(b) At sufficiently large rotation frequencies (500µms−1 . vR . 10mms−1 for
P = 30 mW) the speed of the scanning trap is so high that the viscous drag
force exerted on the particle quickly exceeds the maximum optical trapping force
Fmax(P ) that can be achieved at a fixed laser power P , i.e.

vR >
Fmax(P )

γ
. (3.3)

Consequently, at each rotation the beam only drags the particle a small distance
δs along the circle before reaching the condition (3.3). Then the particle is
released by the trap and undergoes 3D free diffusion during a time ≈ f−1

R . The
beam eventually drags again the particle in the next rotation. In this regime
the free-diffusion length lD =

√
(D0/fR) is comparable or smaller than δs so

the particle moves along the circle at discrete steps δs with a mean constant
speed vp = [δs/(2πa)]vR < vR in the direction of the beam rotation. Then the
Brownian particle motion is effectively confined to a torus of major radius a and
minor radius lD. It can be shown that δs ∼ v−2

R and then vp ∼ v−1
R . Therefore

as vR increases the mean particle motion along the circle slows down and the
discrete steps become smoother. This is the regime of interest for the experiment
as explained in the following. Note that since δs ∼ v−2

R and lD ∼ v
−1/2
R there is a

transition to a third regime dominated by diffusion (lD ≫ δs) as vR increases.

(c) At very large rotation speed (vR & 10mms−1 for P = 30 mW) the free diffusion
of the particle during the time ≈ f−1

R dominates over the discrete mean drag by
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the scanning trap, i.e. lD ≫ δs. However the particle motion is still confined to
the torus because of the radial attractive effect of the optical trap at each rotation
so that it undergoes free diffusion along the circle with diffusion coefficient D0.

The scanning laser beam is focused at h ≈ 10µm above the inner bottom surface of
the cell. At this distance, the hydrodynamic correction δγ to the drag coefficient of
the particle due to the presence of the coverslip surface is [64, 65]

δγ

γ
≈ 9

16

r

h
≈ 0.06, (3.4)

which is small enough to neglect hydrodynamic interactions between the Brownian
particle and the walls. For this value of h there is a good compromise between negligible
hydrodynamic interactions and small optical aberrations of the scanning beam focus
that increase as h increases. The experimental parameters

P = 30mW,

fR = 200Hz, (3.5)
vR = 5.2mms−1,

are chosen to work in the intermediate regime (b) where the particle rotates along the
circle with a nonvanishing mean speed vp < vR. For these values the diffusion length of
the particle and the mean displacement δs dragged by the beam at each rotation are

lD . 30 nm,

δs ≈ 18 nm. (3.6)

Since lD is three orders of magnitude smaller than the circumference of the circle
2πa = 25.89µm, the angular position of the particle barycenter θ (measured modulo
2π with respect to the circle center of the toroidal trap) is the only relevant degree of
freedom of the dynamics, as shown in figure 3.3(b). The instantaneous value θt at time
t is computed from the tracked particle coordinates (xt, yt)

θt = arctan2

(
yt
xt

)
. (3.7)

For the experimental values (3.5) of fR and P , the particle moves along the circle at
mean constant spead

vp ≈ 3.5µms−1 ≪ vR. (3.8)

The nonequilibrium dynamics of θt in this experimental configuration is somehow
trivial because in average it increases linearly in time (figure 3.4(a)) whereas its prob-
ability density function is uniform: ρ(θ) = (2π)−1 (figure 3.4(b)). In addition, as the
dynamics of θ takes place in 1D and is stationary, the corresponding Fokker-Planck
equation is

0 = ∂tρ(θ) = −∂θj, (3.9)
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Figure 3.4: (a) Example of particle trajectories θt (not measured modulo 2π) showing
the linear motion at mean constant speed for the experimental parameters (3.5). (b)
Probability density function of the particle position when moving at mean constant
speed for the experimental parameters (3.5). The experimental profile of ρ is close to
the uniform distribution ρ(θ) = (2π)−1.
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where j is the probability current. In general, for Brownian motion the probability
current can be expressed in terms of the probability density ρ, the total force ftot
acting on the particle, the mobility µ and the diffusivity D, as

j = µftotρ−D ∇ρ.

Consequently, for the experimental conditions (3.5) the diffusive term D∇ρ vanishes
and the current is simply

j = µftotρ. (3.10)

From equations (3.9) and (3.10) we conclude that for constant P and fR the probability
current j and the mean value of ftot are constant. This is because for a sampling
frequency fs = 150 Hz smaller than the rotation frequency fR = 200 Hz the single
discrete kicks δs at each rotation of the scanning laser can not be resolved separetely1.
In other words, the fast particle dynamics taking place during the time δs/vR ≈ 3.5µs
inside the harmonic potential of the optical trap, is coarse-grained in a time f−1

s =
6.7 ms. Therefore the effective dynamics of θ can be simply regarded as the the result
of a mean constant force f

f = ⟨⟨ftot⟩⟩,

=
γaj

ρ(θ)
, (3.11)

= γvp > 0.

In equation (3.11), ⟨⟨. . .⟩⟩ represents the coarse-grain spatio-temporal average. Because
of the periodic constraint of the particle motion on the circle, the driving force f satisfies
the condition ∫ 2π

0

f dθ > 0. (3.12)

Then, there does not exist any function g(θ) satisfying f = −∂θg(θ) and g(0) = g(2π),
i.e. f is nonconservative. The nonequilibrium nature of the system is due to the pres-
ence of this nonconservative force. Note that the value of f can be equivalently varied
by tuning either fR or P . Hence f is the single control parameter in this experimental
configuration. For the experimental values (3.5), the value of the nonconservative force
f estimated by means of equation (3.11) is

f ≈ 70 fN. (3.13)

In order to have a second independent control parameter and to create a nonlinear par-
ticle motion, the nonconservative force f is supplemented by a conservative component
in the following way. The laser power is sinusoidally modulated in time

P (t) = P0 + Pm sin(2πfRt+ α), (3.14)
1Since fs < fR, aliasing due to single kick events is not a concern for the acquisition and processing

of the time series θt.
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sinchronously with the AOD frequency modulation (3.1) at fR. In the experiment the
values of the power offset P0 and the power modulation amplitude were kept at

P0 = 30mW,

Pm = 2.1mW. (3.15)

The position of the scanning beam evolves in time as 2πfRt+α along the circle, hence
at each angular position θ on the circle the laser power does not change in time. This
configuration gives rise to a static periodic intensity profile

I(θ) = I0 + Im sin(θ + α). (3.16)

Since the laser intensity along the circle depends on θ according to (3.16), the effec-
tive force f which slightly drags the particle at each rotation also becomes position
dependent: it is proportional to I(θ). Then

f(θ) = f0 + fm sin(θ + α),

= f0 −
1

a
∂θU(θ). (3.17)

In equation (3.17), f0 = const. is the nonconservative component due to the laser
intensity offset I0. fm sin(θ + α) is the conservative component due to the modulation
Im sin(θ+α). This conservative component can be derived from the nonlinear periodic
potential

U(θ) = fma cos(θ + α).

In this way a second independent control parameter, fm, can be tuned by changing
the power modulation amplitude Pm. A typical time series of θt representing the
nonlinear particle motion due to the static intensity profile (3.16) obtained for the
experimental values (3.15) of the power modulation (3.14) is shown in figure 3.6(b).
Note that even when a potential barrier is created due to the static intensity profile
of the toroidal optical trap, the particle is able to explore the whole circle because
of the presence of the nonconservative force f0 and the thermal fluctuations provided
by the water molecules. Then the resulting nonequilibrium dynamics of the particle,
studied in detail in the following sections, is statistically periodic and stationary with
a nonvanishing probability current j > 0.

3.2 Model

In this section we study carefully the nonequilibrium dynamics and the statistics of
the angular position of the particle θ subjected to the laser power modulation (3.14)
in the toroidal optical trap. We first analyze the different relevant forces acting on the
Brownian particle in the direction of θ for the experimentally accessible timescales:
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Figure 3.5: Diagram of the relevant forces acting on the Brownian particle in the
toroidal optical trap: the nonconservative force f0 (gray arrow), the viscous drag force
−γaθ̇ (blue arrow), the conservative force which derives from the periodic potential
U(θ) (red solid line) and the stochastic force ξ (broken line). See text for explanation.

• The viscous drag force due to the surrounding water: −γaθ̇. In this case one can
safely use the expression γ = 6πrη for the viscous drag coefficient of the particle
because the Reynolds number of the water flow induced by the particle motion
is negligible (Re ∼ 10−3, see section 1.4).

• The constant nonconservative force due to the mean "kick" done by the scanning
trap at mean intensity I0 during each rotation: f0.

• The conservative force due to the static spatial modulation of the intensity profile
(3.16): −∂θU(θ)/a, where U(θ) is the corresponding periodic potential.

• The stochastic force resulting from the thermal motion of the water molecules: ζ.
As hydrodynamic coupling effects between the particle and the walls are negligible
and the sampling frequency of the particle motion is low enough (fs = 150 Hz)
to probe viscoelastic effects of water, then ξ can be modeled as a white noise
process2 of zero mean and covariance ⟨ξtξs⟩ = 2kBTγδ(t− s).

Two additional forces act on the particle motion, nevertheless they are completely
negligible for the dynamics of θ for the following reasons:

• The inertial force maθ̈: the mass of the silica particle is so small (m = 1× 10−14

kg) that one would need to resolve frequencies & γ/m ∼ 1 MHz in order to
2This model for the stochastic force ξ is based on the hypothesis that the presence of the particle

and the laser does not perturb the local statistical properties of the thermal bath, i.e. detailed balance
locally holds for the water reservoir. This hypothesis is justified by the fact that: 1) the temperature
rise around the particle due to the light absorption by water is less than 1 K, 2) the Reynolds number
of water due to the particle motion is negligible (Re ∼ 10−3). Therefore the water reservoir actually
plays the role of an equilibrium thermal bath.
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measure values of maθ̈ comparable to the viscous drag force. Then inertia is
negligible in the dynamics of θ because the highest accessible frequency in the
experiment is 75 Hz.

• A nonconservative force in the direction of the beam propagation due to the light
scattered by the particle, as explained in section 1.1. This nonconservative force
becomes significant only for the particle dynamics in the direction of the beam
propagation when the trapping laser power is extremely weak (P . 2 mW) and
when the particle is continuously trapped for several minutes, as discussed in
[41]. In our experiment the particle is not continuously trapped by the scanning
beam, the laser power is not small (P0 = 30 mW) and we focus on a single degree
of freedom on the plane almost perpendicular to the beam propagation (∠89.8◦).
Then this force is fully negligible for the dynamics of θ.

Then, according to the previous force picture, the dynamics of θ, restricted to the
domain [0, 2π), can be modeled by the first-order Langevin equation

γaθ̇ = −1

a
∂θU(θ) + f0 + ξ, (3.18)

as sketched in figure 3.5. Equation (3.18) can be conveniently written in the form

θ̇ = −∂θAϕ(θ) + F + ζ, (3.19)

where

A =
max{U(θ)}

γa2
,

ϕ(θ) =
U(θ)

max{U(θ)}
, (3.20)

F =
f0
γa
,

are the normalized potential amplitude, the dimensionless potential profile (max{ϕ(θ)} =
−min{ϕ(θ)} = 1) and the normalized nonconservative force, respectively, and ζ is a
white noise process satisfying

⟨ζt⟩ = 0,

⟨ζtζs⟩ = 2Dδ(t− s), (3.21)

D =
kBT

γa2
,

where D = D0/a
2 = 1.26 × 10−2 rad2 s−1 is the angular diffusion coefficient along the

circle for the coordinate θ. The periodic nonlinear first-order Langevin equation (3.19)
has been theoretically studied in the context of simple nonequilibrium steady states for
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overdamped diffusion processes3 [54, 66]. For F,A,D > 0, the Fokker-Planck equation
associated to (3.19) for the probability density function ρ of θ reads

∂tρ = − [F − ∂θAϕ(θ)] ∂θρ+D∂2θρ,

= −∂θj, (3.22)

where the corresponding probability current is given by

j = [F − ∂θAϕ(θ)] ρ−D∂θρ, (3.23)

At thermal equilibrium (F = 0) the diffusive contribution D∂θρ to the current in
equation (3.23) is exactly balanced by the drift term −∂θAϕ(θ)ρ so that the detailed
balance condition holds: j = 0. In such a case the stationary solution of equation
(3.22) is given by the the Boltzmann density

ρeq(θ) =
1

Z
exp

[
−Aϕ(θ)

D

]
,

Z =

∫ 2π

0

exp

[
−Aϕ(θ)

D

]
dθ. (3.24)

On the other hand, when the particle is driven out of equilibrium by a constant non-
conservative force F > 0, equation (3.22) admits a stationary solution ρ0(θ) with a
constant non-zero probability current j = [F − ∂θAϕ(θ)] ρ0(θ) − D∂θρ0(θ) > 0. The
density ρ0(θ) in this nonequilibrium steady state is different from the Boltzmann den-
sity ρeq(θ) of equation (3.24). The analytical expression of ρ0(θ) was derived in [54, 67]
and reads

ρ0(θ) =
1

Z

∫ 2π

0

exp

[
W (ν, θ)

D

]
dν,

Z =

∫ 2π

0

∫ 2π

0

exp

[
W (ν, θ)

D

]
dν dθ, (3.25)

where γa2W (ν, θ) is the work performed by the deterministic forces −Aϕ(θ) and F
along the positively oriented path ν → θ on the circle

W (ν, θ) = A[ϕ(ν)− ϕ(θ)] +

{
(θ − ν)F for ν ≤ θ

(2π − ν + θ)F for ν > θ
, (3.26)

whereas the analytical expression of the probability current is

j =
D

Z

[
exp

(
2πF

D

)
− 1

]
. (3.27)

3When periodicity modulo 2π is not imposed (0 ≤ θ < +∞), it describes the Brownian motion of
a particle in a tilted potential Aϕ(θ)− Fθ. In such a case the probability density function of θ is not
normalizable.
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Figure 3.6: (a) Probability density function ρ0 of the angular position θ of the Brownian
particle in NESS. (b) Examples of stochastic trajectories θt (not measured modulo 2π)
used to compute the global mean velocity ⟨θ̇⟩0 and the current j from the linear fit of
the NESS average ⟨θt⟩0.

In the experiment, F and A can not be directly measured to compute ρ0(θ) and
j using equations (3.25) and (3.27), respectively. Instead, ρ0(θ) and j can be easily
determined from the tracked time series θt of the particle position. In figure 3.6(a) we
show the experimental profile of the probability density ρ0(θ) for the values (3.15) of the
parameters of the power modulation. This was done from the histogram of θt computed
over a time window of 66.67 s and averaged over 200 independent initial conditions. We
checked that for these fixed values of P0 and Pm, the experimental profile of ρ0(θ) does
not depend on the length of the time window used to compute the histogram provided
that the whole circle [0, 2π) is sampled. In this way the stationarity of the dynamics
of θ for constant A,F,D > 0 was verified. Note that unlike the case of the particle
dynamics at constant power (Pm = 0) where ρ0(θ) = (2π)−1 (figure 3.4(a)), a very
small power modulation Pm/P0 = 0.07 gives rise to a highly inhomogeneous motion
reflected in a large peak of ρ0(θ). This indicates the presence of a large potential
barrier of heigth 2A created by the laser power modulation. On the other hand, the
probability current given by

j =
⟨θ̇⟩0
2π

, (3.28)

where ⟨θ̇⟩0 is the global mean velocity of the particle computed over a time and an
ensemble average in the nonequilibrium steady state, then it has a constant value.
The experimental value of ⟨θ̇⟩0 was calculated from the slope of the linear fit of the
mean angular position ⟨θt⟩0 = ⟨θ̇⟩0t + const. of the particle which was obtained after
averaging the 200 independent time series θt (not taken modulo 2π), as sketched in
figure 3.6(b). The experimental value of the probability current is j = 3.76× 10−2 s−1.
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This corresponds to a mean rotation period along the circle of j−1 = 26.6 s for the
particle.

3.2.1 Calibration

We now proceed to determine the experimental values of the parameters A and F
and the potential profile ϕ(θ) involved in the Langevin model of equation (3.19). For
this purpose we use the method described in [68] and successfully used in [69, 70, 71].
This method exploits the measured probability current j and the density ρ0(θ) in a
nonequilibrium steady state to reconstruct then actual effective energy landscape of
the dynamics. Dividing equation (3.23) by ρ0 and integrating over the interval [0, θ],
one obtains an expression for the potential profile at each position 0 ≤ θ < 2π in terms
of ρ0 and j

Aϕ(θ) = −D log ρ0(θ) +

∫ θ

0

[
F − j

ρ0(θ′)

]
dθ′, (3.29)

Equation (3.29) still involves the unknown quantity F . An expression for F can be
found by noting that the periodicity of the functions ϕ and ρ0 and equation (3.29)
imply: Aϕ(2π) = Aϕ(0) = −D log ρ0(0) = −D log ρ0(2π). Then evaluating equation
(3.29) at θ = 2π

F =
j

2π

∫ 2π

0

ρ0(θ)
−1 dθ. (3.30)

The experimental value of F computed using equation (3.30)

F = (0.850± 0.004) rad s−1, (3.31)

corresponding to a nonconservative force f0 = 66.0±0.3 fN, in good agreement with the
rough estimate ≈ 70 fN done using equation (3.11) for the toroidal trap at constant
laser power. Using the value (3.31) in equation (3.29), we obtain the experimental
profile of the periodic potential U(θ) = γa2Aϕ(θ) where the value of the normalized
potential amplitude is

A = (0.870± 0.013) rad2 s−1, (3.32)

The experimental errors of F and A in (3.31) and (3.32) are estimated in the following
way. We take into account that the RMS noise of the laser power used in the multi-
trap setup (section 1.3) is 0.5%. As the mean force exerted by the scanning beam is
proportional to the laser intensity, the main source of error ∆F for F comes from the
fluctuations ∆P of the mean laser power Pm, i.e.

∆F

F
=

∆P

Pm

≈ 0.005.

On the other hand, according to equation (3.29), the error ∆A in the computation of A
depends on the experimental error ∆η/η = 0.01 of the water viscosity due to the small
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Figure 3.7: (a) Experimental potential profile (solid line) and probability density
function of θ (dashed line) for the NESS generated by the nonconservative force f . (b)
Dimensionless potential profile ϕ(θ) compared to the sine function. (c) Third-order
polynomial fit ρLoc(θ) of the potential profile ϕ(θ) around each value of theta and its
first two derivatives. (d) Effective diffusion coefficient Deff of the Brownian particle
in NESS (black dashed line) computed from the asymptotic value of its mean square
displacement (red solid line).
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temperature variation (0.5◦C) during the experiment, plus the error of F . Therefore
we obtain

∆A

A
=

∆η

η
+

∆F

F
≈ 0.015.

In figure 3.7(a) we plot U(θ) showing that even a small sinusoidal power modula-
tion of 7% of the mean power gives rise to a large potential barrier of several times the
thermal agitation energy: γa2A = max{U(θ)} = (68.8± 1.0)kBT . In addition, despite
the sinusoidal form of the power modulation (3.14), the resulting dimensionless poten-
tial profile ϕ(θ) is periodic but not perfectly sinusoidal as shown in figure 3.7(b). It
is slightly distorted as a result of unavoidable experimental static defects, e.g. optical
aberration. The non-sinusoidal distortion is more evident when computing the spatial
derivatives of ϕ(θ), as shown in figure 3.7(c) for the profile of the first two derivatives
ϕ′(θ) and ϕ′′(θ). These derivatives are computed from a local polynomial fit ϕLoc of ϕ
around each value of θ ∈ [0, 2π). As this small static distortion is accurately quantified
by the calibration method then it is not a major concern for the forthcoming data
analysis. In figure 3.7(a) we plot simultaneously the NESS probability density ρ0(θ).
Note that at thermal equilibrium (F = 0) the particle motion would be tightly con-
fined in a region of size ∆θ =

√
(kBT/(Aγa

2)) centered around the potential minimum
θm ≈ 3π/2 rad according to the Boltzmann density ρeq(θ) of equation (3.24). However,
for the current nonequilibrium experimental conditions this maximum is shifted in the
positive direction of θ by the nonconservative force F > 0. Besides, the particle is
able to go beyond the large potential barrier and explore the whole circle due to the
combined effect of the thermal fluctuations and F . Since the experimental value of
the nonconservative force is slightly smaller than the maximum conservative force A:
(F −A)/A ≈ −0.02, the particle stays a long time around the maximum of the proba-
bility density (θ ≈ 6 rad) before completely overcoming the maximum of the potential
barrier located at θ ≈ 1.8 rad by a sufficiently large thermal fluctuation. In this way
the stochastic nature of the dynamics is highly enhanced: the effective diffusivity of
the system, defined as

Deff = lim
t→∞

⟨θ2t ⟩0 − ⟨θt⟩20
2t

, (3.33)

is very close to its maximum value occuring at F = A [72, 73]. Indeed, the ex-
perimental value of the effective diffusion coefficient defined by equation (3.33) is
Deff ≈ 0.19 rad2 s−1, as depicted in figure 3.7(d). This value is 15 times larger
than the value of the bare diffusion coefficient D = 1.26× 10−2 rad2 s−1.

3.3 Direct measurement of linear response function
We are interested now in studying the integrated linear response function χ of the
particle defined in equation (2.7), after weakly perturbing the nonequilibrium steady
state previously described. For experimental simplicity we consider a step perturbation
to the potential amplitude

A→ A+ δA, (3.34)
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Figure 3.8: (a) Example of a trajectory θt before (blue dotted-dashed line) and after
(red solid line) applying the step perturbation (3.34) to the potential amplitude at
time t0. For t < t0 the system is in an initial NESS at A whereas for t > t0 it is in
a nonstationary transient regime toward a new NESS at A + δA. (b) Experimental
potential profiles U(θ) at two different values of the power modulation Pm keeping
fixed the value of the mean power at P0 = 30 mW. Inset: Dimensionless profile ϕ(θ)
normalized by the corresponding potential amplitude: γa2A = 68.8kBT (solid line)
and γa2(A+ δA) = 72.2kBT (◦).
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so that the perturbation and its conjugate variable with respect to the energy are
h = −δA and V (q) = ϕ(θ), respectively. It should be noted that the dynamics of
θ is strongly nonlinear as the particle undergoes the periodic potential Aϕ(θ) but
for sufficiently small values of δA the response around the initial NESS can still be
linear. In the experiment, 500 times series of duration 100 s were specially devoted for
the determination of χ. During each interval of 100 s the step perturbation (3.34) was
implemented from time t0 to t0+∆t with 0 < t0 < 66.67 s and ∆t = 33.33 s by suddenly
switching the laser power modulation Pm (3.14) from 7% to 7.35% of the mean power
P0 = 30 mW, as depicted in figure 3.8(a) By keeping constant P0 during the switch
we ensure that the value of F remains also constant. The experimental value of the
perturbation (δA = 0.05A) is determined from independent NESS measurements of the
amplitude of U(θ) at Pm = 0.0735P0 and subtracting the original NESS measurement
at Pm = 0.0700P0 (shown in figure 3.8(b) respectively) as described in the previous
section. We verify that for both values of Pm the corresponding dimensionless potential
profile ϕ(θ) remains unchanged so no distortion is induced by the step perturbation
of the power modulation, as shown in the inset of figure 3.8(b). In this way, we
extract 500 perturbed trajectories {θδAt } of duration ∆t = 33.33 s starting at time t0,
like that plotted in red in figure 3.8(a), randomly sampled from the initial NESS. As
∆t > j−1 = 26.6 s, we ensure that after switching off the perturbation the system has
attained a NESS before the beginning of the next step perturbation.

We focus on the measurement of the linear response of a given observable O(θ).
Formally, the integrated linear response function of O(θ) at time t ≥ 0 due to the step
perturbation (3.34) starting at time t = 0 is given by

χ(t) =
⟨O(θt)⟩δA − ⟨O(θt)⟩0

−δA
. (3.35)

In equation (3.35) the average ⟨. . .⟩δA is performed over an ensemble of an infinite num-
ber of independent realizations of the dynamical process δA whereas the average ⟨. . .⟩0
is computed over the initial NESS distribution ρ0(θ). Hence, some care is needed in
practice because the direct computation of the experimental χ(t) using equation (3.35)
exhibits a number of technical difficulties:

• First, one requires an extremely large number of independent realizations of δA
to resolve χ as the perturbation δAϕ(θ) must be chosen very weak, typically
comparable or smaller than the thermal fluctuations ∼ kBT of the energy injected
by the environment.

• Second, a vanishingly small Heaviside perturbation δAϕ(θ) to the initially un-
perturbed potential Aϕ(θ) is ideally required. Otherwise spurious effects quickly
bias the measurement of χ, specially when the system is strongly non-linear. For
instance, a small error in the initial condition at t0 may largely propagate as t
increases.

For the experimental conditions (3.15) of the system the energy variation due to the
perturbation is γa2δA = 3.44kBT , this is small enough to be in the linear response
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Figure 3.9: (a) Examples of a perturbed trajectory OδA(θt) (red dashed line) and four
unperturbed ones O(θt) (continuous lines) satisfying the condition (3.38) to estimate
the linear response function using equation (3.37). Inset: expanded view at short time.
(b) Estimate of −χ(t) by −χN(t) defined in equation (3.39) for N = 50, 100, 250, 500
and L = 1 (solid lines) and N = 500, L = 200 (black dashed line). (c) Comparison of
−χN(t) for N = 500 and L = 200 (black dashed line) with the poor estimate of −χ(t)
done with thecuncorrected arithmetic average (red continuous line). (d) Experimental
integrated response function χ(t) of the observable O(θ) = ϕ(θ) measured upon apply-
ing the step perturbation (3.34) at two different values of δA: δA = 0.05A (thick red
dashed line) and δA = −0.07A (◦). The thin dashed lines represent the error bars.
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regime, as shown further. However, since a finite number N = 500 of independent
realizations of δA are sampled, tha average ⟨. . .⟩δ in equation (3.35) is not perfectly
computed. Note that by definition χ(t) must satisfy the initial condition χ(0) = 0
because the step perturbation starts at time t = 0 from an initial NESS described
by the density ρ0(θ). Then depending on the observable O(θ) the error of the initial
condition χ(0) = 0 may be non-negligible because the initial inhomogeneous NESS
density is not properly sampled at the beginning of each realization of δA. This error
can propagate because of the nonlinear dynamics of θ. In order to avoid the problem
of the propagation of the initial finite sampling error, instead of using the arithmetic
average N−1

∑N
j=1(. . .) to estimate the formal average ⟨. . .⟩δA in equation (3.35), one

can define an estimator χN(t) satisfying the initial condition χN(0) = 0. In this way
the propagation of the initial error is supressed at the beginning. An intuitive way to
define χN can be outlined from the usual protocol to compute the integrated response
function according to equation (3.35)

χ(t) =
⟨OδA(θt)⟩δA − ⟨O(θt+t∗)⟩0

−δA
. (3.36)

In equation (3.36) OδA(θt) ≡ O(θδAt ) denotes the observable measured during the per-
turbed process and in practice is computed using the perturbed times series {θδAt }. The
time t∗ is chosen such that OδA(θ0) = O(θt∗). The time t = 0 corresponds to the instant
t0 when the step perturbation δA is switched on. Note that equation (3.36) is justified
by the fact that in the case of an infinite number of samples ⟨OδA(θ0)⟩δA = ⟨O(θt)⟩0
for all t because of the time translational invariance of the NESS. In contrast, when N
is finite it is useful to take into account that in equation (3.36) ⟨. . .⟩δA and ⟨. . .⟩0 are
performed independently: the first on the perturbed trajectory OδA(θt) and the second
on the unperturbed ones O(θt+t∗), specifically

χN(t) =
1

−δA

[
1

N

N∑
j=1

OδA
j (θt)−

1

L

L∑
k=1

Ok(θt+t∗)

]
, (3.37)

where, for each OδA(θt), L is the number of unperturbed trajectories such that

Ok(θt∗) = OδA
j (θ0). (3.38)

Therefore equation (3.37) can be rewritten as

χN(t) =
1

−δA
1

N

N∑
j=1

[
1

L

L∑
k=1

δOjk(θt)

]
, (3.39)

where δOjk(θt) ≡ OδA
j (θt) − Ok(θt+t∗) is the instantaneous difference between a per-

turbed trajectory OδA
j (θt) and an unperturbed one Ok(θt+t∗). An example of this

procedure is depicted in figure 3.9(a) for the observable O(θ) = −∂A ln ρ0(θ). We focus
here on this observable because the normalization of the NESS density ideally implies
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that ⟨O(θ)⟩0 = 0. Then, according to equation (3.36) it is strongly subjected to the
propagation of the initial error if the estimate of ⟨O(θt)⟩0 at t = 0 is poor. For a given
perturbed trajectory OδA

j (θt) (thick dashed red line) obtained after performing δA, one
must look for an unperturbed trajectory Ok(θt+t∗) such that OδA

j (θ0) = Ok(θt∗) like
those shown by solid lines.

In this way δOjk(θ0) = 0 by construction and the estimator defined by equation
(3.37) satisfies the initial condition χN(0) = 0. Moreover, for N,L → ∞, χN(t)
converges to χ(t) defined by equation (3.35) because the conditional average over the
L unperturbed trajectories in equation (3.39) converges to the NESS average ⟨. . .⟩0.
In figure 3.9(b) we show χN(t), computed using equation (3.39), for different values
of N and fixed L = 1 (solid lines) and L = 200 (dashed line), for the observable
O(θ) = −∂A ln ρ0(θ). As N increases for L = 1 the curves converge to a single profile
which must correspond to that of χ(t) ideally given by equation (3.35). The additional
condition average done for L = 200 smoothes the slightly fluctuating profile forN = 500
and L = 1 (thick solid blue line) resulting in the thick dashed solid line. Besides,
the subensemble of 200 unperturbed trajectories allows one to estimate the statistical
error of the computation of χ(t) through the standard deviation, as shown by the error
bars ±σχ(t) in figures 3.9(b) and 3.9(c). For comparison we plot in figure 3.9(c) the
raw estimate of χ(t) using directly the arithmetic average N−1

∑N
j=1(. . .) to compute

⟨. . .⟩δA in equation (3.35) for the same N = 500 perturbed trajectories OδA
j (θt) without

correcting the effect of the initial sampling. In this case the propagation of the initial
error of χ(0) gives rise to a very poor estimate of the integrated response function for
t > 0.

Finally we check whether for the finite perturbation δA = 0.05A the response of
the system around the NESS is linear. Two different measurements of χ(t) at δA =
0.05A and δA = −0.07A were performed following the numerical protocol previously
described. In figure 3.9(d) we show the results for the observable O(θ) = ϕ(θ). Within
the experimental error bars ±σχ(t) the experimental integrated response function χ(t)
is the same. The independence of χ(t) with respect to δA experimentally demonstrates
that the system is actually in the linear response regime with respect to δA at least
for |δA| ≤ 0.07A.

As we have studied in detail how to estimate correctly the linear response function
using a finite number of data, we can now analyze its relation with the fluctuations of
the corresponding observable measured in the nonequilibrium steady state.

3.4 Generalized fluctuation-dissipation relations

3.4.1 Lagrangian approach

We first study the relation between the fluctuations of a periodic observable in the NESS
and the linear response function around this NESS in the context of the Lagrangian
approach described in subsection 2.2.1. This formulation is based on the concept of
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local mean velocity, defined by

v0(θ) =
j

ρ0(θ)
. (3.40)

The comoving frame of v0(θ) represents the Lagrangian frame of the probability flow,
in analogy with a real hydrodynamic flow. For the particle in the toroidal optical trap,
v0(θ) corresponds to the mean velocity of the particle at a given position θ on the circle.
In other words, v0(θ) is given by the conditional average of the instantaneous velocity of
the particle θ̇ provided that the particle is located at θ: v0(θ) = ⟨θ̇|θ⟩0. In figure 3.10(a)
we plot the experimental mean local velocity as a function of θ for the nonequilibrium
steady state described in section 3.2. v0(θ) can be readily determined from the direct
measurement of j and ρ0(θ) using equation (3.40). Since v0 is proportional to the
inverse of ρ0, it attains its maximum value where ρ0 is minimum corresponding to the
the position on the circle that is rarely explored because the particle moves very fast.
Conversely, v0 reaches its minimum where the motion slows down and the particle stays
pinned longtime around the maximum of ρ0, before being activated by: 1) a sufficiently
large thermal fluctuation or 2) more likely by a series of small fluctuations acting in
the same direction.

We focus on the fluctuations of the periodic observable O(θ) = ϕ(θ) which is pro-
portional to the potential energy U(θ) of the particle in the toroidal optical trap:
ϕ(θ) = U(θ)/(γa2A). At thermal equilibrium the mean value of this observable would
be ⟨ϕ(θ)⟩eq = −1+kBT/(2γa

2A) = −0.993 which corresponds to the average potential
energy of the particle in the minimum of the potential well with depth U0 = γa2A given
by the equipartition relation ⟨U(θ)⟩eq = −U0 + kBT/2 = −68.3kBT . However, due to
the nonequilibrium conditions of the system the experimental value of the NESS average
is ⟨ϕ(θ)⟩0 = −0.068 corresponding to an average potential energy ⟨U(θ)⟩0 = −4.7kBT .

The fluctuations of ϕ(θ) can be characterized by the two-time autocorrelation func-
tion, defined by the NESS average ⟨. . .⟩0 as

C0(t) = ⟨ϕ(θ0)ϕ(θt)⟩0,
= ⟨ϕ(θu)ϕ(θu+t)⟩0, (3.41)

where the initial time u in the second equality can be chosen arbitrarily because of the
stationarity of the system. Then, in practice, an additional time average of equation
(3.41) is performed over a time window [0, tmax]

4 in order to improve the statistics of
the autocorrelation function of O(θ)

C(t) =
1

tmax

∫ tmax

0

⟨ϕ(θu)ϕ(θu+t)⟩0, du. (3.42)

The experimental profile of C(t) is plotted in figure 3.10(b). It exhibits oscillations due
to the periodicity of the observable O(θ) and it decays in a timescale of the order of the

4The only restriction in the choice of tmax is that the ensemble of averaging intervals [θ0, θtmax ]
must cover the whole circle [0, 2π) to sample correctly the steady state.
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Figure 3.10: (a) Mean local velocity v0 (solid line) and NESS density ρ0 (dashed
line) as functions of θ. (b) Autocorrelation function of the observable O(θ) = ϕ(θ) as
a function of the time lag t. (c) Comparison between the different terms on the left
hand side of equation (3.43) involving spontaneous NESS fluctuations. (d) Comparison
between the experimental left-hand side and right hand-side of the theoretical modified
fluctuation-dissipation relation (3.43).
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mean rotation period of the particle: τr ∼ j−1 = 26.6 s. Because of the presence of the
nonvanishing current j the particle motion becomes strongly correlated: the relaxation
timescale of the fluctuations of O(θ) is much larger than the relaxation time that would
be observed at thermal equilibrium. In such a case one would obtain τr = (2A/rad2)−1

= 0.57 s.
Next, we establish the connection between the spontaneous NESS fluctuations of

O(θ) characterized by C(t) with the linear response function χ(t) of O(θ) at time t ≥ 0
after performing the dynamical step perturbation of the potential amplitude A at time
t = 0, as described in Subsection 2.2.1. According to the Lagrangian formalism, the
integral version of the modified fluctuation-response relation (2.26) for the observable
O(θ) when following this procedure reads

C(0)− C(t)−B(t) = Dχ(t). (3.43)

The term B(t) in equation (3.43) is given by

B(t) ≡
∫ t

0

b(t− s) ds, ,

=

∫ t

0

⟨O(θt)v0(θs)∂θϕ(θs)⟩0 ds, (3.44)

and takes into account the violation of the usual fluctuation-dissipation theorem around
thermal equilibrium due to the broken detailed balance for NESS, reflected in the mean
local velocity v0. Then B(t) can be regarded as a nonequilibrium corrective term of
the fluctuation-dissipation theorem so that at thermal equilibrium B(t) = 0. Note
that this corrective term must be measured in the unperturbed NESS. To determine
B(t) for the observable O(θ) = ϕ(θ) in the current nonequilibrium experiment we
first compute the correlation function b(t − s) = ⟨ϕ(θt)v0(θs)∂θϕ(θs)⟩0 in equation
(3.44) using the instantaneous values of the mean local velocity shown in figure 3.10(a).
The instantaneous values of the spatial derivative ∂θϕ(θ), which is a slightly distorted
cosine function, is accurately computed using the polynomial fit of figure 3.7(c). In
figure 3.10(c) we plot the resulting experimental profile of B(t) using equation (3.44)
where an additional average over a time window [0, tmax] like in equation (3.42) was
also performed because of the stationarity of the particle dynamics. As expected,
due to the far from equilibrium conditions of the NESS experiment, the corrective
term B(t) is non-negligible compared to C(0) − C(t): both are of the same order of
magnitude for all t ≥ 0. Then the difference C(0)−C(t)−B(t), which represents and
indirect measurement of the linear response function according to equation (3.43), is
one order of magnitude smaller than the terms C(0) − C(t) and B(t) separately, as
shown in figure 3.10(c). On the other hand, we perform the direct measurement of the
integrated response function χ(t) for the observable O(θ) = ϕ(θ) computed following
the dynamical procedure described by equation (3.39). The comparison between the
right hand side and the left hand side of equation (3.43) is shown in figure 3.10(d),
for the time lag interval 0 ≤ t ≤ 6.67 s. As expected, the equilibrium-like relation
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Figure 3.11: (a) Lagrangian trajectory θL (blue solid line) of the comoving frame of the
mean local velocity obtained by a numerical solution of equation (3.46) and a typical
stochastic trajectory θt of the particle measured in the Eulerian frame (red dashed
line). The figure sketches the linear transformation (3.47) applied to θt to obtain its
values ϑt measured in the Lagrangian frame. (b) Probability density function of the
particle position measured in the Eulerian (black solid line) and in the Lagrangian
frame (∗). Inset: Example of trajectory measured in the Eulerian (upper panel) and
in the Lagrangian frame (lower panel).

provided by the usual fluctuation-dissipation theorem (2.16) is strongly violated in this
NESS because of the broken detailed balance, with the correlation term C(0) − C(t)
being one order of magnitude larger than the response term Dχ(t). However, with the
corrective term B(t) associated to the probability current subtracted, C(0)−C(t)−B(t)
shown in solid blue line in figure 3.10(c), becomes equal to Dχ(t), as shown in the
expanded view of figure 3.10(d). We observe that, within the experimental error bars,
the agreement between both terms is quite good, verifying the integrated form of
the modified fluctuation-dissipation relation (3.43). Equation (3.43) is checked only
for the first ≈ 4 s because after this time the evaluation of χ(t) is affected by large
errors associated to the finite sampling at t = 0 when the perturbation δA is switched
on, as discussed in section 3.3. Indeed, for t > 6.67 s the difference between Dχ(t)
and C(0) − C(t) − B(t) become increasingly significant with the error bars of Dχ(t)
comparable or larger than the mean values (not shown).

As mentioned in subsection 2.2.1, the validity of equation. (3.43) for the fluctuations
of the angular position of the silica particle in NESS gains a transparent interpretation
in the Lagrangian frame of the mean local velocity v0(θ) along the circle. This is
analogous to the simplicity gained in hydrodynamics when passing to the Lagrangian
frame of the flow. One of the predictions of the Lagrangian analysis of systems in
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NESS is that, although the trajectories in the Eulerian (laboratory) and the Lagrangian
frame of v0(θ) are quite different, their average probability density is the same in the
two frames [53]. In order to check this unexpected theoretical prediction for the NESS
experimental data, for each particle trajectory θt measured in the Eulerian frame we
compute the corresponding one ϑt measured in the comoving frame of the mean local
velocity v0(θ). For this purpose we consider that a Lagrangian trajectory θL moving
with v0(θ), i.e. static with respect to the comoving frame of v0(θ), evolves in time as

dθL(t)

dt
= v0(θL(t)). (3.45)

Then by setting the initial condition θL(0) = 0 without loss of generality, according
to equations (3.45) and (3.40) the Lagrangian trajectory of v0(θ) must satisfy at time
t ≥ 0 the equation

t =
1

j

∫ θL(t)

0

ρ0(θ) dθ,

=
1

j
P (θL(t)), (3.46)

where P is the cumulative distribution function of the stochastic variable θ. Then
equation (3.46) yields the function tL ≡ t(θL) that must be inverted in order to find
the time evolution of a Lagrangian trajectory (3.45). The period of the function θL(t)
is T ≡ tL(2π) = j−1 = 26.6 s which corresponds to the mean rotation period of the
particle along the toroidal optical trap. Figure 3.11(a) shows the dependence of θL on
t after inverting equation (3.46) for the experimental NESS data. Using this curve, the
trajectories of the particle position ϑt measured in the Lagrangian frame are computed
in the following way. For a given particle position θt∗ measured in the Eulerian frame
at time t∗ one must find the point on the circle from which the Lagrangian flow would
arrive at time t∗ at θt∗ . In other words, one must take the time tL(θt∗) when the
Lagrangian trajectory θL is at θt∗ . Then, the stochastic trajectory ϑ at time t is given
by the nonlinear transformation

ϑt = θL([tL(θt)− t]) (3.47)

where
[tL(θt)− t] = tL(θt)− t mod T, 0 ≤ [tL(θt)− t] < T, (3.48)

as sketched in figure 3.11(a). This nonlinear transformation satisfies ϑt = θL(0) = 0
when the stochastic trajectory θt exactly matches θL(t). By construction, the trans-
formed trajectories defined by equation (3.47) satisfy the initial condition ϑ0 = θ0.
Note that due to the strongly nonlinear dynamics of θL (3.45), in general the stochas-
tic process ϑt is nonstationary and it may look very different from the process θt. The
inset of figure 3.11(b) points out the difference between a trajectory measured in the
Eulerian frame and the same trajectory measured in the Lagrangian frame transformed
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according to equation (3.47). Upon applying the nonlinear transformation (3.47) to
the 200 experimental NESS time series θt and computing the histogram of the result-
ing tranformed time series, one obtains the probability density function ϱ0(ϑ) of the
stochastic variable ϑ. In figure 3.11(b) we plot ϱ0(ϑ) (star symbols) and we compare
it with ρ0(θ) (solid line) showing that even when the stochastic processes θt and ϑt are
completely different, the corresponding densities are the same. This results provides
an experimental evidence that the passage to the comoving frame of the mean local
velocity allows a rather complex nonequilibrium stationary dynamics like that modeled
by equation (3.19) to exhibit a simple physical picture: an equilibrium-like nonstation-
ary dynamics can be restored in this frame where detailed balance holds relative to
the invariant density ϱ0(ϑ), as described in chapter. Moreover this is in agreement
with the experimental verification of the modified fluctuation-response formula (3.43).
It turns out that when measuring the observables that are time independent in the
Lagrangian frame of the mean local velocity, the term B(t) vanishes because in that
frame the probability current is zero. Therefore the fluctuations and the linear response
are simply linked by the equilibrium-like formula

∂sCL(t, s) = kBTRL(t, s), (3.49)

where CL and RL are the autocorrelation function defined in equation (3.41) and the
response function measured in the Lagrangian frame. Equation (3.49) is close to that of
the equilibrium fluctuation-dissipation formula except for the lack of the time transla-
tion invariance of the functions involved due to the nonlinear coordinate transformation
(3.47).

3.4.2 Entropic-frenetic approach

We now analyze the same experimental NESS time series θt and those θδAt upon ap-
plying the dynamical perturbation (3.34) for the fluctuations and response of the same
observable O(θ) = ϕ(θ) as before in the context of the entropic-frenetic approach de-
scribed in Subsection 2.2.2. This formulation is based only on time-symmetric and
anti-symmetric properties of the fluctuations and does not involve directly the proba-
bility density ρ0(θ). For the dynamical perturbation of the potential amplitude (3.34)
it involves the following quantities characterizing the NESS fluctuations of O(θ):

• The entropic term: this is related to the autocorrelation function C(t) of O(θ),
defined in equations (3.41) and (3.42). The origin of this term can be traced
back to time-antisymmetric properties of the fluctuations and can be regarded
as a correlation function between O(θ) and the excess of entropy γa2δAϕ(θ)/T
produced by the heat dissipated into the thermal bath due to perturbation δA
with respect to the NESS.

• The frenetic term: this is a term related to the time-symmetric part of the action
defined for the perturbed process with respect to the unperturbed NESS process
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(see Subsection 2.2.2), namely the excess of dynamical activity or frenesy. The
frenesy can be regarded as a generalized escape rate of a stochastic trajectory
of the particle from a given phase space point (θ, θ̇). For the driven diffusion of
the particle on the toroidal optical trap, the instantaneous value of the frenesy
at time s associated to the perturbation (3.34) is given by

ψ(θs) =
1

D
Lϕ(θs), (3.50)

where
L = [F − A∂θϕ(θ)]∂θ +D∂2θ , (3.51)

is the generator of the Langevin dynamics (3.19). The integrated excess in dy-
namical activity

Ψ(t) =

∫ t

0

ψ(θs)δA ds, (3.52)

quantifies how frenetic is the motion in the perturbed process with respect to the
unperturbed one during a time interval [0, t]. The frenetic term can be regarded
as a correlation function between O(θ) and the frenesy ψ(θ) given by equation
(3.50).

Specifically, in the integrated version of the fluctuation-dissipation relation (2.34) pro-
vided by this formulation, h = −δA is the perturbation and V (θ) = ϕ(θ) is the observ-
able conjugated to the perturbation with respect to the energy. Then equation (2.34)
reads in this case

E(t) +K(t)

2
= Dχ(t), (3.53)

where the entropic and frenetic terms are explicitly given by the expressions

E(t) = C(0)− C(t), (3.54)

K(t) = − D

δA
⟨O(θt)Ψ(t)⟩0,

= −D
∫ t

0

⟨O(θt)ψ(θs)⟩0 ds,

= −
∫ t

0

⟨[ϕ(θt)(F − Aϕ′(θs))ϕ
′(θs) +Dϕ′′(θs)]⟩0 ds, (3.55)

respectively. In equation (3.53) the integrated linear response function χ(t) is the same
as defined in equation (3.35) for the observable O(θ) = ϕ(θ) because we focus on the
same perturbation protocol (3.34). It is clear that in this approach we need to know
accurately the potential profile ϕ(θ) because the integrand of equation (3.55) involves
the instantaneous values of its first two derivatives ϕ′(θ) and ϕ′′(θ). In order to take
into account the non-sinusoidal distortion of the potential profile in the computation
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Figure 3.12: (a) Comparison between the experimental entropic term (black dotted-
dashed line), the frenetic term (turquoise dashed line), and their average (solid blue
line) appearing on the left-hand side of equation (3.53) for the Brownian particle in
a NESS. (b) Comparison between the experimental left-hand side (solid blue line,
measured at NESS) and the right-hand side (red dashed line, obtained by the dynamical
protocol (3.34)) of equation (3.53).

of K(t), we use the local polynomial fit of ϕ and its derivatives shown in figure 3.7(c).
Then the instantaneous value of ϕ(n)(θt) at time t (n = 0, 1, 2) is approximated by
ϕ
(n)
Loc(θt) either for an unperturbed or a perturbed trajectory.

The resulting experimental curves E(t) and K(t) as functions of the integration
time t are plotted in figure 3.12(a). At thermal equilibrium (F = 0) one should find
that E(t) = K(t) for all t ≥ 0 because of the time reversibility and stationarity of
the two-time correlations leading to the equilibrium fluctuation-dissipation relation
Dχ(t) = E(t). On the other hand, in the present case K(t) reaches negative values
of the same order of magnitude as the positive values of E(t). This reflects the ex-
perimental conditions far from thermal equilibrium of the system. The curve for K(t)
represents the first experimental result concerning the direct measurement of the dy-
namical activity along a trajectory. The average of these two quantities [E(t)+K(t)]/2
is one order of magnitude smaller. This average agrees very well with the direct mea-
surement of the integrated linear response function χ(t) within the experimental error
bars ±σχ, as shown in figure 3.12(b). All is consistent with the analysis performed in
the previous section, but the approach here is quite different. Here we measure directly
explicit correlation functions E(t) and K(t) without recourse to and indeed without
need for the expression for the stationary distribution ρ0(θ). Note that in this case the
experimental density profile ρ0(θ) (and not its analytical expression) is used in practice
only for calibration purposes to determine the experimental parameters A and F and
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Figure 3.13: (a) NESS probability density function of θ measured at three different
values of the potential amplitude: A = 0.87 rad2 s−1, A1 = A + 0.05A and A2 =
A − 0.07A and fixed F = 0.85 rad s−1. The experimental profile of the observable
Oρ(θ) defined in equation (3.57) is computed as a discrete time derivative using these
NESS densities. (b) Comparison between the experimental left-hand side (black solid
line) and the right-hand side (red dashed line) of the generalized fluctuation-dissipation
relation (3.56).

the profile of ϕ(θ). Once these parameters are known the data analysis necessary to
compute E(t) and K(t) completely relies on the dynamics, i.e. the measurement of the
time series θt.

3.4.3 Probability density approach

This alternative approach to fluctuation-response around a stationary state, derived
from the Hatano-Sasa relation (see Subsection 2.2.3), exploits the properties of the
stationary density ρ0(θ) without any need of a model for the dynamics of the system.
It only requires the knowledge of the local dependence of ρ0(θ) on the control parameter
that is perturbed to determine the linear response function around a given NESS. In
the present experiment this parameter is the potential amplitude A. Then we take
adventage of the calibration procedure described in subsection in order to know the
dependence of the NESS probability density on A:

ρ0(θ, A) = ρ0(θ) at fixedA,

like the three density profiles at different values of A shown in figure 3.13(a). Then,
according to this formulation the generalized fluctuation-dissipation relation for the
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perturbation procedure (3.34) reads

⟨Oρ(θt)Oρ(θ0)⟩0 − ⟨Oρ(θt)Oρ(θt)⟩0 = χρ(t). (3.56)

Equation (3.56) involves an observable directly related to the density ρ0 that is fixed
by the choice of the perturbed parameter A

Oρ(θ) = −∂A ln ρ0(θ, A). (3.57)

In practice this observable is computed as a discrete three-point derivative of − ln ρ0(θ, A)
at two different NESS around that at A = 0.87 rad2 s−1. The experimental profile of
Oρ(θ) is shown in figure 3.13(a) (blue solid line). The left-hand side of equation (3.56)
involving the autocorrelation function of this observable measured in NESS is plotted
in figure 3.13(b) (black solid line).

On the other hand, the integrated response function on the right hand side of
equation (3.57) is explicitly given by

χρ(t) =
⟨Oρ(θt)⟩δA − ⟨Oρ(θt)⟩0

δA
. (3.58)

Upon applying the protocol described in section to estimate the averages in the nu-
merator of equation (3.58) from a finite number of realizations of δA, one obtains the
experimental response curve χρ(t) shown in figure 3.13(b) (red dashed line). Once
again, the data verifies the generalized fluctuation-response formula (3.56) even when
it involves the autocorrelation function of an observable (3.57) different from those
used in the previous formulations (3.43) and (3.53). This result verifies the fact that
the experimental conditions of the Brownian particle in the toroidal optical trap fulfill
the hypothesis needed for the validity of equation (3.56): the degrees of freedom of
system (the position of the Brownian particle) have Markovian dynamics in a steady
state and the perturbation δA is small enough to be in the linear response regime. In
addition, note that provided that these assumptions are verified, no information on the
properties of the bath (e.g. D) or on the model of the system explicitly appears in
equation (3.56). The only price to pay for this simple fluctuation-response description
is that the NESS density ρ0 has to be accurately mesured as a function of the main
control parameter A, which implies additional NESS measurements. Otherwise the
observable (3.57) can not be computed properly.

We point out that, as explained in Subsection 2.2.3 the Hatano-Sasa-based fluctuation-
dissipation relation (3.56) can be regarded as a special case of the more general formula
derived in [24] (see equation (2.40)). This general formulation involves also the mea-
surement of the observable (3.57) in NESS. However, unlike equation (3.56) which
is restricted to the linear response of the special observable Oρ(θ), the more general
relation (2.40) allows one to compute the response function χ(t) for any observable
O(θ). Then we can exploit this generality to compare directly the probability density
approach with the Lagrangian and the entropic-frenetic ones. Once again we focus on
the fluctuations and the linear response of the potential energy observable O(θ) = ϕ(θ)
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Figure 3.14: (a) Comparison between the experimental left-hand side (blue solid line)
and right-hand side (red dashed line) of equation (3.59). (b) Comparison between the
experimental unperturbed NESS terms involved in the different fluctuation-dissipation
formulations to estimate indirectly the integrated linear response function χ(t). Inset:
expanded view at short time lags compared to the direct measurement of χ(t) (◦) by
performing the dynamical perturbation of A (3.34).
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when perturbing in time A according to the procedure (3.34). In such a case the
integrated GFDR (2.40) reads

⟨ϕ(θt)Oρ(θt)⟩0 − ⟨ϕ(θt)Oρ(θ0)⟩0 = χ(t), (3.59)

where the integrated response function χ(t) of ϕ(θ) is different from χρ(t) defined
in equation (3.58). In figure 3.14(a) we plot the left-hand side of equation (3.59)
computed using the unperturbed NESS trajectories θt. We also show the integrated
response function χ(t) already computed in the previous formulations. As expected,
the generalized fluctuation-dissipation formula (3.59) is verified within the experimental
error bars of the response χ(t). However, in this approach the computation of the NESS
correlation term (left-hand side of equation (3.59)) is more subjected to experimental
errors than the Lagrangian and the entropic-frenetic approaches. This is because of
the computation of the observable Oρ(θ) in equation (3.57) using a discrete derivative.
The initial numerical error done in this approximation gives rise to a slightly worse
agreement between the NESS correlation and the response of equation (3.59) compared
to that of figures 3.10(d) and 3.12(b).

In figure 3.14(b) we compare the unperturbed NESS quantity on the left-hand side
of the fluctuation-dissipation relation (3.59) with those that appear in the Lagrangian
(3.43) and the entropic-frenetic (3.53) approaches to estimate the linear response func-
tion. Even when the observables involved the corresponding NESS correlation functions
are completely different, the agreement between the three experimental curves is ex-
cellent for t . 20 s. Then for t & 20 s they exhibit deviations that increase as t
increases. Nevertheless, these deviations are induced by the computation of the dis-
crete time integrals (3.44) and (3.55) and the discrete derivative (3.57). Indeed, the
very fact that the excellent agreement between the three curves for t . 20 s and with
the direct measurement of χ(t) for t . 4 s (inset of figure 3.14(b), circles) indicates that
this is only a numerical artifact. This agreement represents an experimental test of the
equivalence of the three different generalized fluctuation-dissipation approaches around
a NESS previously presented. In the following section we discuss in detail the physical
interpretation of this equivalence for the Brownian particle in the toroidal optical trap.

3.5 Discussion
We now discuss the relation between the different GFDRs presented in the previous sec-
tion. Due to the minimal non-trivial nature of the NESS experiment, a very simple and
transparent interpretation of the link between these relations is possible. The intuitive
starting point for this discussion is the formulation based on stochastic thermodynam-
ics as it represents the extension of thermodynamic concepts to small systems. See
subsection 2.2.4 and Appendix C for a more detailed derivation of the equations pre-
sented in this section. We recall that the fundamental observable in this approach is
the stochastic entropy production Sst. For the NESS dynamics of the particle position
θ, the instantaneous value of the stochastic entropy at time s along a specific trajectory
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θs is by definition
Sst(θs) = −kB ln ρ0(θs). (3.60)

According to stochastic thermodynamics, the stochastic entropy (3.60) can be expressed
as the difference between the total entropy production Stot minus the entropy produc-
tion of the medium Sm: Sst = Stot−Sm. For the driven diffusion on the circle modeled
by the Langevin equation (3.19), the total entropy production rate reads

Ṡtot(θs) =
v0(θs)γa

2θ̇s
T

,

=
γa2v0(θs)

T
[−A∂θϕ(θs) + F + ζs] . (3.61)

whereas the entropy production rate due to the power dissipated into the thermal bath
is given by

Ṡm(θs) = −γa
2

T

d

ds
[Aϕ(θs)− Fθs] . (3.62)

Then, by taking the derivative with respect to A in equations (3.61) and (3.62) one
finds that the variable conjugate to the perturbation A→ A+ δA with respect to the
stochastic entropy production rate, defined in equation (2.45), is

X(θ) =
γa2

T

[
ϕ̇(θ)− v0(θ)∂θϕ(θ)

]
. (3.63)

Finally, by inserting the variable X(θ) of equation (3.63) into the stochastic entropy
fluctuation-dissipation formula (2.44) we recover the differential form of the formulae
(3.43) and (3.44) provided by the Lagrangian formulation

DR(t− s) = ∂s⟨ϕ(θt)ϕ(θs)⟩0 − ⟨ϕ(θt)v0(θs)∂θϕ(θs)⟩0. (3.64)

We stress that even when both approaches are theoretically equivalent, the observables
involved in the NESS correlation functions are not the same. In the first case, in order
to measure directly the variable X(θ) one must determine the dependence of the NESS
density ρ0 on the control parameter A. Then at fixed A one must compute the time
derivative of the stochastic entropy −kB ln ρ0(θs, A) evaluated along each stochastic
trajectory θs:

Ṡst(θs) =
d[−kB ln ρ0(θs, A)]

ds
.

Then it follows that the instantaneous value at time s of the variable X(θ) involved in
the GFDR (2.44) is operationally given by the formula

X(θs) = kB∂A

[
d[ln ρ0(θs, A)]

ds

]
.

However, in general the direct measurement ofX is difficult in experiments if the system
of interest has many coupled degrees of freedom because one should need to measure
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their joint probability density. In addition, even if the joint density is experimentally
accessible, one must perform several measurements to determine its dependence on the
control parameter used in the perturbation protocol. By contrast, if the dynamics of
the system can be modeled in terms of the perturbed control parameter, the stochastic
entropy production can be expressed in terms of observables of the model itself and the
mean local velocity, like in equations (3.61) and (3.62). Note that in this way there is
no need to determine the dependence of the NESS on A. Both approaches involve the
autocorrelation function of the observable ϕ(θ) because this term accounts indirectly
for the dissipation with respect to the perturbation as in the equilibrium fluctuation-
dissipation theorem (2.16). On the other hand, the corrective term involving the mean
local velocity quantifies the nonequilibrium nature of the system. This term is closely
related to the heat that must be irreversibly dissipated to maintain the NESS. In
the first case, it can be interpreted as the existence of a nonvanishing total entropy
production rate (3.62) with ⟨Ṡtot⟩0 > 0 due to the broken detailed balance of the
dynamics. In the second case, it can be regarded as the existence of a probability
current (3.23), similar to a hydrodynamic current, generated by the nonconservative
force F .

Now we discuss the connection with the entropic-frenetic approach based on sym-
metry arguments. Causality implies that at time t < s, before perturbing the initial
NESS, the impulse response is zero: R(t−s) = 0. Then for the generalized fluctuation-
dissipation relation (2.34) to be valid for all s and t, one needs

∂t⟨ϕ(θs)ϕ(θt)⟩0 = ⟨ϕ(θs)Lϕ(θt)⟩0 for t < s,

= ⟨ϕ(θt)L†ϕ(θs)⟩0, (3.65)

where L† is the adjoint operator of L. The last equality in (3.65) holds because L†

generates the time-reverse process, so L→ L† upon interchanging the indices t and s.
Then by subtracting equation (3.65) from the differential form of equation (3.53)

DR(t− s) =
1

2
[∂s⟨ϕ(θt)ϕ(θs)⟩0 − ⟨ϕ(θt)Lϕ(θs)⟩0] , (3.66)

the entropic-frenetic fluctuation-dissipation formula (3.66) can be rewritten as

DR(t− s) =
1

2
[∂s⟨ϕ(θt)ϕ(θs)⟩0 − ∂t⟨ϕ(θt)ϕ(θs)⟩0]−

1

2
⟨ϕ(θt)(L− L†)ϕ(θs)⟩0. (3.67)

For a NESS, the time translational invariance implies that

∂s⟨ϕ(θt)ϕ(θs)⟩0 = ∂s⟨ϕ(θt−s)ϕ(θ0)⟩0 = −∂t⟨ϕ(θt)ϕ(θs)⟩0,

so the first term on the right-hand side of equation (3.67) becomes equal to the NESS
quantity ∂s⟨ϕ(θt)ϕ(θs)⟩0. This is exactly the term associated to the correlation between
the observable of interest and the conjugate variable to the entropy production rate of
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the medium ∝ ϕ̇ according to equation (3.62), i.e. the entropy excess with respect to
the perturbation. On the other hand, the second correlation function on the right hand
side of equation (3.67) represents the correction due to the fact that the unperturbed
system is in a nonequilibrium state. At equilibrium this term vanishes due to the time-
reversibility of the dynamics: O(θt)LO(θs) = O(θt)L

†O(θs), recovering the equilibrium
fluctuation-dissipation relation (2.16). However, for the driven diffusion on the circle
(3.19) in a NESS, the second term on the right-hand side of equation (3.67) reflects
the breakdown of the time-reversal symmetry by the nonzero value of F . In this case
the generator L and its adjoint operator is L† satisfy [22, 55]

L− L† = 2v0(θ)∂θ. (3.68)

By substituting the expression (3.68) of the operator L − L† into equation (3.66), we
recover the previous generalized fluctuation-dissipation formula (3.64). Note that in the
entropic-frenetic approach, the NESS correction can be regarded as a measure of the
time irreversibility and of the broken detailed balance of the system since the operator
L− L† does not annihilate the last correlation function of equation (3.67).

Finally, the relation between the stochastic entropy approach and that based on the
probability density is straightforward. It turns out that the variable X(θ) involved in
the NESS correlation function of the former is closely related to the observable Oρ(θ)
defined in equation (3.57) because for every stochastic trajectory θs we have

X(θs) = kB∂A

[
d

ds
[− ln ρ0(θs, A)]

]
,

= kB
d

ds
[−∂A ln ρ0(θs, A)],

= kB
dOρ(θs)

ds
. (3.69)

Accordingly, in the present experiment we actually measured the stochastic entropy
production along the trajectories of the Brownian particle following the probability
density approach. Then we were able to directly probe the stochastic-entropy-based
GFDR (2.44) without recourse to any model of the dynamics but only the experimental
measurement of the probability density at different values of A. Once again, we point
out that this approach is suitable only when the NESS joint probability density of the
degrees of freedom of interest can be accurately measured as a function of the perturbed
control parameter (e.g. systems with a single degree of freedom or linear systems with
multiple degrees of freedom). Otherwise the stochastic entropy production observable
X is not easily accessible in experiments.

According to the previous discussion sketched from our simple nonequilibrium ex-
periment, in general a suitable approach can be chosen to measure the fluctuations or
the linear response around a NESS depending on the accessible observables. In table
3.1 we summarize the main features of each formalism and some particular examples
when they can be relevant for experimental measurements:
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Table 3.1: Generalized fluctuation-dissipation relations around a NESS
Formulation Main features Relevant examples
Stochastic •Thermodynamic interpretation. • Linear systems with many

thermodynamics •No model needed provided that degrees of freedom
the NESS density can be (e.g. harmonic chains).
accurately determined •Driven diffusive processes
as a function of with a single degree of
the control parameters. freedom (e.g. molecular

motors).
Lagrangian •Hydrodynamic interpretation. •Driven diffusive processes

•Equilibrium-like form in the with a finite number of
Lagrangian frame of the mean of degrees of freedom and
local velocity. known interacting potentials
•Model of dynamics and (e.g. simple sheared polymer
NESS density are required. suspensions).

Entropic-frenetic •Symmetry interpretation. •Nonlinear stochastic systems
•No explicit knowledge of the with several degrees of
NESS density is required provided freedom (e.g. coupled
that the generator of the dynamics anharmonic oscillators in
is known. contact with baths at

different temperatures).

It is interesting to note that besides the broad freedom in the choice of the observ-
ables depending on the experimental conditions, new observables satisfying GFDRs can
be constructed in the following way. If there is a set of n observables {Υj, j = 1, . . . , n}
satisfying

R(t− s) = ⟨O(θt)Υj(θs)⟩, j = 1, . . . , n, (3.70)

then any linear combination

Y (θ) =

∑n
j=1 ajΥj(θ)∑n

j=1 aj
, (3.71)

also satisfies a GFDR of the form (3.70), [23]. This remarkable result can be ilustrated
by the experimental data of the Brownian particle in the toroidal optical trap. By
choosing the observables

Υ1(θ) = ϕ̇(θ)− v0(θ)∂θϕ(θ), Υ2(θ) =
1

2
ϕ̇(θ)− 1

2
Lϕ(θ),

appearing in the Lagrangian and the entropic-frenetic formulae (3.64) and (3.66), re-
spectively, we can define the new observable

Y (θ) = 2Υ2(θ)−Υ1(θ),

= −D[∂2θϕ(θ) + ∂θ ln ρ0(θ)∂θϕ(θ)]. (3.72)
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Figure 3.15: (a) Experimental profile of the observable Y (θ) defined in equation (3.72).
(b) Comparison between the direct measurement of the integrated linear response func-
tion χ(t) and the integral of the NESS correlation function on the right-hand side of
equation (3.73).

where we have used the explicit expressions of v0(θ) and L. Unlike the observables
Υ1(θ) and Υ2(θ), the observable Y (θ) only involves diffusive terms. The experimental
profile of Y (θ) for the Brownian particle in the toroidal optical trap is shown in figure
3.15(a). Then the corresponding form of the fluctuation-response formula must read

R(t− s) =
1

D
⟨ϕ(θt)Y (θs)⟩0,

= −⟨ϕ(θt)[∂2θϕ(θs) + ∂θ ln ρ0(θs)∂θϕ(θs)]⟩0, (3.73)

that does not depend explicitly on the control parameters A,F,D of Langevin model
but only the potential profile and the NESS density. In figure 3.15(b) we plot the result
for the integrated version of equation (3.73) using the independent measurement of
the NESS unperturbed and the perturbed particle trajectories following the Heaviside
procedure (3.34). The generalized fluctuation-dissipation formula (3.73) is also verified
by the experiment even when the NESS correlation function contains the term ∂θρ0(θ)
that does not explicitly appear in the previous formulations. The experimental validity
of (3.73) is in agreement with the linear property previously discussed. This property
might be very useful in more general situations when an observable can not be easily
determined in practice, but a suitable linear combination can restore the generalized-
fluctuation dissipation relation into a more accessible form.
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3.6 Application example
We illustrate the usefulness of the application of the previous generalized fluctuation-
response formulations to study the temporal behavior of the mean potential energy of
the particle ⟨U(θt)⟩h under small external perturbations hs more intricate than a simple
Heaviside function. This is done without carrying out the different physical realizations
of hs using only the unperturbed NESS time series θt of the particle position. We
concentrate on a sinusoidal perturbation starting at time s = 0

hs = h0 sin(2πfs), (3.74)

either to the phase or to the amplitude of the potential around the steady state.
As all the parameters (A,F,D) describing the Langevin dynamics of the particle

(3.18) are known, in the following analysis we will follow the entropic-frenetic approach.
First, we consider the case of a small phase perturbation

αs = α0 sin 2πf0s, α0 ≪ 1. (3.75)

Then, the static potential is perturbed in time as

Aϕ(θ) → Aϕ(θ + αs),

≈ Aϕ(θ) + Aϕ′(θ)αs, (3.76)

so that h0 = −Aα0 in equation (3.74) and the variable conjugate to the perturbation
hs = −Aαs is V = ϕ′(θ). According to the generalized relation (2.34), one can de-
termine the integrated response function χ(t) of the energy observable O(θ) = ϕ(θ)
through the NESS quantity [E(t)+K(t)]/(2D) by using the right V , Q and the gener-
ator L (3.51). The resulting curves E(t), K(t) and [E(t) +K(t)]/(2D) are plotted in
figure 3.16(a). Next, by definition the experimental impulse response function R(t− s)
is simply given by

R(t− s) = ∂tχ(t− s),

=
∂tE(t− s) + ∂tK(t− s)

2D
. (3.77)

The impulse response function (3.77) must be convolved with hs = −Aαs given by
equation (3.74)

⟨ϕ(θ)⟩h = ⟨ϕ(θ)⟩0 +
∫ t

0

R(t− s)hs ds, (3.78)

in order to obtain the mean value of ϕ(θ) upon switching on the sinusoidal phase
perturbation. In this way we find that the mean potential energy of the particle
oscillates around the NESS value ⟨U(θ)⟩0 = −4.7kBT as shown by the dashed blue line
in figure 3.16(b) for α0 = 0.05 rad and f = 1 Hz. The oscillations of ⟨U(θt)⟩ (blue
dashed line) exhibit a slow transient (∼ 15 s), which corresponds to the relaxation
time of the NESS correlations, see figure 3.10(b). At this excitation frequency f , as t
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Figure 3.16: (a) Integrated response function of the observable O = ϕ(θ) for a small
perturbation of the potential phase around a NESS as a function of the integration time
t computed through the unperturbed NESS quantity [E(t)+K(t)]/2 . Inset: expanded
view of [E(t) +K(t)]/2. (b) Sinusoidal time-dependent perturbation −hs (solid black
line) of the static potential Aϕ. Resulting mean potential energy of the Brownian
particle for a phase perturbation (dashed blue line) and an amplitude perturbation
(dotted red line) for −h0/A = 0.05 and f = 1 Hz. (c) Asymptotic values of the
oscillation amplitude of the potential energy and (d) the delay time with respect to
−hs for each kind of perturbation. The black dashed lines represent the values that
would be obtained around thermal equilibrium (F = 0), given by equations (3.82) and
(3.83).
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increases the oscillations settle around ⟨U(θ)⟩0 with constant amplitude ∆U ≈ 0.2kBT
and delay time5 ∆t ≈ 0.23 s with respect to −hs (black solid line). This value of ∆t
corresponds to a phase shift of 2πf∆t = 1.45 rad between the oscillatory perturbation
−hs and the resultant ⟨U(θt)⟩.

We now consider a sinusoidal time-dependent perturbation to the potential ampli-
tude:

δAs = δA0 sin(2πfs). (3.79)
In this case, the the perturbation parameter h0 in equation (3.74) is h0 = −δA0 and
the variable conjugate to the perturbation with respect to the energy is V (θ) = ϕ(θ).
We choose the amplitude perturbation (3.79) with the same strength (−h0/A = 0.05)
and frequency (f = 1 Hz) as the phase perturbation (3.75). Following the same
procedure using the experimental values of [E +K]/(2D) shown in figure 3.12(c), we
find a different qualitative behavior of ⟨U(θt)⟩h. In figure 3.16(b) we show that at the
beginning of the perturbation the mean potential energy (dotted red line) responds
in the opposite direction of the perturbation −hs. Then, there is a transient regime
for 0 < t . 15 s due the nonequilibrium nature of the unperturbed steady state. As
t increases, ⟨U(θ)⟩h relaxes to a periodic behavior with oscillations around the NESS
value ⟨U(θ)⟩0 of constant amplitude ∆U ≈ 0.5kBT and a delay time ∆t ≈ 0.26 s
with respect to the perturbation −hs. This delay time corresponds to a phase shift of
2πf∆t = 1.63 rad.

For both types of perturbations we can write the asymptotic dependence of ⟨U(θt)⟩h
on t & 15 s as

⟨U(θt)⟩h = ⟨U(θt)⟩0 ±∆U sin[2πf(t−∆t)], (3.80)
where the positive and negative signs stand for the phase and amplitude perturbations,
respectively. Hence, in both cases the dynamics of the system settles into a new
oscillatory nonequilibrium state around the original NESS for t & 15 s. Note that this
new state can be regarded as a NESS when the time is measured in multiples of 1/f .
The values of ∆U and ∆t in equation (3.80) depend on the excitation frequency f . In
figures 3.16(c) and 3.16(d) we show this dependence. We now compare these far-from-
equilibrium results with those that would be obtained when applying the oscillatory hs
(3.74) around the corresponding situation at thermal equilibrium (F = 0). In such a
case the particle motion would be tightly confined to the harmonic part of the potential
around the minimum θm = 3π/2: ϕ(θ) ≈ −1 + (θ − θm)

2/(2 rad2). After some algebra
using this approximation one finds the expression for ⟨U(θt)⟩h when perturbing the
system in thermal equilibrium

⟨U(θt)⟩h = ⟨U(θt)⟩0 ±∆U{sin[2πf(t−∆t)] + e−2Āt sin 2πf∆t}, (3.81)

where ⟨U(θt)⟩0 = −68.3kBT and

∆U = −h0
Ā

kBT

2(1 + π2f 2/Ā2)1/2
, (3.82)

5 The delay time ∆t is a result of the retarded response of the particle in a viscous medium (water)
due to the periodic perturbation.
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∆t =
1

2πf
arctan

(
πf

Ā

)
, (3.83)

either for a phase (positive sign) or an amplitude (negative sign) perturbation. In
equations (3.81), (3.82) and (3.83), Ā represents the value of the potential amplitude
A = 0.87 rad2 s−1 expressed in units of inverse time, i.e. Ā = 0.87 s−1. Note that for t≫
(2Ā)−1, equation (3.81) exhibits the same qualitative behavior as (3.80). Nevertheless
in this case the decay time of the initial equilibrium steady state ((2Ā)−1 = 0.57 s)
is two orders of magnitude smaller than that of the initial NESS (∼ 15 s) previously
described. We plot the curves given by equations (3.82) and (3.83) in figures 3.16(c) and
3.16(d), respectively, for the same values of the parameters h0 and A as before. Unlike
the behavior close to equilibrium, the oscillation amplitude ∆U strongly depends on
the perturbed parameter around the non-equilibrum steady state: it is more sensitive
to amplitude perturbations than to phase perturbations. In addition, the far-from-
equilibrium values are two orders of magnitude larger than that given by equation
(3.82). By contrast, the delay time ∆t is not significantly affected by the far-from-
equilibrium nature of the system. It is almost independent of F and of the type of
perturbation and it converges to equation (3.83) as the excitation frequency f increases.

3.7 Conclusion
We have experimentally studied the relation between spontaneous fluctuations and lin-
ear response of an observable related to the potential energy of a Brownian particle
in a toroidal optical trap. The experimental data is analyzed in the context of vari-
ous and apparently dissimilar GFDRs theoretically derived for NESS. We show that
when taking into account the nonequilibrium corrections of the equilibrium fluctuation-
dissipation theorem due to the broken detailed balance of the experiment, these GFDRs
are verified by the data. The nonequilibrium corrections quantify the role of the prob-
ability current in a NESS, which is closely related to the rate of the total entropy
produced by the system to remain in a stationary state. The simplicity of the system
allows us to examine in detail the physical interpretation of the different terms involved
in such formulations, the relation between them and their accessibility from the exper-
imental point of view. Besides, we gain insight into the understanding and application
of these GFDRs. Our experiment, perfomed under very well controlled conditions,
reveals that the indirect determination of the linear response function by means of
the measurement of the right NESS correlation functions is less time-consuming, more
accurate and more flexible than the direct perturbation of the NESS. Similar ideas
are expected to be applicable to more complex small systems where fluctuations are
important and NESS are the natural unperturbed states.
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Chapter 4

Brownian particle in a Laponite
colloidal glass

4.1 Fluctuations and linear response for aging sys-
tems

Systems in a nonstationary state slowly relaxing towards thermal equilibrium are a
second example for which the relation between spontanoeus fluctuations and linear re-
sponse is not necessarily described by the fluctuation-dissipation relation (2.16). This
is because nonvanishing currents are present in the form of energy or matter flows from
the system to the environment during the relaxation process so the detailed balance
condition is not fulfilled. Due to the complexity of the nonstationarity and the intri-
cate microscopic structure, there is no general framework to describe the fluctuation-
response relations for these out of equilibrium situations.

Glasses are the typical examples of slowly relaxing systems that have been studied
extensively over the past years in the context of fluctuation-dissipation theory. They
are microscopically arrested systems after a quench from an ergodic phase (e.g. an
ordinary liquid in equilibrium with the environment) above a certain temperature,
called the glass transition temperature Tg, to a non-ergodic phase (e.g. a supercooled
liquid) below Tg. In figure 4.1(a) we represent the usual thermodynamic picture of
glassy dynamics. After a quench into the non-ergodic phase, the system is initially in a
metastable state in one of the local minima of its complex potential energy landscape.
Below Tg the potential barriers become so large that the system remains trapped in
the initial minimum, identified as one of the possible microscopic amorphous configura-
tions of a glass. Then, the dynamical evolution consists in a rather short equilibration
inside the minima followed by jumps between different minima that are well-separated
in time. Physically, these jumps correspond to the structural rearrangements of meso-
scopic regions in the system that allow it to relax to a new phase in equilibrium with the
new temperature T of its surroundings. During the relaxation the system explores dif-
ferent metastable states before reaching the global minimum corresponding to the final
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Figure 4.1: (a) Schematic representation of the relaxation process of a glassy system,
depicted as a sphere, through its potential energy landscape after being initially trapped
in a metastable configuration due to a quench from above to below Tg. (b) Diagram of
the typical fluctuation-dissipation plot for mean field models of structural glasses. As
tw increases the curve gets closer to the equilibrium straight line of slope 1/T (dotted-
dashed line).

equilibrium configuration. However, depending on the quench depth the time needed
to reach equilibrium may be extremely large, typically much larger than the timescales
accessible in the experiments. During this process there is a continuous energy release
from the frustrated regions in the system that relax to more stable configurations to
the environment. Since the system is non-ergodic during the relaxation, there is no
invariance under time translations and then its physical properties depend on the time
elapsed after the quench: tw. The slow time evolution of the physical properties (e.g.
viscosity) is known as aging. For a complete theoretical review on the glass transition
and its connection with experiments, see [74] and references therein.

The concept of effective temperature is a useful attempt to develop a statistical
description of the relation between fluctuations and response to external fields for aging
systems. This is based on the usual relation (2.16) given by the fluctuation-dissipation
theorem for systems slightly perturbed around a thermal equilibrium state. For an
aging system the equilibrium temperature that appears as a constant prefactor on the
left-hand side of equation (2.16) is replaced by introducing a function X(t, tw), called
the fluctuation-dissipation ratio, which depends both on the age tw of the system and
on the measurement time t ≥ tw

kBTR(t, tw) = X(t, tw)∂twC(t, tw), (4.1)

where T is the temperature of the environment. Unlike equation (2.16), the time trans-
lational invariance is not allowed for an aging system because of the nonstationarity.
Then the linear response function R(t, tw) and the autocorrelation function of the ob-
servable of interest C(t, tw) = ⟨O(qt)O(qtw)⟩ in equation (4.1) depend not only on the
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difference t − tw ≥ 0 but on both times t and tw separately. Here the brakets ⟨. . .⟩0
denote an average over an infinite number of realizations of the unperturbed aging state
fixed by the times tw and t. It is important to remark that due to the loose definition
of X(t, tw), in general it depends on the observable O: it can be different for different
observables. Then the effective temperature for the observable O(q) is defined as

Teff (t, tw) =
T

X(t, tw)
, (4.2)

which in general is not expected to be equal to the equilibrium temperature T of the
environment. Indeed, mean field models of structural glasses show that Teff defined
by equations (4.1) and (4.2) exhibits a non-trivial but simple structure for these kind
of glassy systems. It turns out that in such a case, the fluctuation-dissipation ratio X
can be expressed as a function of C only: X(t, tw) = X(C(t, tw)), with two asymptotic
behaviors: X(C) → 1 for small t − tw whereas X(C) < 1 for sufficiently large t −
tw. Then, when plotting the integrated version of equation (4.1) with the integrated
response function:

χ(t, tw) =

∫ t

tw

R(t, s) ds,

versus C(t, tw), one must obtain a fluctuation-dissipation plot like that sketched in
figure 4.1(b). This theoretical fluctuation-dissipation plot has been found in numer-
ical simulations of glassy systems [75, 76] (e.g. Lennard-Jones glasses) and in some
experiments on spin glasses [77, 78]. According to equation (4.2), the existence of
two different slopes with negative values −X/T indicates the presence of two different
fluctuating processes determined by the value of Teff . The slope −1/T corresponds to
Teff = T associated to the fast rattling fluctuations of the system. The negative slope
with absolute value < 1/T is the one associated to the slowest structural rearrange-
ments that can be interpreted as an effective temperature larger than T . The value of
this effective temperature decreases in time to T as the the system relaxes.

For this kind of glassy systems, it has been widely discussed that the function
defined by equation (4.2) actually has the properties of a thermodynamic temperature
in the sense that its two asymptotic values correspond to two different thermalization
processes at two well-separated time scales [79]. In order to understand this, the idea
is to couple a probe, described by an additional degree of freedom x(t). This probe
plays the role of the thermometer operating at frequency ω. Simple calculations show
that the temperature probed in this way is [25]

T x
eff (ω, tw) =

ω⟨|x̂(ω, tw)|2⟩
4kBIm{R̂(ω, tw)}

, (4.3)

which is closely related to Teff defined in equation (4.2). In equation (4.3), the hat
denotes the Fourier transform of the corresponding quantity, computed over the time
interval tw ≤ t < ∞. ⟨|x̂(ω)|2⟩ is the power spectral density of the fluctuations of x,
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defined as the Fourier transform of the autocorrelation function at time tw

⟨|x̂(ω, tw)|2⟩ =
∫ ∞

tw

⟨x(t)x(tw)⟩e−iωtdt, (4.4)

whereas R̂(ω, tw) is the Fourier transform of the linear response function of x to an
external time-dependent field f :

R̂(ω, tw) =
⟨x̂(ω, tw)⟩f

f̂(ω)
. (4.5)

In equation (4.5), the average ⟨x̂(ω, tw)⟩f is computed over a large number of inde-
pendent realizations of f . If the probe is a harmonic oscillator, the mean value of the
energy E of the probe measured at frequency ω is

⟨E⟩ = kBT
x
eff (ω, tw), (4.6)

Then in principle, equations (4.3) and (4.6) provide an experimental protocol to mea-
sure the function Teff defined in equation (4.2) for the aging glass by means of the
measurement of the ratio between the power spectrum and the linear response(4.3)
or the energy fluctuations (4.6) of a small probe. This approach has been successfully
implemented in numerical simulations of sheared supercooled liquids [80], where the
effective temperature of a glassy system is probed by the Brownian motion of a small
tracer in the glass. It is important to remark that in these numerical simulations the
characteristic timescale of the tracer is tuned by varying its mass but its size is kept
constant at the same value of the glass particles. Then the tracer is able to probe a
low-frequency T x

eff > T , provided that its length and timescales are comparable to
those of the glassy structure. Otherwise the temperature perceived by the tracer is
T x
eff = T .

4.2 Fluctuations and response in Laponite suspen-
sions

The experimental evidence of a low-frequency effective temperature higher than the
bath temperature for structural and spin glasses is still an open problem. Therefore,
several experimental works have recently attempted to look for the same effect in
another kind of aging systems: colloidal glasses. Unlike structural or spin glasses,
the formation of a colloidal glass does not require a temperature quench but only the
packing of colloidal particles at a certain concentration in a solvent [81]. In particular,
aqueous suspensions of clay Laponite have been studied as a prototype of colloidal
glasses.
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(a) (b)

Figure 4.2: (a) Sketch of a disc-shaped Laponite particle negatively charged on the
surface and positively charged on the edge. (b) Experimental and numerical phase
diagram of aqueous Laponite suspensions as a function of the concentration c and the
time tw elapsed after the preparation. Figure taken from [86]

4.2.1 Description of the system

Laponite is a synthetic clay widely used as a rheology-modifier in many technological
applications: surface coatings, ceramic glazes, paints, household cleaners, personal
care products, film former and to build optimized nanocomposites. It is formed by
electrostatically charged disc-shaped particles of chemical formula

Na+0.7[Si8Mg5.5Li0.3O20(OH)4]
0.7−.

The size of these platelets is 1 nm (width) and 25 nm (diameter), as depicted in figure
4.2(a). When Laponite powder is mixed in water, the resulting suspensions exhibit
a rich phase diagram due to the complex anisotropic electrostatic attraction and re-
pulsion of Laponite platelets. At low concentrations c . 3% they display non-ergodic
states that slowly evolve towards an equilibrium configuration. Depending on the con-
centration, phase-separated liquids, gels and glasses can be formed in these non-ergodic
states, as shown in figure 4.2(b). In particular, for concentrations 2% . c . 3%, aque-
ous Laponite suspensions form a Wigner glass. Unlike a gel, which is composed by
connected particles forming a network, Laponite particles in the Wigner glass state
remain spatially disconnected although arrested in a sort of empty cage. In this sense
the localization length of the particles should be larger, or at least comparable to the
particle size. Due to the dynamical arrest of the particles in an initial metastable state
imposed by the electrostatic repulsion and the geometric constraints, Laponite suspen-
sions exhibit physical aging. They undergo a transition from a viscous liquid phase into
a viscoelastic phase in a few hours. Several properties of Laponite suspensions, such as
viscoelasticity [82], translational and rotational diffusion [83] and optical susceptibility
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[84], have been experimentally studied using rheology and dynamic light scattering.
This techniques have allowed one to have a complete picture of the Laponite phase
diagram as a function of the Laponite concentration and the ionic concentration which
controls the strength of the electrostatic interactions [81, 85].

4.2.2 Overview on previous experimental results

Despite the well understood phase diagram of Laponite, the available results for the
existence of an effective temperature Teff different from the temperature T of the en-
vironment, are contradictory. Bellon et al. [87, 88, 89] performed an early experiment
in order to measure Teff . They reported an effective temperature from dielectric mea-
surements indicating Teff ≫ T for frequencies f < 40 Hz. On the other hand, the
first rheological measurement of Teff in Laponite was done by the same group using
a rheometer sensitive to thermal fluctuations in the colloidal glass [88]. In this case it
was found that Teff was equal to the temperature of the environment. In principle,
Teff is expected to depend on the observable measured in the experiment, as discussed
in section 4.1. Then in this chapter we focus only on rheological measurements where
Teff is determined by the measurement of the position of a probe immersed in the
colloidal glass.

The rheological experiment described in [88] was a global bulk measurement so one
may wonder whether a local experiment probing microscopic lengthscales gives or not
the same results. This idea, in addition to the protocols (4.3) and (4.6) proposed for
structural and spin glasses, motivated several experiments using microrheology. In this
kind of experiments, a Brownian particle embedded in the fluid of interest is used as
a mechanical probe to perform local rheological measurements, as described in detail
in section 1.4. The goal is to measure whether the properties of the Brownian motion
of the probe are affected by the fact that the surrounding fluid, acting as a bath, is
out of equilibrium. Several microrheological experiments on Laponite solutions have
been done by different groups using various techniques. However, the results on the
behavior of Teff are rather contradictory. Let us summarize them.

• Abou et al. [90], performed independent measurements of the free Brownian
motion of a micron-sized bead and the response of the bead trapped by optical
tweezers to an external force. Then using an alternative version of equation (4.3)
they observed that Teff increases in time from the value of the bath temperature
to a maximum and then it decreases to the bath temperature.

• Jabbari-Farouji et al. [91] used a combination of passive and active microrheology
techniques (see section 4.4) to measure the power spectral density of the fluctua-
tions of a trapped micron-sized bead and the response of the trapped bead to an
oscillatory force. Then, using directly equation (4.3) they computed Teff . In this
experiment no deviation of the effective temperature from the bath temperature
was observed over several decades in frequency (1 Hz−10 kHz).

88



4.3 Description of the experiment

Figure 4.3: Diagram of the sample cell used during the experiment.

• Greinert et al. [92] adapted equation (4.6) to compute Teff only by the mea-
surement of the spontaneous fluctuations of the position of a particle trapped by
optical tweezers at two different trapping stiffness without applying any time-
dependent force. They found that the effective temperature increases monotoni-
cally in time after a few hours once the system becomes viscoelastic.

• Jabbari-Farouji et al. [93] confirmed that Teff = T for the frequency range of 1
Hz−10 kHz for Laponite suspensions in two different phases (glass and gel) all
along the aging process.

Given the conflicting results previously described from the same kind of experi-
mental techniques, in this section we compare them in order to understand where the
difference may come from. Our purpose is to describe the results of the measurement of
the Brownian motion of several particles inside a Laponite solution using a combination
of different techniques proposed in previous references. We extend our measurement
to frequencies one order of magnitude smaller than those reported in the literature.
This is because an effective temperature higher than the bath temperature is expected
to occur for the slowest structural modes of the colloidal glass. The measurements
performed with several particles exploit the spatial homogeneity of the suspension and
are of particular importance because they allow us to compare simultaneously passive
and active microrheology techniques in the same sample.

4.3 Description of the experiment

4.3.1 Sample preparation

Physical properties of Laponite suspensions are very sensitive to the method used
during their preparation [94]. Hence, a careful experimental protocol must be followed
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in order to perform reproducible measurements of their aging properties. Laponite RD,
the most frequently studied grade and the one studied in this work, is a hygroscopic
powder that must be handled in a controlled dry atmosphere. The powder is mixed
with ultrapure water, at a weight concentration which has been varied from 2.0 to
3.0%. The pH is adjusted to 10 in order to ensure chemical stability of the samples.
At lower pH, the decomposition of clay particles occur. CO2 absorption by water can
modify the pH of the samples and then their aging properties. For these purposes, the
preparation of the samples is done entirely within a glove box filled with circulating
nitrogen. The suspension is vigorously stirred by a magnetic stirrer during 30 minutes.
The resulting aqueous suspension is filtered through a 0.45 µm micropore filter in order
to destroy large particle aggregates and obtain a reproducible initial state. The initial
aging time (tw = 0) is taken at this step. Immediately after filtration, a small volume
fraction (10−6) of silica microspheres (radius r = 1µm) is injected into the suspensions.
The sample is placed in a ultrasonic bath during 10 minutes to destroy small undesired
bubbles that could be present during the optical tweezers manipulation. The suspension
is introduced in a sample cell which is sealed in order to avoid evaporation. The cell
consists of a microscope slide and a coverslip separated by a cylindrical plastic spacer of
inner diameter 15 mm, thickness 1 mm and glued together with photopolymer adhesive,
as shown in Fig. 4.3. In this cell the inputs are sealed with araldite adhesive in order
to avoid evaporation and direct contact with CO2 from air.

4.3.2 Multi-trap system

The experiment is performed at room temperature (22± 1◦ C) in the multi-trap setup
described in section 1.3. Multiple probe particles have to be trapped in the same sample
in order to perform simultaneously the passive and active microrheology measurements
described in section 4.4. Since two trapped particles are needed for each technique, at
least three different optical traps must be created simultaneously, as shown in figure
4.4. For passive measurements, two static traps of different stiffness are needed. We
label the weakest trap as ’1’ while the strongest one as ’2’. For active measurements,
we need a static trap to measure the power spectral density of the fluctuations of the
particle position. For convenience, we choose the same trap ’2’ for such a purpose. In
addition, we need a trap with time-dependent position in order to measure the response
of the probe to an external forcing. This trap is labeled as ’3’. The separation distance
between adjacent traps is set to d = 9.3µm. We checked that such distance is suffi-
ciently large to avoid correlations between their motions. In the following, x defines the
direction along which the position of trap ’3’ is oscillated in time, while y corresponds
the perpendicular direction (see Fig. 4.4). For simplicity, all the calculations are done
for the x coordinates only.

The creation of three independent optical traps on the x− y plane is implemented
by means of the XY AOD system described in subsection 1.3.1, This experimental
configuration is shown in figure 4.4. The laser beam scans three different positions
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Figure 4.4: Diagram of the creation of three independent optical traps using the multi-
trap system described in section 1.3. The traps are separated by a distance d = 9.3µm.
The bright spots on the snapshot correspond to three trapped particles (r = 1µm).
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along the y direction at a rate of 10 kHz by applying a two-step frequency modulation

∆FY (t) = ∆Y [Θ(t−∆t)− 1 + Θ(t− 3∆t)] , 0 ≤ t ≤ 5∆t,

to the Y AOD, where Θ is the Heaviside step function. We set ∆Y = 5 MHz and
∆t = 20µs, corresponding to a separation distance d = 9.3µm between the traps and
∆t = 20µs, 2∆t = 40µs and 2∆t = 40µs the time that the laser beam stays in the
traps ’1’, ’2’ and ’3’, respectively. A slow oscillation x0(t, ω) of the position of trap ’3’
is accomplished by deflecting the laser beam along x. This is done by applying the
following frequency modulation to the X AOD

∆FX(t, ω) = ∆F0

n∑
j=1

sin(ωit),

where n is the number of sinusoidal modes at frequency ωi = 2πfi (i = 1, . . . , n) that
are studied simultaneously. In the experiment we set ∆F0 = 60 kHz corresponding to
an oscillatory displacement of the trap ’3’ of the form

x0(t, ω) = A

n∑
j=1

sin(ωit), (4.7)

where the amplitude of the displacement A = 100 nm is small enough to be in the
linear response regime of the optical trap. The stiffness of each trap is proportional to
the time that the laser beam stays in the corresponding position. We check that by
selecting the ratio 20:40:40 for the visiting time of traps ’1’, ’2’ and ’3’, respectively we
obtain a stiffness ratio of 20.7:39.7:39.6, respectively. Specifically the stiffness of the
three traps are: k1 = 3.73 pN/µm, k2 = 7.15 pN/µm, k3 = 7.12 pN/µm. The stiffness
is measured using the power spectrum technique described in subsection 1.3.3.

4.4 Microrheology methods
Uisng the multi-trap configuration of figure 4.4, we perform simultaneoulsy two different
methods to measure the effective temperature probed by the trapped particles. These
methods are based in passive and active microrheology, see section 1.4.

4.4.1 Passive microrheology

The first method, proposed by Greinert et al [92], is based on passive microrheology
(PMR). It exploits the generalized equipartition relation (4.6) valid for a small probe
in a glassy systems [80]. The basic idea is the following. Since a Laponite suspension
becomes viscoelastic as it ages, a particle in an optical trap of stiffness k is subjected
to an additional force

Fe = −KLap(tw)x,
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due to the elasticity of the colloidal glass, where KLap denotes the effective elastic
stiffness of the colloid. Then, in analogy with equation (4.6) for a harmonic oscillator,
an effective temperature Teff (tw) can be defined for the overdamped Brownian motion
of the particle

kB Teff (tw)

k +KLap(tw)
=
⟨
x2 − ⟨x⟩2

⟩
, (4.8)

where brackets stand for average over a time window such that KLap is almost constant.
In equation (4.8), (k+KLap)

⟨
x2 − ⟨x⟩2

⟩
/2 represents the average value of the effective

potential energy of the particle at time tw due to the optical trapping force and the
elastic force Fe exerted by the medium. Note that KLap(tw) and Teff (tw) are global
quantities that integrate the contribution of all frequencies. Hence, their measurements
are strongly limited by the capability of detecting slow modes. Therefore, in practice
the time average ⟨. . .⟩ in equation (4.8) must be computed over a sufficiently large
time window to detect the slowest structural rearrangements during the aging but at
the same time sufficiently short to avoid a large variation of the viscoelasticity of the
colloidal glass.

We consider the traps ’1’ and ’2’ in figure 4.4 with different stiffness: k1 and k2,
respectively. At a given aging time tw, we compute the variance of the position of the
j-th particle (j = 1, 2):

⟨δx2(tw)⟩j = ⟨x2 − ⟨x⟩2⟩j,
over a time window [t, t + ∆τ ], where t ≥ tw. Different values of ∆τ are used in the
calculations: 3 s < ∆τ < 25 s. One must be aware that the shortest time window of 3
s like the one used in [92] is not sufficiently long to take into account the role of low
frequency fluctuations at late stages during aging. Consequently the variances can be
underestimated in this regime, as noted by [96]. The values of the variance computed
in each window ∆τ are then averaged over a longer time interval tw ≤ t ≤ tw + ∆t,
with ∆t > ∆τ . The value of ∆t must be chosen sufficiently short to ensure that the
viscoelasticity of the colloidal glass remains almost constant. Specifically, the variance
of x for each trapped particle is computed as

⟨δx2(tw)⟩j =
1

∆τ∆t

∫ tw+∆t

tw

dt

∫ t+∆τ

t

(x2j(t
′)− ⟨xj(t′)⟩2)dt′, (4.9)

where we set ∆t = 50 s and j = 1, 2 correspond to the variance measured for the
particles trapped by ’1’ and ’2’, respectively. Assuming the equipartition relation
equation (4.8) still holds in this out-of-equilibrium system, Teff is computed as in [92].
The expressions of the effective temperature and of the Laponite elastic stiffness KLap

are the following

kBTeff (tw) =
(k2 − k1)⟨δx2(tw)⟩1⟨δx2(tw)⟩2

⟨δx2(tw)⟩1 − ⟨δx2(tw)⟩2
, (4.10)

KLap(tw) =
k1 ⟨δx2(tw)⟩1 − k2⟨δx2(tw)⟩2

⟨δx2(tw)⟩1 − ⟨δx2(tw)⟩2
. (4.11)
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This technique, although very simple, has several drawbacks that we will discuss in
the next sections. Furthermore, being a global measurement, it has no control of what
is going on at different timescales.

4.4.2 Active microrheology

The second method involves a combination of PMR and active microrheology (AMR).
This is the approach followed in references [90, 91, 93]. It allows one to measure Teff
using equation (4.3) through the simultaneous measurement of the power spectrum of
the spontaneous fluctuations of the particle position and the linear response function
to an external force.

In our experiment, we apply an oscillatory force f0(t, ω) = k3x0(t, ω) to the trapped
particle at certain frequencies ω by means of the spatial modulation x0(t, ω) of trap
’3’ given in equation (4.7). Next, we determine the Fourier transform of the linear
response function R of x due to f :

R̂(ω, tw) =
x̂(ω, tw)

f̂0(ω)
, (4.12)

where the hat stands for the Fourier transform. As the system is in a nonstationary
state, all the observables depend on tw. Therefore for a fixed time tw, the Fourier
transforms in equation (4.12) must be computed over a time window tw ≤ t ≤ tw +∆t
according to [25]. We set ∆t = 50 s in order to compare the results provided by this
method with those obtained by the PMR method described in subsection 4.4.1. By
taking into account that the effective Hookean force on the particle due the relative
displacement x(t)−x0(t, ω) with respect to the laser beam focus is −k3[x(t)−x0(t, ω)],
the motion of the probe particle is described by the following Langevin equation∫ t

−∞
Γ(t− t′, tw)ẋ(t

′)dt′ + k3[x− x0(t, ω)] = ξ(t), (4.13)

where we have written the explicit dependence on the slow variable tw due to the
nonstationarity of the system. In frequency domain, equation (4.13) reads

− iωγ(ω, tw)x̂+ [k3 +KLap(ω, tw)]x̂ = f̂0(ω) + ξ̂(ω), (4.14)

where γ(ω, tw) and KLap(ω, tw) are real functions that represent separately the viscous
and elastic1 terms of the Fourier transform of the viscoelastic kernel Γ, i.e.

Γ̂ = γ + i
KLap

ω
.

1The frequency-dependent Laponite stiffness defined by equation (4.14) is different from the global
Laponite stiffness defined by the equipartition relation (4.8). Nevertheless we will keep the same no-
tation for both quantities throughout the chapter because both quantify the elasticity of the Laponite
suspension and they exhibit the same qualitative behavior as a function of tw.
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On the other hand, the term f̂0(ω) = k3x̂0(ω) on the right-hand side of equation
(4.14) is the force exterted by the acting driving of the trap position, whereas ξ(t) is a
stochastic process of zero mean and power spectral density

⟨|ξ̂(ω)|2⟩ = 4kBTeff (ω, tw)γ(ω, tw),

representing the nonequilibrium collisions of the Laponite platelets with the probe.
The relation between γ and KLap with the complex viscosity η∗ = η′ − iη′′ and the
shear modulus G = G′ + iG′′, usually measured in rheology experiments, is

γ = 6πrη′ =
6πrG′′

ω
,

KLap = 6πrωη′′ = 6πrG′, (4.15)

Equation (4.14) leads to the following expression for the inverse of the linear response
function of the particle

1

R̂(ω, tw)
= −iωγ(ω, tw) + [k3 +KLap(ω, tw)], (4.16)

Therefore, by measuring directly the mechanical response of x to the applied external
force at a given frequency, it is possible to resolve the viscosity and the elasticity of
the colloidal glass at aging time tw by means of the expressions

ωγ(ω, tw)

k3
= Im

[
1

k3R̂(ω, tw)

]
, (4.17)

KLap(ω, tw)

k3
= Re

[
1

k3R̂(ω, tw)

]
− 1. (4.18)

In our case, the position of trap ’3’ is oscillated in time along the x direction at
three different frequencies ω = ωj, j = 1, 2, 3 simultaneously according to

x0(t, ω) = A[sin(ω1t) + sin(ω2t) + sin(ω3t)], (4.19)

where f1 = ω1/2π = 0.3 Hz, f2 = ω2/2π = 0.5 Hz, f3 = ω3/2π = 1.0 Hz, and
A = 1.04 × 10−7 m. These frequencies are one order of magnitude smaller than the
lowest ones resolved in previous works using AMR [91, 93]. Therefore our study goes
deeper into the slow timescales where Teff could be different from T . Higher frequency
sinusoidal oscillations (ω/2π = 2.0, 4.0, 8.0 Hz) and different low-frequency ones (0.25,
0.75 Hz) are also checked in order to compare our results with different mechanical
excitations of the probe at different frequencies.

The AMR method previously described allows one to determine directly the effective
temperature of the colloidal glass probed by the Brownian particle using equation (4.3).
First of all, we synchronize the input forcing signal x0(t, ω) with the response of the
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trapped bead x(t). The Fourier transform of the response function is computed using
equation (4.12) for a probe particle driven by trap ’3’. On the other hand, we measure
the power spectral density of the position fluctuations of the particle trapped by ’2’,
i.e. in absence of the external driving. For this reason, traps ’2’ and ’3’ are created
with the same stiffness.

4.5 Viscoelastic properties of the aging colloidal glass

We first present separately the results of the time evolution of viscosity and elasticity of
the colloidal glass at low frequencies during aging. The time evolution of the dimension-
less quantity ωγ/k3, linearly proportional to the dynamic viscosity η′ of the suspension,
is shown in Fig. 4.5(a). As expected, it increases continuously as the system ages. On
the other hand, the evolution of the stiffness KLap is qualitatively different, as shown
in Fig. 4.5(b). For tw < 300 min, KLap ≈ 0, revealing an entirely viscous nature of
the Laponite suspension, while for tw > 300 min it becomes viscoelastic, with KLap

increasing dramatically in aging time from 0 to 10 times the stiffness of the second trap
k2 = 7.15 pN/µm. In order to compare our low-frequency AMR results with previous
rheological measurements, we plot in figure 4.5(c) the time evolution of the modulus
of the complex viscosity, given by |η∗| = (γ2 +K2

Lap/ω
2)1/2/6πr. We observe that |η∗|

increases, almost exponentially, two orders of magnitude during the first 500 minutes
of aging. The behavior of |η∗| is in good agreement with previous rheological measure-
ments [95]. These results become more evident when protting the time evolution of the
real G′ and the imaginary G′′ part of the shear modulus defined in equation (4.15), as
shown in figures 4.5(d) and 4.5(e). During the first 300 s the quantity G′′/ω, which is
proportional to the viscosity is frequency independent but it increases more than six
times. This shows a Newtonian behavior of the Laponite suspension that is verified by
the fact that G′ = 0 for this aging time interval. Then the system undergoes a rather
abrupt transition and G′ starts to increase continuously, becoming comparable to the
values of G′′ that become frequency-dependent. This result indicates a sharp transition
from a purely viscous phase to a viscoelastic phase, as observed in bulk measurements
[95]. On the other hand, the time tg ≈ 300 min at which the transition occurs at
this concentration (2.8% wt) is consistent for both PMR and AMR, as shown in fig-
ure 4.5(b). We notice that AMR measurements are more accurate, leading to a very
small data dispersion around the mean trend and allowing to resolve the aging time
evolution for each frequency. Instead, according to equation (4.11) the global stiffness
determined from PMR is very sensitive to the inverse of the difference ⟨δx2⟩1 − ⟨δx2⟩2.
Indeed, as tw increases, the relative difference between these two variances decreases,
leading to increasingly large data dispersion for tw > 350 min. .
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Figure 4.5: (a) Time evolution of the viscous drag coefficient γ obtained by means
of AMR. (b) Time evolution of elasticity KLap obtained by PMR and AMR. (c) Time
evolution of the modulus of the complex viscosity. (d) Time evolution of the real
part G′ of the shear modulus. The vertical dashed line indicates the transition to
the viscoelastic phase which occurs at tw ≈ 300min ≡ tg (e) Time evolution of the
imaginary part G′′ of the shear modulus. Inset: Expanded view for 0 < tw ≤ tg
showing the frequency independence of G′′/ω. The measurements were performed at a
Laponite concentration of 2.8 %wt.
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Figure 4.6: (a) Power spectral density of the fluctuations of x of a particle in trap
’2’ measured at different aging times tw. As tw increases the corner frequency of the
spectrum is shifted to the left. (b) PDFs of δx at different tw for particle ’2’. (c)
Time evolution of variances for particles ’1’ and ’2’ computed for ∆τ = 25 s. Labels
(s) correspond to smooth curves (see text, Subsection 4.6.1). (d) Time evolution of
variances computed for ∆τ = 3 s.
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4.6 Nonequilibrium fluctuations and response

We fist study the statistical properties of the spontaneous fluctuations of δx = x− ⟨x⟩
for the particles trapped by ’1’ and ’2’ by means of the probability distribution and
the variance of δx. This analysis is performed over the time windows ∆t defined in
equation (4.9). Some care is needed because the results could depend on the length of
∆t. First, these analyzing windows cannot be made too large because the viscoelastic
properties of Laponite evolve as a function of time. Second, ∆t can not be chosen very
short because long-lived fluctuations could be ignored in the analysis. Indeed, it turns
out that as tw increases, the slowest modes are the main contribution to the power
content of the fluctuations: the corner frequency (see definition by equation (1.9) in
section 1.2.2) of the power spectrum of x, decreases continuously mainly because of
the increase of viscosity of the suspension, as shown in figure 4.6(a). At the end of the
experiment, the power spectrum of x shows that the corner frequency is lower than
0.1 Hz. Since the variance of x is equal to the integral of the power spectrum over
the whole frequency domain, then the resulting values can be underestimated as tw
increases. if ∆t is chosen very short [96].

In order to avoid the previous problems, in equation (4.9) we use moving analyzing
time windows of length ∆τ = 25 s along the large time interval of length ∆t = 50 s.
These values are sufficiently large to take into account the power of slow fluctuations.
Figure 4.6(b) shows that fluctuations of δx are Gaussian, as checked by the corre-
sponding Gaussian fits plotted as solid lines for clarity. Hence, the variance ⟨δx2(tw)⟩
is actually the only relevant quantity to characterize the spontaneous fluctuations of
x. The aging time evolution of the variances ⟨δx2⟩1 and ⟨δx2⟩2 for particles ’1’ and ’2’
is shown in figure 4.6(c). For tw . 300 min, both variances are quite constant whereas
for tw & 300 min they decrease up to one order of magnitude at tw = 500 min. The
transition between these two regimes is kind of abrupt and occurs at tw ≈ 300. This
time corresponds to the transition from a purely viscous liquid-like phase to viscoelas-
tic glass at time tg = 300 min according to the results presented in subsection 4.5.
In figure 4.6(d) we also show the variances purposely computed for ∆τ = 3 s. Note
that for this short analyzing time windows the variance is underestimated compared
to the values shown in figure 4.7(b) for ∆t = 25 s. Then, the time at which it starts to
decrease apparently depends on the value of the trap stiffness and occurs before 300
min. Of course, this is only a result of inappropriate data analysis associated to the
underestimate of the long-lived fluctutions. In subsection 4.6.1 the we show that this
gives rise to artifacts resulting in an apparent sharp increase of Teff for tg < tw as that
reported in [92].

On the other hand, frequencies as low as 0.1 Hz could be properly resolved using the
AMR method. In figure 4.7(a) we plot a typical realization of the oscillatory force f0,
given by (4.19), resulting from the sum of three different modes f = ω/(2π) = 0.3, 0.5
and 1.0 Hz. We also plot the displacement x of the particle ’3’ in response to this exter-
nal force. In figure 4.7(b) we observe that the application of this f0 leads to an increase
of two orders of magnitude of its spectrum of x at the corresponding driving frequency
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Figure 4.7: (a) Oscillatory force applied to particle ’3’ (upper panel) implemented by
the particular waveform (4.19) and the resulting particle displacement (lower panel).
(b) Spectra of x for particles ’2’ and ’3’ at tw = 95 min. (c) Time evolution of the power
spectral densities of the position fluctuations of particle ’2’ at three fixed frequencies.
(d) Time evolution of the imaginary part of the Fourier transform of the response
functions of particle ’3’ at the same frequencies fixed by the external driving.
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ω. However no higher-order harmonics are excited, i.e. the system is in the linear
response regime. Therefore, both the power spectral density and the response function
could be measured with good frequency resolution in the case of AMR. Figure 4.7(b)
also confirms the spatial homogeneity of the sample because the values of the power
spectra at non-excited frequencies are the same for particles located in different places.
This is consistent with the homogeneity of the glassy phase of Laponite discussed in
[81]. Figure 4.7(c) shows the time evolution of the power spectral density for each
frequency ω = ωj, j = 1, 2, 3. The time behavior of |x̂(ω, tw)|2 is completely different
from that of ergodic liquids at equilibrium. In such a case the value of |x̂(ω, tw)|2 is
constant in time. We observe that the nontrivial shape of the power spectral density
has a maximum which depends on the value of the corresponding frequency. Figure
4.7(d) shows the time evolution of the imaginary part of the Fourier transform of the
response function R̂(ω, tw) at each frequency ω = ωj, j = 1, 2, 3, calculated by means
of equation (4.12). We observe the same behavior in time for each frequency, indicat-
ing that |x̂(ω, tw)|2 and Im{R̂(ω, tw)} are related by a proportionality constant during
aging. It has to be noted that the position of these maxima depend on the strength
of the optical traps used to measure the response and fluctuations. These strengths
are the same in our case whereas they are different in the experiment described in
reference [90] where the spontaneous fluctuation measurements are performed on free
particles (k = 0). The difference in the value of the stiffness induces a shift on the time
position of these maxima which must be corrected in the data analysis. Small errors
in this correction may of course induce an apparent anomalous maximum of Teff as a
function of tw when computing the ratio between|x̂(ω, tw)|2 and Im{R̂(ω, tw)}, like the
maximum of Teff > T reported in [90].

4.6.1 Effective temperature

The effective temperatures perceived by the Brownian probe determined by means of
both PMR and AMR methods are shown in figures 4.8(a) and 4.8(b), respectively.
We first show as black triangles the most reliable PMR results obtained by using
an analyzing time window ∆τ = 25 s for the computation of the variances using
equation (4.10). In order to find the mean trend of the aging time evolution of the
scattered experimental variances shown in figure 4.6(c), we convolute these raw data
with smoothing rectangular time windows of length δτ . Note that these smoothing
time windows are physically meaningless and we use them only as a tool to reduce the
variability of experimental data around the actual mean trend. They must be chosen
short enough to avoid a wrong determination of the mean trend for 300 min < tw
since a large value of δτ would involve a moving time average of values that decrease
continuously in aging time. The smoothed curves obtained by means of this procedure
with δτ = 5 min are also shown in figures 4.6(c) as solid and dashed lines. From these
smooth curves we compute the effective temperature along aging by means of equation
(4.10). In figure 4.8(a) we observe that for tw < 300 min the effective temperature is
very close to the bath temperature T = 295 K with very few data dispersion around
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Figure 4.8: (a) Time evolution of effective temperatures probed by the Brownian
particle during aging obtained by means of PMR (see text for symbols). (b) Time
evolution of effective temperatures for different frequencies obtained by means of AMR.
(c) Aging time average of the effective temperatures obtained by AMR for different
frequencies. Error bars represent the standard deviation of the data shown in figure
4.8(b).
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it, typically ∆Teff/Teff < 10%. This is due to the fact that at this aging stage the
aqueous Laponite suspension behaves as a purely viscous liquid leading to small and
constant data dispersion of ⟨δx2⟩. For 300 min < tw < 350 min, corresponding to the
aging times when the elasticity of the suspension begins to become non-vanishing, the
data variability increases (∆Teff/Teff ≈ 30%) but the mean value of Teff remains close
to T , revealing no anomalous increase like the one observed in [92] for ∆τ = 3.3 s. For
350 min < tw this method fails to give reliable results since we observe an increasingly
large variability of the effective temperature leading even to negative values of Teff due
to the fact that the dispersions of ⟨δx2⟩1 and ⟨δx2⟩2 are comparable to or even larger
than ⟨δx2⟩1 − ⟨δx2⟩2 in equation (4.10), as shown in figure 4.6(c).

Artifacts in the estimate of the effective temperature

Artifact due to analyzing time window

In order to identify the artifacts that can arise for PMR and give an explanation of the
strange behavior of Teff observed in previous PMR studies on Laponite [92], we first
analyze the effect of using inappropriate short analyzing time windows. We purposely
perform the analysis for a short time window ∆τ = 3 s (close to the one used in [92]),
leading to the time evolution of the displacement variances shown in figure 4.6(d). In
this case the transition point from the plateau to the decaying curve depends on the
value of the stiffness of the optical trap. We observe that the transition occurs first
(around tw = 250 min) for the weakest trap (’1’) than for the strongest one (’2’) (around
tw = 300 min), indicating that the motion of a probe particle could be sensitive to the
strength of the optical trap close to the glass transition. However, this is nothing but
an artifact due to the use of a very short analyzing time window. Since the corner
frequency of the power spectral density of displacement fluctuations depends linearly
on the stiffness of the optical trap k, large underestimates of the corresponding variance
occur first for the weakest trap, leading to such an apparent dependence on k. In fact,
when using ∆τ = 25 s, there is no such a dependence as shown in figure 4.6(c). Even
when smaller data variability is observed for ∆τ = 3 s than for 25 s, one must be
aware that the latter case is more reliable than the former since longer lived modes
are taken into account in a method which must integrate the contributions of as many
frequencies as possible. The consequence of using such a short analyzing time window
in that for 230 min < tw < 300 min an apparent systematic increase of Teff is observed
due to the significant underestimation of ⟨δx2⟩1 with respect to ⟨δx2⟩2, as shown in red
circles in figure 4.8(a). For longer aging times, once again the large data dispersion of
the values of the variances lead to extremely scattered values of Teff .

Artifact due to data smoothing

A second artifact can arise easily due to wrong data smoothing. As explained pre-
viously, in order to find the mean trend of the aging time evolution of the scattered
experimental variances computed at every tw we convolute these raw data with smooth-
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ing rectangular time windows. Figure 4.6(d) shows as solid and dashed lines the smooth
curves obtained for a very long smoothing window (δτ = 16 min). In this case, a curve
smoother than the one shown in figure 4.7(b) for δτ = 5 min is obtained but a worse
trend is found for long aging times since in this regime the values of the variances
significantly decrease during 16 min. The time evolution of the effective temperature
computed with the smooth variances of figure 4.6(d) is shown as blue squares in figure
4.8(a). In this case the combined effects of wrong data analysis and smoothing lead to
a fake sharp increase of Teff .

Discussion on PMR method

It is important to point out that the global effective temperature Teff (tw) intro-
duced in equation (4.8) integrates the contribution of every local effective temperature
Teff (ω, tw), but in practice it is limited to the accessible experimental timescales of 10
ms (the sampling period) and 25 s (the length of the analyzing time window), corre-
sponding to the finite frequency range [0.04 Hz, 100 Hz]. Any possible violation in this
frequency range should certainly lead to Teff (tw) ̸= T . Consequently, by means of the
PMR technique we verify in figure 4.8(a) that Teff = T is observed in this system even
for frequencies as low as 0.04 Hz and for waiting times as long as 350 minutes when
the elasticity of the suspension is zero or very small. For longer waiting times the large
data variability using PMR hides any possible trend, but the direct measurement of
the response function by means of AMR allows to overcome this problem showing that
Teff = T even for 350 min < tw < 500 min, as shown in the following.

Discussion on AMR method

The AMR results for the effective temperature at different frequencies are shown in
figure 4.8(b). We verify that there is no actual systematic increase of Teff (ω, tw) as
the colloidal glass ages. The effective temperatures recorded by the probe particles at
a given time scale 2π/ω are equal to the bath temperature during aging even for the
slowest modes studied with this method (∼ 1/f1 ≈ 4 s). Unlike PMR measurements,
we find that the variability of the data is constant in aging time, which implies that
AMR is a more reliable method even during the transition to the viscoelastic regime.
In order to check if Teff (ω, tw) = T within experimental accuracy, we can compute the
aging time average of Teff (ω, tw) over different aging time intervals tw ∈ [tiw, t

f
w]

Teff (ω) =
1

tfw − tiw

∫ tfw

tiw

Teff (ω, t
′
w)dt

′
w, (4.20)

for each frequency ω. Figure 4.8(c) shows the results of Teff (ω) with their respective
error bars corresponding to the standard deviations of the data sets. For comparison,
we also determine the effective temperature of the colloidal glass at 3.0% wt of Laponite
(for which the suspension becomes viscoelastic at tg ≈ 250 min) for two different shapes
of the external perturbation f0(t, ω) (with sinusoidal modes f = 0.3, 0.5, 1.0, 2.0,
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4.0 and 8.0 Hz, and f = 0.25, 0.75 and 1.0 Hz) without observing any deviation of
the effective temperatures from the bath temperature within experimental accuracy.
Note that the AMR method does not allow the determination of the local effective
temperatures corresponding to frequencies as low as those detectable using PMR. This
is due to large errors in the measurement of the response function at low frequencies.
Nevertheless the time evolution of the effective temperature can be recorded at every
single frequency all along the aging process with constant accuracy (data dispersion
. 30%) using the AMR method. These results reveal that no systematic increase
or decrease of Teff is observed even during the late aging stage when the elasticity
of the colloidal glass is large. In addition, the use of the spectral analysis with very
good low-frequency resolution allows the detection of the influence of external noise
that could be present in the experiment. This is impossible in the case of the global
quantities involved in PMR and could give rise to a bad determination of the effective
temperature.

In summary, both microrheology techniques are complementary and we definitely
conclude that Teff = T for this aging nonequilibrium system for 0.25 Hz ≤ f and
tw ≤ 500 min. In other words, for these timescales the relation between the spontaneous
fluctuations of the trapped particle and its response to an external perturbation are
related like in equilibrium (2.16) even when the surrounding medium, the Laponite
colloidal glass, is in a nonequilibrium regime.

4.7 Heat fluctuations

Finally, we study the properties of the fluctuations of the heat exhanged between
the colloidal glass in the purely viscous regime (0 < tw ≤ tg ≈ 300 min) and the
surroundings. This kind of analysis has been motivated by the recent experimental
works focused on extreme fluctuations of injected and dissipated power in systems
with harmonic linear [97, 98] and non-harmonic potentials [99, 100] within the context
of fluctuation theorem (FT). See appendix A and references [12, 101] for a review on
FT. The idea of using FT for theoretically studying the heat flux in aging systems was
first proposed in [102, 103]. Let us summarize the main physical concepts that are
behind this idea. Since nonequilibrium fluctuating forces due to the collisions of the
colloidal glass particles inject energy into the micron-sized probe, in a given time lag τ
a fraction of this energy must be dissipated in the form of heat Qτ . Qτ is a stochastic
variable which can be either positive (heat received by the probe) or negative (heat
transferred to the colloid). In an ergodic system acting as an equilibrium thermal bath
at temperature T , the mean heat must vanish in the absence of any external forcing on
the probe in order to satisfy the first law of thermodynamics. However, in a system out
of equilibrium this situation is not necessarily fulfilled if detailed balance does not hold.
A mean heat transfer ⟨Qτ ⟩ ≠ 0 would be a fingerprint of an effective temperature of
the colloidal glass Teff (ω, tw) ̸= T during a time lag τ ≈ 2π/ω. Hence, by investigating
possible asymmetries in the probability density function (PDF) of Qτ for different time
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Figure 4.9: PDFs of |Qτ (tw)| at tw = 95 min for different values of the time lag τ . The
black symbols correspond to Qτ ≥ 0 whereas the red ones to Qτ ≤ 0.

lags and at different aging times, one could find possible values of Teff different from
T in the aging colloidal glass.

We are interested in the situation without any external forcing. Then we must set
x0(t, ω) = 0 in equation (4.13). In order to calculate the heat transfer during a time lag
τ , equation (4.13) is multiplied by ẋ and integrated from tw to tw + τ , which yields an
extension of the first law of thermodynamics for the energy exchange process between
the particle and the colloidal glass [104]

∆Uτ (tw) = Qτ (tw), (4.21)

In equation (4.21), the first term

∆Uτ (tw) =
1

2
k(x(tw + τ)2 − x(tw)

2) +

∫ tw+τ

tw

ẋ(t)(Kt ∗ x)(t, tw)dt, (4.22)

is the variation of the potential energy of the particle during the time interval [tw, tw+τ ],
whereas

Qτ (tw) =

∫ tw+τ

tw

ξ(t′)ẋ(t′)dt′ −
∫ tw+τ

tw

ẋ(t′)(γt ∗ ẋ)(t, tw)dt′, (4.23)

is the heat exchanged between the particle and the surrounding colloidal glass during
the same time interval. In equations (4.22) and (4.23), ∗ stands for the convolution
computed over [tw, t]. Therefore the last two integrals in equations (4.22) and (4.23)
account for the energy storage and loss, respectively, due to the evolving viscoelasticity
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of the suspension. The terms Kt(t, tw) and γt(t, tw) are the inverse Fourier transforms
of γ(ω, tw) and KLap(ω, tw) defined in subsection 1.4.2. Note that in general the cal-
culation of Qτ by means of the right-hand side of equation (4.22) requires a very good
accuracy for the dependence of KLap(ω, tw) on ω over a broad frequency range. Oth-
erwise the convolution in equation (4.22) is underestimated. In practice this method
is quite inaccurate for tw > tg given the large experimental errors when computing
KLap over a broad frequency range in the viscoelastic regime. However, for tw ≤ tg
KLap(ω, tw) = 0 and γ(ω, tw) = γ(tw) as shown in subsection 4.5. Consequently, the
storage term associated to the elasticity of the glass in equation (4.22) vanishes leading
to a simply expression for the heat transfer

Qτ (tw) =
1

2
k[x(tw + τ)2 − x(tw)

2]. (4.24)

For a given waiting time tw, we compute a data set {Qτ (t)}τ , with tw ≤ t ≤ 50 s, using
equation (4.24). Then the PDF of the heat at tw is computed using this data set for
different values of τ . The results are shown in figure 4.9 for tw = 95 min. By plotting
the PDF of the absolute value of Qτ , we observe that it is strongly non-Gaussian.
It has long tails decaying approximately as an exponential and it is symmetric with
respect to the maximum value located at Qτ = 0 even for extreme fluctuations as
large as ±5kBT . We verify this symmetry for different waiting times tw < 300 min
and for different time lags over four decades (25 ms ≤ τ ≤ 25 s). The absence of any
asymmetry in the PDF of Qτ confirms, in addition to the different methods described
in the previous sections, that Teff = T for fluctuations taking place at time scales as
slow as τ = 25 s corresponding to frequencies ∼ 0.04 Hz.

4.8 Discussion and Conclusion
We have experimentally studied the statistical properties of the Brownian motion of
a bead inside a colloidal glass of Laponite during the transition from a viscous to a
visoelastic state. We were specifically interested in understanding whether a Teff ̸= T
can be observed when the Brownian particle is inside an out of equilibrium bath, i.e.
the Laponite suspension in this case. As already mentioned, this problem has been the
subject of several measurements giving contrasting results. Our experimental results
show not only that, within experimental errors, Teff = T at any time but they also
indicate the reasons of the contrasting results. This was possible thanks to the use
of multiple optical traps which allow us to apply simultaneously in the same evolving
colloid active and passive microrheology techniques. Let us summarize the new main
results of our investigation:

a) The use of multiple traps allows us to check simultaneously two microrheology
techniques that had led to conflicting results in the past and to find the possible
reasons of this contrast. We have interpreted the relation between the local
and global quantities defined in previous works and explained why they must be
consistent with each other. In section 4.6 we have shown that:
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a.1) In the case of PMR the use of too short time windows to measure the
variance of fluctuations and of too long time windows for data smoothing
induces an anomalous increase of the Teff at very long times. This artifact
is suppressed if a more precise and unbiased data analysis is performed.

a.2) By means of AMR at very low frequencies never studied before we check
that Teff = T for the micron-sized probe in the aging colloidal glass. An
advantage of the AMR technique is that it also allows to resolve the slowly
evolving viscosity and elasticity of the colloidal glass in order to observe its
transition from a purely viscous fluid to a viscoelastic solid-like phase.

a.3) For the active microrheology method we have shown in figure 4.7 the exis-
tence of a maximum as a function of time for the fluctuation spectra and
for the imaginary part of response function, such that the ratio of these two
functions gives a constant Teff . The position of these maxima depends on
the strength of the optical traps used to measure the response and fluctua-
tions. These strengths are the same in our case whereas they are different in
the experiment reported in [90]. This difference in strength induces a shift
in the time position of these maxima which must be corrected in the data
analysis. Small errors in this correction may of course induce an anomalous
time dependence of Teff .

b) The use of a new method based on the PDF of heat fluctuations, section 4.7. This
technique shows no measurable mean heat transfer between the aging colloidal
glass and the environment even at long time scales. This is consistent with the
results of passive measurements which show that Teff is equal to T at any time
even for very low frequencies (∼ 10−2 Hz).

These results show that the effective temperature of the colloidal glass felt by the
Brownian particle is always equal to the temperature of the environment during aging
for the timescales that we probed. Furthermore they explain where the conflict between
the various results reported in literature may come from. The relation between spon-
teneous fluctuations and linear response of the particle in the Laponite bath seems is
very well described by an equilibrium-like relation as (2.16)

−∂t⟨x(t)x(tw)⟩ = kBTeffR(t, tw),

with Teff = T and 0 ≤ t−tw . 25 s, except for the explicit dependence on the age of the
system tw This result suggests that slow structural rearrangements taking place at these
timescales are equilibrated with the environment since our results show no increase of
Teff . This is in agreement with those of reference [88], based on bulk measurements,
and those of Jabbari-Farouji et al. [83, 91, 93], who measured fluctuations and responses
of the bead displacement in Laponite over a wide frequency range and found that Teff
is equal to T .

We stress the following important features of the experiment:
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• The size of the Brownian probe is 2 orders of magnitude larger than the size of
the Laponite platelets. Then it is unlikely that a structural rearrangement of
a metastable configuration of the platelets can give rise to a sufficiently strong
fluctuating force on the probe that could be interpreted as Teff > T .

• The largest timescales probed by microrheology techniques are two orders of
magnitude smaller than the typical timescale of the formation of the viscoelastic
structure. Once again, it is unlikely that the probe particle is able to detect such
slow fluctuations (provided that they are strong enough to perturb the Brownian
motion) in a time two orders of magnitude smaller.

• The initial nonequilibrium condition of the suspension is not prepared by means
of a temperature quench but by the unstable disordered packing of Laponite
particles. Unlike structural or spin glasses, where the distance from thermal
equilibrium of the system can be tuned by means of the quench depth, in the case
of the Laponite colloidal glass there is no such a control on the initial condition.

Therefore, it is natural to conclude that the preparation of the initial condition of the
Laponite colloidal glass drives the system only into a weak nonequilibrium state. In this
way, as the system ages the energy flux from to the suspension to the environment slow
down. Then, they are undetectable by the Brownian motion of the micron-sized probe.
In addition, it is important to remark that even when the idea of measuring Teff by
means of the Brownian motion of a small probe in the glass is similar to the numerical
simulations that report Teff > T in [80], the conditions are quite different. In such a
numerical work, the tracer is able to probe a low-frequency Teff > T , provided that its
length and timescales are comparable to those of the glass. However, in our experimen
the typical length and timescales of the probe particle are very different from those of
the glassy structure. In other words, x is not coupled to the nonequilibrium dynamics
of the relevant degrees of freedom of the colloidal glass. Hence x exhibits equilibrium-
like statistical properties. This conclusion is in full agreement with recent numerical
simulations on assembling polymers [105] that show no deviation of the equilibrium
fluctuation-dissipation relation (2.16) if the measured observable is not coupled to the
nonequilibrium degrees of freedom of the system.

Finally, we point out that our results are not in contrast with the very large val-
ues of Teff > T observed by dielectric measurements [87, 88, 89] and more recently
by birefringence methods [106]. This is because, by definition, Teff is in principle
observable dependent, see equations (4.1) and (4.2). Indeed, according to the explana-
tion provided by [105], the observables measured in this kind of experiments (electric
impedance and polarization) are strongly coupled to the nonequilibrium degrees of
freedom of the colloidal glass.
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Chapter 5

Brownian particle in gelatin after a
fast quench

5.1 Gelatin and the sol-gel transition

Gelatin is a thermoreversible gel obtained from denatured collagen which is the the
building block of connective tissues of mammals. Collagen molecules are long chains
(300 nm long and 1.5 nm in diameter) with a triple-helix structure stabilized by hydro-
gen bonds (see inset of figure 5.1). Then gelatin, which is obtained by hydrolyzation
of collagen, has also a triple helical structure in aqueous solutions at low temperature.
The formation of a network of cross-linked helical segments gives rise to an arrested
state with elastic behavior, i.e. a gel. Upon heating up the gel phase above a tem-
perature Tgel called the gelation temperature, the hydrogen bonds are disrupted and
then aqueous gelatin solutions exhibit a random single-stranded coil structure result-
ing in a macroscopic viscous liquid phase (sol). This process is completely reversible:
by cooling down the sol phase below Tgel, the renaturation of the native triple helices
is thermodynamically favorable, then the triple helical network connected by single
strands is formed by percolation of the long gelatin chains, as depicted in figure 5.1.
The transition from the sol phase to the gel phase is called the sol-gel transition. The
value of Tgel depends on the gelatin concentration of the aqueous solution: in general
Tgel increases as the concentration increases. If the transition is induced by a quench
from above to below Tgel, the system quickly becomes frustrated by topological con-
straints due to the competition of neighboring triple helices for the shared portions of
the chains. Therefore after a quench the system displays physical aging: the physical
properties of the aqueous gelatin solution evolve in time as the system undergoes the
sol-gel transition. The aging strongly depends on the quench depth: the deeper the
system is quenched, the faster the aging. Bulk rheological measurements show that
gelatin samples quenched or ramped below Tgel share some common phenomenological
features with glassy dynamics. For example, the rheological properties in both kinds
of systems display scaling laws: the real part of the shear modulus, which quantifies
the elasticity of the system, increases logarithmically as a function of the aging time
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Figure 5.1: Schematic representation of the sol-gel transition of gelatin. Above the
gelation temperature Tgel, the gelatin chains have a random single-stranded coil struc-
ture giving rise to a viscous liquid-like phase (sol). By cooling down below Tgel the
single strands arrange in the triple-helix structure of the native collagen (inset). Then
the network formed by percolation of these chains gives rise to a viscoelastic solid-like
phase (gel). During this process the system becomes frustrated due to the competition
of neighboring triple helices for the shared single strands, like the one enclosed by the
red circle.

[107, 108]. The elasticity of gelatin solutions only depends on the helix concentration,
i.e. the fraction of renatured triple helices with respect to the native collagen structure.

Unlike the Laponite colloidal glass, the key features of gelatin for our experiment
are the following:

• The initial nonequilibrium condition of the bath can be accurately controlled by
performing a temperature quench from above to below Tgel. Then the experiment
can be repeated severeal times in order to compute ensemble averages.

• As the quench depth can be tuned by varying the power supplied to the gelatin
gel, then the aging rate can be accelerated to be accessible for microrheological
measurements using optical traps.

• The lengthscales of the gelatin chains (300 nm) and the resulting mesh size of
the gel network after the quench are not negligible with respect to the Brow-
nian particle size. Hence in principle the particle must be able to probe the
nonequilibrium assemblage of the gel network after the quench.

Bearing in mind these features, the aqueous gelatin solution represents a good exper-
imental system to conduct a careful study of the Brownian motion of a micron-sized
particle in an out-equilibrium aging bath.
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Figure 5.2: Diagram of the temperature feedback system used to keep the gelatin bulk
inside the cell at T0 = 26± 0.05◦C < Tgel.

5.2 Description of the experiment

We now proceed to describe the experimental setup that we implemented to perform
a very fast quench of ∆T ≈ 11 K in less than 1 ms in a micron-sized region around a
spherical Brownian particle trapped by optical tweezers. This quenching rate is 4 orders
of magnitude faster than the typical rates that can be achieved in bulk rheological
measurements. In this way we were able to impose strong nonequilibrium conditions to
the gelatin sample and detect the influence of its nonequilibrium relaxational dynamics
on the Brownian motion of the probe.

5.2.1 Sample preparation

In the experiment, we prepare an aqueous gelatin solution using a type-B pig skin
gelatin powder. This type of gelatin is obtained from alkaline treatment during the
denaturation of collagen. The sample is prepared at a weight concentration of 10 wt %
following the usual protocol [109]: the powder is heated in water for 30 minutes at
60◦ C and gently stirred until obtaining a homogeneous transparent solution. At a
concentration of 10 wt % the gelation temperature for this type of gelatin is Tgel = 29◦

C. We keep the gelatin sample in the sol phase at T = 36◦C and a small volume fraction
(10−6) of silica microspheres (radius r = 1µm) is injected and homogeneously mixed
in the solution. Then a tiny amount (0.3 ml) of the solution is introduced inside a cell
made of a plastic chamber (inner diameter 15 mm, thickness 1 mm) sealed between a
microscope slide and a coverslip, like that sketched in figure 1.4. The sample is aged
at room temperature ≈ 26 ± 1◦C for several hours after the preparation in order to
obtain a gel without quenching the sample.
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5.2.2 Fast quenching method

Once the gelatin sample inside the cell is in the gel phase, it is placed in the single-trap
setup described in detail in section 1.2. The temperature of the cell is measured using an
AD590 thermal sensor placed on the lateral side of the chamber containing the gel. The
sensor produces a current which is directly proportional to the temperature of the cell.
This current is detected by the temperature control module (TCM-39032) of a modular
laser diode controller (LDC-3900, ILX Lightwave) and converted into temperature units
after calibrating the sensor. A Peltier element is put in contact with the microscope
slide of the cell and connected to the temperature control module. In this way the
temperature of the cell is controlled by current feedback of the Peltier element and the
gelatin bulk is kept in the gel phase at constant temperature T0 = 26± 0.05◦C < Tgel.
An schematic diagram of the temperature feedback system is shown in figure 5.2. Next,
one of the silica beads inside the gel is kept in the focal position of a tightly focused
laser beam (λ = 980 nm) at a power of 20 mW and at a distance h = 25µm from the
coverslip surface (see figure 5.3). At this power the laser produces on the particle an
elastic force of stiffness k = 2.9 pN/µm. Starting from this condition, the power of
the trapping laser is increased to P = 200 mW. Because of the light absorption by the
water molecules of the solution, the temperature of the gel around the trapped particle
increases an amount δT . A formula to estimate the temperature increase of a fluid by
an optical trap was derived and experimentally checked in reference [110]. δT can be
expressed in terms of P , λ, the attenuation coefficient of the fluid α and its thermal
conductivity K

δT =
Pα

2πK

[
ln

(
2πh

λ

)
− 1

]
, (5.1)

Since the gelatin sample in our experiment is composed of 90% water, the value of δT
at h = 25µm from the cell wall can be estimated by substituting in equation (5.1) the
experimental values of P , λ, the attenuation coefficient α = 50 m−1 and the thermal
conductivity of water K = 0.60 W m−1 K−1. This yields the value

δT ≈ 12K.

Then the temperature around the trapped Brownian particle is T0+ δT = 38◦C, which
is higher than Tgel

1. As a result the gel melts and a liquid droplet is formed around
the trapped bead inside the the solid gel bulk, as depicted in figure 5.3. The size of the
melted droplet slightly depends on the time that the beam locally heats the gelatin.
In order to avoid a significant damage to the surface smoothness of the bead by the
continuous strong heating, we keep the power at P = 200 mW only for 180 s. For
this heating time the final radius of the melted droplet is a = 5µm, measured in the

1The value 38◦C of the temperature around the bead is checked by comparing the high-frequency
side of the power spectrum of fluctuations of the position of the bead trapped by the focused laser
at P = 200 mW with the spectrum obtained by trapping the bead at a very weak laser power (weak
absorption) and heating the whole cell at 38◦ C by means of the power dissipated by an indium tin
oxide coated microscope slide suject to an electric current.
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plane xy perpendicular to the beam propagation. We determine this value of a in two
different and independent ways:

a) After 180 s, we suddenly decrease the laser power to 20 mW, which is enough
to keep the bead in the beam focus with a trapping stiffness of k = 2.9 pN/µm.
Then we slowly drag the bead across the liquid droplet by moving horizontally the
whole cell using the piezoelectric stage of the single optical trap setup (see section
1.2). Since at this small power the temperature rise is only δT ≈ 1.2 K according
to equation (5.1), no additional amount of gel melts during the displacement
of the cell. The radius a = 5µm is determined as the distance travelled by the
dragged particle from its original position in the center of the droplet to the point
where the optical trap is not able to drag it anymore because of the liquid-solid
interface between the droplet and the gel bulk.

b) A second gelatin solution is prepared at 10 wt % with a relatively high concen-
tration (volume fraction 10−3) of small silica microspheres of radius r = 0.225µm
and without r = 1µm beads. We repeat the heating procedure for 180 s to melt
a droplet of the same size as before. In this case we use the small microspheres
as tracers. In figure 5.4 we show two snapshots of this gelatin solution before
and after locally heating with the laser. Most of the particles located inside the
droplet undergo free Brownian motion and are eventually attracted to the beam
focus whereas those outside the droplet stay almost immobile by the elastic gel
network. In this way we check that a = 5µm.

Once that we melt the sol droplet for 180 s, the laser power is suddenly decreased
again to 20 mW, as sketeched in figure 5.5(a). Since the thermal diffusivity of water
is κ = 1.4× 10−7m2 s−1, the time τκ needed for the heat to diffuse from the droplet to
the bulk is

τκ ∼ a2

κ
∼ 2× 10−4 s.

Hence, the temperature of the droplet is homogenized by heat diffusion into the bulk
in less than 1 ms resulting in a very efficient quench of the gelatin around the trapped
particle to the final temperature T = 27.2◦C < Tgel. At this final temperature the
liquid inside the droplet undergoes aging because of the fast quench and it solidifies
in about 1 hour to the surrounding gel phase. The particle, trapped in the center of
the droplet by the harmonic potential created by the focused beam, is a probe of this
relaxation dynamics. In the experiment we repeat this quenching procedure 60 times
in order to perform the proper ensemble averages.

5.3 Microrheology
Immediately after the quench we record the time evolution of the x position of the
trapped particle, see figure 5.3. The acquisition, done at 8 kHz, and the data processing
are performed using the PSD system described in detail in subsection 1.2.1. Figure
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Figure 5.3: Left panel: schematic representation of the experimental setup to perform a
fast local quench of the gelatin around a trapped Bronwian particle. A Peltier element
with current feedback keeps the gelatin bulk in the gel phase at contant temperature
T0 = 26± 0.05◦C whereas a tightly focused laser beam locally rises the temperature to
36◦C. Right panel: a droplet in the sol phase (radius a = 5µm) is melted around the
trapped particle as a result of the local heating of the gel by the laser for 180 s. The
liquid droplet is surrounded by the gel network.

Figure 5.4: Snapshots of the gelatin solution (bulk temperature 26◦C) with small
tracers (r = 0.225µm) (a) before and (b) after locally heating during 180 s with the
focused laser beam at P = 200 mW. The radius of the red circle is a = 5µm.
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Figure 5.5: (a) Diagram of the quench of the droplet from T0 = 38◦C to T = 27.2◦C
in less than 1 ms by suddenly decreasing the laser power from P = 200 mW to P = 20
mW. The lower panel shows the fluctuations of the position of the trapped particle
before and after the quench. (b) Power spectral density of the fluctuations of x for
the trapped bead measured over a time window ∆t = 15 s at different times t after
the quench: 0 s ≤ t ≤ 15 s (red solid line), 75 s ≤ t ≤ 90 s (blue dashed line), and
1200 s ≤ t ≤ 1215 s (turquoise dotted-dashed line).

5.5(a) shows the typical time evolution of x before and after the quench. Due to the
aging process of the gelatin droplet, the time series of x is nonstationary. This is
more evident in figure 5.5(b) where we plot the power spectral density ⟨|x̂(f, t)|2⟩ of x
computed over a time window [t, t +∆t] of length ∆t = 15 s at different times t after
the quench. The average ⟨. . .⟩ is performed over 60 independent quenches. The high
frequency side of the spectrum continuously decreases one order of magnitude during
the first 20 minutes whereas the low frequency side exhibits a rather complex time
evolution due the increasing viscoelasticity of gelatin during the gelation process.

In order to characterize the dynamics of x, we first perform active microrheology to
determine the viscoelasticity of the gelatin droplet. See section 1.4 for the experimental
details on microrheology. For this purpose we apply an external oscillating force F (t, f)
to the trapped bead

F (t, f) = F0 sin(2πft). (5.2)

at different driving frequencies 0.2 Hz ≤ f ≤ 5 Hz and fixed amplitude F0 = 87 fN.
In this way we resolve the storage G′(f, t) and loss G′′(f, t) modulus of the droplet at
different times t after the quench. Because of the relatively fast aging process shown
in figure 5.5(b), the spectral analysis involved in the calculation of G′ and G′′ must be
carried out over a short time window [t, t+∆t] for each aging time t. In the following
we set ∆t = 15 s in all the calculations. This value of ∆t is large enough to resolve
the frequencies of the applied driving and at the same time it is short enough to avoid
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Figure 5.6: (a) Aging time evolution of the real G′ and imaginary G′′ part of the shear
modulus of the gelatin droplet after the quench, measured at f = 5 Hz. (b) Expanded
view of the aging time evolution of G′ and G′′ during the first 120 s.

a pronounced time evolution of the nonstationary signals that we measure. In figures
5.6(a) and 5.6(b) we plot the aging time evolution of G′ and G′′ computed at f = 5 Hz
during the first 20 minutes after the quench. We can identify three different regimes:

I. For 0 s ≤ t ≤ 60 s the storage modulus G′ is completely negligible, whereas the
loss modulus G′′ increases continuously in time by a factor of almost two. In this
aging regime, hightlighted in figure 5.6(b), it is expected that the gelatin droplet
still behaves as a purely viscous liquid even when the final temperature of the
quench is below Tgel, as verified further.

II. For 60 s ≤ t ≤ 200 s, the loss modulus continuously increases and the storage
modulus starts to increase slowly. This result shows that the droplet is in a tran-
sient regime towards the sol-gel transition where the gel network is not completely
formed. Indeed, G′ is still much smaller and it increases slower than G′′.

III. For 200 s ≤ t ≤ 1200 s, both G′ and G′′ reach a logarithmic growth ∼ log t where
G′ increases faster than G′′. This growth as t increases is similar to that reported
in macroscopic bulk measurements [107, 109, 111, 112, 113] but taking place at
much faster timescales because of the smallness of the gelatin droplet. Then the
system is actully undergoing gelation providing evidence that the percolating gel
network is already formed.

By measuring the time evolution of G′ and G′′ at different low frequencies (f =
0.2, 0.5, 1.0 and 5.0 Hz) we can reconstruct a picture of the relevant relaxation timescales
of the fluid inside the droplet during the gelation process:
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Figure 5.7: (a) Storage modulus of the gelatin droplet measured at different frequencies
and at different times after the quench: t = 120, 180, 300, 600, 900 and 1200 s. For
t ≤ 60 s the mean values of G′ are smaller than the statistical error bars indicating
that they are completely negligible (not shown). (b) Loss modulus measured at different
frequencies and at different times after the quench: t = 60, 120, 180, 300, 600, 900 and
1200 s.
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Figure 5.8: (a) Aging time evolution of the viscous drag coefficient of the particle in
the gelatin droplet during the first 200 s after the quench. (b) Aging time evolution of
the largest relaxation time of the fluid inside the droplet. Inset: aging time evolution
of the ratio between the largest relaxation time of the droplet and the relaxation time
τk = γ0/k of the position fluctuations of the trapped Brownian particle.

• In figures 5.7(a) and 5.7(b) we plot the low-frequency spectrum of G′ and G′′,
respectively, at different times after the quench. We check that for the regime I
(0 s ≤ t ≤ 60 s) the droplet is almost purely viscous because the mean value of
G′ is close to 0 and even smaller than the statistical errors for all the measured
frequencies f . Besides, G′′ is approximately proportional to f (dashed line in
figure 5.7(b)), then the dynamic viscosity of the droplet G′′/(2πf) is frequency-
independent but it increases as t increases. Therefore at this time scales the fluid
inside the droplet behaves as a Newtonian fluid with a vanishing relaxation time.

• Next, in figure 5.7(a) we plot as dashed lines the curves ∝ f and ∝ f 2. We observe
that as f → 0, the storage modulus displays an intermediate behavior between
these two reference curves. Then we conclude that G′(f, t) → 0 as f → 0 in the
regime II (60 s ≤ t ≤ 200 s). On the other hand, in figure 5.7(b) we observe that
the loss modulus is roughly proportional to f . This behavior of G = G′+iG′′ can
be approximately described by the Maxwell model for a viscoelastic fluid with a
single relevant relaxation time2 τ0. Based on these experimental results we can
estimate τ0(t) at aging time t for both regimes I and II based on the Maxwell

2The relaxation time τ0 represents the largest timescale at which a viscoelastic fluid is able to store
energy at present time t starting from t− τ0. For timescales ≫ τ0 the memory of this energy storage
process is lost. In particular, for a Newtonian fluid τ0 = 0.
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5.3 Microrheology

model for G′ and G′′

G′(ω, t) =
η0(t)ω

2τ0(t)

ω2τ0(t)2 + 1
,

G′′(ω, t) =
η0(t)ω

ω2τ0(t)2 + 1
, (5.3)

where ω = 2πf and η0(t) is the zero-shear viscosity at time t. Using equation
(5.3) we obtain an expression for τ0 and for the viscous drag coefficient of the
spherical bead

γ0 = 6πrη0,

in terms of the measured values of G′ and G′′

τ0 =
1

ω

G′

G′′ ,

γ0 = 6πr
G′′

ω

[
1 +

(
G′

G′′

)2
]
. (5.4)

In figures 5.8(a) and 5.8(b) we plot the time evolution of γ0 and τ0, respectively,
during the first 200 s after the quench. γ0 and τ0 are estimated at f = 5 Hz
using equation (5.4). As expected, τ0 is very small (≈ 2 ms) with error bars even
larger than the mean values during the first 60 s after the quench. Therefore,
the droplet can be regarded as Newtonian fluid (τ0 ≈ 0), at least for frequencies
f < 1/(2πτ0) ≈ 80 Hz in the regime I. Next, for 60 s ≤ t ≤ 200 s the mean value
of τ0 becomes larger than the error bars and approximately four times the value
found for the regime I. Hence, the fluid in the droplet can be actually modelled
as a Maxwellian fluid with nonzero τ0 in the regime II. In the inset of figure 5.8
we compare the values of τ0 with the viscous relaxation time of the particle inside
the optical trap

τk =
γ0
k
. (5.5)

Since τ0/τk ≤ 0.05 even in the regime II, then the viscoelastic memory effects
of the droplet taking place during τ0 does not significantly affect the Brownian
motion of the particle during the first 200 s, as shown further on.

• Finally, for the regime III (200 s ≤ t ≤ 1200 s) G′′ and mainly G′ exhibit a
complex frequency dependence. Unlike the Maxwellian behavior which satisfies
G′ → 0 as f → 0, in this regime G′ seems to remain finite as f → 0, as shown in
figure 5.7(a). This is also in agreement with bulk measurements [111, 112] that
report a nonzero storage modulus of constant value at very low frequencies. This
low-frequency behavior corresponds that of an elastic solid with a continuous
spectrum of relaxation times.

With the previous microrheological information of the gelatin droplet, we are able to
study carefully in the following sections the nonequilibrium fluctuations of the trapped
particle (with no external force F (t)) during the aging of the bath.
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Figure 5.9: (a) Time evolution of the particle position x after a given realization of
the quench. The probability density function of x at time t, Pt(x), is determined by
computing the histogram of x over a short time window δt = 0.1 s around t and over 60
independent quenches. (b) Probability density function of x at different times t after
the quench. The solid lines are Gaussian fits.

5.4 Spontaneous nonequilibrium fluctuations
In order to probe the statistical properties of the nonequilibrium fluctuations of x
during the gelation of the droplet in absence of any external force, we first compute
their probability density function Pt(x) at time t after the quench. Since the stochastic
process x(t) is nonstationary, we compute Pt(x) over 60 independent quenches and over
a short time window δt = 0.1 s around each value of t to improve the statistics, as
represented in figure 5.9(a). We find that Pt(x) is Gaussian for all t ≥ 0

Pt(x) =
1√

2πσx(t)2
exp

(
− x2

2σx(t)2

)
, (5.6)

as plotted in figure 5.9(b). Consequently, the statistical properties of x can be com-
pletely characterized by the variance σx(t)2 computed at time t in the same way as
Pt(x). The time evolution of σx(t)2 is plotted in figure 5.10. We now analyze in detail
the behavior of σx(t)2 according to the different aging regimes identified by active mi-
crorheology and the information that can be provided by this quantity. We carry out
this analysis taking into account that the total potential energy of the trapped particle
at time t is

U(t) =
1

2
kx(t)2 + Ustored(t), (5.7)

where Ustored(t) is the energy stored by the surrounding gelatin chains in the droplet
until time t.
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5.4 Spontaneous nonequilibrium fluctuations

Regime I

As the storage modulus is completely negligible in this regime, Ustored = 0. Then, the
total energy of the Brownian particle is U(t) = kx(t)2/2. At thermal equilibrium U(t)
should satisfy the equipartition relation

⟨U⟩ = 1

2
kBT,

where T is the temperature of the bath. Then, the variance of x would be σx(t)2 =
kBT/k for all t ≥ 0. However, we observe that immediately after the quench, σx(t)2 is
almost three times the equilibrium equipartition value kBT/k, with T = 300.4 K the
final equilibrium temperature of the droplet after the quench. This shows the presence
of a stochastic force on the particle stronger than the thermal fluctuations provided
by the fast thermal motion of gelatin chains. This force weakens monotonically as t
increases so that σx(t)2 reaches the equipartition value at t ≈ 20 s and remains at this
value for t & 20 s. It must be noted that this relaxation timescale is two orders of
magnitude larger than the initial viscous relaxation time of the particle:

τk =
γ0(0)

k
= 65ms.

Thus, the observed slow dynamics is not the result of the particle relaxation after
the sudden change of the the optical trap stiffness during the quench but it is a real
nonequilibrium effect due to transient formation of the gel network towards the sol-gel
transition.

With the purpose to check this hypothesis, we perfom the same quenching procedure
in a Newtonian fluid (glycerol 60 wt % in water) with the same viscosity of the initial
sol phase of gelatin (9 × 10−3 Pa s). In figure 5.10 we also plot the time evolution of
σx(t)

2 measured after the quench in glycerol. In this case, the particle dynamics must
settle into an equilibrium state in a time t ≈ τk = 65 ms after the quench [114, 115].
Indeed in figure 5.10 we see that, in glycerol, σx(t)2 = kBT/k for all t within the
experimental accuracy. This confirms that no experimental artifact is present and that
the observed dependence of σx(t)2 in gelatin is a real nonequilibrium effect due to the
sol-gel transition.

Regime II

Since σx(t)2 has already relaxed to an equilibrium-like behavior in the previous regime,
at first glance it should be expected that σx(t)2 < kBT/k for 60 s ≤ t ≤ 200 s because
in this regime the storage modulus G′ is nonzero compared to G′′ (see figures 5.6 and
5.7). This implies that Ustored > 0, then

σx(t)
2 =

2⟨U(t)− Ustored(t)⟩
k

<
kBT

k
. (5.8)

However, in figure 5.10 we observe that for 60 s ≤ t ≤ 200 s, the value of σx(t)2 remains
constant and equal to the equipartition value kBT/k within the experimental accuracy.
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Figure 5.10: Time evolution of the variance of the particle position, normalized by
the equilibrium equiparition value kBT/k, after the quench in gelatin (◦) and glycerol
(dashed line). The labels I, II and III correspond to the different aging regimes of the
gelatin droplet found by active microrheology (see section 5.3).

Indeed, a simple calculation, based in the Langevin equation (1.16) and the Maxwell
model (5.3) for the shear modulus of the droplet, shows that the variance of the particle
position in this regime is

σx(t)
2 =

kBT

k

1

1 + τ0(t)
τk(t)

. (5.9)

In equation (5.9), τ0(t) and τk(t) are the largest relaxation time of the aging gelatin
and the viscous relaxation time of the fluctuations of the trapped particle at time t,
defined by equations (5.3) and (5.5), respectively. Therefore, the energy stored by the
viscoelasticity of the gelatin chains is

⟨Ustored(t)⟩ =
1

2
kBT

[
1− 1

1 + τ0(t)
τk(t)

]
, (5.10)

In the inset of figure 5.8(b) we have shown that the ratio τ0/τk is smaller than 0.05
during the first 200 s after the quench. Then, according to equation (5.10) Ustored

represents in average less than 5% the total potential energy of the particle. In other
words, the energy storage effect of the gelatin chains on the Brownian motion of the
particle is negligible because the memory of the bath is erased in a timescale τ0 much
shorter than the time needed for the fluctuations of x to decorrelate. As τ0/τk ≤ 0.05,
according to equation (5.9) the experimental value kBT/k of the variance in this regime
shows that the Brownian motion of the trapped particle behaves like in equilibrium
with the thermal motion of the gelatin chains even when the droplet is aging.
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Figure 5.11: Mean value of the normalized heat qt,τ = Qt,τ/(kBT ) computed at different
times t after the quench and for different values of the time lag τ . The symbols
correspond to the quench in gelatin whereas the dashed line corresponds to the quench
in glycerol.

Regime III

In figure 5.10 we show that in this regime σx(t)2 exhibits a different qualitative behavior:
it decreases monotonically as t increases. This is in agreement with the microrheological
measurements plotted in figures 5.6 and 5.7, where we show that the shear modulus
has a complex frequency dependence with a non-negligible storage component G′ >
G′′ as f → 0. Then, equation (5.10) is not valid anymore in this regime because
several relaxation timescales come into play due to the strong elastic behavior of the
aging gelatin. As t increases, the gelatin droplet becomes stiffer and stiffer so the gel
network around the particle stores a significant fraction of its total potential energy.
Consequently, according to equation (5.8) σx(t)2 becomes a decreasing function of
t for t > 200 s. Note that this behavior is qualitatively similar to that observed
for the Brownian particle in the Laponite colloidal glass (see chapter 4). Once the
viscoelasticity of the bath starts to increase, the particle dynamics has an equilibrium-
like behavior because the tipical relaxation times of the bath are much larger than that
of the Brownian probe.

5.5 Heat fluctuations and the fluctuation theorem

We now focus on the statistical properties of the spontaneous energy fluctuations of
the Brownian particle inside the aging droplet for the very first 200 s after the quench
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(no external force). We concentrate in this time interval because we have shown in the
previous section that in the regimes I and II the energy stored by the bath constitutes
in average less than 5% of the total potential energy of the particle. Since the motion
of the Brownian particle is overdamped, the instantanous value of its total energy at
time t is given with an error smaller than 5% by

Ut =
1

2
kx2t .

As there is no external force acting to the particle, according to stochastic thermody-
namics [61, 104] the heat exchanged between the particle and the bath during the time
interval [t, t+ τ ] is equal to the variation ∆Ut,τ = Ut+τ − Ut of the total energy of the
particle. Specifically

Qt,τ = ∆Ut,τ =
k

2
(x2t+τ − x2t ), (5.11)

where a positive (negative) value of Qt,τ represents a heat fluctuation from (to) the bath
to (from) the trapped particle. Therefore, the mean heat transferred during [t, t + τ ]
can be written in terms of the variance of x as

⟨Qt,τ ⟩ =
k

2
[σx(t+ τ)2 − σx(t)

2] ≤ 0. (5.12)

In fig. 5.11 we plot the ensemble average value of the heat (normalized by kBT ) using
equation (5.12) and the experimental values of the variance σ2

x shown in figure 5.10.
We observe the existence of a mean heat flux from the particle to the surroundings
over the timescale τ because of the relaxation of σx(t)2. Since the mean heat is an
extensive variable, its absolute value increases as the measurement time τ increases.
Note that at thermal equilibrium the mean heat would be ⟨Qt,τ ⟩ = 0 for all t and τ
because of the detailed balance. The maximum value |⟨Qt,τ ⟩| ≈ kBT takes place at
t = 0 s and for 20 s . τ . 200 s. Non-negligible values of the mean heat compared to
kBT persist for several seconds after the quench. Nevertheless, as t increases, |⟨Qt,τ ⟩|
decreases becoming negligible and experimentally undetectable for t & 20 s. The
nonvanishing mean heat flux ⟨Qt,τ ⟩/τ is a strong signature that the detailed balance of
the particle dynamics is broken by the assembling gelatin chains. However, as the bath
is undergoing aging, the typical timescales of the dynamics slow down. Then the rate
at which the heat flows from the system to the environement becomes undetectable by
the Brownian probe which results in an apparent equilibrium-like behavior for t & 20 s.
For comparison, in figure 5.11 we also plot as a dashed line the mean heat computed
at different times t after the quench in glycerol for the same large timescale τ = 30 s.
In this case ⟨Qt,τ ⟩ = 0 for all t ≥ 0 within the experimetal accuracy because of the
very fast equilibration of the bath and the particle after the quench.

Eq. (5.11) allows us to compute directly the fluctuations of Qt,τ from the measure-
ment of two instantaneous positions, xt and xt+τ , at two different times t and t + τ ,
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Figure 5.12: (a) Probability density function of the normalized heat qt,τ computed for
τ = 30 s at different times t after the quench in gelatin. The lines are computed using
equation (5.21). (b) Probability density function of the normalized heat qt,τ computed
for τ = 30 s at different times t after the quench in glycerol. The solid line corresponds
to the theoretical equilibrium profile.

respectively3. The probability density function Pt(qτ ) of the normalized heat

qt,τ =
Qt,τ

kBT
,

is computed over the 60 quenches and over a short time window δt = 0.1 s around each
t and t + τ . We focus on a large value of τ in order to probe timescales comparable
to the relaxation of the nonthermal fluctuations due to the early assemblage of the gel
network. Figure 5.12(a) shows Pt(qτ ) at different times t after the quench for τ = 30 s.
Pt(qτ ) is highly non-Gaussian with a spike at qτ = 0 and slowly decaying tails for all
the values of t. Immediately after the quench, Pt(qτ ) is strongly asymmetric with a
long tail occurring at negative fluctuations. As t increases this asymmetry decreases
and Pt(qτ ) becomes symmetric at t & 20 s. Once again, we check that the long-lived
asymmetry occurs because of the intricate nonequilibrium nature of the gelatin bath.
In figure 5.12(b) we plot Pt(qτ ) with τ = 30 s for the local quenches performed in
glycerol. Pt(qτ ) quickly converges to the equilibrium profile and it is always symmetric
with respect to qτ = 0.

A quantity commonly used to measure the asymmetry of the probability of observ-
ing positive and negative fluctuations of a given observable is the asymmetry function.

3This is not valid during the aging regime III because in such a case we have to take into account
the particle history between t and t+ τ and the exact form of the memory kernel Γ in equation (1.16).
See equations (4.22) and (4.23) in chapter 4 for the analytical expression of Qτ,t for a viscoelastic fluid
with G′ > 0.
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Figure 5.13: Asymmetry function of the probability density of the normalized heat
fluctuations qt,τ computed at different times t after the quench for τ = 30 s. The
straight lines are obtained using equations (5.23) and (5.24)

For the fluctuations of qt,τ the asymmetry function is defined as

ρt(qt) = ln
Pt(qτ )

P (−qτ )
.

The function ρt(qτ ), computed from the Pt(qτ ) shown in figure 5.12(a), is plotted in
figure 5.13. It is a linear function of its argument qτ :

ρt(qτ ) = −∆βt,τqτ . (5.13)

The slope ∆βt,τ decreases as t increases approaching the symmetric value ∆βt,τ = 0
as |⟨Qt,τ ⟩| ≪ kBT . Equation (5.13), except for the time dependent ∆βt,τ , is formally
similar to equation (A.3) provided by the fluctuation theorem. These results are the
first experimental evidence of this symmetry property for the heat fluctuations of a
relaxing system similar to that studied theoretically for an aging spin glass in Ref. [116,
117]. For comparison, in figure 5.12(b) we plot ρt(qτ ) for the quench in glycerol at
t = 0 and τ = 30 s. In this case the heat exchange process is always symmetric
because the bath quickly relaxes to thermal equilibrium in less than 1 ms after the
quench and the particle equilibrates with this equilibrium bath in ≈ 65 ms. This result
stresses the conclusion that the observed asymmetry in gelatin is really due to the
intricate nonequilibrium nature of the bath. The relaxation of the strong nonequlibrium
fluctuations of the assembling gelatin chains, which perturb the Brownian particle
motion, can be interpreted as a heat flux towards the environment. This process
becomes so slow during the aging that it is undetectable by the particle after 20 seconds.
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5.5.1 Model

In the absence of a theory for these experimental results we need to estimate the
prefactor ∆βt,τ to gain a physical interpretation of equation (5.13). We proceed to
show that the asymmetry of Pt(qτ ) can be directly linked to the nonstationarity of
the aging bath through the quantity σx. From equation (5.11), the probability density
PQt,τ of the heat fluctuations is equal to the probability density P∆Ut,τ of the variation
of the potential energy of the particle. Then, according to equation (5.11), Qt,τ can
be expressed as the difference of two random variables: Ut+τ and Ut. For τ much
larger than the largest correlation time of these two variables, PQt,τ can be written as
a cross-correlation function

PQt,τ (Q) =

∫ ∞

−∞
PUt+τ (u+Q)PUt(u) du,

Then, the corresponding characteristic functions (their Fourier transforms) are

P̂Qt,τ (s) = P̂Ut+τ (s)P̂Ut(−s), (5.14)

where the probability density of the energy fluctuations Ut = kx2t/2 at time t can be
expressed in terms of the probability density of the fluctuations of xt. Taking into
account the experimental fact that the fluctuations of xt are Gaussian for all t ≥ 0 (see
figure 5.9(b)), we find the explicit expression of PUt using the formula for Pxt(x) given
by equation (5.6)

PUt(U) =
2√

4πkσx(t)2
1√
U

exp

(
− U

kσx(t)2

)
Θ(U), (5.15)

where Θ is the Heaviside function. The Fourier transform of equation (5.15) is

P̂Ut(s) =
1√

1 + ikσx(t)2s
. (5.16)

Then, from equation (5.14) we obtain the explicit form of the characteristic function
of the heat fluctuations

P̂Qt,τ (s) =
1√

1 + ikσx(t+ τ)2s

1√
1− ikσx(t)2s

,

=
1√

αt,τ +
[
ϵt,τs− i∆t,τ

2

]2 , (5.17)

where the parameters αt,τ , ϵt,τ and ∆t,τ , that depend on t and τ , are

αt,τ = 1 +
1

4

[
σx(t)

σx(t+ τ)
− σx(t+ τ)

σx(t)

]2
,

ϵt,τ = kσx(t+ τ)σx(t), (5.18)

∆t,τ =
σx(t)

σx(t+ τ)
− σx(t+ τ)

σx(t)
.
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Equation (5.17) can be written in the form

P̂Qt,τ (s) =
1

√
αt,τ

ĝ

(
ϵt,τ√
αt,τ

s− i
∆t,τ

2
√
αt,τ

)
, (5.19)

where ĝ(y) = (1 + y2)−1/2. Therefore its inverse Fourier transform leads to the expres-
sion of the probability density of Qt,τ

PQt,τ (Q) =
1

ϵt,τ
g

(√
αt,τ

ϵt,τ
Q

)
exp

(
−∆t,τ

2ϵt,τ
Q

)
. (5.20)

The inverse Fourier transform g(x) of the function ĝ(y) has an analytical expression in
terms of the zeroth-order modified Bessel function of the second kind

g(x) =
K0(|x|)
π

,

which allows us to write an explicit expression for the probability density function of
the normalized heat qt,τ

Pt(qτ ) =
At,τ

π
K0 (Bt,τ |qτ |) exp

(
−∆t,τAt,τ

2
qτ

)
, (5.21)

with the time dependent parameters

∆t,τ =
σx(t)

σx(t+ τ)
− σx(t+ τ)

σx(t)
,

At,τ =
kBT

kσx(t)σx(t+ τ)
, (5.22)

Bt,τ = At,τ

√
1 +

∆2
t,τ

4
.

In equation (5.21) the asymmetry of the density is completely determined by the pa-
rameter ∆t,τ in the exponential. At equilibrium ∆t,τ = 0, At,τ = Bt,τ = 1 regardless
of t and τ , so that one recovers the expression of the symmetric equilibrium profile
Pt(qτ ) = K0(|qτ |)/π with ⟨qt,τ ⟩ = 0 that was found in [118, 119]. In figure 5.12 for each
experimental Pt(qτ ) we plot the prediction given by the analytical formula (5.21) using
the respective experimental values of σx shown in figure 5.10. The excellent agreement
confirms that our approach is suitable to describe the heat exchanges of the bead with
the gelatin bath during the first 200 s after the quench.

From equation (5.21) we obtain the explicit expression for the asymmetry function
of qt,τ

ρt(qτ ) = ln
Pt(qτ )

Pt(−qτ )
,

= −∆βt,τqτ , (5.23)
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where the prefactor ∆βt,τ is

∆βt,τ =
kBT

k

[
1

σx(t+ τ)2
− 1

σx(t)2

]
. (5.24)

Hence, the linearity of ρt(qτ ) is analytically satisfied for all the values of the heat
fluctuations and for all t even when P (qτ ) is strongly non-Gaussian. In figure 5.13 we
plot the straight lines with the slope ∆βt,τ given by equation (5.24) and computed using
the experimental values of σx. The good agreement with the experimental data shows
that the asymmetry of the fluctuations of the heat exchanged between the Brownian
particle and the bath verifies the fluctuation theorem.

Equations (5.23) and (5.24) gain a very intuitive interpretation if one introduces an
equipartition-like relation for the particle motion for 0 ≤ t . 200 s:

1

2
kBTeff (t) =

1

2
kσx(t)

2.

Here Teff (t) is the effective temperature perceived by the particle at time t due to its
coupling with the nonequilibrium gelatin environment. It quantifies the total stochas-
ticity provided to the particle by the motion of the neighboring gelatin chains. In this
way the parameter ∆βt,τ can be written conveniently as

∆βt,τ =

[
1

Teff (t+ τ)
− 1

Teff (t)

]
T, (5.25)

Equation (5.25) is formally equivalent to the expression (A.3) provided by the fluctua-
tion theorem for the heat fluctuations of a system in contact with two thermostats at
unequal temperatures. See appendix A for more details. Hence the quantity

∆St,τ = −kB∆βt,τqt,τ (5.26)

can be naturally identified as the entropy produced by the breakdown of the time-
reversal symmetry due to the the effective temperature imbalance at two different times
after the quench. As the gelatin droplet ages the mean entropy production rate ∆St,τ/τ
slows down and the particle exhibits an equilibrium-like dynamics for the experimental
timescales. We point out that unlike equation (A.3) derived in references [120, 121, 122,
123, 124, 125] for nonequilibrium steady states, equations (5.23) and (5.24) hold for
a nonstationary regime created by the nonequilibrium bath (the aging gelatin droplet
around the particle).

5.6 Nonequilibrium fluctuations and linear response
We now discuss the relation between entropy production, spontaneous fluctuations
and response of the trapped particle in this out-of-equilibrium aging bath. From the
results presented in chapters 3 and 4, it is clear that the there is a strong connection
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Figure 5.14: Passive (⟨|x̂(f, t)|2⟩) and active (2kBT Im{R̂}/(πf)) terms of equation
(5.28) for the particle position x at different times after the quench: (a) 0 ≤ t ≤ 15s,
the dotted circle points out the low-frequency deviation from equation (5.28); (b)
30 s ≤ t ≤ 45 s, the arrow indicates the position of the frequency fc (5.30); (c)
75 s ≤ t ≤ 90s; and (d) 1200 s ≤ t ≤ 1215 s. The dotted line corresponds the
Lorentzian curve obtained without taking into account the storage modulus G′ of the
gel.
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between the deviations from the equilibrium fluctuation-dissipation relation (2.16) and
the extent of the broken detailed balance. If energy fluxes or total entropy production
take place at a very slow rate then the system exhibits an equilibrium-like behavior,
i.e. fluctuations and response are related by equation (2.16) like the Brownian particle
in the Laponite colloidal glass. On the other hand, if the rate is fast enough, then
currents are non-negligible and deviations from equation (2.16) are significant, like in
the case of the Brownian particle in the toroidal optical trap. In the case of gelatin,
we found that there is a non-negligible heat flux comparable to kBT from the particle
to the bath during the first 20 seconds of the quench. The rate at which this heat
flux takes place slows down as the gelatin ages. The heat qt,τ times the prefactor
−∆βt,τ defined in equation (5.24) corresponds to the total entropy production during
the time interval [t, t + τ ]. The breakdown of the detailed balance is reflected in the
asymmetry ∆βt,τ > 0, quantified by σx(t)

2 − σx(t + τ)2 > 0 or by introducing the
effective temperature imbalance Teff (t) − Teff (t + τ) > 0. Therefore it should be
expected that a significant deviation of the equilibrium fluctuation-dissipation relation
(2.16) will happen for the fluctuations and response of the trapped particle during
the aging regime I of the gelatin droplet. In contrast, in the regimes II and III the
fluctuation-dissipation relation (2.16) must be satisfied with the temperature T of the
thermal bath. Indeed, we show in the following that our experimental results display
such a kind of behavior.

As we performed the active microrheology measurements at fixed excitation fre-
quency f , it is more convenient to study the fluctuations and linear response in fre-
quency domain. According to equation (1.22), the Fourier transform of the linear
response function of the particle position x to a perturbative time-dependent force is
related to the shear modulus G of the gelatin droplet by

R̂(f, t) =
1

6πrG∗(f, t) + k
,

Then, the imaginary part, related to the additional dissipation of the particle due to
an external force with respect to the unperturbed aging process, is

Im{R̂(f, t)} =
6πrG′′(f, t)

[k + 6πrG′(f, t)]2 + [6πrG′′(f, t)]2
. (5.27)

Around thermal equilibrium, this active quantity is related to the passive power spec-
tral density ⟨|x̂(f, t)|2⟩ of the fluctuations of x (no external force) by

⟨|x̂(f, t)|2⟩ = 2kBT

πf
Im{R̂}. (5.28)

Then, we proceed to compare the relation between ⟨|x̂(f, t)|2⟩ and 2kBT Im{R̂}/(πf)
in the different nonequilibrium aging regimes of the gelatin droplet.

In figure 5.14(a) we plot ⟨|x̂(f, t)|2⟩, computed over the time window 0 ≤ t ≤ 15 s
where a strong mean heat flux takes place (see section 5.5). On the other hand, taking
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into account the active measurements of G (section 5.3), Im{R̂} can be written in this
regime as

Im{R̂(f, t)} =
1

2πγ0(t)

f

f 2 + fc(t)2
, (5.29)

where fc(t) is related to the inverse of the viscous relaxation time τk(t) (equation (5.5))
of the trapped particle at time t by

fc(t) =
1

2πτk(t)
. (5.30)

In figure 5.14(a) we also plot the quantity 2kBT Im{R̂}/(πf), which has a Lorentzian
profile. As expected, an important deviation of equation (5.28) is observed for frequen-
cies f . 1 Hz. Note that at frequencies f & 1 Hz equation (5.28) is verified, indicating
that the deviation is actually due to the slow structural assembalge of the gel. The
spectral curves of figure 5.14(a) provide information on the timescales at which this
phenomenon perturb the Brownian probe: & 1 s. The extent of the deviation, i.e. the
difference between the area below ⟨|x̂(f, t)|2⟩ minus the area below 2kBT Im{R̂}/(πf)
in figure 5.14(a), can be written as∫ ∞

0

[
⟨|x̂(f, t)|2⟩ − 2kBT

πf
Im{R̂(f, t)}

]
df =

kB
k
[Teff (t)− T ],

=
2|⟨Qt,∞⟩|

k
, (5.31)

Similar to the generalized fluctuation-dissipation relation for NESS derived by Harada
and Sasa [18], equation (5.31) hightlights the role of currents (or equivalently, total en-
tropy production) in the relation between spontaneous fluctuations and linear response.
In the present case, the right-hand side of equation (5.31) is closely related to such a
current because it quantifies the heat excess that must irreversibly flow from the par-
ticle to the bath in order for the system to reach equilibrium at temperature T . Thus,
the "violation" of the fluctuation-dissipation relation (5.28) in the form (5.31) can be
interpreted as a measure of the heat that must be dissipated to reach an equilibrium
state. This is in close analogy to the heat that must be dissipated into the medium to
keep a NESS in the fluctuation-dissipation formulation developed in reference [18]. In
figure 5.14(b) we plot the passive and active fluctuation-response terms in the regime
I for the time window 30 s ≤ t ≤ 45 s. We check that in this case the equilibrium-like
equation (5.28) is satisfied with the final equilibrium temperature T = 27.2◦C of the
gelatin droplet. As discussed previously, this results is in good agreement with the fact
that the mean heat flux becomes undetectable by the Brownian particle.

Figure 5.14(c) displays the passive power spectral density of x computed in the
time interval 75 ≤ t ≤ 90 s, i.e. in the regime II where G′ starts to increase. Taking
into account that the fluid can be characterized by a single relaxation time τ0 in this
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regime, the active term related to the linear response reads

Im{R̂(f, t)} =
γ0(t)

k2
2πf

1 + 4π2[τ0(t) + τk(t)]2f 2
,

≈ 1

2πγ0(t)

f

f 2 + fc(t)2
,

where we have used the experimental fact that τ0 ≤ 0.05τk (figure 5.8). Using the
previous expression for the imaginary part of the response with the experimental values
of γ0 and fc, in figure 5.14(c) we plot the active term 2kBT Im{R̂}/(πf). In this case,
the agreement between the left-hans side and the right-hand side of equation (5.28)
is good verifying simultaneously that the system has relaxed to an equilibrium-like
behavior and that the fluid has a single relaxation time much smaller than τk.

Finally, in figure 5.14(d) we plot the passive (circles) and active (dashed line) spec-
tral terms computed in the time interval 1200 s ≤ t ≤ 1215 s. In this case the large
viscoelasticity of the gelatin droplet gives rise to the highly non-Lorentzian shape of
both terms. For comparison, we also plot the Lorentzian profile (dotted line) that
would be naïvely obtained using equation (5.29) without taking into account the con-
tribution of the storage modulus G′. In the absence of an accurate model for the
viscoelasticity of the droplet in this regime, we only plot the active term in the fre-
quency range 0.2 Hz≤ f ≤ 5Hz at which the sinuosoidal external force was applied
to the particle. Once again, we verifiy that an equilibrium-like fluctuation-dissipation
relation (5.28) holds for the particle position x because of the smallness of the heat
fluxes as the gelatin droplet ages.

5.7 Summary and conclusion
We have experimentally measured the fluctuations of the position of a trapped Brown-
ian particle in a nonstationary bath, i.e. an aging gelatin after a very fast quench. This
simple experiment has allowed us to understand several concepts formulated originally
for NESS that can be naturally extended to nonstationary systems prepared away from
thermal equilibrium and slowly relaxing towards an equilibrium state. We summarize
the main points of this chapter:

(a) The use of gelatin as a nonequilibrium aging bath for a micron-sized particle let
us actually probe the nonequilibrium transient formation of a gel because the
typical length of the gelatin chains is not negiglible compared to the size of the
Brownian probe.

(b) Thanks to our experimental setup based on optical tweezers, we were able to
perform a very fast quench from above to below the gelation temperature of the
sample in a micron-sized droplet melted around the trapped bead. In this way
the gelation rate was accelerated with respect to the usual bulk experiments to
achieve accessible timescales for the Brownian probe. Besides, we could perform
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several independent quenches to compute ensemble averages, which was strictly
required because of the nonstationarity of the system.

(c) By performing active microrheology we identified three different aging regimes
during the gelation of the droplet. In particular, we found a very early regime
during the first 60 s after the quench where the droplet rheologically behaves as
a Newtonian fluid but it exhibits striking nonequilibrium effects on the Brownian
motion of the trapped particle.

(d) We determined the statistical properties of the spontaneous fluctuations of the
particle position in the absence of external time-dependent forces. We found
that these fluctuations are Gaussian so they can be completely characterized
by the variance. We found that this variance, which is a decreasing function
of time, supplies additional information on the influence of the nonequilibrium
fluctuations produced by the assembling gelatin chains.

(e) During the first 200 s after the quench we directly computed the heat exchanged
between the trapped particle and the bath. We showed that the distribution of
the heat has a strong asymmetry which is a decreasing funtion of the aging time.
Using the experimental statistical properties of the fluctuations of x, we derived
an analytical expression for this asymmetry and we showed that it satisfies a
fluctuation relation similar to that for a thermal conductive system in a NESS in
contact with two reservoirs at unequal temperatures. This is a remarkable result
since the system studied here is nonstationary. We provided a clear interpreta-
tion to our results in terms of entropy production. This interpretation and the
theoretical results reported for spin glasses [116, 117] (see appendix A), suggest
that this fluctuation relation may appear as a very robust symmetry property of
heat exchange processes in other kinds of relaxing systems.

(f) Finally, we discussed the connection between the mean heat flux from the particle
to the bath with fluctuations and linear response. We checked that the extent
of the "violation" of the equilibrium fluctuation-dissipation relation is closely
related to the heat flux from the particle to the bath, or equivalently, to the
entropy that is produced in order for the system to reach equilibrium. Therefore
as the system ages, the relation between fluctuations and linear response behaves
like in equilibrium.
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Chapter 6

Conclusion and perspectives

The generalization of the fluctuation-dissipation theorem, to processes away from ther-
mal equilibrium, and the fluctuation relations are important topics of great current
interest in nonequilibrium statistical mechanics. They are particularly relevant to de-
scribe energy exchanges of small system wherein fluctuations and off-equilibrium con-
ditions are common. The present dissertation describes three experiments that provide
a clear understading on generalized fluctuation-dissipation relations derived from dif-
ferent theoretical approaches. It also shows, from an experimental perspective, how to
connect quantitatively these concepts with heat flux and entropy production that are
the quantities directly involved in the fluctuation theorem. This was possible thanks to
our experimental study based on the Brownian motion of a single microbead confined
by optical tweezers.

We summarize the main points and conclusions of each chapter:

• In chapter 1 we detailed two different optical tweezers that allowed us to carry out
the experiments under very well controlled conditions. One of the most important
features of these setups is that the relevant forces exerted on the particle by a
highly focused laser beam can be accurately measured. External perturbative
forces can be also applied to the trapped particle by driving the focus position
or by tuning the laser power. In addition, the viscoelastic properties of the
fluid surrounding the particle can be determined by microrheology. In this way
a complete characterization of the forces of interest acting on the particle was
achieved.

• In chapter 2 we presented a brief overview on different generalized fluctuation-
dissipation formulations for Markovian systems in nonequilibrium steady states.
We emphasized the main ideas behind the derivation of these relations in or-
der to contrast their physical approaches involving different observables. Hence,
we highlighted the importance of understanding the connection between these
relations from the theoretical and experimental points of view.

• In chapter 3 we presented an experiment on a Brownian particle suspended in
water and driven into a periodic nonequilibrium steady state by a toroidal op-
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tical trap. We showed that the presence of a nonconservative force exerted
by the scanning laser beam results in a strong deviation from the equilibrium
fluctuation-dissipation theorem. As all the observables involved in the general-
ized fluctuation-dissipation relations presented in chapter 2 could be measured,
we analyzed carefully the exact relation between fluctuations and linear response
in the context of these formulations. We stressed the role of the probability cur-
rent, the total entropy production and the breakdown of the time reversibility of
the dynamics. Then, we found that when taking into account these quantities,
the generalized fluctuation-dissipation formulae are satisfied. Due to the simplic-
ity of the dynamics of the system, a clear interpretation of the link between the
different approaches was accomplished in terms of the stochastic entropy produc-
tion rate. Our work represents one of the first experimental test of these new
theoretical approaches to fluctuation-dissipation around nonequilibrium steady
states.

• In chapter 4 we described an experiment on a Brownian particle in an aqueous
Laponite suspension. In this case the nonequilibrium nature of the system is due
to the nonstationary dynamics created by the aging colloidal glass. Using simul-
taneously different microrheology techniques we checked that the particle position
satisfies the equilibrium fluctuation-dissipation theorem for the timescales probed
by optical tweezers even when the surrounding Laponite is in a nonequilibrium
regime. Our results were supported by the measurement of the fluctuations of
the heat transferred at different timescales between the Brownian particle and
the suspension. We found that the probability density function of the heat fluc-
tuations is symmetric and centered around zero. Therefore we could interpret
these results as an equilibrium-like behavior of the trapped particle due to the
slowdown of the heat fluxes as the colloidal glass ages.

• In chapter 5 we reported an experiment on a Brownian particle in a different
kind of aging system: an aqueous gelatin solution undergoing the sol-gel transi-
tion. Unlike Laponite, in the case of gelatin we accurately controlled the initial
condition of the solution by means of a heating laser, which allowed us to per-
form a very fast quench. Due to the gelatin microstructure and the fast quench,
the typical length and timescales of the sol-gel transition became accessible by
microrheology. Therefore the Brownian particle actually probed the relevant
nonequilibrium degrees of freedom of the bath. Indeed, our experimental results
show the presence of a significant heat flux from the particle to the bath due to
the assemblage of the gel network. We found that the heat fluctuations satisfy
the asymmetry relation quantified by the fluctuation theorem. This asymmetry
decreases as the gelatin ages becoming negligible in a few seconds. Based on the
statistical properties of the fluctuations of the particle position, we derived an an-
alytical expression of the heat probability distribution which fits the experimental
data. This anaytical expression satisfies a fluctuation relation similar to that for
the entropy production of a stationary system in contact with two thermostats at
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unequal temperatures. Hence, our results provide simultaneously experimental
and analytical evidence that the fluctuation theorem is a very robust symmetry
property of the entropy production that also holds for aging system. We also
studied the connection between the mean heat flux from the particle to the bath
with fluctuations and linear response. We found that the extent of the violation
of the equilibrium fluctuation-dissipation relation is directly related to the heat
which must flow from the particle to the bath in order for the system to reach
thermal equilibrium.

From the results obtained in the three experiments, we accomplished a rather gen-
eral comprehension of the relation between fluctuations and linear response for nonequi-
librium processes. Our simple experimental results allowed us to identify several under-
lying concepts formulated originally for nonequilibrium steady states that can be nat-
urally extended to nonstationary regimes slowly relaxing towards an equilibrium state.
Unlike previous approaches to fluctuation-dissipation based on the concept of effec-
tive temperature, we showed that the violation of the fluctuation-dissipation theorem
actually provides quantitative information on the irreversible heat exchanges in out-of-
equilibrium processes. This prominent conclusion offers the possibility to implement
useful protocols to quantify the broken detailed balance in nonequilibrium experiments
on small systems. For example, the violation of the equilibrium fluctuation-dissipation
theorem must be computed as the difference of independent measurements of the right
correlation and response functions of interest. Then, the observables that quantify
the broken detailed balance such as dissipation rates, heat fluxes, currents, total en-
tropy production, etc., can be estimated by this difference. Reciprocally, if heat fluxes
can be directly measured in an experiment, then the response of the system around a
nonequilibrium state can be determined from the measurement of the right correlation
functions involving heat fluctuations. So far, this approach has been exploited only
once in a nonequilibrium steady state experiment to estimate the energetic efficiency
of a rotary molecular motor [126]. However, based on the results of the thesis we claim
that the same ideas can be applied to more complex systems involving multiple degrees
of freedom or nonstationary states.

We point out that the explicit analysis on the connection between fluctuation-
response and irreversible heat flows was always restricted to the regime where the
elastic component of the surrounding fluid is sufficiently small, i. e. for Markovian
dynamics. The viscoelastic case, which implies non-Markovian particle dynamics, was
not analitically addressed in this thesis. This problem, although important for applica-
tions, is in general disregarded in theory. Indeed, until now almost all the generalized
fluctuation-dissipation relations, except for that derived in [151, 152, 153], have been
formulated for the Markovian case. On the other hand, the formulation of references
[151, 152, 153] is very specific. It links the velocity fluctuations and its linear response
for a Brownian particle in a viscoelastic bath, around a stationary or nonstationary
state. It involves explicitly the viscoelastic kernel and the correlation of the stochastic
force that appear in the Langevin equation (see for example equation (1.16)).The more
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general case of the fluctuations and response for an arbitrary observable of a system
with non-Markovian dynamics is still an open question. Some ideas have been loosely
proposed to overcome this problem, such as extending the number of degrees of free-
dom of the system to render the dynamics Markovian. This is not evident at all in
real experiments, though. At first glance a more suitable alternative is to develop a
formulation involving a global quantity which quantifies the non-Markovianity of the
system, such as the viscoelastic kernel or the shear modulus of the fluid. Nonetheless,
it turns out that this also represents a difficult task in practice. For instance, for a
single Brownian particle embedded in a highly viscoelastic fluid undergoing aging, the
shear modulus of the fluid over a sufficiently broad bandwidth is not known a priori.
Consequently, the non-Markovian dynamics can not be completely characterized and
the energy exchanges can not be computed by means of the particle position only.

For the two different aging systems studied in this thesis, there are a number of
interesting problems that could be addressed in the future in order to clarify some open
questions:

• In chapters 4 and 5 we argued that the size and timescales of the trapped Brow-
nian particle play a crucial role to probe the irreversible heat fluxes that give rise
to the violation of the fluctuation-dissipation theorem. Then the dependence of
the extent of the violation as a function of the particle size would be useful to
offer a definitive answer to this question.

• For glassy systems, it has been widely discussed that the relaxation process is
conducted by the rearrangement of mesoscopic regions into more stable configu-
rations. In addition, glasses display a complex spatio-temporal structure, called
dynamical heterogeneities. These phenomena, that generate long-range correla-
tions in a glassy system, could be studied in a Laponite colloidal glass by means
of the measurement of cross-correlation functions of sufficiently small tracers.

• In the experiment on gelatin described in chapter 5, we only studied the dynamics
of the Brownian particle in the center of the droplet. A possible experiment that
could help to understand how the gelation process takes place across the droplet
is to measure the Brownian motion of a microbead at different places after the
quench. The Brownian motion close to the sol-gel interface between the droplet
and the bulk is particularly interesting. Indeed, it could provide information on
the dynamics and surface tension fluctuations of the interface during the gelatin
process

• We found that that during the first 20 second after the quench, the nonequilibrium
assemblage of the gel strongly perturbs the Brownian motion of the trapped
particle. Based on the spectral analysis of the particle position, this can be
interepreted as a non-thermal noise at low frequencies. A more careful study on
the statistical properties of this noise is interesting per se.
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• Finally, it has been shown that the sol-gel transition in gelatin bulk occurs due to
the percolation of the chains forming an infinite network. The cross-correlation
study of free tracers inside the gelatin droplet after the quench could help to
elucidate whether the same mechanism occurs at microscopic lengthscales.
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Appendix A

Fluctuation theorem

The fluctuation theorem (FT) is a very important achievement in nonequilibrium sta-
tistical mechanics because it represents a generalization of the second law of thermody-
namics. It deals with symmetry properties of the entropy production of systems driven
arbitrarily away from thermal equilibrium by an external driving and submitted to a
source of fluctuations. According to the second law of thermodynamics, for a nonequi-
librium system the mean entropy production is always positive. The FT quantifies
the relative probability P of observing rare events, i.e. negative values of the entropy
production S with respect to positive ones. For instance, for a system described by
a set {x} of degrees of freedom, in contact with a thermostat and driven by a time
dependent force, the relation provided by the FT reads

lim
τ→∞

1

τ
ln

P (στ = σ)

P (στ = −σ)
=

1

kB
στ, (A.1)

In equation (A.1), kB is the Boltzmann constant whereas στ is the average on a time τ
of the entropy rate Ṡ(xτ ), produced by the irreversible work done by the driving force

στ =
1

τ

∫ τ

0

Ṡ(xt)dt.

Note that in general, equation (A.1) is an asymptotic relation valid only for measure-
ment times τ much larger than the correlation times of the system. As σ is an extensive
quantity, the FT reduces to the second law of thermodynamics ⟨στ ⟩ ≥ 0 as the size
of the system increases. Equation (A.1) was observed for the first time in numerical
simulations of a fluid driven by shear [8] and rigorously demonstrated for systems in
nonequilibrium steady states [9, 127, 128]. Since then, several refinements on the for-
mulation of FT have been developed. For example, equation (A.1) has been derived
for Langevin dynamics [10] and general Markovian processes [129]. It has been demon-
strated that for first order Langevin dynamics, quantities closely related to the entropy
production, such as the work done by an external force [130] and the heat dissipated
into the bath [131], also satisfy a symmetry property similar to equation (A.1). In
reference [130] it was shown for the first time that the equality (A.1) holds for all τ ≥ 0
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Figure A.1: Diagram of a thermally conductive system in contact with two reservoirs
at different temperatures TA > TB. Due to the temperature difference, during a given
time τ an amount of heat ⟨Qτ ⟩ > 0 flows in average from A to B (blue thick arrow).
Extreme rare events when the heat flows from B to A can occur (thin red arrow),
though, due to thermal fluctuations. The relative probability of a rare negative event
with respect to that of the corresponding positive value (thin blue arrow) is quantified
by the fluctuation theorem: the asymmetry of the profile of the probability density of
the heat, P (Qτ ), is not arbitrary but it satisfies equation (A.3).

in the case of a first order Langevin system in a transient state after switching on a
perturbing force. More recently, it was demonstrated that the equality is valid for all
times as well in nonequilibrium steady states by introducting the concept of stochastic
entropy [11], see appendix C. In such a case, equation (A.1) can be written as

P (∆Sτ = ∆S)

P (∆Sτ = −∆S)
= exp

(
∆S

kB

)
. (A.2)

where ∆Sτ is the total entropy variation of the system during a given stochastic real-
ization xτ .

FT for heat conduction

A different kind of nonequilibrium stationary process which exhibits a symmetry prop-
erty similar to equation (A.1) is the heat flux between two thermostats at different
temperatures. We consider a thermally conductive system in contact with two reser-
voirs A and B at unequal temperatures TA and TB, respectively, with TA > TB (see
figure A.1). Due to the temperature difference imposed at the boundaries, there is a
mean heat flux from A to B. After a transient the sytem reaches a steady state: the
mean heat flux becomes time-independent if the reservoirs are infinite. If the size of the
system is sufficiently small, the stationary heat flux is a strongly fluctuating quantity:
the heat can flow from B to A because of the thermal fluctuations but in average its
direction is always from A to B. It has been demostrated that the probability P (Qτ )
of observing an amount of heat Qτ flowing from A to B in a time τ , is related to that
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of observing the quantity −Qτ (from B to A) according to:

ln
P (Qτ )

P (−Qτ )
= ∆β Qτ , (A.3)

where
∆β =

1

kB

(
1

TB
− 1

TA

)
. (A.4)

Note the strong similarity between equations (A.3) and (A.2): the logarithm of the
probability ratio is a linear function of its argument. Indeed, it has been shown that the
term kB∆β Qτ can be identified as the entropy production during the time τ [123, 124].
For TA = TB, equation (A.3) reduces to the equilibrium case P (Qτ ) = P (−Qτ ) when
the probability density of the heat is symmetric and ⟨Qτ ⟩ = 0 due to detailed balance
and microscopic time-reversibility. Equation (A.3) was explicitly derived for several
theoretical model systems in contact with two thermostats in the stationary regime:
e.g. classical and quantum Hamiltonian systems [120], Ising models [121, 125], Langevin
dynamics [122, 123], Markovian chains [124] and harmonic networks [132, 133].

FT for aging spin glasses

Finally, a third class of nonequilibrium process for which a similar symmetry property
holds, corresponds to the aging in some models of spin glasses, prepared in an initial
metastable state by a temperature quench. In this case, in order to reach more stable
configurations there is a continuous heat release from the spin glass to the environment.
The heat exchange occurs in two different ways: a fast heat exchange process due to
the thermal fluctuations and an intermittent heat release taking place at much longer
timescales. In references [116, 117] it was demonstrated and numerically checked that
the fluctuations of the intermittent heat exchange satisfy the symmetry relation

ln
Ptw(Q)

Ptw(−Q)
=

Q

kBTeff (tw)
(A.5)

where Ptw stands for the probability density function of the intermittent released heatQ
at aging time tw, whereas Teff (tw) is the value of the low-frequency effective temperature
of the glass at time tw (see section 4.1 for the definition of effective temperature in glassy
systems). Note that, unlike equations (A.2) and (A.3), the relation given by equation
(A.5) holds for a nonstationary regime that slowly evolves towards thermal equilibrium
in which no external driving is applied to the system.
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Appendix B

Work fluctuations for systems driven
by an external random force

Introduction

As explained in appendix A, the FT is a very important result in nonequilibrium
statistical mechanics because it quantifies the probability of observing rare extreme
events in the energy exchange process of a rather broad class of nonequilibrium systems.
According to equation (A.1), the FT applies formally to entropy production only, which
in general can not be experimentally measured in a straightforward way. On the other
hand, quantities such as heat, work, injected and dissipated power are more accessible
in experiments. Hence, an important problem is to study how the FT is modified
for such quantities. In particular, for overdamped Langevin dynamics it has been
demonstrated that the fluctuations of the work Wτ injected by an external force into a
thermostated system at temperature T and kept in a nonequilibrium stationary state,
satisfy the symmetry relation [130]

ln
P (Wτ = W )

P (Wτ = −W )
→ W

kBT
, τ ≫ τc. (B.1)

In equation (B.1) τc is the longest relaxation time of the system. Note the strong
similarity between equation (B.1) and that directly provided by the fluctuation theorem
(A.1). This is because the injected work, up to multiplicative constants and additive
boundary terms, is closely related to the entropy production in this case.

Equation (B.1) has been tested in several experiments: e.g. a colloidal particle
dragged by an optical trap [134], electrical circuits [135], mechanical harmonic oscilla-
tors [136] and a colloidal particle near the stochastic resonance [137]. In all of these
examples the force which drives the system out of equilibrium is inherently determinis-
tic. However, it has been recently argued that the nature (deterministic or stochastic)
of the external forcing can play an important role in the distribution of the injected
work, leading to possible deviations from the relation (B.1). Indeed, devations have
been observed in different experiments and simulations: a Brownian particle in a Gaus-
sian white [138] and colored [139] noise bath, turbulent thermal convection [140], wave
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turbulence [141], a vibrating metalic plate [142], an RC electronic circuit [143] and
a gravitational wave detector [144]. It is important to remark that in the systems
previously cited the FT is violated because in such a case the external random force
acts itself as a kind of thermal bath. Then the work Wτ is not a good estimator of
the entropy production. One question which naturally arises is how equation (B.1) is
modified when, in addition to the external random force, a true thermalization process
is allowed, as occurs in the small systems discussed throughout this thesis. In this
situation there are two sources of noise: the external force and the thermal bath.

In this appendix we address these questions in two experimental systems: a Brown-
ian particle in an optical trap and a micro-cantilever used for atomic force microscopy
(AFM). Both are in contact with a thermal bath and driven out of equilibrium by an
external random force whose amplitude is tuned from a small fraction to several times
the amplitude of the intrinsic thermal fluctuations exerted by the thermostat.

X

F
V

h

x

y
z

(b)

Figure B.1: a) Colloidal particle in the optical trap with modulated position. b) AFM
cantilever close to a metallic surface. See text for explanation.

Colloidal particle in an optical trap

The first system we study consists on a spherical silica bead of radius r = 1µm im-
mersed in ultrapure water which acts as a thermal bath. The experiment is per-
formed at a room temperature of 27 ± 0.5◦C at which the dynamic viscosity of water
is η = (8.52∓ 0.10)× 10−4 Pa s. The motion of the particle is confined by an optical
trap using the experimental setup described in section 1.3. The trap stiffness is fixed at
constant value k = 5.4 pN/µm. The particle is kept at h ≈ 10µm above the lower cell
surface. Figure B.1(a) sketches the configuration of the bead in the optical trap. An
external random force is applied to the particle by modulating the position of the trap
x0(t) along a fixed direction x on the plane xy, using the XY AOD system (subsection
1.3.1). The modulation corresponds to a Gaussian Ornstein-Uhlenbeck noise of mean

⟨x0(t)⟩ = 0,
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and covariance
⟨x0(s)x0(t)⟩ = A exp

(
−|t− s|

τ0

)
.

The correlation time of the modulation is set to τ0 = 25 ms whereas the value of
its amplitude A is tuned to control the driving intensity. We determine the particle
barycenter (x, y) at a sampling rate of 1 kHz, as described in subsection 1.3.2. For the
experimentally accessible timescales the dynamics of the coordinate x is described by
the overdamped Langevin equation

γẋ = −kx+ ζT + f0. (B.2)

In equation (B.2) γ = 6πrη is the viscous drag coefficient, ζT is a Gaussian white noise:

⟨ζT ⟩ = 0, ⟨ζT (s)ζT (t)⟩ = 2kBTγδ(t− s),

which mimics the collisions of the thermal bath particles with the colloidal bead and
f0(t) = kx0(t) plays the role of the external stochastic force. The standard deviation δf0
of f0 is chosen as the main control parameter of the system. Besides the correlation time
τ0 of f0, there is a second characteristic timescale in the dynamics of equation (B.2):
the viscous relaxation time in the optical trap:

τγ =
γ

k
= 3ms < τ0.

In order to quantify the relative strength of the external force with respect to the ther-
mal fluctuations, we introduce a dimensionless parameter which measures the distance
from equilibrium

α =
⟨x2⟩
⟨x2⟩eq

− 1. (B.3)

In equation (B.3), ⟨x2⟩ is the variance of x in the presence of f0 > 0 whereas ⟨x2⟩eq =
kBT/k is the corresponding variance at equilibrium (f0 = 0). The dependence of α on
δf0 is quadratic, as shown in figure B.2(a). This quadratic dependence is a consequence
of the linear response of the system to the external forcing described by the Langevin
equation (B.2).

The work done by the external random force on the colloidal particle (in kBT units)
is

wτ =
1

kBT

∫ t+τ

t

ẋ(t′)f0(t
′)dt′. (B.4)

Thus, by measuring simultaneously the time evolution of the barycenter position of
the particle and the driving force we are able to compute directly the work injected
into the system by the driving. In figures B.2(b)-(d) we show the probability density
functions (PDF) of wτ for different values of τ and α. We observe that for a fixed
value of α, the PDFs have asymmetric exponential tails at short integration times
and they become smoother as the value of τ increases. For α = 0.20 they approach
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Figure B.2: (a) Dependence of the parameter α on the standard deviation of the
Gaussian exponentially correlated external force f0 acting on the colloidal particle.
(b) Probability density functions of the work wτ for α = 0.20; (c) α = 3.89; and (d)
α = 10.77. The symbols correspond to integration times τ = 5 ms (◦), 55 ms (2), 105
ms (3), 155 ms (◃), 205 ms(▹) and 255 ms (∗). The solid black lines in (b) and (c) are
Gaussian fits.
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Figure B.3: Asymmetry function of the PDF of the work done by the external force
on the colloidal bead computed at τ = 10τ0 for different values of the parameter
α: 0.20(◦), 0.51(2), 1.84(3), 3.89(◃), 6.69(▹), 10.77(∗). The dashed line represents the
prediction of the fluctuation theorem ρ(w) = w. Inset: Expanded view for α ≥ 3.89.

a Gaussian profile (figure B.2(b)) whereas asymmetric non-Gaussian tails remain for
increasing values of α. Note that asymmetric non-Gaussian PDFs of the work are
common in driven nonlinear systems [145, 137] and systems driven by a stochastic
force [141, 142, 143, 144]. As shown in figures B.2(c)-(d), the asymmetry of these tails
becomes very pronounced for large α > 1 even for integration times as long as τ =
250ms = 10τ0. We take τ0 because it is the largest correlation time of the dynamics.
The origin of this non-Gaussianity can be traced back to the strong correlation between
the fluctuations of the particle motion and the stochastic external driving as α increases.
As pointed out in [143], the deviations of the linear relation of equation (B.1) (with
respect to wτ ) can occur for extreme values of the work fluctuations located on the
non-Gaussian tails.

We define the asymmetry function of the PDF P as

ρ(w) = lim
τ
τc

→∞
ln

P (wτ = w)

P (wτ = −w)
, (B.5)

so that eq. (B.1) reads
ρ(w) = w. (B.6)

From the experimental PDFs of wτ we compute ρ(w) using equation (B.5) for an
integration time τ = 10τ0. We checked that for this value the limit of equation (B.5)
has been reached within our experimental accuracy. Figure B.3 shows the profile
of the asymmetry functions for different values of α. We notice that for sufficiently
small values (α = 0.20, 0.51 < 1), the FT given by equation (B.6) is verified by the
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experimental data. To our knowledge, this is the first time that equation (B.6) holds
for the work injected by a random force without introducing any prefactor in the linear
relation of equation (B.6). It is important to point out that any deviation from the
linear relation of eq. (B.6) for extreme fluctuations is unlikely since we probed values
as large as wτ/⟨wτ ⟩ ∼ 5. Indeed it is argued [138, 139, 143, 146], that, for strongly
dissipative systems driven by a random force, the deviations from FT may occur around
wτ/⟨wτ ⟩ ∼ 1. Furthermore in the present case the validity of the FT for weak driving
amplitudes α < 1 is consistent with the fact that for integration times τ > 25 ms,
the ratio ρ(w)/w has converged to its asymptotic value 1 for all measurable w. Note
that this convergence to the FT prediction is quite similar to that measured in system
driven out of equilibrium by deterministic forces [135, 136, 137]. For instance in the
case of a harmonic oscillator driven by a sinusoidal external force the asymptotic value
of ρ(w)/w is reached for integration times larger than the forcing period [136].

In contrast, deviations from equaton (B.6) are expected to occur for α > 1 because
the fluctuations of injected energy produced by the external random force become larger
than those injected by the thermal bath. Indeed figure B.3 shows that for values above
α = 1.84, equation (B.6) is not verified anymore but ρ becomes a nonlinear function of
wτ . For small values of wτ it is linear with a slope which decreases as the driving ampli-
tude increases whereas there is a crossover to a slower dependence around wτ/⟨wτ ⟩ ∼ 1.
This behavior is qualitatively similar to those reported in [138, 141, 142, 143, 144]. We
emphasize that we have clearly found that for an experimental system with first or-
der Langevin dynamics in presence of thermal and external noises, the asymmetry
described by the FT can be satisfied or not for the work fluctuations depending on
the strength of the external driving. The details about how this deviations arise and
the convergence to generic work fluctuation relations will be given further. We first
analyze the experiment on the AFM.

AFM cantilever

A second example of a system for which thermal fluctuations are non-negligible in the
energy injection process at equilibrium is the dynamics of the free end of a rectangular
micro-cantilever used in AFM measurements. The cantilever is a mechanical clamped-
free beam, which can be bended by an external force F and is thermalized with the
surrounding air. The experiment is sketched in figure B.1(b).

We use conductive cantilevers from Nanoworld (PPP-CONTPt). They exhibit a
nominal rectangular geometry: 450µm long, 50µm wide and 2µm thick, with a 25 nm
PtIr5 conductive layer on both sides. The deflection is measured with a home made
interferometric deflection sensor, inspired by the original design of Schonenberger [147]
with a quadrature phase detection technique [148]. The interference between the ref-
erence laser beam reflecting on the chip of the cantilever and the sensing beam on the
free end of the cantilever gives a direct measurement of the deflection X. Our detection
system has a very low intrinsic noise, as low as 4 pm rms in the 100 kHz bandwidth
we are probing [149].

156



−10 0 10 20
10

−6

10
−4

10
−2

10
0

wτ

P
(w

τ)

0 50 100 150

10
−6

10
−4

10
−2

10
0

wτ

P
(w

τ)

0 200 400 600 800
10

−8

10
−6

10
−4

10
−2

wτ

P
(w

τ)

0 20 40 60
0

5

10

15

20

25

δ f
0
 (pN)

α

 

 
experimental data
quadratic fit

(a)

(c) (d)

(b)

Figure B.4: (a) Dependence of the parameter α on the standard deviation of the
Gaussian white external force f0 acting on the cantilever. (b) Probability density
functions of the work wτ for α = 0.19; (c) α = 3.03; and (d) α = 18.66. The symbols
correspond to integration times τ = 97 µs (◦), 1.074 µs (2), 2.051 ms (3), 3.027 ms
(◃), 4.004 ms(▹) and 4.981 ms (∗). The black dashed lines in (b)-(d) represent the
exponential fits of the corresponding tails.
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From the power spectrum of the deflection fluctuations of the free end at equilib-
rium (F = 0) we verify that the cantilever dynamics can be reasonably modeled as a
stochastic harmonic oscillator with viscous dissipation [149, 150]. Hence, in the pres-
ence of the external force the dynamics of the vertical coordinate X of the free end is
described by the second order Langevin equation

mẌ + γẊ = −kX + ζT + F, (B.7)

where m is the effective mass, γ the viscous drag coefficient, k the stiffness associated
to the elastic force on the cantilever and ζT models the thermal fluctuations. m, γ and
k can be calibrated at zero forcing using the fluctuation-dissipation theorem, relating
the observed power spectrum of X to the harmonic oscillator model. In our experiment
we measure m = 2.75× 10−11 kg, γ = 4.35× 10−8 kg s−1 and k = 8.0× 10−2 N/m. The
amplitude of the equilibrium thermal fluctuations of the tip position (i.e.

√
⟨x2⟩eq =√

kBT/k ≃ 2 10−10m) is two orders of magnitude larger then the detection noise
(4 pm rms). The signal to noise ratio is even better when the system is driven by
an external force F . The characteristic timescales of the deflection dynamics are the
resonance period of the harmonic oscillator

τk = 2π

√
m

k
= 116µs,

and the viscous relaxation time

τγ =
m

γ
= 632µs,

which is the longest correlation time.
When a voltage V is applied between the conductive cantilever and a metallic

surface brought close to the tip (h ≈ 10µm apart), an electrostatic interaction is
created. The system behaves as a capacitor with stored energy

Ec =
1

2
C(X)V 2,

with C the capacitance of the cantilever-tip/surface system. Hence, the interaction
between the cantilever and the opposite charged surface gives rise to an attractive
external force

F = −∂XEc = −aV 2,

on the free end, with a = ∂XC/2. If we apply a static voltage V , the force F can be
deduced from the stationary solution of equation (B.7):

kX = −aV 2
,

where X is the mean measured deflection. k being already calibrated, we validate this
quadratic dependence1 of forcing in V and measure a = 1.49× 10−11NV−2.

1The quadratic dependance is valid only after taking care to compensate for the contact potential
between the tip and the sample, which gives a small correction of the order of a few tens of mV.
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As the electrostatic force F is only attractive, its mean value cannot be chosen to
be 0. We thus generated a driving voltage V designed to create a Gaussian white noise
forcing f0 around an offset F :

F = F + f0.

The variance δf0 of f0 is the main control parameter of the system. In the absence
of fluctuations ζT and f0, equation (B.8) has the stationary solution X = F/k. This
solution corresponds to the mean position reached by the free end in the presence of
the zero mean fluctuating forces. Hence, we focus on the dynamics of the fluctuations
x = X −X around X which are described by the equation

mẍ+ γẋ = −kx+ ζT + f0. (B.8)

Figure B.4(a) shows the dependence between the parameter α defined in equa-
tion (B.3) for the stochastic variable x and the control parameter δf0. We find that
this dependence is quadatric verifying the linearity of the stochastic dynamics of the
free end of the cantilever. On the other hand, the work done by the external random
force during an integration time τ is computed from equation (B.4). The corresponding
PDFs are shown in figures B.4(b)-(d). Unlike the colloidal particle, the PDFs do not
converge to a Gaussian distribution but to a profile with asymmetric exponential tails
even for the smallest driving amplitude (α = 0.19) and for integration times as long as
τ = 8τγ, as shown in figures B.4(b)-(d). Surprisingly, when computing the asymmetry
function for α = 0.19 < 1 and τ = 4τγ the steady state FT is perfectly verified, as
shown in figure B.5. Work fluctuations as large as 2.5 times their mean value located
on the exponential tails are probed and hence deviations from FT are unlikely for the
same reasons discussed for the case of the Brownian particle.

In figure B.5 we see that for α ≥ 1.21, the deviations from equation (B.6) appear as
a nonlinear relation with a linear part for small fluctuations whose slope decreases as
α increases and a crossover for larger fluctuations, qualitatively similar to the behavior
observed for the colloidal particle, as shown clearly in the inset of figure B.5. In the
following we discuss the properties of these deviations as the energy injection process
becomes dominated by the external force.

Work fluctuation relation far from equilibrium

We address now the question of how the deviations from equation (B.6) arise as the
external stochastic force drives the system far from equilibrium, i.e. α≫ 1. As shown
previously, for α & 1, the forcing amplitude is strong enough to destroy the conditions
for the validity of equation (B.6) for wτ . We note that there are two well defined limit
regimes depending on the driving amplitude. One occurs at small values of α for which
the FT is valid. The second corresponds to the limit α ≫ 1 for which the thermal bath
is negligible in the energy injection process, which is completely dominated by the
external stochastic force. In order to investigate whether the transition between these
two regimes is abrupt or not, we proceed by noting that for the latter the stochastic
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Figure B.5: Asymmetry function of the probability density function of the work
done by the external force on the AFM cantilever computed at τ = 4τγ for dif-
ferent values of the parameter α: 0.19(◦), 1.21(2), 3.03(3), 6.18(◃), 9.22(▹), 12.77(∗),
15.46(×), 18.66(▽), 22.10(△). The dashed line corresponds to the prediction of the
fluctuation theorem ρ(w) = w. Inset: Expanded view for α ≥ 9.22.

force term ζT in equations (B.2) and (B.8) will be negligible compared to f0. This
implies that the resulting statistical time-integrated properties of the corresponding
non-equilibrium steady state will be invariant under a normalization of the timescales
and the temperature of the system as α≫ 1. The information about the transition of
the fluctuation relations to this regime is given by the convergence to a master curve.

We introduce the normalized work w∗
τ as

w∗
τ =

τc
τ

wτ

1 + α
. (B.9)

The physical idea in equation (B.9) is that, for α≫ 1, the thermal bath plays the role
of a passive heat reservoir whereas most of the energy fluctuations injected into the
system are provided by the external force. This can be interpreted as a bath kept at
effective temperature:2

k⟨x2⟩
kB

= (1 + α)T ≈ αT.

The prefactor τc/τ is introduced in such a way that w∗
τ represents the average nor-

malized work done during the largest correlation time of the system. Accordingly, the
asymmetry function must be redefined as

ρ∗(w∗) = lim
τ/τc→∞

τc
τ
ln

P (w∗
τ = w∗)

P (w∗
τ = −w∗)

. (B.10)

2The parameter α is an unambiguous choice to define the effective temperature out of equilibrium
both for the harmonic oscillator and the trapped Brownian particle since ⟨x2⟩ is finite. In this case
the effective temperature is a measure of the total stochasticity of the system.
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Figure B.6: (a) Asymmetry function of the PDF of the normalized work done by the
Gaussian Ornstein-Uhlenbeck force on the colloidal particle for different values of the
parameter α. (b) Asymmetry function of the PDF of the normalized work done by
the Gaussian white force on the cantilever for different values of the parameter α. The
thick solid line represents the analytical expression given by eq. (B.11).
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Figure. B.6(a) shows the asymmetry function ρ∗ for the normalized work w∗
τ on the

colloidal particle at large values of α for which equation (B.6) is violated. The timescale
τc in the computation of (B.9) and (B.10) is taken as the correlation time (τ0 = 25
ms) of the Ornstein-Uhlenbeck forcing of equation (B.2). For comparison we also show
the corresponding curves at α = 0.20, 0.51 as blue circles and red squares respectively,
for which equation (B.6) holds. The convergence to a master curve is verified, which
means that for a sufficiently strong forcing the thermal bath acts only as a passive
reservoir for the energy dissipation without providing any important contribution to
the energy injection into the system. Evidently, the normalized asymmetry function
for the values α that verify equation (B.6) lie far from the master curve. We point out
that the transition to the limit α ≫ 1 is rather continuous since intermediate regimes
occur, as observed for α = 1.84. In this case the strength of thermal noise is still
comparable to that of the external noise.

The results for the normalized asymmetry function of the work done on the can-
tilever by the external force are shown in figure B.6(b). The curve corresponding to
the verification of equation (B.6) for α = 0.19 is also plotted for comparison. The
convergence to a master curve is also checked as the value of α increases. Indeed, when
comparing our normalized experimental curves with the analytic expression derived in
reference [138] for the asymmetry of the work on a harmonic oscillator driven only by
a Gaussian white noise

ρ∗(w∗) =

{
4w∗ w∗ < 1/3

7
4
w∗ + 3

2
− 1

4w∗ w∗ ≥ 1/3
, (B.11)

we check the convergence to the function (B.11). Finite α corrections can be detected
for large values of w∗

τ . This shows that the thermal bath still influences the energy
injection into the cantilever. The corrections seem to vanish as the system is driven
farther from equilibrium, as observed in figure B.6 for α = 22.10.

Finally, we point out that the profile of the master curve strongly depends on: 1)
the order (first or second) of the Langevin equation that models the dynamics and 2)
the kind of stochastic force. Non-Gaussian extensions of the external random force are
expected to lead to striking modification of the fluctuation relations in the limit α≫ 1,
as recently investigated for an asymmetric Poissonian shot noise [146].

Conclusions

We have studied, in the context of the FT, the symmetry properties of the fluctuations
of the work fluctuations in two experimental systems in contact with a thermal bath
and driven out of equilibrium by a stochastic force. The main result of our study is
that the validity of the symmetry provided by the FT is controlled by the parameter
α. For small α . 1 we have shown that the validity of the FT is a very robust result
regardless the details of the intrinsic dynamics of the system (first and second order
Langevin dynamics) and the statistical properties of the forcing (white and colored
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Gaussian noise). Indeed these specific features vanish when the integration of wτ is
performed for τ much larger than the largest correlation time of the system.

In contrast for large α & 1, when the randomness of the system becomes domi-
nated by the external stochastic forcing, we have shown that the symmetry relation
given by the FT is violated. We remark that this happens because in such a case the
injected work is not a good measure of the entropy production of the system. Then
the hypothesis for the validity of the FT are not satisfied. For α ≫ 1 the results at
different driving amplitudes can be set on a master curve by defining a suitable effec-
tive temperature which is a function of α. We have shown that this master curve is
system dependent. Therefore, some care must be taken when trying to apply directly
the FT theorem to systems completely driven by random or chaotic forcing, such as
in turbulent fluids and granular matter. For small systems this is not an issue as the
stochasticity is in general dominated by the thermal fluctuations of the bath.
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Appendix C

Stochastic thermodynamics for
overdamped diffusion

Stochastic thermodynamics represents a refinement of classical thermodynmics. It
provides a conceptual framework to describe fluctuating energy exchanges at thermal
equilibrium or in simple nonequilibrium conditions. The fundamental idea is to extend
the concepts of work, heat and entropy to single stochastic trajectories. This approach,
initiated in [104] and widely developed in references [57, 58, 59, 60, 61, 62], has become
very useful in soft and bio matter systems. The basic hypothesis for stochastic ther-
modynamics are: 1) the nonequilibrium behavior is due to an external conservative
or nonconservative force or imbalanced chemical potentials; and 2) the systems are in
contact with a heat bath at constant temperature.

Stochastic equations of motion

For simplicity, we consider an overdamped system described by a single degree of
freedom x, evolving according to the first-order Langevin equation

ẋ = µF (x, λ) + ζ, (C.1)

where F (x, λ) is the total deterministic force exerted on the system, µ is the mobility
and ζ is a delta correlated white noise

⟨ζ⟩ = 0, ⟨ζ(t)ζ(s)⟩ = 2Dδ(t− s), (C.2)

which models the thermal fluctuations due to the coupling with a thermal bath at
constant temperature T . We assume that detailed balance holds for the degrees of
freedom of the bath, then the bare diffusivity D in equation (C.2) is linked to the
mobility µ by

D = kBTµ.

The force F (x, λ) is allowed to be time-dependent througth an external control pa-
rameter λ(t), which is varied from λ(0) = λ0 to λ(τ) = λτ according to a prescribed
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protocol. In addition, F it is allowed to have a nonconservative component, i.e. it can
be expressed as

F (x, λ) = −∂xU(x, λ) + f(x),

where U(x, λ) is a potential that represents the Hamiltonian part of the dynamics and
f(x) is a nonconservative force. The Fokker-Plank equation associated to equation
(C.1), which describes the time evolution of the probability density ρ(x, t) of x starting
from an initial condition ρ(x, 0) = ρ0(x), is

∂tρ(x, t) = −∂xj(x, t)
= −∂x [µF (x, λ)ρ(x, t)−D∂xρ(x, t)] . (C.3)

In equation (C.3), the current

j(x, t) = µF (x, λ)ρ(x, t)−D∂xρ(x, t), (C.4)

quantifies the breakdown the detailed balance. For example, at thermal equilibrium
j = 0, whereas for steady states with nonvanishing nonconservative forces (f ̸= 0), the
current is j = const. ̸= 0.

First law

We now proceed to show the extension of the first law in the context of stochastic
thermodynamics to a system modeled by equation (C.1). We consider two different
ways to perform work on the system. The first is by changing the potential U at fixed
x while the second is by applying a nonconservative force. Then, the increment in work
dW during an infinitesimal time dt is

dW = (∂λU)λ̇ dt+ f dx. (C.5)

On the other hand, during the same dt, the heat dissipated into the medium can be
identified by the quantity

dQ = F dx. (C.6)

Integrating equations (C.5) and (C.6) along a single stochastic trajectory xt defined
over the time interval 0 ≤ t ≤ τ :

Wτ =

∫ τ

0

[
(∂λU)λ̇+ fẋ

]
dt,

Qτ =

∫ τ

0

Fẋ dt, (C.7)

we find

Wτ −Qτ =

∫ τ

0

[
(∂λU)λ̇+ ∂xUẋ

]
dt,

=

∫ τ

0

dU,

= ∆Uτ , (C.8)
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where
∆Uτ = U(xτ , λτ )− U(x0, λ0),

is the change in the potential energy during the time τ . Therefore, equation (C.7)
represents an extension of the first law of thermodynamics on the level of a single
stochastic trajectory. As no hypothesis was done on the rate λ̇ and on the strength of
the nonconservative force f , it is valid arbitrarily away from equilibrium.

Stochastic entropy and second law

The second law of thermodynamics can be extended to single stochastic trajectories as
well, by introducing the concept of stochastic entropy. Due to the stochastic evolution
of x, modeled by equation (C.1), the instantaneous phase-space configuration of the
system at time t, determined by the solution of the Fokker-Planck equation (C.3),
depends on the trajectory xt. The stochastic entropy, defined as

Sst(xt) = −kB ln ρ(xt, t), (C.9)

measures this stochasticity as a contribution to the total entropy produced by the
system. In equation (C.9), ρ(xt, t) is the solution of equation (C.3) evaluated along a
given xt. Note that Sst(xt) depends on the initial condition x0. Then the stochastic
entropy change along a given trajectory xt in the time interval 0 ≤ t ≤ τ is

∆Sst(τ) = Sst(xτ )− Sst(x0),

= −kB ln
ρ(xτ , τ)

ρ(x0, 0)
. (C.10)

On the other hand, a second contribution to the total entropy change originates
from the heat dissipated into the environment during the same realization of xt. The
entropy change in the time interval 0 ≤ t ≤ τ due to heat dissipation is

∆Sm(τ) =
Qτ

T
, (C.11)

where Qτ is given by equation (C.7). The total entropy change is the sum of both
contributions

∆Stot(τ) = ∆Sst(τ) + ∆Sm(τ). (C.12)

We point out that these definitions of stochastic and total entropy arise naturally from
the equations of motion (C.1) and (C.3). Indeed, taking the time derivative of equation
(C.9), we obtain an expression for the stochastic entropy rate

Ṡst(xt) = −kB
[
∂tρ(x, t)

ρ(x, t)

]
xt

− kB

[
∂xρ(x, t)

ρ(x, t)
ẋ

]
xt

,

= −kB
[
∂tρ(x, t)

ρ(x, t)

]
xt

+ kB

[
j(x, t)ẋ

Dρ(x, t)

]
xt

− kB

[
µF (x, λ)ẋ

D

]
xt

, (C.13)
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Stochastic thermodynamics for overdamped diffusion

where we used equation (C.4) in the second equality of (C.13). As we assume that
the equilibrium bath is not perturbed by the external forces, D = kBTµ. Then, the
last term in equation (C.13) can be identified as the entropy rate due to the power
Q̇ = F (x, λ)ẋ dissipated into the medium:

Ṡm(xt) = kB

[
µF (x, λ)

D
ẋ

]
xt

=
Q̇(xt)

T
.

Consequently, the total entropy production rate is

Ṡtot(xt) = Ṡm(xt) + Ṡst(xt),

= −kB
[
∂tρ(x, t)

ρ(x, t)

]
xt

+ kB

[
j(x, t)

Dρ(x, t)
ẋ

]
xt

. (C.14)

We remark that this is a good definition of total entropy rate because at thermal
equilibrium (j = 0, ∂tρ = 0), one obtains Ṡtot = 0, which is consistent with microscopic
time reversibility. In the case of a nonequilibrium steady state with density ρ0(x)
(j = const. ̸= 0, ∂tρ0 = 0), equation (C.14) allows one to write the total entropy rate
in terms of the constant current j

Ṡtot(xt) = kB

[
j

Dρ0(x)
ẋ

]
xt

.

Finally, the total entropy rate defined by equation (C.14) reduces to the second
law of thermodynamics upon averaging over an infinite number of realizations of the
stochastic process xt. Indeed, the average value of the total entropy rate ⟨Ṡtot(t)⟩ at
time t can be written as

⟨Ṡtot(t)⟩ =
∫

dx ρ(x, t)⟨Ṡtot(xt)|x, t⟩, (C.15)

where the ensemble average ⟨. . .⟩ has been splitted into two steps. The first is a
conditional average ⟨. . . |x, t⟩ performed over all trajectories that are in a fixed x at
time t. The second is perfomed over all the possible values of x. Taking into account
the probability conservation

∂t

∫
dx ρ(x, t) = 0,

equation (C.15) becomes

⟨Ṡtot(t)⟩ =
∫

dx ρ(x, t)
j(x, t)

Dρ(x, t)
⟨ẋ|x, t⟩ . (C.16)

Furthermore, bearing in mind that, according to the definition of mobility, the ensemble
average of the velocity ẋ can be expressed as

⟨ẋ⟩ = µ⟨F (x, λ)⟩,

=

∫
dx ρ(x, t)µF (x, λ),

=

∫
dx ρ(x, t)

[
µF (x, λ)−D∂xρ(x, t)

ρ(x, t)

]
, (C.17)
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then the term between the square brakets in the last equality of (C.17) can be identified
as

j(x, t)

ρ(x, t)
= ⟨ẋ|x, t⟩. (C.18)

By substituting (C.18) into (C.16), this yields

⟨Ṡtot(t)⟩ =
∫

dx
j(x, t)2

Dρ(x, t)
≥ 0,

which is the second law of thermodynamics.
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